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Fifty years later: new directions in Hawkes 
processes 

John Worrall1,2, Raiha Browning1,2, Paul Wu1,2 and Kerrie Mengersen1,2 

Abstract 

The Hawkes process is a self-exciting Poisson point process, characterised by a con-
ditional intensity function. Since its introduction ffty years ago, it has been the subject 
of numerous research directions and continues to inspire new methodological and the-
oretical developments as well as new applications. This paper marks half a century 
of interest in Hawkes processes by presenting a snapshot of four state-of-the-art re-
search directions, categorised as frequentist and Bayesian methods, other modelling 
approaches and notable theoretical developments. A particular focus is on nonparamet-
ric approaches, with advances in kernel estimation and computational effciencies. A 
survey of real world applications is provided to illustrate the breadth of application of this 
remarkable approach. 

MSC: 60G55, 62G05. 

Keywords: Hawkes process, point process, nonparametric. 

1. Introduction 

Events occur in the world with frequencies fuctuating over time and space, but often 
these events are not isolated and their occurrence increases the likelihood of further 
events. A mathematical model introduced by Hawkes (1971) describes the sequential 
arrival of these events as a non-Markovian process with a self-exciting nature. The 
Hawkes process (HP) has wide application in areas such as seismology (Ogata, 1981; 
Rasmussen, 2013); crime analysis (Yang et al., 2018; Zhuang and Mateu, 2019); traffc 
incidents (Kalair, Connaughton and Di Loro, 2021; Li, Cui and Chen, 2018); terrorism 
(Porter and White, 2010; White, Porter and Mazerolle, 2012); fnance (Bacry, Mastro-
matteo and Muzy, 2015); infectious diseases (Kelly et al., 2019; Browning et al., 2021); 
and social media trends (Hall and Willett, 2016; Zhang, Walder and Rizoiu, 2020b). 

1 School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. 
2 QUT Centre for Data Science. 

Received: May 2022. 



4 Fifty years later: new directions in Hawkes processes 

In a HP, the self-exciting nature of the data is modelled through the conditional inten-
sity function which governs the expected arrival rate of events. An important character-
istic of this intensity function is the triggering kernel. There has been much research in 
learning these triggering kernels, including investigation of the underlying assumptions 
defned through simple parametric functions such as power laws, multiple exponential 
distributions, and Gaussian, Rayleigh and Weibull functions (Chen, Hawkes and Scalas, 
2021; Chiang, Liu and Mohler, 2021). Further studies consider approaches to adapting 
these parametric models (Kobayashi and Lambiotte, 2016; Du et al., 2016), extending 
to the multidimensional setting and improving scalability of estimation by low-rank ap-
proximation (Zhou, Zha and Song, 2013; Bacry et al., 2020) and mean-feld theory 
(Bacry et al., 2016a). 

More fexible approaches to learning the kernel include representing the function as 
piecewise constant on a fnite grid. Seminal work by (Lewis and Mohler (2011); Bacry, 
Dayri and Muzy (2012) provides a nonparametric framework for estimation that is also 
being actively explored. Bayesian nonparametric approaches are also emerging, with 
leading work in the area including (Donnet, Rivoirard and Rousseau, 2020; Zhou et al., 
2020b; Zhang et al., 2020b). However, relaxing assumptions and increasing the expres-
siveness of functions comes at a cost: there is a requirement either for discretisation of 
the input domain or improved computational requirements to meet increasing practical 
demands. 

These requirements have motivated new research into effcient algorithms for the 
analysis of HPs, and concomitant investigation of the characteristics of these algorithms. 
For example Achab et al. (2018) encodes causality of a multivariate process via a mo-
ment matching method ftting to second and third order cumulants. Work by Zhang 
et al. (2020b) takes advantage of latent branching structure and stationarity assumptions 
to reduce computational complexity and to effciently infer a fexible representation of 
the kernel using Gaussian processes. In another very promising direction, Yang et al. 
(2017) focus on sequential (online) learning by approximating the function in a repro-
ducing kernel Hilbert space. New Bayesian perspectives are lending themselves readily 
to handling the sheer volume and scalability in online learning (Broderick et al., 2013; 
Chérief-Abdellatif, Alquier and Khan, 2019; Markwick, 2020). 

Another direction for Bayesian nonparametric approaches is in extending HPs to 
also cluster events via Dirichlet processes (Du et al., 2015). In these examples the form 
of the triggering kernel is generally parametric, and interest lies in the clustering of the 
events themselves. 

Other recent directions of research into HPs arise from the perspective of graphs 
(Liu, Yan and Chen, 2018), stochastic differential equations (SDEs) (Lee, Lim and Ong, 
2016; Kanazawa and Sornette, 2020) and neural networks (Zhang et al., 2020a; Du et al., 
2016). These frameworks aim to provide more fexibility and less bias, while taking ad-
vantage of the techniques made available from a rapidly growing statistical data science 
community. 
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Figure 1. Structure of paper. 

In addition, there has been considerable and signifcant research in theoretical prop-
erties and guarantees of HPs. Recent bodies of work include advances in estimating 
higher order statistical properties (Jovanović, Hertz and Rotter, 2015; Cui, Hawkes and 
Yi, 2020), asymptotic properties of the Markovian class of HPs (Gao and Zhu, 2018b; 
Zhu, 2015) and developments around nonlinear generalisation (Torrisi, 2016; Gao and 
Zhu, 2018a; Sulem, Rivoirard and Rousseau, 2021). 

This paper aims to provide a review of these new directions in the modelling and 
analysis of HPs, with an emphasis on nonparametric Bayesian approaches and brief 
reference to the underpinning theory. We preface the review with a brief overview of 
notation, defnitions and properties of HPs, and close the paper by presenting a survey of 
recent applications and some substantive applications in crime, fnance and social media. 
The structure of the paper is illustrated in Fig 1. 

1.1. Defnitions and basic properties 

This section provides a brief summary of mathematical defnitions, properties and the 
general form of the HP which will be used throughout the remaining sections. 

Defnition 1.1 (Poisson process). 
A nonhomogeneous Poisson process with time varying arrival rate λ (t) is defned as a 
counting process, N (t) : t ≥ 0 which satisfes t ∈ R+ , with associated history Ht : t ≥ 

0, such that probability is given by  λ (t)h + o(h) m = 1 
P (N (t + h) − N (t) = m|Ht ) = o(h) m > 1 (1) 1 − λ (t)h + o(h) m = 0. 

Of particular interest in the study of nonhomogeneous Poisson processes is the HP 
N(t) where λ (t) : R+ → R+ . 

The time intervals between events (shown in Fig 2 as t1, t2 . . . , t7) are described as 
inter-arrival event times (Rasmussen, 2018). The point process can be characterised by 
the distribution function of the next arrival time conditioned on the past. Thus the con-
ditional cumulative density function F(t|Hµ ) of next arrival time Tk+1 can be expressed 
in terms of the conditional density function f (s|Hµ ), Z t Z t 

F(t|Hµ ) = P(Tk+1 ∈ [s,s+ ds]|Hµ ) ds = f (s|Hµ )ds. 
µ µ 



-
----i 

____, 
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Figure 2. Point process with stochastic realisation {t1, t2 . . .} and counting process N(t). 

where Hµ is the history of the process until the last arrival (Ozaki, 1979). Where the 
conditional distribution is given using the law of total probabilities, 

n 
f (t1, t2, . . . , tn) = ∏ 

i=1 

Defnition 1.2 (Conditional intensity function). 

f (ti|Hµ )). 

Let the conditional density be f (t|Htn ) and the corresponding cumulative distribution 
function F(t|Htn ) for any t > tn. Then λ ∗(t) is the conditional intensity or hazard func-
tion (Cox, 1955). The notation ∗ borrowed from (Daley and Vere-Jones, 2003) is used to 
represent conditioning on the history up to time t. A more intuitive defnition of the con-
ditional intensity function (Daley and Vere-Jones, 2003) is its expected rate of arrivals 
conditioned on the associated history, 

f ∗(t) E[N(t + h) − N(t)|Ht ]
λ ∗ (t) = = lim .

1 − F∗(t) h→0 h 

Hawkes (Hawkes, 1971) introduced a class of self-exciting process to model conta-
gious processes, characterised by this conditional intensity function. 

Defnition 1.3 (HP). 
jLet D ∈ N+ and {(ti )} j=1,...,D be a D-dimensional point process, with associated count-

ing processes Nt = (Nt 
1 , . . . ,ND). A multidimensional Hawkes process (MHP) is defned t 

with intensities λi 
∗(t), i = 1, . . . ,D given by 

D Z t 
λ ∗ i (t) = µi + ∑ 

0j=1 
φi j(t − s)dNj(s) (2) 
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Figure 3. Conditional intensity function of the HP, with exponential decay. 

where µi > 0 is the non-negative background intensity of process i and φi j(·) : (0,∞) → 
(0,∞] is the excitation function from process j onto process i. When D=1, the univariate 
HP is expressed as Z t 

λ ∗ (t) = µ + φ (t − s)dN(s). (3)
0 

The self-excitation term within the expression of the HP is designed to capture the 
infuences of all previous events in the current conditional intensity value. In multidi-
mensional cases the self-exciting and mutually-exciting terms are, respectively, φii(·) 
and φi j(·), i ̸= j. A popular kernel choice is the exponential decay, � � 

−βi j(t−s)
φi j(t − s) = αi je (4)

i, j=1,...,D 

where each arrival in the system instantaneously increases the arrival intensity by αi j 

and over time the arrivals infuence the decay at rate βi j (Fig 3.) 
The standard temporal HP can be extended to include spatial dependence, thereby 

capturing the clustering behaviours of the process through time and space. The process 
has an analogous description to the temporal HP. 

Defnition 1.4 (Spatio-temporal HP). 
j j jLet D ∈ N+ . Let {(ti ),(xi ),(yi )} j=1,...,D be a D-dimensional point process, with an 

associated counting process Nt = (Nt 
1 , . . . ,ND). A multidimensional spatio-temporalt 

Hawkes process is defned with intensities λi 
∗(·), i = 1, . . . ,D given by 

D Z t Z Z 
λi 
∗ (t,x,y) = µi + ∑ φi j(t − s,x − u, y− v)dNj(s)dNj(u)dNj(v). (5)

0 X Yj=1 
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Further generalisations 

In the past ffty years, there have been several popular types of generalisations of the 
conditional density. Three more common approaches are described in reference to the 
following univariate case equation,� � 

g λ ∗ (t) = µ(t)+ ∑φ(t − s,ξi) (6) 
t>s 

1. Generalisations of the baseline process, µ(t), as a function of time effects on ex-
ogenous activity; 

2. The Marked HP, where marks (ξi) associated to events (ti) have different effects 
on intensity; � � 

3. Nonlinear processes, where g λ ∗(t) is a nonlinear function with support in R+ . 

Regardless of the assumed background and triggering function forms, the ftness of the 
HP model is typically measured via the likelihood (Daley and Vere-Jones, 2003). 

Defnition 1.5 (Likelihood of HP). 
Let N(·) be a regular point process on [0,T ] for some fnite positive T , and let t1, ..., tn 

denote a realisation of N(·) over [0,T ]. Then, the likelihood function L is expressible in 
the form " # � � n Z T 

λ ∗L(t1 . . . , tn | µ,φ) = ∏λ ∗ (ti) exp − (u)du . (7) 
0i=1 

A condition in ensuring the estimated model is stable and has access to most proper-
ties of the HP is stationarity. 

Defnition 1.6 (Stationarity of HP). 
Let N(·) be a multivariate HP on [0,T ] for some fnite positive T , where N(·) is stationary 
if a translation in time does not change its distribution. Let Φ be a D × D matrix with 
entries given by, Z 

∞ 
Φi j = φi j(u)du. 

0 

A suffcient condition for stationarity is that ρ(Φ) < 1, where ρ(Φ) is spectral radius of 
Φ given as 

ρ(Φ) = max |x| (8) 
x∈S(Φ) 

where S(Φ) is a set of all eigenvalues of Φ. 

A number of simulation procedures are available for ensuring stationarity and other 
stochastic properties of the HP. The generation of synthetic data sets from these methods 
ensures statistical equivalence to the real population of interest and is an invaluable tool 
in supporting model design and development. 
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1.2. Simulating a HP 

Concerning the experimental aspects of a self-exciting process, two synthetic generation 
algorithms are popular. 

The frst of these is the thinning method, a standard approach to producing nonhomo-
geneous Poisson processes. The intuition of the algorithm is to combine two generated 
homogeneous Poisson processes of different rates and to remove points probabilistically, 
so the remaining points satisfy a time-varying intensity λ (·) . For the Ogata modifed 
algorithm Ogata (1981), the intensity has no asymptotic upper bound, although it is 
common to set non-increasing periods without any arrival. 

Simulation of a HP may also be represented as an immigration-birth process, leading 
to a branching simulation procedure (Fig 4). Here immigrants are generated via a homo-
geneous Poisson rate λ , conditioned on K immigrants with arrival times uniformly i.i.d 
in time window (0,T ]. Each immigrant descendant forms a nonhomogeneous Poisson 
process with intensity (α/β ) giving arrival times [Ii + E1, Ii + E2, . . . , Ii + EDi ]. 

Algorithm 1 Simulating univariate HP by thinning 

Require: (λ ∗(·),T ) 
Initialisation P ← [], t ← 0,ε ← 10−10 

while t < T do 
Set upper bound M ← λ ∗(t + ε) 
Generate candidate point E ← Exp(M) 
t ← t + ε 
Set with probability U ∼ Unif(0,1) 
if t < T and U ≤ λ ∗(t) then 

P ← [P, t] 
end if 

end while 
return P 

1.3. Parametric models for HPs 

There is a rich literature on parametric methods for modelling HPs. These approaches 
have many uses, particularly when the parametric form of the process is obvious. They 
are often simple to implement and can provide useful insights into the behaviour of 
these processes. A brief summary of parametric methods is provided here, covering 
some of the most popular forms for the triggering kernel and inference techniques for 
these models. 
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Algorithm 2 Simulating univariate HP by clusters 

Require: (T,λ ,α,β ) 
Initialisation P ← [], i ← 1 
Generate immigrants K ∼ Pois(λ T ) 
I1, I2, .., IK ∼ Unif(0,T ) 
Generate descendants D1,D2, ..,DK ∼ Pois(α/β ) 
while i < K do 

if Di > 0 then 
E1,E2, ..,EDi ∼ Exp(β ) 
P ← P ∪ [Ii + E1, Ii + E2, .., Ii + EDi ] 

end if 
Set i = i + 1 

end while 
Remove invalid descendants (0,T] P ← (Pi : Pi ∈ P,Pi ≤ T ) 
Add immigrants P ← Sort(P ∪ [I1, I2, .., In]) 
return P 

Figure 4. HP immigrant-birth representation (squares indicate immigrants and circles indicate 
offspring/descendants). 

1.3.1. Choice of triggering kernel 

Although the structure of the conditional intensity function is quite fexible, the most 
common triggering kernel is parameterised as an exponential decay 

−β (t−s)
φ(t − s) = αe . 

Here α represents the overall strength of excitation and β denotes the infuence 
decay rate of the arrivals. Hawkes (1971) used this parametric form to derive theoretical 
properties of the covariance density function and Bartlett spectrum, via the frequency 
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domain. The Laplace transform is given as 

αµ (2β − α)
L{·}(s) = (9)

2(β − α)(s + β − α) 

where s ∈ C. Evaluating the power spectral density (defned in terms of the covariance 
density) of a HP provides a set of useful tools in discriminating and ftting between 
models and access to other techniques from the spectral theory feld. 

In addition, the exponential decay has several other advantageous properties, such 
as straightforward computation of the expected value of an arbitrary function on N(t), 
direct simulation, and effcient computation of the likelihood. Most of these properties 
descend from the Markov property, where the intensity and the pair (λ (t),N(t)) are 
Markovian, in the following form, 

dλ (t) = −βλ (t)dt + αβ dN(t) (10) 

Several other parametric kernel forms have also become popular. These include the 
power law, sinusoidal, Gaussian and rectangular functions supporting different types of 
interactions among events. In almost all realistic applications, however, it is not obvi-
ous which parametric form of the excitation function for HPs is the most appropriate. 
This has generated a great deal of recent interest in nonparametric specifcation of the 
kernel function. Under this representation, traditional assumptions about the triggering 
kernel can be relaxed to capture the complexities and subtleties of the excitation effects 
retrieved from the data. Before moving to a more comprehensive discussion of non-
parametric directions in Sections 2 and 3, we complete the introduction to HPs with an 
overview of spatio-temporal approaches and matters of inference. 

1.3.2. Spatio-temporal approaches 

A number of authors propose spatio-temporal self-exciting processes. Generally, the 
triggering kernel is constructed in a separable fashion, where the temporal and spa-
tial dependence can be decomposed (Mohler et al., 2011; Schoenberg, 2016; Reinhart, 
2018). A popular parameterisation for the respective kernels is exponential decay in time 
and Gaussian decay in space. Several Bayesian approaches have also been introduced to 
model spatio-temporal HPs. These include Holbrook, Ji and Suchard (2022), who model 
the outbreak of Ebola in West Africa and extend the standard spatio-temporal Hawkes 
model to learn the evolutionary history of the virus which informs the characteristics 
for each variant of the virus. Holbrook et al. (2020) also account for uncertainty in the 
location of events by placing a prior on the spatial position of events. 

A popular case of the spatio-temporal HP, originally introduced as a marked, purely 
temporal process, is an adaption of the Epidemic-Type Aftershock Sequence (ETAS) 
model (Ogata, 1988) to incorporate spatial dynamics (Ogata, 1998). The spatial ETAS 
model was introduced in the context of modelling earthquakes through the baseline pa-
rameter, and their corresponding aftershocks represented by the triggering kernel. The 
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marks are denoted by m and correspond to the magnitude of the earthquake. Thus, the 
intensity function can be written in the form, 

λ ∗ (t) = µ(x,y)+ ∑φm(t − s,x − u,y − v) (11)m 
t>s � �2 2(p − 1)cp−1 1 x + y

φm(t,x,y) = κm × × · f ( ) , (12)
(t + c)p πσm σm 

where κm is the expected number of aftershocks for an earthquake of magnitude m, σmR 
∞is a scale factor, f is a function such that f (x)dx = 1 holds, and p and c are global0 

constants. The second and third terms of φ represent the temporal and spatial decay 
functions respectively. 

1.4. Inference 

A range of inference approaches have been used for estimating the parameters of these 
parametric models. A common procedure is that of maximum likelihood estimation, 
where the likelihood function is maximised to obtain the set of parameter values that 
produce the highest likelihood. 

Other approaches are based on the branching representation of the HP which al-
lows the likelihood to be decomposed into conditionally independent immigrant and 
offspring processes. Due to this latent structure, inference methods such as Expectation-
Maximisation (EM) and Variational Inference (VI) can be used to integrate over this 
latent space. A detailed explanation of the EM algorithm for HPs is provided in Laub, 
Lee and Taimre (2021) and a similar construction is used when performing VI for these 
models. These inference techniques that utilise the latent structure of HPs are discussed 
further in the subsequent sections of this review. Effcient Gibbs samplers have also been 
developed, using the decomposition of the likelihood and placing conjugate priors on the 
parameters of the model. 

We turn now to four general directions of research that illustrate current activity 
in HPs. These include frequentist nonparametric kernel adaptation and presentation, 
Bayesian nonparametric approaches, other approaches (stochastic differential equations, 
graphs and neural networks) and theoretical aspects of HPs. This is intended to be a 
canvas rather than an exhaustive review of all research directions. 

2. Direction 1: Frequentist nonparametric kernel adaptation 
and estimation 

There is now a large literature on various directions of research into nonparametric ker-
nels for HPs. The following discussion focuses on a selection of these directions, based 
on their novelty, currency and interest to the authors. The focus is initially on several 
frequentist approaches, followed by effcient estimation methods and fnally sequential 
or online models. 
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2.1. Discretised scheme 

A frequentist approach to estimating the excitation and/or baseline function is defned 
by approximating the function as a binned grid, where function values are piecewise 
constant within each bin and the width of each bin is selected optimally to model local 
variations of the excitation. 

2.1.1. Stochastic declustering 

Early work by Zhuang, Ogata and Vere-Jones (2002) supports this approach by attempt-
ing to differentiate between ‘true’ background events and triggered events. Such dif-
ferentiation using the probability for background events, pii, is called stochastic declus-
tering. Motivated by this work, Model Independent Stochastic Declustering (MISD) 
was introduced as a nonparametric HP with homogeneous background rate (Marsan and 
Lengliné, 2008) and later extended for the more general case of varying µ(t) (Lewis and 
Mohler, 2011). This method makes use of the branching structure to reduce both base-
line and triggering kernel into a density estimation problem. The augmented likelihood 
of observations D and branching structure B with two independent components is then 
given by � �N N i−1 N Z T

bi j u(ti)bii exp(−uT ) φ(ti − t j)∏ 
i 1=| 

u(t) φ(t) 

(13) 

The recovered parameters are then updated via an expectation step, where bi j is replaced 
by the expectation E[bi j] = pi j, representing the probability that event i is caused by 
event j 

kφ k (ti − t j) u 
pk , pk . (14)i j = ii = 

uk + ∑i
j 
− 
= 

1
1 φ

k (ti − t j) uk + ∑i
j 
− 
= 

1
1 φ

k (ti − t j) 

This allows for the construction of a matrix Pk , giving events caused by the back-
ground rate (diagonal elements) or another event (non-diagonal elements). The maximi-
sation step then updates parameters given the current matrix of probabilities such that, 

n 

∏∏ ∏p(D,B|u(t),φ (τ)) = exp − φ(τ)dτ· 
0i=2 j=1 i=1| {z{z } } 

1 1k+1 pk 
φ k+1 

ii, m = pk 
i j (15)∑ ∑u = 

δ tT j=1 i> j∈Am 

where δ t is a discretisation parameter controlling the bin grid and Am is the set of pairs 
of events. 

In examining the MISD model, we illustrate in Fig 5 a synthetic exponential kernel 
(red) compared with the estimated kernel (blue) from the MISD model with varying 
discretisation parameters. 
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Figure 5. Kernel estimate (blue) on synthetic exponential kernel, increased bin size 10,50,100 
(left to right). 

Results highlight empirically the sensitivity of the chosen discretisation parameter δ 
to the structure of the kernel φ . Incorrect choice of the number of bins leads to underft-
ting (left) and overftting (right). This motivates future work that improves on bandwidth 
choice and boundary effects, which are unavoidable topics of kernel estimation. 

Another approach to defning the excitation function on a grid or set of grids is 
through exploiting relations in the model in the frequency domain between second order 
statistics and the triggering kernel. 

2.1.2. Wiener-Hopf integral 

Bacry and Muzy (2016) showed that the kernel matrix of a MHP can be estimated by 
relating the jump correlation matrix of event processes to a series of Wiener-Hopf equa-
tions. This relationship between the frst and second order characterisation properties, 
triggering kernel and background rate of a HP is exploited in the frequency domain to 
satisfy a unique causal solution. Given this unique solution, the unknown kernel may 
be solved by a discretised system of linear equations via quadrature and inversion. The 
triggering kernel matrix function and conditional expectation g(t) satisfy the following 
Wiener-Hopf equation, 

g(t) = Φ(t)+ Φ(t) ∗ g(t) ,∀t > 0 (16) 

where ∗ represents convolution (Bacry et al., 2015). 
The numerical approximation requires selecting a grid and quadrature scheme for 

g(t), computing frst the estimated ge (Jovanović et al., 2015). Considering the univariate 
case, where Nt jumps are all size 1 and stationary, the frst order property (mean event 
rate) is 

µ
Λdt = E(dNt ) = R dt 

1− φ (τ)dτ 

with second order statistic are summed up by infnitesimal covariances, 

Cov(dNt1,dNt2) = E(dNt1 dNt2) − E(dNt1)E(dNt2) 
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under assumption Nt has stationary increments, Cov(dNt1,dNt2) only depends on τ = 
t2 − t1 this part of this covariance is can be written as 

v(τ)dτ = E(dN0 dNτ ) − E(dN0) E(dNτ ) . 

where the second order statistic can be rewritten in terms of conditional expectations, 

g(τ)dt = v(τ)dτ /Λ = E(dNτ |dN0 = 1) − Λdτ . 

details of proof in Bacry and Muzy (2016). 
Approximation of the equation is commonly given via the Gaussian quadrature method 

for discretised Wiener-Hopf systems on the interval [tmin, tmax] and is shown as 

D K 
gei j(tn) = φei j(tn)+ ∑ ∑ wk geil (tn − tk)wkφei j(tn) , ∀n ∈ [0,K], i, j ∈ [0,D]. (17) 

l=1 k=1 

Inverting the obtained linear systems results in estimation of the matrix kernel at quadra-
ture points φei j and lastly estimating µ using the frst order cumulant. 

In the example below we again consider a simulated exponential decay kernel and 
approximate Wiener-Hopf equation with optimal bandwidth given by the MSE with re-
spect to grid size. 

Figure 6. Kernel estimates with actual in red (left) and mean square error (MSE, middle) with 
varying width(h). Optimum kernel estimate (right). 

The more expressive bin grid approach compared to parametric methods requires a 
larger sample size and is restricted to non-Markovian regimes, thus a larger computa-
tional cost. This has led to a body of work focusing on computational effciencies. 

2.2. Improved estimation scalability and effciency 

Achab et al. (2018) decreases computational costs by replacing estimation of kernels 
through matching cumulants (or moments). This strategy relates the branching structure 
of an MHP to Granger causality, estimating cumulative values to quantify the causal 
relationship among each node by estimating the matrix, Z Z 

∞ 
Φ(t) dt = φi j(t) dt ≥ 0 for 1 ≤ i, j ≤ d. (18)

0 
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It frst computes from sequences moments, up to the third estimates, M̂ and min-
imises the L2 error between these estimates and actual moments Mtrue (uniquely deter-
mined from ||Φ(t)||) where 

||Φ̂ (t)|| = arg min ||M(||Φ(t)||) − M̂ ||2 , (19) 
||Φ(t)|| 

where the matrix R is given as 

R = (Id − Φ̂ ())−1 . 

The explicit relationships between the matrix and cumulants are then defned as the 
following identities Λ,C,K. Estimation is given from general formulae for the integral of 
cumulants of an MHP in Jovanović et al. (2015), where 3rd order statistics are connected 
to skewness of Nt (Achab et al., 2018), shown as � � 

Ki jkdt = E dNt
i(∆HNt

j − 2HΛ
j)(∆HNt

k − 2HΛ
k) (20) � � 

− dt ΛiE (∆HNt
j − 2HΛ

j)(∆HNt
k − 2HΛ

k) 

where ∆HNi = Nt
i 
+H − Nt

i 
−H with frst and second moments given as t 

1 ∗
Λ

idt = E(dNt
i) = lim λi (t) = (I − ||Φ||)−1

µi 
n→∞ T 

Ci jdt = E(dNt
i(∆HNt

j − 2HΛ
j)) 

and with Λ̂ ,ĈK̂ to be incorporated in the estimator R̂ = argminR L(R)) such that 

L(R) = (1 − k)||Kc(R − K̂c)||22 + k||C(R) −Ĉ||22, 

where Kc is the tensor contraction of tensor K, and the coeffcient k is used to scale the 
two terms 

||K̂c||2 
2k = . 

||K̂c||22 + ||Ĉ||2 
2 

Inverting (19) leads to the recovered matrix 

Φ̂ (t) = (Id − R̂ )−1 . 

In the univariate case, the Φ̂ can be estimated from the second order statistics, whereas 
in higher dimensions the third order or skewness is required for unique Φ̂ (t). 

The nonparametric cumulant method outperforms the previously discussed MISD 
and Wiener-Hopf algorithms, given its reduced complexity. The recovered matrix also 
provides a quantifable degree of endogeneity in a system and the causality structure of 
a network. 

Another approach to improving the computational bin grid process is by updating 
parameters in a single pass. 
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2.3. Sequential and online approaches 

Yang et al. (2017) proposed an online procedure where the triggering function belongs 
to a Reproducing Kernel Hilbert Space (RKHS). Assume that there exists a function 
K : X × X → R such that there is a positive defnite kernel, 

n n 

∑∑ cic jK(xi,x j) ≥ 0 
i=1 j=1 

where n ∈ N,c ∈ R and that for any x ∈ X, the evaluation functional is bounded as 

f (x) = ⟨ f ,K(x, ·)⟩H ≤ C|| f ||H 

for some constant C. Suppose that f (x) satisfes the decreasing tail property with tail 
function ε f (·) if 

∞

∑ 
k=m 

(tk − tk−1) sup | f (x)| ≤ ε f (tm−1),∀m > 0, (21) 
x∈(tk,tk−1] 

where ε f (·) is a bounded and continuous function such that limt→∞ ε f (t) = 0. Then 
the assumed triggering function belongs to a RKHS where similarities among high-
dimensional and complex distributions are mapped onto lower-dimensional ones. The 
process then takes the log-likelihood function and optimises over a discretised version, Z 

χkD M(t) 

∑∑Li(λ ) = λd(s)ds− yd,k logλd(tk)
χk−1d=1 k=1 

D 

∑ ∆Ld,i(λd)= 
d=1 

where partitioning {0, χ1...χM(t)} on the interval [0,T ] is defned as 

χk+1 = min{ι ∗⌊χk/ι⌋ + ι , ti}
ti>χk 

for some small ι > 0. The discretised version is then expressed as Z 
χkD M(t) 

∑∑L(λ ) = (χk − χk−1) − λd(χk) − yd,k log(λi(χk)) 
χk−1d=1 k=1 

D 

∑ ∆Ld,t (λd). (22)= 
d=1 

To perform fast evaluation, the optimisation algorithm processes each partition and 
employs the following three properties. The frst is a truncation of the intensity function 
that considers arrivals within a recent window [t − z, t) as 

p Z t 
λ z 

i (t) =µi ∑ 1{t − τ < z} fi j(t − τ)dNj(τ). (23) 
0i=1 
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The second is Tikhonov regularisation over the baseline and triggering kernel, adding 
weight terms to the loss function and keeping the resultant values small. The third is 
enforcing positivity through the projection steps in the optimised triggering function 
part. By reducing complexity through the RKHS and by exploiting inter-arrival MHP 
properties, the resulting nonparametric algorithm recovers estimates over a single pass 
with comparable computation cost of alternative parametric online learning algorithms. 

2.4. Summary 

Nonparametric HPs comprise a major direction of current research. Notwithstanding the 
advantages of a nonparametric framework, such as the enablement of a more expressive 
triggering function, the approach induces a number of challenges. Firstly, the discreti-
sation approach employed in ftting the nonparametric model requires a larger sample 
size compared to more traditional parametric methods that ft better on shorter and fewer 
arrival sequences. However, they may underft on longer sequences. This is easily seen 
when relating the bin division grid concept to a histogram of inter-arrival times. Sec-
ondly, computational loads for estimation and inference become much larger, given the 
above-mentioned sample size requirements and as the binning process is a sequential 
process that cannot take account of the Markovian property given in the exponential 
function. 

Several research directions to address these challenges have been discussed. The 
frst is an improved computational estimation method in matching cumulants. The sec-
ond is a reduction in computational complexity though some assumptions on the kernel 
(belonging to RKHS) to estimate parameters given a single pass on some discretised 
time domain. 

3. Direction 2: Bayesian nonparametric approaches 

Bayesian approaches inherit the usual benefts of more fexible hierarchical modelling 
and probabilistic inference. A number of Bayesian nonparametric approaches to mod-
elling HPs have been proposed in the literature. In particular, the majority of methods 
discussed in this section estimate either the baseline rate, triggering kernel, or both, us-
ing either a nonparametric histogram kernel or Gaussian processes. Also of interest in 
the Bayesian nonparametric literature for HP is using the self-exciting properties of HPs 
to determine the clustering of events using Dirichlet processes. 

3.1. Histogram kernel 

A drawback of the binning based methods for estimating a histogram function discussed 
in Section 2 is that they require a priori selection of the grid size. This often leads to 
models that are either overftted or underftted. Donnet et al. (2020) propose a Bayesian 
nonparametric approach for modelling HP that eases this choice. 

The authors derive posterior concentration rates for HPs, and exemplify these results 
through a nonparametric histogram representation of the triggering kernel. This form 
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of kernel is motivated in the neuroscience context, mimicking the behaviour of action 
potentials to model the interaction between neurons in the brain. The resulting histogram 
kernel defned on the compact set (0,A) with J components, change points at s = (s0 = 
0,s1, ...,sJ−1,sJ = A) and respective heights w = (w1, ...,wJ) such that ∑J

j=1 w j = 1, has 
the form, 

J w j
φ(t|J,w,s) = δ ∑ 1t∈(s j−1,s j). (24)

s j − s j−1j=1 

where δ ∼ Bern(p) is an indicator variable that determines whether the histogram func-
tion is active with probability p, or whether the heights for all components is zero. The 
parameters of this model are inferred using Reversible-jump Markov chain Monte Carlo 
(RJMCMC), which proves to be a costly procedure. RJMCMC (Green, 1995) is a trans-
dimensional approach to Bayesian inference that allows the model to move between 
different parameter spaces. In this example the various parameter spaces are determined 
by the possible values of J. A drawback of RJMCMC, as found in this study, is that 
it is computationally expensive and experiences slower mixing that more standard ap-
proaches. 

3.2. Gaussian processes 

To circumvent the issue of slow inference, several authors have proposed effcient algo-
rithms by instead estimating the model parameters as fexible functions using Gaussian 
processes. A common feature in all of these approaches is the augmentation of the 
branching structure to decompose the likelihood function into conditionally independent 
processes. 

Zhang et al. (2019) suggest a practical direction for improvement by proposing a 
fexible triggering kernel represented as a quadratic transformation of a Gaussian process 
f (·) given by, 

φ (t) = 
1 

f 2(t). (25)
2 

This form is selected as it has certain analytical advantages. With a conjugate Gamma 
prior on the baseline parameter µ , the adapted Laplace method (Walder and Bishop, 
2017) approximates the posterior conditioning on the branching structure, resulting in 
scalable estimates of theoretical linear time complexity, O(n). An approximated sam-
pling structure (Halpin, 2013) is used to reduce computation by considering only high-
probability triggering relationships; this is achieved by assuming that the probability for 
extremely unlikely triggering relationships is very close to zero. The model is estimated 
through an EM implementation of both a block Gibbs sampler and MAP estimator. The 
approach maintains conjugacy relationships due to the decomposition of the likelihood 
to facilitate a closed form in computation of sequential updates to the model. 

In a similar style, Zhou et al. (2021) uses Gaussian processes to represent both the 
baseline rate and triggering kernel. They also perform a quadratic transformation of a 
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Gaussian process and further employ a sparse GP approximation (Titsias, 2009) to re-
duce complexity and avoid costly optimisation procedures. These authors also decouple 
the baseline rate and triggering kernel by augmenting the branching structure, thereby 
introducing a fast EM style mean-feld variational Bayes algorithm. 

Zhou et al. (2020a) instead adopt a sigmoid transformation of a Gaussian process for 
the baseline rate and triggering kernel, again using a sparse GP approximation. These 
functions have the form, 

µ(t) = λµ 
∗
σ( f1(t)), φ(t) = λφ 

∗
σ( f2(t)) (26) 

where λµ 
∗ and λ

φ 
∗ are upper bounds of µ and φ respectively, σ(·) is the sigmoid function 

and f1(·) and f2(·) are generated from a Gaussian process. In addition to augmenting 
the branching structure, several other processes are introduced to allow for conjugate in-
ference. Several effcient inference schemes are also proposed, namely a Gibbs sampler, 
an EM algorithm and a mean-feld variational inference algorithm. In this experiment 
all three algorithms performed comparatively well. In this work the sigmoid function is 
defned as a Gaussian representation, with Polya-Gamma augmentation (Polson, Scott 
and Windle, 2013), Z 

∞ 
h(ω,z)

σ(z) = 
ez/2 

= e pPG(ω|b,0) dω (27)
2 cosh(z/2) 0 

where h(ω,z) = z/2 − z2ω/2 − log2 and PG is the Polya-Gamma distribution. 
Data augmentation provides a mechanism that eliminates the need to evaluate the 

high dimensional integral, allowing for effcient conjugate inference. This augmentation 
strategy with the polya-gamma technique is an interesting development as the likeli-
hood becomes conjugate for the GP prior, thereby allowing for speed compared to other 
augmentation techniques, and it is an effective method for posterior inference. Malem-
shinitski, Ojeda and Opper (2022) extend the process further by allowing nonlinear and 
inhibitory effects in the kernel, ensuring that the intensity is non-negative via a sigmoidal 
link function. This approach is also computationally effcient, given the new likelihood 
form and mean-feld variational inference; however, it does not rely on the commonly 
used branching structure. 

