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Waksberg Invited Paper Series 
 

 

The journal Survey Methodology has established in 2001 an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 

prominent survey statistician is chosen by a four-person selection committee appointed by Survey Methodology 

and the American Statistical Association. The selected statistician is invited to write a paper for Survey 

Methodology that reviews the development and current state of an important topic in the field of survey 

statistics and methodology. The paper reflects the mixture of theory and practice that characterized 

Joseph Waksberg’s work. The recipient of the Waksberg Award is also invited to give the Waksberg Invited 

Address, usually at the Statistics Canada Symposium, and receives an honorarium. 

Please see the announcements at the end of the Journal for information about the nomination and 

selection process of the 2023 Waksberg Award. 

This issue of Survey Methodology opens with the 21th paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Bob Fay (Chair), 

Jean Opsomer, Jack Gambino and Elizabeth Stuart for having selected Sharon Lohr as the author of 2021 

Waksberg Award paper. 

 

 

2021 Waksberg Invited Paper 

Author: Sharon Lohr 
 

Sharon Lohr has published widely about survey sampling, design of experiments, and statistical 

methods for education, public policy, law, and crime. She is the author of numerous articles in statistics 

journals and of the books Sampling: Design and Analysis, now in its third edition, and Measuring Crime: 

Behind the Statistics. Formerly Dean’s Distinguished Professor of Statistics at Arizona State University 

and a Vice President at Westat, she is now a statistical consultant and writer. 

Sharon is a Fellow of the American Statistical Association and an Elected Member of the International 

Statistical Institute, and currently serves as a member of the Committee on National Statistics of the U.S. 

National Academies of Sciences, Engineering, and Medicine. She was the inaugural recipient of the 

Gertrude M. Cox award for contributions to statistical practice, and has been honored by being selected to 

give the Morris Hansen Lecture at the Washington Statistical Society and the Deming Lecture at the Joint 

Statistical Meetings. 
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Multiple-frame surveys for a multiple-data-source world 

Sharon L. Lohr1 

Abstract 

Multiple-frame surveys, in which independent probability samples are selected from each of Q sampling 

frames, have long been used to improve coverage, to reduce costs, or to increase sample sizes for 

subpopulations of interest. Much of the theory has been developed assuming that (1) the union of the frames 

covers the population of interest, (2) a full-response probability sample is selected from each frame, (3) the 

variables of interest are measured in each sample with no measurement error, and (4) sufficient information 

exists to account for frame overlap when computing estimates. After reviewing design, estimation, and 

calibration for traditional multiple-frame surveys, I consider modifications of the assumptions that allow a 

multiple-frame structure to serve as an organizing principle for other data combination methods such as mass 

imputation, sample matching, small area estimation, and capture-recapture estimation. Finally, I discuss how 

results from multiple-frame survey research can be used when designing and evaluating data collection 

systems that integrate multiple sources of data. 

 

Key Words: Combining data; Data integration; Dual-frame survey; Indirect sampling; Mass imputation; 

Misclassification; Survey design; Undercoverage. 

 

 

1. Introduction 
 

Throughout his 33-year career at the Census Bureau and subsequent 32-year career at Westat, Joe 

Waksberg repeatedly relied on multiple data sources to improve the quality of estimates while reducing 

costs. He used external data sources to evaluate coverage in the U.S. decennial census (Marks and 

Waksberg, 1966; Waksberg and Pritzker, 1969), to calibrate survey weights, and to improve efficiency or 

oversample rare populations when designing surveys (Hendricks, Igra and Waksberg, 1980; Cohen, 

DiGaetano and Waksberg, 1988; DiGaetano, Judkins and Waksberg, 1995; Waksberg, 1995; Waksberg, 

Judkins and Massey, 1997b). 

On several occasions, Waksberg integrated data from two or more surveys directly in order to improve 

coverage or to obtain larger sample sizes for subpopulations (Waksberg, 1986; Burke, Mohadjer, Green, 

Waksberg, Kirsch and Kolstad, 1994; Waksberg, Brick, Shapiro, Flores-Cervantes and Bell, 1997a). In 

these multiple-frame surveys, independent samples were selected from sampling frames that together were 

thought to cover all, or almost all, of the target population. The data from the samples were combined to 

obtain estimates for the population as a whole and for subpopulations of interest. Waksberg approached 

the design of these multiple-frame surveys from the perspective of controlling both sampling and 

nonsampling errors, and found that using multiple frames met the challenges of producing reliable 

estimates in the face of increased data collection costs (with higher nonresponse for less expensive 

collection methods) and incomplete frame coverage. 
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Statistical agencies and survey organizations today face the same types of challenges that Waksberg 

addressed ‒ declining response rates and increasing costs of survey data collection ‒ but at an intensified 

level. At the same time, the emergence of new data sources provides opportunities for obtaining 

information about parts of populations of interest ‒ sometimes with amazing rapidity. Many organizations 

are now using or researching methods for integrating data from multiple sources to improve the accuracy 

or timeliness of population estimates. 

I feel tremendously honored to be asked to give the Waksberg lecture, and in this paper I want to build 

on Waksberg’s insights about multiple-frame surveys by discussing their use as an organizing principle 

for combining information from multiple sources. Traditionally, multiple-frame surveys have integrated 

data from Q  probability samples 1, , QS S  that are selected independently from Q  frames. But the 

general structure can be expanded to include frames that consist of administrative records or 

nonprobability samples. The structure can also be expanded to situations in which some data sources do 

not measure the variables of interest y  but they measure covariates x  that can be used to predict .y  

A number of authors have reviewed methods for combining data from multiple sources; see, for 

example, Citro (2014), Lohr and Raghunathan (2017), National Academies of Sciences, Engineering, and 

Medicine (2017, 2018), Thompson (2019), Zhang and Chambers (2019), Beaumont (2020), Yang and 

Kim (2020), and Rao (2021). The sources include traditional probability samples, administrative data sets, 

sensor data, social network data, and general convenience samples. 

Although the types of data (and the speed with which some types of data can be collected) have 

changed in recent years, the basic structure of the problem for combining data sources is unchanged from 

the earliest dual-frame surveys. Section 2 discusses the structure and assumptions for traditional multiple-

frame surveys through the example of the National Survey of America’s Families, a dual-frame survey 

that Waksberg worked on during the 1990s. Section 3 reviews methods for calculating estimates of 

population characteristics from traditional multiple-frame surveys where all assumptions are met, 

including the special case in which one sample is a census of a subset of the population. Section 4 then 

discusses how the multiple-frame structure incorporates many of the methods currently used for 

combining data, sometimes with relaxed assumptions. Section 5 addresses issues for designing data 

collection systems that control sampling and nonsampling errors, with a discussion of possible future 

directions for research. 

 
2. Classical multiple-frame survey structure and assumptions 
 

First, let’s look at an example of what I shall call a “classical” multiple-frame survey ‒ a survey that is 

designed to take probability samples from each of a fixed number of frames ‒ and define the notation and 

assumptions that will be used to describe estimators and their properties. 
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2.1 National Survey of America’s Families 
 

The goal of the 1997 National Survey of America’s Families (NSAF) was to provide information on 

social and economic characteristics of the U.S. civilian noninstitutional population under age 65, with 

emphasis on obtaining reliable estimates for persons and families ‒ particularly families with 

children ‒ below 200 percent of the poverty threshold. Estimates were desired for the nation as a whole; in 

addition, separate estimates were desired for 13 states that were purposively selected to vary by 

geographic region, dominant political party, size, and fiscal capacity. 

To meet the precision requirements for estimates, it was desired to have an effective sample size of 

about 800 poor children in each state. This goal could have been met by taking a household sample from 

an area frame. Waksberg et al. (1997b) had determined that screening households for income and 

subsampling nonpoor households would be the most cost-effective way of achieving the desired sample 

sizes in an area-frame sample, but the cost would be high because only about one in eight families was 

expected to have children and be under 200 percent of the poverty threshold. 

Screening costs would be greatly reduced if the survey could be conducted by telephone using random 

digit dialing (RDD). But Current Population Survey data indicated that about 20 percent of families living 

in poverty did not have telephones, so the RDD frame was expected to have substantial undercoverage of 

the target population. Moreover, households under 200 percent of poverty without telephones might have 

different income levels or health characteristics than households under 200 percent of poverty with 

telephones. 

Thus, a sample from the area frame would provide high coverage but also come with unacceptably 

high costs. An RDD survey would have lower costs but would have substantial undercoverage of the 

population of interest. Waksberg et al. (1997a) used a dual-frame survey, with one sample from the area 

frame and a second sample chosen independently from the RDD frame, to take advantage of the lower 

costs of an RDD sample yet also cover nontelephone households. Figure 2.1(a) shows the structure of the 

two frames.  

To further reduce costs, Waksberg et al. (1997a) excluded census block groups with few nontelephone 

households from the area frame; according to the 1990 census, the excluded areas accounted for less than 

ten percent of the nontelephone households in each state. With this exclusion, the area and RDD frames 

each contained households not found in the other frame, as shown in Figure 2.1(b). 

Households with telephones that were in the non-excluded block groups were present in both frames. If 

a probability sample were taken from each frame, households in that overlap (the dark shaded area in 

Figure 2.1(b)) could be selected in both samples. The survey designers could either conduct the interview 

with all households in each sample and then deal with the multiplicity in the estimation (an overlap 

design), or screen out the households in one of the frames that were also in the other frame (a screening 

design). 
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Figure 2.1 Frame coverage for the NSAF. The dark shaded area is in both frames. 

 

 

 

 

 

 

 

 

 

 

 

 

Waksberg and his colleagues chose to use screening. Households in the area sample were asked if they 

had a telephone, and only those without telephones were administered the detailed interview. The detailed 

interview was lengthy and expensive to conduct; screening out the telephone households during a short 

interview saved resources that could be used to increase the number of nontelephone households in the 

sample. Households with telephones were sampled only through the RDD frame; households in the RDD 

sample with no children and above 200 percent of the poverty line were subsampled. Because a screening 

survey was used, the combined sample from the two surveys was a stratified sample, and resources were 

allocated to the two samples using stratified sampling formulas that accounted for the higher cost of 

sampling from the area frame. 

 
2.2 Notation and assumptions for multiple-frame surveys 
 

In classical multiple-frame surveys such as the NSAF, a number of assumptions are needed to be able 

to obtain unbiased estimates of population characteristics along with confidence intervals having 

approximately correct coverage probabilities. 

Suppose there are Q  frames. A population domain d  is defined by the intersections of the frames: 

domain {1, 3, 4}, for example, contains the population units that are in Frames 1, 3, and 4 but not in any 

of the other frames. Let D  denote the set of possible domains; depending on the overlap of units, D  can 

contain between 1 and 2 1Q −  domains. Figure 2.2 shows three examples of frame relationships. When 

Frame 1 is complete but Frame 2 is incomplete as in Figure 2.2(a),  = {1},{1, 2} ;D  any population unit 

in Frame 2 is also in Frame 1. For an overlapping dual-frame survey such as that in Figure 2.2(b), 

 = {1},{2},{1, 2} .D  
 

                   (a) Full Area Frame                                                    (b) Restricted Area Frame                                                                                                                            
 
Area Frame                                                                   Area Frame, High Nontelephone Rate 
 
 
                RDD Frame and Area Frame                                       RDD Frame and Area Frame                                                                           
 
 
 
 
 
 
 
                                                                                                      RDD Frame Alone 
 
                                                                                       Not Covered 
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Figure 2.2 Three frame structures. (a) Frame 1 has complete coverage and Frame 2 is incomplete. (b) 

Frames 1 and 2 are both incomplete but overlap. (c) Frame 1 is complete; Frames 2, 3, and 4 are 

all incomplete but Frames 3 and 4 overlap. 

 

 

 

 

 

 

 

 

 

 

 

Define ( ) = 1i d  if unit i  is in domain d  and 0 otherwise, and let ( ) =1q

i  if unit i  is in Frame q  and 

0 otherwise. Frame q  has population size ( )qN  and domain d  has population size ;dN  these sizes may 

be known or unknown. The target population has a total of N  units. 

The following assumptions are typically made in order to draw inferences from classical multiple-

frame surveys. 
 

(A1) The union of the Q  frames covers the target population.  

(A2) The sample qS  taken from Frame q  is a probability sample where unit i  has probability 
( )q

i  of being in .qS  Let ( )q

iw  represent the final weight for unit i  in ;qS  options for ( )q

iw  

include the design weight ( )1 ,q

i  the Hájek weight 
( ) ( ) ( )ˆ[ ]q q q

iN N   with 
( ) ( )ˆ = 1 ,

q

q q

jj S
N 

  or a nonresponse-adjusted weight.  

(A3) The samples 1, , QS S  are selected independently.  

(A4) The domain membership of each unit i  in ,qS   ( ), ,i d d D   is known.  

(A5) The estimator of the population total in domain d  from ,qS  ( ) ( )ˆ = ( ) ,
q

q q

d i i ii S
Y d w y

  is 

approximately unbiased for 
=1

= ( ) ,
N

d i ii
Y d y  for all Frames q  containing domain d  and 

for all variables .y  

(A6) There is no measurement error. If unit i  is in Frame q  and Frame ,q  iy  will have the same 

value if measured in qS  as it will if measured in .qS   

 

These are strong assumptions; some relaxation of individual assumptions is possible for specific 

estimators, as discussed in Section 3. But they are weaker than assumptions needed for some of the other 

possible data integration methods. Record linkage, for example, has an implicit assumption that unit i  in 

Frame q  can be matched with a specific unit in Frame .q  For multiple-frame surveys, one must know 

                         (a)                                                            (b)                                                          (c) 
                    Frame 1                                                                                                                  Frame 1  

 
                                                                          Frame 1                                                                
                         Frame 2                                                         Frame 2                                              Frame 2 
 
 
 
                                                                                                                                         Frame 3   
                                                                                                                                                                        Frame 4 
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whether a unit sampled from Frame q  is also in other frames, but does not need to identify the 

matched unit. 

 
2.3 Were the assumptions met in the NSAF? 
 

Survey assumptions are rarely met exactly in practice, and the NSAF was no exception. Assumption 

(A1) was not met because of the exclusion of block groups with high telephone ownership. The sample 

from the area frame yielded fewer nontelephone households than expected, perhaps because of 

measurement error in the 1990 census or population changes since 1990. In addition, post-survey 

investigations using data from the 1997 Current Population Survey indicated that the block groups 

excluded from the frame may have had more nontelephone households than anticipated (Waksberg, Brick, 

Shapiro, Flores-Cervantes, Bell and Ferraro, 1998). 

Although independent probability samples were taken from each frame, each sample had nonresponse. 

The estimated response rates for children were 65 percent in the RDD sample and 84 percent in the area 

sample. The weighting procedure attempted to address potential bias from undercoverage and 

nonresponse. The weights of the nontelephone households in the area sample were ratio-adjusted to 

attempt to compensate for undercoverage from the block group exclusions. Nonresponse-adjusted weights 

were calculated separately for the area- and RDD-frame samples, and then the combined samples were 

poststratified to Census Bureau control totals (Brick, Shapiro, Flores-Cervantes, Ferraro and Strickler, 

1999). Groves and Wissoker (1999) found little evidence of residual bias in their nonresponse bias 

analysis; one of the few differences they reported was that households in the RDD sample that required 

more calls for contact, and households in a subsample taken of nonrespondents, were slightly less likely to 

be receiving food assistance. 

In the NSAF, the domain membership was determined by asking household respondents in the area 

sample if they had a working telephone. If that question was answered accurately, then Assumption (A4) 

was met. The investigators attempted to reduce measurement error for Assumption (A6) by having 

centralized telephone interviewers conduct all of the detailed interviews; households in the area frame 

were interviewed over a cellular telephone brought by the field representative. Because interviews in 

domain {1, 2}  were obtained only from the RDD sample, however, no data are available for evaluating 

possible measurement error or relative nonresponse bias for the two samples. 

Waksberg had used dual-frame surveys several times prior to the NSAF, mostly to increase sample 

sizes when sampling rare populations, but he recommended using them only when a simpler design would 

not meet the survey objectives. He wrote: “The price is additional complexity in the sampling operations 

and the possibility of error if the matching of the two frames is not done carefully.... My instincts are that 

a more complex scheme should not be used unless there is a reasonably good pay-off” (Waksberg, 1986). 

Was the extra complication and expense of the dual-frame design worth the effort in the NSAF? 

Because telephone households were screened out of the area sample, and because the yield of 

nontelephone households was less than anticipated, only 1,488 of the total of 44,461 interviewed 
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households came from the area sample. But because of the high poverty rate of the nontelephone 

households, the estimated percentage of children in households under 200 percent of the poverty threshold 

was about 3.6 percentage points higher with the full sample than with the RDD sample alone. Even though 

for many variables there was only a small difference between the full-sample estimate and the RDD-

sample estimate, that difference could not have been evaluated without the area sample. 

 
3. Estimation in classical multiple-frame surveys 
 

The main problem for inference in a classical multiple-frame survey ‒ one that is designed so as to 

satisfy Assumptions (A1) to (A6) ‒ is how to account for potential overlap among the samples. In the 

NSAF, telephone households were screened out of the area sample, but in many applications screening is 

infeasible or it is more cost-effective to obtain data from the full sample selected from each frame. When 

separate surveys or data sources are not designed with data combination in mind, the overlap depends on 

the coverage of the individual data sources. 

With an overlap design, units that are contained in more than one frame have multiple chances for 

being selected in the sample. An estimator constructed by summing the weighted observations from each 

of the Q  samples,  

 ( )

concat

=1

ˆ = ,
q

Q
q

i i

q i S

Y w y


   

will be a biased estimator of 
=1

=
N

ii
Y y  because the individual sample weights do not reflect the 

multiple chances of selection for units in overlap domains. Methods for estimating population totals thus 

typically multiply the survey weights ( )q

iw  by a multiplicity adjustment ( )q

im  that satisfies 
( ) ( )

=1
1

Q q q

i iq
m   for each unit ,i  resulting in the estimator  

 ( ) ( ) ( )

=1 =1

ˆ = ,
q q

Q Q
q q q

i i i i i

q i S q i S

Y w m y w y
 

=   (3.1) 

where ( ) ( ) ( )=q q q

i i iw w m  is the multiplicity-adjusted weight. 

 

3.1 Hartley’s composite estimator 
 

Hartley (1962) was the first author to present a rigorous theory of estimation in dual-frame surveys 

where units in the overlap domain {1, 2} might be sampled from both frames. This four-page paper made 

several important contributions. First, Hartley defined the problem in statistical terms. Second, he 

proposed an optimal estimator for combining the estimates from the two surveys. And third, he studied the 

design problem of allocating the resources to the different samples, with a joint consideration of the 

allocation and the estimator that minimize the variance of the estimated population total subject to a fixed 

cost. 

Hartley (1962) estimated the population total 
=1

=
N

ii
Y y  by  
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 (1) (2) (1) (2)

{1} {2} {1, 2} {1,2}
ˆ ˆ ˆ ˆ ˆ( ) = (1 ) .Y Y Y Y Y  + + + −  (3.2) 

He proposed choosing   to minimize ˆ( ) .V Y     This resulted in the value  

 
( ) ( ) ( )

( ) ( )

(2) (2) (2) (1) (1)

{1, 2} {2} {1, 2} {1} {1, 2}

(1) (2)

{1, 2} {1, 2}

ˆ ˆ ˆ ˆ ˆCov , Cov ,
= .

ˆ ˆH

V Y Y Y Y Y

V Y V Y


+ −

+
 (3.3) 

The estimator in (3.2) is of the form in (3.1) with multiplicity weight adjustments  

 ( ) ( ) ( ) ( ) ( )(1) (2)= {1} {1,2} , = {2} {1, 2} 1 .i i i i i im m     + + −   

If it is desired to use the optimal compositing factor ,H  estimators may be substituted for the unknown 

covariances in (3.3). Because H  depends on covariances involving ,y  however, the optimal multiplicity 

adjustment may differ for different variables, giving a different set of weights for each. In addition, H  

can be less than 0 or greater than 1, possibly resulting in negative weights for some observations. These 

features carry over to the Q -frame generalization of Hartley’s optimal estimator studied by Lohr and Rao 

(2006). 

The estimator in (3.2), with fixed value of ,  is approximately unbiased for Y  under Assumption 

(A5). If the estimated domain totals and the estimates of the covariances in (3.3) are consistent, then the 

estimator with ˆ
H  is consistent for .Y  Saegusa (2019) studied Hartley’s estimator from the perspective of 

empirical process theory, establishing a law of large numbers and a central limit theorem when 1S  and 2S  

are both simple random samples. 

Hartley’s application was in agriculture, and many of the early applications of dual-frame surveys were 

for agriculture or business surveys (Kott and Vogel, 1995), where list frames existed that contained the 

larger business or agricultural operations. A dual-frame survey with a disproportionately larger sample 

from the list frame reduced costs because (1) obtaining data from an operation in the list frame was often 

less expensive than obtaining data from an operation in the area frame and (2) oversampling the list frame 

was analogous to oversampling high-variance strata in stratified sampling and thus resulted in greater 

efficiency. 

Later, as cellular telephones became more prevalent, concern about bias from using landline telephone 

samples alone led to use of dual-frame telephone surveys, with one sample from a landline frame and a 

second sample from a cellular telephone frame. Here, both frames are incomplete but together cover the 

population of persons with telephones. For these surveys, an important consideration is how to deal with 

persons having both kinds of telephones. The next section reviews choices for the compositing. 

 
3.2 Multiplicity weighting adjustments 
 

Hartley’s optimal estimator, with ,H  uses a different set of weights for each response variable, which 

can lead to internal inconsistencies among estimators. Various authors have proposed estimators that use a 
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single set of weights for all analyses. Here, I briefly list some of the multiplicity adjustment factors ( )q

im  

that result in one set of weights for the general estimator of the population total in (3.1). The resulting 

estimators are approximately unbiased for the population total Y  under Assumptions (A1), (A4), and 

(A5). These and additional estimators are reviewed in detail by Lohr (2011), Lu, Peng and Sahr (2013), 

Ferraz and Vogel (2015), Arcos, Rueda, Trujillo and Molina (2015), and Baffour, Haynes, Western, 

Pennay, Misson and Martinez (2016). 

 

• Screening estimator, with ( )
1(1) (2) (1) ( ) ( )

=1
=1, =1 , , = 1 .

QQ q

i i i i iq
m m m 

−
− −  A unit sampled 

from Frame q  is discarded if it is in any of Frames 1, , 1.q −  This estimator is automatically 

used with a screening design such as the NSAF; with an overlap design, its use means that some 

data observations are thrown away.  

• Multiplicity estimator, with ( ) =1/q

im (number of frames containing unit )i  
( )

=1
= 1 .

Q q

iq
  In a 

dual-frame survey, this gives the estimator in (3.2) with = 1 2.  Mecatti (2007) noted that 

with the multiplicity estimator, Assumption (A4) can be replaced by the slightly less restrictive 

assumption that 
( )

=1

Q q

iq
  is known for each sampled unit .i  

The multiplicity estimator can also be viewed as a special case of the generalized weight share 

method (Deville and Lavallée, 2006) using the standardized link matrix, since the number of 

links to population unit i  is the number of frames containing that unit.  

• Single-frame estimator (Bankier, 1986; Kalton and Anderson, 1986), which considers the 

observations as if they had been sampled from a single frame. If inverse probability weights are 

used, with ( ) ( )=1 ,q q

i iw   then 
( ) ( ) ( ) ( )

=1
= .

Qq q f f

i i i if
m     This estimator requires that the 

inclusion probability for unit i  be known for all Q  frames, including frames from which the 

unit was not sampled. The multiplicity adjustments consider the inclusion probabilities for the 

designs but not the relative variances, which are affected by clustering and stratification in the 

individual samples. 

• Effective sample size (ESS) estimator (Chu, Brick and Kalton, 1999; O’Muircheartaigh and 

Pedlow, 2002), where the domain estimator from each frame is weighted by the relative 

effective sample size from that frame. Let ( )qn  be the sample size from Frame q  and let ( )deff q  

denote the design effect for a key variable or a smoothed design effect for multiple variables. 

The effective sample size for qS  is ( ) ( ) ( )= deffq q qn n  and the multiplicity adjustment for unit 

i  is  

 
( )

( )

( ) ( )

=1

= .
q

q

i Q f f

if

n
m

n
  

This estimator considers the relative variances of estimators from different samples and is often 

more efficient than the screening, multiplicity, and single-frame estimators. 
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The pseudo-maximum-likelihood (PML) estimator of Skinner and Rao (1996) is of this type 

when the frame sizes ( )qN  and domain sizes dN  are unknown; Skinner and Rao (1996) 

recommended using the design effect for estimating {1, 2}N  to establish the effective sample size 

for the dual-frame case. The PML estimator is asymptotically equivalent to an ESS estimator 

that poststratifies to the domain sizes dN  when those are known; when the frame sizes ( )qN  are 

known but not {1, 2},N  the PML estimator is asymptotically equivalent to calibrating the ESS 

estimator to estimated domain sizes calculated from the pseudo-likelihood function. 

 

Approximately unbiased estimates of the variances for all estimators considered in this section can be 

derived under Assumptions (A1) to (A6) and additional regularity conditions that ensure consistency of 

estimated totals and variance estimators from the Q  samples. Skinner and Rao (1996) studied 

linearization variance estimators; Chauvet (2016) derived linearization variance estimators for the French 

housing survey that accounted for the variance reduction due to high sampling fractions from some of the 

frames. Lohr and Rao (2000) developed theory for using the jackknife with multiple frames, and Lohr 

(2007) and Aidara (2019) considered bootstrap variance estimators. These methods rely on Assumption 

(A3) of independent samples; Chauvet and de Marsac (2014) considered the situation in which the 

samples share primary sampling units but independent samples are taken at the second stage of the design. 

Calculating linearization variance estimates requires special software that implements the partial 

derivative calculations for the multiple frames. Replication variance estimation methods such as jackknife 

and bootstrap, however, can be calculated in standard survey software by creating a single data set that 

contains all the concatenated observations and weights ( )q

iw  from the Q  samples and creating replicate 

weights using standard methods for stratified multistage samples (Metcalf and Scott, 2009). The 

concatenated data set has 
=1

Q

qq
H  strata, where qH  is the number of strata for ;qS  observations from 

different samples are in different strata. The replicate weight methods also can include effects of 

calibration (see Section 3.3) on the variance. 

Of course, many applications call for estimates of quantities other than population totals, and the 

multiple-frame theory applies to parameters that are smooth functions of domain totals. A different 

compositing factor may be desired when quantities other than population totals are of primary interest, 

however, and there may be special considerations for other types of analyses. Other types of statistical 

analyses that have been studied in the multiple-frame setting include linear (Lu, 2014b) and nonparametric 

(Lu, Fu and Zhang, 2021) regression, logistic regression with ordinal data (Rueda, Arcos, Molina and 

Ranalli, 2018), empirical distribution functions (Arcos, Martínez, Rueda and Martínez, 2017), gross flow 

estimation with missing data (Lu and Lohr, 2010), and chi-squared tests (Lu, 2014a). 

Lu (2014b) noted that linear regression parameters estimated using the multiplicity-adjusted weights 

are the finite population regression coefficients B  that minimize the sum of squares 2

=1
( ) .

N T

i ii
y − x B  

However, one of the reasons for taking a multiple-frame survey, rather than using an incomplete frame, is 

a concern that population characteristics may differ across domains. Lu (2014b) suggested examining the 
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residuals separately by domain and also fitting separate regression models by domain to assess the 

appropriateness of the regression model. 
 

3.3 Calibration 
 

The PML estimator is calibrated to population counts that are known for the frames and domains. In a 

dual-frame survey where (1)N  and (2)N  are known, 
2 ( ) ( ) ( ) ( )

, PML=1
=

q

q q f f

i i iq i S
w m N

   for =1, 2.f  If the 

overlap domain size {1, 2}N  is also known, the PML estimator is calibrated to all three domain sizes. 

Skinner (1991) used calibration with the single-frame estimator, raking the estimator to the population 

frame counts. 

Ranalli, Arcos, Rueda and Teodoro (2016) studied general calibration theory for dual-frame surveys. 

They assumed that a vector of auxiliary information x  is available with known population totals 

=1
= ,

N

iiX x  and calculated multiple-frame generalized regression weights as  

 

1

( ) ( ) ( )

=1

ˆ= 1 ( ) ,
f

Q
q q T f T

i i k k k k i i

f k S

c w w 

−



  
 + −  

    

 X X x x x  (3.4) 

where k  is an arbitrary constant and 
( )

=1

ˆ =
f

Q f

k kf k S
w

 X x  estimates X  using the multiplicity-

adjusted weights. Under regularity conditions, they showed that for the dual-frame estimator in (3.2) with 

fixed ,  the variance of the generalized regression estimator 
2 ( )

GR =1

ˆ =
q

q

i iq i S
Y c y

   is approximated by  

 
2

( )

GR

=1

ˆ( ) ( ) ,
q

q T

i i i

q i S

V Y V w y


 
 − 

  
 x B  (3.5) 

where ( )
1

=1 =1
= .

N NT

i i i i i ii i
y 

−

 B x x x  The variance of the estimator depends on the residuals from the 

regression model just as in the single-frame case. 

Särndal and Lundström (2005) distinguished among types of auxiliary information that can be used in 

calibration. InfoU is information available at the population level. A vector *
x  can be considered as InfoU 

if the population total * *

=1
=

N

iiX x  is known and *
x  is observed for every respondent in the sample. 

InfoS is information available at the level of the sample, but not at the population level. Vector o
x  is InfoS 

if it is known for every member of the sample, both respondents and nonrespondents, but 
=1

N o

i x  is 

unknown. 

In a multiple-frame survey, the variables available for InfoU and InfoS may differ across frames. For 

the NSAF, little auxiliary information was known for nonrespondents in the RDD sample but address-

related information (for example, characteristics of the block group) was known for all members of the 

area-frame sample. The reverse may be true for a dual-frame survey in which Frame 1 is an area frame 

and Frame 2 is a list frame. The list frame may have rich information that can be used for weighting class 

adjustments or calibration, while the auxiliary information for the area frame may be restricted to 

information measured in the survey for which population totals are known from an external source such as 

a census or population register. 
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Ranalli et al. (2016) allowed for differing InfoU information across the frames; some of the auxiliary 

variables may be known for units from all samples and for the full population, while other variables may 

be of the form * ( )= q

i i ix x  with total * ( )

=1
= ,

N q

i ii
X x  the total of variable x  in Frame .q  Calibration to 

frame counts ( )qN  is thus a special case of the general calibration theory. 

But the differing amounts of information for the frames may also have a bearing on the multiplicity 

adjustments. Suppose that Frame 2 has rich auxiliary information for calibration while Frame 1 has little 

information. Calibrating the weights (2)

iw  before compositing may increase the relative effective sample 

size from 2S  and thus increase the value of ( )(2) (1) (2)n n n+  that would be used for the ESS estimator. 

Haziza and Lesage (2016) argued that a two-step weighting procedure offers several advantages for 

single-frame surveys with nonresponse. The first step divides the design weight for unit i  by its estimated 

response propensity (often calculated from InfoS information) and the second step calibrates the 

nonresponse-adjusted weights to population control totals (available from InfoU information). When there 

is substantial nonresponse, weighting adjustment factors from step 1 are often much higher than those 

from step 2; if the response propensity model is correct, the weighting adjustments in step 2 converge to 1 

as .n →  The two-step procedure is thus more robust toward misspecification of the calibration model. 

The same considerations apply for multiple-frame surveys. A two-step procedure, where step 1 adjusts 

the samples separately for nonresponse and step 2 calibrates the combined samples, provides robustness to 

the calibration model. Suppose that 1S  has full response; 2S  has nonresponse but the response 

propensities can be predicted perfectly from variable .x  Then, performing a separate nonresponse 

adjustment for each sample in step 1 removes the bias for 2S  so that Assumption (A5) is satisfied. If the 

data are combined first and then calibrated using (3.4), however, the calibration may change the weights 

for units in 1S  in order to meet the calibration constraints ‒ introducing bias for the estimates from 1S  

while not removing it for estimates from 2 .S  More research is needed on the ordering of steps for weight 

adjustments. It may be better to perform two steps of nonresponse adjustments and calibration on each 

sample separately, then adjust the weights for multiplicity, and then calibrate to population totals 

(including re-calibrating on the individual frame variables). 

One consequence of using an overlap estimator for a multiple-frame survey is that the multiplicity 

adjustments may introduce more weight variation, with observations belonging to one frame having much 

larger weights than observations belonging to more than one frame. If, for example, a list frame (Frame 2 

in Figure 2.2(a, b)) is disproportionately oversampled, then the sampling weights for observations in 

domain {1},  which are sampled only from Frame 1, may be large relative to the weights for the other 

domains. Wolter, Ganesh, Copeland, Singleton and Khare (2019) suggested using a shrinkage estimator, 

estimating {1}Y  by (1) (2) (2)

{1} {1} {2} {1, 2}
ˆ ˆ ˆ(1 ) ( ) ,Y N Y Y N + − +  but the shrinkage may introduce bias ‒ after all, 

the reason for using a more complicated multiple-frame design instead of just sampling from Frame 2 is to 
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avoid potential bias from omitting domain {1}.  A better solution, if feasible, is to address the weight 

variation when designing the survey, as discussed in Section 5. 
 
 

3.4 Probability sample combined with census of a population subset 
 

Lohr (2014) and Kim and Tam (2021) noted that the situation in Figure 2.2(a) includes the special case 

in which a probability sample 1S  is taken from Frame 1 having full coverage, and the sample 2S  from 

Frame 2 is a census of domain {1, 2}. The overlap domain is thus defined to be the units in 2 ,S  which 

may be from administrative records or a convenience sample. Although 2 ,S  considered by itself, may 

have undercoverage bias, in the multiple-frame setting the bias is eliminated by the presence of a sample 

from Frame 1. The units in 2S  have (2) =1iw  and represent themselves alone; they do not represent any 

units in other parts of the population. When (2)N N  is small, say from a small convenience sample, 2S  

will have little effect on dual-frame estimators ‒ almost all of the population is in domain {1}.  But when 

(2)N N  is large, as may occur when Frame 2 consists of administrative records, the availability of those 

records may improve the precision of Ŷ  if Assumptions (A1) to (A6) are met. 

When 2S  is a census with no measurement error, (2)

{1, 2} {1, 2}
ˆ = .Y Y  The estimator in (3.2) is  

 (1) (1)

{1} {1, 2} {1, 2}
ˆ ˆ ˆ( ) = (1 ) ;Y Y Y Y  + + −  (3.6) 

taking = 0  uses the known population total from Frame 2 and relies on Frame 1 only for estimation of 

the part of the population not in Frame 2. 

Kim and Tam (2021) noted that since {1, 2}Y  is known, it can be used as an InfoU calibration total. They 

proposed two calibration estimators: a ratio estimator (1) (1)

ratio {1, 2} {1, 2}
ˆ ˆ ˆ=Y Y Y Y  and a generalized regression 

calibration estimator. For many designs, however, the ratio estimator will be less efficient than ˆ (0)Y  from 

(3.6) because  

 ( ) ( ) ( )
2

{1} {1}(1) (1) (1) (1)

ratio {1} {1, 2} {1} {1, 2}

{1, 2} {1, 2}

ˆ ˆ ˆ ˆ ˆ2 Cov , ;
Y Y

V Y V Y V Y Y Y
Y Y

 
  + −    

 

  

the ratio adjustment can introduce extra variability from (1)

{1, 2}Ŷ  that is excluded from ˆ (0).Y  

Calibrating ˆ ( )Y   to {1, 2} =1
= ,

N

ii
Y x  for (2)= ,i i ix y  the generalized regression weights in (3.4) 

become  

 ( )
1

( ) ( ) ( ) (2) 2 (2)

{1, 2} {1, 2}

=1

ˆ= 1 ( ) ,
f

Q
q q f

i i k k k i i

f k S

c w Y Y w y y  

−



  
 + −  

    

   (3.7) 

resulting in GR
ˆ ˆ= (0)Y Y  from (3.6). Similarly, calibrating on the vector ( )(2) (2)= 1, ,

T

i i i iy x  results in 
(1) (1)

GR {1} {1} {1} {1, 2}
ˆ ˆ ˆ= .Y Y N N Y+  
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For some designs, the variance can be reduced even further. Montanari (1987, 1998) proposed using 

the regression coefficient 
1

ˆ ˆ ˆ= ( ) Cov ( , )V Y
−

  β X X  for calibration, resulting in the estimator  

 
opt
ˆ ˆ ˆ= ( ) .TY Y + −X X β  (3.8) 

Rao (1994) called (3.8) the optimal regression estimator and showed that 
opt GR
ˆ ˆ( ) ( ).V Y V Y  For the dual-

frame situation considered in this section, with (2)= ,i i ix y  

 
( )
( )

( )
( )

(1) (1) (1) (1)

{1, 2} {1} {1, 2}

(1) (1)

{1, 2} {1, 2}

ˆ ˆ ˆ ˆCov , Cov ,
= = 1

ˆ ˆ

Y Y Y Y

V Y V Y
+β   

and  

 
( )

( )
( )

(1) (1)

{1} {1, 2}(1) (1)

opt {1, 2} {1, 2} (1)

{1, 2}

(1) (1)

{1} {1, 2} {1, 2}

ˆ ˆCov ,
ˆ ˆ ˆ= 1

ˆ

ˆ ˆ= (1 ) ,H H

Y Y
Y Y Y Y

V Y

Y Y Y 

 
 + − +
 
 

+ + −

 

(3.9)

 

where ( ) ( )(1) (1) (1)

{1} {1, 2} {1, 2}
ˆ ˆ ˆ= Cov ,H Y Y V Y −  is Hartley’s optimal value for   from (3.3). 

Although we usually think of the compositing factor   as being between 0 and 1, H  can be outside of 

this range. For a conceptual example, suppose that Frame 2 is a list of children receiving food assistance at 

school and the sample from Frame 1 is a cluster sample of households. Then households in which one or 

more children are receiving food assistance have some household members in domain {1, 2}  and other 

members in domain {1}.  If y  exhibits high intra-household correlation, then we would expect (1)

{1}Ŷ  and 

(1)

{1, 2}Ŷ  to be positively correlated. In this case, Hartley’s optimal estimator results in negative weights for 

units in domain {1, 2}  from the probability sample.  

