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Granger causality and time series regression 
for modelling the migratory dynamics of infuenza 

into Brazil 

Aline Foerster Grande1, Guilherme Pumi1,2 and Gabriela Bettella Cybis1 

Abstract 

In this work we study the problem of modelling and forecasting the dynamics of the in-
fuenza virus in Brazil at a given month, from data on reported cases and genetic diver-
sity collected from previous months, in other locations. Granger causality is employed as 
a tool to assess possible predictive relationships between covariates. For modelling and 
forecasting purposes, a time series regression approach is applied considering lagged 
information regarding reported cases and genetic diversity in other regions. Three dif-
ferent models are analysed, including stepwise time series regression and LASSO. 

MSC: 62P10, 62J05, 62J07, 92D30. 

Keywords: Flu, time series regression, variable selection, genetic diversity, Granger causality. 

1. Introduction 

Caused by the infuenza virus, the fu is one of the most prevalent diseases in Brazil 
and worldwide, infecting about 10% of the world’s population every year and causing 
a toll between 250,000 and 500,000 deaths annually (Barr et al., 2010; Rambaut et al., 
2008). It is characterized by an acute infection of the respiratory system. Common 
symptoms are cough, fever, headaches, throat and muscle pain (Eccles, 2005; Rambaut 
et al., 2008). Due to its severity, the World Heath Organization (WHO) actively surveys 
the virus through the Global Infuenza Surveillance and Response System (GISRS) Net-
work. The patterns of infuenza incidence are infuenced by seasonality and the emer-
gence of new variants – new types of virus that infect humans for the frst time thus 
managing to spread further due to reduced immunity in the population. According to the 
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WHO, extensive vaccination against infuenza is the most effective measure for its pre-
vention (Barr et al., 2010). Public vaccination policies, therefore, become a fundamental 
agent in preventing serious epidemics and reducing the death toll from infuenza. 

Severe infuenza cases require hospitalization and intensive care, including the need 
for artifcial respirators. With the emergence of COVID-19, such precious assets have 
become scarce in many countries. Thus, moving forward, the forecast of infuenza cases 
can help guide public health care systems in allocating resources and planning for sea-
sonal concomitance of the two diseases. 

A global dispersion process is responsible for seeding new variants that drive yearly 
infuenza epidemics through most of the world. A frequent pattern is that new lineages 
affect the northern hemisphere frst during the winter season. These variants tend to 
arrive latter in regions of the southern hemisphere such as South America and Oceania 
(Lemey et al., 2014; Petrova and Russell, 2018). This movement, if mathematically well 
described and statistically well modelled, has the potential to allow for predictions for 
the incidence of infuenza, as well as the description of the strains expected to circulate 
in Brazil from data collected in Europe, Asia, and the United States during the winter 
season in the northern hemisphere. Such a forecast could be of great value for planning 
and implementation of public vaccination policies to reduce potential epidemics and 
minimize deaths due to infuenza in Brazil. 

In this paper, we study the problem of forecasting the number of infuenza cases in 
Brazil at a given time t from data on infuenza cases, as well as data related to genetic 
diversity, collected in other regions of the globe in preceding months. 

2. The infuenza virus 

There are three common types of infuenza viruses, infuenza A, B and C, the frst two 
being responsible for seasonal epidemics. The evolutionary dynamics of infuenza A 
is composed by rapid mutation, natural selection and frequent rearrangement (Rambaut 
et al., 2008). Of the three types of viruses, type A is the one with the highest replication 
capacity in humans. Most of its cases occur in winter and in countries with temperate 
climates. 

Infuenza A type is subdivided into subtypes according to their surface proteins 
hemagglutinin (H1, H2 and H3) and neuraminidase (N1, N2). In this study, our goal 
is to investigate the behaviour of the two most recurrent subtype of infuenza A, H1N1 
and H3N2. 

The H1N1 subtype appeared in 1918 causing the Spanish fu pandemic, one of the 
most deadly pandemics in history, affecting about a quarter of the world’s population 
and responsible for tens of millions of deaths (Garten et al., 2009). The H1N1 fu virus 
reappeared in 1977 and subsequently its epidemics showed lower mortality rates when 
compared to the H3N2 epidemics (Rambaut et al., 2008). Then, in 2009 a pandemic of 
H1N1 occurred, widely known as the swine fu pandemic. The virus was frst reported 
in Mexico, spreading across the world in the following months and infecting anywhere 



163 Aline Foerster Grande, Guilherme Pumi and Gabriela Bettella Cybis 

between 700 million and 1.4 billion of people (Rambaut and Holmes, 2009). After 
the 2009 pandemic, the H1N1 virus continued circulating, being responsible for annual 
seasonal outbreaks with high mortality rates in Brazil. The new phylogenetic groups (of 
origin) of the H1N1 virus, seem to appear in the northern hemisphere, arriving in Brazil 
only in the seasonal outbreak of the following year (Silva, 2015). 

The H3N2 subtype emerged in 1968 as the third pandemic of the 20th century called 
the Hong Kong fu and has dominated seasonal infuenza A virus epidemics in recent 
years (Ibiapina, Costa and Faria, 2005). Born et al. (2016) found that the strains of 
the seasonal infuenza A(H3N2) epidemics in South America are powered by a continu-
ous introduction of viral variants from other geographic regions, especially from North 
America, and an extensive viral exchange among South American countries. They also 
found that the subtype tends to arrive in Brazil from neighbouring countries in South 
America, mainly through its south-east region. 

2.1. Migratory dynamics 

The source-sink model for global fu circulation states that tropical regions are the origin 
of new seasonal mutations. Genetic diversity is generated in these original populations, 
and then advances to the northern and southern hemispheres. Additionally, China is 
identifed as the most likely epicentre of the fu A virus (Rambaut et al., 2008). More 
recent phylogeographic studies have found that there is substantially more viral fow 
between locations, and that the pattern does not adhere strictly the source-sink model. 
However the trunk of the phylogenetic tree, which represents the viral lineage that per-
sists over time, was placed reliably, most of the time, in China, Southeast Asia and India. 
Viruses circulating in other locations do not usually last more than a season or two before 
being replaced by new lineages originating from the trunk (Petrova and Russell, 2018; 
Lemey et al., 2014; Bedford et al., 2010). Furthermore, strains are generally frst spread 
to North America and Europe and only later to South America (Russell et al., 2008). 

Infuenza epidemics in temperate regions of the northern hemisphere typically oc-
cur between the months of November and March and in the southern hemisphere from 
May to September. Seasonality patterns in the tropics vary more according to loca-
tion (Petrova and Russell, 2018). In Brazil, Almeida, Codeço and Luz (2018) identifed 
that different regions have varying seasonality patterns, with stronger seasonality sig-
nals closer to the coast, peaks happening earlier towards the north of the country and 
later in the year in the southern region. Born (2013) studied the phylogeography of in-
fuenza in Brazil, identifying as unlikely that the origin of a new variant be located in 
Brazil. Additionally the main gateway for the H3N2 fu virus in the country would be 
the Southeast region followed by the South and Northeast regions. The existence of such 
global patterns which are repeated somewhat consistently throughout the years can be 
seen as motivation for seeking to forecast Brazilian incidence as a function of reported 
cases in other countries in the previous months. 
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3. Methods 

3.1. Granger causality 

In this study, the Granger causality method will be used to study the migratory dynam-
ics of infuenza (Granger, 1969). This method aims to determine the causal direction 
between two variables, stipulating that Xt Granger-causes Yt if past values of Xt help to 
predict the present value of Yt , and may provide better results than considering only the 
past Yt . More specifcally, it is a way of verifying whether a time series helps in pre-
dicting another series through VAR modelling. To use this method, the series need to be 
matched. 

3.1.1. Vector Autoregressive Models (VAR) 

The vector autoregressive model (VAR) is an extension of the autoregressive models 
(AR) and its objective is to model a vector time series considering only their past values 
(Sims, 1980). Mathematically, a k-dimensional Y t stochastic process is said to be a 
VAR(p) process if it can be written as 

Yt = c+ A1Y t−1 + A2Y t−2 + · · · + ApY t−p + ε t , 

where c ∈ Rk is a vector of constants (intercepts), A1, · · · ,Ap are k × k matrices and ε t is 
a k-dimensional error term. 

3.1.2. Granger causality 

The idea behind Granger causality (for univariate time series) is to consider the model 

k m 
Yt = β0 +∑ βiYt−i + ∑ α jXt− j + ε t , (1) 

i=1 j=1 

where ε t denotes white noise. We say that Xt Granger-causes Yt if past values of Xt help 
to predict the Yt . In view of (1), to test whether Xt Granger-causes Yt the following test 
can be performed: 

H0 : α1 = · · · = αm = 0 vs. H1 : αs ̸= 0, for at least one s ∈ {1, · · · ,m}. 

In the above test, rejection of the null hypothesis is considered evidence that Xt Granger-
causes Yt . 

3.1.3. Granger Causality and Stationarity 

Before applying the Granger causality method, it is necessary to check whether the se-
ries are stationary or not. A preliminary graphical analysis can assist in this matter. 
The absence of visible deterministic trends and/or apparent seasonality are indications 
of stationary behaviour. However, they are usually not enough for decision making, 
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which should preferably be done through appropriate tests such as the widely applied 
Augmented Dickey-Fuller (Dickey and Fuller, 1979) or the Phillips-Perron (Phillips and 
Perron, 1988) test. In these tests, the null hypothesis is that the time series has at least 
one unit root (i.e., the series is non-stationary) and the alternative hypothesis is the ab-
sence of unit roots. In this way, the time series will be considered stationary if the null 
hypothesis is rejected. 

3.1.4. Granger causality for non-stationary series 

One way to apply the Granger causality method if the series are not stationary is to use 
the Toda and Yamamoto procedure, introduced by Toda and Yamamoto (1995), which 
comprises the following steps: 

1. Check whether the series cointegrate. Two series cointegrate if they have the same 
integration order, say m, and if the residual of regression from one series to the 
other are stationary, which can be determined using a test such as the Phillips-
Perron. 

2. Adjust a VAR(p) model. 

3. Apply the Wald Test. In order to do so, it is necessary to ft a VAR(p + m) model 
to the data. This model will certainly present several non-signifcant variables, 
given the previous steps, but this is not a problem since this model will not be 
used directly - it is only a device to guarantee the asymptotic theory. Rejection of 
the null hypothesis is evidence towards the existence of Granger causality in the 
tested direction. 

Granger causality is a concept applied in many felds. In economics, Farias and 
Sáfadi (2010) employed Granger causality to study the relationship among the main 
stock exchanges in the world, showing how markets behave with each other and ana-
lyzing whether a market has a strong infuence on the others. In agronomy, Diniz et al. 
(2009) studied whether certain agricultural and socio-economic variables (such as cattle 
and demographic density) Granger-cause deforestation in the Amazon. In biology, Chen 
et al. (2018) study the causal relationship between cases of infuenza in humans and air 
pollution in Taiwan. The results indicated that pollution Granger-causes fu cases in the 
elderly group (over 64 years old). 

3.2. Variable selection in regression models 

Variable selection is a central topic in regression models involving many covariates. In 
this section we review some of the available techniques for variable selection which will 
be used here. 
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3.2.1. Stepwise regression 

Stepwise regression is an automatic tool that aims to select the most infuential indepen-
dent variables in a given model. It is an iterative method that adds or removes variables 
according to a given selection criterion. The most popular types of stepwise regression 
are the forward-stepwise and backward-stepwise. In this paper, the backward-stepwise 
selection method was preferred due to the model size. We consider the p-value based 
stopping criterion, which selects variables according to their Wald statistics, eliminat-
ing non-signifcant terms based on the magnitude of their p-values (higher p-values are 
preferred in removing terms), in order to obtain a model for which all variables are sig-
nifcant. 

3.2.2. LASSO 

The LASSO (least absolute shrinkage and selection operator) regression is a penalty 
method that aims to provide smaller and more parsimonious models (Hastie, Tibshirani 
and Friedman, 2009). The penalty is applied to the coeffcients to decrease the number 
of parameters and, consequently, reduce the dimension and uncertainty in the model. It 
is a regression method that aims to reduce the dimensionality and improve the accuracy 
of the forecast and the interpretability of the resulting model. 

4. Data 

In this section we provide detailed information regarding the data used in our study. The 
Supplementary Material presents a detailed exploratory analysis of the data. 

4.1. Number of positive fu cases 

The data for number of positive fu cases was taken from FluNet, an online tool main-
tained by the World Health Organization (WHO, 2020) whose objective is to aggre-
gate infuenza virological surveillance data, launched in 1997. FluNet data comes from 
weekly country reports of the number of tested cases, the number of positive cases and 
the type of virus. Typically the reported data refer to data collected in a few reference 
centres in each country, and do not represent the actual fu incidence data. Since the 
number of positive cases are expected to correlate with infuenza incidence, for the pur-
pose of this paper it is considered as a proxy for incidence. Thus, such data will be 
referred to here as infuenza incidence data. For this project, data from H1N1 and H3N2 
infuenza were collected from January 2008 to November 2019, but due to missing data 
problems in 2008, the data used in the analysis cover the period from October 2008 to 
November 2019. However, for modelling purposes, we only use data from October 2008 
to December 2018, which yields a sample size n = 123, while data from January 2019 
to November 2019 is reserved for out-of-sample forecasting purposes. 
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Table 1. Aggregated regions. 

Region Countries 

Europe 
Belgium, Switzerland, Spain, Estonia, Germany, Ireland, Israel, Italy, 
Latvia, Netherlands, Norway, Poland, Russian Federation, Slovenia, Swe-
den, Turkey, Denmark, United Kingdom of Great Britain, Northern Ireland 

North America 
South America 

Canada and United States 
Argentina, Bolivia, Chile, Colombia, Ecuador, French Guiana, Paraguay, 
Peru 

Central America 
Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Hon-
duras, Jamaica, Mexico, Nicaragua, Panama 

South Asia India, Thailand, Indonesia, Bangladesh, Bhutan, Nepal, Sri Lanka 

Western Pacifc 
China, Japan, Australia, Republic of Korea, Singapore, Malaysia, Vietnam, 
New Caledonia, Philippines, Cambodia, Lao People’s Democratic Republic 

Figure 1. Map with the regions considered in the study. 

For simplicity, we aggregate data geographically into regions based on WHO re-
gions, with the exception of Brazil which is the focus of this study. The following loca-
tions were considered: Brazil, North America, South America (without Brazil), Central 
America, Europe, South Asia and Western Pacifc. Note that each region is composed of 
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a certain number of countries, responsible for reporting their data in the database. How-
ever, due to local characteristics, several countries had a high amount of missing data, 
often above 50%, resulting in useless local data for our purposes. In order to make the 
analysis feasible, all countries presenting more than 50% missing data were excluded in 
the construction of the database for the respective region. Table 1 and Figure 1 present 
the confguration of each region after applying this criterion. 

The time series techniques that we used require that the time series do not contain 
any missing data. To resolve this, we applied an imputation method, which aims to fll 
in the missing data using the following criteria: multiply the average regional number 
of positive fu cases of the respective week by the proportion that the respective country 
represents in the region. In some cases, however, it happened that the week had missing 
data in all countries, and this was resolved by imputing it through the average between 
the previous and subsequent weeks. After imputation, the data were aggregated monthly. 

4.2. Genetic diversity 

For the genetic diversity data, viral RNA sequences were collected from the NCBI In-
fuenza Virus Database, which compiles a comprehensive assortment of infuenza se-
quences generated by research groups around the world (NCBI, 2020). The genetic 
dataset was assembled considering all complete chromosome 4 (hemagglutinin gene) 
sequences from human infuenza A viruses in the database, from all continents and in 
the interval from October 2008 to September 2019. The data were retrieved in March 08, 
2020. This resulted in a total of 16,008 H1N1 sequences and 15,418 H3N2 sequences. 
As the goal was to measure genetic diversity of viral populations, H1N1 and H3N2 
sub-types were treated separately. Infuenza B sequences were excluded from this study 
because of insuffcient data at many time points. 

Genetic diversity is a population measure that seeks to quantify viral variability, al-
lowing for comparisons over time or between populations. For the sake of simplicity, 
throughout this paper let the genetic diversity of a viral population be defned as the 
average genetic distance between all sequences in the population. The distance mea-
sure considered here is the K80 distance (Kimura, 1980), which is based on nucleotide 
substitutions, thus the sequences must be aligned so that individual mutations can be 
identifed. Due to the size of our dataset, the online tool MAFFT (Yamada, Tomii and 
Katoh, 2016) was used to generate the alignments. 

The aligned sequences were then used to build a distance matrix between individual 
sequences in the dataset. This resulted in a symmetric n × n matrix D with entries di, j 

denoting the genetic distances between the sequences i and j, where i, j ∈ {1, · · · ,n}. 
Finally, genetic diversity was computed for temporally and geographically defned 

sub-populations, by averaging over all relevant entries in the distance matrix. As sug-
gested in Jesus (2018), virus diversity was assessed using a quarterly moving average 
scheme, since a three-month window size best captured smooth diversity fuctuations 
over time for these data. This calculation was made for each month in the range from 
October 2008 to September 2019, separately for H1N1 and H3N2, and for the following 
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regions: Asia, North America and global (all continents). Other regions were not consid-
ered due to insuffcient data. See the Supplementary Material for a list of the countries 
comprising each region. Similarly to the incidence data, for modelling purposes we only 
consider data from October 2008 to December 2018 (n = 123), while data from January 
2019 to November 2019 are reserved for out-of-sample forecasting purposes. All code 
was written in R (version 4.0.0, R Core Team, 2020) and is available (along with the 
relevant data) at github.com/AlineFoersterGrande/Flu Paper. 

5. Results 

In this section we present the results of our analysis. We separate the different analyses 
by technique. 

5.1. Granger causality 

5.1.1. Positive infuenza counts 

In this section we present a Granger causality analysis of the number of positive fu 
cases in Brazil considering data from the other regions. Our main interest is to verify if 
the number of cases in Brazil can be explained by the recent historical data from other 
regions. In all situations, the data were considered non-stationary due to the clear sea-
sonal pattern present (the time series plots are presented in the Supplementary Material). 
The global task resulted in 66 comparisons. The p-values presented in this section were 
corrected for false discovery rate, implemented through the function p.adjust in R 
(R Core Team, 2020). On performing step 2 of Toda and Yamamoto’s procedure, we 
consider p = 6 as the maximum lag to adjust the VAR(p) model to the data. 

Table 2. Granger causality results for the number of fu cases - Brazil case. 

Null hypothesis p-value Lag 
North America Region does not Granger-cause Brazil 0.84 − 

European Region does not Granger-cause Brazil 0.10 3 
Central America Region does not Granger-cause Brazil 0.99 − 

South America Region does not Granger-cause Brazil 0.05 2 
South Asia Region does not Granger-cause Brazil 0.78 − 

Western Pacifc Region does not Granger-cause Brazil 0.98 − 

Table 2 presents the results of the Granger causality analysis. We conclude that 
among all regions, only Europe (at 10% signifcance) and South America (at 5% signif-
cance) Granger-cause Brazil. This result suggests that the historical data on the number 
of cases of fu in the European and South America Regions are helpful in predicting the 
present value of the incidence in Brazil. 

As presented in Section 2.1, the trunk of the phylogenetic tree and source of most 
seasonal variation for infuenza is associated to the Asian continent, particularly China, 

https://github.com/AlineFoersterGrande/Flu_Paper
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from where the virus frequently migrates to the northern hemisphere. With this in mind, 
we perform a Granger causality analysis to verify if the Western Pacifc Region (the 
region that contains the majority of the data from Asia), Granger-causes the regions in 
the northern hemisphere. 

Table 3 presents the signifcant cases. We fnd that the Western Pacifc Region 
Granger-causes the regions of Europe and South Asia. Therefore, it can be said that 
the historical data related to the number of fu cases in the Western Pacifc Region helps 
to predict the present incidence of the South Asian and European Regions. 

Table 3. Granger causality results for the number of fu cases - Western Pacifc case. 

Null hypothesis p-value Lag 
Western Pacifc does not Granger-cause South Asia 0.05 3 
Western Pacifc does not Granger-cause Europe 0.04 3 

Note that, although there is no direct evidence that the number of fu cases in the 
Western Pacifc Region Granger-causes the incidence in Brazil, there is an indirect ef-
fect of the Pacifc Region in Brazil, since the Pacifc Granger-causes the European Re-
gion which in turn, Granger-causes the incidence in Brazil. This indirect effect was not 
directly detected because the Granger causality analysis is not transitive. Finally, we 
investigate whether any region Granger-causes another region. The results are presented 
in Table 4. 

Table 4. Granger causality results for the number of fu cases - all regions. 

Null hypothesis p-value Lag 
Central America does not Granger-cause Europe 0.05 3 
Central America does not Granger-cause Western Pacifc 0.00 3 

Note that the results in Table 4 indicate that the incidence in Central America Granger-
causes the incidence of the European and Western Pacifc Regions. The most likely jus-
tifcation for the Granger causality of Central America in other regions is the occurrence 
of the swine fu (H1N1) in the years 2009 and 2010. Mexico is considered the origin of 
the swine fu pandemic, which justifes the increase in the incidence of infuenza frst in 
the Central America and then in the other regions. 

5.1.2. Genetic diversity 

In this section, the data described in subsection 4.2 (genetic diversity) are used to ex-
amine the infuence among different regions under the prism of Granger causality. The 
initial interest is to verify whether the number of fu cases in Brazil can be explained by 
the past genetic diversity data from other regions. Granger causality tests were used to 
assess whether H1N1 and H3N2 genetic diversity in North America, Asia and around 
the globe (termed All) affect Brazilian incidence. The results are shown in Table 5. 
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Table 5. Granger causality results considering genetic diversity data as covariate and number 
of cases in Brazil as response. 

Null hypothesis p-value 
North America (H1N1) does not Granger-cause Brazil 0.85 
All (H1N1) does not Granger-cause Brazil 0.84 
Asia (H1N1) does not Granger-cause Brazil 0.84 
North America (H3N2) does not Granger-cause Brazil 0.69 
All (H3N2) does not Granger-cause Brazil 0.42 
Asia (H3N2) does not Granger-cause Brazil 0.76 

It can be seen that no genetic diversity Granger-causes Brazil, that is, the measure-
ment of genetic diversity does not help in predicting the present value of the incidence 
of infuenza in Brazil. Given these results, a second analysis was performed to verify 
whether the incidence of other regions can be explained by the genetic diversity data. 
Table 6 presents the all statistically signifcant results. 

Table 6. Granger causality results considering the genetic diversity data as covariate and num-
ber of cases or genetic data in other regions as responses. 

Null hypothesis p-value Lag 
North America (H1N1) does not Granger-cause South Asia (cases) 0.05 3 
Asia (H1N1) does not Granger-cause Central America (cases) 0.00 6 
North America (H1N1) does not Granger-cause Asia (H1N1) 0.01 2 
All (H1N1) does not Granger-cause North America (H1N1) 0.00 2 
All (H1N1) does not Granger-cause Asia (H1N1) 0.00 2 

We conclude that the genetic diversity of Asia (H1N1) helps in predicting the inci-
dence of infuenza in the Central American Region. Furthermore, it shows that North 
American genetic diversity (H1N1) Granger-causes the South Asian cases and H1N1 
diversity on Asia. 

5.2. Time series regression approach 

In this section we present time series regression analysis of the data presented in Sec-
tions 4.1 and 4.2. A classical ARMA approach to model incidence data is presented in 
the Supplementary Material. 

5.2.1. Number of positive fu cases 

We start by considering the data described in Section 4.1 (number of positive fu cases) 
to represent the fu incidence in Brazil (denoted by Bt ), in Europe (Et), in North America 
(At ), in Central America (Ct ), in South America (St), in South Asia (st ) and in Western 



172 Granger causality and time series regression for modelling the migratory... 

Pacifc (Wt ) at time t. We applied historical data of the regions considered in the last 
11 months (lags), denoted by Bt−1, · · · ,Bt−11 for Brazil, At−1, · · · ,At−11 for the North 
America and similarly for other regions. We also considered a covariate µt representing 
the monthly average number of positive fu cases in Brazil at time t, t ∈ {1, · · · ,123}, 
calculated as 

µt = 
1 

∑ Bk,#It k∈It 

where, It denotes the set of time indexes in {1, · · · ,123} corresponding to the same 
month as t and #It denotes the cardinality of It . Notice that only observed values were 
used to calculate µt . For modelling purposes, Bt was the response variable, while lagged 
data from Brazil and all other regions were used as covariates. 