3.3. Dirichlet approaches 

Yet another popular direction Bayesian nonparametric modelling is in incorporating the 
dynamics of HPs into Dirichlet processes to inform event clustering. This enables cap-
ture of the diversity of event types, while the self-exciting process describes the temporal 
dynamics. The framework of the Dirichlet process means that the number of clusters 
grows as the complexity of the data increases. 

An example of this is the Dirichlet-Hawkes (DHP) model proposed by Du et al. 
(2015). The authors cluster streams of data, such as news articles and social media con-
tent, using a Dirichlet process augmented with a temporal HP to determine the intensity 
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of arrivals. The overarching idea of this work is to determine related actions of me-
dia platforms given a particular occurrence of a highly impactful event, through word 
content and time of occurrence. 

The model is a generalisation of the Dirichlet process. Generally, the probability of 
joining an existing cluster or a new cluster is proportional to the number of observations 
currently in each cluster or the concentration parameter respectively. The authors instead 
specify these probabilities as counts that are temporally weighted by the triggering kernel 
φθk (t − ti) for each existing cluster, or the baseline rate µ for new customers. Hence the 
baseline rate acts as the concentration parameter in the Dirichlet process. 

Let θk be the parameters of the bag-of-words document content model for the kth 
cluster and wv be the vth word in the nth document. Then the model is given by, n 

vw ∼ Multinomial(θk)n 

θk ∼ DHP(µ,G0) 

G0 ∼ Dirichlet(θ0) 

where θ0 is the concentration parameter for the base distribution in the Dirichlet process. 
The choice of algorithm for parameter inference is motivated by the streaming con-

text. A Sequential Monte Carlo framework is used which allows the authors to reuse 
previous samples. When necessary, duplicate timestamps are resampled as this is a vio-
lation of the assumptions of a point process. A Gibbs sampler similar to Neal (2000) is 
embedded within this framework to sample the cluster labels in the following way. For 
event at time tn with cluster allocation sn, 

• Remove tn from cluster sn. 

• Calculate the probability of tn belonging to cluster j,   φθk (tn−ti) if j occupied, 
p(sn = j|tn, rest) = µ+∑tn>ti φθk (tn−ti) (28)

µ otherwise.
µ+∑tn>ti φθk (tn−ti) 

• Sample cluster allocation for tn from (28). If j is unoccupied draw θ j from G0. 

Blundell, Heller and Beck (2012) present another extension on Dirichlet processes 
for HP. The authors combine HPs with the infnite relational model (IRM) (Xu et al., 
2006; Kemp et al., 2006), a graph based approach to modelling the relationship between 
entities given previously declared relationships. In this model events are represented as 
vertices on a graph and are clustered according to a Chinese restaurant process (CRP) 
(Aldous, 1985). Each pair of clusters (in both directions) has a corresponding HP with 
a parametric form for the conditional intensity function. Let V be the set of events or 
vertices, π denote the partition of events, and n j be the number of immigrant events in 
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cluster n j. For λ ∗ (t) the model then has the form, pq 

π ∼ CRP(α) Z t 
λpq 
∗ (t) = µpqnpnq + φpq(t − s)dNj(s) ∀p,q ∈ range(π) 

0 

Npq(·) ∼ HP(λpq 
∗ (·)) 

Nuv(·) ∼ Thinning(Nπ(u)π(v)(·)) 

where α is the concentration parameter of the CRP and the thinning process Nuv(·) de-
termines the edges of the directed graph by thinning, or distributing, all events in both 
clusters among the edges such that Npq = ∑u,v Nuv(·). Parameter inference is performed 
using Markov chain Monte Carlo methods as there is no conjugate prior available for this 
likelihood. The partition of the individuals in the model is updated via a Gibbs sampler, 
in a similar fashion to Du et al. (2015) with modifcations for their model. The remaining 
model parameters are updated using a slice sampler. 

A natural extension of the above approaches is the hierarchical Dirichlet. The in-
clusion of hierarchies facilitates description of a wide range of phenomena in the data 
and system under inspection. For example, a hierarchical Dirichlet HP proposed by 
Markwick (2020) is applied to 5 minute foreign exchange trade data, that is grouped 
daily for individual day HPs whilst allowing pooling of information where there is less 
data. The model is able to learn seasonality in trading events simultaneously, with the 
nonparametric background rate shown as, 

µd(t) ∼ µ0 · fD(t) , (29)Z 
fD(t) ∼ k(t|θ )dGD(θ), 

GD ∼ DP(αD,G0) 

G0 ∼ DP(ν ,H) 

where µ0 and fD are the amplitude and density of controlling events on a day, respec-
tively, with individual days d grouped by Days, D. The individual Dirichlet process 
model GD with base measure for mixing kernel k (beta distributions) is, 

µυ 
T −1 

(T − yi)
υ(1− T 

µ −1)yik(yi|θ ) = Beta(yi|µ,υ ,T ) = 
B(T 

µ ,υ(1 − T 
µ ))T υ−1 

with non-conjugate prior for the mixture kernel, 

G0(µ,υ |T,α0,β0) = U(µ|[0,T ])Inv-Gamma(υ |α0,β0) 

and the global Dirichlet process learnt from the data. Augmenting the latent structure 
and selecting conjugate priors for the model parameters lead to a fully-Gibbs sampling 
algorithm. The model benefts from the ability of trades being updated in real time 
(online) and modelling the days of week’s trades whilst sharing data amongst all groups 
with dynamic forecasts. 
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3.4. Summary 

A number of non-parametric Bayesian inference procedures for the HP were reviewed. 
Computational improvements were highlighted with approximation and estimation strate-
gies giving linear time complexity. Other approaches provided important improvements 
in fexibility and uncertainty in modelling the kernel. Finally, a scalable online cluster-
ing method in Dirichlet Process allows for the number of samples to grow with the HP, 
while the hierarchical approach supports pooling information and aiding where limited 
data size is available. 

4. Direction 3: Other approaches 

This section presents a brief review of three other directions in HP research. These 
include stochastic differential equations, graphs and neural networks. 

In the frst direction, Lee et al. (2016) extended the HP model to include randomness 
of the triggering kernel and introduced contagion parameters to control the levels of ex-
citation. Each level of the excitation function is a stochastic process and is solved using 
a stochastic differential equation that follows a Geometric Brownian Motion and Expo-
nential Langevin dynamics, inferred through Bayesian methods. The model attempts 
to better approximate applications where self-excitation intensities are accelerated with 
correlated levels of contagion. 

The second direction points to graph-based approaches. This allows the user to 
determine the interaction between components within multivariate HPs by recovering the 
latent network structure. Generally, this is achieved by estimating the infectivity matrix, 
for which the i jth element describes the expected number of offspring events expected 
in dimension i given an event in dimension j. Several authors have introduced sparse 
and low-rank approximations to the matrix to control interactions within the network 
and improve computational effciency. 

An early example is given by Linderman and Adams (2014). The authors combine 
HPs with random graph models by decomposing the infectivity matrix into a binary 
adjacency matrix representing network sparsity, and a weight matrix to model interaction 
strength. A parallelisable Gibbs sampler is used to infer the model parameters. Guo et al. 
(2015) augment this approach for uncovering the latent network with a new Bayesian 
language model to study the evolution of dialogue within a social network over time. 
Linderman, Wang and Blei (2017) focus on inferring the latent structure of a social 
network when the data is not fully observed, where several types of missing data are 
considered. A new sequential Monte Carlo approach is proposed to recover the missing 
data. Liu et al. (2018) exploit MHP spatio-temporal properties by introducing a graph 
regularisation method, in which a penalisation term from the proximity of the infectivity 
matrix to a spatial connection matrix learns the infuence among MHP characteristics. 

Bacry et al. (2015) provide an extension by introducing a sparsity and low-rank 
induced penalisation, resulting in an excitation matrix of few non-zero and independent 
rows. This enhances scalability and improves estimation of the kernel. In a similar vein, 
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Zhou et al. (2013); Bacry et al. (2020) perform inference for higher dimensional HPs by 
modelling the excitation function as a low-rank approximation with regularised objective 
functions. The sparsity introduced in the infectivity matrix ensures that individuals are 
only impacted by a small number of users in the network while a small fraction of hubs 
can have wide-spread infuence. Similarly, the Mean-Field Hypothesis as described by 
Bacry et al. (2016a) improves computational effciency when recovering parameters in 
higher dimensions, given fuctuations of stochastic intensity are small. 

In a third direction, the nonlinearity of the intensity function can be modelled as a 
neural network. Recurrent neural networks encode sequences of input states and output 
states, where each state is determined by the preceding state and the hidden state captures 
other past states. The parameters are ftted by an optimisation procedure on a nonlinear 
function, such as a sigmoidal or hyperbolic tangent. 

Improving on the recurrent neural network issues, long short-term memory (LSTM) 
architecture mitigates the vanishing gradient problem, extending memory by modelling 
HP intensities of multiple events trained through ‘forget gates’ to control infuences of 
past events on the current state (Mei and Eisner, 2017). Some other neural network ap-
proaches are the self-attentive/transformer models (Zuo et al., 2020; Zhang et al., 2020a) 
and graph convolution networks (Shang and Sun, 2019), showing computational effcien-
cies and improved prediction accuracy. 

Several approaches have also been proposed to model spatio-temporal HPs using 
neural networks. Okawa et al. (2021) construct the intensity function for HPs to accept 
images as input by combining convolutional neural networks with continuous convolu-
tion kernels to output a multiplicative factor that infuences the process in addition to 
the standard temporal and spatial triggering kernels. An alternative model that relies on 
neural networks to approximate the conditional intensity function of the HP is proposed 
by Du et al. (2021). The authors introduce a framework that learns the graph structure 
of the process which is then combined with temporal and spatial information. There are 
numerous other variations in neural network approaches as this is a signifcant body of 
active research in this area. 

4.1. Summary 

In this section we presented and discussed three further approaches, namely stochastic 
differential equations, graphs and neural networks. Although these related felds do not 
conveniently ft in the previous sections, they highlight the breadth of HPs in different 
research areas and show signifcant recent growth. 

5. Direction 4: Theoretical guarantees and statistical properties 

There is an emerging deep literature on theoretical aspects of HPs. Here we touch on 
three of these, namely developments in statistical properties, the special case of Marko-
vian HPs, and nonlinear representation of self exciting processes. 
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With respect to developments in statistical properties, defnitions past the frst and 
second order statistics are possible given weakly stationary state conditions (Daley and 
Vere-Jones, 2003), but they become less intuitive and tractable as their statistical or-
der increases. By introducing a combinatorial formula, Jovanović et al. (2015) allow 
the integral of cumulants (and consequent moments) to be calculated of arbitrary or-
der for HPs. Specifcally, given a set of s ∈ {1, ...,D} components and one of times 
ts = {t1, ..., t|s|}, the cumulant density of a HP is defned as * + 

k(Ns) = dt−|s|∑(|π|− 1!)(−1)|π|−1
∏ 

πB∈ 
∏dNi 

t , (30) 
π i∈B 

where the sum runs over all partitions |π| in s, | · | denotes the number of blocks and B 
labels individually the blocks of π . Moments in terms of cumulants are expressed as * + 

∏dNt
i
i 

dt−|s| = ∏∑ k(NB). (31) 
i∈s π B∈π 

Jovanović et al. (2015) represent HPs as a cluster process, showing how to express (30) 
as a sum of integral terms by enumerating all possible rooted trees. The contribution of 
enumerating these ‘family trees’ that represent the complex interactions between point 
events, can be performed systematically and thus ease computational costs. 

In an alternative approach to fnding moments, Cui et al. (2020) used elementary 
derivations of self-exciting processes, setting the objective function to evaluate proba-
bilistic arguments that yield a differential equation for the required moment. 

Some other progress made in the direction of asymptotic results is in the study of 
a special class of HPs that is Markovian. For instance, when the exciting function is 
exponential, the joint process (Nt ,λ t) is then Markovian (10). In the paper by Gao and 
Zhu (2018b), the functional law of large numbers and central limit theorems are derived 
for the linear HP where the initial intensity and time are large, defned as Z t Z t 

−β t
λ (t) := = αe−β (t−s)dN(s) = λ0 · e + αe−β (t−s)dN(s) as λ0 = n → ∞ 

−∞ 0 

where the process λ is Markovian given dλ (t) = −βλ (t)dt + αdN(t). Such limit theo-
rems (details in Gao and Zhu (2018b)) provide insight into macroscopic behavior of large 
initial intensity asymptotics of HPs. Furthering the Markovian HPs towards the nonlin-
ear case, a proof for large deviation was obtained by Zhu (2015), where the exciting 
function is both exponential and a sum of exponentials. More recent work by Kanazawa 
and Sornette (2020) provides a theoretical framework to embed non-Markovian kernels 
as Markovian, with the aim of tackling more general and complex derived HP models. 
This process of introducing auxiliary feld variables via a master equation provides a for-
mulation in terms of linear stochastic partial differential equations that are Markovian. 

Another direction in theoretical work is the study of nonlinear HPs. For example, 
Torrisi (2016, 2017) derive explicit bounds in the Gaussian and Poisson approximations 
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on nonlinear HPs using Stein’s method and Malliavin calculus. Gao and Zhu (2018a) 
present a study of a new asymptotic regime and its relation to the mean feld limit for 
higher dimensions. Finally, from the perspective of asymptotic frequentist properties 
of Bayesian estimators, Donnet et al. (2020) consider nonparametric MHP posterior 
concentration rate εt around the true parameter θ ∗ , � � 

Eθ ∗ ∏(d(θ ,θ ∗ ) > εt |Nt ) = o(1) as T → ∞ (32) 

in understanding infuential features of the prior. The prior models are defned as a 
piecewise constant function and a mixture of Beta distributions that is given by, �Z 1 

� 
Γ(α/ (ε(1 − ε))) α α −1

εφi j(·) = ρi j gαi jε dMi j(ε) , gαε (x) = x 1−ε −1(1 − x) 
0 Γ(α/ε) Γ(α/(1− ε)) 

(33) 

where Mi j are bounded signed measures on [0,1] such that |Mkl| = 1. The asymptotic 
posterior concentration rates are derived in stochastic terms and L1 distances d(θ , θ ∗). 
Sulem et al. (2021) furthers theoretical guarantees on estimation methods by consider-
ing nonlinear and inhibition effects of MHPs, obtaining the concentration rates of the 
posterior distribution on the parameters. 

5.1. Summary 

The theory of HPs is extensive with numerous areas of development. It is not our goal 
to give a detail account here, rather to provide the reader with three interesting current 
challenges that researchers are tackling. First we show approaches to nth order cumulant 
density formula derived in terms of Poisson cluster processes, secondly a number of 
derived theorems from a special class of the HPs (Markovian) and fnally explicit bounds 
and posterior concentration rates for nonlinear HPs. 

6. Real-world cameos 

As noted in the Introduction, a key aspect of HP modelling is its suitability to real world 
applications. Many of the papers discussed in this review motivated and illustrated their 
methods with substantial examples. Tables 1 and 2 provide a scan of these applications 
and the corresponding fndings, categorised by the estimation and numerical methods 
described in previous sections. A small number of cameos are described in further detail 
below. 

6.1. Cameo 1: Crime 

The issue of refning the parametric form of the triggering kernel is circumvented by 
a nonparametric approach to parameter estimation. Mohler et al. (2011) introduce a 
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spatio-temporal model for burglaries in Los Angeles. The model, inspired by the ETAS 
model developed to model seismic activity, is given by Z t Z Z 

λ (t,x,y) = µt (t)µb(x,y)+ φ(t − s,x − u,y − v)dN(s)dN(u)dN(v) (34) 
−∞ X Y 

where µt (t) and µb(x,y) are temporal and spatial baseline functions, respectively. Model 
parameters are estimated via variable-bandwidth Kernel Density Estimation (KDE). 

A recent extension of this work is the semi-parametric spatiotemporal model em-
ployed by Zhuang and Mateu (2019), which describes complexities of criminal behav-
iors by incorporating their biological clock and periodic social activity. The conditional 
intensity is defned as 

λ (t,x,y) = µ0µt (t)µd(t)µw(t)µb(x,y)+ Z t Z Z 
A φ1(t − s)φ2(x− u,y− v)dN(s)dN(u)dN(v) (35) 

−∞ X Y 

where relaxation coeffcients A and µ0 stabilise the estimation process via maximisation 
likelihood, giving the model a semiparametric component. The other terms extend the 
nonparametric MISD model, where the baseline periodicity is estimated via residual 
analysis with daily/weekly terms µd and µw, average trend µt and spatial background 
µb(x,y) all normalised to 1. The triggering kernels, both temporal φ1 and spatial φ2, are 
then normalised as density functions. The introduction of periodic terms and estimation 
of their relative contributions is used to model crime rates in Castellon, Spain. In addition 
to uncovering daily and weekly patterns in robberies, the authors’ analysis reveals the 
high infuence of the background rate compared to the clustering effect which explains 
roughly 3% of the overall intensity. 

6.2. Cameo 2: Finance 

Kirchner (2017) shows the close relation of HPs to an Integer Auto-Regression (INAR) 
where the distribution of the resulting bin count sequence is approximated as a multi-
variate INAR(p). Fitting a mutually exciting bivariate HP to trades and limit orders on 
S&P 500, Kirchner (2017) determines an asymmetric relationship between both incom-
ing orders exciting limit order and market orders, and fnds that market order has barely 
an effect on incoming limit order. 

In further support of high frequency applications, the Hawkes Graphs approach by 
Embrechts and Kirchner (2018) effciently fts dozens of event streams. This method 
also provides a natural approach to studying connectivity and causality. 

The suitability of the nonparametric HP method to very large datasets was also 
demonstrated by Bacry, Jaisson and Muzy (2016b). In the approach taken by these 
authors, a series of Wiener-Hopf equations is solved by Gaussian quadrature to estimate 
the kernel matrix, where market orders of two future assets on EUREX were shown to 
closely ft a power law function. Rambaldi, Bacry and Lillo (2017) couples this non-
parametric kernel estimation with a MHP to successfully show the complex interactions 
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between time of arrival of orders in limit order books (LOB) and their size. Their work 
highlights the fact that high frequency orders on EUREX exchange are not suitable to be 
described with a simple model assuming independence between volume and time. 

6.3. Cameo 3: Online content 

The model proposed by Du et al. (2015), summarised in Section 3.3, was applied by the 
authors to a stream of news articles for a 35 day period at the beginning of 2011. The 
aim of the model is to identify emerging news stories by clustering related news articles 
based on the terms used in each article. 

To determine the words included in the vocabulary of the model, named entities 
are identifed and words that do not add information to the text are pruned, leaving a 
vocabulary of terms consisting largely of named entities, nouns, verbs and adjectives. 
The triggering kernel is made up of a linear combination of known radial basis function 
kernels. These kernels assign mass to the excitation function based on the distance 
between particular reference time points and the time elapsed for a pair of events. In this 
study the reference time points range from 30 minutes to 168 hours, capturing a range 
of both short and long time excitation effects. A number of meaningful news stories 
were identifed as clusters, including the 2011 shooting in Tuscan, the release of the 
flm ’Dark Knight Rises’, the space shuttle Endeavour’s last mission and cyclone Yasi in 
Queensland, Australia. A key outcome for this work is the ability to track the trend of 
each of these stories through examining both the form of the triggering kernel and the 
level of overall excitation. 
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7. Conclusion and Challenges 

The past ffty years has seen the HP embedded as a staple methodology in the statistical 
literature. The growth in research directions inspired by the HP is itself a HP! Even 
after half a century, this pursuit continues through new theoretical, methodological and 
computational developments and new applications. The papers referenced in this review 
were selected to highlight some of the current directions in these areas and to provide a 
broad overview for new readers in the feld. A range of research directions, in particu-
lar parametric, nonparametric, online and Bayesian approaches, were highlighted along 
with a number of real-world applications. The quantity and quality of the work reviewed 
here, and the large body of literature that was unfortunately not included, are a portent 
for another ffty years of exciting research related to HPs. 
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Unusual-event processes for count data 

Wanrudee Skulpakdee1 and Mongkol Hunkrajok2 

Abstract 

At least one unusual event appears in some count datasets. It will lead to a more 
concentrated (or dispersed) distribution than the Poisson, gamma, Weibull, Conway-
Maxwell-Poisson (CMP), and Faddy (1997) models can accommodate. These well-
known count models are based on the monotonic rates of interarrival times between 
successive events. Under the assumption of non-monotonic rates and independent 
exponential interarrival times, a new class of parametric models for unusual-event (UE) 
count data is proposed. These models are applied to two empirical applications, the 
number of births and the number of bids, and yield considerably better results to the 
above well-known count models. 

MSC: 62J99, 62M05, 62P99. 

Keywords: Poisson count model, Gamma count model, Weibull count model, Conway-Maxwell-
Poisson count model, Faddy count model. 

1. Introduction 

Count data regression analysis is a collection of statistical techniques for modeling and 
investigating the conditional count distributions of count response variables given sets of 
covariates. The conditional-variance-mean function of these distributions can be classi-
fed into two different categories: linear and non-linear. 

1. If the distributions are equidispersed (variance = mean), this function is linear. 

2. If the distributions are overdispersed (variance > mean), this function is either 
linear or non-linear. 
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3. If the distributions are underdispersed (variance < mean), this function is either 
linear or non-linear. 

4. If the distributions are over-, under-, and equidispersed, this function is non-linear. 

A renewal process is a counting process. Its times between successive events are in-
dependent and identically distributed with a non-negative distribution (Ross 2010). The 
primary assumption of the Poisson model is that the times between events are expo-
nential. It follows that the Poisson model is equidispersed, and the Poisson regression 
model has a linear conditional-variance-mean function. The exponential distribution 
replaced by a less restrictive non-negative distribution such as the gamma and Weibull 
distributions leads to the gamma (Winkelmann 1995) and Weibull (McShane et al. 2008) 
count models. They allow for both overdispersion and underdispersion. The gamma and 
Weibull regression models have linear conditional-variance-mean functions when the 
additional parameter (α) equals 1, that is, the Poisson regression model. Furthermore, 
they have nearly linear conditional-variance-mean functions shown in Figures 1(a) and 
1(b), although α does not approach 1. 

The Conway-Maxwell-Poisson (CMP) model was originally introduced by Conway 
and Maxwell (1962). In contrast to the above models, the CMP model is not derived from 
an underlying renewal process. The proof can be found in the Supplementary Material. 
Surprisingly, however, the graphs in Figures 1(a) and 1(c) of the conditional-variance-
mean functions for the gamma and the CMP are hardly distinguishable. A plausible 
explanation for this similarity is the equality of their approximate variance-mean ratios. 
These ratios are equal to a constant 1/α (Winkelmann 1995, p. 470; Sellers and Shmueli 
2010, p. 946). Likewise the gamma and Weibull count models, the CMP model consists 
of the rate and dispersion parameters. Thus, it allows for both over- and underdispersion. 

As previously mentioned, the conditional variance and mean of the above well-
known regression models are (nearly) linearly related. In some applications, these re-
gression models are either unsatisfactory or inappropriate when the sample relative fre-
quency distribution is created as a mixture of distributions whose relationship between 
the variance and the mean is non-linear. 

The common assumption that the rates of interarrival times are equal may cause a 
(nearly) linear conditional-variance-mean function. One potential solution to this prob-
lem is to allow the unequal rates. Faddy (1997) suggested the generalization of the 
Poisson process λn = λ (b + n)α , n = 0,1, ,2, ..., in which the rate at which new events 
occur depends on the number of events. The rate sequence of the Faddy (1997) pro-
cess is either non-decreasing or non-increasing. The Faddy (1997) regression model 
has both (nearly) linear and non-linear conditional-variance-mean functions shown in 
Figures 1(d), but it displays only one of over-, under-, and equidispersion. There-
fore, this regression model is either unsatisfactory or inappropriate when the sample 
relative frequency distribution is created as a mixture of over-, under-, and equidis-
persed distributions whose relationship between the variance and the mean must be non-
linear. Note that the conditional variances and means in Figure 1 were computed in R 
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Figure 1. Graphs showing the linear and non-linear functions of variance and mean. The Faddy 
(1997), DUE (γ = {0,1}), and DUE (γ = {2,3}) models present the cases in which b, α1, and 
α3 are 1 × 10−20 ,0.687, and 0.687, respectively. 
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(R Core Team 2019) by the dCount-conv-bi function in the Countr package (Khar-
rat and Boshnakov 2018) for the gamma and Weibull count models, the dcmp function 
in the COMPoissonReg package (Sellers, Lotze and Raim, 2018) for the CMP count 
model, and the Faddyprob.general function in the CountsEPPM package (Smith 
and Faddy 2018) for the Faddy (1997) count model. 

The limitation that the above regression models present only one dispersion type may 
be easily removed by allowing for non-monotonic rate sequences. The two examples are 
the single-unusual-event (SUE (γ = {2})) and double-unusual-event (DUE (γ = {2,3})) 
models shown in Figures 1(f) and 1(h). Their curves corresponding to α2 ̸= 1 always 
cross the 45-degree (Poisson) lines. Thus, these models can ft a dataset that is a mixture 
of over-, under-, and equidispersion. The development and exploration of a new class 
of unusual-event (UE) models is the main objective of the present article. Note that the 
SUE (γ = {0}) model is a special case of the Faddy (1997) (see Figures 1(d) and 1(e)), 
as described later. 

The rest of this article is organized as follows. Section 2 presents the UE models 
and their properties, with additional details provided in Appendices A and B at the end 
of the paper. Section 3 discusses numerical strategies for computing UE probabilities. 
Section 4 provides and analyses the experimental results from the number of births and 
the number of bids. Finally, Section 5 concludes the paper. 

2. Unusual-event models 

Let X(t) be a discrete random variable, representing the total number of events that occur 
before or at exactly time t. {X(t); t ≥ 0} is a pure birth process with X(0) = 0 and birth 
rates λn (n ≥ 0). The probabilities Pn(t) = P{X(t) = n | X(0) = 0}, for n = 0,1,2, ..., 
satisfy the Chapman-Kolmogorov forward differential equations (Cox and Miller 1965), 
namely 

P0 
′ (t) =−λ0P0(t), 

P ′ (t) =−λnPn(t)+λn−1Pn−1(t), n > 0, (1)n 

with boundary conditions P0(0) = 1 and Pn(0) = 0, n > 0. 
Different distributions correlate with different birth rate sequence λn patterns. The 

simple Poisson process, which has a constant rate parameter λ , restricts that the variance 
equals the mean. The birth rate, which depends on the number of events, may allow for 
overdispersion and underdispersion. Increasing the number of parameters in the process 
almost always improves the goodness of ft (as assessed by the log-likelihood function), 
but it may cause overftting. Thus, the rate λn must be a parametric function of n, as 
stated by Faddy and Smith (2008). Examples of pure birth processes follow below. 

1. A sequence of rates 

λn = λ , for n = 0,1,2, ..., λ > 0, 

exhibits the Poisson distribution, which is a one-parameter count model. 
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2. A sequence of rates 
 

λ for n > 0
λn = 

λ0 for n = 0, λ and λ0 > 0, 

exhibits the Faddy (1994) distribution, which is a two-parameter count model. 

3. A sequence of rates 

λn = 

  

 

λ for n > 1 

λ0 for n = 0 

λ1 for n = 1, λ , λ0, and λ1 > 0, 

exhibits the extended Faddy (1994) distribution, which is a three-parameter count 
model. 

4. A sequence of rates 

λn = λ (b+ n)α , for n = 0,1,2, ..., λ > 0, b > 0, and α ≤ 1, 

exhibits the Faddy (1997) distribution, which is a three-parameter count model. 

The Faddy (1994), extended Faddy (1994), and Faddy (1997) models have greater 
fexibility than the Poisson model at the cost of additional parameters. Covariates can 
be incorporated into these models by setting λ as a function of the linear predictor β0 + 
β1x j1 + ... + βrx jr, where x jk, k = 1, ...,r, is the jth observation of the kth covariate, and 
βl, l = 0, ...,r, is the lth unknown parameter to be estimated. The rates λn (n ≥ 0) of the 
Poisson and Faddy (1997) distributions depend on the covariates, but the rates λ0 and λ1 

of the Faddy (1994) and extended Faddy (1994) do not. One might argue that λ0 and λ1 

can be written as a function of the linear predictor. However, the approximately doubled 
(Faddy (1994)) and tripled (extended Faddy (1994)) parameters comparing to the above 
two distributions may lead to overftting. Perhaps the rate sequences of the Faddy (1994) 
and extended Faddy (1994) can be easily modifed as follows: 

 
λ for n > 0

λn = 
α0λ for n = 0, α0 and λ > 0, 

and 

λn = 

  

 

λ for n > 1 

α0λ for n = 0 

α1λ for n = 1, α0, α1, and λ > 0. 

We call λ the base rate. These modifed rate sequences can avoid the risk of overft-
ting, and the rates λn depend on covariates. In other words, these distributions with the 
fewest numbers of parameters occur when λ is a function of the linear predictor. 
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We call the pure birth process with this pattern of the rate sequences the unusual-
event (UE) process because at least one rate differs from the base rate λ . It is defned 
as ˜ 

λ for n ∈/ γ = {γ1, γ2, ..., γm}λn = (2)
αγi λ for n ∈ γ , 

where γi is a non-negative integer, and αγi > 0, i = 1, 2, ... ,m. We call αγi the shape 
parameter. The UE process permits a wide range of regression models for count data, in-
cluding the combinations of distributions with either one or three dispersion types. These 
possibilities are illustrated using the single-unusual-event (SUE) and double-unusual-
event (DUE) processes. 
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Figure 2. SUE (γ = {2} and λ = 2.7) distributions with unequal means and dispersions. 

2.1. SUE models 

Perhaps the simplest example of UE processes is a SUE process with 

˜ 
λ for n ∈/ γ = {γ}

λn = (3)
αγλ for n = γ . 

For αγ = 1, the SUE process simplifes to the Poisson process. It is noted that the 
SUE distribution is characterized by independently exponential distributed interarrival 
times. Figure 2 compares the probability functions of the SUE (γ = {2} and λ = 2.7) 
distribution for fve values of α2. It is more concentrated (α2 < 1) or more dispersed 
(α2 > 1) than the Poisson distribution (α2 = 1). The overdispersion case α2 = 2.8 shows 
a probability distribution with two distinct modes (1 and 3) referred to as a bimodal 
distribution. 
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The SUE (γ = {2}) probability function is given by 
 
  

(λ t)n e−λ t 
for n < 2 

n!
∞

∑ ((1 − α2)λ t)i 

(λ t)n e−λ t for n = 2Pn(t) =  (4)(i + n)!i=0 
 

((1 − α2)λ t)i∞

∑α2 (λ t)n e−λ t for n > 2. 
(i + n)!i=0 

The derivations of SUE probability distributions can be found in Appendix A. For n < 2, 
the SUE (γ = {2}) probability function is Poisson. It is not a function of α2, and thus the 

∞
∑ 

probabilities in Figure 2 are equal at n = 0 and 1. For n = 2, the SUE (γ = {2}) proba-
2 ie−λ t 

bility function can be simplifed to (λ t) 
2! 

((1−α2)λ t)+(1 − α2)(λ t)3 e−λ t . The frst(i+3)!
i=0 

term is the Poisson probability function for n = 2. Since the second term is positive 
(α2 < 1) and negative (α2 > 1), the SUE (γ = {2}) probability value is greater and 
smaller than the Poisson (α2 = 1) , respectively. 

The Faddy (1994) process is equivalent to the SUE (γ = {0}) process, but only when 
their regression models are not considered. Therefore, the proof of the Faddy (1994) by 
direct calculation that for t > 0, 

λ0Var {X(t)} > E {X(t)} if = α0 < 1
λ 

and 
λ0Var {X(t)} < E {X(t)} if = α0 > 1,
λ 

is still correct for the SUE (γ = {0}) process. Alternatively, α0 < 1 and α0 > 1 re-
sult in non-decreasing and non-increasing rate sequences, which provide overdispersed 
and underdispersed SUE (γ = {0}) distributions, respectively (see Figure 4(a)). These 
properties were conjectured by Faddy (1994) and proved by Ball (1995). Note that the 
non-increasing and non-decreasing rate sequences mean λn+1 ≤ λn and λn+1 ≥ λn, re-
spectively. 

It is worth mentioning that the SUE (γ = {0}) model is a special case of the Faddy 
(1997) model (see Figures 1(d) and 1(e)). Let us consider a rate sequence of the Faddy 

1 

(1997) model in which the parameter b is given in the form σ |α| , where 0 < σ ≤ 1. It 
can be shown that 

  α1 λ for n > 0 
|α| + nlim λn = lim λ σ = λ 1 

σ = α0λ for n = 0, α0 = σ ≥ 1,α→0− α→0− 

and 
  α1 λ for n > 0 

|α| + nlim λn = lim λ σ = 
α→0+ α→0+ σλ  = α0λ for n = 0, 0 < α0 = σ ≤ 1. 
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Figure 3. DUE (γ = {2,3} , λ = 2.7, and α2 = 0.8) distributions with unequal means and 
dispersions. 

Hence, the SUE (γ = {0}) models with α0 ≥ 1 and 0 < α0 ≤ 1 are the limiting cases of 
the Faddy (1997) model. They arise when α approaches 0 from the left and the right, 
respectively. 

Figures 4(a)-4(d) show graphs of the variance-mean ratio with γ = 0 − 3 for various 
values of λ and αγ . αγ ̸= 1, γ > 0, results in a non-monotonic rate sequence, which 
provides over-, under-, and equidispersed SUE (γ = {γ > 0}) distributions (see Figures 
4(b)-4(d)). For fxed αγ , the three dispersion types of the SUE models are defned by 
the base rate λ , in contrast to the gamma, Weibull, CMP, and Faddy (1997) models. 
We conjecture that this property holds for any non-monotonic rate sequence of SUE 
processes. 

2.2. DUE models 

Perhaps the simplest example of DUE processes is a pure birth process with 

λn = 

 
 

 

λ for n ∈/ γ = {γ, γ + 1} 

αγλ for n = γ (5) 

αγ+1λ for n = γ + 1. 

For αγ ̸= 1 and αγ+1 = 1, the DUE (γ = {γ,γ + 1}) process simplifes to the SUE (γ = 
{γ}) process. We consider the DUE count model in which the rates, λγ and λγ+1, of two 
consecutive events are not equal to the base rate. This phenomenon appears to occur in 
the two empirical applications, the number of births and the number of bids, shown in 
Tables 4 and 5. Figure 3 compares the probability functions of the DUE (γ = {2,3} , λ = 
2.7, and α2 = 0.8) distribution for fve values of α3. It is more concentrated (α3 < 1) 
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or more dispersed (a3 > 1) than the SUE distribution (a3 = 1). The DUE (a3 = 2.8) 
distribution is a bimodal distribution whose modes are 2 and 4. The bimodal distributions 

of the SUE (g = {2} , l = 2.7, and a2 = 2.8) and the DUE (g = {2,3} , l = 2.7, a2 = 
0.8, and a3 = 2.8) suggest that we should expect a UE distribution to be a multimodal 

distribution, which is a discrete probability distribution with two or more modes. 

The DUE (g = {2,3}) probability function is given by 

8 −l t(l t)n
e 

> 
> for n < 2 
> 
> 
> n! 
> 
> 
> 
> 

((1 − a2)l t)i
> 
> 
> 
> −l t 
> (l t)n 
> e 

¥

å for n = 2 
(i + n)!> 

< 
i=0 

Pn(t) = (6) 
ci (l t)i¥

å 
i 0= 

> 
> 
> −l t 
> a2 (l t)n 
> e 
> 
> 
> 
> 
> 
> 
> 
> 

for n = 3 
(i + n)! 

ci (l t)i¥

å 
> 
> −l t 
> 
: a2a3 (l t)n

e for n > 3,
(i + n)!

i=0 

i 
(1 − a2)

k (1 − a3)
i−k 

. The derivations of DUE (g = {g,g + 1}) probabil-where ci = å 
k=0 

ity distributions can be found in Appendix B. For n < 3, the DUE (g = {2,3}) probabil-

ity functions are not dependent on a3, and thus the probabilities in Figure 3 are equal at 

n = 0, 1, and 2. For n = 3, the DUE (g = {2,3}) probability function can be simplifed 
¥

å 
¥

å
((1−a2)l t)i 

ci(l t)i 

to a2 (l t)3 
e −l t +a2(1−a3)(l t)4 

e −l t . The frst term is the SUE(i+3)! (i+4)! 
i=0 i=0 

(g = {2}) probability function for n = 3. Since the second term is positive (a3 < 1) and 

negative (a3 > 1), the DUE (g = {2,3}) probability value is greater and smaller than the 

SUE (g = {2}), respectively. 