Even though 
optŶ  is more efficient for special situations such as the cluster sample described above, it 

depends in practice on an estimate of the covariance, is optimal only for this particular y  variable, and 

may have negative weights. Negative weights can also occur if one does optimal calibration with auxiliary 

variable ( )(2) (2)1, , ;i i iy   in fact, that calibration results in the estimator proposed by Fuller and Burmeister 

(1972). These optimal regression estimators are sensitive to the model assumptions, and in general I do 

not recommend their use. 

When the Frame-2 sample is a census and Assumptions (A1) to (A6) are met, the precision of 

population estimates depends entirely on the design of 1.S  When the samples are not designed to be part 

of a multiple-frame survey (and sometimes even when they are), it is likely that one or more of the 

assumptions is violated. Assumptions (A4) and (A6) are particularly suspect when it is desired to combine 

data from surveys that were not designed with combination in mind. Even if both surveys measure 

unemployment, they may use different questions so that the unemployment statistics from 2S  measure a 
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different concept than the statistics from 1.S  Domain misclassification may also occur. A unit in the 

census 2S  is known to also be in complete Frame 1, but it may be difficult to tell whether a unit in 1S  is 

also in the administrative records or convenience sample that serves as 2 .S  These problems are discussed 

in the next section. 

 
4. Multiple-frame surveys and data integration 
 

Rao (2021) reviewed a number of data integration methods for combining information from a 

probability sample 1,S  assumed to come from a frame with complete coverage, with information from a 

nonprobability sample 2 ,S  often a census of part of the population as in Section 3.4. Rao considered two 

cases for making inferences about :y  (1) y  is observed in both samples, and (2) auxiliary information x  

is observed in both samples but y  is observed only in 2 .S  In this section I examine various data 

integration methods from the perspective of the multiple-frame paradigm and the assumptions in 

Section 2.2. 

 

4.1 Small area estimation 
 

Small area estimation can be considered to be a special case of a dual-frame estimation problem in 

which Assumption (A6) is not met. Here, 1S  is a probability sample from Frame 1 and Frame 2 is often an 

administrative data source. Both frames are assumed to have complete coverage of the population, but the 

variable of interest y  is measured only in 1.S  Auxiliary information x  used to predict y  is measured in 

both samples. Beaumont and Rao (2021) discussed integrating probability and nonprobability samples 

through the use of the Fay-Herriot (1979) estimator with small area estimation techniques. 

A composite small area estimator (Rao and Molina, 2015) of the population mean a  in area a  is of 

the form  

 (1) (2)ˆ ˆ ˆ= (1 ) ,a a a a a    + −   

where (1)ˆ
a  is the direct estimator for the sample mean in area a  from 1S  (which may have large variance 

or may not exist), 
(2) ˆˆ = T

a a x β  is a predicted value from a regression model, and a  is a compositing factor. 

For the Fay-Herriot estimator, a  depends on the relative precision of the two estimators under an 

assumed regression model whose parameters are estimated from 1.S  For the estimator ˆ ,a  the variable y  

is measured differently in the two frames ‒ predicted values are used for Frame 2 ‒ and different 

compositing factors are used in different areas. 

 

4.2 Mass imputation and sample matching 
 

Suppose that 1S  is a full-response probability sample from Frame 1, but the variable of interest y  is 

not measured in 1.S  However, y  is measured in 2S  from Frame 2, and auxiliary variables x  are 

measured in both samples. Let iy  be the predicted value of iy  from an imputation model, relating iy  to 
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,ix  that is developed on 2S  and let 
1

(1) (1)= i ii S
Y w y

  and 
1

(1) (1)= ( )d i i ii S
Y w d y

  be the estimated 

population and domain- d  totals from 1S  using the imputed values. 

Similarly to small area estimation, mass imputation fits into the dual-frame context by relaxing 

Assumption (A6) of no measurement error. Kim and Rao (2012) and Chipperfield, Chessman and Lim 

(2012) considered the situation where both frames are complete and 1S  and 2S  are both probability 

samples. The frames can differ ‒ Frame 1, for example, might be an area frame and Frame 2 might be a 

population register ‒ but both are assumed to have full coverage. Chipperfield et al. (2012) used a 

composite estimator  

 (1) (2)

imp
ˆ ˆ= (1 ) ,Y Y Y + −  (4.1) 

where the optimal value of the compositing factor   minimizes the variance (considering both the 

sampling and imputation variability). Kim and Rao (2012) proposed adding a correction for bias with the 

estimator  

 
2

(1) (2) ( );i i i

i S

Y w y y


+ −   

this estimator is of the same form as (4.1) with =1  if the estimated parameters in the imputation model 

are required to satisfy 
2

(2) ( ) = 0.i i ii S
w y y


−  

If the imputation model produces unbiased and accurate predictions for ,iy  combining the samples 

augments the effective sample size for calculating estimates. When both samples are probability samples 

with full coverage, it is possible to perform model diagnostics on 2 .S  Chipperfield et al. (2012) suggested 

several diagnostics, including testing the imputation model on small areas, investigating whether it is 

possible to predict survey membership from the value of iy  (for 2 )S  or iy  (for 1),S  and studying the 

sensitivity of the mean squared error to different levels of bias in (1) .Y  The sensitivity of the diagnostics, 

however, depends on the quality and size of 2 .S  If 2S  is small relative to 1,S  1S  may contain 

subpopulations that are not well represented in 2S  and are poorly fit by the imputation model. 

The situation becomes more complicated when Frame 2 is incomplete or when 2S  has selection bias. 

When domain {1}  is nonempty as in Figure 2.2(a), then the composite estimator with imputed values 

becomes  

 (1) (1) (2)

imp {1} {1, 2} {1, 2}
ˆ ˆ= (1 ) .Y Y Y Y + + −  (4.2) 

The properties of the estimator in (4.2) depend on how well the imputation model predicts the values of 

iy  in 1.S  Several imputation methods have been proposed. With sample matching (Rivers, 2007), iy  for 

observation i  in iS  is set equal to the value of iy  of the observation’s nearest neighbor (with respect to 

the values of )x  in 2 .S  Rivers (2007), considering the situation in which 2S  is a convenience sample, took 

=1  in (4.2) and used the information in 2S  for the sole purpose of finding the imputed values iy  for 1.S  

Yang, Kim and Hwang (2021) studied theoretical properties of mass-imputed estimators that employ 

nearest neighbor methods. 
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Chen, Li and Wu (2020), building on the work of Lee (2006), Lee and Valliant (2009), and Valliant 

and Dever (2011) on using propensity score weighting to estimate population characteristics from a 

nonprobability sample, proposed a “doubly-robust” estimator for the situation where ix  is measured in 

both surveys but iy  is measured only in nonprobability sample 2 .S  Let (2) =1iR  if population unit i  is in 

2S  and 0 otherwise. Under strong assumptions that (1) (2)

iR  and iy  are independent given covariates ,ix  

(2) ( )(2) (2)= = 1 > 0i iP R  for all population units ,i  and (3) (2)

iR  and (2)

jR  are conditionally independent 

given ,x  they estimated (2)

i  as a function of ,ix  using information in 1,S  and proposed the estimator  

 
1 2

(1)

DR (2)

1ˆ = ( ),
ˆ

i i i i

i S i S i

Y w y y y
 

+ −    

where iy  is an imputation prediction for the unknown values of y  in 1S  (developed using the information 

in 2 ).S  The estimator DRŶ  is approximately unbiased for Y  if either the imputation model or the model 

predicting (2)

i  is correct. If the imputation model is correct, then the first term of DRŶ  is approximately 

unbiased for Y  and the second term has expected value 0. If the model predicting (2)

i  is correct, then 

2

(2)ˆ
i ii S

y 
  is approximately unbiased for Y  and 

1 2

(1) (2)ˆ 0.i i i ii S i S
E w y y 

 
 − 
    If neither 

model is correct, however, DRŶ  may have large bias. 

Kim and Tam (2021) considered an extension of the situation in Section 3.4 in which iy  is not 

measured in 1,S  or is measured differently than in 2 ,S  and proposed substituting an imputed value iy  for 

iy  in the estimators from 1S  in (3.6), obtaining the estimator in (4.2) with = 0;  they calibrated this 

estimator to the known domain size {1, 2}.N  

 

4.3 Imputation and the NSAF 
 

The estimators in Section 4.2 impute a predicted value iy  for the unknown value of iy  in 1.S  All have 

the strong assumption that the imputation model developed on 2S  applies to the units in domain {1}.  As 

Lu (2014b) noted when studying regression for dual-frame surveys, relationships between x  and y  may 

differ across domains. Thus, an imputation model developed on a sample from an incomplete frame, or on 

a sample with selection bias, may provide poor predictions for y  in other parts of the population. 

Moreover, without data on y  in the part of the population that is imputed, it may not be possible to assess 

the quality of the predictions. 

A dual-frame survey was taken for the NSAF because of concern that characteristics of interest might 

differ for telephone and nontelephone households. Let 1iy =  if child i  is in a household that is below 200 

percent of the poverty threshold, and 0 otherwise. Using the full sample from both frames (Urban Institute 

and Child Trends, 2007) an estimated 42.2 percent of children lived in households below 200 percent of 

the poverty threshold, with standard error 0.5 percent. The estimated percentage from the RDD sample 

was 38.6 percent and the estimated percentage from the area sample was 93.4 percent. Children in the 

nontelephone households, sampled from the area frame, were much more likely to be living in poverty. 

Now suppose that the NSAF had not measured poverty and income variables in the area sample, and 

iy  was imputed using regression relationships developed in the RDD sample. In many surveys, the only 
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information available for developing an imputation model is demographic variables. Fitting a logistic 

regression model to the RDD sample that predicts y  from race (with categories white, black, and other), 

and assigning each child in the area sample to the category with highest predicted probability, results in an 

estimate of 30.5 percent of children in the area sample living in poverty ‒ a lower value than in the RDD 

sample. Adding an indicator variable for living in a single-parent household to the model, the estimated 

percentage for the area sample goes up to 51.9 percent. Both of these estimates, and estimates calculated 

using cell-mean imputations, are far below the percentage of 93.4 percent from the real data. 

The problem, of course, is that the auxiliary information is not rich enough to provide a good 

prediction of poverty in the area sample. The key feature of the data, and the reason that Waksberg and his 

colleagues used a dual-frame survey, is that being without a telephone is highly associated with poverty. 

That association cannot be estimated from the RDD sample where all households have telephones. It 

might be possible to develop an imputation model using information from other surveys such as the 

Current Population Survey, where both telephone and non-telephone households are sampled, but I could 

not find an imputation model predicting y  from non-income variables in the RDD sample that provided 

good predictions. 

The nontelephone households were a small part of the population for the NSAF, but the differences 

between the multivariate relationships in the telephone and nontelephone households were so great that 

the imputation only slightly reduced bias. If poverty had not been measured for the nontelephone sample, 

however, and the published statistics had relied only on the imputations, there would have been no way to 

detect the bias. 

 

4.4 Domain misclassification 
 

One major challenge for combining data using a multiple-frame approach is identifying the domain 

membership (or multiplicity) of units in the data sources. This is challenging even for surveys that are 

designed to make use of multiple frames. 

The NSAF was designed as a screening survey where telephone households were excluded from the 

area sample. All households sampled from Frame 2, the RDD frame, were correctly classified since they 

were contacted by telephone. The more difficult part was obtaining the correct domain classification for 

households in the area-frame sample. Initial prescreening questions asked whether the household had any 

working telephones; those that answered no were transferred to the telephone interviewer who conducted 

the detailed interview. The telephone interviewer administered another brief screening interview and 

asked again about telephone service. An additional 7 percent of households were excluded after answering 

the more detailed questions about telephone ownership. Some had told the in-person interviewer that they 

did not have a telephone because they thought the interviewer wanted to borrow it. Others had 

misunderstood the question about telephone ownership ‒ one respondent, answering the prescreening 

questions in the living room, thought they applied only to telephones in the living room and did not 

mention the telephone in the bedroom (Cunningham, Shapiro and Brick, 1999). Although the second 

screening interview may have corrected for misclassification from respondents who mistakenly said they 
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did not have a telephone during the prescreening, there was no remedy for potential misclassification from 

respondents who responded in prescreening that they had a telephone when in fact they did not. 

Misclassification in this direction may have been part of the reason the investigators had a smaller sample 

size of nontelephone households than they had anticipated. 

In dual-frame telephone surveys, the domain for Figure 2.2(b) (cell only, landline only, or both) is 

usually determined by asking the respondent about other available telephones and, sometimes, the relative 

amount each type of telephone is used. Brick, Flores-Cervantes, Lee and Norman (2011) found that their 

landline samples and cell samples both had smaller estimated proportions of dual users than expected from 

statistics collected on telephone ownership in the National Health Interview Survey. They conjectured that 

this was because of persons who had access to both types of telephones but rarely used one of them. 

Domain membership may be unknown or difficult to estimate when combining existing data sources. 

In some cases, as when administrative lists are combined, it may be possible to link records, or the data 

files may contain information that indicates whether the unit is in other frames. In others, there may be 

little or no information available on domain membership. How can one know whether a participant in an 

opt-in panel survey is also in a frame of Medicare recipients if no questions about Medicare are asked in 

the survey? 

Lohr (2011) found that even a small amount of domain misclassification could create large biases in 

dual-frame estimators; moreover, calibration to domain counts that were based on misclassifications could 

worsen the bias. She proposed a method for adjusting for bias due to domain misclassification, assuming 

that misclassification probabilities P  (observation classified in domain |d  observation actually in domain 

)d  are known or can be accurately estimated for different population subgroups. Lin, Liu and Stokes 

(2019) studied a similar method using misclassification probabilities P  (observation actually in domain 

|d observation classified in domain ).d   

It may be possible to use multiple-frame methods when domain membership is unknown if the 

probability that unit i  is in domain d  can be estimated from auxiliary information ix  known for all 

sampled units. Kim and Tam (2021) proposed substituting an estimator for the unknown domain 

membership for the situation in Section 3.4 where 2S  is a census of a subset of the population. They set 

( ){1, 2} = 1i  if the predicted probability that unit 1i S  was in domain {1, 2},  ( )ˆ {1, 2} =1| ,i iP   x  

exceeded 1/2, and estimated the population total for domain {1}  as ( )
1

(1) 1 {1, 2} .i i ii S
w y


 −   

When domain membership is imputed, the mean squared error depends on the accuracy of the domain 

imputations as well as design features and nonresponse bias in 1.S  More research is needed to establish 

statistical properties of estimators when domain membership is estimated. It may also be desired to study 

alternative estimators that use the predicted probabilities directly to estimate the total in domain {1}  as 

( )
1

(1) ˆ {1, 2} = 0 | .i i i ii S
w P y


   x  

Dever (2018) used sample matching to evaluate the frame overlap for a probability sample 1,S  taken 

from an address-based sampling frame, and a nonprobability sample 2S  recruited from social media sites. 

She investigated the percentage of respondents in 1S  who had no close match in 2 .S  Although this 
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procedure does not provide an unbiased estimate of the size of domain {1},  a large percentage of 

unmatched cases for large samples can indicate that 2S  represents a different population than 1.S  

 

4.5 Indirect sampling and capture-recapture estimation 
 

Sections 4.2 to 4.4 looked at extensions of multiple-frame estimators that relaxed Assumptions (A2), 

(A4), and (A6). All of these, though, assumed that at least one of the frames, or their union, had full 

coverage. Let’s now look at an example where Assumption (A1) of full coverage is relaxed, and the 

multiple frames are used to estimate the population size. 

In indirect sampling, the target population consists of units that are linked to units in the sampling 

frame but are not necessarily in the frame (Lavallée, 2007) ‒ units in the target population are sampled 

indirectly through the links to the sampling units in the frame. Lavallée and Rivest (2012) extended the 

idea to multiple-frame sampling. As an example, suppose the target population consists of home care 

workers, who provide paid care for elderly, ill, or disabled persons in their homes. Frame 1 might be a list 

of persons receiving Medicare benefits, and Frame 2 might be a list of home health care aides from 

employment or licensing agencies. Persons in the Frame-1 sample are asked to identify workers who 

provide them with home care, who are then interviewed. A sample of workers from Frame 2 is also 

interviewed. The home care workers identified from the Frame-1 sample may have links to multiple 

persons in Frame 1 and may also be in Frame 2. Similarly, persons in the Frame-2 sample may also have 

links to units in Frame 1. An example of linkage structure is shown in Figure 4.1. 

 

Figure 4.1 Indirect sampling with two frames linked to the target population. Units in the dark shaded area 

have links to both frames. 
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With indirect sampling, the Q  frames can contain different types of units (the situation with different 

types of units was also considered by Hartley, 1974). We are not interested in overlap of the sampling 

frames (shown as nonoverlapping in Figure 4.1 because they contain different types of units) but in the 

overlap for the units in the target population. Sampled units in the target population have multiple chances 

of selection if they are linked to multiple units in one or both sampling frames. 

Let ( )

, = 1q

j kl  if unit j  from Frame q  is linked to unit k  in the target population, and let ( )q

kL  be the 

total number of links between unit k  in the target population and Frame q  (assumed to be knowable from 

asking unit ).k  Then an estimator ( )ˆ qY  can be found for each frame using the links as  

 
( )

( )

,( ) ( ) ( )

( )
ˆ = = ,

q

q

j kq q q

j k k kq
k kj S k

l
Y w y u y

L

     

where  

 
( )

( )

,( ) ( )

( )
= .

q

q

j kq q

k j q

j S k

l
u w

L

   

In the context of our example, person j  in 1S  would say they receive paid home care from provider ,k  

resulting in (1)

, = 1.j kl  Then the linked home care provider would be asked about how many other persons 

they work for who receive Medicare (assume they would know this or it could be determined from other 

sources), giving the value (1) .kL  The quantity ( )q

ku  sums the weights of the units in qS  with links to unit ,k  

adjusting for the multiplicity of the links to that frame. If ( ) ( )=1 ,q q

j jw   then  

 
( )

( )

,( ) ( ) ( )

( )
[ ] = = ,

q

q

j kq q q

k j kq

j S k

l
E u E w a

L

 
 
  
   

where ( ) =1q

ka  if target population member k  is linked to at least one unit in Frame q  and 0 otherwise. 

Multiple-frame methods may then be used to estimate characteristics of the population of home care 

providers, assuming that unit k  linked from qS  provides accurate information on (1) the number of links 

to members of Frame ( )( ),q

kq L  needed for multiplicity adjustments with Frame ,q  and (2) whether they 

are also linked to the other frame(s) ( )( f

ka  for ),f q  needed to adjust for the multiplicity of linkage from 

different frames.  

Lavallée and Rivest (2012) noted that if the union of the two frames has incomplete 

coverage ‒ Assumption (A1) is violated ‒ the samples from the two frames can be used to estimate the 

size of the target population. Let ( ) ( )ˆ =q q

kk
T u  for =1, 2.k  Then  ( )ˆ qE T  is the number of target 

population members that can be linked from Frame q . Each sample also provides an estimate of the 

number of target population units that can be linked from both frames: (1) (1) (2)

{1, 2}
ˆ = k kk

T u a  and 
(2) (2) (1)

{1, 2}
ˆ = .k kk

T u a  These can be composited to obtain an estimator 
{1, 2}T̂  of the number of persons in the 

target population who can be captured from both frames. 
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The Lincoln-Petersen capture-recapture estimator of population size can then be used. Under the strong 

assumption that being captured by Frame 1 is independent of being captured by Frame 2, the total number 

of home care providers can be estimated by (1) (2)

{1, 2}
ˆ ˆ ˆ .T T T  In some cases where the independence 

assumption is not met for the entire population, it may be approximately met on subpopulations whose 

estimated numbers can be summed. If there are more than two frames, loglinear models may be used to 

explore associations among the frames (Lohr, 2022, Chapter 14); Zhang (2019) presented a model for the 

situation in which frames may contain misclassified units. 

Alleva, Arbia, Falorsi, Nardelli and Zuliani (2020) proposed using indirect multiple-frame sampling to 

estimate the number of people infected by SARS-CoV-2 during the early stages of the COVID-19 

pandemic in 2020 ‒ information needed for estimating transmissibility and infection parameters in 

epidemiologic models. In this application, Frame 1 consists of persons with verified infections (perhaps 

obtained from hospitals, quarantine centers, or clinics), and Frame 2 consists of other persons; the persons 

in 2S  are administered a test for SARS-CoV-2. The linked sample consists of persons who had contact 

within the past 14 days with anyone in 1S  or with a member of 2S  who tested positive. 

 
5. Design of data collection systems 
 

Section 4 discussed how estimators for integrated data can be thought of within a multiple-frame 

survey structure. This structure can also be used when designing data collection systems that make use of 

multiple sources. Hartley (1962) derived the values of 
(1) ,n  

(2) ,n  and   that minimize the variance of 

ˆ ( )Y   in (3.2) when 1S  and 2S  are both simple random samples. His basic method can be extended to 

explore effects of sample design choices for other situations by considering mean squared errors under a 

range of potential bias assumptions. 

There has been a substantial amount of work on optimal design and effects of nonresponse for dual-

frame cellular/landline telephone surveys. Brick, Dipko, Presser, Tucker and Yuan (2006) and Brick et al. 

(2011) investigated nonsampling errors; Lu, Sahr, Iachan, Denker, Duffy and Weston (2013) performed a 

simulation study to calculate the anticipated mean squared error under various cost models and potential 

biases. Lohr and Brick (2014), studying allocation of resources in dual-frame telephone surveys with 

nonresponse, found that for some cost structures a screening survey, in which respondents with landlines 

are screened out of the cell phone sample, was more cost-efficient than an overlap survey. Levine and 

Harter (2015) presented graphical results to provide allocation guidance, considering the variance inflation 

from weight variation. Chen, Stubblefield and Stoner (2021) considered the design problem of 

oversampling minority populations in dual-frame telephone surveys, using optimal allocation methods 

from stratified sampling. Most of these articles focus on minimizing the variance of estimates for a fixed 

cost, and do not consider the effects of potential bias. 

A number of papers in the 1980s studied error structures and designs for dual-frame surveys, typically 

supplementing a sample from an RDD frame with a sample from an area frame that was assumed to have 
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full coverage. Biemer (1984) and Choudhry (1989) explored optimal designs theoretically and through 

simulation studies. Groves and Lepkowski (1985, 1986), and Traugott, Groves and Lepkowski (1987) 

investigated dual-frame designs with a view to minimizing mean squared error when estimates from the 

RDD frame may be biased. Lepkowski and Groves (1986) found that as the amount of bias increased in 

the RDD sample, its optimal allocation decreased, reaching an allocation of zero when the bias was 9 

percent of the anticipated estimated percentage. 

A small amount of bias can have similar effect for the situation considered in Section 3.4, where a 

census is taken from incomplete Frame 2 and a high-quality probability sample is taken from complete 

Frame 1. The plots in Figure 5.1 show the root mean squared error (RMSE) for an estimated proportion 

when 1S  is a simple random sample of size n  and 2S  is a census of domain {1, 2},  for combinations of 

overlap size {1, 2}N N  in {0.25, 0.5, 0.9} and bias in {0, 0.01, 0.03}. The population proportion is 0.2 in 

domain {1}  and 0.3 in domain {1, 2},  and the overall population proportion is estimated using ˆ( )Y N  

for ˆ ( )Y   in (3.2). The lines show the RMSE for each n  for =1  2(S  is not used at all), = 0  (the 

estimated proportion in domain {1, 2} comes from 2S  and 1S  contributes only for estimating the 

proportion in domain {1}),  and =1 2.  In the bottom row of plots, the bias from 2S  begins dominating 

the RMSE even for relatively small sample sizes from 1.S  A small amount of measurement bias can 

cancel the supposed advantage from data integration. This example assumes the error in 2S  is from 

measurement bias, but is similar in spirit to the example in Meng (2018), which shows that even when the 

selection bias from a convenience sample is small, a simple random sample of size 400 may have more 

useful information than a convenience sample of size 500 million. 

As Thompson (2019) noted, many of the methods that have been developed for combining data from 

multiple sources have been situation-specific, with solutions tailored to the particular circumstances of 

that problem. One would not expect these methods to perform as well, on average, for other situations 

because of regression-to-the-mean effects. Before adopting a data combination method, it may be 

desirable to perform additional simulation studies that consider outcomes when the model assumptions are 

not met. 

Lohr and Raghunathan (2017) discussed issues for designing data collection systems that leverage 

multiple data sources, focusing on the situation in which a probability survey is used in conjunction with 

administrative data sources that cover parts of the population. They considered using administrative data 

sources for (1) improving the frame for the probability sample, (2) providing contextual information for 

interpreting the survey data, (3) providing information for nonresponse follow-up and bias assessment, 

and (4) designing the entire data collection system to take advantage of inexpensive data collection 

afforded by some of the frames while obtaining complete coverage from the probability survey. Thinking 

of the design problem in the multiple-frame paradigm can be helpful for the last point. Lohr and 

Raghunathan (2017) suggested that when Frame 1 is complete but expensive to sample, while Frame 2 is 

incomplete but less expensive to sample ‒ this includes the situation considered in Section 3.4 of this 

paper ‒ it may be desirable to use a two-phase screening survey for the sample from Frame 1 and rely on 
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the sample from Frame 2 to supply information for domain {1, 2}.  That is the strategy that Waksberg and 

colleagues followed for designing the NSAF. 

 
Figure 5.1 Root mean squared error of estimated population proportion under differing amounts of overlap 

and bias. 
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large. But when Frame 1 is complete, and the costs are comparable or {1, 2}N N  is small, the extra 

complexity from using a dual-frame survey may outweigh its advantages. If, in addition, there is likely to 

be domain misclassification or if y  is measured differently across the surveys, a dual-frame survey will 

be more complicated than a single sample from Frame 1 and may produce biased estimates. 

On the other hand, using multiple data sources can also help assess nonsampling errors. Hartley (1974) 

wrote that when he presented his work on multiple-frame surveys at a conference, a discussant suggested 

that a “fairer” comparison would be to compare the variance from a dual-frame sample with that from a 

single sample of the same cost from the incomplete but cheap frame. Hartley responded (page 107): “The 

difficulty about this is, of course, that the bias through incompleteness may be of a magnitude which 

would make the single frame survey useless. If no a priori information on this bias is available, the two 

frame survey can in fact be regarded as an economical method of measuring this bias and eliminating it.” 

Thus, it may be desirable to design the data collection system with multiple goals of (1) obtaining 

estimates of key population quantities with small mean squared error, (2) assessing nonsampling errors 

from data sources, and (3) providing information to improve future survey designs. Some of the issues to 

consider include: 

• Quality and stability of data sources. Classical multiple-frame survey design theory assumes 

that the frames are fixed. But it may be desired to use alternative data sources in which the 

frame is changing over time (for example, web-scraped prices) to help provide more timely 

information in coordination with a probability survey. Theory is needed on how to do this. If 

relying on data supplied by an external source, will those data continue to be available, and in 

the same form?  

• Measurement of domain membership. If possible, information should be collected from each 

source to allow accurate determination of domain membership. If the information items 

collected in administrative sources cannot be altered, sometimes items can be added to 

probability samples that allow domain determination.  

• Redundancy. For the situation in Section 3.4, where a census of part of the population is 

supplemented by a probability sample, a screening design might be optimal for 1.S  But a 

screening design does not allow assessment of potential differences in measurement from the 

two samples. Some degree of overlap may be desired among the data sources in order to assess 

differences among the domain estimates from different sources. 

When an imputation model is developed for y  based on relationships between y  and x  from a 

data source with incomplete coverage, there is a danger that this model will not apply to the 

other parts of the population. It may be desired to take a small sample from the uncovered part 

of the population for purposes of evaluating the model. 

• Relative amounts of information for different domains. When data sources include 

administrative records or large convenience samples, there may be much more information 

about some parts of the population than others. The issue becomes how to obtain reliable 

information on the missing parts of the population. When that information comes from a 
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sample, there may be high weight variation. Levine and Harter (2015) studied the issue of 

weight variation in dual-frame telephone surveys. Some of the weight variation may be reduced 

by obtaining additional administrative data sources on underrepresented subpopulations, but 

there is a danger that, as organizations move away from expensive probability samples, some 

subpopulations will be omitted from all sources.  

• Robustness to design assumptions. Designs that are optimal in theory often turn out to be less 

so in practice. Exploring the anticipated design performance under violations of the 

assumptions can be helpful for modifying a theoretically optimal design. In some cases, 

combining information across sources may result in worse estimates than using a single source, 

or it may be decided that the gains from combining data are not worth the extra trouble. 

Waksberg (1998) advised: “Do not treat statistical procedures as mechanical operations; be 

prepared for the unexpected.” Having a design with some robustness to the assumptions gives 

flexibility for unexpected problems. 

• Auxiliary information. Many of the methods for integrating data rely on auxiliary information 

to perform imputations or predict domain membership. Mercer, Lau and Kennedy (2018) argued 

that for calibration, the richness of the auxiliary information is far more important than the 

particular method used to calibrate, and the same is true for other data combination methods. 

Having rich auxiliary information (beyond demographic variables) allows for better data 

integration models ‒ and for better assessment of their performance. 

 

Waksberg argued that a survey statistician needs to look at the entirety of the problem, not just the 

optimal design for measuring a single variable. He said that a sampling statistician should “think not only 

about the specific questions that are asked, but the broader aspects of these questions: whether the 

questions make sense and can be solved, or whether they should be modified or changed. This is how I’ve 

tried to have people with whom I work think about the issues: Here’s a question, how do you respond to 

this specific question? Is it the right question? What statistics will you get by a narrow interpretation of the 

question, and is there a better way to proceed?” (Morganstein and Marker, 2000, page 304). 

In this paper, I have suggested that multiple-frame surveys can serve as an organizing structure for 

designing and evaluating data-integration systems. This can help clarify the strengths and weaknesses of 

each source and, perhaps, result in a better way to proceed. 
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Replication variance estimation after sample-based 

calibration 

Jean D. Opsomer and Andreea L. Erciulescu1 

Abstract 

Sample-based calibration occurs when the weights of a survey are calibrated to control totals that are random, 

instead of representing fixed population-level totals. Control totals may be estimated from different phases of 

the same survey or from another survey. Under sample-based calibration, valid variance estimation requires 

that the error contribution due to estimating the control totals be accounted for. We propose a new variance 

estimation method that directly uses the replicate weights from two surveys, one survey being used to provide 

control totals for calibration of the other survey weights. No restrictions are set on the nature of the two 

replication methods and no variance-covariance estimates need to be computed, making the proposed method 

straightforward to implement in practice. A general description of the method for surveys with two arbitrary 

replication methods with different numbers of replicates is provided. It is shown that the resulting variance 

estimator is consistent for the asymptotic variance of the calibrated estimator, when calibration is done using 

regression estimation or raking. The method is illustrated in a real-world application, in which the 

demographic composition of two surveys needs to be harmonized to improve the comparability of the survey 

estimates. 

 

Key Words: Fishing; Hunting and wildlife watching surveys; Raking; Regression estimation; Replicate construction. 

 

 

1. Introduction 
 

Variance estimation methods for complex surveys include linearization and replication methods. Some 

of the practical advantages of replication methods include the facts that multiple weight adjustments such 

as nonresponse adjustments and calibration are readily incorporated into the estimates, that detailed design 

information does not need to be released in the public-use datasets, and that data users can readily obtain 

variance estimates for wide classes of estimators without the need for derivations. There are numerous 

replication methods in use, with the appropriate choice of method dictated by the sampling design and the 

estimation objectives of the survey. We refer to Wolter (2007) for an overview of the types of variance 

estimation replication methods. 

The problem we are addressing in this article is how to incorporate calibration into replication variance 

estimation, when the calibration control totals are themselves random and their variance is also estimated 

by a replication method. This problem occurred because we (the authors) were working with two surveys 

on the same topic and for the same target population, for which we were tasked with producing a unified 

set of estimates. 

The first survey is the 2016 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation 

(FHWAR). This survey, conducted by the U.S. Census Bureau, used successive difference replication 

(SDR), which is a variant of balanced repeated replication (BRR). SDR was originally proposed in Fay 
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and Train (1995) and is frequently used for Census Bureau surveys. The second survey is the 2016 50-

state Survey of FHWAR, conducted by the Rockville Institute, the nonprofit affiliate of Westat. This 

survey used Delete-A-Group Jackknife (DAGJK) as the replication method (Kott, 2001). 

The two 2016 FHWAR surveys were fielded concurrently using different modes of data collection, 

specifically to allow for comparison between the two and for subsequent reconciliation of the estimates. 

The National survey used a combination of telephone and in-person data collection and had a sample size 

sufficient to produce estimates at the census division level. The 50-state survey was a mail-based survey 

and, as its name implies, had a sample size sufficient to produce estimates at the state level. However, 

these differences in mode, together with further differences including other survey implementation 

aspects, subsampling strategies and estimation methods, led to substantial and often statistically 

significant differences in the estimates, with typically higher estimates in the 50-State Survey than in the 

National Survey. See Fish and Wildlife Service and Census Bureau (2018) and Rockville Institute (2018) 

for more details about the two FHWAR surveys. 

As noted above, we were responsible for developing a calibration approach to “align” the estimates 

from the two surveys, in the sense of producing estimates at the state level based on the 50-state survey 

but compatible with those obtained from the National Survey. This, in turn, would make it possible to 

compare the 2016 state-level estimates to those from prior iterations of the National survey, which has 

been conducted since 1955 and with survey results that are directly comparable since 1991. One of the key 

steps in reconciling the estimates involved calibrating the demographic composition of the 50-state survey 

to that of the National survey, given that the latter was considered the “gold standard” in this application. 

To this end, a set of demographic estimates from the National survey were used as control totals for 

calibration of the 50-State survey. Because these control totals are themselves estimates, however, it was 

necessary to make sure that their variability is reflected in the variance estimates of the calibrated 50-State 

Survey estimates. This is an application of sample-based calibration (calibrating to random control totals). 

Sample-based calibration is typically seen in multi-phase surveys, in which the samples and the estimation 

methods can be coordinated. In the current setting, the two surveys are independent and have two sets of 

replicates created using different replication methods. 

There is a limited literature on how to account for sample-based calibration in replicate variance 

estimation. Fuller (1998) developed a replication variance estimator for two-phase samples, in which the 

phase two estimates are calibrated to phase one control totals. In this approach, the phase two replicates 

are modified by adjustments derived from the spectral decomposition of the phase one estimated variance-

covariance matrix of the control totals. Dever and Valliant (2010) and Dever and Valliant (2016) studied 

weight calibration to estimated control totals under a scenario where a (benchmark) survey is used to 

calibrate another (analytic) survey, which is more closely related to our setting. In the latter article, their 

simulation studies were developed for a generalized regression estimator, and linearization and jackknife 

replication variance estimation methods were compared. For the jackknife replication, the authors 

compared the performance of the Fuller (1998) adjustment and two adjustments based on draws from a 
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multivariate normal distribution: one using the full variance-covariance matrix of the control totals, and 

one using only the diagonal of this matrix. The latter approach had been proposed by Nadimpalli, Judkins 

and Chu (2004), but no theoretical justification was provided. The method was motivated by considering 

the asymptotic distribution of the estimated control totals, which is then used to generate “synthetic” 

versions of these estimates for use as replicate control totals. 

In this paper, we describe an approach to modify the replicates of the survey to be calibrated by using 

the replicates from the control survey directly. We show how this method can be used even when the 

replication methods and/or the number of replicates differ between the two surveys. Interestingly, Kott 

(2005) already made a brief mention of an approach that likewise uses the replicates directly, in the 

special case of both surveys using DAGJK with the same number of replicates. Unlike the methods in 

Fuller (1998) and Nadimpalli et al. (2004), these approaches do not require explicit calculation of the 

variance-covariance matrix of the control survey, greatly simplifying implementation in practice. In 

addition, they use valid calibrated totals, unlike the methods relying on draws from a normal distribution 

which can result in unstable or even unfeasible calibrated totals. 

More generally, methods for harmonizing estimates from two surveys can be viewed as an application 

of statistical data integration (SDI), (Lahiri, 2020), a set of methods used to combine multiple data 

sources to create improved or new estimates compared to what can be obtained from the separate datasets. 

While they did not use the term SDI, Lohr and Raghunathan (2017) give an overview of the state-of-the-

art tools available to perform most of the commonly encountered SDI activities. In a typical SDI 

application, the goal is the optimal combination of the information in the multiple data sources, which 

almost always involves creating an estimator that is different from those that are obtained from the 

separate sources. Methods to achieve this can be design-based, as in multi-frame estimation (Lohr and 

Rao, 2006) and composite regression estimation (Merkouris, 2004), or model-based (e.g., Raghunathan, 

Xie, Schenker, Parsons, Davis, Dodd and Feuer, 2007). Sample-based calibration falls in the design-based 

category, but also aims to reproduce the estimates from one of the data sources exactly. 

The remainder of the paper is as follows. The proposed method is developed under the setting of 

regression estimation in Section 2. Raking is another common calibration method and the one used for the 

two surveys of interest, so we extend the results to this setting in Section 3. In Section 4 we illustrate both 

the Fuller (1998) method and the proposed method using data from the two 2016 surveys of FHWAR. 

Section 5 provides overall conclusions. 

 
2. Sample-based regression calibration 
 

We consider a survey of a population U  with sample ,s  weights ,iw  target variables .iy  For a given 

survey estimator ̂  constructed using the weights ,iw  inference is conducted by replication, implemented 

through the provision of R  sets of replicate weights ( ) , =1, , ,r

iw r R  and variance estimation formula  
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 ( ) 2

=1

ˆ ˆ ˆˆ( ) = ( ) ,
R

r

r

V A  −  (2.1) 

where the 
( )ˆ r  are computed in the same manner as ̂  but replacing iw  by the ( ) .r

iw  The constant A  

depends on the replication method. For simplicity, we focus in what follows on the Horvitz-Thompson 

estimator of = ,y iU
t y  denoted by ˆ = .y i is

t y   In this case, many replication methods of the form 

(2.1) lead to a design consistent estimator of ˆVar ( ).yt  We will refer to this survey as the “primary 

survey”. 

