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Small Area Estimates of Poverty Incidence in Costa
Rica under a Structure Preserving Estimation

(SPREE) Approach

Alejandra Arias-Salazar1

Obtaining reliable estimates in small areas is a challenge because of the coverage and
periodicity of data collection. Several techniques of small area estimation have been proposed
to produce quality measures in small areas, but few of them are focused on updating these
estimates. By combining the attributes of the most recent versions of the structure-preserving
estimation methods, this article proposes a new alternative to estimate and update cross-
classified counts for small domains, when the variable of interest is not available in the census.
The proposed methodology is used to obtain and up-date estimates of the incidence of poverty
in 81 Costa Rican cantons for six postcensal years (2012–2017). As uncertainty measures,
mean squared errors are estimated via parametric bootstrap, and the adequacy of the proposed
method is assessed with a design-based simulation.

Key words: Extreme poverty; intercensal updating; small area estimation; log-linear models.

1. Introduction

The estimation and monitoring of socio-economic indicators is relevant for decision-

making and the development of public policies aimed at improving the conditions of the

citizens. Among other characteristics, high-quality statistics must be relevant, accurate,

and reliable to use them in the design, development and assessment of programs of social

interest (Eurostat 2017). The success of these plans depends on how they are formulated

and oriented, but in many cases, the information available is not enough to achieve this

objective. Traditionally, national surveys are carried out every year in many countries to

produce an up-to-date status of important topics such as poverty, inequality, and

unemployment. This information, which is obtained periodically, usually satisfies the

quality requirements, for instance of national statistical offices only at bigger domains. In

other words, due to lack of resources, the sample sizes are not large enough to study the

problems of interest in detail. For example, in the case of poverty: Where is the most

vulnerable population located? Which areas have been improved through the years and

which areas have been stagnated? Which other conditions (e.g., sex, age, disabilities) are

associated with this phenomenon, and in which local areas?
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Small area estimation (SAE) methods have the goal of producing reliable estimates in

smaller domains, that is, with adequate precision. Most of these methodologies, usually

classified as unit-or area-level models, provide efficiency gains if the correlation between

existing auxiliary information and the survey data is sufficient. (Pfeffermann 2013; Rao

and Molina 2015; Tzavidis et al. 2018). In middle-income countries, administrative

records are usually not sound enough and therefore censuses are the most important

auxiliary source of information for the entire population, with the limitation that it is

usually collected every ten years.

The time gap between annual surveys and population censuses is usually ignored in

SAE methods. The use of covariates from an earlier period may lead to less reliable

indicators than what would be expected from more solid auxiliary information. Academic

literature on updating estimates in small areas is limited. Post censal population estimates

have been obtained, for example from traditional procedures in demography, like the

component method (United Nations 1956) and vital rates (Rao 2003). Emwanu et al.

(2006) use panel survey data to obtain small area estimates of welfare in post-census years

by regressing recent income (or expenditure) data on household characteristics that are

available in both survey and census data. The best-known tool in this field is the structure-

preserving estimation (SPREE) method, which is also the focus of this article and will be

described in detail in Subsection 3.1. This technique was originally introduced by Purcell

and Kish (1980) to obtain post-census estimates (counts or proportions), arranged by small

domains and categories of interest. SPREE have been especially applied for updating

demographic information and socio-economic indicators including employment

(Hidiroglou and Patak 2009; Berg and Fuller 2009; Luna-Hernández et al. 2015) and

poverty (Isidro et al. 2016).

Thereafter, several versions of SPREE have been proposed with the aim of improving

the method by adding flexibility and reducing bias, namely the Generalized-SPREE

(GSPREE) (Zhang and Chambers 2004) and most recently, the Multivariate-SPREE

(MSPREE) (Luna-Hernández 2016). These SPREE-techniques have specific assumptions

and requirements for their implementation. For example, the variable of interest must be

categorical, and it must be not only in the survey (most recent) but also in the census data,

which for indicators like the poverty rate are usually not available for variables based on

income or expenditure. An alternative version called Extended-SPREE (ESPREE) (Isidro

et al. 2016) solves this problem by applying a small area estimation technique (the Elbers,

Lanjouw and Lanjouw (ELL) method (Elbers et al. 2003), as a previous step to obtain the

required information for the census year. Once the estimated census information is

obtained, Isidro et al. (2016) perform the original SPREE (Purcell and Kish 1980) to

compute post-censal estimates. Moreover, Luna-Hernández (2016) showed that MSPREE

is more efficient compared to SPREE (in terms of lower mean squared errors). Therefore,

the current article extends the framework of Isidro et al. (2016) by allowing for the

MSPREE in the updating process. In particular, the article aims to provide a modern

methodology to (a) estimate and (b) update counts or proportions of relevant indicators in

small areas when the information of interest is not available in the census data.

The motivation of the proposal is to offer updated reliable income-based poverty

estimates of Costa Rican cantons in three mutually exclusive categories: “extreme poor”,

“poor” (not extreme), and “not poor”. Due to its political stability and good performance in
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general macroeconomic aspects, Costa Rica has been for several years an example among

other economies in the region (OECD 2016). Despite this, a point that draws attention and

has been the object of study in recent years is the stagnation of relative poverty that the

country has had for more than two decades, unlike other Latin American countries that

have achieved greater reductions in their poverty rates (CEPAL and MIDEPLAN 2016).

As well as in the international agenda, previously through the Millennium Development

Goals (MDGs) (United Nations 2019a) and currently, the Sustainable Development Goals

(SDGs) (United Nations 2019b), one of the main concerns specifically in this country is

the extreme poverty. Traditionally, and for international comparison, the National Institute

of Statistic and Censuses (INEC, Instituto National de Estadıstica y Censos) of Costa Rica

measures poverty based on the poverty line method. With this approach, a person or

household is considered poor (or extreme poor) if its monthly per capita income is equal or

below a specific poverty line. The idea of defining a threshold or line is to set the minimum

amount in the per capita income that a person or household requires to satisfy food and

non-food needs, included in a basket of goods and services (INEC 2015). In Costa Rica,

extreme poverty had a reduction from 2004 to 2013 of only 0.8 percentage points in

accordance with a diagnosis of structural gaps. Research showed that this status of poverty

has three determinants: the adverse home and social environment, the insufficient scope of

social programs and the exclusive labor market (CEPAL and MIDEPLAN 2016). Because

of a lack of data, this kind of studies can only be conducted in census years or for larger

areas, limiting the possibility of applying targeted policy interventions for specific groups

or domains.

As well as other middle-income economies, Costa Rica faces several limitations to

obtain small area estimates of poverty: administrative records at the unit level are not

available, the census does not contain income or expenditure information to compute

poverty estimates via the poverty line method, and the census is carried out only every ten

years which can reasonably lead to outdated poverty estimates. The main study previously

conducted in Costa Rica to obtain estimates of poverty in local areas was carried out for

the same year as the census, using the ELL method. Although this work, developed by

Méndez and Bravo (2011), certainly allowed to obtain more detailed information about

poverty in local areas (classified as poor and not poor), two aspects can be improved with

the proposal presented in this article: (a) provide poverty estimates for non-censal years,

and (b) produce estimates on extreme poverty as a specific group of interest. The

methodology proposed in this article can also be applied to many other countries that share

similar conditions and extended to other relevant demographic and socio-economic

(categorical) indicators.

This article has the following structure: Section 2 describes the data sets and explains

the definition of poverty used in the application. Section 3 introduces the SPREE methods

as small area estimation and updating techniques. The strategy proposed to obtain and

update poverty estimates in Costa Rican cantons is also explained in this section, as well as

the methodology to produce uncertainty measures. Application results are shown in

Section 4. The results of a simulation study to validate the proposed method are presented

in Section 5. The last section is dedicated to the conclusions and recommendations for

further research.
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2. Data Description and Definition of Poverty

As will be explained in detail in Subsection 3.1, the basic approach of the SPREE

techniques requires one complete composition (usually a cross-classification from a

census gathered in a previous time) and updated, reliable population totals (margins) for

the variable of interest and for the area population sizes. Extensions to this methodology

including the one implemented here require of an updated estimate of the cross-

classification of interest that can be obtained from survey data. The aim of this section is to

describe the data sources available and explain the definition of poverty considered in the

application. Population and housing census, as well as the National Household Survey data

sets, were provided by the INEC of Costa Rica, under specific confidential agreements.

2.1. Population and Housing Census 2011

In Costa Rica, the Population and Housing Censuses are carried out every ten years by the

INEC. The most recent census was conducted in 2011 (data collection from 30th, May to

3rd, June) and it collected information of people, households, and dwellings necessary for

the planning, execution, and evaluation of public policies (INEC 2012). With the

information collected, it is possible to identify the relevant characteristics of the

population such as access to education, employment, social security, technology, and

health centers. Although the census 2011 includes questions to compute the unsatisfied

basic needs (UBNS) index (Feres and Mancero 2001), it did not produce information about

income or expenditures of the persons and households, which are necessary to calculate

the incidence of poverty via the poverty line method. The sampling frame which is needed

to conduct national surveys and other statistical operations is constructed based on this

population and housing census. With this census, 10,461 primary sampling units (PSUs)

and 1,359,168 dwellings were identified.

2.2. National Household Surveys 2011–2017

The National Household Survey (Encuesta Nacional de Hogares (ENAHO)) is the primary

source for poverty and inequality measures in Costa Rica. In this aspect, this survey

collects information about housing characteristics, education, social security and

employment of the household members. This study is carried out annually (data

collection during the month of July). Surveys from 2011 to 2014 used the sampling

framework from the previous census 2000, the following surveys used the sampling

framework updated with the census 2011. The sampling design used in the ENAHO is a

two-stage stratified random sampling where census segments are the first stage units

selected with probability proportional to size, and dwellings are defined as the final stage

units. Administratively, Costa Rica has four disaggregation levels: two zones, six planning

regions, 81 cantons and 473 districts (municipalities). The sampling design specifies

twelve strata – each planning region divided by urban and rural areas. In this case, the

strata coincide with the study domains. Smaller domains are not considered to guarantee a

coefficient of variation less than 15% for the main poverty measure (percentage of

household under poverty) (INEC 2017). For 2011, the ENAHO selected 1,120 PSUs and

13,440 dwellings (10.7% and 9.9% of the sampling framework, respectively).
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There are two main differences across the survey rounds as well as regarding the census

data. On the one hand, the last surveys collected more variables than the previous ones and

the census, and the definition of some of the variables also changed. On the other hand,

there were land reforms in the period of study: in 2011 there were only 81 cantons but in

2017 another canton was created. To deal with these obstacles, only variables that exist

with the same definition in both the census and survey data are included for the analysis.

Also, for the last survey, cantons were grouped exactly the same as in the census 2011.

This straightforward-aggregation is possible because the new canton was created by

dividing one of the existing cantons. In this article, the objective is to obtain quality

poverty information of households for the third administrative level, that is, the 81

cantons, which are defined as the target small areas.

2.3. Demographic Projections

In order to apply a SPREE technique, it is necessary to provide reliable and up-to-date area

totals as it will be explained in detail in Subsection 3.1. Since survey data usually does not

produce trustworthy population sizes for small areas (due to sample sizes and areas out of

sample), demographic projections are used instead in this article. In Costa Rica, population

projections are calculated with the cohort component method (Preston et al. 2001) which

considers changes in three components: mortality, fertility and migration. The mortality

projection was carried out with an autoregressive integrated moving average (ARIMA)

random walk model with drift, and for the fertility and migration components, functional

data analysis models were implemented. Further details can be found in INEC and CCP

(2013). Because of population projections in Costa Rica consider persons at an aggregate

(e.g., canton) level, but in this application the aim is to update the total of households

according to their status of poverty, the headship rate (United Nations 1973) by sex and

age groups is applied in order to get the household projections. A previous implementation

of this methodology in this country can be found in Sáenz (2002).

2.4. Definition of Poverty

In Costa Rica, poverty is measured under different uni-and multidimensional proaches.

One of the most important, and that is the focus in this article, is the (monetary) poverty

rate which is based on the poverty line method (using non-equivalized household per

capita income). The INEC defines two types of lines or thresholds:

1. The indigence or extreme poverty line: set by the per capita costs of a basic food

basket. The composition of this basket is defined from the National Survey on

Income and Expenditure of the Households (Encuesta Nacional de Ingresos y Gastos

de los Hogares, ENIGH) which is carried out every five years. The value of the

basket is updated every month based on the consumer price index. If the monthly per

capita income of a household is below this line, it is considered under “extreme”

poverty. For the census time (July 2011), the indigence line was 39,428 colones

(Costa Rican currency) (INEC 2011) which was 27.9% of the median per capita

income at that time.
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2. The poverty line: considers non-food basic needs. A household is classified in this

category if the monthly per capita income is equal to or below this value but higher

than the indigence line. The poverty line in July 2011 was 84,006 colones which is

60.7% of the median per capita income (Méndez and Bravo 2011).

In this article, the number of households grouped in three categories of poverty (“extreme

poor”, “poor” (not extreme) and “not poor”) is estimated and updated for six post-censal

years (2012–2017) in 81 cantons.

3. Methodology

This section describes the methodology for estimating and updating counts and

proportions for small areas. First, SPREE techniques are introduced because they are the

basis of this proposal. Second, the recommended strategy for obtaining and updating

estimates is explained. Finally, the steps to produce uncertainty measures are described.

3.1. Structure Preserving Estimation (SPREE) Methods

As stated above, SPREE was originally proposed by Purcell and Kish (1980) as a tool to

update counts or proportions of a categorical variable of interest according to study

domains in intercensal years. The target information of interest in a recent time t1 is shown

as a multi-way contingency table Yaj;t1
grouped by a ¼ 1; :::;A areas or domains (rows)

and j ¼ 1; :::; J categories of the variable of interest (columns) (e.g., poverty status). In

other words, for a population of size N, all the units i (e.g., individuals or households) are

organized according to the area and category to which they belong. The structure of a two-

way contingency table can be represented as a saturated log-linear model:

log Yaj;t1
¼ aY

0;t1
þ aY

a;t1
þ aY

j;t1
þ aY

aj;t1
: ð1Þ

These four terms aY
0;t1
;aY

a;t1
;aY

j;t1
and aY

aj;t1
can be defined using a centred-constraint

parametrization, see, for example, Luna-Hernández (2016). Notice that data from a census

(time t0) can also be arranged as a contingency table (Zaj,t0
) and represented as a saturated

log-linear model (log Zaj;t0
Þ with the same constraints.

For intercensal years, the production of official statistics relies in many cases on survey

data. However, due to sampling size limitations, trustworthy results are only available for

big areas. The SPREE method provides a solution when updated estimates of frequency

characteristics are required in smaller domains. The terms aY
0;t1
;aY

a;t1
and aY

aj;t1
represent the

allocation structure which are benchmarked to totals or current margins (A row and J

column totals), usually provided by direct survey estimates and/or demographic

projections. In this article, for simplicity, the allocation structure is also referred to as the

survey margins, although it is made up of both demographic projections and survey data. It

is assumed that these totals are reliable and updated for postcensal years. Furthermore, the

method supposes that the interactions between rows and columns of the census Zaj;t0
(inner

cells in the contingency table) remain unchanged for the target years. Therefore, the

structural assumption is;

aY
aj;t1
¼ aZ

aj;t0
: ð2Þ
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This interaction term provided by the census is usually known as the association

structure.

Following the proposal of Purcell and Kish (1980), the updated estimates are obtained

via the iterative proportional fitting (IPF) algorithm (Deming and Stephan 1940) (also

found in literature as raking or contingency table standardization). A detailed description

of the IPF is available for example, in Bishop et al. (2007) and Zaloznik (2011). This

algorithm fits a census table by keeping reliable survey margins fixed. The process to

obtain the updated SPREE of Yaj;t1
is represented by Luna-Hernández (2016) as:

Ŷ S
aj;t1
¼ IPF exp âY

aj;t1

� �
; Ya;t1

; Yj;t1

h i
; ð3Þ

with Ya;t1
and Yj;t1

representing the reliable survey margins (rows and columns) and

âY
aj;t1
¼ aZ

aj;t0
.

As it will be later described, new versions of SPREE estimators have been proposed and

each of them define different assumptions on their association structure âY
aj;t1

. The process

in Equation 3 is applied with the defined association structure of each SPREE-type

estimator.

In order to apply a fitting strategy via IPF, Koebe et al. (2022) summarise some basic

requirements that should be considered:

1. the data to fit must be arranged in categories (e.g., contingency tables),

2. the margins of the census and survey structures must have the same length (same

number of rows and columns),

3. totals by rows and columns must be equal,

4. the census data (association structure) must contain the indicator of interest (e.g.,

poverty status) with the same definition or a highly correlated indicator (Green et al.

1998).

In practice, requirements two and four are not met in the Costa Rican scenario. Due to

administrative reforms that occurred in postcensal years (e.g., merge or split domains), the

number of local areas in the census and in the surveys differs. Another situation where

requirement two may not be fulfilled is when some areas were not selected in the sample,

leading to an incomplete allocation structure. For these cases, several solutions can be

considered: complementary information such as administrative registries or population

projections could be used as reliable survey margins, rows that are not in the survey

composition can be eliminated from the census, or adding missing rows with small values

(e.g., 1) to re-construct the survey compositions in the same way as defined in the census.

The first alternative is implemented in the current example.

Regarding the fourth requirement, income or poverty information is not obtained

directly in the Costa Rican census. A solution for this kind of situation was proposed by

Isidro et al. (2016). The so-called ESPREE considers the case when the indicator of

interest is not present in the census data, and another small area estimation method (e.g.,

the ELL method) is applied as a first step with the aim of obtaining the required

information for the census year. Thereafter, the original SPREE technique is conducted as

a second step to proceed with the updating process. Considering the characteristics of the
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case of study exposed in this article, the methodology of ESPREE is followed to obtain

updated poverty estimates.

Another line of research within the SPREE framework is the bias reduction of the

estimator. The GSPREE introduced by Zhang and Chambers (2004) makes the structural

assumption of SPREE more flexible by adding a proportionality coefficient (constant

obtained through direct estimates Ŷ
Dir

aj;t1 ) adjusting Equation 2 to:

aY
aj;t1
¼ baZ

aj;t0
: ð4Þ

Note that the SPREE assumption defined previously in Equation 2 is the case of

Equation 4 when b ¼ 1. Moreover, Luna-Hernández (2016) proposes a version that aims

to relax two restrictions of the former methods (SPREE and GSPREE): the relationship

between the association structures (interaction terms) of the census and target

compositions are controlled only by one parameter, and in the case of the GSPREE the

proportionality parameter b, is assumed to be the same for all the categories. GSPREE and

MSPREE mainly differ from the original SPREE because a multi-way contingency table

of direct estimates is also necessary in order to update the association structure,

meanwhile, the former version only requires the availability of suitable (total) margins.

The novel method is called multivariate SPREE (MSPREE) because in this case, the target

compositions are the interactions within each area. Then, the coefficient b, similar to the

proportionality coefficient specified by Zhang and Chambers (2004), now is represented

by a J £ J matrix (with ðJ 2 1Þ £ ðJ 2 1Þ free parameters), and varies inside each area,

from one category to another. The main benefit of this proposal is to be able to capture

better relationships between categories, instead of assuming that these interactions remain

identical over time. With this, the bias that can occur through changes in the association

structure (which is not accounted in SPREE and GSPREE), is also reduced. Similarly as in

Equations 2 and 4, the MSPREE structural assumption is expressed as:

which is equivalent to:

aY
a;t1
¼ baZ

a;t0
ð5Þ

where a ¼ 1; :::;A areas, and for each area, the interaction terms are: aY
a;t1
¼ ðaY

a1;t1
;

:::;aY
aJ;t1
Þ and aZ

a;t0
¼ ðaZ

a1;t0
; :::;aZ

aJ;t0
Þ. The target MSPREE composition YM

aj;t1
can also be

obtained via IPF as in Equation 3. In the same way as in the original SPREE and GSPREE,

the reliable total margins are preserved, but the same list of requirements aforementioned

must be fulfilled.

Estimates of b can been obtained via Maximum Likelihood (ML) or Iterative Weighted

Least Squares (IWLS), in both cases by using a log or a logit link. Because a target

contingency table can be represented as a log-linear model, SPREE fits within the

framework of generalized linear models (Marker 1999; Noble et al. 2002). Moreover, as

Agresti (2002) indicates, a log link with a Poisson response is commonly applied to model

cell counts in contingency tables, but he also shows that the Poisson expected frequencies

maj;t1
are equal to npaj;t1

; where paj;t1
are the cell probabilities used under multinomial

sampling and n the sample size. For this reason, when working with log-linear models (as

SPREE), the estimation of coefficients b can be obtained with a Poisson

Ŷ
Dir

aj;t1
jaZ

a;t0
,ind

Poissonðmaj;t1
Þ or Multinomial Ŷ

Dir

aj;t1
jaZ

a;t0
,ind

Multinomial ð
PJ

j¼1Ŷ
Dir

aj;t1
;pa; t1Þ
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leading to similar results. Notice that, similarly to the GSPREE, the computation of b

requires direct estimates (i.e., not only survey margins but a survey composition Ŷ
Dir

aj;t1
).

The second alternative to obtain estimates of b is using IWLS. This algorithm is

implemented in Zhang and Chambers (2004) and Luna-Hernández 2016 suggests it when

the sample is drawn using a complex sampling design because using ML for the parameter

estimation can lead to misspecification if sampling design information is ignored. In the case

of the survey data used in this article, the sample was gathered in a two-stage selection

process considering unequal selection probabilities, and for this reason, a fully

distributional approach should not be assumed. Consequently, in this article, the parameters

of interest are estimated via IWLS. This method requires an estimate of the variance-

covariance matrix of the target composition Ŷ
M

aj;t1
which is usually not available.

Luna-Hernández 2016 solves this issue by multiplying a design effect with the variance that

corresponds to a simple random sample without replacement design. This proposal assumes

that samples are independently selected in each area and there are no existing correlations

among estimates from different areas. The estimate of the variance-covariance matrix is

represented as:

V̂aj;t1
¼

deffj;t1
p̂M

aj;t1
1 2 p̂M

aj;t1

� �

na;t1

; ð6Þ

with p̂ M
aj;t1
¼

Ŷ
M

aj;t1

Ya;t1
and na,t1

the area sample sizes. Further details about the IWLS algorithm

can be consulted in Jiang (2007) and Luna-Hernández (2016).

3.2. The Empirical Best Predictor (EBP) Method

The EBP is applied in order to obtain the information of poverty status in the census

structure. The EBP methodology proposed by Rao and Molina (2015) implements a unit-

level nested error regression model to get estimates of a specific variable of interest in the

census, using (usually) survey data that contains this variable. This method has been

extensively implemented in SAE problems and also specifically for poverty estimation

(see e.g., Pratesi 2016 or Das and Haslett 2019). The process assumes a random effects

model for a finite population of size N:

yai ¼ xT
aibþ ua þ eai;

where yai represents the target variable and xai the set of covariates for the ith individual or

household in ath area, ua indicates the area-specific random effects and eai, the unit-level

error. The two last terms are assumed to be normal, independent and identically

distributed. By using survey data, the following estimates are obtained: b̂; ŝ2
u; ŝ

2
e and the

weighting factors ĝa ¼
ŝ 2

u

ŝ 2
uþ

ŝ 2
e

na

, where na denotes the sample size in area a, and s2
u and s2

e

indicates the between and within group variance respectively.

Then, l ¼ 1; :::; L Monte Carlo simulations to generate a pseudo population are

conducted:

yai ¼ xT
aib̂þ ûa þ y ðl Þa þ eðl Þai ; ð7Þ
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where y ðl Þa ,iidNð0; ŝ2
uð1 2 ĝaÞÞ and eðl Þai ,iidNð0; ŝ2

eÞ and the predicted random effect ûa is

defined as ûa ¼ E uajyas

� �
. The final indicator of interest is obtained taking the mean over

the L iterations.

Molina and Rao (2010) explain that the EBP estimator can be biased when model error

terms depart from normality. When working with income data, a common practice to

achieve Gaussian assumptions is by using a logarithmic transformation (Elbers et al. 2003;

Molina and Rao 2010) which is a special case of the Box-Cox transformation (Box and

Cox 1964). In this case study, as will be explained in detail in Subsection 5.1, the incidence

of poverty is approximated by modeling income, for this reason, departures from

normality are reduced with a Box-Cox transformation. Further details on the performance

of the EBP under data-driven transformations can be found in Rojas-Perilla et al. (2020).

The EBP was conducted using R (R Core Team 2018), specifically with the Package emdi

(Kreutzmann et al. 2019).

3.3. Strategy to Estimate and Update Poverty Estimates in Costa Rican Cantons

The goal of this article is to obtain and update poverty estimates in three categories:

“extreme poor”, “poor” (not extreme), and “not poor”. However, as noted previously, no

poverty information is collected directly from the census, nor income or expenditure data.

Thus, the applied methodology considers characteristics of some of the SPREE methods,

specifically the ESPREE and the MSPREE. Since the census data does not contain poverty

information, this article adjusts the ESPREE framework. Instead of applying an ELL

model to estimate poverty in the census data followed by the original SPREE to update the

counts as in Isidro et al. (2016), the empirical best predictor (EBP) (Rao and Molina 2015)

is implemented followed by the MSPREE in this work (for simplicity, also referred as

EBP-MSPREE). To the best of my knowledge, MSPREE is the most recent and complete

technique mentioned in SPREE literature. This version provides more flexibility and bias

reduction compared with the previous versions, therefore it is implemented as the main

tool in the updating part of the process.

The estimation and updating strategy can be summarized in the following steps:

1. Estimating the proxy association structure via EBP Considering that census and

survey data, both for the same year at individual level are available, the EBP

explained in Subsection 3.2 is applied in order to obtain the information of poverty

status in the census structure.

2. Obtaining the allocation structure. Household projections as mentioned in

Subsection 2.3 provide the total of households in each canton (row margins) and

survey data described in Subsection 2.2, the total of households by poverty status.

Both sources are available for postcensal years (2012–2017).

3. Updating estimates via MSPREE. Intercensal EBP-MSPREE compositions Ŷ
EM

aj;t1

are estimated considering the outputs from the two previous steps (association

structure a Z
aj;t0

from Step 1, and row Ya,t1
and column Yj,t1

margins from Step 2, that

represent the allocation structure). Direct estimates from survey data and design

effects are also required as explained at the end of Subsection 3.1. With these inputs,

the procedure can be described as follows:
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1. the matrix of coefficients b is estimated with an IWLS algorithm that requires a

variance-covariance matrix. This matrix is approximated using design effects as

showed in Equation 6 with EBP composition estimated in t0 and the direct

estimate obtained from the survey in t1,

2. â Y
aj;t1

is estimated with Equation 5,

3. taking into account all these elements, the target estimate Ŷ
EM

aj;t1
is finally obtained

with Equation 3.

3.4. Uncertainty of the Updated Estimates

The benefits of two SPREE versions are used in this article. To motivate the proposed
dMSEMSEðŶ

EM

aj;t1
Þ, the procedures via bootstrap of the predecessors (MSE of ESPREE and

MSPREE) are briefly described in this Section. Details about other approaches, for

example, via linearization methods can be found in Isidro (2010), Isidro et al. (2016) and

Luna-Hernández (2016).

Two sources of variation are considered when obtaining estimates via the ESPREE

method: survey data (allocation structure) and pseudo-populations (association structure).

Being ŶE
aj;t1

the ESPREE estimates, the uncertainty estimate is the sum of two variances:

Var(ŶE
aj;t1

) ¼ Varsurvey (ŶE
aj;t1

) þ Varcensus (ŶE
aj;t1

). The first variance term Varsurvey is

obtained by generating b ¼ 1; :::;B independent bootstrap samples from the original

survey data and computing Ŷ
E;b
aj;t1

by keeping fixed the census data (i.e., association

component) in every replication. The second term Varcensus, is obtained in a similar way.

In this case, B-ESPREE estimates Ŷ
E;b
aj;t1

are computed based on b ¼ 1; :::;B bootstrap

populations or pseudo-census to account for the uncertainty provided by the association

structure, and the allocation structure (survey margins) will be held fixed over the

replications. Because in ESPREE, the census values are estimated via ELL (or EBP), the

b ¼ 1; :::;B pseudo-census generated from the ELL process can be also be used here. Both,
dVarVar survey and dVarVar census are unconditional variances. As aforementioned, the final

uncertainty estimation is only the sum of these two terms, meaning that the authors assume

that there is no covariance between both estimators.

Regarding MSPREE uncertainty measures of ŶM
aj;t1

, Luna-Hernández (2016) proposed

three alternatives: an analytical approximation for the variance of the estimator, finite

population MSE (FP-MSE) and an unconditional MSE (U-MSE). For simplicity and

consistency, the last one is here described. From the point estimate ŶM
aj;t1

, calculate the

within-area proportions p̂a;t1
¼

Ŷ M
aj;t1

Ŷa;t1

for each area a ¼ 1; :::;A: Generate B-bootstrap

populations Y*b
aj;t1

under the assumption that the target estimate across areas has the

following distribution: Yaja
Z
a;t0

, Multinomial ðYa;t1
; p̂a;t1

Þ. From each bootstrap

population draw a sample and follow the steps of Subsection 3.2 to obtain Ŷ
M;b
a;j;t1

. Finally,

compute dU-MSEU-MSEðŶM
aj;t1
Þ ¼ 1

B

PB
b¼1ðŶ

M;b
aj;t1

2 Ŷ*b
aj;t1
Þ2.

The two procedures to obtain the MSE of ŶE
aj;t1

and ŶM
aj;t1

, were briefly described to better

contextualize the MSE proposed in this article and to point out the differences and

similarities between them. Thus, results from these two previously described MSEs are not

produced in this article.

Because the estimation and updating process in this application makes use of the EBP

followed by the MSPREE, (EBP-MSPREE) the sources of uncertainty in all of the steps
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should be considered. The idea of including the variation of each element is taken from

Isidro et al. (2016). The objective is to contemplate that the MSE of the EBP-MSPREE

entails three sources of uncertainty: allocation structure, association structure, and the

yearly association updating). The difference in this proposal is that instead of calculating

each variability term and adding them ðVarsurvey þ Varcensus þ VarbÞ; a single bootstrap

procedure will be performed, varying each of the required elements in each replication.

This decision is made since it cannot be denied that covariances between the estimators

exist. This aspect requires special attention and it should be studied in further

investigations. The steps to obtain the MSE for the EBP-MSPREE are as follows:

1. From Equation 7, L Monte Carlo pseudo populations in t0 were generated. Based on

defined thresholds (poverty lines), L cross-classified population tables are created

with dimension: A areas and J categories of poverty. Notice that the average across

them was used to defined aZ
aj;t0

and finally compute the point estimate Ŷ
EM

aj;t1
. Now,

these L pseudo populations are used to create a
z;b
aj ;t0

(with L ¼ BÞ; to account for the

uncertainty that this structure provides, similarly as in Isidro (2010) and Isidro et al.

(2016).

2. To take into consideration the uncertainty from the allocation structure, generate B

pairs of margins Yb
a;t1

,Yb
j;t1

from the point estimate Ŷ
EM

aj;t1
assuming a multinomial

distribution, e.g., Yb
a;t1

, Multinomialð ~Y, p~a), where p~a¼
Ŷa;t1
~Y

and ~Y ¼
PA

a¼1Ŷa;t1
.

3. The uncertainty due to the estimation of b required in the MSPREE is obtained

following the procedure of the U-MSE previously described: From the point estimate

Ŷaj;t1
calculate the within-area proportions p~a;t1

¼
Ŷ M

aj;t1

Ya;t1
for each area

a ¼ 1; :::;A: Generate B-bootstrap populations Y
*b
aj;t1

under the assumption that the

target estimate across areas has the following distribution: Yaja
Z
a;t0

, Multinomial

(Ya,t1
, p̂a;t1

). From each B-bootstrap population draw a sample to get y
EM;b
aj;t1

.

4. With the output of Step 1 and 3, specify the MSPREE structural assumption âY ;b
a;t1

as

in Equation 5.

5. With L ¼ B and the output of Step 2 and 4, compute B EBP-MSPREE estimates

Ŷ
EM;b

aj;t1
¼ IPF exp âY ;b

a;t1

� �
; Yb

a;t1
; Yb

j;t1

h i
:

6. Finally, estimate the MSE:

dMSEMSE Ŷ
EM

aj;t1

� �
¼

1

B

XB

b¼1

Ŷ
EM;b

aj;t1
– Ŷ

EM

aj;t1

� �2

: ð8Þ

4. Results of the Application

In this section, the results of the estimation and the updating process are explained. First,

the EBP model for obtaining the association structure is described, (i.e., poverty

information in the census composition) with its corresponding model evaluation and

descriptive statistics. Second, some relevant results in the practical sense are shown, for

example, the evolution of (updated) poverty indicators from 2012 to 2017 for selected

cantons, and the cantons with the highest poverty rates in the last year of study. Finally,

uncertainty measures and validation results are presented.
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4.1. Poverty Estimates for the Census

An EBP model to obtain poverty incidence by domain was conducted by setting income

per capita of the household as the dependent variable and the socio-economic covariates

described in Table 1 as predictors. In Costa Rica, urbanity plays an important role in

socioeconomic topics. For this reason, the variable zone (urban/rural) is added to the

model. The other groups of variables contain information on the head of the household, the

household members, and the housing. Most of them have been used in previous studies as

predictors of poverty or are part of indexes such as the UBNS and the multidimensional

poverty index (MPI) (Alkire and Foster 2007). Under the model here specified, the sample

design is assumed non-informative.

To select the model, several transformations were considered to reduce normality

departures of the error terms, but the final version applies a Box-Cox transformation (Box

and Cox 1964) with an optimal lambda (0.1585) using the Restricted maximum likelihood

(REML) approach. Regarding the normality assumptions of this linear mixed model,

graphical diagnostic of the residuals are used. Figure 1 shows that normality assumptions

are rejected for the unit level (Skewness -0.0491 and Kurtosis 6.4179), but not for the

random effects (canton-level). The latter is also confirmed with the Shapiro Wilk test

ðW ¼ 0:9860 and p ¼ 0:5286Þ; and Skewness (-0.3584) and Kurtosis (3.0649) measures.

For this example, normality for both, the unit level and the random effects, is assumed.

Also, the marginal R2 ¼ 0:5003 and the conditional R2 ¼ 0:5081 were observed.

Table 2 shows the summary statistics of the population and sample domains. For 2011,

all cantons are in-sample although it is not the case for some post-censal years. Domain

sizes from the census data vary from 1705 (minimum) to 84,066 (maximum) households,

and in the case of the ENAHO, it varies from 12 to 877 households.

Table 1. Covariables included in the EBP model to obtain poverty estimates in census.

Category Variable

Geographical 1. Zone
head of the 2. Age
household 3. Highest degree of education completed

4. Sex
5. Labor condition

Household 6. Proportion of employees in the household
conditions 7. Equivalized size of the household

8. Overcrowding
9. At least one member without health insurance
10. Quantity of economically dependent members
11. At least one member not attending to formal education
12. At least one member not with a educational lag

Housing 13. Poor condition of the floor or ceiling
conditions 14. Any member not used internet last 3 months

15. No garbage disposal system
16. No exclusive toilet for the household

Notes: Labor condition has three categories: employed, unemployed, out of Labor Force.

Variable 9 refers to population older than 17 years old.

Variables 11 and 12 refer to population between five and 19 years old.

Variable 14 refers to population older than four years old.
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In order to study poverty in the three aforementioned interest groups, the two poverty

lines described in Subsection 2.4 were implemented (as “customised indicators” in the R

package emdi, for further details about this functionality see Kreutzmann et al. 2019)

Descriptives of coefficients of variation (CV) for the directand model-based estimates

obtained via EBP are presented in Table 3. As expected, the CVs reflect the lack of precision

in the categories “extreme poor” and “poor” (not extreme) for the direct estimates. The

improvement when the EBP model is conducted is clear, with a maximum CV of 29.9% and

18.2% for “extreme poor” and “poor” (not extreme) categories respectively. Notice also,

that the third quartile of the CV in the category “extreme poor” is below 20%.

Figure 2 shows the proportion of households under extreme poverty based on the direct

estimates and the model-based estimates obtained via the EBP model. The maps on the right

side give a closer look at the metropolitan area which consists of 31 cantons, covering

approximately 60% of the population. In four of these cantons, no households were

identified as “extreme poor” with direct estimates (out-of-sample domains represented in
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Fig. 1. Q-Q plots of the unit-level errors and the random effects.

Table 2. Summary statistics for sample and population sizes.

Min 1st Q Median Mean 3rd Q Max

Sample domains
(In-sample: 100%)

12 62 103 144.37 191 877

Population domains 1705 5961 11032 15271.37 17148 84066

Table 3. Coefficients of variation of the direct and model-based estimates for poverty status.

Direct EBP

CV Extreme poor Not poor Extreme poor Not poor

Min 0.068 0.071 0.033 0.085 0.045 0.012
1st Q. 0.232 0.164 0.086 0.127 0.065 0.023
Median 0.332 0.323 0.110 0.155 0.085 0.033
Mean 0.412 0.271 0.123 0.160 0.089 0.033
3rd Q. 0.524 0.234 0.145 0.181 0.106 0.040
Max 1.000 1.000 0.281 0.299 0.182 0.062
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black in Figure 1 (a) and (b)). The results are consistent with a previous study (Méndez and

Bravo 2011), where higher levels of poverty are found on the border with Nicaragua (e.g.,

La Cruz, located in the northwest of the country) and on the border with Panamá (e.g.,

Buenos Aires, and Talamanca, located in the southeast of the country).

4.2. Updated Poverty Estimates

To analyze major changes in the incidence of extreme poverty, estimates of 2011 and 2017

are compared using Z-scores:

Z ¼
Estimate2011 2 Estimate2017ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðStandard error2011Þ
2 þ ðStandard error2017Þ

2
p

Figure 3 presents the three cantons with biggest change in this category of poverty. Among

all of the 81 cantons, these are the cantons with Z-scores higher than two. Note that all of

them show a reduction in the incidence of poverty between 2011 and 2017. It is also

important to mention that none of the three cantons are among the poorest, which means

that the biggest improvements are not observed in the areas most in need. The cantons

Curridabat and Montes de Oca had the highest growth in extreme poverty (although small

Z-score values: 0.2235 and 0.2052 respectively). However, both are among the cantons

with the lowest incidence of extreme poverty in both years.

0.4
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0.1

(a) Direct estimates total (b) Direct estimates metropolitan area

(c) Model-based estimates total (d) Model-based estimates metropolitan area
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Fig. 2. Proportion of extreme poverty: direct and model-based estimates, 2011.

Arias-Salazar: Poverty Incidence for Small Areas under SPREE 449



Identifying the poorest cantons is also relevant in order to fight against this phenomenon

in a more efficient way. Figure 4 shows the small areas with the highest incidence of

extreme poverty (in proportions) in the last year (2017). Here, it is important to point out

that for all the years of study (2011–2017) the same five cantons remain on this list,

indicating that economic conditions of these areas have not been better in comparison with

other areas in recent years.