Figures 4(e)-4(h) show graphs of the variance-mean ratio with g = 0 − 3 for various 

values of l and ag . A non-decreasing rate sequence with a0 ≤ a1 < 1 provides only 

overdispersed DUE (g = {0,1}) distribution, and a non-monotonic rate sequence with 

a0 > a1 < 1 produces over-, under-, and equidispersed DUE (g = {0,1}) distribution 

(see Figure 4(e)). g 6= {0,1} results in a non-monotonic rate sequence, which provides 

over-, under-, and equidispersed DUE (g = {g,g + 1}) distributions (see Figures 4(f)-

4(h)). For fxed ag and ag+1, the three dispersion types of the DUE models are defned 

by the base rate l , in contrast to the gamma, Weibull, CMP, and Faddy (1997) models. 

We conjecture that this property holds for any non-monotonic rate sequence of DUE 

processes and also UE processes. 

We conclude that even the simplest generalizations of the Poisson and SUE pro-

cesses, the SUE and the DUE, are relatively fexible models for count data. 
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Figure 4. Variance-mean ratios for SUE and DUE count models with 0 < αγ < 3. Each SUE 
surface (γ > 0) contains a saddle point, which is the intersection of the straight and curved lines. 
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3. Computation of UE Probabilities 

The solution of the Chapman-Kolmogorov forward differential equation (1) can be writ-
ten in terms of a matrix-exponential function (Cox and Miller 1965) 

(P0(t) P1(t) ... Pn(t)) = (1 0  ... 0)exp(QQt), (7) 

where Q is the matrix of birth rates 

 

Q = 

 

−λ0 λ0 0 · · ·  0 
0 −λ1 λ1 · · ·  0 

.
0 0 −λ2 

 

, . . 0 
. . . .. . . . . 
0 0 0 · · ·  −λn 

. . . λn−1 

and an integral function (Bartlett 1978) 

−λ0tP0(t) = e , 

Pn(t) =  
 t 

0 
λn−1Pn−1(u)e−λn(t−u)du for n > 0. (8) 

The matrix exponentiation is the most common for computing the probabilities of 
pure birth processes. Researchers usually rely on this method (e.g. Faddy and Smith 
2011 and Smith and Faddy 2016), perhaps because various packages for calculating the 
matrix exponential have been developed and made the routines available as described by 
Faddy and Smith (2008). The analytic solution is obtained by the integral function. It 
is computationally intractable (Faddy 1997; Crawford, Ho and Suchard, 2018) because 
there is an extremely ill-conditioned problem in the solution. A numerical solution may 
differ signifcantly from the exact solution. Therefore, the analytic solution is not ap-
propriate for numerical computation (Podlich et al. 2004). However, this ill-conditioned 
problem can be solved by a Taylor series expansion. In this research, we will report 
the computational results from the analytic solution that was previously thought to be 
infeasible. The fertility and takeover bids datasets are considered in this paper. Their 
results are obtained by using the matrix-exponential and analytic solution approaches. 
We confrm here that the results from these two methods are identical. 

The probability Pn(t) in Equation (8) can be described as a convolution of two func-
tions. First, the probability density function λn−1Pn−1(u) is the n-fold convolution of the 
exponential density functions of the interarrival times between events. It presents the 
probability that the nth event occurs at exactly time u. Second, e−λn(t−u) is the survival 
function of the interarrival times between the nth and (n +1)th event. The survival func-
tion denotes the probability that the (n+1)th event does not occur after time u and before 
or at exact time t. Using Equation (8) and letting λn = αnλ , the frst few probabilities of 
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the UE count models are obtained: 

−α0λ tP0(t) =  e 
  

e(α1−α0)λ t −1−α1λ tP1(t) =  α0e 
α1 −α0 

(e(α2−α0)λ t −1) (e(α2−α1)λ t −1) 
  

−α2λ tP2(t) =  α0α1e + 
(α1 −α0)(α2 −α0) 

(e(α3−α0)λ t −1) 
 (α0 −α1)(α2 −α1) 

−α3λ tP3(t) =  α0α1α2e 
(α1 −α0)(α2 −α0)(α3 −α0) 

(e(α3−α1)λ t −1) (e(α3−α2)λ t −1) 
 

+ + 
(α0 −α1)(α2 −α1)(α3 −α1) (α0 −α2)(α1 −α2)(α3 −α2) 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
UE probability function might be of the form 

 
  e−α0λ t for n = 0 

n−1 n−1 (e(αn−αi)λ t −1)Pn(t) =  (9)
∏ 
i 0= 

 
−αnλ tαi e ∑ 

i=0 

for n > 0,
∏n 

=i(α j −αi)j=0, j ̸ 

and this expression is similar to Bartlett (1978, eq. (9), p. 55) and Crawford et al. (2018, 
eq. (55), p. 13). Inserting the Taylor series expansion of e(αn−αi)λ t , the UE probability 
distribution can be rewritten as follow: 

 
  e−α0λ t for n = 0 

∞

∑ 
n−1 (λ t)i+nPn(t) =  (10)

αi e−λ t∏ for n > 0,ci 
(i + n)!i=0 i=0 

where 
 
 1 for i = 0 

n ki k2 kici = ∑∑ ... ∏∑ (1 −α j) for i > 0. 
ki=0 ki−1=0 k1=0 j=k1 

This expression can also be obtained from Equation (7) by letting Q = λ (P − I), where 

 

P = 

 

1 −α0 α0 0 · · ·  0 
0 1 −α1 α1 · · ·  0 

0 0 
.

1 −α2 
. . 0 

. . . .. . . . . . . . αn−1 

 

, 

0 0 0 · · ·  1 −αn 



II

γγ
γγ
γγ
γγ
γγ
γγ

51 Wanrudee Skulpakdee and Mongkol Hunkrajok 

and I denotes the identity matrix. If αi ≤ 1 for i = 0, ...,n, this procedure is known 
as uniformization, originally introduced by Jensen (1953). Another method for obtain-
ing Equation (10) is to use continued fractions (see Parthasarathy and Sudhesh 2006). 
However, the more details for computing Pn(t) are intricate and cannot be discussed 
adequately here. 

4. Experimental Results 

This section shows results from two applications. The fertility data were analysed by 
Winkelmann (1995) and re-analysed by McShane et al. (2008), Chanialidis et al. (2018), 
and Kharrat et al. (2019). The takeover bids data were analysed by Jaggia and Thosar 
(1993) and re-analysed by Cameron and Johansson (1997), Saez-Castillo and Conde-
Sanchez (2013), and Smith and Faddy (2016). For more information, the readers are 
referred to Winkelmann (1995) for the fertility data and Cameron and Johansson (1997) 
for the takeover bids data. 

Experimental results obtained from the Poisson, gamma, Weibull, CMP, and Faddy 
(mean only) models are computed using the stats (R Core Team 2019), Countr (gamma 
and Weibull) (Kharrat and Boshnakov 2018), COMPoissonReg (Sellers et al. 2018), 
and CountsEPPM (Smith and Faddy 2018) R packages. The fertility and takeover bids 
datasets are available from the Countr and mpcmp (Fung et al. 2019) R packages, 
respectively. The UE models are implemented in R (R Core Team 2019) and C++. Most 
of the code is written in C++ via the Rcpp (Eddelbuettel et al. 2021) package in order to 
accelerate computations. The expm (Goulet et al. 2020) R package enables computation 
of the matrix exponential for calculating the probabilities of UE processes. 

Table 1. Shape parameter (αγ ), log-likelihood, BIC, and computation time (seconds) values of 
several SUE models for the fertility and takeover bids data. 

Fertility data Takeover bids data 

Model αγ -Log-L BIC Time αγ -Log-L BIC Time 

Poisson - 2101.8 4282.0 0.02 - 185.0 418.3 0.00 

SUE (γ = {0}) 1.46 2078.1 4241.8 0.59 2.96 171.3 395.8 0.05 

SUE (γ = {1}) 1.23 2096.0 4277.5 0.57 0.40 174.1 401.4 0.07 

SUE (γ = {2}) 0.52 2048.8 4183.1 0.66 1.00 185.0 423.1 0.00 

SUE (γ = {3}) 1.00 2101.8 4289.1 0.06 1.00 185.0 423.1 0.00 

SUE (γ = {4}) 1.00 2101.8 4289.1 0.05 1.00 185.0 423.1 0.00 

SUE (γ = {5}) 1.00 2101.8 4289.1 0.04 1.00 185.0 423.1 0.00 

The rate between two consecutive events different from the base rate causes an ex-
cess (or a lack) of counts relative to a benchmark model such as the Poisson. This un-
usual event might be investigated by comparing the histogram of the sample and Poisson 
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Table 2. Highest log-likelihood, lowest BIC, and computation time (seconds) values of each k-
combination (1 ≤ k ≤ 7) UE regression model. 

Fertility data Takeover bids data 

γ -Log-L BIC Time γ -Log-L BIC Time 

{2} 2048.8 4183.1 1.6 {0} 171.3 395.8 0.2 

{2,3} 2040.1 4172.9 10.6 {1,2} 168.0 394.1 1.2 

{2,3,4} 2037.3 4174.4 31.4 {1,2,3} 166.9 396.6 3.1 

{2,3,4,7} 2035.8 4178.5 54.6 {1,2,3, 4} 166.2 400.1 4.6 

{1,2,3,4, 7} 2034.7 4183.5 55.5 {1,2,3,4,5} 165.8 404.1 4.3 

{1, 2,3,4,6,7} 2034.6 4190.3 31.5 {1,2,3,4, 5,6} 165.8 408.9 2.3 

{0, 1,2,3,4,6,7} 2034.3 4196.8 10.2 {1,2,3,4, 5,6,7} 165.8 413.7 0.8 

distributions. For example, Figure 5(a) contains an excess of two counts. The “excess 
two” phenomenon may arise in the situation that is the rate between the second and 
third events is less than others. In other words, the third event is unusual, and the SUE 
(γ = {2} and α2 < 1) model is preferred over other SUE models. The results in Table 
1 show that the SUE (γ = {2}) model has a higher log-likelihood and lower BIC val-
ues than other models. Therefore, we can conclude that the third event is the unusual 
event of the fertility data. Similarly, in Figure 5(b), this approach can be applied to the 
takeover bids data. 

Visualizing the histograms can be a method for guessing unusual events, but it is 
hard to conclude which UE model is the best. Therefore, an exhaustive search is utilized 
for fnding the best UE model because the number of UE models is limited. It is simple 
and guaranteed to fnd the best solution. We assume that λn’s (n > 7) are equal to the 
base rate. For γ = {0,1, ...,7}, there are 255 different UE models to choose from using 
the combinations of all eight unusual events, 8 models (one and seven unusual events), 
28 models (two and six unusual events), 56 models (three and fve unusual events), and 
70 models (four unusual events). Table 2 summarizes the highest log-likelihood, lowest 
BIC, and computation time values of the k-combination (1 ≤ k ≤ 7) models by ftting 
the UE regression models to the fertility and takeover bids data. For both datasets, as 
k increases, the log-likelihood increases monotonically. The BIC attains minimum at 
k = 2, and the DUE model is selected as the best model. 

The fertility data, which consists of 10 covariates, are very slightly underdispersed 
with the variance-mean ratio equalling 2.328/2.384 = 0.977. The Poisson regression 
model is inappropriate because the mixture of conditional equidispersed distributions 
is always overdispersed. The gamma, Weibull, CMP, and Faddy (mean only) models 
display underdispersion. These regression models perhaps provide a good ft for the data 
because the mixture of conditional underdispersed distributions can be over-, under-, or 
equidispersion. The SUE (γ = {2}) provides a much better ft to the data than the other 
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Table 3. Variance, mean, variance-mean ratio, and BIC values of several regression models for 
the fertility and takeover bids data. The SUE (γ = {2}) and DUE (γ = {2,3}) models ft to the 
fertility data. The SUE (γ = {0}) and DUE (γ = {1,2}) models ft to the takeover bids data. 

Fertility data Takeover bids data 

Model Variance Mean Ratio BIC Variance Mean Ratio BIC 

Sample 2.328 2.384 0.977 - 2.035 1.738 1.171 -
Poisson 2.742 2.382 1.151 4281.98 2.227 1.737 1.282 418.26 

Gamma 2.175 2.383 0.913 4241.96 1.710 1.736 0.985 413.94 

Weibull 2.157 2.383 0.905 4239.55 1.635 1.735 0.943 413.61 

CMP 2.166 2.384 0.909 4241.25 1.657 1.738 0.954 413.92 

Faddy 2.190 2.387 0.917 4244.23 1.463 1.727 0.847 401.64 

SUE 2.512 2.386 1.053 4183.05 1.468 1.727 0.850 395.82 

DUE 2.332 2.376 0.981 4172.87 2.142 1.740 1.231 394.12 

models, excluding the DUE, although its variance-mean ratio disagrees with the actual 
data (see Table 3). It means that the shape of the fertility data distribution resembles 
the SUE (γ = {2}) more than the other models (see Figure 5(a)). However, the DUE 
(γ = {2,3}) provides the best ft in terms of BIC to the data. The log-likelihood value of 
-2040.12 for this model with 13 parameters is much greater than -2048.77 from the SUE 
(γ = {2}) model with 12 parameters. Because of the one additional parameter associated 
with a substantial increase in log-likelihood, the BIC value of 4172.87 is smaller than 
the SUE (γ = {2}). Note that the fertility data distribution may be the combination of 
over-, under-, and equidispersed distributions, as described later. 

For the takeover bids data, the variance-mean ratio is 2.035/1.738 = 1.171. There-
fore, the data present overdispersion. The Poisson provides the worst ft in terms of BIC 
to the data even though it presents overdispersion as the data do (see Table 3). It inter-
prets that the shape of the takeover bids data distribution resembles the Poisson less than 
the other models (see Figure 5(b)). The DUE (γ = {1,2}) provides the best ft in terms 
of BIC to the data, and its variance-mean ratio agrees with the actual data (see Table 3). 
Note that the takeover bids data distribution may be the combination of over-, under-, 
and equidispersed distributions, as described later. 

Figure 5 presents the sample and predicted probabilities evaluated at individual co-
variates for the Poisson, gamma, Weibull, CMP, Faddy (mean only), SUE, and DUE 
models. The fertility and takeover bits datasets contain an excess of two and one out-
comes, respectively. It means there are more twos and ones in the two datasets than 
predicted by the Poisson, the gamma, etc. Figure 5(a) reveals that the models, excluding 
the SUE (γ = {2}) and DUE (γ = {2,3}) models, greatly underpredict the two outcomes 
because the third event is unusual. The SUE (γ = {2}) model has the rate between the 
second and third event differs from others. However, the SUE (γ = {2}) underpredicts 
the three outcomes because the fourth event is unusual. The DUE (γ = {2,3}) has 
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Figure 5. Sample and predicted relative frequency distributions. 

the consecutive rates between the second and fourth event differ from others. Thus, 
it leads to a considerable improvement of the predicted probabilities in the fertility 
case. Figure 5(b) shows that the models, excluding the DUE (γ = {1,2}), underpre-
dict the one outcome because the second and third events are unusual. The rate se-
quences of the SUE (γ = {0}) and DUE (γ = {1,2}) models are 2.962λ ,λ ,λ ,λ , λ ... 
and λ ,0.314λ ,0.378λ ,λ ,λ ..., respectively. The unusual events of the SUE (γ = {0}) 
and DUE (γ = {1,2}) models disagree, but they have in common the fact that λ0 > λ1. 

6 
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Tables 4 and 5 present the results from regressions for the number of children and 
number of bids data. The regression results from the gamma and Weibull models are pro-
duced by the “nlminb” function and the CMP, Faddy (mean only), SUE, and DUE mod-
els by the “optim” function with the “BFGS” method. The six models use the Poisson 
coeffcients in Tables 4 and 5 as starting values of the unknown parameters β0,β1, ...,βr, 
and the initial values of the other parameters are set to zero. The Poisson coeffcients 
are perhaps the best initial guess for these models because the models generalize the 
Poisson. We note that the estimated parameters for the SUE and DUE regression models 
reported in Tables 4 and 5 are obtained by using the analytic solution approach. These 
values are identical to that produced by the matrix-exponential method, thus verifying 
the accuracy of the Taylor series expansion approach. 

Comparing α in Table 4, these values in the gamma, Weibull, and CMP regression 
models are respectively 1.439, 1.236, and 1.429, which exceed one considerably, so there 
is an indication of underdispersion. The Faddy (mean only) also displays underdisper-
sion because α = −0.129. These four regression models with fxed α exhibit only one 
of over-, under-, and equidispersion. In other words, the dispersion types of these regres-
sion models depend only on α but not on λ . The SUE (γ = {2} and α = 0.521) regres-
sion model displays overdispersion (λ > 3.67), underdispersion (λ < 3.67), and equidis-
persion (λ = 3.67) (see Figure 4(c)). The DUE (γ = {2,3}, α2 = 0.503, and α3 = 0.687) 
regression model displays overdispersion (λ > 4.31), underdispersion (λ < 4.31), and 
equidispersion (λ = 4.31) (see Figure 4(g)). The dispersion types of the SUE (γ = {2}) 
and DUE (γ = {2, 3}) regression models depend on α2, α3, and λ . It shows the fexibility 
of the SUE and DUE regression models to allow for over-, under-, and equidispersion, 
although the shape parameters are fxed. This property does not appear in the gamma, 
Weibull, CMP, and Faddy (1997) count models. 

Figure 6 presents scatterplots of the fertility and takeover bids data. The dotted 
points are an ordered pair of the estimated mean and variance of each response vari-
able produced by the seven models. The estimated mean and variance values of these 
models have to be determined numerically directly from their probability distributions 
using a suitable truncation (n). The points below and above the 45-degree (Poisson) 
line indicate underdispersion and overdispersion, respectively. In Figures 6(a) and 6(b), 
the SUE (γ = {2}) curved (or the DUE (γ = {2,3}) curved) and Poisson lines cut each 
other at a point, which is the estimated mean equals the estimated variance. The gamma, 
Weibull, CMP, and Faddy (mean only) lines are nearly coincident, indicating a similar 
ability of these four models to handle the fertility data. It is supported by the results 
in Table 4 that the log-likelihoods of these models are very similar. According to the 
SUE (γ = {2}) and DUE (γ = {2,3}) regression models, the fertility data are divided 
into two sets. The frst set consists entirely of the underdispersed response variables, and 
the overdispersed response variables belong to the second. For the SUE (γ = {2}), the 
frst set (1151 members) is about 12.5 times bigger than the second set (92 members). 
For the DUE (γ = {2,3}), the frst set (1175 members) is about 17 times bigger than 
the second set (68 members). The gamma, Weibull, and CMP models in Figure 6(c) can 
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Figure 6. Scatterplots of estimated variances versus estimated means. 

be interpreted similarly to Figure 6(a), but the Faddy (mean only) model is different. 
The Faddy (mean only) and SUE (γ = {0}) curved lines lie nearly on top of each other 
because the rate sequence of the SUE (γ = {0}) process is very similar to the Faddy 
(mean only) process. The rate sequences of the Faddy (mean only) and SUE (γ = {0}) 
models are 2.92λ ,1.00λ ,0.98λ ,0.96λ , ... and 2.96λ ,λ , λ ,λ , ..., respectively. They are 
non-increasing, and thus the Faddy (mean only) and SUE (γ = {0}) curved lines do 
not cross the Poisson line. The DUE (γ = {1,2}) curved line crosses the Poisson line, 
indicating the takeover bids data distribution is the combination of 90 underdispersed 
and 36 overdispersed distributions. 
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5. Conclusion 

The Poisson, gamma, Weibull, CMP, and Faddy (1997) count models are well-known, 
but their underlying assumption of monotonic rate sequence limits their use in many ap-
plications. The UE count models, in contrast, are assumed that the rate sequences are 
non-monotonic, and the distributions of their interarrival times are exponential. One sig-
nifcant advantage of these new count models is the dispersion types defned by the base 
rate and the shape parameters. Hence, the UE count models can display over-, under-, 
and equidispersion, although the shape parameters are fxed numbers. In other words, 
the conditional variance and mean of the UE regression models must not be linearly re-
lated, allowing for a mixture of the over-, under-, and equidispersed distributions. The 
UE regression models are applied to the fertility and takeover bids data, and they offer 
signifcant improvements in log-likelihood compared to the above well-known regres-
sion models. For fertility data, the results show that the women’s intentions to have third 
and fourth children, unusual events, are considerably less than other children. The be-
havior of these women cannot be captured by the above well-known count models with 
monotonic rates. Even though the UE count models offer signifcant improvements, 
future studies could improve the models for better results by replacing the exponential 
distribution with a non-negative distribution such as the gamma, the Weibull, etc. 
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Appendices 

A. Derivations of SUE probability functions 

A.1. SUE (γγγ = 0 ) { }
Using Equations (3) and (8), the frst few probabilities of the SUE (γ = {0}) count model 
are obtained: 

−α0λ tP0(t) = e 
˜ t 

P1(t) =  α0λ P0(u)e−λ (t−u)du 
0 

α0e−λ t ° ˛ 
(1−α0)λ t − 1= e 

(1 − α0) 
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P2(t) =  
˜ t 

˜ P1(u)e−˜ (t−u)du 
0 

° 0e−˜ t ° 
= e(1−° 0)˜ t − 1 − (1 − ° 0)˜ t

˛ 

(1 − ° 0)2 

P3(t) =  
˜ t 

˜ P2(u)e−˜ (t−u)du 
0 

° 0e−˜ t ˜ 
((1 −° 0)˜ t)2 ° 

= e(1−° 0)˜ t −1 − (1 −° 0)˜ t − 
(1 −° 0)3 2! 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
SUE (˛ = {0}) probability function might be of the form 

−° 0˜ t
˜ 

e for n = 0 ° ˛ 
i 
ˆ

° 0e−˜ t 
˙ 

1−n 

˜
Pn(t) =  ° 0)˜ t) (A.1)((1 −(1−° 0)˜ t − for n > 0.e n(1 − ° 0) i!

° ˝ 
i=0 

Inserting the Taylor series expansion of e(1−° 0)˜ t , the SUE (˛ = {0}) probability distri-
bution can be rewritten as 

˜ 
−° 0˜ te for n = 0 ° ˛ 

((1− ° 0)˜ t)i (A.2) °

˜
Pn(t) =  n −˜ t° 0 (˜ t) e for n > 0. 

(i+n)!
° ˝ 

i=0 

A.2. SUE (˛ = {˛ > 0}) 
Using Equations (3) and (8), the frst few probabilities of the SUE (˛ = {˛ > 0}) count 
model are obtained: 

P0(t) = e−˜ t 

P1(t) =  
ˇ t 

˜ P0(u)e−˜ (t−u)du = ˜ te−˜ t 

0 
. . . 

˜ t (˜ t)˛−1e−˜ t 
P̨ −1(t) =  ˜ P̨ −2(u)e−˜ (t−u)du = 

0 (˛ − 1)! 

P̨  (t) =  
˜ t 

˜ P̨ −1(u)e−°˛ ˜ (t−u)du 
0 

i 
e−˜ t 

° 
˛−1 ˛˛1 −°˛ 

˝
˜ t
˝ ˙ 

(1−°˛ )˜ t −e ˜= 
(1 − °˛ )˛ i!i=0 
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P̃ +1(t) =  
˜ t 

°˜˛ P̃  (u)e−˛ (t−u)du 
0 

i˜°˜ e−˛ t
° ˙˛˛

1 − °˜ 
˝ 

˛ t
˝ 

(1−°˜ )˛ t −e ˜= 
(1 − °˜ )˜+1 i!i=0 

From these equations for P0(t), P1(t), ..., P̃ −1(t), P̃  (t), and P̃ +1(t), one can deduce that 
the general SUE (˜ = {˜ > 0}) probability function might be of the form 

ne−˛ t(˛ t) 
for n < ˜ 

n! 

ˆ 
ˇ̌̌
ˇ̌̌
ˇ̆̌

 i 
e−˛ t n−1

° ˙˛˛
1 − °˜ 

˝
˛ t
˝ 

(1−°˜ )˛ t − ˜ for n = ˜ePn(t) =  (A.3)(1 − °˜ ) i!n 
i=0 ˇ̌̌

ˇ̌̌
ˇ̌� 

i°˜ e−˛ t n−1 
˛˛

1 − °˜ 
˝

˛ t
˝ 

(1−°˜ )˛ t − ˜ 
° ˙ 

for n > ˜.e n(1 − °˜ ) i!i=0 

Inserting the Taylor series expansion of e(1−°˜ )˛ t , the SUE (˜ = {˜ > 0}) probability 
distribution can be rewritten as 

n e−˛ t(˛ t) 
for n < ˜ 

n! 
° 

˛˛
1 −°˜ 

˝
˛ t
˝i 

n −˛ t(˛ t) e ˜ for n = ˜Pn(t) =  

ˆ 
ˇ̌̌
ˇ̌̌
ˇ̆ 

ˇ̌̌
ˇ̌̌
�̌ 

(A.4)(i+n)!i=0 
° 

˜˜
1 − °˜ 

°
˛ t
°i 

n −˛ t°˜ (˛ t) e ˜ for n > ˜. 
i=0 (i+n)! 

B. Derivations of DUE (˜̃̃ = {˜,˜ +1}) Probability Functions 

B.1. DUE (˜ = {0,1}) 
Using Equations (5) and (8), the frst few probabilities of the DUE (˜ = {0, 1}) count 
model are obtained: 

−° 0˛ tP0(t) = e 

P1(t) =  
˛ t 

° 0˛ P0(u)e−° 1˛ (t−u)du 
0 

° 0e−˛ t ˝ 
(1−° 0)˛ t − e(1−° 1)˛ t

˙ 
= e 

(° 1 − ° 0) 
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 t 
P2(t) =  α1λ P1(u)e−λ (t−u)du 

0 
 

α0α1e−λ t e(1−α0)λ t − 1 e(1−α1)λ t − 1 
=

(α1 − α0) (1 − α0) 
− 

(1 − α1) 

 t 
P3(t) =  λ P2(u)e−λ (t−u)du 

0 
 

α0α1e−λ t e(1−α0)λ t − 1 − (1 − α0)λ t e(1−α1)λ t − 1 − (1 − α1)λ t 
=

(α1 − α0) (1 − α0)2 − 
(1 − α1)2 

From these equations for P0(t), P1(t), P2(t), and P3(t), one can deduce that the general 
DUE (γ = {0,1}) probability function might be of the form 

 

 
 
 

−α0λ te for n = 0 

  
(1−α0)λ t − e(1−α1)λ te for n = 1

α0e−λ t 

(α1 − α0) 

n−2 i((1−α0)λ t)e(1−α0)λ t − ∑Pn(t) =  α0α1e−λ t i! (B.1)i=0  
 
 


n−1(α1 − α0) (1 − α0) 

n−2 
((1−α1)λ t)i e(1−α1)λ t − ∑ i!

i=0 

(1 − α1)
n−1 for n > 1.− 

Inserting the Taylor series expansion of e(1−α0)λ t and e(1−α1)λ t , the DUE (γ = {0, 1}) 
probability distribution can be rewritten as 

 
 
 

−α0λ te for n = 0 

ci (λ t)i∞

∑α0 (λ t)e−λ t for n = 1
Pn(t) =  (B.2)(i+1)!i=0  

 
ci (λ t)i∞

∑n −λ tα0α1 (λ t) e for n > 1,
(i+n)!i=0 

i k i−k(1 − α0) (1 − α1)where ci = ∑ . 
k=0 
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B.2. DUE (γ = {γ > 0,γ +1}) 
Using Equations (5) and (8), the frst few probabilities of the DUE (γ = {γ,γ +1}) count 
model are obtained: 

P0(t) = e−λ t 

˜ t 
P1(t) =  λ P0(u)e−λ (t−u)du = λ te−λ t 

0 

˜ t e−λ t(λ t)2 

P2(t) =  λ P1(u)e−λ (t−u)du = 
0 2! 

. . . 
˜ t (λ t)γ−1e−λ t 

Pγ−1(t) =  λ Pγ−2(u)e−λ (t−u)du = 
0 (γ − 1)! 

˜ t 
Pγ (t) =  λ Pγ−1(u)e−αγ λ (t−u)du 

0 

° ˛˛ ˝ ˝i ˙ 
e−λ t γ−1 1 − αγ λ t(1−αγ )λ t −= e ∑(1 − αγ )γ i!i=0 

˜ t 
Pγ+1(t) =  αγλ Pγ (u)e−αγ+1λ (t−u)du 

0 

γ−1 i
((1−αγ )λ t)° e(1−αγ )λ t − ∑αγ e−λ t i!

i=0 
= 

(αγ+1 − αγ ) (1 − αγ )γ 

γ−1 i 
(1−αγ+1)λ t − 

((1−αγ+1)λ t) ˙e ∑ i! 
− ˛ i=0 ˝γ1 − αγ+1 

˜ t 
Pγ+2(t) =  αγ+1λ Pγ+1(u)e−λ (t−u)du 

0 

γ i ° e(1−αγ )λ t − 
((1−αγ )λ t)∑ i!αγαγ+1e−λ t 

i=0 
= 

(αγ+1 − αγ ) (1 − αγ )γ+1 

γ i 
(1−αγ+1)λ t − 

((1−αγ+1)λ t) ˙e ∑ i!
i=0− ˛ ˝γ+11 − αγ+1 
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P̃ +3(t) =  
˜ t 

° P̃ +2(u)e−° (t−u)du 
0 

˜+1 ((1−˛˜ )° t)
i 

e(1−˛˜ )° t − ˜° 
i!˛˜˛˜+1e−° t 

i=0 
= 

(˛˜+1 − ˛˜ ) (1 − ˛˜ )˜+2 

˜+1 i 
(1−˛˜+1)° t − ((1−˛˜+1)° t)e ˜ i! 

˛
i=0− ˜

1 − ˛˜+1 
°˜+2 

From these equations for P0(t), P1(t), ..., P̃ +1(t), P̃ +2(t), and P̃ +3(t), one can deduce 
that the general DUE (˜ = {˜,˜ + 1}) probability function might be of the form 

˜ 
(° t)n e−° t ° for n < ˜° ° 

n!° ° ° ° ° ° ° 
n−1

° 
e−° t 

ˇ ˙˙
1 −˛˜ 

ˆ
° t
ˆi ˘° ° 

(1−˛˜ )° t −° 
e for n = ˜° ˜°˙

1 − ˛˜ 
ˆn i!° 

i=0
° ° ° ° ° ° ° 

n−2 i° 
((1−˛˜ )° t)

° 
(1−˛˜ )° t −

° ˇe ˜° 
i!

° 
˛˜ e−° t° 

i=0
° ° ° °˙

˛˜+1 − ˛˜ 
ˆ ˙

1 −˛˜ 
ˆn−1 ° ° ° ° ° ° ° ˛

Pn(t) =  ° ° ° ° 

in−2 ((1−˛˜+1)° t)(1−˛˜+1)° t −e ˜ i! 
˘

i=0− for n = ˜ + 1 

(B.3) 

˙
1 − ˛˜+1

ˆn−1° ° ° ° ° ° ° ° ° 
n−2 i° 

((1−˛˜ )° t)
° 

(1−˛˜ )° t −
° 

˜° ˇe i!
° 

˛˜˛˜+1e−° t° 
i=0

° ° ° °˙
˛˜+1 − ˛˜ 

ˆ ˙
1 −˛˜ 

ˆn−1 ° ° ° ° ° ° ° ° 
i° 

n−2 ((1−˛˜+1)° t)
° 

(1−˛˜+1)° t −
° ° e ˜ ˘° 

i!° 
i=0° ° − for n > ˜ + 1.° ° ˝ ˙

1 − ˛˜+1
ˆn−1 
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Inserting the Taylor series expansion of e(1−˜° )˛ t and e(1−˜°+1)˛ t , the DUE (° = {°,° +1}) 
probability distribution can be rewritten as 

n˜ 
(˛ t) e−˛ t ° 

for n < ° ° ° 
n!° ° 

i
° ° ° ° 

n −˛ t° 
(˛ t) e° ° 

˜

°
˙˙

1 − ˜° 
ˆ

˛ t
ˆ 

for n = ° 
(i +n)!° 

i=0
Pn(t) =

˛ 

ci (˛ t)i (B.4)˜

°° ° ° ° ° ° ° 

n −˛ t˜° (˛ t) e for n = ° +1 
(i +n)!i=0 

i˜

° 
° ° ° 

n −˛ t° 
˜°˜°+1 (˛ t) e° ° 

ci (˛ t) 
for n > ° +1,

(i +n)!˝ 
i=0 

i k i−k˙
1− ˜° 

ˆ ˙
1−˜°+1

ˆ
where ci = ° . 

k=0 
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Estimation  of  fnite  population  distribution  function  
with  auxiliary  information  in  a  

complex  survey  sampling  

Mohsin  Abbas†  and  Abdul  Haq†  ,∗  

Abstract  

In this paper, we consider the problem of estimating the fnite population cumulative 
distribution function (CDF) in a complex survey sampling, which includes two-stage and 
three-stage cluster sampling schemes with and without stratifcation. We propose two 
new families of CDF estimators using supplementary information on a single auxiliary 
variable. Explicit mathematical expressions of the biases and mean squared errors of 
the proposed CDF estimators are developed under the frst order of the approximation. 
Real datasets are also considered to support the proposed theory. 

MSC: 62D05, 62F10. 

Keywords: Ratio estimator, exponential ratio estimator, auxiliary information, stratifcation, two-
stage and three-stage cluster sampling, relative effciencies, bias, mean-squared error. 

1.  Introduction  

An important problem in the inferential statistics is to estimate the cumulative distri-
bution function (CDF) of a fnite population. This problem frequently arises when the 
underlying interest is to determine the proportion of values of a study variable that are 
less than or equal to a certain value. For instance, for a nutritionist, it is important to 
know the proportion of a population that consumes 25% or less of the calories from a 
saturated fat. Likewise, the policy makers, in a developing country, are mostly interested 
in knowing the proportion of people living below the poverty line. In the context of sur-
vey sampling, it is common to develop CDF estimators with different sampling schemes, 
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which include simple random sampling (SRS), stratifed random sampling, cluster sam-
pling (CS), ranked-set sampling, to name a few. For more details, see Francisco and 
Fuller (1986), Haq (2017a), Stokes and Sager (1988) and the references cited therein. 

A common approach in survey sampling is to increase the precision of an estimator 
with suitable use of auxiliary information. The ratio, regression and product-type estima-
tors are prime examples as these estimators require supplementary information on one or 
more auxiliary variables along with the information on a study variable to increase their 
relative effciencies. For example, when estimating the total household income, the age 
and total expenditure may be used as two auxiliary variables. A signifcant amount of re-
search work has been done in the literature of survey sampling to develop new improved 
estimators of the population parameters, which include the population mean, total, CDF, 
median, etc. Here, our focus is on the estimation of the fnite population CDF with the 
auxiliary information. Chambers and Dunstan (1986) considered estimation of the pop-
ulation CDF and quantiles with the model-based approach. On similar lines, Rao, Kovar 
and Mantel (1990) proposed ratio and difference/regression estimators for estimating 
the CDF under a general sampling scheme. Singh, Singh and Kozak (2008) considered 
the problem of estimating the CDF and quantiles with the use of auxiliary information 
at the estimation stage of a survey. To our knowledge, recent works on the CDF esti-
mation with auxiliary information may be seen in Tarima and Pavlov (2006), Martı́nez 
et al. (2010), Berger and Muñoz (2015), Mayor-Gallego, Moreno-Rebollo and Jimenez-´ 
Gamero. (2019), Hussain et al. (2020), Yaqub and Shabbir (2020) and Martı́nez, Rueda 
and Illescas (2022), to name a few. 

In survey sampling, when the available population is in the form of clusters, that 
is, households in villages and their members, then it is useful to employ CS instead of 
SRS. In CS, clusters are randomly selected (with a sampling scheme) from a population, 
and the data pertaining to a study variable are then collected from all of the units of the 
selected cluster. However, CS is less effcient than SRS when estimating a population 
parameter and the former restricts the spread of sampling units across the population. 
One possible solution is to increase the number of clusters in the sample, and then select 
representative samples via a sampling scheme from the sampled clusters. This sampling 
scheme has two stages. It is thus called two-stage CS (2SCS), where the frst-stage 
and second-stage units are called primary stage units (PSUs) and secondary stage units 
(SSUs), respectively. The 2SCS method is an improvement over CS when it may not be 
possible or diffcult to enumerate all the units of the selected clusters, thereby reducing 
the cost of the survey. A natural extension of a 2SCS is a three-stage CS (3SCS), where 
third-stage units are called tertiary stage units (TSUs). This scheme is adopted for inpa-
tients’ care cost estimation, where hospitals are selected at the frst stage, the selection 
of wards at the second stage, and the patients at the third stage. Moreover, in large-
scale health and demographic surveys, where the population is not only heterogeneous 
but also more graphically spread, both 2SCS and 3SCS schemes may be combined with 
the stratifed random sampling to get more representative samples, where the stratifying 
variable may be regions, rural and urban, plan and hilly regions, agro-climatic zones, 
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etc. For more details see, Cochran (1977), Deville and Särndal (1992), Hansen and Hur-
witz (1943), Lee, Lee and Shin (2016), Murthy (1967), Nafu, Oshungade and Adewara 
(2012), Rustagi (1978) and references cited therein. 

