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Waksberg Invited Paper Series 
 

 

The journal Survey Methodology has established in 2001 an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 

prominent survey statistician is chosen by a four-person selection committee appointed by Survey Methodology 

and the American Statistical Association. The selected statistician is invited to write a paper for Survey 

Methodology that reviews the development and current state of an important topic in the field of survey 

statistics and methodology. The paper reflects the mixture of theory and practice that characterized 

Joseph Waksberg’s work. 

This issue of Survey Methodology opens with the 20th paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Michael A. Hidiroglou 

(Chair), Bob Fay, Jean Opsomer and Elizabeth Stuart for having selected Roger Tourangeau as the author 

of 2020 Waksberg Award paper. 

 

 

 

2020 Waksberg Invited Paper 

Author: Roger Tourangeau 
 

Roger Tourangeau is a former Vice President at Westat, where he co-directed the Methodology Unit. 

Before joining Westat, he was the Director of the Joint Program in Survey Methodology at the University 

of Maryland and a Research Professor at the University of Michigan’s Institute for Social Research. 

Tourangeau is the lead author on two books—The Psychology of Survey Response (with Lance Rips and 

Kenneth Rasinski), the winner of the 2006 American Association for Public Opinion Research (AAPOR) 

Book Award, and The Science of Web Surveys (with Frederick Conrad and Mick Couper). He has 

published more than 90 articles on survey methods topics. His work has been supported by grants from the 

National Science Foundation, the National Institute on Drug Abuse, and the National Institute of Child 

Health and Human Development. He has won numerous awards and honors. He was made a Fellow of the 

American Statistical Association (ASA) in 1999; received the Helen Dinerman Award (the highest honor 

given by the World Association for Public Opinion Research) in 2002; received the AAPOR Innovators 

Award (with Thomas Jabine, MironStraf, and Judy Tanur) in 2006;chaired the Survey Research Methods 

Section of the ASA in 2006; co-founded the Journal of Survey Statistics and Methodology in 2012; served 

as AAPOR’s President in 2016-2017; was the 2018 Morris Hansen Lecturer (sponsored by the 

Washington Statistical Society); and was named the 2020 Sirken Lecturer by AAPOR and ASA. 
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Waksberg Award honorees and their invited papers since 2001 
 

2021 Sharon Lohr, Manuscript topic under consideration, (expected for vol. 47, 2). 

2020 Roger Tourangeau, “Science and survey management”. Survey Methodology , vol. 47, 1, 3-28. 

2019 Chris Skinner. 

2018 Jean-Claude Deville, “De la pratique à la théorie : l’exemple du calage à poids bornés”. 

10ème Colloque francophone sur les sondages, Université Lumière Lyon 2. 

2017 Donald Rubin, “Conditional calibration and the sage statistician”. Survey Methodology, vol. 45, 2, 

187-198. 

2016 Don Dillman, “The promise and challenge of pushing respondents to the Web in mixed-mode 

surveys”. Survey Methodology, vol. 43, 1, 3-30. 

2015 Robert Groves, “Towards a quality framework for blends of designed and organic data”. 

Proceedings: Symposium 2016, Growth in Statistical Information: Challenges and Benefits. 

2014 Constance Citro, “From multiple modes for surveys to multiple data sources for 

estimates”. Survey Methodology, vol. 40, 2, 137-161. 

2013 Ken Brewer, “Three controversies in the history of survey sampling”. Survey 

Methodology, vol. 39, 2, 249-262. 

2012 Lars Lyberg, “Survey quality”. Survey Methodology, vol. 38, 2, 107-130. 

2011 Danny Pfeffermann, “Modelling of complex survey data: Why model? Why is it a problem? How 

can we approach it?”. Survey Methodology, vol. 37, 2, 115-136. 

2010 Ivan Fellegi, “The organisation of statistical methodology and methodological research in national 

statistical offices”. Survey Methodology, vol. 36, 2, 123-130. 

2009 Graham Kalton, “Methods for oversampling rare subpopulations in social surveys”. Survey 

Methodology, vol. 35, 2, 125-141. 

2008 Mary Thompson, “International surveys: Motives and methodologies”. Survey 

Methodology, vol. 34, 2, 131-141. 

2007 Carl-Erik Särndal, “The calibration approach in survey theory and practice”. Survey 

Methodology, vol. 33, 2, 99-119. 

2006 Alastair Scott, “Population-based case control studies”. Survey Methodology, vol. 32, 2, 123-132. 

2005 J.N.K. Rao, “Interplay between sample survey theory and practice: An appraisal”. Survey 

Methodology, vol. 31, 2, 117-138. 

2004 Norman Bradburn, “Understanding the question-answer process”. Survey Methodology, vol. 30, 

1, 5-15. 

2003 David Holt, “Methodological issues in the development and use of statistical indicators for 

international comparisons”. Survey Methodology, vol. 29, 1, 5-17. 

2002 Wayne Fuller, “Regression estimation for survey samples”. Survey Methodology, vol. 28, 1, 5-23. 

2001 Gad Nathan, “Telesurvey methodologies for household surveys – A review and some thoughts 

for the future”. Survey Methodology, vol. 27, 1, 7-31. 
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1. Roger Tourangeau, 1601 Third Avenue, Apt. 19AW, New York, NY 10128. E-mail: RTourang@gmail.com. 

 

Science and survey management 

Roger Tourangeau1 

Abstract 

It is now possible to manage surveys using statistical models and other tools that can be applied in real time. 

This paper focuses on three developments that reflect the attempt to take a more scientific approach to the 

management of survey field work: 1) the use of responsive and adaptive designs to reduce nonresponse bias, 

other sources of error, or costs; 2) optimal routing of interviewer travel to reduce costs; and 3) rapid feedback 

to interviewers to reduce measurement error. The article begins by reviewing experiments and simulation 

studies examining the effectiveness of responsive and adaptive designs. These studies suggest that these 

designs can produce modest gains in the representativeness of survey samples or modest cost savings, but can 

also backfire. The next section of the paper examines efforts to provide interviewers with a recommended 

route for their next trip to the field. The aim is to bring interviewers’ field work into closer alignment with 

research priorities while reducing travel time. However, a study testing this strategy found that interviewers 

often ignore such instructions. Then, the paper describes attempts to give rapid feedback to interviewers, 

based on automated recordings of their interviews. Interviewers often read questions in ways that affect 

respondents’ answers; correcting these problems quickly yielded marked improvements in data quality. All of 

the methods are efforts to replace the judgment of interviewers, field supervisors, and survey managers with 

statistical models and scientific findings. 
 

Key Words: Survey management; Responsive design; Adaptive design; Optimal routing. 

 

 

1. Introduction 
 

Surveys are in trouble these days, faced with the twin dilemmas of rising costs and falling response 

rates (e.g., Tourangeau, 2017; Williams and Brick, 2018). Both trends have been apparent in the United 

States since the 1970s (Atrostic, Bates, Burt and Silberstein, 2001; Steeh, Kirgis, Cannon and Dewitt, 

2001), but seem to have accelerated in the last ten years or so. The same trends hold throughout the 

developed world (de Leeuw and de Heer, 2002). It seems fair to say that survey researchers do not really 

know what hit them (although see Brick and Williams (2013), for a thoughtful exploration of the possible 

causes behind these trends). But it is clear that fewer and fewer people want to do surveys these days; the 

downward trend in response rates mainly reflects increasing resistance to surveys among members of the 

general public. 

Partly in response to this global industry-wide crisis, researchers have taken a closer look at the impact 

of falling response rates on the accuracy of survey estimates and have also proposed various measures to 

counter declining response rates. For example, more and more surveys have begun to offer incentives, 

make use of advance letters, and increase the number of contact attempts they make.  

But another trend has been the use of a range of methods to improve the management of surveys to 

reduce the potential for error, data collection costs, or both. In Section 2, we review these efforts, 

generally known as responsive and adaptive designs. In Section 3, we look at another method for reducing 

cost and increasing efficiency in face-to-face surveys. This method ‒ optimal routing ‒ involves survey 

managers giving field interviewers detailed instructions about which cases to try to interview and what 
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route to follow in their next venture into the field. In Section 4, we look at another development with the 

potential to improve the performance of interviewers with the computer audio-recording of interviews, or 

CARI (Hicks, Edwards, Tourangeau, McBride, Harris-Kojetin and Moss, 2010). CARI allows central 

office staff the opportunity to hear how the interviewers are administering the questions in the field and 

make midcourse corrections in their performance. Research has shown that field interviewers depart from 

script more often than telephone interviewers do (Schaeffer, Dykema and Maynard, 2010; West and Blom, 

2017), presumably because telephone interviewers can be monitored and given feedback in real time. In 

this fourth section, we describe two experiments in which central office staff provided rapid feedback to 

field interviewers ‒ feedback provided within two or three days of the interview. What these techniques 

have in common is replacing the judgment of interviewers and field staff with the evidence- based 

prescriptions of survey managers ‒ that is, they are attempts to replace management art with management 

science. Finally, Section 5 presents some conclusions. 

 
2. Responsive and adaptive design 
 

Responsive and adaptive designs refer to a family of methods for tailoring field work to reduce bias, 

variance, or cost (see Chun, Heeringa and Schouten (2018); Schouten, Peytchev and Wagner (2017); and 

Tourangeau, Brick, Lohr and Li (2017), for reviews). With responsive designs, researchers use multiple 

phases of data collection to reduce survey costs or errors. Adaptive designs use various forms of case 

prioritization, tailoring, and rules for stopping data collection to achieve similar goals. 

Groves and Heeringa (2006) got this particular ball rolling with their description of responsive designs: 
 

Responsive designs are organized about design phases. A design phase is a time period of 

a data collection during which the same set of sampling frame, mode of data collection, 

sample design, recruitment protocols, and measurement conditions are extant. For 

example, a survey may start with a mail questionnaire attempt in the first phase, follow it 

with a telephone interview phase on non-respondents to the first phase and then have a 

final third phase of face-to-face interviewing. … Note that this use of “phase” includes 

more design features than merely the sample design, which are common to the term 

“multi-phase sampling”. (Pages 440-441) 
 

Of course, the American Community Survey had been using a three-phase design (mail followed by 

telephone follow-up followed by face-to-face follow-up with a subsample of the remaining cases) just like 

the one Groves and Heeringa described years before Groves and Heeringa dubbed these “responsive 

designs” (U.S. Census Bureau, 2014). 

Groves and Heeringa cite several surveys that used responsive designs but focus mainly on Cycle 6 of 

the National Survey of Family Growth (NSFG). Most of the surveys they discuss, including Cycle 6 of the 

NSFG, applied two-phase sampling (that is, they selected a subsample of the nonrespondents remaining at 

a certain point in the field period and restricted further follow-up to this subsample) and offered larger 

incentives or made other changes to the data collection protocol for these final-phase cases. The real 
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innovation in the NSFG was not in its use of multiple phases of sampling (which had been around since 

Hansen and Hurwitz (1946)) or multiple modes of data collection (in fact, in the NSFG, all the cases were 

interviewed face-to-face) but in the application of paradata and real-time propensity modeling to guide the 

field work. The subsampling of nonrespondents in the Cycle 6 of the NSFG was based on propensity 

models that were updated frequently and that incorporated information gleaned from prior contacts with 

the sample case. In the final phase of Cycle 6 the NSFG, data collection was restricted to certain sample 

areas, with areas with larger numbers of active cases and those with cases with relatively high estimated 

propensities more likely to be retained for further follow-up field work. 

Another difference between responsive designs and more traditional multi-phase designs, at least 

conceptually, is the notion of phase capacity. Groves and Heeringa argue that a given phase of data 

collection approaches a limit in its ability to change the survey estimates (and reduce any biases). Once it 

reaches this capacity limit, a change in protocol may be needed to improve the representativeness of the 

sample and reduce bias. Ideally, the later phases of data collection bring in different types of respondents 

from the earlier phases, reducing any remaining nonresponse biases. Different types of people may be 

inclined to respond by mail from those who respond to a face-to-face interview; larger incentives may 

help recruit those who are not interested in the topic (Groves, Singer and Corning, 2000). In the best case, 

the different phases of data collection are complementary and, together, create a more representative 

sample than each of the individual phases. 

 

2.1 Case prioritization and related strategies 
 

Cycle 6 of the NSFG is an early example of a strategy known as case prioritization ‒ deliberately 

allocating more effort to some sample cases than to others. Of course, survey managers have always given 

priority to some cases over others. Interviewers are instructed to make sure they keep appointments, for 

example, or to set “soft” refusal cases aside for a while. What is different about the recent uses of case 

prioritization is that they are not based on a case’s disposition but on models of the case’s response 

propensity. In the Cycle 6 of the NSFG, a probability subsample of cases was kept for further work, with 

the second phase sampling probabilities partly based on the predicted propensities of the remaining cases. 

Later efforts have been explicit in their use of response propensities to guide the field work. 

Depending on which cases are prioritized, case prioritization can serve a variety of goals. For example, 

focusing field work on cases with high response propensities may maximize the final sample size or 

reduce the costs per case. Beaumont, Bocci and Haziza (2014) distinguish three potential goals for such 

designs: 
 

1) Minimizing variance; 

2) Minimizing nonresponse bias or some proxy for it, such as sample imbalance (Särndal, 2011; 

see also Schouten, Cobben and Bethlehem, 2009); or 

3) Maximizing response rates. 
  

The first and third goals are related in that maximizing response rates tends to produce larger samples and, 

as a result, lower sample variances. Although some researchers have begun looking at the use of such 

designs to reduce measurement errors (Calinescu, Bhulai and Schouten, 2013), most efforts to date have 

been attempts to reduce nonresponse bias or costs.  
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With Cycle 6 of the NSFG, it is not completely clear what the statistical goal was. Oversampling areas 

with larger numbers of remaining cases and those with higher-propensity cases would tend to maximize 

the final sample size and reduce costs per case. Consistent with this, Groves, Benson, Mosher, 

Rosenbaum, Granda, Axinn, Lepkowski and Chandra (2005) noted that “this design option placed large 

emphasis on the cost efficiency of the … [final] phase design to produce interviews, not on minimizing 

standard errors of the resulting data set”. However, Groves et al. (2005) also said that the final phase of 

data collection was intended to produce a “more representative” sample (page 38) by altering the data 

collection protocol to appeal to sample members who had failed to respond earlier. However, targeting 

areas with more cases with high estimated response propensities ‒ that is, the cases predicted to be easiest 

to get ‒ might actually exacerbate any problems with representativeness by bringing in additional 

respondents similar to those who had already responded.  

Most later applications of case prioritization have taken the opposite tack, attempting to equalize the 

overall response propensities by focusing the field effort on the hardest cases. To see why this is a 

reasonable strategy, it is useful to take a closer look at the mathematics of nonresponse bias.  

 

2.2 Factors affecting nonresponse bias  
 

Under a stochastic perspective (e.g., Bethlehem, 1988), the bias of the unadjusted estimator of a mean 

or proportion ( )ŷ  can be expressed as 

 ( ) ,ˆBias ,
y y

y
   


  (2.1) 

where   and   are the mean and standard deviation of the response propensities, y  is the standard 

deviation of a survey variable, and , y  is the correlation between the response propensities and that 

survey variable. As (2.1) clearly demonstrates, both the overall response rate ( )  and the variation in the 

response rates ( )  play a role in the bias, so that trying to maximize the response rates (e.g., by 

prioritizing the relatively easy cases) or to equalize the response propensities (by prioritizing the harder 

cases) are both reasonable things to do. 

As a number of researchers have pointed out, nonresponse bias is a property of a survey estimate not of 

a survey, and, as (2.1) makes explicit, two variable-level properties also affect the bias ‒ the correlation 

between the survey variable and the response propensities ( ), y  and the variability of the survey variable 

( ) ,y  both of which vary from one survey variable to the next. Given that two of the ingredients in the 

bias expression are study-level factors and two are variable-level, the question arises how much of the 

variation in nonresponse bias is between surveys and how much is within surveys.  

Brick and I (Brick and Tourangeau, 2017) attempted to address this issue by reanalyzing data from a 

study done by Groves and Peytcheva (2008). They examined 959 nonresponse bias estimates from 59 

studies. Eight hundred and four of these bias estimates involved proportions; almost all the others were 

means. (Four of the estimates seemed problematic to us, so we dropped them from our reanalysis.) Like 

Groves and Peytcheva, we examined the absolute relative bias statistic (absolute relbias), or the absolute 
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difference between the respondent estimate and the full sample estimate divided by the full sample 

estimate: 

 ,
ri ni

i

ni

R
 



−
=  (2.2) 

in which iR  is the absolute relbias for statistic ,i
ri  is the estimated value for that statistic based on the 

respondents, and ni  is the corresponding full sample estimate. The absolute relbias is useful in that it puts 

all the bias estimates on the same metric the percentage by which the estimate is off. Our reanalysis also 

examined the absolute differences (the numerator in (2.2)) for the estimated proportions.  

Table 2.1 displays various statistics from the reanalysis. For example, we calculated the correlation 

between the individual bias estimates and the study-level response rates; these results are shown in the top 

panel of the table. The middle three panels of the table show what happens when the average bias from the 

study is used in place of the individual bias estimates. Some of the correlations based on study-level 

averages are considerably higher than those based on the individual estimates, particularly when the data 

are weighted by the number of estimates from each study ( ’sr  of 0.40 to 0.55). The bottom two panels of 

the table show that there is a substantial study-level component to the nonresponse bias. For example, the 

2R  estimates from a one-way ANOVA indicate that the between-study component accounts for 21 to 

40 percent of the overall variation in the nonresponse bias estimates. The results from multi-level models 

lead to similar conclusions. This between-study component of the bias presumably reflects two main 

variables ‒ the mean response propensity (reflected in the overall response rate) and the variation across 

respondents in the response propensities. 

 
Table 2.1 

Relationship between response rates and bias measures at the estimate and study level 
 

 All statistics Proportions only 

Estimate-level correlations 

Response rate and absolute relbias -0.191( n = 955) -0.256 ( n = 802) 

Response rate and absolute difference - -0.323 ( n = 802) 

Unweighted study-level correlations 
Response rate and mean absolute relbias -0.255 ( n = 57) -0.315 ( n = 43) 

Response rate and mean absolute difference - -0.246 ( n = 43) 

Study-level correlations weighted by number of estimates 
Response rate and mean absolute relbias -0.402( n = 57) -0.552 ( n = 43) 

Response rate and mean absolute difference - -0.508 ( n = 43) 

Study-level correlations weighted by mean sample size 
Response rate and mean absolute relbias -0.413 ( n = 57) -0.247 ( n = 43) 

Response rate and mean absolute difference - -0.208 ( n = 43) 

Estimate-level ICCs from multilevel model 
Absolute relbiases 0.164 ( n = 955) 0.161 ( n = 802) 

Absolute differences - 0.509 ( n = 802) 

Estimate-level 2R  from one-way ANOVA 
Absolute relbiases 0.221( n = 955) 0.211 ( n = 802) 

Absolute differences - 0.395 ( n = 802) 
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The results in Table 2.1 are important because responsive and adaptive designs work primarily at the 

study level. For example, case prioritization generally either increases the overall response propensities or 

reduces the variation in the propensities, and these are the two main study-level variables affecting the 

level on nonresponse bias. In addition, if a design succeeds in reducing the overall variation in the 

response propensities, this will tend to attenuate the correlations between the propensities and the survey 

variables across the board. At the extreme, if there is no variation in the response propensities, the 

correlation with all the survey variables will be zero and there won’t be any nonresponse bias. The results 

in Table 2.1 seem to contradict the view that response rates don’t matter. Nonresponse rates are clearly an 

imperfect proxy for nonresponse bias, but they are an important predictor of the average level of bias in 

the estimates from a survey. 

 
2.3 Experimental evaluations of responsive and adaptive designs  
 

How well do responsive and adaptive designs achieve their goals? At the outset, I should note that our 

expectations shouldn’t be too high. As we noted in an earlier paper (Tourangeau et al., 2017, page 208), 

these designs “represent an attempt to do more with less or at least to do as much as possible with less” in 

an increasingly survey unfavorable environment. To date, studies have used four basic strategies to 

achieve one or more statistical goals ‒ multi-phase designs (like the one described by Groves and 

Heeringa, 2006), other types of case prioritization (in which different cases are slated to receive different 

levels of effort), adaptive contact strategies (changing the timing of contact attempts based on propensity 

models to maximize the chances of making contact), and tailoring of the field work or mode of data 

collection based on what is known about the cases before they are fielded. I briefly review some of the 

major efforts to evaluate each of these approaches. 

Multi-phase designs and case prioritization. Peytchev, Baxter and Carley-Baxter (2009) report 

another study that, like Cycle 6 of the NSFG, employed a multi-phase design. They conducted a telephone 

study with two phases. The second phase used a much shorter questionnaire and offered a larger incentive 

than the first. Cases received up to twenty calls during Phase 1, with some cases getting even more. 

Overall, this phase produced a response rate of 28.5 percent. In Phase 2, the researchers subsampled the 

remaining nonrespondents, shortened the questionnaire from 30 to 14 minutes, gave a prepaid incentive of 

$5, and offered a conditional incentive of $20. (Phase 1 had offered only conditional incentives.) Phase 2 

produced a response rate of 9.8 percent (or 35.5 percent overall). The evaluation of the design was based 

two sets of comparisons: Peytchev and his colleagues compared early and late respondents from Phase 1 

and they compared Phase 1 to Phase 2 respondents. They reasoned that the late respondents (interviewed 

after at least six call attempts) from Phase 1 were unlikely to differ on the key study variables ‒ reported 

crime victimizations of various sorts ‒ from the early respondents (interviewed in five or fewer attempts) 

because they were recruited via the same protocol. The results indicated that the addition of the late 

Phase 1 respondents did not significantly change the estimates. In contrast, the authors believed the 

Phase 2 respondents were likely to differ from the Phase 1 respondents, because the changes in protocol 

would attract different types of respondents. There was some support for this line of argument for males. 



Survey Methodology, June 2021 9 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The Phase 1 male respondents were more likely to report victimizations than the Phase 2 male 

respondents, with significant differences on four of six victimization rates. However, there was less 

evidence that the change in protocol in Phase 2 affected the estimates for females. In addition, even within 

the Phase 1 sample, there were differences between male cases who never refused and those who were 

converted after refusing. Like the Phase 2 male respondents, the converted Phase 1 male refusals also 

showed significantly lower victimization rates on four of six key estimates. This suggests that the refusal 

conversion protocols changed the make-up of the Phase 1 sample and did not just bring in more of the 

same type of respondents. 

Peytchev, Riley, Rosen, Murphy and Lindblad (2010) report a study that tailored the data collection 

protocol for different groups of cases from the outset. Their study involved a panel survey and the 

response propensities for each case was estimated using information from the prior round. Cases with low 

predicted response propensities were randomly assigned to an experimental or control treatment. For most 

of the data collection period, interviewers got a $10 bonus for each completed interview with one of the 

control cases, but $20 for each completed interview with one of the experimental cases. (During Phase 1, 

there was no bonus for control interviews and a $10 bonus for experimental interviews.) There was little 

difference in the final response rates for the two groups of cases (89.8 percent for the control cases versus 

90.8 percent for the experimental cases) or in the average number of contact attempts per case (5.0 for the 

controls versus 4.9 for the experimental cases). Although the variance in the estimated response 

propensities was lower among the experimental cases, the estimated nonresponse biases (based on the 

correlations between the survey variables and the fitted response propensities) were higher. 

Another set of experiments illustrates some of the practical difficulties with case prioritization. 

Wagner, West, Kirgis, Lepkowski, Axinn and Kruger Ndiaye (2012; see also Lepkowski, Mosher, Groves, 

West, Wagner and Gu (2013)) carried out 16 experiments over the course of Cycle 7 of the NSFG, which 

fielded 20 quarterly samples. The experiments examined the effectiveness of “assigning a random subset 

of active cases with specific characteristics to receive higher priority from the interviewers… The first 

objective of these experiments was to determine whether interviewers would respond to a request to 

prioritize particular cases” (Wagner et al., 2012, page 482). In only seven of the 16 experiments did the 

priority cases actually receive significantly more calls than the control cases, and only twice did this lead 

to a significant increase in response rates for the priority cases. Additional experiments attempted to shift 

the effort of NSFG interviewers from trying to complete main interviews to trying to complete screeners 

during one week of the field period. This intervention did lead to more screener calls than in prior or later 

weeks, but the impact on the number of completed screeners varied across quarters. In both cases, the 

efforts at case prioritization in Cycle 7 of the NSFG had some impact on what the interviewers did, but 

less impact on the intended survey outcomes, such as response rates.  

Statistics Canada has also begun implementing responsive designs for its CATI surveys and carried out 

two experiments assessing these designs. Both experiments used three phases of data collection with case 

prioritization in one phase (Laflamme and Karaganis, 2010; Laflamme and St-Jean, 2011). In Phase 1, 

cases were categorized by response propensities; in Phase 2, cases were randomly assigned either to the 
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responsive collection condition (in which cases were assigned priorities and the high priority cases got 

more calls) or the control condition; and in Phase 3, all remaining cases got the same treatment. In 

Phase 2, the priority cases in the responsive collection group were apparently those with high predicted 

response propensities. The goal in Phase 3 was to equalize response propensities across key subgroups. 

Once again, the results indicated modest effects. The overall response rates were essentially unaffected by 

case prioritization. In one survey, the response rates were 74.0 percent for the control group versus 74.1 

for the responsive collection group; in the other, the control group had a slightly higher response rate (73.0 

versus 72.8 percent). This is a little surprising since the responsive collection targeted the easier cases in 

Phase 2. In addition, neither the new three-phase design nor the responsive collection protocol had a clear 

effect on the representativeness of the samples, but may have decreased the number of interviewer hours 

(see Table 2.2 in Laflamme and St-Jean (2011)). Still, reducing costs without reducing representativeness 

may represent a worthwhile, if modest, advance. 

Adaptive contact strategies. Can survey managers improve the rate at which sample members are 

contacted by modelling the best time to contact them? Although many papers have explored optimal times 

for contacting sample members in surveys, few have examined whether these “optimal” call schedules 

produce gains empirically. Wagner (2013) is an exception. He reported five experiments that used models 

to predict whether a given sample household would be contacted on the next call attempt in each of four 

call “windows” (e.g., Tuesday through Thursday from 4 p.m. to 9 p.m.). Similar models were used in 

telephone (the Survey of Consumer Attitudes, or SCA) and face-to-face (Cycle 7 of the NSFG) surveys. 

The models were used to identify the best call window (the one with the highest probability of a contact) 

for each sample household. In the experimental groups, cases were moved to the top of the list for calling 

in that window (in the SCA) or field interviewers received that window as the recommended time to 

contact the household (in the NSFG).  

Three experiments involved the SCA. In the first, the proportion of calls producing a contact was 

higher for the experimental cases than for the controls (12.0 percent versus 9.9 percent), but the strategy 

seemed to backfire for cases who had initially refused, with lower contact rates among the initial refusals 

in the experimental group. A second experiment varied the call window for experimental cases after an 

initial refusal but this strategy lowered the overall proportion of calls producing a contact. The final SCA 

experiment still found that the contact rate for refusal conversion calls was lower in the experimental 

group than in the control group. The results in the NSFG were also somewhat disappointing. The field 

interviewers apparently ignored the recommended call windows; only 23.6 percent of the experimental 

cases were contacted in the recommended window (versus 23.0 percent in the control group). We had a 

similar experience in our effort to get interviewers to follow an optimal route in their trips to the field (see 

Section 3.1 below). 

Tailored field work. Luiten and Schouten (2013) report an experiment that tailored the data collection 

approach to different subgroups in the Dutch Survey of Consumer Sentiments (SCS). The goal was to 

equalize response propensities across the subgroups. The SCS consists of repeated cross-sectional surveys 

and, based on earlier rounds, Luiten and Schouten fit contact and cooperation propensity models based on 
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demographic characteristics of the sample members; these variables were available for the entire sample 

from the population registry. There were two phases of data collection. In the initial phase, cases with 

lowest estimated cooperation propensities were sent a mail questionnaire; those with the highest estimated 

propensities were invited to complete a web survey; and those in the middle were given a choice between 

mail and web. The second phase consisted of following up nonrespondents by telephone. Cases in 

different contact propensity quartiles were assigned to different call schedules. Those with the highest 

estimated contact propensities were fielded later in the field period and called during the day; those in the 

second highest quartile were called twice at night and then switched to a schedule alternating daytime and 

nighttime calls; and those in the lowest two contact propensity quartiles were called on every shift of 

every day. Finally, the best telephone interviewers were assigned to the cases with the lowest estimated 

cooperation propensities and the worst telephone interviewers were assigned to the cases with the highest 

estimated cooperation propensities. The control group for the experiment was the regular SCS, which is a 

CATI-only survey.  

Although the adaptive field work group had only a slightly higher response rate than the regular SCS 

(63.8 percent versus 62.8 percent, a non-significant difference), the representativeness of the experimental 

sample, as measured by the R-indicator, was significantly higher than that of the control sample. (The R-

indicator, introduced by Schouten, Cobben and Bethlehem (2009), is based on the variation in the 

estimated response propensities. A higher number indicates less variation and therefore a more 

representative sample.) Table 2.2 below shows that the adaptive field work did lower the variation in both 

contact and cooperation rates. Across contact propensity quartiles, the contact rates ranged from 

84.2 percent to 96.9 percent in the regular SCS; in the experimental sample, the range was from 87.1 to 

95.3. The adaptive design also lowered variation in the cooperation rates. Still, the costs for the adaptive 

design were marginally higher than those of the SCS and the overall cooperation rate was significantly 

lower in the experimental sample. Unfortunately, as this study illustrates, reducing the variability in the 

response propensities often means not trying as hard to get the easiest cases and this may lower the overall 

response rate. 

 
Table 2.2 

Contact and cooperation rates, by propensity quartile groups 
 

Contact propensity quartile  

Contact rates 

Experimental  Control 

Lowest Contact Propensity 87.1 84.2 

Second Lowest Contact Propensity 96.6 94.5 

Second Highest Contact Propensity 93.7 95.7 

Highest Contact Propensity 95.3 96.9 

Cooperation propensity quartile 

Cooperation rates 

Experimental  Control 

Lowest Cooperation Propensity 65.1 62.7 

Second Lowest Cooperation Propensity 71.4 68.4 

Second Highest Cooperation Propensity 72.8 75.3 

Highest Cooperation Propensity 74.7 79.2 

Source: Tourangeau et al. (2017); data from Luiten and Schouten (2013). 
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2.4 Simulation studies 
 

Besides the experiments discussed in the previous section, three additional studies have used 

simulations to explore the properties of responsive and adaptive designs.  

Stopping rules. Lundquist and Särndal (2013) used data from the 2009 Swedish Living Conditions 

Survey (LCS) to explore the impact of various “stopping rules”, rules for ending data collection. The LCS 

follows a two-phase data collection strategy, with up to 20 telephone contact attempts in the first phase of 

data collection followed by ten more in the second phase. They noted that continuing to follow the same 

data collection protocol “will produce very little change in the estimates beyond a certain ‘stability point’ 

reached quite early in the data collection” (page 561). This is quite similar to Groves and Heeringa’s 

(2006) notion of “phase capacity”, or the point at which a given data collection protocol begins to achieve 

diminishing (or vanishing) returns. Sturgis, Williams, Brunton-Smith and Moore (2017) present results 

suggesting that this stability point may be reached quite early during the field period. They examined 

estimates derived from 541 questions from six face-to-face surveys in the U.K. They found that the 

expected proportions were, on average, only 1.6 percent from the final estimate after a single contact 

attempt and were off by only 0.4 percent after five attempts. These results suggest that, from the vantage 

point of reducing bias, a lot of field effort is wasted. 

Lundquist and Särndal show that the estimated nonresponse bias (based on three variables available for 

both respondents and nonrespondents from the Swedish population register) in the LCS was lowest after 

five to ten call attempts and actually got progressively worse thereafter. The second phase of data 

collection, which increased the response rate from 60.4 percent to 67.4 percent, made the nonresponse 

biases worse for two of the three register variables. They examined three alternatives to continuing the 

same protocol up to 30 attempts. They divided the sample into eight subgroups based on education, 

property ownership, and national origin. Under the first alternative response rates for each of eight the 

subgroups would be checked at call 12 of the initial phase of data collection and again at call 2 of the 

second phase; data collection would end for subgroups with response rates of 65 percent or better at these 

points. This strategy would have yielded a lower response rate (63.9 percent) than the actual protocol but a 

sample that was more closely aligned with the population on eight demographic characteristics. The 

second alternative they examined would have ended data collection for a subgroup as soon as its response 

rate reached 60 percent and the third alternative, as soon as the subgroup response rate reached 50 percent. 

The 50 percent strategy would have produced the most balanced sample of all and would have reduced the 

total number of call attempts by more than a third. In part, this strategy worked so well because it would 

have lowered the response rates in the high propensity subgroups so they were closer to those in the low 

propensity subgroups. As in the study by Peytchev and colleagues (Peytchev et al., 2009), continuing with 

the same data collection protocol seemed to do little improve the representativeness of the sample, and 

may in fact have reduced it. 

In a related effort, in 2017, the Medical Expenditure Panel Survey (MEPS) used a stopping rule based 

on a propensity model. MEPS is a rotating panel study. Each year a new panel of about 10,000 addresses 
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is selected from a sample of households that completed National Health Interview Survey the previous 

year. Sample households were asked to complete two MEPS interviews in their first year, two in the 

second, and a fifth in the third year. The survey is continuous, with interviews conducted throughout the 

year. The stopping rules were applied in two stages in the first half of 2017: first to cases in their third 

round (a relatively soft start, since most Round 3 interviews were scheduled by telephone and most 

respondents were cooperative, having already participated twice), and then to Round 1 cases. Interviewers 

are often reluctant to comply with directions to stop contacting a case after a specific number of attempts. 

The MEPS approach was to remove low propensity cases with too many attempts ‒ generally six ‒ from 

the interviewer assignment and have a supervisor review them. Supervisor could move a case back into 

the interviewer’s assignment if there was some reason to believe the case might be completed, but most of 

the time these cases were closed out (Hubbard, 2018). Overall, implementing the stopping rule reduced 

the number of in-person attempts by 8,500, producing a large saving in field costs.  