The sources of uncertainty that were explained in Subsection 3.4, are displayed for the

last year of study as a coefficient of variation in Figure 5. As expected, the category “not

poor” is the one with the minimum CV and most of the values are under 20% which is

considered “acceptable” according to the parameters for official publications of the

National Statistical Office of Costa Rica, INEC (2015).

As explained in Subsection 2.2, the target areas in this article (81 cantons) are nested in

six planning regions. Because the INEC of Costa Rica publishes official results on poverty

only for these planning regions (gathered from the ENAHO), this is the only geographical

level where it is possible to make the comparison with the updated estimates via EBP-

MSPREE. For this reason, as a way to evaluate the updated estimates of poverty, model-

based estimates of cantons are aggregated into the six planning regions and compared with
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Fig. 3. Cantons with biggest change in the incidence of extreme poverty from 2011 to 2017.
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the official publication. It is relevant to mention that three cantons overlap with two

regions at the same time. This problem was solved by allocating the estimated counts in

proportion to the respective population in each region. For a more practical comparison,

proportions instead of counts are shown in Table 4. EBP-MSPREE results are satisfactory

in terms of their similarity to the direct estimates. Most of the regions show close results to

the published one, and the region with the highest discrepancies is the Pacı́fico Central.

This region, however, is the domain with a smaller sample size, therefore it is expected to

have less accurate results. The opposite is the case of the region Central which has the

biggest sample size and results are very close to the ones in the official publication (results

available in INEC 2017).

5. Design-Based Simulation

In this section, results from a design-based simulation study are presented. The objective is

to evaluate the EBP-MSPREE procedure explained in Subsection 3.2 to estimate and

update counts on poverty incidence in three categories: “Extreme poor”, “poor” not

0.0

0.1

0.2

0.3

Extreme Poor Not Poor

C
V

Fig. 5. Coefficients of variation for 2017.

Table 4. Direct and EBP-MSPREE estimates for poverty status (proportions) by planning region 2017.

Direct EBP-MSPREE

Regions Extreme Poor Not poor Extreme Poor Not poor

Central 3.9 11.9 84.2 3.8 11.7 84.5
Chorotega 5.9 16.5 77.6 8.3 18.0 73.7
Pacı́fico Central 8.9 21.0 70.1 6.8 16.7 76.5
Brunca 10.4 19.1 70.5 10.7 20.7 68.6
Huetar Caribe 8.9 17.8 73.3 9.3 18.9 71.8
Huetar Norte 9.2 18.3 72.5 7.8 17.6 74.6

Total 5.7 14.3 80.0 5.7 14.3 80.0
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extreme, and “not poor,” as well as assessing the performance of the bootstrap MSE

estimator described in Subsection 3.3. To conduct the evaluation, two census compositions

are required. One census from time t0 as the primary input to get EBP-MSPREE estimates

but also a second census from time t1 to compare the updated results. Due to a recent

census is not available, survey data described in Subsection 2.2 is used in this experiment.

Survey data set from 2011 is used as a census in t0 ðZaj;t0
Þ and survey data from 2012 as a

census in t1ðZaj;t1
Þ:

Samples are drawn from them with simple random sampling without replacement, with

a sampling fraction of f ¼ 0:2: Since survey data is used as a census, there are many

domains with few observations. For this reason, the number of cantons in the simulation is

reduced to A ¼ 23; (instead of A ¼ 81 as in the application) and the biggest domains were

selected. This allows having all cells with a positive sample, in this case, with at least 15

observations in each category of poverty for all domains. For the first part of the procedure

where point estimates are obtained, that is, with an EBP model, a Box-Cox transformation

is chosen. Also, the income per capita is defined as the dependent variable and a reduced

number of covariates are included in the model, namely: the proportion of employees in

the household, the highest degree of education completed by the head of the household,

zone, quantity of economically dependent members in the household, equivalized size of

the household, at least one member without health insurance, and at least one member not

with an educational lag.

In this simulation study, the performance of an EBP-SPREE (similarly as in Isidro et al.

2016) is compared with the proposal of this article, that is, EBP-MSPREE. A total of

R ¼ 500 Monte Carlo iterations are defined, with L ¼ 100 Monte Carlo iterations for

implementing the EBP, and B ¼ 100 bootstrap iterations for MSE estimation. The

performance of the estimated EBP-MSPREE ðŶ EM
aj;t1
Þ is evaluated with the relative bias

(RB) and the root MSE (RMSE), defined as:

RB Ŷ
EM

aj;t1

� �
¼

1

R

XR

r¼1

Ŷ
EM;r

aj;t1
2 Zaj;t1

Zaj;t1

 !

and,

RMSE Ŷ
EM

aj;t1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1

Ŷ
EM;r

aj;t1
2 Zaj;t1

� �2

;

vuut ð9Þ

which is treated as the empirical RMSE. A plot comparing the estimated RMSE (from

Equation 8) and the empirical RMSE (from Equation 9) is used to validate the proposed

MSE estimator dMSEMSEðŶ EM
aj;t1
Þ. Relative bias and relative RMSE of the estimated RMSE for

each area a and category j are also computed as follows:

rel:Bias:Est:RMSE ¼
Est:RMSE 2 Emp:RMSE

Emp:RMSE

� �
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rel:RMSE:Est:RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1
Est:RMSEðrÞ 2 Emp:RMSE
� �2

r

Emp:RMSE
:

5.1. Results of the Design-based Simulation

Table 5 summarizes the results of the evaluation of the EBP-MSPREE estimator in

comparison with a previous version, namely EBP-SPREE. The values of RB and RMSE

are averaged over 23 areas for each category of poverty. When looking at the median and

mean for each category of poverty, the EBP-MSPREE procedure provides a smaller

RMSE than the EBP-SPREE procedure for three out of the six cases, especially in the

category “not poor”. The absolute value of the RB of the EBP-MSPREE procedure is

considerably lower than the absolute value of the RB of EBP-SPREE in four out of the six

cases. This is observed in the categories “extreme” and “not poor”.

Figure 6 displays the estimated and empirical RMSE over the domains and categories of

poverty for the EBP-MSPREE and the EBP-SPREE methods. Based on this figure, it is

possible to conclude that the estimated RMSE tracks the empirical RMSE better for the

EBP-MSPREE procedure, and this can be observed for all of the categories of poverty. A

closer look at the performance of the proposed MSE is provided in Table 6. The RB-

RMSE for the EBP-MSPREE indicates a moderate underestimation in the mean and the

median for the “extreme” and “poor” categories and an overestimation for the median of

the category “poor”. In terms of RB-RMSE and RRMSE-RMSE, the results on the

performance of the MSE are favorable for the EBP-MSPREE.

6. Conclusions and Further Steps

Public policies require not only accurate and reliable information for decision- making but

this information should also be timely. It is common that the production of official

statistics faces challenges due to limitations of resources. In this article, a methodology to

obtain reliable and updated estimates in small areas is presented and exemplified with a

real-world application. For many developing countries, censuses are conducted every ten

years and sample sizes of annual national surveys are not big enough to provide reliable

results for small areas. An additional limitation that is considered in this work is that

information of interest is not present in census data, as it is required for SPREE methods.

The strategy proposed considers two well-known small area estimation techniques.

Table 5. RB and RMSE for the incidence of poverty by status under different SPREE approaches.

Extreme Poor not extreme Not poor

Median Mean Median Mean Median Mean

RB EBP-SPREE 0.1965 0.1279 0.0185 0.0112 -0.0219 0.0337
EBP-MSPREE 0.0195 0.0987 0.0322 0.0144 -0.0125 0.0098

RMSE EBP-SPREE 0.3120 0.3468 0.1274 0.1514 0.0744 0.1060
EBP-MSPREE 0.2781 0.3538 0.1479 0.1673 0.0705 0.0985
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An EBP is conducted to get poverty estimates in the census data, and as a second step, the

MSPREE of Luna-Hernández (2016) is applied to update the estimates in postcensal years.

Based on the results of the application, it is possible to conclude that the strategy proposed

delivers quality results in terms of CVs and compares favourably with direct estimates.

The application showed that this methodology gives the opportunity to analyze specific

groups of interest, areas, and years. For example, that the poorest cantons in Costa Rica

have remained with little overall improvements for the period studied.

Although the methodology proposed allows to obtain the target estimates, there are

several aspects that can be improved, especially in the uncertainty estimation. Original

SPREE and two other versions (GSPREE and MSPREE) assume that the census has the
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Fig. 6. Estimated and empirical domain-and category-specific RMSEs of the counts on poverty incidence.

Table 6. Performance of the MSE estimator: Mean and Median of RB and RMSE by poverty status.

Extreme Poor not extreme Not poor

Median Mean Median Mean Median Mean

RB- EBP-SPREE -0.3294 -0.2294 0.2107 0.3627 -0.2969 -0.1711

RMSE EBP-MSPREE -0.0752 -0.0812 -0.0765 -0.0714 0.1388 0.0080

RRMSE- EBP-SPREE 0.4616 0.4595 0.3785 0.6769 0.3813 0.4477

RMSE EBP-MSPREE 0.3812 0.3911 0.3586 0.3665 0.3678 0.3666
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variable of interest and therefore no uncertainty from the association structure is required.

However, when another small area estimation method is needed as a first step to get the

census structure (in this case with an EBP), variability from it should be considered. In this

methodology, a parametric bootstrap is implemented to get uncertainty from the

allocation, the association structure, and the estimation of the b coefficients required in

MSPREE. One potential topic for further research is to combine the MSE that is produced

directly from the EBP with the one from MSPREE under an analytical approach.

Furthermore, the impact that extreme values in the first part of the procedure (e.g., EBP)

can have in the final updated estimates deserves also to be investigated.

SPREE methods have other disadvantages that require further study to get a more flexible

technique. For example, a potential improvement in the method could be to allow updating

more complex indicators or non-categorical indicators such as the Gini index or (mean

and/or median) per capita income. The inclusion of associated variables as suggested by

Purcell and Kish (1980) can also be beneficial in the estimation procedure, for instance, the

inclusion of urbanity (urban and rural) can be relevant when working with poverty status.

The over-shrinking problem present in the context of small area estimation when the

expected sample variance is smaller than the true parameter also deserves to be explored

when implementing SPREE-type methods.

Understanding the benefits of SPREE-type methods in comparison with existing models

in the small area estimation context requires also further research. Three alternative

approaches to deal with the problem of obtaining updated counts or proportions in small

domains have been identified and deserve a closer comparison with the SPREE-type

methods: 1. The use of the EBP in each year of study with a final benchmark operation

performed with MSPREE, 2. exploring potential advantages of using panel survey data or

time-series models for example, with the extension of the Fay-Herriot model proposed by

Rao and Yu (1994), or 3. implement measurement error models also in the context of area-

level models (Ybarra and Lohr 2008). Finally, it is recommended to study the inclusion of

non-traditional information sources (e.g., big data) as proposed in Koebe et al. (2022)

since the structures of population censuses can quickly become obsolete. A clear example

of this is the socio-economic effect that the COVID-19 pandemic generated in many

countries, altering the living conditions of many people in a short period of time.
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Block Weighted Least Squares Estimation for Nonlinear
Cost-based Split Questionnaire Design

Yang Li1, Le Qi1, Yichen Qin2, Cunjie Lin1, and Yuhong Yang3

In this study, we advocate a two-stage framework to deal with the issues encountered in
surveys with long questionnaires. In Stage I, we propose a split questionnaire design (SQD)
developed by minimizing a quadratic cost function while achieving reliability constraints on
estimates of means, which effectively reduces the survey cost, alleviates the burden on the
respondents, and potentially improves data quality. In Stage II, we develop a block weighted
least squares (BWLS) estimator of linear regression coefficients that can be used with data
obtained from the SQD obtained in Stage I. Numerical studies comparing existing methods
strongly favor the proposed estimator in terms of prediction and estimation accuracy. Using
the European Social Survey (ESS) data, we demonstrate that the proposed SQD can
substantially reduce the survey cost and the number of questions answered by each
respondent, and the proposed estimator is much more interpretable and efficient than present
alternatives for the SQD data.

Key words: Block weighted least squares estimation; block-wise missing data; nonlinear cost
function; split questionnaire design; large-scale survey.

1. Introduction

The European Social Survey (ESS) is an academically driven survey that has been

conducted across Europe every two years since 2001. It measures moral, religious, social,

economic, political attitudes and behavior patterns of various populations (Schnaudt et al.

2014). A large number of studies have been conducted based on ESS data. For example,

Best and Wolf (2013) studied the attitudes toward homosexuality using a linear regression

model; Davidov et al. (2018) performed a test for measurement invariance across all

countries with ESS data; Vonneilich et al. (2019) discussed the effects of different aspects

of social relations on educational inequalities using a linear mixed effects model.

Although ESS data have generated the interest of many researchers, its collection takes a

long time and requires great efforts. For example, in 2018, over 40,000 respondents were

sampled from 31 countries in Europe (http://www.europeansocialsurvey.org/). Such a

large-scale, hour-long, and face-to-face interview includes more than 500 questions,

which requires much time and resources for respondents to complete. Furthermore, a long

questionnaire often means a heavy burden for respondents, which usually results in low
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response rates, high sampling errors, and measurement errors (Early 2016; Peytchev and

Peytcheva 2017; Liu and Wronski 2018).

The National Assessment of Educational Progress (NAEP) in the USA is another large-

scale nationally representative survey to measure student achievements, such as what

American students know and can do in various subject areas. More than 150,000 students

are included in the sample and each student answers many questions as part of the

assessment (Neidorf and Sheehan 2014). The details of sampling in NAEP can be found in

Rust and Johnson (1992). Because NAEP is a large-scale educational assessment, it also

faces the aforementioned challenges and a balanced incomplete block design is used.

Typically, the design splits the pool of items into a set of blocks and the split may depend

on such practical issues as the wish to offer students blocks with motivating combinations

of items or to match blocks across sub-questionnaires with respect to the time needed to

complete them. Then the sub-questionnaires are assigned to students in the lowest unit

(usually school classes) to minimize the cluster effects involved in sampling a

hierarchically structured population.

Throughout these large-scale surveys, we see that one possible approach to manage

survey cost and reduce respondent burden is to use a split questionnaire design (SQD),

which divides a long questionnaire into short parts or modules, with each respondent filling

only one of the sub-questionnaires that include one or more modules. Along the line of SQD,

Raghunathan and Grizzle (1995) proposed a survey design via matrix sampling and the

resulting data were analyzed using a multiple imputation method. Adigüzel and Wedel

(2008) developed an optimal design by minimizing the Kullbak-Leibler distance between

the distributions of the complete questionnaire data and the split questionnaire data, and

illustrated the design’s efficiency in synthetic and empirical web survey data. In cognitive

development research, Rhemtulla and Little (2012) described two planned missing data

designs, namely the multi-form design and the two-method measurement design, which

were efficient in reducing participant fatigue and improving data quality. Additionally,

Andreadis and Kartsounidou (2020) presented evidence that splitting a long questionnaire

into short parts contributed positively to the response rates. With the increasing interest in

SQD, the optimal design obtained by minimising a proper cost function for the survey,

subject to specified reliability constraints, is an important aspect for more research. For

example, Chipperfield and Steel (2009, 2011) and Ioannidis et al. (2016) introduced a linear

cost function, which facilitates the search for the optimal design. However, the linear form

of cost function may still be insufficient to accommodate a potentially complex relationship

between the number of questions and the cost of the survey.

Besides questionnaire design, estimation of regression models with SQD data is another

open problem. Compared with the analysis based on a complete data set, SQD data are

more challenging to analyze due to the block-wise missing structure. Although likelihood-

based methods (Little and Schluchter 1985; Skinner and Coker 1996; Chipperfield et al.

2018; Chipperfield and Steel 2012) are widely used in handling missing data, they often

require strong assumptions on the distribution of missing data (Dziura et al. 2013). Poor

performance was observed when the distribution assumptions were violated (Lesperance

and Kalbfleisch 1992). For a linear regression model or other models of interest, another

possible technique is to impute the missing values before estimation (Little 1992; Cai et al.

2010; Mazumder et al. 2010; Yuan and Bentler 2010; Yang and Kim 2017). However, it is
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difficult to recover the missing blocks with (multiple) imputation due to extensive missing

blocks in SQD data. To address the defects of these traditional techniques for missing data,

several methods were proposed that can manage multi-source/multi-modality data or

fragmentary data with high missing rates. Xiang et al. (2014) presented a unified “bi-level”

learning model for complete multi-source data and extended it to incomplete data, which

can be generalized to other applications with block-wise missing data sources. Fang et al.

(2019) developed a model averaging method for fragmentary data with missing

completely at random, which fit candidate models using a vailable covariate data and

combined them according to some criterion. Yu et al. (2020) proposed a direct sparse

regression procedure by using covariance from multi-modality data (DISCOM) to find the

optimal sparse linear prediction of a continuous response variable. However, none of these

methods are designed for the block-wise missing data from a SQD. The SQD data differs

from the fragmentary data in its “orderly” missing structure in the sense that there are only

a few missing patterns despite the high missing rate. Thus, in addition to a well-designed

split questionnaire, a good estimator for regression models based on the SQD data is also

needed beyond the existing methods.

In this study, we consider a two-stage framework with respect to the aforementioned

issues encountered in a large-scale survey with long questionnaires. We first focus on the

design of a split questionnaire to reduce the cost of the survey while ensuring precision

requirements on the estimates of the sample means of the question items, which are usually

the first priority for most surveys. We then consider estimation of the linear regression

model based on data obtained using a SQD. The two stages are not isolated, which means

that the SQD needs to cope with both the survey cost and the subsequent estimation.

Specifically, in our approach, we need a small sample size of the complete cases data

obtained with full questionnaire in Stage I for correcting the possible bias of the estimate

based on the SQD data in Stage II. Moreover, instead of assuming that the cost increases

linearly with the number of questions, a quadratic cost function is introduced, which may

be more practical in various situations. In Stage II, we propose a block weighted least

squares (BWLS) estimation approach, which makes full use of all available data and has

an explicit expression that is easy to implement. In particular, the proposed estimator has

shown satisfactory performance in improving both estimation and prediction accuracies.

Overall, this work provides a practical and useful design as well as an estimation approach

for large-scale surveys in a two-stage framework.

The article is organized as follows. In Section 2, we propose a framework consisting of a

SQD and an estimation of linear regression model based on the SQD data. Several

numerical simulations are conducted in Section 3. In Section 4, we illustrate the

performance of the proposed framework based on the ESS data in 2018, followed by a

discussion in Section 5.

2. Method

2.1. Stage I: Nonlinear Cost-Based SQD

Consider a complete questionnaire containing p questions/items. The data collected for

each question corresponds to one variable, which is assumed to be either continuous or
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dichotomous. Suppose the p questions can be divided into m modules, which are presented

by disjoined sets M1; :::;Mm # ½p� ¼ {1; 2; :::; p}: Each module Mi corresponds to a

particular aspect of the research and the number of questions in module Mi is denoted as pi

and p ¼
Pm

i¼1 pi. We assign these modules to different sub-questionnaires Qj; j ¼

1; 2; ···; q: In particular, Q1 is a full questionnaire containing all modules. Here, we use a

structure matrix A ¼ ðaijÞm £ q to describe the assignment, where aij ¼ 1 indicates the

module Mi appears in sub-questionnaire Qj; and aij ¼ 0 otherwise. Note that each module

can be assigned to multiple sub-questionnaires. Such a structure matrix A is desired for the

purpose of improving data quality and reducing survey cost.

To quantify the survey cost, we introduce the total cost function C,

C ¼
Xq

j¼1

Cj ¼
Xq

j¼1

ðC
f
j þ njajÞ; ð1Þ

where Cj is the cost of the sub-questionnaire Qj; which consists of the fixed cost C
f
j and the

varying cost njaj: The number of respondents filling the sub-questionnaire Qj is nj and Qj

contains Lj ¼
Pm

i¼1 aijpi questions. Usually, C
f
j is incurred regardless of sample size, and it

includes, but is not limited to, the upfront cost of implementing the survey, such as training

interviewers, which is fixed for a given sub-questionnaire Qj:The unit costaj is expressed as a

function of Lj:Here, we use a quadratic function to describe the relationship betweenaj and Lj:

aj ¼ B2L2
j þ B1Lj þ B0; j ¼ 0; 1; :::; q;

where B0, B1, and B2 are the coefficients, and we assume that B2 . 0: If B1 $ 0; the cost

function is nondecreasing with respect to Lj; If B1 , 0 and 2 B1

2B2
$ 2;aj first decreases and

then increases with Lj: Here we adopt the quadratic form instead of linear form because we

would like to take the difficulty in recruiting respondents into consideration. As the number of

questions Lj increases, it becomes more challenging to find qualified respondents, hence

increases our unit cost due to the reduced number of respondents. It is possible that the unit cost

decreases at a small number of questions. This is because it is relatively easy to recruit

respondents with a questionnaire of a reasonable small length. We admit the true unit cost

function can be complex and even mathematically intractable. The quadratic form is only an

approximation to the reality. But such a modification allows us to offer a more realistic and

flexible solution to the issue. In the quadratic cost function, B0 is the “baseline cost” when

Lj ¼ 0; and maxð2B1=2B2; 1Þ is the critical point, beyond which the unit cost will increase

with the number of questions. Generally, these parameters can be determined according to

practical considerations or operational data. Figure 1 demonstrates an example of aj with

B2 ¼ 0:1;B1 ¼ 21;B0 ¼ 10: Note that when B2 ¼ 0; the cost function corresponds to the

linear cost function (Ioannidis et al. 2016).

As mentioned above, the total cost C depends on the design, namely the structure matrix A

as well as the sample size nj of sub-questionnaire Qj:We use CðA; nAÞ to stress the relationship

between C and the design, where nA ¼ ðn1; :::; nqÞ
` is the vector of sample sizes. In this study,

the goal of the SQD is to find an optimized matrix A and the corresponding sample sizes nA

with the goal of minimizing the total cost CðA; nAÞ: In addition, we impose certain constraints

on the minimum sample size for each module to ensure the estimation precision for each item

meanm. Let m̂l be the sample mean of the l-th item. Then n*
i ¼ l¼1;· · ·;pi

max ð
z2

12a
ŝ 2

l

e2
l

Þ is the minimum
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sample size for the i-th module, ensuring the estimation precision of m̂l to achieve the

absolute error of at most el: Here el is a prespecified value for precision of estimation, and

z12a is the 1 2 a quantile of the standard normal distribution, ŝ2
l is sample variance of the

l-th response item in the i-th module, estimated by the historical data. A general form of

the design is given in Table 1, where the first m rows and q columns with 0 or 1 denote the

structure matrix A. Then the optimal design can be determined by solving the optimization

problem:

A;nA

min CðA; nAÞ;

s:t: AnA . n*;

ð2Þ

where n* ¼ (n1
*, ..., nm

* )`.

For the optimization problem (2), we use the simulated annealing algorithm (Ioannidis

et al. 2016) to obtain the structure matrix A and the sample sizes nA. Different from

Ioannidis et al. (2016), we require a small sample size of the full questionnaire for

correcting the bias of the estimate of the linear regression model based on the SQD data in

Stage II. Therefore, we fix ai1 ¼ 1 for all i ¼ 1; :::;m; and require n1 . p. After obtaining

Table 1. The general form of SQD.

Q1 Q2 : : : Qq n
*

i

M1 1 1 : : : 1 n
*

1

M2 1 0 : : : 0 n
*

2
..
. ..

. ..
. ..

. ..
. ..

.

Mm 1 1 : : : 0 n
*

m

nj n1 n2 : : : nq -

Lj L1 L2 : : : Lq -
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u
n
it
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o
st
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5
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Number of questions
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M
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Fig. 1. The curve of cost function.
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the optimal design of the questionnaire, we randomly assigned different sub-

questionnaires to different interviewees. The collected data is of planned missing type

since we are aware of which modules are included in each sub-questionnaire before data

collection.

2.2. Stage II: Block Weighted Least Squares Estimation

Based on the nonlinear cost SQD in Stage I, we obtained the survey data with block-wise

missing structure. As shown in Figure 2, the response variable Y is fully observed, while

the design matrix X is block-wise missing as nj interviewees only fill out Lj questions in the

j-th sub-questionnaire Qj for j . 1: Besides the item means, we are interested in the

estimation of the linear regression model

Y ¼ Xbþ e; e , Nð0;s2InÞ:

To this end, we propose a block weighted least squares procedure (BWLS) to make full

use of the block-wise missing data.

Specifically, we let ril; l ¼ 1; 2; :::; p be the missing indicator such that ril ¼ 1 means the

i-th respondent answers the l-th question, and ril ¼ 0 means missing. Let Vj; j ¼ 1; :::; q;

be the set of indices of questions in the j-th sub-questionnaire Qj and V1 ¼ ½p�: Denote the

total sample size as n ¼
Pq

j¼1 nj. For 1 # j # q; let Sj ¼ {i : ril ¼ 1 for l [ Vj; 1 # i #

n} denote the set of respondents who have answered at least the questions in Vj: Hence S1

is the set of complete cases. In addition, we define S*
j ¼ {i : ril ¼ 1 for l [ Vj; ril ¼ 0 for

l � Vj; 1 # i # n} as the set of respondents who have answered exactly the questions in

Vj, that is, the sub-questionnaire Qj:Hence we have S*
j # Sj for 1 # j # q: Let jSj denote

the cardinality of a set S, then nj ¼ jS*
j j # jSjj for 1 # j # q: Furthermore, define YðjÞ [

R jSjj;XðjÞ [ R jSjj£jVjj; where R jSjj denotes the jSjj-dimensional real space, and also define

Dj ¼ {YðjÞ;XðjÞ} for j ¼ 1; :::; q: Assume ~Xð jÞ ¼ ð1;XðjÞÞ; where 1 is a column of 1 with

size of nj: Based on the complete cases D1; we can get the complete case (CC) least

squares estimator

b̂cc ¼ ~X
`

ð1Þ
~Xð1Þ

� �21
~X

`

ð1ÞYð1Þ:

As discussed earlier, n1 is usually set to be not too large compared to nj for j ¼ 2; :::; q due

to budget and respondent load considerations. Thus, the efficiency of b̂cc is typically

Y 
(1)

Y 
(2)

Y 
(3)

Y 
(q)

X 
(1)

X 
(2)

X 
(3)

X 
(q)

Fig. 2. An example for data structure.
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unsatisfactory. Hence we propose an improved least squares estimator, with which we

calculate the weights in the BWLS estimator.

Note that the covariance matrix of b̂cc is s2ð ~X
`

ð1Þ
~Xð1ÞÞ

21, and the sample covariance

matrix Sxx ¼ ~X
`

ð1Þ
~Xð1Þ=n1 is invertible but may be numerically unstable since n1 is not large

and p=n1 is close to 1. Such a setting usually results in a dramatically increased estimation

error, hence we use a well-conditioned covariance matrix to replace Sxx (Ledoit and Wolf

2004). Specifically, we consider an optimal linear shrinkage estimator for the covariance

matrix, which has the form

Ŝxx ¼ â1Ipþ1 þ â2Sxx;

where Ipþ1 is a ðpþ 1Þ £ ðpþ 1Þ identity matrix, â1 and â2 are the coefficients determined

by the optimization problem (4) of Ledoit and Wolf (2004). Specifically, â1 ¼
anb2

n

d2
n

and

â2 ¼
a2

n

d2
n

, wherean ¼ trðSxxÞ=ðpþ 1Þ; d2
n ¼ kSxx 2 anIpþ1k

2
n; b

2
n ¼ min fd2

n;
1
n2

1

Pn1

i¼1 k
~Xð1Þ;i

~X
T

ð1Þ;i 2 Sxxjj
2
ng; a

2
n ¼ d2

n 2 b2
n; and ~Xð1Þ;i is the i-th column of ~Xð1Þ. Note that Ŝxx is similar in

spirit to ridge regression (Hoerl and Kennard 1970). Then the improved complete case

(ICC) estimator is

b̂Icc ¼ Ŝ
21

xx Sxy;

where Sxy ¼ ~X
`

ð1ÞYð1Þ. Although the well-conditioned covariance matrix gives b̂Icc better

performance, it still ignores the data from other sub-questionnaires and needs further

improvement.

To make full use of the data from all other sub-questionnaires, we use the weighted least

squares estimation. Based on the CC dataD1 from the full questionnaire Q1, we can get an

unbiased estimator b̂cc. Meanwhile, the incomplete data Dj; j ¼ 2; :::; q; yield possibly

biased estimators b̂ jð Þ ¼ ð ~X
`

ð jÞ
~Xð jÞÞ

21 ~X
`

ð jÞYð jÞ. Then we define b̂
ð jÞ

sub ¼ P`
j ð

~X
`

ð jÞ
~Xð jÞÞ

21 ~X
`

ð jÞ

Yð jÞ where Pj is the Lj £ p projection matrix such that Pjb ¼ bðjÞ; and bðjÞ [ R jVjj: Since

b̂
ð jÞ

sub have different biases for different Qjs; we propose to treat samples from Qjs

differently in estimating the linear regression model. Specifically, we assign different

weights to Djs for balancing the information from various sub-questionnaires. The

samples Sj should be assigned large weight if the sub-questionnaire Qj provides important

information in the sense that it yields a smaller residual sum of squares. With this in mind,

the weight is set to be the reciprocal of the average of residual sum of squares. The j-th

weight for samples S*
j given by

wj ¼
jSjj

X

i[Sj

Yi 2 ~Xð jÞPjb̂Icc

� �2
;

which means we compute the weights for Dj with more available cases since S*
j # Sj: It is

noticed that the denominator in wj is the prediction error using the items in Qj and the

estimates of the associated regression coefficients are obtained from the respondents that

answer the full range of questions in Q1. Intuitively, 1
jSjj

i[Sj

P
ðYi 2 ~Xð jÞPjb̂IccÞ

2 measures

the missing information of the sub-questionnaire Qj; and we should lower the weight of

these samples if the corresponding sub-questionnaire misses too much information. Based
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on the weights, we can get the final estimator by minimizing the weighted loss function

L b
� �
¼
Xq

j¼1

wj

i[S*
j

X
Yi 2 ~X

`

i b
� �2

;

where ~X is the imputed matrix of X and replacing the missing values with the mean of each

variable and ~Xj is the i-th row of ~X. In fact, the final BWLS estimator has the explicit

formulation

b̂ ¼ ~X`W ~X
� �21 ~X`WY;

where W ¼ diagðw1In1
; :::;wqInq

Þ is the weight matrix. When W is an identity matrix, the

estimator degenerates to the OLS estimator using the mean imputed values of the missing

data items. The final estimator b̂ uses information from all respondents, and assigns different

weights to samples according to the information loss from different sub-questionnaires,

which can reduce the bias induced by the block-wise missing data while improving the CC

estimator by reducing its variance. Strictly speaking, we need the assumption of missing

completely at random (MCAR), since the weight involves the improved CC estimator b̂Icc,

which may not be effective when the assumption is violated. But the numerical studies show

that the BWLS estimator also has a satisfactory performance under missing at random.

In summary, in Stage I, we create a survey design by minimizing a nonlinear cost

function under the constraints of the variances of item means. Based on the SQD data

obtained by implementing the design in Stage I, we develop a BWLS estimator for linear

regression in Stage II. We would like to note that, if the item means are the target, the best

linear unbiased estimator (BLUE) for a SQD (Chipperfield and Steel 2009), combining

different estimates in an optimal way, is a good choice and a more practical estimator

proposed by Merkouris (2015) can also be used when the number of variables or the sizes

of the samples are large.

3. Simulation

In this section, we conduct multiple sets of simulations to evaluate the performance of the

proposed two-stage framework. First, we conduct a simulation based on the ESS data set to

highlight the advantages of our nonlinear cost-based design. Second, we compare the

BWLS estimator with alternatives based on simulated block-wise missing data and the

SQD data obtained in Subsection 3.1.

3.1. Simulation for Design

In this subsection, we demonstrate the merit of the proposed nonlinear cost-based design

using the ESS data set, and more information about this data set will be given later in

Section Here, the response of interest is how the respondent is satisfied with the way

democracy works in their country, and it is measured using an 11-point Likert scale

ranging from zero to ten. Among over 500 questions, we included the 87 questions with

the largest correlations with the response into the following process of SQD. These

questions are divided into four modules M1; :::;M4 according to their different focuses.
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For the design of the questionnaire, we consider the complete questionnaire as well as the

following SQD methods:

(a). “Proposed”: The nonlinear cost-based design proposed in this article with B2 ¼ 1;

B1 ¼ 210 and B0 ¼ 40 and the fixed design cost C
f
j , j ¼ 1; :::; q is set to be zero.

(b). “Linear”: The integrated survey design proposed in Ioannidis et al. (2016), where

the matrix A is obtained based on a linear cost function. Specifically, the unit cost aj

is defined as

aj ¼ B 01Lj þ B 00; j ¼ 0; 1; :::; q;

where B 01 represents for the unit cost per question and B 00 is the “baseline cost” when

Lj ¼ 0: The total cost CðA; nAÞ is the same as Equation (1). For fair comparison, we

set B0 ¼ B 00 ¼ 40 to ensure that the designs under linear cost function and nonlinear

cost function share the same “baseline cost” when Lj ¼ 0: For B 01, we first identify a

possible range of it by considering that ajs under linear and non-linear cost function

are equal for the number of questions Lj ¼ 87: We find that the unit cost is the same

as the proposed nonlinear design when B 01 ¼ 77; that is aj ¼ 6739 for Lj ¼ 87

under both designs. Within the range of B 01; we search the optimal value from (0,

77] so that the total linear cost is minimum given the absolute error el ¼ 0:03; and

we obtained B 01 ¼ 29:

(c). “3-Form”: The three-form design studied in Rhemtulla and Little (2012).

Here, we consider two situations where the true unit cost function is assumed to be quadratic

with aj 2 L2
j 2 10Lj þ 40 in Situation 1 and linear with aj ¼ 29Lj þ 40 in Situation 2,

respectively. Considering that only 29 variables are included in the subsequent linear

regression analysis, we set n1 ¼ 39 in the proposed design. For both “Linear” and “3-Form”,

the sample size of the full questionnaire Q1 is set to be the same as the proposed design. For all

designs, the first module M1 collects information on demographic characteristics, and it

appears in all sub-questionnaires. In the “3-Form” design, each sub-questionnaire is composed

of the first module M1 as well as two of the other three modules. We compare the total cost and

the average number of questions answered per respondent with different absolute errors.

The results of total cost are shown in Figure 3. The total cost decreases with the increase

of the allowed el for all designs in both situations. When the true unit cost is quadratic, the

proposed design yields the lowest total cost among the four methods across all the

different els: The gap of the total cost between the “Linear” and the proposed design

decreases with the increase of the allowed el: Given el; the total cost of “3-Form” design is

larger than that of the complete questionnaire, primarily because the sample size of each

sub-questionnaire must meet the most stringent requirement of modules contained in “3-

Form” design, which leads to substantial extra cost. Specifically, the first module, M1,

appears in all sub-questionnaires and its required sample size is the largest among all

modules for a given el; denoted as nmax: Ignoring the fixed cost C
f
j for simplicity, the total

cost of the complete questionnaire is nmaxa1; where a1 is the unit cost for respondents

answering the full-questionnaire with L1 ¼ 87 questions. However, in “3-Form” design,

the sample size of each sub-questionnaire is also nmax since each sub-questionnaire

includes module M1. Then the three sub-questionnaires of sample size nmax and a full-

questionnaire of sample size n1 yield a total cost, n1a1 þ nmaxða2 þ a3 þ a4Þ: Here, we fix
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n1 ¼ 39 for the full questionnaire to ensure the feasibility of BWLS estimator. Apparently,

we have L2 þ L3 þ L4 . L1; and this is why the total cost of “3-Form” design is larger

than that of the complete questionnaire.

To quantify the respondent burden, the average number of questions answered per

respondent defined as �L ¼
Pq

j¼1 Ljnj=
Pq

j¼1 nj are calculated for different methods with

el ¼ 0:03; which are “Proposed”: 37.97, “Linear”: 58.80, “3-Form”: 62.58, and

“Complete”: 87, respectively. It is clear that the proposed method yields the minimum

number of questions answered per respondent. We also calculate L when el ¼

0:01; 0:02; 0:04; and 0.05. The average number of questions answered per respondent for

the complete design is always 87, which has been reduced by 53% with the proposed

method on average. Moreover, the “3- Form” and “Linear” designs reduce the average

number of questions by 28% and 32% on average, respectively. Overall, the proposed non-

linear cost-based design outperforms the alternatives in terms of both total cost and the

average number of questions answered per respondent.

For a demonstration, setting the absolute error to be 0.05, the resulting design with the

proposed method is shown in Table 2. The column n ** is the actual sample size of module

Mi based on the proposed design.

Table 2. The structure matrix.

Q1 Q2 Q3 Q4 n*
i n**

i

Module 1 1 1 1 1 6186 6186
Module 2 1 0 1 0 4095 4095
Module 3 1 1 0 1 2063 2130
Module 4 1 1 1 0 4329 4329

nj 39 234 4056 1857 - -

Lj 87 46 79 16 - -
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Fig. 3. The comparasion of total cost for Situation 1 (a) and Situation 2 (b).
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3.2. Simulation for Estimators

In this subsection, we compare the BWLS estimator with alternatives, including the CC

estimator b̂CC, the improved CC estimator (I-CC) b̂ICC, a model average estimator (Fang

et al. 2019, MA-CV), and an imputation-based estimator termed SI-LS here, which

replaces missing values in a large-scale matrix using the SOFT-IMPUTE algorithm

proposed in Mazumder et al. (2010) and performs a least squares estimation for b based on

the single imputed data set.

Simulation 1. We generate data from the linear regression model

Y ¼ b0 þ b1X1 þ :::þ bpXp þ e ;

where e is generated from Nð0;s2Þ: The covariates X are generated from Nð0;SÞ;where S

is the corresponding p £ p covariance matrix, with the structure as

S ¼

Sin · · · Soff

..

. . .
. ..

.

Soff · · · Sin

2

6
6
6
4

3

7
7
7
5
:

The non-diagonal and diagonal elements in Sin are l1 and one, respectively.