We are interested in creating adjusted weights *

iw  that are calibrated to a set of control totals from a 

secondary survey of U  with sample ,Cs  weights .Ciw  An estimator from this survey is denoted by ˆ .C  

For the second survey, a replication-based variance estimator is also provided,  

 ( ) 2

=1

ˆ ˆ ˆˆ ( ) = ( ) ,
CR

r

C C C C C

r

V A  −   

with replicate weights ( ) , =1, , ,r

Ci Cw r R  and replication-specific constant .CA  The control variables will 

be denoted by ,ix  with estimated totals ˆ .Cxt  Using regression estimation as a framework for calibration, 

the adjusted estimator is  

 
*

, reg
ˆˆ ˆˆ ˆ= ( ) =T

y y Cx x i i

s

t t w y+ − t t β  (2.2) 

where 1ˆ = ( )T T

s s s s s s

−
β X WX X WY  with sX  a matrix with 

thi  row equal to ,T

ix  sW  a diagonal matrix with 
thi  entry iw  and sY  a vector containing the , .iy i s  Hence, the calibrated weights can be written as  

 ( )* 1ˆ ˆ= 1 ( ) ( ) .T T

i i Cx x s s s iw w −+ −t t X W X x  (2.3) 

We note that post-stratification is a special case of regression estimation, see Särndal, Swensson and 

Wretman (1992, Chapter 7.6). 

To obtain a variance estimator, we follow the traditional linearization approach for regression 

estimators with respect to the sampling design (see e.g., Särndal et al., 1992, Chapter 5.5). Under mild 

regularity conditions (such as design consistency of Horvitz-Thompson estimators and invertibility of 

required matrices), the linearized version of the regression estimator (2.2) is equal to the difference 

estimator,  

 
, diff

ˆ ˆ ˆˆ ˆ ˆ= ( ) =T T

y y Cx x N Cx N et t t+ − +t t β t β  (2.4) 

where 1( )T T

N U U U U

−=β X X X Y  is the population target of β̂  and ˆ ( ).T

e i i i Ns
t w y= − x β  The variance of 

, diffŷt  is equal to  

 
,diff

ˆˆ ˆVar( ) = Var( ) Var( ) ,T

y e N Cx Nt t + β t β  (2.5) 
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since the two surveys are independent. This “linearized variance” is the variance of the asymptotic 

distribution of the regression estimator (2.2). In expression (2.5), the first variance term can be estimated 

using the replicates from the primary survey and the variance-covariance of the control totals in the 

second term can be estimated using the replicates from the secondary survey. Hence, the plug-in variance 

estimator  

 ˆ, reg
ˆ ˆˆ ˆˆ ˆ( ) = ( ) ( ) ,T

y e C CxV t V t V+β t β  (2.6) 

where ˆ
ˆˆ = ( ),T

e i i is
t w y − x β  can be used for asymptotically valid inference for , reg

ˆ .yt  

However, it is often not practical to maintain the two datasets and associated sets of replicates for 

variance estimation purposes. In the context of survey calibration, the organization in charge of creating 

the adjusted weights for the primary survey would often prefer to continue providing their dataset 

unchanged except for the new calibrated weights and associated replicate weights, so that data users can 

perform their analyses using traditional survey tools. Hence, it is of interest to create a single set of 

replicates for the primary survey that can be used to estimate the variance, while accounting for the fact 

that the control totals are themselves estimated from a different survey. 

We therefore propose to construct new replicates for the primary survey to estimate (2.5). Assume for 

now that .CR R  Starting from the replicate weights ( )r

iw  for the primary survey variance estimator, a 

replicate variance estimator of the first term in (2.6) is obtained by using the calibrated replicate weights  

 ( )*( ) ( ) ( ) ( ) 1

1
ˆ ˆ= 1 ( ) ( ) .r r r T T r

i i Cx x s s s iw w −+ −t t X W X x  (2.7) 

These replicate weights are obtained by repeating the calibration for each of the replicate weights ( )r

iw  and 

lead to consistent variance estimation for regression estimators, as discussed for the general case in Fuller 

(2009, Chapter 4). See also Valliant (1993) for the special case of post-stratification. 

The replicate weights *( )

1

r

iw  can be further modified to capture the second term in (2.6) as follows:  

 
*( ) *( ) ( ) ( ) ( ) 1

1
ˆ ˆ= ( ) ( ) ,r r r r T T r

i i r i Cx Cx s s s iw w a w −+ −t t X W X x  (2.8) 

with the constants ra  to be further defined below. Combining (2.7) and (2.8), the resulting replicate 

weights are  

 ( )*( ) ( ) ( ) ( ) ( ) 1ˆ ˆ ˆ ˆ= 1 ( ( ) ) ( ) .r r r r T T r

i i Cx r Cx Cx x s s s iw w a −+ + − −t t t t X W X x  (2.9) 

These weights are again obtained by applying the same calibration as for the original weights to each of 

the replicates, but with replicate control totals 
*( ) ( )ˆ ˆ ˆ ˆ= ( ).r r

Cx Cx r Cx Cxa+ −t t t t  The resulting replicate estimates 

are  

 
( ) *( ) ( ) ( ) ( ) ( ) ( )

, reg
ˆ ˆˆ ˆ ˆ ˆˆ ˆ= = ( ) ( ) .r r r r T r r T r

y i i y Cx x r Cx Cx

s

t w y t a+ − + − t t β t t β   
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The constants ra  are chosen to account for the difference between the primary and control replication 

methods, in particular between CR  and R  and CA  and ,A  by letting  

 
=1, ,

=

0 = 1, , .

C
C

r

C

A
r R

a A

r R R




 +

 (2.10) 

This implies that for > ,Cr R  the replicate weights *( ) *( )

1

r r

i iw w=  in (2.8), i.e. the unadjusted control totals 

are used to calibrate the replicate weights. While the ra  are written with the first CR  values non-zero, this 

is for notational convenience only. The assignment of the replicates from the control survey to those of the 

primary survey should be randomized, to ensure that estimators and replicate estimators from both surveys 

remain independent regardless of the replication methods. 

Using the replicate weights (2.9) with constants (2.10), the replicate variance estimator (2.1) becomes  

 ( ) 2

, reg , reg , reg

=1

ˆ ˆ ˆ ˆ( ) = ( ) ,
R

r

y y y

r

V t A t t−  (2.11) 

Ignoring terms of smaller order as well as those with = 0,ra  this is approximately equal to  

 

( ) 2 ( ) ( )

ˆ ˆ, reg

=1 =1

( ) ( )

ˆ ˆ

=1

ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆˆ ˆ( ) ( ) .

CRR
r T r r T

y e e C Cx Cx Cx Cx

r r

R
r r T

r e e Cx Cx

r

V t A t t A

A a t t

 − + − −

+ − −

 



β t t t t β

t t β

  

The cross-term is likewise of smaller order because of the independence of the two surveys and the fact 

that ( )

ˆ ˆ=1
ˆ ˆ

R r

e er
t R t  and ( )

=1
ˆ ˆ .

CR r

Cx C Cxr
R  t t  Hence, the replicate variance estimator (2.11) inherits the 

design consistency of the original replication methods for both surveys and is design consistent for the 

linearized variance (2.5). 

Finally, we discuss the case when > .CR R  The above approach is readily extended to this case by 

repeating the R  replicates of the primary survey K  times, such that CR KR  with K  the smallest 

positive integer for which this inequality is satisfied. The resulting replicate variance estimator is of the 

same form as (2.1) but with R  replaced by KR  and A  is replaced by .A K  Then, the method discussed 

above applies directly to this new replicate variance estimator for the primary survey. For instance, if 

=120R  and = 150,CR  each replicate in the primary survey will be repeated = 2K  times, leading to 240 

replicates for the primary survey of which 150 will be modified. 

 
3. Sample-based raking calibration 
 

In the application to the two 2016 FHWAR surveys, we used raking rather than regression estimation 

for calibration. As for regression estimation, the goal is to create new raking controls for each of the 
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replicates, so that the replicate variance estimator for the primary survey accounts for the variability of the 

control totals from the secondary survey. The above results for regression estimation do not apply directly, 

but we can apply the same reasoning as in Deville and Särndal (1992) to show that they continue to hold 

for raking. Instead of relying on this general result, we will derive it here explicitly to show how to obtain 

the adjusted control totals for the replicates. 

For simplicity, we describe here the case in which we are controlling for the marginal counts in 

domains defined by the levels of 2 categorical variables, denoted a  and ,b  having K  and L  levels, 

respectively. In the primary survey, the estimated counts in the domains defined by the intersections of the 

two variables are ˆ = ( , ),
k la b i i k ls

N w a b  with ( , ) = 1i k la b  if element i  is in the domain defined by the 

intersection of ka  and lb  and 0 otherwise. The marginal estimated counts are defined analogously, 

ˆ = ( , )
ka i i ks

N w a   and ˆ = ( , ).
lb i i ls

N w b   We write ( )1 1( ), , ( ), ( ), , ( )
T

i i i K i i La a b b   =δ  for 

the vector of indicators for the marginal domains for element .i  The estimated marginal counts in the 

primary survey are 
1 1

ˆ ˆ ˆ ˆ ˆ= ( , , , , , )
K L

T

i i a a b bs
w N N N N=N δ  and the corresponding control totals from 

the secondary survey are 
1 1

ˆ ˆ ˆ ˆ ˆ= = ( , , , , , ) .
K LC

T

C Ci i Ca Ca Cb Cbs
w N N N NN δ  Using the classical raking 

ratio algorithm of Deming and Stephan (1940) until convergence, the raked weights for the primary 

survey can be written as  

 

* ˆ ˆ= exp( ) for ( , ) =1

ˆ= exp( )

k li i a b i k l

T

i i

w w u u a b

w

+

u δ
 

(3.1)
 

where 
1 1

ˆ ( , , , , , )
K L

T

a a b bu u u u=u  is a solution to the system of K L+  equations  

 
=1

=1

ˆ ˆexp( ) ( = 1, , )

ˆ ˆexp ( ) = ( = 1, , ).

k l k l k

k l k l l

L

a b a b Ca

l

K

a b a b Cb

k

N u u N k K

N u u N l L

+ =

+




 

(3.2)

 

The solution to these equations is not unique, so one of the unknowns can be set to 0 and an equation 

removed. This does not affect the values of exp( ),
k la bu u+  and we will set = 0

Lbv  and remove the last 

equation in what follows. 

There is no explicit expression for the solution to (3.2), but it can be approximated by using a 

linearization argument. Under the usual survey asymptotic framework that ensures design consistency of 

Horvitz-Thompson estimators, the ˆ
kau  and ˆ

lbu  converge to 0 as the sample sizes of the two surveys 

increase, so that expansion around 0 is valid. Doing so for the equations in (3.2), we approximate the 

reduced set of 1K L+ −  equations by  

 
1

1

ˆ ˆ(1 (1)) ( 1, , )

ˆ ˆ(1 (1)) ( 1, , 1),

k l k l k

k l k l l

L

a b a b p Ca

l

K

a b a b p Cb

k

N u u o N k K

N u u o N l L

=

=

+ + + = =

+ + + = = −




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which can be rewritten as  

 
=1

1

ˆ ˆ ˆ ˆ( ) (1 (1)) ( =1, , )

ˆ ˆ ˆ ˆ( ) (1 (1)) ( =1, , 1).

k k k l l k k

l l k l k l l

L

a a a b b Ca a p

l

K

b b a b a Cb b p

k

N u N u N N o k K

N u N u N N o l L
=

+ = − +

+ = − + −




 

(3.3)

 

Ignoring the smaller order remainders, the solution to this system of linear equations can be written in the 

form 1ˆ ˆ ˆˆ ( ),C

−= −u J N N  where Ĵ  is a symmetric ( 1) ( 1)K L K L+ −  + −  matrix containing estimated 

domain counts readily obtained from the left-hand side of (3.3). Note that the resulting û  is not a linear 

estimator, because in the linearization we conditioned on ˆ .N  Finally, plugging û  into the expression (3.1) 

and linearizing again, we obtain  

 ( )* 1ˆ ˆ ˆ1 ( )T

i i C iw w − + −N N J δ  (3.4) 

and the estimator after raking is  

 
* 1

,rak
ˆ ˆ ˆˆ = ( ) .T T

y i i i i C s s s

s s

t w y w y − + −  N N J δ W Y  (3.5) 

Note that the size of the control variable iδ  and associated estimates is now 1,K L+ −  but we maintain 

the prior notation for simplicity. In (3.5), 
1ˆ T

s s s

−
J δ W Y  corresponds to β̂  in the regression estimator (2.2). 

This asymptotic equivalence between the raking estimator and the regression estimator with the same 

control totals was established by Deville and Särndal (1992). In particular, they provide sufficient 

conditions under which the asymptotic variance of the equivalent regression estimator can also be used for 

inference for the raking estimator. Hence, a variance estimator of the form (2.6) can be constructed, with 
1

ˆ
ˆˆ = ( ).T T

e i i i s s ss
t w y −− δ J δ W Y  

We now consider the construction of replicate weights for the primary survey that estimate the 

asymptotic variance of the raking estimator. As before, we construct new replicate control totals 
( )ˆ ˆ ˆ( )r

C r C Ca+ −N N N  using the replicate estimates 
( )ˆ r

CN  from the secondary survey. Each of the sets of 

replicate weights ( )r

iw  of the primary survey are adjusted by raking to its corresponding set of control 

totals, to obtain the *( )r

iw  and the raked replicate estimates ( )

, rak
ˆ .r

yt  Using the approximation in (3.5) for each 

replicate, we obtain that the resulting replication variance estimator is consistent for the asymptotic 

variance of the raking estimator. 

 
4. Application 
 

We return to the calibration problem encountered while bridging the two 2016 FHWAR surveys. For 

both surveys, the population is defined as individuals of ages 16 and older, living in U.S. households. The 

main data sources for this application are record-level data files, containing weights and replicate weights 

for both surveys. Using these datasets, we conducted an initial analysis and identified discrepancies in the 
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demographics, which we adjusted by sample-based raking. Estimated population totals constructed using 

the record-level data from the National survey were considered as random controls, for the crosstabs of 

census divisions (nine categories) and each of the following demographic variables: 

• residency: two categories corresponding to urban and rural classification,  

• age: eight categories corresponding to age ranges 16-17; 18-24; 25-34; 35-44; 45-54; 55-64; 65-

74, and 75+,  

• sex: two categories corresponding to male and female,  

• race-ethnicity: four categories corresponding to Hispanic, non-Hispanic White, non-Hispanic 

African American, and non-Hispanic all other,  

• annual income: nine categories corresponding to income ranges -$20,000; $20,000-$29,999; 

$30,000-$39,999; $40,000-$49,999; $50,000-$74,999; $75,000-$99,999; $100,000-$149,999; 

$150,000+, and not reported.  

 

For the application in this article, we use the 50-State survey public use file, which does not contain 

information on income. Therefore, we illustrate the proposed method in a slightly simplified setting here, 

using the crosstabs of census divisions and residency, age, sex, and race-ethnicity as the raking 

dimensions. We implemented both the Fuller (1998) method and the proposed calibration method 

described in Section 2 using the public-use data files available for both surveys. For comparison, we also 

show the results of calibrating without adjusting the variance estimates for the random controls, referred to 

below as the “naive” method because it ignores the variability of the controls in the variance estimates. To 

compare the variance estimation methods for survey variables that are not control variables, we will also 

show estimates for domains defined by crosstabs of residency and sex. 

While the replication methods of the two FHWAR surveys are different, they both use = =160CR R  

replicates. Referring to expression (2.1), the replication constant for the DAGJK method of the 50-State 

survey is = 159 160A  and the corresponding constant for the SDR method of the National survey is 

= 4 160,CA  both available from their respective survey documentation. Hence, the replication adjustment 

constants ra  in (2.10) are equal to 2 159  for =1, , .r R  

The estimates we will consider are all estimated domain counts, so we define the target variable 

{ }=
di i Uy I   for a domain of interest .dU  For the 144 domains defined by the raking dimensions, we write 

the estimated domain counts as { }
ˆ = , = 1, ,144.

kk i i Us
t w I k  Likewise, the control totals are estimated 

domain counts from the National survey, so the auxiliary variable vector is = ,i ix I  a vector of length 144 

containing the indicators for inclusion of respondent i  in the control domains , =1, ,144,kU k  and let 

, { }
ˆ = .

kC
C k Ci i Us

t w I   We denote the vector of control totals as 
,1 ,144

ˆ ˆ ˆ= ( , , )T

C C Ct tt  and the adjusted 

replicate control totals are 
*( ) ( )ˆ ˆ ˆ ˆ2 159 ( ).r r

C C C C= + −t t t t  

In order to implement the Fuller (1998) method, we estimated the variance-covariance matrix of the 

control totals ˆ ˆ( )C CV t  using the National survey replicate weights. The spectral decomposition of this 
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matrix resulted in a set of 144 eigenvectors iq  and associated eigenvalues ,i  for =1, ,144.i  Following 

Fuller (1998), we obtain a set of 144 vectors iv  satisfying  

 
144

1

ˆ ˆ( ) ,C C i i

i

V t
=

= v v   

where = ,i i iv q  for =1, ,144.i  Finally, the adjusted replicate controls are *( ) 160

2
ˆ ˆ=r

C C r+t t v  for 

=1, ,144r  and *( )ˆ ˆ=r

C Ct t  for =145, ,160.r  This points to a drawback of the Fuller (1998) method: 

while our approach perturbs the control totals of all 160 replicates, this method only perturbs a fraction of 

them in this case. In addition, 30 of the 144 eigenvalues were nearly zero, 18 of which less than zero due 

to floating point error. We truncated the 18 negative eigenvalues to zero, and left the rest unchanged. 

Hence, to the extent that not all replicates contribute to variance estimates for some survey estimates (e.g., 

domain totals), there is a risk that the sample-based calibration will be imperfectly reflected in the 

variance estimates. In general, we expect that a larger number of replicates will be perturbed using our 

approach, since the estimated variance-covariance matrix of the control totals can only be reliably 

estimated if its dimension is suitably smaller than .CR  

Tables 4.1 and 4.2 show the estimates and standard errors, respectively, for domains defined by 

residency and sex, before and after calibration. The first four rows contain the results for marginal totals 

for raking variables, which are exactly calibrated, while the last four are totals that correspond to the 

intersection of raking dimensions and are therefore not exactly calibrated. 

Both surveys are representative of the same target population, but the estimates and associated standard 

errors differ, reflecting both sampling variability as well as different calibration approaches applied by the 

two survey organizations. As Table 4.1 confirms, after the 50-state survey is raked to the National survey, 

the estimated totals for domains defined as exact calibration domains indeed match exactly between both 

surveys. For the domains defined by the crosstabulation of residency and sex, the raked estimates for the 

50-State survey are close but not identical to those of the National survey. 

 
Table 4.1 

Population estimates before and after calibration, rounded to the nearest integer, after scaling by 3
10  

 

Domain Before Calibration After Calibration 

  50-State National  

Residency: Urban 203,445 208,695 208,695 

 Rural 51,511 45,991 45,991 

Sex: Male 128,276 121,775 121,775 

 Female 126,680 132,911 132,911 

Rural: Male 99,547 98,511 98,089 

Female 103,898 110,184 110,607 

Urban: Male 28,729 23,264 23,686 

Female 22,782 22,727 22,305 
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Table 4.2 shows the standard errors obtained by the two replication methods with adjusted control 

totals and by the naive method, which does not account for the randomness of the control totals. By 

construction, the proposed replication-based adjustment method and the Fuller (1998) method lead to 

identical variance estimates for domains that are used in the calibration. These variance estimates are also 

equal to those from the control survey in this case. This reflects the fact that the variance component 

corresponding to the first term in (2.5) is set to 0 for the control totals, while the variance component for 

the second term is exactly equal to the control survey variance estimate in the case of raking. Because that 

variance component is ignored in the naive method, the variance estimates are equal to zero. For the 

estimated totals for domains defined as the crosstabulation of residency and sex, the variance estimates of 

the two methods are not identical but close (within 8% of each other), reflecting the fact that both are 

consistent for the asymptotic variance (2.5). The variance estimates under the naive method are smaller 

than the variance estimates under the other two calibration methods, leading to an obviously incorrect 

result due to not accounting for the variance in the random control totals. For other variables, the variance 

is still expected to be underestimated under the naive method, due to the fact that the second term in the 

asymptotic variance (2.5) is ignored. 

 
Table 4.2 

Standard errors of population estimates before and after calibration, rounded to the nearest integer, after 

scaling by 3
10  

 

Domain Before Calibration After Calibration 

  50-State National Naive Fuller Proposed 

Residency: Urban 1,922 2,664 0 2,664 2,664 

 Rural 1,922 2,598 0 2,598 2,598 

Sex: Male 2,117 1,074 0 1,074 1,074 

 Female 2,117 1,112 0 1,112 1,112 

Rural: Male 2,118 1,399 853 1,658 1,533 

Female 2,514 1,797 853 1,964 1,970 

Urban: Male 1,595 1,449 853 1,709 1,641 

Female 979 1,271 853 1,470 1,547 

 
5. Conclusions 
 

We have proposed an approach to account for sample-based calibration in the variance estimates. The 

approach applies to situations in which both the survey being calibrated and the survey providing the 

calibration controls use replicate variance estimation, as is often the case in large-scale government 

surveys. The replication methods in each are arbitrary, as long as they are both valid for their specific 

surveys. We described the approach for the cases of calibration by regression estimation (including 

post-stratification) and raking, two commonly used methods in practice, and we anticipate it would work 

similarly for other types, such as the general calibration estimators of Deville and Särndal (1992). 
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The main alternative to the proposed method is that of Fuller (1998). Relative to that method, an 

important advantage of our approach is that it does not require computation of the estimated 

variance-covariance matrix of the control totals, so that it is very straightforward to implement. In the 

typical application in which the number of control totals is smaller than the number of replicates, another 

potential advantage of the proposed method is that the perturbations will be applied across a larger 

fraction of the replicates. This reduces the risk of computing replicate variance estimates that do not fully 

reflect the variability of the control totals. For instance, this can occur when only a subset of the replicates 

contributes to the variance estimate of a domain mean. If these replicates are mostly unperturbed, the 

resulting variance estimate can underestimate the variance. Further investigation of the performance of the 

proposed method when the number of replicates of the two surveys are different appears warranted. 
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Two local diagnostics to evaluate the efficiency of the 

empirical best predictor under the Fay-Herriot model 

Éric Lesage, Jean-François Beaumont and Cynthia Bocci1 

Abstract 

The Fay-Herriot model is often used to produce small area estimates. These estimates are generally more 

efficient than standard direct estimates. In order to evaluate the efficiency gains obtained by small area 

estimation methods, model mean square error estimates are usually produced. However, these estimates do 

not reflect all the peculiarities of a given domain (or area) because model mean square errors integrate out the 

local effects. An alternative is to estimate the design mean square error of small area estimators, which is 

often more attractive from a user point of view. However, it is known that design mean square error estimates 

can be very unstable, especially for domains with few sampled units. In this paper, we propose two local 

diagnostics that aim to choose between the empirical best predictor and the direct estimator for a particular 

domain. We first find an interval for the local effect such that the best predictor is more efficient under the 

design than the direct estimator. Then, we consider two different approaches to assess whether it is plausible 

that the local effect falls in this interval. We evaluate our diagnostics using a simulation study. Our 

preliminary results indicate that our diagnostics are effective for choosing between the empirical best 

predictor and the direct estimator. 

 

Key Words: Empirical best predictor; Design mean square error; Model mean square error; Local diagnostic; Local 

effect; Fay-Herriot model. 

 

 

1. Introduction 
 

Governments need socioeconomic information at increasingly fine levels of detail. National statistical 

offices are therefore required to produce statistics for sub-populations that were not identified or could not 

be taken into account when the survey’s precision objectives were determined. As a result, the number of 

sampled units for these sub-populations may be too small to ensure good precision of standard design-

based direct estimators such as the Horvitz-Thompson estimator or calibration estimators. This type of 

sub-population, where the sample size is insufficient, is called a small domain (or small area). To remedy 

the lack of precision of direct estimators for small domains, indirect estimators, or small area estimators, 

can be used. These small area estimators usually rely on a model such as the Fay-Herriot model (Fay and 

Herriot, 1979). The Empirical Best (EB) predictor, also called the Empirical Bayes predictor or EB 

estimator, is a small area estimator frequently used in practice. 

Small area estimation methods use statistical models to leverage information from the survey and from 

auxiliary data sources. The Fay-Herriot model is a linear model that breaks down the parameter of interest 

of a domain into two terms: the first term is the effect explained by the model and the second term is the 

model error that can be interpreted as an unexplained and unknown local effect. 

Classical statistical tools, such as graphs of model residuals, can be used to assess the validity of the 

Fay-Herriot model. However, these tools give little indication of the efficiency of an indirect estimate for 

a particular domain. The model Mean Square Error (MSE) of an indirect estimator can be viewed as a 
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local quality indicator since it varies across domains. The model MSE accounts for the effect explained by 

the model, but integrates out the unexplained local effect. 

The design MSE is an alternative to the model MSE that does not integrate out the unexplained local 

effect. However, unbiased design MSE estimates of small area estimators tend to be very unstable, 

particularly for domains with few sampled units (Rivest and Belmonte, 2000; Rao, Rubin-Bleuer and 

Estevao, 2018; and Pfeffermann and Ben-Hur, 2019). To circumvent this problem, literature suggests 

taking an average over several domains of the design MSE (Rao and Molina, 2015; and Pfeffermann and 

Ben-Hur, 2019) as a quality measure. However, many public statistics users are only concerned with their 

specific domain and do not buy into an overall quality criterion to assess the efficiency of estimates for 

their domain of interest. This is especially the case when they are convinced that their domain is very 

specific and that this specificity is not found in the explanatory term of the model, but rather in the error 

term, i.e., the unexplained local effect. 

To address the problem of the instability of unbiased estimators of the design MSE, Rao, Rubin-Bleuer 

and Estevao (2018) proposed a composite estimator that they evaluated in a simulation study. Their 

composite estimator consists of taking a weighted average of a model MSE estimator and a design MSE 

estimator. They achieve greater stability at the cost of an increase in bias. Pfeffermann and Ben-Hur 

(2019) also proposed a method for estimating the design MSE of a small area estimator. The method is 

rather complex and relies mainly on the choice of an appropriate model. It is therefore not entirely design-

based. Apart from these attempts to estimate the design MSE, to the best of our knowledge, there is no 

local diagnostic in the literature that can be used to determine whether small area estimation is preferable 

to direct estimation for a specific domain. 

In this paper, a different approach is proposed to compare the efficiency under the design of the EB 

and direct estimators. We proceed in two steps. First, we determine the unexplained local effect interval 

that ensures the design MSE of the Best (B) predictor, also called Bayes predictor or B estimator, is 

smaller than the design MSE of the direct estimator. The second step is to assess whether it is plausible 

that the unexplained local effect lies within this interval. To this end, two diagnostics are proposed: one 

based on the conditional distribution of the unexplained local effect given the direct estimate, and a second 

based on a hypothesis test on the unexplained local effect carried out with respect to the sampling design. 

We found that, depending on the magnitude of the standardized model residual and a factor associated 

with the precision of the direct estimate, it is possible to detect whether the B or EB estimators are likely 

to have a smaller design MSE than that of the direct estimator. 

Section 2 presents the Fay-Herriot model and describes how the best predictor (B estimator) of the 

population parameter of interest is constructed. In Section 3, the model and design MSEs of the direct 

estimator and best predictor are derived. Section 4 describes the two proposed diagnostics. Section 5 

explains how to estimate the model parameters and obtain the empirical best predictor (EB estimator) and 

the estimators of the diagnostics. Section 6 presents the results of a simulation study using real auxiliary 

data. A brief conclusion is provided in Section 7. 
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2. The Fay-Herriot model and the best predictor 
 

We consider a finite population U  of size N  and a sample s  of size n  drawn from U  according to a 

sampling design ( ).p s  The population U  is partitioned into m  domains that do not overlap. The domains 

are identified by the subscript i  taking values from 1 to .m  The population of domain ,i  with a size of 

,iN  is denoted as .iU  The sample of domain i  is denoted as is  and its size is .in  We are interested in 

estimating m  finite population parameters, , =1, , ,i i m  associated with the m  domains. The 

parameter i  is usually a total, an average or a ratio for domain .i  Auxiliary information is available in 

the form of vectors, ,iz  available for all domains =1, , .i m  The set containing the m  auxiliary vectors 

is denoted by =1, ,= { } .i i mzZ  Furthermore, we denote by ,  the set of all variables used to make 

inferences excluding the inclusion indicators in the sample ;s   includes Z  and , =1, , ,i i m  among 

others. The design expectation of a random variable, say ,A  will thus be denoted by ( ).A E  

We consider a linking model that breaks down the parameters of interest i  as follows: 

 = , =1, , ,i i i ibv i m +β z
Τ  (2.1) 

where β  is a vector of model parameters of the same dimension as ,iz ib  are fixed factors that can be used 

to account for heterosedasticity in the model and iv  are error terms that follow the normal distribution: 
2~ (0, ),i vv Z N  where 2

v  is a model parameter. In practice, = 1ib  is a common choice but it may be 

more natural to choose =i ib N  when i  is a total. The term 
iβ z

Τ  is the known effect or effect explained 

by the model of the finite population parameter ,i  while i ib v  is the unknown or unexplained effect that is 

called the unexplained local effect of i  or simply the local effect of .i  

The direct estimator of i  is denoted by ˆ .i  It is usually obtained by assigning a survey weight to each 

unit of the sample .is  The survey weight of a unit can simply be the inverse of its probability of selection 

in the sample s  or a calibration weight. The sampling error is defined as: 

 ˆ= .i i ie  −  (2.2) 

In what follows, the direct estimator will be assumed to be design-unbiased, i.e. ˆ( ) =i i E  or 

( ) = 0.ie E  This assumption is not always satisfied in practice, for example when using calibration 

weights, but we will make the usual assumption that the bias remains negligible. We will also assume that 

the direct estimator ˆ ,i  and thus the error ,ie  follows a normal distribution. As discussed in Rao and 

Molina (2015, page 77), the normality assumption of the errors ie  is possibly weaker than the normality 

assumption of the errors iv  because of the effect of the central limit theorem on ˆ .i  Of course, this effect 

is less pronounced for smaller domains. Under these assumptions, we have: ~ (0, ),i ie  N  where 
ˆ= ( )i i  V  is the design variance of ˆ .i  The sample size in  can be very small, which can lead to poor 

precision of the direct estimator ˆ .i  This problem has been at the origin of small area estimation research. 

By combining the model (2.1) and the expression (2.2), we obtain the combined model, also called the 

Fay-Herriot model: 

 ˆ = .i i i i ib v e + +β z
Τ  (2.3) 

Noting that iv  is fixed under the sampling design, it can easily be shown that 
2 2( ) = ,i i i i v ib v e b  + +ZV  where = ( )i i  ZE  is the smoothed variance (see the remark at the end of 

this section). The standardized error of the combined model is given by: 
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2 2

ˆ
= .i i

i

i v ib




 

−

+

β z
Τ

 (2.4) 

The direct estimate ˆ
i  provides information about .i  Rao and Molina (2015, Chapter 9, pages 271-

272) give the conditional distribution of :i  

 2 2ˆ ˆ, ~ { ( ), (1 ) },i i i i i i i i vb     + − −β z β z
Τ ΤZ N  (2.5) 

where 
2 2

2 2= .i v

i v i

b

i b



 


+
 

The best predictor of ,i  conditionally on ˆ
i  (Rao and Molina, 2015), is then given by: 

 ˆ ˆ ˆ= ( , ) = (1 ) .B

i i i i i i i     + − β z
ΤZE  (2.6) 

In the remainder of this paper, the best predictor ˆB

i  will be called the B estimator. 

In Sections 3 and 4, the theory is developed assuming that ,β
2

v  and i  are known. In Section 5, the 

estimation of these three quantities is discussed, which allows us to obtain an empirical version of the best 

predictor and our diagnostics. 

Remark: In the literature on small area estimation, the theory is usually developed under the assumption 

that i  is fixed. Therefore, it is implicitly assumed that = .i i   When making inferences under the Fay-

Herriot model, i  cannot be expected to be fixed. For example, consider the case where i  is a proportion 

in the domain i  and a stratified simple random sampling with replacement design is used with strata that 

coincide with domains. The direct estimator ˆ
i  is simply the sample proportion in the domain i  and it is 

well known that its variance is given by 1= (1 ).i i i in  − −  In this case, it is obvious that i  is random 

since it depends on .i  It is also easy to show that 1 2 2= ( (1 ) )i i i i i v in b  − − − β z β z
Τ Τ  unless = = 0.i vv   

In the rest of this paper, the entire theory is developed under the usual assumption that = .i i   In 

practice, these two variances are unknown and have to be estimated. Section 5 discusses the estimation of 

i  using a smoothing model. It can easily be shown that if a model-unbiased estimator, ˆ ,i  is available, 

that is ˆ( ) = ,i i ZE  then this estimator is also model-unbiased for ,i  that is ˆ( ) = 0.i i − ZE  The 

reverse is also true: a model-unbiased estimator for i  will also be model-unbiased for .i  Therefore, 

although ,i i   both variances can be estimated by the same estimator. This suggests that the 

assumption =i i   may not be so critical in practice. 

 

3. The mean square errors of the direct and B estimators 
 

A mean square error criterion is often chosen to assess the efficiency of the B estimator given in 

equation (2.6). There are two natural possibilities: either consider the design MSE, or consider the model 

MSE (MSE with respect to the combined model 2.3). 

The model MSE of the direct estimator ˆ
i  is: 

 2ˆ ˆMSE ( ) = {( ) }=m i i i i   − ZE   

and the model MSE of the B estimator is: 

 2ˆ ˆMSE ( ) = {( ) }= .B B

m i i i i i   − ZE   
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The B estimator is thus always more efficient than the direct estimator with model-based inferences. 

This property is the result of the actual construction of the B estimator. On the other hand, and this is a 

legitimate question, is the B estimator always more efficient than the direct estimator under design-based 

inferences? 

The design mean square errors of the direct and B estimators for the domain i  are: 

 
2ˆ ˆMSE ( ) = {( ) } =

=

p i i i i

i

   



− E
 

(3.1)
 

and 

 
2 2 2 2 2

2 2 2 2

ˆ ˆMSE ( ) = {( ) } = (1 )

= (1 ) ( ).

B B

p i i i i i i i i

i i i i i v

b v

b v

     

   

−  + −

+ − −

E
 

(3.2)
 

Note that the second equality of (3.1) and (3.2) results from the assumption = .i i   We observe that 

ˆMSE ( )B

p i  can be very different from ˆMSE ( )B

m i  when the unknown value 2

iv  is far from 2.v  

Therefore, for a domain with a large value of 2 ,iv ˆMSE ( )B

m i  could be significantly smaller than 

ˆMSE ( )B

p i  and lead to an inaccurate conclusion about the relative efficiency of the direct and B 

estimators. 

By noticing that 2 2= (1 ) ,i i i i vb  −  we can show that ˆ ˆMSE ( ) MSE ( )B

p i p i   if and only if 

 , ,[ ; ],i L i L iv v v −   

where 
1

, = .i

iL i vv





+
 Figure 3.1 shows the limit values ,L i vv   and ,L i vv −  as a function of .i  We 

note that when 2,i vv  ˆ ˆMSE ( ) MSE ( )B

p i p i   for every value of .i  We also note that the direct 

estimator may become more efficient than the B estimator for domains where the local effect is large, 

especially when i  is not small. But how does one know if the local effect is large or not for a given 

domain ?i  This is the purpose of the following section where we present two diagnostics. 

 

                               Figure 3.1  Limit values of the local effect standardized by 
v

  versus .
i

  
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4. Two diagnostics to evaluate the local performance of the B 

estimator 
 

4.1 An approach conditional on ˆ
i

  
 

From expression (2.5) in Section 2 and noting that ( )ˆ = ,i i i i v i ib    −β z
T  we obtain the 

conditional distribution of :iv  

 ( )2ˆ, ~ , (1 ) .i i v i i i vv      −Z N   

Conditioning on ˆ
i  gives a better idea of the possible values iv  can take. In particular, when the value 

of i  is strictly greater than 0, the conditional distribution of iv  may deviate significantly from its 

unconditional distribution: 2~ (0, ).i vv Z N  

The first diagnostic is defined as the conditional probability: 

 
( )
( )

1

, ,

ˆ ˆ ˆ= Prob MSE ( ) MSE ( ) ,

ˆ= Prob , .

B

i p i p i i

L i i L i i

D

v v v

  





−  

Z

Z
 

(4.1)
 

This diagnostic can be written as a function of i  and the standardized error (2.4): 

 

( )1 1

1
= ,

1

1
,

1

ii
i i i i i

i i

ii
i

i i

D D


  
 




 

  + 
=  +   −   

  + 
−  −   −   

 

(4.2)

 

where ( )   is the distribution function of the standard normal distribution. The proof of result (4.2) is 

given in Appendix A. 

When this diagnostic takes values close to 0, we may conclude that iv  is most likely larger than ,L iv  

and that the direct estimator is preferable to the B estimator. To obtain a decision rule associated with this 

diagnostic, it is necessary to choose a threshold below which we decide to choose the direct estimator and 

above which the B estimator is chosen. A 50% threshold seems quite natural. Another idea is to apply an 

empirical approach and identify a break in the distribution of the values of diagnostic 1iD  for the m  

domains. 