Different case prioritization strategies. In a later paper, Särndal and Lundquist (2014b) simulated the 

effects of two methods for equalizing response propensities across cases, using data from the Living 

Conditions Survey and the Party Preference Survey. Under the first method (the threshold method), no 

further follow-up attempts are made to cases whose response propensities have reached some threshold 

(lower than the overall target response rate). This is similar to the strategies examined in their earlier paper 

(Lundquist and Särndal, 2013). Under the other method (the equal proportions method), at various points 

during the field period (e.g., after three, six, or nine call attempts), the portion of the sample with the 

highest response propensities is set aside and field work continues only for the remaining cases. In both 

surveys, both methods for equalizing the response propensities reduced the distance between the 

respondents and the full sample on a set of auxiliary variables, as compared to continuing to field all 

remaining nonrespondents, as was done in the actual surveys. Another conclusion from this study is that 

calibrating the sample using the auxiliary variables removed some of the nonresponse bias, but that bias 

was reduced even further when the set of respondents was more closely aligned with the population in the 

first place. This is an important finding, since the same variables available for fitting propensity models 

are also available for post-survey adjustments, and it is not clear whether equalizing response rates (or 

response propensities) during data collection is more effective than simply adjusting the case weights 

afterwards. Särndal and Lundquist (2014b) find gains for both. 

Beaumont, Bocci and Haziza (2014) report another simulation study that examines the impact of case 

prioritization. They contrasted four strategies: 1) constant effort (no case prioritization); 2) optimal effort 

(by reducing calls to members of groups approaching their target response rate); 3) equalizing response 

rates across groups (by concentrating calls on low response propensity groups); and maximizing the 

overall response rate (by concentrating calls on high propensity groups). The simulations by Beaumont 

and his colleagues assumed three different scenarios ‒ uniform response propensities, uniform response 

propensities within groups, and response propensities that are highly ( )0.67r =  correlated with the 

survey variable of interest. (In addition, the simulation assumed that the sample consisted of three 
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subgroups, that calls yielding an interview were 25 times more expensive than ones that didn’t, that calls 

to a case were capped at 25, and the survey had a fixed data collection budget.)  

The simulations supported three major conclusions. First, when response propensities are constant 

overall or constant within each group, all the effort strategies produce unbiased estimates, but when the 

propensities were strongly related to the survey variable, all of them produced bias. Second, neither the R-

indicator nor the nonresponse rate was a good indicator of nonresponse bias or nonresponse variance. 

Finally, when response propensities were known, the optimal effort strategy produced somewhat lower 

root mean square error than the other strategies (see Table 2.2 in Beaumont et al. (2014)) and the strategy 

that attempted to maximize response rates produced the worst. The optimal effort strategy resembles the 

approaches explored by Lundquist and Särndal (2013). Of course, a practical difficulty is that response 

propensities are not known with real surveys, and they may not be accurately estimated from the available 

auxiliary variables. 

 
2.5 Summary  
 

Table 2.3 summarizes the results from the experimental and simulation studies. In general, they show 

how hard it is to raise response rates in the current environment. For example, only two of the 16 

experiments described by Wagner and his colleagues significantly raised response rates in the NSFG 

(Wagner et al., 2012). Some studies (e.g., Luiten and Schouten, 2013) demonstrate reductions in variation 

in response rates across subgroups of the sample, although in one study (Peytchev et al., 2010) this 

apparent reduction in the variation in estimated response propensities appeared to increase nonresponse 

bias rather than reduce it. Laflamme and St-Jean (2011) reported that responsive design reduced costs 

relative to the standard protocol, but Luiten and Schouten (2013) reported that an adaptive design 

increased the costs per case. Across all the studies (including Cycle 6 of the NSFG), then, responsive and 

adaptive designs appeared to produce some gains in sample representativeness, but had little effect on 

overall response rates or overall costs.  

Several non-experimental studies come to similar conclusions. These studies compare the final survey 

estimates with those that would have been obtained without the final phase of data collection, when a 

major change in the data collection protocol was introduced. For example, Groves and his colleagues 

(Groves et al., 2005) showed that the final phase of data collection in Cycle 6 of the NSFG, which boosted 

the overall response rate from 64 to 80 percent, also decreased variation in the response rates across 

subgroups (see also Axinn, Link and Groves, 2011). This is similar to the experimental results reported by 

Peytchev, Baxter and Carley-Baxter (2009) who found that major changes in protocol (larger incentives 

and a shorter questionnaire) produced changes in the study estimates, at least for males. However, the 

changes were generally small ‒ less than two percentage points.  
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Table 2.3 

Selected study characteristics and outcomes, by study 
 

Experimental Study Statistical Goal Intervention Results 

Peytchev et al. (2010) Equalize response 

propensities 

Bonus for interviewers 

for completing high 

priority cases 

• Variance in response propensities lower in 

experimental group 

• Response rate 1.5% higher in experimental group 

• Estimated bias higher in experimental group 

Wagner et al. (2012) Increase response rates, 

improve 

representativeness 

Case prioritization • Significantly increased number of calls to priority 

cases in seven of 16 experiments  

• Significantly increased response rate in two 

experiments 

Screener week • Increased number of screening calls 

Laflamme and St-

Jean (2011) 

Increase response rates 

(Phase 2), equalize 

response propensities 

(Phase 3) 

Categorization and 

prioritization of cases 
• Less variance in response propensities in 

experimental group 

• Response rate 1.5% higher in experimental group 

Wagner (2013) Increase contact rate 

per call 

Models used to assign 

cases to optimal call 

window 

SCA 

• Contact rate improved (12.0 vs. 9.9 percent)  

• No change in response rate  

NSFG 

• Interviewers did not follow recommended call 

window 

Luiten and Schouten 

(2013) 

Equalize response 

propensities 

Initial mode (mail 

versus Web) varied by 

propensity quartile 
 
Hard cases assigned to 

best telephone 

interviewers, easiest to 

worst telephone 

interviewers 

• Lower cooperation rate in adaptive group 

• R-indicator significantly improved in adaptive 

group 

• Reduced variation in contact and cooperation rates 

in adaptive group 

• No significant difference in costs or response rates  

Simulation Study Statistical Goal Intervention Results 

Lundquist and 

Särndal (2013) 

Increase sample 

balance, reduce 

nonresponse bias 

Stopping data 

collection for a 

subgroup once a target 

rate achieved for that 

subgroup 

• Lowest response rate threshold produced the 

highest balance 

• Lowest threshold also achieved lowest 

nonresponse bias (on three registry variables)  

Särndal and 

Lundquist (2014a, b) 

Increase sample 

balance, reduce 

nonresponse bias 

12 stopping rules  • Lowest response rate threshold again produced the 

highest balance 

• Lowest threshold also achieved lowest 

nonresponse bias on three registry variables 

• Both balance in data collection and calibration 

reduce nonresponse bias 

Beaumont, Bocci and 

Haziza (2014) 

Optimal effort, equalize 

response rates, 

maximize overall 

response rate 

Four case prioritization 

strategies (constant 

effort, reduce effort for 

groups approaching 

target response rate, 

prioritize low 

propensity cases, 

prioritize high 

propensity cases)  

• With uniform response propensities, all four 

strategies yield unbiased estimates 

• When response propensities strongly related to 

survey variables, all strategies produce biased 

estimates 

• With known propensities, optimal strategy yields 

best root mean square error (RMSE); maximizing 

the response rate, the worst  

 
3. Optimal routing 
 

Case prioritization, like adaptive design more generally, is an example of an intervention in the data 

collection process intended to reduce error, costs, or both. In the next two sections, we examine two other 

interventions designed to improve data collection outcomes ‒ optimal routing and rapid feedback to 
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interviewers. The first uses a variation on case prioritization; the second focuses on reduction of 

measurement error. 

Prioritizing high-value cases. One problem with the existing studies on case prioritization is that they 

have all used estimated response propensities as the basis for prioritization. The response propensity may 

be a useful summary of the variables used to model the propensity but may not fully reflect the 

researchers’ priorities. In an earlier paper (Tourangeau et al., 2017), we proposed a different basis for case 

prioritization. Under our scheme, the cases receiving the highest priority should be the ones with the 

highest ratio of anticipated value to anticipated cost: 

 
ˆ
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i

i
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=  (3.1) 

where iB  represents the benefit-to-cost ratio for case ;i  the numerator is the product of the case’s 

estimated response propensity ( )ˆ ,i  its weight ( ) ,iW  and some measure of its value for the research 

( ) ;iV  and the denominator represents the likely cost of completing the case ( ) .iC  For example, the value 

assigned to a member of a rare subgroup may be higher than that assigned to a member of a larger group. 

Or the value of a case may be an estimate of its impact on reducing the distance between the current 

sample from a vector of population benchmarks. Because it includes the estimated propensity and the 

weight in the numerator, the scheme in (3.1) may result in giving priority to “easy” cases or give lower 

priority to cases from oversampled subgroups, which would have lower weights. Thus, a lot hinges on 

how the value of a case is assessed. We attempted to apply a version of (3.1) in conducting a pilot test of a 

strategy that we call optimal routing.  

The pilot test. Our pilot test was done as part of the Population Assessment of Tobacco and Health 

(PATH) Reliability and Validity Study (the PATH-RV Study; Tourangeau, Yan, Sun, Hyland and Stanton, 

2019), a study designed to assess the reliability and validity of answers to the Wave 4 PATH Study 

questionnaires. (The PATH Study is a major longitudinal study of tobacco use, and the study sponsors 

wanted to be sure the questions yielded reliable responses.) In the PATH-RV study, a sample of 524 

respondents completed the PATH questions twice, roughly two weeks apart. There were two 

questionnaires, one for adults (18 years old and older) and one for youths (12 to 17 years old). Given the 

aims of the reliability study, we deemed youth cases to be twice as valuable as adult cases (because youths 

were rarer and harder to interview than adults) and reinterviews 1.5 times more valuable than initial 

interviews. Thus, an initial interview with an adult was worth a value of 1; an adult reinterview, 1.5; an 

initial youth interview, 2; and a youth reinterview, 3. We used these values in the place of iV  in (3.1). 

Because the sample for the PATH-RV study was nearly equal probability, we ignored the weights. 

However, we did incorporate an estimate of the likelihood that the case would cooperate on the next 

contact attempt. We also developed a program that calculated an optimal route for contacting a set of 

cases on a given day, partly in an effort to minimize travel and interviewer time ‒ that is, to minimize iC  

in (3.1). 
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The system we developed had two components. The first one estimated the likelihood that each 

remaining case would cooperate on the next contact attempt. The models for this first component used 

sociodemographic information from the Census Planning Database for block groups and the history of 

previous contact attempts whenever at least one contact attempt was available. For cases with no prior 

contact attempts, we used a logistic regression model to estimate the cooperation propensity; for cases 

with prior contact attempts, we used a proportional-hazards Cox regression model. The second component 

was a routing system that reviewed respondent-level information and produced an interviewer’s schedule 

for a given day. The set of cases in the day’s assignment reflected the anticipated value of the cases. All 

the sample cases were geolocated, allowing us to estimate the travel time between each pair of cases for a 

given hour of the day. The routing system took as input the feasible tasks for a given case (e.g., it did not 

schedule a reinterview until the initial interview had been completed), along with the case’s geographical 

location, estimated duration of the task, case value, and response propensity. It then computed the shortest 

driving route with the highest possible expected value and selected a set of tasks that could fit in a 

working day for a given interviewer. The route delivered to interviewers included the sequence of cases 

and tasks that we expected interviewers to attempt. It took appointments into account, and the route was 

constructed to ensure that interviewer could arrive at their appointments on time. 

The experimental design. We conducted an experiment that compared interviewer performance on 

“treatment” days when we gave them the list of cases to try to get along with a suggested route to follow 

in pursuing those cases with “control” days when we gave them no special instructions about which cases 

to work or how to work them. The data collection for the experiment took place between October and 

December, 2017.  

Before the start of data collection, interviewers selected at least six days during which they would work 

only on the PATH-RV study. We then randomly allocated three of those days to the control arm of the 

experiment and three to the treatment arm. On control days, we sent interviewers an email in which we 

asked them to “use their best judgement on how to contact” their caseload. On treatment days, we sent 

them an email that included a list of cases that we wanted them to work and the route they were to follow. 

Interviewers were told to follow our recommendations “if at all possible”. During the training sessions and 

in the email accompanying the selected route, we discouraged deviations from the instructions, but 

allowed them if the interviewers judged them necessary to account for unforeseeable events, such as 

traffic accidents.  

Fifty-three interviewers participated in the experiment. Changes to the days the interviewers worked on 

our study, together with the depletion of the pool of open cases in the final days of the study, produced a 

reduction in the number of treatment and control days actually available for the interviewers. Ultimately, 

we had a total of 220 observations. 

Interviewer compliance and interviewer efficiency. Did the interviewers follow the instructions we 

sent them in the treatment email? Well, they did some of the time. There was an average overlap of 

62 percent between the cases we recommended for a given treatment day and the cases the interviewers 
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actually worked that day. What is particularly striking is that there was, on average, a 52 percent overlap 

on the cases selected by our model and the cases selected by the interviewers on the control days, when 

we didn’t give them any instructions. This small difference between the treatment and control days partly 

reflects the limited number of cases that could be worked on any given day. As a result, the decisions that 

interviewers would have made on their own were often close to what we thought would have been 

optimal, putting a low ceiling on the possible impact of the treatment.  

Still, there was only moderate compliance with instructions by the interviewers. A Census Bureau test 

had similar results. The test was done in eight areas in Philadelphia, Pennsylvania (Walejko and Miller, 

2015). In some areas, interviewers were assigned seven high priority cases each day; these high priority 

cases were those deemed most likely be interviewed on the next contact attempt, according to response 

propensity models. As with our experiment, interviewer compliance was an issue. As Walejko and Miller 

(2015) put it: “The ability of response propensity models to identify promising cases for daily contact, 

however, remains unclear after this pilot test because interviewers did not dutifully work priority cases.”  

Was there any sign in our study that the optimal routing treatment improved interviewer efficiency? 

We examined five outcomes of interest: 

 

1) The number of miles interviewers traveled; 

2) The hours they spent; 

3) The number of contacts per completed interview; 

4) The number of completed cases; and  

5) The average value of the cases completed. 

 

The first two variables reflect the impact of the treatment on the costs of collection. We also wanted to 

assess whether our routing system reduced the number of contact attempts needed to complete a case ‒ 

that is, whether it made the interviewers more productive. Similarly, we examined whether the treatment 

increased the number of completes and whether the completed cases had higher values on average on the 

treatment days than on the control days. Our analyses of the effects of the treatment are shown in 

Table 3.1. The models include random effects for each interviewer and pool the effect of the treatment 

across interviewers. The top two panels show the estimates for the intercept and treatment effects under an 

intent-to-treat model (ignoring whether the interviewers actually followed our instructions), and the 

second panel incorporates a measure of the interviewers’ compliance with the instructions. None of the 

outcome measures shows a significant treatment effect, although there were significant compliance main 

effect for miles and contacts ‒ interviewers traveled fewer miles and made fewer contacts when they did 

what we suggested (whether we conveyed those suggestions to them or not). Although there was a 

treatment by compliance interaction effect on contacts, the net effect of the treatments seems to have been 

negative. 
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Table 3.1 

Estimated intercepts and effects (and standard errors), by outcome and model 
 

 Miles Hours Contacts Completes Value 

Intent-to-treat 

Intercept 76.8 (7.0) 5.26 (0.37) 5.40 (0.53) 0.81 (0.17) 1.73 (0.26) 

Treatment 8.06 (5.6) 0.04 (0.27) -0.28 (0.48) -0.15 (0.16) -0.24 (0.30) 

Incorporating compliance 

Intercept 89.2 (8.99) 5.69 (0.46) 7.66 (0.62) 0.98 (0.21) 1.84 (0.40) 

Treatment 0.30 (9.87) -0.30 (0.48) -1.35 (0.79) 0.15 (0.28) 0.25 (0.53) 

Compliance -28.9 (13.4) -1.01 (0.65) -5.32 (1.06) -0.03 (0.37) -0.28 (0.70) 

Treatment x compliance 20.5 (17.4) 0.86 (0.85) 3.07 (1.38) -0.55 (0.48) -0.87 (0.92) 

Note: Results based on 53 interviewers and 220 total observations. 

 
Interviewer reactions. Debriefings with the interviewers revealed some of the reasons for their 

relatively low levels of compliance with our recommendations. Although the interviewers were generally 

positive about the routing system, they had several reservations about it. The behavior of interviewers 

reflects the goal of getting completed interviews, but their implicit assumption is that all completes are 

equally valuable. However, our routing system reflected a specific definition of the expected value of a 

case and also an estimate of its cost. As a result, it sometimes omitted cases that were close to the 

households on the recommended route. Interviewers indicated that a priority list or a scoring of the cases 

by their value would have made the decisions of the automatic system more comprehensible and also 

would have allowed them to incorporate those values into their own workday planning. In addition, 

interviewers sometimes disagreed with the suggested routes because of circumstances that could not be 

observed by our routing system. With any adaptive design strategy (or, more generally, with any planning 

system), there is the risk of missing some useful information and this may undercut compliance.  

The debriefing also called attention to some of the assumptions embedded in the model. For instance, 

we established a single time window for all interviewers as the most likely time they would be working. 

This allowed us to account for daily traffic patterns in our recommendations. But a different route might 

have been better than the one we recommended for a different time of day when traffic was lighter or 

heavier. All the interviewers who took part in the experiment were experienced field interviewers, and 

some reported they felt that detailed routing instructions were tantamount to discounting their abilities and 

experience. In their opinion, the system might be a good tool for novice interviewers, but, for them, it 

signaled a lack of confidence on the part of the survey managers. Finally, they all reported that one reason 

they worked as field interviewers was being able to plan their own workday. Many of these same factors 

doubtless played a role in the limited success of the attempts by Wagner and his colleagues (see 

Section 2.3) and the Census test to change interviewer behavior.  

Despite these obstacles to compliance, research has shown that interviewers are sensitive to incentives. 

Tourangeau, Kreuter and Eckman (2012) demonstrated that interviewers in a telephone study completed 

more screeners when they were given a bonus for each screener they completed and they completed more 

main interviews when they were given a bonus for each completed main interview. Perhaps similar 

incentives could be used to encourage interviewers to complete high priority cases or to minimize travel 
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time. For example, interviewers could receive a small bonus for every high priority case they contact. 

Clearly, we need to figure out how to get interviews to follow instructions if our interventions are going to 

have any impact. 

Other studies of interviewer travel. More recently, Wagner and Olson (2018) carried out an 

extensive analysis of interviewer travel in two face-to-face surveys, the National Survey of Family Growth 

(NSFG) and the Health and Retirement Survey (HRS). Both surveys feature national area probability 

samples and the Survey Research Center at the University of Michigan carries out the field work for both. 

The surveys have different target populations ‒ people from 15-44 years old in the NSFG and from 51-

56 years old in the HRS. The authors examined how far interviewers travelled and how many sample 

areas they visited on each day they worked. In both studies, interviewers visited about two areas, on 

average, on each day they worked but they travelled about 30 miles more in average in the NSFG than in 

the HRS (85.4 versus 53.4). Wagner and Olson found that travelling to more areas was associated with 

more contact attempts, but with fewer contacts made and fewer interviews completed (see their Table 4.1). 

Although theirs is an observational study and not an experiment, it is consistent with the results of our 

pilot study; more travel seems to reduce the number of contacts made and interviews completed. However, 

the causal direction of this finding is quite ambiguous. It could be that travel time reduces the time 

interviewers have left to contact and interview sample cases, but it also could be that interviewers keep 

going when their contact attempts don’t yield a positive outcome, moving on to different sample areas.  

 
4. Rapid CARI feedback 
 

Interviewers can contribute in several ways to the total error of a survey estimate, affecting coverage, 

nonresponse, and measurement errors (Schaeffer, Dykema and Maynard, 2010; West and Blom, 2017). 

There can be complex interactions among these different interviewer-related error sources. For example, 

there may be a tradeoff between coverage and nonresponse errors (Tourangeau et al., 2012); in our study, 

the interviewers with the highest response rates also found the fewest eligible households. In a series of 

papers, West and his colleagues (West and Olson, 2010; West, Kreuter and Jaenichen, 2013; West, 

Conrad, Kreuter and Mittereder, 2018) have shown that different interviewers may elicit different answers 

because of differences in the respondents they recruit (e.g., some interviewers may be better than others at 

recruiting older respondents) but also because of differences in their levels of measurement error. As 

anyone who has ever listened to CARI recordings can testify, interviewers do not always stick to the script 

and their improvisations can sometimes elicit poor quality responses.  

Pilot study. Having listened to recordings of field interviewers as part of the field test for a major 

national study, we designed an experiment to test the hypothesis that providing timely feedback to 

interviewers about their reading of the questions would improve the quality of the answers they elicited. 

(At the client’s request, we do not divulge the name of the study.) This particular survey was a good test 

bed for assessing the effects of rapid feedback because the interviewers administered a short screening 

questionnaire to a household informant and then similar questions were administered to each sample 
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member via audio computer-assisted self-interviewing (ACASI). As a result, we could compare the 

screening data collected by each interviewer with a “gold standard” for several of the key items in the 

survey. Of course, the ACASI data are not error-free, but we regarded them as less error-prone than the 

screener data for two reasons: Each person reported for himself or herself whereas the screener was 

administered to a single household informant; and the questions were self-administered rather than 

administered by an interviewer and self-administration was likely to reduce any social desirability bias in 

the responses. 

The experiment included 291 interviewers. Half were assigned to receive rapid feedback and half were 

assigned to the control group. Every fifth screener done by interviewers in the rapid feedback group was 

CARI-coded to identify departures from standardized interviewing. Figures 4.1 displays the questions 

coders answered for each screening interview. After a screener was coded, interviewers (and their 

supervisors) were sent a report with their performance and a link to the question recordings. For their first 

coded screener, interviewers were instructed to schedule a feedback session with a central office 

“mentor”, who reviewed the results and provided guidance for improvement. For their second coded 

screener, interviewers were sent only the report and a link to the recordings. For subsequent screeners, 

interviewers were only instructed to schedule a feedback session with their mentor if the coding identified 

problems; otherwise, they were only sent the written report. 

 
Figure 4.1 Coding questions for rapid feedback pilot study. The questions were repeated for each member of 

the household. 

 

Q1. How clearly can you hear the interviewer on this recording? [HEARINT] 
o Very clearly (4) 
o Somewhat clearly (3) 
o Not very clearly (2) 
o Cannot hear the interviewer (1) 

 
Q2. How clearly can you hear the respondent on this recording? [HEARRESP] 

o Very clearly (4) 
o Somewhat clearly (3) 
o Not very clearly (2) 
o Cannot hear the interviewer (1) 

 
Q3. Did the interviewer read the question exactly as worded? [EXWORD] 

o Yes (1) 
o No (2) 

 
Q4. [IF NO TO Q3] How did the interviewer change the wording of the question? Pick all that apply 

o Did not read lead-in or introductory text before the question [NOINTRO] 
o Did not read “Please look at this picture” [NOPIC] 
o Did not read “Please look at this list” [NOLIST] 
o Did not read all brand names or product examples [NONAMES] 
o Did not read response options correctly [NORESP] 
o Did not read “choose all that apply” [NOCHOOSE] 
o Omitted, added, or changed other words within the question [NOREADOTH]  

 
Q5. Did the interviewer correctly enter the respondent’s answer? [ENTERANS] 

o Yes (1) 
o No (2) 
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The experiment was conducted from May to August, 2014, with 1,729 respondents interviewed by the 

feedback group and 1,717 interviewed by the control group. 

To evaluate the effects of rapid feedback, we compared three variables derived from the screening 

items to the corresponding variables from the ACASI interviews. In principle, the two should match. 

Table 4.1 shows the proportion of respondents in the treatment and control groups who were classified the 

same way in the screener and the ACASI data. For all three, the match rate was significantly higher for 

respondents who were interviewed by interviewers getting feedback. (We used a Rao-Scott F  test that 

took into account the clustering of the sample by areas. All three F -values were significant at 0.01.)p   

Kappa values measuring the chance corrected agreement between screener and ACASI responses are 

substantially higher for interviewers in the rapid feedback group as well.  

 
Table 4.1 

Agreement between screener and ACASI responses, by condition and variable 
  

Rapid feedback Control Rao-Scott F  value 

(1 and 230 df) 

Composite    

 % Agree 93% 88% 15.5*** 

 Kappa 0.85 0.76  

Variable 1    

 % Agree 95% 92% 8.8** 

 Kappa 0.89 0.83  

Variable 2    

 % Agree 89% 85% 7.7** 

 Kappa 0.76 0.69  

** 0.01;p   
*** 0.001.p   

Note: The composite was a summary variable derived from variables 1 and 2.  

 
MEPS study. Based on the success of this initial study, Edwards, Sun and Hubbard (2019) undertook 

a replication. In 2018, the Medical Expenditure Panel survey had implemented a major upgrade of the 

CAPI system and had simplified some sections of the questionnaire. Two question series were of 

particular interest because they were asked in all interviews, always recorded in CARI (almost all 

respondents gave consent to record), and were critical for producing data on the use and cost of health care 

services, key MEPS statistics. These were the questions on the use of calendars or other records of 

medical care during the interview and “provider probes”, filter questions that prompt the respondent to 

recall services from various types of medical providers. The calendar series asked whether various records 

were available during the interview (e.g., a calendar with entries for medical visits, insurance statements, 

etc.), and who in the household was associated with each record type. The CAPI entry area for these items 

was a grid, with each household member listed on a row and each record type a column header. 

Interviewers could enter answers in any order, by person or by record type. The objective was to 

encourage respondents to bring records for all family members into the interview and to structure the 

questioning so that the records could be incorporated into the interview in any order. The provider probes 



Survey Methodology, June 2021 23 
 

 
Statistics Canada, Catalogue No. 12-001-X 

consisted of 15 questions about various kinds of health care providers. They were re-ordered in the 

technical upgrade to begin with three that accounted for the highest expenditures.  

Audio-recordings of the calendar series and the provider probes series were reviewed by two behavior 

coders. The coding system allowed coders to call up specific interviewers or questions. Coders evaluated 

the overall quality of the interview and of each instance of asking the calendar series and the provider 

probes. The inter-coder agreement rate was 0.82. Verbal and written feedback was provided to the 

interviewer quickly (ideally within 72 hours of the interview). The next interview conducted by the 

interviewer was also coded, so that each interviewer had a pair of interviews in the data set, one just 

before and one just after feedback. Because the process was implemented in late fall only a subset (122) of 

the MEPS interviewers were available to participate in the study, resulting in 244 interviews in the data 

set. Data about the feedback interaction was also captured (such as whether the interviewer agreed with 

the feedback or asked for clarification). Again, we expected that interviewer behavior more consistent 

with the study protocol would be observed after feedback, both for overall interview quality and for each 

question series. 

Table 4.2 shows the rapid feedback results for each question series. Interviewers maintained the 

meaning of the questions but did not follow the protocol exactly in the majority of instances ( )5,259 ,n =  

both before and after feedback. Still, question-asking behavior that followed the protocol exactly increased 

from 33.4 percent before feedback to 43.4 percent after feedback; failing to maintain the question meaning 

decreased from 9.8 percent before feedback to 3.7 percent after feedback. An -F test that took into 

account the clustering of the observations by interviewer found a significant overall difference between 

interviewer behavior before and after feedback, both overall ( )( )2,118 3.86, 0.05F p=   and for the 

provider probes ( )( )2,118 5.71, 0.01 .F p=   The differences for the calendar series was in the same 

direction but not statistically significant. These results, like those of the pilot study, indicate that rapid 

feedback to the interviewers can lead to marked improvements in how they administer the questions. 

 
Table 4.2 

Interviewer behaviors, before and after feedback, by question series 
 

Interviewer Behavior Calendar series Provider probes Both series  

Before  After Before  After Before  After 

Followed protocol exactly 18.6% 27.9% 43.3% 51.7% 33.4% 43.4% 

Maintained meaning but did not follow protocol exactly 68.9% 65.1% 48.7% 46.4% 56.8% 52.9% 

Did not maintain meaning 12.5% 7.0% 8.0% 2.0% 9.8% 3.7% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
n  1,240 759 1,832 1,428 3,072 2,187 

 
5. Conclusions 
 

The three main methods reviewed here have a mixed record of success. What lessons can we draw 

from these efforts to substitute data for intuition in the management of surveys?  
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The literature on responsive and adaptive design leads to several conclusions. First, it is important to 

clarify the statistical goals for the design at the outset of the survey and to monitor measures of quality 

related to these goals. Different strategies serve different goals. For example, equalizing response 

propensities may reduce nonresponse bias at the expense of a smaller sample size and increased sampling 

variance. It is essential to acknowledge such tradeoffs. Second, both the overall response rate and the 

variation in response propensities contribute to the average nonresponse bias. As a result, no single 

indicator gives a complete picture of the risk of error in a survey and survey managers should monitor 

multiple indicators, including changes in a set of key survey estimates. Advances in “dashboard” design 

(Mohadjer and Edwards, 2018) make it easier for central office staff and field supervisors to monitor a 

large number of indicators of how the field work is going. Third, simply continuing a given data collection 

protocol may not change the estimates much (Sturgis et al., 2017) and, in some cases, may decrease the 

representativeness of the sample (Lundquist and Särndal, 2013; Särndal and Lundquist, 2014). Under a 

given data collection protocol, the respondents recruited late in the field period are not likely to differ 

much from the ones recruited earlier. The sample will continue to overrepresent the cases with higher 

propensities under that protocol. To change the mix of respondents ‒ and to improve the overall 

representativeness of the sample ‒ may require major changes in the data collection protocol, such as 

much larger incentives, a switch to a different mode of data collection, or a much shorter questionnaire. 

These strategies all have their drawbacks, leading to the conclusion that sometimes the best strategy is just 

to cease further efforts by imposing stopping rules. Continuing to pursue cases with very low response 

propensities to respond is a formula for driving up costs without really improving the statistical properties 

of the final estimates.  

Both the literature on responsive and adaptive designs and the study on case prioritization and optimal 

routing discussed in Section 3 above indicate that one factor limiting the effectiveness of central office 

interventions on field work is resistance by the interviewers. We need more research on how to improve 

interviewer compliance and on the impact of closer monitoring (or larger incentives) to ensure 

interviewers implement the desired changes in protocol. The studies on rapid feedback to the interviewers 

are encouraging in this regard. Both studies I reviewed in Section 4 indicate that when interviewers are 

given timely feedback on their administration of the questions they do a better job, and this reduces the 

level of measurement error in the answers they elicit.  

One thing is certain. In an increasingly difficult climate for surveys, efforts to improve the 

management of surveys and to apply as much as science as possible in that endeavor will surely continue. 
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Integration of data from probability surveys and big found 

data for finite population inference using mass imputation 

Shu Yang, Jae Kwang Kim and Youngdeok Hwang1 

Abstract 

Multiple data sources are becoming increasingly available for statistical analyses in the era of big data. As an 

important example in finite-population inference, we consider an imputation approach to combining data from 

a probability survey and big found data. We focus on the case when the study variable is observed in the big 

data only, but the other auxiliary variables are commonly observed in both data. Unlike the usual imputation 

for missing data analysis, we create imputed values for all units in the probability sample. Such mass 

imputation is attractive in the context of survey data integration (Kim and Rao, 2012). We extend mass 

imputation as a tool for data integration of survey data and big non-survey data. The mass imputation methods 

and their statistical properties are presented. The matching estimator of Rivers (2007) is also covered as a 

special case. Variance estimation with mass-imputed data is discussed. The simulation results demonstrate the 

proposed estimators outperform existing competitors in terms of robustness and efficiency. 
 

Key Words: Calibration weighting; Data fusion; Generalized additive model; Matching; Nearest neighbor imputation; 

Post stratification. 

 

 

1. Introduction 
 

In finite population inference, probability sampling is the gold standard for obtaining a representative 

sample from the target population. Because the selection probability is known, the subsequent inference 

from a probability sample is often design-based and respect the way in which the data were collected; see 

Särndal, Swensson and Wretman (2003), Cochran (2007), Fuller (2009) for textbook discussions. 

However, large-scale survey programs continually face heightened demands coupled with reduced 

resources. Demands include requests for estimates for domains with small sample sizes and desires for 

more timely estimates. Simultaneously, program budget cuts force reductions in sample sizes, and 

decreasing response rates make nonresponse bias an important concern. Baker, Brick, Bates, Battaglia, 

Couper, Dever, Gile and Tourangeau (2013) address the current challenges in using probability samples 

for finite population inferences. 

To meet the new challenges, statistical offices face the increasing pressure to utilize convenient but 

often uncontrolled big data sources (also called big found data), such as satellite information (McRoberts, 

Tomppo and Næsset, 2010), mobile sensor data (Palmer, Espenshade, Bartumeus, Chung, Ozgencil and 

Li, 2013), and web survey panels (Tourangeau, Conrad and Couper, 2013). Couper (2013), Citro (2014), 

Tam and Clarke (2015), and Pfeffermann, Eltinge and Brown (2015) articulate the promise of harnessing 

big data for official and survey statistics but also raise many issues regarding big data sources. While such 

data sources provide timely data for a large number of variables and population elements, they are non-

probability samples and often fail to represent the target population of interest because of inherent 

selection biases. Tam and Kim (2018) also cover some ethical challenges of big data for official 
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statisticians and discuss some preliminary methods of correcting for selection bias in big data. See 

Keiding and Louis (2016), Elliott and Valliant (2017), Buelens, Burger and van den Brakel (2018), and 

Beaumont (2020) for recent reviews of the challenges in using non-probability samples for inferences. 

To utilize modern data sources in statistically defensible ways, it is important to develop statistical 

tools for data integration for combining a probability sample with big non-probability data. Data 

integration for finite population inference is similar to the problem of combining randomized clinical trial 

studies and non-randomized epidemiological studies for causal inference of treatment effects (Keiding and 

Louis, 2016). We are particularly interested in developing data integration under the setup where the study 

variable is observed in the big data only, but some other variables are commonly observed in both data. In 

this case, survey statisticians and biostatisticians have provided different methods for combining 

information from multiple data sources. Lohr and Raghunathan (2017), Yang and Kim (2020), and Rao 

(2020) provide a review of statistical methods of data integration for finite population inference. Existing 

methods for data integration can be categorized into three types as follows. 