Additionally, Soff is a constant matrix with element l2. Here, l1 is the correlation between

questions within the same module, while l2 is the correlation between questions from

different modules. We consider two cases of correlation structures: l1 ¼ 0:3; l2 ¼ 0:1 in

Case 1, and l1 ¼ 0:5; l2 ¼ 0:2 in Case 2. The variance s 2 takes different values such that

R2 ¼ VarðX `bÞ={VarðX `bÞ þ s2} ¼ 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1: We consider two

settings for co-efficients with different sparsities. Let b ¼ ðb ð1Þ;b ð2Þ; :::;b ðmÞÞ; where

b ðiÞ; i ¼ 1; :::;m is the coefficients of the variables in i-th module. In Setting I, b ð1Þ ¼

ð0:5;20:5; 0:5; 1Þ; b ð2Þ ¼ ð0:5;20:5;20:3; 0:5Þ;b ð3Þ ¼ ð0; 0; 0; 0Þ; b ð4Þ ¼ ð0; 0; 0; 0Þ;

b ð5Þ ¼ ð20:5; 0:5; 1; 0:3Þ;b ð6Þ ¼ ð1; 0:3; 0:3; 1Þ;b ð7Þ ¼ ð21; 1; 0:3; 0:3Þ; b ð8Þ ¼ ð1; 0:5;

0:5; 0:5Þ;b ð9Þ ¼ ð20:5; 0:5; 0:3;20:3Þ and b ð10Þ ¼ ð0:3;20:3; 1; 0:3Þ; thus M3 and M4

are inactive modules. In Setting II, we consider sparsity within modules, b ð1Þ ¼

ð21;21; 0; 1; Þ; b ð2Þ ¼ ð0; 1;21; 0:3Þ;b ð3Þ ¼ ð0; 1;20:5;21Þ;b ð4Þ ¼ ð0:3; 0:3; 0:3; 0Þ;

b ð5Þ ¼ ð0:3; 0:5; 1; 0Þ;b ð6Þ ¼ ð21; 0; 0; 1Þ;b ð7Þ ¼ ð0:3; 0; 0; 0:3Þ;b ð8Þ ¼ ð0; 0; 0:5;20:3Þ;

b ð9Þ ¼ ð0:3; 0:5; 1;21Þ; and b ð10Þ ¼ ð20:3; 1; 0:5;20:3Þ: In both settings for coefficients,

we set b0 ¼ 1: We further consider multiple scenarios with different dimensions of

covariates, number of modules, and sample sizes:

S1. p ¼ 20;m ¼ 5; n1 ¼ 30; n2 ¼ ::: ¼ n5 ¼ 200; with Setting I for b ¼ ðb ð1Þ;b ð2Þ; :::;

b ð5ÞÞ:

S2. p ¼ 40;m ¼ 5; n1 ¼ 45; n2 ¼ ::: ¼ n10 ¼ 200;with Setting I for b (here, we merge

b ðiÞ; i ¼ 1; 2; :::; 10 in to 5 modules pairwise).

S3. p ¼ 40;m ¼ 10; n1 ¼ 45; n2 ¼ ::: ¼ n10 ¼ 200; with Setting II for b ¼ ðb ð1Þ;

b ð2Þ; :::;b ð10ÞÞ:

S4. p ¼ 40;m ¼ 10; n1 ¼ 45; n2 ¼ ::: ¼ n10 ¼ 200; with Setting I for b ¼ ðb ð1Þ;b ð2Þ;

:::;b ð10ÞÞ:
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S5. p ¼ 40;m ¼ 10; n1 ¼ 45; n2 ¼ ::: ¼ n10 ¼ 500; with Setting I for b ¼ ðb ð1Þ;b ð2Þ;

:::;b ð10ÞÞ:

For each scenario, there are 2m sub-questionnaires, of which we randomly select m sub-

questionnaires. For all the settings, B ¼ 500 replicates are simulated. The performances of

different estimation methods are evaluated in terms of prediction error (PE) and mean

square error (MSE), defined as

PE ¼
1

Bntest

XB

b¼1

Xntest

i¼1

Ŷ
ðbÞ

i 2 EðYiÞ
� �2

; MSE ¼
1

Bð pþ 1Þ

XB

b¼1

Xp

l¼0

b̂
ðbÞ

i 2 blÞ
� �2

;

respectively. Here b̂
ðbÞ

i is the estimate of bl, Ŷ
ðbÞ

i is the predicted value for Yi in the b-th

replicate and EðYiÞ ¼ b0 þ b1X1 þ :::þ bpXp: ntest is the sample size of the testing data

set, which is set to be 200 in this simulation. Since the MSE can be decomposed into

MSE ¼ Varianceþ Bias2; we have

1

Bðpþ 1Þ

XB

b¼1

Xp

l¼0

ðb̂
ðbÞ

l 2 blÞ
2 ¼

1

pþ 1

Xp

l¼0

1

B

XB

b¼1

ðb̂
ðbÞ

l 2 b̂lÞ
2 þ

1

pþ 1

Xp

l¼0

ðb̂l 2 blÞ
2;

where b̂l ¼
1
B

PB
b¼1 b̂

ðbÞ

l . For Case 1, the results are shown in Figures 4, 5 and 6. The results

of Case 2 are shown in Figures 8, 9 and 10 in Appendix (Section 6).

Figures 4 and 5 show the comparison of the MSE and PE among different methods. We

purposely truncated the figure for ease of comparison, so results with large values do not

appear in certain figures. We can see the estimation and prediction accuracies gradually

improve with the increase of the signal-to-noise ratio R 2. In most of the considered

scenarios, the MSE of the BWLS estimator is the smallest among the five methods except

for large R 2. Additionally, a larger sample size of sub-questionnaire ni leads to a lower

MSE of the proposed estimator, as is expected. The result of PE also shows the superiority

of BWLS. The MSE and PE of all five estimators are increasing as the number of variables

increases.

From Figure 6, we find that the variance of the BWLS estimator is significantly smaller

than that of the alternatives. This is mainly due to the full utilization of the samples at

hand. Moreover, when the correlation between sub-questionnaires is much smaller, the

bias of the BWLS estimator is also small. Overall, I-CC outperforms the CC estimator, but

is inferior to MA-CV. In addition, the performance of SI-LS is barely satisfactory with

regard to MSE and PE, especially when compared with BWLS.

The results of Case 2 are displayed in the Appendix (Section 6). Figures 8, 9 and 10

demonstrate the comparison of MSE and PE among the different estimators and the

decomposition of MSE. In Case 2, we can draw similar conclusions as Case 1. However,

not surprisingly, BWLS performs worse in MSE and PE as l2 increases and the bias of

BWLS is getting larger with the increasing correlation between modules. It suggests that

the correlation between modules should be lower than that within modules when dividing

the complete questionnaire into shorter parts.

Additionally, results about the comparison between BWLS, mean imputation, and

multiple imputation (MI) are shown in Appendix (Section 6), where mean imputation

replaces the missing values with the item means and multiple imputation is conducted with
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the MICE package in R. From the results, we can see that BWLS outperforms the mean

imputation in most settings, especially in terms of PE. The superiority of BWLS in MSE is

not that obvious, and this is mainly because the estimated weights in BWLS increase the

variance of the estimator while the weights in mean imputation are constantly equal to 1.

Besides, BWLS performs better than MI in terms of MSE for almost all scenarios we

considered here. And BWLS also shows its superiority in terms of PE in most scenarios.

Simulation 2. Based on the design given in Table 2 with ESS data, we conduct a real

data-based simulation to compare the proposed estimator BWLS with the alternatives as in
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Simulation 1. We regress the response variable on each variable using the full data and

select the top 29 variables with the smallest p-value for subsequent analysis. The selected

variables are listed in Table 3. Based on the observations of these 29 variables, we

generate Y from the linear regression model

Y ¼ b0 þ b1X1 þ :::þ b29X29 þ e ;

with e , Nð0;s2Þ: The variance of e ;s2 takes different values such that R2 ranging from

0.4 to 1, and b ¼ ð1;21;21; 0; 1; 0; 1;21; 0:3; 0; 1;20:5;21; 0:3; 0:3; 0:3; 0; 0:3; 0:5;

1; 0; 21; 0; 0; 1; 0:3; 0;21; 0:3; 0:5; 0Þ`: The estimation results based on 500 replications

for BWLS, CC, I-CC, MA-CV, and SI-LS are presented in Figure 11 of Appendix

(Section 6). We can draw similar conclusions as in Simulation 1 that BWLS has the best

prediction and estimation performance.

4. ESS Data Analysis

The European Social Survey (ESS) was established at the National Centre for Social

Research in London in 2001. Since 2003, the ESS Headquarters have been located at City,

University of London in the UK. The survey measures the attitudes, beliefs, and behavior

patterns of various populations, covering more than 500 questions and reaching over

40,000 respondents from more than 30 countries all over Europe. It’s desirable to improve

its design since such a large-scale survey requires significant resources (e.g., time and
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money). Based on the proposed framework, we have finished the SQD in Subsection 3.1

and we use the SQD data obtained in Table 2 for the following regression analysis.

The ESS study concentrates on how the respondent is satisfied with the way democracy

works in their country, and we choose stfdem as the response variable, which is measured

Table 3. The list of variables.

Module Variable Definition

stfdem How satisfied with the way democracy works in their
country

agea Age of respondent, calculated
M1 gndr Gender

eduyrs Years of full-time education completed

trstprl Trust in country’s parliament
trstlgl Trust in the legal system
trstplc Trust in the police
trstprt Trust in political parties
trstun Trust in the United Nations
trstplt Trust in politicians
trstep Trust in the European Parliament

M2 stfeco

stfedu

How satisfied with present state of the economy in their
country

State of education in their country nowadays
stfgov How satisfied with the country’s national government
psppsgva Political system allows people to have a say in what government

does
psppipla Political system allows people to have an influence on politics
frprtpl Political system in their country ensures everyone a fair chance to

participate in politics
gvintcz Government in their country takes into account the interests of all

citizens
poltran Decisions in their country politics are transparent

anvcld Approves if a person chooses never to have children
alvgptn Approves if a person lives with partner they are not married to

M3 acldnmr

aftjbyc

Approves if a person has a child with a partner they are not
married to

Approves if a person has full-time job while having children aged
under three

advcyc Approves if a person gets divorced while having children aged
under 12

hinctnta Household’s total net income, all sources
ifrjob Compared with other people in their country, there is a fair

chance of getting job I seek
happy How happy are you

M4 recskill Influence decision to recruit in their country: person’s knowledge
and skills

ifredu Compared to other people in their country, there is a fair chance
of achieving the level of education I seek

hincfel Feeling about their household’s income nowadays
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using an 11-point Likert scale ranging from zero to ten and treated as a continuous variable

like Wu and Leung (2017). We apply the linear regression model to study the relationship

between the response variable and the relevant factors in this section. As pointed out in Van

Ham et al. (2017), economic outcomes and quality of governance should go a long way in

explaining one’s satisfaction with democracy. There are many other factors affecting

popular satisfaction with the way democracy works according to some studies in political

science, including the individual-level perceptions and aggregate measures based on expert

and stakeholder surveys of corruption, fair and honest treatment by political officials, or

impartiality. Based on the considerations above, we incorporate 29 covariates from four

modules into the regression model (Table 3). Specifically, module M1 is composed of three

variables concerned with respondent background, that is age, gender, and years of education.

Modules M2, M3, and M4 consist of questions related to the attitude toward politics and

society, marital relations and children, and the personal feelings about life, respectively. The

correlation of these variables is shown in Figure 7. It illustrates the correlations between

items within/between different modules. Specifically, the variables trstprl, trstlgl, ..., poltran

are grouped into module M2, which show obvious positive correlation. The variables anvcld,

alvgptn, ..., advcyc are about the respondents’ attitudes towards marriage and childbearing

and make up the module M3. Module M4 are consist of variables hinctnta, ifrjob, ..., hincfel,

which also show a positive correlation in Figure 7.
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With the proposed design, the assignment of modules in different sub-questionnaires can

be obtained by minimizing the cost function as in simulation for design. The sample sizes of

the four sub-questionnaires are shown in Table 2, and the total sample size is n ¼ 6,186.

After deleting the respondents with missing values, we finally obtain a complete data set

containing 27,341 valid respondents, with 6,186 of them being used as the training data and

the remaining 21,155 respondents being used for testing. For the training data set, the

respondents are randomly assigned to one of the four sub-questionnaires. Based on the data

with SQD in Table 2, we estimate the regression coefficients with BWLS, CC, I-CC, MA-

CV, and SI-LS. The results based on 100 random assignments are shown in Table 4.

Table 4 shows the estimates of coefficients with training data as well as the prediction

error (PE) of the testing data, with the standard deviation of the 100 replications contained

in parentheses. In general, the PE of BWLS is the smallest among the five methods tested.

The smaller standard error also indicates the superiority of BWLS. For interpreting the

coefficients, we note that the response variable is likely to be driven by political systems’

outputs and outcomes, such as economic performance (Van Ham et al. 2017). When the

Table 4. The estimates of coefficients and PE with 100 replications, where the averaged standard error is in

parentheses.

Variable CC SI-LS MA-CV I-CC BWLS

agea 0.003(0.142) 2 0.170(0.041) 0.016(0.029) 2 0.001(0.079) 0.011(0.007)

gndr 0.005(0.033) 2 0.007(0.002) 0.003(0.012) 0.002(0.019) 0.002(0.001)

eduyrs 0.031(1.156) 2 0.042(0.045) 2 0.073(0.248) 0.000(0.093) 2 0.082(0.048)

trstprl 0.127(0.362) 0.093(0.018) 0.063(0.089) 0.107(0.125) 0.092(0.018)

trstlgl 0.058(0.314) 0.013(0.018) 0.024(0.092) 0.081(0.123) 0.038(0.017)

trstplc 0.096(0.396) 0.065(0.020) 0.036(0.064) 0.070(0.143) 0.065(0.020)

trstprt 0.104(0.525) 2 0.003(0.024) 0.015(0.142) 0.065(0.133) 0.028(0.023)

trstun 2 0.007(0.412) 0.027(0.015) 0.017(0.093) 0.025(0.141) 0.034(0.015)

trstplt 0.034(0.389) 0.010(0.015) 0.002(0.086) 0.024(0.123) 0.014(0.016)

trstep 2 0.132(0.567) 2 0.015(0.022) 2 0.008(0.148) 0.015(0.128) 2 0.005(0.024)

stfeco 0.170(0.386) 0.170(0.016) 0.111(0.087) 0.161(0.141) 0.172(0.016)

stfedu 0.132(0.269) 0.089(0.016) 0.074(0.086) 0.112(0.108) 0.119(0.014)

stfgov 0.293(0.366) 0.257(0.019) 0.186(0.099) 0.251(0.124) 0.307(0.018)

psppsgva 0.163(0.819) 0.111(0.043) 0.086(0.222) 0.057(0.106) 0.098(0.040)

psppipla 2 0.060(0.923) 0.128(0.044) 2 0.007(0.284) 0.056(0.107) 0.073(0.039)

frprtpl 0.016(0.755) 0.175(0.039) 0.075(0.229) 0.081(0.118) 0.131(0.040)

gvintcz 0.181(0.812) 0.116(0.047) 0.081(0.151) 0.085(0.095) 0.108(0.049)

poltran 0.082(0.863) 0.024(0.037) 0.028(0.248) 0.066(0.107) 0.057(0.037)

anvcld 0.079(0.613) 0.074(0.051) 0.111(0.205) 0.024(0.132) 0.236(0.067)

alvgptn 0.182(1.277) 0.026(0.075) 0.055(0.427) 0.005(0.109) 0.095(0.103)

acldnmr 2 0.232(1.144) 2 0.105(0.083) 2 0.088(0.346) 2 0.001(0.096) 2 0.147(0.109)

aftjbyc 0.075(0.559) 2 0.023(0.045) 0.055(0.149) 0.007(0.126) 0.062(0.064)

advcyc 0.028(0.713) 2 0.056(0.054) 0.007(0.216) 0.008(0.120) 0.033(0.069)

hinctnta 2 0.004(0.201) 0.01(0.015) 2 0.007(0.044) 0.004(0.115) 2 0.008(0.012)

ifrjob 0.007(0.246) 0.004(0.013) 0.025(0.057) 0.015(0.122) 0.015(0.012)

happy 0.011(0.358) 0.039(0.019) 0.028(0.116) 0.037(0.123) 0.053(0.018)

recskill 0.054(0.503) 0.086(0.022) 0.063(0.145) 0.039(0.115) 0.069(0.021)

ifredu 0.032(0.290) 0.031(0.018) 0.014(0.086) 0.028(0.117) 0.011(0.012)

hincfel 0.053(0.754) 0.079(0.041) 0.064(0.175) 0.031(0.113) 0.042(0.037)

PE 12.398(6.704) 3.212(0.083) 4.150(2.102) 3.862(0.436) 2.783(0.039)
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economy is doing well or at least people perceive it to be doing so, the response variable

tends to increase (Van Ham et al. 2017), as the coefficients of variable stfeco are all

positive under several estimation methods. In addition, the response variable also rises

when the state apparatus, political institutions, and public officials are perceived to be

transparent, impartial, and fair. Although we may expect the sign of most variables in

module M2 to be positive (Beichelt et al. 2014), we observe that CC, SI-LS, and MA-CV

contain more estimated coefficients that are negative compared with I-CC and BWLS,

which means that the estimators of BWLS are much more interpretable and in line with the

economic significance. BWLS is likewise a more efficient estimator since it has the lowest

standard deviation among the five methods.

5. Discussion

In this study, we propose a two-stage framework for a large-scale survey in order to

improve its design and regression estimation. In Stage I, we create a survey design with a

block-wise missing structure by minimizing a nonlinear cost function with constraint on

the reliability of estimates of means. Reducing the cost and increasing the data quality can

be achieved through the proposed design, as shown in our numerical studies. In Stage II,

we put forward a BWLS estimator based on the SQD data obtained in Stage I under a

linear regression model. Numerical studies have shown that the proposed design has better

performance in terms of survey cost and respondent burden. Furthermore, the proposed

estimator of BWLS leads to satisfactory estimation and prediction accuracies. In our ESS

data analysis, the findings are consistent with other studies in political science.

Inspired by the two-stage framework proposed in this article, many studies can be

performed in the future. First, various forms of function may be investigated to describe the

total cost. Other factors such as response rates and information loss, can also be taken into

account as criteria for a SQD. Also, there is an important constraint n1 . p in our framework.

When it comes to the choice of n1, we just give the guidance that n1 is usually set to be not too

large compared to nj for j ¼ 2; :::; q due to budget and respondent load considerations.

Further research that examines how the proposed method works as n1 2 p is varied is a

valuable direction. Second, the number of questions included in the regression model may

be increased, and data exchanges between countries or servers become much more

convenient with the fast development of data science. Thus, it would be worthwhile for

researchers to further explore variable selection and the corresponding distributed-

computation methods in similar situations. Third, this article focuses on the situation of a

single response and that its values in the data are observed. When several regression analyses

are to be conducted with different response variables, it would be helpful to consider this in

the survey design stage so as to ensure the collection of the information for all respondents as

much as possible. If, unfortunately, some values are missing in the SQD data for the

response variable being considered, we may remove those cases with missing observations

or consider a suitable imputation method if available. Examination of effects of the relevant

factors (e.g., nature of the missing mechanism) in the process and deriving more efficient

techniques require significant future work. Fourth, the BWLS is only based on continuous or

dichotomous independent variables at present, while in many other cases, multi-categorical

variables are of interest as well. For example, when the impact of different levels of
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educations and occupations on earnings is concerned, levels of education and occupation are

usually treated as multi-categorical variables. The extension of our proposed framework to

these new situations is also worthwhile to look into. This article is focused on a simple

random sampling for our methodology and we only consider the influence of the design on

the sample size requirements of the survey items. Extensions to complex samplings possibly

with key regression parameters (in addition to the means of the survey items) to be

considered in the survey design are interesting future research projects.

6. Appendix

6.1. Results for Case 2
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6.2. Results for Real Data Simulation

(a) The comparison of MSE and PE for different estimators.

(b) The decomposition of MSE.
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6.3. Results for BWLS and Mean Imputaion

We conducted a simulation study to compare the results of BWLS and mean imputation in

terms of MSE and PE for Case 2. The results are presented in Figures 12 and 13
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6.4. Results for BWLS and Multiple Imputation

We conducted a simulation study to compare the results of BWLS and multiple imputation

(MI). Here, we present the results in Table 5 of Scenarios S1-S4 with correlation structure

in Case 1 ðl1 ¼ 0:3 and l2 ¼ 0:1Þ considered in Simulation 1.
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Fig. 13. The comparison of MSE and PE between BWLS and MeanI in S4–S5 under case 1.

Table 5. Simulation results for BWLS and MI.

R2 S1 S2 S3 S4

BWLS MI BWLS MI BWLS MI BWLS MI

MSE 0.4 0.0263 0.0490 0.1445 0.3860 0.0401 0.0853 0.0703 0.1132

0.5 0.0187 0.0346 0.1014 0.2765 0.0300 0.0625 0.0534 0.0848

0.6

0.7

0.0150

0.0112

0.0274

0.0187

0.0748

0.0568

0.2088

0.1399

0.0228

0.0172

0.0494

0.0357

0.0427

0.0365

0.0626

0.0477

0.8 0.0091 0.0139 0.0434 0.0952 0.0144 0.0274 0.0307 0.0337

0.9 0.0074 0.0086 0.0327 0.0543 0.0111 0.0181 0.0261 0.0216

PE 0.4 0.5529 0.8364 5.8703 12.3396 1.7240 2.7974 4.7488 3.8173

0.5 0.4219 0.5868 4.5167 8.7446 1.3387 2.0661 4.1224 2.7836

0.6 0.3679 0.4685 3.7295 6.5603 1.1338 1.6330 3.7433 2.0942

0.7 0.2926 0.3161 3.1695 4.3525 0.9484 1.1789 3.5797 1.5803

0.8 0.2605 0.2357 2.7958 3.0022 0.8511 0.9038 3.4674 1.1129

0.9 0.2291 0.1466 2.3951 1.6991 0.7417 0.6005 3.2825 0.7123
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6.5. Results Under MAR

Based on the settings in Scenario S1 with Case 1 in Simulation 1, we generate one more

variable, namely, p ¼ 21: Let Xi1 be observed for all respondents, and the remaining 20

variables are evenly divided into five modules. For generating MAR data, let dij ¼ 1 if the

i-th respondent answers the j-th sub-questionnaire and otherwise dij ¼ 0; i ¼ 1; 2; :::; n;

j ¼ 1; 2; :::; q: Here, we set dij ¼ Iðtj21 , Xi1 ,t j
Þ; i ¼ 1; 2; :::; n; where tj is ðj=qÞ-th

quantile of Xi1; which means that the missing probability depends on the value of Xi1: The

results are shown in Figure 14. It is observed that the performance of BWLS is superior to

the competing methods in terms of MSE and PE, which is consistent with the results under

missing completely at random. The conclusion is similar under other settings in the article

and we omit the details here due to space limitation.
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Adigüzel, F., and M. Wedel. 2008. “Split questionnaire design for massive surveys.”

Journal of Marketing Research 45(5): 608–617. DOI: https://doi.org/10.1509/jmkr.

45.5.608.

Andreadis, I., and E. Kartsounidou. 2020. “The impact of splitting a long onlin

equestionnaire on data quality.” Survey Research Methods 14(1): 31–42. DOI:

https://doi.org/10. 18148/srm/2020.v14i1.7294.

Beichelt, T., I. Hahn, F. Schimmelfennig, and S. Worschech. 2014. Civil society and

democracy promotion. Springer. DOI: https://doi.org/10.1057/9781137291097.

Best, H. and, C. Wolf. 2013. The SAGE handbook of regression analysis and causal

inference. Sage. DOI: https://doi.org/10.4135/9781446288146.

Cai, J., E.J. Candès, and Z. Shen. 2010. “A singular value thresholding algorithm for

matrix completion.” SIAM Journal on Optimization 20(4): 1956–1982. DOI: https://

doi.org/10.1137/080738970.

Chipperfield, J.O., M.L. Barr, and D.G. Steel. 2018. “Split questionnaire designs:

collecting only the data that you need through MCAR and MAR designs.” Journal of

Applied Statistics 45(8): 1465–1475. DOI: https://doi.org/10.1080/02664763.2017.

1375085.

Chipperfield, J.O., and D.G. Steel. 2009. Design and Estimation for Split Questionnaire

Surveys. Journal of Official Statistics 25(2): 227–244. Available at: https://ro.uow.e-

du.au/infopapers/3334/.

Chipperfield, J.O., and D.G. Steel. 2011. “Efficiency of split questionnaire surveys.”

Journal of Statistical Planning and Inference 141(5): 1925–1932. DOI: https://doi.org/

10.1016/j.jspi.2010.12.003.

Chipperfield, J.O., and D.G. Steel. 2012. “Multivariate random effect models with

complete and incomplete data.” Journal of Multivariate Analysis 109: 146–155. DOI:

https://doi.org/10.1016/j.jmva.2012.02.014.

Davidov, E., J. Cieciuch, and P. Schmidt. 2018. “The cross-country measurement

comparability in the immigration module of the European Social Survey 2014-15.”

12(1): 15–27. DOI: https://doi.org/10.18148/srm/2018.v12i1.7212.

Dziura, J.D., L.A. Post, Q. Zhao, Z. Fu, and P. Peduzzi. 2013. “Strategies for dealing with

missing data in clinical trials: from design to analysis.” The Yale journal of biology and

medicine 86(3): 343. Available at: https://pubmed.ncbi.nlm.nih.gov/24058309/.

Early, K. 2016. Dynamic question ordering: obtaining useful information while reducing

user burden proposal. Ph. D. thesis, Carnegie Mellon University Pittsburgh, PA. DOI:

https://doi.org/10.1184/R1/6716123.v1.

Fang, F., W. Lan, J. Tong, and J. Shao. 2019. “Model averaging for prediction with

fragmentary data.” Journal of Business & Economic Statistics 37(3): 517–527. DOI:

https://doi.org/10.1080/07350015.2017.1383263.

Hoerl, A.E. and R.W. Kennard (1970). “Ridge regression: biased estimation for

nonorthogonal problems.” Technometrics 12(1): 55–67. DOI: Technometrics 12(1):

55–67. DOI: https://doi.org/10.1080/00401706.1970.10488634.

Ioannidis, E., T. Merkouris, L.-C. Zhang, M. Karlberg, M. Petrakos, F. Reis, and

P. Stavropoulos. 2016. “On a Mmodular Approach to the Design of Integrated Social

Li et al.: BWLS for Nonlinear Cost-based SQD 485

https://doi.org/10.1509/jmkr.45.5.608
https://doi.org/10.1509/jmkr.45.5.608
https://doi.org/10.18148/srm/2020.v14i1.7294
https://doi.org/10.1057/9781137291097
https://doi.org/10.4135/9781446288146
https://doi.org/10.1137/080738970
https://doi.org/10.1137/080738970
https://doi.org/10.1080/02664763.2017.1375085
https://doi.org/10.1080/02664763.2017.1375085
https://ro.uow.edu.au/infopapers/3334/
https://ro.uow.edu.au/infopapers/3334/
https://doi.org/10.1016/j.jspi.2010.12.003
https://doi.org/10.1016/j.jspi.2010.12.003
https://doi.org/10.1016/j.jmva.2012.02.014
https://doi.org/10.18148/srm/2018.v12i1.7212
https://pubmed.ncbi.nlm.nih.gov/24058309/
https://doi.org/10.1184/R1/6716123.v1
https://doi.org/10.1080/07350015.2017.1383263
https://doi.org/10.1080/00401706.1970.10488634


Surveys.” Journal of Official Statistics 32(2): 259–286. DOI: https://doi.org/10.1515/-

jos-2016-0013.

Ledoit, O., and M. Wolf. 2004. “A well-conditioned estimator for large-dimensional

covariance matrices.” Journal of Multivariate Analysis 88(2): 365–411. DOI: https://

doi.org/10.1016/S0047-259X(03)00096-4.

Lesperance, M.L., and J.D. Kalbfleisch. 1992. “An algorithm for computing the

nonparametric MLE of a mixing distribution.” Journal of the American Statistical

Association 87(417): 120–126. DOI: https://doi.org/10.1080/01621459.1992.104

75182.

Little, R.J. 1992. “Regression with missing X’s: a review.” Journal of the American

statistical association 87(420): 1227–1237. DOI: https://doi.org/10.1080/01621459.

1992.10476282.

Little, R.J., and M.D. Schluchter. 1985. “Maximum likelihood estimation for mixed

continuous and categorical data with missing values.” Biometrika 72(3): 497–512.

DOI: https://doi.org/10.1093/biomet/72.3.497.

Liu, M., and L. Wronski. 2018. “Examining completion rates in web surveys via over

25,000 real-world surveys.” Social Science Computer Review 36(1): 116–124. DOI:

https://doi.org/10.1177/0894439317695581.

Mazumder, R., T. Hastie, and R. 2010. “Spectral regularization algorithms for learning

large incomplete matrices.” Journal of Machine Learning Research 11: 2287–2322.

DOI: https://dl.acm.org/doi/10.5555/1756006.1859931.

Merkouris, T. 2015. “An efficient estimation method for matrix survey sampling.” Survey

Methodology 41(1): 237–262. DOI: https://www150.statcan.gc.ca/n1/en/catalogue/ 12-

001-X201500114174.

Neidorf, T., and M. Sheehan. 2014. “National Assessment of Educational Progress

(NAEP).” In Encyclopedia of Science Education., edited by R. Gunstone. Dordrecht:

Springer. DOI: https://doi.org/10.1007/978-94-007-6165-0_67-2.

Peytchev, A., and E. Peytcheva. 2017. “Reduction of measurement error due to survey

length: evaluation of the split questionnaire design approach.” Survey Research

Methods 11(4): 361–368. DOI: https://doi.org/10.18148/srm/2017.v11i4.7145.

Raghunathan, T.E., and J.E. Grizzle. 1995. “A split questionnaire survey design.” Journal

of the American Statistical Association 90(429): 54–63. DOI: https://doi.org/10.1080/

01621459.1995.10476488.

Rhemtulla, M., and T.D. Little. 2012. “Planned missing data designs for research in

cognitive development.” Journal of Cognition and Development 13(4): 425–438. DOI:

https://doi.org/10.1080/15248372.2012.717340.

Rust, K.F., and E.G. Johnson. 1992. “Chapter 2: Sampling and weighting in the national

assessment.” Journal of Educational Statistics 17(2): 111–129. DOI: https://doi.org/

10.3102/10769986017002111.

Schnaudt, C., M. Weinhardt, R. Fitzgerald, and S. Liebig. 2014. “The European Social

Survey: contents, design, and research potential.” Journal of Contextual Economics:

Schmollers Jahrbuch 134(4): 487–506. DOI: https://doi.org/10.3790/schm.134.4.487.

Skinner, C.J., and O. Coker. 1996. “Regression analysis for complex survey data with

missing values of a covariate.” Journal of the Royal Statistical Society: Series A

(Statistics in Society) 159(2): 265–274. DOI: https://doi.org/10.2307/2983173.

Journal of Official Statistics486

https://doi.org/10.1515/jos-2016-0013
https://doi.org/10.1515/jos-2016-0013
https://doi.org/10.1016/S0047-259X(03
https://doi.org/10.1016/S0047-259X(03
https://doi.org/10.1080/01621459.1992.10475182
https://doi.org/10.1080/01621459.1992.10475182
https://doi.org/10.1080/01621459.1992.10476282
https://doi.org/10.1080/01621459.1992.10476282
https://doi.org/10.1093/biomet/72.3.497
https://doi.org/10.1177/0894439317695581
https://dl.acm.org/doi/10.5555/1756006.1859931
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201500114174
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201500114174
https://doi.org/10.1007/978-94-007-6165-0_67-2
https://doi.org/10.18148/srm/2017.v11i4.7145
https://doi.org/10.1080/01621459.1995.10476488
https://doi.org/10.1080/01621459.1995.10476488
https://doi.org/10.1080/15248372.2012.717340
https://doi.org/10.3102/10769986017002111
https://doi.org/10.3102/10769986017002111
https://doi.org/10.3790/schm.134.4.487
https://doi.org/10.2307/2983173


Van Ham, C., J.J. Thomassen, K. Aarts, and R.B. Andeweg. 2017. Myth and reality of the

legitimacy crisis: explaining trends and cross-national differences in established

democracies. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198793717.

001.0001.
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Answering Current Challenges of and Changes in Producing
Official Time Use Statistics Using the Data Collection

Platform MOTUS

Joeri Minnen1, Sven Rymenants1, Ignace Glorieux2, and

Theun Pieter van Tienoven2

The modernization of the production of official statistics faces challenges related to
technological developments, budget cuts, and growing privacy concerns. At the same time, there
is a need for shareable and scalable platforms to support comparable data, leading to several
online data collection strategies being rolled out. Time Use Surveys (TUS) are particularly
affected by these challenges and needs as they (while producing rich data) are complex, time-
intensive studies (because they include multiple tasks and are administered at the household
level). This article introduces the Modular Online Time Use Survey (MOTUS) data collection
platform and explains how it accommodates the challenges of and changes in the production of a
TUS that is carried out in line with the Harmonized European Time Use Survey guidelines. It
argues that MOTUS supports a shift in the methodological paradigm of conducting TUS by
being timelier and more cost efficient, by lowering respondent burden, and by improving the
reliability of the data collected. Importantly, the modular structure allows MOTUS to be easily
deployed for various TUS configurations. Moreover, this versatile structure allows comparable,
complex diary surveys (such as the household budget survey) to be performed on the same
platform and with the same applications.

Key words: Time-use survey; data collection platform; cost efficiency; data quality,
respondent burden.

1. Introduction

Today, National Statistical Institutes (NSIs) face challenges and changes in the way they

produce official statistics (Radermacher 2020). On the one hand, technological

developments create the opportunity for paradigm shifts in methodology (Ashofteh and

Bravo 2021). On the other hand, modern societal changes and challenges create new user

demands for high-quality data and statistics (Cai and Zhu 2015). Taken together with the

budgetary restrictions in place, this results in a large pressure to shift to online data

collection and to connect data collection environments with other data sources that bring

valuable information to specific statistical domains (Ricciato et al. 2020). This digital

transformation rapidly changes the context and needs, and it also leads to growing privacy

and data security concerns and suspicion towards official statistics (Keusch et al. 2019;

Ricciato et al. 2020). Amidst these challenges and changes, modernisation initiatives should
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be supported by trustable, shareable, and scalable processes considering “smart” ways to

collect data (Bruno et al. 2022; Ricciato et al. 2019). These processes are assumed to lead to

cost reductions for the statistical offices and to lower the respondent burden (Salemik et al.

2020). In addition, these processes must remain standardized for reasons of comparability,

yet flexible and agile enough to meet (country) specific needs and allow statistics to be

disseminated quickly. At the same time, these processes must not compromise on the quality

and reliability of the collected data (Salgado et al. 2018; Stodden 2014).

At the European level, the European Statistical System (ESS), which is a partnership

between Eurostat and the NSIs of the EU and EFTA countries, aims at enhancing the

strengths (such as comparability) of harmonised statistical methods and reversing the trend

of a gradual disintegration of the data collection process stemming from NSIs facing

declining participation rates and increasing difficulties in organising data collections (and

thereby jeopardizing the quality and reliability of the statistics). At the same time, the ESS

foresees to jump on the bandwagon of the process of digitalisation, growing smartphone

usage (Keusch et al. 2019) and the availability of 4G and 5G networks (Gohar and

Nencioni 2021). New technologies should improve respondent responsiveness by using

new tools, integrating new data flows by connecting data sources, and help NSIs become

more efficient by defining data collection platforms. The goal is to better capture and

disseminate the perspective of households (Carletto et al. 2022).

The Time Use Survey (TUS) is one of the European surveys that are substantially

affected by the challenges of and changes in the way NSIs produce statistics, but at the

same time would substantially benefit from new technological developments. Against

that backdrop, this contribution aims to answer whether the Modular Online Time Use

Survey (MOTUS) data collection platform is able to tackle these challenges and align

with these changes. Official TUSs face numerous challenges, such as the need to replace

the expensive and laborious paper-and-pencil method by a digitalized method with

smart ways to reduce respondent burden amid the absence of updated guidelines to

harmonize digitalized TUS across NSIs. Many of these challenges relate to the

principles of the European Statistics Code of Practice (Eurostat 2018). The central

question this contribution addresses is: can MOTUS improve on respondent burden

(principle 9), cost efficiency (principle 10) and quality such as accuracy and reliability

(principle 12), and timeliness and punctuality (principle 13) in producing official TUS

statistics?

In answering this question, we consider respondent burden as a perceived burden, which

results from low motivation, the complexity of the tasks at hand, and the challenging effort

to complete the survey (Yan et al. 2019). Furthermore, we consider the timeliness, the

accuracy and reliability of the (intermediate statistics production steps as well as the final)

time use statistics as quality indicators. We assume that the accuracy and reliability of

statistics can be gained by reducing human data entry errors, by reducing the respondent

recall error, and by supporting respondents with real-time prompts during the data

collection process. In what follows, we evaluate MOTUS in terms of expected

improvements in costs, respondent burden, and quality compared to the current best

practice of paper-and-pencil TUS for different phases of the GSBPM, Generic Statistical

Business Process Model (Kuonen and Loison 2019).
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2. Background

2.1. Time Use Surveys

A TUS collects data on daily life. They are a way to picture the “many interesting patterns

of social life [that] are associated with the temporal distribution of human activities, with

the regularities in their timing, duration, frequency, and sequential order” (Szalai 1972, 1).

Respondents use a log or a time use diary of at least twenty-four consecutive hours to self-

report their daily behaviour in a chronological and open-ended fashion on an activity-to-

activity basis (Pronovost 1989; Robinson 1999). In the time use diary, respondents specify –

for each new activity – the start and end time as well as some contextual information like

the place of occurrence and the possible presence of others. This not only makes time use

diaries capable of simultaneously collecting data on the duration, timing, tempo, and

sequence of activities (Zerubavel 1982) but it also reduces respondent errors related to

self-reporting of activities in daily life compared to other survey methods (Lavrakas 2008).

Respondent errors related to understanding the concept (of the question asked) are reduced

because respondents are not directly queried but use their own wording to describe their

activities. However, insufficient detail in verbatim activity descriptions complicates

posterior activity coding (Chenu 2004). Recall biases are reduced because respondents are

asked to register their activities in close to real time, resulting in multiple registration

moments per day. Other biases such as social desirability biases or confirmation biases are

reduced because time diaries do not focus on a particular activity, activities

chronologically follow each other (i.e., the ending time of one activity is the start time

of the next activity), and activity durations are restricted to 24 hours a day (Te Braak et al.

2022b).

As TUS is a source for official statistics on which policymakers rely, and as it can

further enhance the understanding of daily life, initiatives have been taken around the

world to harmonize the production of time use data (Robinson and Godbey 1997). One of

the most extensive harmonization processes was carried out by Eurostat and resulted in the

guidelines on Harmonised European Time Use Surveys (HETUS) for these surveys

conducted by NSIs (Eurostat (2020), referred to as “the guidelines” below). The guidelines

(which include sample design harmonization and standardization, mode and methodology

design, activity coding, data coding, weights, and metadata) have been used by nearly 20

European NSIs in two HETUS rounds between 1998 and 2015.