5.2.2. Modelling 

Due to the large number of explanatory variables, we considered three different methods 
to ft the data, chosen because of their ability to perform variable selection. The frst one 
was the stepwise backward regression method based on p-values with signifcance level 
0.1, denoted simply by Stepwise model. We also applied the LASSO model consider-
ing two main schemes for model selection: frst, based on cross-validation (leave-one-
out), denoted LASSO CV, which yielded a model with 13 covariates plus the intercept; 

Table 7. Estimation results for the ftted Stepwise, LASSO 5 and LASSO CV models. 

Variables Stepwise LASSO 5 LASSO CV 
Intercept -0.843 60.821 44.089 
Bt−1 0.84700 0.52843 0.68871 
Bt−2 -0.34248 − -0.15364 
At−2 -0.00414 − − 

At−4 − 0.00019 0.00086 
Ct−1 0.01515 − 0.00095 
Ct−3 -0.02490 − -0.01308 
Et−1 0.00535 − 0.00180 
Et−2 0.01117 0.00548 0.00650 
Et−3 − 0.00242 0.00084 
Et−4 0.00642 − 0.00230 
Et−8 0.00255 − − 

µt − 0.01431 − 

st−4 − − -0.00173 
st−9 − − 0.00066 
Wt−7 − − -0.00158 
Wt−9 − − 0.00138 
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and second, since this model is somewhat large, a more parsimonious alternative using 
the “one-standard-error” rule (Hastie et al., 2009, section 7.10), selecting a model with 
fve variables denoted by LASSO 5. Table 7 presents the covariates selected by each 
model and their ftted values. The intercept was always kept. 

Notice that variables Bt−1 (number of positive cases in Brazil at time t − 1) and Et−2 
(number of positive cases in Europe at time t − 2) are the only variables present in all 
ftted models. Another way of interpreting the results is by analysing the coeffcients of 
each variable present in the fnal model. It shows the direction of the impact that the 
explanatory variables have on the response variable Bt . For example, the explanatory 
variable Bt−1, which is included in all models, has a positive coeffcient. This indicates 
that as the number of cases in Brazil at time t −1 increases/decreases, so does the number 
of cases in Brazil at time t. Also noteworthy is that the variable µt appears only in the 
LASSO 5 model. 

5.2.3. Forecast 

After modelling, we perform an in-sample and out-of-sample forecast exercise for the 
data considering each ftted model. Data from October 2008 to December 2018 were 
used for modelling purposes, while data from January 2019 to November 2019 were 
reserved for out-of-sample comparison. Hence, the forecast horizon in all cases is h = 11 
steps ahead. 

Notice that, since we are using a time series regression approach with several past 
values of regressors entering in the fnal model, these values must be updated if out-
of-sample forecast values are to be obtained (that is, in order to obtain future values of 
the response variable, we need future values for the covariates as well). In order to do 
that we employed two approaches. The frst approach employed is known as h one-step 
ahead forecast. In this case, for each incremental step ahead we updated the covariates 
with their observed values. This is only useful for small forecast horizons or to forecast 
short run dynamics, as in the case of fu data. 

In the second approach, known simply as h-steps ahead forecast, we did not use any 
knowledge about future values of the covariates. Instead we forecasted their values us-
ing some plausible method. Of course, there are several ways to do that. We forecasted 
future values of the covariates by using their monthly average calculated from the ob-
served data, including Brazil. This second approach can be employed for forecasting 
in practice. Figures 2 to 4 show both, the in-sample and out-of-sample (for h = 11) 
one-step ahead forecast values (the regressor values are updated at each step, including 
out-of-sample) compared to the observed ones (in black). 

It can be seen that both in-sample and out-of-sample predictions appear to be rea-
sonable for all models, except in a few epochs, such as the year 2011, where the models 
predicted a peak that did not occur, or the frst half of 2015, where the peak was overes-
timated by all models. Since we are using a non-restricted time series approach to model 
the data, we obtain a few negative values for the incidence, located at the valleys. These 
negative values are not considered a problem because the main focus of the study of fu 
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Figure 2. In-sample and out-of-sample one-step ahead forecasts for the LASSO 5 model. 
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Figure 3. In-sample and out-of-sample one-step ahead forecasts for the LASSO CV model. 
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Figure 4. In-sample and out-of-sample one-step ahead forecasts for the Stepwise model. 
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pandemics are the peaks of the curve, not its valleys. Table 8 presents in-sample and 
out-of-sample mean square error (MSE) and mean absolute percentage error (MAPE) of 
forecasting. The best results in each case are highlighted in red. 

Table 8. Mean square error and mean absolute percentage error of the in-sample and 11 one-
step ahead forecasts for each of the 3 ftted models. 

Measures/Models Stepwise LASSO 5 LASSO CV 
MSE (in-sample) 31586.7 52788.1 38354.5 
MSE (out-of-sample) 43228.2 21805.3 25860.9 
MAPE (in-sample) 91.2 105.2 81.5 
MAPE (out-of-sample) 81.2 64.3 68.7 

The Stepwise model and the LASSO CV were the best performers in-sample, while 
for out-of-sample, the LASSO 5 model performed best both in terms of MSE and MAPE. 
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Figure 5. 11-steps ahead forecasts for the different ftted models compared to the observed 
values (in black). 

In a second moment, we analyze the out-of-sample h-steps ahead forecast ability of 
the ftted models, for h ∈ {1, · · · ,11}. Figure 5 presents the forecasted values of each 
ftted model along with the observed values (in black). From Figure 5 we observe that 
all models overestimate the number of positive cases until May/April, missing the peak 
that occurred in June and underestimating the number of cases from June to October. For 
comparison purposes, Table 9 presents the mean square error for h-steps ahead forecasts 
for each model. The best results in each forecast horizon are highlighted in red. The 
model presenting the overall best performance was the LASSO 5, which presented the 
lowest MSE in 7 out of the 11 forecast horizons considered, followed by the Stepwise 
which presented overall smallest MSE in the remaining 4 forecast horizons. Interest-
ingly, the LASSO 5 uniformly outperforms the LASSO CV in all forecast horizons. 
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This poor forecasting performance of the LASSO CV may be attributed to overftting. 
Stepwise and LASSO CV presented similar performances. 

Table 9. Mean squared error of the h-steps ahead forecast for each ftted model. The best 
forecast in terms of MSE for each horizon is presented in red. 

Horizon/Models Stepwise LASSO 5 LASSO CV 
1-step ahead 5904.13 6346.41 7417.52 
2-steps ahead 2958.38 5712.86 7110.19 
3-steps ahead 8736.86 8895.71 11549.42 
4-steps ahead 12323.75 7305.05 12114.87 
5-steps ahead 10129.28 6349.04 9697.23 
6-steps ahead 21543.97 21599.59 21646.22 
7-steps ahead 23130.21 23092.44 23917.95 
8-steps ahead 21381.31 20206.98 21442.05 
9-steps ahead 20962.64 18254.56 20149.43 
10-steps ahead 18934.49 16485.37 18134.53 
11-steps ahead 17653.39 15798.62 17005.14 

5.2.4. Genetic diversity 

In this section we consider both the number of positive fu cases and the genetic diversity 
data (described in sections 4.1 and 4.2) to characterize the fu incidence in Brazil. We 
apply similar notation to Section 5.2.1. The genetic diversity in North America at time 
t is denoted by Nt for the H1N1 subtype and nt for the H3N2 subtype, in Asia by Pt 

for the H1N1 subtype and pt for the H3N2, and Mt (H1N1) and mt (H3N2) denote the 
global genetic diversity. Again the response variable is taken as Bt while lagged variables 
related to other regions, including genetic data, will be used as covariates. 

We aim to explain the incidence of infuenza in Brazil at time t (Bt) by using the 
historical incidence and genetic diversity data of the regions considered in the last 6 
months (lags). The same three methods of Section 5.2.1 were considered. Table 10 
presents the selected covariates and their respective coeffcients, for each model. 

From Table 10, we observe that the incidence variables that appear in all three models 
are Bt−1 (number of positive cases in Brazil with one lag), Et−2 (number of positive cases 
in Europe with two lags) and At−4 (number of positive cases in North America with four 
lags). Furthermore, when analyzing the variables related to genetic diversity, we observe 
that the covariates Pt−4 (genetic diversity of the H1N1 fu in Asia with four lags) and Pt−5 
(genetic diversity of the H1N1 fu in Asia with fve lags) appear in two of the tree models. 
After model ftting, we proceed with an in-sample and out-of-sample forecast analysis 
similar to the one presented in Subsection 5.2.3. To perform the out-of-sample analysis, 
it is necessary to forecast future values of covariates entering the model. Covariates 
related to incidence are forecasted in the same way as in Subsection 5.2.1. The genetic 
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Figure 6. In-sample and out-of-sample one-step ahead forecasts for the LASSO 5 model. 
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Figure 7. In-sample and out-of-sample one-step ahead forecasts for the LASSO with cross-
validation model. 

0

500

1000

1500

2000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Years

N
um

be
r 

of
 p

os
iti

ve
 c

as
es

Predicted values (Stepwise Model)

Figure 8. In-sample and out-of-sample one-step ahead forecasts for the Stepwise model. 
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Table 10. Estimation results for the ftted Stepwise, LASSO 5 and LASSO CV models. 

Variables Stepwise LASSO 5 LASSO CV 
Intercept 38.789 54.872 55.460 
Bt−1 0.85717 0.50499 0.60024 
Bt−2 -0.34293 − -0.03383 
Bt−3 − − -0.04411 
At−4 0.00286 0.00037 0.00166 
Ct−2 0.02204 − − 

Ct−3 -0.03545 − -0.00946 
St−2 0.02604 − − 

Et−1 − − 0.00161 
Et−2 0.00893 0.00535 0.00609 
Et−3 − 0.00219 0.00086 
Et−4 − − 0.00053 
st−4 − − -0.00957 
Wt−6 − − -0.00094 
µt − 0.07586 0.05940 
Mt−5 − − -837.80 
Pt−4 6482.74 − 3827.28 
Pt−5 -9221.79 − -3156.14 

diversity time series, however, do not present any evident trend or seasonality, as in 
the incidence data (see the time series plots presented in the supplementary material). 
Hence, the same approach of considering monthly averages is not adequate for the ge-
netic diversity data. To overcome this diffculty, we consider a static approach: future 
values of genetic data are forecasted considering the average of the respective data ob-
served from January to December, 2018. Figures 6 to 8 show the one-step ahead fore-
casted values in and out-of-sample for each model along with the observed values (in 
black). 

Table 11. Mean square error and mean absolute percentage error of forecast for each model. 

Measures/Models Stepwise LASSO 5 LASSO CV 
MSE (in-sample) 34567.0 55306.2 42026.3 
MSE (out-of-sample) 47623.4 27781.2 36757.7 
MAPE (in-sample) 91.2 110.9 89.8 
MAPE (out-of-sample) 66.5 53.1 66.7 

Note that, in general, the in-sample and out-of-sample predictions appear to be rea-
sonable for all considered models. Some peaks, such as the ones in years 2013, 2016 and 
2018, are underestimated by the models, while others, such as 2011 and 2015 are overes-
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timated. To compare the models regarding their predictive abilities, Table 11 presents the 
MSE and MAPE for the one-step ahead forecast for each model, in and out-of-sample. 
The best results in each case are highlighted in red. 

Analogously to the results obtained in Section 5.2.1, analyzing the MSE we observe 
that the Stepwise model and the LASSO CV are the best perform in terms of in-sample 
forecast while the LASSO 5 is the best performer out-of-sample. Again, the main source 
of forecast error are a few peaks in the data not very well identifed by any of the models, 
more noticeably, 2011, 2015 and 2017. 
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Figure 9. 11-steps ahead forecasts for the different ftted models compared to the observed 
values (in black). 

Table 12. Mean squared error of the h-steps ahead forecast for each ftted model. The best 
forecast in terms of MSE for each horizon is presented in red. 

Horizon/Model Stepwise LASSO 5 LASSO CV 
1-step ahead 3512.23 5701.45 7945.86 
2-steps ahead 3428.68 5255.09 8122.44 
3-steps ahead 9823.78 9153.06 13233.38 
4-steps ahead 17825.10 8076.48 14200.18 
5-steps ahead 14567.40 6721.95 11384.56 
6-steps ahead 26605.43 20228.37 22796.37 
7-steps ahead 26475.39 21693.13 23918.67 
8-steps ahead 23179.94 18985.19 21037.13 
9-steps ahead 21671.71 17174.71 19696.15 
10-steps ahead 19556.80 15509.01 17726.74 
11-steps ahead 18847.90 14851.20 16581.80 

In a second step, we analyse the models’ predictive capabilities considering forecast 
horizons from 1 to 11-steps ahead, in the same spirit as in Subsection 5.2.1. Figure 9 
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presents the forecasted values for the different models, as well as the observed values 
(in black). We observe that all models overestimate the number of positive cases until 
May/April, missing the peak that occurred in June and underestimating the number of 
cases from June to October. A comparison between the models is presented in Table 12, 
where we present mean squared error for each considered h-steps ahead forecast. The 
results show that no model uniformly outperforms all others. The model with the best 
results was the LASSO 5, which displayed the lowest MSE in 9 out of the 11 forecast 
horizons considered. Again the LASSO CV is uniformly outperformed by LASSO 5, 
while compared to Stepwise, the LASSO CV wins in middle to long horizons. 

5.2.5. Comparison of forecasts 

We now compare the results presented in Subsections 5.2.1 and 5.2.4. The interest lies 
in comparing the models with only incidence data with the models with incidence and 
genetic diversity data, regarding their predictive power. In the graphs below, the term 
“Incidence” will be used for models containing only incidence data while the term “Ge-
netic” will be used for models considering incidence and genetic diversity data. Figure 
10 shows the MSE obtained in the out-of-sample forecast for all models. It can be 
seen that in all cases the models based on “Incidence” presented more accurate forecasts 
(lower MSE). Furthermore, the LASSO 5 proved to be the overall best model in terms 
of prediction capabilities in all cases. 
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Figure 10. Comparison of the mean squared errors (MSE) between the incidence data and the 
genetic data in the 11 one-step ahead forecasts. 

Figure 11 presents time series plots of the MSE for h-steps ahead forecast for each 
model considering the incidence and genetic data. For the Stepwise model, the out-of-
sample forecasts produced using the incidence data present smaller MSE in all horizons 
but h = 1. For the LASSO, the models based on the genetic data presented smaller MSE 
in the long run, that is, for all horizons h ≥ 6 for the LASSO 5 and h ≥ 7 for the LASSO 
CV. In the short run, for the LASSO CV, the model based on incidence data performs 
best, while there is no clear pattern in the case of the LASSO 5 model. Ultimately, this 
indicates that including genetic diversity data, at least as measured here, does not seem to 
add much predictive value to the models. However, there are many other approaches to 
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assess genetic diversity that can be explored and might prove more valuable for incidence 
modelling. 
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(b) LASSO 5
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Figure 11. Comparison of the h-steps ahead forecasts mean squared errors between the inci-
dence and genetic data for the Stepwise (upper panel), LASSO 5 and LASSO CV (lower panel) 
models. 

5.3. Residual analysis 

Residual analysis is of paramount importance in time series analysis, being performed 
after model identifcation and ftting. In this section we present a residual analysis re-
lated to the models ftted in the previous sections, focusing mainly in portmanteau and 
normality tests. Observe, however, that the only model that actually requires a residual 
analysis is the Stepwise, as it is the only one based on p-values. Nevertheless, for the 
sake of exploration, we shall proceed with the residual analysis for all models. To assess 
the presence of correlation in the residuals, we perform the widely applied Ljung-Box 
test (Ljung, 1986). Recall that the null hypothesis for the Ljung-Box test is that all cor-
relations up to a specifed lag m are null. In this analysis we consider m = 20. We also 
test the residuals for normality by using Shapiro-Wilk’s test (Shapiro and Wilk, 1965), 
for which the null hypothesis is that the tested sample comes from a normally distributed 
population. 

The Ljung-Box test’s results for the residuals of all models presented in Sections 
5.2.1 (fu incidence) and 5.2.4 (genetic data) are presented in Table 13. From the results 
we conclude that in all cases the residuals present no correlation up to lag m = 20, at any 
reasonable signifcance level. 
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Table 13. p-values of the Ljung-Box test applied to the ftted models’ residuals with m = 20. 

Dataset 
Stepwise 

Models 
LASSO 5 LASSO CV 

Incidence 0.9561 0.2096 0.8212 
Genetic 0.9922 0.3805 0.4770 

As for the Shapiro-Wilk test, it is clear from the in-sample forecasts (Figures 2 to 4 
and Figures 6 to 8) that the residual will present outliers due to underestimation of peak 
values. These outliers may substantially affect the Shapiro-Wilk test. To minimize this 
effect, we removed some of the outliers by using two hard thresholds: we eliminate any 
points with magnitude larger than 400 (threshold 1) and 200 (threshold 2), in absolute 
value. Table 14 summarizes the results by presenting the p-values of the Shapiro-Wilk 
test with and without the removal of outliers, along with the number of outliers removed 
in each case. From the results we observe that the residuals of all models reject the null 
hypothesis in the Shapiro-Wilk test with very small p-values. The Stepwise model for 
the incidence data is the only one that do not reject the null hypothesis in the Shapiro-
Wilk’s test after applying threshold 1, which trimmed out only 5 points. The LASSO CV 
model for all data and Stepwise with genetic data did not reject at the 0.05 signifcance 
level the null hypothesis in Shapiro-Wilk’s test after applying threshold 2, at the cost 
of removing several points. The Shapiro-Wilk’s test applied to the residuals from the 
LASSO 5 model rejected the null hypothesis in all cases. 

Table 14. p-values for the Shapiro-Wilk test applied to the complete residuals and upon remov-
ing points with magnitude greater than 400 and 200, in absolute value. The number of points 
removed for each threshold applied is presented in parenthesis. 

Dataset Threshold 
Models 

Stepwise LASSO 5 LASSO CV 

Incidence 
complete 

400 
200 

< 0.0001 
0.3012(5) 

− 

< 0.0001 
< 0.0001(9) 
0.0089(23) 

< 0.0001 
0.0003(5) 
0.1881(19) 

Genetic 
complete 

400 
200 

< 0.0001 
0.0046(4) 
0.2357(26) 

< 0.0001 
< 0.0001(9) 
0.0015(28) 

< 0.0001 
< 0.0001(6) 
0.0952(25) 

Finally, another important diagnostic is the homoscedasticity of the residuals for the 
ftted Stepwise model, the only one of our procedures that relies on distributional as-
sumptions for model selection. Figure 12 presents simple time series plot and observed 
vs. ftted values for the residuals obtained from the Stepwise model considering the In-
cidence and Genetic data. From the time series plot we observe a clear increase in vari-
ance in both residuals, also evident in the residual versus ftted models. These fndings 
are corroborated by Breusch-Pagan and White’s tests (see Greene, 2012, section 11.4) 
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(not shown). The presence of heteroscedasticity in the model’s residuals may affect the 
p-values obtained from Wald’s test, implying that the ftted model may be incorrectly 
specifed in the sense that the procedure may have excluded important variables, in-
cluded unimportant ones, or both. This, however, does not diminish its applicability as 
a predictive model. 
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Figure 12. Time series plot (left panel) and observed vs. ftted value (right panel) for the resid-
uals obtained from the ftted Stepwise model. Plots related to incidence are shown in the upper 
panel while genetic ones are shown in the lower panel. 

6. Discussion 

In this paper we considered the problem of modelling and forecasting the incidence of 
infuenza virus in Brazil at a given month t. Here, FluNet positive fu counts were used 
as a proxy for incidence. The objective is to use temporal information (fu historical time 
series data) to model the number of cases in Brazil based on recent data on the number 
of cases and the genetic diversity observed in other regions. Incidentally, the study also 
sheds light on the migratory dynamics of the infuenza virus from North America and 
Europe to Brazil. 

In Section 5.1 (Granger causality analysis) we found evidence that past values of 
infuenza incidence in the European and South American Regions help to predict the 
present value of infuenza incidence in Brazil. We also discovered evidence of an indirect 
effect of the Western Pacifc Region and Central America in Brazil. These results are 
intriguing when considering updating vaccines in Brazil with data related to strains from 
Europe from previous seasons. 

As for the time series regression approach (Section 5.2), it was found that only two 
variables are present in all considered models, namely: Bt−1 (number of positive fu 
cases in Brazil with one lag), and Et−2 (number of positive cases in Europe with two 
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lags), while At−4 (number of positive cases in North America with four lags) was present 
in fve out of six models. It is interesting to note that most predictors from northern 
hemisphere regions appear with lags of 3–5, possibly capturing seasonal properties of 
the dynamic. Additionally, while Asian genetic diversity measures appear as relevant 
predictors, the global genetic diversities do not. 

The proposed models were also evaluated regarding their forecast capabilities. Con-
sidering h-steps ahead out-of-sample forecast, in both analysis of Sections 5.2.1 and 
5.2.4, the model that overall best predicted the incidence of infuenza in Brazil (in terms 
of MSE) in the short run was the Stepwise and in the middle to long run, the LASSO 
with 5 variables. The LASSO CV model performed poorly in all cases. This might be a 
consequence of overftting since the LASSO CV is the one with most variables included 
among the considered models. 

The Covid19 pandemic has largely impacted human global circulation and, conse-
quently, the global dynamics of infuenza transmission. Some lineages have remained 
present in local circulation and others have all but disappeared (such as B/Yamagata). 
Overall, the FluNet numbers of positive cases have drastically decreased. It is expected 
that once circulation returns to prepandemic levels infuenza cases will rise again, how-
ever it is still unclear to what degree the previous transmission patterns will be reestab-
lished or if we will see new dynamics. It has even been argued that we might see more 
severe infuenza epidemics due to changes in immunity related to low circulation periods 
(Dhanasekaran et al., 2021). 

Ultimately, it is likely that infuenza incidence will once more be largely determined 
by a global dynamic, and thus modelling the Brazilian cases based on the number of 
cases in other regions will remain relevant. Furthermore, this same approach might 
prove valuable to other countries, particularly those in the global south, similarly placed 
in the global dynamics. 

Overall, our results for short and long run forecasts (h = 1 and h = 11 steps ahead) 
were fairly good. Together with the relationships outlined by the Granger-causality anal-
ysis they help shed light on the global determinants of infuenza incidence in Brazil. 
Time will tell if the particular predictors selected here will remain relevant, and in this 
sense, this work can be seen as historical record to be compared with the postpandemic 
dynamics. Nevertheless, the overall approach highlights a modelling concept which can 
potentially be useful in the development of public health policies regarding epidemic 
management and immunizations. 
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Abstract 

The Split-Then-Combine approach has previously been used to generate the weights 
of forecasts in a combination in the Euclidean space. This paper extends this approach 
to combine forecasts inside the simplex space, the sample space of positive weights 
adding up to one. As it turns out, the simplicial statistic given by the sample centre com-
pares favourably against the fxed-weight, average forecast. Besides, we also develop 
a Combination-After-Selection method to get rid of redundant forecasters. We apply 
these approaches to make out-of-sample one-step ahead combinations and subcom-
binations of forecasts for several economic variables. This methodology is particularly 
useful when the sample size is smaller than the number of forecasts, a case where 
other methods (e.g., ordinary least squares or principal component analysis) are not 
applicable. 
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1. Introduction 

There is a vast body of literature advocating the usefulness of forecast combination meth-
ods, both theoretically and empirically. A simple and widely used one consists of simply 
attributing equal weights to the individual predictions (neutral element of a weight com-
bination in the simplex.) However, the idea of determining the optimal weight combina-
tion that minimize some objective criterion (e.g., the mean square forecast error) is more 
appealing (Confitti, De Mol and Giannone, 2015). This is the case of the varying-weight 
sample centre g (Aitchison, 1982). It is the central tendency of our weight combinational 
sample and it is defned as the weight combination whose components are the sample 
geometric mean of the weights of each forecaster. Unlike ordinary least squares (OLS) 
and principal component analysis (PCA), this is a viable strategy even when the num-
ber of forecasters to be combined gets large, provided that we constrain weights to be 
positive and add up to one. Hence, the optimal combination problem reduces to a (possi-
bly high-dimensional) constrained least-squares regression problem, where the complete 
covariance structure between weights is taken into account. Indeed, this enforces an im-
plicit shrinkage on weights which ensures a reasonable out-of-sample performance of 
the combined forecasters. This problem turns out to be analogous to the determination 
of no-short minimum variance Markowitz portfolios, which are a special case of a larger 
family of sparse and stable portfolios that are derived through a constrained “lasso” re-
gression problem (Tibshirani, 1996), where the weight vector has a unit L1-norm. This 
type of constraint is known to enforce sparsity, namely the presence of zeros in the 
weight vector, which means that only a small number of forecasters will be selected 
(subcombinations in our Combination After Selection (CAS) approach). 