The first type is the so-called propensity score adjustment (Rosenbaum and Rubin, 1983). In this 

approach, the probability of a unit being selected into the big sample, which is referred to as the 

propensity score, is modeled and estimated for all units in the big data sample. The subsequent 

adjustments, such as propensity score weighting or stratification, can then be used to adjust for selection 

biases; see, e.g., Lee and Valliant (2009), Valliant and Dever (2011), Elliott and Valliant (2017). Stuart, 

Bradshaw and Leaf (2015), Stuart, Cole, Bradshaw and Leaf (2011), Buchanan, Hudgens, Cole, Mollan, 

Sax, Daar, Adimora, Eron and Mugavero (2018) use propensity score weighting to generalize results from 

randomized trials to a target population. O’Muircheartaigh and Hedges (2014) propose propensity score 

stratification for analyzing a nonrandomized social experiment. One of the notable disadvantages of the 

propensity score methods is that they rely on an explicit propensity score model and are biased if the 

model is mis-specified (Kang and Schafer, 2007). 

The second type uses calibration (Deville and Särndal, 1992; Kott, 2006; Dong, Yang, Wang, Zeng 

and Cai, 2020). This technique can be used to calibrate auxiliary information in the big data sample with 

that in the probability sample, so that after calibration the big data sample is similar to the target 

population (DiSogra, Cobb, Chan and Dennis, 2011). Because calibration does not require parametric 

modeling, it is attractive to survey practitioners. However, this approach requires the information (such as 

the moments) of the auxiliary variables for the population is known or at least can be estimated from a 

probability sample. 

The third type is mass imputation, where the imputed values are created for the whole elements in the 

probability sample. In the usual imputation for missing data analysis, the respondents in the sample 

provide a training dataset for developing an imputation model. In the mass imputation, an independent big 

data sample is used as a training dataset, and imputation is applied to all units in the probability sample. 

While the mass imputation idea for incorporating information from big data is very natural, the literature 

on mass imputation itself is sparse. Breidt, McVey and Fuller (1996) discuss mass imputation for two-
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phase sampling. Rivers (2007) proposes a mass imputation approach using nearest neighbor imputation 

but the theory is not fully developed. Kim and Rao (2012) develop a rigorous theory for mass imputation 

using two independent probability samples. Chipperfield, Chessman and Lim (2012) discuss composite 

estimation when one of the surveys is mass imputed. Bethlehem (2016) discuss practical issues in sample 

matching. Recently, Kim and Wang (2019) develop a theory for mass imputation for big data using a 

parametric model approach. However, the parametric model assumptions do not necessarily hold in 

practice. In order for mass imputation to be more useful and practical, the assumptions should be as weak 

as possible. 

We summarize our contributions in this paper below:   

1. We first develop a formal framework for mass imputation incorporating information from big 

data into a probability sample and present rigorous asymptotic results for the mass imputation 

estimators. Our framework covers the nearest neighbor imputation estimator of Rivers (2007). 

Unlike Kim and Wang (2019), we do not make strong parametric model assumptions for mass 

imputation. Thus, the proposed method is appealing to survey practitioners.  

2. We also investigate two strategies for improving the nearest neighbor imputation estimator, one 

using k  nearest neighbor imputation (Mack and Rosenblatt, 1979) and the other using generalized 

additive models (Wood, 2006). In k  nearest neighbor imputation, instead of using one nearest 

neighbor, we identify multiple nearest neighbors in the big data sample and use the average 

response as the imputed value. This method is popular in the international forest inventory 

community for combining ground-based observations with imagines from remote sensors 

(McRoberts et al., 2010). In this paper, we establish asymptotic results for the k  nearest neighbor 

estimator. In the second strategy, we investigate modern techniques of prediction for mass 

imputation with flexible models. We use generalized additive models (Wood, 2006) to learn the 

relationship of the outcome and covariates from the big data and create predictions for the 

probability samples. We note that this strategy can apply to a wider class of semi- and non-

parametric estimators such as single index models, Lasso estimators (Belloni, Chernozhukov, 

Chetverikov and Kato, 2015), and machine learning methods such as random forests (Breiman, 

2001). 

3. Using a novel calibration weighting idea, we propose an efficient mass imputation estimator and 

develop its asymptotic results. The efficiency gain is justified under a purely design-based 

framework and no model assumptions are used. We consider the case when additionally the 

membership to the big data can be determined throughout the probability sample. The key insight 

is that the subsample of units in Sample A with the big data membership constitutes a second-

phase sample from the big data sample, which acts as a new population. We calibrate the 

information in the second-phase sample to be the same as the new acting population. The 

calibration process in turn improves the accuracy of the mass imputation estimator without 

specifying any model assumptions.  
 



32 Yang et al.: Integration of data from probability surveys and big found data 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The structure of the paper is as follows. In Section 2, we introduce the basic setup. In Section 3, we 

present the methodology for the nearest neighbor imputation and establish its asymptotic properties. In 

Section 4, we investigate two strategies for improving the nearest neighbor imputation estimator, one 

using k  nearest neighbor imputation and the other using generalized additive models. In Section 5, we 

propose a regression calibration technique to improve the efficiency of the mass imputation estimators 

when additionally the big data membership is observed throughout the probability sample. In Section 6, 

we demonstrate that the proposed estimators are robust and efficient by simulation studies based on 

artificial data and real-life data from U.S. Census Bureau’s Monthly Retail Trade Survey. In Section 7, we 

present a case study applying the proposed method to integrate national health survey data and national 

health insurance records. Section 8 concludes with a discussion. 

 
2. Basic setup 
 

2.1 Notation: Two data sources 
 

Let ( ) = , :N i iY i UXF  with  = 1, ,U N  denote a finite population, where ( )1= , , p
i i iX XX  

is a p -dimensional vector of covariates, and iY  is the study variable. We assume that NF  is a random 

sample from a superpopulation model ,  and N  is known. Our objective is to estimate the general finite 

population parameter ( )1

=1
=

N

g ii
N g Y −   for some known ( ) .g   For example, if ( ) = ,g Y Y

1

=1
=

N

g ii
N Y −   is the population mean of .Y  If ( ) ( )= <g Y Y c1  for some constant ,c =g  

( )1

=1
<

N

ii
N Y c−  1  is the population proportion of Y  less than .c  

Suppose that there are two data sources, one from a probability sample, referred to as Sample A, and 

the other from a big data source, referred to as Sample B. Table 2.1 illustrates the observed data structure. 

Sample A contains observations ( ) 1= = , :XA i i id i A − O  with sample size = ,n A  where 

( )=i P i A   is known throughout Sample A, and Sample B contains observations =BO  

( ) , :i iY i BX  with sample size = .BN B  Often the probability sample contains many other items 

but we only use those items overlapping with our big data.  Although the big data source has a large 

sample size, the sampling mechanism is often unknown, and we cannot compute the first-order inclusion 

probability for Horvitz-Thompson estimation. The naive estimators without adjusting for the sampling 

process are subject to selection biases. On the other hand, although the probability sample with sampling 

weights represents the finite population, it does not observe the study variable. 

 

Table 2.1 

Two data sources. “  ” and “?” indicate observed and unobserved data, respectively 
 

  Sample weight -1d = π  Covariate X  Study Variable Y  

Probability Sample  1     ? 

AO      

 n      ? 

Big Data Sample  1 ?     

BO      

 BN  ?     

Sample A is a probability sample, and Sample B is a big data but may have selection biases.  
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2.2 Assumptions 
 

Let ( )f Y X  be the conditional density function of Y  given X  in the superpopulation model .  Let 

( )f X  and ( )= 1Bf X  be the density function of X  in the finite population and Sample B, 

respectively, where B  is the indicator of selection to Sample B. We first make the following 

assumptions. 
 

Assumption 1 (Ignorability). Conditional on ,X  the density of Y  in Sample B follows the 

superpopulation model; i.e., ( ) ( ); = 1 = .X XBf Y f Y  
 

Assumptions 1 and 2 constitute the strong ignorability condition (Rosenbaum and Rubin, 1983). This 

setup has previously been used by several authors; see, e.g., Rivers (2007), Vavreck and Rivers (2008). 

Assumption 1 states the ignorability of the selection mechanism to Sample B conditional upon the 

covariates. Assumption 1 also implies that ( ) ( )= 1 , = = 1 .X XB BP Y P   This assumption holds if 

the set of covariates contains all predictors for the outcome that affect the possibility of being selected in 

Sample B. Under this assumption, the missing outcomes in Sample A are missing at random (Rubin, 

1976). 

 

Assumption 2 (Common support). The vector of covariates X pR  has a compact and convex support, 

with its density bounded and bounded away from zero. There exist constants lC  and uC  such that 

( ) ( )= 1l B uC f f C X X  almost surely. 

 

Assumption 2 implies that the support of X  in Sample B is the same as that in the finite population. 

This assumption can also be formulated as a positivity assumption that ( )= 1 > 0BP  X  for all .X  

Assumption 2 does not hold if certain units would never be included in the big data sample. The 

plausibility of this assumption can be judged by subject matter knowledge. For diagnosis purpose, we can 

examine the distribution of the estimated propensity scores or the distribution of the propensity score 

weights in Sample A. Values of propensity score close to zero or extreme large values of the propensity 

score weights indicate the possible positivity violation. We assume all covariates are continuous. 

Categorical variables can be handled by first defining imputation classes using the partition of the 

categories and then estimating the average of the outcome using the nearest neighbor imputation within 

imputation classes. In our context, Sample B is a big data sample and therefore the size of donors for each 

imputation class can be reasonable large. 

 
3. Methodology 

 
3.1 Nearest neighbor imputation 
 

For simplicity, we will focus on the Horvitz-Thompson type estimator, although our discussion applies 

to other type of estimators. If iY  were observed throughout Sample A, the Horvitz–Thompson estimator 
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( )1 1
, HT

ˆ =g i ii A
N g Y − −

  can be used. We consider the imputation estimator of ,g  given by 

( )1 1 *
,

ˆ = ,g I i ii A
N g Y − −

  where *
iY  is an imputed value for .iY  Creating imputed values for the whole 

data is called mass imputation (Chipperfield et al., 2012; Kim and Rao, 2012). 

To find suitable imputed values, we consider nearest neighbor imputation; that is, find the closest 

matching unit from Sample B based on the X  values and use the corresponding Y  value from this unit as 

the imputed value. This approach has been called Sample Matching by Rivers (2007). To investigate the 

theoretical properties, we first consider matching with replacement with single imputation; the discussion 

on k  nearest neighbor imputation is presented in Section 4. 

The nearest neighbor approach to mass imputation can be described in the following steps:   

Step 1. For each unit ,i A  find the nearest neighbor from Sample B with the minimum distance 

between jX  and .X i  Let ( )1i  be the index of its nearest neighbor, which satisfies 

( )( ) ( )1 , , ,i j iid dX X X X  for ,j B  where ( ),i jd X X  is a distance function between iX  and 

.X j  If there are ties, randomly select one as the nearest neighbor. Without loss of generality, we 

use the Euclidean distance, ( ), = ,X X X Xi j i jd −  where ( )
1 2T= ,X X X  to determine 

neighbors.  

Step 2. The nearest neighbor imputation estimator of g  is  

 ( )( )1
, nni 1

1
ˆ = .g i i

i A

g Y
N

  −


  (3.1) 

 

Remark 1. Our theoretical development applies to a general class of distances ( )
1 2T 1= ,X X X−


  

where   is a positive definite matrix (Abadie and Imbens, 2006). This class includes the standard 

Mahalanobis distance by taking   to be the empirical covariance matrix of .X  Write T= .L L  Notice 

that ( ) 
1 2

= = .X X X XL L L


 Hence, using 


  and X  is equivalent to using   and .XL  So, 

we can carry over the the theoretical result to the case with .X


 

 

Comparing to model-based imputation, nearest neighbor imputation has several advantages. First, it 

does not require strong parametric model assumptions and therefore is robust to model misspecification. 

Second, nearest neighbor imputation is donor-based, where the imputed value is a value that was actually 

measured and will always be within the bounds of observed values. Third, in contrast to regression 

imputation approaches, nearest neighbor imputation can retain the complex variance covariance structure 

of the data. Moreover, for the same imputed dataset, one can estimate different parameters by choosing 

reasonable ( ) .g   Recall that p  is the dimension of .X  The asymptotic bias of , nni
ˆ

g  is of order 

( )1
p

p
BO N −  (Abadie and Imbens, 2006), which is negligible when the number of continuous covariates is 

fixed at a reasonable number and the size of the matching donor pool is huge as in our big data setup. In 

the presence of a large dimension of ,X  variable selection is necessary for the nearest neighbor 

imputation estimator to have good statistical properties. In this case, we suggest selecting important 

variables that are associated with the outcome in order to ensure Assumption 1 holds and also to increase 

estimation precision (Brookhart, Schneeweiss, Rothman, Glynn, Avorn and Stürmer, 2006). 
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3.2 Asymptotic results 
 

To study the asymptotic properties of , nni
ˆ ,g  we impose the following regularity conditions. 

 

Assumption 3. (i) ( )f X  and ( ) ( ) =g E g Y X X  are continuously differentiable for any continuous 

and bounded ( ) ,g Y  and (ii) ( ) E g Y


X  is bounded for = 1, 2.  

 

Assumption 4. (i) There exist positive constants 1C  and 2C  such that 1
1 2 ,iC Nn C−   for = 1, , ;i N  

(ii) the sampling fraction for Sample A is negligible, ( )1 = 1 ;nN o−  and (iii) the sequence of the Horvitz-

Thompson estimators , HT
ˆ

g  satisfies 1
, HT

ˆvar ( ) = ( )p g O n −  and 1/2
, HT ,HT

ˆ ˆ{var ( )} ( ) | (0,1)p g g g N  − − →F N  

in distribution, as ,n →   where ( ) ( )var = varp N  F  is the variance under the sampling design for 

Sample A. 

 

For clarification, the probability distribution underpinning the notation ( ) ,E  ( )var , ( )
po   and ( )

pO   

is the joint distribution of the superpopulation model and the sampling processes for Samples A and B. 

Assumption 3 is a technical condition imposed on the functional continuity and finite moments, which 

holds for common models; see, e.g., Mack (1981). Assumption 4 holds for standard sampling designs in 

survey practice (Fuller, 2009; Chapter 1). It requires the sampling weights to behave well in the sense that 

there do not exist extremely large weights that dominate other weights. This occurs when subjects when 

certain characteristics are largely underrepresented in the sample. Sufficient conditions for Assumption 4 

(iii) can be found in Chapter 3 of Fuller (2009). 

We derive the asymptotic theory for , nni
ˆ

g  in the following theorem and defer its proof to the 

Supplementary Material. 

 

Theorem 1. Under Assumptions 1–3 and ( )1 = 1 ,BNN O−
, nni

ˆ
g  has the same distribution as , HT

ˆ
g  as 

.BN →   Furthermore, under Assumption 4, , nni
ˆ

g  is consistent for ,g  and  

 ( ) ( )1 2
, nni nni

ˆ 0, ,g gn V − → N  (3.2) 

where  

 ( ) 1
nni 2

= var .lim p i i
n i A

n
V E g Y

N
 −

→ 

 
  

   

Theorem 1 implies that the standard point estimator can be applied to the imputed data ( )( ) 1, :i iY i AX  

as if the ( )1 ’siY  were observed values. Let ij  be the joint inclusion probability for units i  and .j  We 

show in the Supplementary Material that the direct variable estimator based on the imputed data  

 
( )( ) ( )( )1 1

nni 2
ˆ =

i jij i j

i A j A i j i j

g Y g Yn
V

N

  

    

−
   

is consistent for nni .V  
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4. Other techniques for mass imputation 
 

4.1 k -nearest neighbor imputation 
 

Instead of using a single imputed value, we now consider fractional imputation with k  imputed values 

for each missing outcome. Fractional imputation is designed to reduce the variance of the final estimator 

due to imputation (Kalton and Kish, 1984; Kim and Fuller, 2004). 

Assume no matching ties, let ( )
k iJ  be the set of k  nearest neighbors for unit i  

 ( )
( ) ( ) 

( ) ( ) 
, ,= : 1 = 1 , , .X X X Xj i l ik d d

j B

i l B k i i k


 
  

 
J   

The k  nearest neighbor approach to mass imputation can be described in the following steps:   

Step 1. For each unit ,i A  find the k  nearest neighbors from Sample B, ( ) .k iJ  Impute the Y  value for 

unit i  by ( ) ( )( )1

=1
ˆ = .X

k

g i i jj
k g Y −   

Step 2. The k  nearest neighbor imputation estimator of g  is  

 ( )1
, knn

1
ˆ ˆ= .g i g i

i AN
  −


 X  (4.1) 

 

In the non-parametric estimation literature, researchers have investigated the asymptotic properties of 

the k  nearest neighbor imputation estimators extensively. See, e.g., Mack and Rosenblatt (1979) and 

Mack (1981) for early references. Cheng (1994) establishes root- n  consistency of the k  nearest neighbor 

imputation estimator of the outcome mean when the outcome is subject to missingness. We derive the 

asymptotic theory for , knn
ˆ

g  in the context of mass imputation combining a probability sample and a big 

data sample in the following theorem and defer its proof to the Supplementary Material. 
 

Theorem 2. Under Assumptions 1–4, ( )
4

0,
p

n k N → 0,k n →  and 2 ,k n →   

 ( ) ( )1 2
, knn knn

ˆ 0, ,g gn V − → N  (4.2) 

where  

 ( )  ( )

( )
( )1 2

knn 2

1
= var ,lim

B

p i g i g
n i A B

n
V E E

N


  


−

→ 

−   
+       


X

X X
X

  

and ( ) ( )= = 1B BP X X  and ( ) ( ) 2 = var .X Xg g Y  

 

If ( )
B X  goes to 1, knnV  reduces to ( ) ( ) 2 1var .lim Xn p i g ii A

n N E  −
→ 

    It suggests that if 

the big sample is a large fraction of the target population, knnV  can be smaller than nni ,V  suggesting that 

, knn
ˆ

g  gains efficiency over , nni
ˆ .g  In finite samples, Beretta and Santaniello (2016) conduct a simulation 

study to compare nearest neighbor imputation and k  nearest neighbor imputation in the setting with 

independent and identically distributed data. They found that k  nearest neighbor imputation with a small 

k  outperforms nearest neighbor imputation in terms of mean squared error. On the one hand, a larger k  

can use more information in the big data sample and leads to more efficiency gain; on the other hand, k  
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cannot be too large, in order to control the bias of our estimator. In practice, we suggest using data-driven 

methods, such as cross-validation, to choose a reasonable ,k  and conducting sensitivity analysis varying 

the choice of .k  

 

4.2 Generalized additive models 
 

Nearest neighbor imputation methods are non-parametric. On the other hand, parametric models 

especially linear models are sensitive to model misspecification. We now consider semiparametric 

methods for mass imputation. Among semiparametric methods, generalized additive models (Hastie and 

Tibshirani, 1990) are flexible regarding model specification of the dependence of Y  on X  by specifying 

the model only through smooth functions rather than assuming a parametric relationship. As other non-

parametric methods, the performance of generalized additive models will deteriorate as the dimension of 

X  becomes large. For X  with a moderate dimension, we apply generalized additive models to leverage 

the predictive power of the big data sample to produce a predictive model for Y  given ,X  so as to 

facilitate mass imputation for the probability sample. 

We assume that ( )ig Y  given iX  follows some exponential family distribution, and  

 ( )  ( ) ( ) ( )1 1 2
1 2= ,p

g i i i p ih f X f X f X− + +X  (4.3) 

where ( )h   is an inverse link function, and each ( )
kf   is a smooth function of ,kX  for = 1, , .k p  

Model (4.3) allows for rather flexible specification of the dependence of Y  on .X  The estimated function 

( )k
kf X  can reveal possible nonlinearities of the relationship of Y  and .kX  

There are several challenges in fitting model (4.3). First, ( )
kf x  is an infinite-dimensional parameter, 

estimation of which often relies on some approximation. Second, we need to decide how smooth the 

( )
kf x  should be to balance the trade-off between model complexity and overfitting to the data at hand. 

To solve the first issue, a common way to approximate ( )
kf x  using splines. Let ( )

mB x  be the basis 

spline functions for = 1, ,m M  (Ruppert, Wand and Carroll, 2009). We approximate ( )
kf x  by 

( ) ( )
=1

=
M k

k m mm
f x B x  with spline coefficients .k

m  This leads to an approximation of model (4.3): 

 ( )   ( )1

=1 =1

ˆ = .
p M

k k
i i m m i

k m

h E g Y B X− X  (4.4) 

In (4.4), a large M  allows for increased model complexity and also an increased chance of overfitting; 

while a small M  may result in an inadequate model. This trade-off is balanced by choosing a relatively 

large M  and then penalizing the model complexity in the estimation stage (Eilers and Marx, 1996). Let 

the vector of spline coefficients be ( )T
1= , ,k k

k m    and ( )T T T
1= , , .p    The estimate ̂  is 

obtained by maximizing the penalized likelihood:  

 ( ) T

=1

2
p

k k k k
k

l S   − +   (4.5) 

where ( )l   is the log likelihood function of , kS  is a matrix with the ( )
th

,m l  component 

( ) ( )d ,m lB x B x x 
T
k k kS   regularizes kf  to be smooth for which the degree of smoothness is controlled 
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by .k  Given the smoothing parameter ( )T
1= , , ,p    the penalized likelihood function in (4.5) is 

optimized by a penalized version of the iteratively reweighted least squares algorithm (Nelder and Baker, 

1972; McCullagh, 1984) to obtain ˆ.  Regarding the choice of ,  we note that   controls the trade-off 

between model complexity and overfitting, which can be estimated separately from other model 

coefficients using generalized cross-validation or estimated simultaneously using restricted maximum 

likelihood estimation (Wood, 2006). In practice, the model performance is not sensitive to the choice of 

the number of basis functions as long as the number of basis functions is large relative to the sample size 

in the specification, but rather estimation of the smoothing parameter is critical to control the model 

complexity. 

Once fitting the model, we can create an imputed value for each element i  in Sample A as  

 ( ) ( ) ( ) ( ) 1 2
, GAM 1 2

ˆ ˆ ˆˆ = ,p
g i i i p ih f X f X f X + +X   

where ( ) ( )
=1

ˆ ˆ=
M k

k m mm
f x B x  for = 1, , .k p  The mass imputation estimator based on the generalized 

additive model is  

 ( )1
, GAM , GAM

1
ˆ ˆ= .g i g i

i AN
  −


 X   

Because in our context, the sample size of Sample B is much larger than that of Sample A, the estimation 

error in the imputation model can be negligible compared to the sampling variability of , GAM
ˆ .g  

To close this subsection, it is worth commenting on the assumption of additive effects of X  in model 

(4.3). This assumption may be fairly strong one. To relax the additivity assumption, we can extend model 

(4.3) to include interactions through using the tensor product basis. For example, we can include a 

bivariate interaction surface ( ) ( ) ( )1 2 1 2
12 =1 =1

, = .
M L

ml m lm l
f X X B X B X   When using the tensor 

product basis, care should be taken with respect to the penalty function in order to result in appropriate 

effective degrees of freedom for the smoother. This topic has been investigated extensively in the 

literature; see, e.g., Wood (2006). 

 
5. Regression calibration 
 

In practice, especially for government agencies, one nearest neighbor may be preferred because of its 

simplicity in implementation and data storage. We now consider another strategy to improve the 

efficiency for , nni
ˆ

g  when additionally the membership to Sample B can be determined throughout 

Sample A with the indicator .B  In some situation, we can obtain B  by matching the membership to 

Sample B (i.e., data linkage). We focus on the ideal setting without linkage errors. The key insight is that 

the subsample of units in Sample A with = 1B  constitutes a second-phase sample from Sample B, 

where Sample B acts as a new population. Standard regression calibration requires all calibration variables 

to be observed in Sample A and Sample B, and thus rules out the possibility of using Y  as the calibration 

variable due to lack of the outcome data from Sample B. One of the advantages of mass imputations is 

that we can leverage the imputed outcomes to facilitate calibration of .Y  
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Let ( ), ,B Yh X  be a multi-dimensional function of ,B B X  and ,BY  e.g., ( ), , =B Yh X  

( )
T

, 1 , , .B B B BY   − X  For simplicity of notation, we use ih  to denote ( ), ,Bi i iYh X  and *
ih  to 

denote ( )( )1, , .h XBi i iY  We can calculate the population quantity 1

=1
=

N

ii
N − H h  from Sample B. This 

insight enables the typical calibration weighting in survey sampling with known marginal totals. In 

Sample A, we treat the imputed values as observed values, and the design weighted estimator of H  is 
1 1 *ˆ = .A i ii A

N − −

H h  In general, ˆ
AH  is not equal to .H  We can use the known information H  to 

improve the efficiency of , nni
ˆ .g  

This suggests the following calibration strategy. We modify the original design weights  :id i A  in 

, nni
ˆ

g  to a new set of weights  :i i A   by minimizing a distance function  

 ( )

2

, = 1 ,
i

i i i
i A i A i

G d d
d




 

 
− 

 
   (5.1) 

subject to the calibration constraints 1 * = .i ii A
N −

 h H  By Lagrange multiplier, the solution to the 

constraint minimization problem is  

 
T 1

* * *T *= ,i i k k k k k i i
k A k A

d N d d d
−

 

   
+  −   
   

 H h h h h   

for .i A  The resulting weights  :i i A   can be called generalized regression weights. 

The proposed estimator utilizing the new set of weights is  

 ( )( ), RC 1

1
ˆ = ,g i i

i A

g Y
N

 

  (5.2) 

which is asymptotically equivalent to a generalized regression estimator (Park and Fuller, 2012). 

Following Yang and Ding (2020), one can show that , RC
ˆ

g  is the optimal estimator among the class of 

( ) ( ) T* dim
, nni

ˆ : .hH h  g k kk A
N d


+  −  R  

We derive the asymptotic theory for , RC
ˆ

g  in the following theorem and defer its proof to the 

Supplementary Material. 
 

Theorem 3. Under Assumptions 1-4,  

 ( ) ( )1 2
, RC RC

ˆ 0, ,g gn V − → N  (5.3) 

in distribution, as ,n →   where  

 ( ) 1 T
RC 2

= var ,lim p i i i N
n i A

n
V E g Y

N
 −

→ 

   
−     

 h β   

and ( ) ( )T
1

=1 =1
= .β h h h

N N

N i i i ii i
g Y

−

   
 

The calibrated estimator , RC
ˆ

g  improves the efficiency of , nni
ˆ

g  in the sense that RCV  is at most as 

large as nniV  given in Theorem 1. If ih  explains a proportion of the variability of ( ) ,ig Y RCV  is strictly 

less than nniV  and the efficiency gain does not require any parametric model assumption. 
 

Remark 2 (Choice of distance functions). Different distance functions in (5.1) can be considered. If we 

choose ( ) ( ), = log ,i i i i iG d d d −  it leads to empirical likelihood estimation (Newey and Smith, 
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2004). If we choose the Kullback-Leibler distance function ( ) ( ), = log ,i i i i iG d d    it leads to 

exponential tilting estimation (Kitamura and Stutzer, 1997; Imbens, Johnson and Spady, 1998; 

Schennach, 2007; Dong et al., 2020). Under mild conditions, these procedures provide a set of weights 

that is asymptotically equivalent to the set of regression weights (Deville and Särndal, 1992; Breidt and 

Opsomer, 2017). 
 

For variance estimation, by Theorem (3), we construct a consistent variance estimator for , RC
ˆ

g  as 

RC
ˆ ,V n  where 

 RC 2

ˆˆ
ˆ = ,

ij i j ji

i A j A ij i j

en e
V

N

  

   

−
   

with ( )( ) *T
1

ˆˆ = ,h βi iie g Y −  and  

 

( )

( ) ( )( )

( )

( )

=1

1
1

1
* *T

=1
=1

=1

1
ˆ = .

N

Bi ii

N i Bi ii A

i i N
i

Bi i ii

N

Bi i ii

g Y

g Y

g Y

Y g Y



 





−
−



 
 
 −

   
 

  
 
 
 










β h h
X

  

 

6. Empirical experiments 
 

In this section, we evaluate the finite sample performance of the proposed estimator using simulation 

studies, one based on artificial data using simple random sampling and the other based on a synthetic 

population file from a single month sample of the U.S. Census Bureau’s Monthly Retail Trade Survey 

using stratified sampling. 

 

6.1 Kim-Wang example 
 

We use the simulation example in Kim and Wang (2019) to compare various estimators. We generate 

the data according to the following mechanism. We first generate a finite population =NF  

( ) ( ) 1 2 1 2= , , = , : = 1, ,i i i i i iX X Y Y i NX Y  with size =N 1,000,000, where 1iY  is a continuous 

outcome and 2 iY  is a binary outcome. From the finite population, we select a big data Sample B where the 

inclusion indicator ( )~ BerBi ip  with ip  the inclusion probability for unit i  with the sample size 

around 700,000. We obtain a representative Sample A of size =n 1,000 using simple random sampling. 

The parameters of interest are the population mean 
1

=1

N

ii
N −  Y  and the conditional population mean of 

1Y  given 2 = 1.Y  

For generating the finite population, we consider linear models  

 1 1 2= 1 ,i i i i iY X X  + + + +  (6.1) 

 ( ) ( )2 1 2 1 2= 1 , ; = logit 1 ,i i i i i i iP Y X X X X + + +   

and nonlinear models  

 ( )
2 2

1 1 2= 0.5 1.5 ,i i i i iY X X  − + + +  (6.2) 
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 ( ) ( ) 2 2
2 1 2 1 2= 1 , ; = logit 0.5 1.5 ,i i i i i i iP Y X X X X − + +   

where ( )
1 ~ 1, 1 ,iX N ( )

2 ~ Exp 1 ,iX ( )~ 0, 1 ,i N ( )~ 0, 1 ,i N  and 1 ,iX 2 ,iX i  and i  are 

mutually independent. The variables i  induce the dependence of 1iY  and 2 iY  even adjusting for 1iX  and 

2 .iX  For the big-data inclusion probability, we also consider a logistic linear model  

 ( ) 2logit = ,i ip X  (6.3) 

and a nonlinear logistic model  

 ( ) ( ) ( )
2 2

1 2logit = 3 1.5 2 .i i ip X X− + − + −  (6.4) 

We consider the following combinations: I. (6.1) and (6.3); II. (6.1) and (6.4); II. (6.2) and (6.3); and IV. 

(6.2) and (6.4) for data generating mechanisms. Therefore, the simulation setup is a 2 2  factorial design 

with two levels in each factor. 

Chen, Li and Wu (2020) propose the inverse propensity score weighting estimator using the estimated 

probability of selection into Sample B and the doubly robust estimator which further incorporates an 

outcome regression model. To evaluate the robustness and efficiency, we compare the following 

estimators:   

1. HT
ˆ ,  the Horvitz–Thompson estimator assuming the ’siY  were observed in Sample A for the 

purpose of benchmark comparison;  

2. ipw
ˆ ,  the inverse propensity score weighting estimator,  

 
( )

ipw

1 1
ˆ = ,

ˆ
i

i B i

Y
N p




   

where ( ) ( )2= = 1 ;i Bi ip P X    is a logistic regression model with the linear predictor 2iX  with 

an unknown parameter ,  and ̂  is an estimator of   obtained by maximizing the modified 

likelihood function of   (Chen et al., 2019) based on Samples A and B;  

3. dr
ˆ ,  the doubly robust estimator of Chen et al. (2019),  

 
( )

( )T T
dr

1 1 1
ˆ ˆˆ = ,

ˆ
i i i

i B i Ai

Y
N p n


 

− + X β X β   

where β̂  is the estimated regression coefficients using (6.1) as the working outcome regression 

model based on Sample B;  

4. nni
ˆ ,  the nearest neighbor imputation estimator;  

5. knn
ˆ ,  the k  nearest neighbor imputation estimator with = 5;k  

6. GAM
ˆ ,  the generalized additive model imputation estimator;  

7. RC
ˆ ,  the regression calibration estimator based on nni̂  with calibration variables ( ), , =B YH X

( )
T

, 1 , , .B B B BY   − X  
 

All simulation results are based on 1,000 Monte Carlo runs. Table 6.1 summarizes the simulation 

results with biases, standard errors, and coverage rates of 95% confidence intervals using asymptotic 
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normality of the point estimators. The following observations can be made from Table 6.1. ipw̂  has large 

biases when the propensity score is misspecified. dr̂  gains robustness over ipw̂  if one of the outcome 

regression model or the propensity score is correctly specified. However, if both models are misspecified, 

dr̂  has a larger bias. nni̂  has small biases across four scenarios, which shows its robustness. 

Importantly, the performance of nni̂  is close to that of HT̂  in terms of standard errors and coverage 

rates, which is consistent with our theory in Theorem 1. Moreover, as predicted by our theoretical results, 

knn̂  improves nni̂  in terms of efficiency. Also, GAM̂  shows robustness because of the flexibility of the 

model specification. The regression calibration estimator RC̂  has small biases across all scenarios and 

therefore shows robustness against model specifications for sampling score and outcome. Moreover, it has 

smaller standard errors than both nni̂  and knn
ˆ .  The coverage rates are all close to the nominal level.   

 
Table 6.1 

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios 

based on 1,000 Monte Carlo samples. OM: outcome model; PS: propensity score model (all numbers in the 

table are the numerical results multiplied by 100) 
 

 Scenario I Scenario II Scenario III Scenario IV 

OM linear linear nonlinear nonlinear 

PS linear nonlinear linear nonlinear 

 Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. 