In the survey sampling literature, several authors have considered estimation of the 
population parameters under 2S and 2SCS schemes. Sukhatme et al. (1984) and Sahoo 
(1987) considered the estimation of the fnite population mean using regression-type es-
timators in 2S sampling. Smith (1969) studied the ratio estimator for estimation of the 
fnite population mean under multi-stage sampling. Särndal, Swensson and Wretman 
(2003) considered a regression estimator using 2S sampling under a variety of options. 
In another study, Nematollahi, Salehi and Aliakbari (2008) developed a new estimator 
of the population mean using 2SCS, where ranked-set sampling (RSS) was considered 
in the secondary sampling frame. Srivastava and Garg (2009) used multi-auxiliary infor-
mation for estimating the population mean in 2S sampling, and they proposed separate-
type general class of estimators. Following Nematollahi et al. (2008), Haq (2017b) has 
considered a hybrid RSS scheme in the secondary sampling frame for developing an 
improved estimator of the population mean in 2SCS. Recently, Haq, Abbas and Khan 
(2021) have considered estimation of the fnite population CDF under a complex survey 
sampling scheme, which includes 2SCS, 3SCS, stratifed 2SCS (S2SCS) and stratifed 
3SCS (S3SCS). Under these sampling schemes, they have derived unbiased CDF esti-
mators along with their variances, and the unbiased estimators of the variances of these 
CDF estimators. 

In this study, on the lines of Haq et al. (2021), we consider estimation of the f-
nite population CDF with auxiliary information under 2SCS/3SCS and S2SCS/S3SCS 
schemes. Following the works of Khoshnevisan et al. (2007) and Singh et al. (2009), we 
propose two families of classical ratio/product and exponential ratio/product-type esti-
mators for estimating the population CDF under the aforementioned sampling schemes. 
Moreover, on the lines of Sukhatme et al. (1984) and Sahoo (1987), regression/difference 
estimators CDF are also developed. Explicit mathematical expressions are obtained for 
the biases and mean squared errors (MSEs) of the proposed estimators. Real datasets are 
also considered for the application of the proposed estimators. 

The rest of the paper is as follows: In Section 2, CDF estimation is reviewed under 
2SCS and 3SCS schemes. In Section 3, we develop explicit mathematical expressions 
for the covariances of the CDF estimators based on 2SCS/3SCS and S2SCS/S3SCS. 
In addition, the unbiased estimators of the covariances of the CDF estimators are also 
derived. In Section 4, two families of estimators, say ratio/product and exponential 
ratio/product, are proposed for estimating the population CDF. An empirical study is 
conducted in Section 5. Finally, Section 6 summarizes the main fndings and concludes 
the paper. 
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2.  Estimation  of  the  population  CDF  

In this section, we briefy review the CDF estimators under 2SCS/S2SCS and 3SCS/S3SCS, 
which will be used in the subsequent sections. 

2.1.  Two-stage  cluster  sampling  

The 2SCS uses two stages to select a sample. Assume that the target population, denoted 
by U , comprises N PSUs, where the ith PSU contains Mi SSUs for i = 1,2, . . . ,N. Let 
Yi, j denote the jth SSU that is present in the ith PSU, where j = 1,2, . . . ,Mi with Mi 

being the total number of SSUs within the ith PSU. Under 2SCS, the population CDF, 
F(y), may be written as 

N1
F(y) =  (1)

NM ∑ MiFi(y), 
i=1 

where 
N Mi 

M = 
1 ∑ Mi and Fi(y) =  

1 ∑ I(Yi, j ≤ y)
N i=1 Mi j=1 

are the average cluster size and the CDF computed from the ith PSU, respectively. 
In order to estimate F(y) under 2SCS, let n denote the number of PSUs selected in 

the frst stage, and let mi be the number of SSUs selected from the ith PSU. It is to be 
noted that, with the 2SCS scheme, the samples under both stages are selected using SRS 
without replacement. An estimator of F(y) under 2SCS, developed by Haq et al. (2021), 
is given by 

n n mi1 1 MiF̂2S(y) =  ∑ MiF̂i(y) =  ∑ ∑ I(Yi, j ≤ y), (2)
nM nM mii=1 i=1 j=1 

where I(·) is an indicator variable. It can be shown that F̂2S(y) is an unbiased estimator 
of F(y). The variance of F̂2S(y) along with its unbiased estimator are given by 

N 2λσY 
2 
,2b 1 ζiMi 

2σY,2iV (F̂2S(y)) = + ∑ and (3) 
nM2 nNM2 

i=1 mi 

ˆ 2 n ˆ 2λσY,2b 1 ζiMi 
2σY,2iṼ (F̂2S(y)) = + ∑ , (4) 

nM2 nNM2 
i=1 mi 

respectively, where 

1 N ° ˛2σ2 2 
Y,2b = ∑ MiFi(y) − MF(y) , σY,2i = Fi(y)(1 − Fi(y)),N − 1 i=1 

n1 ° ˛2 Mi(mi − 1)
σ̂Y 

2 
,2b = ∑ MiF̂i(y) − MF̂2S(y) , σ̂Y 

2 
,2i = F̂i(y)(1 − F̂i(y)), n − 1 i=1 mi(Mi − 1) 

˝ n ˙ (Mi − mi)λ = 1 − , and ζi = .
N (Mi − 1) 
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In an 2SCS scheme, two types of variations may be considered. The frst is the varia-
tion between the clusters, and the second is the variation within the clusters. In 2SCS, 

2 2σY,2b denotes the variance between clusters and σY,2i denotes the variance within the ith 
2 2cluster. Moreover, σ̂Y,2i is an unbiased estimator of σY,2i. 

2.2.  Three-stage  cluster  sampling  

The 3SCS requires samples to be selected in three different stages. In the frst stage, 
samples are selected from the PSUs; in the second stage, samples are selected from the 
SSUs of the selected PSUs; and, in the third stage, the tertiary units are selected from 
the selected SSUs. Similar to 2SCS, the SRS scheme may be used to select samples at 
three different stages of the 3SCS. 

Suppose that the target population U consists of N PSUs, where each PSU contains 
Mi SSUs, and each SSU has Ti j  TSUs. Let Yi j,k denote the kth TSU with the jth SSU 
of the ith PSU, where i = 1,2, . . . ,N, j = 1,2, . . . ,Mi, and k = 1,2, . . . ,Ti j. Under 3SCS, 
the population CDF, F(y), may be written as 

N Mi 

F(y) =  
NT 

1 

i 
∑ ∑ Ti jFi j(y), (5) 
=1 j=1 

where 
N Mi Ti j  

T = 
1 ∑ ∑ Ti j  and Fi j(y) =  

1 ∑ I(Yi j,k ≤ y).
N i=1 j=1 Ti j  k=1 

Here, T denotes the average cluster size and Fi j(y) be the CDF computed from the jth 
SSU of the ith PSU. 

In order to estimate F(y) under 3SCS, let n denote the number of PSUs selected in 
the frst-stage, let mi be the number of SSUs selected from the ith PSU, and let ti j  be the 
number of tertiary units selected from the jth SSU. An estimator of F(y) under 3SCS, 
developed by Haq et al. (2021), is given by 

n mi ti j  n mi1 Mi Ti j  1 MiF̂3S(y) =  ∑ ∑ ∑ I(Yi j,k ≤ y) =  ∑ ∑ Ti jF̂i j(y) (6)
nT mi nT mii=1 j=1 ti j  k=1 i=1 j=1 

It can be shown that F̂3S(y) is an unbiased estimator of F(y). The variance of F̂3S(y) 
along with its unbiased estimator are given by 

N 2 2λσY 
2 
,3b 1 λiMi 

2σY,3i 1 N Mi 
Mi ζi jTi j  

2σY,3i jV (F̂3S(y)) = + ∑ + ∑ ∑ and (7) 
nT 2 nNT 2 

i=1 mi nNT 2 
i=1 mi j=1 ti j  

ˆ 2 n σ2 n mi 2σ2λσY,3b 1 λiMi 
2 ˆY,3i 1 Mi ζi jTi j  ˆY,3i jṼ (F̂3S(y)) = + ∑ + ∑ ∑ , (8)
minT 2 nNT 2 

i=1 nNT 2 
i=1 mi j=1 ti j  
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respectively, where 

N n ˜1 ˜ ° 2 1 ° 2σY 
2 
,3b = ∑ MiFi(y)− T F(y) , σ̂Y 

2 
,3b = ∑ MiF̂i(y)− T F̂3S(y) ,

N − 1 n− 1i=1 i=1 

Mi mi1 1 ˜ ° 22σY 
2 
,3i = ∑ (Ti jFi j(y)− Fi(y)) , σ̂Y 

2 
,3i = ∑ Ti jF̂i j(y)− F̂i(y) ,

Mi − 1 mi − 1j=1 j=1 

2 2 ti j(Ti j  − 1)
σY,3i j  = Fi j(y)(1 − Fi j(y)) , σ̂Y,3i j  = F̂i j(y)(1 − F̂i j(y)) , ,Ti j(ti j− 1) 

Mi mi 

Fi(y) =  
1 ∑ Ti jFi j(y) , F̂i(y) =  

1 ∑ Ti jF̂i j(y),Mi mij=1 j=1 ˙ ˆ˛ n ˝ mi Ti j  − ti jλ = 1 − , λi = 1 − , ζi j  = ,
N Mi Ti j  − 1 

2 2 2 2where σY,3b, σY,3i and σY,3i j  have their usual meanings. Moreover, σ̂Y,3i j  is an unbi-
2 2 2 2 2ased estimator of σY,3i j. But, σ̂Y,3b and σ̂Y,3i are biased estimators of σY,3b and σY,3i, 

respectively. For more detail, see Haq et al. (2021). 

2.3.  Stratifed  two-stage  cluster  sampling  

Suppose that the target population Y may be partitioned into L strata, where the hth 
stratum contains Nh units for h = 1,2, . . . ,L. In addition, there are Nh PSUs within the 
hth stratum, where the ith PSU contains Mi,h SSUs for i = 1,2, . . . ,Nh. Let Yi, j,h denote 
the jth SSU that is present in the ith PSU of the hth stratum, where j = 1,2, . . . ,Mi,h with 
Mi,h be the total number of SSUs within the ith PSU. Then the population CDF, F(y), 
under S2SCS, may be written as 

L L 

F(y) =  ∑ WhFh(y) =  
1 ∑ NhMh Fh(y), (9)

∑L 
h=1 h=1 NhMh h=1 

where 
NhNhMh 1

Wh = , Fh(y) =  ∑ Mi,hFi,h(y),
∑L 

h=1 NhMh NhMh i=1 

Mi,h Nh 

Fi,h(y) =  
1 ∑ I(Yi, j,h ≤ y), Mh = 

1 ∑ Mi,h, (10)
Mi,h j=1 Nh i=1 

are computed for the hth stratum. 
In order to estimate F(y) under S2SCS, a two-stage cluster sample of size nh is 

selected from the hth stratum, where the sample sizes nh may be allocated using an 
allocation scheme, like proportional, equal or Neyman allocation. An estimator of F(y) 
under S2SCS, developed by Haq et al. (2021), is given by 

L 

F̂S2S(y) =  ∑ WhF̂2S,h(y), (11) 
h=1 



      

 

  

  
  

 

    
  

                
        

 

    
 

 

 
 

 
 

 

          
              

              

               
                

              

                 
                 

                
      

 

      

    
   

 

 

     
     

  

       
    

      
              

                 

73 Mohsin Abbas and Abdul Haq 

where 

ˆ ˆF2S,h(y) =  
1 ∑ 

nh 

Mi,hFi,h(y) and (12)
nhMh i=1 

F̂i,h(y) =  
1 m 

∑ 
i,h

I(Yi, j,h ≤ y). 
mi,h j=1 

It can be shown that F̂S2S(y) is an unbiased estimator of F(y). The variance of F̂S2S(y) 
along with its unbiased estimator are given by 

L 

V (F̂S2S(y)) = ∑ Wh 
2 V (F̂2S,h(y)) and (13) 

h=1 

L 
2Ṽ (F̂S2S(y)) = ∑ Wh Ṽ (F̂2S,h(y)), (14) 

h=1 

respectively. Note that the mathematical expressions of V (F̂2S,h(y)) and Ṽ (F̂2S,h(y)) 
(given in Eqs. (3) and (4)) are similar to V (F̂2S(y)) and Ṽ (F̂2S(y)), respectively, with 
the exception that the former are computed from the hth stratum for h = 1,2, . . . ,L. 

2.4.  Stratifed  three-stage  cluster  sampling  

Suppose that the target population U is partitioned into L strata, where the hth stratum 
contains Nh units for h = 1,2, . . . ,L. In addition, there are Nh PSUs in the hth stratum, 
where the ith PSU contains Mi,h SSUs for i = 1,2, . . . ,Nh. Moreover, each SSU contain 
Ti j,h TSUs for j = 1,2, . . . ,Mi,h. Let Yi j,k,h denote the kth TSU that is present in the jth 
SSU of the ith PSU within the hth stratum, where k = 1,2, . . . ,Ti j,h, and Ti j,h be the total 
number of TSUs within the jth SSU of the ith PSU. Then the population CDF, F(y), 
under S3SCS, may be written as 

L L 

F(y) =  ∑ WhFh(y) =  
∑L 

1 ∑ NhT h Fh(y), (15) 
h=1 h=1 NhT h h=1 

where 

Nh Mi,hNhT h 1
Wh = , Fh(y) =  ∑ ∑ Ti j,hFi j,h(y),

∑L 
h=1 NhT h NhT h i=1 j=1 

Ti j,h Nh Mi,h 

Fi j,h(y) =  
1 ∑ I(Yi j,k,h ≤ y), T h = 

1 ∑ ∑ Ti j,h. (16)
Ti j,h k=1 Nh i=1 j=1 

are computed for the hth stratum. 
In order to estimate F(y) with S3SCS, a stratifed three-stage cluster sample of size 

nh is selected from the hth stratum, where the sample size nh may be allocated with an 



          

            
           

 

   
 

 

    
   

    

  

 
 

   
    

 
 

    
   

                
        

 
     

 

 
      

 

          
               

              
        

             
          
              

            

                 
             

            

74 Estimation of fnite population distribution function with auxiliary information... 

allocation scheme, like equal, proportional or Neyman allocation. An estimator of F(y) 
under S3SCS, developed by Haq et al. (2021), is given by 

L 

F̂S3S(y) =  ∑ WhF̂3S,h(y), (17) 
h=1 

where 

nh mi,h ti j,h1 Mi,h Ti j,hF̂3S,h(y) =  ∑ ∑ ∑ I(Yi j,k,h ≤ y), 
nhT h i mi,h j ti j,h k=1 =1 =1 

nh mi,h nh1 Mi,h 1 
= ∑ ∑ Ti j,hF̂i j,h(y) =  ∑ Mi,hF̂i,h(y), (18)

nhT h i=1 mi,h j=1 nhT h i=1 

and 
ti j,h mi,h 

F̂i j,h(y) =  
1 ∑ I(Yi j,k,h ≤ y), F̂i,h(y) =  

1 ∑ Ti j,hF̂i j,h(y). (19)
ti j,h k=1 mi,h j=1 

It can be shown that F̂S3S(y) is an unbiased estimator of F(y). The variance of F̂S3S(y) 
along with its unbiased estimator are given by 

L 

V (F̂S3S(y)) = ∑ Wh 
2 V (F̂3S,h(y)) and (20) 

h=1 

L 

Ṽ (F̂S3S(y)) = ∑ Wh 
2 Ṽ (F̂3S,h(y)), (21) 

h=1 

respectively. Note that the mathematical expressions of V (F̂3S,h(y)) and Ṽ (F̂3S,h(y)) 
(given in Eqs. (3) and (4)) are similar to V (F̂3S(y)) and Ṽ (F̂3S(y)), respectively, with the 
exception that the former are computed from the hth stratum for h = 1,2, . . . ,L, which 
can be found in Haq et al. (2021). 

3.  Covariance  computation  and  estimation  under  a  complex  survey  
sampling  

In this section, we develop explicit mathematical expressions for the covariances of the 
CDF estimators based on aforementioned complex survey sampling schemes. In addi-
tion, the unbiased estimators of these covariances of the CDF estimators are also derived, 
which may be used to develop regression-type estimators of the population CDF. 

3.1.  Two-stage  and  stratifed  two-stage  cluster  sampling  

Let Y be the study variable and let X be an auxiliary variable in a fnite population 
U . In order to estimate (F(y),F(x)) under 2SCS and S2SCS, let (F̂2S(y), F̂2S(x)) and 
(F̂S2S(y), F̂S2S(x)) be the respective CDF estimators that are based on (Y,X), respectively. 



      

             

      

         
 

  

 

    
 

    

  

 

       
    

  
        

    

 

           
    

  
           

    

               
     

            

       

 

      
 

 

     
 

        

                
           

          
          

             
            

75 Mohsin Abbas and Abdul Haq 

Lemma 1. Under 2SCS scheme, the covariance between F̂2S(y) and F̂2S(x), along with 

its unbiased estimator are given by 

N λiMi 
2σXY ,2iλσXY ,2b 1

C(F̂2S(y), F̂2S(x)) = ∑ and (22)+ 
nM2 nNM2 mii=1 

2σλiMi ˆXY,2i 

mi 

λσ̂XY,2b 
n1

C̃(F̂2S(y), F̂2S(x)) = ∑ 
i=1 

(23)+ , 
nM2 nNM2 

respectively, where 

N ° ˛ 
σXY,2b = 

1 ∑ (MiFi(y) − MF(y))(MiFi(x) − MF(x)) , (24)
N − 1 i=1 

n ˝ ˙1 
F̂i(y) − MF̂2S(y))(MiF̂i(x) − MF̂2S(x))n − 1 i=1 

Mi ° ˛ 
∑ 

∑σ̂XY,2b = (Mi (25), 

1
σXY,2i Mi − 1 j=1 

(I(Yi, j ≤ y) − Fi(y))(I(Xi, j ≤ x) − Fi(x)) , (26)= 

m ˝i 

∑ (I(Yi, j ≤ y) − F̂i(y))(I(Xi, j ≤ x) − F̂i(x))mi − 1 j=1 

˙1
σ̂XY,2i = . (27) 

Proof. Here, σXY,2b and σXY,2i have their usual meanings. The proof of this Lemma may 
be seen in the Appendix. 

Lemma 2. Under S2SCS scheme, the covariance between F̂S2S(y) and F̂S2S(x), along 

with its unbiased estimator are given by 

L 

W 2 
h C(F̂2S,h(y),C(F̂S2S(y), F̂S2S(x)) = ∑ F̂2S,h(x)) and (28) 

h=1 

L 

Wh 
2C̃(F̂S2S(y), F̂S2S(x)) = C̃(F̂2S,h(y), F̂2S,h(x)),∑ (29) 

h=1 

respectively, where Wh is given in Eq. (10). 

Proof. The proof of Lemma 2 is similar to that of Lemma 1. Note that the mathemat-
ical expressions of C(F̂2S,h(y), F̂2S,h(x)) and C̃(F̂2S,h(y), F̂2S,h(x)) are similar to those of 
C(F̂2S(y), F̂2S(x)) and C̃(F̂2S(y), F̂2S(x)), respectively, with the exception that the former 
are computed from the hth stratum for h = 1,2, . . . ,L. 

3.2.  Three-stage  and  stratifed  three-stage  cluster  sampling  

In order to estimate (F(y),F(x)) under 3SCS and S3SCS, let (F̂3S(y), F̂3S(x)) and (F̂S3S(y), 
F̂S3S(x)) be the respective CDF estimators that are based on (Y,X), respectively. 
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Lemma 3. Under 3SCS scheme, the covariance between F̂3S(y) and F̂3S(x), along with 

its unbiased estimators are given by 

N N Mi˜ ° λσXY ,3b 1 λiMi 
2σXY ,3i 1 Mi λi jTi j  

2σXY ,3i j
C F̂3S(y), F̂3S(x) = + ∑ + ∑ ∑ , 

minT 
2 nNT 

2 
i=1 nNT 

2 
i=1 mi j=1 ti j  

(30) 

and 

˜ n 2σ n mi 2σ° λσ̂XY ,3b 1 λiMi ˆXY ,3i 1 Mi λi jTi j  ˆXY ,3i j
C̨  F̂3S(y), F̂3S(x) = + ∑ + ∑ ∑ , 

nT 
2 nNT 

2 
i=1 mi nNT 

2 
i=1 mi j=1 ti j  

(31) 

respectively, where 

N ˝ ˙ 
σXY,3b = 

1 ∑ (MiFi(y) − T F(y))(MiFi(x) − T F(x)) , (32)
N − 1 i=1 

1 ° 
σ̂XY,3b = ∑ 

n ˜ 
(MiF̂i(y) − T F̂3S(y))(MiF̂i(x) − T F̂3S(x)) , (33)

n − 1 i=1 

Mi ˝ ˙ 
σXY,3i = 

1 ∑ (Ti jFi j(y) − Fi(y))(Ti jFi j(x) − Fi(x)) , (34)
Mi − 1 j=1 

1 mi ˜ ° 
σ̂XY,3i = ∑ (Ti jF̂i j(y) − F̂i(y))(Ti jF̂i j(x) − F̂i(x)) , (35)

mi − 1 j=1 

Ti j  ˝ ˙ 
σXY,3i j  = 

1 ∑ (I(Yi j,k ≤ y) − Fi j(y))(I(Xi j,k ≤ x) − Fi j(x)) , (36)
Ti j  − 1 k=1 

1 ti j  °˜ 
σ̂XY,3i j  = ∑ (I(Yi j,k ≤ y) − F̂i j(y))(I(Xi j,k ≤ x) − F̂i j(x)) , (37)

ti j  − 1 k=1 

and λi j  = (1 − ti j/Ti j). 

Proof. Here, σXY,3b and σXY,3i have their usual meanings. The proof of this Lemma may 
be seen in the Appendix. 

Lemma 4. Under S3SCS scheme, the covariance between F̂S3S(y) and F̂S3S(x), along 

with its unbiased estimator are given by 

L 

C(F̂S3S(y), F̂S3S(x)) = ∑ Wh 
2 C(F̂3S,h(y), F̂3S,h(x)) and (38) 

h=1 

L 
2˛ ˛C(F̂S3S(y), F̂S3S(x)) = ∑ Wh C(F̂3S,h(y), F̂3S,h(x)), (39) 

h=1 

respectively, where Wh is given in Eq. (16). 



      

                
           

          
          

           
          

       
               
          

     
     

  

        

  
     

        
  

  

      
       

      
       

 
   

 
   

 

     
   

                 
   

              
         

 
   

     

                  
              

                

77 Mohsin Abbas and Abdul Haq 

Proof. The proof of Lemma 4 is similar to that of Lemma 3. Note that the mathemat-
ical expressions of C(F̂3S,h(y), F̂3S,h(x)) and C̃(F̂3S,h(y), F̂3S,h(x)) are similar to those of 
C(F̂3S(y), F̂3S(x)) and C̃(F̂3S(y), F̂3S(x)), respectively, with the exception that the former 
are computed from the hth stratum for h = 1,2, . . . ,L. 

4.  The  CDF  estimation  with  auxiliary  information  

In this section, we develop two auxiliary-information-based families of estimators, say 
ratio/product and exponential ratio/product, for estimating the population CDF F(y) un-
der the aforementioned complex survey sampling schemes. 

In order to obtain the biases and MSEs of the proposed families of estimators of 
F(y), we may consider the following relative error terms: Let 

F̂S(y) − F(y) F̂S(x) − F(x)
ξ0 = and ξ1 = ,

F(y) F(x) 

such that E(ξ0) =  E(ξ1) =  0. Let us denote 
°˛ ˙˝r ˛ ˝sF̂S(y) − F(y) F̂S(x) − F(x)

Vrs = E (ξ0 
rξ1 

s) =  E , (40)
F(y) F(x) 

which gives 

˛ ˆ ˝2FS(y) − F(y) V (F̂S(y))V20 = E(ξ0)
2 = E = ,

F(y) (F(y))2 

˛ ˆ ˝2FS(x) − F(x) V (F̂S(x))V02 = E(ξ1)
2 = E = ,

F(x) (F(x))2 

ˆ˛ ˝˛  ˝ˇ 
F̂S(y) − F(y) F̂S(x) − F(x) C(F̂S(y), F̂S(x))V11 = E(ξ0ξ1) =  E = ,

F(y) F(x) F(y)F(x) 

where F̂S denotes an CDF estimator based on an S sampling scheme, where S = 2S, S2S, 
3S and S3S. 

4.1.  First  proposed  family  of  CDF  estimators  

On the lines of Khoshnevisan et al. (2007), we propose a family of ratio/product-type 
estimators for estimating the population CDF F(y), given by 

˛ ˝gaF(x)+  b
F̂R(y) =  F̂S(y) , (41)

α(aF̂S(x)+  b)+(1 − α)(aF(x)+  b) 

where a ̸= 0 and b are either real numbers or functions of the known parameters of the 
auxiliary variable X such as coeffcient of variation (CX ), correlation coeffcient (ρXY ), 
coeffcient of skewness (β1,X ) and coeffcient of kurtosis (β2,X ) etc. Here, g ∈ {−1,1} 
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and ˜ (0 ˜ ˜ ˜ 1) are suitably chosen scalars which make the MSE of F̂R(y) minimum. 
It is possible to develop different estimators of F̂R(y) with suitable choices of a, b, g and 
˜ . In Table 1, some members of F̂R(y) are given for different values of a, b, ˜ , and g. 

In order to derive approximate mathematical expressions for the bias and MSE of 
F̂R(y), we can write F̂S(y) = F(y)(1 +° 0) and F̂S(x) = F(x)(1 +° 1). Express the right-
hand side (RHS) of (41) in terms of ° s to get: 

F̂R(y) = F(y)(1 +° 0)(1 +˜˛°1)
−g, (42) 

where ˛ = aF(x)/(aF(x)+b). Expand the RHS of Eq. (42) and retain terms up to 2nd 
power of ° s, we have 

˜ 
g(g +1) 

˜
F̂R(y) ˛ F(y) 1+° 0 − ̃ ˛g° 1 + ˜2˛2° 1

2 − ̃ ˛g° 0 ° 1 (43)
2 

Take expectation on both sides of Eq. (43) after subtracting F(y) on both sides to get the 
bias of F̂R(y) up to the frst order of approximation, which is given by 

°
g(g +1) 

˜ 

Bias(F̂R(y)) ˛ F(y) ˜2˛2V02 − ̃ °gV11 . (44)
2 

From Eq. (43), we can write 

F̂R(y)− F(y)° F(y)(˛0 − ̃ °g˛1) (45) 

Take square on both sides of Eq. (45) and then taking its expectation to get the MSE of 
F̂R(y) under frst order of approximation, which is given by 

MSE(F̂R(y)) ° F2(y)
˛
V20 +˜2°2g2V02 − 2˜°gV11

˝
, (46) 

The minimum MSE at the optimum value of (˜°g), say (˜°g)opt =V11/V02, is given by 

2 ˜° 
V11MSEmin(F̂R(y))° F2(y) V20 − (47)
V02 

° F2(y)V20 (1 − ̋ 2), (48) 

where ˝ =V11/ 
˛ 

V20V02 is the correlation coeffcient between F̂S(y) and F̂S(x) with an S 
sampling scheme. 

4.2.  Second  proposed  family of  CDF  estimators  

On the lines of Singh et al. (2009), we propose another family of exponential ratio/product-
type estimators for estimating the population CDF F(y), given by 

°
(agF(x)+b)− (agF̂S(x)+b)

˜
F̂E (y) =  F̂S(y) exp , (49)

(aF(x)+b)+(aF̂S(x)+b) 
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where a = 0 and b are either real numbers or functions of the known parameters of the 
auxiliary variable X , but g ° {−1,1}. In Table 1, some members of F̂E (y) are given for 
different values of a, b, ˜ , and g. 

In order to obtain the bias and MSE of F̂E (y), express F̂E (y) in terms of ° s to get 
˜ 

agF(x) −agF(x)(1 + ° 1) 
° 

F̂E (y) =  F(y)(1 + ° 0) exp 
aF(x)+  2b + aF(x)(1 + ° 1) 

= F(y)(1 + ° 0) exp
˛
−˛g° 1(1 + ̨ °1)

−1˝ , (50) 

where ˛ = aF(x)/(2aF(x)+  2b). After expanding the RHS of Eq. (50) up to 2nd power 
of ° s, we have 

˜ 
g(g + 1) 

° 

F̂E (y) ˜ F(y) 1 + ̃ 0 − °g˜1 + ° 2˜1
2 − °g˜0˜1 . (51)

2 

Take expectation after subtracting F(y) on both sides of Eq. (51) to get the bias of F̂E (y), 
which under the frst order of approximation is given by 

˜
g(g + 1) 

° 

Bias(F̂E (y)) ˜ F(y) ˜ 2V02 − ̃ gV11 . (52)
2 

From Eq. (51), we can write 

F̂E (y) − F(y) ˜ F(y)(° 0 − ̃ g° 1). (53) 

Take square on both sides of Eq. (53), and then take it expectation to get the MSE of 
F̂E (y) under the frst order of approximation, which is given by 

MSE(F̂E (y)) ˜ F(y)2 ˛V20 + ̃ 2g2V02 − 2˜ gV11
˝
. (54) 

The minimum MSE at the optimum value of (˜ g), say (˜ g)opt = V11/V02, is given by 

MSEmin(F̂E (y)) ˜ F2(y)V20 (1 − ̨ 2), (55) 

which is equivalent to that of F̂R(y). 
In addition to these estimators a  large number of estimators can also be generated 

from the proposed families of estimators F̂R(y) and F̂E (y) given in Eq. (41) and Eq. (49) 
respectively, just by putting values of a, b, ˜ , and g. 

It is observed that the expression of the frst order approximation of bias and 
MSE/Variance of the given member of the families F̂R(y) and F̂E (y) can be obtained 
by mere substituting the values of ˜ , g, a and b in (Eq. (44) and Eq. (46)) and (Eq. (52) 
and Eq. (54)), respectively. It is to be noted that, based on S  scheme, the proposed fam-
ilies of estimators, F̂R(y) and F̂E (y), are more precise than F̂R(y) when the following 
conditions hold in practice: 

2V11MSE(F̂R(y)) < V (F̂S(y)) =̃  ° < ,
(˜gV02) 
2V11MSE(F̂E (y)) < V (F̂S(y)) =̃  ˛ < . (56)
(gV02) 



          

          

       

    
              

    
             

    
              

    
             

    
                 

    
                 

    
                 

    
            

     

    
             

                

              

             
           

                
     

                
       

   
  

                
              

         
 

        

80 Estimation of fnite population distribution function with auxiliary information... 

Table 1. Some members of proposed families of CDF estimators. 

F̂R(y) 

F̂(1)
(y) =  F̂S(y)R 

F̂(2)
(y) =  F̂S(y)R 

F̂(3)
(y) =  F̂S(y)R 

F̂(4)
(y) =  F̂S(y)R 

F̂(5)
(y) =  F̂S(y)R 

F̂(6)
(y) =  F̂S(y)R 

˜ 

˜ 

˜ 

˜ 

˜ 

˜ 

° 
F(x) 
F̂S(x) 

° 
F(x)+ρXY 
F̂S(x)+ρXY 

° 
F(x)+CX 
F̂S(x)+CX 

° 
F(x)+β2,X 

F̂S(x)+β2,X 

CX F(x)+β2,X 

CX F̂S(x)+β2,X 

β2,X F(x)+CX 

β2,X F̂S(x)+CX 

° 

° 

F̂E (y) 

F̂(1)
(y) =  F̂S(y) exp E 

F̂(2)
(y) =  F̂S(y) exp E 

F̂(3)
(y) =  F̂S(y) exp E 

F̂(4)
(y) =  F̂S(y) exp E 

F̂(5)
(y) =  F̂S(y) exp E 

F̂(6)
(y) =  F̂S(y) exp E 

˜ 

˜ 

˜ 

˜ 

˜ 

˜ 

° 
F(x)−F̂S(x) 
F(x)+F̂S(x) 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2ρXY 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2CX 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2β2,X 

CX (F(x)−F̂S(x)) 
CX (F(x)+F̂S(x))+2β2,X 

β2,X (F(x)−F̂S(x)) 
β2,X (F(x)+F̂S(x))+2CX 

° 

° 

g α 

1 1  

1 1  

1 1  

1 1  

1 1  

1 1  

a 

1 

1 

1 

1 

CX 

β2,X 

b 

0 

ρXY 

CX 

β2,X 

β2,X 

CX 

˜ ° ˜ ° 
F̂(7) ρXY F(x)+CX F̂(7) ρXY (F(x)−F̂S(x))(y) =  F̂S(y) (y) =  F̂S(y) exp 1 1  ρXY CXR ρXY F̂S(x)+CX E ρXY (F(x)+F̂S(x))+2CX 

˜ ° ˜ ° 
F̂(8) CX F(x)+ρXY F̂(8) CX (F(x)−F̂S(x)) 

R (y) =  F̂S(y) E (y) =  F̂S(y) exp 1 1  CX ρXYCX F̂S(x)+ρXY CX (F(x)+F̂S(x))+2ρXY 

˜ ° ˜ ° 
F̂(9) F(x)+β1,X F̂(9) F(x)−F̂S(x)(y) =  F̂S(y) (y) =  F̂S(y) exp 1 1 1R F̂S(x)+β1,X E F(x)+F̂S(x)+2β1,X 

β1,X 

ρXY is correlation coeffcient between X and Y , CX is coeffcient of variation of X 

β1,X is coeffcient of skewness of X , β2,X is coeffcient of kurtosis of X 

4.3.  Difference  and  regression  CDF  estimators  

It is possible to further enhance the precision of the aforementioned families of esti-
mators (F̂S(y), F̂S(x)) when the supplementary information in terms of the covariance 
between the CDF estimators based on Y and X , and on the variance of the CDF estima-
tor of X are utilized. 

Under a sampling scheme S, let β denote the ratio of the covariance of F̂S(y) and 
F̂S(x) to the variance of F̂S(x), i.e. 

C(F̂S(y), F̂S(x))βS = . (57)
V (F̂S(x)) 

In addition, it is also possible to have information available on the population CDF of X , 
say F(x). The difference estimator of the population CDF F(y), say F̂D(y), that requires 
information on βS, F̂S(y) and F̂S(x) is given by 

˛ ˝ 
F̂D(y) =  F̂S(y)+  βS F(x) − F̂S(x) , (58) 



      

                 
       
                 

      

       

                 
     

         

               
     

       

            
                  

                    
               

            
 

   
 

               
          

              
 

            
         

 
        

                 
   

         

              
              

  

81 Mohsin Abbas and Abdul Haq 

where F̂D(y) is a linear combination of F̂S(y) and F̂S(x). It can easily be shown that the 
F̂D(y) is an unbiased estimator of F(y). 

In order to obtain the variance of F̂D(y), we express F̂D(y) in terms of ξ s, i.e. 

F̂D(y) =  F(y)(1 + ξ0) − βSF(x)ξ1 

F̂D(y) − F(y) =  F(y)ξ0 − βSF(x)ξ1. (59) 

Take square on both sides of Eq. (59) and then apply expectation to get the variance of 
F̂D(y), which is given by 

V (F̂D(y)) = F2(y)V20 + βS
2F2(x)V02 − 2βSF(x)F(y)V11. (60) 

The simplifed expression for the variance of F̂D(y), after replacing the value of βS into 
V (F̂D(y)), is given by 

V (F̂D(y)) = F2(y)V20(1 − ρ2), (61) 

which is equivalent to the minimum MSE of F̂R(y) and F̂E (y). 
It is to be noted that the value of βS may be taken from previous studies, surveys or 

census. In case the value of βS is not known, then it is possible to estimate it with a large 
sample size. The estimated value of βS may be obtained by replacing the covariance of 
(F̂S(y), F̂S(x)) and the variance of F̂S(x) by their respective unbiased estimators, which 
gives 

C̃(F̂S(y), F̂S(x))β̂S = . (62)
Ṽ (F̂S(x)) 

It is a well-known fact under SRS that the sample covariance C̃(F̂S(y), F̂S(x)) and sample 
variance Ṽ (F̂S(x)) are weakly-consistent estimators of C(F̂S(y), F̂S(x)) and V (F̂S(x)), 
respectively. Thus, for a large sample size, β̂S is also a weakly-consistent estimator of 
βS. 