This diagnostic is not entirely design-based because it involves the conditional distribution ˆ, .i iv Z  It 

is therefore necessary to validate carefully the Fay-Herriot model before using it. Unfortunately, it is not 

possible to validate the assumptions on both iv  and ie  because the values of the parameters , =1, ,i i m  

are not observed. However, the combined Fay-Herriot model (2.3) can be validated using model residuals 

(see, for example, Hidiroglou, Beaumont and Yung, 2019). These residuals are obtained by replacing the 
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unknown quantities in the standardized error (2.4) with their estimates (see Section 5). A graph of 

residuals versus model predicted values is often suggested to validate the linearity assumption of the 

model. The normality assumption of the error i i ib v e+  can be verified by a Q-Q plot of the residuals or 

normality tests such as the Shapiro-Wilk test. In case the model is not completely satisfactory, a 

conservative threshold of 75% may be appropriate. 

The diagnostic in the following section is entirely design-based. It is therefore not dependent on the 

validity of the linking model. In this sense, it is considered more robust than the diagnostic (4.2). 

However, it relies on assumptions about the sampling errors ,ie  discussed in Section 2, including the 

normality assumption of .ie  
 

4.2 Use of a design-based hypothesis test on the parameter i
v  

 

In the design-based approach to inference, iv  is fixed and the standardized error (2.4) follows the 

distribution: 

 ~ , (1 ) .
i

i i i

v

v


 


 
 − 

 
 

N  (4.3) 

We have a unique observation of this random variable. We use it to test if iv  is larger than , .L iv  We 

consider the test: 

 , ,: = versus : > .i L i i L iv v v v0 1H H   

We use i  as our test statistic. We expect that i  will have smaller values under 0H  than under 

1.H  Let obs, i  be the observed value of the statistic i  and ( ) ( )obs,= Prob | | | | ; .i i i i iP v v    The p -

value of the test is defined as the probability that the statistic i  is greater than the observed value 

obs,i  under the null hypothesis. Appendix B shows that the p -value is: 

 ( ) ( ) ( ), ,

1
= = 2 ,

1

i

i L i i L i i i

i

P v P v


 


 +
−  − +  − − 

 − 

  

where 

 
obs, 1

= .
1

i i

i

i

 




− +

−
  

Since the second term is often negligible compared to the first term, especially when > 0i  or i  is 

large, our second diagnostic is: 

 ( ) obs,

2 2 obs,

1
= , = .

1

i i

i i i i

i

D D
 

 


 + −
 
 −
 

 (4.4) 

This second diagnostic can be interpreted as follows: When 2iD  is small, we can assume that iv  is 

likely to be larger than ,L iv  and the direct estimator is then preferred to the B estimator. For the choice of a 

decision threshold, values typically used as levels for hypothesis testing (e.g., 5% or 10%) can be used as 
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a guide. With these small values, the B estimator is favoured. As with the previous diagnostic, the 

threshold can be determined by locating a break in the distribution of the values of diagnostic 2iD  for the 

m  domains. 

 

4.3 Some properties of diagnostics 1 and 2 
 

In this section, we study the behaviour of the functions ( )1 ,i i iD    and ( )2 ,i i iD    for limiting 

cases of i  and i  and note their similarities and differences. 

Case 1: 0 < <1i  is fixed and .i →  

From equations (4.2) and (4.4) it can be shown that, for > 0,i  the two functions ( )1 ,i i iD    and 

( )2 ,i i iD    decrease as i  increases. In other words, the derivative of these functions with respect to 

i  is negative. In addition, the limit when i →  of these two functions tends toward 0. For a 

sufficiently large value of ,i  the two diagnostics will therefore favour the direct estimator. 

Case 2: 0 < <1i  is fixed and = 0.i  

From equation (4.2), we observe that 

 ( )
( ) ( )

1

1 1
, 0 = .

1 1

i i
i i

i i i i

D
 


   

   + +
 − −   
   − −   

  

We can show that ( )1 , 0i iD   is minimized when = 1 2.i − +  Therefore, 

( ) ( )1 1, 0 1 2,0 =i i iD D  − + 0.98. Since this value is close to 1, diagnostic 1 leads to choosing the B 

estimator in this case if a threshold of 0.50 or even 0.75 is chosen. 

From equation (4.4) we obtain: 

 ( )2

1
, 0 = .

1

i
i i

i

D





 +
  − 

  

We can show that, for 0 < 1,i  the function ( )2 , 0i iD   is minimized when = 0.i  Hence, 

( ) ( )2 2, 0 0, 0 =i i iD D  0.84. With a threshold smaller than 0.50, diagnostic 2 leads to the same decision 

as diagnostic 1 in this case, i.e. to choose the B estimator. 

Case 3: < 2i  is fixed and 1.i →  

The two functions ( )1 ,i i iD    and ( )2 ,i i iD    tend toward 1 in this case. Therefore, diagnostics 1 

and 2 lead to choosing the B estimator. 

Case 4: > 2i  is fixed and 1.i →  

The two functions ( )1 ,i i iD    and ( )2 ,i i iD    tend toward 0 in this case. Diagnostics 1 and 2 lead 

here to choosing the direct estimator. 

Case 5: i  is fixed and 0.i →  

The function ( )1 ,i i iD    tends toward 1 for any fixed value of .i  Therefore, diagnostic 1 favours 

the B estimator for small values of .i  
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We note that ( ) ( )2 0, = 1 .i i iD   −  Therefore, contrary to Diagnostic 1, Diagnostic 2 will lead to 

choosing the direct estimator if i  is sufficiently large even when i  is infinitely close to 0. For 

example, with a decision threshold at 0.05 and = 0,i  Diagnostic 2 favours the direct estimator when 

( )1>1 0.05 =i
−− 2.64. 

In the first four cases above, both diagnostics lead to the same decision. There is a difference only in 

Case 5 where 0.i →  We therefore expect that Diagnostic 2 will choose the direct estimator more often 

than Diagnostic 1 for small values of .i  Consider, for example, a threshold of 0.5 for Diagnostic 1 and of 

0.05 for Diagnostic 2. For a threshold of 0.5, we can show that Diagnostic 1 leads to choosing the direct 

estimator as soon as i  is larger than a value approximately equal to 
1

,i

i





+
 i.e. as soon as 

1
.

~
i

ii






+
  

As for Diagnostic 2, for a threshold of 0.05, it leads to choosing the direct estimator as soon as 

( )11 1 0.05 .i i i   − + − −   For =i 0.01, Diagnostic 1 thus leads to choosing the direct estimator 

when 
~i  100.5, while Diagnostic 2 leads to choosing the direct estimator when >i 2.64. The gap 

narrows as i  increases. For example, for =i 0.2, Diagnostic 1 chooses the direct estimator when 
~i 

5.48 and Diagnostic 2 chooses the direct estimator when >i 2.57. The above discussion seems to 

suggest that Diagnostic 2 leads to choosing the direct estimator more often than Diagnostic 1. However, 

there are cases where Diagnostic 1 chooses the direct estimator contrary to Diagnostic 2. These cases 

generally occur for fairly large values of .i  For example, for =i 0.8, Diagnostic 1 chooses the direct 

estimator when 
~i  1.68, while Diagnostic 2 chooses the direct estimator only when >i 2.08. 

 

5. Empirical version of the B estimator and diagnostics 
 

The theory has been developed assuming the parameters ,β 2

v  and i  are known. In practice, these 

quantities are unknown and the best predictor ˆB

i  cannot be used. They can be replaced by estimators ˆ ,β  

2ˆ
v  and ˆ

i  to obtain the empirical best predictor (EB estimator): 

 ( )EBˆ ˆ ˆˆ ˆ= 1 ,i i i i i   + − β z
Τ

  

where 
2 2

2 2

ˆ

ˆˆ
ˆ = .i v

i v i

b

i b



 


+
 

In what follows, we first discuss the estimation of β  assuming 2

v  and ( )1= , , m ψ
Τ
 are known. 

This yields the estimator ( )2 ,vβ ψ  of .β  Next, the estimation of 2

v  is discussed assuming that ψ  is 

known and we obtain the estimator ( )2

v ψ  of 2.v  Finally, the estimation of the smoothed variances 

, = 1, , ,i i m  is discussed. We denote the resulting estimators by ˆ , =1, , ,i i m  and we let 

( )1
ˆ ˆ ˆ= , , .m ψ

T

 In practice, the smoothed variances must first be estimated and then successively we 

compute ( )2 2 ˆˆ =v v  ψ  and ( )2 ˆˆ ˆ= , ,vβ β ψ  the estimates of 2

v  and .β  

Assuming 2

v  and ( )1= , , m ψ
T
 are known, the estimation of β  can be done using the generalized 

least squares method, which is equivalent to the maximum likelihood estimation method under the 

assumption of independence and normality of the errors .i i ib v e+  We obtain: 
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 ( )
1

2

2 2 2 2
=1 =1

ˆ
, = .

m m
i i i i

v

i ii v i i v ib b




   

−

 
 

+ + 
 

z z z
β ψ

Τ

  

Different methods exist for estimating 2.v  For example, the method of moments of Fay and Herriot 

(1979), the maximum likelihood or restricted maximum likelihood method can be used. The latter is more 

common in practice. All these methods consist of iteratively solving an estimation equation of the form 

( )2 , = 0,vg  ψ  where the function g  depends on the method. The resulting estimator is denoted by 

( )2 .v ψ  Rao and Molina (2015, Chapters 5 and 6) provide more details on the estimation of β  and 2

v  

and on the properties of estimators such as model consistency. 

Before estimating 2

v  and β  by ( )2 2 ˆˆ =v v  ψ  and ( )2 ˆˆ ˆ= , ,vβ β ψ  it is first necessary to estimate the 

smoothed variance = ( ), =1, , .i i i m  ZE  We suppose that a design-unbiased estimator, ˆ ,i  is 

available, i.e. ˆ( ) = .i i E  Under this assumption, we observe that ˆ( ) = .i i ZE  The estimator ˆ
i  is 

therefore unbiased for the smoothed variance i  but can be very unstable when in  is small. In general, it 

is preferable to model ˆ
i  given iz  to increase stability. The following smoothing model is frequently used 

in practice: 

 ˆlog ( ) = ,i i i +α x
Τ   

where ix  is a function of ,iz α  is a vector of model parameters and , =1, , ,i i m  are independent and 

identically distributed errors with a mean equal to 0 and a variance equal to 
2 .  It can easily be shown 

that 

 ˆ= ( ) = exp( ) ,i i i  α x
ΤZE   

where  = exp( ) E  and   is a random variable that follows the same distribution as the error term in 

the above smoothing model. A model-consistent estimator of ,α  denoted by ˆ ,α  is obtained using the least 

squares method. Hidiroglou, Beaumont and Yung (2019) suggest estimating   by a model-consistent 

estimator, ˆ ,  using a method of moments. The smoothed variance estimator is written as follows: 

 ˆ ˆˆ= exp( ) ,i i α x
Τ   

where 

 =1

=1

ˆ
ˆ = .

ˆexp( )

m

ii

m

ii






 α x
Τ

  

It can be expected that the design MSE of the EB estimator, 

  EB EB 2ˆ ˆMSE ( ) = ( ) ,p i i i  − E   

is greater than the design MSE of the B estimator given in equation (3.2). As mentioned above, the 

estimators of the parameters ,β
2 ,v α  and   are model-consistent, as m  increases, provided certain 
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regularity conditions hold. Note also that that the design mean square error of the B estimator (see 

equation 3.2) does not depend on .m  Therefore, the increase in the mean square error resulting from the 

estimation of these parameters can be expected to be modest when the number of domains is large. This 

suggests that, if m  is large, the derivation of the bound ,L iv  will be little affected by the estimation of ,β  

2 ,v α  and .  Thus, our two diagnostics (4.2) and (4.4) should remain relevant even if the EB estimator is 

used instead of the B estimator. However, i  must be replaced by ˆ
i  and i  by 

 
2 2

ˆ ˆ
ˆ =

ˆˆ

i i
i

i v ib




 

−

+

β z
Τ

  

in expressions (4.2) and (4.4) to be able to calculate these diagnostics with real data. As a result, we obtain 

1
ˆ ,iD  the estimator of 1 ,iD  and 2

ˆ ,iD  the estimator of 2 .iD  

 
 

6. Simulation study 
 

A simulation study was conducted to evaluate the effectiveness of 1
ˆ

iD  and 2
ˆ

iD  in detecting which of 

the direct and EB estimators is preferable. We considered =m 140 domains representing Canadian cities. 

In this simulation study, the vector of auxiliary variables is: 
1= (1, ).i izz

Τ  The auxiliary variable 1iz  is 

obtained from administrative files and is defined as the ratio of the number of employment insurance 

beneficiaries in city i  to the number of people over 15 years of age in city .i  The sample size in city ,i ,in  

was obtained from the Canadian Labour Force Survey (LFS). Of the 140 cities, 2 have a sample size 

smaller than 10, 10 have a sample size smaller than 30, 40 have a sample size smaller than 60, and 68 

have a sample size smaller than 100, representing almost 50% of the cities. For these 68 cities, the 

estimated coefficients of variation of the LFS unemployment rates are in most cases too large to publish 

direct estimates of the unemployment rate; as a result, small area estimation techniques are required for 

these domains. In contrast, there are also 17 of the 140 cities with a sample size larger than 1,000 for 

which the direct estimate of the unemployment rate is reliable. 

The population parameter i  was simulated for the m  domains using the actual values of in  and .iz  It 

can be interpreted as the proportion of unemployed people in city .i  The parameter i  was generated 

using the beta distribution with mean 
iβ z

Τ  and variance 2 ,v  where 2 5= 7.58 10v
−  and =β

Τ (0.0484, 

0.95). These values of β  and 2

v  were chosen from real data. We set =1, =1, , .ib i m  Then, we 

manually changed the values of i  for four domains (cities) in order to have a local effect iv  equal to 5 .v  

Cities with different sample sizes were chosen: 10, 100, 501 and 3,773. In the rest of this section, the 

smallest of these four cities is identified by City 1 ( )=10 ,in  the second smallest by City 2 ( )=100 ,in  the 

second largest by City 3 ( )= 501in  and the largest by City 4 ( =in 3,773). 

A stratified simple random sampling with replacement design was considered where strata coincide 

with domains. The direct estimator ˆ
i  of i  is simply the proportion of sampled people in area i  who 

have the characteristic of interest (e.g., being unemployed). Under such a simple design, it is easy to see 

that the direct estimator can be generated as follows: 1ˆ =i in − ( )Binomial , .i in   It is therefore not 
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necessary to create the population of people in domain i  to generate ˆ .i  We proceeded in this way in the 

simulation. The design variance of ˆ
i  is given by ( )1= 1i i i in  − −  and its estimator by 

( ) ( )1 ˆ ˆˆ = 1 1 .i i i in  
−

− −  The smoothed variance i  is estimated using the smoothing model in Section 5 

with ( ) ( ) ( )( )1 1= 1, log , log 1 , log .i i i iz z n−x
Τ  

In order to simulate a realistic scenario, the underlying assumptions of the Fay-Herriot model are not 

entirely satisfied in our simulation. For example, the errors iv  and ie  do not exactly follow normal 

distributions. We used a beta distribution to generate ;i  the normality assumption of iv  is therefore not 

satisfied although the deviation from the normal distribution is not severe in our simulation. The estimates 

ˆ
i  were generated from a binomial distribution,which can be approximated by a normal distribution for 

domains with a large value of .in  The relationship between the simulated estimates ˆ
i  and the auxiliary 

vectors iz  is similar to the one observed with the real LFS estimates. Moreover, our simulation scenario is 

such that the assumption =i i   is not satisfied since, for this simple design, 

 ( )1 2 2= (1 )i i i i i vn b − − −β z β z
Τ Τ   

(see remark in Section 2). However, we note that the correlation coefficient between i  and i  is 0.98, 

which indicates that the deviation from the assumption =i i   is modest. As mentioned in the previous 

paragraph, the smoothing model in Section 5 is used to estimate .i  This allows us to remain in a realistic 

framework where the postulated smoothing model is different from the true model used to generate the 

estimates ˆ .i  

We conducted a design-based simulation study, i.e., the population parameters , =1, , ,i i m  were 

generated only once. We repeated sample selection =K 10,000 times. For each replicate ,k =1, , ,k K  

a direct estimate ( )ˆ
i k  was generated and a smoothed variance estimate ( )ˆ

i k  was calculated as 

described above. The EB estimate was then calculated as: 

 ( ) ( ) ( ) ( )( ) ( )EBˆ ˆ ˆˆ ˆ= 1 ,i i i i ik k k k k   + − β z
Τ

  

where ( ) ( )

( ) ( )

2

2

ˆ

ˆˆ
ˆ = v

v i

k

i k k
k



 


+
 and ( )ˆ kβ  and ( )2ˆ

v k  are calculated as described in Section 5. The generalized 

least squares method was used to obtain ( )ˆ kβ  and the restricted maximum likelihood method was used to 

obtain ( )2ˆ .v k  Calculations were performed using Statistics Canada’s small area estimation system 

(Hidiroglou, Beaumont and Yung, 2019). 

For each replicate, standardized residuals ( )î k  and diagnostics ( )1
ˆ

iD k  and ( )2
ˆ

iD k  were also 

calculated for the m  domains. We recorded whether the direct estimator was preferred over the EB 

estimator for each of the two diagnostics. Decision thresholds were used for this purpose. Below the 

thresholds, the direct estimator is used. For Diagnostic 1, thresholds of 50% and 75% were used and for 

Diagnostic 2, thresholds of 5% and 25% were used. 

From the previous quantities, calculated for each of the 10,000 replicates, the Monte Carlo averages of 

Diagnostics 1 and 2 were calculated for the m  domains: 
1

ˆ
iD  and 

2
ˆ .iD  The selection rate of the direct 

estimator was also calculated for each of the two diagnostics, i.e., the percentage of times a given 

diagnostic led to the selection of the direct estimator. 
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The Monte Carlo approximation of EBˆMSE ( )p i  was calculated as: 

 ( )
2

EB EB

MC

=1

1ˆ ˆMSE ( ) = ( ) .
K

i i i

k

k
K

  −   

From this Monte Carlo MSE, the relative efficiency of the EB estimator was calculated as: 

 
EB

MC
ˆMSE ( )

.i i

i

 



−
 (6.1) 

This ratio is positive when the EB estimator is less efficient than the direct estimator under the design. 

A diagnostic is potentially useful if it is negatively correlated with this ratio. 

Figures 6.1 and 6.2 present the Monte Carlo averages of Diagnostic 1 and 2 respectively as a function 

of the relative efficiency of the EB estimator defined in equation (6.1). The four cities whose values of iv  

have been changed, Cities 1 to 4, are shown in purple, orange, green and red. In the legend, the sample 

size of these cities has been indicated. The values of the parameter i  for Cities 1 to 4 are 0.01, 0.08, 0.35 

and 0.81 respectively. All other cities are shown in blue. 

First, we can see in Figures 6.1 and 6.2 that the EB estimator is more efficient than the direct estimator 

for City 1 (in purple) since this city is to the left of the vertical line (negative relative efficiency) despite 

the strong local effect. The explanation of this phenomenon is shown in Figure 3.1. It shows that the range 

of values of iv  for which the B estimator is more efficient than the direct estimator increases as i  

decreases. Since i  is small for City 1 ( )= 0.01 ,i  it is not surprising to observe a negative relative 

efficiency despite a pronounced local effect. For City 2 (in orange), the direct estimator is slightly more 

efficient than the EB estimator. On the other hand, for Cities 3 (in green) and 4 (in red), the direct 

estimator is much more efficient than the EB estimator. Note also that there are five cities for which the 

direct estimator is more efficient than the EB estimator: Cities 2 to 4 as well as two other cities whose 

values of iv  were randomly generated and not manually modified. One of these cities has the smallest 

value of iv  and the other has the largest value of iv  after excluding the four cities that had their value 

manually modified. These two cities have large values of i  (0.62 and 0.49). 

Figures 6.1 and 6.2 indicate that our two diagnostics seem to be quite effective in detecting cases 

where the direct estimator is more efficient than the EB estimator except for City 2 ( )=100in  where the 

Monte Carlo average of Diagnostic 1 is very high at 0.97. However, this is a domain where choosing the 

least efficient estimator is not really problematic since there is very little difference between the 

efficiencies of the two estimators. Apart from this specific case, Diagnostic 1 seems to have better 

properties than Diagnostic 2. The Monte Carlo average of Diagnostic 1 is very close to 1 when the EB 

estimator is significantly more efficient than the direct estimator, decreases slowly when the efficiencies 

of the two estimators approach each other and becomes small when the direct estimator is significantly 

more efficient than the EB estimator. Not exactly the same behaviour is observed for Diagnostic 2. The 

Monte Carlo average of Diagnostic 2 is small when the direct estimator is significantly more efficient than 

the EB estimator but it is not close to 1 when the EB estimator is significantly more efficient than the 

direct estimator. Furthermore, it seems to increase when the efficiencies of the two estimators come 

closer, which is counterintuitive. 
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Figure 6.1 Monte Carlo average of Diagnostic 1 estimates for the 140 cities versus the relative efficiency of 

the EB estimator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2 Monte Carlo average of Diagnostic 2 estimates for the 140 cities versus the relative efficiency of 

the EB estimator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6.3 and 6.4 show the selection rate of the direct estimator over the 10,000 replicates for 

Diagnostics 1 and 2. Similar conclusions can be drawn as those obtained by analyzing Figures 6.1 and 6.2. 
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As expected, the thresholds of 75% for Diagnostic 1 and 25% for Diagnostic 2 allow better detection of 

cases where the direct estimator is more efficient than the EB estimator, but these thresholds also lead to 

the direct estimator being chosen a little too often when it was less efficient than the EB estimator. This is 

particularly notable for Diagnostic 2. This error can be dampened by decreasing the thresholds, but this 

also reduces the selection rate of the direct estimator when it is more efficient than the EB estimator. As 

noted earlier, Diagnostic 1 appears to have better properties than Diagnostic 2, regardless of the thresholds 

chosen, with very small selection rates of the direct estimator when it is significantly less efficient than the 

EB estimator. This seems to show the limitations of a fully design-based approach, such as the one 

presented in Section 4.2, to address the challenge of small domain sample sizes. 

 

Figure 6.3  Direct estimator selection rate for Diagnostic 1. 
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Figure 6.4  Direct estimator selection rate for Diagnostic 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 
 

Users of small area estimates are usually interested in only one domain. Therefore, they seek a quality 

indicator that applies to their domain and not an overall indicator. The design MSE of small area 

estimators is a conceptually attractive quality indicator since it conditions on the unexplained local effect. 

However, it is known that design-unbiased estimators of the design MSE are generally unstable when the 

domain sample size is small. To circumvent this problem, we proposed two diagnostics that are intended 

to identify domains where the design MSE of the direct estimator is smaller than that of the EB estimator. 

Our simulation results seem promising and allow us to envision the implementation of a useful indicator 
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for choosing between the direct and EB estimators for a particular domain. In future research, it would be 

interesting to evaluate the efficiency of a hybrid estimator that would leverage these diagnostics. 

 
Appendix 

 
A. Proof of equivalence between equations (4.1) and (4.2) 
 

Using equation (4.1) and the conditional distribution of iv  given in Section 4.1, we have: 

 

( )1 , ,

, ,

ˆ= Prob ,

ˆ= Prob , .
1 1 1

i L i i L i i

L i v i i L i v i ii v i i

i

v i v i v i

D v v v

v vv



       


     

−  

 − − −−
  
 − − −
 

Z

Z
  

Replacing ,L iv  with 
1 i

iv






+
 results in: 

 

1

(1 ) (1 ) ˆ= Prob ,
1 1 1

1 1
= .

1 1

i i i i i v i i i i i i

i i

i v i i

ii i i
i i

i i i i

v
D

          


   

  
 

   

 − + − − + −
  
 − − − 

     + +   
 − + −  − −        − −        

Z

  

Since for any value ,t  we have ( ) ( )=1t t − −  then 

 
1

1 1
= .

1 1

i ii i
i i i

i i i i

D
  

 
   

      + +   
 + − −         − −         

  

We notice that 1iD  is a symmetric function of i  around 0, i.e. ( ) ( )1 1= .i i i iD D −  Therefore, we can 

rewrite 1iD  as in equation (4.2): 

 
1

1 1
= .

1 1

i ii i
i i i

i i i i

D
  

 
   

      + +   
 + − −         − −         

  

 

B. p -value associated with the test statistic 
i
  

 

First, recall that ( ) ( )obs,= Prob | | | | ; .i i i i iP v v    We define the p -value as the maximum of 

( ),i L iP v  and ( ), .i L iP v−  Since 
obs ,| | 1

1
= ,i i

i
i

 




− +

−
 we can then write: 

 

( ) ( )

( )

( )

= Prob > 1 1 ;

= Prob > 1 1 ;

Prob < 1 1 ; .

i i i i i i i

i i i i i

i i i i i

P v v

v

v

   

   

   

+ + − 

+ + − 

+ − + − − 
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Using the standardized error distribution (4.3), we obtain: 

 

( )
1

= Prob > ;
1 1

1
Prob < ;

1 1

1
=

1

1
.

1

i i i v i i i v

i i i i

i i

i i i v i i i v

i i

i i

i i i v
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i

i i i v

i

i

v v
P v v

v v
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

 
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 

  




  



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+ −  

 − − 

 − + +
 − 
 − 

 − + −
+  − 

 − 

  

Using the expression 
1

, = ,i

iL i vv





+
 we have: 
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,

,

1
= 1

1

1
1 .

1

i i
i i i

L ii

i i
i

L ii

v
P v

v

v

v


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


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  +
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Under the null hypothesis 0 ,H
,=i L iv v  or ,=i L iv v−  and in both cases the above equation reduces to: 

 ( ) ( ) ( ), ,

1
= = 2 .

1

i

i L i i L i i i

i

P v P v


 


 +
−  − +  − − 

 − 

  

We will now show that if we reject 0H  (with a threshold smaller than 0.5 such as 0.1) then we would 

reject even more strongly the null hypothesis * *

0: =i iH v v  for any value 
*

,0 < .i L iv v  First, if 0,i   i.e.,

obs, (1 ),i i  +  we observe that , ,( ) = ( ) 0.5i L i i L iP v P v−   and we never reject the null hypothesis 0 .H  

Second, if > 0,i  we can easily show that the function ( )i iP v  is increasing in iv  over the interval 

,0, .L iv    We also note that it is a function of iv  that is symmetrical around = 0iv  since ( ) = ( ).i i i iP v P v−  

Consequently, ( )i iP v  is decreasingon the interval 
, , 0 ,L iv−    is minimum when = 0iv  and maximum 

when ,=i L iv v  and ,= .i L iv v−  Therefore, when ,< ,i L iv v  we have: 

 ( ) ( ) ( ),

1
< = 2 .

1

i

i i i L i i i
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P v P v

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

 +
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Estimating the false negatives due to blocking in record 

linkage 
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Abstract 

When linking massive data sets, blocking is used to select a manageable subset of record pairs at the expense 

of losing a few matched pairs. This loss is an important component of the overall linkage error, because 

blocking decisions are made early on in the linkage process, with no way to revise them in subsequent steps. 

Yet, measuring this contribution is still a major challenge because of the need to model all the pairs in the 

Cartesian product of the sources, not just those satisfying the blocking criteria. Unfortunately, previous error 

models are of little use because they typically do not meet this requirement. This paper addresses the issue 

with a new finite mixture model, which dispenses with clerical reviews, training data, or the assumption that 

the linkage variables are conditionally independent. It applies when applying a standard blocking procedure 

for the linkage of a file to a register or a census with complete coverage, where both sources are free of 

duplicate records. 

 

Key Words: Indexing; Massive data sets; Entity resolution; Data integration; Machine learning; Classification. 

 

 

1. Introduction 
 

Record linkage aims at finding records from the same individual in one or many files (Fellegi and 

Sunter, 1969; Christen, 2012; Statistics Canada, 2017a). It is different from statistical matching; an 

imputation method that looks for records from similar individuals (D’Orazio, Di Zio and Scanu, 2006). It 

has become an important data integration method that includes blocking as an important step. To block is 

to select a manageable subset of record pairs, which contains most matched pairs, i.e., the pairs with 

records that come from the same individual. Fellegi and Sunter (1969, Section 3.4) abstractly define 

blocking as the selection of a subset of the Cartesian product of the two data sources. Herzog, Scheuren 

and Winkler (2007, page 123, second paragraph) provide a similar definition when they write that 

“Blocking is a scheme that reduces the number of pairs of records that needs be examined.” Christen 

(2012, page 28, third paragraph) rather uses the term indexing with the same meaning, when he writes that 

“To reduce the possibly very large number of pairs of records that need to be compared, indexing 

techniques are commonly applied… These techniques filter out record pairs that are very unlikely to 

correspond to matches.” In this work, the term blocking is used to denote this process that is essential 

when linking massive data sets that are comprised of millions of records. Indeed the Cartesian product is 

simply too large. The purpose of blocking is to enforce a trade-off between the computational and memory 

resources on one hand and the loss of a few matched pairs on the other hand. These matched pairs 

correspond to false negatives and are an important part of the overall linkage error, if only because the 

blocking decisions are usually made early on in the linkage process, with no opportunity to change them 

later. Yet the empirical evidence has been scarce because these false negatives are never reported with few 
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exceptions, which include the identification of duplicate records in a sampling frame as described by 

Herzog et al. (2007, Section 12.3). In that rare instance, where the frame comprised of 176,000 business 

records, the number of matched pairs was estimated at 3,219 of which 3,050 were estimated to be selected 

by the blocking criteria, i.e. a false negative rate of (3,219 -3,050) / 3,219 = 5.25%, which is not negligible 

when comparing to the false negative rates reported in various linkage studies reviewed by Bohensky 

(2016). Nowadays, it is tempting to minimize the blocking false negatives by relaxing the blocking criteria 

as much as the computing resources permit. After all, these resources are already considerable and ever 

growing in this age of big data. Yet this may lead to the undesirable situation where the parameters of a 

probabilistic linkage cannot be estimated because the proportion of matched pairs is too small (Winkler, 

2016, Section 2.2.3.2). Thus the issue of the blocking false negatives remains relevant regardless of the 

available computing resources. However estimating them has been a challenge because of the need to 

consider all the pairs in the Cartesian product of the two sources, and not just those satisfying the blocking 

criteria. In that regard, most previous error models are of little use because they do not meet this 

requirement, including Fellegi and Sunter (1969), Armstrong and Mayda (1993), Thibaudeau (1993), 

Winkler (1993), Belin and Rubin (1995), Sariyar, Borg and Pommerening (2011), Daggy, Xu, Hui, 

Gamache and Grannis (2013), and Chipperfield, Hansen and Rossiter (2018). Herzog et al. (2007, 

Chapter 12.5) have described a capture-recapture technique that does not have this drawback but is 

impractical because it requires clerical reviews and the conditional independence of some blocking 

variables. 

In this work, a new solution is described, which requires neither. It is based on an extension of the 

model by Blakely and Salmond (2002) for situations where the records are heterogeneous and the 

underlying finite population is large. The solution is first developed in the ideal setting where two 

duplicate-free sources are linked, including a file and a register or a census with complete coverage, such 

that the decision to keep a pair in the blocks solely depends on its two records, as with standard blocking 

procedures (see Christen, 2012, Chapter 4.1). Yet, it is of interest in practical settings where both sources 

have few duplicate records and the census has near complete coverage, such as the linkage of tax records 

to the Canadian Census to replace income questions (Statistics Canada, 2017b), or a cohort study where 

mortality records are linked to a census (Blakely and Salmond, 2002). 

The following sections are organized as follows. Section 2 presents the assumptions, notations and 

terminology. Section 3 explains why the distribution of neighbours provides important error information. 

Section 4 describes the proposed mixture model. Section 5 presents the expectation-maximization 

procedure. Section 6 describes the empirical study. Section 7 presents the conclusions and future work. 

 
2. Definitions, notations and assumptions 
 

Matched records: In record linkage, like in other automated classification problems, a clear distinction 

must be made between the nature of the entities to classify (whether two records are actually from the 
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same entity) and the decisions made (whether the records are deemed from the same entity) according to 

the observations on these entities (the level of agreement between the records). However there is no 

consensus on the terms used to refer to these key concepts because record linkage is a multidisciplinary 

field, at the intersection of statistics, epidemiology and computer science. Indeed, in the first paragraph of 

their abstract, Fellegi and Sunter (1969) writes that “A mathematical model is developed to provide a 

theoretical framework for a computer-oriented solution to the problem of recognizing those records in two 

files which represent identical persons, objects or events (said to be matched).” Thus they refer to whether 

two given records belong to the same entity. In their book, Herzog, Scheuren and Winkler (2007, page 83, 

last paragraph) use the term “true match” for the same concept. Yet in the computer science literature, the 

word “matched” has an entirely different meaning. It refers to the classification decision; the best example 

being given by Christen (2012) in his book entitled “Data matching”. In his book, Newcombe (1988, 

page 105, second paragraph) also laments the lack of consensus on the meaning of the word “matched” 

when he writes that “This word is variously used in the literature on record linkage. In this book, however, 

it is given no special technical meaning and merely implies a pairing of records on the basis of some stated 

similarity (or dissimilarity).” 

In what follows, the term “matched” is used according to the definition given by Fellegi and Sunter 

(1969) to refer to records from the same entity that may be a person, business, household, etc. It is also 

applied to a pair with the meaning that the constituent records are matched. Two records are called 

unmatched if they come from different entities. 

Finite population and data sources: For the problem at hand consider a large finite population that 

comprises of N  individuals and a recording process such that records from different individuals are 

mutually independent with independent recording errors. Let m  denote the file size, which is assumed to 

be a random variable such that m N  and m →  when N →  (e.g. ( )).m O N=  Let V  denote the set 

of possible record values in either data source, and let iv  denote record i  from the file where iv V  by 

definition. For simplicity V  is assumed to be finite even if it is usually very large. To further simplify, 

assume that the two data sources are actually free of duplicate records and that the register has no 

undercoverage. In other words, each record from the file corresponds to exactly one record from the same 

individual in the register. Each record is also assumed complete, i.e. without missing values. 

Blocking strategies: When linking two large data sources, blocking is used to eliminate the vast 

majority of pairs with records from different individuals, while keeping all the other pairs and expanding 

few computing resources. Yet some pairs with records from the same individual are inevitably lost in the 

process. Christen (2012, Chapter 4.4) has reviewed a variety of blocking procedures including the simplest 

strategy, where a pair is selected if the records agree perfectly on a single key. Such a procedure is often 

assumed in the published literature on the analysis of linked data (Chambers and Kim, 2016; Han and 

Lahiri, 2018). It selects a subset of pairs based on the union of Cartesian products across disjoint post-

strata that are also called blocks. In practice, a refinement of this approach is used where a pair is kept if 

the records agree perfectly on at least one key among many. As a result, the subset of selected pairs is no 
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longer the union of Cartesian products across disjoint post-strata. In what follows we shall not be 

concerned with such details but with our ability to accurately estimate the loss resulting from the blocking 

procedure, when linking a file to a register or census, where both sources have few duplicate records and 

the register or census has little undercoverage. Perfect examples of such studies are provided by the 

linkage of tax records to the Canadian Census (Statistics Canada, 2017b) or by a cohort study with 

mortality records linked to a census (Blakely and Salmond, 2002). 

In what follows, it is assumed that the decision to keep a pair only depends on its constituent records. 

i.e. the blocking decision is equivalent to a mathematical map from V V  into  0,1 .  This includes a 

large class of blocking procedures, including standard blocking procedures (Christen, 2012, Section 4.4). 

Yet it excludes blocking strategies that use some form of clustering such as canopy clustering (Christen, 

2012, Section 4.8). 

Errors: When applying blocking criteria, two kinds of errors may arise including false negatives and 

false positives. A false negative occurs if a matched pair is rejected by the blocking criteria. A false 

positive occurs if an unmatched pair is accepted by the blocking criteria. These errors are measured by the 

false negative rate (FNR) and the false positive rate (FPR), where the former is the proportion of matched 

pairs that are rejected, and the latter is the proportion of unmatched pairs that are accepted. 

When designing the blocking criteria one may minimize the false positive rate while keeping the false 

negative rate below a threshold (e.g. 1%). Since there are usually many more unmatched pairs than 

matched pairs in the blocks, this roughly corresponds to minimizing the number of pairs in the blocks 

while keeping the proportion of lost matched pairs below the said threshold. Of course, the 

implementation of such a strategy requires the accurate estimation of both error rates. The false positive 

rate is often much easier to estimate than the false negative rate. Indeed, let B  denote the total number of 

pairs accepted by the blocking criteria. Since the false positive rate isno less than ( ) / ( 1)B m m N− −  and 

no more than / ( 1),B m N −  it is well approximated by /B mN  if .B m  This estimator is related to the 

reduction ratio that is defined as 1 /B mN−  (Christen, 2012, Chapter 7.3). Estimating the false negatives 

is a much harder problem. Fortunately the concept of neighbour provides valuable insights. 

 
3. Neighbours and errors 
 

When examining the potential errors, it helps to look at how many register records form an accepted 

(by the blocking criteria) pair with a given file record. In what follows, these records are called neighbours 

of the file record, and their number is denoted by in  for record i  on the file. The empirical in  distribution 

provides much information about the errors because in the current setting, each file record would have 

exactly one neighbour if the blocking strategy were error-free, i.e. no false negatives or false positives. 

Note that the satisfaction of this condition does not imply the absence of errors. As an example, consider 

the situation shown in Figure 3.1, where the two sources are registers of a population with 6N =  

individuals, such that individual i  is associated with record i  in each register, i.e. the record pair ( , )i i  is 

matched for 1, , 6.i =   Before looking at the ’s,in  it is known that the number of false negatives is either 
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0 or 1, while the number of false positives is between 0 and 5, for each record in the first register. 

However the ’sin  provide additional error information. Indeed, when 0in =  (e.g. with record 2), it is 

known with certainty that there is a false negative but no false positives. When 1,in =  one of two cases 

may occur, including a first case (as with record 5) where the neighbour is the matched record such that 

there are no errors, and a second case (as with record 3) where the neighbour is an unmatched record such 

that there are two errors including a false negative and a false positive. In summary, when 1,in =  the 

number of false negatives is 0 or 1, while the number of false positives is also 0 or 1. Thus there is no 

additional information about the false negatives since it was known to be 0 or 1 prior to looking at .in  

However, much information is gained about the false positives, since it was known to be in a wider 

interval (0 to 5) before looking at .in  This observation confirms the relative ease with which the false 

positives may be estimated. 