Forecasters have access to a wide variety of information and forecasting techniques, 
thus leading to a considerable degree of heterogeneity or redundancy among them. A 
weighted average forecast is expected to perform better than individual ones because this 
way we can diversify away idyosincratic forecast misspecifcations, thus reducing the 
variance of the forecast. The simplest example is the (fxed weight) arithmetic average. 
More sophisticated methods that make use of varying weights usually do not improve the 
average in empirical applications because of the instability of the estimated weights (a 
problem known as forecast combination puzzle, Stock and Watson, 2004); in particular, 
when an increasing number of forecasters requires us to estimate an increasing number 
of weights (a problem known as the curse of dimensionality). The forecast combination 
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puzzle has been considered by Smith and Wallis (2009), who pointed out that the failure 
of more sophisticated combination methods is due to the estimation of the combining 
weights. 

With forecast (or model)-specifc combinations, forecasting is often based on pre-
dicting the same variable independently by forecasters. However, analysts who are in-
terested in forecasting a variable from a specifc source should not ignore the forecasts 
from other competing sources. A forecast combination is in fact infuenced by all the 
forecasts; hence, the relationship among individual forecasters is lost when forecasts 
are independently analysed. Only a few methods have been suggested that incorporate 
dependence between forecasters. Multivariate models could incorporate dependence be-
tween forecasters if we knew such a dependence. Alternatively, we can engage straight-
away with weight distributions based on given individual forecast errors, as dependence 
between weights can be incorporated directly, thus increasing forecast accuracy. 

One important difference between modeling forecast-specifc combinations and 
weight distributions is that weights are directly dependent on each other on an aggregated 
level. The awareness of problems, however, arising from the use of standard statistical 
methods with proportions (weights) dates back to Pearson, (1897); that is, spurious ef-
fects on their covariance structure. In particular, each row or column of the variance ma-
trix of a vector of weights sums up to zero. Given that the variances are always positive, 
this implies that some covariances are forced towards negative values (Chayes, 1960). 

Independent modelling and forecasting with forecast-specifc combinations are not 
only unattractive since they ignore dependence patterns among (relative) weights, but 
also because weights often fail to be coherent in the sense of the erratic way in which 
the covariance associated with two specifc weights can fuctuate in sign as we move 
from a full combination to lower and lower dimensional subcombinations. In fact, there 
is no relationship between the variance matrix of a subcombination and that of the full 
combination. Besides, variances may display different rank orderings as we form sub-
combinations, which could lead to implausible forecasters. 

Also, avoided forecasts in a subcombination will result in an increase of weights 
for some other forecasters. By defnition of a weight combination, not only is there a 
common element in the numerator and denominator of each weight, but also all weights 
have a common denominator. Avoided forecasters in a subcombination thus affect both 
the numerator and the denominator, and the dependence between forecasters is therefore 
not as easy to predict. 

Moreover, all combinations are subcombinations of a larger one. Since the covari-
ance between two weights depends on which other forecasters are reported in the dataset, 
there is no guarantee that a plot of a subcombination exhibits similar or even compatible 
patterns with the plot of the original dataset, even if the forecasters not included in the 
subcombination are irrelevant (redundant). 

There is thus incoherence of the correlation between weights as a measure of depen-
dence. Note, however, that the ratio of two weights remains unchanged when we move 
from a full combination to a subcombination. Therefore, as long as we work with scale 
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invariant functions (i.e., ratios), we shall be subcombinationally coherent (Aitchison, 
1986). 

Since standard descriptive statistics (e.g., arithmetic mean and standard deviation) 
are not informative with combinations, in this paper we propose a time-varying method 
to combine, select, and recombine forecasters based on Aitchison (1982, 1986), who 
characterized compositions as vectors having a relative scale and identifed its sample 
space with the simplex. More crucial than the constraining property of compositional 
data is the scale-invariant property of this kind of data. Indeed, when we are consid-
ering only few forecasters of a full combination we are not working with constrained 
data but our data are still compositional. This approach has been successfully applied to 
various felds; see, for instance, Aitchison (1986) Billheimer, Guttorp and Fagan (2001), 
Egozcue and Pawlowsky-Glahn (2005, 2019), Coenders and Ferrer-Rosell (2020) and 
Greenacre (2021). Software packages available now to deal with compositional data are, 
for example, Van den Boogaart and Tolosana-Delgado (2013) and Filzmoser, Hron and 
Templ (2018). To our knowledge, it has not been applied to combinations of forecasts. 
Compositional Data Analysis (CoDA) is a well-established set of statistical methods for 
the analyses of compositional data, that enables coherent modelling of weight combina-
tions where dependences between weights are explicitly modeled, so a relative improve-
ment in the weight for one forecaster leads to a decline in the relative weight for the 
remaining ones. 

Any statement about weight combinations can be reformulated in terms of (centred) 
logratios and viceversa (one-to-one transformation). Data are projected into multivariate 
real space, opening up all available standard multivariate techniques. Moreover, weight 
combinations may be represented by orthonormal coordinates (Mateu-Figueras, Paw-
lowsky-Glahn and Egozcue (2011); Pawlowsky-Glahn and Buccianti (2011), Pawlow-
sky-Glahn, Egozcue and Tolosana-Delgado (2015)) in a real Euclidean space that can be 
interpreted in themselves or from their representation in the simplex (Aitchison geome-
try). 

The analysis that is presented in this paper uses the Split-Then-Combine (STC) ap-
proach of Arroyo and de Juan Fernández (2014) to generate the weights of a combina-
tion. Because they are restricted to be positive and sum up to one, we propose the sample 
centre g of our weight combinational sample as our basic simplicial combination vector. 
To get a subcombination, we develop a Combination-After-Selection (CAS) procedure 
to recombine the best subset of forecasters. 

The paper is organized as follows: the next section describes the STC approach both 
in the Euclidean and simplex spaces. Then, we explain the CAS strategy. In the empir-
ical application, in Section 4, we pull out information provided by panels of quarterly 
periodicity from a pool of expert forecasters for the US macroeconomy over the pe-
riod 1991–2018. Forecast accuracy of simplicial combinations are compared with the 
uniform benchmark arithmetic average.The results obtained with CAS are clearly bet-
ter than the obtained with the other combinations. Finally, some concluding remarks 
complete the paper. 
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2. The Split-Then-Combine (STC) approach 

Arroyo and de Juan (2014) proposed the Split-Then-Combine approach to generate com-
Yt, j , j = 1, 2, ...,J, along t = 1,2, ...,T peri-

˛ ° 
˜ 

binations for panel m across J forecasters 

ods using the expression: 

Y (m) 
t ° = ω(m) 

t,1 Y (m) 
t,1 
° + ω(m) 

t,2 Y (m) 
t,2 
° + ... + ω(m) 

t,J Y (m) 
t,J 
° , 

where the weights ωt 
( 
, 
m
j 
) vary in two dimensions: (1) from one period to the next; and (2) 

from one panel to another. We have one panel for each season. Each panel is a tableau 
of T rows (years) and J columns (forecasters). Each row is then closed to a positive 
weight combination with weights adding up to one. Finally, this weight combination is 
used to weight forecasters in out-of-sample forecasting exercises. For example, if we are 
working with monthly data, we will have 12 panels, one for each month; if we work with 
quarterly data, we will have four panels, one for each quarter. Panels take into account 
the different behaviour of the time series among seasons, but STC can also be applied to 
time series with lower frequency than quarterly or monthly data.1 

The weights of the STC approach must satisfy two restrictions: be positive and sum 
up to one; the latter is to avoid biased combinations if individual forecasts are unbi-
ased. Arroyo and de Juan (2014) developed the STC in the Euclidean Space. Here, we 
also study the STC in the so-called Aitchison geometry (Billheimer et al., 2001, and 
Pawlowsky-Glahn and Egozcue, 2001). 

In order to see the differences between both methods, we frst briefy review the STC 
approach in the Eucidean space; then, we expand the STC approach to the simplex space. 

2.1. The STC approach in the Euclidean Space 

Table 1 shows how the STC approach works in the Euclidean space. Columns 2 to 5 
show the forecasts of the variable of interest for panel m. Each element of this column 
represents the forecast of each forecaster for a given period. For instance, °Y (m) 

2,1 is the 
forecast of a variable of interest Y from forecaster 2 for period 1 in panel m. The 6th col-

(m)° 

° 

Y 
of the J forecasters for the frst forecasting period. The 6th row shows the time average 

Y 

umn shows the cross average by period for the J forecasters; that is, is the average J,1 

(m)
by forecaster, that is, is the average over time of all the forecasts from the frst fore-1,T1 

˙ 

° 

˝caster. Column 7 reports the actual, observed data of the variable and the 7th row shows 
(m) 

Y . Thisthe precision of each forecast average with respect to the overall average J,T1 

measure is used to construct the weights ω that will be assigned to each forecast in the 
STC approach in the Euclidean space. 

1See Bujosa-Brun et al. (2020) for an application of the STC approach to annual data with only one 
panel. 
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Table 1. STC approach in the Euclidean Space. 

(m)˜Panel m 1 2 ... J Y Real data J,t 

1 

2 

... 

T1 

Ỹ (m) 
1,1 

Ỹ (m) 
1,2 

... 

Ỹ (m) 
1,T1 

Ỹ (m) 
2,1 

Ỹ (m) 
2,2 

... 

Ỹ (m) 
2,T1 

... 

... 

... 

... 

Ỹ (m) 
J,1 

Ỹ (m) 
J,2 

... 

Ỹ (m) 
J,T1 

(m)
Ỹ J,1 
(m)

Ỹ J,2 

... 
(m)

Ỹ J,T1 

Y (m) 
1 

Y (m) 
2 

... 

Y (m) 
T1 

(m) 
Y (m)Ỹ  j,T1 

˜Ỹ 1,T1 Ỹ 2,T1 ... Ỹ J,T1 Y J,T1 T1 ° ˛−2 ° ˛−2 ° ˛−2
(m) (m) (m)(m) (m) (m)˜ ˜ ˜Fixed Y − Ỹ  Y − Ỹ  ... Y − Ỹ1,T1 J,T1 2,T1 J,T1 J,T1 J,T1 

The STC weights ω are then computed with the information up to time T1 for each 
panel using the precision accuracy of each forecaster based on the normalized average 
squared forecast error: ° ˛−2

(m)(m)˜ − ̃Y Yj,T1 J,T1 

ω(m) 
= ° j,T1 

(m) 
˛−2 . 

J (m)˜ − ̃∑ Y Yj,T1 J,T1
j=1 

From these weights, we then form the STC combination in T1 + 1 for panel m: 

Ỹ (m)
= ω(m)Ỹ1 

( 
, 
m
T1 

)
+1 + ω(m)Ỹ2 

( 
, 
m
T1 

)
+1 + ... + ω(m)Ỹ (m) 

T1+1 1,T1 2,T1 J,T1 J,T1+1. 

This expression must be computed for each panel, m = 1,2, ...,M. These weights satisfy 
two restrictions: they are positive and add up to one. Once we get forecasts at T1 + 1, we 
re-compute the weights by rolling over another one-step-ahead combination for T1 + 2, 
and so on, always keeping the same two restrictions. 

2.2. Diffculties with the weight combinations 

Standard descriptive statistics are not informative with weight combinations. In partic-
ular, the arithmetic mean and the variance of individual weights do not ft the Aitchison 
geometry as value of central tendency and measure of dispersion. These statistics are 
defned in the framework of Euclidean geometry in real space, which is not a sensible 
geometry for weights. Therefore, it is necessary to introduce alternatives. They are found 
in the concept of sample centre (Aitchison, 1997), variation matrix, and total variance 
(Aitchison, 1986). 

The constraints of constant unit sum and relative meaning of the forecasters’ weights 
have important implications for their statistical analysis, thus rendering direct application 
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of multivariate statistical methods misleading or spurious when applied to combinations 
for various reasons: (see Chayes, 1960 and Barceló-Vidal and Martı́n-Fernández, 2016). 

1. Nonnormality: due to the bounded range of values between 0 and 1, instead of 
−∞ and +∞. 

2. Spurious correlation 

3. Singularity: Euclidean (i.e., raw) variance matrices of random weights are always 
singular due to the constant sum constraint. A classical way to get rid of singu-
larity is to erase one weight, but results will depend on which one is erased, not 
being an operation that is permutation invariant. 

4. Negative bias: Some of the Euclidean covariances are forced towards negative 
values. Hence Euclidean correlations are not free to range over the usual interval 
(−1,1) subject only to the non-negative defniteness of the variance matrix. 

5. Null-correlation: With negative bias, what is the meaning of zero correlation 
between two components of a combination? 

6. Subcombinational Incoherence: There is no relationship between the Euclidean 
variance matrix of a subcombination and that of the full combination. Besides, 
variances may display different and unrelatable rank orderings as we form sub-
combinations. Note, however, that the ratio of two components remains unchanged 
when we move from full combination to a subcombination so that as long as we 
work with scale invariant functions (i.e., ratios), we shall be subcombinationally 
coherent. 

7. Nonsense of scatterplots for pairs of forecasters: Since the raw covariance be-
tween two weights depends on which other forecasters are reported in the dataset 
(all combinations are subcombinations of a larger one), there is no guarantee that 
the Euclidean plot of a closed subcomposition of forecasters exhibits similar or 
even compatible patterns with the Euclidean plot of the original dataset, even if 
the forecasters not included in the subcomposition are irrelevant. Thus, a regres-
sion line drawn in such a plot cannot be trusted. 

8. Finally, the construction of a combination from a vector of Euclidean amounts is 
a constraining closing operation similar to that of the construction of a vector of 
subcombinations from the related combination. We may therefore expect the same 
diffculty in relating variance-covariance matrices of weights in the simplex and 
those in the the Euclidean space. 

Weight combinations are multivariate observations carrying relative information: 
those following the principle of scale invariance, typically being represented in pro-
portions and percentages. In other words, for combinations the relevant information is 
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contained in (log-)ratios. Combinations thus need an own set of statistical methods and 
should not be treated with statistical methods made for interval scale data. Instead, com-
binations should be always treated in a log-ratio-transformed scale. It is quite evident 
that our dataset can only be combinational if it has at least two forecasters. Other-
wise, we cannot speak of a weight in a unit total. That implies a substantial difference 
between combinational data and other multivariate datasets. Most multivariate analysis 
begin with a univariate analysis of the individual variables (the marginals), whereas each 
marginal forecaster of a combinational dataset has no meaning on itself, isolated from the 
remaining forecasters. One combinational dataset should only use proportional weight 
values. Therefore, results on a subset of forecasters (subcombination) do not depend on 
the presence or absence of other irrelevant forecasters in the dataset (subcompositional 
coherence). 

3. The STC approach in the Simplex Space and Combination-after-
Selection (CAS) 

Traditional decomposition techniques provide inconsistent results when applied to com-
positional data as they do not recognize the implicit constraints of summing to a constant 
(Aitchison, 1982, 1986): mathematically, compositional data lie in the bounded space of 
the simplex while traditional decomposition techniques are defned for data in the real 
space. Aitchison (1986, pp.79) showed that by making log-ratio transformations it is 
possible to express compositional data in the real space where the data can be analysed 
with conventional models and then transformed back into the simplex. For instance, the 
Aitchison inner product, defned in tems of logratios, turns out to be equivalent to the Eu-
clidean inner product in terms of centred logratios. We make use of the centred log-ratio 
transformation to express the weights in the real space. The clr transformation takes the 
logarithm of the ratio of each weight divided by the geometric mean of all weights. This 
transformation maintains the initial constraint in the weights as its elements sum to 0 by 
construction but resulting values are real. The inverse clr transformation takes the data 
back to the simplex with the closure operator C that divides the exponential of each clr 
entry by the sum of all entries. 

Consider a T × J panel Y of T out-of-sample forecasts Yt, j produced over time by 

 
J forecasters on some variable of interest Yt , and A be its related panel of prediction−2 

Yt, j −Ytaccuracies at, j ≡ ∈ R+. Then, the matrix 

  
w ′ 1•w1,1 ... w1,J  

 
≡ 

 

 

... ... ... 
wt,1 ... wt,J 

... 
w ′ t•W ≡ ≡ ( w•1 ... w• j ... w•J ), 

... ... ... 
wT,1 ... wT,J 

... 
w ′ T • 
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J 
with weights wt, j ≡ at, j/ ∑ at j  represents T combination vectors w1•, ..., wT • such that 

j=1 
J 

wt, j > 0 for all t and j, and ∑ wt, j = 1 for all t. Thus, w ′ is just a 1 × J point int• 
j=1 

a simplex space SJ−1 of positive weights adding up to one of dimension J − 1 2 . The 
function C : RJ  into a vector of → SJ−1 that transforms a vector of precisions at• ∈ RJ 

+ + 
weights wt• ∈ SJ−1 is called a closure transformation wt• = C(at•). Since this operator 
cancels out any constant, C(cat•) = C(at•), it is scale invariant. Hence, we just need to 
work with scale invariant functions (e.g., ratios or logratios). The ratio of two weights 
remains unchanged when we move from a full combination to a subcombination; that 
is, at,i/at, j = wt,i/wt, j = st,i/st, j for all t. Hence, as long as we work with ratios or 
logratios, we guarantee scale invariance. Therefore, we only consider relative precision 
among forecasters: each weight in a combination vector has no meaning on itself isolated 
from the others. Every statement about vectors in SJ−1 will be fully expressed in terms 
of logratios in RJ−1 with inferences transformed back from RJ−1 into combinational+ + 
statements in SJ−1. The STC sample centre g of W is defned as: 

˜ ° 
1/T 1/T g = C ∏T w , ...,∏T w ≡ C (g(w•1) , ...,g(w•J )) . (1)t=1 t,1 t=1 t,J 

That is, the point in the simplex given by the closure of the geometric averages 
of weights over time. It can also be viewed as the inverse function of the clr isomor-
phic transformation applied to the time average of the sample forecasters’ weights 
(Pawlowsky-Glahn et al., 2015). Note that in this defnition, the geometric mean is con-
sidered column-wise (i.e., by forecasters), while in the clr transformation the geometric 
mean is considered row-wise (i.e., by samples). 

The centred logratio transformation clr : SJ−1 → R, for each t = 1, ..., T, 

J1 wt, j wt, jxt, j = clr(wt, j) := lnwt, j − ∑ lnwt, j = ln 1/J 
≡ ln , j = 1, ...,J, (2)

J ∏J g(wt•)j=1 j=1 wt, j 

where g(wt•) is the geometric average of the J weights for the tth observation. This 
function may be interpreted as a bijection SJ−1 ↔̨  H

J−1 between SJ−1 and̋ a vector sub-
space of RJ 

+ defned by the expression HJ−1 := xt• ∈ RJ 
+ : ∑J

j=1 xt, j = 0 , orthogonal 
to the vector of ones. The inverse clr transformation is then defned by 

clrInv(xt•) := C(exp xt•) = C(wt•/g(wt•)) = C(wt•) = wt• ∈ SJ−1 , (3) 

that is, clrInv allows us to go from RJ−1 back to SJ−1.+ 

2Although in most CoDa papers the superscript of the simplex space is the number of parts, we prefer 
to emphasize its dimension which, due to the constraint, is J − 1. This is in line with the dimension of an 
isomorphic subspace of the real space isometric with the simplex. 
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The CAS subcombination is defned as C(w1, ...,wI ) = (s1, ...,sI) ∈ SI−1 inside a 
simplex of a lower dimension I − 1 so that s1 > 0, ...,sI > 0 and s1 + ... + sI = 1. Some-
times, especially when J >> T , we perform another subsequent selection by choosing 
those forecasters inside the previous CAS selection. 

A selected CAS subcombination CS : SJ−1 → SI−1 will be viewed as taking place in 
two stages: a selection of I < J forecasters by a selecting I × J matrix S, followed by its 
closure, 

′ (w1, ...,wI)
CS(g) = C(Sg) := ′ = (s1, ...,sI) . (4)

w1 + ... +wI 

For I = 3, the CAS subcombination can be represented in a ternary diagram by 
barycentric coordinates (height of the point over the side of the triangle opposite to 
it). Similarly, for I = 4, it can be represented by a tetrahedron where each possible 3-
forecast subcombination vector is found by projecting every 4-forecast vector onto the 
side opposite to the vertex corresponding to the removed forecasters. 

The performance of CAS is good just because we get rid of redundant forecasters 
(curse of dimensionality), thus increasing the forecast accuracy of simplicial statistics in 
a simplex of a lower dimension (sometimes just a tetrahedron J = 4). 

We have also carried out Q-mode clustering (Filzmoser et al., 2018) and biplot 
(Gabriel, 1971) analyses. The main goal is to achieve highly homogeneous clusters 
of forecasters’ weights; i.e., the weights within a cluster should be very similar to each 
other. On the other hand, different clusters should be dissimilar, because otherwise they 
should have been merged into one cluster. The variation matrix ϒ with elements given by ˜ ° 
the sample variance over time, ϒi, j ≡ var ln w

w 
•
•i

j 
, with diagonal elements all 0, will be 

used to defne the total variation in W as υ2 :=∑J
i= 
− 

1
1 ∑J

j=i+1 ϒi, j. Then, υ will be a proper 
measure of distance among forecasters in cluster analysis, with limit cases of perfect as-
sociation (υ = 0) to perfect independence (υ = +∞). The variation matrix (Aitchison, 
1986, or its normalized version) is suitable to express the association between weights. 
Low values express a high association, and all ratios in a sample are nearly perfectly 
proportional to each other, while large values express that the ratios are very different 
from each other. A measure of global dispersion of the weight combinational sample is 
the total variance (sum of all components of the variation matrix divided by 2J), which 
turns out to be the time average squared Aitchison distance of each weight combination 
to the sample centre, also called metric variance (Pawlowsky-Glahn & Egozcue, 2001). 

The CAS approach that selects forecasters from the sample centre g of W can be 
summarized in the following steps: 

1. Given a T ×J table Y̨ of J forecasters over T time periods in a given season (month 
or quarter in our cases), compute the related T × J table A of 1 × J vectors at 

′
• of 

prediction accuracies for each time period t ∈ [1,T ]. 

2. Convert A into a T × J table W of combination vectors wt 
′
• of weights inside the 

simplex; that is, weights in each row of W are positive and add up to one. 
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3. Calculate the sample centre g of W. 

4. Select the CAS subcombination of those forecasters with simplicial weights larger 
than 1/J. 3. 

5. Repeat steps 1-4 for all panels. 

6. Add the next row of out-of-sample accuracy forecasts to the tableau, re-compute 
the matrix of weights, and update the sample centre and CAS subcombination. 
Continue this way until the end of the forecast period. 

4. Empirical application 

We apply the STC in the simplex and CAS to the variables defned in Table 2, where 
we include their defnition and the samples used to form the combinations of forecasts. 
Here, we deal with forecasters obtained from the Survey of Professional Forecasters 
(SPF) from the Federal Reserve Bank of Philadelphia (2018). Blanks in the Survey due 
to the entry and exit of forecasters are fulflled following the same strategy as in Poncela 
et al. (2011), that is, we only consider one-step-ahead forecasts and select only those 
forecasters without missing data. When there is a missing datum, we use the two-steps-
ahead forecast to fll it. Forecasters with more than four consecutive missing data are 
excluded. For each sample, we only take into account balanced panels. This strategy is 
also used in Lahiri, Peng and Zhao (2017). Because of the entry and exit of forecasters in 
the survey, we also analyse different sample sizes, depending on the number of included 
forecasters. In Table 3, we show, for each variable, the number of forecasters chosen in 
each subsample. The combinations of forecasters are computed for the periods 2015 to 
2018. Note that, in some samples, the number of forecasters is larger than the number 
of observations, a fact that cannot be treated with other methods (e.g., regression and 
PCA). 