In the survey sampling literature, the difference estimator F̂D(y) with estimated value 
of βS is called a regression estimator, given by 

° ˛ 
F̂Reg(y) =  F̂S(y)+  β̂S F(x) − F̂S(x) . (63) 

It can be shown that F̂Reg(y) is a biased estimator of F(y). Moreover, for a large sample 
size, we have 

MSE(F̂Reg(y)) ≈ V (F̂D(y)) = F2(y)V20(1 − ρ2). (64) 

5.  Empirical  Study  

In this section, real datasets are considered and the relative effciencies (REs) of the 
proposed CDF estimators of F(y) are computed with respect to F̂S(y) based on sampling 
scheme S. 
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5.1.  Population  I  

This dataset is taken from Social & Household Integrated Economic Survey (HIES), con-
ducted in Pakistan during the years 2011-12, which comprises 14722 households (after 
removing the missing observations). The entire dataset is partitioned into two strata, 
where Stratum-I and Stratum-II correspond to Urban and Rural (U-R) areas. These 
areas are further partitioned into four provinces of Pakistan, namely Punjab, Khyber 
Pakhtunkhwa (KPK), Sindh and Balochistan, where (Punjab - KPK) and (Sindh - Balochis-
tan) belong to Stratum-I and Stratum-II, respectively. Moreover, where each province is 
further partitioned into different enumeration blocks (EBs). This dataset may be down-
loaded from the Pakistan Bureau of Statistics web-page via the link: https://www.pbs. 
gov.pk/content/microdata. The study variable Y and the auxiliary variable X are total 
income and total expenditure of a household (HH), respectively. Here, our objective is 
to estimate the proportion of HH whose yearly total income is less than or equal to y = 
$1.9 × 365, which is considered as the poverty line for Pakistan according to the World 
bank’s website: https://data.worldbank.org/indicator/SI.POV.NAHC?locations=PK. The 
yearly total income is converted from USD to PKR by multiplying 1.9 × 365 × 86.3198 
PKR. For example, if the total income of a HH is less than or equal to 59862.7813 
PKR, it is then considered on or below the poverty line using auxiliary variable X while 
x = 226386.0582 (yearly average expenditure of a HH). Note that (province and yearly 
total income of a HH) and (province, EB and yearly total income of a HH) are taken as 
(PSU and SSU) and (PSU, SSU and TSU) for 2SCS/S2SCS and 3SCS/S3SCS, respec-
tively. The values of the population parameters are given below: 

F(y) = 0.0474,F(x) = 0.6587,CX = 0.8161, 

ρXY = 0.7662,β1,X = 4.5387 and β2,X = 43.4005. 

The values of Vrs based on an S sampling scheme are computed and then reported in 
Table 2, where 

˝˜° ˛r ° 
F̂S(y)− F(y) F̂S(x)− F(x) ̨ s 

Vrs = E (ξ0 
rξ1 

s) =  E ,
F(y) F(x) 

where r,s = 0, 1, 2. 

Table 2. The Vrs values based on scheme S using Population-I. 

S Str − Variable PSU SSU TSU n mi ti j  V20 V02 V11 

2SCS 

S2SCS 

3SCS 

S3SCS 

−− 

U/R 

−− 

U/R 

Province 

Province 

Province 

Province 

HH 

HH 

EB 

EB 

−− 

−− 

HH 

HH 

3 

1 

3 

1 

40 

40 

15 

15 

−− 

−− 

4 

4 

0.31145 

0.44729 

0.27805 

0.39719 

0.03899 

0.12185 

0.04275 

0.12749 

0.04976 

0.10904 

0.05609 

0.11854 

Note: Stratifying is abbreviated as Str. 

https://data.worldbank.org/indicator/SI.POV.NAHC?locations=PK
https://www.pbs
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5.2.  Population  II  

Another dataset is taken from Center of Disease Control (CDC), which is related to the 
Second National Health and Nutrition Examination Survey (NHANES-II). The NHANES 
sample (comprising 10351 units) represents the total non-institutionalized civilian (NIC) 
US population that resides in 50 states and the district of Columbia. This dataset is 
divided into four regions (REGs), namely southern, western, mid-western and north-
eastern, where each REG is further divided into different locations (LOCs). The en-
tire dataset is stratifed into two strata, which are formed by generating random num-
bers from Bernoulli distribution with 0.50 as the probability of success, where 0 and 
1 correspond to Stratum-I and Stratum-II, respectively. This dataset is available at 
the https://www.stata-press.com/data/r15/svy.html. Here, the body mass index (BMI) 
is taken as the study variable Y and weight is taken as the auxiliary variable X . Our 
objective is to estimate the proportion of people (in the NIC US population) that are 
under-weight, i.e., an individual is classifed as under-weight if the BMI values are less 
than or equal to y = 18.50 using auxiliary variable X while x = 71.8975 (average weight 
of NIC US population) under sampling scheme S. Note that the (REG and BMI) and 
(REG, LOC and BMI) are taken as (PSU and SSU) and (PSU, SSU and TSU) for the 
2SCS/S2SCS and 3SCS/S3SCS, respectively. The values of the population parameters 
are given below: 

F(y) = 0.0318,F(x) = 0.5401,CX = 0.2136, 

ρXY = 0.8338,β1,X = 0.7364 and β2,X = 4.0614. 

The values of Vrs based on an sampling scheme S are computed and then reported in 
Table 3, where 

˝˜° ˛r ° ˛sF̂S(y)− F(y) F̂S(x)− F(x)
Vrs = E (ξ0 

rξ1 
s) =  E ,

F(y) F(x) 

where r,s = 0, 1, 2. 

Table 3. The Vrs values based on scheme S using Population-II. 

S Str − Variable PSU SSU TSU n mi ti j  V20 V02 V11 

2SCS 

S2SCS 

3SCS 

S3SCS 

−− 

0/1 

−− 

0/1 

REG 

REG 

REG 

REG 

BMI 
BMI 
LOC 

LOC 

−− 

−− 

BMI 
BMI 

3 

3 

3 

3 

50 

50 

3 

3 

−− 

−− 

50 

50 

0.20634 

0.10207 

0.07641 

0.03714 

0.00721 

0.00359 

0.00892 

0.00476 

0.00766 

0.00386 

0.00937 

0.00478 

Using the aforementioned datasets, the REs of the CDF estimators based on a sam-
pling scheme S are computed with different values of n, mi and ti j. The REs of the 

https://www.stata-press.com/data/r15/svy.html
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proposed CDF estimators of F(y) with auxiliary information with respect to usual unbi-
ased CDF estimator of F̂S(y) without auxiliary information are given by 

V (F̂S(y)) V (F̂S(y)) V (F̂S(y))RER = , REE = , RED = , (65)
MSE(F̂(t)

(y)) MSE(F̂(t)
(y)) V (F̂D(y))R E 

where t = 1,2, . . . ,9. The REs of these CDF estimators are reported in Tables 4 and 5. 

Table 4. REs of proposed CDF estimators with respect to F̂S(y) using Population-I. 

F̂R(y) 2SCS S2SCS 3SCS S3SCS F̂E (y) 2SCS S2SCS 3SCS S3SCS 

F̂(1) F̂(1)
(y) 1.2412 1.2741 1.3328 1.3810 (y) 1.1474 1.2131 1.1952 1.2791R E 

F̂(2) F̂(2)
(y) 1.1376 1.2007 1.1815 1.2616 (y) 1.0720 1.1088 1.0929 1.1374R E 

F̂(3) F̂(3)
(y) 1.1335 1.1953 1.1758 1.2540 (y) 1.0697 1.1053 1.0898 1.1329R E 

F̂(4) F̂(4)
(y) 1.0048 1.0073 1.0060 1.0089 (y) 1.0024 1.0036 1.0030 1.0045R E 

F̂(5) F̂(5)
(y) 1.0039 1.0060 1.0049 1.0073 (y) 1.0020 1.0030 1.0025 1.0037R E 

F̂(6) F̂(6)
(y) 1.2381 1.2764 1.3279 1.3829 (y) 1.1438 1.2087 1.1902 1.2728R E 

F̂(7) F̂(7)
(y) 1.1158 1.1717 1.1517 1.2213 (y) 1.0599 1.0908 1.0770 1.1140R E 

F̂(8) F̂(8)
(y) 1.1242 1.1830 1.1631 1.2369 (y) 1.0645 1.0976 1.0830 1.1228R E 

F̂(9) F̂(9)
(y) 1.0400 1.0609 1.0512 1.0758 (y) 1.0201 1.0307 1.0256 1.0379R E 

F̂D(y) 1.2562 1.2790 1.3600 1.3841 

Table 5. REs of proposed CDF estimators with respect to F̂S(y) using Population-II. 

F̂R(y) 2SCS S2SCS 3SCS S3SCS F̂E (y) 2SCS S2SCS 3SCS S3SCS 

F̂(1)
(y)R 1.0409 1.0421 1.1473 1.1488 F̂(1)

(y)E 1.0292 1.0299 1.1030 1.1072 

F̂(2)
(y)R 1.0244 1.0249 1.0850 1.0887 F̂(2)

(y)E 1.0134 1.0137 1.0457 1.0479 

F̂(3)
(y)R 1.0365 1.0375 1.1309 1.1349 F̂(3)

(y)E 1.0226 1.0231 1.0786 1.0821 

F̂(4)
(y)R 1.0083 1.0085 1.0279 1.0293 F̂(4)

(y)E 1.0043 1.0043 1.0142 1.0149 

F̂(5)
(y)R 1.0020 1.0021 1.0067 1.0071 F̂(5)

(y)E 1.0010 1.0010 1.0034 1.0035 

F̂(6)
(y)R 1.0402 1.0413 1.1448 1.1473 F̂(6)

(y)E 1.0273 1.0279 1.0958 1.0999 

F̂(7)
(y)R 1.0355 1.0364 1.1269 1.1310 F̂(7)

(y)E 1.0216 1.0221 1.0749 1.0783 

F̂(8)
(y)R 1.0086 1.0088 1.0289 1.0303 F̂(8)

(y)E 1.0044 1.0045 1.0147 1.0154 

F̂(9)
(y)R 1.0258 1.0264 1.0903 1.0942 F̂(9)

(y)E 1.0143 1.0146 1.0489 1.0513 

F̂D(y) 1.0410 1.0424 1.1477 1.1488 
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It can be seen that the proposed CDF estimators under complex survey sampling 
with auxiliary information are slightly more effcient than those that are without the 
auxiliary information, that is, all values of the REs are greater than one. It can also be 
seen that the proposed CDF estimators under a sampling scheme S with stratifcation 
are slightly more effcient than those without stratifcation and the REs tend to increase 
with increasing the sampling stages. Generally, with an increase in the sample size at 
the primary, secondary or tertiary stage of sampling, the REs may tend to increase and 
vice versa. Among all estimators, as expected, the REs of F̂D(y) are higher than those of 
other considered CDF estimators. 

It is to be noted that the proposed families of estimators, F̂R(y) and F̂E (y), are condi-
tionally better than F̂S(y), i.e. when the conditions given in Eq. (56) hold. However, the 
difference and regression estimators, F̂D(y) and F̂Reg(y), respectively, are always more 
precise than F̂S(y), F̂R(y) and F̂E (y). In usual practice, if no information is available to 
check these conditions, it is preferable to use F̂Reg(y) when estimating the population 
CDF under scheme S. 

6.  Conclusion  

In this paper, we have considered the problem of estimating the fnite population CDF 
in 2SCS and 3SCS schemes with and without stratifcation. Two families of classical 
ratio/product-type and exponential ratio/product-type CDF estimators have been pro-
posed that require supplementary information on a single auxiliary variable. In addition, 
difference and regression estimators of the CDF have also been proposed. Explicit math-
ematical expressions of the biases and MSEs of the proposed CDF estimators have been 
developed under frst order of the approximation. Real datasets were also considered to 
support the proposed theory. 

Along the lines of Nematollahi et al. (2008) and Haq et al. (2021), it is also possi-
ble to increase the precision of proposed families of the CDF estimators by employing 
RSS and double RSS schemes in the secondary and tertiary sampling frames. Moreover, 
the current work may be extended to develop new CDF estimators that require supple-
mentary information on two or more auxiliary variables. In addition, it may be possible 
to develop the CDF estimators when using probability proportional to size sampling 
to select units at the frst stage of sampling under the 2SCS/3SCS and S2SCS/S3SCS 
schemes. 
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Appendix  

In this Appendix, we present the proofs of the Lemmas in Section 3. 

1:  Proof  of  Lemma  1  

Here, the indices 1 and 2 are used for the frst-stage and second-stage of sampling under 
2SCS, respectively. 

1. The covariance between F̂2S(y) and F̂2S(x) can be written as: 

C(F̂2S(y), F̂2S(x)) = C1[E2(F̂2S(y), F̂2S(x))] + E1[C2(F̂2S(y), F̂2S(x))]. (66) 

It can be shown that E2(F̂2S(y)) = ∑n
i=1 MiFi(y)/(nM). Based on this result, we 

have ˛ ˝ ° n n˜ 1 1 λσXY,2bC1 E2(F̂2S(y), F̂2S(x)) = C1 ∑ ∑ MiFi(x) = ,MiFi(y), (67)
nM i=1 nM i=1 nM2 

˙ ˆ 
n˜ ° 1

E1 C2(F̂2S(y), F̂2S(x)) = E1 ∑ Mi 
2 C2(F̂i(y), F̂i(x)) , 

n2M2 
i=1 

N1 λiMi 
2σXY ,2i 

= ∑ , (68)
nNM2 

i=1 mi 

which completes the proof. 
ˇ ˘ 

2. An unbiased estimator of C F̂2S(y), F̂2S(x) is given by 

∑ 
n �ˇ ˘ λσ̂XY,2b 1 λiMi 

2σ̂XY,2iC F̂2S(y), F̂2S(x) = + , (69) 
nM2 nNM2 

i=1 mi 

From Eq. (25), we can write 
˙ ˆ 

n 

σ̂XY,2b = 
n 1 ∑(MiF̂i(y)MiF̂i(x)) − MF̂2S(y)MF̂2S(x) . (70)

n − 1 n i=1 

Consider the mathematical expectation on the RHS of Eq. (70) to get: 
˙ ˆ ˙ ˆ 

n n1 ˇ ˘ 1 ˇ ˘ 
E ∑ MiF̂i(y)MiF̂i(x) = E1 ∑ E2 MiF̂i(y)MiF̂i(x)n ni=1 i=1 ˙ 

n1 ˇ ˘ 
= E1 ∑ C2(MiF̂i(y),MiF̂i(x))n i=1 ˆ 

n1 ˇ ˘ 
+ ∑ E2(MiF̂i(y))E2(MiF̂i(x))n i=1 
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n ˛˝˜
1 

°
˜iMi 

2° XY ,2i 
= E1 n ˜ mi 

+ MiFi(y)MiFi(x) 
i=1 

N N1 ˜iMi 
2° XY ,2i 1 

= ˜ + ˜ MiFi(y)MiFi(x), (71)
N mi Ni=1 i=1 

and 

E 
˙ˆ

MF̂2S(y)MF̂2S(x)
ˇ˘ 

= C 
ˆ
MF̂2S(y),MF̂2S(x)

ˇ 
+ E(MF̂2S(y))E(MF̂2S(x)) 

N˜°XY ,2b 1 ˜iMi 
2° XY ,2i 

= + ˜ + MF(y)MF(x). (72)
n nN i=1 mi 

Using Eqs. (71) and (72) and then take the mathematical expectation of Eq. (25) 
to get: 

N1 ˜iMi 
2° XY ,2iE(°̂XY,2b) =  ° XY ,2b + ˜ , (73)

N i=1 mi 

which shows that °̂XY,2b is a  biased estimator of ° XY,2b. 

Similarly, from Eq. (27), we have 

°̂XY,2i = 

˜ 
1mi 

mi − 1 mi 

mi 
˝ ° 

I(Yi, j ° y)I(Xi, j ° x)
˛ 
− F̂i(y)F̂i(x) .˜ 

j=1 

(74) 

Consider the mathematical expectation on the RHS of Eq. (74) to get: 
˜ 

1 mi 
˝ 

E2 =˜ (I(Yi j  ° y)I(Xi j  ° x))
mi j=1 

1 
Mi 

Mi 

˜ 
j=1 

(I(Yi j  ° y)I(Xi j  ° x)) (75) 

E2 
˙
F̂i(y)F̂i(x)

˜ 
= C2 

°
F̂i(y), F̂i(x)

˛ 
− E2(F̂i(y))E2(F̂i(x)) 

˜i ° XY ,2i 
= − Fi(y)Fi(x). (76)

mi 

Using Eqs. (75)-(76) and then take the expectation of Eq. (27) to get 

E2(°̂XY,i) =  ° XY ,2i, (77) 

which shows that °̂XY,2i is an unbiased estimator of ° XY,2i. 

Now take the mathematical expectation of Eq. (69), and use the results given in 
Eqs. (73) and (77) to show that 

E 
˝
C
°
F̂2S(y), F̂2S(x)

˛ˆ 
= C

°
F̂2S(y), F̂2S(x)

˛
, (78)˙ 

which completes the proof. 
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2:  Proof  of  Lemma  3  

Here, the indices 1, 2 and 3 are used for the frst stage, second stage and third stage of 
sampling under 3SCS, respectively. 

1. The covariance between F̂3S(y) and F̂3S(x) can be written as: 

˜ ° ˛ ˝ ˛ ˝ 
C F̂3S(y), F̂3S(y) = C1E2E3 F̂3S(y), F̂3S(x) + E1C2E3 F̂3S(y), F̂3S(x)˛ ˝ 

+E1E2C3 F̂3S(y), F̂3S(x) . (79) 

iIt can be shown that E3(F̂3S(y)) = ∑n 
=1(Mi/mi)∑m

j=1 Ti jFi j(y)/nT . Based on thisi 
result, we have 

˙ ˆ 
n mi n mi˛ ˝ 1 Mi 1 MiC1E2E3 F̂3S(y), F̂3S(x) = C1E2 ∑ ∑ Ti jFi j(y), ∑ ∑ Ti jFi j(x) nT mi nT mii=1 j=1 i=1 j=1 ˙ ˆ 

n n1 1 λσXY ,3b 
= C1 ∑ MiFi(y), ∑ MiFi(x) = . (80) 

nT i=1 nT i=1 nT 2 

˙ ˆ ˝ n mi n mi˛ 1 Mi 1 MiE1C2E3 F̂3S(y), F̂3S(x) = E1C2 ∑ ∑ Ti jFi j(y), ∑ ∑ Ti jFi j(x) nT mi nT mii=1 j=1 i=1 j=1 ˙ ˆ 
n mi mi ˘1 ˇ 1 1

M2 = E1 ∑ i C2 ∑ Ti jFi j(y), mi 
∑ Ti jFi j(x) 

n2T 2 
i=1 mi j=1 j=1 ˙ ˆ 

n1 λiMi 
2σXY ,3i 

= E1 ∑ 
n2T 2 mii=1 

N1 λiMi 
2σXY ,3i 

= ∑ . (81)
nNT 2 

i=1 mi ˙ ˆ ˛ ˝ 1 n Mi 
2 mi ˜ ° 

ˆ ˆ T 2 ˆ ˆE1E2C3 F3S(y),F3S(x) = E1E2 ∑ ∑ i j  C3 Fi j(y),Fi j(x) 
n2T 2 m2 

i=1 i j=1 ˙ ˆ 
n 2 mi1 Mi λi jTi j  

2σXY ,3i j  
= E1E2 ∑ ∑ 

n2T 2 
i=1 m

2 
i j=1 ti j  ˙ ˆ 

n Mi 

= E1
1 Mi λi jTi j  

2σXY ,3i j∑ ∑ 
n2T 2 

i=1 mi j=1 ti j  

N Mi1 Mi λi jTi j  
2σXY ,3i j  

= ∑ ∑ . (82)
minNT 2 

i=1 j=1 ti j  

Add Eqs. (80)–(82), which completes the proof. 
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2. An unbiased estimator of C(F̂3S(y), F̂3S(x)) is given by 

n 2σ n mi 2σλσ̂XY ,3b 1 λiMi ˆXY ,3i 1 Mi λi jTi j  ˆXY ,3i j
C̃(F̂3S(y), F̂3S(x))= + ∑ + ∑ ∑ , 

nT 2 nNT 2 
i=1 mi nNT 2 

i=1 mi j=1 ti j  

(83) 
From Eq. (33), we can write 

° ˙ 
nn 1 ˛ ˝ ˛ ˝ 

σ̂XY,3b = ∑ MiF̂i(y)MiF̂i(x) − T F̂3S(y)T F̂3S(x) . (84)
n− 1 n i=1 

Consider the mathematical expectation of the RHS of the above equation to get: 
° ˙ ° ˙ 

n n ˝ 
E 

1 ∑(MiF̂i(y)MiF̂i(x)) = E1E2
1 ∑ E3 

˛ 
MiF̂i(y)MiF̂i(x)n ni=1 i=1 

° 
n1 ˛ ˛ ˝˝ 

= E1E2 ∑ C3 MiF̂i(y),MiF̂i(x)n i=1 

˙ 
1 ˇ 

+ ∑ 
n ˆ 

E3(MiF̂i(y))E3(MiF̂i(x))n i=1 

° ˘ � 
n 2 mi1 ˛ ˝Mi = E1E2 ∑ ∑ C3 F̂i j(y), F̂i j(x)m2n i=1 i j=1 

� �˙ 
n mi mi1 Mi Mi 

+ ∑ ∑ E3(Ti jF̂i j(y)) ∑ E3(Ti jF̂i j(x))n mi mii=1 j=1 j=1 

° ˘ � 
n 2 miMi λi jTi j  

2σXY ,3i j1 ∑= E1E2 2 ∑n i=1 mi j=1 ti j  

� �˙ 
n mi mi1 Mi Mi 

+ ∑ ∑ Ti jFi j(y) ∑ Ti jFi j(x)n mi mii=1 j=1 j=1 

° ˘ � 
n MiMi λi jTi j  

2σXY ,3i j1 ∑= E1 ∑n i=1 mi j=1 ti j  

� ˘ ��˙ 
n mi mi1 Mi Mi 

+ ∑ E2 ∑ Ti jFi j(y) ∑ Ti jFi j(x)n mi mii=1 j=1 j=1 
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˜ ° ˛ 
n MiMi λi jTi j  

2σXY ,3i j  λiMi 
2σXY ,3i 

= E1
1 ∑ ∑ + 
n i=1 mi j=1 ti j  mi ˆ 

1 ˙ 
+ ∑ 

n ˝ 
MiFi(y)MiFi(x)n i=1 

N Mi1 Mi λi jTi j  
2σXY ,3i j  1 N λiMi 

2σXY ,3i 
= 

N ∑ ∑ + 
N ∑ 

i mi j ti j  i mi=1 =1 =1 

N 

+
N 
1 

i 
∑ MiFi(y)MiFi(x), and (85) 
=1 

ˇ˝ ˙˘ ˝ ˙ 
E T F̂3S(y)T F̂3S(x) = C T F̂3S(y),T F̂3S(x) + E(T F̂3S(y))E(T F̂3S(x)), 

N λiM2 N MiλσXY ,3b 1 i σXY ,3i 1 Mi λi jTi j  
2σXY ,3i j  

= + ∑ + ∑ ∑n nN mi nN mi ti ji=1 i=1 j=1 

+T F(y)T F(x). (86) 

Using Eqs. (85) and (86) in Eq. (33), and then take expectation to show that 

N N Mi1 λiMi 
2σXY ,3i 1 Mi λi jTi j  

2σXY ,3i j
E(σ̂XY ,3b) =  σXY ,3b + ∑ + ∑ ∑ , (87)

N i mi N i mi j ti j=1 =1 =1 

which shows that σ̂XY ,3b is a biased estimator of σXY ,3b. 

Similarly, we can write from Eq. (35): 
˜ ˆ 

mi 1 mi 

σ̂XY,3i = ∑ (Ti jF̂i j(y)Ti jF̂i j(x)) − (F̂i(y)F̂i(x)) . (88)
mi − 1 mi j=1 

Consider the mathematical expectation on the RHS of the above equation to get: 
˜ ˆ ˜ ˆ 

mi mi1 1 ˝ ˙
ˆ ˆ ˆ ˆE2 ∑ (Ti jFi j(y)Ti jFi j(x)) = E2 ∑ E3 Ti jFi j(y)Ti jFi j(x)mi mij=1 j=1 ˜ 

mi ˝ ˝ ˙˙ 
T 2 ˆ ˆ= E2

1 ∑ i j  C3 Fi j(y),Fi j(x)mi j=1 ˆ 
1 mi � ˝ ˙ ˝ ˙� 

+ 
mi 

∑ E3 Ti jF̂i j(y) E3 Ti jF̂i j(x) 
j=1 ˜ ° ˛ˆ 

mi λi jTi j  
2σXY ,3i j  

= E2
1 ∑ + Ti jFi j(y)Ti jFi j(x)mi j ti j=1 

Mi Mi1 λi jTi j  
2σXY ,3i j  1 

= ∑ + ∑ Ti jFi j(y)Ti jFi j(x)(89)
Mi j=1 ti j  Mi j=1 
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and 

E2 
˜
(F̂i(y)F̂i(x))

° 
= E2 

˜
E3

˛
F̂i(y)F̂i(x)

˝° 

= E2 
˜
C3

˛
F̂i(y), F̂i(x)

˝ 
+ E3

˛
F̂i(y)

˝
E3

˛
F̂i(x)

˜° 
˛ 

T 2 mi mi mi 
˜

i j  1 1
C3

˝ 
ˆ ˆ= E2 ˜ Fi j(y),Fi j(x)

˜ 
+ ˜ Ti jFi j(y) ˜ Ti jFi j(x) m2 mi mii j=1 j=1 j=1 

Mi mi mi1 ˜i jTi j  
2° XY ,3i j  1 1° 

= ˜ + E2 ˜ Ti jFi j(y) ˜ Ti jFi j(x)
˛ 

miMi j=1 ti j  mi j=1 mi j=1 ˝ 
Mi mi mi1 ˜i jTi j  

2° XY ,3i j  
˜ 1 1 

= ˜ +C2 ˜ Ti jFi j(y), ˜ Ti jFi j(x) 
° 

miMi j=1 ti j  mi j=1 mi j=1 ˛ 
mi mi 

ˆˇ 

+ E2
˝ 1 ˜ Ti jFi j(y)

˙
E2

˝ 1 ˜ Ti jFi j(x)
˙ 

mi mij=1 j=1 

Mi1 ˜i jTi j  
2° XY ,3i j  ˜i ° XY ,3i 

= ˜ + + Fi(y)Fi(x) (90)
miMi j=1 ti j  mi 

Using Eqs. (89) and (90) in Eq. (35), and then take expectation to show that 

Mi1 ˜i jTi j  
2° XY ,3i j

E2(°̂XY ,3i) =  ° XY ,3i + ˜ , (91)
Mi j ti j=1 

which shows that °̂XY ,3i is also a  biased estimator of ° XY ,3i. 

Similarly, we can write from Eq. (37): 

ti j  
ˇ˘ 

1ti j°̂XY,3i j  = ˜ (I(Yi j,k ° y)I(Xi j,k ° x)) − F̂i j(x)F̂i j(y) . (92)
ti j  − 1 ti j  k=1 

Consider the RHS of Eq. (92): 

ti j  
ˇ 

Ti j
˘ 

1 1
E3 ˜ 

˜
I(Yi j,k ° y)I(Xi j,k ° x) 

° 
= ˜ 

˝
I(Yi j,k ° y)I(Xi j,k ° x)

˙
, (93)

ti j k Ti j k=1 =1 

and 

E3 
�
( ˆ C3

˝ 
ˆ ˆFi j(x)F̂i j(y))

� 
= Fi j(x),Fi j(y)

˙ 
+ E3

˝
F̂i j(x)

˙
E3

˝
F̂i j(y)

˙ 

˜i j° XY ,3i j
= + Fi j(y)Fi j(x). (94)

ti j  

Use Eqs. (93) and (94) in Eq. (37), and then take expectation to show that 

E3(°̂XY ,3i j) =  ° XY ,3i j  (95) 

which show that °̂XY ,3i j  is an unbiased estimator of ° XY ,3i j. Now Eq. (83) follows 
from the results given in Eqs. (87), (91) and (95), which completes the proof. 



          

             
      

            
   

          
           

       
              

           
    

               
       

            
        

            
         

 
             

           
  

            
            

      
             

            
         

                
         

 
            

         
  

             
           

   
           

           
        

          
  

92 Estimation of fnite population distribution function with auxiliary information... 

References  
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Penalized spline smoothing using Kaplan-Meier 
weights in semiparametric censored regression 

models 

Jesus Orbe∗ and Jorge Virto∗ 

Abstract 

In this article we consider an extension of the penalized splines approach in the context 
of censored semiparametric modelling using Kaplan-Meier weights to take into account 
the effect of censorship. We proposed an estimation method and develop statistical in-
ferences in the model. Using various simulation studies we show that the performance 
of the method is quite satisfactory. A real data set is used to illustrate that the proposed 
method is comparable to parametric approaches when assuming a probability distribu-
tion of the response variable and/or the functional form. However, our proposal does not 
need these assumptions since it avoids model specifcation problems. 

MSC: 62N02. 

Keywords: Censored data, Kaplan-Meier weights, P-splines, semiparametric models, survival 
analysis. 

1. Introduction 

In this paper we present a proposal for estimating regression models where the variable 
to be explained is censored. That is, our research context is a scenario where the values 
of the explanatory variables are fully known but some observations of the variable to 
be explained are not known because there is censored data. This problem is very com-
mon in survival or duration analyses, where the sample individuals analysed are tracked 
over time until the specifc event studied occurs (death, failure, breakdown, etc) or the 
study ends. In practice, there are various types of censoring, but the most common is 
right censoring. There is an a large body of literature on censored data, much of which 
can be grouped into two main approaches: one comprising models that directly specify 
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the effect of the explanatory variables on the variable to be explained (the most widely 
used of which are those known as Accelerated Failure Times (AFT) see for example 
Kalbfeisch and Prentice, 2002) and the other comprising hazard models, the best known 
and most widely applied of which is Proportional Hazard (PH), proposed by Cox (1972). 
In the former a regression model is specifed between the logarithmic transformation of 
the variable to be explained and the explanatory variables. The latter specifes a rela-
tionship between the hazard function of the variable to be explained and the explanatory 
variables. 

PH models have the advantage that the effects of the explanatory variables can be 
estimated without having to assume a probability distribution for the variable to be ex-
plained which is usually unknown. However they also have the drawback that the as-
sumption of proportional hazard functions must be imposed. Another drawback of the 
hazard functions approach is that the effect of the explanatory variables on the variable 
to be explained is hard to interpret: the results obtained from Cox model fts are harder to 
explain to non-statisticians and provide less information than AFT-type models, which 
are more attractive because they can be interpreted simply and straightforwardly (Wei, 
1992; Reid, 1994; Stare, Heinzl and Harrel, 2000; Swindell, 2009). Therefore, in terms 
of interpretability of results the linear regression model is an attractive alternative to 
models for hazard functions or hazard ratios. However, its main disadvantage is that the 
usual estimation procedure for AFT-type models requires a probability distribution to be 
assumed. 

The proposal presented here seeks to make the modelling of this type of data more 
fexible without imposing restrictions or assumptions that may prove restrictive or false 
in practice. We also propose an approach for making inferences in this fexible model. 
Our proposal can be classed as an AFT type model. Several papers using this particular 
approach can be found in the literature which enable the regression model to be estimated 
with no need to choose a specifc probability distribution. They consider various least 
squares approaches, and include the papers by Koul, Susarla and Van-Ryzin (1981) and 
Leurgans (1987), who propose transforming the censored variable, and those by Miller 
(1976), Buckley and James (1979) and Stute (1993), which present proposals with a 
similar approach but without transforming the variable to be explained. There is also the 
rank-based estimation methods approach (see for example Tsiatis, 1990; Lai and Ying, 
1992; Jin et al., 2003). 

These proposals represent considerable progress in the specifcation of the model, 
avoiding the biases derived from wrong choices of probability distribution. But it is 
possible to go even further in making these methodologies more fexible, since all these 
proposals consider a known parametric relationship to specify the effect of the explana-
tory variables on the variable to be explained. In practice, it is quite common for the 
functional relationship between regressor variables and outcome not to be known. One 
way of avoiding errors likely to lead to biased conclusions in specifying these effects 
is not to impose a specifc parametric functional relationship between the variable to 
be explained and the explanatory variable, but to assume only that that relationship is a 
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smooth function, i.e. to consider a nonparametric estimation of that specifc effect. The 
estimation of nonparametric functional relationships involving non-censored data has 
been widely studied and various proposals have been presented in the literature. They 
can be grouped into two different approaches: methods based on kernel smoothers (Sil-
verman, 1986; Härdle, 1990) and methods based on spline smoothers (Eubank, 1988; 
Wahba, 1990; Green and Silverman, 1994; Eilers and Marx, 1996; Wood, 2017). 

Applying these nonparametric estimation techniques is not straightforward in the 
case of censored data, so the earlier studies must be adapted to take into account the ef-
fect of censoring in the estimation process. Our proposal falls under the spline smoothers 
approach in the specifc context of semiparametric regression models with censored data. 
This semiparametric regression model has already been studied and discussed in regard 
to samples without censored observations. It was initially analysed by Heckman (1986) 
and Rice (1986) using an approach with spline smoothers and by Speckman (1988) us-
ing an approach with kernel smoothers. Several authors have investigated inference in 
the semiparametric regression model when the response variable is subject to right cen-
soring. Orbe, Ferreira and Núñez Antón (2003) use an approach based on smoothing 
splines while Zou, Zhang and Qin (2011) and Chen et al. (2015) use penalized splines 
and monotone B-splines, respectively. Aydin and Yilmaz (2018) apply the ideas pro-
posed by Koul et al. (1981) in the context of a partial linear regression model and De Una˜ 
Álvarez and Roca Pardiñas (2009) consider the use of kernel smoothers in an additive 
censored regression model. 

A previous paper by Orbe and Virto (2018) proposes an extension of the P-splines 
method of Eilers and Marx (1996), which has become very popular in applications and 
in theoretical work and is an active area of research (Eilers, Marx and Durbán, 2015), 
to handle censored responses using Kaplan-Meier weights (Kaplan and Meier, 1958). 
But the proposal by Orbe and Virto provides no tools to allow statistical inferences to be 
made, and considers the case of a unique covariate. It is therefore of limited use in prac-
tice, where the response variable usually depends on a large set of explanatory variables 
and it is of interest to draw inferences. Here we propose an extension of that previous 
paper that enables the technique to be applied to more general problems where the effect 
of other covariates is incorporated parametrically (parametric component) in addition to 
the nonparametric component for modelling effects where the functional relationship is 
not known, that is, a semiparametric regression model. Such extension is a well-studied 
problem for case of uncensored data (see, for example, Heckman, 1986; Schimek, 2000; 
Holland, 2017). We also develop variance estimators for both the parametric and non-
parametric components and provide the tools needed to develop statistical inferences in 
this general framework and study performance by calculating coverage probabilities of 
the confdence intervals for the true values of interest in several simulation studies. 

The rest of the paper is organized as follows. Section 2 shows how to extend the 
P-splines method when the sample has censored observations and proposes a censored 
data version of penalized splines. Section 3 examines the methodology proposed using 
simulation studies. Section 4 presents an application of the method to a real data set and 
Section 5 concludes. 
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2. Methodology 

The existence of censored observations is very common in survival analysis or duration 
analysis, where the aim is to analyse a variable that measures the duration of an event or 
state or the time that elapses until a specifc event occurs. In other words, we consider 
a model that allows us to analyse the effect of certain explanatory variables on a vari-
able to be explained T , the duration variable or usually its logarithmic transformation, 
where some of its observations are censored. Furthermore, we separate the effects of 
the explanatory variables of the model into two components: a component captures the 
relationship between some explanatory variables (X) and the response variable assuming 
a specifc parametric functional form (parametric component) and the other component 
captures the effects of other explanatory variables (Z) whose functional form is unknown 
(nonparametric component) and which we leave unspecifed, without assuming a partic-
ular parametric relationship. Therefore, we are considering a semiparametric regression 
model but in a context where the variable to be explained in the model is right-censored: 

Ti = Xi 
T α + f (Zi)+ εi i = 1, . . . ,n (1) 

where we assume that the values of the variable T : t1, . . . , tn are independent and gener-
ated with an unknown probability distribution function F . That is, we are not assuming 
any probability distribution for the error term. In addition some observations of that vari-
able T are not known due to the problem known as right censoring. Therefore, what we 
actually observe in the sample is the variable yi = min(ti,ci), where the values c1, . . . ,cn 

are the values of the censoring variable C. For the censoring mechanism it will be as-
sume: a) the lifetimes and the censoring times are independent and, b) given the lifetime, 
the covariates do not provide any further information as to whether censoring will take 
place or not, i.e., P[T ≤ C|X ,Z,T ] = P[T ≤ C|T ] (see Stute, 1993, 1999, for a discussion 
of these assumptions). 