 

Figure 3.1  Two registers with six individuals. 
 

 

 

Table 3.1 summarizes the general connection between the number of neighbours and the linkage errors 

at a given record, in the current setting where each file record is matched with exactly one register record. 

 

Table 3.1 

Neighbours and errors 

Neighbours ( )
i

n  False negatives False positives Full error information (yes/no) 

0 1 0 Yes 

1 0 or 1 0 or 1 No 

 2, 1N −  0 or 1 1in −  or in  No 

N  0 1N −  Yes 
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The above table clearly demonstrates that the number of neighbours provides much error information, 

including in the case 0in =  and the more unlikely case ,in N=  where this information is complete. When 

the blocking decision about two records depends on no other record, with a high probability when m  and 

N  are large, some file records are bound to have no neighbour. In theory one could design the blocking 

criteria to ensure a positive in  for each file record, but this would violate the assumption made in 

Section 2 that the blocking decision about two records depends on no other record. Under this assumption, 

the number of neighbours does provide valuable error information, but some uncertainty remains in the 

case 1 1,in N  −  where a statistical model is needed to predict the errors based on .in  

 
4. Finite mixture model 
 

The linkage of the two sources is of interest when it is a viable option even N  is very large. To 

capture the essence of such situations, the following two regularity conditions are assumed. 

a. Two matched records are neighbours with a probability that is bounded away from 0 regardless 

of .N  

b. Two unmatched records are accidental neighbours with a probability of (1/ ).O N  

 

These assumptions imply that each record has a bounded expected number of neighbours and that 

( )O N  pairs (instead of ( )O mN  pairs and even 
2( )O N  pairs if ( ))m O N=  are selected by the blocking 

criteria. They also imply that there is enough linkage information to identify matched records with a success 

probability, which is bounded away from zero, regardless of the population size. The above assumptions 

further imply a particular limiting distribution for the number of neighbours .in  Indeed, let 
| | ,i i M i Un n n= +  

where 
|i Mn  is the number of matched neighbours and 

|i Un  is the number of unmatched neighbours. Note 

that these latter variables are not directly observed expect when 0in =  or in N=  (see Table 3.1). They are 

also conditionally independent given iv  and such that | ~ Bernoulli ( ( )),i M i in v p v | ~i U in v  

Binomial ( 1, ( ) / ( 1)),iN v N− −  if an unmatched record is a neighbour with the probability ( ) / ( 1)iv N −  

independently of the other unmatched records. When the functions (.)p  and (.)  do not depend on N  and 

N  is large, we have | ~ Poisson( ( ))i U i in v v  (Billingsley, 1995), where ~  means approximately 

distributed as. Hence, ~ Bernoulli( ( )) * Poisson( ( )),i i i in v p v v  where *  is the convolution operator. 

Note that, in general, the functions (.)p  and (.)  are unknown high-dimensional parameters. To simplify, 

further assume that ( (.), (.))p   is (well approximated by) a piecewise constant function with G  levels, 

such that we have the finite mixture model 
1

~ (Bernoulli ( ) * Poisson ( ))
G

i g g gg
n p 

=  holds 

approximately. When G  is fixed, the unknown model parameters are given by the vector 

1
( , , )g g g g G

p  
 

 =    that may be estimated with the Expectation-Maximization (EM) procedure in the 

next section. 

The connection between the error rates and model parameters is made by first noting that the FNR and 

FPR definitions imply 
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When m N=  almost surely, the above equations imply that 
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where 
1

[ ( )]
G

i g gg
E p v p

=
=  and 

1
[ ( )]

G

i g gg
E v  

=
=  with the finite mixture model. When m  is 

random and such that 
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as ,N →  the error rates and the model parameters are related as follows 

 
FNR 1 [ ( )],

( 1) FPR [ ( )].

p

i

p

i

E p v

N E v

→ −

− →

 (4.4) 

 
5. Estimation procedure 
 

The model parameters may be estimated by maximizing the composite likelihood (Varin, Reid and 

Firth, 2011) of the sample 1, , .mn n  For brevity, this composite likelihood is subsequently called 

likelihood. To develop the EM procedure (Dempster, Laird and Rubin, 1977) it is convenient to first 

derive the maximum likelihood (ML) equations for the complete data, which are comprised of the latent 

variables 
| ,i Mn  

|i Un  and 1( , , )i iGc c  for each ;i  
igc  being the indicator that record i  is from class .g  

After some algebra, the ML equations for the complete data are as follows. 

 

|1

1
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1

1
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Consequently the ML equations for the observed data (the ’s)in  are as follows. 
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 (5.2) 

The EM procedure alternates between the M-step given by Equation (5.2) and the E-step equations in 

Appendix A. 

The above procedure may produce consistent point estimators even if it treats the sample 1, , mn n  as 

if it were independent and identically distributed. However this is likely to generate some bias when 

estimating the variance and the critical levels of hypothesis tests. 

 
6. Empirical study 
 

The empirical study is based on staffing data from the Public Service Resourcing System (PSRS), 

which is used by applicants to the federal public service in Canada. A given user may open many accounts 

and apply to many jobs using the same account; each account being associated with a distinct email 

address. To fulfill its mandate, the Public Service Commission needs to identify all accounts from a given 

applicant. However this is a challenge because there is no unique identifier except for a minority of 

applicants. Instead, for most records, the linkage must be based on the given name, the surname and the 

partial birthdate, which are available for all records. The partial birthdate is comprised of the day and 

month of birth along with the last digit of the birth year. 

The empirical study is based on a subset of 126,330 records selected from the PSRS data since 2006. 

The selection is based on the following criteria. 

• A nonmissing unique identifier. 

• Nonmissing given name, surname and partial birthdate. 

• Two records for each selected value of the unique identifier. 

 

The selected records represent 63,155 distinct values of the identifier and so many distinct individuals, 

with two matched records per individual. These records are split into two complete and duplicate-free 

registers that are linked with the following blocking criteria, and without the unique identifier. A pair is 

selected if the partial birthdate is the same and the SOUNDEX code (Herzog et al., 2007, Chapter 11) is 

the same for the given name or the surname. The expected error rates are estimated with the model and 

compared with the actual values based on the unique identifier. 
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In Figure 6.1, the histogram shows that the vast majority or records have exactly one neighbour. 

However 1,659 records have no neighbour, while five records have five neighbours; the maximum 

number of neighbours of any record. 

 
Figure 6.1  Histogram of the number of neighbours. 

 
 
 
 
 
 
 
 
 
 
 

 

Table 6.1 cross-classifies the records by their number of neighbours and linkage errors, in agreement 

with Table 3.1. 

 

Table 6.1 

Number of neighbours and errors 

Neighbours ( )
i

n  False negatives False positives Freq. 

0 1 0 1,659 

1 1 1 116 

1 0 0 53,835 

2 1 2 8 

2 0 1 6,867 

3 1 3 1 

3 0 2 602 

4 0 3 62 

5 0 4 5 

 

The confusion matrix is as follows. 

 

Table 6.2 

Confusion matrix 

  Link Non-link Total 

Matched 61,371 1,784 63,155 

Unmatched 8,412 3.99E9 3.99E9 

Total 69,783 3.988E9 3.989E9 
 

fr
e

q
. 
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From this matrix, FNR 1,784 / 63,155 0.0282= =  and FPR 8,412 / 3.99E9 2.11E 6.= = −  Both 

measures may be viewed as the estimators ˆ [FNR]E  and ˆ [FPR]E  of their respective expectations. Since 

the false negative rate is the summation of independent and identically distributed random variables, its 

variance may be estimated by 

 2

|

1

1ˆv
1

FNR ( F
1

ar ( ) NR) ,
( )

N

i M

i

n
N N =

− −
−

=    

based on the latent variables 
1| | ,, ,M m Mn n  which are not directly observed in practice. As a result, the 

estimated FNR variance is .ˆv 4ar 3(FN ) .R 5E 7= −  This means the estimated standard error 

[FNR] 6.6E 4ˆ ˆSE ( )E = −  for the estimator ˆ [FNR],E  and the 95% normal confidence interval 

/2[FNR] [FNR]) (2.82E 2 1.3E 3)ˆˆ ˆSE (E z E = − −  for the expected FNR, where  = 0.05 and /2z =

1.96. The corresponding 99% confidence interval is (2.82E 2 1.71E 3).− −  Estimating the FPR variance 

is more difficult because the FPR involves a second order U statistic (Hoeffding, 1948; Lee, 1990). As a 

matter of fact, Table 6.1 does not give enough information to estimate this statistic. Estimating the 

variance of the model-based estimators is also challenging because the ’sin  are correlated. All the point 

estimates are given in Table 6.3, where the first row gives the actual FNR and FPR. 

 
Table 6.3 

Point estimates 

  ˆ [FNR]E  ˆ [FPR]E  

Unique id  0.0282 2.11E-6 

Model G = 1 0.0301 2.14E-6 

 G = 2 0.0298 2.13E-6 

 G = 3 0.0303 2.14E-6 

 
The results show that the model based estimates are very close to the actual FNR and FPR  when 

using one, two or three classes. For the false negative rate, the relative error is 

100 0.0303 0.0282 0.0282 7.45%, − =  while this relative error is 100 2.11 2.14 2.11 1.42% − =  

for the false positive rate. The small relative errors are encouraging regarding the accuracy of the proposed 

estimators, even if the model estimates of the expected FNR lie slightly outside the 95% confidence 

interval. However, the estimate belongs to the 99% confidence interval when using two classes. Choosing 

two classes seems optimal because the resulting estimate has the smallest relative error with respect to the 

actual FNR. 

 
7. Conclusions and future work 
 

A new finite mixture has been proposed for estimating the false negatives due to a standard blocking 

procedure, when linking a file to a register or a census with complete coverage, when both sources are free 
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of duplicate records. An empirical study with social data gives encouraging results. Yet future work must 

address the issues of variance estimation and statistical inference about the number of classes. Extensions 

are also required to account for undercoverage and duplicate records. 
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Appendix A 
 

For the E-step, the equations are as follows. 
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With-replacement bootstrap variance  

estimation for household surveys  

Principles, examples and implementation 
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Abstract 

Variance estimation is a challenging problem in surveys because there are several nontrivial factors 

contributing to the total survey error, including sampling and unit non-response. Initially devised to capture 

the variance of non-trivial statistics based on independent and identically distributed data, the bootstrap 

method has since been adapted in various ways to address survey-specific elements/factors. In this paper we 

look into one of those variants, the with-replacement bootstrap. We consider household surveys, with or 

without sub-sampling of individuals. We make explicit the benchmark variance estimators that the with-

replacement bootstrap aims at reproducing. We explain how the bootstrap can be used to account for the 

impact sampling, treatment of non-response and calibration have on total survey error. For clarity, the 

proposed methods are illustrated on a running example. They are evaluated through a simulation study, and 

applied to a French Panel for Urban Policy. Two SAS macros to perform the bootstrap methods are also 

developed. 

 

Key Words: Bootstrap; Calibration; Variance estimation; Unit non-response. 

 

 

1. Introduction 
 

Variance estimation is a challenging problem in surveys. The final weights used at the estimation stage 

include several statistical treatments, including correction of unit non-response and calibration, and their 

impact on the variance is to be assessed. Bootstrap is a useful tool, leading to the creation of so-called 

bootstrap weights released with the survey data set. These weights can be used to compute repeatedly the 

bootstrap version of the parameter of interest, leading to a simulation-based variance estimator or 

confidence interval. The interest for practitioners is that no information other than the bootstrap weights is 

needed for variance estimation. In particular, a comprehensive description of the original sampling design 

and estimation process is not required, which would be the case under an analytic approach where the 

variance estimator needs to be worked out. And thus the same set of bootstrap weights is to be used to 

obtain a variance estimate regardless of whether the parameters of interest are totals, medians or 

regression coefficients. Even when a comprehensive description of the sampling design and estimation 

process is available, the analytic approach poses issues for important parameters for which linearization 

variance estimation is not straightforward; see for example Shao (1994) for L -statistics, and Shao and 

Rao (1993) for low income proportions.  

There is an extensive literature on bootstrap in survey sampling, see for example Rao and Wu (1988), 

Rao, Wu and Yue (1992), Shao and Tu (1995, Chapter 6), Davison and Hinkley (1997, Section 3.7), 

Davison and Sardy (2007), Chauvet (2007) and Mashreghi, Haziza and Léger (2016) for detailed reviews. 
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One of these techniques is the so-called rescaled bootstrap proposed by Rao and Wu (1988), which may 

be summarized as follows. First, inside each first-stage sample hS  of size hn  selected in stratum ,h  a 

with-replacement simple random sample of size hm  is selected, leading to the initial bootstrap weights. 

Then, these weights may be rescaled so as to reproduce an unbiased variance estimator for the estimation 

of a total (linear case). As explained by Rao and Wu (1988), the rescaled bootstrap may be applied to a 

variety of sampling designs including two-stage sampling and with/without-replacement sampling at the 

first stage. However, it is not straightforward to account for some practical features of a survey such as the 

treatment of unit non-response. This is considered in Yeo, Mantel and Liu (1999) and Girard (2009). A 

related topic is treated in Kim, Navarro and Fuller (2006), who consider replication variance estimation 

for two-phase sampling.  

Applying the Rao-Wu bootstrap in the particular case when the resample sizes are = 1h hm n −  leads to 

the so-called bootstrap of Primary Sampling Units (PSUs) or with-replacement bootstrap (McCarthy and 

Snowden, 1985). The with-replacement bootstrap is fairly simple to implement; in particular, it requires to 

resample the primary sampling units only, and not the final units. Accounting for treatment of non-

response and calibration is fairly natural, as explained in this paper. An important property of a bootstrap 

method is to match (at least, approximately) a known variance estimator in the linear case, which we call 

the benchmark variance estimator. For with-replacement bootstrap, it is possible to state precisely this 

benchmark variance estimator at any step of the method, which is helpful in understanding how the 

method works to assess the total survey error. The with-replacement bootstrap leads to conservative 

variance estimation, in the sense that the first-stage sampling variance is overestimated if the sampling 

designs used inside strata at first-stage are more efficient than multinomial sampling, which we assume to 

hold true in this paper. This is therefore a prudent approach in producing confidence intervals. The 

positive bias of the bootstrap variance estimator is expected to be negligible when the first-stage sampling 

rates inside strata are negligible, which is often the case in phone surveys. Also, if the survey is repeated 

over time, the contribution of the first-stage sampling variance is likely to fade while the variance due to 

attrition and unit non-response grows bigger.  

Our paper, which examines the with-replacement bootstrap, is intended to be user-oriented. In 

particular, we do not propose particular modifications of the with-replacement bootstrap. Rather, we 

explain how this bootstrap method may be applied to account for sampling, treatment of non-response and 

calibration, and in so doing, what is the variance estimator that we aim at reproducing when estimating a 

total. We give some running examples to illustrate how bootstrap weights are computed in simple cases. 

Two SAS macros implementing the proposed bootstrap methods are presented, evaluated through a 

simulation study, and illustrated on a real survey dataset from the Panel for Urban Policy.  

For simplicity of presentation, our terminology is that of household surveys, which is our original 

motivation for this paper. We consider two cases: first, when a sample of households only is selected; 

secondly, when a subsample of individuals is selected inside the selected households. Despite this specific 

terminology, our approach is general and may be applied to any other situation when a survey is 

performed by one-stage sampling (first case) or by two-stage sampling (second case).  
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We are in particular interested in household phone surveys, which have been extensively used at the 

French National Institute for Demographic Studies (INED) over the last decades. Originally, a sample of 

phone numbers was selected from a register of fixed-line numbers, and more recently the phone numbers 

used in the survey are randomly generated to account for households not covered in the registers (unlisted 

or cell numbers). In a second step, individuals are selected within the households, using classic selection 

methods (e.g., Kish individual). Phone surveys have proved to be efficient, specifically for sensitive 

subjects like sexuality, violence or addictions. Some examples of surveys performed by INED include the 

national survey on violence against women in France in 2000 (ENVEFF), the national survey on violence 

and gender exchange in 2015 and 2018 (VIRAGE and VIRAGE overseas, respectively), or the national 

survey on the context of sexuality in France in 2006. The same protocol is likely to be used in a near 

future for surveys on similar subjects, like the one on young adults’ sexuality or the one on birth control, 

to begin between 2021 and 2023.  

The paper is organized as follows. In Section 2, our main notations are defined, and we consider the 

estimation of a total by accounting for sampling, unit non-response and calibration. We treat in Section 2.1 

the situation when a sample of households only is selected (one-stage case), and in Section 2.2 the case 

when individuals are sub-sampled within households (two-stage case). The basic bootstrap method is 

described in Section 3: the one-stage case is considered in Sections 3.1 and 3.2, and the two-stage case is 

considered in Sections 3.3 and 3.4. We explain in Section 3.5 how the basic bootstrap procedure may be 

applied to obtain an estimator of variance or a confidence interval. The proposed bootstrap methods are 

evaluated in Section 4 through a simulation study. We present in Section 5 an illustration on a sample of 

households and individuals from the French Panel for Urban Policy. We conclude in Section 6. The 

benchmark variance estimators for the sample of individuals are presented in Appendix A. The SAS 

program used to perform bootstrap variance estimation are presented in Appendices B and C. These SAS 

programs are available upon request to the corresponding author. 

 
2. Notation and estimation 
 

In this section, we define our main notations, and we describe the sampling and estimation process. We 

first consider in Section 2.1 the case when a sample of households only is selected, and we describe the 

estimation process which includes treatment of unit non-response and calibration. We indicate in each 

case what is the benchmark variance estimator considered, i.e. the variance estimator that we aim at 

reproducing for the estimation of a total with the bootstrap method proposed in Section 3. The case when 

individuals are sub-sampled inside households is covered in Section 2.2. The benchmark variance 

estimators for this second case are given in Appendix A. 

 
2.1 Case of a sample of households only 
 

We consider estimation for a population hhU  of households. We let ky  denote the value taken by some 

variable of interest for the household .k  We are interested in the estimation of the total  
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 = .
hh

hh k

k U

Y y


  (2.1) 

 
2.1.1 Sampling design 
 

We suppose that a sample hhS  is selected in hhU  by means of a stratified one-stage sampling design. 

The population hhU  is partitioned into H  strata 1 , , ,H

hh hhU U  the samples 1 , , H

hh hhS S  are selected inside 

independently, and the sample hhS  is the union of these samples. We let k  denote the inclusion 

probability of a given household .k  The design weight is  

 
1

= .k

k

d


 (2.2) 

In case of full response, the estimator of hhY  is  

 ˆ = .
hh

hh k k

k S

Y d y


  (2.3) 

We consider as a benchmark variance estimator  
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1ˆ( ) = ,
1 h h

hh hh

H
h
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 

  
 − 

 −   

    (2.4) 

with hn  the size of the sample .h

hhS  This variance estimator is unbiased if the samples are selected inside 

strata by multinomial sampling (Tillé, 2011, Section 5.4), a.k.a. sampling with replacement. It is 

conservative if the sampling designs used inside strata are more efficient than multinomial sampling 

(Särndal, Swensson and Wretman, 1992, Section 4.6), which we assume to hold true in the rest of the 

paper. The positive bias of this variance estimator is expected to be negligible when the sampling rates 

inside strata are themselves negligible, which is often the case in phone surveys. This is illustrated by the 

results of our simulation study, see Section 4. 

 
2.1.2 Treatment of non-response 
 

In practice, the sample hhS  is prone to unit non-response, which leads to the observation of a sub-

sample of respondents ,r hhS  only. We let kr  denote the response indicator of a household ,k  and kp  

denote the response probability of the household .k  We suppose that the households respond 

independently of one another. Also, we suppose that unit non-response is handled through the method of 

Response Homogeneity Groups (RHGs), which is popular in practice (e.g. Brick, 2013; Juillard and 

Chauvet, 2018). Under this framework, it is assumed that the sample hhS  may be partitioned into C  

RHGs denoted as 1, ,, ,hh C hhS S  such that the response probability kp  is constant inside a RHG.  

For =1, , ,c C  we let cp  denote the common response probability inside the RHG , .c hhS  It is 

estimated by  
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,
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c hh

k kk S
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kk S

r
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








 (2.5) 

with k  some weight attached to the household .k  The choice = 1k  leads to estimating cp  by the 

unweighted response rate inside the RHG. The choice =k kd  leads to estimating cp  by the response rate 

inside the RHG, weighted by the sampling weights (e.g. Kott, 2012). 

Accounting for the estimated response probabilities leads to the weights corrected for non-response  

 
( )

= ,
ˆ

k
rk

c k

d
d

p
 (2.6) 

with ( )c k  the RHG of the household .k  The estimator of hhY  adjusted for non-response is  

 
,

,
ˆ = .

r hh

r hh rk k

k S

Y d y


  (2.7) 

Building on the multinomial variance estimator in (2.4) and on linearization for estimators reweighted 

for unit-non-response (Kim and Kim, 2007, Section 2), our benchmark variance estimator is  
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with  
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This is a conservative estimator for the asymptotic variance of 
,

ˆ .r hhY  A key assumption for this to hold is 

that the response indicators kr  are mutually independent. 

 

2.1.3 Calibration 
 

Lastly, the weights adjusted for non-response are calibrated on auxiliary totals known on the 

population. For simplicity, we describe only the Generalized REGression estimator (GREG, Särndal et al., 

1992, Chapter 6). Let kx  denote the vector of calibration variables at the household level, and hhX  the 

total on the population .hhU  For the sample , ,r hhS  this leads to the linear calibrated weights  

 ( )= 1 ,k rk k hhw d x + Τ   

with 
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and where 
,

ˆ
r hhX  is the estimator of ,hhX  obtained by plugging kx  into (2.7). The calibrated estimator is  

 
,

cal,
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r hh

hh k k

k S

Y w y


  (2.10) 

The sampling and estimation steps are summarized in Figure 2.1.  

 
Figure 2.1  Sampling and estimation steps for a household sample. 

 

 

 

 

 

 

 

 

 

 
Using linearization for estimators reweighted for unit-non-response and calibrated (Kim and Kim, 

2007, Section 5), our benchmark variance estimator is  
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where we let  
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denote the estimated regression residuals of the variable of interest on the calibration variables. This is a 

conservative estimator for the asymptotic variance of cal,
ˆ .hhY  

 
2.1.4 Computation of household weights on an example 
 

To fix ideas, we describe a small example. We consider a population hhU  of =100hhN  households. 

We suppose without loss of generality that a single stratum is used, and that a sample of = 10hhn  

households is selected.  

The sample is  = , , , .S A B J  The inclusion probabilities of the selected units are (say)  

 
1

= = = =
4

A B C D       and   
1

= = = = = = ,
16

E F G H I J       (2.13) 

resulting in the design weights  

 = = = = 4A B C Dd d d d    and   = = = = = = 16.E F G H I Jd d d d d d  (2.14) 

Among the 10 selected households, 7 only are surveyed due to non-response. It is accounted for by 

using the method of RHGs, with two groups: the units ,A  ,B  F  and J  in the first one, and the units ,C  

,D  ,E  ,G  ,H  and I  in the second one. The units ,B  C  and G  are non-respondents. Inside each RHG, 

we compute estimated response probabilities, weighted by the design weights ( )= .k kd  This leads to  
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(2.15)

 

The weights accounting for non-response are obtained for the respondents by dividing the sampling 

weights by the estimated response probabilities. This leads to the weights  

 
40 72 288 160

= = = = = = = .
9 13 13 9

rA rD rE rH rI rF rJd d d d d d d  (2.16) 

Finally, the weights are calibrated to match exactly the population size =100hhN  and an auxiliary total 

1, = 60.hhX  Note that, using the sample of respondents, we obtain 
,

ˆ =112r hhN  and 
1 ,

ˆ =r hhX 66.53. The 

calibrated weights are  

 
= 4.01, = 4.87, = = 19.98,

= 15.63, = 19.49, = 16.03.

A D E H

F I J

w w w w

w w w
 

(2.17)
 

The sampling and estimation steps are summarized in Figure 2.2. 
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Figure 2.2  Estimation steps for the weighting of households. 

 

 

 

 

 

 

 

 

 

 

 

 
2.2 Case of a sample of households and individuals 
 

We are interested in the population indU  of individuals associated to the population hhU  of households 

considered in Section 2.1. If we let ly  denote the value taken by some variable of interest for the 

individual ,l  the parameter of interest is  

 
ind

ind = .l

l U

Y y


  (2.18) 

 

2.2.1 Sampling design 
 

Within any sampled household ,hhk S  a subsample ind,kS  of individuals is selected, and the sample 

indS  is the union of these samples. We let |l k  denote the conditional inclusion probability of the 

individual l  inside the household .k  The conditional design weight of l  is  

 
|

|

1
=l k

l k

d


  for any  ,l k  (2.19) 

and the non-conditional design weight is  

 |=l l k kd d d   for any  .l k  (2.20) 

In case of full response, the estimator of indY  is  
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k l k l l l
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  
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The benchmark variance estimator for indŶ  is obtained from (2.4), by replacing ky  with  
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|
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l S
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2.2.2 Treatment of non-response 
 

The weights of individuals accounting for the non-response of households are  

 ( ) | ( )=rl rk l l k ld d d   with  ( )k l   the household containing  ,l  (2.23) 

with rkd  the weight of household k  corrected for unit non-response (see equation (2.6)), and |l kd  the 

conditional sampling weight of individual l  inside the household k  (see equation (2.19)). We let  

 
,

, ind ind,=
r hh

r k

k S

S S


 (2.24) 

denote the set of all sampled individuals inside the responding households.  

The individuals in , indrS  are themselves prone to non-response, though it is usually expected to be to a 

smaller extent. This leads to the observation of a sub-sample of respondents , indrrS  only. We let lr  denote 

the response indicator and lp  denote the response probability of the individual l . We suppose that the 

individuals respond independently of one another. Also, we suppose that this non-response is handled 

through the method of RHGs: the sample , indrS  may be partitioned into D  RHGs denoted as 

1,ind ,ind, ,r rDS S  such that the response probability lp  is constant inside a RHG.  

For =1, , ,d D  we let dp  denote the common response probability inside the RHG ,ind .rdS  It is 

estimated by  
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 (2.25) 

with l  some weight attached to the individual .l  The choice = 1l  leads to estimating dp  by the 

unweighted response rate inside the RHG. The choice =l ld  leads to estimating dp  by the response rate 

inside the RHG, weighted by the individual sampling weights. The choice =l rld  leads to estimating dp  

by the response rate inside the RHG, weighted by the individual sampling weights corrected of household 

unit non-response. We compare these different choices in the simulation study performed in Section 4.  

Accounting for the estimated response probabilities leads to the individual weights corrected for 

household/individual non-response  

 
( )

=
ˆ

rl
rrl

d l

d
d

p
  with  ( )d l   the household containing  .l  (2.26) 

The estimator of indY  adjusted for household/individual non-response is  

 
,ind

,ind
ˆ = .

rr

rr rrl l

l S

Y d y


  (2.27) 

 
2.2.3 Calibration 
 

We let lz  denote the vector of calibration variables at the individual level, and indZ  denote the total on 

the population ind .U  For the sample ,ind ,rrS  this leads to the linear calibrated weights  
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and where 
,ind

ˆ
rrZ  is the estimator of ind ,Z  obtained by plugging lz  into (2.27). The calibrated estimator is  
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l S

Y w y


  (2.29) 

The sampling and estimation steps are summarized in Figure 2.3.  

 

Figure 2.3  Sampling and estimation steps for a household sample with sub-sampling of individuals. 

 

 

 

 

 

 

 

 

 

 
2.2.4 Computation of individual weights on an example 
 

We continue the example initiated in Section 2.1.4. Recall that the sample of responding households is 

 , = , , , , , , .r hhS A D E F H I J  The set of all individuals inside the responding households is as follows 

(say):  

 
1 2 3 4 5 6 7 8 9 10 11 12 13( , , ) ( ) ( , ) ( , , ) ( , ) ( ) ( ).

D IA E F H J

i i i i i i i i i i i i i  (2.30) 

We suppose that the sampling design consists in selecting one individual exactly inside each household. 

The set , indrS  of all sampled individuals inside the responding households is  

  ,ind 1 4 6 8 11 12 13= , , , , , , .rS i i i i i i i  (2.31) 

From equations (2.23) and (2.16), the individual weights corrected for household non-response are 

therefore  

 
1 4 6 8 11 12 13

40 72 576 160 576 288 160
= , = , = , = , = , = , = .

3 13 13 3 13 13 9
r r r r r r rd d d d d d d  (2.32) 

       Sampling of 

       individuals + 

       Individual 

       non-response                          Household                    Sampling of 

                                                    non-response                   households 

 

            Step 3b                                 Step 2                              Step 1 

 

Calibration of                           Calibration of 

individual weights                    household weights 

 

     Step 4b                                  Step 3 
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Among these 7 selected individuals, 4 only are surveyed due to non-response, accounted for by using 

the method of Response Homogeneity Groups (RHGs). We suppose that there are two RHGs: the units 1 ,i  

6 ,i  8i  and 11i  in the first one, and the units 4 ,i  12i  and 13i  in the second one. The units 4 ,i  11i  and 13i  are 

non-respondents. Inside each RHG, we compute unweighted estimated response probabilities ( )=1 .l  

This leads to  

 

1,ind

1,ind

2,ind

2,ind

1

2

3
ˆ = = ,

1 4

1
ˆ = = .

1 3

r

r

r

r

ll S

l S

ll S

l S

r
p

r
p

















 

(2.33)

 

The weights accounting for household/individual non-response are obtained for the respondents by 

dividing the weights in (2.32) by the estimated response probabilities. This leads to the weights  

 
1 6 8 12

160 2,304 640 864
= , = , = , = .

9 39 9 13
rr rr rr rrd d d d  (2.34) 

Finally, the weights are calibrated to match the population size ind = 200N  and an auxiliary total 

1,ind = 450.Z  Note that, using the sample of respondents, we obtain 
,ind

ˆ =rN 214.4 and 
1 ,ind

ˆ =rZ 451.3. The 

calibrated weights are  

 1 6 8 13= 19.61, = 53.93, = 78.43, = 48.04.w w w w  (2.35) 

The sampling and estimation steps are summarized in Figure 2.4. 

 

Figure 2.4  Estimation steps for the weighting of individuals. 

 

 

 

 

 

 

 

 

 

 

 
3. Bootstrap variance estimation 
 

We begin in Section 3.1 with the description of the basic step of the bootstrap method when a sample 

of households only is selected. An illustration is given in Section 3.2 on the example initiated in 
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Section 2.1.4. The bootstrap method when individuals are sampled inside the households is described in 

Section 3.3, and an illustration is given in Section 3.4. In Section 3.5, we explain how the basic step of the 

proposed bootstrap method is used to perform variance estimation and to produce confidence intervals. 

 
3.1 Basic step of the bootstrap for households 
 

Using the with-replacement bootstrap, we first draw inside the original sample h

hhS  selected in the 

stratum h

hhU  a with-replacement resample 
*

h

hhS  of 1hn −  households, with equal probabilities. Note that 

the resampling is performed on the sampling unit (a household) rather than on the final unit of observation 

(an individual), which is key to correctly capture the sampling variance. In particular, this bootstrap 

method enables to capture the variance due to the second-stage sampling (selection of individuals) without 

resampling the final units in the bootstrap process. For any ,h

hhk S  we define the reweighting adjustment 

factor  

 = ,
1

h
k k

h

n
G m

n


−
 (3.1) 

with km  the number of times the household k  is selected in the resample 
*,h

hhS  a.k.a. the multiplicity. 

Note that some unit h

hhk S  may not appear in the resample, in which case this unit has multiplicity zero; 

see Section 3.2 for an example. The reweighting adjustment factors kG  are used to obtain the bootstrap 

weights accounting for the sampling design, for unit non-response and for the calibration, as described in 

Algorithm 1. The steps refer to Figure 2.1. The resampling presented in Algorithm 1 is then repeated B  

times independently for variance estimation and/or to produce a confidence interval, see Algorithm 3 in 

Section 3.5.  

 

Algorithm 1. Computation of bootstrap household weights accounting for non-response and calibration 
 

• Step 1: we account for the sampling of households by computing, for any ,hhk S  the bootstrap 

sampling weight  

 * = .k k kd G d  (3.2) 

The bootstrap version of the full-response estimator given in (2.3) is  

 * *
ˆ = .

hh

hh k k

k S

Y d y


  (3.3) 

 

• Step 2: we account for household unit non-response by computing the bootstrap estimated 

probabilities inside the RHGs  

 
,

,

*
ˆ = ,

c hh

c hh

k k kk S

c

k kk S

G r
p

G












 (3.4) 
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and we compute the bootstrap weights corrected for non-response  

 *
*

( )*

= ,
ˆ

k
rk

c k

d
d

p
 (3.5) 

with ( )c k  the RHG containing the household .k  The bootstrap version of the estimator 

corrected for unit non-response given in (2.7) is  

 
,

, * *
ˆ = .

r hh

r hh rk k

k S

Y d y


  (3.6) 

 

• Step 3: we account for the calibration by calibrating the weights *rkd  on the totals .hhX  This 

leads to the bootstrap calibrated weights  

 ( )* * *= 1 ,k rk k hhw d x + Τ  (3.7) 

with 

 ( )
,

1

* * , *
ˆ=

r hh

hh rk k k hh r hh

k S

d x x X X

−



 
− 

 
 
 Τ   

and 

 
,

, * *
ˆ = .

r hh

r hh rk k

k S

X d x


   

The bootstrap version of the calibrated estimator given in (2.10) is  

 
,

cal, * *
ˆ = .

r hh

hh k k

k S

Y w y


  (3.8) 

 
The treatment of unit non-response in the bootstrap process deserves some explanations. Firstly, our 

approach is conditional on the response indicators .kr  Contrarily to the sample membership indicators 

which are bootstrapped at Step 1 of Algorithm 1, the response indicators remain fixed in the bootstrap 

process. This is due to the fact that we aim at reproducing a variance estimator which considers the sample 

hhS  as selected with replacement, and that in such case bootstrapping the ’skr  is not needed. Secondly, 

accounting for unit non-response at Step 2 of Algorithm 1 is performed conditionally on the RHGs: we do 

not bootstrap the process leading to the building of the RHGs (e.g., Girard, 2009; Haziza and Beaumont, 

2017). Finally, bootstrapping the response probabilities as described in equation (3.4) accounts for the 

estimation of the response probabilities .cp  In other words, we use within each resample the same RHGs 

identified on the basis of the sample, but the non-response adjustments inside the RHGs are based on a 

resample’s content. This is illustrated in the example developed in Section 3.2. If we do not bootstrap the 

response probabilities and directly plug in equation (3.5) the original estimated probabilities ˆ ,cp  then the 
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response probabilities are treated as if they were known, which usually results in an overestimation of the 

variance (Beaumont, 2005; Kim and Kim, 2007). 

Now, we discuss bootstrap variance estimation for calibrated estimators, as considered in Step 3 of 

Algorithm 1 where the calibration step is performed on the true population total .hhX  Following the 

bootstrap principle which states that the sample hhS  is to the bootstrap sample *hhS  what the population 

hhU  is to the sample ,hhS  it could seem more intuitive to rather calibrate on the estimated totals ˆ
hhX  

obtained by plugging kx  into equation (2.3). Both approaches seem valid for bootstrap variance 

estimation for the calibrated estimator 
cal,
ˆ ,hhY  but the calibration variables kx  may be prone to non-

response on the sample ,hhS  making the estimator ˆ
hhX  not possible to compute, while the total hhX  is 

known from an external source. 

 
3.2 An example of computation of bootstrap household weights 
 

We continue with the example initiated in Section 2.1.4. The bootstrap is performed by first selecting a 

resample of 1 = 9hhn −  households, with replacement and with equal probabilities, among the original 

sampled households. In this example, we suppose that the household A  is selected three times, that the 

household G  is selected twice, and that the households ,D  ,E  H  and I  are selected once. Making use 

of equation (3.2), this leads to the bootstrap sampling weights  

 
* * * * * *

40 40 160 320
= = = = = = .

3 9 9 9
A D E H I Gd d d d d d  (3.9) 

The bootstrap sampling weights are corrected for non-response in the same way than in the original 

correction of non-response: using the same RHGs, and weighted estimated probabilities. In this case, the 

first RHG contains only the unit A  which is a respondent, so that 1*
ˆ =1.p  The second RHG contains ,D  

,E  G  (non-respondent), H  and .I  This leads to  

 * * * *
2*

* * * * *

13
ˆ = = ,

21

D E H I

D E G H I

d d d d
p

d d d d d

+ + +

+ + + +
 (3.10) 

and to the bootstrap weights corrected for non-response  

 
* * * * *

40 280 1,120
= = = = = .

3 39 39
rA rD rE rH rId d d d d  (3.11) 

Finally, the weights are calibrated to match the population size =100hhN  and the auxiliary total 

1, = 60.hhX  This leads to the bootstrap calibrated weights  

 * * * * *= 11.30 = 8.00 = = 24.35 = 32.00.A D E H Iw w w w w  (3.12) 

The computation of the bootstrap weights is summarized in Figure 3.1. 
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Figure 3.1  Computation of bootstrap household weights. 

 

 

 

 

 

 

 

 

 

 

 

 
3.3 Computation of bootstrap weights for individuals 
 

The computation of the bootstrap weights accounting for the sampling design, for household/individual 

non-response and for calibration is described in Algorithm 2. The steps refer to Figure 2.3. In addition to 

the bootstrap steps in Algorithm 1, note that Algorithm 2 involves bootstrapping the computation of 

response individual probabilities only. Note that the sub-sampling of individuals inside households does 

not need to be bootstrapped, as discussed in Section 3.1. 

 
Algorithm 2. Computation of bootstrap individual weights accounting for non-response of households, 

for non-response of individuals and for calibration 
 

• Perform Steps 1 and 2 of Algorithm 1. The bootstrap weights of households corrected for non-

response are * ,rkd  as given in equation (3.5).  