3When J >> T , we made a frst subselection by applying cluster and biplot analyses. Redundant fore-
casts were defned, with the former, as those whose weights belong to the same cluster; and, with the latter, 
as those lying on a common line. The sample centre of the remaining weights were then chosen prior to 
using the CAS strategy. 
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Table 2. Defnition of the main variables used in the application. Source: Survey of Professional 
Forecasters documentation. SA = Seasonal Adjusted. 

Variable Defnition Sample 

NGDP Forecasts for the quarterly level of nominal GDP. SA. billions $ 1991 Q1 - 2018 Q4 

PGDP Forecasts for the quaterly level of the chian-weighted GDP price index. 
SA. Index. Base year 1992 1991 Q1 - 2018 Q4 

UNEMP Forecasts for the quarterly average unemployment rate. SA. % points 1991 Q1 - 2018 Q4 

EMP Forecasts for the quarterly average level of nonfarm payroll employment. 
SA. Thousands of jobs. 2004 Q1 - 2018 Q4 

INDPROD Forecasts for the quarterly average level of the index of industrial prod. 
SA. Index. 1991 Q1 - 2018 Q4 

HOU SING Forecasts for the quarterly average level of housing starts. SA. millions. 1991 Q1 - 2018 Q4 

T BILL Forecasts for the quarterly average 3-months Treasury Bill rates. % points 1991 Q1 - 2018 Q4 

BOND Forecasts for the quarterly average level of Moody’s Aaa corporate. Bond 

yield. % points 1991 Q1 - 2018 Q4 

RGDP Forecasts for the quarterly chain-weighted real GDP. SA. annual rate. 
Base years 1992 - 1995, fxed weighted real GDP 1991 Q1 - 2018 Q4 

RCONSU M Forecasts for the quarterly chain-weighted real personal consumption 

expenditures. SA, annual rate, base years 1992 - 1995. 1991 Q1 - 2018 Q4 

RNRESIN Forecasts for the quarterly chain-weighted real nonresidential fxed 

investment. SA. annual rate, base years 1992 - 1995. 1991 Q1 - 2018 Q4 

RRESINV Forecasts for the quarterly chain-weighted real residential fxed 

investment. SA., annual rate, base years 1992 - 1995 1991 Q1 - 2018 Q4 

RFEDGOV Forecasts for the quarterly chain-weighted real federal government 
consumption and gross investment. SA, annual rate, base years 1992-95 1991 Q1 - 2018 Q4 

RLSGOV Forecasts for the quarterly level of chain-weighted real state and local 
government consumption and gross investment. SA. annual rate. 
base years 1992 - 1995 1991 Q1 - 2018 Q4 

CPI Forecasts for the headline CPI infation rate. SA, annual rate, % points. 
Quarterly forecasts are annualized quarter-overquarter percent changes 

of the quarterly average price index level 1991 Q1 - 2018 Q4 
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Table 3. Variables, samples and number of forecasters. 

Samples 

Variable Sample (1) Sample (2) Sample (3) Sample (4) Sample (5) 

T J T J T J T J T J 

NGDP 24 3 20a) 6 15d) 10 9g) 18 5 22 

PGDP 24 3 20a) 6 15d) 10 9g) 20 5 25 

UNEMP 24 4 20a) 6 15d) 12 9g) 22 5 27 

EMP 11 16 10 20 8 22 5 28 

INDPROD 24 4 19b) 8 15d) 12 9g) 21 5 26 

HOUSING 24 4 19b) 10 15d) 15 10 f ) 19 5 26 

T BILL 24 5 19b) 8 15d) 11 9g) 19 5 24 

BOND 24 3 19b) 5 14e) 7 9g) 13 5 17 

RRESINV 24 5 20a) 9 15d) 13 9g) 19 5 28 

RGDP 24 5 20a) 9 15d) 14 9g) 25 5 31 

RCONSUM 24 5 20a) 9 16c) 13 10 f ) 20 5 29 

RNREIN 24 5 20a) 9 16c) 13 10 f ) 20 5 29 

RFEDGOV 24 5 20a) 9 16c) 13 10 f ) 19 5 28 

RLSGOV 24 5 20a) 9 16c) 13 10 f ) 19 5 28 

CPI 24 5 20a) 8 16c) 12 10 f ) 19 5 29 

T = number of periods, J = number of forecasters, Sample (1): 1991 - 2014; Sample (2) a) 1995 - 2014; 
b) 1996 - 2014; Sample (3) c) 1999 - 2014; d) 2000 - 2014; e) 2001 - 2014; Sample (4) f) 2005 - 2014; 

g) 2006 - 2014; Sample (5) 2010 - 2014; For the EMP variable the samples are: (1) 2004-2014; 
(2) 2005-2014; (3) 2007-2014 and (4) 2010-2014 

To analyse the prediction accuracy of combinations, we look at four well-known 
measures: Mean Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Per-
centage Error (MAPE), and Median Absolute Percentage Error (MdAPE). The defni-
tions of the accuracy measures are: 

˝ 
˛ ° 

˜ 
Yi 

n 2 

° 

° 

Yi−Yi 

∑ 
i=1
(Yi−Yi)n

1ME = ∑ Yi − ; RMSE = ;n n
i=1 

˙̇
˙ °Yi−Yi 

Yi 

˙̇
˙ 

˙̇
˙ 

˛˙̇
˙ . 

˜n
1MAPE = ∑ ; MdAPE = Median Yin 

i=1 

Although in general these measures produce similar results, there are some differ-
ences depending on the type of the combination considered.4 

4In previous studies, we also used Mean Absolute Scaled Error (MASE), and it made no difference with 
MAPE as to which method generates better results. 
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We compute four kinds of combinations, three with varying weights: Euclidean 
space, E STC, simplex space, S STC and CAS and the fxed-weight arithmetic average, 
AV E. 

4.1. General results 

Table 4. Summary depending on J and T . 

AV E E STC S STC CAS EUCLIDEAN SIMPLEX TOTAL 

J < T 215 171 73 289 386 362 758 
(%) (28.3) (22.6) (9.6) (39.5) (50.4) (49.1) (59.9) 

J > T 115 102 65 227 217 292 509 
(%) (22.6) (20.0) (12.8) (44.6) (42.6) (57.4) (40.2) 

TOTAL 330 273 138 526 603 664 1266 
(%) (26.0) (21.6) (10.9) (41.5) (47.6) (52.4) 

Number of times that accuracy measures favored a combination procedure.Percentages in parenthesis. 

We have analyzed 1266 values of accuracy measures. General results are shown in Table 
4. According to the type of weights, they favored fxed weights in 330 cases (26.0%) and 
varying weights in 937 (74.0%). With respect to the latter, 273 (21.6%) favored E STC, 
138 (10.9%) S STC and 526 (41.5%) CAS. Although the CAS procedure is clearly fa-
vored, there is not a clear difference when we compare the results between Euclidean 
and simplex spaces. In fact, when the combinations are done in a sample with more 
observations than forecasters, the Euclidean combinations (AV E and E STC) generate 
results as good as those obtained with the simplex (50.4% vs 49.1%); but clearly CAS is 
the best, with a 39.5% of the cases. 

When we focus on the results for J > T , simplex is better (57.4% vs 42.6%), CAS 
works very well precisely when some other methods have little to say. 



203 

Ta
bl

e 
5.

 R
es

ul
ts

 fo
r 

ea
ch

 c
om

bi
na

tio
n 

pr
oc

ed
ur

e 
by

 v
ar

ia
bl

e 
an

d 
ac

cu
ra

cy
 c

ri
te

ri
a.

 P
er

ce
nt

ag
es

 o
f b

ea
ts

 

M
ea

n 
Er

ro
r 

RM
SE

 
M

A
PE

 
M

dA
PE

 

AV
E 

E
ST

C 
S

ST
C 

C
AS

 
AV

E 
E 

ST
C 

S 
ST

C 
C

AS
 

AV
E 

E
ST

C 
S

ST
C 

C
AS

 
AV

E 
E

ST
C 

S
ST

C 
C

AS
 

N
G

D
P 

PG
D

P

U
N

E
M

P 

E
M

P 

IN
D

PR
O

D
 

H
OU

SI
N

G
 

T
BI

LL
 

BO
N

D
 

RR
E

SI
N 

RG
D

P

RC
O

N
SU

M
 

RN
RE

SI
N 

RF
E

D
G

OV
 

RL
SG

OV
 

C
PI

 

40
.0

 

13
.6

 

35
.0

 

75
.0

 

30
.0

 

0.
0 

10
.0

 

10
.0

 

30
.0

 

15
.0

 

15
.0

 

20
.0

 

40
.0

 

40
.0

 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

90
.0

 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0

30
. 

10
.0

 

45
.5

 

5.
0 

6.
3 

5.
0 

19
.0

 

0.
0 

5.
0 

5.
0 

0.
0 

15
.0

 

25
.0

 

25
.0

 

10
.0

 

15
.0

 

50
.0

 

40
.9

 

60
.0

 

18
.8

 

65
.0

 

76
.2

 

0.
0 

85
.0

 

35
.0

 

85
.0

 

70
.0

 

55
.0

 

35
6.

0 

50
.0

 

25
.0

 

52
.4

 

40
.0

 

40
.0

 

81
.3

 

25
.0

 

5.
0 

5.
0 

18
.2

 

55
.0

 

10
.0

 

30
.0

 

25
.0

 

60
.0

 

50
.0

 

15
.0

 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

90
.0

 

0.
0 

0.
0 

0.
0 

0.
0 

0.
0 

5.
0 

0.
0 

35
.0

 

4.
8 

30
.0

 

20
.0

 

0.
0 

5.
0 

20
.0

 

0.
0 

9.
1 

15
.0

 

20
.0

 

10
.0

 

25
.0

 

25
.0

 

20
.0

 

0.
0 

42
.9

 

30
.0

 

40
.0

 

18
.8

 

70
.0

 

75
.0

 

5.
0 

72
.7

 

30
.0

 

70
.0

 

60
.0

 

50
.0

 

10
.0

 

30
.0

 

50
.0

 

30
.0

 

5.
0 

19
.0

 

68
.8

 

20
.0

 

0.
0 

28
.6

 

15
.0

 

30
.0

 

10
.1

 

35
.0

 

5.
0 

57
.1

 

45
.0

 

0.
0 

45
.0

 

30
.0

 

42
.9

 

6.
3 

10
.0

 

10
.0

 

42
.9

 

5.
0 

45
.0

 

35
.0

 

0.
0 

90
.0

 

14
.3

 

25
.0

 

50
.0

 

5.
0 

35
.0

 

0.
0 

0.
0 

0.
0 

5.
0 

9.
5 

15
.0

 

5.
0 

5.
0 

5.
0 

0.
0 

19
.0

 

10
.0

 

10
.0

 

20
.0

 

30
.0

 

38
.1

 

25
.0

 

70
.0

 

85
.0

 

19
.0

 

65
.0

 

20
.0

 

50
.0

 

60
.0

 

5.
0 

9.
5 

20
.0

 

40
.0

 

30
.0

 

10
.0

 

25
.0

 

68
.8

 

10
.5

 

0.
0 

15
.0

 

15
.0

 

23
.8

 

10
.1

 

30
.0

 

4.
8 

50
.0

 

15
.0

 

10
.0

 

45
.0

5.
0 

20
.0

 

30
.0

 
30
.0

 
30
.0

 

40
.0

0.
0 

35
.0

 

25
.0

0.
0

6.
3 

0.
0 

10
.5

 
78
.9

 

10
.0

5.
0 

85
.0

 

60
.0

 
10
.0

 
15
.0

 

0.
0 

10
.0

 
75
.0

 

61
.9

0.
0 

14
.3

 

40
.0

5.
0 

45
.0

 

0.
0

0.
0 

70
.0

 

85
.7

4.
8

4.
8 

30
.0

 
15
.0

5.
0 

35
.0

 
25
.0

 
25
.0

 

55
.0

5.
0 

30
.0

 

M
E

AN
 

26
.9

 
10
.3

 
12
.7

 
50
.1

 
34
.1

8.
7 

13
.6

 
43
.6

 
24
.6

 
30
.1

8.
2 

37
.1

 
21
.2

 
34
.5

8.
4 

35
.9

 

Antonio Martı́n Arroyo and Ar´ andezanzazu de Juan Fern´ 



204 Compositional combination and selection of forecasters 

4.2. Results by method of combination, variable and accuracy criteria 

Table 5 shows the percentage of beats by variable and accuracy criteria for each combi-
nation procedure. The following comments are worth mentioning: 

1. Results about Euclidean and simplex spaces vary depending on the accuracy mea-
sure considered. Whereas combinations in the former are clearly better with 
MAPE and MdAPE, those in the latter are better with MAE and RMSE. 

2. When we analyse combinations according to the type of weights, fxed weights 
are always the worst, therefore it is worthwile to use varying weights. 

3. CAS is on average the best, reaching 50% of the cases with ME. 

4. S STC is only the best for the PGDP considering ME, MAPE and MdAPE, whereas 
E STC is the best for several variables when we consider MAPE and MdAPE. 

5. AV E’s best results occur with RMSE. 

4.3. Results by number of forecasters and accuracy criteria 

Tables 6 and 7 show the results of each combination by the number of forecasters and 
accuracy criteria. 

Table 6. Number of beats of each combination by accuracy criteria and number of forecasts. 

Mean Error RMSE MAPE MdAPE 

AV E E STC S STC CAS AV E E STC S STC CAS AV E E STC S STC CAS AV E E STC S STC CAS 

J < T 52 21 23 95 66 18 26 75 51 65 12 66 46 67 12 63 

(%) (27.3) (10.8) (11.9) (50.0) (35.7) (9.9) (14.0) (40.4) (26.3) (33.5) (6.25) (34.1) (24.3) (35.8) (6.4) (33.5) 

J > T 31 13 17 63 37 10 20 61 27 36 15 50 20 43 13 53 

(%) (25.2) (10.4) (13.9) (50.4) (29.1) (7.7) (15.4) (47.9) (21.2) (28.0) (11.9) (39.0) (15.1) (33.6) (10.1) (41.18) 

TOTAL 83 34 40 158 103 28 46 135 78 101 27 116 65 111 25 116 

(%) (26.4) (10.7) (12.7) (50.2) (33.0) (9.3) (14.6) (43.4) (24.2) (31.3) (8.4) (36.0) (20.6) (34.9 (7.9) (36.6) 

Table 7. Number of beats of EUCLIDEAN and SIMPLEX combinations by accuracy criteria and 
number of forecasts. 

Mean Error RMSE MAPE MdAPE 

EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX 

J < T 73 118 85 101 116 78 113 75 

(%) (38.1) (61.9) (45.6) (54.4) (59.8) (40.2) (60.1) (39.9) 

J > T 44 80 47 80 63 65 63 66 

(%) (35.7) (64.4) (36.8) (63.3) (49.2) (50.9) (48.7) (51.3) 

TOTAL 117 198 131 181 179 143 176 141 

(%) (37.1) (62.9) (42.0) (58.0) (55.6) (44.4) (55.5) (44.5) 
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In Table 6, we present the number of beats of each combination according to the 
accuracy criteria and the number of forecasters. Only in 2 cases, E STC beats CAS 
and always when the number of forecasters is lower than that of observations. In the 
rest of the cases, CAS is always the best reaching 50% of ME, almost twice of AV E 
combination. 

In Table 7, we show the results attending to the space where the combination is 
formed. As much as J > T simplex is always the best, reaching more than 60% of the 
cases for ME and RMSE. When J < T , for MAPE and MdAPE, Euclidean combinations 
are better. These good results are obtained because E STC works very well depending 
on these measures. 

4.4. Results according to the variability of the forecasts 

The basic idea under this section is the following: a fxed-weight combination assigns 
the same weight to forecasts, so if variability among them is small, then the average will 
work well in the same direction, however wrong it may be (‘precisely’ wrong) unless 
they are unbiased. On the other hand, when variability is high, it is better to assign 
different weights. This is in line with the results obtained by Jose and Winkler (2008) 
by comparing the accuracy of the average with trimmed and Winsorized averages and 
the results by Genre et al. (2013) by using the European Central Bank (ECB) survey of 
professional forecasters. In this latter paper, they fnd that some combination methods 
outperform the simple average of forecasts in variables with heterogeneity of forecasters 
and apparent bias. 

In order to verify this hypothesis, we compute the variation coeffcient (VC) of each 
variable for each combination and forecast period from 2015 to 2018. We also plotted 
the forecasts for each period 5. In fact, this issue forms part of the selection procedure 
presented in this paper, i.e. to select those forecasters that do not share common informa-
tion. In this empirical application, the forecasters come from the Survey of Professional 
Forecasters (SPF) and may have common information in forming their forecasts. This 
is the reason why we expect some forecasts to be highly correlated (even redundant) 
and others with low correlation. Then, CAS takes advantage of this situation and usually 
generates better results. 

The main comments that can be pointed out are the following: 

1. When all the forecasts included in the sample are highly correlated and their plots 
show a similar behaviour, AV E is usually the best combination. A clear example 
of this situation is shown in Figure 1 where we plot the forecasts for NGDP for all 
the samples. 

5In order to save space, these results are available upon request. 
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2. When some of the forecasts are correlated but their plots differ somewhat, AV E is 
better because of its varying-weight allocation. Figure 2 shows this situation for 
RLSGOV . 

3. In a mixed situation with some forecasts highly correlated and some others not so, 
CAS is the best because it only selects non-redundant forecasters. In Figure 3 we 
show this situation for UNEMP. 

4. In general, with low correlated forecasts, varying-weight combinations generate 
better results: the E STC and S STC, when the forecasts show a similar behaviour, 
and CAS, when they don’t. Figure 4 shows a clear example of this situation for 
HOUSING. 

Table 8 shows the variation coeffcient (VC) and results for the aforementioned 
variables6. The analysis of the VC will be done jointly with Figures 1 to 4. 

1. NGDP: All the graphs in Figure 1 show very little variation between forecasts. 
The VC in each sample is very low, suggesting that AV E should be used. Looking 
at the combination results, AV E is the winner in all the samples with the exception 
of sample 4. In this case, CAS generates the best forecasts for all the forecasting 
periods. Notice that in the graph for sample 4, although the forecasts follow a 
similar behaviour, there are some of them with different patterns that can be used 
to improve the forecast combination through CAS. 

2. RLSGOV: The behaviour of the forecasts for this variable is different from the 
one observed before. In this case, the forecasts seem to have a similar behaviour, 
but the correlation between them is not too high. Then, assigning different weights 
generates better combinations. Looking at Figure 2, we can see that S STC obtains 
very good results in 2017 and perhaps in 2016. Our perception from the graph is 
confrmed in Table 7: varying-weight combinations outperform the fxed-weight 
one. This situation is also supported by the VC, which shows higher values than 
the observed for NGDP. So, in this case, the fact that not all the forecasts show 
the same pattern leads to better forecasting results with varying-weight methods. 

3. UNEMP: The VC of this variable in Table 7 clearly shows higher values than 
the observed for the previous variables. This fact can indicate that the average 
forecast may not be the best combination in this case. Looking at Figure 6, not all 
the forecasts have the same pattern. This favors the varying-weight combinations, 
E STC, S STC and CAS, the latter being the one that beats more times. Therefore, 
in this case, selection is better than a full combination either fxed AV E or varying 
E STC. 

6The VC, fgures and results for the other variables are available upon request. They have been omitted 
to save space. 
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4. HOUSING: Figure 4 is a clear example for CAS to form a combination. Different 
behaviour of some forecasts and high VC are the clues to select forecasters to 
obtain better forecasting results. Although there is a common behaviour of some 
forecasts, the selection of orthogonalized forecasts improves the results. 

Similar results are confrmed for the other variables analysed in the empirical ap-
plication. As a matter of fact, high VC and different behaviour might be the clues to 
consider CAS as the best subcombination to forecast a variable. 

4.5. Results according to the forecast ability 

When the Diebold and Mariano (1995) or Giacomini and White (2006) tests are not 
appropriate, it might be interesting to break down the Mean Squared Forecast Error 
(MSFE) into three components (bias, variance, and covariance) to assess which of them 
holds sway over a given MSFE: 

H ˜ ˛2 ˜ ˛2 ˜ ˛2 ° °MSFE : = 
1 ∑ YT +h −YT +h ≡ Y H −Y H + sd(Y° H ) − sd(YH ) (5)
H h=1 ˜ ˛ 

+2(sd(YH ))(sd(YH )) 1 − corr[Y° H ,YH ] , 

where Y° H is an H-period average forecast, Y H is the corresponding average for the real-
ized values (YH ), sd(Y° H ) is the standard deviation of the forecasts, sd(YH ) is the standard 
deviation of the realized values for the forecast period, and corr[Y° H ,YH ] is the correlation 
between forecasts and realized values. Then, proportions are defned as follow: 

˜ ˛2 °Y H −Y H 
Bias proportion: ,

MSFE 
˜ ˛2 

sd(Y° H ) − sd(YH ) 
Variance proportion: ,

MSFE ˜ ˛ 
2(sd(YH ))(sd(YH )) 1 − corr[Y° H ,YH ] 

Covariance proportion: ,
MSFE 

We study which one constributes more to the MSFE. A ranking of preferences may be 
given by the following four situations: 

1. CASE 1: The best will be when there are little bias and variance (hence, high 
covariance proportion). 

2. CASE 2: The next one will be when there is little bias, but high variance (hence, 
low covariance proportion). 

3. CASE 3: Bad situations happen when the bias is high: either with high variance, 
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4. CASE 4: Or the worst, with low variance (‘precisely’ wrong). 

Using this classifcation, we show in Table 9 the bias, variance, and covariance pro-
portions for the combination procedures with lowest MSFE7 and in Table 10 we sum-
marize this information according to Euclidean and simplex combinations. 

Table 9. Classifcation according to their forecast ability. 

AV E E STC S STC CAS TOTAL 

# % # % # % # % # % 

Case 1 10 13.3 3 4.0 1 1.4 3 4.0 17 5.67 
Case 2 0 0.0 18 24.0 28 37.8 18 24.0 65 21.67 
Case 3 8 10.7 34 45.3 39 52.7 44 58.7 125 41.67 
Case 4 57 76.0 20 26.7 6 8.1 10 13.3 93 31.0 

#: Proportions of the best MSFE procedure included in specifc cases. 

Table 10. Classifcation according to Euclidean or Simplex. 

Euclidean Simplex 
# % # % 

Case 1 13 8.7 4 2.7 
Case 2 18 12.0 46 30.9 
Case 3 42 28.0 83 55.7 
Case 4 77 51.3 16 10.7 

#: Proportions of the best MSFE procedure included in specifc cases. 

From Table 9, we can conclude that AV E is mainly classifed in the worst situation: 
high bias and low variance (76% of the cases), but it is also the frst method classifed in 
the best situation (13.3% of the cases). 

In general, the other methods are classifed most of the times in cases 2 and 3 (low 
bias and hig variance or high bias and high variance). 

From Table 10, the case 3 is the most often with the simplex representing more than 
50% of the cases, being case 2 the second best situation that happens almost 31%. 

Considering the different methods of combination, we obtain that for AV E, case 4 is 
the most often whith MSFE. For all the others, case 3 is the one that happens most often. 

7The specifc values for the bias, variance, and covariance proportions for each variable, each sample, 
and each combination procedure are available upon request. 
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5. Conclusions 

In this paper, we have used the Split-Then-Combine (STC) approach to build positive 
weights that sum up to one. Because of these two restrictions, most methods from mul-
tivariate statistics are inapplicable for combinational datasets, giving rise to a number of 
issues that make inappropiate the Euclidean geometry. Instead, the Aitchison geometry 
considers combinations of forecasters inside the simplex, the sampling space of positive 
weights adding up to one. A one-to-one transformation between the simplex and real 
spaces allows us to use the sample centre of the simplex, with time-varying weights, 
to fnd a Combinations after Selection (CAS) simplicial subcombinations that selectis 
those forecasters in a full combination that assign higher weights than the one allocated 
by the benchmark average. 