We use the indicator δi = I(ti ≤ ci) to show whether in particular the value ti is 
observed, i.e., it is not censored. In addition, Xi is the (p × 1) vector that collects the 
values of the p explanatory variables of the parametric component for the i-th individual, 
α is the (p×1) coeffcients vector of the model associated with those regressor variables, 
f (Z) represents the nonparametric component of the model, which captures the unknown 
functional form of the effect of the regressor variable Z and ε is the error term satisfying 
E(ε|X ,Z) = 0 and Var(ε|X ,Z) = σ2. 

2.1. Estimation method 

Our proposal is based on the nonparametric estimation approach proposed by Eilers 
and Marx (1996) together with the idea of using Kaplan-Meier weights, proposed by 
Stute (1993), to control the effect of censoring in the estimation of the model. Thus 
following this particular approach, if we want to estimate the nonparametric component 
of the model without assuming a particular functional form f (·) to the unknown effect 
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of the regressor variable Z, we will use an approximation that rewrites or represents 
that effect by using a set of q B-splines type basis functions: B1(z), . . . ,Bq(z) (see, for 
example, Dierckx, 1993; De Boor, 2001). Thus we rewrite the unknown function as 
f (z) = ∑q

j=1 γ jB j(z). 
In order to solve the problem of choosing the number of the knots of the bases, 

we use the proposal of Eilers and Marx (1996) which introduces a penalty term in the 
estimation process of the model. This penalty term is based on the idea of previous 
works by O’Sullivan (1986, 1988) that propose to use a penalty term that measures the 
smoothness of the function through the integrated squared second derivative of the ftted 
function. Eilers and Marx (1996) in their proposal of the P-splines methodology suggest 
using, with the same idea, a different penalty term, which generalizes and simplifes the 
previous proposal, introducing a penalty but on the difference of the γ j coeffcients of 
the adjacent B-splines. 

In order to account for the effect of censoring we follow the ideas of Orbe and Virto 
(2018) who extend the possibility of applying the P-spline methodology to the context 
of samples with censored observations in a simple model. Thus, to estimate the model 
(1) we propose to minimize the following expression: 

˜ ° 2 n q q 

∑ w[i] y(i)− x ∑ γ jB j(z[i]) +λ ∑ (∆kγ j)
2 (2)T α −[i] 

i=1 j=1 j=k+1 

where y(1), . . . ,y(n) are the ordered values of the observed variable yi = min(ti,ci), xT is[i] 
the (1 × p) vector with the values of the regressors of the parametric component for the 
individual corresponding to the ordered observation y(i), w[i] is the Kaplan-Meier weight 
associated with that observation y(i) and this weight is calculated using the estimator 
(F̂ n) (Kaplan and Meier, 1958) of the probability distribution function F of the variable 
to be explained T : 

˛ ˝δ[ j]δ[i] i−1 n − j 
n − j +1

w[i] = F̂n(y(i))− F̂n(y(i−1)) = ∏ 
j=1 

(3)
n − i +1 

without the need to assume a probability distribution for the error term, therefore a fex-
ible methodology is used regarding to parametric assumption of the error. Furthermore 
∆γ j denotes the difference between the coeffcients of adjacent B-splines (γ j − γ j−1) and 
∆kγ j indicates that this difference is of order k. This difference measures the smoothness 
of the function f (z), the larger the difference between the coeffcients of adjacent B-
splines the less smooth the function. Finally the parameter λ is the smoothing parameter 
that controls the degree of the smoothness of the estimated function in the estimation 
process. 

The expression to minimize (2) can be rewritten in matrix form as follows: 

(Y − Xα − Bγ)TW (Y − Xα − Bγ)+λγT DT 

kDkγ (4) 
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where X is the (n × p) design matrix for the variables of the parametric component. 
Y is the vector of the observed variable to be explained. B is a (n × q) matrix where 
Bi j  = B j(zi). W is a (n × n) diagonal matrix with Kaplan-Meier weights. Dk is the 
matrix used to rewrite the ∆k term in matrix form. 

2.2. Algorithm 

The optimization process of the expression (4) leads to the following equations: 
˜ 
X TWX  

° 
α = X TW (Y − Bγ) (5)˜ ° 

BTWB  +λ DT 

kDk γ = BTW (Y − Xα) (6) 

In practice, the estimations of α and γ can be obtained by means of an iterative process 
or backftting algorithm that iteratively solves each set of equations (5) and (6) until the 
convergence of the estimators is reached. We describe the algorithm process as follows: 

⃗• Step 1. In equation (6) give initial value of α̨(0) = 0 and estimate γ by˝ ˙−1γ̨(0) = BTWB  +λ DT 

kDk BTWY . 

• Step 2. Substitute γ by γ̨(0) in equation (5) and estimate α by 

α̨(1) = [X TWX ]
−1 X TW (Y − Bγ̨(0)) = [X TWX ]

−1 X TW (I − Hc)Y ˜ ° −1where Hc = B BTWB  +λ DT 

kDk BTW is the smoothing matrix for the censored 
case obtained from equation (6). 

• Step 3. Substitute α by α̨(1) in equation (6) and estimate γ by˝ ˙−1γ̨(1) = BTWB  +λ DT 

kDk BTW (Y − Xα̨(1)). 

• Step 4. Iterate step 2 and step 3 until convergence is achieved. 

The algorithm is considered to have converged when the difference between the 
GCVc (see equation 8) of two successive iterations is less than a really small threshold: 
|GCVc(new)− GCVc(old)| < 0.00001 · GCVc(new). 

2.3. Choice of smoothing parameter and knots 

It should be noted that in this iterative process we need to make a number of choices, 
such as the number of knots (Kc) and the choice of the smoothing parameter λ , in order 
to estimate the components of the model. The use of a penalty term in the optimization 
criterion makes the determination of the number of knots not a crucial decision as long as 
a suffcient number of knots is chosen. To choose this number of knots in samples with 
censored data we propose the following automatic choice criterion that takes into account 
the sample information available due to the existence of censored data by multiplying 
by one minus the proportion of censored observations: 

ˆ ˆ ˇ ˇm
Kc = round min ,40 · (1 − PC) (7)

4 
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where m is the number of distinct values of the Z variable of the nonparametric compo-
nent and PC represents the level of censoring, measured as a percentage, existing in the 
analysed sample. The expression (7) is a modifcation to the one proposed for the choice 
of the number of knots in Ruppert (2002) that we propose for application in contexts 
with censored data. 

The choice of the smoothing parameter is a more relevant choice. To choose an 
optimal smoothing level we propose to use the following version of the generalized 
cross validation (GCV) criterion adapted for application in contexts with censored data: 

n w[i](y(i) − ŷ(i))2 

GCVc = ∑ (8)
(n− φ tr(Hc))2 

i=1 

where φ is a parameter that tries to correct for the overftting problem that occurs when 
using the ordinary GCV criterion. Wood (2017) proposes to use what he refers to as the 
double cross validation and suggests using a value of φ = 1.5. This value is justifed in 
different ways in the literature, see for example Kim and Gu (2004) for the uncensored 
case and Orbe and Virto (2021) for the censored case. The performance of proposal (8) 
has been analysed using a simulation study and, as in the uncensored case, the choice of 
φ = 1.5 is better in almost all situations than φ = 1, with the difference increasing as the 
censoring increases. 

2.4. Variances estimation 

In this section we develop the necessary tools to perform statistical inferences for the 
parametric and nonparametric components. 

In order to determine the variance of the parametric component, we frst solve equa-˜ ° −1tion (6) getting γ = BTWB+ λ DT 

kDk BTW (Y − Xα). Therefore, substituting Bγ = 
Hc(Y − Xα) in equation (5) we get (X TWX)α = X TW [Y − Hc(Y − Xα)]. Solving for α 
we obtain α̨ = [X TW (I − Hc)X ]

−1 X TW (I − Hc)Y . Accordingly, the variance-covariance 
matrix of this estimator can be expressed as: 

˙˜ ° −1Var̋(α̨) =  σ̨2 X TW (I − Hc)X X TW (I − Hc)(I − Hc)
tWX  

ˆ˜ ° t 
(X TW (I − Hc)X)−1 (9) 

In a similar way, we solve equation (5) getting α = (X TWX)
−1 X TW (Y − Bγ). Plug-

ging Xα = X (X TWX)
−1 X TW (Y −Bγ)=  Hp(Y −Bγ), where Hp = X (X TWX)

−1 X TW , in ˜ ° 
equation (6) we get BTWB+ λ DT 

kDk γ = BTW [Y − Hp(Y − Bγ)]. Solving for γ we getˇ ˘−1γ̨  = BTW (I − Hp)B+ λ Dk 
T Dk BTW (I − Hp)Y . Accordingly, the variance-covariance 

matrix of this estimator can be expressed as: 
˙ˇ ˝ σ 2 BTW (I − Hp)B+ λ DT 

˘−1Var(γ̨) =  ̨  kDk BTW (I − Hp)(I − Hp)
tWB  

�ˇ �t 
� ˘−1BTW (I − Hp)B+ λ DT 

kDk (10) 
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In order to calculate these estimated variances we need to estimate the σ 2 parameter. 
We propose the estimator given by the following expression: 

∑n 
1 nw[i](y(i)− ŷ(i))2 

σ̃ 2 = i= 

n − tr(Hc)− p 

3. Simulation study 

In this section the performance of the proposed methodology is studied using a simula-
tion study. In order to do that we consider the next semiparametric model: 

Ti = α1X1i +α2X2i + f (Zi)+ εi (11) 

where for the parametric component of the model: the variable X1 is generated from a 
uniform distribution U(0,2), X2 from a uniform distribution U(−1,3), being α1 = −1 
and α2 = 1 the values of the coeffcients. For the nonparametric component, we consider 
three different cases for the relationship f (·) between T and a relevant covariate Z, see 
Table 1 for the chosen functional forms and the probability distribution of the variable Z. 
For the distribution of the error term (ε) has been used the normal distribution N(0,σ2), 
where the value of σ 2 parameter has been chosen to obtain a similar signal/noise (SN) 
ratio in each example (see Table 1). In order to study the effect of censoring, we consider 
a censoring variable C generated independently from a uniform distribution U(1,b). 
The value of parameter b changes to consider three different levels of censored data: 
10%, 25% and 40%. Therefore, we observe (y1,x11,x21,z1,δ1), . . . ,(yn,x1n,x2n,zn,δn) a 
sample of size n, where yi = min(ti,ci) is the observed survival time, i.e., the minimum 
between the survival time ti and the censoring value ci. In addition, it is known through 
the indicator variable δi = I(ti ≤ ci) which observations are not censored. We use three 
sample sizes: n = 200, n = 500 and n = 1000. For each of the nine scenarios, three 
sample sizes for three levels of censorship, we consider 1000 Monte Carlo replications. 

Table 1. Three Case Studies. 

Name zi f (zi) σε 
2 SN ratio 

Case (i): 
Quadratic zi ∼ U [0,4] 22 +4zi − zi 0.40 3.5 

Case (ii):
Sinusoidal zi ∼ U [0,10] 2 + exp{sin(zi)} 0.20 3.3 

Case (iii): 

Logit zi ∼ U [0,1] 
1

2 +
1 + exp{−20(zi − 0.5)} 

0.06 3.3 

For each of the 27 cases analysed in this simulation study we have estimated model 
(11) following the estimation proposal presented in the previous section, the censored P-
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spline estimator (CPS), where the choice of the smoothing parameter λ and the number 
of knots of B-splines have been chosen using formulas (8) and (7), respectively. 

Tables 2, 3 and 4 present a general summary of the results obtained for each combi-
nation of censoring level and sample size in each of the three cases of functional forms 
studied for model (11). That is, Table 2 summarizes the estimation of case (i), where 
f (z) is a quadratic function. The frst two rows of Table 2 present the estimated Mean 
Square Error (MSE) of each coeffcient (α1 and α2) of the parametric component: 

1000 

MSE(α̂ p) =  
1 ∑ (αp − α̂ p j)

2 p = 1,2
1000 j=1 

and the third row the Averaged Mean Square Error (AMSE) of the nonparametric com-
ponent: ˜ ° 

10001 ∑n
i=1( f (zi) − f̂ j(zi))

2 

AMSE = ∑1000 nj=1 

Rows four to six of Table 2 present the empirical bias and rows seven to nine the 
coverage probabilities of the 95% confdence intervals based on the resampling. 

Tables 3 and 4 present the same information for the estimates of case (ii) and (iii), 
where f (z) is a sinusoidal function and a logit function, respectively. Tables 2 to 4 show 
the good performance of the proposed method in terms of MSE and AMSE, empirical 
bias and coverage probabilities. 

Furthermore, if we focus on the estimation of each component of model (11), we 
have that for case (i), quadratic function: Figure 1(a) presents the MSE estimates for the 
nonparametric component using different censoring levels and sample sizes, where, as 
can be seen, the estimates of the nonparametric component improve as the sample size 
increases and the level of censoring in the sample decreases. Figures 1(b) and (c) show 
the estimates of the coeffcients of the parametric component (α1 and α2), where it can 
be seen that the coeffcient estimates are good and that their accuracy also improves as 
the sample size increases and the level of censoring in the sample decreases. In addition, 
Figure 1(d) presents the mean value of the estimates of the quadratic form function 
compared to the true functional form to be estimated. As can be seen, the proposal we 
made works very well refecting the true functional form of f (·). In this Figure 1(d), we 
can also verify the good performance of the asymptotic confdence intervals generated 
with the estimates of the variances proposed in the previous section. As can be seen, for a 
confdence level of 95%, the proposed mean confdence interval (blue lines) is consistent 
with the corresponding 95th percentile interval of the simulations (green lines). Finally, 
the coverage probabilities of the confdence intervals presented in Table 2 show that the 
actual coverage probability is quite close to the nominal coverage probability. 

Similar results, where the good performance of our proposals can be appreciated, are 
obtained for case (ii), sinusoidal function, see Figures 2(a)-(d), and for case (iii), logit 
function, see Figures 3(a)-(d). 

As suggested by the referees, we conduct additional simulations considering a nor-
mal distribution for the censoring variable and also additional simulations considering 
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non-normal error distributions such as the Weibull distribution. The new results obtained 
(not shown) confrm the good performance of the proposed method and are consistent 
with those presented in this section. 

Table 2. Results of simulation study for the quadratic function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( ̃f ) ×103 

α̃1 3.090 3.741 5.965 1.324 1.440 2.370 0.521 0.656 0.992 

α̃2 0.722 0.906 1.581 0.275 0.302 0.541 0.121 0.181 0.259 

f̃ 9.783 12.170 21.109 4.126 5.056 8.730 2.105 2.580 4.424 

Empirical Bias 

α̃1 -0.00149 0.00099 0.01130 -0.00319 -0.00290 0.00042 0.00214 0.00354 0.00575 

α̃2 0.00289 0.00206 -0.00257 0.00049 0.00039 -0.00335 0.00036 -0.00036 -0.00195 

f̃ -0.00033 -0.00148 -0.01630 0.00239 0.00272 0.00067 -0.00232 -0.00253 -0.00575 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.938 0.955 0.947 0.928 0.950 0.947 0.946 0.946 0.948 

α̃2 0.945 0.946 0.934 0.941 0.960 0.943 0.960 0.926 0.957 

f̃ 0.938 0.941 0.923 0.939 0.939 0.925 0.946 0.936 0.933 

Table 3. Results of simulation study for the sinusoidal function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( ̃f ) ×103 

α̃1 0.806 1.060 1.521 0.285 0.362 0.560 0.136 0.154 0.233 

α̃2 0.189 0.266 0.376 0.062 0.087 0.132 0.035 0.044 0.064 

f̃ 4.088 5.205 7.970 1.702 2.023 3.072 0.870 1.047 1.545 

Empirical Bias 

α̃1 -0.00543 -0.00202 0.00083 0.00085 0.00098 0.00209 0.00060 0.00016 0.00148 

α̃2 -0.00060 -0.00073 -0.00145 0.00051 0.00058 -0.00093 -0.00016 -0.00017 -0.00136 

f̃ 0.00674 0.00311 -0.00152 -0.00116 -0.00167 -0.00324 -0.00021 0.00010 -0.00077 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.944 0.936 0.925 0.956 0.955 0.944 0.948 0.956 0.940 

α̃2 0.949 0.930 0.938 0.952 0.938 0.944 0.944 0.943 0.962 

f̃ 0.930 0.927 0.918 0.932 0.941 0.932 0.942 0.938 0.941 
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Figure 1. Results of simulation study for the quadratic function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the quadratic form function compared to the true functional form to be 
estimated. 
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Figure 2. Results of simulation study for the sinusoidal function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the sinusoidal form function compared to the true functional form to be 
estimated. 
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Figure 3. Results of simulation study for the logit function. (a) Mean square errors for the 
nonparametric part using different censoring levels and sample sizes. (b) α̂1. (c) α̂2. (d) Mean 
value of the estimates of the logit form function compared to the true functional form to be 
estimated. 
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Table 4. Results of simulation study for the logit function. 
n = 200 n = 500 n = 1000 

Censored % 10% 25% 40% 10% 25% 40% 10% 25% 40% 

MSE (α̃1 and α̃2) and AMSE ( f̃ ) ×103 

α̃1 0.072 0.098 0.172 0.024 0.036 0.064 0.011 0.016 0.027 

α̃2 0.017 0.025 0.046 0.006 0.008 0.019 0.003 0.004 0.009 

f̃  0.309 0.397 0.710 0.128 0.164 0.311 0.065 0.085 0.169 

Empirical Bias 

α̃1 0.00012 0.00029 0.00101 0.00042 0.00061 0.00035 -0.00029 -0.00022 -0.00011 

α̃2 0.00026 0.00015 -0.00008 -0.00015 -0.00026 -0.00002 -0.00002 -0.00003 -0.00014 

f̃  -0.00037 -0.00038 -0.00098 -0.00022 -0.00029 -0.00040 0.00035 0.00020 0.00014 

Coverage probabilities of the 95% confdence intervals 

α̃1 0.944 0.955 0.933 0.953 0.944 0.941 0.946 0.941 0.948 

α̃2 0.950 0.930 0.924 0.939 0.947 0.938 0.957 0.938 0.956 

f̃  0.944 0.939 0.916 0.943 0.938 0.93 0 0.949 0.941 0.938 

4. Empirical application: PBC data 

The Mayo Clinic Primary Biliary Cirrhosis dataset contains information from 418 Mayo 
Clinic patients with primary biliary cholangitis (PBC), previously called primary biliary 
cirrhosis, an autoimmune disease of the liver. The frst 312 cases in the dataset partici-
pated in a Mayo Clinic trial in PBC conducted between 1974 and 1984 comparing the 
drug D-penicillamine (treatment) with a placebo. The dataset provides information about 
the observed survival time from the date of registration in the trial and a large number 
of clinical, biochemical, serologic and histologic variables such as patient’s age at frst 
diagnosis, severity of edema (0 no edema, 0.5 moderate and 1 for severe edema), blood 
values related to liver function such as bilirubin, albumin, alkaline phosphotase and pro-
thrombin time amid other explanatory variables, and an indicator of patient status (dead 
or alive) in July 1986. The dataset can be downloaded from the R package survival (Th-
erneau, 2021; R Core Team, 2018). The additional cases are from an independent set of 
106 Mayo Clinic primary biliary cholangitis patients who were elegible for the trial but 
declined to participate. This dataset has been previously used, for example, in Dickson 
et al. (1989), Therneau and Grambsch (2000) and Fleming and Harrington (2005), in 
censored regression models. 

The studies by Therneau and Grambsch (2000) and Fleming and Harrington (2005) 
deal with the relationship between the covariates and the survival response variable. 
They conclude that age, edema score, bilirubin and albumin logarithms and prothrom-
bin time are the variables that best explain patient survival. In addition, these studies 
analyse the need for transformations of the continuous variables in the proposed model 
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Table 5. Estimate and standard deviation (SD) of estimated parameters for the Mayo Clinic 
Primary Biliary Cirrhosis dataset from AFT, Stute and CPS methods. 

age edema trt log(albumin) log(bili) 
AFT -0.0246 -0.7692 -0.0627 1.4880 -0.5356 

(0.0065) (0.2303) (0.1273) (0.5268) (0.0694) 
Stute -0.0166 -0.9249 -0.0950 1.6161 -0.3028 

(0.0076) (0.3489) (0.1371) (0.6015) (0.0732) 
CPS -0.0168 -0.9163 -0.0991 1.6197 -0.3061 

(0.0064) (0.1900) (0.1291) (0.4578) (0.0633) 

concluding that the relationship between prothrombin time (protime) and patient survival 
is likely to be non-linear. 

In this application we incorporate the protime variable into the model in a fexible 
way only assuming that prothrombin time enters in the model via some unknown smooth 
function f (·): 

log(T ) = α1 +α2age +α3edema +α4trt +α5log(albumin)+α6log(bili)+  f (protime)+ ε 
(12) 

We estimated model (12) using the censored P-spline method proposed in section 2. 
To evaluate the performance of the censored P-spline estimator, a quadratic relationship 
between the logarithm of survival and the protime variable has been proposed as an alter-
native, i.e., f (protime) = α7 protime +α8 protime2 in equation (12). Assuming that this 
parametric specifcation is correct, two methodologies known and proposed in the litera-
ture on survival analysis can be used to ft the model (12). These estimators can be used 
as a benchmark to evaluate the performance of the censored P-spline method proposed. 
The frst and more restrictive approach is the parametric Accelerated Failure Time (AFT) 
methodology (Kalbfeisch and Prentice, 2002), based on the restricted assumptions of 
knowing the probability distribution of the response variable and the functional form re-
lating the protime variable and patient survival, that estimates the α coeffcients of the 
model using the maximum likelihood estimator. Thus, considering an AFT lognormal 
model, we estimate the α coeffcients assuming a normal probability distribution. The 
second methodology, proposed by Stute (1993), is less restrictive in that it does not need 
the assumption of the probability distribution of the response variable, but it also trusts 
the quadratic functional form. That is, it needs to know the form of the relationship be-
tween the response variable and the covariate. This methodology estimates coeffcients 
using weighted least squares via Kaplan-Meier weights (Stute, 1993). 

Table 5 presents the estimates of the parametric components of the model (12) using 
these three methods. It can be seen that all three methods generate similar estimates and 
result in a biologically reasonable model estimate. As previously reported in the liter-
ature, all three methods agree that treatment with the drug D-penicillamine (treatment) 
has no signifcant effect on patient survival. 
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Figure 4. Estimated relationship using three methodologies: AFT lognormal, Stute’s approach 
and CPS estimator 

Figure 4 shows the estimates of the unknown function f (protime) for the three ap-
proaches with the scatterplot of observed log survival time versus prothrombin time. 
Patients indicated by ⃝ are dead and those indicated by ⊠ are alive in July 1986; that 
is, the dead patients have uncensored survival times and the live patients have censored 
survival times. 

In conclusion, the AFT methodology and Stute‘s proposals performance depends 
on the correct specifcation of the relationship between the duration and the protime 
variable. In this application it seems that the relationship between log survival and pro-
thrombin time is quadratic, so both these methodologies perform reasonably well. Our 
proposal does not need to assume a specifc parametric functional form and, however, it 
adequately estimates the relationship obtaining very similar results to the previous ones. 
However, if the functional form had been wrongly chosen these parametric methods 
would have led to a serious problem of incorrect specifcation and therefore to wrong 
conclusions. Therefore, we can see our approach as a robust solution to misspecifcation 
of the model. 
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5. Discussion and conclusion 

In this paper, we have proposed an estimation method in the context of censored semi-
parametric models based on the P-spline approach of Eilers and Marx (1996) using 
Kaplan-Meier weights to take into account the effect of censorship. We present an exten-
sion of the estimation methodology proposed by Orbe and Virto (2018) to a context with 
more than one explanatory variable, which is very useful from a practical point of view. 
Furthermore, we develop the necessary tools to perform statistical inferences in this gen-
eral framework, providing, for example, confdence intervals for both the nonparametric 
component and the coeffcients associated with the regressors of the parametric compo-
nent. The simulation studies conducted illustrate the good performance of the estimation 
method which satisfactorily estimates both the nonparametric component and the coeff-
cients associated with the parametric part in the various examples studied. Furthermore, 
the accuracy of estimates improves as the censored level reduces and the sample size 
is increased. The coverage probabilities of the confdence intervals proposed have been 
calculated in several simulation studies and it has been found that the actual coverage 
probability is quite close to the nominal coverage probability in all the scenarios anal-
ysed. 

The application to real data serves to illustrate the potential advantages of our pro-
posal which is comparable with the parametric method AFT and Stute’s approach when 
the functional form chosen is correct. Otherwise, it must be mentioned that if the func-
tional form or the probability distribution are wrongly chosen this would lead to a serious 
problem of incorrect specifcation of the model and therefore to incorrect conclusions. 
The proposed method would be more fexible and robust as it does not need to impose a 
specifc probability distribution for the response variable, nor assume a functional form 
for the relationship between the censored response variable and the covariate, which are 
usually unknown in practice. Therefore, its application in samples with censored data is 
particularly useful in contexts of survival or duration analysis where censored observa-
tions are common. 
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Topological Data Analysis and its usefulness for 
precision medicine studies 

Raquel Iniesta∗,1, Ewan Carr1, Mathieu Carrière2, Naya Yerolemou3, 
Bertrand Michel4 and Frédéric Chazal5 

Abstract 

Precision medicine allows the extraction of information from complex datasets to facil-
itate clinical decision-making at the individual level. Topological Data Analysis (TDA) 
offers promising tools that complement current analytical methods in precision medicine 
studies. We introduce the fundamental concepts of the TDA corpus (the simplicial com-
plex, the Mapper graph, the persistence diagram and persistence landscape). We show 
how these can be used to enhance the prediction of clinical outcomes and to identify 
novel subpopulations of interest, particularly applied to understand remission of depres-
sion in data from the GENDEP clinical trial. 

MSC: Statistical aspects of big data and data science (62R07) and Topological data analysis 
(62R40) 

Keywords: Precision medicine, data shape, topology, topological data analysis, persistence dia-
gram, Mapper, persistence landscapes, machine learning. 

1. Precision medicine: what are the current needs? 

The feld of precision medicine is focused on the development of sophisticated algo-
rithms that, by exploiting patient data – on clinical measurements, genomics, proteomics, 
medical imaging, etc. – can guide clinicians to make more accurate diagnoses, prognoses 
and treatment choices tailored to individual patients. The datasets used to develop these 
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models present multiple complexities. They routinely include information for thousands 
of subjects, and the number of included variables can easily exceed millions (i.e., these 
datasets are high-dimensional), variables tend to be highly correlated, and may interact in 
complex ways that may not be immediately obvious. These factors combined often limit 
the utility of classical statistical procedures in the analysis of these data. In recent years, 
machine learning (ML) (Mitchell, 1997, 2006), a set of tools at the interface between 
computer sciences and statistics, has been used in precision medicine to overcome some 
of these limitations. The use of ML has led to the development of interesting predictive 
models built from complex data sets (Ekins et al., 2019; Ho et al., 2019; Rajkomar, 
Dean and Kohane, 2019; Iniesta, Stahl and McGuffn, 2017). However, the success of 
ML for these datasets has varied across medical areas – performing moderately well 
in some diseases but very poorly in others (Adamson and Welch, 2019; Iniesta et al., 
2016, 2017, 2018), leaving considerable room for improvement. Recently, several works 
including studies on COVID-19 research, have emphasised the increasing demand of 
novel methods that can better deal with such complexity (Khan et al., 2019, 2021). 

One of the key challenges in building models that can accurately predict outcomes 
for new patients is correctly identifying sources of heterogeneity among patients (i.e., 
sources that could contribute to observed differences in patient outcomes) and including 
these in the model in the form of predictor variables. When tailoring the choice of med-
ical treatment to patients’ pre-treatment characteristics, methods to identify subgroups 
in terms of treatment effectiveness – for example, where patients respond similarly to 
treatment within the group, and differently between groups – constitute one of the most 
prominent challenges currently for medical statisticians (Sies, Demyttenaere and Meche-
len, 2019). 

In addition to developing predictive models, methods for visualising data in high 
dimensions can facilitate decision-making for diagnosis and treatments targeting. Most 
classical tools, such as scatter plots or heat maps, are often restricted to two dimen-
sions (Qu et al., 2019). Although new technologies have been used to create visualisa-
tion tools applicable to complex data, felds like genomics research are rapidly evolving 
and continuous advancement in visualisation techniques is needed (Nusrat, Harbig and 
Gehlenborg, 2019). 

In recent years a growing literature has highlighted the benefts of applying topologi-
cal techniques in precision medicine studies. For example, to identify genetic infuences 
on patient survival in breast cancer (Nicolau, Levine and Carlsson, 2011), to improve 
treatment targeting for patients with spinal cord or traumatic brain injury by uncover-
ing previously hidden data relationships in 20-year old data (Nielson et al., 2017), or to 
identify disease trajectories in type 2 diabetes data (Dagliati et al., 2020). 

This paper aims to provide a frst introduction to some of the basic topological con-
cepts that form the feld of Topological Data Analysis (TDA): the simplicial complex, 
the Mapper graph, the persistence diagram and the persistence landscape. We show how 
these techniques offer promising tools to reveal data structures not readily accessible us-
ing other statistical techniques, which may subsequently help machine learning models 
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in predicting clinical outcomes. We show an application of these methods to investigate 
remission of depression in data from the GENDEP clinical trial. We also summarise the 
software implementations of these techniques. 

2. Introducing Topological Data Analysis 

TDA is a promising feld that has emerged from different works in applied algebraic 
topology (Edelsbrunner, Letscher and Zomorodian, 2000; Zomorodian and Carlsson, 
2005; Ghrist, 2018). It aims to provide well-founded mathematical, statistical, and al-
gorithmic methods to infer, analyse, visualise and exploit the complex topological and 
geometric structure of data (Chazal, 2016). The feld is based on topology, the branch 
of mathematics born in response to Riemann’s request in 1867 for “a good foundation 
of the concept of space” (Riemann and Clifford, 1998). In contrast with the more fa-
miliar feld of geometry – the study of the shape of the space, that is, what the space 
looks like – topology can be broadly defned as the study of only those shape properties 
that are unaffected by continuous transformations such as stretching, shrinking, bending 
and twisting (examples of non-continuous transformations are cutting or gluing) (Kos-
niowski, 1980). For example, if a torus (a surface like a ring doughnut, as shown in 
Figure 1) is stretched horizontally, it does not change the fact that there is only one 
‘hole’ on the inside; thus, this property is preserved despite transformation. Moreover, 
topological techniques assume coordinate invariance, the property that topological fea-
tures are defned not in terms of their position on a coordinate system, but rather, in terms 
of their shape. Therefore, TDA can identify a torus regardless of whether the torus is 
compressed or stretched; the torus and its transformations are said to be topologically 
equivalent. Topological invariants like the number of holes and cavities are properties 
of a topological space that are shared by the space and all its topological equivalents 
(Henle, 1994). Properties such as these characterise the invariant shape of a space. 

If we now move to the world of data, as Prof Gunnar Carlson reminds in his land-
mark paper (Carlsson, 2009) data have shape and this shape has a meaning. This idea is 
not new: linear regression, for example, is a well-established statistical technique based 
on the idea that the shape of data is linear – a line in two dimensions and a hyperplane in 
higher dimensions. Understanding the linear shape is key to understanding the relation-
ship between dependent and independent variables. However, data may resemble many 

b
a

Figure 1. The torus: has one connected component; two loops, since loops a and b are ‘distinct’ 
i.e. one cannot be transformed to the other along the torus’ surface; and one void, since there is 
one void in the centre of the doughnut. 
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Figure 2. Example of a fare, a single connected component consisting of three distinct groups 
of data 

other shapes which are harder to understand. Imagine, for example, data points that 
split into three distinct lines at a single point, forming a fare, i.e. a Y shape (Figure 2). 
Besides the fare, data may take on more complex shapes and unexpected behaviours, es-
pecially as the number of dimensions increases (e.g., the trefoil knot is knotted in three 
dimensions, but falls apart and becomes a trivial loop in four dimensions; see Figure 3). 

Figure 3. A trefoil knot 
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TDA provides techniques to describe these shapes by listing their topological in-
variants (such as holes or cavities), and to investigate the meaning of these topological 
features in terms of the specifc data problem or clinical context. 

2.1. Using TDA to help understand data structure 

The question to answer is how we can ‘build a bridge’ from the collected patient data to 
a space in which topological invariants can be computed. This can be achieved in three 
steps. 

Consider a dataset with m rows and n columns, where m is the number of obser-
vations in our sample (the number of patients, for example) and n is the number of 
measures collected for each patient. 

1. Firstly, we need to defne a measure to assess the proximity between any two 
data points – that is, to be able to measure how similar two patients are given 
the information we have for them. Interestingly, our data do not necessarily need 
to lie in the Euclidean space. As long as a distance can be computed between 
data points, we will be able to apply TDA tools. For ease of understanding, let 
us consider our data is made of numerical variables and let us represent them in 
a n-dimensional point cloud living in Rd , such that each patient becomes a point 
in the space, with each variable represented on a different coordinate axis. For 
the straightforward example of only two variables, values are drawn on the X and 
Y axes, but this can be extended to any number of dimensions, for three, four or 
more variables. In this way, we convert the patient data into a point cloud. For 
this particular case, we would assume that the point cloud is a fnite sample drawn 
from an existing topological space. In case of a circle (see Figure 4a), we would 
assume that our data are a fnite sample drawn from a 3D representation of a circle. 
In the Euclidean space Rd the natural choice of distance to assess similarity would 
be the Euclidean distance. There are also other distances that can be defned on 
numeric data as for example the Variance Normalised Euclidean or the Minkowski 
distance. When data are categorical rather than numeric, we can also defne many 
different distances as for example the Gower distance. 

2. Second, to highlight the underlying topology of the data we consider the construc-
tion of continuous shapes on top of the point cloud. These continuous shapes very 
commonly will be graphs. A graph is a fnite, discrete representation of the set of 
points that encodes a one (or higher) dimensional skeleton of the data (Chartrand, 
1985). Graphs are used in many data analysis applications and are much easier to 
visualise than the high-dimensional data used to construct them (see Figure 2). 

3. Lastly, having built graphs based on the point cloud, we are able to compute the 
persistence diagram (and the extended-persistence diagram). These are topolog-
ical signatures representing our data shape summary (Edelsbrunner et al., 2000; 
Zomorodian and Carlsson, 2005; Cohen-Steiner, Edelsbrunner and Harer, 2007; 
Carrière and Oudot, 2018). 
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Starting with a fnite point cloud (Step 1), the following sections will introduce two 
approaches to constructing graphs on top of the point cloud (Step 2): the simplicial com-
plex1 and the Mapper graph. We will present the concept of persistence diagram, and 
will see (Step 3) how a persistence diagram can be derived from a family of simpli-
cial complexes, and how a extended-persistence diagram can be derived from a single 
Mapper graph. 

2.2. The simplicial complex 

One way to construct a graph on top of point cloud data is by drawing a circle of radius 
ρ around each point in the cloud (Figure 4). If the corresponding circles for two points 
intersect, we connect the points with a line. If three circles intersect, we connect the 
three points to form a triangle, and so on. This particular graph is called a C̆ech com-
plex and is a type of simplicial complex. A simplicial complex is a graph formed by a 
set of points, lines, triangles, etc. Simplicial complexes generalise the concept of one-
dimensional graphs (formed only of edges and nodes) to allow other dimensional blocks 
like triangles (dimension 2), tetrahedrons (dimension 3) and so on. Besides the C̆ech 
complex, there are other types of simplicial complexes that can be constructed on top 
of point cloud data such as the Vietoris-Rips and the Alpha complex. In a Vietoris-Rips 
complex (Zomorodian, 2010) when 3 balls intersect (it can be a pairwise intersection, 
not all balls need to intersect), a triangle of dimension 2 is built. When 4 balls have a 
none empty intersection, a tetrahedron of dimension 3 is build, and so on. An Alpha 
complex is a simplicial complex constructed from the fnite cells of a Delaunay Trian-
gulation (Devillers, Hornus and Jamin, 2022). In terms of the topology of the Alpha 
complex (and its relationship with persistence theory) the Alpha complex is equivalent 
to the C̆ech complex and much smaller if one does not bound the radii. 