The TUSs are not merely a European matter. Since 2003, BLS, the U.S. Bureau of Labor

Statistics (U.S. Bureau of Labor Statistics 2023) collects yearly waves of the American Time

Use Survey (ATUS) to support policy research related to household production, health and

safety, and family and work-life balance. Similarly, and often with support of the International

Labor Organization (ILO), numerous countries outside Europe use time use statistics to gain

valuable insights on household production and gender (in)equality (United Nations 2016).

The major strength of TUSs is capturing detailed information of daily activities in a

chronological and contextualised way. Yet this strength is also its weakness, both at the

organisational “back office”, as well as at the participation environment or “front office”.

From an organisational point of view, these surveys are costly, mainly due to postage,

printing, and personnel costs resulting from multiple interviewer visits to the household
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and data entry from paper time use diaries. Regarding the latter, the large number of offline

manual operations increase the risk of errors. Additionally, fieldwork periods typically run

for 12 months to capture seasonal variations. From the respondent point of view, the

burden to complete such a survey is relatively high, because household members complete

multiple questionnaires and keep track of their daily time use in paper time use diaries.

2.2. A HETUS Based TUS

To address the central question whether MOTUS can improve respondent burden, cost

efficiency, accuracy and reliability, and timeliness and punctuality in producing official

TUS statistics, we consider the guidelines to be the benchmark. As the HETUS is a

household survey, sampling is carried out at the household level. The identified head of each

participating household will complete a grid that records the relationships between all

persons in the household (i.e., the household grid, see Eurostat 2020, 33) and a household

questionnaire. Additionally, all eligible household members (i.e., aged ten and above) will

complete an individual questionnaire. Currently, this is (most frequently) done via

Computer Assistant Personal Interviews (CAPI), which implies an interviewer visit – at

which the interviewer also leaves behind two paper time use diaries per eligible household

member with the dates on which both time use diaries must be completed. One diary

concerns a weekday, and one diary concerns a weekend day (the same two days for all

household members). The interviewer might also leave behind a drop-off questionnaire,

which is to be completed by all eligible household members after the time use diaries. At a

prearranged date, the interviewer returns to check and collect the time use diaries and the

drop-off questionnaire. At the NSIs, the paper time use diaries and drop-off questionnaires

are entered into a database, often using parallel data entry to prevent input and coding errors.

3. Modular Online Time Use Survey

3.1. Introducing MOTUS

To counter the high costs of conducting TUSs and to lower the respondent burden, while

maintaining reliable and quality output on daily life, scholars and NSIs started to

experiment with conducting these surveys through web- and mobile applications (Bonke

and Fallesen 2010; Fernee and Sonck 2013; Sonck and Fernee 2013; Sullivan et al. 2020),

with the first applications coming into circulation around 2010. The first version of

MOTUS was rolled out in 2012.

Figure 1 shows the platform architecture of MOTUS. The MOTUS data collection

platform consists of a front office as well as a back office. The front office relates to the

collection tool or application, with which the users can interact via a user interface (UI)

and which delivers, through its functionalities, a user experience (UX). The MOTUS

application is available as a web version for browsers (https://app.motusresearch.io) and in

iOS and Android mobile versions for smartphones and tablets. The purpose of the

application is to make it easier for the respondent to carry out all tasks of a (time use or

other) survey.

The back office serves to build a survey, to facilitate data collection and monitoring, and

to process the data. To this end, the back office, which is accessible via a web environment,
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contains several builders. Both the front office and back office connect to the MOTUS core

(“the core”) through Application Programming Interfaces (APIs). The core holds the

database with all information required to build a survey and collect data. A separate

analysis server holds a replica of the database from the core and facilitates the processing

of information in the back office. The back-up server is a replica of the core and analysis

servers. Adapter APIs serve to adapt external information so that it can be processed in the

core, thereby allowing the ingestion of, for example, passive data gathered via integrated

sensors or connected devices, administrative/secondary data available via external data

sources, or other processed data. For reasons of optimization, data security and privacy,

these data are handled and organised in an anonymized way in stand-alone microservices.

All input provided by the user is sent encrypted via an https communication to the server

and is immediately propagated to all devices of the user via the respondent API. As a

result, the MOTUS web and mobile applications can be used interchangeably.

3.2. Building TUS With MOTUS

To enhance the comparability of official TUSs in Europe, the design hereof in MOTUS is

largely informed by the guidelines, which are regularly updated (Eurostat 2020). In the

current situation, these guidelines provide a good starting point to include online

applications and data collection platforms, while considering an online first approach

which still ensures comparability with paper diaries (Vassilev et al. 2020). At the same
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Fig. 1. Overview of the MOTUS platform architecture.
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time, new applications and platforms and the options to implement smart solutions will

produce possibilities that most likely impact the TUS design.

MOTUS supports building a HETUS guided TUS (see Subsection 2.2) and currently

features nine builders – eight of which are relevant for a TUS, while the ninth builder

offers future possibilities (see Subsection 4.1). All builders contribute in varying degrees

to the lowering of the respondent burden, the cost reduction, the improvement of the

accuracy and reliability of the data, and the increased timeliness and punctuality. Table 1

provides an overview of the builders in relation to the GSBPM build phase and the

improvements that they bring in relation to current TUS practices.

3.2.1. Collection instruments

The survey builder serves to create online questionnaires based on all common question

types with all common functionalities (e.g., answer-based routing, piping). This builder

allows sharing previous questionnaires over studies. For a TUS the survey builder would be

used to construct a household questionnaire, two individual questionnaires (i.e., one before

and one after the time use diaries) and context questionnaires. Context questionnaires are

linked to activities that are registered in the time use diary and can gauge where the activity

took place (or what mode of transport used in case of travel), with whom the activity was

undertaken, and if any information or communication technology was used during the

activity. Obviously, online questionnaires are timelier and more punctual as well as more

cost efficient because they (can) eliminate interview and data entry processes (as data are

already digitized, which also eliminates human data entry errors). They also contribute to

accuracy and reliability because conditions (e.g., mandatory questions) and restrictions

(e.g., an answer cannot exceed a certain value) can be defined.

The diary builder sets up the time use diary. At the core of the time use diary is the

Online Activity Classification List (OACL) that respondents use to register their daily life.

The OACL is derived from the Activity Classification List (ACL) as described in the

guidelines. In MOTUS, an OACL is created as a tree structure with up to three levels and

as many activities or activity categories in any given level as needed. In MOTUS, a

(different) context questionnaire (as created in the survey builder) can be attached to each

specified activity. The diary builder contains a repository with previous OACLs for reuse.

The use of OACLs presents a major improvement. Firstly, it is cost-efficient because there

is no need to assign actual activity codes to written, verbatim activities. MOTUS can present

the OACL to the respondents as a collapsible tree structure, and/or as a searchable list, and/or

as a list of favourites. The searchable list is very similar to the traditional verbal description,

with the difference that respondents are shown the activities that match their description and

thus code their description themselves. Since respondents do this straight away, this also

improves the accuracy and reliability as well as timeliness and punctuality. For the

searchable list to work, an unlimited number of search tags can be assigned to each of the

activities at the most granular level of the tree structure in the diary builder. For the favourite

list to work, respondents need to star activities. The different options of selecting activities in

the time use diary are also likely to lower the respondent burden, accuracy and reliability as

relevant response alternatives are suggested. To handle the situation when an activity cannot

be found, OACLs might contain the option to describe activities in the respondents’ own

words. The search terms used, and the finally selected activity are stored in the background to
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progressively improve the efficiency of the search algorithm during the course of the survey.

Secondly, paper-and-pencil questionnaires are limited regarding the context questions and

these questions cannot vary per activity in the ACL. In contrast, OACLs can lower the

respondent burden as (for instance) not all context questions need to be asked.

Next to the activity list, the diary builder also allows the survey manager to set a large

array of time use diary parameters. These include the granularity of the time intervals (e.g.,

continuously or in whole minute intervals), the diary period and diary period calculation,

the start and assignment of focus periods (i.e., the day or days for which the time use diary

needs to be completed), and the (length of the) learning period. For a HETUS based TUS,

the granularity would be set at ten-minute intervals, while the the focus days are a function

of an algorithm that ensures an equal dispersion of starting days across the week and

assigns one weekday and one weekend day to all eligible individuals of the household.

Controlling the time use diary parameters brings a substantial improvement to accuracy

and reliability. The major disadvantage of drop-off paper time use diaries is the lack of

control over and insight in what happens between dropping off the diaries and collecting

them (Te Braak et al. 2022a). The diary builder allows the survey manager to set, monitor,

and adjust the time use diary during the fieldwork.

The grid builder is used when the unit of participation is not the individual but a group

or, in this case, a household. In a TUS, the reference person of the household composes a

household grid by adding household members, providing relevant information (e.g., at

least date of birth), specifying relationships (e.g., mother-daughter, partners, siblings ...),

and answering questions about household members less than ten years old (e.g., about day

care arrangements). Based on this information, household members are checked for their

eligibility (according to the criteria set out in the grid builder) to take part in the survey. If

the reference person provides group members’ email addresses, all group members who

are eligible to participate will receive an invitation via email with their initially assigned

personal credentials. An online household grid has the same cost and time benefits as

online survey questionnaires.

In a HETUS based TUS, participation needs to be coordinated, because of synchronous

time use diary registration by all household members. In MOTUS, this is achieved by all

group members enter a virtual waiting room. Once all eligible members have entered the

waiting room, a subsequent, synchronized task can be assigned. In other words, only when

all eligible household members completed their previous task(s), they can proceed to the

time use diary task. Optionally, the reference person can manually request the next task if

waiting for other group members is deemed to be futile. The cost reductions are obvious

because of the elimination of the interviewer and the fully automated process of

completing the household grid, checking of eligibility, and distributing individual

questionnaires and time diaries. This also improves accuracy and reliability as well as

timeliness and punctuality. However, as the household grid still needs to be completed by

the head of the household, the respondent burden is not decreased. Nevertheless, accuracy

and reliability will improve if a waiting room is used because it allows the household

members’ time diaries to be truly synchronized; something which cannot be guaranteed

(or even assessed) when the traditional method (dropping off paper-and-pencil time use

diaries for pick-up at a later moment in time) is used.
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3.2.2. Processing, analysis, and dissemination components

It is necessary to set up several processes (in addition to the collection instruments) that

support the collection, the analysis, and the dissemination of the statistics. Many of the

processing components are part of the MOTUS architecture (see Subsection 3.1), but some

processes are built in the R builder.

Firstly, the R builder contains the motusr package which allows the creation of

closing criteria settings or quality assessment of the time use diary. These thresholds or

quality criteria relate to the amount of undefined time, the variance and number of

different of activities logged, the prevalence of activities which start or end at the top of the

hour, and the registration of certain activities, such as sleeping, eating, drinking, and

travelling in case of changing locality (Juster 1986). Feedback on data quality can be

presented to the respondent purely informatively via onscreen messages or lead to an

explicit request to the respondent to adjust the registration in the diary as a requirement to

proceed or end the time diary stage. The motusr package is currently under development

and not yet listed on CRAN.

Secondly, the R builder periodically performs calculations on live data on the MOTUS

server to check for changes and to update the outputs. These calculations feed into a

dashboard that allows progress monitoring. Finally, the R builder facilitates the

construction, labelling, and exporting of (including para- and metadata and Universally

Unique Identifier (UUID) keys to merge different databases) in various formats.

In addition to making the fieldwork timelier and more cost efficient, the various

automated processes outlined above also improve the accuracy and reliability of the data.

3.2.3. Configure workflow

The collection instruments and processes need to be brought together to form a workflow

and are linked through communication. All communication is defined in the

communication builder and, in the absence of an interviewer and except for initial postal

invitations when an email address is not yet available, there are four ways of

communicating throughout the data collection process: email, push messages, and static

pages. Push messages include real-time prompts that remind respondents of their survey

tasks and support respondents registration process by, for example, suggesting relevant

response alternatives. This improves the accuracy and reliability. Additionally, if studies

need to be conducted in multiple languages, all elements (i.e., collection instruments and

communication) can be translated in the translation builder. The translation builder

supports the xliff format (an XML variant) which allows translations to be done externally

and imported into MOTUS. Furthermore, the invitation builder manages how respondents

enter the workflow. There are different invitation strategies, ranging from voluntarily

registering on the MOTUS webpage (possibly following advertising through various

channels), via receiving a letter with login details, to uploading a list of potential

respondents in advance. For a TUS that follows the guidelines, NSIs typically draw their

sample from a national population register wherein no email address information is

available. In this case, the invitation builder generates usernames and temporary

passwords which are printed in the invitation letters that are send to the sampled

households. Invitation letters contain both a QR-code and a fully written web link
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directing respondents to the MOTUS website. Once respondents use the login credentials

to participate, MOTUS will ask them to provide an email address for further

communication throughout the survey.

While all the collection instruments and communications are created in their respective

builders, the research builder sets up the overall collection process workflow. The

workflow brings all instruments them together and places them in a linear order based on

the different stages a respondent must go through to successfully participate in a survey.

As these stages typically consist of tasks to be performed (collection instruments to be

completed or communications to be read), they may also be referred to as “tasks”.

Moving through stages is based on actions governed by conditions that are defined in the

research builder. The conditions can be based on the completion of tasks or can be time based

(e.g., sending a reminder after 24 hours of inactivity). Actions are communicated to the

respondent by means of communications that are created in the communication builder.

Additionally, communicationcriteria can be defined as a functionof the progress within a stage.

For a TUS that follows the guidelines, the workflow is complex. It starts with sampling

household members that will receive credentials to log in to MOTUS and complete the tasks

of filling out a household questionnaire and composing the household grid. Thereafter, all

eligible household members will be invited via email to carry out several tasks in MOTUS:

completion of a first individual questionnaire, completion of two focus days in the time use

diary, and completion of a second individual questionnaire. Actions involve numerous

communications, for example, on what task needs to be completed next, reminders to

complete certain tasks, or instructions on how to record an online time use diary.

To demonstrate how this works in practice, Figure 2 gives an example of a simplified

workflow of a TUS that involves an individual pre-questionnaire and a two-day time use diary.

Each box defines a stage and includes the title of the stage, a short description of the stage, and

the option (for the survey manager) to edit or delete the stage. Within each stage, different

actions are defined (the dark coloured bars), such as communicating, proceeding to the next task,

or closing the survey participation for the respondent after a predefined period of inactivity.

The communication builder improves cost efficiency, timeliness and punctuality since

communication is created online and sent to respondents through automated processes.

Since the transmission of communications is conditional, it is tailored to the respondent

and might increase the involvement of the respondent. In turn, this might lower their

burden and therefore improve the accuracy and reliability of the data. The translation

builder cannot alter the translation costs. The major advantage, though, is that respondents

can easily switch between languages, which again might increase their involvement and

lower their burden, especially in countries such as Belgium with multiple official

languages. In a TUS, the initial invitation comes in the form of a paper letter, so the

improvement provided by the invitation builder is limited at first. However, in case

information is provided by the head of household, the eligible household members are

invited via e-mail, which is cost and time efficient. Additionally, automated processes for

assigning credentials and linking these to UUIDs leaves less room for error which

improves accuracy and reliability.

The research builder improves current practices of TUS substantially because it allows

building the complete workflow in an online environment and as a fully automated

process. It enhances cost efficiency, timeliness and punctuality, while also improves the
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accuracy and reliability of the data as it allows a more accurate and complete follow-up of

respondents as they progress through the various stages. Although this closer follow-up

cannot reduce the number of tasks involved, the communication between tasks might

lower the respondent burden as it creates a sense of being supported.

Fig. 2. Simplified workflow of a TUS on the MOTUS platform.

Note. Stage 1 (not pictured) involves the activation of the MOTUS account. The simplified workflow involves an

individual pre-questionnaire (Stage 2) and a two-day time use diary (Stage 3).
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3.3. The Generic Statistical Business Process Model

Building (or reusing) the designed collection instruments and processes is central to any

statistical production process and part of the GSBPM. The GSBPM serves as a framework

to describe and define the business processes involved to produce official statistics in a

standardised way. It started as a joint effort of the United Nations Economic Commission

for Europe (UNECE), Eurostat and the Organisation for Economic Cooperation and

Development (OECD). The GSBPM is based on the business model of Statistics New

Zealand (Kuonen and Loison 2019). Describing the business process of the production of

official statistics using the GSBPM as the reference model allows NSIs to communicate

these processes more easily.

The GSBPM is considered a non-linear process model and is aimed to apply to any data

production (e.g., surveys, censuses, administrative registers). It serves as a reference

model, which does not prevent NSIs from arriving at national versions of the GSBPM

based on organisation-specific adaptations, combining phases, or a sequential

reassessment to make it a linear process description (Ahmad and Koh 2011).

As shown in the first three columns of Table 1, each of the builders discussed above

refers to one or more of the subphases of the build phase (i.e., GSBPM phase 3), while also

supporting one or more other process phases (i.e., GSBPM phases 4 to 7). This highlights

the non-linear sequence of the different phases of the GSBPM and the importance of

iterative processes to support, evaluate and inform different phases and sub-phases.

4. Discussion

4.1. Wider Applications

The MOTUS applications (mobile and web) are not single purpose applications aimed at

conducting a particular survey (or supporting a single area of statistics, such as time-use

statistics). Instead, the MOTUS front office applications serve as a host for any survey that

is defined in the back office. This modular capacity of MOTUS is based on the different

builders that can be defined and put into a workflow for every different survey created in

MOTUS. As such, MOTUS works particularly well for complex studies that are a

sequence of multiples tasks (e.g., questionnaire and diary) or studies that link survey

elements with data from other, external services (e.g., geolocation data). The Household

Budget Survey (HBS) is an example of a complex survey with challenges comparable to

those of the TUS. Like the TUS, it is also sampled at the household level and consists of

recording data in a diary over time (in the the case of the HBS, this concerns purchases by

household members over a period of at least 15 days). The HBS also includes completing a

household grid and questionnaire. Given these major similarities and the modular

approach of MOTUS, the project CRŒSS (Minnen et al. 2022) upgraded MOTUS to a

platform that also can offer HBS studies. This was done by extending the diary builder,

which can now also use the Classification of Individual Consumption by Purpose

(COICOP) codes (instead of the ACL code used in a TUS). The adjustments achieved

uniformity of the front office in the sense that the UI/UX is the same for TUS and HBS.

This also holds for the back office. The MOTUS platform can now organize both a TUS

and an HBS on the same platform and with the same applications. At the same time,
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MOTUS uses container technology to make the platform available as an ESS platform.

Each Docker container is a separate part of the MOTUS platform, as shown in Figure 1,

with its software dependencies. How and where the containers are used is the

responsibility of an NSI. It is recommended to use Kubernetes to deploy the containers on

ISO/IEC 27001 certified infrastructure. This setup brings natural security barriers and also

provides tools for scalability and high availability.

4.2. Smart Data Collection

Another future challenge of (digital) data collection concerns “smart” ways of collecting data,

from which time use surveys could benefit (Zeni et al. 2020). “Smart” refers to data collection

that combines passive or sensor data from personal smart devices (e.g., GPS, accelerometer)

with active data explicitly provided by the respondent (e.g., responses to queries). Here,

“passive” refers to the respondent not actively providing input (Ricciato et al. 2020).

MOTUS interprets the “smart” concept in a very broad sense, noting that data collection

can be smart not only in the way it uses or processes already available data, but also be smart

in the way it supports respondents to participate in surveys. MOTUS therefore continues to

develop and add builders with new possibilities to the back office. One such builder is the

event builder. Events follow the if-this-than-that (ITTT) approach and are thus triggers that

are pulled if a certain condition is met. These conditions and the actions they initiate are

defined in the event builder and are available from microservices that collect sensor data and

are connected by an adapter API to communicate with MOTUS. These events can on the one

hand ask the respondents to perform a specific action (e.g., answering a short questionnaire),

or on the other hand show tentative entries in the respondents’ diary, which they can commit

and as such can reduce the registration burden and increase the quality of the registration.

For example, if the GPS coordinates correspond with respondents’ working address,

working activities might be suggested in their time use diary.

The inclusion of smart data requires a data collection platform that is able to

communicate with different other environments or standalone microservices (Ricciato

et al. 2020). As shown in Figure 1, the MOTUS platform architecture allows these external

smart data sources to communicate with the core via so-called adapter APIs. An example

is the connection to the GeoService that collects geolocation data points from the

respondents’ smartphones. Particularly in complex studies such as TUS and HBS, the

inclusion of sensor data, or administrative data in line with the Only Once Principle

(OOP), should result in increased response rates, lower time investments of respondents as

data providers, a further reduction of survey costs, and an increase in the accuracy and

reliability of the data.

4.3. Para- and Metadata

The wealth of para- and metadata captured by MOTUS can provide insights into a lot of

processes that have remained hidden from view in the traditional paper-and-pencil TUSs.

For example, who actually completes the time use diaries? Each household members by

themself? Or one person for all? We can only guess how this might have affected the intra-

household correlation of the time use diary registration. Similarly, when were time diaries

completed? Throughout the day? At the end of the day? Or just before the interviewer
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came to pick up the diaries? Again, we can only guess how this might have affected the

reliability of the time use diary registration in the past. Furthermore, if respondents drop

out during the fieldwork, all information prior to drop-out remains available in the

database of the server running the survey. Unless the respondents exercise their rights as

defined in the General Data Protection Regulation (http://data.europa.eu/eli/reg/2016/679/

2016-05-04) to delete all stored information. This might be useful to evaluate the dropout.

On the negative side, it is yet to become known what all this will bring to light in terms of

accuracy and reliability. On the positive side, at least then we know – and may be able to

compensate for it.

4.4. Communication

One of the future challenges of online research, and especially with surveys like TUSs, are

the multiple and complex tasks respondents must complete. The absence of face-to-face

contact puts substantial pressure on online communication and gives rise to questions such

as how much to communicate, by which means and in which wordings – and whether the

communication should be differentiated by background characteristics. Options for

respondents to switch on or off optional communication, such as reminders, suggestions,

tips and tricks and select preferred media channels (e.g., email, text message, on screen

notifications) could further tailor the user experience to the respondent and increase the

feeling of being supported and decrease the potential challenging effort to complete the

survey (Yan et al. 2019).

4.5. Conclusion

TUSs have a history of collecting data that can produce reliable and widely applicable

statistics and indicators. However, the implementation of a (HETUS based) TUS is based

on a complex sequence of household and individual level questionnaires and time use

diaries on two different days of the week. A paper-and-pencil version comes with high

postal and printing costs and with substantial cost and time investments in multiple

interventions from interviewers and coders. These surveys also imply a relative high

participation burden and thus a risk for accuracy and reliability. The modernization of

TUSs, driven by current and future technological developments, involves more than just

translating the current paper and pen-based version into a digital format. It requires a shift

in the methodological paradigm of doing these surveys and an overhaul of the business

processes for producing official time use statistics.

This contribution introduced MOTUS not only as an online TUS, but as a provider for

the collection of these surveys by breaking down all elements of conducting an online TUS

into modular builders that are congruent with and supportive to several subphases of the

GSBPM. It showed that MOTUS stands for a modern approach to surveys in general and

to complex surveys (such as the TUS and the HBS) in particular. The MOTUS builders

inform the design phase, enable the build phase, and facilitate the collect, process, analyse,

and disseminate phases of the GSBPM. It also showed that MOTUS makes it possible for

modern, online data collections to provide a partial answer to recent challenges by

lowering the respondent burden, by being more cost efficient, and by providing timelier,

more punctual, more accurate and more reliability official statistics. MOTUS has already
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partly proven itself in the past for TUS both for a population sampled TUS (see Minnen

et al. 2014) and for several target sampled TUSs (see, for example, Te Braak et al. 2022a).

Future challenges include further applications and use of MOTUS for TUS and other

surveys in different statistical domains (e.g., the HBS – for which first steps have been

taken as described in Subsection 4.1 above) and collecting feedback for adjustments and

improvements. These applications and subsequent evaluations will continue to cement and

expand the potential of MOTUS to meet current challenges of and changes in producing

official statistics based on complex surveys.
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Small Area with Multiply Imputed Survey Data

Marina Runge1 and Timo Schmid2

In this article, we propose a framework for small area estimation with multiply imputed
survey data. Many statistical surveys suffer from (a) high nonresponse rates due to sensitive
questions and response burden and (b) too small sample sizes to allow for reliable estimates on
(unplanned) disaggregated levels due to budget constraints. One way to deal with missing
values is to replace them by several plausible/imputed values based on a model. Small area
estimation, such as the model by Fay and Herriot, is applied to estimate regionally
disaggregated indicators when direct estimates are imprecise. The framework presented
tackles simultaneously multiply imputed values and imprecise direct estimates. In particular,
we extend the general class of transformed Fay-Herriot models to account for the additional
uncertainty from multiple imputation. We derive three special cases of the Fay-Herriot model
with particular transformations and provide point and mean squared error estimators.
Depending on the case, the mean squared error is estimated by analytic solutions or
resampling methods. Comprehensive simulations in a controlled environment show that the
proposed methodology leads to reliable and precise results in terms of bias and mean squared
error. The methodology is illustrated by a real data example using European wealth data.

Key words: Fay-Herriot model; mean squared error; multiple imputation; nonresponse;
survey statistics.

1. Motivation

Financial reports based on asset data can provide insights into a wide range of issues of

major importance for political decisions and can help in the precise allocation of funds. In

addition, wealth data can give an overview of the distribution of assets and liabilities,

which can be highly relevant for financial stability and play a central role in assessing

inequality. For this reason, survey data on wealth are of particular importance. Since

questions about assets and income are sensitive issues, such surveys often suffer from high

item nonresponse (Riphahn and Serfling 2005). For example, the Household Finance and

Consumption Survey (HFCS) reports for France item nonresponse rates of nearly 30% for

value of saving accounts and largest mortgage on household main residence and almost

80% for current value of household main residence (HFCN 2020a).

Listwise deletion, retaining only records with no items missing, leads to a loss of

information, and the remaining units in this dataset are not a good representation of the

population, which can lead to biased estimates. Missing values are a problem because the
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incomplete data do not have the regular (matrix) form needed in almost any statistical

method, and therefore handling missing values is necessary. In the literature there are

various approaches for dealing with missing data in studies, such as in Rubin (1987) or

Longford (2005). Van Buuren (2018) gives an extended overview of approaches to

handling and imputing of missing data. Rubin (1976) formulated for the first time the

concept of missing data mechanisms by using the indicators of the missing values as

random variables and posited a model for them. Methods for missing data are generally

based on the assumption that the probability of the missing data does not depend on the

missing values after conditioning on the observed values (MAR). To obtain valid

statistical inferences, appropriate assumptions about the mechanism of missing values

must be made (Van Buuren 2018). Two approaches to handling incomplete data are single

imputation, where each missing value is imputed once, and multiple imputation (MI),

where the missing values are replaced by a small number of plausible values. The

advantage of MI is that it reflects the uncertainty of missing data, which is then taken into

account in the estimation. There are several surveys of income and wealth data where MI

is used, including the Consumer Expenditure Survey, where the income variable is

imputed five times (Fisher 2006), and the HFCS, where also five imputations of the data

sets are provided to the user (HFCN 2020a).

Of particular interest may be subpopulations of households, either regionally

disaggregated or sociodemographic such as households with particular composition (of

ages, gender, labor market status, or educational levels). Various political decisions or

global events, such as the financial crisis of 2007/2008 or the COVID-19 pandemic in

2020/2021, may affect these subgroups, usually referred to as areas or domains, to varying

degrees. Some of these domains may be represented by very few units in the sample and

direct estimators (based only on these subjects) result in a large variance. This issue may

be solved by small area estimation (SAE) methods. The model-based estimators used in

SAE supplement information from other areas and other data sources. Pfeffermann (2013),

Rao and Molina (2015) and Jiang and Rao (2020) give compact overviews and Tzavidis

et al. (2018) propose a general framework for the production of small area statistics. SAE

methods can be distinguished in unit-level (e.g., Battese et al. 1988) and area-level (Fay

and Herriot 1979) models. Unit-level models have the greater information content, but can

only be used when unit-level covariate data are available. In addition, area-level models

are often used because they are better suited to account for complex survey designs for

point and variance estimates. Therefore, we focus on the Fay-Herriot model in this article.

The Fay-Herriot model can be applied to transformed direct estimators to attain normality

of the error terms or to ensure that the resulting estimates are within an appropriate range.

Slud and Maiti (2006) and Chandra et al. (2017) study the log-transformed Fay-Herriot

model and Sugasawa and Kubokawa (2017) consider a general parametric transformation

of the response values. Schmid et al. (2017) use an arcsine transformation to estimate

literacy rates of Senegal and Casas-Cordero et al. (2016) to estimate poverty rates of Chile.

In the context of SAE, nonresponse rates in combination with small sample sizes could

have significant influence on the estimates especially with sensitive data such as income

and wealth data. The investigation of the integration of the imputation uncertainty into

small area estimators has received some attention. Among the publications are, for

example, Longford (2004), who uses a multiple hot-deck imputation method in the UK
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Labour Force Survey to estimate unemployment rates using a small area multivariate

shrinkage method. Longford (2005) presents methods for dealing with incomplete data

and making inferences using small area estimation methods. An approach to modeling the

non-missing at random mechanism in SAE under informative sampling and nonresponse

can be found in Sverchkov and Pfeffermann (2018). Kreutzmann et al. (2022) and Bijlsma

et al. (2020) use a Fay-Herriot model with pooled direct estimators after multiple

imputation and take into account the additional uncertainty due to the missing values in the

sampling variance. However, both ignore the additional uncertainty in the regression-

synthetic part of the model. We extend this approach to address the latter problem in

addition to extending the methodology to ratios.

We present an approach in which we combine MI with the transformed Fay-Herriot

model. We take the multiply imputed values of the missing values as given by the data

provider. To account for the additional uncertainty from imputation, pooled components

of the direct estimator are used, as well as pooled components of the regression-synthetic

part of the Fay-Herriot model. In particular, the components (direct and regression-

synthetic part) are combined for a given transformation in such a way that the resulting MI

adjusted model has the known structure of Fay-Herriot models. This approach exploits the

existing knowledge about transformations, back-transformations and mean squared error

(MSE) approximations of the transformed Fay-Herriot model. We apply the general

approach to three special cases relevant to practice and additionally discuss MSE

estimators for these special cases:

1. For the general Fay-Herriot model for a mean value, we adapt the Prasad-Rao MSE

estimator (Prasad and Rao 1990) to account for the uncertainty owing to missing

values.

2. If the distribution of the target indicator is right-skewed, a log transformation can be

used. For this case, we use the adapted Prasad-Rao MSE estimator and apply a back-

transformation similar to that presented in Rao and Molina (2015).

3. For the Fay-Herriot model for a ratio with an arcsine transformation, we use insights

from Hadam et al. (2023) for the back-transformation of the point estimator, as well

as for a parametric bootstrap MSE estimator that can reflect the uncertainty due to the

missing values.

The validity of the presented point estimators is demonstrated for the three cases outlined

above in a simulation study. It is also shown that the additional uncertainty caused by the

missing values is accounted for by the proposed MSE estimators.

The article is structured as follows. Sections 2, 3, and 4 describe the statistical

methodology. In Section 2, the transformed Fay-Herriot model is presented, which serves

as the basis for the combination with MI. Section 3 describes how the direct and

regression-synthetic components of the transformed Fay-Herriot model are combined after

MI, which leads to a MI adjusted Fay-Herriot model. In Section 4, we consider three

common special cases of the model from Section 3 and present associated uncertainty

measures. The proposed methodology is evaluated in simulation experiments in Section 5

and then applied to HFCS data in Section 6. Section 7 summarizes the main findings,

discusses limitations of the approach and outlines further research potential.
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2. Transformed Fay-Herriot Model

In the following the transformed Fay-Herriot model is introduced, where the

transformation is described by a known function h. Let N be the size of a finite

population which is partitioned into d ¼ 1; :::;D domains and n the sample size with

i ¼ 1; :::; nd units per domain so that n ¼
PD

d¼1nd. The Fay-Herriot model involves in the

first stage a sampling model in which it is supposed that the direct estimator consists of the

true domain-specific population indicator ud and a sampling error ed:

ûDir
d ¼ ud þ ed; ed ,ind

N
�
0;s2

ed

�
:

It is assumed that the sampling errors ed are independently normally distributed with

known variance s 2
ed

. Although the sampling variances s 2
ed

are assumed to be known, in

practice they are estimated by unit-level data (Rivest and Vandal 2002; Wang and Fuller

2003: You and Chapman 2006). Another unit-level approach to address the problem of

unknown sampling variances is proposed by Maiti et al. (2014) and Sugasawa et al. (2017)

by shrinking and simultaneous modeling of small area means and variances. When the

indicator of interest is a mean value, a domain specific direct estimator is the weighted

average of the sampled values:

ûDir
d ¼

S
nd

i¼1widyid

S
nd

i¼1wid

:

The incorporation of sampling weights wid makes the point estimator design unbiased.

Note that the population and the outcomes yid are assumed to be fixed, and the sampling

mechanism is the only source of uncertainty. The sampling weights reflect a complex

design in the estimation of the associated variance. The second stage of the Fay-Herriot

model is a linking model, which links covariate information to the population indicator. xd

is a p £ 1 vector with area-level population covariates and b is the corresponding p £ 1

vector with regression coefficients. yd are normally distributed domain specific random

effects:

ud ¼ xT
dbþ y d; y d ,iid N 0;s 2

v

� �
: ð1Þ

Combining the sampling and the linking model results in:

ûDir
d ¼ xT

dbþ y d þ ed; y d ,iid N 0;s2
v

� �
; ed ,ind

N 0;s 2
ed

� �
: ð2Þ

If a smooth and monotone transformation function h is applied to the direct estimator,

ûDir
d is replaced by ûDir*

d :¼ h
�
ûDir

d

�
in Equation (2) and we want to predict h21ðudÞ:

The transformed Fay-Herriot model is then defined, for example, as in Sugasawa and

Kubokawa (2017):

h û
Dir

d

� �
¼ xT

dbþ y d þ ed; y d ,iid N 0;s 2
v

� �
; ed ,ind

N 0;s 2*
ed

� �
: ð3Þ

In the following, * always refers to the transformed scale of the direct estimator, its

variance and the Fay-Herriot estimator presented at the end of this section. The model

parameters, the model variance s2
y and the regression coefficients b are not known and
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must be estimated. There are various methods to obtain estimates of s2
y , for example,

restricted maximum likelihood (REML), maximum likelihood (ML) and the FH method-

of-moments. More details on the estimation methods of the model variance can be found in

Chapter 6 in Rao and Molina (2015). A drawback of ML is that it does not account for the

loss in degrees of freedom arising from the estimation of the regression coefficients b (Rao

and Molina 2015). Therefore, we use in this article the REML method. The regression

coefficients b and the random effects yd are estimated by:

b̂ ¼ b̂ ŝ2
y

� �
¼

XD

d¼1

xdxT
d

s2*

ed
þ ŝ2

y

 !21
XD

d¼1

xdû
Dir *

d

s2*

ed
þ ŝ2

y

 !

; ð4Þ

ŷ d ¼
ŝ2
y

s2*

ed
þ ŝ2

y

û
Dir *

d 2 xT
d b̂

� �
: ð5Þ

Plugging those predictors into Equation (1) leads to the empirical best linear unbiased

predictor (EBLUP), that is, the transformed Fay-Herriot estimator:

ûFH*
d ¼ xT

d b̂þ ŷ d: ð6Þ

This estimator can be expressed as a convex combination of the direct estimator and the

regressionsynthetic component, resulting in an optimal combination of the two

components. If the variance of the direct estimator is large, more weight is given to the

synthetic component, and vice versa:

û
FH *

d ¼ ĝdû
Dir *

d þ 1 2 ĝd

� �
xT

d b̂ with ĝd ¼
ŝ2
y

ŝ2*

ed
þ ŝ2

y

: ð7Þ

At this point û
FH *

d is still on the transformed scale and has to be transformed to the

original scale to obtain û
FH *

d .

3. Combining Transformed Fay-Herriot Models after Multiple Imputation

An often applied technique to handle missing values is MI, where the missing values are

replaced by several plausible values. To obtain these values, an imputation model is

required. It is not sufficient to generate only one imputation, since the imputation is treated

as if it were true, and the uncertainties arising from the nonresponse are ignored. On the

contrary, a large number of imputations is usually not necessary, and M between 5 and 20

is sufficient, but it may be advantageous to choose a higher value (20–100) if the non-

response is high and there is a large uncertainty about the estimand (Van Buuren 2018).

The procedure for MI involves two steps: the imputation step and the analysis step. In the

former, the imputer, usually the data provider, generates the M replicate completions of the

survey data using a suitable imputation model and provides them to the analyst. In the

second step, the analyst applies a statistical model suitable for the complete data separately

to each imputed data set. The focus of this article is on the latter. If u is the indicator of

interest and û its estimator, the analysis model is calculated with each imputed data set, so

we obtain ûm and dVarVar (ûm) for m ¼ 1; :::;M: The results are then combined with the

application of pooling rules developed by Rubin (1987) for point estimates and their
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variances, which include the additional variability and uncertainty induced by the missing

data. Rubin’s rules (RR) are defined as follows. The pooled estimator of u is the mean

value of the M estimators:

ûRR ¼
1

M

XM

m¼1

ûm: ð8Þ

The variance of the pooled estimator ŝ2RR is composed by the mean value of the

individual variances of each estimator (within-variance) and the variance between the M

estimates (between-variance) with an correction due to the finite sample size:

ŝ2RR

¼dVarVar ûRR
� �

¼
1

M

XM

m¼1

dVarVar ûm

� �
þ

M þ 1

M

1

M 2 1

XM

m¼1

ûm 2 ûRR
� �2

: ð9Þ

In the next sections, we describe how the combining rules are applied to the components

of the transformed Fay-Herriot model from Section 2.

3.1. Component Pooling

With the M multiply imputed sampling values yid;m of each unit i ¼ 1; :::; nd and domains

d ¼ 1; :::;D; the transformed direct estimators û
Dir *

d;m ¼ h
�
û

Dir

d;m

�
of the target indicator and their

corresponding sample variances s 2*

ed;m
are calculated for each domain d ¼ 1; ::::;D and m ¼

1; :::;M: Rubin’s rules are based on asymptotic theory, and the resulting combined estimate is

more accurate if the distribution of the indicator of interest is better approximated by the normal

distribution (Rubin 1987). Van Buuren (2018) states that to promote approximate normality,

target indicators can be transformed, then pooled and back-transformed. Therefore, the M direct

estimators û
Dir *

d;m and their variancess 2*

ed;m
are pooled on the transformed scale and substituted in

Equations (8) and (9). Kreutzmann et al. (2022) present a Fay-Herriot estimator which uses

pooled direct components on the original scale, which are substituted in the (log transformed)

Fay-Herriot model. We extend this approach and transform the direct components of each

imputed data set to estimate the regression-synthetic components. This allows the uncertainty of

the missing values to be included not only in the direct components, but also in those of the

linking model. The model components of the linking model are estimated for each imputed data

set. The estimated variances of the random effects ŷ d;m are combined according to Rubin’s rule:

W ¼
1

M

XM

m¼1

ŝ2
ym

and Bd ¼
M þ 1

M

1

M 2 1

XM

m¼1

ŷ d;m 2
1

M

XM

m¼1

ŷ d;m

 !2

: ð10Þ

The mean squared distance of the random effects of the domains of the M imputed data sets

and the pooled random effects per domain is different between the areas. In order to guarantee

that the random effects have a common variance, further pooling has to be applied. Therefore,

the mean value of the between variance is taken. Together with Equation (10) this leads to the

pooled model variance:

ŝ2RR

y ¼ W þ
1

D

XD

d¼1

Bd: ð11Þ
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The pooled model variance ŝ2RR

y and the pooled direct components are now used to obtain MI

adjusted estimates of the regression coefficients and random effects ŝ2RR

y , ŝ2RR *

ed
and û

Dir:RR *

d are

inserted into Equation (4) to obtain the MI adjusted regression coefficients b̂ and then together

into Equation (5) to obtain the MI adjusted random effects ŷd.