Population Mean of 1Y  

HT̂  0.2 6.5 96.0 -0.2 6.4 94.5 0.61 15.2 95.7 -0.5 15.6 93.5 

ipw̂  -0.1 1.6 95.3 22.2 35.8 97.5 -0.1 4.2 95.3 432.7 284.5 75.6 

dr̂  0.0 4.6 94.5 0.0 4.3 96.5 0.5 14.2 95.2 229.8 168.8 35.8 

nni̂  0.2 6.5 95.1 -0.3 6.4 94.7 0.7 15.2 94.6 -0.6 15.6 93.7 

knn̂  0.2 4.9 96.1 -0.3 4.9 95.6 0.5 14.5 94.6 -0.6 14.9 93.8 

GAM̂  0.1 4.5 95.7 -0.2 4.5 96.0 0.5 14.3 94.9 -0.6 14.8 93.4 

RC̂  0.0 3.2 95.5 -0.2 4.1 95.3 -0.1 4.8 95.0 0.1 6.7 95.5 

Population Mean of 2Y  

HT̂  -0.0 1.5 96.2 -0.0 1.6 95.1 -0.1 1.6 95.2 0.1 1.6 94.4 

ipw̂  0.0 0.2 95.0 -12.1 3.1 0.0 -0.0 0.3 95.4 3.0 1.8 94.7 

dr̂  -0.0 0.9 95.0 -1.1 1.8 68.6 0.0 0.4 94.9 -2.9 2.2 59.8 

nni̂  0.0 1.4 95.3 -0.0 1.6 95.3 -0.1 1.6 94.6 0.1 1.6 95.3 

knn̂  0.0 1.0 95.8 -0.0 1.1 95.8 -0.0 1.0 95.2 0.0 0.9 96.1 

GAM̂  -0.0 0.9 95.3 -0.0 0.9 94.8 -0.0 0.8 96.2 0.0 0.8 94.5 

RC̂  0.0 1.2 95.5 -0.1 1.4 94.2 -0.0 1.4 94.1 0.1 1.5 95.6 

Conditional Mean of 1Y  given 2 = 1Y  

HT̂  0.0 7.3 95.1 -0.3 7.2 95.2 0.2 9.3 95.3 -0.1 9.8 94.1 

ipw̂  -0.1 1.6 95.2 -9.1 10.3 69.8 -0.1 4.3 95.0 534.2 329.8 65.3 

dr̂  0.1 4.7 95.6 2.5 4.6 93.2 9.8 18.0 93.1 452.0 465.4 65.6 

nni̂  -0.0 7.3 95.0 -0.3 7.3 95.3 0.1 9.2 95.4 -2.2 9.5 95.2 

knn̂  -0.1 4.7 96.8 -0.3 4.6 96.5 0.1 6.0 94.8 0.0 6.4 93.6 

GAM̂  0.0 4.8 94.2 -0.3 4.5 96.0 -0.1 6.5 95.5 -0.6 6.8 94.8 

RC̂  -0.0 3.9 94.8 -0.2 5.0 96.0 -0.2 5.4 95.1 -0.1 5.4 96.7 
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6.2 Monthly retail trade survey 
 

To demonstrate the practical relevance, we consider the U.S. Census Bureau’s 2014 Monthly Retail 

Trade Survey (Mulry, Oliver and Kaputa, 2014). The Monthly Retail Trade Survey is an economic 

indicator survey whose monthly estimates are inputs to the Gross Domestic Product estimates. This survey 

selects a sample of about 12,000 retail businesses each month with paid employees to collect data on sales 

and inventories. It employs an one-stage stratified sample with stratification based on major industry, 

further substratified by the estimated annual sales referred to as the size variable. 

For simulation purpose, we use the simulated data from the 2014 Monthly Retail Trade Survey to 

suggest the data generating model and the true parameter values (https://ww2.amstat.org/meetings/ices/ 

2016/contests.cfm). We generate a finite population of =N 812,765 retail businesses with 16 strata with 

a stratum identifier ,h  sales ,Y  inventories ,X  and a size variable Z  on the log scale. Table 6.2 reports 

some summary statistics. We generate the inventory data from ( )2
, ,~ ,hi X h X hX N    for = 1, , hi N  

and = 1, , 16,h  and the sales data from a linear model  

 0= ,hi hi hiY X + +  (6.5) 

and a nonlinear model  

 2
0= 0.5 ,hi hi hiY X + +  (6.6) 

where ( )~ 0, 0.25 .hi N  In (6.5) and (6.6), we specify different values for 0  so that the parameter of 

interest, 
161

=1 =1
= ,

hN

hih i
N Y −    matches with the true population mean 12.73. 

 
Table 6.2 

The stratum size, sample allocation, mean and standard error of the inventory data on the log scale extracted 

from the 2014 Monthly Retail Trade simulated dataset 
 

Stratum h  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

hN  366 20 2,015 4,646 7,402 700 12,837 17,080 29,808 2,400 41,343 57,518 83,465 95,244 115,028 342,893 

hn  37 5 34 57 74 7 103 115 116 12 184 196 218 200 220 336 

,X h  16.8 16.7 16.6 16.4 16.1 15.6 16.0 15.7 15.6 15.5 15.4 15.1 14.8 14.5 13.9 11.5 

,X h  1.1 0.8 0.4 0.3 0.4 0.6 0.4 0.4 0.4 0.3 0.4 0.4 0.3 0.7 0.5 1.1 

,Z h
  5.9 2.3 5.8 6.3 6.6 4.2 6.9 7.0 7.4 4.8 7.5 7.6 7.7 7.6 7.7 8.1 

 
We also generate a big data sample BS  where the inclusion indicator ( )~ Berhi hip  with the 

inclusion probability hip  for unit i  in stratum .h  The big data sample in practice is often available from 

E-commercial companies who monitor inventories and sales for retail businesses. For the big data 

inclusion probability, let ( )2
, ,~ , ,hi Z h Z hZ N    for = 1, , hi N  and = 1, , 16.h  We consider a 

logistic linear model  

 ( ) 0logit = ,hi hip Z +  (6.7) 

and a nonlinear logistic model  
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 ( ) 2
0logit = ,hi hi hip X Z + +  (6.8) 

where we specify different values for 0  so that the mean inclusion probability is about 30%. Lastly, we 

generate a representative sample AS  by stratified sampling with simple random sampling within strata 

without replacement; see Table 6.2 for the sample allocation. 

We consider the seven estimators in Section 6.1 adopted for stratified sampling. In each mass imputed 

dataset, we apply the following point estimator and variance estimator: 1

=1
ˆ =

h

H

h nh
N N y −   with 

hny  is 

the sample mean of y  in the thh  stratum, ( )2 2 2

=1
ˆ ˆ( ) = 1

h

H

h h h n hh
V N N n N s n − −  with 2 =

hns  

( )
1 2

=1
1 ( ) .

h

h

n

h hi ni
n y y

−
− −  

Table 6.3 summarizes the simulation results. A similar discussion to Section 6.1 applies. ipw̂  is 

sensitive to misspecification of the selection model; while dr̂  has double robustness feature, which still 

relies on at least one model to be correctly specified. Mass imputation based on nearest neighbor 

imputation, k  nearest neighbor imputation and generalized additive model shows good performances by 

leveraging the representativeness of the survey sample and the predictive power of the big data sample. In 

addition, if the big data membership is known throughout the survey data, the regression calibration 

estimator gains efficiency while maintaining the robustness against model misspecification.   

 
Table 6.3 

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios 

based on 1,000 Monte Carlo runs for the 2014 Monthly Retail Trade Survey. OM: outcome model; PS: 

propensity score model (all numbers in the table are the numerical results multiplied by 100) 
 

 Scenario I Scenario II Scenario III Scenario IV 

OM linear linear nonlinear nonlinear 

PS linear nonlinear linear nonlinear 

 Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. 

HT̂  0.0 3.0 95.0 0.0 3.0 95.0 1.1 31.5 95.0 1.1 31.5 95.0 

ipw̂  -0.6 5.8 96.6 -55.5 1.7 0.0 -7.3 76.2 96.6 -735.8 22.3 0.0 

dr̂  -0.3 2.7 94.4 -0.2 2.7 94.0 -3.3 34.6 93.8 -52.3 33.2 65.0 

nni̂  0.1 3.1 94.5 -0.1 3.1 94.6 1.1 31.5 95.3 -0.3 31.7 94.6 

knn̂  0.1 2.7 94.4 -0.2 2.7 94.3 1.0 31.4 94.9 -2.3 31.4 94.1 

GAM̂  0.1 2.7 94.9 0.1 2.7 94.9 1.1 31.6 94.9 -2.5 31.4 94.2 

RC̂  0.1 2.9 94.1 -0.1 2.6 95.1 0.6 30.7 94.6 -0.5 26.9 95.0 

 
7. Real-data application 
 

7.1 Data description 
 

To demonstrate the practical use, we apply the proposed method to the survey data from the Korea 

National Health and Nutrition Examination Survey (KNHANES) and the big data from National Health 

Insurance Sharing Service (NHISS). The KNHANES is an annual national survey that studies the health 

and nutritional status of Koreans since 1998. The surveys have been conducted by the Korea Centers for 



Survey Methodology, June 2021 45 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Disease Control and Prevention. This nationally representative cross-sectional survey includes 

approximately 10,000 individuals each year as a survey sample and collects information on 

socioeconomic status, health-related behaviours, quality of life, healthcare utilization, anthropometric 

measures, biochemical and clinical profiles for non-communicable diseases and dietary intakes with three 

component surveys: health interview, health examination, and nutrition survey. More details of the 

KNHANES can be found in Kweon, Kim, jin Jang, Kim, Kim, Choi, Chun, Khang and Oh (2014). The 

data set used in this study has 4,929 samples. 

On the other hand, the big data from NHISS provides health-related information collected from 

National Health Screening Program (NHSP) in South Korea. The NHSP was launched with the goal of 

improving the overall health of the South Korean citizens and preventing the costly chronic diseases. All 

beneficiaries are eligible for screening once every year or two depending on their demographic or 

occupational status. The specific screening items are stipulated by the implementation standards, which 

include, but not limited to, various blood tests and cancer screening. The total number of eligible 

beneficiaries is about 16 million, where approximately 75% of them participated the screening. The data 

that we have used in this study is the subset corresponding to the blood test results that are associated with 

metabolic syndrome from the 2014 program. The variables in this data set are demographics as sex and 

age, and clinical measurements such as total glycerides (mg/dL), total cholesterol (mg/dL), high-density 

lipoprotein cholesterol (HDL, mg/dL), and medical diagnosis on whether having anemia. The data set is 

made publicly available after anonymization and randomly selecting 1 million observations (National 

Health Insurance Data Sharing Service, 2014). Note that more thorough data can be purchased with a paid 

subscription and expert panel review. 

 
7.2 Analysis and results 
 

To apply the proposed method of mass imputation, we assume that total cholesterol is not available in 

KNHANES data, and use the big data from NHSP to perform mass imputation for total cholesterol 

variable. The actual survey values from KNHANES are used to compute a benchmark so that we can 

validate the efficacy of our proposed method. We consider the six different estimators:   

• HT: the Horvitz-Thompson estimator based on the Sample A data. This is used for a benchmark 

comparison;  

• NN: the nearest neighbor imputation estimator;  

• kNN: the k  nearest neighbor imputation estimator with = 5;k  

• GAM: the generalized additive model imputation estimator;  

• LM: the linear regression model imputation estimator using sex, age group, HDL cholesterol and 

total glycerides as the covariates; 

• IPW: the inverse propensity score weighting estimator; 

• NAIVE: the naive estimator using the Sample B without any treatment. 

Total cholesterol is affected by the amount of HDL, because HDL is one of the components that 

constitute the total cholesterol, and is known to be also affected by sex and age. Unless Sample B is from 
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a particular sub-population such as cardiovascular stenosis patients group, we may assume that the 

relationship between the total cholesterol and other variables remain the same. Hence ignorability holds. 

Also the covariates are all medical/biological measurements, meaning they should stay within the similar 

range both for Samples A and B. The variance estimator for each estimator is calculated, and 95% Wald 

confidence interval for g  is obtained using asymptotic normality. Figure 7.1 depicts the intervals, where 

the population mean estimate from each method is presented as a vertical bar. The interval obtained from 

HT can be viewed as a reference. It can be seen that all estimators produce intervals that are slightly 

overestimated compared to the one from HT. It is because of the inherent bias in total cholesterol level in 

NHSP data; the sample mean values of the total cholesterol from NHSP data is 7 point or 3.7 per cent 

higher than HT estimator calculated with KNHANES data, as seen from the naive result. One can see that 

all the proposed methods substantially reduce such bias to make the estimator close to the HT estimator, 

which shows the benefit of the proposed methods. IPW estimator produced a relatively poor estimate 

compared to other methods, which is probably because of either misspecification in logistic regression 

model, or considerable discrepancy in sample sizes between KNHANES (4,929) and NHSP data 

(1 million). We also tried the DR estimator but not included here, because the effect from the IPW is very 

marginal due to the limited auxiliary variables available. 

 
Figure 7.1 Estimated 95% confidence interval for the total cholesterol level. 

 

 

 

 

 

 

 

 
 

 

 
To better understand the prediction performance of the mass imputation methods, we calculated 

RMSE, mean bias, and correlation of imputed values by comparing the imputed values and actual survey 

values. Because we can observe the actual survey values from KNHANES, we can compute the prediction 

quality measures. Table 7.1 presents the summarized table, where we compared the results at individual 

levels and subgroup mean levels divided by age group and sex. For subgroup levels, we first obtain the 

subgroup mean estimates and then calculate the statistics aggregated over different groups. It can be seen 

that GAM performs better than the other methods in terms of RMSE and correlation. Overall, mass 

imputation method provides reasonable results for subgroup level as can be seen in Figure 7.2. 
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These quality measures need a predicted value for Sample A, hence IPW estimators are excluded in the 

comparison. Estimating the population and subgroup means using Sample B can give a very biased 

result – in the case of NHSP data, the difference between the mean of NHSP data and the HT estimator 

from KNHANES is about 7.09, or 3.7 per cent. 

 

Table 7.1 

Comparison of the imputation methods 
 

 Method RMSE Bias Corr. 

Individual NN 43.94 2.87 0.26 

KNN 32.62 2.86 0.42 

GAM 29.15 2.13 0.54 

LM 30.35 2.59 0.48 

Group Means NN 6.33 2.68 0.85 

KNN 5.44 2.70 0.90 

GAM 4.33 2.03 0.93 

LM 4.57 2.52 0.93 

 
Figure 7.2 Comparison of the HT estimates and estimates using mass imputation for subgroup average. 
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8. Discussion 
 

Mass imputation is an important technique for survey data integration. When the training dataset for 

imputation is obtained from a probability sample, the theory of Kim and Rao (2012) can be directly 

applied. If the training dataset is a non-probability sample and its size is huge, we have shown in this 

paper that various non-parametric methods can be used for mass imputation, and the estimation error in 

the imputation model can be safely ignored, under the assumption that the sampling mechanism for 

training data is missing at random in the sense of Rubin (1976). If the sampling mechanism is believed to 

be missing not at random, imputation techniques can be developed under the strong structural assumptions 

for the sampling mechanism (e.g., Riddles, Kim and Im, 2016; Morikawa and Kim, 2018) or the outcome 

model (e.g., Yang, Zeng and Wang, 2020). Also, when the training dataset has a hierarchical structure, 

multi-level models can be used to develop mass imputation. This is closely related to unit-level small area 

estimation in survey sampling (Rao and Molina, 2015). 

The mass imputation estimator is not necessarily efficient. In Section 5, we have described a method of 

using calibration weighting as a tool for efficient data integration with big data. The calibration weighting 

requires correct matching between two data sources, as investigated by Kim and Tam (2020). Also, if the 

fraction of big data in the finite population is not substantial, the efficiency gain will be limited. Instead, 

one could improve the efficiency by combining the mass imputation estimator with the inverse propensity 

weighting estimator in the big data (Yang, Kim and Song, 2020). However, the correct specification of the 

propensity score model will be challenging. These are topics for future research. 
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Appendix 
 

A.1 Proof for Theorem 1 
 

For a given =iX x  in Sample A, we show that ( )1iX  converges to x  in probability as .BN →   

Consider for any > 0,  we show that  

 ( )( )  ( ) 1 , > = , > ,jiP d P d j B   X x X x  (A.1) 

converges to zero, and therefore ( )1iX  converges to x  in probability as ,BN →   where the probability is 

induced by the sampling process of Sample B of size .BN  We show this fact by contradiction. Assume 

that for some > 0, ( )( ) 1 , >iP d X x  does not coverage to zero as .BN →   Define the region 

( ) = : , .X X xd R  Then, we must have ( )= 1 = 0Bf X  for ;X R  otherwise, there exists 

X R  with a positive probability in Sample B as ,BN →   and therefore ( )( ) 1 , > = 0iP d X x  as 

.BN →   But the claim that ( )= 1 = 0Bf X  for X R  implies that R  is a non-overlap region of 

the distribution of X  between Sample A (and also the population) and Sample B, violating Assumption 2. 
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Given =iX x  in Sample A, for any continuous and bounded ( ) ,g y  

 

( )  ( )( ) ( )  

( )( ) ( ) 

( )( )  ( ) 

( ) 

(1) 1 1

1 1

1

= , = , = , = ,

= { } = ,

= = , = ,

= = , ,

i i i ii i

ii i

g i g i ii

i i

E g Y i A E E g Y i A i A

E E g Y i A

E i A E i A

E g Y i A

 

  



 → 



X x X X x X x

X X x

X X x X X x

X x

  

in probability as ,BN →   where →  follows from the fact that ( )g x  is bounded and continuous. Then, 

by Portmanteau Lemma (Klenke, 2006), ( ) ( )1 = ,i iiY Y i A→ X x  in distribution as .BN →   By 

Assumption 1, ( )( ) ( ) ( ) ( )*
1 ,i g i g iig Y i A e → +X X X  in distribution as ,BN →   where ( )*

g ie X  

has the same distribution as ( ) ( )  ( ), .X Xi i g ig Y i A  −  

We now show that for ,i j A  ( )*
g ie X  and ( )*

g je X  are conditionally independent, given data AO . 

It is sufficient to show that ( ) ( ) 1 = 1 0P i j →  as ;BN →   in other words, the same unit can not be 

matched for unit i  and unit j  with probability 1. This can be shown using (A.1) with =  

.min i j A i j  −X X  

Therefore, conditional on data ,AO  we have  

 ( )( ) ( )1 1
, nni , HT1

1 1
ˆ ˆ= =g i i i gi

i A i A

g Y g Y
N N

   − −

 

→    

in distribution as .BN →   This completes the proof for Theorem 1. 

Let  

 
( ) ( )

nni 2
= .

ij i j ji

i A j A i j i j

g Yn g Y
V

N

  

    

−
  (A.2) 

Then, 
nniV  is consistent for nni .V  

Similar to the above argument, for , ,i j A  conditional on data ,AO ( )( ) ( )( ) ( ) ( )1 1 i ji jg Y g Y g Y g Y→  

as .BN →   Therefore, conditional on data ,AO  

 
( )( ) ( )( )1 1

nni nni2
ˆ = ,

i jij i j

i A j A i j i j

g Y g Yn
V V

N

  

    

−
→  (A.3) 

in distribution as .BN →   Combining (A.2) and (A.3), nniV̂  is consistent for nni .V  

 
A.2 Proof for Theorem 2 
 

To investigate the asymptotic properties of , knn
ˆ ,g  we re-express  

 ( )
( ) ( )

( )
ˆ = ,

R j jj B

g

R jj B

K g Y

K






−

−




x

x

x X
x

x X
  

where  
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 ( ) ( ) ( )
1

= , = 0.5 1 ,h p

u
K u K K u I u

h h

 
 

   

 

and the bandwidth =h Rx  is the random distance between x  and its furthest among the k  nearest 

neighbors. Therefore, , knn
ˆ

g  can be viewed as a kernel estimator incorporating a data-driven bandwidth. 

In the literature, asymptotic properties of the k  nearest neighbor imputation estimator have been 

studied extensively. The result shown in the following lemma on k  nearest neighbor imputation is 

extracted from Mack (1981). 

 
Lemma 1. Under Assumptions 1-3,  

 ( ) ( ) ( ) ( ) ( )
2

1
, p

=1

1
= .

p
N

B j R j j B g
j

k
N K g Y f O

N k
  −

   
− + +  

   
 x

x X x x x  (A.4) 

We now express  

 ( ) ( ) ( ) 1 1
, knn , ,

=1 =1

1 1
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N N
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i iN N

       − −+ − X X X   

Let ( ) ( ) 1 1
,=1

ˆ= .X X
N

N i A i g i g ii
T N    − − −  To study the properties for ,NT  we first look at ( )ˆ ,xg  

which can be expressed as  

 ( )
( )
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N

g

N

h

f


x
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x
  

where ( ) ( ) ( )1
,=1

N

N B j R j jj
h N K g Y− − x

x x X  and ( ) ( )1
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.
x

x x X
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result in Lemma 1, we obtain  
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Now, by a Taylor expansion, we obtain  
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Therefore, we obtain  
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Under the assumption in Theorem 2, it is easy to derive that ( ) ( )2 1 21 = ,
p

k N k o n−+  and therefore,  
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We then express NT  in a form of U-statistics (van der Vaart, 2000; Chapter 12):  
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Now, by Lemma 1, we obtain  
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and  

 

( )
( ) ( )

( ) ( ) ( ) 

( ) ( )
( ) ( ) ( ) 

( )
( ) ( ) 

, ,

,

,

2

,

p

1
=

1
= ,

1
= .

X

X X

Z X X X Z
X X

X X X Z Z
X X

X
X

j

jj

A j B i

ji i R j i i g j i

j j B j

A j

B i R j i i g j i i

j j B j

p

B i

i g i

B i

E E K g Y
f

E E K g Y R
f

k
g Y O

N k

 
 

 


 

 






 
− − 

 

   
− −  

   

   
− + +  

   

  



52 Yang et al.: Integration of data from probability surveys and big found data 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Therefore, by the theory of U-statistics, we obtain  
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Combining the above results leads to  
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Then, the asymptotic results in Theorem 2 follow by Assumptions 1-4 and (A.5). 

 
A.3 Proof for Theorem 3 
 

The consistency and asymptotic normality of 1 2
, nni

ˆ
gn   follow by the standard arguments under 

Assumptions 1-4. The remaining is to show that the asymptotic variance of 1 2
, nni

ˆ
gn   is nni .V  

Using the distance function ( ) ( )
2

, = 1i i i i iG d d d  −  in (5.1), the minimum distance estimation 

leads to generalized regression estimation (Park and Fuller, 2012). Therefore, we express  
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Similar to the argument in the proof for Theorem 1, we express  
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It is straightforward to show the variance of the second term in (A.7) is negligible given ( )1 = 1 .nN o−  

Following the arguments in the proof for Theorems 1 and 2, ( )( )1ig Y  and *
ih  have the asymptotic 

distribution as ( )ig Y  and ih  given the data AO  from Sample A, respectively. Therefore, the asymptotic 

variance of 1 2 ˆ
gn   is  
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Sample empirical likelihood approach under complex survey 

design with scrambled responses 

Sixia Chen, Yichuan Zhao and Yuke Wang1 

Abstract 

One effective way to conduct statistical disclosure control is to use scrambled responses. Scrambled responses 

can be generated by using a controlled random device. In this paper, we propose using the sample empirical 

likelihood approach to conduct statistical inference under complex survey design with scrambled responses. 

Specifically, we propose using a Wilk-type confidence interval for statistical inference. Our proposed method 

can be used as a general tool for inference with confidential public use survey data files. Asymptotic 

properties are derived, and the limited simulation study verifies the validity of theory. We further apply the 

proposed method to some real applications. 

 

Key Words: Empirical likelihood; Scrambled responses; Statistical disclosure control; Survey data. 

 

 

1. Introduction 
 

The survey sampling technique has been shown to be one of the most effective ways to collect 

representative information for the underlying study population of interest; see Kish (1965) and Cochran 

(1977), among others. This approach has been used frequently in practice to obtain important information 

related to health, social economics, and public opinions. However, data collection by using a complex 

sampling design without careful control of statistical disclosure may lead to low response rate and large 

measurement error (Hundepool, Domingo-Ferrer, Franconi, Giessing, Nordholt, Spicer and Wolf, 2012). 

Statistical disclosure control (SDC) has been defined as one of few necessary steps to release public use 

files by agencies such as the US Census Bureau. For instance, Krenzke, Li, Freedman, Judkins, Hubble, 

Roisman and Larsen (2011) produced transportation data products from the Amercian Community Survey 

that comply with disclosure rules. Gouweleeuw, Kooiman, Willenborg and Wolf (1998) discussed 

statistical data protection at Statistics Netherlands. 

The idea underlying SDC is to generate some perturbation based on the original raw data file so that 

the risk of identifying individuals is tiny and the utility of the perturbed data file is high. Currently, there 

are many SDC approaches including data coarsening, variable suppression, data swapping (Fienberg and 

McIntyre, 2005), Parametric model-based multivariate sequential replacement (Raghunathan, Lepkowski, 

van Hoewyk and Solenberger, 2001), and scrambled responses or randomized response methods (Horvitz, 

Shah and Simmons, 1967; Fox and Tracy, 1986). For more information about those approaches, see 

Hundepool et al. (2012). 

Inference after SDC is an important and challenging problem. Statistical analysis without taking into 

account SDC leads to a biased variance estimation (Raghunathan, Reiter and Rubin, 2003). Raghunathan 
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et al. (2003) proposed using the multiple imputation (MI) procedure to generate perturbed data files and 

using the Rubin’s variance estimator formula for inference. However, most agencies only seek to produce 

one public use file, instead of many files and the validity of MI depends on the well-known congeniality 

condition of Meng (1994). This condition may not hold under informative sampling design (Kim and 

Yang, 2017). Compared with other approaches, the scrambled responses approach is very easy to 

implement and has good compromise of risk and utility. In addition, valid statistical inference can be 

developed for most complex sampling designs. Warner (1965) first proposed using a randomization 

device, such as a deck of cards, to estimate the proportion of sensitive characters, such as induced 

abortions, drug used, and so on. Tracy and Mangat (1996) contains a comprehensive review of 

randomized response methods. One effective randomized response method (Scrambled responses 

technique) is a multiplicative model considered by Eichhorn and Hayre (1983). Bar-Lev, Bobovitch and 

Boukai (2004) proposed an improved version of their model. Saha (2011) discussed an optional scrambled 

randomized response technique for practical surveys. More recently, Singh and Kim (2011) proposed 

using a pseudo empirical likelihood estimator with a simple random sampling without replacement 

(SRSWOR) design under this model. However, they only considered a point estimation under the 

SRSWOR design, and their proposed method may not work for other sampling designs, such as 

probability proportional to size design. 

Empirical likelihood approach was proposed by Hartley and Rao (1968) and studied by Owen (1988, 

2001) and Qin and Lawless (1994) under traditional statistical settings. Under complex survey settings, 

Wu and Rao (2006) considered pseudo empirical likelihood approach. Chen and Kim (2014) proposed 

population and sample empirical likelihood methods which are more efficient than pseudo empirical 

likelihood method with high entropy designs. Berger and Torres (2016), Berger (2018a, 2018b) extended 

the sample empirical likelihood approach in Chen and Kim (2014) to a more general setting. In this paper, 

we only consider single stage sampling designs, which include Poisson sampling and stratified probability 

proportional to size sampling designs. Our proposed approach can be generalized to multi-stage design by 

using the method discussed in Berger (2018b). In surveys with multi-stage design, one challenge is that 

we need to specify the conditions of inclusion probabilities and consider the correlation of observations 

within the same cluster in different stages. We also consider interval estimation by using the sample 

empirical likelihood method considered in Chen and Kim (2014). After estimating the scale factor 

consistently, the adjusted pseudo empirical likelihood ratio converges to a standard Chi-square 

distribution, which can be used to construct the confidence interval. External aggregated auxiliary 

information, such as population size by age, gender, and race, can be naturally incorporated into our 

proposed method to improve the efficiency of the proposed estimators. Our proposed method is practical 

and can be used in most public-use survey data files, such as those from the National Health and Nutrition 

Examination Survey (NHANES), National Health Interview Survey (NHIS), and Behavioral Risk Factor 

Surveillance System (BRFSS). 

The paper is organized as follows. Basic notations, research questions, and the Hájek estimator are 

introduced in Section 2. Section 3 discusses the proposed sample empirical likelihood method. One 
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simulation study is presented in Section 4. We apply the proposed methods to 2015-2016 National Health 

Nutrition and Examination Survey (NHANES) data in Section 5. In Section 6, we conclude this paper. All 

technique details are contained in the Appendix. 

 
2. Preliminaries 
 

Suppose the finite population ( )= , , = 1, ,N i iX Y i NF  is generated from some unknown super-

population model, where iY  is a study variable and iX  is a covariate. For ease of presentation, given 

,NF  a random sample A  is assumed to be selected from a single stage unstratified sampling design. Let 

iI  be the sampling indicator for unit i  such that = 1iI  if unit i  is selected and 0 otherwise. Denote the 

first-order and second-order inclusion probabilities as ( )=i iE I  and ( )=ij i jE I I  for 

, = 1, , .i j N  Then, the sampling weight can be written as 1=i id  −  and sample size is 
=1

= .
N

ii
n I  

Suppose the parameter of interest is 1

=1
= .

N

N ii
N Y −   Due to confidentiality, we plan to use scrambled 

responses iZ  of iY  such that =i i iZ Y S  with probability 1 p−  and =i iZ Y  with probability ,p  where 

( ) =iE S a  and ( ) 2=iV S b  with ,p ,a  and 2b  known. Bar-lev et al. (2004) and Singh and Kim (2011) 

considered similar models. Instead of observing iY  directly, we only observe the scrambled responses iZ  

in the data file. Hájek estimator discussed in Hájek (1971) and Fuller (2009) has been used frequently in 

survey data analysis. Under certain regularity conditions, one can show that the following Hájek (HJ) type 

estimator is consistent:  

 *
HJ

1
ˆ = ,

ˆ i i
i A

d Y
N



  (2.1) 

where ( ) 
1* = 1i iY Z p a p
−

− +  and ˆ = ii A
N d

  since ( )ˆ =E N N  and  

 ( ) ( )  ( ) ( )  ( ) 
1* *

=1 =1 =1

= = 1 1 = .
N N N

i i i i i i i
i A i i i

E d Y E Y E Y S p Y p p a p Y
−



 − + − +       

The asymptotic properties of HJ̂  are described in the following Theorem 1, and the sketched proof is 

contained in Appendix B.  

 

Theorem 1. Under the regularity conditions in Appendix A, HJ̂  has the following asymptotic expansion  

 ( ) ( )* 1 2
HJ

1
ˆ = ,N i i N p

i A

d Y o n
N

   −



+ − +  (2.2) 

and  

 ( ) ( )1 2
HJ HJ

ˆ 0, 1 ,d
NV N − − →  (2.3) 

as ,n N →   with  

 HJ 1 2= ,V V V+  (2.4) 
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where  

 ( ) ( )1 2
1 1

1
= ,

N N
ij i j

i N j N
i j i j

V Y Y
N

  
 

 = =

−
− −   

and  

 
( ) ( ) 

( ) 

2 2

2
2 2 2

=1

1 1 1
= .

1

N

i
i

p p a b
V Y

Np a p

− − +

− +
   

 

Note that 1V  is the design variability of Hájek estimator for population mean N  by using the true values 

and 2V  is the additional variability generated by using scrambled responses. According to Theorem 1, the 

consistent estimator of HJV  can be written as  

 
( ) ( ) 
( ) ( )

22**
HJHJ *2

HJ 2 22 2

ˆˆ 1 11 1
ˆ = .

ˆ ˆ1

ij i j ji

i i
i A j A i Aij i j

p b p aYY
V d Y

b a p pN N

   

    

− + −− −−
+

+ − +
    

When ( )= 1 ,n N o  the second term above can be safely ignored. Therefore, we can use a traditional 

design consistent estimator with transformed variable *.iY  In the next section, we will propose using the 

pseudo empirical likelihood method to construct both point estimator and confidence interval when we 

have aggregated auxiliary information. 

 
3. Proposed method 
 

Population-level aggregated information is often available through census or large surveys, such as the 

American Community Survey (ACS). For instance, we may know the national-level population counts by 

gender, race, educational level, or income level. Incorporating such information into estimation will often 

reduce the coverage error and improve the efficiency of the estimators. In this section, we propose using 

the sample empirical likelihood (SEL) approach proposed by Chen and Kim (2014) to conduct point and 

interval estimation simultaneously. Suppose a population mean 1

=1
=

N

N ii
X N X−   is known through 

some external resources. Then, the SEL estimator can be obtained by maximizing the following sample 

empirical log-likelihood function  

 ( )= log ,s i
i A

l w

  (3.1) 

subject to constraints  

 ( )1= 1, = 0, 0,i i i i N i
i A i A

w w X X w −

 

−    (3.2) 

and  

 ( )1 * = 0.i i i
i A

w Y −



−  (3.3) 
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By maximizing objective function (3.1) subject to constraints in (3.2), the SEL weight can be written as  

 
( )1

1 1
ˆ = ,

ˆ1
i

i i N

w
n X X −+ −

  

with ̂  as the Lagrange multiplier, and it can be obtained by solving the second constraint in (3.2). Then, 

according to (3.3), the SEL estimator of N  can be written as  

 

1 *

SEL 1

ˆ
ˆ = .

ˆ

i i ii A

i ii A

w Y

w






−



−






  

The following Theorem 2 contains asymptotic properties of the proposed SEL estimator SEL
ˆ .  The 

sketched proof is contained in Appendix C.  

 

Theorem 2. Under the regularity conditions in Appendix A, SEL̂  has the following asymptotic expansion  

 ( ) ( ) ( )* 1 2
SEL

1 1
ˆ = ,N i i N i i N p

i A i A

d Y B d X X o n
N N

   −

 

+ − − − +   (3.4) 

where  

 ( ) ( ) ( ) ( )
1

1 1

=1 =1

1 1
=

N N

i i N i N i i N i N
i i

B Y X X X X X X
N N

  

−

− −   
− − − −   

   
 

T
  

and  

 ( ) ( )1 2
SEL SEL

ˆ 0, 1 ,d
NV N − − →   

as ,n N →   with  

 *
SEL 1 2= ,V V V+   

where 2V  is defined in Theorem 1 and  

 *
1 2

=1 =1

1
= ,

N N
ij i j

i j
i j i j

V
N

  
 

 

−
   

with ( )= .i i N i NY B X X − − −  

 

Note that *
1V  is the design variability of optimal regression estimator which is less than 1V  defined in 

Theorem 1. The optimal regression estimator has been discussed by Fuller and Isaki (1981), Montanari 

(1987), and Rao (1994). According to Theorem 2, the consistent estimator of SELV  can be written as  

 
( ) ( ) 
( ) ( )

22

*2
SEL 2 22 2

1 1ˆˆ1 1
ˆ = ,

ˆ ˆ1

ij i j ji

i i
i A j A i Aij i j

p b p a
V d Y

b a p pN N

   

    

− + −−
+

+ − +
    

where ( )*
SEL

ˆ ˆˆ =i i i NY B X X − − −  with  

 ( ) ( )  ( ) ( ) 
1

2 * 2
SEL

ˆˆ = .i i i N i i N i N
i A i A

B d Y X X d X X X X
−

 

− − − − 
Τ
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When ( )= 1 ,n N o  the second term of SELV̂  can be ignored. Under the simple random sampling (SRS) 

design, it can be shown that SEL̂  is asymptotically equivalent to the following well-known regression 

estimator  

 *
REG

1 1
ˆ ˆ= ,

ˆ ˆi i R i i N
i A i A

d Y B d X X
N N


 

 
− − 

 
   (3.5) 

where  

 ( ) ( )  ( ) ( ) 
1

*
HJ

ˆˆ = .R i i i N i i N i N
i A i A

B d Y X X d X X X X
−

 

− − − − 
T

  

However, for general design, SEL̂  is different from REG
ˆ .  Under Poisson sampling design, it can be 

shown that SEL̂  is more efficient than REG
ˆ .  Theorem 1 and Theorem 2 can be used to construct a Wald-

type confidence interval for .N  The following Theorem 3 can be used to construct a Wilk-type 

confidence interval. The sketched proof of Theorem 3 is contained in Appendix D.  