2.3. The Mapper graph 

A second approach to constructing a graph on top of a point cloud is by using the Mapper 
algorithm (Singh, Mémoli and Carlsson, 2007). The Mapper algorithm reduces complex 
data to produce a one-dimensional graph – the Mapper graph. This consists of nodes 
(sets of clustered subjects) and edges connecting those nodes and edges connecting those 
nodes with non-empty intersections (that is, subjects can appear in more than one node). 

The Mapper graph is built as follows. Suppose we have a fnite point cloud and can 
compute all distances between pairs of points within the cloud. Suppose also, that we 
have a function called the flter that assigns a real value to each point in the data set. 
Then, the Mapper algorithm proceeds in the following steps (Figure 5): 

1. Find the range of the flter function (i.e., the interval of all values that the function 
takes); 

1As simplicial complexes can be seen as higher dimensional generalizations of neighbouring graphs, we 
will make an abuse of notation and we will refer them as “graphs” throughout the paper 
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(a) A point cloud sampled from a circle 

(b) The sampled circle, now with smaller circles of an increasing radius ρ on top of each point 

(c) The resulting persistence diagram, for a single topological feature in dimension 1. 

Figure 4. Constructing the C̆ech complex of points sampled from a circle 
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Figure 5. The mapper graph: This shows the point cloud separated into intervals with diameter 
set by ‘resolution’ and overlap by ‘gain’. Figure adapted from Munch (2017) 

2. Divide the range into smaller, overlapping intervals; 

3. For each interval, fnd the set of data points whose values assigned by the flter 
function lie in the interval; 

4. Decompose each of these sets into clusters based on a chosen clustering algo-
rithm2; 

5. Represent each cluster by a node and connect nodes by an edge if the clusters 
intersect non-trivially, that is, they share data points. 

The algorithm leaves various important choices to the user: the choice of the flter, 
the number of intervals and their percentage of overlap, and the clustering algorithm. 
See Chazal (2016) and Carrière, Michel and Oudot (2018) for a formal and complete 
discussion on parameter selection for Mapper. Several past studies have suggested the 
approach of selecting Mapper parameters based on exploration of a grid of possible val-
ues — selecting values that produce interesting or stable graphs (Carrière et al., 2018). 
However, as emphasised by Carrière et al. (2019), while useful for a data-driven ex-
ploratory phase, in many situations this approach may produce sub-optimal results, es-
pecially for non-trivial datasets. An alternative approach (Carrière, 2019) is to perform 
automatic tuning of Mapper parameters based on the rate of convergence of the Mapper 
graph to its continuous analogue, the Reeb graph. We return to this below. 

2Any suitable clustering algorithm can be used; Refned analysis on the infuence of the clustering 
method on the Mapper has been recently investigated (Belchı́ et al., 2019). 
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2.4. The persistence diagram 

Recall our original goal is to obtain topological summaries that can describe complex 
structure in our data. Having constructed graphs based on the point cloud as described 
above, we can now use these graphs to compute topological invariants in our data (Chazal 
and Michel, 2021). One way to extract topological information is considering a family of 
simplicial complexes and coding the topological invariants in a two-dimensional diagram 
called the persistence diagram (Edelsbrunner et al., 2000). One can also identify the 
topological variants in a Mapper graph and represent them by means of the extended-
persistence diagram (Carrière, 2019). Let us introduce both approaches below. 

2.5. Persistence diagram for simplicial complexes 

Let us consider a family of complexes constructed over an increasing range of values 
of the radius ρ (see Figure 4). This gives a fltered complex, a sequence of complexes 
such that each one is contained in the next. For each complex, we can deduce its topo-
logical invariants and trace them through the fltration as ρ increases, thus identifying 
their ‘birth’ (the radius at which they frst appear) and ‘death’ (the radius at which they 
disappear). In Figure 4, the initial ˘ = 0.3 and 0.8 shows noCech complex for radius ρ 
hole. A hole appears at ρ = 1.5 (the birth time of the hole) but disappears at ρ = 5.0 
(the death time of the hole). So birth and death times represent radiuses at which the 
hole appears and disappears across the range of ρ values. The persistence diagram is a 
two dimensional plot where the X axis represents the birth time of a topological feature 
(a hole, in the example) and the Y axis represents its death time. The diagram includes 
a diagonal that represents the features that are born and die at equal time. The closer a 
point in the diagram is from the diagonal, the shorter was the life of that feature across 
the range of ρ values, i.e. the less persistent was the feature. 

Intuitively, persistent homology captures how topological features of a space persist 
through the fltration, for some given time-span. The term homology refers to a mathe-
matical (vector) space that represent the topological invariants in different dimensions. 
The homology group in dimension 0 represents the connectedness of the data space – a 
topological space is connected if it cannot be represented as the union of two or more 
disjoint non-empty open subsets. In dimension 1 the homology group represents the 
space of holes. In dimension 2 it represents the space of cavities, like the one we see in 
the torus or the ‘bubble’ inside the sphere, and so on (See Hatcher (2002) for a compre-
hensible introduction to homology). By identifying persistent features across a range of 
radiuses one avoids the need to choose a single radius ρ that would reveal the ‘essential’ 
topological features of the space. This ρ exists, and is mathematically proven, thanks to 
the combination of the nerve theorem and the reconstruction theorem (see Chazal and 
Michel (2021) for a formal formulation of both theorems). From a practical perspective, 
computing ρ rises many practical issues; a multiscale strategy has been introduced in 
(Chazal and Oudot, 2008). 

Persistence diagrams of fltrations built on top of datasets are very stable with re-
spect to some perturbations of the data. Thus, even for a dataset with some noise, the 
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persistence diagram obtained from this data is approximately correct because it is close 
to the diagram we would have obtained from the noise-free data (because the Gromov-
Hausdorff distance between both datasets is assumed to be small, see Chazal and Michel, 
2021). 

2.6. Persistence diagram for the Mapper graph 

The Mapper graph built under an optimal selection of the parameters involved in the 
algorithm (i.e. the flter function, intervals covering the range of the image of the flter 
function, and their overlap) is a discrete and computable optimal estimator of its contin-
uous counterpart, the Reeb graph (the Mapper graph is said to ‘converge’ onto the Reeb 
graph) (Carrière and Oudot, 2018). A Reeb graph is a mathematical object refecting the 
evolution of the level sets of a real-valued function on a topological space that locally 
resembles Euclidean space (see a Reeb graph in Figure 6 (iii)). From the Mapper graph, 
we can derive the extended persistence diagram (Figure 6) by tracing up and down the 
Reeb graph to identify pairs of critical points that mark the beginning (‘birth’ time) and 
the end (‘death’ time) of a topological feature in the associated Reeb graph. For example, 
Figure 6 shows the birth and death times for trunks, branches, and holes. 

2.7. Statistical stability of points in the persistence diagram 

As mentioned above, points on a persistence diagram with very short time spans, i.e. 
those points located close to the diagonal (the line representing points with equal birth 
and death), indicate features that appear and disappear quickly and which are more likely 
to be noise. We therefore may wish to discard ‘non-signifcant’ points that are close to 
the diagonal. One approach to assessing ‘closeness’ is to use the bootstrap to estimate 
and draw confdence bands on the persistence diagram, along the diagonal. Signifcant 
topological features will lie outside the confdence bands, whilst non-signifcant features 
will lie close to the diagonal, within the confdence bands, helping to distinguish between 
signal and noise (see Figure 7b) (Chazal, 2016). The bootstrap is a popular re-sampling 
method to quantify uncertainty around sample statistics (e.g. to estimate confdence in-
tervals around a mean). To derive the confdence interval for a persistence diagram we: 

1. Generate B bootstrap samples by re-sampling with replacement from the original 
source data, and construct a persistence diagram for each sample. 

2. We then derive the ‘distance’ between the original persistence diagram (built using 
the source data) and each bootstrapped persistence diagram using the Bottleneck 
distance: two persistence diagrams are superimposed and each dot in the frst dia-
gram is assigned to its closest counterpart on the second. The Bottleneck distance 
is then defned as the maximum distance between any pair of matching dots. This 
way we get a distribution of distances for which a central 95% of values can be 
computed and a confdence interval (D) derived. 



i)
 P

o
in

t c
lo

u
d

 
ii)

 M
a

p
p

e
r 

g
ra

p
h

 
iii

) 
R

e
e

b
 g

ra
p

h
 

D
ea

th
 

as
 

E
xt

+
 

■
o 

T
ru

n
ks

 g
o

in
g 

up
 (

a
1

, 
a 8

);
 

in
d

ic
at

es
 th

a
t t

ru
n

k 
is

 b
or

n 
in

 a
1 

a
n

d
 d

ie
s 

in
 a

8
. 

--
--

l-
--

--
~?

-1-
--

--
+

--
--

--
--

--
--

--
--

--
--

--
--

-/
 

a6
 

as
 

a4
 

a3
 

a2
 

a,
 

O
rd

o 

• 
-~---•

 Rel
1 

■
 

+
 

E
xt

1 

B
ra

n
ch

es
, g

oi
ng

 d
ow

n
, 

co
or

di
na

te
s 

(a
7

, 
a

5)
; 

in
d

ic
at

e
s 

th
a

t b
ra

nc
h 

is
 

bo
rn

 in
 a

7 
an

d 
di

es
 in

 a
5

. 

H
o

le
s

, g
oi

ng
 d

ow
n

, 
co

or
di

na
te

s 
(a

6
, 

a
3)

; 
a 

ho
le

 is
 b

or
n 

in
 a

6 
an

d 
d

ie
s 

in
 a

3 

.
.
_

_
-
-
-
-
-
-
-
-
-
-
-
-
-
+

B
i
r
t
h

 
a,

 a
2 

a6
 

a7
 

B
ra

n
ch

es
, g

oi
ng

 u
p

, c
oo

rd
in

a
te

s 
(a

2,
 a

,)
 in

di
ca

te
s 

th
a

t a
 b

ra
nc

h 
is

 
b

o
rn

 i
n

 a
2 

an
d

 d
ie

s 
in

 a
4

. 

125 Raquel Iniesta et al. 

Fi
gu

re
 6

. E
xt

en
de

d 
pe

rs
is

te
nc

e 
di

ag
ra

m
 



3. Finally, this confdence interval is drawn on the graph as a band spreading away 
from the diagonal (in both directions, each with width D), or as boxes around each 
point (of radius D). 

The points outside the confdence band are considered as signifcant topological 
structures in the data, whereas those lying within the band’s limits around the diagonal 
represent insignifcant structures in the data set, and therefore are considered as noise 
and should not be interpreted nor processed for further analysis. This is a developing 
feld, and while the validity of the use of the bottleneck bootstrap has been proven for 
the persistence diagram computed for a fltration of simplicial complexes, its use still re-
mains as an open problem for the extended persistence diagrams computed for Mapper 
graphs (Carrière et al., 2018). 

2.8. Use of Persistence Landscapes for outcomes prediction 

Persistence Landscapes (Bubenik, 2015) can be used to convert a persistence diagram 
(built from a fltration of simplicial complexes) into a vector space suitable for inclusion 
in ML models. Suppose we have a persistence diagram where each point represents the 
birth and death of a hole in our data. The corresponding persistence landscapes are con-
structed by ‘tenting’ each point in the diagram as shown in Figure 7c, to produce a col-
lection of continuous piecewise linear functions, i.e. functions whose graph is composed 
of straight-line sections. Discretising the landscapes in a number of points produce a 
set of variables that encode the topological structure of data and can be included as pre-
dictors in a ML model. Interestingly, persistence landscapes share the same stability 
properties as persistence diagrams, described above. 

2.9. Use of Mapper for subgroups detection, variable selection and data 
visualisation 

The Mapper graph can be useful to identify homogeneous subgroups of patients with 
regards of a characteristic of interest (Carr et al., 2021). The Mapper algorithm can 
highlight interesting clusters in data that might not be recoverable with traditional statis-
tical clustering methods. Consider a data-based Mapper graph following the fare shape 
(the Y shape mentioned earlier; Figure 2). This could be interpreted as a single cluster 
of data. However, each arm could potentially represent a distinct data sub-population. 
The characterisation of topological features in a graph, like particular fares or loops, 
can help identify clinically relevant groups of nodes comprising subjects that experience 
particular prognostic outcomes or levels of treatment response. 
Mapper can also be used to perform variable selection. One can build a Mapper graph 
from data, identify interesting structures as fares, loops or distinguished groups of 
coloured nodes, and then select the variables that best discriminate the data in these 
structures. Variables can then be assessed one-by-one for their ability to discriminate the 
potential sub-populations from the rest of the data using classical tests, as Kolmogorov-
Smirnov. Interestingly, one can also consider a multivariate feature selection for which 
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(a) The persistence diagram for a single point (b) Persistence diagram, showing the bootstrapped 
cloud confdence interval. Points outside the interval are 

considered statistically signifcant. 

(c) The computed persistence landscape, formed by ‘tenting’ the signifcant points on the persistence dia-
gram. The frst landscape is in blue, the second in green, and the last in orange. 

(d) ‘Discretising’ each landscape on a number of points, by selecting a discrete grid of values on the X-axis, 
and computing their corresponding Y -value on each persistence landscape. 

Figure 7. Constructing the persistence landscape based on signifcant topological features 
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Mapper can be used in conjunction with ML. Those detected fares and loops are given 
class labels, and a ML model including the desired set of predictors is tuned to solve 
the classifcation task of distinguishing one class from the other. This way, Mapper 
achieves two goals: identifying new sub-populations and selecting the combination of 
features that best differentiate them. We have implemented this ML based procedure to 
identify interesting subgroups and features in a pipeline that we will use below (https: 
//github.com/kcl-bhi/mapper-pipeline). 

The Mapper graph is also useful as a visualisation tool. If we select a set of intervals 
where no more than two intervals can intersect at once, Mapper becomes a visualisation 
tool that refects the topology of the data. Mapper has a multi-resolution structure, i.e. 
by choosing the number of intervals and the percentage overlap between them, the user 
can adjust the level of the detail at which to view their data. 

3. Application to a data case: using TDA to characterise depression 
remission in the GENDEP study 

The Genome-based Therapeutic Drugs for Depression (GENDEP) is a pharmacogenetic 
study of antidepressant treatment response (Uher et al., 2010a). The GENDEP study 
aims to fnd a way to use clinical and genetic information about patients to help doctors 
decide which antidepressant treatment will work best for each patient, and with the least 
side-effects. A total of 220 patients were randomly allocated to be treated with escitalo-
pram drug, a standard drug that is commonly prescribed to treat depressive symptoms. 
Over 12 weeks the study collected sociodemographic and clinical data including depres-
sive symptoms. For each participant there were available sociodemographic variables 
(at baseline only) as age, age at onset, gender, smoking (yes/no), occupation (yes/no), 
partner (yes/no), years of education, number of children and body mass index. There 
were also available weekly repeated measures (from baseline to week 12) of depression 
severity by means of several standard scales: MADRS (Montgomery and Åsberg, 1979), 
Hamilton-17 (Hamilton, 1967), BDI (Beck et al., 1961), SCAN (Wing et al., 1990) and 
suicidal ideation (Perroud et al., 2012). Each scale assessed several individual items and 
was coded as a number (between 4 and 6, depending on the scale) of possible answers 
to a statement or question that allows respondents to indicate their positive-to-negative 
strength of agreement or strength of feeling regarding the question or statement. For 
example, the MADRS included 10 items assessing aspects such (1) apparent sadness; 
(2) reported sadness; (3) inner tension; (4) reduced sleep; (5) reduced appetite; (6) con-
centration diffculties; (7) lassitude; (8) inability to feel; (9) pessimistic thoughts; and 
(10) suicidal thoughts. Then each of these items was measured following a numerical 
codifcation ranging from 0 to 6 depending on the patient’s strength of agreement. The 
ten resulting scores were then added to build a total numerical score. The rest of the 
scales were defned similarly. Data also included six symptoms dimensions (mood, anx-
iety, pessimism, interest-activity, sleep, appetite) from a published factor analysis (Uher 
et al., 2008, 2012). Remission was assessed for each patient at the last available mea-

https://github.com/kcl-bhi/mapper-pipeline
https://github.com/kcl-bhi/mapper-pipeline
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surement after 4 – 12 weeks of treatment. Remission was defned as scoring ⩽ 7 on 
the Hamilton-17 scale (Hamilton, 1967), a commonly used defnition for remission of 
depressive symptoms. A total of 94 patients remitted. 

3.1. An analytical pipeline to predict remission depression 

We aimed to use sociodemographic and clinical repeated measures in GENDEP to pre-
dict remission of depression. We implemented an analytical pipeline to compute per-
sistence landscapes (and thus summaries of topological features) of our data, and in-
cluding them in a ML model to predict remission. The pipeline requires Python 3.6 or 
higher (van Rossum, 1995) and R 4.1.2 or higher (R Core Team, 2020). It uses Sci-
kit learn (Pedregosa et al., 2011) and Gudhi (The GUDHI Project, 2015) Python pack-
ages to derive the topological features based on the construction of persistence land-
scapes, and caret (Kuhn, 2008) and glmnet (Friedman, Hastie and Tibshirani, 2010) 
R packages to ft an elastic net logistic regression model that includes the topological 
features as predictors of a binary outcome. The pipeline can be freely downloaded at 
http://github.com/kcl-bhi/topological-review. 

We used the pipeline to compute topological summaries on longitudinal measures of 
depression severity from baseline up to week 4 (a total of 5 time points). We included 
weekly total scores for MADRS, Hamilton-17, BDI and suicidal ideation, and a com-
posite score for suicidal ideation3. We additionally included observed mood, cognitive 
and neurovegetative symptoms measured by means of the SCAN interview and the six 
symptoms dimensions from Uher et al. (2008, 2012) giving a total of 14 items measured 
on 5 occasions (a 14 × 5 matrix for each participant). 

The detailed analytical pipeline we used was: 

1. For each patient, compute the persistence diagram for a complex fltration based 
on the available data matrix (Figure 7a). For this case we computed an Alpha 
Complex fltration based on a 14 × 5 matrix (14 points in dimension 5). We con-
sidered the connected components and holes from the complex and created the 
associated persistence diagrams. 

2. Compute the persistence landscape for each persistence diagram (Figure 7c). For 
this example, we computed the frst three landscapes. The choice of how many 
landscapes to include can be guided by the predictive performance of the model 
(i.e. select the number of landscapes that maximises the predictive ability). 

3. Discretise each landscape on a number of points (i.e. consider a discrete grid of 
values on the X-axis, and their corresponding Y -value on each persistence land-
scapes) (see Figure 7d). In our example, we considered the values of each per-
sistence landscape on a grid of 1000 equidistant points, so that each patient was 

3Composite scores are combinations of items that are highly related. They are computed from data in 
multiple variables in order to form reliable and valid measures of latent, theoretical constructs. These can 
be tested through factor analysis and reliability analysis (Ioannidis, Klavans and Boyack, 2016). 

http://github.com/kcl-bhi/topological-review
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described by 6000 topological variables (3 landscapes × 1000 points × 2 dimen-
sions). As one increases the number of discretisation points, the discretisation er-
ror will decrease but the resulting number of variables will increase. This decision 
should be based on the sample size available, although variable selection can help. 

4. Include the topological variables together with the baseline variables as predictors 
in an elastic net logistic regression model to predict remission (yes or not). We 
chose a regularised regression model as this is effcient in preventing the risk of 
overftting in complex data (i.e., when the model predicts well in known data, but 
generalises poorly to new cases) and performs variable selection, which helps to 
remove from the model topological variables that are not adding relevant informa-
tion. 

Parameter tuning for the elastic net regression model was performed with repeated (100 
repetitions) 10-fold cross-validation. We compared (1) a model including sociodemo-
graphic and clinical variables only at baseline, and (2) a model including baseline so-
ciodemographic and clinical variables and the topological variables derived from longi-
tudinal measures on depression severity up to week 4, as described in the pipeline. 

3.2. Results 

In this preliminary analysis, the area under the ROC curve (AUC) for predicting remis-
sion was 0.746 for the model only including baseline measurements, which compared to 
an AUC of 0.799 when topological variables were added. This represented a promising 
improvement in predictive performance resulting from the inclusion of topological vari-
ables. Interestingly, the automated feature selection by the elastic net selected topologi-
cal variables for both dimensions, that is, connected components and holes, as relevant 
variables for the prediction. The frst landscapes tended to capture the most topological 
information, with subsequent landscapes bringing diminishing returns. 

3.3. Using Mapper for subgroups detection in GENDEP 

We used the Mapper algorithm to derive interesting clusters of patients in GENDEP 
based on their clinical and genetic baseline characteristics (full results are presented at 
Carr et al., 2021). We implemented a pipeline to tune the parameters of the Mapper 
graph seeking to maximise the purity of a given outcome variable within derived clus-
ters of patients. A cluster of patients was defned as those patients with data belonging 
to a topological feature identifed in the Mapper graph (i.e., a fare, a loop...). Mapper 
parameters were tuned to maximise the within clusters’ level of purity with regards of de-
pression remission (purity was computed by means of the Gini coeffcient). Our pipeline 
allows predicting membership to a cluster using gradient boosted trees (XGBoost). This 
way it allows selecting the combination of variables that best differentiate a cluster of 
patients. The protocol also allows to consider both categorical and continuous variables 
(recent research in COVID-19 indicated high demand of such type of algorithms that are 
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suitable for mixed data types, see Khan et al., 2021). The pipeline can be freely down-
loaded under the GNU GPLv3 license at https://github.com/kcl-bhi/mapper-pipeline. 

As it is shown in detail in Carr et al. (2021) when we applied our pipeline to the 
GENDEP dataset remission purity increased in the resulting clusters in comparison with 
the whole sample. We ranked the resulting clusters according to their remission purity, 
and, interestingly, the top fve clusters from our pipeline outperformed the fve-cluster 
solution from k-means clustering in terms of remission purity. Gini index in our clusters 
ranged from 0.30 to 0.38, whilst in clusters from k-means ranged from 0.33 to 0.50. 
A combination of clinical and genetic baseline measurements was able to discriminate 
patients in one of our top clusters with excellent discrimination. 

4. TDA software 

In practice, there are various algorithms implementing methods to produce simplicial 
complexes (the C̆ech complex and others) and compute topological invariants such as 
persistence diagrams and persistence landscapes. A good summary of software to im-
plement persistent homology is given in Otter et al. (2017). There exist several general 
purpose libraries for topological data analysis including GUDHI (The GUDHI Project, 
2020), Dionysus (Morozov, 2007), and PHAT (Bauer et al., 2017). All are written in C++ 
and provide fast and effcient implementations of common topological invariants, with 
interfaces available for R and Python. Several packages have built upon these libraries 
to facilitate the application of common topological algorithms. The TDA package for 
R (Fasy et al., 2014) provides a user-friendly interface for R users. The statmapper 
(Carrière, 2020) Python package functions to derive extended persistence diagrams, to 
compute topological features in a Mapper graph and evaluate their statistical signif-
cance, using the bootstrap. 

We have presented a pipeline that allows including summaries of topological fea-
tures in a ML predictive model using persistence landscapes (http://github.com/kcl-bhi/ 
topological-review) and a pipeline to identify sub-populations and perform multivariable 
selection using Mapper (https://github.com/kcl-bhi/mapper-pipeline). 

5. Conclusion 

TDA is a rapidly growing feld that offers a unique set of tools with considerable poten-
tial for precision medicine. Topological summaries derived from persistence diagrams 
and landscapes have shown promising results in specifc examples when included in ma-
chine learning predictive models, resulting in improved model performance, as we show 
in an application to a clinical trial on major depression. The Mapper algorithm makes it 
possible to identify homogeneous sub-populations of interest in complex data and deriv-
ing features that can be used to discriminate these groups. This paper provides a basis 
for the promising role that TDA can play in precision medicine using large biomedical 
datasets. 

https://github.com/kcl-bhi/mapper-pipeline
http://github.com/kcl-bhi/topological-review
http://github.com/kcl-bhi/topological-review
https://github.com/kcl-bhi/mapper-pipeline
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Abstract 

In the context of logistic regression models, a cut-off point is usually selected to di-
chotomize the estimated predicted probabilities based on the model. The techniques 
proposed to estimate optimal cut-off points in the literature, are commonly developed 
to be applied in simple random samples and their applicability to complex sampling de-
signs could be limited. Therefore, in this work we propose a methodology to incorporate 
sampling weights in the estimation process of the optimal cut-off points, and we evalu-
ate its performance using a real data-based simulation study. The results suggest the 
convenience of considering sampling weights for estimating optimal cut-off points. 
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1. Introduction 

Survey data are gaining popularity in a number of felds, including but not limited to, 
social and health sciences. This type of data is data collected from a fnite population, 
concerned to be studied, by some complex sampling design such as stratifcation or 
clustering, among others (Kalton, 1983). One of the differences between complex sur-
vey data and simple random samples is that, in the frst, each sampled observation has 
assigned a sampling weight, which indicates the number of units that this observation 
represents in the fnite population. Therefore, the straightforward application of the most 
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commonly applied statistical techniques, which are typically designed to be applied to 
simple random samples, is usually not suitable for complex survey data (Skinner, Holt 
and Smith, 1989). 

In this paper, we focus on the particular case of a binary response variable Y and, 
specifcally, on the logistic regression model to predict Y according to a collection of 
covariates whose distribution may be discrete or continuous. From a practical point 
of view, one of the most important characteristics of this kind of model is the support 
they provide for decision-making, since increasing knowledge about potential predictors 
helps the decision-making process (Steyerberg, 2008; Baker and Gerdin, 2017). In this 
context, decisions such as whether or not to recommend a patient to start treatment, or to 
give a diagnosis about a disease, are based on the individual risk (probability) of event 
given by the estimates of the logistic regression model. In order to make these decisions, 
frst, for each individual, the predicted probability of event is classifed based on a cut-off 
point. In this way, for example, if the individual’s probability of suffering from extreme 
poverty is greater than the selected cut-off point, he or she is assigned a social beneft, 
while in contrast, if that is lower no social support is provided (Steyerberg, 2008; Pauker 
and Kassirer, 1980). Hence, cut-off point estimation is widely employed in practice, 
in the feld of prediction models, especially, but not exclusively, in clinical prediction 
models (Steyerberg et al., 1999; Chen et al., 2015; Spence et al., 2018). 

At this point, the main issue is usually to select a valid cut-off point that will provide 
the best classifcation of individuals in practice. Many strategies have been proposed in 
the literature in order to estimate optimal cut-off points. It should be noted that we can 
not talk about optimal cut-off points in general terms. In contrast, a cut-off point will or 
will not be the optimal depending on the objective of a particular study. Therefore, when 
we talk about selecting an optimal cut-off point, we are talking about selecting the one 
which satisfes a certain optimality criterion. Hence, as we have mentioned above, dif-
ferent techniques have been proposed to select optimal cut-off points, given a particular 
criterion. For instance, some of those methods select the optimal cut-off point with the 
aim of obtaining a certain value of sensitivity/specifcity (i.e., probability of classifying 
correctly an individual with/without the event of interest) or to maximize a function of 
these two parameters as for example the Youden index (Youden, 1950). Some others 
select the cut-off point that maximizes some particular indexes, such as Kappa (Cohen, 
1960; Greiner, Pfeiffer and Smith, 2000). Greiner (1995, 1996) proposed a method to 
select the optimal cut-off point that minimizes the error or either maximizes the accu-
racy of the classifcation rule. There are some other methods that select optimal cut-off 
points based on some other criteria related to several parameters such as predicted values 
(i.e., probability of event/non-event for an individual classifed as event/non-event) (Ver-
mont et al., 1991) or prevalence (i.e., the probability of event in the population) (Manel, 
Williams and Ormerod, 2001), among others. Besides, other methods are based on the 
analysis of the cost of incorrect and the beneft of correct diagnosis (Swets, 1992; Pauker 
and Kassirer, 1980; Wynants et al., 2019). An extensive review of those techniques can 
be found in L´ on et al. (2014). opez-Rat´ 
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However, those techniques have usually been designed and applied for simple ran-
dom samples and, as far as we know, there is a lack of proposals to consider complex 
sampling designs, and in particular sampling weights, throughout the estimation pro-
cess of optimal cut-off points. It is widely known that when the sampling designs are 
not considered for the analysis of data derived from complex surveys the variances tend 
to be underestimated, which can lead to biased estimates of test statistics (Yao, Li and 
Graubard, 2015; Skinner et al., 1989; Heeringa, West and Berglund, 2017; Binder and 
Roberts, 2009). In the same way, we believe that sampling weights should not be ig-
nored when estimating optimal cut-off points when working with complex survey data. 
Therefore, in this work, we propose a methodology to modify some of the methods to 
select optimal cut-off points of the probability of event in the logistic regression frame-
work that have been previously proposed in the literature, so that they take into account 
sampling weights in the estimation process. In addition, the performance of the proposed 
methods is compared to the performance of those which ignore the sampling weights, 
by means of a simulation study. In particular, we focus on surveys which are based on 
one-step stratifed samples. 

The rest of the paper is organized as follows. Section 2 describes the real survey that 
has motivated this work. Section 3 defnes some basic notation that will be used along 
the rest of the paper. Furthermore, we describe some of the methods that are usually 
applied in practice to estimate optimal cut-off points of the probability of event in the 
logistic regression framework and fnally we propose a new methodology which takes 
into account the effect of the sampling weights in the cut-off point estimation process. In 
Section 4, we describe the simulation process that has been carried out so as to study the 
performance and effectiveness of the proposed method to incorporate sampling weights 
into the estimation process of optimal cut-off points and we show the results we have 
obtained in the mentioned simulation study. The methodology proposed in this work has 
been applied to real survey data and this application is described in Section 5. Finally, 
we conclude with a discussion in Section 6. 

2. Motivating data set 

This work has been motivated by the Survey on the Information Society in Companies1, 
which has been designed, conducted and collected by the Offcial Statistics Basque Of-
fce (Eustat). This survey, which is usually denoted as ESIE survey due to its Spanish 
acronym, is carried out annually among the companies in the Basque Country (BC) in or-
der to collect information about the implementation of New Information and Communi-
cation Technology in the companies of the BC. In particular, the information considered 
in this study is related to the survey carried out in 2010. 

The fnite population is defned by a total of 14 200 companies, all of which have 
at least 10 employees. From this population a sample of 2 852 was obtained by means 

1https://en.eustat.eus/estadisticas/tema 150/opt 1/tipo 7/temas.html 
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of one-step stratifed sampling technique with simple random sampling in each stra-
tum. Strata are defned by means of the combination of three categorical variables: the 
province where the company is located (3 categories), activity of the company (65 cate-
gories) and the number of employees (2 categories). In this way, a total of 390 different 
strata have been defned. However, it should be noted that in some of these strata there 
are no units in the population, so in fact we have 325 strata in total (h = 1, . . . ,H, where 
H = 325). Once the sample is obtained, a sampling weight is assigned to the companies 
sampled in each stratum. The sampling weight (wi, ∀i ∈ S) is calculated per stratum as 
the total number of companies in the fnite population of the stratum (let us denote it 
as Nh, ∀h ∈ {1, . . . ,H}) divided by the number of companies sampled in that stratum 
(denoted as nh, ∀h ∈ {1, . . . ,H}). In other words, for a unit i sampled from stratum h its 
sampling weight is computed as follows: 

Nh wi = , ∀i ∈ S. (1)
nh 

Each sampling weight indicates the number of companies that this sampled company 
represents in the fnite population. 

In the survey data considered for this paper, strata sizes in the fnite population (i.e., 
Nh, ∀h ∈ {1, . . . ,H}) ranges from 1 to 860, where the median is 12 and the interquartile 
range 4 −44. An unequal probability sampling design has been applied in the sampling 
process, in which the probabilities of being sampled from each stratum (i.e., nh/Nh, ∀h ∈ 
{1, . . . ,H}) range from 0.0391 to 1 (with a median of 0.6667 and an interquartile range 
of 0.2604 − 1). The dichotomous response variable considered for this work indicates 
whether a company has its own website (1) or not (0). The probability of event in 
the sample (without considering the sampling weights) is 0.8222, while the weighted 
estimate of the probability of event (computed by taking into account the number of 
units that each element represents in the fnite population by means of the sampling 
weights wi, ∀i ∈ S) is 0.7544. 

3. Methods 

In this section, frst of all, we introduce the basic notation that we will use throughout 
this document. In addition, we describe some of the methods that are usually applied 
for estimating optimal cut-off points in this context based on different optimality criteria 
for simple random samples. Finally, we develop a new estimation method, in which 
we propose to introduce the sampling weights in these methods so that they are valid in 
complex design samples. 

3.1. Basic notation and preliminaries 

Let X = (X1, . . . ,Xp)
T be a vector of p random predictor variables denoting the covariates 

and Y a random variable denoting the dichotomous response variable. Without loss of 
generality, and in order to ease the notation, suppose that the covariates X are continuous 
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and the response variable Y takes the value 1 to represent the event or the presence of 
the characteristic of interest, and 0 otherwise. Let P(Y = 1|X) represent the conditional 
probability of event given the vector of covariates X . Then, the linear form of the logistic 
regression model for Y is written as follows: 

˜ ° 
P(Y = 1|X)

logit (P(Y = 1|X)) = ln = β T X , (2)
1 − P(Y = 1|X) 

being β = (β0, . . . ,βp)
T the vector of regression coeffcients. 

Consider U = {1, . . . ,N} a fnite population of N units. In the context of complex 
survey data, let S be a sample of n units drawn from the fnite population by some 
complex sampling design. To each sampled observation i ∈ S, a set of values (yi,xi,wi) 
is associated where each sampling weight wi indicates the number of units that i ∈ S 
represents in the fnite population (note that ∑i∈S wi = N) and yi and xi indicate the 
realizations of the variables Y and X for the sampled units, respectively. For each i ∈ S 
let us defne its probability of event as p(xi) = P(Y = 1|X = xi), which can be estimated 
as follows: 

T
β̂ xie 

p̂(xi) =  T (i ∈ S), (3)
β̂ xi1 + e 

Twhere the estimated regression coeffcients β̂ = (β̂0, . . . , β̂ 
p) , are usually obtained by 

maximizing the weighted pseudo-likelihood function, defned as (Binder, 1981, 1983): 

PL(β ) = ∏ p(xi)
yiwi (1 − p(xi))

(1−yi)wi . (4) 
i∈S 

3.2. Optimal cut-off point estimation methods 

It is usually very useful in practice to select a cut-off point in order to distinguish between 
units with and without the event of interest. In our particular case, we are interested 
in discriminating between units with and without the event of interest based on their 
estimated probability of event. In this context, one observation i ∈ S is usually classifed 
as event if its estimated probability of event exceeds a determined threshold c which has 
been previously selected (Magder and Fix, 2003; Pepe, 2003). The correct classifcation 
of an observation with the event of interest is usually denoted as true positive (TP), while 
the correct classifcation of an observation without the event of interest is commonly 
denoted as true negative (TN). But usually, those classifcations are not entirely accurate. 
Therefore, some of the observations are commonly classifed incorrectly: an observation 
with the event of interest may be classifed as non-event (false negative (FN)) or an 
observation without the event of interest may be classifed as event (false positive (FP)). 

Methods of estimation of the optimal cut-off point have been developed in the liter-
ature, with the aim of optimizing diverse measures. In particular, many methods consist 
on the optimization of an objective function of the Receiver Operating Characteristic 
(ROC) curve, which is a curve that describes the global accuracy of a model (Bamber, 
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1975; Pepe, 2003). Coming back to our particular case, taking into account that the pre-
dicted probabilities range from 0 to 1, the ROC curve of a logistic regression model can 
be defned as follows (Hosmer and Lemeshow, 2000; Pepe, 2003): 

ROC(·) = {(1 − Sp(c), Se(c)) , c ∈ (0,1)} , (5) 

where Se(c) and Sp(c) are defned as follows and denoted as sensitivity and specifcity, 
respectively: 

Se(c) = P [P(Y = 1|X)≥ c|Y = 1] , 
(6)

Sp(c) = P [P(Y = 0|X)< c|Y = 0] . 