3.2. MI Adjusted Fay-Herriot Model

The pooled direct components together with the pooled and MI adjusted regression-

synthetic parts of the model lead to the MI adjusted Fay-Herriot model, which preserves

the structure of the transformed Fay-Herriot model. The area-level population auxiliary

information xd, obtained from external sources, such as the census, is fixed and complete

as in Equation (1). The model can be written analogously to Equation (3) with pooled

direct components and the pooled model variance. Using the estimators of unknown model

parameters as elaborated in Subsection 3.1 leads to the proposed FH.MI estimator û
FH:MI *

d ,

which can be written analogously to Equation (7) with û
Dir:RR *

ed
, ŝ2RR *

ed
and ŝ2RR

y plugged in:

û
FH:MI *

d ¼ ĝdû
Dir:RR *

d þ ð1 2 ĝdÞx
T
d b̂ with ĝd ¼

ŝ2RR

y

ŝ2RR *

ed
þ ŝ2RR

y

: ð12Þ

The presented û
FH:MI *

d estimator preserves the representations of the Fay-Herriot

estimator. As û
FH:MI *

d is on the transformed scale, a suitable back transformation

depending on h has to be applied to obtain û
FH:MI

d .

Small area estimators with multiply imputed data can be derived in two ways: 1. Fit the

Fay-Herriot model to each of the M imputed data sets and combine the Fay-Herriot

estimators with Rubin’s rule. 2. Estimate the direct and the regression synthetic

components M times and combine them using Rubin’s rules as described in Subsection 3.1

and then estimate the shrinkage estimator in Equation (12). The advantage of the first

approach is that it is simple. However, it loses the structure of the Fay-Herriot model and

the representation of the estimator as a weighted combination of the direct and regression

synthetic components. In addition, it is unclear how the uncertainty of the M Fay-Herriot

estimators is combined, since Rubin’s rule is commonly used for variances and it is

unclear how this rule can be applied to the MSE. The advantage of the second (the

proposed) approach and the resulting FH.MI estimator is that the model structure of the

Fay-Herriot model is preserved, the interpretability of the components is maintained, and

the existing knowledge about MSE estimators is directly transferable and extensible. The

estimator of the first approach is used as a benchmark in the model-based simulation study

in Section 5 and is denoted by FH.RR.

4. MI Adjusted Fay-Herriot Estimators with Uncertainty Measures

In the following sections, we focus on three special cases of the transformed MI adjusted

Fay-Herriot estimator (12). For each case we specify the FH.MI point estimator and an

associated MSE estimator.
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4.1. Estimator for a Mean

The (population) mean of a quantity of interest for domain d is estimated by the weighted

sample average per imputed data set m:

û
Dir

d;m ¼

Xnd

i¼1
widyid;m

Xnd

i¼1
wid

for d ¼ 1; ::;D and m ¼ 1; :::;M: ð13Þ

If no transformation is required for the direct estimator, û
FH:MI *

d is on the original scale

such that û
FH:MI

d ¼ û
FH:MI *

d . With the pooled and MI adjusted estimators presented in

Section 3, the FH.MI estimator û
FH:MI

d can be calculated according to Equation (12). As a

measure of uncertainty which captures the additional uncertainty due to multiple

imputation, we adapt the MSE estimator of Prasad and Rao (1990) in the following. The

second-order approximation of the MSE of û
FH

d is given by:

MSE û
FH

d

� �
< g1d s2

y

� �
þ g2d s2

y

� �
þ g3d s2

y

� �
:

The first component g1d is based on the prediction of the random effects and g2d reflects

the variability arising from the estimation of the regression coefficients. g1d and g2d are

independent of the estimation method of the model variance s2
y , whereas, g3d reflects the

uncertainty caused by the estimation of s2
y and depends on the estimation method through

its asymptotic variance �V ŝ2
y

� �
(as D ! 1) (see e.g., Rao and Molina 2015). According to

Prasad and Rao (1990) a second-order unbiased estimator of MSE (û
FH

d ) is:

dMSEMSE û
FH

d

� �
¼ g1d ŝ2

y

� �
þ g2d ŝ2

y

� �
þ 2g3d ŝ2

y

� �
:

The components of the Prasad-Rao estimator using REML are defined as follows:

g1d ŝ2
y

� �
¼ ĝ2

ds
2
ed
; ð14Þ

g2d ŝ2
v

� �
¼ ð1 2 ĝdÞ

2xT
d

XD

d¼1

xdxT
d

s2
ed
þ ŝ2

y

( )21

xd; ð15Þ

g3d ŝ2
v

� �
¼ ðs2

ed
Þ2ðs2

ed
þ ŝ2

vÞ
23 �Vðŝ2

vÞ; ð16Þ

�Vðŝ2
vÞ ¼ 2

XD

d¼1

1

s2
ed
þ ŝ2

v

� �2

8
><

>:

9
>=

>;

21

:

In the same way as in Subsection 3.1, where we obtain M estimates of the model

variance, that is, ŝ2
vm

for m ¼ 1; :::;M; we obtain M corresponding asymptotic ðD ! 1Þ

variances �Vmðŝ
2
ym
Þ for m ¼ 1; :::;M: To adjust the MSE estimator for this additional

uncertainty, the asymptotic variances are pooled with Rubin’s rule for variances (9):
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�VRR ŝ2RR

y

� �
¼

1

M

XM

m¼1

�Vm ŝ2
ym

� �
þ

M þ 1

M

1

M 2 1

XM

m¼1

ŝ2
ym

2 ŝ2RR

y

� �2

with �V ŝ2
ym

� �
¼ 2

XD

d¼1

1

s2
ed;m
þ ŝ2

ym

� �2

8
><

>:

9
>=

>;

21

for m ¼ 1; :::;M:

ð17Þ

Using ŝ2RR

y and s2RR

ed
in Equations (14), (15), and (16) together with the pooled

asymptotic variance (17) takes into account the uncertainty about the missing values.

Note that instead of plugging the pooled variance terms into the asymptotic variance

formula, the pooled asymptotic variance �VRR
�
ŝ2RR

y

�
is used, introducing an additional

term into the estimator due to the between-variation. This leads to the proposed MSE

estimator for û
FH:MI

d , which captures the uncertainty due to missing values:

^
V û

FH:MI

d

� �
¼ g1d ŝ2RR

y

� �
þ g2d ŝ2RR

y

� �
þ 2 s2RR

ed

� �2

s2RR

ed
þ ŝ2RR

y

� �23
�VRR ŝ2RR

y

� �
: ð18Þ

4.2. Estimator for a log Mean

Domain specific mean values of income and wealth data are often skewed to the right, or

the relationship with the auxiliary information may be non-linear. In such a case, the linear

Fay-Herriot model (Subsection 4.1) may be more appropriate for the log-transformed

direct estimator. Using the direct estimator from Equation (13) and h: z ! logðzÞ the direct

components of the model for the M imputed data sets are:

û
Dir *

d;m ¼ log û
Dir

d;m

� �
with variances s2*

ed;m
< û

Dir

d;m

� �22

s2
ed;m

for d ¼ 1; ::;D; m ¼ 1; :::;M:

Using a Taylor expansion for moments, the sample variance, that is, the variance of the

direct estimator, can be moved to the logarithmic scale. Although this is an approximation

for large samples, it is used in SAE as in Neves et al. (2013). Citro and Kalton (2000) use

the same approximation with a minor modification based on the properties of the log-

normal distribution, while noting that the results do not differ considerably. Calculating

the direct and the regression-synthetic components as described in Subsection 3.1 with

h: z ! logðzÞ and together with Equation (12) leads to the Fay-Herriot-MI estimator

û
FH:MI *

d , which is still on the log-scale. The estimates can be transformed back to the

original scale by several methods. Slud and Maiti (2006) present a bias-correction under a

log-transformed Fay-Herriot model and propose a corresponding estimator for the MSE.

Chandra et al. (2017) extend this estimator by an additional bias correction that accounts

for the sampling variation of the estimator. These methods can be applied only to

observed/sampled areas. We apply a method that is suitable even for domains/areas with

no observations. To obtain the point estimator on the original scale, properties of the log-

normal distribution are used and the back-transformation for the MSE estimator is

based on a Taylor expansion similar to that presented in Rao and Molina (2015). A short
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derivation can be found in the Appendix (Section 8). The back-transformation is defined as

follows:

û
FH:MI

d ¼ exp û
FH:MI *

d þ 0:5 dMSEMSE û
FH:MI *

d

� �n o
;

dMSEMSE û
FH:MI

d

� �
¼ exp û

FH:MI *

d þ 0:5 dMSEMSE û
FH:MI *

d

� �n o2
dMSEMSE û

FH:MI *

d

� �
:

dMSEMSE
�
û

FH:MI *

d

�
denotes at this point the adapted Prasad-Rao MSE estimator defined in

Equation (18).

4.3. Estimator for an arcesine Ratio

The Fay-Herriot model is widely used for estimating poverty or literacy rates with high

regional resolution. In order to guarantee that the estimated rates are between 0 and 1

suitable transformations are frequently used. The arcsine transformation h: z ! sin21

ð
ffiffi
z
p
Þ; of which the inverse maps its values to ½0; 1�; is commonly used. Schmid et al.

(2017) compared in a design-based simulation the arcsine transformation with an

estimator based on a normal-logistic distribution. Both estimators provided very similar

results regarding bias and root mean squared error (RMSE). We concentrate on the

arcsine transformation because, unlike the logit, it is well defined even at zero and unity.

The arcsine transformation is applied to the direct ratio estimators of the M imputed data

sets:

û
Dir *

d;m ¼ sin21

ffiffiffiffiffiffiffiffi

û
Dir

d;m

q� �

with variances s2*

ed;m
¼ s2*

ed
¼

1

4~nd

for m ¼ 1; ::;M:

The effective sample size of domain d is denoted by ~nd, which takes into account the

sampling design effect (Jiang et al. 2001). The approximation of the sampling error

variance on the transformed scale is based on a Taylor expansion for moments like in

Jiang et al. (2001). The combined point estimator û
Dir:RR *

d and its variance ŝ2RR*

ed
are

calculated by applying Rubin’s rules presented in Equations (8) and (9). The components

of the regression-synthetic part of the model are calculated as described in Subsection 3.1

with the pooled direct components on the transformed scale. Afterwards û
FH:MI *

d can be

calculated as in Equation (12). The resulting estimator û
FH:MI *

d is on a sin 21 (
p

)-scale and

needs to be transferred to the original scale. A naive back-transformation is the inverse

h 21, which introduces a bias for non-linear h. For this reason, for common

transformations bias-corrected back-transformations are proposed, such as in Hadam

et al. (2023) for the arcsine transformation which is a special case of Sugasawa and

Kubokawa (2017), who present an asymptotically unbiased back-transformation for a

general parametric transformation. We apply the bias-corrected back-transformation

following Hadam et al. (2023), using the normal distribution of the transformed estimator

and the expected value (E) of a transformed variable:
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The integral in Equation (19) must be solved by numerical integration methods. The

MSE of û
FH:MI

d is approximated with a parametric bootstrap procedure analogue to Hadam

et al. (2023) based on Gonzalez-Manteiga et al. (2005). The bootstrap procedure

comprises the following steps:

1. Estimate the regression-synthetic components b̂ and ŝ2RR

y analogously to Subsection

3.1 using the pooled direct components û
Dir:RR *

d and ŝ2RR *

ed
on the arcsine scale.

2. For b ¼ 1,..., B

(a) Generate sampling errors eðbÞd ,ind N
�
0; ŝ2RR *

ed

�
and random effects y

ðbÞ
d ,ind N�

0; ŝ2RR

y

�
,

(b) Simulate a bootstrap sample û
Dir *ðbÞ

d ¼ xT
d b̂þ y

ðbÞ
d þ eðbÞd ,

(c) Calculate the true bootstrap population indicator u
*ðbÞ
d ¼ xT

d b̂þ y
ðbÞ
d on the

transformed scale and back-transform with u
ðbÞ
d ¼ sin2

�
u

*ðbÞ
d

�
,

(d) Calculate the bootstrap estimator of the model variance ŝ2ðbÞ
y using û

Dir *ðbÞ

d and

ŝ2RR *

ed
;

(e) Using ŝ2ðbÞ
y and û

Dir *ðbÞ

d , calculate bootstrap estimators of the regression

coefficients b̂ ðbÞand estimate the random effects ŷ
ðbÞ
d , and

(f) Determine the bootstrap estimator û
FH:MI *ðbÞ

d with Equation (12) by using the

estimates from the step before and back-transform to the original scale applying

(19) to obtain û
FH:MI *ðbÞ

d .

3. Estimate the MSE:

dMSEMSE
�
û

FH:MI

d

�
¼

1

B

XB

b¼1

û
FH:MIðbÞ

d 2 u
ðbÞ
d

� �2

:

The pooled sampling and model variances, which account for the additional uncertainty

about the missing values, are used in the initialization of the bootstrap method. Hence, the

extra uncertainty induced by the missing data is accounted for by the bootstrap MSE estimator.

5. Simulation Study

In this section, we investigate the behaviour of the estimators proposed in Sections 3 and 4

by simulation studies with suitable data models. The population is repeatedly generated

according to an underlying model. With each simulation run, a sample is taken from the

generated population, to which the methods are then applied. We evaluate the performance

in terms of bias and RMSE of the proposed point estimators and the inflation of RMSE

arising from MI.
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5.1. Data Generation

The simulation setup and data models are chosen to be consistent with those of Kreutzmann

et al. (2022). For the simulations, finite populations of size N ¼ 60,000 with D ¼ 100

domains are generated so that in each domain the population size Nd is between 200 and

1,000 for d ¼ 1,..., D. The samples were drawn via stratified random sampling, where the

strata represent the domains. To have rather small and large domains in the samples, sample

sizes nd lie within a range of 8 and 145, so that the total sample size is n ¼ 5,961. To apply

the transformations discussed in the special cases in Section 4, appropriate data models are

chosen. In the standard case, a normal data model is used, where no transformation to the

direct estimator of a mean value is necessary. Right-skewed log-normal data is generated

when investigating the proposed method with a log transformation like in Subsection 4.2. In

many applications, the indicator of interest is a ratio. In order to construct a ratio that is used

in real data applications, a wealth ratio is calculated. In publications of the Federal Statistical

Office (see e.g., Destatis 2018) it is derived by taking the percentage of households with a

household income above the 200% median household income. As data model for the ratio

the log-scale data is also used. The unit-level data models and scenarios are described in

detail in Table 1. The shapes of the distribution for one selected population can be found in

Figure 5 in the Appendix (Subsection 8.2). With a sample at the unit-level, the missing data

is generated.

As mentioned in Section 1, MAR is often plausible and assumed in most programs for

handling missing data. Therefore, in the simulation, missing values are generated using the

fully observed additional variable x, from the data models in Table 1. The MAR

mechanism is implemented as follows:

yid ¼
ymissing; xid # xq

yid; otherwise:

(

ð20Þ

xq is the q-quantile of the auxiliary information x from the sample. This results in a non-

response rate of q · 100% by definition of the q-quantile. For the selected data models, the

implemented MAR mechanism leads to missing values in the upper ends of the distribution.

When it comes to sensible data as wealth related data, item nonresponse rates can be very

high. For example, the Household Finance and Consumption Network (HFCN) reports for

2017 (HFCN 2020a) nonresponse rates for the value of savings account between 18% in

Belgium and 64% in Finland. Therefore, it is reasonable to investigate the proposed

methods under varying q [ {0.1, 0.3, 0.5} to obtain nonresponse rates of 10%, 30% and

50%. A two-level normal model is used as an imputation model for the missing yid values,

which is implemented in the R-package mice (Van Buuren and Groothius-Oudshoorn

2011). The x serve as covariate information and yd as area-specific random effects, so that

Table 1. Overview of unit-level data models in model-based simulation, i ¼ 1,..., N, d ¼ 1,..., D.

Setting yid xid md y d eid

Mean 250000–400xid þ y d þ eid Nðmd; 1502Þ U½–150; 150� Nð0; 250002Þ Nð0; 500002Þ

Logmean expð15–xid þ y d þ eidÞ Nðmd; 1Þ U½3; 5� Nð0; 0:42Þ Nð0; 0:62Þ

Ratio expð15–xid þ y d þ eidÞ Nðmd; 1Þ U½3; 5� Nð0; 0:42Þ Nð0; 0:62Þ

Journal of Official Statistics518



the clustering is incorporated in the imputation model. According to Van Buuren (2018),

between five and 20 imputed values are often sufficient for each missing observation. The

HFCN delivers five imputed values per missing observation, hence in the simulation we set

M ¼ 5. In the log-scale setting the data was log transformed prior to the imputation to

achieve normality and back transformed with the inverse afterwards. After imputation, the

data is still on a unit-level and has to be aggregated on an area-level according to the

indicator of interest of the setting. Then the appropriate FH.MI estimators given in Section 3

with the special cases in Section 4 are calculated. Table 2 provides an overview showing for

each setting the direct estimator, the transformation used, and the section of the

corresponding FH.MI model for the special case. In Table 2, I denotes an indicator function

that is 1 if the condition is true and 0 otherwise; ~Y denotes the population median of y.

Each setting, including the generation of the population according to the data model, the

sampling, the missing data generating process, the multiple imputation and the application

of the MI adjusted FH estimators is repeated R ¼ 500 times. The steps of the simulation

can be summarized as follows: We generate the population according to a data model in

Table 1. Next a stratified random sample is selected. Then missing values are generated

according to Equation (20) and imputed to create M copies of the data. Using the M data

sets the direct estimators are calculated according to Table 2 and xid are aggregated to a

domain level by taking the mean per domain. Afterwards the indicator of interest and its

MSE are estimated by applying the methods described in Sections 3 and 4.

5.2. Performance of Point Estimators

In the simulation we assess the performance of six point estimators in the mean and log

mean setting and five in the ratio setting. For each setting direct, (Direct) and Fay-Herriot

(FH) estimators are calculated before deletion on the aggregated sample, that is, the steps

of deleting and imputing are omitted. In the case of the FH estimator, the transformation

corresponding to the setting is applied so that the Fay-Herriot estimator introduced in

Section 2 is calculated. The FH estimator before deletion serves as the gold standard in this

simulation. In addition, we compare the performance of the proposed FH.MI estimators

with the pooled Fay-Herriot estimator (FH.RR) mentioned in Section 3 and with the

estimator proposed by Kreutzmann et al. (2022) denoted by FH.DirectRR. They consider

the estimator under a normal and log-normal setting for a mean value, and so we also

examine this estimator only under these settings. Furthermore, with Rubin’s rule

combined direct estimators (Direct.RR) are calculated to show the efficiency gain of the

Fay-Herriot estimators with good covariate information after MI. All estimators are

implemented in the statistical programming language R (R Core Team 2020) and for the

Table 2. Overview of settings.

Setting û
Dir

d h
�
û

Dir

d

�
FH.MI model

Mean 1
nd

Pnd

i¼1yid û
Dir

d 4.1

Log mean 1
nd

Pnd

i¼1yid log
�
û

Dir

d

�
4.2

Ratio 1
nd

Pnd

i¼1Iðyid . 2· ~YÞ sin21
� ffiffiffiffiffiffiffiffi

û
Dir

d

q �
4.3
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standard area-level models and its components the package emdi (Kreutzmann et al.

2019) was used. The code can be obtained from the authors on request. To evaluate and

compare the performance of the estimators, the following quality measures are calculated

using the R Monte-Carlo replications. ûdr
denotes the estimator of the target indicator in

domain d and replication r, udr
is the true value of the indicator:

Bias ûd

� �
¼

1

R

XR

r¼1

ûdr
2 udr

� �
; rel: Bias ûd

� �
¼

1

R

XR

r¼1

ûdr
2 udr

udr

� �

;

RMSE ûd

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R

XR

r¼1

ûdr
2 udr

� �2

v
u
u
t ; RRMSE ûd

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R

XR

r¼1

ûdr
2 udr

udr

� �2

:

v
u
u
t

ð21Þ

We want to evaluate the performance of the introduced methodology in terms of bias

and RMSE. For the mean and log mean setting we consider the relative bias and the

RRMSE. For the ratio setting the bias and RMSE are taken into account since the indicator

itself is already on a relative scale. The median and mean values over domains of the bias

and RMSE values for different nonresponse rates are presented in Table 3. The direct

estimators (Direct.RR) remain unbiased after multiple imputation in the mean and ratio

setting as before deletion (Direct) and almost unbiased in the log mean setting. The small

bias could be introduced by the inverse back-transformation after applying the imputation

model. Compared to the combined direct estimators (Direct.RR) and the model-based

estimators before deletion (FH), the model-based estimators FH.MI, FH.RR and

FH.DirectRR remain also unbiased in the mean and ratio setting and the results of the

model-based estimators are comparable. Only in the log mean setting does the FH.MI

estimator, like the other two model-based estimators, suffer from a small bias that

increases slightly with higher nonresponse rates. Again this bias could be due to the

inverse back-transformation in the imputation process. In terms of efficiency, we see that

the RRMSE/RMSE are the smallest before deletion and increase with higher nonresponse

rates for each estimator in each setting, reflecting the additional uncertainty about missing

values. Within each setting and nonresponse rate the order of the RRMSE/RMSE is as

expected: the RRMSE/RMSE of the direct estimators is always higher than that of the

proposed FH.MI estimator, which shows that the introduced methodology behaves the

same way as in cases without missing values (i.e., before deletion). The RRMSE/RMSE of

the FH.MI and the FH.RR are almost identical, which indicates that the proposed

methodology leads to reasonable results and is similar to the more straightforward

approach of combining the Fay-Herriot estimators. The proposed FH.MI estimator is at

least as efficient as the FH.DirectRR estimator. In the log mean setting, the superefficiency

of imputation, when more information is used than in the analysis model (Rubin 1996),

can be observed. At a nonresponse rate of 10%, Direct.RR is slightly more efficient than

the direct estimator before deletion (Direct). All summed up, the results confirm our

expectations. The presented FH.MI estimators lead to plausible results regarding bias and

efficiency in the investigated settings, in which the imputation models follow the data

structure of the generated population and thus fit the data.
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5.3. Performance of Uncertainty Measures

We now move on to the performance of the three proposed MSE estimators of the FH.MI

estimator, each corresponding to one setting. In the case of the mean and log mean setting,

we evaluate the adapted analytical Prasad-Rao estimator as described in Subsections 4.1

and 4.2 with a back-transformation when the log transformation is used. In the ratio setting

the parametric bootstrap estimator from Subsection 4.3 with B ¼ 500 replications is

evaluated. Performance is evaluated by looking at the relative bias of the MSE estimator

defined as followed:

Table 3. Relative bias and RRMSE for mean and log mean, bias and RMSE for ratio.

Nonresponse rate Before deletion 10% 30% 50%

Estimator Mean Median Mean Median Mean Median Mean Median

Mean

(rel.) Bias [%] Direct 0.0464 0.0149

Direct.RR 0.0254 0.0198 0.0390 0.0092 0.0862 0.0290

FH 0.2390 0.1812

FH.Direct.RR 0.2291 0.1691 0.2536 0.1872 0.3082 0.2583

FH.MI 0.2245 0.1615 0.2355 0.1761 0.2704 0.2186

FH.RR 0.2171 0.1568 0.2195 0.1639 0.2554 0.1840

Log mean

(rel.) Bias [%] Direct -0.2191 -0.0318

Direct.RR 0.1548 0.0342 1.1479 0.8566 2.8100 2.2903

FH -0.8797 -0.6057

FH.Direct.RR 0.0191 0.2091 1.4284 1.4639 3.1864 2.9609

FH.MI -0.2772 -0.1096 0.8383 0.8272 2.4169 2.3568

FH.RR -0.6948 -0.4258 0.0216 0.2115 1.3747 1.4485

Ratio

Bias Direct -0.0004 0.0000

Direct RR -0.0003 0.0000 -0.0000 0.0005 0.0009 0.0007

FH -0.0027 -0.0022

FH.MI -0.0016 -0.0010 0.0012 0.0012 0.0011 0.0016

FH.RR -0.0026 -0.0021 -0.0024 -0.0018 -0.0015 -0.0009

Mean

RRMSE [%] Direct 5.0318 4.2722

Direct.RR 5.1345 4.4849 5.5337 4.7889 6.1003 5.4419

FH 4.4300 3.9609

FH.Direct.RR 4.5470 4.1570 4.9845 4.5694 5.6775 5.3471

FH.MI 4.5444 4.1524 4.9643 4.5509 5.6018 5.2498

FH.RR 4.5386 4.1385 4.9517 4.5388 5.5741 5.1978

Log mean

RRMSE [%] Direct 25.5219 23.0001

Direct.RR 24.8037 22.0991 26.3014 23.1315 29.1076 26.1128

FH 20.7739 20.0316

FH.Direct.RR 21.916 21.4101 23.8789 22.5175 27.0243 25.9548

FH.MI 21.3353 20.6552 22.7919 21.3174 25.4294 23.9328

FH.RR 20.7741 19.9455 22.1078 20.6367 24.7177 23.3957

Ratio

RMSE Direct 0.0655 0.0563

Direct.RR 0.0655 0.0565 0.0663 0.0565 0.0702 0.0617

FH 0.0539 0.0506

FH.MI 0.0544 0.0510 0.0572 0.0533 0.0636 0.0607

FH.RR 0.0541 0.0507 0.0564 0.0524 0.0624 0.0590
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RBRMSEðûdÞ ¼
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Table 4 shows the median and mean values over the domains of the RBRMSE. We see a

slight underestimation in the mean setting with an increasing effect at higher nonresponse

rates. On the other hand, in the log mean setting the true RMSE is slightly overestimated at

a lower nonresponse rate of 10% and minimally underestimated at a higher nonresponse

rate of 50%. Nevertheless, the values are all close to zero. In the ratio setting, the bias of

the bootstrap RMSE estimator is close to zero at 10% nonresponse rate. At 30% and 50% it

increases and reaches almost identical values, but still at a tolerable level. In all three

settings the additional uncertainty of the FH.MI estimator can be satisfactorily addressed

and the bias is within an acceptable range. To have a closer look on the performance of the

adapted Prasad-Rao MSE estimator the estimated and true RMSE values per domain are

plotted in Figure 1 for the mean setting. First we observe that within each nonresponse rate

the estimated RMSE decreases with higher sample size, which is in line with the behaviour

of the true RMSE. Secondly, we see that per domain the estimated RMSE values increase

with increasing nonresponse rates, which is consistent with the expected behaviour. At a

nonresponse rate of 10% and 30%, the estimated RMSE tracks very well the behaviour of

the true RMSE. With a higher nonresponse rate of 50% we see that there are

underestimations in some areas, but overall the uncertainty is well accounted for. The

proposed methods are good at capturing the additional variation due to the missing

observations and imputation and also provide a realistic estimate of the uncertainty of the

FH.MI estimator in our settings.

Table 4. Relative bias (%) of estimated RMSE (RBRMSE) of FH.MI.

Nonresponse rate 10% 30% 50%

Mean Median Mean Median Mean Median

Mean -1.4198 -1.8291 -3.4427 -3.1477 -6.9352 -6.9390
Log mean 2.5119 2.5719 1.8185 2.6527 -4.0788 -3.2214
Ratio 2.9396 3.1787 8.7815 9.0866 8.1231 8.278
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Fig. 1. RMSE of FH.MI estimator per domain for mean setting and varying nonresponse rates. Domains are

ordered by increasing sample size.
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6. Application to Eurosystem’s HFCS

In the following, we provide an example of how the proposed framework can be used for

surveys with multiply imputed data in combination with small area methods. The purpose is to

show a possible application with the HFCS data for scientists or institutions from relevant

research areas rather than to discuss the estimates for each country. The HFCS is a large-scale

survey of the financial and consumption situation of European households. The first wave was

carried out in 2010 in 15 countries of the European Union (EU). The HFCS contains

household data on both economic and demographic variables such as income, wealth, private

pension, employment and consumption characteristics (HFCN 2020a). So far three waves

have been carried out, the last of which was collected in 2017 and released in March 2020. For

the application the third wave is considered. The sample contains about 91,200 households in

22 countries of the EU, between 1,000 and 14,000 households per country. The HFCS is a joint

project of several national statistical institutes, Eurosystem national central banks (NCB) and

three noneuro area NCBs (Poland, Hungary, Croatia). For these countries, all values are

converted into euros by the HFCN (HFCN 2020a). The HFCN asked very sensitive questions,

so the item nonresponse rate is high. Missing values in the HFCS data were iteratively and

sequentially imputed. The variables are imputed along a path of imputation models. Each

model is run several times, and the imputed values from the previous round are treated as given

in the subsequent iteration (HFCN 2020a). For each missing observation the HFCS data set

contains M ¼ 5 imputed values. For more information on the imputation method see HFCN

(2020a). Of interest for this application is the value of the household’s bonds, which is part of

the household’s assets and therefore relevant when considering the distribution of wealth. The

HFCN reports conditional medians for the value of bonds per EU country (HFCN 2020b). The

values are calculated conditioned on households that have bonds; households with no bonds

are discarded from the analysis. This results in partly very small sample sizes even on a

country level, so that for some countries with fewer than 25 observations direct estimates are

not reported by the HFCN. Furthermore, the rate of collected values differs between the

countries. Since some households do not even indicate whether they own bonds or not, these

values are also imputed by the HFCN. Therefore, the sample size per country, that is, the

number of households with bonds and the collected rate for these households, may differ

slightly among the five imputed data sets provided by the HFCN. We calculate the sample

sizes and collection rates based on the first imputed data sets. An overview of the sample sizes

per country and the collected rates are given in Table 5. As dependent variable we choose the

Table 5. Summary of EU-countries sample sizes, collected rates and auxiliary variables.

Min 1stQ Median Mean 3rdQ Max

Sample size 2.00 12.25 61.50 148.73 209.50 832.00
Collected rate 0.04 0.49 0.66 0.61 0.81 1.00
Total receipts from taxes
and social contributions

(% of GDP)
23.20 32.83 36.90 36.84 41.85 48.10

Final consumption expenditure
(Current prices, EUR per

capita)
5630 11710 17170 20424 29258 48140
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mean value of bonds in thousand of euros (TEUR) on a country level, resulting in D ¼ 22

domains. In 2017 the EU consisted of 28 member states. Six EU members are not included in

the HFCS as their noneuro area NCBs do not participate. These domains are considered as out-

of-sample (OOS) and model-based estimates are provided in the application. The direct

estimators of the mean value of bonds for each imputed data set û
Dir

d;m, d ¼ 1,..., 22, m ¼ 1,..., 5

are calculated according to Equation (13) using the sampling weights provided by the data

provider, which corrects for potential bias due the sampling design and unit nonresponse. The

variances s2
ed;m

are estimated with a bootstrap method following the instructions by HFCN

(2020a) using the provided replicate weights derived by the Rao-Wu rescaled bootstrap

method. As a result we obtain M ¼ 5 replicates of direct estimators and their variances, which

are then pooled according to Sections 3 and 4.

6.1. Model Selection and Validation

To obtain auxiliary information from additional sources needed for the Fay-Herriot

models, country-level data were collected from Eurostat, the statistical office of the EU

and the European Commission. Within this set, data such as real estate data,

unemployment rates, age dependency ratios, national accounts and tax aggregates from

2011 and 2017 were collected. The sources and years of this supplemental information are

shown in Table 6 in the Appendix (Subsection 8.2). Due to the small number of domains,

variables that were not available for the entire set of domains were excluded. The

remaining auxiliary information includes variables such as the old, youth and age

dependency ratio, the unemployment rate, the ratio of taxes to GDP, final consumption

expenditure, the share of consumption expenditure on GDP, GDP at market prices and a

variable indicating whether the country has a wealth tax. In addition, the number of

covariates in the model is severely limited by the small number of domains, which is why

we restricted the model to two possible auxiliary variables. In the context of area-level

data, Han (2013) transferred the conditional Akaike information in linear mixed models

from Vaida and Blanchard (2005) to a conditional Akaike information criterion for Fay-

Herriot models. Marhuenda et al. (2014) examine this criterion among Kullback

symmetric divergence criterion (KIC) and propose a bootstrap variant of the KIC (KICb2)

especially developed for FH models. They conclude that KICb2 criterion is one of the best

model selection criteria for Fay-Herriot models. Therefore, in this application the

preselection of variables was performed using the KICb2 criterion. Model selection was

carried out for each of the five imputed data sets, with no particular difference in the

results. A union of two auxiliary variables was selected for the final model, as shown in

Table 5. To obtain a model-based estimator of the mean value of household bonds, the

estimator from Subsection 4.1 is calculated with the auxiliary information in Table 5. The

model variances s2RR

v are calculated for the MI-adjusted Fay-Herriot model on the original

scale using the REML method. The distributional assumptions of the model presented in

Section 3 are checked by the Shapiro-Wilk test applied to the residuals and the random

effects. For the MI-adjusted Fay-Herriot model for a normal mean, the p-values of the tests

for the standardized residuals and the random effect are 0.223 and 0.965, respectively.

Therefore, the normality assumptions for both error terms cannot be rejected at a 5%

significance level. Consequently, all further considerations and results are based on the
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MI-adjusted Fay-Herriot model for a mean value as presented in Subsection 4.1. The

explanatory power of the model is assessed using the modified R 2 for Fay-Herriot models

according to Lahiri and Suntornchost (2015) and we obtain a value of 45%. Due to the low

number of domains, it is not possible to include more auxiliary variables to potentially

increase explanatory power. We obtain positive estimated regression coefficients for both

auxiliary variables. The impact on the tax-to-GDP ratio seems reasonable, given that tax

contributions include taxes on wealth (at least in some countries) and that high tax

revenues from income could indicate a high level of capital assets. The relationship

between consumption and wealth is not independent of income, because if income is

higher than consumption, the rest can be invested, and if consumption cannot be covered

by income, there is nothing left to invest. Nevertheless, with the given data, the model also

shows a positive effect for consumption.

6.2. Small Area Estimates

The estimates of the mean value of bonds on a country level are calculated using the

FH.MI estimator for a mean value and to estimate the MSE the MI adapted Prasad-Rao

estimator is applied as described in Subsection 4.1. To compare the model-based

estimators with a direct estimator, the direct estimators and their variance estimates are

computed for each imputed data set as described above and pooled using Rubin’s rule in

Equation (8) (Direct.RR). The point estimates of the model-based estimators (FH.MI)

should be consistent with the unbiased estimates of the direct estimator, but be more

precise. Figure 2 compares the direct and the model-based point estimates for the 22 in-

sample domains and additionally reports the estimates for the six OOS EU countries. Due

to the guidelines of the data provider, the direct estimates for domains with less than 25

observations are not reported. We observe that, for countries with large sample sizes, the

direct and model-based estimates are almost identical, consistent with the expectation that

high weight is given to the direct estimator when precision is high. An exception is

Belgium (BE), where the sample size is rather high, but the shrinkage to the mean quite

strong. For most of the direct estimates, which tend to be high, we see that the model-based

estimates are smaller, showing the shrinkage effect to the mean of the model-based

estimates. (see summary statistics of point estimates in Table 7 in the Appendix

(Subsection 8.2)). Possibly due to the low number of covariates very little shrinkage takes

place for some countries with small sample sizes (GR, SI, LI). The model-based point
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Fig. 2. Direct and model-based estimates for the mean value of bonds, own estimations. Domains are ordered

by increasing sample size, sample sizes in brackets. Direct estimates for domains with less than 25 observations

are not reported.
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estimators are furthermore reported in the map in Figure 3. The highest values are

estimated for Luxembourg (LU), followed by Denmark (DK) (OOS) and Sweden (SE)

(OOS). For eastern European countries, the estimates are rather low, followed by southern

European countries. The estimated model-based values range from EUR 3,000 to EUR

66,000 (cf. Table 7 in the Appendix (Subsection 8.2)), which seems plausible given the

median values reported by the HFCN (HFCN 2020b) between EUR 2,000 and EUR

25,000, considering that the distribution at the household level tends to be right skewed

and therefore the mean values should be higher than the median values. Figure 4 shows the

coefficients of variation (CV) for the direct and model-based estimates. We see that the

model-based estimator is at least as efficient as the direct estimator. The CVs of the model-

based estimators are mostly significantly smaller than those of the direct estimators, with

the effect decreasing with increasing sample size. For large sample sizes, the gain is barely

noticeable, but this is consistent with the expected behavior that the direct estimator is

sufficiently accurate in this case. For some domains, such as Croatia (HR) and Cyprus

(CY), the CV is almost halved. Due to the relatively small domain size of D ¼ 22 and

hence the limitation to the number of covariates in the model, the efficiency gain is limited.
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Fig. 3. Map of model-based FH.MI estimates for mean value of bonds, own estimations. Non-EU countries in

2017 are colored in white.
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A summary of the distribution of the point estimators and CVs from Figures 2 and 4 can be

found in Table 7 in the Appendix (Subsection 8.2).

7. Concluding Remarks

In this article, we derive small area indicators based on multiply imputed survey data and

present uncertainty measures for common cases that capture the additional uncertainty.

We present the transformed Fay-Herriot model calculated on each imputed data set. We

then combine the components into a MI adjusted Fay-Herriot model that retains the model

structure of the Fay-Herriot model. With this approach, results that exist for the Fay-

Herriot model regarding transformations, back-transformations and MSE estimators can

be extended. It is a general approach that can be applied to any indicator with a given

transformation and an appropriate back-transformation. We discuss common special cases

of the model (mean, log mean, arcsine ratio). For these special cases we propose MSE

estimators. For the mean and logarithmic mean, we present an analytical adaption of the

Prasad-Rao estimator and, for the arcsine ratio, we use a bootstrap estimator. We

demonstrate in simulation studies that the resulting FH.MI point estimators lead to valid

results in terms of bias and RMSE in the given settings and under different nonresponse

rates and that the proposed MSE estimators are able to capture the additional imputation

uncertainty and lead to good uncertainty measures. We carried out an application using the

proposed framework to obtain estimates for European household assets.