 

Theorem 3. Define ( ) ( ) ( ) SEL
ˆ= 2 ,n N s s NR l l  −  where ( )

sl   is defined in (3.1) with iw  satisfying 

(3.2) and (3.3). Then under the regularity conditions listed in Appendix A, as , ,n N →   

( )1 2
1 2 1 ,d

n Nc c R  − →  where 2 1 *2
1 =1

=
N

i ii
c N  − −  with ( )* *=i i N i NY B X X − − −  and 2 SEL= .c V  

 

The estimator of 1c  and 2c  can be written as  

 ( ) 
2

2 2 *
1 SEL

ˆˆ ˆˆ = ,i i i N
i A

c N Y B X X − −



− − −   

and 2 SEL
ˆˆ = .c V  Theorem 3 can be used to construct a Wilk-type confidence interval for .N  

 
4. Simulation study 
 

In the simulation study, we consider finite population ( ), , = 1, 2, ,i iX Y i N  for =N 10,000. iX  

is uniformly distributed over [0, 1] and ( )=i i iY m X +  with ( )~ 0, 0.01 .i N  Four functions ( )m x  

are listed below: 

(A). ( ) ( )
1 = 2 2 0.5 ,m x x+ −  

(B). ( ) ( )
2

2 = 2 2 0.5 ,m x x+ −  

(C). ( ) ( ) ( )( )2

3 = 2 2 0.5 exp 200 0.5 ,m x x x+ − + − −  

(D). ( ) ( ) ( ) ( )
4 = 2 2 0.5 < 0.6 0.6 0.6 ,m x x x x+ −  +    where ( )B  is the binary indicator 

function for condition B  such that ( ) = 1B  if condition B  is satisfied and 0 otherwise.  
 

We generated =B 5,000 Monte Carlo samples from Poisson sampling with inclusion probabilities 

=1
= ,

N

i i jj
nk k   where the size variable ( )= max 0.5 2, 1j j jk Y u+ +  with ( )2~ 1 .ju   We 

considered sample sizes =n 40, 50, 100 and 200. For each Monte Carlo sample, the scrambled responses 

iZ  were generated with =p 0.6, and ( )~ 1.5, 0.2 1.5 .iS N  Suppose we only observe iX  and iZ  in the 
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sample. The performance of the HJ estimator and the proposed SEL estimator were compared with the 

estimate population mean of ,Y  which is ( )
0 = .E Y  The results are shown in Table 4.1. 

We computed Monte Carlo bias 1
0=1

ˆMCB = ,
B

bb
B  − −  Monte Carlo standard error 

( ) 
1 22

1

=1

ˆMCSE =
B

bb
B  − −  with 1

=1

ˆ=
B

bb
B −   and Monte Carlo mean squared error 

( ) 
1 22

1
0=1

ˆMCMSE = .
B

bb
B  − −  For variance estimation, we calculated coverage rate, average 

length of interval estimates, and percentage of relative bias of variance estimators RB =  

( ) ( ) 
12

1 1

=1 =1

ˆˆ100 1 .
B B

b bb b
B V B  

−
− −  − −

  
   Results obtained from the simulation are given in 

Table 4.1. 

 
Table 4.1 

Simulation results of Monte Carlo bias (MCB), Monte Carlo standard error (MCSE), and Monte Carlo mean 

squared error (MCMSE), coverage rate, average length of 95% confidence intervals, and relative bias (RB) 

for the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator 
 

Setting MCB MCSE MCMSE Coverage Rate Avg Length RB 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.0035 0.0005 0.123 0.076 0.015 0.006 0.936 0.940 0.470 0.283 -0.027 -0.075 

50 0.0026 0.0006 0.110 0.069 0.012 0.005 0.939 0.941 0.420 0.255 -0.024 -0.078 

100 0.0009 0.0003 0.077 0.048 0.006 0.002 0.946 0.950 0.300 0.183 0.007 -0.000 

200 0.0006 -0.0002 0.054 0.033 0.003 0.001 0.944 0.954 0.211 0.130 -0.010 0.000 

2m  40 0.0006 0.0007 0.083 0.085 0.007 0.007 0.937 0.937 0.319 0.314 -0.020 -0.098 

50 -0.0004 -0.0008 0.074 0.075 0.005 0.006 0.939 0.944 0.286 0.283 -0.014 -0.066 

100 -0.0002 -0.0001 0.053 0.053 0.003 0.003 0.941 0.947 0.203 0.203 -0.036 -0.057 

200 -0.0007 -0.0006 0.037 0.037 0.001 0.001 0.945 0.949 0.144 0.144 0.002 -0.013 

3m  40 0.0022 0.0011 0.138 0.091 0.019 0.008 0.926 0.939 0.512 0.344 -0.081 -0.068 

50 0.0056 0.0028 0.119 0.081 0.014 0.007 0.941 0.942 0.460 0.312 -0.018 -0.045 

100 0.0011 0.0003 0.084 0.058 0.007 0.003 0.945 0.943 0.327 0.222 -0.011 -0.053 

200 -0.0002 -0.0006 0.059 0.041 0.003 0.002 0.950 0.952 0.230 0.157 -0.010 -0.028 

4m  40 0.0040 0.0012 0.119 0.080 0.014 0.006 0.938 0.937 0.460 0.296 -0.007 -0.089 

50 0.0008 0.0002 0.107 0.071 0.012 0.005 0.943 0.943 0.413 0.267 -0.020 -0.069 

100 0.0007 0.0006 0.075 0.049 0.006 0.002 0.942 0.945 0.293 0.190 -0.013 -0.036 

200 -0.0003 -0.0002 0.053 0.034 0.003 0.001 0.946 0.957 0.206 0.135 -0.018 0.029 

 
For model 1 ,m 3 ,m  and 4 ,m  SEL has a smaller Monte Carlo bias, Monte Carlo standard error, and 

Monte Carlo mean squared error, especially for small sample sizes ( =n 40 or 50). For model 2 ,m  the 

two methods have comparable performance. For all four models, we found that, for most of the cases (14 

of 16) the SEL estimators had a coverage rate higher than or equal to that of the HJ estimator, while the 

average length of confidence interval was shorter compared with the average length obtained with the HJ 

estimator. Both methods provided small relative biases of variance estimators. Overall, the proposed SEL 

outperformed HJ for most cases. 

To test the sensitivity of the proposed approach, under current simulation study setups, we added noise, 

,iW  to the simulation. Then, ( )( )= 1i i i iY m X W  + − +  with = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 

( )~ Uniform 0, 1 ,iX ( )~ 0, 1 ,iW N  and ( )~ 0, 0.01 .i N  Suppose we only observe iX  and iZ  (the 

scrambled response of )iY  in the sample, the HJ estimator and SEL estimator were again compared. The 

results are shown in Tables 4.2 and 4.3. We found that as   decreases, the coverage rates of the SEL 
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estimator are smaller than those of the HJ estimator, and the average length of CI for SEL estimator is not 

shorter than that of the HJ estimator. Therefore, the SEL estimator has better performance than the HJ 

estimator, provided that most of the information is contained in the current covariate. 

 
Table 4.2 

Simulation results of the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator after adding 

noise 
 

Setting = 0α  = 0.1α  = 0.3α  

  Coverage Rate Avg Length Coverage Rate Avg Length Coverage Rate Avg Length 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.924 0.903 1.419 1.368 0.926 0.911 1.289 1.251 0.938 0.928 1.045 1.022 

50 0.926 0.915 1.292 1.256 0.928 0.920 1.146 1.125 0.937 0.930 0.958 0.938 

100 0.940 0.935 0.927 0.927 0.941 0.935 0.839 0.838 0.948 0.943 0.679 0.668 

200 0.949 0.941 0.651 0.657 0.942 0.943 0.589 0.593 0.948 0.948 0.478 0.469 

2m  40 0.942 0.943 1.872 1.909 0.929 0.930 1.328 1.358 0.933 0.933 1.455 1.458 

50 0.935 0.937 1.704 1.732 0.933 0.937 1.181 1.206 0.931 0.935 1.327 1.325 

100 0.941 0.947 1.191 1.202 0.942 0.949 0.843 0.854 0.945 0.948 0.931 0.927 

200 0.949 0.952 0.841 0.845 0.949 0.955 0.593 0.597 0.948 0.948 0.645 0.640 

3m  40 0.917 0.899 1.438 1.382 0.925 0.906 1.313 1.273 0.933 0.922 1.044 1.020 

50 0.922 0.908 1.297 1.264 0.928 0.916 1.154 1.131 0.939 0.935 0.927 0.911 

100 0.937 0.928 0.960 0.958 0.941 0.935 0.838 0.838 0.940 0.938 0.660 0.654 

200 0.940 0.940 0.674 0.679 0.945 0.944 0.615 0.619 0.945 0.941 0.474 0.467 

4m  40 0.903 0.885 1.226 1.167 0.912 0.894 0.994 0.947 0.927 0.909 0.518 0.511 

50 0.921 0.912 1.093 1.057 0.917 0.912 0.902 0.870 0.928 0.918 0.460 0.457 

100 0.931 0.925 0.805 0.802 0.936 0.935 0.646 0.644 0.935 0.931 0.337 0.338 

200 0.941 0.939 0.581 0.585 0.936 0.939 0.460 0.462 0.945 0.946 0.236 0.237 

 
Table 4.3 

Simulation results of the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator after adding 

noise 
 

Setting = 0.5α  = 0.7α  = 0.9α  

  Coverage Rate Avg Length Coverage Rate Avg Length Coverage Rate Avg Length 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.934 0.933 1.002 0.934 0.933 0.935 1.091 0.959 0.937 0.940 1.292 1.096 

50 0.935 0.936 0.902 0.841 0.939 0.935 0.979 0.862 0.936 0.938 1.156 0.986 

100 0.947 0.948 0.635 0.596 0.944 0.949 0.697 0.616 0.946 0.948 0.820 0.705 

200 0.951 0.949 0.451 0.421 0.947 0.945 0.493 0.437 0.951 0.951 0.579 0.500 

2m  40 0.933 0.936 2.371 2.139 0.938 0.934 3.418 2.469 0.933 0.942 5.095 2.980 

50 0.940 0.941 2.148 1.938 0.940 0.937 3.057 2.210 0.945 0.944 4.583 2.687 

100 0.939 0.941 1.493 1.345 0.948 0.946 2.196 1.588 0.948 0.951 3.223 1.916 

200 0.942 0.942 1.054 0.938 0.944 0.947 1.545 1.113 0.949 0.947 2.264 1.356 

3m  40 0.939 0.935 1.004 0.940 0.935 0.937 1.101 0.970 0.939 0.947 1.288 1.093 

50 0.937 0.935 0.890 0.832 0.938 0.942 0.978 0.864 0.936 0.940 1.152 0.982 

100 0.946 0.945 0.635 0.595 0.951 0.952 0.698 0.616 0.948 0.952 0.821 0.706 

200 0.949 0.950 0.450 0.420 0.943 0.948 0.493 0.437 0.952 0.952 0.579 0.500 

4m  40 0.937 0.942 0.365 0.358 0.936 0.941 0.362 0.354 0.932 0.938 0.362 0.354 

50 0.935 0.939 0.326 0.322 0.939 0.943 0.325 0.320 0.938 0.947 0.324 0.320 

100 0.941 0.948 0.232 0.230 0.948 0.953 0.230 0.229 0.941 0.946 0.231 0.229 

200 0.947 0.948 0.165 0.164 0.942 0.944 0.163 0.163 0.949 0.951 0.163 0.163 
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5. Real application 
 

In this section, we applied the proposed approach to 2015-2016 National Health and Nutrition 

Examination Survey (NHANES) to evaluate its practical performance. NHANES provides timely health- 

and nutrition-related information for the noninstitutionalized civilian resident population of the United 

States. It uses a complex, multistage probability design based on in-person survey to collect information. 

(see https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2015 for more 

information). The sample size for the 2015-2016 NHANES is about 9,000. We treated the original 

NHANES sample as a finite population and selected one sample by using a simple random sampling 

design with sample sizes ( )n  as 30, 40, 50, 100, and 200, respectively. Suppose our parameters of interest 

include population means of systolic blood pressure, diastolic blood pressure, HDL cholesterol, and total 

cholesterol. We created scramble responses for these parameters by using =p 0.6, =a 1.5, and 

2 = 0.2 1.5.b  In addition, body mass index (BMI) was selected as a covariate in the estimation process, 

since BMI is correlated with those study variables. 

We compared the performances of two approaches, HJ and SEL, in terms of point estimates and 

interval estimates (Table 5.1). Point estimates obtained by using both methods were similar, and they were 

close to finite population parameters (120.47, 66.17, 54.43, and 180.25 for systolic blood pressure, 

diastolic blood pressure, HDL cholesterol, and total cholesterol), especially for larger sample sizes 

(Table 5.1). For systolic blood pressure, diastolic blood pressure, and total cholesterol, intervals produced 

by SEL shifted slightly to the right compared with the results produced by HJ for small sample sizes. 

However, when sample sizes increased, the results from the two approaches were similar. For HDL 

cholesterol, the results are comparable. The results from this application verified the validity of the 

proposed SEL approach. 

 
Table 5.1 

Point estimates and 95% CI for estimating means of different outcomes using scrambled response outcome 

and BMI from the NHANES data 
 

 Systolic Blood Pressure Diastolic Blood Pressure HDL Cholesterol Total Cholesterol 

 in mm Hg in mm Hg in mg/dL in mg/dL 
n  HJ SEL HJ SEL HJ SEL HJ SEL 

30 124.5 124.5 67.7 69.4 57.9 57.6 187.0 188.3 

(112.3, 136.8) (113.5, 139.6) (61.5, 73.8) (63.9, 75.2) (50.3, 65.5) (50.8, 65.9) (160.0, 214.0) (166.6, 225.5) 

40 125.6 125.5 70.2 70.2 52.0 51.2 178.7 178.1 

(115.4, 135.8) (116.5, 136.1) (64.6, 75.8) (64.9, 76.1) (48.0, 56.0) (47.3, 55.8) (160.6, 196.8) (162.1, 199.0) 

50 118.3 116.9 67.1 67.1 57.1 56.8 173.7 173.3 

(110.2, 126.4) (109.0, 126.1) (60.9, 73.3) (61.4, 73.8) (50.8, 63.4) (51.3, 63.2) (160.2, 187.1) (161.2, 187.8) 

100 120.8 120.5 70.0 69.7 52.3 52.4 173.1 172.8 

(115.1, 126.5) (115.1, 126.3) (65.9, 74.0) (65.9, 73.6) (48.9, 55.7) (49.2, 55.9) (163.5, 182.7) (164.0, 183.2) 

200 124.1 123.9 67.6 67.5 54.0 53.8 181.4 181.5 

(119.4, 128.9) (119.4, 128.8) (64.9, 70.3) (64.8, 70.3) (51.1, 56.8) (51.3, 56.5) (172.7, 190.1) (173.3, 190.9) 
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6. Conclusions 
 

In this paper, we proposed a sample empirical likelihood (SEL)-based approach using scrambled 

responses to protect the confidentiality of complex survey data. The proposed SEL approach is easy to 

implement in practice and can be used as a general tool for statistical disclosure control. The idea of our 

proposed approach is to replace the true values by some scrambled values through random device, then the 

existing sample empirical likelihood approach can be applied with scrambled values to obtain the point 

estimation. However, the variance estimation and confidence interval estimation are different from that by 

treating the scrambled values as true values since we need to incorporate the randomness due to random 

device in the statistical inference. Such theoretical properties have been investigated and verified through 

simulation study and real data application. The SEL outperforms traditional approaches, such as HJ, by 

improving coverage rates and reducing the coverage lengths of confidence intervals. Chen and Kim (2014) 

has compared Wald-type CI and Wilk-type CI in the simulation studies by using sample empirical 

likelihood method. In general, the Wilk-type confidence intervals show better coverage properties than the 

Wald-type confidence intervals in terms of coverage rates. We would expect similar results by using our 

proposed approaches here. In future research, we will extend the proposed approach to estimate more 

general parameters, such as population quantiles and distribution functions. The corresponding statistical 

computational tools, such as R package, will also be developed. 
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Appendix 
 

A. Regularity conditions 
 

We present the regularity conditions needed for proving Theorem 1 to Theorem 3 as following: 
 

(C1). 1
1 2< <ic Nn c −  for = 1, 2, ,i N  with 1 20 < < .c c  

(C2). ( ) ( )1 2 1 1 1
1=1 =1

0,
N N d

i i i ii i
n N I Y N Y N V− − −− →   as n →   and ,N →   where 1 =V

( )2

=1 =1
.

N N

ij i j i i j ji j
nN d Y d Y  − −   

(C3). ( ) ( )1 2 1 1 1
2=1 =1

0,
N N d

i i i iNi i
n N I X X N V− − − →   as n →   and ,N →   where 2 =V

( )2

=1 =1
.

N N

ij i j i i j ji j
nN d X d X  − −  Τ  

(C4). 
4

1

=1

N

ii
N Y−   and 

4
1

=1

N

ii
N X−   are bounded.  

(C5). ( )1 2=max i A i pY o n  and ( )1 2= .max i A i pX o n  
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B. Sketched proof of Theorem 1  
 

HJ̂  can be written as the solution of estimating equation ( )
HJ

ˆ = 0,U   where  

 ( ) ( )*
HJ

1
ˆ = .i i

i A

U d Y
N

 


−   

Under the assumptions that ( )
HJÛ   converges to ( ) ( )1

HJ =1
=

N

ii
U N Y − −  uniformly, ( )2 < ,E Y   

and because of ( )HJ = 0,NU   it can be shown that HJ
ˆ .p

N →  By using a Taylor expansion,  

 ( ) ( )
( )

( ) ( )HJ 1 2
HJ HJ HJ HJ

ˆ
ˆ ˆˆ ˆ0 = = .

N

N N p

U
U U o n


   


−


+ − +


  

After some algebra, it can be shown that  

 ( ) ( )* 1 2
HJ

1
ˆ = .N i i N p

i A

d Y o n
N

   −



+ − +   

Because  

 ( ) ( )
( ) ( ) 

( ) 

22

* * 2

2

1 1
= , = ,

1
i i i i

p b p a
E Y Y V Y Y

p a p

− + −

− +
 (B.1) 

 

 

( ) ( ) ( )

( )

* * *

2
=1 =1

*

=1

1 1
=

1
.

N N
ij i j

i i N i N j N
i A i j i j

N

i N
i

V d Y E Y Y
N N

V Y
N

  
  

 





−    
− − −   

    

 
+ − 

 

 



 

(B.2)

 

According to (B.1), (B.2), and after some algebra, we can show that  

 ( )*
HJ

1
= ,i i N

i A

V d Y V
N




 
− 

 
   

where HJV  is defined in equation (2.4). Under the regularity conditions in Fuller and Isaki (1981), the 

asymptotic normality can be derived. 

 
C. Sketched proof of Theorem 2  
 

Define  

 ( )
( )

( )

1

1 1

1
ˆ =

1

i i N

i A i i N

X X
U

N X X






−

−


−

+ −
   

and  
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 ( )
( )

( )

1 *

2 1

1
ˆ , = .

1

i i

i A i i N

Y
U

N X X

 
 



−

−


−

+ −
   

Then, SEL̂  and ̂  are the solutions of ( ) ( )
1 2

ˆ ˆ= , = 0.U U    By using techniques similar to those of 

Chen and Kim (2014), it can be shown that ( )1 2ˆ = pO n −  and SEL
ˆ .p

N →  Then, by using Taylor 

expansion, we have  

 ( ) ( )
( )

( )1 1 2
1 1

ˆ 0
ˆ ˆˆ ˆ0 = = 0 ,p

U
U U o n 


−


+ +


 (C.1) 

and  

 ( ) ( )
( )

( )
( )

( )2 2 1 2
2 SEL 2 SEL

ˆ ˆ0, 0,
ˆ ˆ ˆ ˆˆ ˆ0 = , = 0, .

N N

N N p

U U
U U o n

 
     

 
−

 
+ − + +

 
 (C.2) 

According to (C.1), (C.2), and after some algebra, it can be shown that  

 ( ) ( ) ( ) ( )
1

1 1 2

=1

1 1
ˆ =

N

i i N i N i i N p
i i A

X X X X d X X o n
N N

 

−

− −



 
− − − + 

 
 

Τ
 (C.3) 

and  

 ( ) ( ) ( )* 1 2
SEL

1 1
ˆ = ,N i i N i i N p

i A i A

d Y B d X X o n
N N

   −

 

− − − − +    

where B  is defined in Theorem 2. Because  

 

( ) ( )

( )

* 1 *
SEL

1
2 2

=1 =1

1 1 1
ˆ = =

1
= ,

i i i i i i
i A i A i A

N N
ij i j

i j
i j i j

V V d o n V d E V d A
N N N

V o n
N

   

  
 

 

−

  

−

      
+ +       

      

−
+ +

  


  

where 2V  is defined in Theorem 1, i  is defined in Theorem 2 and ( )* *= .i i N i NY B X X − − −  After 

some algebra, we can show that  

 ( )1
SEL SEL

ˆ = ,V V o n−+   

with SELV  defined in Theorem 2. Furthermore, under the regularity conditions in Fuller and Isaki (1981), 

we obtain the asymptotic normality. 

 
D. Sketched proof of Theorem 3  
 

Because ( )1/2ˆ = pO n −  and by using a Taylor expansion of ( )log 1 x+  at ( )1ˆ= i i Nx X X − −  and 

(C.3), we have  



Survey Methodology, June 2021 71 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

( )
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( ) 

( ) ( ) ( )
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1
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1
ˆ= log log 1
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X X
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



 

Τ Τ

Τ
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i A

o

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(D.1)

 

with 2 = .a aa Τ  We now consider to maximize ( )= log ,s ii A
l w

  subject to the following constraints  

 ( )1= 1, = 0,i i i i N
i A i A

w w X X −

 

−   (D.2) 

and  

 1 * = 0,i i i
i A

w −


  (D.3) 

where ( )* *= .i i N i NY B X X − − −  The above constraints are equivalent with the original constraints 

(3.2) and (3.3). Define ( )*= ,i i N iu X X −
ΤΤ Τ . Therefore, by using a similar argument, we have  
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provided ( )1

=1
= 0.

N

i i N ii
X X − −  According to (D.1), (D.4), and after some algebra, we have  
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Therefore, Theorem 3 is proven. 
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A method to find an efficient and robust sampling strategy 

under model uncertainty 

Edgar Bueno and Dan Hedlin1 

Abstract 

We consider the problem of deciding on sampling strategy, in particular sampling design. We propose a risk 

measure, whose minimizing value guides the choice. The method makes use of a superpopulation model and 

takes into account uncertainty about its parameters through a prior distribution. The method is illustrated with 

a real dataset, yielding satisfactory results. As a baseline, we use the strategy that couples probability 

proportional-to-size sampling with the difference estimator, as it is known to be optimal when the 

superpopulation model is fully known. We show that, even under moderate misspecifications of the model, 

this strategy is not robust and can be outperformed by some alternatives. 

 

Key Words: Sampling design; GREG estimator; Risk Measure. 

 

 

1. Introduction 
 

We consider the problem of choosing strategy, in particular the design, for the estimation of the total of 

a study variable in a finite population when a set of J  auxiliary variables is available in a list sampling 

frame. We focus on the estimation of the total.  

The decision about sampling strategy involves parameters which are unknown at the stage when the 

decision needs to be taken. After data collection the parameters can be estimated, although sometimes 

only under some assumptions. In practice, we often use data from previous waves of a repeated survey, 

frame variables or data from another survey that is similar to the one at planning stage. There is a risk that 

the available data do not give reliable information about relevant parameters. The method presented here 

involves a risk measure, which takes into account the possibility of being misled by inaccurate or incorrect 

beliefs about the values of the needed parameters. The risk measure is derived for the difference and the 

generalized regression estimators. Other than that, the measure is general. This measure and the discussion 

of its practical use are the main result of this paper. 

One aim when selecting and devising the sampling strategy is efficiency in terms of small mean-

squared error. The definition of “efficiency” is not unique, however, as it depends on the inference 

approach. Under the design-based approach, Godambe (1955), Lanke (1973) and Cassel, Särndal and 

Wretman (1977) show that there is no uniformly best linear estimator, in the sense of being best for all 

populations. There is no best design either. Therefore, a traditional approach for defining the strategy has 

been to assume that the finite population is a realization of some superpopulation model. The strategy is 

then defined in such a way that it minimizes the model expected value of the design mean-squared error, a 

parameter called anticipated mean-squared error. The adjective “anticipated” was first introduced by Isaki 
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and Fuller (1982) to emphasize the fact that this is a conceptual mean-squared error which is calculated in 

advance to sampling, based only on information available prior to sampling. 

Assuming that a superpopulation model holds and its parameters are known, several authors have 

shown that the optimal strategy should make use of a probability proportional-to-size sampling design 

(e.g., Hájek, 1959; Cassel, Särndal and Wretman, 1976; Nedyalkova and Tillé, 2008). In practice, 

however, there is not even a consensus about the existence of a generating model, let alone what model to 

rely on. And even if there is a model, its parameters are unknown. There is evidence, rather empirical, that 

probability proportional-to-size sampling is not robust towards model misspecifications (e.g., Holmberg 

and Swensson, 2001). A second result of this paper is to provide some theoretical evidence of this fact. 

Many articles discuss robustness in the survey sampling field. Beaumont, Haziza and Ruiz-Gazen 

(2013), for instance, propose a robust estimator that downweights influential observations; Royall and 

Herson (1973) consider robustness under polynomial models; Bramati (2012) and Zhai and Wiens (2015) 

propose robust stratification methods. We provide theoretical evidence of lack of robustness of 

proportional-to-size sampling and propose a method for assisting in the decision about the sampling 

design. 

The contents of the paper are arranged as follows. The optimal strategy under the superpopulation 

model is defined in Section 2. The lack of robustness of this strategy when the model is misspecified is 

studied in Section 3. The method for assisting on the choice of the sampling design is presented in 

Section 4. In Section 5, the risk measure introduced in the previous section is extended to be used together 

with the GREG estimator. Section 6 presents numerical illustrations of the results in the paper. First, we 

illustrate the lack of robustness of probability proportional-to-size sampling and the flexibility of the 

GREG estimator with a small simulation study. Second, we illustrate the implementation of the risk 

measure with real survey data. Finally, Section 7 presents some conclusions. 

 
2. Optimal strategy under the superpopulation model 
 

Let U  be a finite population of size N  with elements labeled  1, 2, , , , .k N  Let 

( )1 2= , , ,k k k Jkx x x x  be a known vector of values of J  auxiliary variables and ky  the unknown value 

of a study variable associated to unit .k U  We are interested in the estimation of the total of ,y  

= .y kU
t y  

Let   be the power set of .U  A sample is any subset s   and a sampling design is a probability 

distribution on ,  denoted by ( )=P S s  or simply ( ) .p s  Let ( )=k s k
p s

  be the inclusion 

probability of k  and ( )
 ,

=kl s k l
p s

  the joint inclusion probability of k  and .l  A probability 

sampling design is a sampling design such that > 0k  for all .k U  

An estimator is a real valued function of the sample, ( )ˆ ˆ= .y yt t S  By strategy we refer to the couple 

sampling design and estimator, ( )( )ˆ, .yp t  
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We consider only probability sampling designs with fixed sample size. As a convenient stepping stone 

we begin by considering unbiased linear estimators of the form  

 ˆ = =
k k k

y k k
U s s U sk k k

z y e
t z z

  

 
− + + 

 
      (2.1) 

with kz  arbitrary known constants and = .k k ke y z−  This estimator is called the difference estimator. 

The estimator defined in this way is said to be calibrated on z  as it satisfies ˆ = .z kU
t z  Note that if 

= 0kz  for all k U  the estimator reduces to ˆ = ,y k ks
t y   that is, the Horvitz-Thompson estimator 

(Horvitz and Thompson, 1952). In later sections we focus on the generalized regression estimator 

(GREG). 

The design Mean Squared Error (MSE) of the difference estimator is  

 ( ) ( )p p
ˆMSE = MSE = .

k k l

y kl k l
s U Uk k l

e e e
t   

  

 
− 

 
   (2.2) 

As mentioned in the introduction, due to the non-existence of an optimal strategy under the design-

based approach, often a superpopulation model, 0 ,  is proposed and we search for an optimal strategy 

with respect to the anticipated mean-squared error,  

 ( ) ( ) ( )( )
0 0 0

2

p p
ˆ ˆ ˆMSE = E MSE = E E .y y p y yt t t t   −  (2.3) 

We may assume that the y -values are realizations of the following model, denoted 0 ,  

 ( )1=k k kY f x  +   

with 

 ( ) ( ) ( ) ( )
0 0 0

22
0 2E = 0, V = and E = 0k k k k lg x k l           (2.4) 

where ( )1 2= ,    is a vector of parameters, : Jf →R R  and : .Jg +→R R  The random sample 

s  and the errors k  are assumed to be independent. Following Rosén (2000), the terms ( )1kf x   and 

( )2 > 0kg x   will be called trend and spread, respectively. The term trend should not in general be 

understood in a temporal sense, rather it refers to the development of y -values with .x  

Note that under 0 , ke  in the difference estimator (2.1) is a random variable that represents the 

distance between the value of the study variable and ,kz  i.e., ( )1= .k k k ke f x z + −  Therefore 

( )
0 1E =k k ke f x z  −  and ( )( ) ( )

0

2 22 2
1 0 2E = .k k k ke f x z g x   − +  With some algebra, it can be 

seen from (2.2) and (2.3) that the anticipated MSE of the difference estimator becomes  

 ( )
( )

( )
0

21 2
p p 0 2

1
ˆMSE = MSE 1

k k

y k
s Uk k

f x z
t g x


 

 

−   
+ −   

   
   (2.5) 

Nedyalkova and Tillé (2008) derive the anticipated MSE in a more general case. 
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Tillé and Wilhelm (2017) give the anticipated MSE of the Horvitz-Thompson estimator. The second 

term in (2.5) is the Godambe-Joshi lower bound (e.g., Särndal, Swensson and Wretman, 1992, page 453). 

The anticipated MSE in (2.5) is the sum of two positive terms. It is easy to see that if  

1. the estimator is calibrated on ( )1=k kz f x   the first term vanishes and the anticipated MSE 

equals the Godambe-Joshi lower bound  

             ( ) ( )
0

22
p 0 2

1
ˆMSE = 1 .y k

U k

t g x  


 
− 

 
  (2.6) 

Furthermore, after imposing the fixed sample size restriction = ,kU
n  if  

2. the design is such that ( )2 ,k kg x   denoted ( )2ps ,   the second term is minimized and 

we obtain  

             ( ) ( ) ( )
0

2
2opt 2

p 0 2 2

1
ˆMSE = .y k k

U U

t g x g x
n

   
  

−  
  
    

Conditions 1 and 2 suggest the specific roles of the design and the estimator in the sampling strategy. The 

estimator should “explain” the trend in the calibration sense of condition 1. The design should “explain” 

the spread. A strategy that satisfies conditions 1 and 2 simultaneously will be called optimal. In the same 

sense, any estimator and any design satisfying, respectively, condition 1 and 2, will be called optimal. As 

this strategy plays an important role in this paper, we will denote it by ( ) ( )2 1ps diff .  −  

 
3. Robustness under a misspecified model 
 

If the finite population is a realization of the superpopulation model (2.4), and if ,f g  and   were 

known, then an optimal strategy could be defined. In this section we study the robustness of this strategy 

when the model is misspecified. 

We begin by defining how “misspecification” shall be understood in this paper. The working model 0  

reflects the beliefs the statistician has about the relation between the auxiliary variables x  and the study 

variable y  at the design stage. We shall assume that a true, unknown model   exists. Any deviation of 

0  with respect to   is a misspecification of the model. In order to keep the analysis tractable, we limit 

ourselves to the situation when the working model is of the form (2.4) and the true model, ,  is  

 ( )1=k k kY f x  +   

with 

 ( ) ( ) ( ) ( )
22

2E = 0, V = and E = 0k k k k lg x k l           (3.1) 

where ( )1 2= ,    is a vector of parameters, f  and g  as in (2.4) and .   The random sample s  

and the errors k  are assumed to be independent.  
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Result 1. If 0  is assumed when   is the true superpopulation model, the model expected value of the 

design MSE in (2.2), under the difference estimator satisfying condition 1 above, becomes  

 ( )
( ) ( )

( )
21 1 2

p p 2

1
ˆMSE = MSE 1 .

k k

y k
s Uk k

f x f x
t g x

 
 

 

−   
+ −   

   
   (3.2) 

The result is proven by noting that ( )1kf x   takes the role of kz  in (2.5) and by taking into account 

that ( ) ( )1 1= ,k k k ke f x f x  − +  therefore ( ) ( )1 1E =k k ke f x f x  −  and 2E =ke  

( ) ( )( ) ( )
2 22

1 1 2 .k k kf x f x g x   − +  As the model is misspecified, we have deliberately avoided 

the use of the adjective “anticipated” in Result 1. 