The methodology can be summarized in these steps: frst, we split experts’ fore-
casts by seasons to assess their relative forecast performance that periodically evolves 
over time. Second, we choose as a combination vector the sample centre of the simplex. 
Then, we select forecasters inside a simplex of lower dimension by means of a centred 
logratio transformation. Finally, we make rolling, truly out-of-sample, one-step-ahead 
combinations of forecasts, even in cases where the sample size is smaller than the num-
ber of forecasters. Once a new observation is known, we recalculate the weights that we 
then keep one-step-ahead to form a new out-of-sample combination. 

We present experimental results with a pool of expert forecasters of the US macroe-
conomy over the period 1991–2018. In most cases, the Combination after Selection 
strategy improves the average (neutral combination in the simplex space) with different 
criteria of forecasting accuracy, and works very well even when the number of fore-
casters is greater than the number of observations. Forecast combination can improve 
forecasting accuracy, provided that the sets of forecasters contain some independent in-
formation. 

As a general rule, we can conclude that when there are a high number of heteroge-
neous forecasters to be combined, the best way to form a combination is by selecting a 
CAS simplicial subcombination formed by the most weighted, non-redundant forecast-
ers. 

For combinations of forecasts, the relevant information is contained in the clr coeff-
cients between forecasts. This by itself might also be interesting to symmetrize possible 
right-skewed distributions of forecaster’s precisions. Further research, therefore, will 
focus on pivot (or more general orthonormal) coordinates that aim to extract all rela-
tive information about a particular forecast in the combination. Moreover, exploratory 
and preprocessing issues may also be discussed: visualization, outlier detection, miss-
ing values, and zeros form a touchstone of the logratio analysis. Finally, many popular 
statistical methods, such as principal component analysis, cluster analysis, classifcation 
and regression analysis, may be adapted for dealing with combinations carrying relative 
information. 
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Missing data analysis and imputation via latent 
Gaussian Markov random felds 
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Abstract 

This paper recasts the problem of missing values in the covariates of a regression model 
as a latent Gaussian Markov random feld (GMRF) model in a fully Bayesian framework. 
The proposed approach is based on the defnition of the covariate imputation sub-model 
as a latent effect with a GMRF structure. This formulation works for continuous covari-
ates but for categorical covariates a typical multiple imputation approach is employed. 
Both techniques can be easily combined for the case in which continuous and categor-
ical variables have missing values. The resulting Bayesian hierarchical model naturally 
fts within the integrated nested Laplace approximation (INLA) framework, which is used 
for model ftting. Hence, this work flls an important gap in the INLA methodology as 
it allows to treat models with missing values in the covariates. As in any other fully 
Bayesian framework, by relying on INLA for model ftting it is possible to formulate a 
joint model for the data, the imputed covariates and their missingness mechanism. In 
this way, it is possible to tackle the more general problem of assessing the missingness 
mechanism by conducting a sensitivity analysis on the different alternatives to model the 
non-observed covariates. Finally, the proposed approach is illustrated in two examples 
on modeling health risk factors and disease mapping. 
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1. Introduction 

Missing data is an important issue a researcher needs to deal with in any statistical analy-
sis; failing to properly account for it can result in a reduction of statistical power, or even 
in biased statistical inference. Consequently, countless methods have focused on how to 
deal with missing data (see, for example, ?Enders, 2010; van Buuren, 2012; Trivellore, 
2015; Little and Rubin, 2019). 

Missing data can occur for a number of reasons, as described in Little and Rubin 
(2019). Sometimes, the missingness mechanism is ignorable and inference can rely 
on the observed data alone, appropriately coupled with a suitable imputation or data 
augmentation model if needed. When the missingness mechanism is not ignorable, a 
joint approach is required to ft the analysis model, impute the missing values and assess 
the missingness mechanism. Under this scenario, it is recommended that a sensitivity 
analysis is carried out to assess the impact of the missingness mechanism on the model 
parameters estimates (Mason et al., 2012). 

The Bayesian paradigm has gained popularity for dealing with missing data, making 
no distinction between parameters and missing data which are considered as additional 
unknown parameters. For these reasons, and differently from other ad-hoc methods 
(Nakagawa, 2015), with a fully Bayesian approach it is possible to combine the analysis 
and imputation model in a joint estimation framework (Erler et al., 2016). For instance, 
Mason (2009) and Mason et al. (2012) developed a fully Bayesian missing imputation 
framework in order to adjust for several missing covariates in longitudinal or cross-
sectional studies; each of the missing covariates is assigned an imputation model, all 
jointly modelled with the analysis model. 

The approach we propose in this paper is based on recasting the imputation model to 
defne it as a latent Gaussian Markov random feld (GMRF, Rue and Held, 2005) which 
is part of a larger Bayesian hierarchical model. This fts naturally within the integrated 
nested Laplace approximation (INLA, Rue, Martino and Chopin, 2009) methodology, 
as an alternative to Markov chain Monte Carlo (MCMC, see, for example, Brooks et al., 
2011). This approach is suitable for continuous covariates and can be also extended to 
impute categorical variables. This makes model ftting with missing covariates possible 
in INLA, and our new approach flls an important gap, as INLA has always required that 
the data in the latent GMRF defning the model to be fully observed. Here we focus on 
the case of missing values in the covariates as INLA can easily ft models with missing 
values in the response variable, simply computing the corresponding posterior predictive 
distribution derived from the analysis model to be ft (see, for example, Gómez-Rubio, 
2020). 

A previous attempt to solve the issue of missing values in the covariates in the INLA 
framework can be found in Gómez-Rubio and Rue (2018). They adopt a Gaussian prior 
for the imputation of the missing values in the covariates and sample from the miss-
ing data posterior distribution through INLA within MCMC. A different approach is 
proposed in Chapter 8 of Blangiardo and Cameletti (2015), where a bivariate model 
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for spatially misaligned data is estimated by adopting the stochastic partial differential 
equations (SPDE) approach Lindgren, Rue and Lindstrom (2011). Covariate values are 
imputed (in new locations) by assuming a spatial Gaussian feld which is also included 
in the linear predictor of the response model. See also Barber et al. (2016); Forlani 
et al. (2020) for model examples on the use of spatial models for misalignment. Alter-
natively, Gómez-Rubio (2020) proposes a multiple imputation (MI) approach (Rubin, 
1987, 1996; Carpenter and Kenward, 2012): the covariates are imputed multiple times 
through resampling, so that N complete datasets are used in the analysis model. All the 
results are then combined to obtain the fnal estimates of the model parameters (see Ru-
bin, 1987, for details). The approach introduced here differs from previous approaches 
in that a joint framework is proposed, similarly to Mason et al. (2012). Through the 
joint model, the uncertainty about the imputation of the missing covariates propagates 
throughout the model so that it also refects on the model parameters estimates in the 
analysis. At the same time, information from the outcome in the analysis model feed-
backs on the imputation, making it unnecessary to include the outcome in the imputation 
model, as commonly done in the classic MI approach. This new approach fts naturally 
within the INLA framework, can be extended to consider different types of problems 
(i.e., not only spatial models) and can be easily ft with the associated R-INLA package 
for the R programming language (Gómez-Rubio, 2020). 

The paper is structured as follows. In Section 2 we review methods for missing 
values, while in Section 3 we introduce our novel method for missing values imputation. 
Section 4 presents a brief summary of the INLA approach to Bayesian inference and 
how our novel approach fts within this framework. Section 5 shows two examples for 
the application of our proposed method and Section 6 presents discussion points. 

2. Approaches to deal with missing data 

In their seminal book, Little and Rubin (2019) identify three possible mechanisms of 
missingness. If the probability of being missing is the same for all the observations, we 
can assume that the missing data distribution does not depend on any of the observed 
or missing variables. In this case the data are said to be missing completely at random 
(MCAR). If the distribution of the missing data depends on completely observed vari-
ables (i.e., observed for all the subjects) and it does not depend on the varibles with 
missing values, the data are called missing at random (MAR). An example of MAR is 
that women are less likely to answer questions related to their income than men, but this 
has nothing to do with the income itself. Finally, if neither MCAR or MAR holds, the 
missing not at random (MNAR) case occurs and the missing values distribution depends 
on both missing and observed variables. For instance, in a neurological questionnaire, a 
subject is less likely to answer questions related to the disease if this is severe. 

Under MCAR or MAR, the missing data mechanism is ignorable. As reported in 
Seaman and White (2013), this means that inferences obtained from a parametric model 
for the observed data alone are the same as inferences obtained from a joint model for 
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the data and missingness mechanism. On the contrary, if the data are MNAR the missing 
data mechanism is not ignorable and a model for the missingness mechanism is required. 
It is important to note that we cannot gather evidence from the data at hand about the 
missing data mechanism (MCAR, MNAR or MAR). On the basis of the knowledge 
regarding the data collection methods and the assumed relationship among the collected 
variables, it is possible only to make assumptions about the reasons for missing data, 
choose the best corresponding strategy for data analysis (Pigott, 2001) and conduct a 
sensitivity analysis on these assumptions (Mason et al., 2012). 

The simplest and most popular ad-hoc method to deal with missing information con-
sists in replacing the missing data with a plausible value, such as the mean or median cal-
culated over the observed cases (or the mode if the variable is categorical) or to perform 
a complete cases analysis (i.e., removing the observations with one or more missing val-
ues). However, while the frst method has the potential of distorting the data distribution 
and of underestimating their variability, the second one has the major drawback of reduc-
ing the power of the study (as the dataset for the analysis will have a reduced size) and of 
producing biased estimates if the MCAR assumption is not valid. To overcome this issue, 
inverse probability weighting was developed, based on the idea of assigning different 
weights to the different complete cases based on specifc characteristics which are rele-
vant for the missing data; in two reviews Carpenter, Kenward and Vansteelandt (2006) 
and Seaman and White (2013) showed advantages and drawbacks of the approach. 

In the last three decades model-based methods have been preferred to account for 
missing data in the case of an ignorable missing data mechanism; see, for instance, the 
papers by Little 1992, Little and Rubin 2019 and Schafer and Graham 2002. Regression 
mean imputation is the simplest of the model-based methods, where the variable with 
missing data is predicted based on a regression model which includes the other variables 
as regressors. To overcome the issue of unreasonable lack of uncertainty for the imputed 
values, stochastic regression imputation was proposed to generate imputed values adding 
some random noise (Nakagawa, 2015). 

A well established and increasingly popular model-based approach to dealing with 
missing data occurring in more than one variable is MI proposed by Rubin (1987, 1996). 
Through Monte Carlo simulation, it produces several versions of the complete dataset 
which only differ in the imputed missing values. Then, for each complete dataset the 
estimates of interest are computed by ftting the analysis model (also called substantive 
model) and the results are pooled together into a fnal estimate which takes into account 
the uncertainty of the imputed data. The imputation of the missing values can be done 
using mainly two strategies (van Buuren, 2012): i) joint modeling, when missing values 
are imputed by sampling from a multivariate model ftted to the data, for which usually 
a multivariate Gaussian is used (?Mason et al., 2012); ii) fully conditional specifcation 
(also known as multiple imputation using chained equations, MICE (van Buuren and 
Groothuis-Oudshoorn, 2011)), when conditional univariate distributions are used to im-
pute the missing values iteratively through a variable-by-variable approach (see White, 
Royston and Wood 2011 for a thorough review of this method). 
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2.1. Bayesian inference 

Bayesian inference provides a suitable framework for dealing with missing data, as it 
treats missing data similarly to model parameters, making no distinction between them. 
For these reasons and differently from other methods, with a fully Bayesian approach, it 
is possible to include the analysis model, imputation model and missingness mechanism 
model in a joint estimation framework (Erler et al., 2016). 

Let D denote the complete set of data, which will include the response variable and 
the covariates. It is assumed that D = (Dobs,Dmis), where Dobs denotes the observed 
values while Dmis refers to the missing values. Moreover, let M be the missing data 
indicator variable, i.e., a vector or matrix with the same length or dimension as D with 
values equal to 1 if the corresponding values of D is missing (and 0 otherwise). 

Following the selection model approach (Nakagawa, 2015), the joint distribution of 
D, M , the model parameters θD and the parameters in the missingness model θM can 
be expressed as 

π(D,M ,θD,θM) = π(D,θD)π(M | D,θM)π(θM) = 
= π(M | D,θM)π(D | θD)π(θD)π(θM). 

This formulation assumes that parameters θD and θM are distinct and with independent 
priors and that the distribution of D (given θD) does not depend on the parameters of the 
missingness model θM. Note that term π(M | D,θM) represents the missingness model 
and π(D | θD) the likelihood of the data. 

Following this, π(M | Dobs,Dmis,θM) depends on a set of parameters θM, and mod-
els the missing data mechanism for the three cases introduced above (Little and Rubin, 
2019): 

MCAR, if the distribution does not depend on any of the fully or partially observed 
variables, i.e., π(M | Dobs,Dmis,θM) = π(M | θM). 

MAR, if the distribution depends only on fully observed variables, which means that 
π(M | Dobs,Dmis,θM) = π(M | Dobs,θM). This implies that, given the observed 
data, the missingness mechanism does not depend on the unobserved data. 

MNAR, if the distribution π(M | Dobs,Dmis,θM) depends on fully and partially ob-
served variables. 

If the data are MCAR or MAR and the parameters θM are distinct of the parameters 
of the data generating process, θD, and with independent priors, then the missing data 
mechanism is ignorable and π(M | Dobs,Dmis,θM) can be omitted (Seaman and White, 
2013). On the contrary if the data are MNAR, the missing data mechanism is not ignor-
able and a model for missingness is required (i.e., a logistic model) and has to be jointly 
estimated with the main model, that will include an imputation model for the missing 
values. 
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Note that it is not possible to tell from the data at hand whether the missing obser-
vations are MCAR, MNAR or MAR and at the same time it is not trivial to specify a 
model of missingness. In this case, a sensitivity analysis needs to be carried out to as-
sess the impact of different scenarios for the missing data on the estimates of the model 
parameters (Carpenter, Kenward and White, 2007; Mason et al., 2012). 

2.2. Missing data in the response variable 

Let now D = (y,x) be the set of data including the response y and the covariates x. 
If it is assumed that the covariates are fully observed and that the response variable y 
contains missing values, i.e., the response variable y can be split into observed values, 
yobs, and unobserved values, ymis. Hence, Dobs = (yobs,x) and Dmis = (ymis). In this 
case likelihood π(Dobs,Dmis | θD) corresponds to the distribution of π(yobs,ymis | x,θy), 
with θy the hyperparameters in the likelihood. 

If we assume that the missing data mechanism is ignorable, the imputation of the 
missing data values ymis is simply done through the posterior predictive distribution 
π(ymis | yobs,x). In general, we will have the observation model by defning an appro-
priate distribution for the likelihood. In addition, the mean of observation i, φi ,will be 
linked to a linear predictor ηi on the covariates and other effects using an appropriate 
link function g(·), i.e., 

P L 
g(φi) = ηi = β0 + ∑ βpxpi +∑ fl(uli). (1) 

p=1 l=1 

Here, β0 is an intercept, {βp}P
p=1 the coeffcients of the P covariates available {xp}P 

p=1 
and { fl(·)}L

l=1 represents L different non-linear effects on covariates {ul}L
l=1 (which are 

also part of the observed data Dobs now). 
If the data are MNAR, a missing mechanism model π(M | y,x,θM) is required in 

addition to the previous model, e.g., 

Mi | pi ∼ Bernoulli(pi) 
R 

logit(pi) = γ0 + ∑ γrxri + δ yi (2) 
r=1 

where θM = [γ1,γ1 · · ·γR δ ]T and Mi is a missingness indicator for yi. In addition, an 
imputation model for the missing values will be required. Furthermore, δ is a coeffcient 
that measures the effect of the response variable on the missingness mechanism. 

However, in this work we will assume that there are no missing observations in the 
response or that the missingness mechanism is ignorable, which means that posterior 
inference is based on the predictive distribution. 

2.3. Missing data in the covariates 

We now consider the case when Dobs = (y,xobs) and Dmis = (xmis), with xobs the ob-
served values of the covariates and xmis the missing ones. Henceforth, the likelihood 
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π(Dobs,Dmis | θD) can be written as 

π(y,xobs,xmis | θD) = π(y | xobs,xmis,θy)π(xobs,xmis | θx) 

assuming that θD = [θT θT]T is the vector of conditionally independent parameters. The y x 
distribution π(xobs,xmis | θx) represents the joint distribution of observed and missing 
covariates and it includes the imputation model. For example, the joint distribution 
can be a multivariate normal distribution (taking into consideration correlation between 
covariates) for continuous covariates, or a discrete distribution if the covariate is cate-
gorical. 

In general, we will have the observation model with a linear predictor as in Equa-
tion (1) together with the imputation model and the missingness model (described in 
Section 3) as in Equation (2) but only if the missing data are MNAR. 

3. Imputation of continuous missing covariates 

Differently from Section 2, let z = [zobs 
T zmis 

T]T denote now the complete set of values 
of a covariate, which will typically be a column vector. The response values y will 
be written separately where needed. This is done for simplicity, so that the imputation 
of a single covariate with missing observations will be considered now. However, this 
approach can be easily extended to consider the imputation of missing values in several 
continuous covariates using a multivariate model. 

∗ ∗ ∗ T ∗ T]TLet z be a latent effect that is split in two parts, i.e., z = [z z . The main obs mis 
∗idea is to defne latent effect z as a GMRF with mean µ ∗(θI) and precision Q∗(θI) 

∗ ∗ so that zobs is as close as possible to the actual values zobs and so that zmis is obtained 
using a particular imputation model for zmis that depends on observed covariates zobs 
and some parameters θI . 

∗To guarantee that the distribution of zobs is taken to be as close as possible to the 
∗observed covariate data zobs, the mean of zobs is set equal to zobs and its associated sub-

block in Q∗(θI) equal to a diagonal matrix with high values (e.g., 1010) in the diagonal. 
∗In this way, the values of zobs are centered at observed values zobs and have a negligible 

∗variation about these observed values. Regarding the distribution of zmis (with mean 
µc and precision Qc), it will be based on an imputation model on observed covariates 

∗ ∗ zobs and parameters θI . Finally, we will also assume that zobs and zmis are independent 
∗because the marginal distribution of zmis will include all dependence of the missing 

values on the observed data zobs. 
Consequently, the joint distribution of z ∗ is given by �� � � �� 

zobs 1010I 0 
z ∗ | θI ∼ Normal , , (3)

µc 0 Qc 

∗where I represents the identity matrix. The distribution of z will be used later when 
defning the imputation model for the missing values as a latent effect for R-INLA in 
Section 4. 
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3.1. Imputation latent effect 

To derive the distribution for the imputation model, π(zmis | zobs,θI), a multivariate 
Normal distribution is assumed for the joint distribution of the complete set of covariates 
z: �� � � �� 

µobs Qobs,obs Qobs,mis z | θI ∼ Normal , = Normal(µ,Q) , (4)
µmis Qmis,obs Qmis,mis 

where both the mean and the precision matrix can depend on θI . It follows that the 
imputation model is defned by the following conditional distribution (Rue and Held, 
2005): 

zmis | zobs,θI ∼ Normal(µc,Qc) 

where µc = µmis − Q−1 = Qmis,mis.mis,misQmis,obs (zobs − µobs) and Qc Note that µc and 
Qc are necessary to defne the distribution of the new latent effect given in Equation (3). 

∗As stated above, the distribution of zmis will play the role of the imputation model of 
the missing values. This imputation model will, in practice, be a sub-model in a larger 
model that will be defned using the conditional distribution of the missing values zmis 

given the observed data zobs and hyperparameters θI . Note that in this sub-model zobs 
can be regarded as the data while zmis and θI are the parameters to estimate. Because this 
sub-model will be included as part of a fully Bayesian larger model, posterior inference 
on zmis and θI will be based on all observed data in the model (i.e., response variable 
and observed covariates) so that there is feedback from other parts of the model to make 
inference on zmis and θI . 

Considering only the data and parameters in the sub-model, the way in which the 
imputation sub-model is defned relies on the distribution of zmis given zobs. This can be 
written as Z Z 

π(zmis | zobs) = π(zmis,θI | zobs)dθI = π(zmis | zobs,θI)π(θI | zobs)dθI. 
ΘI ΘI 

where ΘI is the parametric space of θI . 
Here, π(zmis | zobs,θI) is the conditional distribution of the missing values given the 

observed data and the hyperparameters of the imputation model introduced above. Also, 
note that π(θI | zobs) can be regarded as the distribution of the hyperparameters in the 
imputation sub-model given the observed data. Note that this distribution is estimated 
only from the observed data zobs, so it can be regarded as an informative prior for θI . 
Moreover, it can be rewritten as 

π(θI | zobs) ∝ π(zobs | θI)π(θI) 

where π(zobs | θI) is obtained by integrating zmis out in the distribution of z, that is, R
π(zobs | θI) = π(zobs,zmis | θI)dzmis. Finally, the hyperparameters θI are typically 
modelled as exchangeable a priori. 

Next, two particular examples of imputation with a typical linear regression and a 
spatial model (useful when the covariate is spatially correlated) are described. It is worth 
noting that the principles presented below can be extended to a wide range of models, 
including longitudinal data, time series and other smooth terms. 
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3.2. Imputation with a linear regression model 

The frst imputation model that we describe is based on the linear regression model. We 
assume that the mean of the multivariate Normal distribution in Equation (4) is defned, 
considering the n observations, as Xβ. Here, X is a matrix of P fully observed co-
variates (columnwise) with associated coeffcient vector β = [β0 · · ·βP]

T . To match the 
structure of z = [zobs 

T zmis 
T]T , matrix X can be rewritten as a block matrix as � � 

XobsX = 
Xmis 

Under the linear regression model, we assume that the mean of z depends on a 
linear combination of the fully observed covariates, i.e., µ = E(z) = Xβ. By adopting 
the block notation, we thus assume that the joint distribution of Equation (4) is given by �� � � �� 

Xobsβ τIobs 0 
z | θI ∼ Normal , ,

Xmisβ 0 τImis 

where τ is the precision hyperparameter and Iobs and Imis are identity matrices whose 
dimensions depend on the number of missing and observed data in z. In this case the 
vector of hyperparameters is given by θI = [βT 

τ]T . Note that, given θI , observations are 
assumed independent of each other, which simplifes the model. 

Following the approach presented in Section 3.1, we obtain that the conditional dis-
tribution of zmis | zobs,θI (i.e., the imputation model) has the following mean and preci-
sion: 

µc = Xmisβ, Qc = τImis, 

As stated above, note that β and τ are informed by π(β,τ | zobs), which is propor-
tional to π(zobs | β,τ)π(β,τ). Note that π(zobs | β,τ) can be easily derived from the 
multivariate normal distribution of z above and that it will also be a multivariate normal 
distribution with mean Xobsβ and precision τIobs. 

Finally, priors must be set on the hyperparameters. For simplicity, each of the el-
ements in β is assigned a Normal distribution with zero mean and small precision. 
Parameter τ has a vague prior (e.g., a Gamma distribution with small precision). All 
hyperparameters are independent a priori, so that π(θI) = π(τ)ΠP

i=0π(βi). Note that 
other priors could be easily considered here. 