A limitation of the proposed approach is that it is not as straightforward for the user as it

would be if only the Fay-Herriot estimators were estimated for each imputed data set and

the mean value calculated. But, as mentioned above, it is not clear how the variance

pooling rules can be applied to the MSE. This could be part of further research.

To facilitate the application, it is planned to provide an R-package with the methodology

presented. Other open research questions are the extension from a cross-sectional to a

longitudinal analysis to provide stable estimates across panel waves (i.e., over time) when

multiple imputations are performed and sample sizes are small. If the underlying data

structure is a panel survey and individuals or households are observed over multiple time

periods, the Fay-Herriot model can be adapted to consider the correlation of the same

observations over time. To borrow strength for domain estimates, Rao and Yu (1994)

propose a model with auto-correlated random effects and assume an autoregressive

process of first order. In addition to the temporal Fay-Herriot models, a multivariate

approach could serve the requirement to consider the temporal dimension in the data.
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In the multivariate Fay-Herriot model (Benavent and Morales 2016) the domain indicators

are estimated simultaneously for the different panel waves. In this way, correlations for

both error terms can be considered. These models have not yet been investigated in

combination with multiple imputation. The approach in this article could be extended to

include correlations over time to ensure reliable estimates over time based on multiply

imputed survey data. Since asset values are usually highly skewed, more robust indicators

such as the median or other quantiles could be estimated instead of the mean. Therefore,

the estimation of small area medians using the Fay-Herriot model would be interesting for

future research.

8. Appendix

8.1. MSE Back-Transformation for a Log Mean

Let m ¼ exp(u) be the true indicator value and û be an estimate for u. Furthermore, m̂ is an

estimator for m with m̂ ¼ g(û), where g is a continuously differentiable function. For

gðûÞ ¼ exp{ûþ 0:5 dMSEMSEðûÞ}

an approximation of MSE(m̂) using a Taylor expansion can be derived as follows:

MSEðgðûÞÞ ¼ VarðgðûÞÞ þ Bias2ðgðûÞÞ

¼ E½gðûÞ2�2 E½gðûÞ�2 þ E½gðûÞ2 gðuÞ�2

< E½{gðuÞ þ g 0ðuÞðû 2 uÞ}2�2 E½{gðuÞ þ g 0ðuÞðû 2 uÞ}�2 þ E½g0ðuÞðû 2 uÞ�2

¼ g 0ðuÞ2{E½û2�2 E½û�2}þ g 0ðuÞ2E½û 2 u�2

¼ g 0ðuÞ2{VarðûÞ þ Bias2ðûÞ} ¼ g 0ðuÞ2MSEðûÞ:

A estimator of MSE(m̂) is then obtained by

dMSEMSEðm̂Þ ¼ dMSEMSEðgðûÞÞ ¼ g 0ðûÞ2 dMSEMSEðûÞ ¼ exp{ûþ 0:5 dMSEMSEðûÞg
2 dMSEMSEðûÞ}:
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8.2. Plots and Tables (Figure 5 and Tables 6–7)

Table 7. Summary of point estimators and CVs for mean value of bonds (TEUR).

Estimator Min 1stQ Median Mean 3rdQ Max

Direct.RR Point est. 2.5 19.6 36.2 41.6 49.0 165.5
FH.MI 3.1 16.4 27.3 28.6 40.0 66.2
Direct.RR CV [%] 8.3 19.3 32.8 41.9 51.7 125.0
FH.MI 8.3 18.8 27.3 31.5 35.3 87.8
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Fig. 5. Density of population target variable of one replication.

Table 6. Source and year of auxiliary information.

Year Source

Private households by type, tenure status
(Real estate)

2011 Eurostat (2011b)

Dwellings by occupancy status, type of
building (Real estate)

2011 Eurostat (2011a)

Age, Old, Young-age dependency ratios 2017 Eurostat (2017d)
Unemployment rate 2017 Eurostat (2017a)
Tax to GDP ratio 2017 Eurostat (2017c)
Final consumption expenditure 2017 Eurostat (2017b)
GDP at market prices 2017 Eurostat (2017b)
Share of consumption expenditure on GDP 2017 Eurostat (2017b)
Indicator for presence of wealth tax 2017 European Commission (2017)
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Temporally Consistent Present Population from Mobile
Network Signaling Data for Official Statistics

Milena Suarez Castillo1, Francois Sémécurbe1, Cezary Ziemlicki2,

Haixuan Xavier Tao1, and Tom Seimandi1

Mobile network data records are promising for measuring temporal changes in present
populations. This promise has been boosted since high-frequency passively-collected
signaling data became available. Its temporal event rate is considerably higher than that of
Call Detail Records – on which most of the previous literature is based. Yet, we show it
remains a challenge to produce statistics consistent over time, robust to changes in the
“measuring instruments” and conveying spatial uncertainty to the end user. In this article, we
propose a methodology to estimate – consistently over several months – hourly population
presence over France based on signaling data spatially merged with fine-grained official
population counts. We draw particular attention to consistency at several spatial scales and
over time and to spatial mapping reflecting spatial accuracy. We compare the results with
external references and discuss the challenges which remain. We argue data fusion
approaches between fine-grained official statistics data sets and mobile network data, spatially
merged to preserve privacy, are promising for future methodologies.

Key words: Big data; High frequency statistics; dynamic population mapping; spatial
accuracy.

1. Introduction

Mobile network data has the potential to significantly enhance population statistics by

increasing their levels of spatiotemporal details and their timeliness. Several international

initiatives aimed at incorporating this new data source into the production of official

statistics, such as the United Nations Big Data dedicated Task Team (U.N. Global

Working Group 2019), the European Statistical System working groups (ESSnet Big Data

2021), in addition to national initiatives (Statistics Netherlands 2020; Coudin et al. 2021).

Yet, despite the new interest in timely measuring dynamic population during the Covid

crisis, producing statistics from mobile network data has remained a great challenge for
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official statistics. Lack of access to real data, privacy protection and models to efficiently

cooperate with private data holders have been long discussed challenges. The need to

invest in a transparent methodology may be one of the distinctive features of official

statistics relative to private producers who already disseminate statistical products

worldwide.

Historically, a large body of research provided insights on human mobility by relying on

Call Detail Records (CDR), data generated by the user when actively communicating

through their cell phone (texting, calling...) and collected for billing purposes (Blondel

et al. 2015). The reliance on user activity and the low time event rate has proven an

obstacle for inferring from CDR present populations fitted for official statistics purposes

(Sakarovitch et al. 2018; Vanhoof et al. 2018). Today in France and generally in Europe,

private actors producing population statistics from their networks instead use re-purposed

signaling data as base material when available. This new generation of mobile network

data is characterized by a much greater spatiotemporal event rate. To ensure the

centralized network knows about the mobile’s state and location to reach it efficiently,

passive communications are pervasive with the device when switched on, and are

increasingly collected by Mobile Network Operators (MNOs) for network optimization

and monitoring purposes. For statistical purposes, both types of data are however similar

in the unitary information they contain: records convey non-continuous information on the

proximate radio cell ( < antennas) mobile devices are wirelessly communicating with.

Thus, three main dimensions of uncertainty should be addressed to infer from MNOs

records information on population presence: temporal, spatial, and population coverage

uncertainties (Ricciato et al. 2020).

To be disseminated as official statistics, dynamic population counts should be steadily

comparable over time, thats is, as insensitive as possible to network-related and user

behavioral effects or MNOs client turnover. They should also be consistent with other

approaches to estimate population counts when other high-quality data sets are available.

Indeed, if many case studies providing dynamic maps of mobile phone users exist,

focusing only on mobile phone users with-out any extrapolation to the total population is

of limited interest for official population statistics (Panczak et al. 2020). Mobile network

data represent an opportunity for developing countries where alternative data sets are

scarce and high-quality census data are not always available. In these countries, static

population estimates can be vital for development and infrastructure planning (Salat et al.

2020). In developed countries, dynamic population counts, within typical days or over the

year, are not part of official statistics production today. Yet population is a highly

temporally dynamic variable, with considerable shifts in its distribution occurring in daily

cycles. Today the majority of published indices are monthly or quarterly and correspond to

the night-time population distribution. Hence, all applied sciences and policy support that

require spatially detailed information on population distribution must rely on a fractional

and static representation of reality (Batista e Silva et al. 2020). This is a major issue for

planning of infrastructure and transport for instance, as well as assessment of human

exposure to natural, environmental, epidemiological, and technological hazards (Freire

and Aubrecht 2012; Panczak et al. 2020).

The literature on addressing spatial uncertainty is insightful. Location at radio-cell level

is imprecise and depends on the network’s local density. Voronoi tessellations are
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commonly used models for radio-cell coverage as they require limited information (the

cell tower physical coordinates) and are easy to implement by partitioning space. Yet, they

are imprecise and do not correspond to the way the network functions (Sakarovitch et al.

2018; Ricciato et al. 2017). Probabilistic approaches accounting for overlapping coverage

of cells are more realistic and thus preferable in a context where the mapping choice

entails large discrepancies in outputs (Tennekes and Gootzen 2022; Ricciato et al. 2020;

Ricciato and Coluccia 2021; Salgado et al. 2021). As for temporal uncertainty,

interpolation techniques were explored for mobility analysis when targeted time

granularity is high or when working with sparse Call Detail Records data (Hoteit et al.

2016; Chen et al. 2019; Bonnetain et al. 2021). Typically, CDR records a few events per

device per day. In turn, signaling data ensures a very large detection, even at night – but

the literature is still in its infancy due to lack of access. The availability of signaling data

may allow for simpler strategies for the use case of dynamic population measurement and

a reassessment of this dimension. Finally, only a specific fraction of the population is

observed, and thus scaling is needed. To link mobile network data to other data sources,

such as census data, home detection algorithms aim at identifying where the user lives, to

rescale mobile-phone counts by residency locations, for example, as in Fekih et al. (2021).

In the absence of a home detection step, cruder alternatives exist, using counts of mobile-

phone users at night or census counts as rescaling factors. Home detection can be

considered a data augmentation technique and rescaling can be stratified across more

device characteristics to improve representativeness. Data fusion approaches – ensuring

coherency across several sources with distinct strengths and weaknesses – can enhance

mobile network data using additional sources. In particular, combining other data sources

also allows to estimate daytime and nighttime populations. For instance, Batista e Silva

et al. (2020) combine official statistics (residents, employees, students, tourist, and other

population counts and estimated flows between region) with geospatial data to produce

and validate a European data set of population grids taking into account intraday and

monthly population variations, called “ENACT” (Schiavina et al. 2020).

In this article, we focus on estimating hourly population counts at a fine spatial scale

over several months over France’s metropolitan territory. Our approach is based on

spatially merging passively-collected cellular network signaling data with fine-grained

official population counts by place of residence. The structure of this article is as follows.

In Section 2, we define the theoretical framework and draw particular attention to various

dimensions of uncertainty observed in the data. In Section 3, we describe our estimation

method, driven by consistency constraints at several spatial scales and over time. We

require that the dynamic population counts stratified by living places are locally consistent

with the official number of residents. This requires estimating a residency for each device

and allows to break down dynamic population counts by place of residence. We focus on

building dynamic flows for French residents only (more precisely residents of

metropolitan France) and exclude from the onset the existence of inbound and outbound

trips, absent reliable sources on daily population flows in and out of the country. We

design the spatial mapping of population counts to reflect spatial accuracy by building an

adapted quadtree grid – independent of administrative borders. In Section 4, we compare

the results with the ENACT dynamic population counts. Finally, in Section 5, we discuss

challenges that remain and argue that data fusion approaches between fine-grained official
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statistics data sets and mobile network data, spatially merged to preserve privacy, are

promising for future methodologies. We review how this work relates to recent initiatives

in the European Statistical System to build a reference methodological framework for

mobile network data integration into official statistics production (Salgado et al. 2021;

Ricciato et al. 2020; Statistics Netherlands 2020).

2. Statistics of Interest, Theoretical Framework, and Challenges Deserving

Particular Attention

2.1. Data

Three months of raw signaling data from Orange clients were collected from March 16th to

June 15th, 2019. These data included all Orange client device interactions (active, such as text

or calls, and passive, such as hand-overs between antennas) with the Orange metropolitan

France 2G, 3G, and 4G networks. All personal information was removed and device identifiers

were pseudonymized before storing the data, which were erased twelve months after

collection. Data are collected through probes positioned on the Orange networks for

monitoring performance. Events are information exchanges between the devices and radio

cells, base station antennas which communicate wirelessly with mobile devices, hereafter, cell

or radio cell. Users of the 4G networks generate on average about a thousand events per day,

while users of the 3G and 2G networks generate respectively about 50 and 20 events per day.

Orange provides two types of radio cell location information. First, weekly extractions

of a cell registry covering the data collection period were performed. The cell registry

exists for network maintenance purposes and sees regular entries and exits following

network life. The extracted data were limited to cell tower coordinates and cell technology

type. Second, Orange Fluxvision provided a cell-specific coverage map, which modelizes

the network coverage as of February 2019. The latter is static and is obtained from a radio-

propagation model taking into account network specificities, local topography and land

use, and device diversities through simulations. Applications for these data include

helping to provide emergency call locations.

The official source which serves as a reference for localized population counts is fiscal

data from 2016 (Filosofi for Fichier Localisé Social et Fiscal), obtained from merging

fiscal income tax files (at the individual and household levels) and local residence tax files.

It includes households with at least one income declaration and liable for the local

residence tax (all owners, tenants, or occupants on a free basis of a piece of real estate).

The situation is evaluated at the address on the first of January. Filosofi excludes the

homeless population and people living in collective housing (retirement homes, young

worker homes, prison, university residences, etc.). The native individual data is

geolocalized at the tax address and can be aggregated over our regular grid of interest

covering metropolitan France. As this data records tax addresses, it tends to be of lower

quality to determine residency for young adults when they are fiscally attached to the home

address of their parents. Yet, it is the most granular source of resident population

localization available for France (Lamarche and Lollivier 2021). We note that the

forthcoming gridded populations from the EU 2021 censuses could be used in future

development as an alternative.
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Finally, the TIC survey (Enquête sur les technologies de l’information et de la

communication) is a survey conducted by Insee every year, with the objective to collect

information on the usage of information and communication technology in households. In

2021, 31,000 different households were interrogated across metropolitan and overseas

France (excluding Mayotte). A question was specifically added asking for the MNO of the

surveyed individuals. This allows us to get a sense of how representative Orange

subscribers are of French residents in 2021, which is close to the study period.

We provide the definitions of the populations we use to construct our estimates in

Table 1.

2.2. Notations

Let us introduce the notations summarized in Table 2 . The device set {d [ D} is defined

as all devices (as identified by their International Mobile Subscriber Identity) appearing at

least 30 distinct days over Orange 2G, 3G, and 4G networks within the three-month time

window T, identified as an Orange client (based on the Mobile Network Code of their

IMSI) and as a mobile phone (based on their Type Allocation Code and an external register

of known mobile phones TAC). The hourly time grid of interest {t [ T} contains each

hour in the three consecutive months. P is the total population of interest, which is

assumed constant over T. Dt denotes devices observed during t and Dl devices observed at

date l. The grid {i [ I} on which we want to estimate present populations is made up of

tiles, and {j [ J} is the set of cells in the MNO network.

We would be in an ideal setting for statistical purposes if the number of observed

devices were constantly equal to the size of the target population, that is Dt , P: In this

case, a count of all devices in location i at hour t would provide our target statistics ui;t; the

Table 1. Population definitions by data source.

Source Period (location) Population

Residents P Filosofi
(tax data)

01-01-2016 Households with an income
declaration and liable for
residency taxation

Devices D Orange
Probes

16/03 –
15/06/2019

Users of a mobile phone, with
an Orange contract, interacting
at least 30 distinct days
with the MNO network

Table 2. Notations.

d [ D Devices in the scope, detected on the network over the period of interest
t [ T Hourly time grid of interest (several weeks)
P The target population set
Dt Set of devices in the scope, detected on the network during t
Dl Set of devices in the scope, detected on the network at date l
i [ I Tiles that cover the territory of interest
j [ J Cells of the MNO network
ui,t Population count in location i at time t (target statistics)
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present population for this location and hour. In fact, several dimensions of uncertainty in

the data must be dealt with to compute valid estimates for present populations. We detail

these dimensions now.

2.3. Temporal Uncertainty: Only Counting Active Mobile Devices Leads to

Unreasonable Variations in Aggregates

The first uncertainty observed in the data is the high temporal variation in counts of active

devices. This variation confounds many mechanisms unrelated to population variation and

is actually a major stylized fact of mobile network data. The presence of a given device

may be very sporadic in the collected data, both within and across days. Although we

improve time event rate by relying on both passive and active data, this remains a crucial

issue when estimating population variation.

Within a given day, the behaviors of mobile phone users and network coverage are the

main reasons for the observed variation: users may choose to shut down their phones, run

out of battery, or out of signal. Network coverage is uneven across space – and can not be

ignored in a country such as France where low-density areas still host a large fraction of

the population. Across days, we may expect a large role for client turnover, the telecom

market in France being competitive and changing operators being increasingly easy for

customers. For instance, over the first semester of 2018, four million mobile phone

numbers were kept while changing MNO. Telco market dynamics are also at play: the sim

cards number quarterly growth was more than 200,000 in the second quarter of 2019, over

our period of interest (for all MNOs, excluding M2M).We also have to take into account

failure in data collection of the richer passive data – as probes may punctually

malfunction, without a too high cost for the MNO as it does not affect the network

communications but is rather a monitoring tool. Investing in their continuous reliability is

not a priority. In addition to these mechanisms entailing undesirable user disappearance,

users may disappear due to outbound trips – but for now, they are indistinguishable from

the former, although of interest for present population estimation. Characterizing places

where outbound trips originate (airports, train stations, borders) could be considered to

discriminate absence from the territory from other phenomena.

Figure 1 illustrates the issue on the data set. The first panel represents the ratio of observed

devices jDlj
jDj

for each date l. Over a long period, aggregate variations in the percentage of users

observed on a given date vary considerably: by several percentage points regularly,

occasionally by more than ten percentage points. Underlying causes of the aggregate

variations remain ultimately speculative (reported data collection failure, outbound trips

e.g., on bank holidays, etc.). While we can detect relatively easily unreasonable variations at

the aggregate level, we may suspect that the same issues go undetected at local levels.

Within a day, the hourly detection rate varies between 70 and almost 90% (second panel of

Figure 1), a rate considerably higher than for CDR data. For instance, Orange CDR data

from 2007 recorded only a few events per device per day and a percentage of observed

devices which goes from less than five at nighttime to about 50% in the late afternoon

(Galiana et al. 2020a). Variations seem highly driven by devices disconnecting at nighttime.

Although the detection rate is arguably rather high, only counting active mobile devices

would lead to unreasonable temporal variations in aggregates.
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A simple method to deal with this source of inconsistency is to account for all devices

across the entire time grid by adopting a device-centric view and interpolating device

trajectories when unobserved – building a panel of device trajectories. We detail this

method in Section 3.

2.4. Spatial Uncertainty: Mapping Presence Over the Network in Space

Recorded events are located at the level of radio cells, not on the grid of interest I on which

we estimate present populations. Spatial information on devices over time must be mapped

onto the grid of interest. In general, radio cells overlap which means that a mobile phone in

tile i at time t can potentially be detected in several cells, as pictured in Figure 2.

Let us define coverage probability matrix A, such that Aji represents the probability of

being detected at cell j while being in tile i:

Aji ¼ P{device detected in cell j j device in tile i}:

Orange Fluxvision provided an instantiated cell-specific coverage map matrix A, which

modelizes the network and devices population as of February 2019. Note that without this
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Fig. 1. Proportion of observed devices by date and hour of the day.

Note: Left: % among all Orange devices. We distinguish all users (dotted line) and users present for at least 30

days. We represent dates with reported data collection issues (in red) and within-week bank holidays (in blue).

Right: % among devices appearing from March 16th to March 31st, 2019. Scope: Orange metropolitan France

network, Orange-client devices identified as mobile phones.

Fig. 2. Illustration of the relationship between tiles and radio cells.

Note: The grid of interest is made up of tiles represented by dotted squares. In this illustration two radio cells A

and B are pictured. In general a cell covers more than one single tile, and cells overlap, meaning that a single tile is

covered by more than one cell.
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information coming from the MNO itself one can use a Voronoı̈ tessellation of the cell

plan to model radio-cell coverage or design a more complex model like in Tennekes and

Gootzen (2022). Figure 3 illustrates how the coverage probability matrix encodes the

device connexion information from tiles to cells, and the spatial mapping task which aim

at locating devices connected to cells into tiles. Note: Left: 4 tiles are represented by

rectangles and 3 cells by ellipses. A mobile phone in tile i has probability Aji to be detected

in cell j. For instance, the mobile phone in tile 2 has probability A12 to be detected in cell 1

and probability A22 to be detected in cell 2, with A12 þ A22 ¼ 1. Right: The phone

detected in cell 2 is mapped to the tile grid using spatial mapping Q. It has probability Q22

to be located in tile 2 and probability Q32 to be located in tile 3. Using a uniform prior, we

have Q22 ¼ A22/(A22 þ A23) and Q32 ¼ 1 2 Q22.

The dimensionality of matrix A is high when considering the entire French territory

(approximately 55 million tiles with sides of 100 meters for several hundred thousand

cells). If we take this matrix as a good approximation of the ground truth, radio cells are

massively overlapping with each other over the territory and the signal is quite diluted, in

the sense that the cell-tiles mapping is highly non-exclusive. On average over France in the

coverage map, there are 33 cells with positive coverage per 100-meter tile. However, most

of these links are really low: if we restrict to links with significant coverage (say Aji . 0:1)

there are only 2.4 cells per tile and 16% of tiles without any linked cell. The first panel of

Figure 4 illustrates the distribution of areas covered (resp. significantly covered) by cells.

The median cell covers 25 tiles significantly (1706 tiles with non-zero coverage). The

second panel of Figure 4 illustrates the number of cells per tile. The median tile is covered

by 30 distinct cells, but significantly by two cells.
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In practice, the location accuracy we can expect when mapping in space an event

located at a given cell relies on the extent of the cell-covered area. If taken as the ground

truth, the estimation A encodes a relatively low network precision which is highly

heterogeneous over space. The method to map cells to tiles based on A as precisely as

possible while managing dimensionality is detailed in Section 3.

2.5. Coverage Uncertainty: Mapping Devices to the Population

The third dimension of uncertainty in the data is linked to population coverage. By

definition, we do not observe the target population (all French residents) but a selected

subset through their device(s). It is a subset to the extent that we have a reliable method to

exclude devices which are not used by human beings (M2M, IoT), and that the remaining

Orange devices identified as mobile phones indeed belong to French residents who carry a

single Orange device along. We maintain this assumption throughout this work, although

some devices may not be carried out by French residents in the fiscal sense. Present

population estimates relying on device counts are consistent under the assumption that the

mobility and presence patterns we observe for the selected subset of the target population

can be extrapolated to the target population.

However, active Orange devices are not exactly representative of the target population.

Orange Fluxvision estimated that the national market share of Orange was around 37%

(29% for individual consumers) in 2020 (Insee 2020). The TIC survey from 2021 indicates

that biases first include an over-representation of the elderly (from 55 to 84 years old)

amongst Orange subscribers in comparison with the general population, and an under-

representation of younger individuals (in particular from 15 to 24) as shown in Figure 5.

The youngest individuals interrogated in the TIC survey are 15 years old: children younger

than 15 are also naturally under-represented in our signaling data, as many do not possess a

mobile phone. Individuals belonging to households with lower incomes are also less likely

to be Orange mobile users. Finally, non-French citizens living in France are also under-

represented amongst Orange subscribers.

A milder assumption can be formulated when some characteristics of the devices are

observed: mobility and presence patterns of unobserved residents can be extrapolated from

mobility and presence patterns of persons carrying an Orange mobile device when they

share these characteristics. High-frequency signaling data fittingly allows observing one

such characteristic – the home environment.

A related question is then whether the places of residence of Orange clients are

representative of places of residence in France. Locally, we may derive a ratio between

residents and MNO-detected residents. We expect that the lower this ratio is, the better the

local representativity, as we observe more devices per resident. This ratio informs on

differential local representativity but also divulgates Orange market shares and is thus not

reported on a map. In practice, it is highly heterogeneous over space. The local

representativity tends to deteriorate in poor neighborhoods in some urban areas. As an

illustration, Figure 6 represents how this ratio distribution evolves by municipality median

disposable income. At the municipality level, there is no clear correlation between

disposable income and local representativity as captured by the ratio between residents

and MNO-detected residents, except at the lower hand of disposable incomes. If the
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median ratio is about 0.33 detected resident per resident, the first decile (D1) of the ratio is

0.16 while the ninth decile (D9) is 0.58. A large heterogeneity may also exist at lower

spatial scales.

On top of users’ socio-economic characteristics which may differ from one MNO to

another, mobile network data better captures the behavior of active users who benefit from

good network coverage. In this case, raw mobile network activity data under-represents

the population from less dense areas where the network is less developed.

3. Measuring Present Population

We now present the methodology we use to compute hourly present population estimates over

metropolitan France using three months of signaling data from the Orange network and the

geography of French residents from fiscal data. Formally, we aim at computing estimates ûi;t
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Fig. 5. Probability of being an Orange subscriber as a function of age, income quintile and nationality on the

TIC survey data, modeled with logistic regression.

Note: The odd ratios minus 1 as percentages are displayed. Reference modalities are “from 45 to 54” for the age

variable, “2” for the income quintile and “French” for the nationality.
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giving the distribution of France metropolitan residents at hours t in T over several months and

over tiles i [ I. As an intermediate output, we aim at estimating ûi;t;r giving the distribution of

France metropolitan residents in location r present in tile i at hour t. Thus, ûi;t ¼
P

r ûi;t;r.

Minimal consistency constraints. For consistency, we require that the present

population estimate total matches an external official source: ;t [ T;
P

i ûi;t ¼ P. We will

further require that we have as many residents of r contributing to û as there are residents

of r in the official source to balance our estimates across residencies:

;t [ T;
P

i ûi;t;r ¼ Pr. This requires estimating a residency for each device. It allows to

break down population presence by place of residence. We note that we exclude from the

onset the existence of inbound and outbound trips, due to the absence of reliable sources

on daily population flows in and out of the country.

As we do not restrict the analysis to a sub-period or part of the territory, we favored a

simple method to deal with the high dimensionality of the data.
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Note: Distribution (D1, Median, D9) of the municipality-level ratio by municipality median disposable income range.

Table 3. Additional notations.

jd,t [ J Estimated presence cell for device d during time interval t
Pr Official residents in place r
Dr Devices with estimated residency in r
mr,t [ N|J| Devices count in presence cells at time t with residency r

u0 [ N|I| Population count from official source over tiles
ûi;t [ R|I| Estimated population count at time t over tiles
ûi;t [ E|I| Estimated population count at time t who are resident in r over tiles

Suarez Castillo et al.: Present Population from Mobile Phone Data 545



3.1. Overview of the Method

Our population estimation relies on several modules, the critical ones being the

construction of a device presence panel and residency-based weighting.

Device presence panel. This first module’s role is to bypass the temporally sporadic

presence of users over the network, by interpolating the trajectory of each device before

any aggregation. In practice, we define and estimate for each hour and each device a

presence cell jd,t – whether or not the device was observed during t. The presence cell jd,t

represents the cell where the device d would mostly connect during the time interval t if it

was active.

Residency characterization. This second module’s role is to estimate the residency r

of each device d at an adapted geographical level to be defined. We denote Dr the set of

devices with residency in place r, which can be compared to the set of residents in the

official source, Pr .

We can then define presence over cells of devices residing in r, denoted mr;t [ RjJj with

mj;r;t ¼
d[Dr

X
1 jd;t ¼ j
� �

:

mj;r;t is the count of devices which are resident in r and are considered present in cell j [ J.

Residency-based weighting. This third module’s role is to extrapolate the number of devices

to an estimate of the present population. If we assume that the sample Dr has been randomly

chosen among Pr with sampling rate jDr j
jPr j
¼ 1

wr
, a valid estimation of the expected presence of

residents of r over the network cells is wr £ mr;t:We extrapolate the presence patterns of Dr to

Pr: It amounts to applying a rescaling factor jPrj to the density of resident devices. The pseudo-

weight wr ¼
jPr j
jDr j

is the ratio of residents from the official sources to the resident devices in place

r. Instead of counting for 1 person, each device in the scope will participate in the aggregate with

weight wd ¼ wr(d ). Of course, this approach is valid if Dr is indeed close to a random sample

drawn from Pr: If we could add additional inferred characteristics to the devices, we could

improve this stage by stratifying weights beyond residency.

Spatial Mapping. This fourth module’s role is to transform an active device at the cell

level into an active device at the tile level. We do it by defining a linear spatial mapping Q:

RjJj ! RjIj which distributes a vector of presence over the network cells in the tiles with
P

i Qij ¼ 1, by specifying

Qij ¼ P{device mapped to tile i j device connected to cell j}:

Then, Qmr;t [ RjIj represents the presence over tiles of devices which reside in r, at time

interval t.

Presence Estimation. We estimate the presence over tiles of the residents of place r

denoted ûr;t by attributing to residents of r the presence distribution of devices who are

resident in r. That is,

ût;r ¼ wrQmr;t ð1Þ

We finally estimate the total population presence over tiles with

ût ¼
r

X
ût;r
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These definitions enforce our minimal consistency constraints. Note that ût can be written

as a reweighted projection of device-level trajectories:

ûi;t ¼
j[J

X
Qij

d[D

X
wd1 jd;t ¼ j

� �
ð2Þ

3.2. Implementation

The raw signaling data contain about 20 billion events per date, totalizing 130 Tb of

parquet files. We handled them using the big data framework Spark on an HDFS

infrastructure at the MNO office. The Spark cluster was configured to stop any job lasting

more than 24 hours. Given that the cluster was shared with other projects, the estimated

resources available for our project were 300 CPUs and 1.2 Tb of RAM. We queried the

data through PySpark, the Python API for Spark. We did not use any algorithm that could

not be simply implemented using the PySpark API functions on the raw signaling data,

which limited device-level algorithms. Even with simple algorithms, the whole-network

longitudinal analysis entailing device-level sorting over a long period was challenging

given the available resources.

3.2.1. Device-level Simplifications to Manage Dimensionality

Given these constraints, the following simplifications drove the choice of the method

presented in Subsection 3.1 and were adopted in the implementation:

1. For device presence, the location information is restricted to one cell per hour. It

seems a reasonable simplification for official statistics low-frequency purposes (at

most, presence per hour). It stabilizes by design the oscillation phenomenon by

which a motionless device may switch cells for network-related reasons (Katsikouli

et al. 2019). However, if it is probably a good approximation for motionless devices,

it is not for non-stationary devices visiting a high number of distant cells during an

hour. Therefore, we oversimplify the presence of non-stationary devices by

attributing them to one cell on their path.

2. The location information was kept at the cell level for all device-level calculations.

We were only allowed to export aggregates to the national statistical institute premises,

as opposed to device-level data. Hence, the spatial mapping was performed on

aggregates only. This avoids bottleneck operations on jDj £ jIj-sized matrices during

calculations (such as operations involving A). On one hand, this leaves the spatial

mapping from cells to tiles easily adjustable downstream and leaves room for

comparison between several choices of spatial mapping, which has been shown to

matter a lot (Ricciato et al. 2020). On the other hand, as the spatial links between cells are

never considered at the device level, some loss of spatial information is likely.

In particular, the location information was kept at the cell level for device-level residency

characterization. To bridge the tiles resident counts and the cells resident devices so as to

build weights with counts in the same geography, we can map residents to cells or

resident devices to tiles. Instead of affecting to each device a home tile i, we distribute

each resident in a home cell j, the cell they would have probabilistically connected to if

they were Orange users, using the probability distribution encoded in A. This choice

avoids resorting to a home-cell spatial mappingRjJj ! RjIj which requires dealing with
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an additional probabilistic error. This approach is not straightforward in a multi-operator

scenario where there is in general a specific radio cell network for each MNO.

While these simplifications are acceptable given our constraints, they are not necessarily

recommended for future standard methodologies. Figure 7 summarizes the different steps

of the method now described in more depth.

3.2.2. Device Presence Panel

We first filter devices identified as mobile phones (to filter M2M). Note that about 20% of

daily unique identifiers are filtered as they can not be identified as mobile phones based on

their TAC. We expect a large part of these excluded devices to be carried out by machines

rather than persons (M2M and IoT devices, such as cameras, vehicles, alarms, sensors, etc.).

We retain devices that are present at least 30 distinct days out of the three months so as to

ensure relative stability of the scope (e.g., to filter movements due to client turnover as they

are irrelevant to inform on total counts). Here, a user is present on a given day if there is at

least one radio-cell event associated with its IMSI on this day. Figure 18 in the Appendix

(Section 7) gives the distribution of the lengths of observations (in days) over the period. We

keep 87 % of devices when filtering those present at least 30 days out of the three months. 67

% of the devices are observed for 80 days or more, and 9% are observed for ten days or less.

We attribute to each device appearing on date l a presence cell jd,t for each hour interval

from 5 a.m. on date l to 5 a.m. the next day l þ 1 as follows. When the device appears

during an hour interval t, the presence cell at t is taken as the cell recording the most events

during this hour. When the device does not appear during an hour interval t, we consider

as candidates all cells with an event from the device on hour t 0 from 0 a.m. on date l to 5

a.m. the next day. We extended the search window to 29 hours for helping interpolation in

the early morning with nighttime observations. We rank the candidate cells for hour t first

by the time interval distance between hour t and the hour of the observed event t 0 and

Raw signaling data
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Residency
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(Home-cell

algorithm)

Localized residents
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Fig. 7. Overview of the method implementation.

Note: Red boxes represent source data sets, dark blue boxes represent produced data sets and the key variables.

Arrows represent transforms, which pertain to a given module referenced in light blue boxes.
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second by the number of signalling events generated by the device at t 0: We retain the cell

ranked first. This cell selection based on the number of events is also a simplification as

generating a higher number of events in a certain cell for a given hour does not

automatically indicate the device spent more time in that cell than in others. One could

choose the presence cell using more complex rules based on the distribution of signaling

events on a sub-hour level.

Figure 8 presents the mean interpolation error, defined as the absolute difference

between the reference hour t and the hour of actual observation, used to estimate the

presence cell. It is on average lower than one hour but varies following the daily user

behaviors and technology. It is particularly high when the presence cell is a 2G or 3G cell.

3.2.3. Residency Characterization

We can draw a picture of the typical day (including weekends and holidays) of (over-15)

persons in France using time use surveys. On average in 2010, 8:30 hours are spent

sleeping, 1:02 hours for washing/health care, 2:13 hours for eating, 4:04 hours for leisure

(including 2:06 hours spent watching tv), 3:10 hours for domestic work, 2:51 hours

working or studying and 0:24 minutes of work-home commute (Ricroch and Roumier

2011). This average includes unemployed, retirees, and housewives and may be

heterogeneous across population types. However, for the “average” person, the vast

majority of the time is spent at home.

For the characterization of residency, we therefore choose the cell with the most time

spent rather than favoring a heuristic using time spent at night, although we run it as an

alternative. Observation at night suffers from undersampling (Figure 1). In addition, we do

not want to assume or constrain where the population is at night but rather deduce it from

the data. For instance, we note that 1.8 million employees work at nighttime (8 p.m. to 5

a.m.) more than half of their working hours a given month (Létroublon and Daniel 2018).

To estimate the residency of each device, we thus want to identify recurring points of

presence. A device is present at cell j in hour t as soon as an event is recorded at this cell

during the time interval t. For this task, a device is therefore counted as present in all cells

which have detected it at some point – even for a single event. This is therefore distinct

from the presence cell as defined to track the longitudinal presence of devices. Here, all
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events are used and unobserved periods are not inferred. Then, the max-presence cell is the

cell where the device has been recorded present the most. For simplicity in computation

and scalability, we kept the analysis at the cell level but note that this approximation could

probably be improved by considering several cells and their geography. It turns out that we

find evidence of at least one strong “anchor point” for most of the devices in the scope.

Figure 9 represents the distribution of the number of distinct hours of presence in the max-

presence cell when the latter is defined over two weeks. 75% of the devices in the scope are

observed at least 27% of the hours over the period in the same max-presence cell. Overall,

signaling data prove very promising for pinpointing anchor points. Note that for this step,

we did not interpolate device trajectories over an unobserved time period. If we define

residency as the place with the most time spent, surely longitudinal signaling data offer

many perspectives.

This step requires us to use all events and to sort the longitudinal data by device

pseudoidentifier to be able to rank cells. To derive the max-presence cell over three months,

we run a max-presence cell algorithm by two-weeks windows and kept per device only ten

max-presence cell candidates. Filtering the least likely candidate cells allowed to keep the

computational burden manageable. Finally, we define the home cell as the max-presence

cell over the pooled max-cell candidates. At this stage, this step is highly stylized from a

methodological point of view but benefits from the richness of the data over a long period.

Note that the international definition of population recommended in official statistics is

based on the concept of ‘usual residence’, which is the place of daily rest assessed over a

period of at least 12 months. We only had three months of data for this work, but the same

methodology could essentially be applied with a longer observation window to produce

comparable population estimates, consistent with the international definition of

population.
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Fig. 9. Distinct hours of presence in the max-presence cell.

Note: The max-presence cell is defined as the cell recording the highest number of distinct hours of presence over

a two-week time period. One event within the hour is enough to consider presence in this cell at hour t. Scope:

Orange metropolitan France network, Orange-client devices identified as mobile phones, from March 16th to

March 31st, 2019 (384 hours).
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3.2.4. Residency-Based Weighting

In this step, we map French residents over home cells using realistic information on the

coverage of each tile of 100 meters by Orange cells as provided by Orange (matrix A). Let

us denote u0 the resident counts over grid I estimated from 2016 fiscal data. If all French

residents were Orange clients, active and at home, we would expect to observe over the

Orange network cells the following counts:

Au0

We define places of residency r as home cells or groups of contiguous home cells

gathering at least 20 detected resident devices. This allows us to adapt our definition of

residency to the MNOs’ varying local market shares, having enough devices per residency

place while keeping the place of residence relatively precise. We start from all home cells,

search for the closest home cells for home cells with less than 20 detected resident devices,

group both, and iterate until all groups of contiguous home cells reach the condition. This

ensures a minimal size for Dr while keeping a high level of disaggregation in r. In turn,

Pr ¼
P

j[r½Au0�j is the expected number of residents in the home-cell group r. Figure 10

presents at level r (group of contiguous home cells) and at the municipality level the

number of detected residents against actual residents, hinting at weight heterogeneity.

We define weights with the ratio of actual residents Pr divided by the network-detected

residents Dr at the level of contiguous groups of home cells r which contain at least twenty

detected resident devices. We end by trimming weights at their 2nd and 98th percentiles –

weights fall in [0.07, 53.5].