Using Result 1, it can be seen that for a design that satisfies condition 2 we obtain  

 

( )
( ) ( ) ( )

( )

( )

( )
( )

2

2 1 1

, ps ps

2

2 22
2

2

ˆMSE = MSE

1 .

k k kU
y

s k

kU
k

U k

g x f x f x
t

n g x

n g x
g x

g x

  

  




 



  − 
    

  

 
+ −  

 







 

(3.3)

 

It is now possible to see that, even under a mild misspecification as the one considered here, the strategy 

( ) ( )2 1ps diff  −  is not optimal anymore, as its MSE (3.3) can be greater than the MSE obtained under 

other designs (3.2). In particular, the strategy using the correct model, i.e., ( )1=k kz f x   into the 

estimator and a design such that ( )2 ,k kg x   would be more efficient than ( ) ( )2 1ps diff .  −  

 
4. Guiding the choice of sampling design with the help of a risk 

measure 
 

We have seen in Section 3 that even a simple misspecification of the working model might result in the 

strategy ( ) ( )2 1ps diff  −  not being optimal. It is therefore risky to accept a given model as correct 

without any type of assessment. While most of the information needed for an “objective” evaluation of the 

model is not available at the design stage, it is possible to reach some degree of confidence about the 

parameters in the working model that allows for comparing a set of designs and make the decision about 

which one to implement. In this section we propose a method to assist in the choice of the sampling 

design. 

The model expected MSE (3.2) in Result 1 can be viewed as a function of   and 2 ,  as everything 

else is available at the design stage. To begin with, let us assume that 2  is also known. Then we can 

write  

 ( ) ( )
( ) ( )

( )
21 1 2

p p p 2

1
= MSE , , = MSE 1 .

k k

k
s Uk k

f x f x
L x g x

 
     

 

−   
+ −   

   
    
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For any design, ( ) ,p   this function can be evaluated at any   and it indicates the loss incurred by 

assuming that   is the true parameter when it is, in fact, .  We can assume a prior distribution on ,  

( ) ,h   and calculate the risk under ,h  

 ( ) ( )( ) ( ) ( )
p pp = E MSE , , = MSE , , ,hR x h x d        


  (4.1) 

where   is the sample space of .  The design that yields the smallest risk should be chosen. Note that 

numerical integration methods (e.g., Monte Carlo simulation methods) may be needed to evaluate the 

risk (4.1). 

In practice, 2  is unknown. We propose two ways for dealing with it. The first one is to see now the 

loss as a function of   and   and calculate the risk as above, assuming a prior on the pair   and .  

The second one is to provide some “guess” about its value. This approach can use the fact that (Proof in 

the Appendix)  

 
,2

2 2
,

1
1

f f

f y

S

g R


 
 − 

 
 (4.2) 

where ( )( )
2

, 1= ,f f kU
S f x f N − ( )1= ,kU

f f x N ( )
22

2= kU
g g x N  and ,f yR  

is the correlation between ( )1f x   and .y  (In Example 3 below, we give a more convenient expression 

in a special case.) Although ,f yR  is unknown, for repeated surveys we do have some previous knowledge 

about it. In other cases it is often possible to have some reasonable “guess” about it. 

It remains to comment on the choice of the prior distribution ( ) .h   The choice of the distribution and 

its parameters is subjective and defined by the statistician. Nevertheless, it should reflect the available 

knowledge about the model parameter .  In particular, ( )h   should be centered around = .   Its 

variance should reflect how confident we are about the working model. Note that a full confidence on the 

working model would be a density with all its mass at = ,   in which case the risk (4.1) would be 

minimized by the ps  design given by condition 2 in Section 2. 

It might be argued that by introducing ( )h   an additional source of subjectivity has been added to the 

choice of the sampling design. The prior may add a certain Bayesian flavor to the process, but note that 

( )h   is only needed for choosing the design. Hence, the inference is still design-based. Furthermore, 

relying on an assumed model is also subjective in choice of assumption and it does involve a risk. The risk 

measure in (4.1) allows for quantification of that risk. 

 
5. The risk measure under the Generalized Regression Estimator 
 

The difference estimator (2.1) requires that 1  is fully specified in order to calculate ( )1 ,kf x   which 

is undesirable from a practical standpoint. The generalized regression (GREG) estimator is an alternative 

that allows for the estimation of all or some of the components of 1  at the cost of introducing a small 

bias. In this section we adapt the material in Sections 2 to 4 to strategies using the GREG estimator. 
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We define the generalized regression estimator in a more general way than in Särndal et al. (1992) as 

follows. Let ka ( )= 1, ,k N  be a weight defined by the statistician and ( )* **
1 1 1= ,    where *

1  is 

fixed and **
1  is to be estimated. Let also  

 
( )( )

**
1

2

1**
1

ˆ = argmin
k k

s
s k k

y f x

a






−
   

and ( )* **
1 1 1

ˆ ˆ= , .s s    The GREG estimator is  

 ( )
( )

1

greg 1

ˆ
ˆˆ = .

k s k

k s
U s sk k

f x y
t f x




 

 
− +  

 
    (5.1) 

An approximation to the design MSE of the GREG estimator is of the form (2.2) with =ke  

( )
1

ˆ
k k Uy f x −  where ( )* **

1 1 1
ˆ ˆ= ,U U    and  

 
( )( )

**
1

2

1**
1

ˆ = argmin .
k k

U
U k

y f x

a




−
   

Example 1. Let us consider the case where ( ) 1, 1 1, 2 1, 2

1 1,1 1 1, 2 2 1,= .J J J

k k k J Jkf x x x x
  

   + ++ + +  Let 

( )*
1 1, 1 1, 2= , , ,J J  + ( )**

1 1,1 1,= , , J     and ( )1, 1 1, 2

1= , , .J J

k k Jkx x x
  +  In this case we obtain  

 

1 1

** **
1 1

ˆ ˆ= and = .
k k k k k k k k

s U
s s U Uk k k k k k

x x x y x x x y

a a a a

     

 
 

− −
      

   
   
   
      

Letting the exponents ( ) ( )*
1 1, 1 1, 2= , , = 1, , 1 ,J J  +  we obtain the classical expression of the 

GREG estimator found in Särndal et al. (1992).  

Example 2. The case with only one auxiliary variable, i.e., ( ) 12

1 10 11=k kf x x  +  with = 1,ka  

*
1 12=   and ( )**

1 10 11= ,     is known as the regression estimator. In this case we obtain the well 

known result that the design MSE can be approximated by expression (2.2) with ( )
1

ˆ=k k k Ue y f x −  

where ( ) 12

1 10 11
ˆ ˆ ˆ=k U kf x x  +  and  

 
( )

12 12

12

12 12

11 10 112
2

1 1
ˆ ˆ ˆ= and = .

k k k kU U U
k k

U U
k kU U

N x y x y
y x

N NN x x

 



 
  

−
−

−

  
 

 
 

 

The misspecified model 
 

Let us consider again the situation where the statistician uses the working model (2.4) but the true 

model is of the form (3.1) with ( )* **
1 1 1= , ,    where *

1  is the counterpart of the fixed component *
1 .  

The following result states a condition under which Result 1 is valid for the GREG estimator. 

 

Result 2. If 0  is assumed when   is the true superpopulation model, ** **
1 1

ˆ ˆ
s U →  as n →   and **

1
ˆ

U  

converges to some **
1  as ,N →   then  
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 ( )
( ) ( )

( )
21 1 2

p greg p 2

1
ˆMSE MSE 1

k k

k
s Uk k

f x f x
t g x

 
 

 

−   
→ + −   

   
   (5.2) 

where ( )* **
1 1 1= , .    

 

Proof. Note that if ** **
1 1

ˆ ,s U →  then ( ) ( )* ** * **
1 1 1 1 1 1

ˆ ˆ ˆ ˆ= , , = .s s U U     →  Thus, ( ) ( )
1 1

ˆ ˆ .k s k Uf x f x →  

In turn, if ** **
1 1

ˆ ,U →  then ( ) ( )* ** * **
1 1 1 1 1 1

ˆ ˆ= , , = .U U     →  Thus ( ) ( )1 1
ˆ .k U kf x f x →  Therefore,  

 

( ) ( )
( )

( )
( )

1

p greg p 1

1

p 1

ˆ
ˆˆMSE = MSE

MSE ,

k s k

k s
U s sk k

k k

k
U s sk k

f x y
t f x

f x y
f x

 






 




 

  
− +    

  

  
→ − +  

  

  

  

  

which, by Result 1, is (5.2).  

 

Example 3 (Continuation of Example 1). Let the working model be as in Example 1 and the true model 

be ( ) 1, 1 1, 2 1, 2

1 1,1 1 1,2 2 1,= .J J J

k k k J Jkf x x x x
  

   + ++ + +  Let also ( )*
1 1, 1 1, 2= , , ,J J  +

**
1 =  

( )1,1 1,, , J    and ( )1, 1 1, 2

1= , , .J J

k k Jkx x x
  +  In this case, ** **

1 1
ˆ ,U A →  where  

 

1

= ,
k k k k

U Uk k

x x x x
A

a a

   
−

  
 
 
 
    

and (5.2) becomes  

 ( )
( ) ( )

( )

2**
21 22

p greg p 2
ˆMSE MSE .

k k k

k
s U Uk k

x x A g x
t g x

 



 
 

 

 − 
→ + −    

   
    (5.3) 

Example 4 (Continuation of Example 2). Let the working model be as in Example 2 and the true model 

be ( ) 12

1 10 11=k kf x x  +  with *
1 12=   and ( )**

1 10 11= , .     It can be shown that (5.2) becomes  

 ( )
( )

( )

2

222 2
p greg 11 p 2

ˆMSE MSE
k k

k
s U Uk k

v g x
t g x


  

 

  
→ + −    

   
    (5.4) 

with  

 ( ) ( )12 12 12 12
,

,

= ,k k k

S
v x x x x

S

    

 

− − −  (5.5) 

and  

 

( ) ( )

( )

12 12 12 12 12 12

12 12 12 12

,

2

,

1 1

1

1 1
= = .

1

k k k
U U

k k
U U

x x S x x x x
N N

x x S x x
N N

     
 

   
 

= = − −
−

−
−

 

 

  

Note that (5.4) does not depend on 10 .  
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For the particular case developed in Examples 2 and 4, where ( ) 12

10 11=k kf x x  +  and 

( ) 12

10 11= ,k kf x x  +  an alternative approximation of 2  is (Proof in the Appendix)  

 
2

2
1,2 2

11 0 0 2 2 2
1,1 , 1,

1 1 1
with =

x y

S
F F

x S R R






 
 

 − 
 

 (5.6) 

where  

 ( ) ( ) ( )2 2 12 12
22 2

1, 1,1

1 1 1
= = =k k k k

U U U

x x S x x x x S x x
N N N

   
 − − −     

with , 1,x yR R   and 1,R   and ,x yR  are, respectively, the correlation coefficients between x  and 12x   

and between x  and .y  The latter is unknown but often some decent guess about it is available. 

The approximation of 2  in (5.6) is more convenient than the one in (4.2) as now we have that (5.4) is 

approximated by  

 ( )
( )

( )

2

22
p greg 11 p 0

ˆMSE MSE
k k

k
s U Uk k

v g x
t F g x


 

 

   
 + −     

   
    (5.7) 

with kv  given by (5.5). This expression depends neither on the intercept 01  nor the parameter ,  and the 

slope 11  becomes a proportionality constant that can be ignored. 

 

The risk measure 
 

As in Section 4, the asymptotic model expected MSE of the GREG estimator given by Result 2 can be 

seen as the loss incurred by assuming that   is the true parameter when it is, in fact, .  Assuming a prior 

distribution on ,  the risk (4.1) can be calculated. 

 
6. Numerical examples 
 

In Sections 2 and 3 we have established that the strategy ( ) ( )2 1ps diff  −  is optimal under a 

superpopulation model, but it is not robust to misspecifications of this model. In Subsection 6.1 we present 

a small Monte Carlo simulation study carried out to illustrate these results by comparing the optimal 

strategy and three alternatives. 

In Sections 4 and 5 we introduced a measure that allows for quantifying the risk of implementing a 

sampling design, so allowing to guide the choice of design. In Subsection  6.2 we illustrate the use of the 

risk measure with real survey data. 

 

6.1 Simulation study under a misspecified model 
 

We compare the efficiency and robustness of four strategies through a simulation study. The strategies 

to be compared are ps  together with the difference estimator (which is optimal when the model is 

correct), ps  together with the GREG estimator (optimal design), stratified simple random sampling 
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(STSI) together with the difference estimator (optimal estimator) and STSI together with the GREG 

estimator. 

Our implementation of ps  makes use of Pareto ps  (Rosén, 1997). There is a host of other schemes 

for drawing ps  samples. Nevertheless, Pareto ps  is a convenient method with good properties, see for 

example Rosén (2000).  

Our implementation of STSI makes use of model-based stratification (Wright, 1983). We consider 

=H 5 strata with boundaries defined using Dalenius and Hodges (1959) cum f -rule on ( )2kg x   

which is well described in (Särndal et al., 1992, page 463) and the sample is allocated using Neyman 

allocation, h h ghn N S . Using the cum f -rule may be suboptimal (see Särndal et al., 1992, page 464) 

but the efficiency of stratification by a continuous size variable is fairly insensitive to the exact choice of 

boundaries. 

We consider only misspecification of the spread. The trend term is of the form ( )1 =kf x   

12

10 11 kx +  with 10 = 1,000, 11 = 1 and 12 = 0.75, 1 and 1.25. The true spread is ( )2 =kg x   

2

kx   with 2 = 0.5, 0.75 and 1. The working spread is ( ) 2

2 =k kg x x  with 2 = 0.5, 0.75 and 1. 

We will use the difference estimator (2.1) calibrated on ( )1 .kf x   Regarding the GREG estimator, 

we will fix 12 ,  whereas the coefficients 10  and 11  will be estimated. 

The simulation is set out as follows. The population size is =N 5,000. The x -values are independent 

realizations from a gamma distribution with shape = 4 100  and scale = 1,200 plus one unit, 

whereas ky  is a realization from a gamma distribution with shape and scale  

 
( )12 2

2 12

2 22
10 11 0

22
0 10 11

= and = ,
k k

k k

k k

x x

x x

 

 

  
 

  

+

+
  

where 2  was set in such a way that the correlation between x  and y  is = 0.95. The design MSE of a 

sample of size =n 500 is then computed for each strategy. Holding the x -values fixed, the process is 

iterated =B 5,000 times. 

Table 6.1 shows the results of the simulation study. The first three columns indicate the model 

parameters. The fourth column shows the (simulated) model expected MSE of the strategy ps – dif, 

whereas the last three columns show the (simulated) efficiency of the strategies ps – GREG, STSI – dif 

and STSI – GREG compared to ps – dif (as a percentage), with efficiency defined as eff =  

( ) ( ), ps ,
ˆ ˆMSE MSEy p yt t    where the model expected MSEs are approximated by their simulated 

counterparts,  

 ( ) ( ) ( ) ( ), p p p
=1

1
ˆ ˆ ˆMSE = E MSE MSE ,

B
r

y y y
r

t t t
B

      

in such a way that a value of 100 indicates that the strategy is as efficient as ps – dif and values smaller 

(larger) than 100 indicate that the strategy is less (more) efficient than ps – dif. 
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The upper part of Table 6.1 shows the case when the working model coincides with the true model. As 

expected, the strategy that couples ps  with the difference estimator ( ps – dif) was always more 

efficient than the remaining strategies. Nevertheless, the loss in efficiency due to estimating some 

parameters through the GREG estimator is negligible. On the other hand, there is a remarkable loss in 

efficiency due to the use of STSI instead of ps . Finally, it is noted from (2.6) that as the anticipated 

MSE for all strategies does not depend on the trend f  but only on the spread ,g  the efficiency remains 

constant under the same value of 2 ,  independently of the value of 12 .  

 
Table 6.1 

Efficiency of three strategies as a percentage of the model expected MSE of ps – dif 
 

Correct model 

12
  

2
  

2
  ps – dif ps – GREG STSI – dif STSI – GREG 

0.75 0.50 0.50 2.78 . 105 99.9 57.3 57.3 

0.75 0.75 0.75 4.82 . 104 99.6 77.9 77.9 

0.75 1.00 1.00 1.90 . 104 99.0 83.2 83.2 

1.00 0.50 0.50 7.64 . 106 99.9 57.3 57.3 

1.00 0.75 0.75 7.20 . 105 99.7 77.9 77.9 

1.00 1.00 1.00 2.14 . 105 99.1 83.1 83.1 

1.25 0.50 0.50 1.46 . 108 99.9 57.3 57.3 

1.25 0.75 0.75 7.85 . 106 99.7 77.9 78.0 

1.25 1.00 1.00 1.81 . 106 99.2 83.1 83.1 

Misspecified model 

12
  

2
  

2
  ps – dif ps – GREG STSI – dif STSI – GREG 

0.75 0.50 0.75 3.98 . 105 99.9 98.9 98.9 

0.75 0.75 1.00 6.45 . 104 99.5 114.5 114.4 

0.75 1.00 0.50 4.73 . 104 100.1 133.9 134.0 

1.00 0.50 1.00 2.14 . 107 99.9 185.6 185.6 

1.00 0.75 0.50 1.03 . 106 100.1 93.1 93.2 

1.00 1.00 0.75 2.77 . 105 99.8 88.9 89.0 

1.25 0.50 0.75 2.09 . 108 99.9 98.9 98.9 

1.25 0.75 1.00 1.05 . 107 99.6 114.5 114.5 

1.25 1.00 0.50 4.50 . 106 100.3 134.0 134.2 

 
The lower part of Table 6.1 shows some comparisons under a misspecified model, in particular, a 

misspecified spread. It can be noted that even under this mild misspecification of the model, ps – dif is 

not necessarily the best strategy anymore as the strategies using STSI were more efficient in several cases. 

However, it is not evident when will STSI be more efficient than ps  or vice versa. The risk measure 

introduced in Section 4 can be used to guide the choice between designs. The results shown in this section 

agree with those shown by for example Holmberg and Swensson (2001). 

 

6.2 Using the risk measure for choosing the design in a real survey 
 

In this subsection we illustrate the implementation of the risk measure using data from a real survey. 

We want to estimate =y kU
t y  where U  is the set of residential properties in Bogotá, Colombia (of 

size =N 681,276) and ky  is the value of the thk  property in 2017 in COP. ,kx  the built-up area of the 
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thk  property in square meters, is known for every .k U  The auxiliary variable x  has mean 184, 

standard deviation 110 and skewness 2.57. The desired sample size is =n 1,000. 

We assume that a model of the type 0  with ( ) 12

1 10 11=k kf x x  +  and ( ) 2

2 =k kg x x  

adequately describes the association between x  and .y  We plan to use the GREG estimator for estimating 

10  and 11 ,  i.e., ( )**
1 10 11= , .    As this model has the form shown in Example 4, the model expected 

MSE can be approximated by expression (5.7). 

We will use the risk (4.1) in order to assist the decision between ps  or STSI using = 6H  strata. We 

take ( )12 2,h    as a bivariate normal distribution with no correlation between 12  and 2 .  The integral 

is approximated using package cubature  (Narasimhan, Johnson, Hahn, Bouvier and Kiêu, 2019) 

developed for the statistical software environment R  (R Core Team, 2020). 

We consider two cases with different degrees of confidence regarding the working model. 

 
Case 1. In this case no information about 12 , 2  or ,x yR  is available. Naive values of 12 = 1, 2 = 1 

and , =x yR 0.75 are considered. In order to reflect the uncertainty, ( )h   should have a large variance, 

therefore we set  

 
2

12

2
2

1.0 0.3295 0
~ N , .

1.0 0 0.3295





      
     
      

  

The variance was chosen in such a way that 99% of the mass lies in the circle of radius 1. Evaluation of 

(4.1) yields ( ) 15 2
11ps 6.89 10R  =   and ( ) 15 2

111.59 10 ,STSIR =   suggesting that a stratified design 

should be used. 

The design MSE of both strategies is computed and we get, ( ) 25
ps greg

ˆMSE = 2.29 10t   and 

( ) 25
STSI greg

ˆMSE = 1.36 10 .t   The strategy suggested by (4.1) was indeed the best choice. 

 
Case 2. Using a sample from 2010, prior values of 12 = 1.9, 2 = 2 and , =x yR 0.7 are proposed. As 

the uncertainty here is smaller than that in Case 1, we set a smaller variance,  

 
2

12

2
2

1.9 0.2471 0
~ N , `.

2.0 0 0.2471





      
     
      

  

The variance was chosen in such a way that 99% of the mass lies in the circle of radius 0.75. Evaluation of 

(4.1) yields ( ) 22 2
11ps 7.08 10R  =   and ( ) 18 2

114.06 10 ,STSIR =   suggesting that a stratified design 

should be used. 

The design MSE of both strategies is computed and we get ( ) 28
ps greg

ˆMSE = 1.85 10t   and 

( ) 25
STSI greg

ˆMSE = 1.91 10 .t   Note that the use of (4.1) prevented us from using ps,  whose MSE is 

almost one thousand times bigger than the one under stratified sampling! 
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7. Conclusions 
 

The strategy that couples ps  with the difference estimator is optimal when the parameters of the 

superpopulation model are known. Taking into account that these assumptions are seldom satisfied, it was 

shown in Section 3 and illustrated in Subsection 6.1 that this optimality breaks down even under small 

misspecifications of the model. 

In Section 4 we propose a method for choosing the sampling design, which is extended to its use with 

the GREG estimator in Section 5. The method allows for taking the uncertainty about the model 

parameters into account by introducing a prior distribution on them. Although it could be argued that a 

source of subjectivity is added by introducing a prior distribution on the parameters, our view is that it is 

more subjective to choose the design without any type of assessment of the assumptions. Furthermore, 

inference is still design-based, as the prior is used only for choosing the design. 

The method was illustrated with a real dataset, yielding satisfactory results. It should be noted that 

although the illustrations used stratified simple random sampling, the method in this article is valid for any 

sampling design. 

 
Appendix 
 

Proof of (4.2) 
 

Proof. The following expectations are required in the proof,  

 ( )  ( )1 1E = E =k k k kY f x f x    +  (A.1) 

 ( )( ) ( ) ( )
2 2 22 2

1 1 2E = E =k k k k kY f x f x g x       + +   (A.2) 

E ,Y
2E Y  and E fY  are obtained using (A.1) and (A.2),  

 ( )1

1 1 1
E = E = E =k k k

U U U

Y Y Y f x f
N N N

   
 

 
 
    (A.3) 

 ( ) ( )( )2 22 2 2 2 2 2
1 2

1 1
E = E =k k k

U U

Y Y f x g x f g
N N

     
 

+  + 
 
   (A.4) 

 ( ) ( ) ( )
2 2

1 1 1
E = E = E = = .k k k k k

U U U

fY f x Y f x Y f x f
N N N

    
 
 
 
    (A.5) 

Now, using (A.3), (A.4) and (A.5) we get  

 2 2
,E = = f ffY fY f f S  − −   (A.6) 

  2 2 2 2 2 2 2 2
,E = = .f fY Y f g f S g  − + − +  (A.7) 
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Using (A.6) and (A.7), we obtain an approximation to the correlation coefficient, , ,f yR  

 
( )

( ) ( ) ( ) ( ) 

2 2

,2
, 2 2 2 2 2 2 2 2 2 2

,

E
= = .

E

f f

f y

f f

fY fY Sf y f y
R

f f y y f f Y Y S g



 

 −−  


− − − − +
 (A.8) 

Solving (A.8) for 2  we get (4.2), as desired. The proof of (5.6) is analogous.  
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Bayesian predictive inference of small area proportions 

under selection bias 

Seongmi Choi, Balgobin Nandram and Dalho Kim1 

Abstract 

In a previous paper, we developed a model to make inference about small area proportions under selection 

bias in which the binary responses and the selection probabilities are correlated. This is the homogeneous 

nonignorable selection model; nonignorable selection means that the selection probabilities and the binary 

responses are correlated. The homogeneous nonignorable selection model was shown to perform better than a 

baseline ignorable selection model. However, one limitation of the homogeneous nonignorable selection 

model is that the distributions of the selection probabilities are assumed to be identical across areas. 

Therefore, we introduce a more general model, the heterogeneous nonignorable selection model, in which the 

selection probabilities are not identically distributed over areas. We used Markov chain Monte Carlo methods 

to fit the three models. We illustrate our methodology and compare our models using an example on severe 

activity limitation of the U.S. National Health Interview Survey. We also perform a simulation study to 

demonstrate that our heterogeneous nonignorable selection model is needed when there is moderate to strong 

selection bias. 

 

Key Words: Biserial correlation; Metropolis-Hastings algorithm; Nonignorable selection model; Official statistics; 
Selection probabilities. 

 

 

1. Introduction 
 

In many complex sample surveys, individuals are sampled with differential selection probabilities. For 

binary responses, if the proportion of positive responses among the sampled individuals differs 

substantially from those among the nonsampled individuals, there is a selection bias. In some cases a 

selection bias is obtained by design (e.g., probability proportional to size (PPS) sampling) and we can take 

care of the selection bias, but in other problems, this is not the case. For example, in non-probability 

samples the selection probabilities are unknown. In our problem, we assume that the survey weights or 

selection probabilities can help us to understand the selection bias. We want to make inference about the 

finite population proportions of the small areas when a possibly biased sample is available from each area. 

Choi, Nandram and Kim (2017), henceforth CNK, extended the model of Nandram, Bhatta, Bhadra and 

Shen (2013), henceforth NBBS, who studied a single area, to accommodate inference about small areas. 

While the CNK model assumes that distribution of the selection probabilities is the same across areas, our 

new contribution is to assume that the distributions of the selection probabilities over areas are different, 

but they share an effect. 

There are two types of models that can be considered when making inference about small areas. First, 

we can use an ignorable selection model in which the response variable is not related to the selection 

probabilities. Such a model will not adjust for the selection bias, and will produce biased estimates if there 
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are no other covariates to act like the selection probabilities. We assume that the only available 

information is the sampled responses, sampled selection probabilities and area identifiers. Second, in a 

nonignorable selection model, the response variables are related to the selection probabilities. In our study 

on binary responses, the distribution of the selection probabilities for the “yes” responses is different from 

that for the “no” responses, thereby making the response variables and selection probabilities correlated. 

Official statistics are obtained from many complex surveys, and these surveys are conveniently designed 

with selection bias (PPS sampling is usually a part of a complex survey design). This study is important in 

the construction of official statistics from complex surveys. 

It is pertinent to give a brief discussion on recent developments. For continuous responses, 

Pfeffermann (1988), Pfeffermann (1993), Sverchkov and Pfeffermann (2004) and Pfeffermann, Krieger 

and Rinott (1998) specified a relation between the survey weights and the response variable. Chambers, 

Dorfman and Wang (1998) assumed that the selection probabilities are related to the continuous 

responses. A related study within the Bayesian paradigm is given by Ma, Sedransk, Nandram and Chen 

(2018). There is also an application of this method to calculate the total gas consumption in the US using a 

PPS sample; see Nandram, Choi, Shen and Burgos (2006). Chen, Elliott and Little (2010) used penalized 

spline to make a Bayesian predictive inference for PPS sampling. However, because these approaches 

require some information about the nonsampled selection probabilities, they are difficult to use. The 

nonsampled selection probabilities are not available to secondary data analysts and we continue to assume 

that these nonsampled selection probabilities are not available in our work. Pfeffermann and Sverchkov 

(2007) extended the work of Sverchkov and Pfeffermann (2004) to accommodate small areas with 

informative sampling of areas and within selected areas. Like Chen et al. (2010), Opsomer, Glaeskens, 

Ranalli, Kauermann and Breidt (2008) used a penalized spline regression to construct a small-area model, 

which includes the selection probabilities, in a non-parametric manner. While all these works are for 

continuous response in small areas, we analyze binary data in this paper. 

Our approach to selection bias problems has been to adjust the sample part of a population model. That 

is, a model is constructed for the entire population, the model is then adjusted to accommodate the sample 

with the selection probabilities, and the superpopulation parameters are then estimated. Once this is done 

for the sample, prediction is done for the entire finite population. This approach to selection bias was 

described nicely by Malec, Davis and Cao (1999). NBBS reviewed and provided a full Bayesian analyis to 

the method of Malec et al. (1999); Nandram (2007) provided a surrogate sampling procedure within the 

spirit of Malec et al. (1999). There are many extensions to this approach to accommodate small areas. For 

example, to analyze continuous responses, Nandram and Choi (2010) included the selection probabilities 

into a full Bayesian nonignorable model in order to analyze continuous body mass index data, which were 

discretized in an elegant manner. Malec et al. (1999) used a hierarchical Bayesian model to accommodate 

a selection mechanism for binary data. As stated by NBBS, there are two possible problems with this 

model, “First, the uy  are only weakly identified. Second, the parameters uy  are never known, and in a 

Bayesian framework these must also be stochastic. In this paper, in a single attempt, we show how to 
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solve these two problems (weak identifiability and stochastic parameters) for a biased sample drawn from 

a binary population using information from the survey weights (or selection probabilities)”. Using a 

nonignorable selection model, NBBS showed how to correct for these two problems for an individual-area 

model. 

Recently, there has been some interesting Bayesian activities for PPS sampling with continuous 

responses. Zangeneh and Little (2015) used a Bayesian bootstrap to model the measures of size (related to 

the selection probabilities) and a spline regression of the responses conditional on the measures of size. 

For the same problem, Si, Pillai and Gelman (2015) poststratified the selection probabilities and used a 

Gaussian process to model the responses. These are good approaches to Bayesian analyzes of PPS 

sampling and can be applied to our problem. However, our approach is different because we do not model 

the nonsampled selection probabilities, rather we adjust a population model. 

CNK studied a special case for an extension of NBBS model within the small area context. They 

assumed that the sample selection probabilities have the same support over the set *
u  over areas, and the 

distribution of the selection probabilities given the binary response ijy  is  

 ( )*= , = = , = 1, , , = 0, 1, = 1, , , = 1, , .θij u ij uy iP y y u U y j n i     

This model assumes that the sample selection probabilities have the same support and each area has the 

same distribution for the selection probabilities; homogeneous nonignorable selection model. However, 

the homogeneity assumption is strong and might not be true for most of real settings. In practice, the 

distribution of the sample selection probabilities can be very different across domains due to sampling 

designs. The distribution of the sample selection probabilities given y  can also vary a lot across domains. 

In this paper, we consider a model under a heterogeneity assumption, which is that the sample selection 

probabilities have different supports and different distributions over areas; this is the heterogeneous 

nonignorable selection model. 

CNK used a simulation study to show how different a baseline ignorable selection model and the 

homogeneous nonignorable selection model can be when there is selection bias. But it is well known that 

design information needs to be included when the sample is not randomly selected. In this paper, we use a 

simulation study to assess the performance of our heterogeneous nonignorable selection model. We draw 

data from the homogeneous nonignorable selection model and heterogeneous nonignorable selection 

model respectively, and fit the three models. Then we compare the performance of the models using 

several measures. 

In this paper, we consider the problem of making inference about the finite population proportions of 

the small areas when there is likely to be a different selection bias by areas. Specifically we extend the 

homogeneous nonignorable selection model of CNK to accommodate selection probabilities that have 

different supports in different areas. In Section 2, we give a review of the ignorable selection model and 

the homogeneous nonignorable selection model, which were studied previously. In Section 3, we show 
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how to adjust a Bayesian ignorable selection model to incorporate the selection bias in a small area 

framework when the sample selection probabilities have different distributions by areas. We also describe 

how to perform the computation. In Section 4, we provide results of an illustrative example on severe 

activity limitation in the 1995 National Health Interview Survey. We also provide a simulation study to 

assess the performance of the heterogeneous nonignorable selection model. Section 5 has summary and 

concluding remarks. 

 
2. Review 
 

This section gives a review of the ignorable selection (IS) model discussed by NBBS and the 

homogeneous nonignorable selection (HoS) model discussed by CNK. We assume that there are  areas 

and the population size of the thi  area is , = 1, , ,iN i  which are known. We consider binary 

responses. 

The samples taken from each area can be biased in that the proportion of positive responses among the 

sampled units may be different from the proportion of positive responses among the nonsampled units. A 

sample of <<i in N  is taken from the thi  area, and thj  unit within the thi  area is taken with selection 

probabilities , = 1, , , = 1, , .ij ij N i  As common to many problems of this kind, the selection 

probabilities are observed only for the sampled values. (Only the sampled selection probabilities are 

presented to secondary data users.) Design scientists adjust the selection probabilities to take care of 

nonresponse and other nonsampling errors. But the selection probabilities are a major part of the survey 

weights and we assume that the selection probabilities are approximately the reciprocal of the survey 

weights in our application. 

Let 1, , , = 1, , ,
ii iNy y i  denote the binary responses in the  areas. A biased sample iS  of size 

in  is available from the thi  area together with the selection probabilities of the sample. Denote the 

sampled values by 1, , , = 1, , ,
ii iny y i  and the set of nonsampled values by .iS  Inference is 

required for the finite population proportion for each area. Let 
=1

=
iN

i ij ij
P y N  denote the small area 

proportion of the thi  area and 
=1

ˆ =
in

i ij ij
p y n  denote the corresponding sample proportions. Clearly, 

ˆ
ip  can be a biased estimator of ,iP  the proportion of ones in the finite population. In design-based survey 

analysis, iP  are fixed unknown quantities, but in the Bayesian paradigm, iP  are random variables, which 

are to be predicted (i.e., Bayesian predictive inference). 

We review the IS model in Section 2.1 and the HoS model in Section 2.2. 

 
2.1 Ignorable selection model 
 

A standard ignorable selection model for the binary variables ,ijy ,= 1, , , = 1, ,ij N i  is  

 ( )
ind
~ Bernoulli ,ij i iy p p   
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 ( )( )
iid
~, Beta , 1ip     −   

and  

 ( )
( )

( )
2

1
, = , 0 0 < < 1

1
p    




+
  

(i.e., a priori   and   are independent). Here the prior for   is proper and noninformative. 