In practice, following the notation defned so far, assume that to each sampled ob-
servation i ∈ S a set of values (yi,xi,wi) is associated. Suppose that the vector β̂ is 
obtained by means of the pseudo-likelihood function in (4) and p̂(xi) are estimated for 
i ∈ S following (3). Let us defne the following groups of correctly or incorrectly classi-
fed observations, for a specifc cut-off point c: 

T Pc = {i ∈ S : yi = 1 and p̂(xi)≥ c} , T Nc = {i ∈ S : yi = 0 and p̂(xi)< c} , 
(7)

FPc = {i ∈ S : yi = 0 and p̂(xi)≥ c} , FNc = {i ∈ S : yi = 1 and p̂(xi)< c} . 
In addition, let us defne an indicator function associated to each of the sets defned in 
(7) as follows. For example, for the set T Pc: 

˜ 
1 if i ∈ T Pc,1T Pc(i) =  (8)
0 if i ∈/ T Pc. 

In the same way, indicator functions can be defned as in (8) for the rest of the sets 
described in (7), which will be denoted as 1T Nc(i), 1FPc(i) and 1FNc(i), hereinafter. Then, 
for a specifc cut-off point c, sensitivity and specifcity parameters can be estimated based 
on sample S as follows: 

° ∑i∈S 1T Pc(i) ˛ ∑i∈S 1T Nc(i)Se(c) =  , Sp(c) =  . (9)
∑i∈S [1FNc(i)+1T Pc(i)] ∑i∈S [1T Nc(i)+1FPc(i)] 

For this study, we have selected some of those methods which are based on several 
optimality criteria related to sensitivity and specifcty parameters: 

• Youden (Youden, 1950; Greiner et al., 2000): This method selects the cut-off point 
(cYouden) that maximizes the Youden Index, which is defned as the sum of sensi-
tivity and specifcity parameters minus one, i.e., 

˝ ˙ 
Youden ° c = Se(c)+˛ . (10)argmax Sp(c)− 1 

c∈(0,1) 

• MaxProdSpSe (Lewis et al., 2008): This method selects the cut-off point c that 
maximizes the product between sensitivity and specifcity parameters, i.e., 

˝ ˙ 
MaxProdSpSe ° ˛c = argmax Se(c) · Sp(c) . (11) 

c∈(0,1) 
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• ROC01 (Metz, 1978; Vermont et al., 1991): This method selects the cut-off point 
c that minimizes the distance between the ROC curve and the point (0,1), i.e., 

˜ ˝ 
ROC01c = argmin ( ° Sp(c)− 1)2 . (12)Se(c)− 1)2 +(˛ 

c∈(0,1) 

• MaxEffciency (Greiner, 1995, 1996): This method selects the cut-off point c that 
maximizes the effciency or, in other words, minimizes the error, i.e., 

˜ ˝ 
MaxEff ° pY pY )˛ 

c∈(0,1) 
c = argmax ° Se(c)+(1 − ° Sp(c) , (13) 

where p° Y is the estimated prevalence which is calculated as follows: 

p° Y = 
1 ∑ [1FNc (i)+1T Pc (i)] . (14)
n i∈S 

3.3. Cut-off point estimation proposal with sampling weights 

Although sensitivity and specifcity parameters, as well as the prevalence, can be esti-
mated by expressions (9) and (14) in any kind of data, including complex survey data, 
these expressions have been defned in a simple random sampling scenario. However, in 
complex survey data each of the sampled units has a sampling weight associated, which 
indicates the importance of each of them within the sample. Thus, the infuence of all 
sampled units is not uniform. Therefore, we believe that the estimates obtained by means 
of the above-mentioned formulas may be misleading for complex survey data and they 
should be pondered, so that they incorporate the sampling weights. In this way, instead 
of the number of correct or incorrect classifcations in sample S, it should be considered 
the number of units that these correctly or incorrectly classifed observations represent 
in the fnite population. For this reason, we propose to consider the sampling weights wi 

to estimate sensitivity (Se° w(c)) and specifcity (˛ (c)) parameters as follows: Spw 

∑i∈S wi · 1T Pc (i) ∑i∈S wi · 1T Nc (i)° , ˛ (c) =  . (15)Sew(c) =  Spw∑i∈S wi · [1FNc (i)+1T Pc (i)] ∑i∈S wi · [1T Nc (i)+1FPc (i)] 

where the indicator functions are the ones described in (8). 
In addition, note that sampling weights should also be considered to estimate the 

prevalence (p° Y,w): 

p° Y,w = 
1 ∑wi · [1FNc (i)+1T Pc (i)] . (16)
N i∈S 

Therefore, we propose to estimate the optimal cut-off points based on the modifed pa-
rameters of sensitivity (Se° w(c)) and specifcity (˛ (c)) when working with complex Spw 
survey data, i.e.: ˜ ˝ 

Youden ° c = argmax Sew(c)+˛ (c)− 1 , (17)Spww 
c∈(0,1) 
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˜ ˝ 
MaxProdSpSe ° c = argmax Sew(c) ·˛ (c) , (18)Spww 

c∈(0,1) ˜ ˝ 
ROC01c = argmin ( ° Spw , (19)Sew(c)−1)2 +(˛ (c)−1)2 
w 

c∈(0,1) 
˜ ˝ 

MaxEff ° c = argmax ° Sew(c)+(1 − ° Spw(c) . (20)pY,w pY,w)˛ 
w 

c∈(0,1) 

4. Simulation study 

This section describes the simulation process developed in this work and the scenarios 
that have been drawn. The results obtained in this simulation study are also presented in 
this section. 

As stated above, the aim of this work is to study the infuence of sampling weights in 
the estimation process of optimal cut-off points for the methods described in Section 3.2. 
Since the decision of which optimal cut-off point estimation method to use in practice 
depends on the research of interest, the objective of this work is not to compare the 
behaviour of the methods among them, but to compare the estimates that we obtain for 
each of these methods when sampling weights are considered or not in the estimation of 
sensitivity and specifcity parameters. 

In addition, we study the impact that the proposed estimators have in the estima-
tion of the probability of event in the fnite population. Therefore, a theoretical fnite 
population is required, in which the response variable is known for all the units in the 
fnite population. Thus, a pseudo-population has been generated based on real survey 
data. The real survey on which this pseudo-population is based is described in Section 2 
and the process followed to generate it is explained in detail in Appendix A. The pseudo-
population sampling process, which is replicated several times in the simulation study, is 
also based on the same real-life survey. This sampling process is described in Appendix 
B. 

4.1. Scenarios and set up 

Let U = {1, . . . ,N} be the pseudo-population generated by following the steps described 
in Appendix A to which {(yi,xi)}N 

1 are assigned. From this pseudo-population, a totali= 
of R = 500 samples have been obtained and the sampling weights have been assigned to 
the sampled units by the sampling process described in Appendix B. The optimal cut-off 
points estimation methods that have been applied in this study are the ones described in 
Section 3.2, i.e., m ∈ {Youden, MaxProdSpSe, ROC01, MaxEffciency}. 

The steps that have been followed in the simulation study are described below. For 
r = 1, . . . ,500: 

Step 1. Draw a sample Sr ⊂ U by one-step stratifcation with simple random sampling 
without replacement in each stratum (Appendix B, mimicking the sampling pro-
cess carried out for the real-life dataset described in Section 2). 
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r
Step 2. Fit the logistic regression model to Sr and estimate β̂ by (4). 

r
Step 3. For i ∈ Sr, estimate p̂r(xi) by means of β̂ following (3). 

m,rStep 4. Estimate the optimal cut-off points, cm,r (see (10), (11), (12), (13)) and cw (see 
(17), (18), (19), (20)) for each method m. 

As mentioned above, the selection of the optimality criteria for selecting the cut-off 
points is based on the particular goal of each study. Therefore, our goal is not to 
compare the performance of the described methods between them. That is, the aim 
is not to compare the performance of a method m ∈ {Youden, MaxProdSpSe, ROC01, 
MaxEffciency}, to the rest of the methods, but to compare the cut-off points selected by 
means of the method m when sampling weights are considered or not in the estimation 
process. Thus, we defne the difference and absolute difference between weighted and 
unweighted cut-off points as follows: 

m,r m,rDiff m,r = cm,r − c and AbsDiff m,r = |cm,r − c | . (21)w w 

In addition, we would also like to regard the impact that may have the decision to 
select weighted or unweighted optimal cut-off points in the classifcation of all the units 
in the fnite population. Thus, we continue with the simulation study as follows: 

r
Step 5. For i = 1, . . . ,N calculate p̂r(xi) by means of β̂ (Step 3.) following (3). 

Step 6. For i = 1, . . . ,N classify each unit as event or non-event based on p̂r(xi). Defne 
m,r m,rtwo estimated responses ( ̂y and ŷw,i ) for each unit based on the cut-off pointsi 

m,r cm,r and cw (selected in Step 4.) as follows. For each method m and i = 1, . . . ,N: 

˜ ˜ m,r 
m,r 1 if p̂r(xi)≥ cm,r , m,r 1 if p̂r(xi)≥ cw ,ŷ = and ŷ = m,ri p̂r(xi)< cm,r w,i0 if , 0 if p̂r(xi)< cw . 

Finally, in order to account for the error that may be introduced in the classifcation 
of the units in the fnite population by the selected optimal cut-off points, one more 
parameter is defned. The error is estimated by comparing the prevalence estimated by 
means of the estimated responses (Step 6) to the true prevalence in the fnite population. 
We split the fnite population U in K disjointed subsets of the same size where U = 
U1 ∪ . . .∪UK . We repeat this process L = 10 times, where for each l = 1, . . . ,L, U = 
U1 

l ∪ . . .∪UK
l . In this way, we get L ×K subsets from U and the prevalence will be 

estimated in each one of these subsets. Let us defne the following indicator functions: 

˜ 
1 if i ∈Uk

l ,
1Ul (i) =  for l = 1, . . . ,L and k = 1, . . .K. (22)

k 0 if i ∈/ Uk
l , 
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We denote as global mean squared error (GMSE) of the prevalence with L = 10 replicates 
the following parameters: 

˜ m,r ° 2 
1 ∑N

i=1 ŷi · 1Ul (i) ∑N
i=1 yi · 1Ul (i)

k kGMSEm,r = ∑L 
1 ∑

K − ,l= k=1L × K ∑N 
1 1Ul (i) ∑N 

1 1Ul (i)
k k˜ 

i= i= ° 2 (23)m,r 
1 ∑N

i=1 ŷw,i · 1Uk
l (i) ∑N

i=1 yi · 1Ul (i)
kGMSEm,r = ∑L 

1 ∑
K − .w l= k=1L × K ∑N 

1 1Ul (i) ∑N 
1 1Ul (i)i= i= k k 

Different number of subsets have been selected in order to evaluate the impact the sam-
ple size of each subset may have: K ∈ {1,10,100,500}. In addition, we considered 
the GMSE evaluated considering the H strata as the subsets where Uh, ∀h = 1, . . . ,H ˛Hindicates the subset corresponding to stratum h and U = h=1 Uh: 

˝ m,r ˙21 
∑H ∑N

i=1 ŷi · 1Uh (i) ∑N
i=1 yi · 1Uh (i)GMSEm

h 
,r = h=1 ∑N − 

∑N ,
H i=1 1Uh (i) i=1 1Uh (i)˜ ° 2 (24)m,r
1 ∑N

i=1 ŷw,i · 1Uh (i) ∑N
i=1 yi · 1Uh (i)GMSEm,r = ∑H − ,w,h h=1H ∑N 

1 1Uh (i) ∑N 
1 1Uh (i)i= i= 

where, ˆ 
1 if i ∈ Uh,1Uh (i) =  for h = 1, . . . ,H. (25)
0 if i ∈/ Uh, 

This simulation study has been carried out by means of the statistical software R. In 
particular, some functions of the R package OptimalCutpoints (López-Ratón et al., 
2014) have been modifed in order to incorporate an argument that provides us with the 
option to consider sampling weights in the estimation process of the optimal cut-off 
points for the described methods. 

4.2. Results 

In this Section we show the results obtained in the simulation study described in Section 
4.1. Figures 1, 2, 3 and 4 depict the box-plots of unweighted and weighted estimates 
of the optimal cut-off points and the results of the parameters Diff and GMSE (see (21) 
and (23)) for Youden, MaxProdSpSe, ROC01 and MaxEffciency methods, respectively. 
Numerical results of the simulation study are summarized in Table 1. 

In general, except for the MaxEffciency method, the results suggest that the optimal 
cut-off point estimates differ when sampling weights are ignored or considered in the es-
timation process. The difference has always been positive (i.e. the unweighted estimates 
have been greater than the weighted ones), except in the MaxEffciency method where 
both positive and negative differences have been observed. For this reason, the mean 
and standard deviation of the difference and absolute difference parameters are equal 
for all the methods except for MaxEffciency (see Table 1). The error generated and 
accounted in terms of GMSE described in (23) decreases considerably when sampling 



□ ■ 
~ _____,,__ 

------a--

147 Amaia Iparragirre, Irantzu Barrio, Jorge Aramendi and Inmaculada Arostegui 

Cut−off points Diff GMSE 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.2 

0.1 

0.0 

−0.1 

−0.2 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Unweighted Weighted 
youden youden 

K 1 K 10 K 100 K 500 H 

youden 

(a) (b) (c) 

Figure 1. Box-plots of the results obtained for the Youden method across R = 500 samples: 
(a) unweighted and weighted estimates of the optimal cut-off points, (b) differences between un-
weighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and weighted 
estimates for K ∈ {1,10,100,500} and H. 

weights are taken into account. In addition, similar results have been obtained for differ-
ent K ∈ {1,10,100,500} values, which indicates that the difference between estimated 
and true prevalence is similar in smaller homogeneous subsets and in the total popula-
tion. However, it could be observed that the average of GMSE becomes slightly greater 
as the number of subsets K increases (for both, weighted and unweighted estimates), 
indicating that the differences between the estimated and true prevalence tend to be a 
little bit greater in smaller subsets. When considering the strata as non-homogeneous 
subsets defned by the H strata of the population, the GMSE obtained as described in 
(24) with the weighted estimates is still smaller than with the unweighted ones. How-
ever, the difference between weighted and unweighted GMSE is slightly smaller for the 
non-homogenous partition than for homogeneous partitions. We believe that the reason 
is that the difference obtained between estimated and true prevalence differs depending 
on the number of individuals sampled in each strata, being increased in very small strata. 
Note that if the population size of a particular stratum is 1 then the error in this stratum 
is 0 (if the unit is classifed correctly) or 1 (otherwise). This is not common when work-
ing with homogeneous strata where in all the randomly selected subsets the difference 
between estimated and true prevalence seem to be similar (results not shown). In ad-
dition, note that even though strata are of different sizes, the stratum size is not taken 
into account when computing the GMSE parameter. Below, the behaviour of each of the 
methods that have been studied throughout this work will be analysed one by one. 

The optimal cut-off point estimated by the Youden method in this simulation study, is 
0.8304 on average when sampling weights are not taken into account while the weighted 
estimates are smaller on average (0.7524), with standard deviations of 0.0208 and 0.0277, 
respectively. The difference among the unweighted and weighted estimates is on average 
0.0780 with a standard deviation of 0.0343 (see Figure 1). The smallest difference ob-
served among the unweighted and weighted estimates is 0 while the largest difference is 
0.2057, with a median of 0.0771. The impact of the differences between these estimates 
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Figure 2. Box-plots of the results obtained for the MaxProdSpSe method across R = 500 sam-
ples: (a) unweighted and weighted estimates of the optimal cut-off points, (b) differences be-
tween unweighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and 
weighted estimates for K ∈ {1,10,100,500} and H. 

in the total population was measured by the GMSE parameter. In terms of GMSE, the 
error produced by means of the weighted estimates in the fnite population is more or less 
5 times smaller than the error produced by means of the unweighted estimates on aver-
age. The standard deviation is also smaller for the weighted estimates. For example, for 
K = 1 the GMSE of the unweighted estimates is 0.3110 on average with a standard de-
viation of 0.0747, while the GMSE of the weighted estimates is 0.0630 on average with 
a standard deviation of 0.0503. When the GMSE is computed over the H = 325 strata, 
the GMSE turns out to be 0.1298 and 0.2809, for weighted and unweighted estimates, 
respectively. 

The unweighted estimates obtained by the MaxProdSpSe method are again greater 
than the weighted ones, being on average 0.8117 and 0.7534, respectively (see Figure 2). 
The difference between those estimates is 0.0584 on average with a standard deviation 
of 0.0190. The smallest difference observed among the unweighted and weighted esti-
mates is 0.0121 while the largest difference is 0.1198, with a median of 0.0573. GMSE 
becomes again 5 times smaller when sampling weights are considered in the estimation 
process and the standard deviation of the weighted estimates is half of that of the un-
weighted ones. For example, for K = 100 the GMSE is reduced from 0.2532 to 0.0556 
on average when considering sampling weights, being the standard deviations of 0.0708 
and 0.0342, respectively. The GMSE measured over the different strata for weighted and 
unweighted estimates is 0.1261 and 0.2425, respectively. 

For the ROC01 method weighted estimates are also lower than the unweighted ones 
(0.7526 and 0.8078 on average, respectively) and the standard deviations are slightly 
greater (0.0174 and 0.0151, respectively) (see Figure 3). The smallest difference ob-
served among the unweighted and weighted estimates is 0.0121 while the largest differ-
ence is 0.1088, being the median of 0.0540 and the average of 0.0552 with a standard de-
viation of 0.0166. The error generated by the weighted estimates in the fnite population 
is again lower than the error produced by the unweighted estimates in terms of GMSE. 

Unweighted Weighted 



□ • 
--+-
------0-- --+- -2- -2- -2- -2-

-2-
~ 

El El El El s 
_a_ 

-;-
~ ... ~ ... + ... • • • • • 

□ • 

T 

149 Amaia Iparragirre, Irantzu Barrio, Jorge Aramendi and Inmaculada Arostegui 

Cut−off points Diff GMSE 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.2 

0.1 

0.0 

−0.1 

−0.2 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Unweighted Weighted 

Unweighted Weighted K 1 K 10 K 100 K 500 H 

roc01 roc01 roc01 

(a) (b) (c) 

Figure 3. Box-plots of the results obtained for the ROC01 method across R = 500 samples: 
(a) unweighted and weighted estimates of the optimal cut-off points, (b) differences between un-
weighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and weighted 
estimates for K ∈ {1,10,100,500} and H. 
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Figure 4. Box-plots of the results obtained for the MaxEffciency method across R = 500 sam-
ples: (a) unweighted and weighted estimates of the optimal cut-off points, (b) differences be-
tween unweighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and 
weighted estimates for K ∈ {1, 10,100, 500} and H. 

For example, for K = 10, the error obtained by the weighted estimates is 0.0507 on av-
erage with a standard deviation of 0.0210, while for the unweighted estimates the error 
is 0.2368 on average with a standard deviation of 0.0462. The GMSE computed over 
the different strata takes the value of 0.1245 and 0.2340 for weighted and unweighted 
estimates, respectively. 

Finally, in contrast to the results obtained by the rest of the methods, for the Max-
Effciency method no signifcant differences are observed among the unweighted and 
weighted estimates. Optimal cut-off point estimates throughout the R = 500 samples are 
quite similar in terms of mean and standard deviation. The average of the unweighted 
estimates is of 0.5106 while for the weighted estimates the average is of 0.5297. The 
standard deviation of the weighted estimates (0.0522) is slightly lower than the stan-
dard deviation of the unweighted estimates (0.0579). The smallest absolute difference 
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Table 1. Average (mean) and standard deviation (sd) of the a) unweighted and weighted optimal 
cut-off points, b) difference (Diff) and absolute difference (AbsDiff) among them and, c) GMSE 
produced by the unweighted and weighted optimal cut-off points when classifying units in the 
fnite population for K ∈ {1,10,100,500} and H across R = 500 samples for all the methods 
considered. 

Youden MaxProdSpSe ROC01 MaxEff 
Mean (sd) Mean (sd) Mean (sd) Mean (sd) 

Cut-off Unweighted 0.8304 (0.0208) 0.8117 (0.0157) 0.8078 (0.0151) 0.5106 (0.0579) 
points Weighted 0.7524 (0.0277) 0.7534 (0.0183) 0.7526 (0.0174) 0.5297 (0.0522) 

Diff 0.0780 (0.0343) 0.0584 (0.0190) 0.0552 (0.0166) -0.0191 (0.0456) 
AbsDiff 0.0780 (0.0343) 0.0584 (0.0190) 0.0552 (0.0166) 0.0232 (0.0436) 

GMSE Unweighted 0.3110 (0.0747) 0.2509 (0.0525) 0.2366 (0.0440) 0.0482 (0.0132) 
(K=1) Weighted 0.0630 (0.0503) 0.0530 (0.0243) 0.0505 (0.0198) 0.0454 (0.0136) 

GMSE Unweighted 0.3112 (0.0762) 0.2511 (0.0544) 0.2368 (0.0462) 0.0483 (0.0140) 
(K=10) Weighted 0.0632 (0.0509) 0.0532 (0.0253) 0.0507 (0.0210) 0.0456 (0.0144) 

GMSE Unweighted 0.3131 (0.0899) 0.2532 (0.0708) 0.2390 (0.0642) 0.0496 (0.0211) 
(K=100) Weighted 0.0656 (0.0566) 0.0556 (0.0342) 0.0531 (0.0307) 0.0469 (0.0211) 

GMSE Unweighted 0.3219 (0.1361) 0.2628 (0.1203) 0.2488 (0.1153) 0.0556 (0.0419) 
(K=500) Weighted 0.0764 (0.0791) 0.0667 (0.0621) 0.0642 (0.0594) 0.0530 (0.0413) 

GMSE Unweighted 0.2809 (0.0470) 0.2425 (0.0325) 0.2340 (0.0270) 0.0706 (0.0022) 
(H) Weighted 0.1298 (0.0377) 0.1261 (0.0250) 0.1245 (0.0235) 0.0701 (0.0025) 

observed among the unweighted and weighted estimates is 0 while the largest absolute 
difference is 0.2318. In particular, in more than 50% of the cases the difference between 
weighted and weighted estimates is 0. The difference of the error produced by those 
estimates in the fnite population is also negligible. For K = 1 for example, the GMSE 
produced by the unweighted estimates is on average of 0.0482 with a standard deviation 
of 0.0132, while the average of GMSE of the weighted estimates is 0.0454 with a stan-
dard deviation of 0.0136. The GMSE calculated over the H = 325 strata, is 0.0701 for 
weighted estimates and 0.0706 for unweighted estimates. 

5. Application to a real survey data 

The methodology proposed in Section 3 could be applied to real-world surveys. In par-
ticular, for illustration purposes, we have applied this methodology to the ESIE survey 
data described in Section 2. 

In this case, the response variable Y in which we are interested in indicates the avail-
ability of the website for each company: it takes the value yi = 1 if a company has its 
own website and yi = 0 otherwise. Assume that the goal is to estimate the probability 
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Table 2. Optimal cut-off point estimates obtained by means of Youden, MaxProdSpSe, ROC01 
and MaxEffciency methods, considering or not the sampling weights. 

Youden MaxProdSpSe ROC01 MaxEff 
Unweighted 0.7998 0.7998 0.7998 0.3882 

Weighted 0.7518 0.7518 0.7470 0.3882 

of event for Y of the companies in the fnite population. Thus, we want to ft a logistic 
regression model to our sample. Four categorical variables that are also available in the 
fnite population will be used as predictors: X1 (which indicates the province where the 
company is located, in 3 categories), X2 (indicates the activity of the company, in 9 cat-
egories), X3 (indicates the ownership of the company, in 7 categories) and X4 (indicates 
the number of employees of the company, in 4 categories). In this way, a logistic re-
gression model was ftted to the sample considering these four covariates, the regression 
coeffcients where estimated and p̂(xi) where calculated for each sampled unit. 

We have applied the methods described in Section 3 for the selection of optimal 
cut-off points, which have been estimated by both, ignoring and considering sampling 
weights. The results are shown in Table 2. It can be observed that the unweighted and 
weighted estimates differ when Youden, MaxProdSpSe and ROC01 methods are ap-
plied, which is in line with the results obtained in the simulation study. In particular, 
the unweighted estimates are greater than the weighted estimates, which are similar to 
the ones observed in Section 4.2 (see Table 1). The unweighted and weighted estimates 
obtained by means of the MaxEffciency method are equal, which is also in line with 
the results observed in the simulation study. Those estimates obtained by the MaxEf-
fciency method are lower than the average of the estimates obtained in the simulation 
study. However, it should be noted that this may be justifed by the large standard devia-
tion observed previously for the cut-off points estimated by means of the MaxEffciency 
method (see Figure 4 and Table 1). 

6. Discussion 

In this work, a methodology has been proposed for estimating optimal cut-off points of 
the probability of event in the logistic regression framework cons 

idering sampling weights in the estimation process. In particular, we have focused 
on data derived from complex sampling designs. For this purpose, four optimal cut-off 
point estimation methods (which are denoted as Youden, MaxProdSpSe, ROC01 and 
MaxEffciency (L´ on et al., 2014)) have been selected and modifed in order toopez-Rat´ 
incorporate sampling weights in the estimation process. These four methods have been 
selected for being the ones most commonly applied in the literature. In particular, the 
so widely used pROC package in R (Robin et al., 2011) has incorporated the Youden 
and ROC01 methods for the estimation of optimal cut-off points. All these methods are 
based on different optimality criteria that are related to sensitivity and specifcity param-
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eters. Therefore, we propose a methodology for considering sampling weights in the es-
timation process of sensitivity and specifcity parameters, as well as in the estimation of 
prevalence, in order to estimate optimal cut-off points based on these parameters by tak-
ing into account the sampling weights. A simulation study has been carried out in order 
to analyse the behaviour of both methodologies by comparing the optimal cut-off point 
estimates obtained by means of the above-mentioned methods when sampling weights 
are considered or ignored in the estimation process. The error that those estimates gen-
erate in the estimation of the probability of event of interest in the fnite population has 
also been analysed in this simulation study. In particular, we considered the GMSE in 
order to evaluate the behaviour of the prevalence once the cut-off point was estimated, 
by comparing it with the true prevalence. We also considered it interesting to study the 
differences in estimating sensitivity and specifcity based on the cut-off points estimated 
with and without sampling weights. However, in this case, the theoretical value of these 
parameters in the population are unknown and therefore the comparison is not so direct. 
Even so, we have observed (results not shown) that the differences are in line with those 
observed when studying the GMSE. 

In general, the results suggest the convenience of incorporating sampling weights 
into the estimation process of optimal cut-off points. For three out of the four meth-
ods studied, estimates obtained differ depending on whether the sampling weights were 
considered or not. Furthermore, it can be observed that the error in the estimates of 
the response variable obtained by taking into account sampling weights is much smaller 
than that generated by the estimates obtained by ignoring them for the units in the fnite 
population. Although the cut-off point estimates may not seem very different from each 
other in some cases, it is observed that the effect of applying one or the other estimate for 
the classifcation of units in the population is considerable. In our opinion, the reason for 
this is that a large amount of individuals of the fnite population (specifcally, more than 
20% of all the units on average) has estimated probabilities which range in the interval 
defned by the unweighted and weighted estimates and thus, choosing the unweighted 
cut-off point leads to misclassify a larger number of units in the fnite population. 

Nevertheless, the results related to the MaxEffciency method appear to be differ-
ent compared to Youden, MaxProdSpSe and ROC01. In general, in the results obtained 
using this method, there are no great differences between the estimates obtained by ig-
noring or considering the sampling weights, and furthermore, in most cases, the two 
estimates coincide. Therefore, the errors generated in the population by these estimates 
are also similar and there are no signifcant differences among them. Hence, we can 
say that, at least under the scenario we have worked on, there is no difference among 
the unweighted and weighted estimates obtained by the MaxEffciency method. How-
ever, we believe that this could be due to a particular characteristic of the scenario in 
which we have worked and not a specifc property of the method itself. Specifcally, 
we believe that differences among those estimates obtained by using or not sampling 
weights could occur when there are also signifcant differences between unweighted and 
weighted estimates of the prevalence, which is not the case in the scenario that has been 
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studied. In particular, the unweighted estimate of the prevalence is 0.8330 on average in 
the simulated samples, while the weighted estimate is 0.7552. Due to the properties of 
the effciency function, we believe that different cut-off point estimates may be obtained 
for this method when one of the prevalence estimates (either weighted or unweighted) is 
greater than 0.5, while the other is smaller (results not shown). Nevertheless, studying 
the mathematical properties of this behaviour is part of a further research, which is out 
of the scope of this paper. 

Finally, we would like to comment on the limitations of this study. First of all, it 
should be noted that we have conducted this simulation study based on a real survey 
data. Therefore, the effect that the sampling technique chosen may have on the differ-
ences between weighted and unweighted optimal cut-off point estimates remains to be 
studied as further work. For example, it should be mentioned that in this study we have 
only analysed the effect of the sampling weights obtained by means of one-stage strat-
ifcation. Data derived from other sampling techniques such as clustering or two-stage 
sampling have not been considered. It would also be interesting to study the behaviour 
of the studied methods under non-informative complex sampling designs. Secondly, it 
would be interesting to analyse and compare the behaviour of the methods that have 
been studied throughout this document in different scenarios, for instance, with different 
prevalence values. Nevertheless, it should be noted that as the simulation study we have 
used is based on a real survey, the prevalence of the scenario we have analysed was also 
described by the observed data. 

In conclusion, in this work we have implemented four of the most commonly used 
optimal cut-off point estimation methods, which are implemented in diverse software. 
Out of these four methods, in three of them the use of sampling weights highly improve 
the results, while in the fourth, the results do not differ whether you use the sampling 
weights or not. Therefore, our recommendation is to incorporate the sampling weights 
in the estimation process of optimal cut-off points when working with data derived from 
complex sampling designs. However, it should be noted that if one is interested in ap-
plying other methods, different from those studied throughout this paper, it should be 
considered whether it is appropriate or not the use of sampling weights in each particu-
lar case. 
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´Rodrı́guez Alvarez for helping us incorporate the sampling weights into the Optimal 
Cutpoints R package functions. 

Confict of interest 

The authors declare that there are no conficts of interest. 

References 

Baker, T. and Gerdin, M. (2017). The clinical usefulness of prognostic prediction models 
in critical illness. European Journal of Internal Medicine, 45:37–40. 

Bamber, D. (1975). The area above the ordinal dominance graph and the area below 
the receiver operating characteristic graph. Journal of Mathematical Psychology, 
12(4):387–415. 

Binder, D. A. (1981). On the variances of asymptotically normal estimators from com-
plex surveys. Survey Methodology, 7(2):157–170. 

Binder, D. A. (1983). On the variances of asymptotically normal estimators from com-
plex surveys. International Statistical Review, 51(3):279–292. 

Binder, D. A. and Roberts, G. (2009). Design- and model-based inference for model 
parameters. Handbook of Statistics, 29:33–54. 

Chen, J.-Y., Feng, J., Wang, X.-Q., Cai, S.-W., Dong, J.-H., and Chen, Y.-L. (2015). 
Risk scoring system and predictor for clinically relevant pancreatic fstula after pan-
creaticoduodenectomy. World Journal of Gastroenterology, 21(19):5926–5933. 

Cohen, J. (1960). A coeffcient of agreement for nominal scales. Educational and 
Psychological Measurement, 20(1):37–46. 
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A. Generation of the pseudo-population 

This section describes the process of generating the pseudo-population that has been 
implemented in the simulation study described in Section 4. The pseudo-population 
has been generated based on a real survey data, which is described in Section 2. Let 
us denote as SESIE the original survey sample and UESIE the real fnite population of 
size N (note that SESIE ⊂ UESIE). It should be noted that some information of the f-
nite population UESIE and the real sample SESIE is known for us. In particular, for the 
N units in the fnite population the values for the vector of covariates X1, . . . ,Xp are˜ ° 
known, i.e. (x1 j, . . . ,xp j) . In addition to the values for the covariates, thej∈UESIE 
values of the response variables Y1, . . . ,Yq are also known for the units in the sample, ˜ ° 
i.e. (y1 j, . . . ,yq j,x1 j, . . . ,xp j) . In the ESIE survey, a total of H strata have j∈SESIE 

been defned (i.e., {1, . . . ,H}) combining information of three categorical design vari-
ables, which will be denoted as X1,X2 and X3. Therefore, the fnite population can ˛Hbe partitioned in subsets defned by means of these strata, i.e., UESIE = h=1 UESIE,h. 
∀h ∈ {1, . . . ,H} let us indicate as Nh the size of stratum h in the fnite population UESIE 

(UESIE,h) and as nh the size of this stratum in the sample SESIE. Then, the sampling 
weight associated to a unit j ∈ SESIE from stratum h is the following: 

Nh w j = . (26)
nh 

Our goal is to generate a pseudo-population (U) based on the known real ESIE 
survey data, for which all the information of the covariates X1, . . . ,Xp and the response 
variables Y1, . . . ,Yq will be available. This new pseudo-population U will be the same 
size as the true ESIE population (N). In order to ease the notation, the variable names 
of the pseudo-population are the same as in the real fnite population and the units of 
the real ESIE population will be denoted as j ∈UESIE while the units that are artifcially 
generated for the pseudo-population will be denoted as i ∈U . 

Several dichotomous response variables are available in the original survey (being 
the response variable Y , which we have applied in the simulation study, one of them). All 
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possible combinations of these response variables have been examined. For instance, as-
suming that Y1, . . . ,Yq are all the response variables that are available in the survey (where 
Y ∈ {Y1, . . . ,Yq}), for some unit j ∈ SESIE: y j = (y1 j, . . . ,yq j) = α , ∀α ∈ {α1, . . . ,αA}, 
where {α1, . . . ,αA} is the set of all of possible combinations of the responses. For each 
stratum (i.e., ∀h ∈ {1, . . . ,H}) and for each possible combination of the responses (i.e., 
∀α ∈ {α1, . . . ,αA}) we generate Nh,α units in the pseudo-population (U) as: 

Nh,α = ∑ w j ·1UESIE,h( j) · [y j = α], (27) 
j∈SESIE 

where, ˜ 
1, if j ∈UESIE,h,( j) =  (28)1UESIE,h 0, if j ∈/ UESIE,h, 

and ˜ 
1, if (y1 j, . . . ,yq j) = α,

[y j = α] =  (29)
0, if (y1 j, . . . ,yq j) ̸= α. 

In this way, Nh,α is the number of units of the pseudo-population U in stratum h, which 
take the values of responses (y1 j, . . . ,yq j) = α . Once we repeat the process for ∀h ∈ 
{1, . . . ,H} and ∀α ∈ {α1, . . . ,αA} a pseudo-population of N = ∑h∈{1,...,H} ∑α∈{α1,...,αA} 

w j units will be generated with the information of response variables (Y ,Nh,α = ∑ j∈SESIE 

among others) and strata (hence, information of the design variables X1,X2 and X3 will 
also be generated). Note that the pseudo-population U has been created in such a way 
that has the same number of individuals N as the ESIE fnite population UESIE. 

Finally, we generate the rest of the covariates as follows. ∀s ∈ {4, . . . , p} assume that 
Xs is a categorical variable with a total of D categories: {1, . . . ,D}. Then, for each unit 
generated in the pseudo-population (∀i∈U) from stratum h, we generate xsi ∈ {1, . . . ,D} 
following a categorical distribution (i.e., xsi ∼ Cat(πs1, . . . ,πsD)) where the probability 
corresponding to each category d ∈ {1, . . . ,D} is calculated as follows based on the 
known ESIE fnite population UESIE. 

∑ j∈UESIE 
1UESIE,h( j) · [xs j  = d]

πsd = , ∀d ∈ {1, . . . ,D}, (30)
∑ j∈UESIE 

1UESIE,h( j) 

where 1UESIE,h( j) is defned in (28) and, 
˜ 

1 if xs j  = d,
[xs j  = d] =  ∀ j ∈UESIE and ∀d ∈ {1, . . . ,D}. (31)

0 if xs j  ≠ d, 

In this way, the pseudo-population has been generated with the response variable of 
interest Y , the vector of covariates X and the strata. 

B. Pseudo-population sampling process 

The pseudo-population generated following the steps described in Appendix A, has been 
sampled by one-step stratifed sampling with simple random sampling without replace-
ment in each stratum, in the same way as the real survey data described in Section 2. 
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In the sampling process, frst, we identify how many units have been sampled from 
a stratum h (∀h ∈ {1, . . . ,H}) in the real survey sample SESIE (let us denote this amount 
as nh). Then, we sample randomly nh units from stratum h of size Nh from the pseudo-
population U . In this way, repeating the process for ∀h ∈ {1, . . . ,H} we sample a total 
of n units (where n < N) to the sample S ⊂U . 

Finally, sampling weights are assigned to each sampled unit as follows. For ∀i∗ ∈ S 
(assume that i∗ ∈ h (∀h ∈ {1, . . . ,H})), then: 

Nh wi∗ = . (32)
nh 
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