Ideally, Dr and Pr should be consistently defined and both tend to match the concept of

“usual residence” to avoid bias.

3.2.5. Spatial Mapping

We use the coverage probability matrix A provided by Orange Fluxvision that modelizes

the network as of February 2019. Aji represents the probability of being detected at cell j

while being in tile i:

Aji ¼ P{device detected in cell j j device in tile i}:
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In particular
P

j Aji ¼ 1. From a vector of presence over all tiles ut, we expect to observe on

network cells E½mt� ¼ Aut translating the presence of devices (we here assume D, P for

clarity of exposition). The estimate ût can be written in general as ût ¼ gðA;mtÞwhere g is a

chosen spatial mapping (Ricciato et al. 2020). In this work, we focus on a linear estimator

ût ¼ Qmt (see Figure 3). Although any spatial mapping could be used, for our empirical

results we follow Tennekes and Gootzen (2022) who suggest deducing Q from A using Bayes’

rule by introducing a prior that reflects where the population is most likely located (e.g., based

on land-use). In the results presented here, we use a simpler uniform prior. Specifically,

Qij ¼
Aji

Si 0Aji 0
:

In addition, we propose a general framework to evaluate the location estimation accuracy of

cellular network events. This evaluation combined with a quadtree algorithm enables us to

build an adaptive spatial grid featuring small tiles for high accuracy areas and large tiles for

low accuracy areas. The spatial accuracy is embedded within the dissemination grid.

Estimating accuracy locally. The accuracy of the linear estimator Q can be approached

locally by defining the probability to localize in i a device that is in i0 and connects to the

network probabilistically through A.

Ni;i0 ¼ P{device mapped to tile ijdevice in tile i0}

Formally, N ¼ QA: A good estimator Q should lead to a high Ni0;i0 probability (correct

mapping), or at least a high probability of tiles i in the neighborhood of i0. With previous

notations, if we take the example of localizing a single device d which is in i0, that is

ut ¼ 1i0 ; N1i0 can be interpreted as E½ûtjdevice in tile i0]. N encodes the spatial error by

integrating the uncertainty from A and Q.

Embedding accuracy within dissemination. We build a quadtree that directly embeds

the calculated spatial accuracy by gathering tiles until the probability of correct location in

the macro tile I0 (group of tiles) is higher than a threshold: NI0;I0
. s: We derive present

population estimates within this reduced spatial grid, which visually provide a clear idea of

the achievable accuracy (Figure 11). In what follows, the tile grid i [ I should be

understood as this quadtree-derived grid for s ¼ 5%; referred to as the dissemination grid.

Table 11 describes the link between tile size and resident density in further detail.

3.2.6. Presence Estimation (Aggregation)

In practice, the set of devices present a given day varies (Figure 1). We denote this set

Dl , D for each date l. We only interpolate device-level trajectories within days. To

respect our consistency constraint, we finally define wd;l ¼ wrðd Þ £
jDr j
jDr>Dlj

. If all detected

residents of r are here on date l, their weights are set to wr: If some are missing, their mass

is transferred to the remaining residents’ devices.

Precisely, our final estimator writes, for the chosen spatial mapping Q:

ûit ¼
j

X
Qij

d[Dl

X
wd;l1{jd;t ¼ j}

To illustrate the difference with counts of active devices, we reproduce Figure 8 by

reweighting each device with wd,l in Figure 12. The mean interpolation error increases –
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showing that devices with high interpolation error have been upweighted. This suggests

that this weighting scheme corrects for the under-representation of users with limited

network access or limited network interactions. By construction, the total number of

present residents is constant. Estimated presence over the 3G network is now comparable

to estimated presence over the 4G network:
P

d[Dl
wd;l1 jd;t ¼ j&j [ 3G

� �
<
P

d[Dl

wd;l1 jd;t ¼ j&j [ 4G
� �

:

3.2.7. Code Availability

The code implementing these modules is available on github at https://github.com/In-

seeFrLab/presentpop.

4. Results and Comparison with External Sources

The clear advantages of present population estimates derived from mobile network data

are their timeliness, their granularity in time, and (relatively) in space. We first provide a

rapid overview of the hourly and weekly fine-grained patterns which can be uncovered.

This dynamic nature and this spatial extent are rarely achievable with other sources. We
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Fig. 12. Estimated present population and interpolation in time.

Note: The right panel presents the proportion of estimated present residents among all residents, in total (by

assumption, all residents are represented) and by cell technology. The left panel presents the weighted mean

interpolation error defined as the absolute difference between the reference hour t and the hour of actual

observation. Weights are wd,l.

Fig. 11. Reduced grid with a threshold s ¼ 1%. The larger the tiles, the less accurate the spatial mapping is

locally.

Note: The grid was based on the Orange matrix A and a uniform prior.
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then compare some present population estimate snapshots to other external, more static,

sources of population density.

4.1. Daily and Weekly Cycle, Local and National Variations

Figure 13 illustrates the daily variations of present population density at the national level and

in Paris. To represent the 24-hour within-day variations, we subtract from the hourly density

its 24 hours mean. The 24-hour variation features the daily pendulum movement of suburban

commuters: while the present population tends to be higher in the periphery of urban areas at

night ( $ 100 persons per square kilometer compared to average), at 9 a.m. the population in

these peripheries decreases for the benefit of urban centers until to the evening. At a finer scale

in the Paris surroundings, the variation of present population density discriminates places

mainly characterized by their economic, leisure, and touristic activities from more residential

areas, and shows the attractiveness of a multi-polarized center.

(a) 2-3 am (b) 2-3 pm

(c) 2-3 am (d) 2-3 pm

Fig. 13. Variation of present population density (persons per square kilometer) at daytime and nighttime at

national level and in Paris.

Note: To represent the 24-hour within-day variations, we substract from the hourly density its 24 hours mean

(Wednesday, March the 20th).
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Figure 14 illustrates the weekly variations of present population density at the national

level and in Paris. To represent the seven days within-week variations, we subtract from

the present population density at 3 to 4 a.m. its seven days average. The variation of

nighttime present population density within the week discriminates the nights from Friday

to Saturday and from Saturday to Sunday, where some locations in coastal areas and the

mountains fill up. In Paris, the present population is overall lower during the nights from

Friday to Saturday and Saturday to Sunday. However, we observe some nighttime excess

in the present population in some places on these nights, probably reflecting nightlife

activity or touristic overnight stays. The animated and colored version of Figures 13 and

14 is available at https://github.com/InseeFrLab/presentpop.

4.2. Comparison with External Sources

Measuring the quality of present population statistics is difficult as there is no source of

truth. But, we can assess how comparable our estimates are to other high-quality

(a) Tuesday night (b) Saturday night

(c) Tuesday night (d) Saturday night

Fig. 14. Variation of present population density (persons per square kilometer), Tuesday or Saturday at

nighttime, at national level and in Paris.

Note: To represent the seven days within-week variations, we substract from the present population density at 3 to

4 a.m. its seven days average (Monday 18th to the Sunday 24th of March 2019).
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population measures. We here choose two points of comparison: residents geolocalized at

their tax address and day and nighttime population density estimation from Batista e Silva

et al. (2020).

We have considered comparisons with estimates of other external actors like Meta’s

high-resolution population density mapsand WorldPop population distributions. Indeed,

the general idea of the methodology behind these estimations is – just like in our case – to

calibrate population counts originating from new data sources (in the case of Meta and

WorldPop, mostly satellite imagery) with spatially detailed population census data.

However, we believe that a comparison with each of these two data sets is not entirely

relevant. Indeed, their estimates are static and do not vary as a function of time, which is

precisely the aspect where mobile phone data make a difference. The main interest of these

static estimates lies in countries in which fine-grained census or fiscal data does not exist at

a national level. This is not the case for the methodology outlined in this article, designed

to estimate dynamic present populations. We still include a static comparison with the

resident populations u 0 computed according to geolocalized fiscal data from 2016, which

should be more accurate than Meta or WorldPop estimates in a country like France. Note

that we also used this data source to build our weights.

The second comparison source is the ENACT database which uses data fusion to

estimate the population at daytime and nighttime at the European level on a 1km grid.

Batista e Silva et al. (2020) use a top-down approach disaggregating NUTS3 population

counts based on the assumed places of activities of 16 different population groups, using

land use information. In contrast to our estimation, foreign tourists’ presence is estimated

and contributes to the population density.

We compare population densities in our dissemination grid. Figure 15 presents maps

over France and Figure 16 a focus on the Paris area. At the country scale, the present

population estimate respects the distribution of the population found in the other sources.

However, the present population estimate shows a dilution of the population mass in space.

Around dense urban areas, we observe a halo of presence absent from other sources. The

first reason for this is probably the lack of accuracy of the cell-level localization. Another

reason could be that by definition, the external sources considered here locate the

population in buildings. Adopting a land-use prior in the spatial mapping task (Avouac et al.

2019) could therefore partially close the gap between our estimate and external sources and

in any case improve its quality. However, this may create bias, in particular during daytime

and weekends. We here chose a static spatial mapping, that is, independent of t. Another

way forward could be to experiment with other estimators g, where ût ¼ g A;mt

� �
. On

simulated data, Ricciato and Coluccia (2021) show that some estimators (called data-first,

ML/EM) may be able to reduce the dilution effect compared to our linear spatial mapping

with a uniform prior (Simple Bayes-rule estimator in the terminology of the article).

At the level of the Paris area, the structure of the present population distribution differs

strongly during the day from during the night. The present population at 3 a.m. on a

weekday (f) tends to offer a smoothed but quite similar version to the high-resolution

image of the resident population (h). We report a contextual map of the Paris region in the

Appendix (Section 7). For instance, the large parks in the east and the west (Boulogne and

Vincennes) display a non-null density at nighttime according to our present population

estimates, most likely due to a lack of accuracy in the spatial mapping. The population
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variation from nighttime to daytime is similar if we consider either present populations as

estimated from mobile network data from (f) to (e) or from disaggregation of NUTS3

official sources counts as obtained in ENACT data, from (j) to (i). For instance, the core

center near the Seine river and the Défense neighborhood attract population during the day,

as predicted from activity-related presence with the ENACT methodology. Figure 20 in

the Appendix (Section 7) presents the differences between the present population statistics

and both external sources over France. It makes the tendency of mobile network data

estimates to create halos around dense areas clearer. It shows that at night in dense areas

such as Paris, except for particular places such as parks, the error resembles a white noise

(no tendencies over space to either overestimate or under-estimate the population

compared to the resident population). During the day, it tends to offer even more contrast

between places’ densities than the ENACT estimates.

In addition, Table 4 reports comparisons along three metrics: correlation, rank correlation

and allocation accuracy. Allocation accuracy can be interpreted as the percentage of

population density allocated in the same tiles in both sources and is defined as:

AA r1; r0
� �

¼ 1 2
i

X 1
2
£ r0

i 2 r1
i

�
�

�
�
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(a) Present Population at 3p.m. (b) Present Population at 3a.m.

(c) ENACT Daytime Population (d) Resident Population (Tax sources)

Fig. 15. Population Densities in the Dissemination Grid (a-d). Present Population: March 2019 (week day).

ENACT: March 2011. Resident Population: 2016.
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The present population at nighttime is as close to the resident population as is the

ENACT estimation during the night (slightly closer according to correlation and allocation

accuracy – and farther according to rank correlation). Both present population measures get

more distant from the resident population during the day, although the night/day difference

is more pronounced in the MNO-derived estimation. Finally, the MNO-derived presence

estimation and the ENACT presence estimation are closer to each other during both day and

night than they are to the resident population.

Overall, at nighttime, MNO and ENACT densities fall in the same metrics range when

compared with the resident population and are aligned with each other. If we had used a

prior based on land uses for spatial mapping Q, we would probably be even closer to the

ENACT estimation – which by definition follows land use.

Table 5 reports correlations with external sources by urban area type. Consistency

between sources is highest in urban areas of intermediate size (between 200,000 and

(e) Present Population at 3p.m. (f ) Present Population at 3a.m.

(g) ENACT Daytime Population (h) Resident Population (Tax sources)

(i) ENACT Daytime Population (j) ENACT Nighttime Population

Fig. 16. Population Densities in the Dissemination Grid (e-h). Present Population: March 2019 (week day).

ENACT: March 2011, daytime (original grid 1km2 in (i-j)). Resident Population: 2016.
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Table 4. Population density comparisons. Note: All densities are computed in our dissemination

grid, using proportional area estimation for ENACT data and direct calculations for resident

density from tax files. ENACT: March 2011. Present population: five working days in March 2019.

Resident population: 2016. Daytime (resp. nighttime) estimates are taken at 3 p.m. (resp. 3 a.m.).

Allocation
accuracy

Correlation Rank
correlation

Residents
Present at daytime 0.57 0.56 0.73
Present at nighttime 0.74 0.83 0.75
ENACT – Day 0.66 0.77 0.78
ENACT – Night 0.71 0.78 0.81

ENACT – Day
Present at daytime 0.74 0.75 0.89

ENACT – Night
Present at nighttime 0.79 0.87 0.88

Table 5. Population density correlations by urban area type. Note: All densities are computed in our

dissemination grid, using proportional area estimation for ENACT data and direct calculations for

resident density from tax files. ENACT: March 2011. Present Population: March 2019 (five working

days). Resident Population: 2016. Daytime (resp. nighttime) estimates are taken at 3 p.m. (resp. 3 a.m.).

Paris urban
area

Other urban
areas $ 700,000

inhabitants

Urban areas
200,000–700,000

inhabitants

Residents
Present at daytime 0.42 0.62 0.74
Present at nighttime 0.77 0.81 0.86
ENACT – Day 0.69 0.75 0.77
ENACT – Night 0.70 0.77 0.79

ENACT – Day
Present at daytime 0.70 0.76 0.76

ENACT – Night
Present at nighttime 0.81 0.84 0.83

Urban areas
50,000–200,000

inhabitants

Urban areas
# 50,000
inhabitants

Municipalities
outside of

cities attraction

Residents
Present at daytime 0.76 0.69 0.58
Present at nighttime 0.81 0.73 0.62
ENACT – Day 0.75 0.71 0.69
ENACT – Night 0.79 0.73 0.74

ENACT – Day
Present at daytime 0.70 0.65 0.52

ENACT – Night
Present at nighttime 0.76 0.70 0.59
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700,000 inhabitants) and at night. The Paris urban area stands out as where the correlation

between present population at daytime and resident population is the lowest (0.42) and is

the most in contrast with the correlation between present population at nighttime and

resident population (0.77). The correlation between MNO and ENACT densities is

particularly low for the smaller urban areas and municipalities outside of cities attraction.

This reflects that our methodology probably suffers in areas with bad network coverage

where the spatial mapping is imprecise.

5. Discussion

5.1. Other Works on the Present Population Estimation for Official Statistics

These experimental present population estimates were built with knowledge and

inspiration from a number of existing works (Salgado et al. 2021; Statistics Netherlands

2020; Ricciato et al. 2020; Ricciato and Coluccia 2021). However, we found that off-the-

shelf solutions were never fully applicable to our case, and resorted to a number of

simplifications which we discuss here.

Salgado et al. (2021) propose an ambitious bayesian general framework for producing

statistics from mobile network data, based on a Hidden Markov Model (HMM) modelization

for device-level trajectories. In contrast, we do not rely in this work on any inference framework

to quantify the uncertainties in our final estimates. Of course, this is a downside, but the level of

computational complexity entailed by resorting to this modelization seemed prohibitive in our

context. Static spatial mapping on cell-level aggregates, as opposed to the dynamical spatial

mapping at the device level delivered by the HMM model, was chosen to avoid the

computational burden. One significant advantage of our method is that it gives the ability to vary

the spatial mapping after the computationally intensive aggregation step, as various spatial

mappings have been shown to provide quite different results. On a similar signaling data set

restricted to a large urban area, Bonnetain et al. (2019) resort to a hidden Markov chain

modelization for map-matching device trajectories on the transportation network, but simplify

the cell spatial coverage information to a Voronoı̈ tesselation. The computational complexity of

resorting to simple temporal interpolation has nothing to do with setting up a HMM estimation

in a high-dimensional states space (up to 55 million tiles), emissions probabilities (connecting

these millions of tiles to hundreds of thousands of cells), and devices (about twenty millions

three-months trajectories). Although the problem is in theory parallelizable at the device level,

the single device problem can be quickly high dimensional in space and time.

One of the strengths of the HMM model is to probabilistically recover trajectories when

the device is unobserved from future and past observations. Given Figure 1, it is a

guarantee against network and behavioral effects which seems highly desirable. We see

this figure as urging for longitudinal views to derive sensible statistics. We therefore

resorted to a simple interpolation method. Only a few works mention interpolation as a key

feature for deriving reliable present population statistics, whereas we tend to consider

interpolation as essential for sustainable and comparable-in-time statistics. Ricciato et al.

(2020) point it has a promising line for future research. Interpolation techniques were

explored mostly for mobility analysis. The issues of data time sparsity and sensitivity to

user behavior are generic, and we show that they apply as well when working with
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signaling data on a present population estimation use case. Up to now, existing literature

derived snapshots of “dynamic population” (e.g., within a given day) due to the lack of

access to longitudinal data for research. Throughout the lockdown period imposed in

France during the Covid-19 crisis, some methods used by MNO showed sensitivity to

changes in behavior (increased usage of the phone, change in the timing of usage).

Roughly, the increased presence over the network translated into more detected devices

and therefore to unexpected large mechanical increases in present population estimates.

The French National Statistical Institute computed estimates based on reprocessed multi-

MNO data (Galiana et al. 2020b; Coudin et al. 2021). In addition, interpolation has a

positive effect on representativeness if the extent of network detection is correlated with

socio-economic background: less active users (or users having access to a less performant

mobile phone or local network) contribute to aggregates more equally after interpolation

relatively to more active users. Network usage has indeed been shown related to individual

characteristics, such as gender (Jahani et al. 2017).

CBS (Statistics Netherlands) has recently published a report on its methodology

(Statistics Netherlands 2020) which shares similarities with our implementation. Working

on signaling data of one MNO in the Netherlands, they integrate a device presence

estimation with a residency detection module. They perform a home-cell detection step,

where the computation barrier appears to be important as well – and based on a similar

heuristic. Their calibration step is based on rescaling the estimated number of active

devices to the number of local residents independently of their places of presence.

Implicitly, the minimal consistency constraints are therefore the same as the ones we

impose. One difference is that Statistics Netherlands (2020) does not interpolate device-

level trajectories. Only the calibration step ensures the consistency constraints.

Ricciato et al. (2020) stress the practical importance of the geolocation step. In this work

as here, the geolocation step is performed after cell-level aggregation. Ricciato and

Coluccia (2021) propose several classes of estimators based on matrix A and cell-level

aggregates which could be considered in place of our bayesian spatial mapping, for

instance, to deliver confidence intervals and improve spatial accuracy. In this article, the

adopted linear estimator corresponds to the ”Simple Bayes-rule estimator” described in

Ricciato and Coluccia (2021) applied to reweighted device counts. Our framework, which

introduces device-level weights and a home estimation, could easily be integrated with the

other estimators introduced in Ricciato and Coluccia (2021) by replacing the simple count

vector c with a reweighed version.

5.2. Discussion on Device-Level Weights

We argue that residency detection is not only useful for statistical filtering, but also to

balance the estimates across residencies to correct for unbalanced representativeness (as

illustrated in Figures 6 and 10). Imposing a constraint of equality at a local level between

“usual” residents detected from mobile-phone data and actual residents as estimated from

official sources appears milder than an alternative that would consist of equalizing resident

population Pr to population present at night: ur;t0
¼ Pr:A significant part of the population

spends nights regularly outside of its main residency or works at night. These atypical

location behaviors are better captured by MNO data than by traditional sources. Figure 14
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shows how the present population at night can vary greatly during the week – and it is also

even more the case for holidays and bank holidays. Note that if the pseudo-weights are

based only on residency location, they could be based on as many characteristics as we can

accurately recover at the device level and for which we have an external population-level

estimate (see the discussion on pseudo-weights in Beresewicz et al. (2018)). This

framework could be promising for future combinations of sources aiming at facing

selectivity issues to derive representative statistics. To support this statement, we report in

Table 6 how the consistency between our estimate and ENACT estimate drops when we do

not use individual residency-based weights but simply multiply the device density by an

hourly constant to match the total population size. This consistency decreases noticeably

both in terms of allocation accuracy and correlation, at night and daytime. Rank

correlation comparisons are similar, suggesting that rank ordering across tiles is rather

close when using a constant weighting scheme.

Using device-level weights based on individual characteristics may lift part of the

concern of using a single MNO data set. If mobility patterns of the MNO customers are

similar to that of the resident populations which share these same characteristics, the

estimation would be unbiased. Of course, the larger and the more representative the mobile

phone users used in the analysis, the better will be the quality of the estimates. Therefore,

multiple MNOs data sets could be fruitfully employed with a similar methodology.

Device-level weights are obtained from merging MNO data and reliable and localized

estimates of the resident populations. The latter is more and more commonly produced for

a large number of countries. For instance in Europe, population density have been

disseminated on a common European 1 km2 reference grid in 2011 as a prototype

(GEOSTAT-1) and a legal act was adopted for Census 2021 for an harmonised publication

of key census topics on an EU-wide 1 km2 grid by the European Statistical System.

5.3. Quantifying Uncertainty

This work does not provide an end-to-end variance estimator for our final estimates but

analyzes uncertainties at various stages while building the estimates, which will

Table 6. Comparisons between the ENACT estimate and both our present population estimate as well as

globally reweighted device densities. Note: All densities are computed in our dissemination grid, using

proportional area estimation for ENACT data and direct calculations for resident density from tax files.

ENACT: March 2011. Present population and rescaled device densities: Five working days in March

2019. Resident Population: 2016. Rescaled devices estimates are obtained when omitting reweighting by

residency and rescaling device densities hour by hour with a single scalar weight. Daytime (resp.

nighttime) estimates are taken at 3 p.m. (resp. 3 a.m.).

Allocation
accuracy

Correlation Rank
correlation

ENACT – Day
Present at daytime 0.74 0.75 0.89
Rescaled devices at daytime 0.68 0.66 0.89

ENACT – Night
Present at nighttime 0.79 0.87 0.88
Rescaled devices at nighttime 0.73 0.78 0.88
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hopefully help future theoretical development. We estimate the spatial mapping

accuracy locally through the probability to localize in i a device that is in i0;Ni;i0 ; where

N ¼ QA: With previous notations, if we take the example of localizing a single device d

which is in i0, that is ut ¼ 1i0 ;N1i0 can be interpreted as E½ûtjdevice in tile i0]. Thus,

kN1i0 2 1i0k provides a local evaluation of the spatial accuracy: it is the root mean

square error of the spatialisation task of a device which is in i0. We provide in Figure 17

maps of this spatial uncertainty based on this framework, with Q a spatial mapping base

on a uniform or a resident density prior. Dense areas have a small spatial error compared

to rural areas, as could be expected from the network density. In addition, using a prior

helps in reducing this spatial uncertainty. As for the temporal uncertainties, with the

large time event rate, we find that interpolation errors are limited for hourly estimates of

present population (Figure 12). Finally, part of population coverage uncertainties may be

captured through the weights wr ¼
Pr

Dr
, as this ratio informs on differential local

representativity. Although informative, a map of wr also divulgates Orange market

shares and is thus not reported.

(a) Uniform Prior (b) Resident Density Prior
Fig. 17. RMSE of the spatial mapping, with a linear spatial mapping with an uniform or resident density prior.
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5.4. Other Limitations

In addition to the limitations discussed above, some issues were left aside in this work.

First, we hypothesize that a person carries a single device and we did not attempt to

filter out potential additional devices. The issue is probably less salient than when relying

on multiple MNO data, but even in a single MNO framework, identifying from the data

devices owned by the same person can be a complex task. In our work, without

additional filtering, the hourly population is biased toward the mobility of persons

carrying multiple devices with an Orange contract which seemlingly represent multiple

persons.

Second, our methodology should be adapted next to border areas – as we only observe

the Orange network on the French territory. We here detail the consequences of daily

worker flows, but note that similar issue could be described for touristic outflows and

location where devices are last seen over the French territory (such as airport). Take the

example of daily outflows of cross-border workers leaving the French territory in the

morning and coming back at night. Due to the interpolation method (device presence

panel step), the trajectories of devices carried by these workers will stop and remain at

the border in the meantime. Thus, present population will be overestimated in tiles next

to the border during the day. As for cross-border inflows, the presence of foreign

residents carrying an Orange device with a French Orange contract will be interpolated

to cells next to the border at night. In addition, their attributed residence will most likely

be their workplace cells. This complex subject should be examined in detail in future

work.

6. Conclusion

We derived a prototype for an experimental present population statistic for France. Daily

and weekly cycles, both at the local and national levels offer unprecedented insight into

population dynamics in France. However, to develop a full-fledged methodology, access is

of utmost importance. A legal basis for processing MNO data for official statistics under

due privacy protection, as well as the cooperation of MNOs, is of primary importance. It is

all the more challenging today that this work tends to demonstrate that some form of

access to longitudinal individual data would be needed for deriving reliable population

estimates, even aside from an interest in mobility analysis (interpolation to avoid being

plagued with activity bias, home detection or device-level characterization to ensure

representativeness, deduplication...). Data management from the MNO side seems

decisive for the quality of the final statistics (network topology modelization and cell

register management, filtering of IoT and M2M, reports on data collection failure...). A

combination of sources from the MNO and the NSI sides at a fine-grained level (e.g., build

weights for representativeness) seems very promising. Data fusion approaches, merging

high-quality population and mobile network data sets could be considered and studied in

the future to make the most of both sources. Nonetheless, the combination of sources

requires cooperation, privacy-preserving transfer of information, and a transparent sharing

of computations – which has been at this stage possible only within research projects, if at

all, in European countries.
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7. Appendix
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Fig. 18. Distinct dates of observation over the period.

Table 7. Dissemination grid structure and average resident density. In our dissemination

grid, presented in the section “Embedding accuracy within dissemination”, and illustrated

in Figure 11, there are 4,062 tiles of 200 meters square. The average resident density in

these tiles is 15,810 persons per square kilometer (source: Filosofi).

Tile side
(meters)

Resident density
(persons/km2)

Number
of tiles

100 22970 2816
200 15810 4062
400 5720 8796
800 1670 12721
1600 280 20743
3200 60 28339
6400 30 5024
12800 10 2
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5 km

Fig. 19. Paris area context, with Département administrative boundaries.
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Fig. 20. Differences between present population at 3 a.m. and resident ropulation (left) and between present

population at 3 p.m. and ENACT day time population (right). The first panel shows urban attraction areas with

more than 700,000 inhabitants.
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Table 8. Notations used throughout the document.

d [ D Devices in the scope, detected on the network over the period of interest
t [ T Hourly time grid of interest (several weeks)
P The target population set
Dt Set of devices in the scope, detected on the network during t
Dl Set of devices in the scope, detected on the network at date l
i [ I Tiles that cover the territory of interest
j [ J Cells of the MNO network
jd,t [ J Estimated presence cell for device d during time interval t
Pr Official residents in place r
Dr Devices with estimated residency in r
ut inR|I| Population counts at time t over tiles (target statistics)
mr,t [ N|J| Devices count in presence cells at time t with residency r
u0 [ N|I| Population count from official source over tiles
ûr [ R|I| Estimated population count at time t over tiles
ûr;t [ R|I| Estimated population count at time t who are resident in r over titles
wr Pseudo-weight of devices residing in place r
wr,l Final weight of devices in place r on date l
A Coverage probability matrix
Q : R|J| [ R|I| Linear spatial mapping from cells to tiles
Ni,i0

Probability that a device in tile i0 is mapped in tile i

Night: Residents

(c) Differences Present Population - External Source Population

Day: ENACT

Fig. 21. Differences between present population at 3 a.m. and resident population (left) and between present

population at 3 p.m. and ENACT day time population (right).
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Application of Sampling Variance Smoothing Methods
for Small Area Proportion Estimation

Yong You1 and Mike Hidiroglou1

Sampling variance smoothing is an important topic in small area estimation. In this article, we
propose sampling variance smoothing methods for small area proportion estimation. In
particular, we consider the generalized variance function and design effect methods for
sampling variance smoothing. We evaluate and compare the smoothed sampling variances
and small area estimates based on the smoothed variance estimates through analysis of survey
data from Statistics Canada. The results from real data analysis and simulation study indicate
that the proposed sampling variance smoothing methods perform very well for small area
estimation.

Key words: Coefficient of variation; design effect; generalized variance function; log-linear
model; relative error.

1. Introduction

Small area estimation has become very popular and important in both public and private

agencies due to the growing demand for reliable small domain estimates. Small area

estimation is based on models that borrow strength across areas and combine different

sources of information in order to obtain reliable estimates. In this article, we focus on area

level models that are based on direct survey estimates aggregated from the unit level data

and area level auxiliary variables. Various area level models have been proposed in the

literature to improve the precision of the direct survey estimates: a good summary of these

methods is discussed in Rao and Molina (2015). The Fay-Herriot model (Fay and Herriot

1979) is a basic area level model that is widely used in practice. The Fay-Herriot model

has two components, namely, a sampling model for the direct survey estimates and a

linking model for the small area parameters of interest. The sampling model assumes that

there exists a direct survey estimator yi, which is usually design unbiased, for the small

area parameter ui such that

yi ¼ ui þ ei; i ¼ 1; :::;m; ð1Þ

where ei is the sampling error associated with the direct estimator yi and m is the number of

small areas. It is customary in practice to assume that the ei’s are independently distributed

normal random variables with mean EðeiÞ ¼ 0 and sampling variance VarðeiÞ ¼ s2
i . The

linking model assumes that the small area parameter of interest ui is related to area level

auxiliary variables xi ¼ ðxi1; :::; xipÞ
0 through a linear regression model

ui ¼ xi
0dþ vi; i ¼ 1; :::;m; ð2Þ

q Statistics Sweden
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where d ¼ ðd1; :::; dpÞ
0 is a p £ 1 vector of regression coefficients, and vi’s are area-specific

random effects assumed to be independent and identically distributed with EðviÞ ¼ 0 and

VarðviÞ ¼ s2
v .

The assumption of normality for vi is generally also included. The model variance s2
v is

unknown and needs to be estimated from the data. For the Fay-Herriot model, the

sampling variance s2
i is assumed to be known in model (1). As this is a very strong

assumption, a smoothing or modeling approach is usually used to estimate s2
i . The

sampling variance can be smoothed or can be modeled directly as in Wang and Fuller

(2003), You and Chapman (2006), Maples et al. (2009), Dass et al. (2012), Sugasawa and

Kubokawa (2017), Sugasawa et al. (2017), Ghosh et al. (2018), and so on. It is also shown

in You (2021) that the smoothing approach can provide more efficient and accurate model-

based estimates than the modeling approach for small areas under the hierarchical Bayes

framework. Lesage et al. (2021) also have some discussions on the sampling variance

smoothing for the Fay-Herriot model.

The objective of this article is to compare different methods that smooth the direct

estimates of the sampling variances for proportions in small area estimation using the Fay-

Herriot model. Let p̂iw be the direct design-based estimator for the proportion pi for a given

characteristic in the i-th area. Applying the Fay-Herriot model to p̂iw, we have

p̂iw ¼ pi þ ei; ð3Þ

where the sampling variance Var(ei) ¼ s2
i is unknown. Now let V̂i be a direct sampling

variance estimator for s2
i obtained from the survey data. Usually some of the V̂i’s are very

unstable due to small sample sizes. We, therefore, need to smooth the sampling variance

estimate, ~Vi, and then treat the resulting smoothed variance estimate ~Vi in the sampling

model (3) as known.

In this article, we compare two smoothing methods. One method is based on the

generalized variance function (GVF, see, e.g., Wolter 2007), and the other one is based on

design effects (DEFF). We then propose an average smoothed (ASM) variance estimator

that combines the GVF and DEFF smoothed estimators. The main purpose of the article is

to promote the proposed GVF and DEFF methods. The ASM is used as an additional

choice as it pools the GVF and DEFF estimates by taking their average. Recently Hirose

et al. (2023) proposed a variance stabilizing transformation for small area estimation of

proportions. They used the arc-sin transformation approach to construct a Fay-Herriot

model with known sampling variance. Note that their transformation approach is applied

to data assumed to have a binomial distribution, and this implies simple random sampling

(SRS). However, many surveys are based on various complex sampling designs. The

sampling variance smoothing approach can be applied to any estimator of proportions that

is based on complex designs. We re-estimate the variance via a smoothing process that

involves all small area estimates of the sampling variances.

There are many applications of the GVF in small area estimation, see, for example, the

early work of Dick (1995) and the recent application in Hidiroglou et al. (2019). The DEFF

can also be used in variance modeling and smoothing for small area estimation. For

example, You (2008) used the smoothed design effects over time to obtain the smoothed

variance and covariance matrices. Liu et al. (2014) also applied area level models to

proportions using design effects for the sampling variance smoothing and modeling.
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In this article, we provide a general method to compute the design effect and propose a

smoothed variance estimator based on the average design effects over areas. We will also

show that the DEFF-smoothed variance estimator and the GVF-smoothed variance

estimator are roughly equivalent under certain conditions. We illustrate the smoothing

methods via various survey data sets and a simulation study.

The article is organized as follows. In section 2, we propose several sampling

variance smoothing procedures that include the GVF and DEFF methods. In section 3,

we apply the proposed smoothing methods to two Statistics Canada survey data and

compare the smoothing variances. In section 4, we compare the model-based estimates

based on different smoothed sampling variance estimates using the Canadian Labor

Force Survey (LFS) survey data. Section 5 is a simulation study that compares proposed

variance smoothing estimators. In section 6, we offer some concluding remarks and

suggestions.

2. Sampling Variance Smoothing Methods

2.1. Smoothing Using Log-Linear Models

In this section, we will construct a GVF model to obtain smoothed sampling variances.

This procedure is widely used in practice to model the variance. We apply a log-linear

regression model to the direct sampling variance ~Vi using the sample size ni as the

auxiliary variable in the model as follows:

logðV̂iÞ ¼ b0 þ b1logðniÞ þ 1i; i ¼ 1; :::;m; ð4Þ

where the model error term is 1i , Nð0; t2), and the model error variance t2 is unknown.

Note that the proposed regression model (4) is equivalent to the following model:

logðV̂iÞ ¼ b0 þ b1logðn21
i Þ þ 1i; i ¼ 1; :::;m; ð5Þ

where logðn21
i Þ is used as the auxiliary variable. The proposed GVF models (4) or (5) are

the same models used in You (2021) for the hierarchical Bayes (HB) modeling of sampling

variance. This GVF model also extends the model proposed by Souza et al. (2009) for

sampling variances by using logðn21
i Þ and adding a normal random effect ð1iÞ to the

regression part in the model.

Let b̂0 and b̂1 denote the ordinary least square estimators of the regression coefficients

b0 and b1. A naı̈ve GVF-smoothed estimator of the sampling variance is obtained by

taking the exponential of the fitted value:

~V
naive

i ¼ expðb̂0 þ b̂1logðniÞÞ: ð6Þ

Dick (1995) used the naı̈ve smoothed estimator ~V
naive

i in the application of census

undercoverage small area estimation. As noted by Rivest and Belmonte (2000), the naı̈ve

smoothed estimator ~V
naive

i underestimates the sampling variance. This can be seen as

follows. If Y is a log-normal random variable with mean m and variance t2, the mean of Y

is EðYÞ ¼ expðmÞexpðt2/2). It follows that the smoothed estimator ~V
naive

i underestimates

the true values by ignoring the second term expðt2/2) in the mean of the log-normal

random variable. Denote as v̂RB ¼ expðt̂2=2Þ the Rivest and Belmonte (2000) correction,
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where t̂2 is the estimated residual variance of the proposed log-linear regression model

(4). Then a GVF-smoothed estimator, denoted as ~V
GVF:RB

i , is given by

~V
GVF:RB

i ¼ ~V
naive

i · v̂RB ¼ ~V
naive

i · expðt̂2=2Þ: ð7Þ

The naı̈ve GVF estimator ~V
naive

i in Equation (6) underestimates the sampling variance

by expðt̂2=2Þ: This term is always greater than 1, and sometimes it can be large, depending

on the value of t̂2.

Hidiroglou et al (2019) proposed another correction term for the naı̈ve estimator ~V
naive

i .

Let ~V
naive

be the sum of the naı̈ve smoothed variance estimators, that is,
~V

naive

i ¼ S
m
i¼1

~V
naive

i , and ~Vtotal be the sum of the direct sampling variances, that is,
~V

total
¼ S

m
i¼1

~Vi. Following Hidiroglou et al. (2019), we define a correction term,

v̂HBY ¼ ~Vtotal= ~Vnaive, named as the Hidiroglou, Beaumont, and Yung (HBY) correction

term. This leads to a second GVF-smoothed variance estimator, denoted as ~V
GVF:HBY

i . It is

given by

~V
GVF:HBY

i ¼ ~V
naive

i · v̂HBY ¼ ~V
naive

i ·
~Vtotal

~Vnaive
ð8Þ

Note that v̂HBY is obtained as an alternative estimator to expðt2=2Þ using the method of

moments (Beaumont and Bocci 2016). This avoids the sensitivity of the GVF model to

deviations from the normality assumption of 1i in model (4). The HBY correction term is

also equivalent to the so-called smearing estimator, see Duan (1983). A nice property of
~V

GVF:HBY

i is that the average of the smooth variance estimates is equal to the average of the

direct sampling variance estimates, that is,

1

m

Xm

i¼1

~V
GVF:HBY

i ¼
1

m

Xm

i¼1

V̂i:

This property may ensure that the smoothing procedure does not systematically

overestimate or underestimate the sampling variances.

2.2. Smoothing Using Design Effects

Let p̂iw be the direct design-based estimate for a proportion pi and V̂i the corresponding

direct sampling variance under complex design for the i-th small area. Then the estimated

design effect can be approximately computed as

def f i ¼
V̂i

p̂iwð1 2 p̂iwÞ=ni þ V̂i=ni

; ð9Þ

where ni is the sample size of the i-th small area; see Gambino (2009, 143), Remark iii for

a more detailed discussion of the special case 0-1 variables. Noting that the def fi in

Equation (9) is not equal to 1 under simple random sampling design, we modify the def fi
by multiplying it by a correction term ðni þ 1Þ=ni:

def f i ¼
V̂i

p̂iwð1 2 p̂iwÞ=ni þ V̂i=ni

·
ni þ 1

ni

: ð10Þ
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Using Equation (10), we can re-write the design-based sampling variance V̂i as

V̂i ¼ def f i:
p̂iwð1 2 p̂iwÞ

ni

· 1þ
1 2 deff i

ni

� �21

: ð11Þ

If the sample size ni is large, the term ð1 2 def f iÞ=ni may be negligible in Equation (11)

so that the Equation (11) reduces to

V̂i ¼ def f i:
p̂iwð1 2 p̂iwÞ

ni

: ð12Þ

Equation (12) is used, for example, in Liu et al. (2014) for sampling variance smoothing

and modeling. However, in small area estimation, ni can be very small, and the term

ð1 2 def f iÞ=ni may not be negligible.