3.3. Imputation with a spatial model 

When the covariate to be imputed is spatially correlated we can assume a conditional 
autoregressive (CAR) specifcation (Held and Rue, 2010) so that the mean is µ = α = 
[α · · ·α]T and the precision is Q = τ(I −ρW ). Here, α is the intercept of the linear pre-
dictor, ρ is a spatial autocorrelation parameter, and W is an adjacency matrix, defning 
the sets of neighbours. This is often scaled dividing it by its largest eigenvalue as this 
will allow us to take ρ in the (0,1) interval. Note that W can be rewritten as a block 
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matrix with four sub-matrices according to missing and observed values, as done with 
Q in Equation (4). The vector of hyperparameters is now given by θI = [τ ρ α

T]T . 
Adopting block notation, under the CAR specifcation for imputation the following 

joint distribution is assumed for z = [zobs 
T zmis 

T]T : �� � � �� 
αobs τ(Iobs − ρWobs,obs) −τρWobs,mis z | θI ∼ Normal , . 
αmis −τρWmis,obs τ(Imis − ρWmis,mis) 

It then follows that the conditional distribution of zmis | zobs,θI (i.e., the imputation 
model) is characterised by the following mean and precision matrix: 

µc = αmis − (Imis − ρWmis,mis)
−1(−ρWmis,obs)(zobs − αobs) 

Qc = τ (Imis − ρWmis,mis) 

Again, τ , ρ and α are informed by π(τ,ρ,α | zobs), which is proportional to the product 
π(zobs | τ,ρ,α)π(τ,ρ,α). As in the previous case, π(zobs | τ,ρ,α) can be easily derived 
from the multivariate normal distribution of z above and that it will also be a multivariate 
normal distribution with mean αobs and precision τ(Iobs − ρWobs,obs). 

Finally, α is given a Gaussian prior with zero mean and small precision, τ is assigned 
a vague prior (e.g., a Gamma distribution with a small precision), while logit(ρ) is as-
signed a Gaussian prior with zero mean and small precision (see, for example, Gómez-
Rubio, 2020, Chapter 5, for details on why this parameterisation is used). 

3.4. Extension to the imputation of categorical missing covariates 

The imputation of the missing values in categorical variables does not ft into the GMRF 
framework described in Section 3 as these variables are defned in a discrete space. For 
this reason, a different approach will be considered for defning the imputation model 
π(zmis | zobs,θI) and for estimating the model. In particular, as imputation model we will 
consider a multinomial likelihood which can be ft with INLA by using the multinomial-
Poisson transformation (Baker, 1994). 

Note that in this case the procedure is similar to the multiple imputation approach: 
the imputation model is specifed where the categorical variables with missing values are 
considered as the response variables, so that the predictive distribution of the missing ob-
servations can be computed. Similarly to the case of missing data in the response, values 
are sampled to fll the missing values in the covariates. Then, the analysis model is run by 
using the imputed covariates as completely known. This procedure is repeated by simu-
lating several samples and estimating the corresponding models; fnally, all the resulting 
models are pooled by using Bayesian model averaging (Gómez-Rubio and Rue, 2018). 
Note that this approach does not produce feedback in the estimation of the parameters of 
the imputation model as in the joint approach, given that it is done in two-stages rather 
than jointly. For this reason, and similarly to the classical MI, the outcome y should be 
included in the imputation model. Alternatively, INLA within MCMC can be used to ft 
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the joint model using a fully Bayesian approach (see the example in Gómez-Rubio and 
Rue, 2018). 

Inference on the model parameters when multiple imputation of a categorical covari-
ate can be summarised as follows. Considering the generic parameter θk we can write 
its posterior marginal distribution as: 

π(θk | zobs,y)= ∑ π(θk,zmis | zobs,y)= ∑ π(θk | zobs,zmis,y)π(zmis | zobs,y). 
zmis∈Θmis zmis∈Θmis 

Here, Θmis represents the parametric space of the missing values of the categorical co-
variate, which in a Bayesian framework are considered to be random variables. 

(l)Given L samples {zmis}l
L 
=1 from π(zmis | zobs,y), the previous marginal can be ap-

proximated as 
L1 (l)

π(θk | zobs,y) ≃ 
L ∑ π(θk | zobs,zmis,y), 

l=1 

(l)where π(θk | zobs,zmis,y) is the marginal of θk obtained from ftting the original model 
(l)with the observed data and the imputed covariate zmis. 

Note that when continuous covariates with missing values are also present both ap-
proaches can be combined. For example, an imputation model can be combined for the 
continuous covariate which is part of the joint model that is ft to every simulated dataset 
where only the missing values of the categorical covariate are flled in. Furthermore, 
a missingness model for the categorical variables can be incorporated into the model 
similarly to the one used for the continuous variables. 

4. The Integrated Nested Laplace Approximation approach (INLA) 

The approach presented in the previous sections can be implemented using a number of 
methods for Bayesian inference. However, it overcomes a major limitation in the INLA 
method as, at present, it cannot cope with missing values in covariates. An introduction 
to the INLA method and the computational details is presented here; then we focus on 
how to implement our proposed framework. 

INLA (Rue et al., 2017; Martino and Riebler, 2019; Gómez-Rubio, 2020) is a deter-
ministic approach for Bayesian inference. It is designed for the class of latent Gaussian 
Markov random feld models, where the distribution of the response yi (observed for the 
i-th unit) is assumed to belong to a distribution family (usually part of the exponential 
family). This is often characterized by a parameter φi (i.e., the mean of yi) defned as a 
function of a structured additive predictor ηi through a link function such that g(φi) = ηi 

(e.g. the logarithm function is used for Poisson data). The linear predictor is defned as 
in equation (1). 

Regarding the tems in the linear predictor, recall that β0 is the intercept, coeffcients 
β = [β1 · · ·βP]

T quantify the (linear) effect of some covariates x = {xp}P
p=1 on the re-



	
228 Missing data analysis and imputation via latent Gaussian Markov random felds 

� 
sponse, and f = f (1)(·), . . . , f (L)(·) is a set of functions defned in terms of some 
covariates u = {ul}L 

l=1. 
Through functions f (·) it is possible to include in the model random effects (perhaps 

indexed in space and time), smooth and non-linear effects of the covariates. For this 
reason, the class of latent GMRF models can accommodate a wide range of models, from 
standard generalized linear models (GLM) to generalized linear mixed models (GLMM), 
including data for time series, lattice data, point pattern and geostatistical data. 

As stated, the set of latent effects χ = {η,β0,β,f} is a latent GMRF in the model, 
which depends on some hyperparameters θ2. Moreover, observations are assumed to be 
independent given the latent effects χ and the likelihood hyperparameters denoted by 
θ1. For convenience, in the following the vector of hyperparameters wil be denoted as 
θ = [θ1 

T θ2 
T]T . 

The outputs of Bayesian inference with INLA are the marginal posterior distributions 
for each element of the latent effects and hyperparameters vector denoted by p(χ• | y) 
and p(θ• | y), respectively. INLA provides deterministically accurate approximations to 
these distributions in a short computing time by using the Laplace approximation and 
numerical integration. 

Each latent GMRF model can be rewritten hierarchically with three levels: 

1. The model for the observed data y = [y1 · · ·yn]
T (i.e., the likelihood) defned as a 

function of some parameters χ and hyperparameters θ: 

y | χ,θ ∼ π(y | χ,θ) = ∏ π(yi | χi,θ). 
i∈{1,...,n} 

2. The model for the latent effects χ: 

χ | θ ∼ Normal(0,Q(θ)) 

where Q(θ) is a sparse precision matrix given the GMRF assumption. 

3. The model for the complete vector of hyperparameters: π(θ). As usually hyper-
parameters are assumed to be independent a priori, π(θ) will be defned as the 
product of different univariate prior distributions. 

Given all these models and components the joint posterior distribution of the random 
effects and the hyperparameters is given by 

π(χ,θ | y) ∝ π(y | χ,θ)π(χ | θ)π(θ). 

As stated above, INLA computes the posterior marginals of the hyperparameters 
and latent effects using that representation by means of numerical integration and the 
Laplace approximation (see Rue et al., 2009, for details). 
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4.1. Computational details 

The INLA approach is implemented through an R package named R-INLA, which is 
available from the INLA website (http://www.r-inla.org/home). The model to be ft is 
defned by setting a formula with all the additive latent effects in the model, which 
includes fxed and random effects. The R-INLA package includes a good number of 
implemented latent effects but others can be implemented as well (see, for example 
Gómez-Rubio, 2020). Note that by default, when R-INLA fnds missing values in the 
covariates (which have the value NA in R) they are replaced by zeros so that the effect of 
the covariate does not affect the linear prediction of that subject. However, this is an issue 
that could result in biased estimates of the coeffcients of the covariates. This is described 
in the R-INLA list of frequently asked questions (FAQ) in the package website. If the 
missing value is found in the response variable, the predictive distribution is computed. 

Generic latent effects can be implemented by defning their structure as a latent 
GMRF. This means defning the mean, precision, hyperparameters and the priors of 
the hyperparameters. These are known as rgeneric latent effects in R-INLA (see, for 
example Gómez-Rubio, 2020, Chapter 11). Once a new latent effect is defned, it can be 
easily incorporated as any other additive effect in the model formula. 

For the new latent effects described in this paper and defned in Equation (3) we have 
to specify the mean µc and precision Qc of the block of the missing values. Remember 
that the block of the observed covariates is simply there to make those values of the latent 
effect to be as close as possible to the observed values and that it does not depend on any 
hyperparameter or other data. Furthermore, the role of the prior on the hyperparameters 
of the imputation model θI is now taken by distribution π(θI | zobs). Hence, the actual 
prior used in the latent effects is taken as 

π(θI | zobs) ∝ π(zobs | θI)π(θI) 

and the normalizing constant is ignored as it is not needed. In a standard implementation 
of a latent effect, the prior of θI would be a typical distribution density that depends 
on a set of fxed hyperparameters, but now the prior of θI is made of the product of 
the two terms above. For this reason, it can be regarded as an informative prior as it is 
essentially estimated from a model ft to zobs. This is what will allow the latent effect 
to produce good estimates of the missing values (if the imputation model is correct). In 
general, there is no way to assess this, but the more covariates used in the imputation 
model the better (see Gelman and Hill, 2007, Chapter 25). The actual prior of the model 
hyperparameters is π(θI) and this can take different forms depending on the number 
and type of hyperparameters in the model. Usually, this will be split into the product of 
several univariate prior distributions. 

Note also that R-INLA works with unbounded hyperparameters, so that the param-
eters in θI may need to be transformed when the latent effect is defned. This may also 
require to include additional terms in the prior (see, for example Gómez-Rubio, 2020, 
Chapter 11). A typical example is to use internally the log-precision instead of the pre-
cision. 

http://www.r-inla.org/home
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Once the imputation latent effect is included in the model formula, it will be part of 
the joint latent effect χ and incorporated into the Bayesian model, so that a full Bayesian 
approach is used to estimate all the model parameters. 

As stated in previous sections, a missingness model can be included (in addition to 
an imputation one) for the case in which missingness is MAR or MNAR. Including a 
missingness model requires defning a model with two likelihoods: one for the main 
model and a binomial model for the missingness indicator variables. Note that under 
MCAR and MAR both models are independent, hence the latter is not needed; however, 
under MNAR it is necessary to explicitly include it and to make it dependent on the 
variables with imputed values. Hence, there will be feedback between both models that 
may affect the imputation process and the estimation of the other model parameters. 

Full details about how to ft these models in R are provided in the associated R 
code (see Section 5 below). A new MIINLA R package which implements the approach 
proposed here and that can be easily used together with the R-INLA package is available 
at https://github.com/becarioprecario/MIINLA. 

5. Examples 

In this section we develop two examples to show how the imputation method proposed 
above can be used with INLA under MCAR, MAR and MNAR. The frst example shows 
a typical regression model in biostatistics with real missing data. This is useful to show 
how a typical multiple linear regression can be used for multiple imputation. The second 
one is based on spatially correlated data to assess the performance of our proposal on 
a simulated study in which a spatially correlated covariate is missing. Note that the 
aim is not to provide a comprehensive analysis of the dataset with missing values but to 
illustrate the methods described in this paper. 

All models have been ft with INLA and its associated R package R-INLA. The R 
code to reproduce the examples described here is available from a GitHub repository at 
https://github.com/becarioprecario/MIINLA paper. 

5.1. Imputation using linear models 

The nhanes2 dataset (?) in the mice R package (van Buuren and Groothuis-Oudshoorn, 
2011) records data on 25 participants in the National Health and Nutrition Examination 
Survey (NHANES). Variables in the dataset include body mass index, cholesterol level, 
age group and hypertensive status. The dataset presents missing observations in body 
mass index, hypertensive status and cholesterol level. 

We will use this dataset to build a model to explain cholesterol level on age group 
and body mass index, where this is imputed. The imputation model will be based on 
a linear regression on the age group. There are three age groups 20-39, 40-59 and 60+ 
years, and the frst group will be set as the reference level. 

It is worth noting that having missing values in the response variable (i.e., cholesterol 
level) is not a problem as the predictive distribution can be easily computed with INLA. 

https://github.com/becarioprecario/MIINLA
https://github.com/becarioprecario/MIINLA_paper
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Hence, the output from ftting this model will include the posterior distribution of the 
imputed values as well as the predictive distribution for the missing responses. 

The analysis model is the following: 

40−59 60+choli = β0 + β1agei + β2agei + β3bmii + εi, i = 1, . . . ,25 

40−59where choli refers to the cholesterol level, bmii to the body mass index, age andi 
60+age are indicator variables of age for groups 40-59 and 60+, respectively, and εi is ai 

Gaussian error term with zero mean and precision τ . 
Note that the missing values of bmii are obtained from the imputation model based 

40−59 60+on linear regression discussed above using as predictors variables age and age .i i 
The imputation model is specifed as 

40−59 60+bmii = βI0 + βI1age + βI2age i i + εIi, i ∈ I. 

Here, I represents the set of indices of the observations with missing values of body 
mass index. Parameters βI0, βI1, βI2 represent the intercept and the covariate coeffcients 
used in the imputation model, and εIi is a Gaussian error with zero mean and precision 
τI . Note that all the parameters in the imputation model are mainly informed from the 
observed values of the body mass index and age, and their prior distributions. Because 
the imputation model is part of the joint model there is also feedback from all the other 
parts of the model when estimating the imputation model parameters and the imputed 
values of body mass index. 

A logistic regression is used for the missingness mechanism of bmii under MAR or 
MNAR. For MAR we assumed an intercept plus the covariate of age group, while for 
MNAR we assumed an intercept plus the covariate of bmii (that includes the imputed 
values). For simplicity, the model with both covariates can be represented as 

Mi ∼ Bernoulli(pi), i = 1 . . . ,25 
40−59 60+logit(pi) = γ0 + γ1agei + γ2agei + δ bmii (5) 

where Mi is a missingness indicator for bmii (0 for observed and 1 for missing). 
Finaly, the priors for the coeffcients of the fxed effects are independent Normal dis-

tributions with zero mean and precision 0.001. For the precision parameters, a Gamma 
with parameters 0.01 and 0.01 is used to provide a vague prior. All parameters are con-
sidered to be independent a priori. 

Note that the model for analysis and the imputation model are the same for the three 
missingness scenarios (i.e., MCAR, MAR and MNAR). However, the missingness mod-
els differ to include different terms to accomodate the different missingness mechanisms; 
see Table 1 to assess which terms are included in each missingness model. 
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Table 1. Posterior mean (and standard deviation) of the parameters from the joint models in the 
nhanes2 dataset. 

Model Parameter 
Missingness mechanism in the model 
MCAR MAR MNAR 

Analysis 

β0 

β1 

β2 

β3 

τ 

-4.084 (1.209) 
1.145 (0.421) 
1.866 (0.541) 
0.111 (0.049) 
2.219 (0.786) 

-4.233 (0.816) 
1.154 (0.398) 
1.879 (0.501) 
0.145 (0.044) 
2.568 (1.312) 

-4.864 (1.247) 
1.229 (0.447) 
1.940 (0.580) 
0.156 (0.044) 
2.620 (1.169) 

Imputation 

βI0 

βI1 

βI2 

τI 

31.195 (1.569) 
-5.902 (1.985) 
-7.395 (1.733) 
0.058 (0.027) 

30.046 (1.515) 
-5.204 (2.316) 
-5.561 (2.372) 
0.073 (0.023) 

30.401 (1.296) 
-4.711 (1.742) 
-6.153 (2.126) 
0.096 (0.030) 

Missingness 
γ0 

γ1 

γ2 

δ 

– 
– 
– 
– 

-0.337 (0.585) 
1.879 (0.501) 

-0.377 (1.044) 
– 

-4.633 (4.892) 
– 
– 

0.092 (0.167) 

Table 1 also shows the different estimates for all the models considered. Regarding 
the Gaussian analysis model, it seems that all three covariates included in the model 
play a signifcant role when explaining cholesterol level. In addition, point estimates are 
very similar across different missingness mechanisms. In the imputation model, we also 
observe that point estimates are very similar across missingness mechanisms. Age also 
plays an important role when imputing the missing values of body mass index. Finally, 
the different models for the missingness mechanism are not directly comparable. 

Under MAR, age40−59 helps to explain why some values of body mass index are 
missing, while under MNAR the missing values do not appear to depend on their actual 
values as the estimate of δ is close to zero. We have not included age under MNAR in the 
missingness sub-model because this covariate is already used when imputing the missing 
values of body mass index, which is included in the linear predictor of the missingness 
model. 

Cholesterol level seems to increase with age. In addition, the imputation models 
point to that body mass index seems to decrease with age. Although this is counterintu-
itive, we believe that is due to the general pattern observed in the dataset, which contains 
data on 25 people and only 13 of them have a complete record (i.e., all the values for all 
the covariates have been observed so that there are no missing values in the covariates). 

As a fnal remark, it is worth noting that ftting these models took a few seconds. 
Hence, the sensitivity analysis could include other models than the ones presented here. 
See, for example, Mason et al. (2012) for a general discussion and alternative models for 
the sensitivity analysis. Larger datasets may take longer to run, but INLA will be able to 
ft these models faster than typical MCMC algorithms. 
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5.1.1. Imputation of categorical covariates with missing values 

As we have mentioned in the description, this dataset includes an indicator of hyper-
tensive status of the subjects. This categorical covariate also contains several missing 
values. To illustrate how missing values in continuous and categorical covariates can be 
handled at the same time we ft a model in which body mass index and hypertensive sta-
tus are included. The imputation of body mass index will be done within the joint model 
as previously described, but the imputation of hypertension will be done using a multiple 
imputation approach; this means that an imputation model will be ft for hypertension, 
values of hypertensive status sampled from this model and used to fll the gaps in the 
original dataset. This will provide a number of complete datasets to which the analysis 
model will be ft; then the results will be pooled to obtain fnal estimates using Bayesian 
model averaging with equal weights Gómez-Rubio, Bivand and Rue (2020). 

The analysis model becomes: 

40−59 60+choli = β0 + β1agei + β2agei + β3bmii + β4hypi + εi, i = 1, . . . ,25. 

For simplicity, the missingness mechanism will not be assessed now. This implies 
assuming MCAR, but we have already seen that the model estimates will be close to 
model ft under MAR and MNAR for the case of body mass index. 

The imputation model for hypertensive status (hypi) will be a multinomial model 
ft using the multinomial-Poisson transformation (Baker, 1994). This will provide esti-
mates of the posterior probabilities of being hypertensive given the age group, which will 
be used to impute the missing values according to the age group of the patient. These 
posterior probabilities are shown in Table 2. Note that in this particular case a logistic re-
gression would have been enough, but we have preferred to use the multinomial-Poisson 
transformation because it is a more general approach for the case of more than two cat-
egories. 

Table 2. Posterior probabilities of being hypertensive for the different age groups. 

Age group 
Hypertensive 20-39 40-59 60+ 

Yes 1.00 0.66 0.49 
No 0.00 0.34 0.51 

We have drawn 100 samples to fll in the missing values of the hypertensive status, 
so that 100 different completed datasets have been used to ft the model. The resulting 
models have been pooled to obtained the posterior marginals of the model parameters 
using Bayesian model averaging with equal weights (Gómez-Rubio et al., 2020). These 
are shown in Table 3. 
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Table 3. Estimates of the model parameters using multiple imputation on body mass index and 
hypertensive status. 

Analysis model 

Parameter Estimate 

β0 -4.981 (1.166) 
β1 1.208 (0.518) 
β2 1.985 (0.635) 
β3 0.134 (0.072) 
β4 0.027 (0.566) 
τ 1.965 (0.994) 

Imputation model for bmii 
βI0 29.612 (1.474) 
βI1 -3.899 (2.114) 
βI2 -6.116 (2.337) 
τI 0.092 (0.034) 

As expected, the estimates of the coeffcients of age are close to the ones in the pre-
vious models. The coeffcient of hypertensive status is close to zero, which indicates no 
association between cholesterol level and hypertensive status. Furthermore, the impu-
tation model for body mass index based on a linear regression on age provides similar 
estimates to the imputation models ft previously and with similar effects of age on body 
mass index. 

5.2. Simulation study: imputation of correlated data 

The second example that we present is a simulation study based on the North Carolina 
Sudden Infant Death Syndrome (SIDS) dataset. It records several variables, which in-
clude the number of sudden infant deaths per county in the period 1974-78 (Oi), the total 
number of births (Ni), as well as the number of non-white births (NWi). The expected 
number of cases in each county (Ei) can be obtained using internal standardization, so 
that the standardized mortality ratio (SMR) can be computed as Oi/Ei. Furthermore, sev-
eral authors (see, for example, Cressie, 2015) have described the strong spatial pattern in 
the data, in the relative risk (estimated using the SMR, for example) and its correlation 
with the proportion of non-white births. 

The model of interest to be ft is simply a Poisson regression, as follows: 

Oi ∼ Po(µi); µi = Eiθi, i = 1, . . . ,100, 

log(θi) = β0 + β1 nwpi. 

Here, covariate nwpi is the logit of the proportion of non-white births (NWi), so that 
it is not bounded, that has been re-centered and re-scaled. This derived covariate has still 
a strong spatial pattern and a high correlation with the SMR. 
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Figure 1 shows the SMR for the period 1974-78 and the transformed proportion of 
non-white births (nwpi). The SMR shows some areas of high risk and a strong correla-
tion with the proportion of non-white births. Hence, this covariate can be useful when 
building models to explain the spatial variation of SIDS in North Carolina. 

The simulation study will remove 5%, 10%, 15%, 30% and 50% of the covariate val-
ues (i.e., proportion of non-white births) using MCAR and MNAR mechanisms. Note 
that MAR can be regarded as an extension to MCAR that considers other observed co-
variates in the linear predictor of the logistic regression in the imputation model. Al-
though MAR may seem more reasonable, it is simply a matter of including other covari-
ates in the linear predictor of the missingness model so it is computationally feasible but 
it adds little to the comparison. This is why we have not considered it. 
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Figure 1. Standardized mortality ratio (SMR, top) and proportion of non-white births (bottom) 
in North Carolina in the period 1974-78. 

The missing observations will be nested across the fve scenarios, i.e., the observa-
tions removed in the 10% scenario will also be removed in the 15% scenario and so on. 
Furthermore, the probability of being missing under the MNAR mechanism pi is 

logit(pi) = αM +5xi 
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Figure 2. Missing observations (in grey) of the proportion of non-white births. 

where αM is set as the logit of 0.5 and xi represents the value of the covariate with 
missing values. 

This simulation is intended to compare mild to severe missingness under fve differ-
ent scenarios for MCAR and MNAR. Models will be ft assuming MCAR and MNAR 
missingness, so that we ft 20 models in total. Under MCAR, we only ft the analysis and 
imputation model. Under MNAR, in addition we will assess whether the joint approach 
including the missingness mechanism is able to capture the type of missingness. 

Figure 2 shows the missing values of the proportion of non-white births for three of 
the scenarios considered in this simulation study. As it can be seen, when the percentage 
of missing values is 50% under MNAR missing values concentrate in the counties with 
high values of the covariate. 

In addition, the imputation model proposed is based on the conditional autoregres-
sive specifcation presented in Section 3.3, so that imputation is included within the main 
model. This imputation model will have the following parameters: τ is the precision of 
the CAR specifcation, ρ the spatial autocorrelation and α the mean value of the covari-
ates. 

Finally, a logistic regression on the missingness variable Mi (0 for observed and 1 
for missing) is used to model the missingness mechanism (under MNAR): 

Mi ∼ Bernoulli(pi); i = 1, . . . ,100 

logit(pi) = γ0 + γ1nwpi 

(6) 
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Note that the imputed values appear both in the Poisson regression and the sub-model 
on the missingness mechanism. Non-zero values of γ1 indicate that the probability of 
being missing depends on the actual values. 