• Step 3b: we first account for the sampling of individuals by computing the bootstrap individual 

weights corrected for household unit non-response  

 * ( )* | ( )=rl rk l l k ld d d   with ( )k l  the household containing .l  (3.13) 

We then account for individual unit non-response. We compute the bootstrap estimated 

probabilities inside the RHGs  

 
,ind

,ind

( )

*

( )

ˆ = .
rd

rd

k l l ll S

d

k l ll S

G r
p

G












 (3.14) 

We compute the bootstrap weights of individuals corrected for household/individual non-

response, namely  
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 *
*

( )*

= ,
ˆ

rl
rrl

d l

d
d

p
 (3.15) 

with ( )d l  the RHG containing the individual .l  The bootstrap version of the estimator 

corrected for unit non-response given in (2.27) is  

 
,ind

,ind* *
ˆ = .

rr

rr rrl l

l S

Y d y


  (3.16) 

 

• Step 4b: we account for the calibration by calibrating the weights *rrld  on the totals ind .Z  This 

leads to the bootstrap calibrated weights  

 ( )* * ind*= 1 ,l rrl lw d z + Τ  (3.17) 

with 

 ( )
,ind

1

ind* * ind ,ind*
ˆ=

rr

rrl l l rr

k S

d z z Z Z

−



 
− 

 
 
 Τ   

and 

 
,ind

,ind* *
ˆ = .

rr

rr rrl l

l S

Z d z


   

The bootstrap version of the calibrated estimator given in (2.29) is  

 
,ind

cal,ind* *
ˆ = .

rr

l l

l S

Y w y


  (3.18) 

 
3.4 An example of computation of bootstrap individual weights 
 

We continue with the example in Section 3.2. The bootstrap sample of households is constituted of A  

(three times), G  (two times), and ,D  ,E  H  and I  (one time). Due to household non-response, we 

observe ,A  ,D  ,E  H  and I  only. From (2.30), this results in the bootstrap sample of individuals  

  ,ind* 1 4 6 11 12= , , , , .rS i i i i i  (3.19) 

The bootstrap weights of households corrected for unit non-response are given in equation (3.11). From 

equation (3.13), the bootstrap weights of individuals adjusted for household non-response are  

 
1* 4* 6* 11* 12*

280 2,240 2,240 1,120
= 40 = = = = .

39 39 39 39
r r r r rd d d d d  (3.20) 

These bootstrap weights are corrected for individual non-response in the same way than in the original 

correction of individual non-response: using the same RHGs and unweighted estimated probabilities. 

However, we need to account in these probabilities for the multiplicity km  and the reweighting adjustment 

factor ,kG  see equation (3.1). In our case, the first RHG contains the individuals 1 ,i  6i  and 11,i  and 11i  is a 
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non-respondent. The individual 1i  belongs to the household ,A  which has been selected three times 

( )= 3Am  in the bootstrap sample. The individual 6i  belongs to the household ,E  and the individual 11i  

belongs to the household ,H  which have both been selected one time in the bootstrap sample 

( )= =1 .E Hm m  The computation is similar for the second RHG, and leads to  

 

1*

2*

4
ˆ = = ,

5

1
ˆ = = ,

2

A E

A E H

I

D I

G G
p

G G G

G
p

G G

+

+ +

+

 

(3.21)

 

and to the bootstrap individuals weights corrected for household/individual non-response  

 
1* 6* 12*

5,600 2,240
= 50 = = .

39 39
rr r rd d d  (3.22) 

Finally, the weights are calibrated to match the population size ind = 200N  and the auxiliary total 

1,ind = 450.Z  This leads to the bootstrap calibrated weights  

 1* 6* 12*= 66.69 = 116.62 = 16.69.w w w  (3.23) 

The computation of bootstrap individual weights is summarized in Figure 3.2. 

 

Figure 3.2  Computation of bootstrap individual weights. 

 

 

 

 

 

 

 

 

 

 

 
3.5 Bootstrap variance estimation and confidence intervals 
 

In this section, we are interested in parameters which may be written as smooth functions of totals. We 

explain how the basic step of the proposed bootstrap method is used to perform variance estimation and to 

produce confidence intervals. For brevity, we focus on parameters defined over the population of 

households .hhU  The treatment for parameters of interest in the population of individuals indU  is similar.  
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Suppose that ky  is a q -vector of interest variables, and that we are interested in some parameter 

= ( )hh hhf Y  with : qf →R R  a known, smooth function. In case of full response, the substitution 

estimator of hh  is  

 ˆ ˆ= ( ),hh hhf Y  (3.24) 

see for example Deville (1999). In case of unit non-response at the household level, the estimator of hh  

corrected for unit non-response is  

 
, ,

ˆ ˆ= ( ),r hh r hhf Y  (3.25) 

and the calibrated estimator of hh  is  

 
cal, cal,

ˆ ˆ= ( ).hh hhf Y  (3.26) 

In each case, a bootstrap variance estimator is obtained by applying a large number of times (say )B  

the basic step of the bootstrap method in Algorithm 1, and then by computing the dispersion of the 

bootstrap estimators. This is summarized in Algorithm 3. 

 
Algorithm 3. Bootstrap variance estimation for an estimation over the population of households 
 

1. Repeat B  times the bootstrap procedure described in Algorithm 1. Let us denote *
ˆ ,b

hhY  
, *

ˆb

r hhY  and 

cal, *
ˆb

hhY  for the bootstrap estimators of totals computed on the 
thb  sample. Also, let us denote *

ˆ ,b

hh  

, *
ˆb

r hh  and 
cal, *

ˆb

hh  for the associated bootstrap estimators of .hh  

2. The Bootstrap variance estimator for ˆ
hh  is  

 

2

boot * *

=1 =1

1 1ˆ ˆ ˆˆ ( ) = ,
1

B B
b b

hh hh hh

b b

V
B B

  




 
− 

−  
   (3.27) 

and similarly for 
,

ˆ
r hh  and 

cal,
ˆ .hh  

 
The bootstrap variance estimator may be used to compute a normality-based confidence interval with 

targeted level 1 2 .−  For example, the confidence interval when using the full-response estimator ˆ
hh  is  

  
0.5

nor 1 boot
ˆ ˆˆIC ( ) = ( ) ,hh hh hhu V  −

 
  

 (3.28) 

with 1u −  the quantile of order 1 −  of the standard normal distribution. This confidence interval is 

expected to be conservative, since the proposed bootstrap method is conservative too.  

We also consider the percentile and the reverse percentile (a.k.a. basic) bootstrap confidence intervals. 

They can be directly computed from the bootstrap weights and are therefore attractive from a data user’s 
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perspective, unlike more computationally intensive methods like the t -bootstrap (e.g. Davison and 

Hinkley, 1997; Shao and Tu, 1995). For ˆ ,hh  the percentile confidence interval is obtained by using the 

distribution of *
ˆ

hh  as an approximation of the distribution of ˆ .hh  It makes use of the ordered bootstrap 

estimates (1) ( )

* *
ˆ ˆ, , B

hh hh   to form the confidence interval  

 ( ) ( )

per * *
ˆ ˆIC ( ) = , ,L U

hh hh hh   
 

 (3.29) 

with targeted level 1 2 ,−  where =L B  and = (1 ) .U B−  The reverse percentile confidence interval is 

obtained by viewing the distribution of *
ˆ ˆ( )hh hh −  as an approximation of the distribution of ˆ( ).hh hh −  

It leads to the confidence interval  

 ( ) ( )

rev * *
ˆ ˆ ˆ ˆIC ( ) = 2 , 2 .U L

hh hh hh hh hh     − −
 

 (3.30) 

The properties of the bootstrap variance estimator and of the three confidence intervals are evaluated in 

the simulation study performed in Section 4 for the estimation of a total.  

Choosing the number B  of resamples is an important practical problem. Girard (2009) suggests 

considering several possible resample sizes (e.g., by increasing B  with an increment of 100), and plotting 

the bootstrap variance estimators in function of .B  The value for which this variance estimator starts to 

stabilize is then retained. This is a simple method, but which may require some compromise solution if 

different variables of interest lead to different stabilizing values. Beaumont and Patak (2012) suggest 

choosing B  such that with a high probability, the length of the bootstrap confidence interval given in 

(3.28) is close to the length of the confidence interval obtained with an analytical variance estimator. 

Under the assumption that conditionally on the original sample, the normalized bootstrap estimator of the 

total is normally distributed, they establish that the value B  may be determined from the distribution of a 

chi-square variable (Beaumont and Patak, 2012, equation 10). Interestingly, the value obtained does not 

depend on the variable of interest. Based on these results, they suggest using a value B  no smaller than 

750, and a larger value if the normality assumption of the bootstrap estimator may fail. We used =B

1,000 in the simulation study presented in the following section. For surveys that are to serve multiple 

analytical needs ‒ ranging from simple to complex population parameters and various domain sizes ‒ 

selecting no fewer than 1,000 replicates is the norm given the computing resources available nowadays. 

 
4. Simulation study 
 

In order to evaluate the proposed bootstrap method, we conducted a simulation study on an artificial 

population. We first generate a population hhU  containing =hhN 100,000 households, with four auxiliary 

variables 1 4, ,x x  generated from a gamma distribution with shape and scale parameters 2 and 5. Inside 

the population, we generate three variables of interest 1 3, ,y y  according to the following models  

 

1 1 2

2 1 3

3 3 4

= 10 ,

= 10 ,

= 10 ,

k k k k

k k k k

k k k k

y x x

y x x

y x x







 

 

 

+ + +

+ + +

+ + +

 (4.1) 
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where k  is generated according to a standard normal distribution. We set = 10,  which results in a 

coefficient of determination of approximately 0.50 for each model. The auxiliary variables 1 21, ,k kx x  are 

used as calibration variables at the household level in this simulation study. The three variables of interest 

therefore correspond to cases when the calibration model is well specified 1( ),y  partly well specified 

2( ),y  or poorly specified 3( ).y  The population hhU  is randomly split into five response homogeneity 

groups (RHG) of equal sizes. The response probability cp  inside the RHG c  is equal to 0.5 for the first 

group, 0.6 for the second group, ..., and 0.9 for the fifth group, resulting in an average response rate of 

70% for the households.  

Inside each household ,k  we generate kN  individuals, where 1kN −  is generated according to a 

Poisson distribution with parameter 1, which results in an average number of 2 individuals per household. 

Inside the corresponding population ind ,U  we generate four auxiliary variables 1 4, ,z z  with shape and 

scale parameters 2 and 0.5. Also, we generate three variables of interest 4 5 6, ,y y y  according to the 

following models  

 

4 1 2

5 1 3

6 3 4

= 5 0.5 0.5 ,

= 5 0.5 0.5 ,

= 5 0.5 0.5 ,

l l l l

l l l l

l l l l

y z z

y z z

y z z







 

 

 

+ + +

+ + +

+ + +

 (4.2) 

where l  is generated according to a standard normal distribution. We set = 0.4, which results in a 

coefficient of determination of approximately 0.6 for each model. The auxiliary variables 1 21, ,l lz z  are 

used as calibration variables at the individual level in this simulation study. The three variables of interest 

therefore correspond to a case when the calibration model is well specified 4( ),y  partly well specified 

5( ),y  or poorly specified 6( ).y  

The population indU  is split into five RHGs as follows. The individuals which are alone in their 

household form a separate RHG, with a response probability of 1. The rationale behind this choice is that 

in such case, the individual is somewhat equivalent to his/her household, and that the non-response is 

modeled at the household level. Among the rest of the individuals living in a household k  with = 2kN  

individuals or more, the variables 1z  and 2z  are used to form four RHGs of approximately equal size. The 

response probability dp  ranges from 0.80 to 0.95 in these four remaining RHGs. This results in an overall 

response rate of approximately 90% for the individuals.  

Inside the population ,hhU  we select a sample hhS  of =hhn 1,000 households by simple random 

sampling without replacement. Note that the sampling rate is small (1%), so that simple random sampling 

with/without replacement are not much different, and the bias of the bootstrap variance estimators is 

expected to be small under this set-up. The non-response is generated according to the RHG household 

model, which results in a sample ,r hhS  of responding households. The estimated response probabilities ˆ
cp  

are obtained from equation (2.5), with equal weight =1.k  Inside each , ,r hhk S  one Kish individual is 

randomly selected with equal probabilities, which results in the sample of individuals ,ind .rS  Inside ,ind ,rS  

the non-response is generated according to the RHG individual model, resulting in a sample , indrrS  of 

responding individuals. The estimated response probabilities ˆ
dp  are obtained from equation (2.25), in 
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three possible ways: equal weights = 1,l  sampling weights = ,l ld  or individuals weights corrected for 

the household non-response = .l rld  

The sampling and non-response steps are repeated =R 1,000 times. On each sample ,hhS  we compute 

the full-response estimator given in (2.3), and on each sample , ,r hhS  we compute the estimator adjusted 

for non-response 
,

ˆ
r hhY  given in (2.7) and the estimator 

cal,
ˆ

hhY  given in (2.10) with the set of calibration 

variables 
1 2= (1, , ) .k k kx x x Τ  On each sample ,ind ,rrS  we compute the estimator adjusted for non-response 

,ind
ˆ
rrY  given in (2.27) and the estimator 

cal,indŶ  given in (2.29) with the set of calibration variables 

1 2= (1, , ) .l l lz z z Τ  For these five estimators, we compute the normalized root mean square error  

 
ˆMSE( )ˆNRMSE( ) = 100 ,

Y
Y

Y
  (4.3) 

with ˆMSE( )Y  a simulation-based approximation of the mean square error of ˆ,Y  obtained from an 

independent run of 10,000 simulations.  

For these five estimators, we also compute the bootstrap variance estimators obtained by applying 

Algorithm 3 with =B 1,000. So as to measure the bias of a variance estimator ˆ( ),v Y  we use the Monte 

Carlo Percent Relative Bias  

  
1

=1

ˆ ˆ( ) MSE( )
ˆRB ( ) = 100 ,

ˆMSE( )

R

c cc
R v Y Y

v Y
Y

− −



 (4.4) 

where ˆ( )c cv Y  stands for the variance estimator in the thc  sample. As a measure of stability of ˆ( ),v Y  we 

use the Relative Stability  

  
 

1/2
2

1

=1

ˆ ˆ( ) MSE( )
ˆRS ( ) = 100 .

ˆMSE( )

R

c cc
R v Y Y

v Y
Y

− −
  




 (4.5) 

Also, we compute the coverage rates of the confidence interval associated to the percentile Bootstrap, to 

the basic bootstrap and to the normality-based confidence interval, with nominal one-tailed error rate of 

2.5% in each tail.  

The results are presented in Table 4.1 for the estimation on the population of households. The 

normalized root mean square error of the calibrated estimator 
cal,
ˆ

hhY  is smaller when the calibration 

variables are explanatory for the variable of interest, as expected. We observe a slight positive bias of the 

bootstrap variance estimator for the full-response estimator ˆ ,hhY  but almost no bias for the reweighted 

estimators 
,

ˆ
r hhY  and 

cal,
ˆ .hhY  The bootstrap variance estimator is slightly less stable with the reweighted 

estimators, which is likely due to the additional variability associated to the correction of unit 

non-response. Concerning the confidence intervals, we note that the coverage rates are well respected in 

all cases and for the three studied methods.  

We now turn to the result on the population of individuals, which are presented in Table 4.2. We 

observe that the relative bias of the bootstrap variance estimator is very small in all cases. The choice of 

the weights k  used in the estimation of the response probabilities seem to have no effect on the 
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normalized root mean square error of the estimators, but the use of the weights =l rld  adjusted for 

household non-response yields slightly more stable variance estimators for 
,ind

ˆ .rrY  The coverage rates are 

approximately respected in all cases. 

 

Table 4.1 

Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap 

variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic 

bootstrap for 3 variables on the population of households  
 

     Percentile bootstrap Basic bootstrap Normality-based 

  NRMSE RB RS L U L+U L U L+U L U L+U 

ˆ
hhY  1y  1.47 2.48 7.2 2.2 3.1 5.3 2.1 3.3 5.4 2.2 3.2 5.4 

2y  1.48 0.73 6.6 2.6 3.3 5.9 2.7 3.4 6.1 2.6 3.2 5.8 

3y  1.48 1.11 6.6 2.6 2.7 5.3 2.7 3.0 5.7 2.4 2.7 5.1 

,
ˆ
r hhY

 1y  1.82 0.42 8.7 2.4 2.4 4.8 2.3 2.7 5.0 2.3 2.6 4.9 

2y  1.83 -0.76 8.2 2.7 2.8 5.5 2.5 3.0 5.5 2.2 2.7 4.9 

3y  1.82 0.72 8.4 2.8 2.1 4.9 2.8 2.2 5.0 2.8 1.9 4.7 

cal,
ˆ

hhY
 1y  1.29 1.27 8.3 2.4 2.7 5.1 2.8 2.8 5.6 2.8 2.7 5.5 

2y  1.58 -0.55 8.2 2.5 3.5 6.0 2.8 3.9 6.7 2.8 3.6 6.4 

3y  1.82 0.49 8.4 2.9 1.8 4.7 3.0 2.2 5.2 2.9 2.0 4.9 

 
Table 4.2 

Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap 

variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic 

bootstrap for 3 variables on the population of individuals  
 

  Percentile bootstrap Basic bootstrap Normality-based 

 NRMSE RB RS L U L+U L U L+U L U L+U 

 Equal weights = 1l  

, ind
ˆ
rrY  4y  2.01 0.31 9.6 2.0 3.2 5.2 1.9 3.3 5.2 1.9 3.0 4.9 

5y  2.02 -0.17 9.6 2.4 3.4 5.8 2.2 3.7 5.9 2.3 3.5 5.8 

6y  2.02 -0.24 9.6 2.2 3.3 5.5 2.0 3.7 5.7 2.0 3.2 5.2 

cal, indŶ  4y  0.29 1.72 10.8 2.1 2.4 4.5 2.1 2.3 4.4 2.1 2.2 4.3 

5y  0.39 1.04 11.3 2.3 2.5 4.8 2.3 2.5 4.8 2.2 2.4 4.6 

6y  0.47 1.90 11.2 2.8 2.1 4.9 2.2 2.5 4.7 2.3 2.0 4.3 

 Sampling weights =l ld  

, ind
ˆ
rrY  4y  2.00 -0.08 9.5 1.8 3.8 5.6 1.7 3.8 5.5 1.7 3.4 5.1 

5y  2.00 0.14 9.4 1.9 3.3 5.2 2.2 3.5 5.7 1.8 3.5 5.3 

6y  1.99 0.61 9.3 1.7 3.2 4.9 1.7 3.4 5.1 1.7 3.2 4.9 

cal, indŶ  4y  0.29 -0.57 10.3 2.9 2.4 5.3 3.3 2.2 5.5 3.0 2.3 5.3 

5y  0.39 0.40 11.6 2.4 3.2 5.6 2.7 3.3 6.0 2.3 3.2 5.5 

6y  0.47 -0.05 11.2 2.3 2.2 4.5 1.8 2.3 4.1 1.8 2.3 4.1 

 Weights adjusted for household non-response =l rld  

, ind
ˆ
rrY  4y  1.99 -0.71 8.9 2.5 2.3 4.8 2.6 2.7 5.3 2.5 2.4 4.9 

5y  1.99 -0.82 8.9 3.1 2.2 5.3 2.9 2.5 5.4 2.5 2.2 4.7 

6y  1.99 -0.26 9.1 3.1 2.3 5.4 3.0 3.0 6.0 2.9 2.5 5.4 

cal, indŶ  4y  0.29 1.70 10.6 2.7 3.4 6.1 2.6 3.3 5.9 2.5 3.3 5.8 

5y  0.39 1.38 11.3 2.1 2.7 4.8 2.2 3.0 5.2 1.7 3.0 4.7 

6y  0.47 0.61 10.9 2.5 2.8 5.3 2.3 3.0 5.3 2.3 2.8 5.1 
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5. Application to the French panel for urban policy 
 

In this section, we present an illustration of the proposed methodology on a French panel for urban 

policy. The sampling design and the estimation steps for the sample of households are briefly described in 

Section 5.1, and three possible bootstrap confidence intervals are computed. The SAS macro developed to 

implement the proposed methodology for one-stage sampling is given in Appendix B, along with a small 

example. The additional sampling and estimation steps for the sample of individuals are described in 

Section 5.2, and three possible bootstrap confidence intervals are computed. The SAS macro developed to 

implement the proposed methodology for two-stage sampling is given in Appendix C, along with a small 

example. 

 

5.1 Sample of households 
 

The Panel for Urban Policy (PUP) is a survey in four waves, conducted between 2011 and 2014 by the 

French General Secretariat of the Inter-ministerial Committee for Cities (SGCIV). The survey aims at 

collecting information about security, employment, precariousness, schooling and health, for people living 

in the Sensitive Urban Zones (ZUS). We are only interested in the 2011 wave of the survey. A sample of 

households is selected, and all the individuals living in the selected households are theoretically surveyed.  

The sample of households is obtained by two-stage sampling, see for example Chauvet (2015); 

Chauvet and Vallée (2018). Firstly, the population of districts is partitioned into 4 strata, and a global 

sample of = 40In  districts is selected by means of probability proportional to size sampling inside strata. 

A sample of households is then selected at the second-stage inside each selected district by means of 

simple random sampling, in such a way that the final inclusion probabilities of households are 

approximately equal inside strata (self-weighted sampling design). For the purpose of illustration, the two-

stage selection of the households is not considered here, and the sample of households is viewed as 

directly selected by means of stratified simple random sampling.  

The sample contains 2,971 households, but due to unit non-response only 1,256 households are 

observed. Non-response is accounted for by using Response Homogeneity Groups, defined with respect to 

five auxiliary variables: housing construction period, type of dwelling (apartment/house), number of 

rooms, low-income housing (yes/no), region. By using a logistic regression and the score method (e.g. 

Haziza and Beaumont, 2007), we obtain 8 response homogeneity groups. The five auxiliary variables used 

in the definition of the RHGs are also used for calibration.  

We are interested in four categorical variables related to security, town planning and residential 

mobility. The variable 1y  gives the perceived reputation of the district (good, fair, poor, no opinion). The 

variable 2y  indicates if a member of the household has witnessed trafficking (never, rarely, sometimes, no 

opinion). The variable 3y  indicates if some significant roadworks have been done in the neighborhood in 

the twelve last months (yes, no, no opinion). The variable 4y  indicates if the household intends to leave 

the district during the next twelve months (certainly/probably, certainly not, probably not, no opinion). For 

each category g  of each variable ,y  we are interested in the proportion  
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with hhN  the total number of households. The estimator of g  adjusted for non-response is  
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see equation (2.7). The calibrated estimator of g  is  
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


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 (5.3) 

see equation (2.10).  

For each proportion, we give the normality-based confidence interval making use of the bootstrap 

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals, see Section 3.5. 

We use the with-replacement Bootstrap presented in Algorithm 1 with =B 1,000 resamples. The results 

with a nominal one-tailed error rate of 2.5% are presented in Table 5.1. The three confidence intervals are 

very similar in all cases. 

 

Table 5.1 

Estimation of the marginal proportions with three confidence intervals for four variables on interest 
 

 Perceived reputation of district status 

 Estimator adj. for non-response Calibration estimator 

 Good Fair Poor No opinion Good Fair Poor No opinion 

Estim. 0.217 0.225 0.531 0.027 0.217 0.224 0.532 0.027 

Norm. CI [0.194,0.241] [0.201,0.249] [0.503,0.559] [0.018,0.036] [0.193,0.240] [0.200,0.248] [0.504,0.560] [0.018,0.036] 

Perc. CI [0.195,0.241] [0.201,0.251] [0.504,0.558] [0.019,0.036] [0.193,0.240] [0.201,0.251] [0.505,0.560] [0.019,0.036] 

Basic CI [0.193,0.240] [0.200,0.249] [0.503,0.557] [0.018,0.035] [0.193,0.240] [0.198,0.248] [0.504,0.559] [0.018,0.035] 

 Witnessed trafficking 

 Estimator adj. for non-response Calibration estimator 

 Never Rarely Sometimes No opinion Never Rarely Sometimes No opinion 

Estim. 0.599 0.065 0.155 0.181 0.606 0.065 0.156 0.173 

Norm. CI [0.571,0.627] [0.050,0.079] [0.135,0.175] [0.161,0.201] [0.581,0.632] [0.050,0.079] [0.135,0.176] [0.159,0.188] 

Perc. CI [0.572,0.628] [0.050,0.080] [0.134,0.175] [0.161,0.201] [0.582,0.633] [0.051,0.080] [0.134,0.175] [0.160,0.188] 

Basic CI [0.570,0.626] [0.049,0.078] [0.136,0.176] [0.161,0.201] [0.579,0.630] [0.049,0.078] [0.136,0.177] [0.159,0.187] 

 Roadworks in neighborhood 

 Estimator adj. for non-response Calibration estimator 

 Yes No No opinion  Yes No No opinion  

Estim. 0.471 0.495 0.034  0.470 0.496 0.034  

Norm. CI [0.444,0.498] [0.468,0.523] [0.024,0.044]  [0.443,0.496] [0.469,0.523] [0.024,0.045]  

Perc. CI [0.442,0.496] [0.469,0.524] [0.025,0.045]  [0.440,0.495] [0.470,0.524] [0.025,0.045]  

Basic CI [0.445,0.500] [0.466,0.522] [0.023,0.043]  [0.444,0.499] [0.468,0.522] [0.024,0.044]  

 Intention to leave the district 

 Estimator adj. for non-response  Calibration estimator 

 Cert./Prob. Prob. not Cert. not No opinion Cert./Prob. Prob. not Cert. not No opinion 

Estim. 0.286 0.130 0.548 0.036 0.287 0.131 0.546 0.036 

Norm. CI [0.260,0.312] [0.111,0.149] [0.520,0.576] [0.025,0.047] [0.261,0.313] [0.112,0.150] [0.518,0.573] [0.025,0.047] 

Perc. CI [0.260,0.313] [0.111,0.149] [0.521,0.576] [0.026,0.047] [0.261,0.313] [0.113,0.151] [0.520,0.574] [0.026,0.048] 

Basic CI  [0.259,0.312]  [0.111,0.149] [0.520,0.575] [0.025,0.046] [0.261,0.313]  [0.111,0.149] [0.517,0.572] [0.025,0.047] 
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5.2 Sample of individuals 
 

The sample of responding households contains 3,098 individuals who are theoretically surveyed, but 

due to unit non-response we observe a subset of 2,804 individual respondents only. Non-response is 

accounted for by using Response Homogeneity Groups, defined with respect to eight auxiliary variables: 

three at the individual level (sex, age, nationality), and five at the dwelling level (housing construction 

period, type of dwelling, number of rooms, low-income housing or not, region). By using a logistic 

regression and the score method, we obtain 8 response homogeneity groups. The three individual auxiliary 

variables used in the definition of the RHGs are also used for calibration.  

We are interested in three variables of interest. The variable 5y  is quantitative, and gives the number 

of children. The variable 6y  indicates whether the individual has one or several jobs (one, several, none, 

no answer). The variable 7y  indicates whether the individual benefits from a complementary full medical 

cover (yes, no, no answer). For the variable 5 ,y  we compute the estimator of the total adjusted for non-

reponse and the calibrated estimator given in equations (2.27) and (2.29), respectively. For the two other 

variables of interest and for each category ,g  we are interested in the proportion  

 ind

, ind

ind

1( = )
= ,

kl U

g

y g

N



 (5.4) 

with indN  the total number of individuals. The estimator of ,indg  adjusted for non-response is  

 
,ind

,ind

grr,ind

1( = )
ˆ = ,

rr

rr

rrl ll S

rrll S

d y g

d









 (5.5) 

see equation (2.27). The calibrated estimator of ,indg  is  
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see equation (2.29).  

For each parameter, we give the normality-based confidence interval making use of the bootstrap 

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals. We use the with-

replacement Bootstrap presented in Algorithm 2 with =B 1,000 resamples. The results with a nominal 

one-tailed error rate of 2.5% are presented in Table 5.2. The three confidence intervals are very similar in 

all cases. 
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Table 5.2 

Estimation of the marginal proportions with three confidence intervals for four variables on interest 
 

 Number of children 

 Estimator adj. for non-response Calibration estimator 

Estim. (  106) 4.40    4.39    

Norm. CI [4.15,4.64]    [4.21,4.58]    

Perc. CI [4.16,4.65]    [4.21,4.58]    

Basic CI [4.14,4.63]    [4.20,4.57]    

 Does the individual have several jobs? 

 Estimator adj. for non-response Calibration estimator 

 One Several None No answer One Several None No answer 

Estim. 0.304 0.016 0.372 0.308 0.305 0.016 0.372 0.307 

Norm. CI [0.286,0.323] [0.011,0.021] [0.352,0.392] [0.290,0.326] [0.285,0.325] [0.011,0.021] [0.350,0.394] [0.283,0.332] 

Perc. CI [0.287,0.323] [0.011,0.021] [0.351,0.393] [0.289,0.326] [0.284,0.325] [0.011,0.020] [0.351,0.393] [0.284,0.333] 

Basic CI [0.286,0.322] [0.011,0.020] [0.351,0.393] [0.289, 0.326] [0.285,0.325] [0.011,0.020] [0.352,0.393] [0.282,0.330] 

 Complementary full medical cover 

 Estimator adj. for non-response Calibration estimator 

 Yes No No answer  Yes No No answer  

Estim. 0.122 0.626 0.252  0.122 0.627 0.251  

Norm. CI [0.106,0.137] [0.603,0.650] [0.234,0.270]  [0.105,0.138] [0.604,0.650] [0.227,0.275]  

Perc. CI [0.105,0.137] [0.603,0.651] [0.235,0.269]  [0.105,0.138] [0.604,0.650] [0.230,0.276]  

Basic CI [0.106,0.138] [0.602,0.649] [0.235,0.269]  [0.105,0.138] [0.605,0.651] [0.227,0.273]  

 
6. Conclusion and future work 
 

In this paper, we have explained how the with-replacement bootstrap may be applied to household 

surveys, in order to account for the whole variability of the sampling process including sampling and non-

response, and to a posteriori adjustments like calibration. The methods have been illustrated on a toy 

example for clarity of exposition, evaluated via a simulation study and applied to a French panel for urban 

policy. To make the implementation of the method easier for users, we have developed two SAS macros 

which are available upon request to the corresponding author. 

The results in the simulation study show that both the bootstrap variance estimators and three bootstrap 

confidence intervals work well in case of a small sampling fraction. If the sampling fraction is larger, the 

bootstrap variance estimator is known to be conservative, and the normality-based confidence interval is 

therefore expected to be conservative as well. However, the coverage properties of the two other 

confidence intervals in such context remain unclear. This is an interesting matter for further research.  

In this paper, we focused on applying the bootstrap for variance estimation, after the statistical 

adjustments (treatment of unit non-response and calibration) have been performed by the survey 

methodologist. Bootstrap may also be used a priori, as a diagnosis tool to evaluate the relevance of 

possible statistical adjustments. For example, it may be tempting to use a large number of Response 

Homogeneity Groups (RHGs) to correct unit non-response, so as to reduce the non-response bias. 

However, this may result in an increased variability of the reweighted estimators. Bootstrap may be used 

to evaluate several possible sets of RHGs, for example by producing histograms of the bootstrap non-

response adjustments and/or of the bootstrap estimators corrected for unit non-response, to give some 
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insight on the stability of estimation with a possible set of RHGs. This is helpful in finding a bias/variance 

trade-off. This approach in mentioned in Girard (2009), and is an important matter for further work.  

We have considered the situation when the survey is performed at one time only. If we wish to perform 

longitudinal estimations, units are typically followed over time. If we are also interested in cross-sectional 

estimations at several times, additional samples are selected at posterior waves and mixed with the 

original sample. Bootstrap variance estimation in the context of longitudinal surveys is a very important 

matter for further investigation. 
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Appendix 
 

A. Benchmark variance estimators for the sample of individuals 
 

We first consider the estimator indŶ  in equation (2.21), that we use in case of full response. The 

benchmark variance estimator is  
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We now consider the estimator 
,ind

ˆ
rrY  given in equation (2.27), which is adjusted for the non-response 

of both households and individuals. The benchmark variance estimator is  
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where 

 1 1 3
ˆ= ,k k kv u u+   

where the first linearized variable 1
ˆ

ku  is similar to that given in equation (2.8), while the second linearized 

variable 3ku  accounts for the estimation of the individual response probabilities. We have for the first 

linearized variable  
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and for the second linearized variable  
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We now consider the calibrated estimator 
cal,indŶ  given in equation (2.29). The benchmark variance 

estimator is the same than given in equation (A.2) for 
,ind

ˆ ,rrY  by replacing the variable ly  with the 

estimated regression residuals of the variable of interest on the calibration variables, namely  
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B. SAS Program for one-stage sampling 
 

In this section, we present the SAS macro developed to implement the proposed methodology for a 

sampling of households only (one-stage sampling). The parametrization of the SAS program for 

computing bootstrap weights is presented in Section B.1. For clarity, a small example is presented in 

Section B.2. 

 
B.1 Program for computing bootstrap weights 
 

The parameters related to the database are:   

• BASE: library containing the SAS table with the list of sampled units. The default value is 

BASE=WORK.  

• ECHMEN: SAS table containing the list of sampled units in the population. The non-respondents 

need also to be included in this table.  
 

The parameters related to the bootstrap are:   

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.  
 

The parameters related to the variables needed in the SAS table are:   
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• IDMEN: list of variables identifying the statistical unit. They need to be character variables.  

• STMEN: list of variables of stratification used for the sample selection.  

• DMEN: sampling weight.  

• RMEN: response indicator (1 for a respondent, 0 for a non-respondent).  

• DRMEN: sampling weight, corrected for non-response. The values are only needed for the 

respondents.  

• DCMEN: calibrated weight. The values are only needed for the respondents.  

• GHRMEN: list of variables identifying the response homogeneity groups.  

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs.  

- With WGHRMEN=0, the response rates are not weighted. This is the default value.  

- With WGHRMEN=1, the response rates are weighted by the design weights.  

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the output are:   

• SORT_MEN: SAS table containing the bootstrap sampling weights 

WB_D1,...,WB_D&ITBOOT for the whole sample.  

• SORT_RMEN: SAS table containing the bootstrap weights WB_N1,...,WB_N&ITBOOT 

corrected for non-response, and the bootstrap weights WB_C1,...,WB_C&ITBOOT corrected 

for non-response and calibration, for the sub-sample of respondents.  

 
B.2 A small example 
 

We consider the example treated in Section 2.1.4. The sample is as follows: 

 
data ech;  

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1;  

cards;  

A 1 4 1 aa 4.44 4.01 1 1 

B 1 4 0 aa . . . . 

C 1 4 0 bb . . . . 

D 1 4 1 bb 5.54 4.87 1 0 

E 1 16 1 bb 22.15 19.98 1 1 

F 1 16 1 aa 17.78 15.63 1 0 

G 1 16 0 bb . . . . 

H 1 16 1 bb 22.15 19.98 1 1 

I 1 16 1 bb 22.15 19.49 1 0 

J 1 16 1 aa 17.78 16.03 1 1 

;run;  
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We can obtain =B 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit 

non-response has been originally corrected by the method of RHGs, the response rates inside RHGs were 

weighted by the sampling weights. 

 

%BOOTUP_1DEG(BASE=work,ECHMEN=ech, 

ITBOOT=1000, 

IDMEN=idm,STMEN=stmen,DMEN=dmen, 

RMEN=rmen,DRMEN=drmen,DCMEN=dcmen,GHRMEN=ghrmen,WGHRMEN=1, 

XMENQUANT=x0 x1,XMENQUALI=, 

SORT_MEN=ech_boot,SORT_RMEN=echr_boot); 

 
C. SAS Program for two-stage sampling 
 

In this section, we present the SAS macro developed to implement the proposed methodology for a 

sampling of households and a sub-sampling of individuals (two-stage sampling). The parametrization of 

the SAS program for computing bootstrap weights is presented in Section C.1. For clarity, a small 

example is presented in Section C.2. 

 
C.1 Program for computing bootstrap weights 
 

The SAS macro %BOOTUP_2DEG enables to compute bootstrap weights for a household survey with sub-

sampling of individuals, and to account for correction of unit non-response via Response Homogeneity 

groups, and for the calibration of weights, both for households and individuals.  
 

The parameters with equality sign are mandatory. All identifying variables must be of character type.  
 

The parameters related to the database are:   

• BASE: library containing the SAS tables ECHMEN and ECHIND. The default value is 

BASE=WORK.  

• BASESOR: library containing the output. The default value is BASESOR=WORK.  

• ECHMEN=: SAS table containing the list of sampled households in the population. The 

household non-respondents need also to be included in this table.  

• ECHIND=: SAS table containing the list of sampled individuals inside all the responding 

households. The individual non-respondents need also to be included in this table.  
 

The parameters related to the bootstrap are:   

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.  
 

The parameters related to the variables needed in the household SAS table ECHMEN are:   

• IDMEN=: list of variables identifying the household. This variable is required in both ECHMEN 

and ECHIND.  

• STMEN: list of variables of stratification used for the sample selection.  
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• DMEN: sampling weight of the household.  

• RMEN: response indicator of the household (1 for a respondent, 0 for a non-respondent).  

• DRMEN: sampling weight of the household, corrected for non-response. The values are only 

needed for the respondents.  

• DCMEN: calibrated weight. The values are only needed for the respondents.  

• GHRMEN: list of variables identifying the response homogeneity groups for households.  

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs:   

- With WGHRMEN=0, the response rates are not weighted. This is the default value.  

- With WGHRMEN=1, the response rates are weighted by the design weights DMEN.  
 

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the variables needed in the individual SAS table ECHIND are:   

• ID_IND=: list of variables identifying the individual (character variable).  

• R_IND: response indicator of the individual (1 for a respondent, 0 for a non-respondent).  

• DR_IND: weight of the individual, corrected for both household and individual unit non-

response. The values are only needed for the respondents.  