We can compute all the design effects def f i’s using Equation (10) for all areas, and the

average value over all areas, thereby obtaining a smoothed design effect

def f ¼ 1
m
S

m
i¼1def f i. The average proportion estimate over all areas is given by �pw ¼

1
m
S

m
i¼1p̂iw: Replacing the def fi by def f and p̂iw by �pw in Equation (11), a DEFF-smoothed

estimator of the sampling variance for proportion estimate p̂iw is:

~V
DEFF

i ¼ def f :
�pwð1 2 �pwÞ

ni

: 1þ
1 2 def f

ni

� �21

: ð13Þ

If the sample size ni is large, then the term 1 2 def f
� �

=ni in ~V
DEFF

i can be negligible.

The smoothed variance ~V
deff

i can then be simplified to

~V
def f

i ¼ deff :
�pwð1 2 �pwÞ

ni

ð14Þ

2.3. Comparing the GVF and DEFF Smoothing

We now show the similarity between the GVF-estimators and the DEFF-estimator ~V
DEFF

i

under certain conditions. Using ~V
GVF:RB

i as an illustration, we can express this term as:

~V
GVF:RB

i ¼ exp b̂0 þ b̂1�logðniÞ
� �

�expð
t̂2

2
Þ

¼ expðb̂0 þ
t̂2

2
Þ·exp b̂1·logðniÞ

� �
¼ C0�expðlogðniÞ

b̂1 Þ

¼ C0�n
b̂1

i

where C0 ¼ expðb̂0 þ
t̂ 2

2
Þ is a constant. If the value of the regression coefficient b̂1 is close

to -1, then the GVF-estimator ~V
GVF:RB

i can be approximately expressed as ~V
GVF:RB

i < C0/ni.

The DEFF-estimator ~V
DEFF

i can be rewritten as follows:

~V
DEFF

i ¼ def f�
�pwð1 2 �pwÞ

ni

� 1þ
1 2 def f

ni

� �21
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¼
C1

ni

�
ni þ 1 2 def f

ni

� �21

¼
C1

ni þ 1 2 def f

<
C1

ni

;

where C1 ¼ def f��pwð1 2 �pwÞ is a constant. Both the GVF-estimator ~V
GVF:RB

i and the

DEFF-estimator ~V
DEFF

i are proportional to n21
i if the regression coefficient b̂1 is close to -1

in the GVF regression model. Given this condition, both the GVF and DEFF smoothed

variances should perform similarly. Hirose et al. (2023) used the arc-sin transformation for

binomial samples to construct the Fay-Herriot model with a fixed known variance of 1/4ni,

which on the other hand, shows that the sampling variance is proportional to 1/ni. Their

result for variance estimation via a binomial data transformation is consistent with our

proposed GVF and DEFF smoothing variance.

In practical applications, we can combine the GVF and DEFF smoothed variance

estimators by averaging them. We denote this averaged estimator as ~V
ASM

i ¼ ð ~V
GVF:RB

i þ
~V

GVF:HBY

i þ ~V
DEFF

i Þ=3; where ASM stands for average smoothed. This simple data pooling

method can provide additional smoothing to obtain the final smoothed variance estimate.

As we will see in the LFS small area application (Section 4) and a simulation study

(Section 5), the average smoothed estimator ~V
ASM

i can perform very well and lead to large

bias and CV reductions for small area estimates.

3. Application of Sampling Variance Smoothing

In this section, we will compare the GVF-estimators and DEFF-estimator by analysing

two survey data sets. These data sets have information about the disease rate estimates of

the Canadian Community Health Survey (CCHS) and adult disability rate estimates from

the Participation and Activity Limitation Survey (PALS). Estimated variances for these

two surveys are computed via the Rao-Wu bootstrap procedure. This procedure constructs

bootstrap weights that reflect the sample details: see Rao and Wu (1988) or Rao et al.

(1992) for details on how the bootstrap weights are computed.

3.1. CCHS Application

The CCHS is a federal survey conducted by Statistics Canada. The primary objective of

CCHS is to provide timely and reliable estimates of health determinants, health status, and

health system utilization across Canada. It is a cross-sectional survey that is carried out on

a two-year collection cycle. The first year of the survey cycle “x.1” targets individuals

aged 12 or older who are living in private dwellings, and it is a general population health

survey with a large sample (130,000 persons) designed to provide reliable estimates at the

health region, provincial and national levels. The second year of the survey cycle “x.2” has

a smaller sample (30,000 persons) allocated based on provincial sample buy-ins and is

designed to provide provincial and national level results on specifically focused health

topics. Cycle “x.1” of the CCHS collected data corresponds to 136 health regions in the ten

provinces and three territories. It primarily used two sampling frames. The first one, used
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as the primary frame, was based on the area frame designed for the Canadian Labour Force

Survey, and within the area frame, a multistage stratified cluster design was used to sample

dwellings. The second frame consists of a list of telephone numbers. Random digit dialing

methodology is used in some of the health regions for cost reasons. Following You and

Zhou (2011), we use a small data set from Cycle 1.1 containing the estimates of asthma

rates for 20 health regions in the province of British Columbia (BC) to demonstrate the

sampling variance smoothing. In our data analysis, we use direct point estimates and direct

sampling variance estimates to obtain the smoothed sampling variance estimates. Details

of the methodology for the CCHS are given in Béland (2002).

For the CCHS data set, Figure 1 shows the plot of the log sampling variance log( ~Vi) vs

log sample size log(ni) with the fitted regression line. The GVF model fitting is very good

as shown in Figure 1. The estimated regression parameters with standard errors (in

parentheses) in the log-linear regression model (4) are obtained as b̂0 ¼ 22:861 (1.321)

and b̂1 ¼ 20:926 (0.208). The residual correction term exp(t̂2/2) is equal to 1.029. The

HBY correction term in (8) is obtained as v̂HBY ¼ V̂ total= ~Vnative ¼ 1:031: Since these two

correction terms are almost identical for this data set, so the two GVF estimators ~V
GVF:RB

i

and ~V
GVF:HBY

i are almost the same. Since the correction term is close to 1, the naı̈ve

estimator ~V
native

i just slightly underestimates the sampling variances.

Recall that in section 2, we claimed that the DEFF-estimator and the GVF-estimator

should be approximately equivalent if the regression coefficient b1 was close to -1. In this

application, the estimated coefficient is b̂1 ¼ 20:926: We would therefore expect ~V
DEFF

i
,

~V
GVF:RB

i and ~V
GVF:HBY

i to be similar as well. Figure 2 compares the direct and smoothed

sampling variance estimates sorted by the corresponding sample size (from small to large).

For a more detailed comparison, we use the standard deviation as the squared root of the

variance and plot the smoothed deviation with the direct deviation. In this application, all

three smoothed variance estimators ~V
GVF:RB

i , ~V
GVF:HBY

i and ~V
DEFF

i and are almost identical

and perform almost the same. The three smoothed estimators perform as expected and lead

to smoothed sampling variances. For areas with large sample sizes, as expected, the

smoothed variances and the direct variances are close to one another, and the smoothing

method hardly modifies the direct estimate of sampling variance for large sample sizes.
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Fig. 1. Log direct sampling variance vs log sample size (BC health data).
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3.2. PALS Application

The Participation and Activity Limitation Survey (PALS) is a post census survey that

collects information about persons with disabilities whose everyday activities are limited

because of a health-related condition or problem. This nationwide survey provides key

information on the prevalence of different types of disabilities, on support provided to

people with disabilities, on their labour force profile, their income, and their participation

in society. The PALS sample was 48,000, consisting of approximately 39,000 adults and

9,000 children. The sample was selected using a two-phase stratified design where in the

first phase, a Census questionnaire was distributed to approximately one out of five

persons, and in the second phase, a stratified sample was selected based on characteristics

from the first phase. However, the number of respondents to the survey does not allow for

accurate direct estimates at the sub-provincial level. Following the demands to that effect

which were expressed by many provincial governments as well as municipalities,

Statistics Canada has put in place a model-based approach to small area estimation for the

disability count and rate. Following Bizier et al. (2009), we consider the data of adult

disability rate estimates for 116 small areas across Canada. These 116 areas include

metropolitan areas, census agglomerations, and other sub-provincial areas. The survey

took place between November 2006 and February 2007. Details of the methodology for

PALS are given in Langlet et al. (2003).

For the PALS data set, Figure 3 shows the plot of log direct sampling variance vs log

sample size. It is very clear from Figure 3 that the linear regression GVF model (4) is

suitable for the PALS data. The estimated regression parameters with standard errors in

the log-linear regression model (4) are obtained as b̂0 ¼ 23.033 (0.263) and b̂1 21.029

(0.056). The residual correction term exp(t̂2/2) is equal to 1.334. The HBY correction term

is v̂HBY ¼V̂ total= ~Vnavie ¼ 1.163. Since the estimated coefficient is b̂1 ¼ 21.029, we

would expect the DEFF and GVF estimators to perform similarly. The naı̈ve estimator
~Vnavie

i will underestimate the sampling variances, and estimates ~VGVF:RB
i will be slightly

larger than ~V
GVF:HBY

i in this example.
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Fig. 2. Comparison of direct and smoothed deviation (BC health data).
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Figure 4 compares the direct and smoothed sampling variances for the PALS data. The

sampling variance estimates are sorted by the corresponding sample size from small to

large. It is clear from Figure 4 that the direct sampling variance estimates have large

variations when the sample size is small. The GVF and DEFF smoothed estimators

perform similarly and lead to smoothed variance estimates. When the sample size is large,

the direct and the three smoothed estimates are about the same as expected. When the

sample size is small, the smoothed variances could be different. In this case, we could use

the average ASM estimator ~VASM
i ¼ ð ~VGVF:RB

i þ ~VGVF:HBY
i þ ~VDEFF

i Þ=3 as a simple data

pooling method to obtain the final smoothed variance estimate.

4. LFS Small Area Estimation Using Smoothed Sampling Variances

In this section, we apply the variance smoothing methods to the Canadian Labour Force

Survey (LFS) data and compare the small area estimates based on the smoothed sampling

variances. In the previous section, we displayed the performance of variance smoothing

using GVF and DEFF as applied to the CCHS and PALS surveys. For the LFS, we will
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Fig. 3. Log direct sampling variance vs log sample size (PALS data).
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Fig. 4. Comparison of direct and smoothed deviation (PALS data).
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exhibit the performance of GVF and DEFF, and the improvement of model-based small

area estimates that use the smoothed sampling variances. The small area estimates of the

LFS will be compared to the corresponding census values for the same reference month

(May 2016).

The LFS produces monthly estimates of the unemployment rate at the national and

provincial levels. The LFS also releases unemployment estimates for sub-provincial areas

such as Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs) across

Canada. Details of the methodology of the LFS are given in Methodology of the Canadian

Labour Force Survey (2017). The estimated variances for the LFS are also computed

through the Rao-Wu bootstrap procedure. For some sub-provincial areas, the direct

estimates are not reliable because the sample sizes in some areas are quite small. Small

area estimation, as applied to the LFS, usually estimates unemployment rates for local sub-

provincial areas such as CMA/CAs using small area models. These models are discussed

in Hidiroglou et al. (2019), Lesage et al. (2021), You et al. (2003), and You (2008, 2021).

We apply the Fay-Herriot model given by (1) and (2) to the May 2016 unemployment

rate estimates at the CMA/CA level. There are 128 CMA/CAs (areas) in our study: three of

these areas have a sample size smaller than or equal to 10, 10 have a sample size smaller

than 30, 33 have a sample size smaller than 60, and 59 have a sample size smaller than 120,

representing almost 50% of the areas in the study. In contrast, there are also 13 of the 128

areas with a sample size larger than 1,000, including some large cities such as Toronto,

Montreal, and Vancouver. The Median sample size of all 128 areas is 129. We used four

smoothed variance estimators in the LFS application, namely, ~VGVF:RB
i ; ~VGVF:HBY

i ; ~VDEFF
i

and the average smoothed estimator ~VASM
i ¼ ð ~VGVF:RB

i þ ~VGVF:HBY
i þ ~VDEFF

i Þ=3. Figure 5

shows the plot of log direct sampling variance vs log sample size for the LFS data. The

GVF model fitting is very good as shown in this figure, except for one or two outliers.

We first obtain the smoothed sampling variances for all the 128 CMA/CAs using the

proposed ~V
GVF:RB

i , ~V
GVF:HBY

i , ~V
DEFF

i and ~V
ASM

i . For the GVF model (4), the regression

estimates with standard errors are b̂0 ¼ 23.194 (0.306) and b̂1 ¼ 20.901 (0.058). The

RB residual correction term exp(t̂2/2) is equal to 1.467 and the HBY correction term is
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Fig. 5. Log direct sampling variance vs log sample size (LFS data).
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v̂HBY ¼ V̂ total= ~Vnaive ¼ 1.786. Since the regression coefficient b̂1 ¼ 20.901 is close to -1,

and the difference between the two correction terms is not large, we could expect the GVF

and DEFF lead to similarly smoothed sampling variances for the LFS data. Figure 6 shows

the GVF and DEFF smoothed estimators perform very similarly and all lead to smoothed

variance estimates.

We applied the empirical best linear unbiased prediction (EBLUP) approach in the LFS

application to obtain the model-based estimates. The details of the EBLUP estimator and

related mean squared error (MSE) estimation based on the Fay-Herriot model with REML

method to estimate the model variance can be found, for example, in Rao and Molina

(2015) and You (2021). Local area employment insurance monthly beneficiary rate is used

as an auxiliary variable xi in the linking model (2) as in Hidiroglou et al. (2019) and You

(2008, 2021), The resulting linking model (2) is specified as ui ¼ d1 þ xid2 þ vi, and

v
i

, ð0;s2
v). The model-based estimates and the direct estimates are compared with the

census estimates to evaluate the effects of sampling variance smoothing. We applied the

Fay- Herriot model to the 128 CMA/CA LFS unemployment rate data with the four

different smoothed sampling variances and obtained the corresponding EBLUP estimates.

The small area EBLUP estimates are compared via the absolute relative error (ARE) of the

direct and EBLUP estimates with respect to the census estimates for each CMA/CA as

follows:

AREi ¼
uCensus

i 2 uEst
i

uCensus
i

����

����;

where uEst
i is the direct or the EBLUP estimate and uCensus

i is the corresponding census

value of the LFS unemployment rate. It is a common practice to evaluate the model-based

estimates with the census values, for example, as in Hidiroglou et al. (2019) and You

(2021). We then take the average of AREs over CMA/CAs by different subgroups with

respect to the sample size, as in Hidiroglou et al. (2019). Table 1 presents the estimates of
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the regression parameters and model variance in the linking model for the LFS application

with different smoothed input sampling variances.

From Table 1, the estimates of the regression coefficients d1 and d2 are very similar for

the different input smoothed sampling variances. The model variance estimate is slightly

smaller using the GVF.HBY sampling variance in our application. Using the ASM

sampling variance, the estimates of d1, d2 and s2
v are quite good and reasonable as

compared to the estimates that use the GVF or DEFF sampling variances.

Table 2 presents the average ARE for the direct LFS and EBLUP estimators based on

different input sampling variance estimates. For comparison, we also used the direct

sampling variance as input sampling variance in the Fay-Herriot model. For example, for

EBLUP(DIR) the direct (DIR) sampling variance estimate is used in the Fay-Herriot

model. EBLUP(GVF.RB) means that the smoothed sampling variance estimate ~V
GVF:RB

i

(GVF.RB) is used, etc. It is clear from Table 2 that the EBLUP estimates substantially

improve the direct estimates by reducing the ARE. Even with the use of the direct

sampling variance estimates, EBLUP(DIR) results in much smaller ARE than the direct

survey estimator. However, by using the smoothed sampling variance estimates, EBLUP

performs substantially much better than the direct estimator. The AREs are reduced for

each area group, and consequently over all the areas. In general, all the EBLUPs with the

four smoothed sampling variances perform very similarly. Amongst the EBLUP

estimators using the smoothed sampling variances, EBLUP(GVF.HBY) has a slightly

larger ARE than the others, and the EBLUP(DEFF) has a slightly smaller ARE. The

respective AREs of EBLUP(GVF.RB), EBLUP(GVF.HBY) and EBLUP(DEFF) over all

the 128 CMA/CAs are 0.138, 0.144, and 0.135. EBLUP(DEFF) performs the best in terms

Table 1. Estimates of regression parameter and model variance in

the Fay-Herriot model.

Parameters GVF.RB GVF.HBY DEFF ASM

d1 4.884 4.916 4.875 4.892
d2 0.796 0.788 0.796 0.793
s2
y 0.551 0.269 0.836 0.532

Table 2. Comparison of ARE for EBLUP estimates based on the different input sampling variances.

CMA/CAs Direct
LFS

EBLUP
(DIR)

EBLUP
(GVF. RB)

EBLUP
(GVF.HBY)

EBLUP
(DEFF)

EBLUP
(ASM)

25 smallest areas
(sample size less than 50)

0.489 0.279 0.181 0.184 0.180 0.182

Next 25 smallest areas
(sample size 50 to 100)

0.338 0.214 0.146 0.147 0.146 0.146

Next 25 smallest areas
(sample size 100 to 180)

0.276 0.198 0.138 0.143 0.134 0.138

Next 25 smallest areas
(sample size 180 to 550)

0.198 0.161 0.134 0.141 0.130 0.135

28 largest areas
(sample size 550 and over)

0.132 0.125 0.099 0.108 0.091 0.099

Overall areas 0.283 0.194 0.138 0.144 0.135 0.139
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of relative error. For the average smoothed sampling variance ~V
ASM

i used in the Fay-

Herriot model, the EBLUP(ASM) has an overall ARE value of 0.139, which is between

the ARE values of EBLUPs using GVF and DEFF. The EBLUP(ASM) performs very

well.

In terms of the overall average CV, EBLUP also reduces the CV substantially over the

direct estimator. The direct LFS estimator has an average CV of 39.4%, EBLUP(DIR) has

an average CV of 24.5%.The EBLUP(GVF.RB) has an average CV of 10.3%,

EBLUP(GVF.HBY) has a slightly smaller average CV of 8.2%, and EBLUP(DEFF) has

the average CV value 11.8%. The EBLUP(ASM) has an average CV of 10.2%. This means

that using smoothed sampling variances substantially reduces the CV for EBLUPs, and

once more the CV for EBLUP(ASM) is between the CV values of EBLUPs that use the

GVF and DEFF variances.

EBLUP(ASM) has a smaller ARE value than either EBLUP(GVF.RB) or

EBLUP(GVF.HBY). It also has a smaller CV than EBLUP(GVF.RB) and EBLUP(DEFF).

The use of the averaged smoothed sampling variances ~V
ASM

i in the model allows us to

achieve a balanced reduction for both ARE and CV in our application. By comparing the

ARE and CV for the EBLUP estimates, it is clear that the average smoothed estimator
~V

ASM

i performs very well.

Lesage et al. (2021) considered the following smoothing model, denoted as the LBB

model, for sampling variance smoothing:

logðV̂iÞ ¼ b0 þ b1logðziÞ þ b2logð1 2 ziÞ þ b3logðniÞ þ 1i; i ¼ 1; :::;m; ð15Þ

where zi is the employment insurance beneficiary rate used in the Fay-Herriot model as an

auxiliary variable to obtain the EBLUP estimators. By applying the LBB smoothing model

(15) to the 128 area sampling variance data, we have the following regression estimates

b̂0 ¼ 24:443; b̂1 ¼ 20.486, b̂2 ¼ 229.139 and b̂3 ¼ 20.886. The residual correction

term v̂RB ¼ exp t̂2=2
� �

is equal to 1.461 and the HBY correction term is

v̂HBY ¼ V̂ total= ~Vnaive ¼ 1.782. We denote ~V
LBB:RB

i as the smoothed variance estimator

based on the LBB model (15) and formula (7) with a correction term v̂RB ¼ 1.461.

Similarly, let ~V
LBB:HBY

i be the smoothed variance estimator based on the LBB model (15)

using formula (8) with a correction term v̂HBY ¼ 1.782. We now compare the EBLUP

estimates based on the LBB smoothing model and the proposed smoothing method. In

particular, we compare the proposed EBLUP(ASM) to EBLUP estimates using ~V
LBB:RB

i

and ~V
LBB:HBY

i , e.g., EBLUP(LBB.RB) and EBLUP(LBB.HBY).

Table 3 presents the average ARE to compare the effects of variance smoothing using the

ASM and the LBB procedures. It is clear from Table 3 that all EBLUP estimates perform

very well and improve the direct survey estimates by substantially reducing the ARE with

respect to the census values. EBLUP(ASM) and EBLUP(LBB.RB) perform almost the

same, and EBLUP(LBB.HBY) has slightly larger ARE, same as the performance of

EBLUP(GVF.HBY) in Table 2. EBLUP(LBB.HBY) and EBLUP(GVF.HBY) perform

almost identically by comparing the results in Table 2 and Table 3. In terms of CV,

EBLUP(LBB.RB) and EBLUP(ASM) have the same average CV 10.2%, and

EBLUP(LBB.HBY) has the same average CV 8.2% as EBLUP(GVF.HBY).
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The LFS small area application shows that the proposed GVF model (4) and the

proposed sampling variance smoothing methods GVF, DEFF and ASM perform very well

by comparing the EBLUP estimates with the census values and other GVF smoothing

model for LFS application, for example, Lesage et al. (2021).

5. Simulation Study

In this section, we conduct a simulation study to verify and evaluate the proposed GVF,

DEFF, and ASM smoothing estimators for small area estimation with data generated from

different mechanisms. Following Lesage et al. (2021), we used the LFS data studied in

Section 4 to generate the simulated data. We considered m ¼ 128 areas in the simulation

study. Let ui be the simulated true parameter of interest. The ui’s were generated as ui ¼

g0 þ g1zi þ ni, where zi is the LFS beneficiary rate used in Section 4, g0 ¼ 0.05,

g1 ¼ 0.88, and ni was generated from N(0, s2
v), and s2

v ¼ 4.78653e 2 05. The values of

g0, g1 and s2
v were obtained from the EBLUP estimation of LFS application in Section 4

with the ASM smoothed sampling variances as input data. To generate the direct estimate

ûi for the parameter ui and the corresponding direct sampling variance, we considered two

approaches. The first one generated ûi from a binomial distribution, that is, ûi ¼ n 21
i

Binomial(ni, ui): Lesage et al. (2021) used the same simulation setup. The direct variance

estimator was then computed as V̂i ¼ (ni 2 1)21 ûi(1 2 ûi). We denote this simulation

setup as LBB setup. The second method generated the data directly from the Fay-Herriot

model using the sampling variance modeling given by You and Chapman (2006) and You

et al. (2013). The direct estimate ûi is generated as ûi ¼ niþ ei, where ei ¼ N(0, s2
i ) and

the sampling variance s2
i is obtained from Section 4 using the average smoothed sampling

variance ASM. The sampling variance s2
i is treated as the true sampling variance in the

simulation. The direct sampling variance estimate V̂i is generated using V̂i ¼ (di)
21s2

1x
2
di

,

where di ¼ ni 2 1, as of Rivest and Vandal (2002), Wang and Fuller (2003) and You

(2021). We denote this simulation setup as FHM (Fay-Herriot modeling) setup.

We generated 5,000 samples for the LBB and FHM simulation setup respectively.

Under the LBB simulation setup, the average estimated design effects def f is 1.0131 and

Table 3. Comparison of ARE for EBLUP estimates based on the different GVF models and smoothed sampling

variances.

CMA/CAs Direct
LFS

EBLUP
(ASM)

EBLUP
(LBB.RB)

EBLUP
(LBB.HBY)

25 smallest areas
(sample size less than 50)

0.489 0.182 0.181 0.183

Next 25 smallest areas
(sample size 50 to 100)

0.338 0.146 0.144 0.145

Next 25 smallest areas
(sample size 100 to 180)

0.276 0.138 0.137 0.142

Next 25 smallest areas
(sample size 180 to 550)

0.198 0.135 0.135 0.141

28 largest areas
(sample size 550 and over)

0.132 0.099 0.099 0.108

Overall areas 0.283 0.139 0.138 0.143
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the estimated b̂1 ¼ -1.0081. For simulation under the FHM setup, the average estimated

design effects def f is 2.6679 and the estimated b̂1 ¼ -0.7302. Table 4 presents the ARE

comparison results to the average CV for the direct estimator and EBLUPs that use

different smoothed sampling variances. Following Hidiroglou and You (2016), we also

compute and compare the confidence interval coverage rate (CR) of the EBLUPs. The

95% confidence interval of the EBLUP estimator is obtained as EBLUP ^1.96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mseðEBLUPÞ
p

. Table 4 also reports the confidence interval coverage rate for EBLUPs

over the 5,000 simulated samples.

Under the LBB simulation setup, the ARE of the direct estimator is 0.2553 with an

average CV of 36.57%. As expected, the EBLUP has a much smaller ARE and CV.

EBLUP(DIR) has an ARE of 0.0829 with an average CV of 10.12%, whereas the EBLUPs

using smoothed sampling variances have even smaller AREs and CVs. The GVF, DEFF

and ASM lead to almost the same ARE which is around 0.0715, and GVF.HBY has

slightly smaller CV compared with GVF.RB or DEFF as in the real LFS application.

Under the FHM simulation setup, again, the proposed GVF, DEFF and ASM lead to

smaller AREs and CVs than either the direct estimator or the EBLUP that uses direct

sampling variances. Using the ASM variance estimates leads to a smaller CV than using

the GVF and DEFF as shown in Table 4 under the FHM simulation setup. In general the

ASM leads to a balanced ARE and CV in the simulation study, which is the same as in the

LFS application, which indicates that using ASM as a data pooling to average the GVF and

DEFF is useful in practice for the sampling variance smoothing. Note that using the ASM

is suggested, but it is also a matter of choice. For confidence intervals, the EBLUPs all

provide similar and reasonable coverage of around 93–94%. In summary, as shown in the

simulation results reported in Table 4, the proposed GVF, DEFF and ASM smoothing

models and methods all perform similarly and very well.

6. Conclusions and Suggestions

In this article, we have proposed sampling variance smoothing estimators using the

generalized variance function method and smoothed design effect method for small area

estimation. The proposed smoothing models and methods only require the use of the

sample size in the model and the computation of design effects. The proposed estimators
~V

GVF:RB

i , ~V
GVF:HBY

i and ~V
DEFF

i usually result in similar smoothed variance estimates.

In practical applications, we may use the average smoothed estimator ~V
ASM

i as a data

pooling procedure to obtain the final smoothed variance estimate. The use of ASM may be

Table 4. Comparison of ARE, CV and coverage rate (CR) for simulation study.

LBB simulation setup FHM simulation setup

ARE CV CR ARE CV CR

Direct estimator 0.2553 36.57% 0.3112 78.95%
EBLUP(DIR) 0.0829 10.12% 94.06% 0.0872 10.26% 93.92%
EBLUP(GVF.RB) 0.0713 6.38% 94.05% 0.0776 8.54% 93.71%
EBLUP(GVF.HBY) 0.0716 6.13% 93.11% 0.0776 8.61% 93.85%
EBLUP(DEFF) 0.0714 6.28% 93.73% 0.0765 8.37% 93.21%
EBLUP(ASM) 0.0715 6.22% 93.68% 0.0769 8.27% 93.36%
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particularly useful and may have more advantages when the GVF and DEFF lead to

different smoothing estimates. The proposed smoothing model and method can be easily

implemented in practice. The proposed smoothing methods simplify the smoothing

procedure for practical users as they do not need other complicated GVF models or

auxiliary variables for the sampling variance modeling. The small area estimation results

in our LFS application in Section 4 and the simulation study in Section 5 both indicate that

the proposed GVF, DEFF and ASM perform very well.

It may also be possible in practice to consider a weighted average of the three variance

estimators estimators ~V
GVF:RB

i , ~V
GVF:HBY

i and ~V
DEFF

i . For example, if DEFF leads to a larger

CV for the final small area EBLUP estimates, and GVF leads to a smaller CV for the final

EBLUP estimates, then we may want to reduce the weights for DEFF and put more

weights on GVF. The weights could be proportional to the inverse of the average CV of the

small area estimates corresponding to the smoothed sampling variances, as the idea of

small area estimation is to achieve the CV reduction and to obtain reliable small area

estimates as shown in our data analysis and simulation study. From Section 4,

EBLUP(GVF.RB) has an average CV of 10.3%, EBLUP(GVF.HBY) has a slightly

smaller average CV of 8.2%, and EBLUP(DEFF) has an average CV value of 11.8%. Then

we may construct a weighted ASM (WASM) smoothed sampling variance as follows:

~V
WASM

i ¼ ð ~V
GVF:RB

i þ 1:2* ~V
GVF:HBY

i þ 0:8* ~V
DEFF

i Þ=3:

This weighted smoothed sampling variance ~V
WASM

i puts more weight on ~V
GVF:HBY

i and

less weight on ~V
DEFF

i according to the inverse of the CVs of the corresponding EBLUPs.

We then obtained the EBLUP(WASM) using the weighted ~V
WASM

i , and compared the

results with the EBLUP(ASM). The ARE for EBLUP(ASM) is 0.1392, whereas the ARE

for EBLUP(WASM) is 0.1398. The average CV for EBLUP(ASM) is 10.2%, whereas the

average CV for EBLUP(WASM) is 9.96%. Thus by putting more weight on GVF.HBY

and less weight on DEFF, the EBLUP(WASM) has a slightly smaller CV than

EBLUP(ASM) as expected, and using the WASM leads to a very tiny increase in ARE.

The difference between using ASM and WASM in the LFS application is very small and

could be ignored. In general, the simple average ASM should provide adequate additional

smoothing by combining the GVF and DEFF smoothed variances.

For future work, we may consider more auxiliary variables in the GVF modeling for

both the real data analysis and simulation study. It would be interesting to study the

relationship between the GVF and DEFF estimators if other auxiliary variables including

design variables and/or proxies are available and used in the GVF models. Note that the

GVF models need the sample size as an auxiliary variable to make it compatible with the

smoothed DEFF procedure. Bertarelli et al. (2018) used a log CV modelling for

proportions instead of the variance. It would also be interesting to compare the log CV

modelling with the GVF modelling on log variance through real data analysis and

simulation study. For the averaged smoothing using both GVF and DEFF, more

combinations or choices of weights could be considered and evaluated via additional

simulation studies.

In practice, for areas with larger sample sizes, it may also be fine to use the direct

variances by assuming that the direct variance estimates are stable enough when the
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sample size is large. This is a reasonable procedure to follow, because as shown in

Figures 2, 4, and 6 in our applications, the direct estimate and smoothed estimate are

usually very similar for areas with larger sample sizes. It is possible to set a minima

threshold in terms of a minimum sample size, say nmin, to decide on the choice between

smoothed or direct variance estimates. If the sample size of an area is smaller than nmin,

then the preferred choice would be to use smoothed variance estimates. If on the other

hand, the sample size of an area is greater than nmin, then the preferred choice would be the

direct variance estimates. For example, Hidiroglou et al. (2019) used direct variance

estimates in the LFS small area estimation for the areas with large sample sizes. As a rule

of thumb, they set nmin ¼ 400 in their application and used the direct sampling variance

estimate when the sample size was greater than 400. However, care should be taken when

choosing the value for nmin, as more comparisons and studies may be needed in practice to

evaluate the results. In general, we recommend using the smoothed variance estimates for

all areas, as it is quite simple to apply, and can avoid the additional problem of settling a

value for nmin.

Finally, we make some recommendations for total variance smoothing using the

proposed methods. For the estimation of totals, we can modify the proposed method as

follows: If ŷiw is an estimator of a total, and if we know the corresponding population size

Ni, we can transform the total estimator ŷiw to a rate (proportion) estimator by dividing it

by Ni, that is, p̂iw ¼ ŷiw/Ni, and the corresponding sampling variance is

V̂iðp̂iwÞ ¼ V̂iðŷiwÞ=N2
i . We can apply the proposed smoothing methods for proportions to

get smoothed variance estimates ~Viðp̂iwÞ. Then the smoothed sampling variance for the

total can be simply obtained as ~ViðŷiwÞ ¼ ~Viðp̂iwÞ�N2
i . It is a good idea in practice to

transform the estimates of totals into estimates of proportions. The reason for this is that

the transformed proportion estimates are more easily modeled than estimates of totals. The

total estimates can be obtained by transforming back the model-based rate estimates.
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A look at non-probability surveys

Survey methodologies are currently in flux due to social and technological changes that

have led to a significant increase in refusals to participate and difficulties in accessing

individuals to interview. These problems may provoke significant biases and compromise

the validity of the results obtained. However, the development of new technologies has

facilitated the emergence of new data acquisition techniques, such as web surveys, that

present great advantages in terms of speed in obtaining data, reduced costs and the

possibility of accessing specific population sectors. Although web surveys can be

probabilistic, in practice many operate via self-selection and the principles of probability

sampling are not applied.

The analysis of three databases that compile surveys carried out during the first year of

the COVID-19 pandemic has made it possible to quantify this trend towards non-

probability sampling designs. The latter represent 38% of the 63 surveys included in

Oxford Supertracker, a global directory that compiles the most significant efforts to obtain

information on the social and policy-related impacts of the pandemic (Daly et al. 2020).

This figure rises to 92% in a review of surveys related to COVID-19 in Spain

(Sánchez-Cantalejo et al. 2023). Finally, according to a tracker of studies on Covid-19

carried out in the field of social sciences (Matias and Levitt 2023), 73% used a web survey

as their main mode of data collection, and of these, 90% used non-probability designs.

Although some authors believe that probability surveys might soon be phased out from

the production of official statistics, others, such as Beaumont (2020), argue that the time

has not yet come for this change because the alternatives are not reliable and generalisable

enough to eliminate the use of probabilistic surveys without severely sacrificing the

quality of the estimates obtained. This opinion is in line with Cornesse et al. (2020), who

summarised the empirical evidence on the accuracy of probability and nonprobability

sample surveys and recommended that probability sample surveys should continue to be

used, at least for the present.

Non-probability surveys, although they usually have large sample sizes, can present

important selection and coverage problems (Beaumont and Rao 2021), as in most cases the

sample generation process is unknown, which can compromise the generalisation of the
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results to the population under study. Accordingly, the use of non-probability surveys must

be accompanied by a significant effort to detect and correct biases in the sample, once the

raw data have been obtained.

Powerful new methodologies have been developed to infer parameters using data from

non-probability samples, and this research has been reviewed by Buelens et al. (2018), Rao

(2022), Valliant (2020) and Yang and Kim (2020), among others. The methods considered

include propensity score adjustment (Lee and Valliant 2009), propensity-adjusted

probability prediction (Elliott and Valliant 2017), inverse sampling (Kim and Wang 2019),

mass imputation (or statistical matching) (Rivers 2007), doubly robust methods (Chen

et al. 2019), kernel smoothing methods (Kern et al. 2021), superpopulation modelling

(Buelens et al. 2018) and combinations of these techniques (Castro-Martı́n et al. 2021; Liu

and Valliant 2023).

In this field, an immense number of papers have been presented in recent years,

reflecting the importance assigned to this question. Moreover, specialised sessions have

been held in many statistics and survey-oriented congresses, and special issues have been

published by journals (for example, Survey Methodology 48(2)). In this recent

publication, Wu (2022) summarised the state of the literature on the analysis of non-

probability survey data. Further comments on this article contributed to its interest and

topicality.

In another noteworthy review, Kalton (2023) presented an overview of the history of the

use of probability and non-probability sampling, from the birth of surveying to the present

day. In his words, “This is an exciting and challenging time for survey methodologists”.

In practice, however, the majority of non-probability surveys do not apply these error

correction techniques, making at most only basic adjustments by post-stratification or

calibration with sociodemographic variables. Thus, Sanchez-Cantalejo et al. (2023) found

no survey that used any of the aforementioned new methods to adjust for self-selection

bias.

Nevertheless, it is necessary to highlight the importance of correcting self-selection

biases, and to make modern techniques better known among survey designers and

practitioners. The Handbook of Web Surveys represents a good means of introducing these

methodologies, since it is aimed at a broad sector, including researchers and end-users, and

provides basic knowledge on this topic.

In its 14 chapters, the Handbook provides a comprehensive description of the field of

web surveys and associated problems. The following chapters are especially valuable

regarding non-probability surveys.

Chapter 11 examines the estimation problems arising from the self-selection of sample

elements in a survey. After introducing the problem of sample representativeness and

providing some examples from real surveys, the basic concepts of estimation in

probability samples are presented and explicit expressions are obtained for the biases of

the sample means and the factors that may influence these biases. This chapter also

discusses the use of reweighting techniques to reduce (but not necessarily eliminate) self-

selection bias.

Chapter 12 details various weighting adjustment techniques, including post-

stratification, generalised regression, the raking ratio method and calibration estimation.

These techniques are well-known means of dealing with non-response or undercoverage.
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Their effectiveness in reducing self-selection bias is examined in two practical situations:

when the population distribution of the auxiliary variables is known, and when it must be

estimated from a reference sample.

Chapter 13 is more innovative and introduces the concept of response probabilities,

describing how they can be estimated through response propensities under a Missing at

Random pattern. Logit, probit and linear models are considered for the propensities, and

the advantages and disadvantages of each are considered. Two approaches based on these

response propensities are then described: inverse propensity weighting and response

propensity stratification. The chapter also includes a simulation study in which these two

approaches are compared against the base procedure, when no correction is applied.

In my opinion, the authors should have made some reference (without entering into

exhaustive detail) to other, more current, methodologies, at least mentioning statistical

matching, a technique that has been known for decades and which in many cases has

proven to be more appropriate than inverse propensity weighting and response propensity

stratification. I would also have liked to see a real application in this chapter, in addition to

the simulation study.

Other questions that might usefully have been addressed include the selection of

auxiliary variables (Ferri-Garcı́a and Rueda 2022) and the use of classification and

regression machine learning techniques (Buelens et al. 2018; Ferri-Garcı́a and Rueda

2018; Kern et al. 2021), which are often used as an alternative to generalised linear

models. However, this omission can be considered normal since the Handbook is intended

to be a generic introduction to web surveys, not a specific manual on non-probability

surveys.

In conclusion, this Handbook provides a comprehensive insight into the potential of

web surveys for data collection, highlighting the problems of coverage and self-selection

bias that can arise with this type of survey. As an introduction to the problem of estimation

with data obtained in non-probability surveys, this text is especially useful for researchers

who are not specialists in sampling theory, but require web surveys as a means to obtain

information.
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Böhning, Dankmar, University of Southampton, Southampton, UK

Bollinger, Christopher, University of Kentucky, Lexington, Kentucky, U.S.A.
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