Table 4 summarises the models ft to the data under MCAR. Here, an imputation 
sub-model for the covariate has been included but not a joint model for the missingness 
as under MCAR it is not necessary. In general, there are not large differences between 
the different models ft to the datasets regarding percentage of missing values and type 
of actual missingness. However, these differences become larger as the proportion of 
missing values increases, which was to be expected. These differences are noticeable 
for the case of 50% of missing values both under MCAR and MNAR. 

The estimates of the imputation models are quite similar as well, across missing-
ness type in the data and proportion of missing values. However, some differences are 
observed for 30% and 50% of missing values. In particular, the estimates of α differ. 

Table 5 summarises the (joint) models ft to the data considering a MNAR scenario. 
This includes the model ft to the complete dataset, and the binomial sub-model in the 
joint model to assess the missingness mechanism. First of all, the posterior distribution 
of γ1 helps to determine the missingness mechanism. Its posterior estimate is very close 
to zero under MCAR, while it is above zero under MNAR (but for the case of 5% of 
missing values). It is worth stating that it is possible to assess this now because these are 
simulated data and the true missingness mechanism is known. 

Regarding the imputation model, the estimates are very similar across scenarios. 
Finally, the estimates of the parameters in the Poisson model are in general very close to 
the model ft to the full dataset. 

It is worth noting that under MNAR with 50% of missing observations the point 
estimates of the parameters in the Poisson sub-model show the largest departure from 
the model ft to the full dataset. This is probably due to the fact that the imputation 
model is not able to fully recover the values of the covariates as missing values tend to 
have high values and there is not enough information in the observed values as to recover 
this pattern. 

To sum up, imputation models behave as expected and provide a good performance 
in all cases. Most importantly, the joint model is able to identify between MCAR and 
MNAR situations as well as imputing the covariates and ft the model of interest to the 
data. Again, this is possible now because the missingness mechanism is known but in 
real applications we would propose different models and conduct a sensitivity analysis. 

When the models ft under MCAR (Table 4) and under MNAR (Table 5) are com-
pared, it should be mentioned that when data under MCAR are analysed both models 
produce very similar results because the missingness mechanism is, in fact, independent 
of the observed data. For the analysis of the data simulated under MNAR, differences can 
be observed because now the missingness mechanism depends on the covariate (includ-
ing the imputed data) and the estimates of the parameters in the imputation sub-model 
are different. 
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Table 4. Posterior mean (and standard deviation) of the model parameters under MCAR. 

Model under MCAR 
Poisson Imputation Missingness 

Missingness % missing τ ρ αβ0 β1 γ0 γ1 

– 0 -0.141 (0.046) 0.524 (0.068) – – – – – 
MCAR 5 -0.126 (0.047) 0.518 (0.068) 2.129 (0.305) 0.977 (0.022) -0.211 (0.162) – – 
MCAR 10 -0.114 (0.047) 0.496 (0.069) 2.076 (0.301) 0.976 (0.024) -0.215 (0.165) – – 
MCAR 15 -0.120 (0.048) 0.504 (0.067) 1.915 (0.294) 0.973 (0.027) -0.234 (0.175) – – 
MCAR 30 -0.099 (0.049) 0.507 (0.065) 1.776 (0.295) 0.960 (0.039) -0.175 (0.183) – – 
MCAR 50 -0.077 (0.051) 0.518 (0.070) 2.461 (0.481) 0.957 (0.044) 0.034 (0.169) – – 
MNAR 5 -0.131 (0.045) 0.506 (0.067) 2.040 (0.292) 0.977 (0.022) -0.236 (0.166) – – 
MNAR 10 -0.138 (0.048) 0.506 (0.068) 1.991 (0.288) 0.976 (0.023) -0.220 (0.167) – – 
MNAR 15 -0.110 (0.048) 0.495 (0.068) 1.966 (0.289) 0.976 (0.024) -0.238 (0.170) – – 
MNAR 30 -0.105 (0.050) 0.453 (0.070) 1.827 (0.291) 0.975 (0.025) -0.342 (0.189) – – 
MNAR 50 -0.064 (0.055) 0.419 (0.061) 1.421 (0.279) 0.964 (0.037) -0.423 (0.226) – – 

Table 5. Posterior mean (and standard deviation) of the model parameters under MNAR. 

Model under MNAR 
Poisson Imputation Missingness 

Missingness % missing β0 β1 τ ρ α γ0 γ1 

– 0 -0.141 (0.046) 0.524 (0.068) – – – – – 

MCAR 5 -0.121 (0.047) 0.512 (0.068) 2.120 (0.305) 0.977 (0.022) -0.217 (0.163) -3.218 (0.565) -0.514 (0.465) 
MCAR 10 -0.111 (0.048) 0.494 (0.069) 2.073 (0.301) 0.975 (0.024) -0.216 (0.165) -2.271 (0.349) -0.074 (0.392) 
MCAR 15 -0.127 (0.049) 0.505 (0.067) 1.903 (0.293) 0.972 (0.027) -0.218 (0.176) -1.821 (0.309) 0.359 (0.396) 
MCAR 30 -0.110 (0.050) 0.507 (0.065) 1.768 (0.294) 0.960 (0.039) -0.141 (0.187) -0.896 (0.232) 0.339 (0.309) 
MCAR 50 -0.079 (0.054) 0.518 (0.070) 2.458 (0.480) 0.956 (0.044) 0.040 (0.176) -0.014 (0.203) 0.038 (0.307) 

MNAR 5 -0.132 (0.045) 0.502 (0.068) 2.046 (0.293) 0.976 (0.023) -0.236 (0.165) -3.286 (0.720) 0.810 (0.795) 
MNAR 10 -0.153 (0.049) 0.486 (0.071) 1.964 (0.287) 0.977 (0.022) -0.225 (0.170) -2.947 (0.849) 1.661 (0.828) 
MNAR 15 -0.133 (0.049) 0.481 (0.069) 1.928 (0.287) 0.977 (0.023) -0.227 (0.173) -2.225 (0.529) 1.306 (0.592) 
MNAR 30 -0.152 (0.052) 0.423 (0.069) 1.688 (0.285) 0.976 (0.024) -0.190 (0.200) -1.385 (0.450) 1.477 (0.492) 
MNAR 50 -0.172 (0.060) 0.380 (0.060) 1.230 (0.266) 0.969 (0.032) -0.093 (0.253) -0.303 (0.351) 1.576 (0.434) 

Finally, we have included the posterior distributions of some imputed values of the 
covariate in Figure 3. In particular, we have considered the dataset with 50% missing 
values under MNAR and taken nine counties with missing values that have missing val-
ues also in the simulated data under MCAR. This produces a set of counties with a wide 
variety in the posterior marginals of the imputed values. The posterior marginals shown 
are for the imputation model under MCAR in Table 4 (dashed line) and the imputation 
model under MNAR in Table 5 (dotted line). The vertical solid line shows the actual 
value of the missing covariate. Furthermore, we have kept the same axes scale in all 
plots so that differences are appreciated better. 

In general, both marginals are close in all cases. Under MNAR (dotted lines), the 
posterior mode seems to be closer to the actual value for most of the counties in the plot. 
This should not be surprising as this is the actual missingness mechanism in the data. 

As the counties considered here are also present in the case in which the missing-
ness mechanims is MCAR, it could be possible to check what happens between models 
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that assumed MCAR and MNAR when the actual missingness is MCAR. In this case, 
the posterior marginals of the missing values (assuming MCAR and MNAR) look the 
same for each county because accounting for the missingness model does not affect the 
model estimates. This shows that handling imputation of missing values with INLA is 
an interesting way to conduct sensitivity analysis. 

Figure 3. Posterior marginal distributions of some of the imputed values for missingness of 50% 
under MNAR. The lines represent the actual value (solid vertical line), the posterior marginal 
from the MCAR model (dashed line) and the posterior marginal from the MNAR model (dotted 
line). The value between parenthesis corresponds to the proportion of missing values in the 
neighbour counties. 
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6. Discussion 

This paper shows how the general problem of dealing with missing observations in the 
covariates and performing multiple imputation under different missingness mechanisms 
can be recast within the framework of latent Gaussian Markov random feld models. This 
has the main advantage that models expressed as latent GMRFs can be ft through INLA, 
making inference fast. Furthermore, this flls an important gap in the INLA methodology 
as now models with missing values in the covariates can be easily ft. 

Imputation models for the covariates can also take many different forms when de-
fned as GMRFs. In this work we have only considered a linear regression model and 
spatially correlated model for imputation, but other similar imputation models could be 
easily developed. For example, these could tackle missing observations in longitudinal 
data or time series. Furthermore, the methods proposed can be extended to consider im-
putation of more than one covariate at the same time by relying on multivariate Gaussian 
models. 

The implementation of the multiple imputation models take the form of new latent 
effects for the R-INLA package and they are available within the MIINLA package 
for the R programming language. These new latent effects have been developed using 
the rgeneric framework for latent effects development within the R-INLA package. 
Nonetheless, this approach could be implemented in any other software packages for 
Bayesian inference. 

Although we have focused on imputation of continuous covariates, missing values 
in categorical covariates can also be handled. However, as stated in the paper, this case 
does not ft within the paradigm of latent GMRF models easily. However, INLA can be 
used to propose an imputation model for the missing categorical data and to ft the model 
of interest to these imputed datasets. The ftted models can then be combined to account 
for the uncertainty of the imputed values in the estimation of the model parameters using 
Bayesian model averaging. 

When the missing values of the categorical covariates index a latent effect the im-
putation of missing values becomes more complex. This is the case, for example, when 
random effects are estimated for different groups in the data using multilevel models. 
However, this scenario could also be handled using the multiple imputation methods 
described in this paper. 

In addition to handling and imputing missing values, this new framework allows us 
to consider the missingness mechanism using a joint model ft within the INLA method-
ology. Hence, the analysis of data with missing observations can now be completely 
carried out within the INLA framework. 

Sensitivity analysis on the missingness mechanism, required when it is not ignorable, 
can beneft from the the computational speed of the INLA method. First of all, models 
are ft faster than with typical MCMC methods, which helps to defne the scenarios to 
test. Secondly, more scenarios can be tested as the time required to ft the models is 
reduced. 
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Alternate-wrapped circular distributions 

Savitri Joshi1 and R. N. Rattihalli2 

Abstract 

To generate a circular distribution, we use the alternate-wrapping technique (unlike the 
usual wrapping), by wrapping in the alternate directions, after each single-wrapping. 
The resulting distribution is called alternate-wrapped distribution. Some general prop-
erties and distinctions between the two wrapping schemes are indicated. As an illustra-
tion, alternate-wrapped-exponential distribution and alternate-wrapped-normal distribu-
tion are considered. The moment and maximum likelihood estimator of the parameters 
of alternative-wrapped-exponential distribution are obtained and their performance is 
evaluated using simulation. Maximum likelihood estimators are obtained for the param-
eters of the alternate-wrapped-normal distribution and simulation study is conducted, 
and this distribution is used to analyse a real-life data set and is compared with the 
wrapped normal distribution. 

MSC: 62H11, 62P12. 

Keywords: Akaike information criterion, Bayesian information criterion, circular distribution, ex-
ponential distribution, trigonometric moments, wrapped normal distribution. 

1. Introduction 

In many real-life situations, characteristics of interest are not linear. For instance, wind 
directions, the direction of migration of birds, time of occurrence of an event in a day 
etcetera. These cannot be measured on a linear scale and are circular. If X is a univariate 
real-valued random variable then θ = X(mod2π) is called a wrapped circular random 
variable. The density function of θ is gw(θ) = ∑∞ 

m=−∞ f (2mπ + θ), 0 ⩽ θ < 2π. For 
illustrative examples of circular random variables and models, one may refer to Mardia 
and Jupp (2000) and Jammalamadaka and SenGupta (2001). Here, the density function 
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of θ is obtained by wrapping the density of X around a unit radius circular cylinder 
in the anti-clockwise direction, so that x = 0 matches with θ = 0. In the literature, 
many wrapped distributions have been developed: to mention a few, Jammalamadaka 
and Kozubowski (2004) have discussed some properties of wrapped exponential (WE) 
and wrapped Laplace distributions. Sarma, Rao, and Girija (2011) discussed the charac-
teristic function of wrapped log-normal and wrapped Weibull distributions. Roy and Ad-
nan (2012) have proposed a wrapped weighted exponential distribution. Adnan and Roy 
(2014) have introduced wrapped variance gamma distribution. Joshi and Jose (2018) 
have discussed wrapped Lindley distribution. Yilmaz and Bicer (2018) have introduced 
a new version of wrapped exponential distribution namely transmuted exponential dis-
tribution and have discussed its properties. 

In this paper, we propose a new wrapping technique called “alternate-wrapping” and 
the generated distribution is called an alternate-wrapped distribution. To begin with, con-
sider a density function f (x) corresponding to a non-negative random variable X . Start 
wrapping the density around the unit radius circular cylinder in the anti-clockwise direc-
tion, by setting 0 of X with angle 0. After the frst single wrapping in the anti-clockwise 
direction, the next single wrapping is done in the other direction, and so on. However, 
for the usual wrapped densities, the wrapping is continued in the same direction. The 
resulting alternate-wrapped density function has a period 2π . To defne the density func-
tion on the entire real line, we extend the density function with periodicity 2π . In usual 
wrapping, for 0 < δ < 2π , the value of the density f at δ , 2π + δ , 4π + δ , . . . and so on 
contribute to the wrapped density at θ = δ . But in alternate-wrapping, the values of the 
density f at δ ,4π − δ ,4π + δ ,8π − δ , . . . and so on contribute to the alternate wrapped 
density at δ . If f is an arbitrary density function then the density on the support [0,∞) 
is wrapped as described above and alternate wrapping of the density on the negative 
part starts from 0 with the frst wrapping of the density (towards −∞) in the clockwise 
direction and the next wrapping in the anti-clockwise direction and so on. 

The rest of the paper is organized as follows. In Section 2, we defne alternate-
wrapping technique in detail and give some of its properties. In Section 3, alternate-
wrapped-exponential (AWE) distribution is considered and some of its properties are 
given. In Section 4, the alternate-wrapped-normal (AWN) distribution is discussed. In 
Section 5, a data set of 506 cases of onset of lymphatic leukemia, reported in different 
months in the UK, is analysed using AWN and wrapped-normal (WN) distributions. 
Lastly, Section 6 concludes the fndings. 

2. Alternate-wrapping technique 

Let X have a continuous distribution with density function f (x). The total contribution 
at θ (0 ≤ θ < 2π), by the density on the domain {x ≥ 0} is 

f +(θ ) = f (θ)+ f (4π − θ)+ f (4π + θ)+ f (8π − θ)+ f (8π + θ)+ . . . . 
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The total contribution at θ by the density on the domain {x < 0} is 

f −(θ ) = f (−2π + θ )+ f (−2π − θ)+ f (−6π + θ )+ f (−6π − θ )+ . . . . 

Thus, under alternate-wrapping the total contribution at θ by the wrapping density is 
f +(θ )+ f −(θ ). 

Defnition A circular random variable θ is said to have an alternate-wrapped distribu-
tion, if the density function is given by 

gaw(θ) = f (θ )+ 
∞

∑ ( f ((−1)m2mπ + θ)+ f ((−1)m2mπ − θ )) , θ ∈ [0,2π). (1) 
m=1 

For a density with positive support, the alternate-wrapped density is given by 

gaw(θ) = f (θ)+ 
∞

∑ ( f (4mπ − θ )+ f (4mπ + θ)) , θ ∈ [0,2π). (2) 
m=1 

The alternate-wrapping of f for x > 0 can be viewed as the usual wrapping of its mod-
ifed version h (say). Under alternate-wrapping of f , for x > 0, anti-clockwise wrap-
ping is over intervals (4mπ,(4m + 2)π) for m = 0,1,2, . . . , and clockwise over the 
other intervals. To make it anti-clockwise over (0,∞), we modify f over the intervals 
((2m + 1)2π,(2m + 2)2π), to be h(x) = f ((8m+ 6)π − x). 
Hence for x > 0 and m = 0,1,2, . . . , let (

f (x), 4mπ < x ≤ (4m + 2)π
h(x) = (3)

f ((8m + 6)π − x), (4m + 2)π < x ≤ (4(m+ 1))π. 

Similarly, for x ≤ 0, to have clockwise wrapping through out, we need to have modifca-
tion on the intervals −(4m + 4)π < x ≤ −(4m + 2))π . The resulting function for x ≤ 0 
and m = 0,1,2, . . . is given by (

f (x), −(4m + 2)π < x ≤−4mπ
h(x) = (4)

f (−(8m+ 6)π − x), −(4m + 4)π < x ≤−(4m+ 2))π. 

Hence, we have the following. 

( f )Property 2.1. If g( w
f )
(θ),gaw (θ ) are respectively wrapped and alternate-wrapped den-

sity functions generated from f , then 

( f ) (h)gaw (θ) = gw (θ), 

where h is as defned in (3) and (4). 
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Property 2.2. Let f and h be the probability density functions of X and −X respectively. 
Then 

(h) ( f )gaw (θ ) = gaw (2π − θ). 

Property 2.3. The alternate-wrapped density gaw can be written as a mixture of the 

usual wrapped densities; 
( f1) ( f2)gaw(θ ) = pgw (θ )+(1 − p)gw (θ ), 0 ≤ p ≤ 1, 

( fi)where gw (θ ) is the usual wrapped density obtained by wrapping linear density fi(x), 
i = 1, 2, respectively, as defned in (17) in the Appendix. 

The proofs of the above properties are given in the Appendix. 

Remark 2.1. If X is symmetric about 0, then, gaw is symmetric about 0 (or π .) 

Remark 2.2. In alternate-wrapping, the density function g(θ) is not necessarily con-
tinuous at θ = 0. However, the distribution function is continuous and satisfes the 

properties of a distribution function. 

Remark 2.3. For an arbitrary density f (x), if the density on the support [0,∞) is 

wrapped frst in the clockwise direction and next in the anti-clockwise direction alterna-
tively and the density on the support (−∞,0) in frst anti-clockwise and next in clockwise 

direction alternatively, then a new wrapped circular density, say g− is obtained. Thisaw 

g− is the same as alternate-wrapped density gaw obtained by wrapping f (−x).aw 

Remark 2.4. Characteristic Functions: The characteristic functions of the linear dis-
tribution and its usual wrapped distribution remain the same. But, in general, the char-
acteristic function of the alternate-wrapped distribution is not equal to that of the lin-
ear distribution. However, this is true if the support of the density of X is a subset of 
(−2π, 2π), as in this case the alternate-wrapped and the usual wrapped densities are 

the same. 

Distinction between usual and alternate-wrapping: Let X have the density function 
f (x) and θw be a usual wrapped circular random variable with density function gw(θ ), 
obtained by wrapping the density f . Then, we have 

∞ 

gw(θ ) =  ∑ f (k2π +θ), 
k=−∞ 

and the distribution function of θw is given by° ˛ ˝˜ α 
˙˜ α ∞ ∞ 

Gw(α) = P(θw ≤ α) =  ∑ f (k2π +θ) dθ = ∑ f (k2π +θ)dθ , 
0 0k=−∞ k=−∞ 

0 ≤ α ≤ 2π. 
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Consider the transformation 

∞ 

Y = ∑ (X − k2π)Ik2π≤X<(k+1)2π . (5) 
k=−∞ 

Then, the distribution function of Y is given by 

H(α) = P(Y ≤ α) = P(k(2π)≤ X < k(2π)+α; for some k = · · · ,−2,−1,0,1,2, · · ·) . 
˜ k(2π)+α ˜ αThis implies H(α) =  ∑∞ 

k=−∞ k(2π) f (x)dx = ∑∞ 
k=−∞ 0 f (k2π + t)dt = P(θw ≤ α). 

Hence, Y and θw are identically distributed. Hence, to generate an observation on θw, 
we generate X and obtain Y by using (5). 
Now, on the other hand, let θaw be an alternate-wrapped circular random variable with 
density function gaw(θ ), obtained by alternate-wrapping of the density function f (x). 
Then, we have gaw(θ) =  ∑∞ 

−∞ f (2k(2π) + θ ) +∑∞ 
−∞ f ((2k − 1)(2π) + (2π − θ )),k= k= 

which implies 

∞ 

gaw(θ ) =  ∑ ( f (2k(2π)+θ )+  f ((2k)(2π)−θ)) . 
k=−∞ 

The distribution function of θaw is given by 
˛ ˝° α ∞ 

P(θaw ≤ α) =  ∑ ( f (2k(2π)+θ)+  f ((2k)(2π)−θ )) dθ , 
0 k=−∞ 

which gives °∞ 4kπ+α 
P(θaw ≤ α) =  ∑ f (x)dx. 

4kπ−αk=−∞ 

Consider the transformation 

∞ 

Z = ∑ |X −4kπ|I{(2k−1)2π≤X<(2k+1)2π}. (6) 
k=−∞ 

The distribution function of Z is given by 

M(α) = P(Z ≤ α) = P(|X −4kπ| ≤ α; for some k = · · · ,−2,−1,0,1,2, · · ·) , 

which implies °∞ 4kπ+α 
M(α) =  ∑ f (x)dx = P(θaw ≤ α). 

4kπ−αk=−∞ 

Thus, θaw and Z are identically distributed. Thus, to generate observations on θaw, we 
generate X and use the transformation Z as given in (6). The distinctions between the 
usual wrapped variable Y and the alternate-wrapped variable Z can also be viewed in 
Figure 1. 
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Figure 1. Periodical behavior of usual and alternate-wrapped circular random variable Y and 
Z respectively. 

Remark 2.5. Change of scale: Let X be a random variable with probability density 

function f (x). Let U = cX ,c > 0. For 0 < α ≤ 2π , we have GU (α) = P(U ≤ α) =aw˜ 4kπ+α∑∞ 
4kπ−α c−1 f (u/c)du,k=−∞ ° ° ˛ ° ˛˛4kπ+α 4kπ−αwhich implies, GU

aw(α) = ∑∞ 
k=−∞ F c − F c , where, F(.) is the distribu-

tion function of X. 

3. Alternate-wrapped exponential (AWE) distribution 

Let X follow the exponential distribution, then, we have 

f (x) = λe−λx , λ > 0,x > 0. 

A random variable θ is said to have an AWE distribution if, the circular density function 
of θ is given by (2) 

∞ ˝ ˙ 
−λθ  −λ (4mπ+θ) −λ (4mπ−θ)gaw(θ) = λe + ∑ λe +λe , θ ∈ [0,2π). 

m=1 

That is 

˝ ˙λ −λθ  −λ (4π−θ)gaw(θ) =  e + e , λ > 0,θε[0, 2π). (7)
(1 − e−4πλ ) 

For λ = 1 the usual, circular (Rao et al. (2013)), and 3D circular representations of (7) 
are given in Figure 2. 

It is easy to verify (7) is a mixture of two WE circular densities, wherein the mixing 
proportion is a function of λ . 

−λθ
Remark 3.1. gaw(θ) = g1(θ)ρ(λ )+g2(θ)(1 − ρ(λ )) where g1(θ) = 1 

λ 
− 

e
e−2πλ  , g2(θ) =  

λe−λ (2π−θ) 2πλe 
1−e−2πλ  and ρ(λ ) = 1+e2πλ  . 

Note that, g1(θ) is the usual wrapped exponential density, see Jammalamadaka and 
Kozubowski (2004), and g2(θ) = g1(2π − θ). 
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Figure 2. Usual, circular, and 3D representations of the AWE density. 

3.1. Some properties of the AWE distribution 

We obtain trigonometric moments, characteristic function, central trigonometric mo-
ments, see Mardia and Jupp (2000), and some other constants for the AWE distribution. 
All these expressions have been obtained by using Mathematica version 9. However, the 
same can also be obtained using Remark 3.1. 

Trigonometric moments: To obtain the trigonometric moments, we frst obtain the fol-
lowing. 

˛ (˛ + pcsch(2˝˛ )sin(2˝ p))
˜p = E(cos p°) =  , (8)

˛ 2 + p2 

and 
˛ pcsch(2˝˛ )(cosh(2˝˛ ) − cos(2˝ p))

˙p = E(sin p°) =  .
˛ 2 + p2 

The pth trigonometric moments of ° , denoted by ˆp, is the value of the characteristic 
function at an integer p and can be expressed in terms of ˜p and ˙p as follows 

iµpˆp = ˜p + i˙p = ˇpe , 

where ˇp = 
˜

˜p 
2 + ̇ p 

2 and µp = arctan ° 
° 

˜
˙p

p 

˛
, where the two-argument operator arctan° 

is as defned in (1.3.5) (Jammalamadaka and SenGupta (2001)). ˝
˛ 2(˛ 2+tanh2(˝˛ ))The mean resultant length ˇ is given by ˇ = ˇ1 = 2 . 