• DC_IND: calibrated weight. The values are only needed for the respondents.  

• PIKSACI=: conditional inclusion probability of the individual inside its household.  

• GHR_IND: list of variables identifying the response homogeneity groups.  

• WGHR_IND: weighting used in the computation of the response probabilities inside RHGs:   

- With WGHR_IND=0, the response rates are not weighted. This is the default value.  

- With WGHR_IND=1, the response rates are weighted by the design weights of individuals.  

- With WGHR_IND=2, the response rates are weighted by the weights of individuals, adjusted for 

household unit non-response.  
 

• XINDQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XINDQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the output are:   

• SORT_MEN: SAS table containing all the sampled households, and the bootstrap sampling 

weights WB_D1,...,WB_D&ITBOOT for the whole sample.  

• SORT_RMEN: SAS table containing all the responding households, and the bootstrap weights   

- WB_N1,...,WB_N&ITBOOT corrected for non-response,  

- WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.  

• SORT_RIND: SAS table containing all the responding individuals inside the responding 

households, and the bootstrap weights   
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- WB_N1,...,WB_N&ITBOOT corrected for household non-response,  

- WB_NN1,...,WB_NN&ITBOOT corrected for both household non-response and individual 

non-response,  

- WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.  

 
C.2 A small example 
 

We consider the example treated in Section 2.2.4. The sample of households and the sample of individuals 

are as follows: 

 
data echmen;  

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1; 

cards; 

A 1 4 1 aa 4.44 4.01 1 1 

B 1 4 0 aa . . . . 

C 1 4 0 bb . . . . 

D 1 4 1 bb 5.54 4.87 1 0 

E 1 16 1 bb 22.15 19.98 1 1 

F 1 16 1 aa 17.78 15.63 1 0 

G 1 16 0 bb . . . . 

H 1 16 1 bb 22.15 19.98 1 1 

I 1 16 1 bb 22.15 19.49 1 0 

J 1 16 1 aa 17.78 16.03 1 1 

;run;  

 
data echind; 

input idm$ idi$ piksaci dr1_ind rind ghrind$ phat_ind dr2_ind xi1 xi2 dc_ind; 

cards; 

A i01 0.34 13.06 1 g1 0.75 17.41 1 3 19.61 

D i04 1.00 5.54 0 g2 0.33 . . . . 

E i06 0.34 65.15 1 g1 0.75 86.86 1 2 53.93 

F i08 0.33 53.88 1 g1 0.75 71.84 1 3 78.43 

H i11 0.50 44.30 0 g1 0.75 . . . . 

I i13 1.00 22.15 1 g2 0.33 67.12 1 1 48.04 

J i14 1.00 17.78 0 g2 0.33 . . . . 

;run;  

 
We can obtain =B 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit 

non-response of households has been originally corrected by the method of RHGs, the response rates 

inside RHGs were weighted by the sampling weights. Since WGHR_IND=0, it is supposed that when unit 

non-response of individuals has been originally corrected by the method of RHGs, the response rates 

inside RHGs were unweighted. 
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%bootup_2deg(BASE=work,BASESOR=work,ECHMEN=echmen,ECHIND=echind, 

ITBOOT=1000, 

IDMEN=idm,STMEN=stmen,DMEN=dmen,RMEN=rmen,DRMEN=drmen,GHRMEN=ghrm

en,WGHRMEN=0, 

DCMEN=dcmen,XMENQUANT=x0 x1,XMENQUALI=, 

ID_IND=idi,R_IND=rind,DR_IND=dr2_ind,PIKSACI=piksaci,GHR_IND=ghri

nd,WGHR_IND=0, 

DC_IND=dc_ind,XINDQUANT=xi1 xi2,XINDQUALI=, 

SORT_MEN=sort_men,SORT_RMEN=sort_rmen, 

SORT_RIND=sort_rind); 
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An alternative jackknife variance estimator when calibrating 

weights to adjust for unit nonresponse in a complex survey 

Phillip S. Kott and Dan Liao1 

Abstract 

Calibration weighting is a statistically efficient way for handling unit nonresponse. Assuming the response (or 

output) model justifying the calibration-weight adjustment is correct, it is often possible to measure the 

variance of estimates in an asymptotically unbiased manner. One approach to variance estimation is to create 

jackknife replicate weights. Sometimes, however, the conventional method for computing jackknife replicate 

weights for calibrated analysis weights fails. In that case, an alternative method for computing jackknife 

replicate weights is usually available. That method is described here and then applied to a simple example. 

 

Key Words: Analysis weight; Linearization-based variance estimator; Delete-1 jackknife variance estimator; Replicate 
weight; Asymptotically unbiased; Bounded logistic response model. 

 

 

1. Introduction 
 

Calibration weighting is a method for adjusting the weights in probability-sampling theory by forcing 

the weighted sum of each variable in a set of survey variables to equal a specified target. When that 

happens, the analysis weights are said to satisfy the calibration equation. There are several reasons to 

calibrate analysis weights. The reason we focus on here is to remove potential selection bias resulting 

from unit nonresponse.  

It is common in the survey-sampling literature to argue that a survey respondent’s calibration-weight 

adjustment implicitly estimates the inverse of its probability of response (see, for example, Section 5.1 of 

Fuller, 2009). Kott and Liao (2012) show that using calibration weighting to adjust for unit nonresponse 

can provide double protection against nonresponse bias when estimating a population total. This means 

that if either a linear outcome model or an implied selection model holds, then the resulting estimator is 

asymptotically unbiased in some sense. They go on to describe a linearization-based variance estimator for 

an estimated total based on a stratified multistage (or single-stage) sample with calibration-adjusted 

analysis weights.  

The brief treatment in Sections 2 and 3 of calibration weighting for nonresponse and of linearization-

based variance estimation for a calibrated estimator of a population total are developed in more depth in 

Kott and Liao. Proofs of the various assertions made in these sections can be found there. Here they set up 

the theory behind variance estimation with a jackknife.  

Given a stratified multistage probability sample, a traditional delete-1 jackknife variance estimator 

creates sets of replicate weights, one set corresponding to each selected primary sampling unit (PSU). One 

selected PSU is dropped at a time, and the replicate weights of its subsampled elements are set to zero. To 
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compensate, the replicate probability weights of the remaining elements in the same stratum as the 

dropped PSU are increased by the factor / ( 1),h hn n −  where hn  is the original number of PSUs selected 

from the stratum. The replicate probability weights are calibrated in a manner analogous to the original 

analysis weights. Section 4 describes this jackknife and shows its near equality to the nearly-unbiased 

linearization-based variance estimator for a population total. 

The advantage of a delete-1 jackknife over linearization for variance estimator is that once replicate 

weights are computed, estimating the variance of smooth function of estimated totals (such as a regression 

coefficient) is straightforward. Krewski and Rao (1981) provides a rigorous treatment of the delete-1 

jackknife and its properties.  

Sometimes no solution to a calibration equation exists when starting with a set of replicate probability 

weights. The main contribution of this paper is contained in the remainder of Section 4, where an 

alternative method of constructing jackknife replicate weights that can usually overcome this problem is 

described and justified. This method was introduced in Kott (2006) for another purpose.  

Section 6 uses a weight-adjustment function described in Section 5 to illustrate how to implement this 

method. It then favorably compares the results of the method to those of two popular competitors. 

Section 7 discusses a variant of the alternative jackknife methodology.  

 
2. Calibration weighting 
 

Suppose we have a randomly drawn sample S  from a finite population .U  In the absence of 

nonresponse (as well as coverage error and measurement error), calibration weighting creates a set of 

analysis weights,  ,kw k S   not dependent on the survey values of interest that 

1. are close to the original inverse-probability weights, 1 /k kd =  where k  is the selection 

probability of the thk  selected element; and  

2. satisfy a set of linear calibration equations, one for each component of ,kz  a vector of auxiliary 

variables with known population totals:  

 
k k k

k S k U

w
 

= z z   

“Close” means that as the sample grows arbitrarily large, the difference between kw  and kd  vanishes in 

probability. For a more formal treatment of the assumed asymptotic structure, see Isaki and Fuller (1982).  

Most surveys experience unit nonresponse beyond a statistician’s control. One is forced to assume, 

either explicitly or implicitly, some type of model to adjust for the nonresponse. An outcome model (also 

called a “prediction model”) on a survey variable of interest usually assumes the response/nonresponse 

mechanism, like the sampling design, is ignorable. A response model assumes the response mechanism 

behaves like a phase of Poisson (i.e., independent) subsampling. Double protection means that if either the 
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prediction or response model is specified correctly, the estimator will be nearly (i.e., asymptotically) 

unbiased in some sense. Here we will assume a correctly specified response model. 

Let R  be the subset of S  containing respondents to the survey (for simplicity, we ignore the 

possibility of item nonresponse). The respondent sample can be calibrated to either the full population :U  

 
k k k

k R k U

w
 

= z z  (2.1) 

or to the original sample :S  

 .k k k k

k R k S

w d
 

= z z  (2.2) 

We assume a response model in which the probability of response for each , ,kk U p  is an 

independent function having the form ( ),T

k kp p= γ x  where (.)p  is a smooth monotonic function, and 

both the known vector kx  and unknown parameter vector γ  have the same number of components as .kz  

In much of the literature kx  is equal to ,kz  but most of the theory still follows when it does not.  

If there is a vector g  such that inserting / ( )T

k k kw d p= g x  solves either the calibration equation in 

(2.1) or (2.2), then g  is a consistent estimator for .γ  Kott and Liao (2017) describe what to do when there 

are fewer components in kx  than in .kz  

The function ( ) 1/ ( )T T

k kf p=g x g x  is called the weight-adjustment function. The mean-value theorem 

tells us that under mild conditions ( ) ( ) ( ) ( ) .T T T T

k k k kf f f −  −g x γ x g x g γ x  Consequently, as the 

respondent sample grows arbitrarily large ( )T

kf g x  converges to ( ) 1/T

k kf p=γ x  and g  converges to .γ  

 
3. Linearization-based variance estimation 
 

When calibrating the respondent sample to the full sample with (2.2), the calibration estimator for a 

population total, k kR
t w y=  can be expressed as  

 

1

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

T T T

k k k k k k

k S k R

T T T T T T

k k k k k k k k k k k

k S k R k R

T T T T T T

k k k k k k k k k k k

k S k R k R

T T

k k k k k k

k S k

t d d f y

d d f y d f y

d d f y d f y

d d p y

 

  

  

−

 

= + −

   + − + − − 

= + − + − −

= + −

 

  

  



z b g x z b

z b γ x z b g x g γ x z b

z b γ x z b g γ g x x z b

z b z b ,
R



 

(3.1)

 

where 

 

1

( ) ( ) .T T T

k k k k k k k k

k R k R

d f d f y

−

 

 
 =  

 
 b g x x z g x x   
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The key step here is that b  has been defined so that ( ) ( ) 0.T T

k k k k k kR
d f y − = g x x z b  Observe that 

(.)f   in b  is the derivative of the weighting-adjustment function. 

Let *
b  be the probability limit of b  as the respondent sample (of PSUs) grows arbitrarily large. The 

variance of t  under the original design and the selection model is nearly equivalent to the variance of 
* ,k kS

d q  where  

 * * 1 *( ) ,T T

k k k k k kq p y I−= + −z b z b   

and 1kI =  when k  is a unit respondent and 0 otherwise.  

For many designs, *

kq  can be approximated by replacing *
b  with b  and 1

kp−  with ( ),T

kf g x  and the 

variance of k kS
d q  estimated under the original design as if the ( ) ( )T T T

k k k k k kq f y I= + −z b g x z b  were 

constants. When calibrating the respondent sample to the population with equation (2.1), the 
T

k kS
d z b  

in equation (3.1) is replaced by ,T

kU z b  which does not contribute to the variance, so 

( ) ( ) .T T

k k k k kq f y I= −g x z b  Either way, replacing *

kq  with kq  tends to underestimate variances with finite 

samples (the replacement is asymptotically ignorable) because 2( )T

k k ke y= − z b  tends to be smaller than 
* * 2( ) .T

k k ke y= − z b  

Given a stratified multistage probability sample with hn  sampled PSUs in each of H  strata, let hjS  

denote the subsample of elements within each PSU j  in stratum .h  A nearly unbiased linearization-based 

estimator for the variance of t  is  

 

2

2

1 1 1

1
( ) ,

1

h h

hj ha

n nH
h

k k

h j k S a Sh h

n
v t d q d q

n n
 

= =  = 

  
  = −   −     

      (3.2) 

where ( ) ,T T

k k k k kq f e I= +z b g x  and 1 =  when the respondent sample is calibrated to the original 

sample and 0 when the respondent sample is calibrated to the population. As is common in practice and 

continued here, equation (3.2) assumes that the little is lost by treating the PSU selection within strata as if 

it had been drawn with replacement, obviating the need for finite population correction.  

 
4. Jackknife variance estimation 
 

Let hS +  be all the sampled elements in stratum .h  The conventional thhj  (delete-1) jackknife replicate 

for an estimated total k kR
t w y=  is  

 ( ) ( ) ( ) ( )( ) ,hj hj hj hj T

k k k k k k

k R k S

t w y d f g I y
 

= =  x  (4.1) 

where ( ) 0hj

kd =  when hjk S  

 ( ) [ / ( 1)]hj

k h h kd n n d= −  when hk S +  but hjk S  
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 ( )hj

k kd d=  otherwise, 

and the ( )hj
g  solve the replicate calibration equation: 

 ( ) ( )( )hj hj T

k k k k

k R k U

d f
 

= g x z z  when the respondent sample is calibrated to ,U  or  

 ( ) ( ) ( )( )hj hj T hj

k k k k k

k R k S

d f d
 

= g x z z  when the respondent sample is calibrated to S   

for each .hj  Observe that ( )hjt  is an estimate of the population total kU
y  with the PSU hj  removed.  

The delete-1 jackknife variance estimator for t  is  

 
1

( )

1

2var ( ) ( ) .
1 h

hj
nH

J
h

jh h

n
t t

n
t

==

−
−=    (4.2) 

Let * *( ).T

k k ke y= − z b  Consequently,  

 

 ( ) ( ) * ( ) ( ) *

( ) * *

( ) ( ) ( )

( ) ( ) .

hj hj T hj hj T

k

k S

k k

k

T

k k k k k k k k

hj T T

k k k

S

k

t t d d d f d f I

e

e

d Id f









 − = − + − 

 − +  

 z b g x g x

z b g x
  

From which we can conclude that var ( )J t  is approximately equal to the delete-1 jackknife for 
* ,k kS

d q  where * * *( ) ,T T

k k k k kq f I e= +z b g x  based on a stratified multistage sample with H  strata and 

hn  PSUs in stratum .h  A little algebra will show that the delete-1 jackknife for 
*

k kS
d q  is equal to 

var ( )t  in equation (3.2) with *

kq  replacing kq  because 

 ( ) * ( ) *

1

( ) ( ) ,
h

H
hj hj

k k k k k k

k S h k S

d d q d d q
+ = 

− = −     

where 

 

( ) * * *

* *

1
( )

1 1

1
.

1

h h hj

hj h

hj h
k k k k k

k S k S k Sh h

h
k k

k S k Sh h

n
d d q d q d q

n n

n
d q d q

n n

+ +

+

  

 

− = −
− −

 
= − − −  

  

 
  

Note that the contribution to the jackknife variance estimator for the thhj  replicate comes mostly from 

the thhj  PSU.  

Observe that the small downward bias in finite samples caused by kq  replacing *

kq  in var ( )t  does not 

apply to var ( )J t  in equation (4.2). The latter may have a slight tendency to be upwardly biased in finite 

samples because ( )hj
g  and ,g  while both consistent estimators for ,γ  need not be exactly equal.  

There is sometimes a problem with computing the jackknife variance estimator var ( )J t  in practice. 

That problem occurs when (.)f  is such that while there is a g  satisfying the calibration equation in (2.1) 
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or (2.2), no ( )hj
g  satisfies its analogue for at least one hj  jackknife replicate. When that happens, one can 

follow a suggestion in Kott (2006) and compute the ( )hj

kw  in equation (4.1) with this alternative:  

 
1

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ,hj hj T hj hj T T hj T T hj T

k k k k k k

R R

w d f g d f g d f g d f g      
 

−

 

    = + −
      

 x c x z x x z x x (4.3) 

where ( )hj
c  is the calibration target for the thhj  replicate: 

 ( ) =hj T

U




c z  when the respondent sample is calibrated to ,U   

and 

 ( ) ( )hj hj T

S

d 


=c z  when the respondent sample is calibrated to .S   

By design ( ) ( ) .hj hj

k kR
w = z c  

Letting ,T

k k ke y= − z b  one can see that with ( ) ( ) ,hj hj

k kR
t w y=  

 

( ) (

*

)

*( )

() )

(

(

( ) )

T T

k k k k

k S

T T

k k k

hj hj

k k

hj

k k k

k S

t t f I e

f I

d

d d e

d 







 − = −  

 −  

+

 +





z b g x

z b g x
  

so the alternative jackknife variance estimator var ( )AJ t  computed with ( )hjt  in place of ( )hjt  is nearly 

unbiased. Observe that the only possible restriction on the computation of ( )hj

kw  is that 
( ) ( )hj T T

k k k kR
d f g x x z  be non-singular.  

Observe that equation (4.3) can be rewritten as  

 ( ) ( ) ( )( )hj hj hj T

k k kw d f= g x  (4.4) 

where ( ) ( ) ( ),hj hj T

k k kd d f g= x  

 ( ) ( )( ) 1 ,hj T hj T

k kf = +g x g x   

 

1

( ) ( ) ( ) ,hj T hj T hj T

R R

d d    
 

−

 

   
= −   
   

 g c z x z   

and 

 
( )

.
( )

T

k
k kT

k

f

f


=

g x
x x

g x
  

This equation treats the thhj  replicate as the full sample. The weight-adjustment function (.)f  is 

linear, and the kf  are not restricted to positive values even when the kf  are. In addition, observe that even 

when ,k k k=x z x  will not equal kz  unless (.) exp(.).f =  
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5. The (bounded) logistic response model 
 

Up until this point, we have not specified a response function, (.) 1/ (.).p f=  Consider now a 

(bounded) logistic (or logit) response model having the form:  

 
1 exp( )

( ) .
exp( )

T
T k

k T

k

U
p

L

+
=

+

γ x
γ x

γ x
 (5.1) 

where 1 .L U   When 1L =  and U  is infinite, this is a standard logistic response model, where the 

response probability can range from 0 to 1, not including the endpoints. For finite values of L  and ,U  the 

bounded probability of response falls between 1 / U  and 1 / .L  Consequently, the value of adjustment 

function ranges from L  to .U  In practice, L  is usually set to 1, while U  is frequently set as low as the 

sample allows for the calibration equation to hold.  

The calibration procedures in the SUDAAN® language (Research Triangle Institute, 2012), 

WTADJUST for when k k=x z  and WTADJX otherwise, fit an equivalent weight-adjustment function:  

 
exp( )

( ) ,
1 exp( )

T
T k

k T

k

L B A
f

B A U

+
=

+

g x
g x

g x
 (5.2) 

where 
( )( )

,
U L

C L U C
A

−

− −
=  ,

C L

U C
B U

−

−
=  and .L C U   

The choice of C  helps determine what g  satisfies the calibration equation but will not affect the value 

of the weight adjustment itself, ( ).T

k kf f= g x  Consequently, C  can be any value between L  and .U  

When 1,L =  2,C =  and U  is infinite, A B 1.= =  

A little calculus reveals with the weight-adjustment function in equation (5.2): 

 
( ) ( )

( ) ,
( ) ( )

T k k
k k

U f f L
f f g

U C C L

− −
 = =

− −
x   

which is needed to compute equation (4.3) or (4.4). The general exponential model in the SUDAAN 

calibration procedures allow the ,L  ,C  and U  to vary from element to element, a flexibility hard to 

interpret in response modeling and not considered here.  

What will be useful here, although not for modeling, is the possibility that L  in equation (5.2) is 0 and 

U  is infinite. When iteratively solving a calibration equation for g  with ( ) exp( )T T

kf =g x g x  using 

Newton’s method, the SUDAAN calibration procedures first solve for 1g  in the calibration equation with 

1 1( ) 1 ,T T

k kf = +g x g x  which is a useful result when computing alternative jackknife weights. (The 

programs set the first iteration of the weight adjustment at 
1 1exp( )T

k kf = g x  from which 
11 T

k+ g x  is easily 

derived.)  

 
6. A simulation example 
 

The MU281 population of municipalities in Särndal, Swensson and Wretman (1992; data from the 

slightly revised version is contained in http://lib.stat.cmu.edu/datasets/mu284; one of the municipalities 
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was accidentally dropped in this analysis) has been augmented with an indicator (RESP) for whether an 

element (municipality) would respond if sampled. Probabilities of element response were generated using 

a logistic function of one of the data set’s covariates (the log of the element’s 1975 population in 

thousands). The average probability of response was roughly 70%.  

A stratified simple random sample of 10 elements per each of 8 strata was simulated 1,716 times. In 

each simulated sample, the elements with RESP = 1 were treated as respondents, and the respondent 

sample was calibrated to the full sample using the weight-adjustment function in equation (5.2) with a 

lower bound of 1 and an upper bound of 5. In the calibration model, the two components of kx  were 1 and 

the log of the element’s 1975 population in thousands; kz  was set equal to .kx  1,225 out of the 1,716 

simulations had their respondent samples successfully calibrated on both components (i.e., satisfied the 

calibration equation in 2.2) and produced linearization-based standard-errors.  

Estimated means (ratios of two estimated totals) and standard errors (square roots of estimated 

variances) were computed for four variables: 

 

P85  1985 population (in thousands). 

RMT85 Revenues from 1985 municipal taxation (in millions of kronor). 

ME84 Number of municipal employees in 1984. 

REV84 Real estate values according to 1984 assessment (in millions of kronor). 

 

Although the SUDAAN procedure WTADJUST can compute standard errors when using a delete-1 

jackknife, it will fail when one or more replicates fail to calibrate. Therefore, two versions of the 

conventional delete-1 jackknife standard errors were computed using a macro the authors created. In one, 

the set of the imperfect “calibrated” weights from the last iteration for the failed replicates were used. In 

the other, the replicates that failed to calibrate were dropped and this following modified jackknife 

variance estimator was computed:  

 

*

* 2

*

)

1 1

(var ( ) ( ) ,
1 hnH

J

h jh

hjhn
tt t

n= =

−
−=    (6.1) 

where *

hn  is the number of replicates in stratum h  that successfully calibrated. This revised jackknife 

variance estimator is suggested by Rust (1985) when replicates are dropped at random, which is not what 

happens here. The SAS-callable (SAS Institute Inc., 2015) SUDAAN code used in the analysis for a single 

simulation is available from the authors upon request.  

Among the 1,225 analyzable samples, 867 simulations had all the replicates using conventional delete-

1 jackknife calibrate, while the remaining 358 simulations had at least one replicate that failed to calibrate 

after 50 iterations (the default is 10). Table 6.1 averages the results for both situations. When no 

conventional replicate failed, the alternative and conventional jackknife standard errors are close (on 
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average) and slightly higher than those produced by linearization as theory predicts (note that the two 

versions of the conventional delete-1 jackknife are identical).  

 
Table 6.1 

Standard errors based on jackknife methods when calibrating for nonresponse with a bounded logistic model 
 

 
When at least one replicate failed to calibrate for the conventional delete-1 jackknife, the alternative 

jackknife’s standard errors are again close to linearization-based ones, even though it failed to calibrate in 

114 out of these 358 simulations due to a (near) singularity in at least one of the replicates. However, 

including the failed replicates clearly overestimates standard error and dropping them clearly 

underestimates relative to linearization. It appears that the alternative jackknife variance estimator 

produces the more useful set of replicate weights in this situation.  

Table 6.1 compares standard-errors from competing jackknifes to linearization-based standard errors 

rather than empirical standard errors because finite-population correction has been ignored. Moreover, the 

bounded logistic response model fit in the simulations was not the unbounded response model used to 

generate responses. 

 
7. Discussion  
 

There is a small chance (about 1.5% in our simulations) for equation (4.4) to return negative replicate 

weights. The canned procedures of many statistical packages (like SAS) cannot handle negative weights. 

Consequently, estimated totals computed from replicate weights may need to be calculated without the 

help of a canned procedure.  

One does not need access to SUDAAN to compute alternative jackknife weights for calibration 

estimators. The gencalib routines in the ‘Sampling’ package in R (Tillé and Matei, 2016) can perform 

 Variable Estimated 

Mean 

Linearization-

based 

Standard  

Error 

Alternative 

Jackknife 

Standard  

Error 

Conventional 

Jackknife 

Standard  

Error 

Including  

Failed 

Replicates 

Conventional 

Jackknife 

Standard  

Errors 

Dropping  

Failed 

Replicates 

867 Simulations Where 

No Conventional 

Replicate Failed to 

Calibrate 

P85 22.41 2.06 2.09 2.11 2.11 

RMT85 167.70 17.31 17.72 17.86 17.86 

ME84 1,215.87 124.67 127.27 128.15 128.15 

REV84 2,425.52 212.83 217.00 219.67 219.67 

358 Simulations Where 

at Least One 

Conventional Replicate 

Failed to Calibrate 

P85 22.78 2.24 2.31 2.95 2.04 

RMT85 170.48 18.93 19.47 24.39 16.60 

ME84 1,236.75 135.94 139.65 175.99 121.31 

REV84 2,451.95 239.27 239.18 296.77 208.45 
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calibration not only under a bounded logistic response model but under linear calibration as well. 

Although there are SAS macros equivalent to WTADJUST, to our knowledge, there is currently no 

publicly-available SAS calibration-weighting macro that can be used when kx  in the weight-adjustment 

(equation 4.4) does not equal .kz  Let us hope this is reversed soon.  
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Small area estimation using Fay-Herriot area level model 

with sampling variance smoothing and modeling 

Yong You1 

Abstract 

In this paper, we consider the Fay-Herriot model for small area estimation. In particular, we are interested in 

the impact of sampling variance smoothing and modeling on the model-based estimates. We present methods 

of smoothing and modeling for the sampling variances and apply the proposed models to a real data analysis. 

Our results indicate that sampling variance smoothing can improve the efficiency and accuracy of the model-

based estimator. For sampling variance modeling, the HB models of You (2016) and Sugasawa, Tamae and 

Kubokawa (2017) perform equally well to improve the direct survey estimates. 

 

Key Words: EBLUP; Hierarchical Bayes; Gibbs sampling; Log-linear model; Relative error; Sampling variance; Small 
area. 

 

 

1. Introduction 
 

Small area estimation is popular and important in survey data analysis. Model-based estimates have 

been widely used in practice to provide reliable estimates for small areas. In practice, area level models 

are usually used whenever direct survey estimates and area level auxiliary variables are available. Various 

area level models have been proposed to improve the precision of the direct survey estimates, see Rao and 

Molina (2015). Among the area level models, the Fay-Herriot model (Fay and Herriot, 1979) is a basic 

area level model widely used in small area estimation. The Fay-Herriot model has two components, 

namely, a sampling model for the direct survey estimates and a linking model for the small area parameter 

of interest. The sampling model assumes that a direct survey estimator iy  is design unbiased for the small 

area parameter i  such that 

 , 1, , ,i i iy e i m= + =  (1.1) 

where ie  is the sampling error associated with the direct estimator iy  and m  is the number of small areas. 

It is customary to assume that ’sie  are independently normal random variables with mean E( ) 0ie =  and 

sampling variance 2Var( ) .i ie =  The linking model assumes that the small area parameter i  is related to 

auxiliary variables 1( , , )i i ipx x x =  through a linear regression model given as  

 , 1, , ,i i ix v i m = + =  (1.2) 

where 1( , , )p   =  is a 1p   vector of regression coefficients, and the ’siv  are area-specific random 

effects assumed to be independent and identically distributed with E( ) 0iv =  and 2Var( ) .i vv =  The 

assumption of normality is generally included. Random effects iv  and sampling errors ie  are mutually 

mailto:yong.you@canada.ca


362 You: Small area estimation using Fay-Herriot area level model with sampling variance smoothing and modeling 

 

 

Statistics Canada, Catalogue No. 12-001-X 

independent. The model variance 2

v  is unknown and needs to be estimated. Combining models (1.1) and 

(1.2) leads to a linear mixed model given as  

 , 1, , .i i i iy x v e i m= + + =  (1.3) 

Model (1.3) involves both design-based random errors ie  and model-based random effects .iv  For the 

Fay-Herriot model, the sampling variance 2

i  is usually assumed to be known. This is a very strong 

assumption. In practice, unbiased direct estimates of the sampling variances are generally available. To 

make use of the direct sampling variance estimates, two approaches are available in practice, namely, 

smoothing and modeling. For the smoothing approach, smoothed estimates of the sampling variances are 

used in the Fay-Herriot model and then treated as known. The smoothing approach requires external 

variables and external models such as use of the generalized variance function (GVF) and design effects. 

You and Hidiroglou (2012) particularly studied the GVF and design effects methods for sampling 

variance smoothing for proportions. In this paper, we will use a GVF model proposed in You and 

Hidiroglou (2012) for the sampling variance smoothing.  

As an alternative to smoothing, sampling variance modeling is also commonly used in practice. Let 2

is  

denote the direct estimator for the sampling variance 2.i  We consider a custom model for 2

is  as 
2 2 2~ ,

ii i i dd s    where 1i id n= −  and in  is the sample size for the thi  area. Rivest and Vandal (2002) and 

Wang and Fuller (2003) used empirical best linear unbiased prediction (EBLUP) method to obtain the 

model-based estimates. You and Chapman (2006) considered a hierarchical Bayes (HB) approach and 

combined the sampling variance model 
2 2 2~

ii i i dd s    with the small area model (1.3) to construct an 

integrated model. The integrated model borrows strength for small area estimates and sampling variance 

estimates simultaneously. The integrated HB modeling approach with 
2 2 2~

ii i i dd s    has thus been widely 

used in practice, for example, You (2008, 2016), Dass, Maiti, Ren and Sinha (2012), Sugasawa, Tamae 

and Kubokawa (2017), Ghosh, Myung and Moura (2018), and Hidiroglou, Beaumont and Yung (2019).  

In this paper, we consider both the smoothing and modeling approaches for the sampling variances. In 

Section 2, we present the EBLUP method based on both the smoothed and direct estimates of the 

sampling variances. In Section 3, we present the Fay-Herriot HB model and three other HB models based 

on sampling variance modeling. We compare the effects of sampling variance smoothing and modeling in 

Section 4 through a real data analysis, and we offer some suggestions in Section 5.  

 
2. Fay-Herriot model using EBLUP approach  
 

Under the Fay-Herriot model (1.3), assuming 2

i  and 2

v  known in the model, we obtain the best 

linear unbiased prediction (BLUP) estimator of i  as (1 ) ,i i i i iy x   = + −  where 2 2 2( )i v v i   = +  

and ( ) ( )
1

2 2 1 2 2 1

1 1
( ) ( ) .

m m

i v i i i v i ii i
x x x y    

−
− −

= =
= + +   To estimate the variance component 2 ,v  we 

have to first assume 2

i  known. There are several methods available to estimate 2 ,v  and we use REML 

method to estimate 2.v  Then the EBLUP of the small area parameter i  is obtained as  
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 ( )ˆ ˆˆ ˆ1 ,i i i i iy x   = + −  (2.1) 

where ( )2 2 2ˆ ˆ ˆ
i v v i   = +  and 2ˆ

v  is the REML estimator. The estimator for the mean squared error 

(MSE) of ˆi  is given by mse
1 2 3

ˆ( ) 2 ,i i i ig g g = + +  where 2

1
ˆ

i i ig  =  is the leading term, 2ig  accounts for 

the variability due to estimation of the regression parameter ,  and 3ig  is due to the estimation of the 

model variance 2;v  see Rao and Molina (2015) for details.  

We may use the smoothed or direct estimate of 2

i  in (2.1). For sampling variance smoothing, we use 

a log-linear regression model on the direct sampling variance 2

is  as suggested in You and Hidiroglou 

(2012), and the smoothing model is defined as: 

 2

0 1log( ) log( ) , 1, , ,i i is n i m  = + + =  (2.2) 

where the model error term is 2~ (0, ),i N   and 2  is unknown. Let 0̂  and 1̂  denote the ordinary 

least square estimates of the regression coefficients 0  and 1,  and 2̂  be the estimated residual variance 

of the log-linear regression model (2.2). A smoothed estimator of the sampling variance 2

i  can be 

obtained as  

 ( ) ( )2 2

0 1
ˆ ˆ ˆexp log( ) exp 2 .i in   = +   

The smoothed sampling variances 2

i  can then be used in the EBLUP estimator (2.1) and its MSE 

computation. This procedure is a common practice, see Rao and Molina (2015).  

If direct sampling variance estimate 2

is  is used in the place of the true sampling variance 2

i  in (2.1), 

then an extra term accounting for the uncertainty of using 2

is  is needed in the MSE estimator. This term, 

denoted as 4 ,ig  is given as 1 4 4 2 2 3

4
ˆ ˆ4( 1) ( ) ;i i v i v ig n s s − −= − +  see Rivest and Vandal (2002) and Rao and 

Molina (2015), page 150. However, using 2

is  directly in the EBLUP could lead to an over estimation of 

the model variance 2

v  (You, 2010; Rubin-Bleuer and You, 2016), as well as less accurate estimates. We 

will compare the EBLUP estimates with the HB estimates based on the smoothed and direct sampling 

variances in Section 4.  

 
3. Fay-Herriot model using HB approach with sampling variance 

modeling 
 

In this section we first present the Fay-Herriot model in a HB framework. Then we consider three 

models for the sampling variance modeling. The first model is the one considered in You and Chapman 

(2006) in which an inverse gamma model is used for the sampling variance 2

i  with known vague 

parameter values. The second model is introduced in You (2016) whereby a log-linear model with random 

error is used for 2.i  The third model is one proposed by Sugasawa et al. (2017) where an inverse gamma 

model is used for 2

i  but with different parameter settings.  
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HB Model 1: Fay-Herriot model in HB, denoted as FH-HB: 
 

• 2 2, ~ ind ( , ), 1, , ;i i i i iy N i m    =  

• 2 2, ~ ind ( , ), 1, , ;i v i vN x i m     =  

• Flat priors for unknown parameters: ( ) 1,    2( ) 1.v    

 

Note that in the FH-HB model, the sampling variance 2

i  is assumed to be known. Either a smoothed 

sampling variance 2

i  or a direct sampling variance estimate 2

is  will be used in place of 2.i  

 
HB Model 2: You-Chapman Model (You and Chapman, 2006), denoted as YCM: 
 

• 2 2, ~ ind ( , ), 1, , ;i i i i iy N i m    =  

• 2 2 2 2~ ind ,
ii i i i dd s     1, 1, , ;i id n i m= − =  

• 2 2, ~ ind ( , ), 1, , ;i v i vN x i m     =  

• 2( ) ~ IG( , ),i i ia b   where ia = 0.0001, ib = 0.0001, 1, , ;i m=  

• Flat priors for unknown parameters: ( ) 1,    2( ) 1.v    

 

The full conditional distributions for the Gibbs sampling procedure under both FH-HB and YCM can 

be found in You and Chapman (2006).  

 
HB Model 3: You (2016) Log-linear model on sampling variances, denoted as YLLM: 
 

• 2 2, ~ ind ( , ), 1, , ;i i i i iy N i m    =  

• 2 2 2 2~ ind , 1, 1, , ;
ii i i i d i id s d n i m   = − =  

• 2 2, ~ ind ( , ), 1, , ;i v i vN x i m     =  

• ( )2 2

1 2log( ) ~ log( ), , 1, , ;i iN n i m   + =  

• Flat priors for unknown parameters: ( ) 1,    1 2( , ) 1,     2( ) 1,v    2( ) 1.    

 

Note that model YLLM uses a log-linear model for the sampling variance 2 ,i  and extends the model 

proposed by Souza, Moura and Migon (2009) for sampling variances by using log ( )in  and adding a 

random effect to the regression part in the model. The full conditional distributions for the Gibbs sampling 

procedure are given in the Appendix.  

 
HB Model 4: Sugasawa, Tamae and Kubokawa (2017) model shrinking both means and 

variances, denoted as STKM: 
 

• 2 2, ~ ind ( , ), 1, , ;i i i i iy N i m    =  

• 2 2 2 2~ ind , 1, 1, , ;
ii i i i d i id s d n i m   = − =  

• 2 2, ~ ind ( , ), 1, , ;i v i vN x i m     =  
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• 2( ) ~ IG( , ),i i ia b    where ia  and ib  are known constants, (1),ia O=  1( );i ib O n−=  

• Flat priors for unknown parameters: ( ) 1,    2( ) 1,v    ( ) 1.    

 

Note that in STKM, for the inverse gamma model of 2 ,i  we choose 2ia =  and 1

i ib n−=  as suggested 

by Sugasawa et al. (2017). Ghosh et al. (2018) also used the same setting in their study of comparing HB 

estimators. The full conditional distributions for STKM can be found in Sugasawa et al. (2017).  

Note that the Chi-squared sampling variance modeling 2 2 2~
ii i i dd s    in the above HB Models 2-4 is 

based on normality and simple random sampling (Rivest and Vandal, 2002). For complex survey designs, 

the degrees of freedom id  may need to be determined more carefully. There is no sound theoretical result 

for determining the degrees of freedom (Dass et al., 2012). The approximation formula based on non-

normal unit level errors provided by Wang and Fuller (2003) and the simulation based guideline of 

Maples, Bell and Huang (2009) could be useful but require unit level data and an extensive simulation 

study. A careful determination of the degrees of freedom may provide a reasonably useful approximation. 

Moreover, Bayesian model fit analysis can also be helpful for model determination. 