For notational convenience, let ( )1 ,, ,p p p= ( )
111 1 1, , , , , ,y n ny y y y=  and =is  

=1
.

in

ijj
y  Then Bayesian predictive inference of iP  can be performed based on the following posterior 

distribution,  

 ( ) ( ) ( ) ( ) ( )= , = , = 1, , , = 1, , ,y y y yij ij i i i ij i i i i ip y p y p p dp p y p p dp j n N i  +    

where ijy p  are independent, ( ) ( ) ( )= , , ,y y yi ip p d d          and , , yip    are 

independent with ( )( ), , ~ Beta , 1 .yi i i ip s n s    + − + −  

 

2.2 Homogeneous nonignorable selection model 
 

CNK studied a special case for an extension of NBBS model within the small area context. They 

assumed that the sample selection probabilities ( )1, ,
ii in   have the same support over the set 

*, = 1, ,u u U  for = 1, , .i  

Letting ( ) ( )10 0 11 1 0 1 ,= , , , , , = ,θ θ θU U     (say) and ( )
111 1 1= , , , , , , ,π n n     

the distribution of the selection probabilities, given the binary response ,ijy  is  

 ( )*= , = = , = 1, , , = 0, 1, = 1, , , = 1, ,θij u ij uy iP y y u U y j n i     

and  

 ( )
iid
~ Bernoulli , = 1, , , = 1, , .ij i i iy p p j n i   

It is worth noting here that the uy  are not selection probabilities. 

Note that the sample selection probabilities have the same support and distribution by areas. However, 

this assumption is strong and might not be true for most of real settings. In practice, the distribution of the 

sample selection probabilities can be very different across domains due to sampling designs. 

To proceed, they make a one-to-one transformation from ip  to iq  via  

 
( )

1

1 0

= , = 1, , .
1

i

i

i i

a p
q i

a p a p+ −
  

Then, they assumed that ,q
0 ,θ 1θ  are independent with  

 ( )( )
iid

1 1 1
~, Beta , 1 , = 1, , ,iq i    −   
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 ( )( ) ( )( )0 0
0 0 0 0 1 0 1 0~ Dirichlet and ~ Dirichlet ,θ θ θ θ      

where ( )0
0θ  and ( )0

1θ  are to be specified. 

A priori they assumed  

 ( )
( ) ( )

0 1 0 12 2

0 1

1 1
, , = , 0 < < 1, , 0.

1 1
p      

 


+ +
  

Once they drew a sample from the posterior ( )0 1 0 1 ,, , , , ,q θ θ y     by retransforming from iq  

to ,ip  

 
( )

0

0 1

= ,
1

i

i

i

a q
p

a q a q+ −
  

they obtained a sample from the posterior distribution of ( )0 1 0 1 ., , , , ,p θ θ y     

Finally, one can draw the entire finite population values, ,ijy  from ( )Bernoulli ,ip = 1, , ,i  

= 1, , ij n  independently, using estimated ,p  and can make an inference about the small area 

proportions. The distribution of the sample selection probabilities given y  can also vary a lot across 

domains. Therefore, in Section 3, we consider a model which has different supports and distributions for 

the sample selection probabilities by areas. 

 
3. Heterogeneous nonignorable selection model 
 

In Section 3.1, we describe the heterogeneous nonignorable selection (HeS) model. We also show how 

to perform the computations in Section 3.2. We show how to fit this model and how to make inference 

about the small area proportions. Inference about the small area proportions under the HeS model is 

obtained using surrogate samples (Nandram, 2007). 

 

3.1 Methodology 
 

We assume that the sample selection probabilities ( )1, ,
ìi in   have the different supports over the 

set * ,iu ,= 1, , iu U  for = 1, , .i  That is, ,ij = 1, , ij n  have a histogram where the midpoints 

of the categories are the * ,iu  for = 1, , .i  These *
iu  are assumed known and the ij  are assumed to 

be random quantities. For notational convenience, let ( ) ( )10 0 11 1 0 1= , , , , , = ,θ θ θ
i ii i iU i iU i i     

(say), ( )1 ,= , ,θ θ θ  and ( )
111 1 1= , , , , , , .π n n     The distribution of the selection 

probabilities, given the binary response ,ijy  is  

 ( )*= , = = , = 1, , , = 0, 1, = 1, , , = 1, ,θij iu ij iuy i iP y y u U y j n i     

and  

 ( )
iid
~ Bernoulli , = 1, , , = 1, , .ij i i iy p p j N i   
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Again, it is worth noting that the iuy  are not selection probabilities. 

To accommodate the sample selection scheme, we assume that 0iu  and 1 ,iu  for = 1, , ,i  are 

different. Note that we consider the heterogeneity assumption for the sample selection probabilities. We 

replace the homogeneity assumption with the heterogeneity assumption for the sample selection 

probabilities of the HoS model, so that the sample selection probabilities have different supports and the 

distributions of the selection probabilities are different by areas. 

Let ,ij ij  and ijy  denote the selection indicator, the selection probability and the binary response of 

the thj  unit in the thi  small area in the population respectively. Essentially, NBBS postulated that the 

( ), ,ij ij ijy   within the thi  small area are independently distributed with  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * *
1 2 3

1 1* *

= , = , = , = = = = = , =

= 1 1 ,

= 0, 1, = 1, , , = 0, 1, = 1, , , = 1, , .

θ θij ij iu ij i i ij ij iu ij iu ij i ij i

yy
iu iu iuy i i

i i

P y y p P P y y P y y p

p p

u U y j n i

 

         

  



− −
− −   

Thus, there is a joint probability mass function for the selection indicator and the response indicator. 

Therefore, the model that NBBS specified is a nonignorable selection model (i.e., NBBS assumed that the 

selection mechanism is selection not at random (SNAR)). Since there are no data when = 0  (i.e.,   

and y  are both unobserved), NBBS used the conditional probability mass function  

 ( )
( )

( )

1*

*

1 1*

=0 =1

1
= , = = 1, , = , = 1, , ;

1
θ

i

yy
iu iuy i i

ij iu ij ij i i U yy
iu iuy i iy u

p p
P y y p i

p p

 
  

 

−

−

−

− 
  

see the probability mass function in (4) of NBBS. 

We have the data ( ), , = 1, , , = 1, , .ij ij iy j n i  Since the sampling units are independent, the 

likelihood function is given by  

 ( )
( )

( )

1*

*

1 1*
=1 =1 =1 =1

= 0 =1

1
= , = = 1, , = ,

1
θ p

ijij
i i

ij

i ijij

ijij

yy
n n

iu iuy i i

ij iu ij ij ij i U yy
i j i j

iu iuy i iy u

p p
P Y y

p p

 
  

 

−

−

−

−
 

 
  

where * , = 1, , , = 1, ,iu iu U i  are known. The likelihood function can be rewritten as  

 

( )
( )

( )

( ) ( ) ( )

( )

0 1

1*

=1 =1 =1 =1

1 1*

0 =1=1 =1

* *
0 1=1 =1 =1 =1 =1

* *
1 0=1 =1

1
, , =

1

1
=

1

y π θ p

i i ijij

ij

i i ijij

ijij

i iiu iu i ii

i

n n yy

iu iuy i ii j i j

n U yy

iu iuy i iy ui j

U Ug g n ss

iu iu iu iu i ii u i u i

U U

i iu iu i iu iuu u

p p
P

p p

p p

p p

 

 

   

   

−

−

=

−

−

−

−

+ −

   

  

    

=1

,
i

i
n

i
 
 

  

where 
=1

= ,
in

i ijj
s y 0iug  is the cell count for category u  at = 0y  and 1iug  is the cell count for category 

u  at = 1y  under the area .i  Note that 0=1
,=

iU

iu i iu
g n s− 1=1

=
iU

iu iu
g s  and ( )0 1=1

.=
iU

iu iu iu
g g n+  

This likelihood includes the selection bias. 
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Let *

=1
.= , = 0, 1, = 1, ,

iU

iy iu iuyu
a y i   Differences between 0ia  and 1ia  for some i  indicate 

that there is selection bias. The likelihood function can be expressed as  

 ( ) ( ) ( )
( )

( ) 
0 1* *

0 1
=1 =1 =1 =1 =1 1 0

1
, , = .

1
y π θ p

i iii i

iu iu

i

n ssU U
g g i i

iu iu iu iu n
i u i u i i i i i

p p
P

a p a p
   

−
−

+ −
     

We make a one-to-one transformation from ip  to iq  via  

 
( )

1

1 0

= .
1

i i

i

i i i i

a p
q

a p a p+ −
  

Note that if iuy  does not depend on ,y iq  and ip  are the same. In this case the likelihood would be the 

same as the ignorable case. Let ( )1 .= , ,q q q  Then the likelihood function can be expressed as  

 ( )
( )

( )

( )

( )
( )

0 1* *
0 1=1 =1

* *=1 =1 =1
0 1=1 =1

, , = 1 .y π θ q

i iiu iu

i ii

i i i
i i

U Ug g

iu iu iu iu n ssu u
i in s sU U

i i i
iu iu iu iuu u

P q q
   

   

−

−
−

 
  

 
  

We assume that ,q
0 ,θ i 1iθ  are independent, and we take  

 ( )( )
iid

1 1 1
~, Beta , 1 , = 1, , ,iq i    −   

 ( )( ) ( )( )
ind ind0 0

0 0 0 0 1 0 1 0
~ ~Dirichlet and Dirichlet ,θ θ θ θi i i i      

where ( )0
0θ i

 and ( )0
1θ i

 are to be specified. Recall that ( ), ~ Dirichletx μ μ   has the density ( ), =f x μ  

( )

1

=1 ,
k

i
ii

x

D

 



−


μ

0 < ,< 1ix
=1

,= 1
k

ii
x  where ( ) ( ) ( )

=1
,=μ

k

ii
D      0 < ,< 1i =1

,= 1
k

ii
  and 

> 0.  

Finally, a priori we assume  

 ( )
( ) ( )

0 1 0 12 2

0 1

1 1
, , = , 0 < < 1, , 0.

1 1
p      

 


+ +
  

Of course one can use a half Cauchy density but these are very similar. This latter prior is used to avoid 

the difficulties associated with improper priors of the form ( ) 1p    (e.g., see Gelman, 2006). 

Hence, the joint prior density of ,q
10 0 ,, ,θ θ 11 1 ,, ,θ θ , 0 , 1  is  

 

( )

( )

( )( )

( )

( )( )

( )
( )

( )( )  ( ) ( )

0 0
0 00 1

11

1 1

0 1=1 =1
10 0 11 1 0 1 0 0

=1 =10 0 1 0

1 11

=1

2 2

0 11 1

, , , , , , , , ,

1 1 1
.

1 1, 1

q θ θ θ θ
θ θ

i i
iu iu

U U

iu iuu u

i ii i

i ii

D D

q q

B

   

 

 
   

 

   

− −

− −−



−


+ +−

 
 


  

Using Bayes’ theorem, the joint posterior density of ,q
10 0 ,, ,θ θ 11 1 ,, ,θ θ , 0 , 1 ,  given the data 

,y  is 
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( )

( )

( )

( )

( )

( )

( )( )

( )

( )( )

0 1

0 0
0 00 1

* *
0 1=1 =1

10 0 11 1 0 1
* *=1 =1

0 1=1 =1

1 1

0 1=1 =1

0 0
=1 =1 =10 0 1 0

( , , , , , , , , , )

1

q θ θ θ θ y

θ θ

i iiu iu

i i i
i i

i i
iu iu

i ii

U Ug g

iu iu iu iuu u

n s sU U
i i

iu iu iu iuu u

U U

iu iun ss u u
i i

i i ii i

i

q q
D D

q

   



   
   

   

 

 

−

− −

−



 −



 
 

 

 
  

( )
( )

( )( )  ( ) ( )

11
1 11

=1

2 2

0 11 1

1 1 1
.

1 1, 1

ii
q

B

 

   

− −− −

+ +−



  

To improve the computations, we use the more optimal Rao-Blackwellization to get the posterior 

density of q  (hence ).p  Given the data, the joint posterior density can be expressed as  

 0 1 0 1 0 1( , , , , ) = ( , , , , ) ( , , , ).           q θ y q θ y θ y   

 
3.2 Computations 
 

By integrating out q  from the joint posterior of ,q
10 0 ,, ,θ θ 11 1 ,, ,θ θ , 0 , 1  given ,y  we 

get the marginal joint posterior density of 10 0 11 1 0 1, , , , , , , ,θ θ θ θ     given ,y  

 

( )
( )( )

( )( ) 

( )

( )

( )

( )

( )( ) ( )( ) ( ) ( )

0 0
0 0 1 00 1

1 1=1
10 0 11 1 0 1

1 1

1 1

0 1=1 =1

* *=1 =1
0 1=1 =1

2 20 0
0 10 0 1 0=1 =1

, 1
, , , , , , , ,

, 1

1 1 1 1
.

1 1

θ θ θ θ y

θ θ

i i
iu iuiu iu

i i i
i i

i i ii

U Ug g

iu iuu u

n s sU U
i i

iu iu iu iuu u

i ii i

B s n s

B

D D

   

  
   

  

 

   

  

+ − + −

−

+ − + −


−




+ +



 
 

 

 

  

The conditional posterior density of q  is given by  

 ( ) ( )
( ) 11
1 11

10 0 11 1 0 1
=1

, , , , , , , , , 1 ,q θ θ θ θ y i ii
n ss

i i
i

q q
    

− + − −+ − −   

which we can sample directly. 

We obtain a sample of q  in the following manner: We draw each element of 10 0( , , ,θ θ  

1 0 111 , , , ), ,  θ θ  from the conditional posterior density of 10 0 11 1 0 1, , , , ,, , ,θ yθ θ θ     

using the Metropolis-Hastings algorithm and a grid method, and then we draw q  from the conditional 

posterior density of 10 0 11 1 0 1 ., , , , , ,, , ,q θ θ θ θ y    

We have monitored the convergence of the Metropolis-Hastings sampler using trace plots, 

autocorrelation plots and Geweke test of stationarity, which showed satisfactory performance. 

The conditional posterior densities needed to execute the Metropolis-Hastings sampler are  
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 ( )

( )

( )

0
0 00 1

01
0 0 1 0 1

*
01

, , , = 1, , , , , , , = 1, , ,θ θ θ y

i
iu iu

i i
i

U g

iuu
i j i n sU

iu iuu

j i i i

 
   

 

+ −

=

−

=

 



  

 ( )

( )

( )

0
1 01 1

11
1 1 0 0 1

*
11

, , , = 1, , , , , , , = 1, , ,θ θ θ y

i
iu iu

i
i

U g

iuu
i j i sU

iu iuu

j i i i

 
   

 

+ −

=

=

 



  

 ( )
( )( )

( )( ) 

1 1=1
10 0 11 1 0 1

1 1

, 1
, , , , , , , , ,

, 1
θ θ θ θ y

i i ii
B s n s

B

  
   

  

+ − + −


−


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In above formula, the 0 ,θ i 1θ i  and   are conditionally independent. 

We use Metropolis steps to sample 0 , = 1, ,θ i i  and 1 , = 1, ,θ i i  from conditional 

distributions ( )0 0 1 0 1, , , = 1, , , , , ,θ θ θ yi j ij i i     and 1 1 0( , , , = 1, , ,i j ij i i θ θ θ  

0 1, , , ),   y  respectively. Let *
0 0 ,=i i in s − + ( )( )* 0 *

0 0 0 0 0 ,=iu iu iu ig   + *
1 0 ,=i is +  and *

1 =iu  

( )( )0 *
1 1 0 1 .iu iu ig   +  For notational convenience, let ( )* * *

0 10 0= , ,
ii i iU θ  and ( )* * *

1 11 1= , , .θ
ii i iU   We 

choose overdispersed Dirichlet distributions as proposal densities for 0iθ  and 1 , = 1, , .θ i i  In fact, the 

proposal densities are ( )*
0 0Dirichlet θi i  and ( )*

1 1 ,Dirichlet θi i  where *
0 0 0=i i i    and *

1 1 1 ,=i i i    

for all = 1, , .i  Note that as the 0i  and 1i  increase, the dispersion tends to increase in the Dirichlet 

distribution. 

Assuming that the Metropolis-Hastings sampler is at ( )
0 ,θ r

i
 then the probability of accepting ( )1
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 for all = 1, , .i  Also, if we assume that the Metropolis-Hastings 

sampler is at ( )
1 ,θ r

i
 then the probability of accepting ( )1
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 for all = 1, , .i  

The Metropolis step is obtained as follows: Assume the Markov chain is at ( )
0 ,θ r

i
 a random vector 

( )1
0
r

i
+θ  is drawn from the proposal density with properly chosen 0 ,i  and ( )0

, 1r rU +
 is computed. A random 
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uniform deviate U  in  0, 1  is drawn, and if ( )0
, 1 ,r rU U +  then random vector ( )1

0θ r
i
+  is accepted, otherwise 

the chain stays at ( )
0 .θ r

i
 This algorithm is applied for all = 1, , .i  The Metropolis step is utilized in a 

manner similar to that for 1θ i  for all = 1, , .i  

We generate , 0  and 1 ,  using the grid method; see CNK. Once we get the sample from the 

posterior ( )10 0 11 1 0 1, , , , , , , , , ,q θ θ θ θ y     by retransforming from iq  to ,ip  

 
( )

0

0 1

= ,
1

i i

i

i i i

a q
p

a q a q+ −
  

we can draw a sample from the posterior distribution of ( )10 0 11 1 0 1, , , , , , , , , .p θ θ θ θ y     

Once p  is estimated, we draw the entire finite population values, 
1, , ,

ii iNy y  independently from 

( )Bernoulli ,ip = 1, , .i  This is surrogate sampling (e.g., Nandram, 2007). So we have corrected the 

observed biased sample and replaced it by a surrogate sample for p  that we obtained from the 

heterogeneous nonignorable selection model. We can obtain a sample of iP  by drawing 
=1

iN

iji
y  from 

( )Binomial ,i iN p  and by dividing the result by iN  for all = 1, , .i  

The selection mechanism is similar to the missing data mechanism. So it is possible to incorporate 

missing data into our framework, or independently (i.e., on its own) we can assume that the missing data 

are “missing not at random” and a nonignorable nonresponse model can be used to adjust a population 

model, see Nandram and Choi (2010). 

 
4. Numerical studies 
 

In Section 4.1, we describe an example on severe activity limitation. We present the results of the IS, 

HoS and HeS models for the comparison. In Section 4.2, we describe a simulation study to assess the 

performance of the three models under two kinds of assumptions of the distribution of the sample 

selection probabilities. That is, data are generated from either the homogeneous nonignorable or the 

heterogeneous nonignorable selection model and all three models are fit. 

 

4.1 Illustrative example 
 

In our application, we use data from the 1995 National Health Interview Survey (NHIS95). These data 

were first used by Nandram, Bai and Choi (2011) to estimate change point in activity limitation. NBBS 

constructed synthetic data arising from a segment of NHIS95 for this study. For adults, 30-80 years old, 

NBBS analyzed data on severe activity limitation (SAL) for a single area (no pooling), where = 1y  if an 

adult has SAL and = 0y  otherwise. CNK used the data from NBBS to perform small area estimation on 

SAL. We use the data in a manner similar to NBBS but we fit a more general model, the key contribution 

of this paper. 

NBBS formed twelve domains (small areas) by crossing education, sex and race. They have 

categorized education into three levels (pre-college: L, college: M and post-college: H). Sex (male: M and 
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female: F) and Race (white: W and nonwhite: B) have two levels each. We will continue to call these 

domains LMW, LMB, LFW, LFB, MMW, MMB, MFW, MFB, HMW, HMB, HFW, HFB (e.g., LMW: 

white males with pre-college education, LMB: black males with pre-college education, etc.). 

NHIS95 used a multistage sample design to draw samples from the population of the United States. 

Therefore, it is necessary to use an adult’s survey weight for accurate analysis. See NBBS and CNK for a 

discussion of the survey weights. Like NBBS and CNK, we considered the reciprocal of a survey weight 

as the “selection” probability of each adult. Selection probabilities are a major part of the survey weights. 

It would have been better if we had the selection probabilities. But this is an approximation we make in 

our data analysis. For convenience, we have presented the data again in Table 4.1. 

 

Table 4.1 

Summaries of the data on severe activity limitation (SAL) including selection probabilities 
 

Domain n  s  p  CV f = n N  avg0 avg1 p -value 

LMW 174 26 0.149 0.181 0.0000303 0.0004059 0.0003706 0.025* 

LMB 31 10 0.323 0.260 0.0000280 0.0003179 0.0003167 0.614 

LFW 200 22 0.110 0.201 0.0000325 0.0004523 0.0004381 1.00 

LFB 40 9 0.225 0.293 0.0000286 0.0003152 0.0003740 0.910 

MMW 760 56 0.074 0.129 0.0000227 0.0002710 0.0002901 0.006* 

MMB 151 18 0.119 0.221 0.0000250 0.0002820 0.0002847 0.056 

MFW 892 42 0.047 0.151 0.0000233 0.0002891 0.0002415 0.837 

MFB 200 21 0.105 0.206 0.0000278 0.0003064 0.0003377 0.469 

HMW 756 14 0.019 0.265 0.0000213 0.0002484 0.0001919 0.095 

HMB 124 7 0.056 0.367 0.0000238 0.0002702 0.0003506 0.146 

HFW 779 22 0.028 0.210 0.0000219 0.0002575 0.0002976 0.072 

HFB 168 2 0.012 0.703 0.0000257 0.0002969 0.0001948 1.00 

NOTE: Here n  is the total sample size, s  is the number of adults with SAL, and = ;p s n =f n N  is the sampling fraction; 
( )1

CV =
p

np

−
 is 

the coefficient of variation; avg0 is the average of the selection probabilities for = 0y  (SAL, no) and avg1 is the average of the 

selection probabilities for = 1y  (SAL, yes); p -value corresponds to that of a chi-squared test of equality of 0 1= ,iu iu 
= 1, , iu U ( )= 5 ;iU  domains are formed by crossing education (L, M, H), sex (M, F) and race (W, B). 

 
We reduce the sample size from the original data set to increase the effect of small area model. For the 

HeS model, we order the selection probabilities from smallest to largest ( ) ( )1 , ,
in   within each small 

area. Let the quantiles be ( ) ( ) ( ) ( )1 2 3 40.20 0.40 0.60 0.80= , = , = , =
i i i ii i i in n n nt t t t     and let ( )0 1=it   and 

( )5 =
ii nt   for = 1, , .i  We define ( )( )*

1= 2 ,iu iui ut t − + = 1, , ,iu U = 1, ,i  (i.e., the mid 

point of each quantile within each small area). Note that iuy  is the proportion of sampled units in the thu  

quantile conditional on = 0, 1y  for = 1, , .i  If the 0iu  are considerably different from 1iu  in some 

areas, there is strong evidence that the sampled values are biased. To specify ( )0
0θ i

 and ( )0
1θ i

 in the prior 

distributions, we take ( )0 ˆ= ,θ θiy iy
 the maximum likelihood estimator of ,θ iy = 0, 1,y = 1, , ,i  which 

we call a “MLE” prior (see NBBS). 

For our data, mixing is slow, so we draw 120,000 samples and burn in 60,000. Then we take every 
th30  iterate to obtain a sample of 2,000 iterates for inference. This burn-in period is sufficiently long to 

get random samples, which is based on the trace plots and Geweke test. We have enough samples since 

the effective sample size (ESS) of parameters sampled from an MCMC should be less than or equal to 

2,000. The correlation is nonsignificant for all parameters. Also, stationarity of our sampler is 
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demonstrated by Geweke test. The results of convergence diagnostic for hyper-parameters are shown in 

Table 4.8 and Figure 4.2. By taking ( )
0 = 7.3, 3, 11, 4.8, 8.5, 9, 11.5, 10, 10, 9.7, 10.2, 11κ  and 

( )
1 = 3.2, 1.7, 2.2, 1.5, 5, 2.2, 3.3, 2.2, 2.5, 1.5, 1.5, 1.3 ,κ  we obtained acceptance rates between 25% 

and 45% of Metropolis-Hastings samplers. 

The summaries of data are shown in Table 4.1. The averages of the selection probabilities in each area 

are mostly similar for = 0y  and = 1.y  Since the sample sizes within the domains are not quite large, 

the sampling fractions are very small. Thus, the simultaneous analysis using a small area model is 

appropriate. In column 4 of Table 4.1 we have also presented the proportion of individuals with SAL, and 

we can see that this value is relatively large for low level education. We compared the counts in the two 

sets of bins from the histograms of the selection probabilities for = 0, 1y  in each domain. In fact, this is a 

test of independence in a 2 iU  categorical table, and we use a chi-squared test and a Fisher’s exact test 

for equality of 0 1= ,iu iu  = 1, , iu U ( = 5iU  cells) in each domain. As is evident from the p -values 

which are presented in the last column of Table 4.1, selection bias should matter mostly in Domain MMW 

and perhaps in Domains LMW, MMB, HMW and HFW. As a measure of selection bias, we also 

calculated the biserial correlation between the ijy  and ij  for all areas combined and got a value of 0.033 

with a p -value of 0.03. 

In Table 4.2, we provide the results of the unpooled (individual analysis) of the finite population 

proportions under the ignorable selection model and the nonignorable selection model for each domain 

separately (the nonignorable selection model is the NBBS model). We compare them using the posterior 

means (PM), the posterior standard deviations (PSD) of PMs, the coefficient of variation (CV) and 95% 

highest posterior density (HPD) intervals. This is a repetition of the analysis under the NBBS model. 

In Table 4.3, we compare summaries of the pooled estimators of the finite population proportions 

under the IS model, the HoS model and the HeS model for the 12 domains. The effect of the selection bias 

is seen because the PMs under the IS model and the other models are different. The estimators under the 

HoS model and the HeS model are similar in some domains because the selection bias is more severe for 

some domains. The PSDs under the HoS model and the HeS model are bigger than under the IS model in 

most domains, but the 95% HPD intervals overlap. The effect of the simultaneous analysis is also seen 

because the PMs for pooled estimators are smoothed relative to PMs for separately analyzed finite 

populations. 

The posterior summaries of 0iθ  and 1iθ  for = 1, ,i  are shown in Tables 4.4. The 0iu  are 

different from the 1iu  in some areas. It is strong evidence to indicate the presence of selection bias. We 

also present the posterior summaries of 0θ  and 1θ  under the HoS model in Table 4.5. Note that in 

Tables 4.4-4.5, these 0i  and 1i  are not selection probabilities. The θ  under the HoS model appears 

different from those under the HeS model. We present the posterior summaries of 0ia  and 1ia  for 

= 1, ,i  in Table 4.7, and 0a  and 1a  of the HoS model in Table 4.6. These values are very small, but 

its ratio is large in each area. It is also strong evidence of selection bias, albeit these are small sample sizes 

within areas. 
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Table 4.2 

Comparisons of the unpooled estimators of the finite population proportions under the ignorable and 

nonignorable selection models for individual domain 
 

Domain Ignorable Selection Model Nonignorable Selection Model 

PM PSD CV CI PM PSD CV CI 

LMW 0.154 0.027 0.175 (0.098, 0.214) 0.188 0.033 0.176 (0.123, 0.265) 
LMB 0.333 0.080 0.240 (0.177, 0.525) 0.336 0.083 0.247 (0.170, 0.531) 
LFW 0.114 0.022 0.193 (0.068, 0.165) 0.113 0.022 0.195 (0.069, 0.165) 
LFB 0.244 0.066 0.270 (0.108, 0.394) 0.215 0.064 0.298 (0.090, 0.361) 

MMW 0.075 0.010 0.133 (0.055, 0.100) 0.068 0.009 0.132 (0.050, 0.086) 
MMB 0.124 0.026 0.210 (0.073, 0.185) 0.114 0.024 0.211 (0.065, 0.171) 
MFW 0.048 0.008 0.167 (0.032, 0.065) 0.052 0.008 0.154 (0.036, 0.072) 
MFB 0.108 0.022 0.204 (0.066, 0.161) 0.104 0.021 0.202 (0.060, 0.148) 
HMW 0.020 0.005 0.250 (0.008, 0.032) 0.021 0.005 0.238 (0.011, 0.034) 
HMB 0.065 0.022 0.338 (0.021, 0.119) 0.046 0.018 0.391 (0.014, 0.089) 
HFW 0.030 0.006 0.200 (0.017, 0.045) 0.021 0.005 0.238 (0.011, 0.032) 
HFB 0.017 0.010 0.588 (0.001, 0.043) 0.021 0.012 0.571 (0.001, 0.048) 

NOTE: Here PM is the posterior mean; PSD is the posterior standard deviation; CV is the coefficient of variation; CI is the 95% HPD interval. 

 

Table 4.3 

Comparisons of the pooled estimators of the finite population proportions under the ignorable selection (IS) 

model, homogeneous nonignorable selection (HoS) model and heterogeneous nonignorable selection (HeS) 

models by domain 
 

Domain Model PM PSD CV CI 

LMW IS 0.148 0.026 0.176 (0.094, 0.210) 
HoS 0.177 0.030 0.169 (0.123, 0.238) 
HeS 0.172 0.037 0.215 (0.099, 0.264) 

LMB IS 0.264 0.071 0.269 (0.109, 0.426) 
HoS 0.310 0.082 0.265 (0.167, 0.483) 
HeS 0.267 0.076 0.285 (0.120, 0.449) 

LFW IS 0.110 0.021 0.191 (0.062, 0.158) 
HoS 0.134 0.026 0.194 (0.088, 0.189) 
HeS 0.116 0.027 0.233 (0.058, 0.179) 

LFB IS 0.198 0.057 0.288 (0.083, 0.326) 
HoS 0.237 0.064 0.270 (0.122, 0.377) 
HeS 0.192 0.060 0.313 (0.074, 0.332) 

MMW IS 0.074 0.009 0.122 (0.054, 0.095) 
HoS 0.091 0.011 0.121 (0.071, 0.115) 
HeS 0.081 0.013 0.160 (0.054, 0.111) 

MMB IS 0.119 0.026 0.218 (0.067, 0.178) 
HoS 0.144 0.030 0.208 (0.092, 0.207) 
HeS 0.120 0.027 0.225 (0.060, 0.183) 

MFW IS 0.048 0.007 0.146 (0.032, 0.064) 
HoS 0.059 0.009 0.153 (0.044, 0.078) 
HeS 0.060 0.011 0.183 (0.036, 0.085) 

MFB IS 0.106 0.021 0.198 (0.062, 0.154) 
HoS 0.128 0.026 0.203 (0.084, 0.183) 
HeS 0.105 0.023 0.219 (0.059, 0.160) 

HMW IS 0.020 0.005 0.250 (0.010, 0.032) 
HoS 0.025 0.006 0.240 (0.014, 0.039) 
HeS 0.027 0.008 0.296 (0.013, 0.047) 

HMB IS 0.062 0.021 0.339 (0.019, 0.111) 
HoS 0.075 0.025 0.333 (0.035, 0.131) 
HeS 0.057 0.020 0.351 (0.019, 0.108) 

HFW IS 0.029 0.006 0.207 (0.017, 0.044) 
HoS 0.037 0.008 0.216 (0.023, 0.053) 
HeS 0.027 0.006 0.222 (0.014, 0.042) 

HFB IS 0.018 0.010 0.556 (0.001, 0.043) 
HoS 0.022 0.012 0.545 (0.005, 0.050) 
HeS 0.020 0.012 0.600 (0.001, 0.048) 
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Table 4.4 

Comparison of 
0

θ
i

 and 
1

θ
i

 using PM, PSD, NSE and 95% HPD interval under the heterogeneous 

nonignorable selection model 
 

Domain u  
0θ  

1θ  

PM PSD CV CI PM PSD CV CI 
LMW 1 0.260 0.083 0.319 (0.096, 0.447) 0.477 0.109 0.229 (0.252, 0.714) 

2 0.213 0.075 0.352 (0.073, 0.397) 0.195 0.087 0.446 (0.048, 0.401) 
3 0.214 0.070 0.327 (0.084, 0.383) 0.126 0.070 0.556 (0.008, 0.296) 
4 0.189 0.064 0.339 (0.065, 0.342) 0.079 0.052 0.658 (0.003, 0.208) 
5 0.124 0.048 0.387 (0.027, 0.235) 0.121 0.057 0.471 (0.019, 0.252) 

LMB 1 0.318 0.098 0.308 (0.101, 0.536) 0.355 0.100 0.282 (0.140, 0.570) 
2 0.279 0.086 0.308 (0.058, 0.422) 0.176 0.080 0.455 (0.020, 0.361) 
3 0.209 0.083 0.397 (0.048, 0.340) 0.148 0.073 0.493 (0.021, 0.324) 
4 0.126 0.065 0.516 (0.015, 0.286) 0.229 0.083 0.362 (0.063, 0.414) 
5 0.114 0.059 0.518 (0.012, 0.254) 0.093 0.054 0.581 (0.007, 0.224) 

LFW 1 0.279 0.087 0.312 (0.101, 0.473) 0.301 0.090 0.299 (0.113, 0.500) 
2 0.232 0.083 0.358 (0.075, 0.431) 0.215 0.083 0.386 (0.051, 0.410) 
3 0.194 0.075 0.387 (0.054, 0.371) 0.203 0.079 0.389 (0.056, 0.390) 
4 0.167 0.065 0.389 (0.046, 0.325) 0.191 0.071 0.372 (0.046, 0.348) 
5 0.128 0.052 0.406 (0.025, 0.245) 0.089 0.045 0.506 (0.008, 0.198) 

LFB 1 0.308 0.098 0.318 (0.120, 0.538) 0.276 0.094 0.341 (0.084, 0.480) 
2 0.247 0.095 0.385 (0.058, 0.463) 0.183 0.083 0.454 (0.024, 0.377) 
3 0.192 0.085 0.443 (0.032, 0.391) 0.200 0.086 0.430 (0.044, 0.410) 
4 0.158 0.074 0.468 (0.023, 0.326) 0.202 0.081 0.401 (0.050, 0.392) 
5 0.095 0.058 0.611 (0.005, 0.239) 0.139 0.069 0.496 (0.024, 0.308) 

MMW 1 0.204 0.043 0.211 (0.116, 0.304) 0.167 0.078 0.467 (0.035, 0.355) 
2 0.221 0.044 0.199 (0.133, 0.326) 0.186 0.081 0.435 (0.039, 0.380) 
3 0.213 0.043 0.202 (0.126, 0.314) 0.198 0.082 0.414 (0.043, 0.396) 
4 0.189 0.040 0.212 (0.110, 0.282) 0.359 0.094 0.262 (0.174, 0.594) 
5 0.173 0.033 0.191 (0.104, 0.248) 0.090 0.047 0.522 (0.013, 0.205) 