(˛ 2+1) 

Characteristic function: Since, ° is a periodic circular random variable with period 2˝ , 
the characteristic function (corresponding to density (7)) is given by 
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Φp = E(eipθ ) = E(eip(2π+θ)) = E(cos pθ + isin pθ), 
4πλ  −1)λ+ip(e4πλ  −2e2π(λ+ip)λ((e +1))which implies Φp = , p = 0, ±1,±2, · · · .

(e4πλ  −1)(λ 2+p2) 

˜ ° 
tanh(πλ )Mean direction: The mean direction is µ = µ1 = tan−1 .λ 

The circular variance: The circular variance is ˛ ˝ ˙ 
λ 2 λ 2 + tanh2(πλ )

V0 = 1 −ρ = 1 − 2 , 
(λ 2 +1) 

where, ρ = ρ1. 

The circular standard deviation: is ˇ̆
 �˛ ˝ ˙� ˆ √ ˘ λ 2 λ 2 + tanh2(πλ )

σ0 = −2log(1 −V0) = 2�− log 2(λ 2 +1) 

Central trigonometric moments: The central trigonometric moments are given by 

φ̄ p = E(eip(θ−µ)) = ᾱ p + iβ̄ 
p, 

where, µ is the mean direction. This implies 
˝˝ ˙ ˝ ˙˙

4πλ  −1 4πλ  −2e2π(λ+ip) e−iµ pλ e λ + ip e +1
φ̄ p = ˝ ˙ . 

e4πλ  −1 (λ 2 + p2) 

¯Since, φp = E(eip(θ−µ)) = E(cos p(θ −µ)+ isin p(θ −µ)), therefore, 

E(cos p(θ −µ)) = ᾱ p˝ ˝ ˙ ˝ ˙ ˙
2πλ  4πλ  4πλ  −1λ 2e psin((2π −µ)p)+  e +1 psin(µ p)+  e λ cos(µ p) 

= ˝ ˙ , 
e4πλ  −1 (λ 2 + p2) 

and 

¯E(sin p(θ −µ)) = βp˝˝ ˙ ˙
4πλλ e +1 pcos(µ p)−2e2πλ (λ sinh(2πλ )sin(µ p)+ pcos((2π −µ)p)) 

= ˝ ˙ . 
e4πλ  −1 (λ 2 + p2) 

¯ 
The coeffcient of skewness, ζ 0 = β2 , is given by1 V 3/2 

0 ˝ ˝ ˙ ˝ ˙ ˙
2πλ  −1 2πλλ 2 e cos(2µ)− e +1 λ sin(2µ)

ζ 0 =1 � � �3/2 
. 

˝ ˙ λ 2(λ 2+tanh2(πλ ))e2πλ  +1 (λ 2 +4) 1 − 2
(λ 2+1) 
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ᾱ2−(1−V0)
4 

The coeffcient of kurtosis, ζ 0 = , is given by2 V 2 
0 

2 
λ (λ cos(2µ)+2tanh(πλ )sin(2µ)) λ 4(λ 2+tanh2(πλ ))− 4λ 2+4 (λ 2+1)ζ 0 = .2 ˜° ˛2 

λ 2(λ 2+tanh2(πλ )) 
2 −1 

(λ 2+1) 

3.2. Estimation of parameter 

In this section, we obtain the MLE and the moment estimator of the parameter λ of AWE 
distribution. 

MLE for AWE 

Here we obtain the MLE of λ , the parameter of the AWE distribution. Let θ1,θ2, · · · ,θn 

be a random sample from the model (7). Then, the log-likelihood function is given ˝ 
e−λθi + e−λ (4π−θi) ̇

 
by logL = n logλ −n log(1 − e−4πλ )+  ∑n

i=1 log . The MLE of λ is 
obtained by solving the likelihood equation given by 

4nπe−4πλ  n 4πe−λ (4π−θi) −θie−4πλ∂ logL n 
= + −∑ ˝ ˙ = 0. (9)

1 − e−4πλ  e−λθi + e−λ (4π−θi)∂λ  λ i=1 

Since (9) can not be solved analytically, we use a numerical method to obtain the MLE 
of λ . For this, we use the maxLik package in R which maximizes a function by using 
Newton-Raphson algorithm. 

Moment estimator for AWE 

Here we obtain the moment estimator for the parameter λ . Let θ1, · · · ,θn be a random 
sample from AWE distribution. To obtain the moment estimator, we equate E(cosθ) to 

¯the mean of cos θi 
′ s. From (8) with p = 1, we will have λ 2 

= 1 ∑i
n 
=1 cosθi = C andλ 2+1 n 

hence the moment estimator is ˆ 

λ̃ = 
C̄ 

. 
1 − C̄ 

(10) 

3.3. Simulation study 

In this section, to evaluate the performance of the estimators, we carry out a simulation 
study. For large samples, consistency, asymptotic unbiasedness and asymptotic normal-
ity of MLE and moment estimator follow from the large sample theory. It is also well 
supported by the simulation study conducted. Here, we generate 10000 samples for f-
nite sample sizes, 20 and 50 from the density (7) for different values of λ . Here instead 
of generating θ using (7), we generate Z as defned in (6). To obtain the MLE, we use 
the maxLik package in R since (9) can not be solved analytically. To obtain the moment 
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estimators we use (10). Based on the simulation study, performances of estimators for 
small and moderate sample sizes are evaluated and results are reported in Tables 1 and 2. 

Table 1. Average values of bias, mean square error (MSE) and variance (var) for λ̂ based on 
10000 samples. 

n 

λ = 0.5 λ = 1.0 

bias(λ̂ ) MSE(λ̂ ) var(λ̂ ) bias(λ̂ ) MSE(λ̂ ) var(λ̂ ) 
20 0.017117 0.020537 0.019378 0.046972 0.060530 0.058539 

50 0.010271 0.007256 0.007245 0.018571 0.024428 0.021548 

λ = 2.0 λ = 4.0 

20 0.118710 0.271947 0.237354 0.204775 1.042776 0.933834 

50 0.040330 0.089551 0.085022 0.075890 0.351541 0.339197 

Table 2. Average values of bias, mean square error (MSE), and variance (var) for λ̃ based on 
10000 samples. 

n 

λ = 0.5 λ = 1.0 

bias(λ̃ ) MSE(λ̃ ) var(λ̃ ) bias(λ̃ ) MSE(λ̃ ) var(λ̃ ) 
20 0.043820 0.051156 0.049241 0.038183 0.086479 0.085029 

50 0.002439 0.023788 0.023785 0.015761 0.030834 0.030588 

λ = 2.0 λ = 4.0 

20 0.131001 0.309610 0.292478 0.347391 1.338005 1.217446 

50 0.048435 0.097680 0.095343 0.127815 0.416024 0.399727 

Based on the results obtained from Table 1 and 2 the following are some observations. 
(i) The values of bias, MSE, and variance decrease as the sample size increases. 
(ii) The bias, MSE, and variance values increase with the increase in the value of λ and 
decrease with the increase in sample size. 
(iii) The MSE and variance of the MLE is lesser than that of the moment estimator for 
all values of λ . 
(iv) The bias of MLE is higher than the moment estimator for λ < 1 and is lesser other-
wise. 
The box plots of the estimators and kernel density estimators of the densities have been 
plotted. Additionally, the histograms have been drawn for the estimated values and nor-
mal distribution has been ftted to those histograms which validate that the estimators are 
asymptotically normal. All these graphs and plots have been provided as supplementary 
material. 
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4. Alternate-wrapped normal (AWN) distribution 

Let X have N(µ,σ2), then the density function of X is given by 

1 − 
2σ 

1
2 (x−µ)2 

f (x) =  √ e ;−∞ < x < ∞,−∞ < µ < ∞,σ 2 > 0. (11)
σ 2π 

From (1), the alternate-wrapped density function corresponding to (11) is given by 

 
1 1 1 1− 

2σ2 (θ−µ)2 − 
2σ2 (−2π+θ −µ)2 − 

2σ2 (−2π−θ−µ)2 

gaw(θ ) =  √ e + e + e 
σ 2π  

+ 
∞

∑ 
 1 1− 

2σ2 (4mπ±θ −µ)2 − 
2σ2 (−(4m+2)π±θ −µ)2 

e + e . (12) 
m=1 

       
1 (θ − µ)2 (−2π − θ − µ)2 (−2π +θ − µ)2 

gaw(θ) =  √ exp − + exp − + exp − 
σ 2π 2σ2 2σ2 2σ2 

     ∞

∑ 
∞

∑(θ − µ)2 16π2m2 8πm(θ − µ)− − −+ exp exp exp 
2σ2 2σ2 2σ2 

1 1m= m=      ∞

∑ 
∞

∑(−θ +µ +2π)2 16π2m2 8πm(−θ +µ +2π)− − −+ exp exp exp 
2σ2 2σ2 2σ2 

1 1m= m=     
16π2m2  ∞

∑ 
∞

∑(θ +µ)2 −8πm(θ +µ)− − −+ exp exp exp 
2σ2 2σ2 2σ2 

1 1m= m=      ∞

∑ 
∞

∑(θ +µ +2π)2 16π2m2 8πm(θ +µ +2π)− − −+ exp exp exp .
2σ2 2σ2 2σ2 

1 1m= m= 

     
1 (θ − µ)2 (−2π − θ − µ)2 

gaw(θ) =  √ 2 exp − +2exp − 
2σ 2π 2σ2 2σ2 

     ∞

∑(−2π +θ − µ)2 16π2m2 (θ − µ)2 

+2 exp − − exp −+ exp 
2σ2 2σ2 2σ2 

m=1    
1 

 
(θ +µ)2  

1    + exp −     
2π(θ −µ) 2σ2 2π(θ +µ)exp − − 1 exp − − 1σ 2 σ 2    
(2π +θ +µ)2  

1 
+ exp −     

2σ2 2π(2π+θ +µ)exp − 1σ 2   
(2π − θ +µ)2  

1 
+ exp −     . (13)

2σ2 2π(2π−θ +µ)exp − 1σ 2 



256 Alternate-wrapped circular distributions 

˜ 
− 8°2 

° 
2 

˛ 2Since, ˜3 0,e = 1 + 2˜° 
1 exp

˛
−8°2/˛2

˝n is the elliptic theta functionn= 

(please refer EllipticTheta 2022), (13) can also be written as 

1 
˙ ˜ 

(˝ − µ)2 ° ˜ 
(−2° − ̋  − µ)2 ˜ 

gaw(˝) =  ° 2exp − +2exp −
2˛2 2˛2 

° 
(−2° +˝ − µ)2 ˜ ° ° 

− 8 
˛
° 
2
2 
˜ ˜˛  ° 

(˝ − µ)2 ˜ 
2˛ 2° 

+2exp − + ˜3 0,e − 1 exp −
2˛2 2˛2 

˝ ° ˆ ° 
1 

˝ 
(˝ +µ)2 ˙ 

1 
+ exp −˙ 

2°(˝ −µ) 
˛ 

2˛2 
ˇ 

2°(˝ +µ) 
˛ 

exp
ˆ
− ˛2 

˜ 
− 1 exp

˘
− ˛ 2 

˜ 
− 1 

ˆ ° ˝ 
(2° +˝ +µ)2 ˙ 

1 
+ exp − 

2˛2 
ˇ ˘ 

2°(2°+˝ +µ) 
˛ 

exp ˛2 

˜ 
− 1 

ˆ ° ��˝ 
(2° − ̋  +µ)2 ˙ 

1 
+ exp − .

2˛2 
ˇ ˘ 

2°(2°−˝ +µ) 
˛ 

exp ˛2 

˜ 
− 1 

Remark 4.1. If X follows N(0,1), then gw(˝) = gaw(˝). 

Property 4.1. Let gaw(˝ , µ) be the AWN density corresponding to N(µ,˛2), then 

gaw(˝ , µ) = gaw(2° − ̋ ,−µ), 0 < ˝ < 2°. 

The proof of this property is given in the Appendix. 
The AWN and WN densities are plotted for different values of µ and ˛ 2 in Table 3. 

Table 3. AWN (solid line) and WN (dashed line) densities for different values of µ and ˛2 . 
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4.1. Estimation of parameters 

In this section, we obtain the MLEs of µ and σ , the parameters of the AWN distribution. 
Let θ1,θ2, · · · ,θn be a random sample from the model (13). Then, the log-likelihood 
function is given by 

   
(θ −µ)2nn

logL = − log2π −n logσ −n log2 +∑ log 2exp − 
2σ22 i=1       

16π2m2∞

∑(−2π −θ −µ)2 (−2π + θ −µ)2 

+ 2 exp + 2exp −− −+ exp 
2σ2 2σ2 2σ2 

m=1       
(θ −µ)2 (θ + µ)2   

1   + exp exp − −
2σ2 2σ22π(θ −µ)exp − −1σ2     
1 

 
(2π + θ + µ)2  

1    + exp −     
2π(θ +µ) 2σ2 2π(2π+θ +µ)exp − −1 exp −1σ 2 σ2    

+ exp − (2π −θ + µ)2   
1   . (14)

2σ2 2π(2π−θ +µ)exp −1σ 2 

To obtain the MLEs of µ and σ , we maximize the log-likelihood (14) numerically 
by using the maxLik package in R. For the computational purpose, we use the frst three   
terms of the series ∑∞ exp 1m= − 8π2m2 

σ2 yielding accuracy to at least fve decimal places. 

4.2. Simulation study 

The simulation study is conducted by using different values of µ and σ for the sample 
sizes of 20 and 50 with 10000 replications. The AWN random variables are generated 
using (6). The MLEs of µ and σ are obtained by maximizing (14) using the maxLik 
package in R. The simulation results are reported as supplementary material. The fol-
lowing observations are made based on the simulation results. 

1. For a given value of µ , the bias, MSE, and variance of µ̂ and σ̂ increase as σ 
increases. 

2. The bias, MSE, and variance of µ̂ and σ̂ decrease with the increase in sample size. 

For large samples, consistency, asymptotic unbiasedness, and asymptotic normality of 
MLEs follow from the large sample theory. 

5. Data analysis 

In this section, we ft the AWN and WN distributions to the data set of 506 cases of onset 
of lymphatic leukemia, reported in different months in the UK during 1946-1960 (Mar-
dia and Jupp (2000)). For analysis purposes, the months are transformed into angles 
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by assigning 30◦ sector to every month. The data are grouped, therefore all observa-
tions recorded every month are assigned to the midpoint of the interval, for example for 
the month of January, February, and March, the observations are assigned to the cor-
responding angles 15◦ , 45◦ , and 75◦ , respectively. By using the maxLik package in R 
we obtain, the MLEs (standard error) for both parameters of the AWN distribution as 
µ̂ = −2.3925 (0.2010) and σ̂ = 2.0465 (0.1096). For the AWN model, µ and σ are 
the parameters and µ need not correspond to the mean direction of the corresponding 
AWN model. We also obtain the MLEs with standard errors for the parameters of WN 
distribution by using again the maxLik package in R: the values of the estimators are 
µ̂ = −2.7640 (0.3181) and σ̂ = 2.1440 (0.1411). We apply the chi-square goodness 
of ft tests to both the AWN and WN models, by making six classes of the given data. 
We obtain the chi-square statistic values as 1.89 and 1.69 for the AWN and WN models 
respectively. The p-values of the statistics for both AWN and WN models are 0.8641 
and 0.8901, respectively, which indicates that WN fts marginally better than AWN. Cal-
culations of the chi-square statistics are given in supplementary material. 

To evaluate the performance of the estimators under the AWN and WN models, we 
obtain AIC and BIC values. The AIC and BIC values for the AWN model are 1854.46 
and 1862.91, which are very close to those of the WN model, 1853.31 and 1861.76, 
respectively. Based on the AIC and BIC values, we observe that the WN performs 
marginally better than the AWN, whereas based on the standard errors, the AWN per-
forms marginally better than the WN. 

Thus, one may conclude that for the considered data set, overall both the models 
perform almost the same. 

6. Conclusion 

In this paper, the concept of a novel wrapping technique called the alternate-wrapping 
technique has been introduced to generate circular models. Though the alternate-wrapped 
distributions are unable to retain some of the properties such as continuity at zero and the 
simplicity of obtaining characteristic functions, as are in the usual wrapping, they have 
some interesting properties, for example being expressible as a mixture of two usual 
wrapped distributions and others as indicated in the manuscript. The class of alternate-
wrapped distributions widens the scope for research in circular models and data analysis. 
To enhance the class of circular distributions and for the circular data analysis, one can 
generate new alternate-wrapped versions of different distributions. 
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Appendix 

Property 2.2 Let f and h be the probability density functions of X and −X respectively. 
Then 

(h) ( f )gaw (θ) = gaw (2π − θ). 

Proof Let the density of X be f (x). Now, if Y =−X then, the density of Y can be given 
as h(y) =  f (−x). The total contribution at θ by the density h on the domain {y ≥ 0} is 
given by h+(θ) = h(θ )+h(4π − θ)+h(4π +θ)+h(8π − θ )+h(8π +θ)+ . . . ,  which 
implies h+(θ)=  f (−θ )+ f (−4π +θ )+ f (−4π −θ )+ f (−8π +θ)+ f (−8π −θ)+ . . . .  
Hence, 

h+(2π − θ ) =  f (−2π +θ )+  f (−2π − θ)+  f (6π +θ)+  f (−6π − θ)+  f (−10π − θ)+ . . .  

= f −(θ). (15) 

The total contribution at θ by the density h on the domain {y < 0} is h−(θ ) = h(−2π + 
θ ) + h(−2π − θ ) + h(−6π + θ ) + h(−6π − θ ) + h(−10π + θ) + h(−10π − θ) + . . . ,  
which implies h−(θ) =  f (2π − θ) +  f (2π + θ) +  f (6π − θ ) +  f (6π + θ ) +  f (10π − 
θ )+h(10π +θ )+ . . . .  Hence, 

h−(2π − θ ) =  f (θ)+  f (4π − θ)+  f (4π +θ)+  f (8π − θ )+  f (8π +θ )+  f (12π − θ)+ . . .  

= f +(θ). (16) 
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Thus, from (15) and (16), we have h+(2π −θ)+h−(2π −θ ) =  f +(θ)+  f −(θ ). That is, 
(h) ( f )gaw (θ) = gaw (2π −θ ) Hence the proof. 

Property 2.3 The alternate-wrapped density gaw can be written as a mixture of the usual 
wrapped densities; 

( f1) ( f2)gaw(θ) =  pgw (θ)+(1 − p)gw (θ ), 0 ≤ p ≤ 1, 

( fi)where gw (θ) is the usual wrapped density obtained by wrapping linear density fi(x), 
i = 1,2, respectively, as defned in (17). 

Proof In the usual wrapping the entire density on positive support is wrapped in the 
anti-clockwise direction, starting from 0, and the entire density on negative support is 
wrapped in the clockwise direction, starting from 0. But in alternate-wrapping, the den-
sity on the positive support is alternatively wrapped, it is anti-clockwise wrapping for 
the intervals (4πr,4πr +2π) for r = 0,1,2, . . .  and on the remaining intervals it is clock-
wise wrapping. Similarly, in alternate-wrapping, the density on the negative support is 
alternatively wrapped, it is clockwise wrapping on the intervals (−4πr −2π,−4πr) for 
r = 0,1,2, . . . , and on the remaining intervals it is anti-clockwise wrapping. 
Let ˜ ˛ ˜ ˛

∞ ∞° ° ° 
A = (4πr,4πr +2π] (−4πr −2π,−4πr] . 

r=0 r=0 

That is, on the set A piece-wise wrapping directions for usual and alternate-wrapping are 
the same. On R −A, defne a function f ∗ , by considering the refection of the original 
function on each interval in R −A of length 2π . On the interval (k2π, (k + 1)2π] for 
k = 1,3,5, · · · , we change the function by taking its refection on (2k + 1)π , the mid-
point of the interval. Whereas, on the interval (−(k + 1)2π, −k2π] for k = 1,3,5, · · · , 
we change the function by taking its refection on −(2k + 1)π , the mid-point of the 
interval. The graphical representation of the set A together with the function f ∗ is given 
in Figure 4. 

Let 
˜ 

f ((2k +1)π − t) for(k2π ≤ t ≤ (k +1)2π],k = 1,3,5, · · ·  
f ∗ (t) =  

f (−(2k +1)π − t) for(−(k +1)2π ≤ t ≤−k2π],k = 1,3,5, · · · . 

˝ 
Let p = A f (x)dx, if p = 1 then the support for f will be a subset of A and in this case 
the alternate-wrapped and the usual wrapped densities will be the same. Let 0 < p < 1, 
we note that 

f (x)I{x∈A} f ∗(x)(1 − I{x∈A})f1(x) =  , f2(x) =  (17)
p 1 − p 

are density functions. 
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Let gi,w(˜) be usual wrapped density corresponding to linear density fi(x), i = 1,2, 
respectively. Then, the alternate-wrapped density gaw(˜) can be written as 

( f1) ( f2)gaw(˜) = pgw (˜)+(1 − p)gw (˜ ), 0 ° p ° 1, 

We know that for an integrable function h(x) over a  fnite interval (a,b), we have ˜ b h(x)dx =
˜ b h˜(x)dx, where h˜(x) = h(a +b − x) is the refection of the function h(x)a a 

about (a +b)/2. Hence the result. 
( f2)If p = 0, then we will have gaw(˜ ) = gw (˜ ). 

Figure 3. Representation of the set A  and the function f ̃  . 

Property 4.1 Let gaw(˜ , µ) be the AWN density corresponding to N(µ, ̨ 2), then 

gaw(˜ , µ) = gaw(2˝ − ̃ ,−µ), 0 < ˜ < 2˝. 

Proof Using (12), we can write 

1 
° 

1 1 1− 
2˛2 (2˝−˜ +µ)2 − 

2˛2 (−2˝+2˝−˜ +µ)2 − 
2˛2 (−2˝−2˝+˜ +µ)2 

gaw(2˝ − ̃  ,−µ) =  ˛ e + e + e 
˛ 2˝ 
˜

° 
˜

° 2˛2 (4m˝+2˝−˜+µ)2 

+ e + e 
m=1 m=1 

1 1 
2˛2 (4m˝−2˝+˜ +µ)2− − 

˜

°
1 ˜

°
1 

2˛2 (−(4m+2)˝−2˝+˜+µ)2 ̃
 

2˛2 (−(4m+2)˝+2˝−˜+µ)2 

+ e + e − − 
, 

m=1 m=1 
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which implies 
˜ 

1 1 1 1− 
2σ 2 (−2π+θ−µ)2 − 

2σ2 (θ−µ)2 − 
2σ 2 (4π−θ−µ)2 

gaw(2π − θ , −µ) =  √ e + e + e 
σ 2π 
∞

∑ 
∞

∑ e − 1 
2σ2 ((4m−2)π+θ+µ)21 

2σ 2 (−(4m+2)π+θ−µ)2 

e + − 
+ 

m=1 m=1 ° ∞

∑ 
∞

∑
1 1 

2σ 2 (4mπ+θ−µ)2 

e + 2σ2 ((4m+4)π−θ−µ)2 

e . − − 
+ 

m=1 m=1 

This gives 
˜ 

1 1 11 − 
2σ2 (−2π+θ−µ)2 − 

2σ 2 (θ −µ)2 − 
2σ 2 (−2π−θ −µ)2 

gaw(2π − θ ,−µ) =  √ e + e + e 
σ 2π 
∞

∑ 
∞

∑ e − 1 
2σ2 (−(4m+2)π−θ −µ)21 

2σ 2 (−(4m+2)π+θ−µ)2 

e + − 
+ 

m=1 m=1 ° ∞

∑ 
∞

∑
1 1 

2σ 2 (4mπ−θ−µ)2 
2σ 2 (4mπ+θ −µ)2 

e + − − 
= gaw(θ , µ).+ e 

m=1 m=1 
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