 
4. Application 
 

In this section, we apply the models in Sections 2 and 3 to the Canadian Labour Force Survey (LFS) 

data and compare the EBLUP and HB estimates. The LFS releases monthly unemployment rate estimates 

for large areas such as the nation and provinces as well as local areas such as Census Metropolitan Areas 

(CMAs) and Census Agglomerations (CAs) across Canada. The direct LFS estimates for some local areas 

are not reliable exhibiting very large coefficient of variations (CVs) due to small sample sizes. Model-

based estimators are considered to improve the direct LFS estimates. As an illustration, we apply the Fay-

Herriot model to the May 2016 unemployment rate estimates at the CMA/CA level, and compare the 

model-based estimates and the direct estimates with the census estimates to compare the effects of 

sampling variance smoothing and modeling. Hidiroglou et al. (2019) also compared the model-based LFS 

estimates with the census estimates. For the unemployment rate estimation, the local area employment 

insurance monthly beneficiary rate is used as an auxiliary variable in the model. For comparison of point 

estimates, we compute the absolute relative error (ARE) of the direct and model estimates with respect to 

the census estimates for each CMA/CA as follows: 

 
Census Est

Census
ARE ,i i

i

i

 



−
=   

where Est

i  is the direct or the EBLUP/HB estimate and Census

i  is the corresponding census value of the 

unemployment rate. Then we take the average of AREs over CMA/CAs. For CV, we compute the average 

CVs of the direct and model-based estimates. We prefer a model with smaller ARE and smaller CV.  
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We first apply the models to all the 117 CMA/CAs with sample size 2,  and then apply them to 92 

CMA/CAs with sample size 5,  and finally 79 CMA/CAs with sample size 7.  Table 4.1 presents the 

average ARE and the corresponding average CV (in brackets). In Table 4.1, the model with Smoothed sv 

indicates that a smoothed sampling variance is used, Direct sv indicates that a direct sampling variance 

estimate is used.  

With Smoothed sv, both FH-EBLUP and FH-HB substantially improve the direct survey estimates 

with much smaller ARE and CV. In particular, FH-HB has the smallest ARE, and FH-EBLUP has the 

smallest CV. For example, over the 117 areas, the direct LFS estimator has ARE 0.263 with average CV 

0.329, FH-EBLUP Smoothed sv has ARE 0.124 with average CV 0.087, FH-HB Smoothed sv has ARE 

0.118 with average CV 0.116. The good performance of FH-EBLUP and FH-HB with Smoothed sv 

indicates that the smoothing GVF (2.2) is very useful and effective in improving the model-based 

estimates.  

With Direct sv, both FH-EBLUP and FH-HB perform the worst among all the models, with almost 

identical results under this scenario. The other three HB models perform better than the FH-EBLUP and 

FH-HB using direct sv. YLLM and STKM perform better than YCM with smaller ARE and smaller CV. 

YLLM and STKM perform very similarly for all the CMA/CA groups, and YLLM consistently has 

slightly smaller ARE than STKM, but YLLM has slightly larger CV than STKM. For example, over the 

117 areas, YLLM has ARE 0.135, STKM has ARE 0.137, and YLLM has average CV 0.123, and STKM 

has average CV 0.122. YCM has ARE 0.148 with CV 0.136, FH-HB has ARE 0.171 with CV 0.221.  

 
Table 4.1 

Comparison of average absolute relative error (ARE) and average CV in parenthesis 
 

CMA/CAs Direct  

LFS 

FH-EBLUP 

Smoothed sv 

FH-HB 

Smoothed sv 

FH-EBLUP 

Direct sv 

FH-HB 

Direct sv 

YCM 

Direct sv 

YLLM 

Direct sv 

STKM 

Direct sv 

Average over 117 CMA/CAs 

(sample size 2 ) 

0.263 

(0.329) 

0.124 

(0.087) 

0.118 

(0.116) 

0.170 

(0.238) 

0.171 

(0.221) 

0.148 

(0.136) 

0.135 

(0.123) 

0.137 

(0.122) 

Average over 92 CMA/CAs 

(sample size 5 ) 

0.216 

(0.262) 

0.124 

(0.076) 

0.116 

(0.103) 

0.133 

(0.123) 

0.132 

(0.123) 

0.132 

(0.121) 

0.125 

(0.117) 

0.127 

(0.116) 

Average over 79 CMA/CAs 

(sample size 7 ) 

0.181 

(0.232) 

0.122 

(0.057) 

0.113 

(0.094) 

0.126 

(0.115) 

0.122 

(0.115) 

0.122 

(0.115) 

0.118 

(0.114) 

0.120 

(0.113) 

 
Now we present a Bayesian model comparison using conditional predictive ordinate (CPO) for the four 

HB models with Direct sv. CPOs are the observed likelihoods based on the cross-validation predictive 

distribution ( )obs( )| .i if y y  We compute the CPO values for each observed data point ,obsiy  and larger CPO 

indicates that ,obsiy  supports the model and a better model fit. For model choice, we can compute the CPO 

ratio of model A against model B. If this ratio is greater than 1, then ,obsiy  supports model A. We compute 

the CPO ratio for YCM/FH-HB, YLLM/FH-HB and STKM/FH-HB, and count the number of the CPO 
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ratios are larger than 1. We can also plot the CPO values or summarize the CPO values by taking the 

average of the estimated CPOs. For more detail on CPO, see for example, Gilks, Richardson and 

Spiegelhalter (1996), page 153, You and Rao (2000), and Molina, Nandram and Rao (2014). Table 4.2 

presents the CPO mean and median values over the 117 CMA/CAs and the number of CPO ratios larger 

than 1.  

 
Table 4.2 

Summary of CPO values and CPO ratios over 117 CMA/CAs 
 

 FH-HB 

Direct sv 

YCM 

Direct sv 

YLLM 

Direct sv 

STKM 

Direct sv 

CPO Mean 0.1053 0.1222 0.1242 0.1238 

CPO Median 0.0976 0.1004 0.1045 0.1051 

# of CPO ratio >1 - 72 78 76 

 
It is clear from Table 4.2 that YCM, YLLM and STKM have larger CPO values than FH-HB, which 

indicate that the HB model with sampling variance modeling is preferred when the direct sampling 

variance estimates are used, and YLLM and STKM are better than YCM. For CPO ratios, among the 117 

areas, 72 areas/observations support YCM, 78 areas support YLLM and 76 areas support STKM. 

Therefore more observations support YCM, YLLM and STKM over FH-HB, and YLLM has the most 

number of CPO ratios that are larger than 1. The CPO comparison is consistent with the results reported in 

Table 4.1. For other model checking and evaluation methods, see Hidiroglou et al. (2019).  

 
5. Conclusion 
 

In this paper, we compare the model-based estimates under the Fay-Herriot model when sampling 

variances are smoothed and modeled. As in Hidiroglou et al. (2019), our results indicate that the Fay-

Herriot model can provide great improvement for the direct survey estimates for LFS rate estimation, even 

though more complex models such as unmatched models or time series models could be used (e.g., You, 

2008). Among all the estimators, FH-EBLUP and FH-HB using smoothed sampling variances perform the 

best in terms of ARE and CV reduction. Both FH-EBLUP and FH-HB using direct sampling variance 

estimates perform the worst. For HB modeling approach, both YLLM and STKM perform very well and 

are better than YCM, and YLLM is slightly better than STKM in our study. Thus if direct sampling 

variance estimates are used, YLLM or STKM model is suggested. Alternatively, smoothed sampling 

variances should be used in the Fay-Herriot model to overcome the sampling variance modeling difficulty 

as discussed in Section 3. The smoothed sampling variances based on the GVF model given by (2.2) in 

Section 2 can perform very well as shown in our study.  
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Appendix 

 
Full conditional distributions and sampling procedure for YLLM 
 

• ( )2 2 2, , , ~ (1 ) , ,i i v i i i i i iy N y x          + −   where 2 2 2 ,i v v i   = +  1, , ;i m=  

• ( ) ( ) ( )( )1 1
2 2 2

1 1 1
, , , ~ , ;

m m m

i v p i i i i v i ii i i
y N x x x x x     

− −

= = =
        

• ( )2 2 21
2 2 1

, , , ~ IG 1, ( ) ;
mm

v i i ii
y x     

=
  − −
    

• 2 2 2 2 2, , , , , ( ) ( ),i v i iy f h          
 

 where 2( )if   and 2( )ih  are ( )
2 21 ( )2

2 2
( ) ~IG , ,i i i i id y d s

if



+ − +

 

and ( )
2 2

2

(log ( ) )2

2
( ) exp ;i iz

ih
 




−
= −  

• ( ) ( ) ( )
1 1

2 2 2 2 2

2 1 1 1
, , , , , ~ log( ) , ;

m m m

i v i i i i i ii i i
y N z z z z z       

− −

= = =

      
 
    

• ( )( )2
2 2 2 21

2 2 1
, , , , , ~ IG 1, log( ) .

m
m

i v i ii
y z       

=
  − −
    

 

We use Metropolis-Hastings rejection step to update 2:i  
 

(1) Draw 2*

i  from ( )
2 21 ( )

2 2
IG , ;i i i i id y d s+ − +

 

(2) Compute the acceptance probability  2* 2( ) 2* 2( )( , ) min ( ) ( ),1k k

i i i ih h    = ;  

(3) Generate u  from Uniform (0, 1), if 2* 2( )( , ),k

i iu     the candidate 2*

i  is accepted, 

2 ( 1) 2*;k

i i + =  otherwise 2*

i  is rejected, and set 2 ( 1) 2( ).k k

i i + =  
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Assessing the coverage of confidence intervals under 
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Abstract 

This note presents a comparative study of three methods for constructing confidence intervals for the mean 

and quantiles based on survey data with nonresponse. These methods, empirical likelihood, linearization, and 

that of Woodruff’s (1952), were applied to data on income obtained from the 2015 Mexican Intercensal 

Survey, and to simulated data. A response propensity model was used for adjusting the sampling weights, and 

the empirical performance of the methods was assessed in terms of the coverage of the confidence intervals 

through simulation studies. The empirical likelihood and linearization methods had a good performance for 

the mean, except when the variable of interest had some extreme values. For quantiles, the linearization 

method had a poor performance, while the empirical likelihood and Woodruff methods had a better one, 

though without reaching the nominal coverage when the variable of interest had values with high frequency 

near the quantile of interest. 

 

Key Words: Confidence interval estimation; Empirical likelihood; Linearization; Missing at random; Nonresponse; 
Two-phase sampling. 

 

 

1. Introduction 
 

The 2015 Mexican Intercensal survey (MIC2015) conducted by the National Institute of Statistics and 

Geography (INEGI, 2015) collected information nationwide, using a probability sampling design in 1,643 

municipalities and through a census in 814 municipalities. In this study we use the census data 

corresponding to 441 municipalities from the state of Oaxaca. 

We focus on income as the variable of interest which exhibits a nonresponse rate of about 22.5%. 

Considering the respondents, the distribution of income has a high skewness mainly due to the presence of 

extreme values, and shows some values with high frequency. 

The objective of this study is to assess the empirical coverage rate of confidence intervals (CI) 

computed by three methods for the population mean and population quantiles, 0.1, 0.5 and 0.9, in survey 

data with nonresponse. Two-phase sampling is used with a random sample selected in the first phase, 

while in the second the sample is split into respondents and nonrespondents considering the nonresponse 

pattern of income in the census data. A response propensity model is used to adjust the weights for 

nonresponse. 



372 De La Riva Torres et al.: Assessing the coverage of confidence intervals under nonresponse 

 

 

Statistics Canada, Catalogue No. 12-001-X 

For the population mean, we consider the Hájek estimator and two methods for computing CIs: 

empirical likelihood (Berger, 2020) and linearization (Särndal, Swenson and Wretman, 1992, Sections 5.2 

and 5.7). Concerning the population quantiles, we consider the point estimator obtained by interpolation of 

the distribution function as in Woodruff (1952) and Graf and Tillé (2014), and three methods for 

computing CIs: empirical likelihood (Berger, 2020), Woodruff (Woodruff, 1952) and linearization 

(Deville, 1999). These methods are described in Section 2, the numerical results are presented in Section 3 

for the MIC2015 data and in Section 4 for some simulated populations. Some final comments are given in 

Section 5. 

 
2. Three methods for estimating confidence intervals 

 
2.1 Estimation using two-phase sampling 
 

We consider a finite population  = 1, 2, ,U N  and a probability sample s U  of fixed size ,n  

with first and second-order inclusion probabilities k  and ,kl  , ,k l U  .k l  Let ky  be the thk  value of 

the variable of interest ,y  and let 0  be a population parameter and 0̂  an estimator of 0 .  

We assume that the value ky  is available for a subset r s  only. Let k  denote the response 

probability for unit .k  Let kI  be a response indicator variable such that = 1kI  for k r  and = 0kI  for 

\ .k s r  We also assume that there is a vector of auxiliary variables x  observed for all .k s  We make 

the missing at random (MAR) assumption:  

 ( =1| , ) = ( =1| ) = .k k k k k kP I y P I k U  x x   

The response probabilities k  are used for adjusting the design weights. We assume that the sampling 

design and the response mechanism are independent as in Berger (2020). Borrowing from two-phase 

sampling theory (Särndal et al., 1992, Section 9.3) the weights adjusted for nonresponse are defined as 

* 1 =1/ ( )k k k  −  and the second-order inclusion probabilities as * = , , ,kl kl k l k l U      .k l  

The interest lies in estimating the population mean = kk U
Y y N

  and the population quantile given 

by  

 
( )( ) ( 1) ( 1)

( 1)

( ) ( 1)

= ,
d d d

q d

d d

y y qN N
Y y

N N

− −

−

−

− −  
+

−
 (2.1) 

where ( )iy  is the value for the thi  unit arranged in increasing order,  ( )= min : < , =1, ,ld l qN N l N  

and ( )( ) ( )= , =1, , .l j lj U
N I y y l N


  Formula (2.1) is obtained by considering a piecewise linear 

interpolation of the step distribution function ( ) = ( ) ,kk U
F y I y y N


  where ( ) =1kI y y  when 

.ky y  

These population parameters are respectively estimated by  
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*

*

ˆ
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
 (2.2) 

and 

 
( ) ( )( ) ( 1) ( 1)

( 1)

( ) ( 1)

ˆ ˆ
ˆ = ,

ˆ ˆ

d d d

q d

d d

y y qN N
Y y

N N

− −

−

−

− −
+

−
 (2.3) 

where  ( )
ˆ ˆ= min : < , = 1, , ,l rd l qN N l n  *ˆ = 1 ,kk r

N 
  *

( ) ( )
ˆ = ( )l k l kk r

N I y y 


  and 

= .r kk s
n I

  

These estimators and the CIs described in the following subsection are based on the assumption that 

the response probabilities k  are known, unlike Berger (2020) and Kim and Kim (2007). However, we use 

ˆ
k  instead of k  in the simulation studies, where  

 
( )
( )

ˆexpˆ = ,
ˆ1 exp

k

k

k

k s





 
+

x

x

T

T
  

with ̂  obtained by fitting a logistic regression using .s  This leads to the estimators known as the 

empirical double expansion estimators (Haziza and Beaumont, 2017). 

 
2.2 Methods for estimating confidence intervals 
 

2.2.1 Linearization 
 

The linearization method relies on the assumption that the distribution of 0̂  is approximately normal. 

A CI for 0  is  

 1/2 1/2

0 1 / 2 0 0 1 / 2 0
ˆ ˆ ˆ ˆ[ ( )] , [ ( )] ,z V z V    − −

 − +   (2.4) 

where 1 −  is the confidence level, also known as nominal coverage; see Särndal et al. (1992, expression 

5.2.3). In practice 0
ˆ( )V   is estimated. For the estimators given by (2.2) and (2.3), a variance estimator is 

given by  

 
* * *

0 * * *

ˆ ˆ( )ˆˆ ( ) = ,kl k l k l

k r l r kl k l

z z
V

  


   

−
  (2.5) 

where ( )ˆ ˆˆ =k kz y Y N−  for ˆ
Y  (Särndal et al., 1992, Result 5.7.1) and ( ) ( )ˆ ˆ ˆˆ = ( ) ( )k k q qz I y Y q f Y N−  −  

for ˆ
qY  (Deville, 1999). The density function f  was obtained in two ways: a) using a Gaussian kernel as in 

Osier (2009) and b) using the nearest neighbour technique as in Graf and Tillé (2014). We present the 

results pertaining to a), since the technique in b) led to similar results. 
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We note that using (2.5) with ˆ
k  instead of k  might lead to overestimation of the variance of the 

empirical double expansion estimator and to wider CIs; see the expression (17) in Kim and Kim (2007) 

associated with the estimators of .Y  

 
2.2.2 Empirical likelihood method 
 

The empirical likelihood approach assumes that 0  is the unique solution of the estimating equation 

( ) = ( ) = 0kk U
G g 

  for a given function .kg  In particular, we use: 
 

i) ( ) =k kg y −  for 
0 = .Y  

ii) ( ) = ( , )k kg y q   −  for 0= ,qY  where ( ) ( ) ( 1) ( ) ( 1)( , ) = ( < ) ( = )( ) ( )k k l k l l l ly I y y I y y y y y   − −+ − −  

and  ( )= min : > .jl j y   

 

The empirical log-likelihood function in Berger and De La Riva Torres (2016) for a one-stage 

sampling design without stratification or auxiliary information is  

 max
:

( ) = log( ) : > 0, ( ) = 0, = ,max
k

k k k k k k
m k s k s k s k s

m m m g m n  
   

  
 
  
    (2.6) 

where  :km k s  satisfies the design and the parameter constraints =k kk s
m n

  and 

( ) = 0.k kk s
m g 

  

In the presence of nonresponse, we use (2.6) replacing ( ) = 0k kk s
m g 

  with 

( ) = 0.k k k kk s
m I g  

  A CI for 0  is given by  

    2 2

1 1
ˆ ˆmin : ( ) ( ) , max : ( ) ( ) ,R R            (2.7) 

where  max 0 max
ˆˆ ( ) = 2 ( ) ( )R   −  and 2

1 ( )   is the ( )1 − -quantile of the 2

1  distribution. The 

estimator 
0 { } max
ˆ := argmax ( )   corresponds to (2.2) and (2.3), respectively. 

We computed (2.7) using a root search method, calculating ˆ ( )R   for several values of ,  where 

max ( )  for a given value   was obtained by a modified Newton-Raphson algorithm as in Wu (2004). 

 
2.2.3 Woodruff method for quantiles 
 

The method of Woodruff (1952) is based on the estimated distribution function ˆ ( ).F y  For a quantile 

,qY  the variance of ˆ ( )qF Y  can be approximated using the Taylor linearization method with linearized 

variable ( )= ( ) ,k k qz I y Y q N −  while the variance is estimated using (2.5) with ˆ =kz  

( )ˆ ˆ( ) .k qI y Y q N −  Assuming normality of ˆ ( )qF Y  and using (2.4), it is possible to find a CI  1 2,c c  for 

( ),qF Y  which leads to 1 1

1 2
ˆ ˆ( ), ( )F c F c− −    for .qY  
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3. Empirical study based on data from the populations 

MIC2015_Oax and MIC2015_Oaxtrunc 
 

The population census considered in this work consisted of 208,101 inhabitants with complete 

responses in a vector x  of six auxiliary variables: age, educational level, employment status, gender, 

indigenous language, and marital status. The variable of interest y  corresponds to the monthly income. 

A logistic regression with some two-way interactions was fitted to the 208,101 observations, with 

response variable = 1kI  if an income value was given by individual ,k  and = 0kI  if it was not, and the 

vector x  of six explanatory variables. This model was then applied to the population of 161,296 

individuals, which corresponds to those with =1.kI  This led to a set of response propensity values 

1 161,296= ( , , ).    

The set of 161,296 respondents, with response propensities 
1 161,296, , ,   is referred to as 

MIC2015_Oax population. The distribution of income in this population is highly asymmetric partly due 

to the presence of some very large values. When removing the 80 observations with income larger than or 

equal to 50,000, we obtain a truncated population referred to as MIC2015_Oaxtrunc, which is also used in 

our experiments. 

The step distribution function of income has only 913 and 887 jumps in each population respectively, 

with some large jumps at income values that are near the quantiles of interest. In particular, =y 2,571 

accounts for 7.3% of the distribution and is very close to the quantile 0.5 ;Y  = 643y  (1.1%) and = 857y  

(4.2%) are close to 0.1;Y  whereas =y 6,429 (2.8%) and =y 7,000 (1.1%) are close to 0.9 .Y  

 
3.1 Numerical results 
 

For each population, the coverage rate of the CI for each method was estimated as follows: 

 

1. A simple random sample s  of size {1,000; 5,000}n  was selected. 

2. For each unit k s  with response propensity ,k  we generated kI  from a Bernoulli ( ).k  

3. Two cases were considered: a) full response and b) average nonresponse rate of 22.5%. For the 

latter, a logistic regression with two-way interactions, with I  as the response and the six 

explanatory variables, was selected by forward selection using the BIC criterion. The estimated 

response probabilities ˆ
k  were obtained with the selected model. 

4. 90% CIs were computed using linearization (Lin), empirical likelihood (EL) and the Woodruff 

(W) method for quantiles.  

5. Steps 1 to 4 were repeated =M 5,000 times and the coverage rate for each method and for each 

parameter was calculated as the proportion of CIs that covered the corresponding parameter 

value.  
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Table 3.1 shows the results for =n 5,000. Table 3.2 shows the absolute value of the percent relative 

bias, ( )
0 0

ˆRB = 100   −  with 0 0
ˆ ˆ= ,i M   and of the percent relative root mean square error, 

 
1/2

2

0 0 0
ˆRRMSE =100 ( ) .i M  −  Figure 3.1 presents the distribution of the =M 5,000 estimates 

for the nonresponse scenario for each parameter; the corresponding distributions for the full response 

scenario are qualitatively similar. The results for =n 1,000 are omitted since they were similar to those 

obtained with =n 5,000. From Tables 3.1 and 3.2 and Figure 3.1, we make the following remarks: 
 

a) For ,Y  Lin and EL methods perform similarly: they have a poor performance (coverage as low 

as 72.9%) for MIC2015_Oax, and a good one for MIC2015_Oaxtrunc, reaching the nominal level 

with similar tail error rates and CI average length. Figure 3.1 a) shows that the distribution of ˆ
Y  

is symmetric for MIC2015_Oaxtrunc and highly asymmetric for MIC2015_Oax; this asymmetry 

seems to be related to the 80 extreme income values not present in MIC2015_Oaxtrunc. 

b) For quantiles, Lin method has a poor performance with the shortest CI average length in both 

scenarios, in spite of the expected overestimation of the variance in the nonresponse scenario. 

This method relies on the normality of ˆ ,qY  but Figures 3.1 b), c) and d) show that the 

distribution of ˆ
qY  is far from being symmetric and unimodal, with modes around income values 

with high frequency. Especially for 0.1 ,Y  where the coverage rate is as low as 31.4%, the 

distribution of 0.1Ŷ  is multimodal with a high proportion of values that are farther from 0.1Y  than 

half the CI average length. EL and W methods generally perform well, except for 0.5Y  in the full 

response scenario and for 0.9Y  in MIC2015_Oax. The low coverages seem to be related to the 

observed high frequency of the two income values 2,571 (7.3%) and 6,429 (2.8%). The first one 

is very close to 0.5 =Y 2,570 and some of the CIs for 0.5Y  are too narrow when 0.5
ˆ <Y 2,571. The 

second one is farther from 0.9Y  in MIC2015_Oax than in MIC2015_Oaxtrunc, reducing the 

proportion of CIs that cover 0.9Y  when 0.9Ŷ  6,429, see Figure 3.1 d), where 0.9 =Y 6,921 in 

MIC2015_Oax and 0.9 =Y 6,856 in MIC2015_Oaxtrunc.  

c) Table 3.2 shows that the RB is small, less than 3.3%, for all parameters. When only a simple 

adjustment with the percentage of nonresponse is applied (not shown in this note), the RB is 

larger and all the methods have a very poor performance. These results suggest that the use of a 

propensity model helps to obtain a RB comparable with that of the full response case. For 0.1 ,Y  

the empirical double expansion estimator is even less biased than the one associated with the 

full response scenario; however their RRMSE are comparable and the largest among those for 

the parameters of interest, since the distribution of the estimators is multimodal in both 

scenarios, see Figure 3.1 b).  
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Figure 3.1 Distribution of the =M 5,000 estimates of Y  in a), and of 
0.1

,Y
0.5

Y  and 
0.9

Y  in b) to d) for the 

case with an average nonresponse of 22.5% and =n 5,000. The upper panel corresponds to 

MIC2015_Oax and the lower to MIC2015_Oaxtrunc. The dotted lines indicate the population 

values ,Y
0.1

,Y
0.5

Y  and 
0.9

.Y  
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Table 3.1 

Coverages of 90% CIs for the parameters ,Y  
0.1

,Y  
0.5

Y  and 
0.9

,Y  for =y income. Average nonresponse of 

22.5% (NR) and Full response (Full) 
 

Parameter 

0
  

Method Coverage 

% 

Lower tail 

err. rates % 

Upper tail 

err. rates % 

CI average 

length 

NR Full NR Full NR Full NR Full 

MIC2015_Oax 

Y  EL 79.1* 72.9*   4.5   3.8* 16.4* 23.3* 370.8 335.4 

Lin 80.6* 73.8*   0.3*   0.1* 19.1* 26.1* 345.3 309.9 

0.1Y  EL 91.1* 90.5   6.0*   4.1*   2.9*   5.4 192.8 179.5 

W 90.6 89.8   6.2*   4.2*   3.2*   6.0* 191.2 177.1 

Lin 37.9* 35.1* 28.9* 19.2* 33.3* 45.7* 114.4   89.4 

0.5Y  EL 88.2* 82.3*   1.6*   0.7* 10.2* 17.1* 274.6 225.8 

W 88.0* 81.0*   1.7*   0.7* 10.3* 18.3* 274.4 224.1 

Lin 79.0* 88.0* 21.0* 12.0*   0.0*   0.0* 152.2 127.3 

0.9Y  EL 84.0* 83.0*   2.6*   2.7* 13.3* 14.3* 527.2 470.2 

W 86.1* 84.3*   2.5*   2.7* 11.4* 13.0* 533.8 474.2 

Lin 72.3* 73.5*   0.4*   0.1* 27.3* 26.4* 392.8 346.6 

MIC2015_Oaxtrunc
 

Y  EL 90.5 90.6   6.4*   4.4   3.0*   5.0 173.7 147.5 

Lin 90.8* 90.1   5.7*   4.2*   3.5*   5.6* 171.2 145.0 

0.1Y  EL 89.8 89.9   6.8*   4.0*   3.4*   6.1* 191.7 178.7 

W 89.1* 89.1*   7.0*   4.1*   4.0*   6.8* 190.0 176.2 

Lin 35.5* 31.4* 29.4* 21.0* 35.1* 47.6* 104.9   81.4 

0.5Y  EL 87.2* 80.4*   1.6*   0.9* 11.2* 18.7* 267.8 218.5 

W 87.1* 79.3*   1.6*   0.9* 11.3* 19.8* 267.7 216.7 

Lin 80.0* 87.4* 20.0* 12.6*   0.0*   0.0* 144.9 121.0 

0.9Y  EL 90.3 90.1   4.4   4.4*   5.3   5.5 521.3 470.8 

W 92.3* 91.9*   4.3*   4.3*   3.5*   3.8* 528.2 475.3 

Lin 75.6* 77.0*   0.1*   0.1* 24.3* 23.0* 411.7 365.5 

* Coverages and tail error rates significantly different from 90% and 5% respectively (Feller, 1968, page 182). p -value < 5% 

MIC2015_Oax: N = 161,296,  = 0.08,  = 89.9; MIC2015_Oaxtrunc: N = 161,216,  = 0.21,  = 3.48, where 

= corr( , )y   and 
3/2

2
31 1

1=1 =1
= ( ) ( ) .

N N

i iNN i i
y y y y

−

 − −    

 
Table 3.2 

Percent relative bias (RB) and percent relative root mean squared error (RRMSE) of estimators of ,Y  
0.1

,Y  

0.5
Y  and 

0.9
,Y  based on 5,000 samples. Average nonresponse of 22.5% (NR) and Full response (Full) 

 

Population Y  0.1
Y  

0.5
Y  

0.9
Y  

│RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ 

NR Full NR Full NR Full NR Full NR Full NR Full NR Full NR Full 

MIC2015_Oax
 

0.30 0.01 3.8 3.2 0.58 3.13 10.4 9.9 1.96 0.93 4.8 3.4 1.79 1.68 3.3 3.0 
MIC2015_Oaxtrunc

 
0.27 0.02 1.5 1.3 0.71 3.23 10.5 10.0 1.87 0.96 4.8 3.5 1.05 0.95 3.0 2.8 

 
4. Simulated populations 
 

In order to control the asymmetry of the distribution of ,y  the correlation corr ( , )y   and the 

percentage of nonresponse, we simulated two symmetric and two asymmetric populations of size =N

50,000 with a variable of interest y  and six auxiliary variables 1 6, , ,x x  as follows. 
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1. 50,000 simple random samples for each of the variables 1 6, ,x x  were generated 

independently from a (0,1)N  distribution.  

2. The response probabilities k  were obtained using a logistic regression with 

1 6= = = 0.3  −  and 0  chosen so that the average nonresponse was equal to 24.8%.  

3. Two settings were considered for the distribution of :y  

i) Symmetric. ky  was generated from a 2( , ),N    with =1 + 2.16 
6

=1
corr ( , ) kjj

y x x  and 

2 = 4.67 2*(1 6corr ( , )),y x−  where corr ( , ) = corr ( , ), {1, , 6}.jy x y x j  

ii) Asymmetric. = exp( ),k ky z  where kz  was generated from a 2( , ),N    with 
6

=1
= corr ( , ) kjj

z x x   and 2 2=1 6corr ( , ),z x −  where corr ( , ) = corr ( , ), {1, ,6}.jz x z x j  

Both corr ( , )y x  and corr ( , )z x  were chosen so that corr ( , )y   was approximately equal to -0.2 

or -0.8.  

 
4.1 Numerical results 
 

The coverage rate of the CIs was computed as in Section 3.1, with = 500n  and using a logistic 

regression without interactions to obtain ˆ , .k k s   

Table 4.1 reports the results for the populations with corr ( , ) = 0.8.y  −  Table 4.2 shows the │RB│ 

and │RRMSE│ of the estimators. Numerical results for populations with corr ( , ) = 0.2y  −  are omitted 

since they were similar to those obtained for populations with corr ( , ) = 0.8.y  −  We make the following 

observations: 

a) EL and Lin methods have a similar reasonable performance for ,Y  though the upper tail error 

rates are larger than 5% in the asymmetric population.  

b) For quantiles, Lin method has the lowest and the highest coverage of 85.7 and 97.9% 

respectively. Unlike the distribution of ˆ
qY  shown in Figure 3.1, the distribution of ˆ

qY  for the 

simulated populations is symmetric and unimodal in all cases. EL and W methods perform well, 

reaching the nominal level in all cases with comparable tail error rates and CI average length.  

c) Weighting adjustment in the nonresponse scenario helps to get a RB similar to that of the full 

response.  

d) The coverage rate of the CI for each method is larger in the nonresponse scenario than in the 

full response, and in some cases it is also larger than the nominal level. This might be related to 

the impact of having treated the ˆ
k  as fixed in the nonresponse case.  
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Table 4.1 

Simulated populations. Coverages of 90% CIs for ,Y  
0.1

,Y  
0.5

Y  and 
0.9

,Y  for y  with corr( , ) = 0.8.y  −  

Average nonresponse of 24.8% (NR) and Full response (Full) 
 

Parameter 

0
  

Method Coverage 

% 

Lower tail 

err. rates % 

Upper tail 

err. rates % 

CI average 

length 

NR Full NR Full NR Full NR Full 

Asymmetric 

Y  EL 90.9* 88.6* 2.2* 5.1   6.9* 
  6.3 0.50 0.32 

Lin 90.1 88.6* 0.5* 3.2*   9.4*   8.2* 0.48 0.31 

0.1Y  EL 90.6 89.5 4.0* 4.6   5.4   5.9 0.07 0.07 

W 90.3 89.5 3.6* 4.1*   6.2*   6.4* 0.07 0.07 

Lin 97.9* 97.4* 1.2* 1.5*   1.0*   1.2* 0.10 0.10 

0.5Y  EL 93.6* 90.5 3.0* 4.4*   3.4* 
  5.1 0.22 0.19 

W 93.5* 90.4 2.9* 4.4   3.6* 
  5.1 0.22 0.19 

Lin 92.5* 88.9* 2.9* 5.0   4.6   6.2* 0.21 0.18 

0.9Y  EL 92.7* 90.3 2.6* 4.1*   4.7   5.7* 1.35 0.91 

W 93.0* 90.4 2.7* 4.6   4.3* 
  5.0 1.36 0.92 

Lin 87.4* 85.7* 2.6* 4.1* 10.1* 10.2* 1.23 0.87 

Symmetric 

Y  EL 93.6* 90.2 3.3* 5.0   3.1*   4.8 0.40 0.32 

Lin 93.5* 89.9 3.1* 5.2   3.4*   4.9 0.39 0.32 

0.1Y  EL 91.2* 90.9* 3.6* 3.9*   5.2   5.2 0.59 0.55 

W 91.0* 90.6 3.2* 3.6*   5.8*   5.8* 0.59 0.56 

Lin 88.6* 88.2* 5.8* 5.9*   5.7*   6.0* 0.57 0.53 

0.5Y  EL 92.8* 90.1 3.3* 4.6   3.9*   5.3 0.46 0.39 

W 92.9* 90.1 3.1* 4.6   4.0*   5.3 0.46 0.39 

Lin 92.4* 90.2 3.4* 4.7   4.2*   5.2 0.46 0.39 

0.9Y  EL 92.9* 90.4 2.2* 3.6*   4.9   6.0* 0.76 0.54 

W 93.3* 90.3 2.2* 4.2*   4.5   5.4 0.77 0.54 

Lin 90.3 89.1* 2.1* 3.2*   7.6*   7.7* 0.74 0.53 

* Coverages and tail error rates significantly different from 90% and 5% respectively (Feller, 1968, page 182). p -value < 5% 

Symmetric: = 0.02; Asymmetric: = 6.2; where 
3/2

2
31 1

1=1 =1
= ( ) ( ) .

N N

i iNN i i
y y y y

−

 − −    

 
Table 4.2 

Percent relative bias (RB) and percent relative root mean squared error (RRMSE) of estimators of ,Y  
0.1

,Y  

0.5
Y  and 

0.9
,Y  based on 5,000 samples. Average nonresponse of 24.8% (NR) and Full response (Full) 

 

Population  Y  0.1
Y  

0.5
Y  

0.9
Y  

│RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ 

NR Full NR Full NR Full NR Full NR Full NR Full NR Full NR Full 

Asymmetric  0.11 0.13   9.0 5.9 0.56 0.53   7.8 7.5 0.00 0.07 6.0 5.7 0.53 0.43 9.7 7.6 

Symmetric  0.12 0.09 10.3 9.5 0.98 0.91 10.2 9.7 0.33 0.35 12.7 11.8 0.43 0.34 5.5 4.3 

 
5. Conclusions 
 

Considering the distribution of y  (income), it was observed that a poor performance of a method in the 

full response scenario generally corresponded to a poor one in the nonresponse scenario, although in 

several cases the coverage rate was larger in the latter. This suggests that having treated the ˆ
k  as fixed 
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had little effect on the performance of the methods as compared to the impact of the characteristics of the 

distribution of .y  Extreme values were related to a low coverage of the CIs for the mean for both 

empirical likelihood and linearization methods. The presence of values with high frequency near a 

quantile of interest also had an impact on the coverage of its CIs; this might be related to the behavior of 

the step distribution function, where the jumps in ( )F y  and ˆ ( )F y  are usually required to be small in 

order to obtain a good performance of the Woodruff method (Lohr, 2010, page 390). In general, the 

linearization method had a poor performance for quantiles, while the performance of empirical likelihood 

and of Woodruff were similar and better; this behavior has also been observed in Berger and 

De La Riva Torres (2016). While Woodruff method is simple and easy to implement, an advantage of the 

empirical likelihood method is that it can be used for parameters other than quantiles. 
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with MathType for the mathematical expressions. A pdf version is also required for formulas and figures. 
 

1. Layout 
 

1.1 Documents should be typed entirely double spaced with margins of at least 1½ inches on all sides. 

1.2 The documents should be divided into numbered sections with suitable verbal titles. 

1.3 The name (fully spelled out) and address of each author should be given as a footnote on the first page of the manuscript. 

1.4 Acknowledgements should appear at the end of the text. 

1.5 Any appendix should be placed after the acknowledgements but before the list of references. 
 

2. Abstract and Introduction 
 

2.1 The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid 

mathematical expressions in the abstract. 

2.2 The last paragraph of the introduction should contain a brief description of each section. 
 

3. Style 
 

3.1 Avoid footnotes and abbreviations. 

3.2 Limit the use of acronyms. If an acronym is used, it must be defined the first time it occurs in the paper. 

3.3 Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(·)” and 

“log(·)”, etc. 

3.4 Short formulae should be left in the text but everything in the text should fit in single spacing. Long and important equations 

should be separated from the text and numbered with arabic numerals on the right if they are to be referred to later. Use a 

two-level numbering system based on the section of the paper. For example, equation (4.2) is the second important equation 

in section 4. 

3.5 Bold fonts should normally be used to distinguish vectors and matrices from scalars. 
 

4. Figures and Tables 
 

4.1 All figures and tables should be numbered with arabic numerals, with titles that are as self explanatory as possible, at the top 

of tables or figures. Use a two-level numbering system based on the section of the paper. For example, table 3.1 is the first 

table in section 3. 

4.2 A detailed textual description of figures may be required for accessibility purposes if the message conveyed by the image is 

not sufficiently explained in the text. 
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5.1 References in the text should be cited with authors’ names and the date of publication. If part of a reference is cited, indicate 

after the reference, e.g., Cochran (1977, page 164). 

5.2 The first time a reference is cited in the text, the name of all authors must be written. For subsequent occurrences, the names 

of all authors can again be written. However, if the reference contains three or more authors, the names of the second and 

subsequent authors can be replaced with “et al.”. 

5.3 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 

chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year of publication. 
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