MMB 1 0.284 0.086 0.303 (0.107, 0.472) 0.248 0.095 0.383 (0.059, 0.458) 
2 0.230 0.079 0.343 (0.088, 0.418) 0.168 0.078 0.464 (0.023, 0.347) 
3 0.196 0.068 0.347 (0.055, 0.351) 0.176 0.078 0.443 (0.034, 0.353) 
4 0.148 0.062 0.419 (0.034, 0.297) 0.339 0.096 0.283 (0.134, 0.552) 
5 0.142 0.053 0.373 (0.038, 0.264) 0.069 0.046 0.667 (0.002, 0.186) 

MFW 1 0.212 0.045 0.212 (0.127, 0.323) 0.305 0.093 0.305 (0.110, 0.520) 
2 0.218 0.045 0.206 (0.122, 0.321) 0.248 0.085 0.343 (0.084, 0.446) 
3 0.207 0.043 0.208 (0.117, 0.309) 0.191 0.076 0.398 (0.042, 0.364) 
4 0.201 0.043 0.214 (0.117, 0.311) 0.186 0.073 0.392 (0.049, 0.364) 
5 0.162 0.035 0.216 (0.090, 0.246) 0.071 0.038 0.535 (0.006, 0.161) 

MFB 1 0.260 0.077 0.296 (0.110, 0.427) 0.331 0.093 0.281 (0.155, 0.568) 
2 0.229 0.073 0.319 (0.071, 0.387) 0.155 0.070 0.452 (0.029, 0.327) 
3 0.203 0.068 0.335 (0.067, 0.356) 0.156 0.069 0.442 (0.032, 0.319) 
4 0.179 0.061 0.341 (0.058, 0.317) 0.189 0.072 0.381 (0.050, 0.362) 
5 0.129 0.049 0.380 (0.032, 0.242) 0.168 0.064 0.381 (0.039, 0.319) 

HMW 1 0.224 0.045 0.201 (0.138, 0.333) 0.277 0.105 0.379 (0.079, 0.531) 
2 0.206 0.044 0.214 (0.119, 0.313) 0.282 0.104 0.369 (0.074, 0.513) 
3 0.193 0.044 0.228 (0.104, 0.295) 0.257 0.099 0.385 (0.071, 0.491) 
4 0.210 0.044 0.210 (0.121, 0.312) 0.162 0.079 0.488 (0.025, 0.350) 
5 0.166 0.034 0.205 (0.099, 0.247) 0.022 0.026 1.182 (0.000, 0.097) 

HMB 1 0.296 0.097 0.328 (0.095, 0.504) 0.265 0.099 0.374 (0.072, 0.493) 
2 0.223 0.085 0.381 (0.062, 0.423) 0.203 0.091 0.448 (0.027, 0.417) 
3 0.204 0.078 0.382 (0.058, 0.391) 0.125 0.073 0.584 (0.004, 0.305) 
4 0.166 0.070 0.422 (0.040, 0.323) 0.266 0.091 0.342 (0.091, 0.467) 
5 0.112 0.050 0.446 (0.026, 0.236) 0.142 0.069 0.486 (0.021, 0.307) 

HFW 1 0.222 0.045 0.203 (0.126, 0.322) 0.191 0.078 0.408 (0.038, 0.367) 
2 0.217 0.047 0.217 (0.125, 0.329) 0.184 0.073 0.397 (0.039, 0.356) 
3 0.207 0.044 0.213 (0.110, 0.304) 0.169 0.071 0.420 (0.030, 0.332) 
4 0.199 0.043 0.216 (0.106, 0.296) 0.260 0.081 0.312 (0.097, 0.442) 
5 0.155 0.034 0.219 (0.079, 0.229) 0.196 0.050 0.255 (0.081, 0.348) 

HFB 1 0.274 0.084 0.307 (0.116, 0.470) 0.366 0.114 0.311 (0.136, 0.631) 
2 0.223 0.075 0.336 (0.072, 0.400) 0.189 0.093 0.492 (0.012, 0.400) 
3 0.198 0.071 0.359 (0.060, 0.364) 0.212 0.095 0.448 (0.018, 0.421) 
4 0.177 0.064 0.362 (0.049, 0.317) 0.178 0.088 0.494 (0.024, 0.384) 
5 0.128 0.050 0.391 (0.035, 0.246) 0.055 0.050 0.909 (0.000, 0.194) 

NOTE: u  indicates the five intervals for the selection probabilities. 
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Table 4.5 

Comparison of 
0

θ  and 
1

θ  using PM, PSD, NSE and 95% CI under the homogeneous nonignorable selection 

model 
 

u  
0θ  

1θ  

PM PSD CV CI PM PSD CV CI 

1 0.384 0.011 0.029 (0.363, 0.405) 0.632 0.036 0.057 (0.559, 0.700) 

2 0.222 0.008 0.036 (0.206, 0.237) 0.160 0.026 0.163 (0.114, 0.217) 

3 0.189 0.007 0.037 (0.176, 0.203) 0.112 0.018 0.161 (0.080, 0.150) 

4 0.153 0.006 0.039 (0.142, 0.164) 0.060 0.009 0.150 (0.045, 0.079) 

5 0.053 0.002 0.038 (0.049, 0.057) 0.036 0.005 0.139 (0.027, 0.047) 
NOTE: u  indicates the five intervals for the selection probabilities. 

 
Table 4.6 

Comparison of 
0

a  and 
1

a  using PM and PSD and NSE and 95% CI under the homogeneous nonignorable 

selection model 
 

ya  PM PSD CV CI  

0a  0.000222 0.000002 0.009009 (0.000218, 0.000227) 

1a  0.000177 0.000006 0.033898 (0.000164, 0.000191) 

 
Table 4.7 

Comparison of 
0i

a  and 
1i

a  using PM, PSD, NSE and 95% HPD interval under the heterogeneous 

nonignorable selection model for each area 
 

Domain 
iya  PM PSD CV CI  

LMW 0a  0.000367 0.000034 0.092643 (0.000296, 0.000441) 

1a  0.000307 0.000040 0.130293 (0.000225, 0.000400) 

LMB 0a  0.000283 0.000021 0.074205 (0.000241, 0.000332) 

1a  0.000282 0.000020 0.070922 (0.000240, 0.000331) 

LFW 0a  0.000411 0.000042 0.102190 (0.000317, 0.000504) 

1a  0.000391 0.000040 0.102302 (0.000307, 0.000489) 

LFB 0a  0.000294 0.000022 0.074830 (0.000247, 0.000342) 

1a  0.000314 0.000023 0.073248 (0.000268, 0.000369) 

MMW 0a  0.000286 0.000017 0.059441 (0.000248, 0.000323) 

1a  0.000264 0.000025 0.094697 (0.000209, 0.000327) 

MMB 0a  0.000262 0.000018 0.068702 (0.000223, 0.000304) 

1a  0.000260 0.000018 0.069231 (0.000224, 0.000304) 

MFW 0a  0.000313 0.000023 0.073482 (0.000263, 0.000362) 

1a  0.000247 0.000026 0.105263 (0.000194, 0.000312) 

MFB 0a  0.000289 0.000017 0.058824 (0.000253, 0.000332) 

1a  0.000294 0.000022 0.074830 (0.000246, 0.000345) 

HMW 0a  0.000263 0.000016 0.060837 (0.000228, 0.000298) 

1a  0.000192 0.000016 0.083333 (0.000157, 0.000234) 

HMB 0a  0.000250 0.000022 0.088000 (0.000201, 0.000299) 

1a  0.000270 0.000027 0.100000 (0.000212, 0.000335) 

HFW 0a  0.000293 0.000021 0.071672 (0.000246, 0.000340) 

1a  0.000324 0.000037 0.114198 (0.000248, 0.000410) 

HFB 0a  0.000278 0.000021 0.075540 (0.000234, 0.000324) 

1a  0.000246 0.000024 0.097561 (0.000196, 0.000303) 

 



Survey Methodology, June 2021 107 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Figure 4.1 The posterior densities of the finite population proportions under the three models for the SAL 

data with 12 areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model.  
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Figure 4.2 Trace plot and Autocorrelation plot for .
0 1

, ,μ ρ ρ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
We present the posterior densities of the finite population proportions in Figure 4.1. The solid line 

represents the density of P  under the IS model, the dotted line represents that under the HoS model, and 

the dashed line represents that under the HeS model for each domain. We can see that the plots of IS 

model are shifted due to the effect of the selection bias. 
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Table 4.8 

Geweke convergence diagnostic (Z-score) and effective sample size (ESS) for , ,
0 1

μ ρ ρ  
 

parameter Geweke’s statistic p -value ESS  

  -0.4549 0.6492 2,000 

0  1.7750 0.0759 1,809 

1  -1.0331 0.3015 2,000 

 
Our example shows that it is important to include a component for the selection mechanism into a 

model when a biased sample is available, otherwise there is likely to be misleading estimates of the small 

area proportions. Because the distribution of the sample selection probabilities is a little different across 

domains, the heterogeneity assumption is more reasonable for our numerical example. 

 
4.2 Simulation study 
 

We perform a simulation study to assess the accuracy of our model. Specifically, we consider two 

situations, which are homogeneous or heterogeneous distributions of the sample selection probabilities to 

show how different the IS, HoS and HeS models can be. We also show that when the correlation between 

the binary responses and the selection probabilities is strong, the IS model can perform badly. 

To perform a simulation study, we generate = 12  finite populations with thi  finite population 

having =iN 1,000 units and selection probability ,ij = 1, ,j 1,000, = 1, , 12.i  Then samples of 

size =in 50, = 1, , 12i  are taken from each area. We have generated 100 data sets. The outline of the 

data collection is as follows. 

Step 1. Generate ( )~ 0.2, 0.7 ,ip U = 1, , .i  These values are true small population proportions. 

Step 2. Set = 100, = ,i i if n N =a 0.975, 0 = ,af 1 = ,f a = 1, , .i  

Step 3. Generate ( )~ 0, 1 .u U  If iu p  then we set = 1;ijy  otherwise set = 0,ijy = 1, , ,ij N  

= 1, , .i  

Step 4. If = 1ijy  then we generate ( )( )1 1~ Beta , 1 ;ij    −  if = 0ijy  then we generate 

( )( )0 0~ Beta , 1ij    −  for = 1, , ,ij N = 1, , .i  

Step 5. Sample in  units by systematic PPS sampling with probabilities 
=1

.ij ij

Ni
iji

n 


 

 

We control the biserial correlation between the binary responses and the selection probabilities by 

changing the a  values in Step 2. For example, if we set =a 0.975, 0.95, 0.9, 0.8, 0.7 in the simulation 

scheme, then the biserial correlations are respectably = 0.05, 0.1, 0.2, 0.4, 0.7. We generate data having 

several biserial correlations, and categorized them as three levels (Low: < 0.3, Medium: 0.3 <

0.6, High:   0.6). These correspond to weak, medium and strong selection bias. 

We can also control the heterogeneity or homogeneity assumptions by changing a support of the 

sample selection probabilities. For homogeneity assumption, we generate ij  of Step 4 from similar 
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supports for all areas. On the other hand, we set up a support of ij  from a different interval by area to 

make heterogeneous distributions of the sample selection probabilities. 

To compare the performance of three models, we compute several frequentist measures. First, we 

calculate the finite population proportion ( ) ,h
iP  the posterior mean ( )PM h

i
 and the posterior standard 

deviation ( )PSD ,h
i

= 1, , ,i = 1, , 100.h  Then we compute the absolute bias ( )AB =h
i

 

( ) ( )PM h h
i iP−  and the root mean squared error ( ) ( ) ( )2 2RMSE = PSD AB ,h h h

i i i+ = 1, , ,i = 1, ,h  

100.  Using these frequentist quantities we obtain ( )100
1

100 =1
AB = AB h

i ih  and RMSE =i  

( )100
1

100 =1
RMSE .h

ih  Also we compute the 95% highest posterior density (HPD) interval for each of the 100 

simulated runs in each area. Then we look at the width ( )( )h
iW  and the HPD incidence ( )( ) .h

iI  Let ( ) = 1h
iI  

if the 95% HPD interval contains the true value iP  and let ( ) = 0h
iI  otherwise. Then we calculate the 

coverage ( )100

=1
= 100h

i ih
C I  and ( )100

=1
= 100.h

i ih
W W  

The biserial correlation (i.e., Pearson correlation coefficient)   between y  and π  is calculated since 

the variable y  is binary (e.g., see Cox, 1974). The summaries based on AB, RMSE, coverage and width of 

the 95% HPD intervals for three correlation cases under the homogeneity assumption are shown in 

Table 4.9. Under this assumption, the performances of the HoS model is better than the HeS model in 

some domains, but the difference is very small. Both of them are better than the IS model in the sense of 

the closeness to the true .iP  In particular, we can see that as the correlation between y  and π  increases, 

there is greater discrepancy between the IS model and the others. 

Table 4.10 shows the summaries for three correlation cases under the heterogeneity assumption. From 

this table, we find that the HeS model is well behaved in the sense that it is closer to true iP  than the other 

models when the effect of the selection bias is moderate to strong. It has smaller bias, smaller mean square 

error and better coverage. 

As the biserial correlation increases there are increased disparities between the IS model and the HeS 

model. We present some plots of the posterior distributions of the finite population proportions for low, 

medium, high correlation cases under the homogeneity assumption (Figures 4.3-4.5). It is worth noting 

that there are large differences of the distributions of the finite population means as   increases. There are 

no differences in the posterior densities of the HoS model and the HeS model under the homogeneity 

assumption. The posterior distributions under the HeS model departs from the right of the distribution 

under the IS model, with little changes in their spreads for all domains. 

Similarly, we present some plots of the posterior distributions of the finite population proportions for 

low, medium, high correlation cases under the heterogeneity assumption (Figures 4.6-4.8). The posterior 

densities under the HeS model are different from the others for all domains. 

Also, we have selected two values of = 12, 24,  the number of areas, to see changes by increasing .  

We compute AB, RMSE, coverage and width of 95% HPD intervals for each domain, then we average 

these values over all domains. We present the results under the homogeneity and the heterogeneity 

assumptions in respectively Tables 4.11 and 4.12. The results are consistent as  increases. 
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The simulation study shows that as the biserial correlation between the binary responses and the 

selection probabilities increases, there is greater discrepancy among the IS model, the HoS moel and the 

HeS model. That is, as the correlation is stronger, the effect of the selection bias becomes larger. The HeS 

model is better than the other models when the each area has the different distribution for the sample 

selection probabilities under moderate to strong selection bias. 
 

Table 4.9 

Comparisons of estimates based on absolute bias (AB), root posterior mean squared error (RMSE), coverage 

(C) and width (W) of 95% HPD intervals for low (L), medium (M), high (H) correlation cases under the 

homogeneity assumption 
 

area ρ  AB RMSE W C 

IS HoS HeS IS HoS HeS IS HoS HeS IS HoS HeS 

1 L 0.061 0.044 0.051 0.087 0.076 0.087 0.241 0.248 0.281 0.90 0.98 0.98 

M 0.134 0.046 0.057 0.149 0.075 0.092 0.259 0.238 0.293 0.50 0.98 0.97 

H 0.188 0.047 0.050 0.198 0.075 0.089 0.268 0.239 0.296 0.16 0.99 0.99 

2 L 0.050 0.053 0.051 0.081 0.087 0.093 0.257 0.277 0.315 0.98 0.98 0.98 

M 0.103 0.043 0.042 0.122 0.081 0.091 0.260 0.279 0.331 0.72 0.96 1.0 

H 0.166 0.045 0.051 0.177 0.084 0.100 0.254 0.288 0.350 0.24 0.99 1.0 

3 L 0.051 0.065 0.063 0.083 0.098 0.102 0.262 0.286 0.320 0.97 0.90 0.98 

M 0.084 0.064 0.058 0.107 0.099 0.103 0.258 0.295 0.342 0.81 0.95 0.98 

H 0.132 0.056 0.059 0.146 0.094 0.108 0.250 0.304 0.361 0.45 0.97 0.97 

4 L 0.058 0.084 0.085 0.091 0.114 0.120 0.269 0.297 0.333 0.91 0.88 0.89 

M 0.052 0.078 0.070 0.083 0.110 0.113 0.258 0.311 0.355 0.97 0.93 0.98 

H 0.112 0.066 0.072 0.128 0.105 0.118 0.243 0.325 0.372 0.57 0.97 0.98 

5 L 0.039 0.037 0.041 0.073 0.074 0.083 0.250 0.263 0.296 0.99 0.99 1.0 

M 0.118 0.037 0.043 0.135 0.074 0.088 0.261 0.261 0.315 0.64 0.98 1.0 

H 0.193 0.050 0.055 0.202 0.083 0.100 0.261 0.269 0.336 0.14 0.99 0.99 

6 L 0.052 0.040 0.046 0.081 0.075 0.085 0.245 0.256 0.289 0.96 0.96 0.99 

M 0.125 0.041 0.049 0.142 0.073 0.089 0.260 0.249 0.301 0.52 0.98 0.98 

H 0.186 0.048 0.056 0.197 0.078 0.096 0.263 0.253 0.316 0.18 0.99 0.98 

7 L 0.041 0.053 0.058 0.076 0.088 0.098 0.261 0.281 0.316 0.97 0.95 0.96 

M 0.096 0.049 0.045 0.116 0.087 0.095 0.259 0.289 0.340 0.75 0.94 0.99 

H 0.145 0.046 0.050 0.158 0.086 0.102 0.254 0.293 0.356 0.36 0.96 0.98 

8 L 0.044 0.039 0.045 0.076 0.075 0.085 0.249 0.261 0.295 0.99 0.99 1.0 

M 0.118 0.039 0.041 0.135 0.074 0.086 0.261 0.258 0.309 0.62 0.99 0.99 

H 0.184 0.049 0.058 0.195 0.081 0.101 0.262 0.262 0.329 0.24 0.98 0.97 

9 L 0.047 0.043 0.046 0.077 0.078 0.088 0.253 0.268 0.301 0.98 0.98 0.99 

M 0.116 0.041 0.042 0.133 0.076 0.089 0.260 0.265 0.322 0.64 1.0 1.0 

H 0.184 0.050 0.059 0.194 0.084 0.103 0.258 0.274 0.338 0.21 0.98 0.97 

10 L 0.062 0.046 0.059 0.088 0.078 0.095 0.246 0.257 0.296 0.94 0.98 0.97 

M 0.135 0.041 0.050 0.149 0.073 0.090 0.260 0.245 0.300 0.48 0.99 0.99 

H 0.191 0.055 0.058 0.202 0.082 0.097 0.264 0.247 0.310 0.17 0.99 1.0 

11 L 0.053 0.070 0.074 0.085 0.103 0.112 0.265 0.292 0.327 0.96 0.92 0.95 

M 0.070 0.065 0.053 0.096 0.100 0.101 0.258 0.303 0.348 0.88 0.95 0.99 

H 0.131 0.058 0.058 0.145 0.098 0.109 0.245 0.313 0.368 0.46 0.94 0.97 

12 L 0.047 0.043 0.043 0.077 0.077 0.086 0.250 0.264 0.306 0.97 0.99 0.99 

M 0.122 0.047 0.048 0.139 0.080 0.091 0.260 0.263 0.317 0.56 0.97 0.99 

H 0.173 0.044 0.050 0.184 0.078 0.095 0.261 0.266 0.333 0.27 0.99 0.99 



112 Choi et al.: Bayesian predictive inference of small area proportions under selection bias 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

Table 4.10 

Comparisons of estimates based on absolute bias (AB), root posterior mean squared error (RMSE), coverage 

(C) and width (W) of 95% HPD intervals for low (L), medium (M), high (H) correlation cases under the 

heterogeneity assumption 
 

area ρ  AB RMSE W C 

IS HoS HeS IS HoS HeS IS HoS HeS IS HoS HeS 

1 L 0.050 0.052 0.047 0.078 0.085 0.084 0.215 0.235 0.251 0.91 0.92 0.94 

M 0.106 0.101 0.041 0.125 0.123 0.084 0.229 0.248 0.268 0.55 0.67 0.99 

H 0.163 0.145 0.056 0.176 0.162 0.109 0.242 0.261 0.343 0.16 0.39 0.99 

2 L 0.045 0.047 0.050 0.079 0.085 0.094 0.231 0.252 0.287 0.95 0.97 0.99 

M 0.087 0.092 0.049 0.109 0.116 0.105 0.231 0.250 0.345 0.75 0.78 1.0 

H 0.161 0.174 0.090 0.173 0.187 0.145 0.221 0.235 0.382 0.26 0.23 0.89 

3 L 0.056 0.058 0.068 0.088 0.094 0.108 0.235 0.259 0.287 0.91 0.92 0.91 

M 0.085 0.080 0.062 0.111 0.111 0.114 0.239 0.264 0.345 0.77 0.86 0.97 

H 0.151 0.133 0.060 0.165 0.152 0.129 0.233 0.261 0.405 0.32 0.55 0.97 

4 L 0.056 0.059 0.056 0.088 0.095 0.099 0.240 0.263 0.290 0.92 0.93 0.96 

M 0.117 0.123 0.053 0.135 0.144 0.108 0.242 0.265 0.341 0.57 0.59 0.99 

H 0.175 0.194 0.081 0.188 0.207 0.140 0.245 0.267 0.404 0.23 0.20 0.96 

5 L 0.047 0.049 0.047 0.078 0.084 0.089 0.224 0.245 0.273 0.98 0.97 0.99 

M 0.105 0.098 0.052 0.126 0.124 0.102 0.239 0.263 0.313 0.60 0.71 0.98 

H 0.164 0.144 0.071 0.178 0.163 0.130 0.246 0.271 0.399 0.28 0.46 1.0 

6 L 0.045 0.051 0.059 0.076 0.084 0.097 0.218 0.238 0.273 0.95 0.95 0.95 

M 0.060 0.063 0.058 0.086 0.091 0.109 0.211 0.227 0.331 0.87 0.90 0.97 

H 0.103 0.113 0.055 0.118 0.128 0.112 0.195 0.203 0.353 0.51 0.53 0.99 

7 L 0.043 0.046 0.056 0.079 0.085 0.098 0.234 0.257 0.284 0.97 0.98 0.97 

M 0.093 0.086 0.051 0.117 0.116 0.107 0.241 0.265 0.337 0.73 0.81 0.98 

H 0.152 0.134 0.065 0.168 0.155 0.129 0.240 0.266 0.400 0.31 0.53 0.98 

8 L 0.045 0.048 0.060 0.077 0.083 0.098 0.223 0.244 0.277 0.96 0.99 0.96 

M 0.066 0.069 0.053 0.092 0.097 0.109 0.217 0.235 0.338 0.87 0.90 0.98 

H 0.103 0.115 0.064 0.121 0.132 0.123 0.207 0.217 0.375 0.56 0.48 0.99 

9 L 0.048 0.050 0.045 0.080 0.086 0.088 0.227 0.249 0.275 0.98 0.97 0.99 

M 0.103 0.096 0.052 0.125 0.123 0.101 0.241 0.264 0.312 0.63 0.70 0.99 

H 0.166 0.146 0.057 0.180 0.166 0.120 0.245 0.272 0.382 0.24 0.42 0.99 

10 L 0.046 0.047 0.057 0.076 0.080 0.095 0.214 0.235 0.272 0.92 0.96 0.95 

M 0.051 0.053 0.062 0.078 0.082 0.110 0.207 0.222 0.327 0.93 0.94 0.97 

H 0.093 0.102 0.054 0.108 0.117 0.110 0.191 0.198 0.348 0.61 0.60 1.0 

11 L 0.057 0.058 0.071 0.088 0.094 0.110 0.237 0.260 0.293 0.91 0.95 0.92 

M 0.075 0.068 0.059 0.102 0.102 0.112 0.238 0.260 0.344 0.79 0.86 0.99 

H 0.136 0.120 0.067 0.152 0.142 0.128 0.229 0.257 0.398 0.43 0.58 0.99 

12 L 0.044 0.046 0.051 0.076 0.082 0.092 0.222 0.243 0.277 0.98 0.96 1.0 

M 0.072 0.076 0.050 0.097 0.103 0.105 0.219 0.236 0.337 0.79 0.82 1.0 

H 0.115 0.127 0.064 0.131 0.143 0.123 0.211 0.222 0.369 0.51 0.45 0.98 

 
 
 



Survey Methodology, June 2021 113 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 4.11 

Comparison of the three models using absolute bias (AB), root posterior mean squared error (RMSE), 

coverage (C) and width (W) of 95% HPD intervals under the homogeneity assumption 
 

ρ   Model AB RMSE W C 

Low 12 IS 0.05030.0075
 

0.08120.0056
 

0.25390.0086
 

0.96000.0292
 

 HoS 0.05140.0145
 

0.08530.0131
 

0.27090.0155
 

0.95830.0381
 

 HeS 0.05510.0133
 

0.09430.0117
 

0.30620.0161
 

0.97330.0303
 

24 IS 0.04860.0040
 

0.08090.0029
 

0.25940.0123
 

0.97210.0177
 

 HoS 0.05090.0101
 

0.08610.0103
 

0.27780.0215
 

0.97130.0201
 

 HeS 0.05680.0105
 

0.09750.0101
 

0.31660.0210
 

0.97920.0177
 

Medium 12 IS 0.10600.0261
 

0.12540.0212
 

0.25940.0011
 

0.67420.1556
 

 HoS 0.04910.0127
 

0.08350.0126
 

0.27140.0237
 

0.96830.0221
 

 HeS 0.04980.0086
 

0.09390.0078
 

0.32270.0203
 

0.98830.0094
 

24 IS 0.10100.0232
 

0.12120.0198
 

0.25920.0104
 

0.70250.1267
 

 HoS 0.05020.0092
 

0.08610.0110
 

0.28120.0295
 

0.97750.0159
 

 HeS 0.05210.0080
 

0.09640.0093
 

0.32790.0281
 

0.99040.0127
 

High 12 IS 0.16530.0281
 

0.17710.0263
 

0.25680.0078
 

0.28750.1399
 

 HoS 0.05100.0064
 

0.08570.0088
 

0.27760.0270
 

0.97830.0159
 

 HeS 0.05620.0062
 

0.10140.0075
 

0.33890.0237
 

0.98250.0114
 

24 IS 0.15820.0316
 

0.17040.0300
 

0.25400.0170
 

0.32420.1618
 

 HoS 0.05220.0046
 

0.08860.0090
 

0.28820.0335
 

0.97880.0099
 

 HeS 0.05700.0039
 

0.10250.0069
 

0.34120.0302
 

0.98750.0126
 

NOTE: The notation 
ba  means a  is an average of areas and b  is the standard error. 

 
Table 4.12 

Comparison of the three models using absolute bias (AB), root posterior mean squared error (RMSE), 

coverage (C) and width (W) of 95% HPD intervals under the heterogeneity assumption 
 

ρ   Model AB RMSE W C 

Low 12 IS 0.05010.0050
 

0.08420.0051
 

0.27030.0109
 

0.97330.0156
 

 HoS 0.05090.0049
 

0.08620.0049
 

0.28000.0112
 

0.97580.0168
 

 HeS 0.05560.0083
 

0.09590.0075
 

0.31320.0127
 

0.97670.0227
 

24 IS 0.04570.0054
 

0.07680.0054
 

0.24780.0135
 

0.96750.0205
 

 HoS 0.04700.0055
 

0.08180.0053
 

0.27030.0146
 

0.97790.0169
 

 HeS 0.05370.0093
 

0.09220.0082
 

0.30180.0167
 

0.97920.0193
 

Medium 12 IS 0.08500.0206
 

0.10850.0179
 

0.25860.0147
 

0.80330.1026
 

 HoS 0.08370.0196
 

0.11090.0170
 

0.28160.0187
 

0.85170.0720
 

 HeS 0.05340.0060
 

0.10540.0077
 

0.36720.0248
 

0.99170.0111
 

24 IS 0.08240.0218
 

0.10560.0190
 

0.25310.0179
 

0.79920.1040
 

 HoS 0.08100.0205
 

0.10740.0179
 

0.27360.0218
 

0.85460.0825
 

 HeS 0.05330.0077
 

0.10460.0090
 

0.36370.0289
 

0.99540.0093
 

High 12 IS 0.14010.0289
 

0.15470.0278
 

0.25370.0232
 

0.44170.1333
 

 HoS 0.13720.0263
 

0.15430.0253
 

0.27410.0319
 

0.53750.1231
 

 HeS 0.06530.0110
 

0.12490.0113
 

0.42150.0257
 

0.98330.0287
 

24 IS 0.13360.0302
 

0.14810.0289
 

0.24870.0263
 

0.47460.1316
 

 HoS 0.13020.0270
 

0.14700.0261
 

0.26630.0348
 

0.55670.1396
 

 HeS 0.06010.0090
 

0.12030.0108
 

0.41410.0360
 

0.99000.0153
 

NOTE: The notation ba  means a  is an average of areas and b  is the standard error. 
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Figure 4.3 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the homogeneity assumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model. (Dashed line and dotted line coincide.)  
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Figure 4.4 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the homogeneity assumption (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model. (Dashed line and dotted line coincide.)  
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Figure 4.5 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the homogeneity assumption (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model. (Dashed line and dotted line coincide.)  
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Figure 4.6 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the heterogeneity assumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model.  
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Figure 4.7 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the heterogeneity assumption (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model.  
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Figure 4.8 The posterior densities of the finite population proportions for low, medium, high correlation 

cases using a simulated data under the heterogeneity assumption (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: Here the solid line represents the densities of P  under the IS model, the dotted line represents that under the HoS model, and the 

dashed line represents that under the HeS model.  
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5. Concluding remarks 
 

We have extended the homogeneous nonignorable selection model of CNK to accommodate selection 

probabilities that have different distributions in different areas. This is an improvement to handle the 

relationship between the binary variables and the selection probabilities. As there are numerous additional 

parameters, the computation has become a lot more difficult and we have used the Metropolis-Hastings 

sampler to overcome this difficulty. 

We have used an example on severe activity limitation in the National Health Interview Survey in 

which the small areas are formed by crossing education (pre-college, college, post-college), sex (male, 

female) and race (white, nonwhite). The heterogeneous nonignorable selection model appears to perform 

better than the homogeneous selection model and the baseline ignorable selection model. 

We have used a simulation study to assess the performance of our heterogeneous nonignorable 

selection model. We have drawn data from the homogeneous nonignorable selection model and fitted the 

ignorable selection model and the heterogeneous nonignorable selection model. We found little difference 

between the two nonignorable selection models but substantial difference from the ignorable selection 

model. However, when we have drawn data from the heterogeneous nonignorable selection model and 

fitted the ignorable selection model and the homogeneous nonignorable selection model, we found that the 

heterogeneous nonignorable selection model is a lot better especially when there is medium to strong 

selection bias using bias, mean square error and coverage. This is evident in Tables 4.9-4.12 and 

Figures 4.3-4.8. 

Within the framework of our heterogeneous nonignorable selection model, we can think about several 

additional problems. First, we can accommodate polychotomous data that are numerous in survey 

problems. Second, although a bit different from our approach, we can accommodate covariates (e.g., age, 

race, sex in our application on activity limitation). Third, as there are nonrespondents in numerous 

surveys, we can attempt to accommodate nonignorable nonresponse and selection simultaneously (e.g., 

Nandram and Choi, 2010). This can be done within our framework. Fourth, as in a two-fold model, we can 

accommodate clustering or stratification within each area (e.g., Nandram, 2016; Lee, Nandram and Kim, 

2017). Our work is potentially useful to solve problems in nonprobability samples as well (e.g., Elliot and 

Valliant, 2017). 

 
Acknowledgements 
 

This research was supported by a grant from the Simons Foundation (#353953, Balgobin Nandram). 

 
References 

 

Chambers, R., Dorfman, A. and Wang, S. (1998). Limited information likelihood analysis of survey data. 

Journal of the Royal Statistical Society, Series B, 60, 397-411. 
 



Survey Methodology, June 2021 121 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Chen, Q., Elliott, M.R. and Little, R.J.A. (2010). Bayesian penalized spline model-based inference for 

finite population proportion in unequal probability sampling. Survey Methodology, 36, 1, 23-34. Paper 

available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2010001/article/11250-eng.pdf. 

 

Choi, S., Nandram, B. and Kim, D. (2017). A hierarchical Bayesian model for binary data incorporating 

selection bias. Communications in Statistics - Simulation and Computation, 46, 6, 4767-4782. 

 

Cox, N.R. (1974). Estimation of the correlation between a continuous and a discrete variable. Biometrics, 

30, 171-178. 

 

Elliot, M.R., and Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32, 249-

264. 

 

Gelman, A. (2006). Prior distribution for variance parameters in hierarchical models. Bayesian Analysis, 

1, 515-533. 

 

Lee, D., Nandram, B. and Kim, D. (2017). Bayesian predictive inference of a proportion under a two-fold 

small area model with heterogeneous correlations. Survey Methodology, 43, 1, 69-92. Paper available at 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2017001/article/14822-eng.pdf. 

 

Ma, J., Sedransk, J., Nandram, B. and Chen, L. (2018). Bayesian predictive inference for finite population 

quantities under informative sampling. Statistics and Application, 16, 207-226. 

 

Malec, D., Davis, W. and Cao, X. (1999). Model-based small area estimates of overweight prevalence 

using sample selection adjustment. Statistics in Medicine, 18, 3189-3200. 

 

Nandram, B. (2007). Bayesian predictive inference under informative sampling via surrogate samples. 

Bayesian Statistics and its Applications, (Eds. S.K. Upadhyay, U. Singh and D. Dey), Anamaya, New 

Delhi, Chapter 25, 356-374. 

 

Nandram, B. (2016). Bayesian predictive inference of a proportion under a two-fold small area model. 

Journal of Official Statistics, 32, 1, 187-208. 

 

Nandram, B., and Choi, J.W. (2010). A Bayesian analysis of body mass index data from small domains 

under nonignorable nonresponse and selection. Journal of the American Statistical Association, 105, 

120-135. 

 

Nandram, B., Bai, Y. and Choi, J.W. (2011). Hierarchical Bayesian models for assessing possible changes 

in prevalence of activity limitation. Advances and Applications in Statistical Sciences, 6, 285-311. 

 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2010001/article/11250-eng.pdf?st=9M-s9zyO
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2010001/article/11250-eng.pdf?st=9M-s9zyO
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2017001/article/14822-eng.pdf?st=bHGvydRV
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2017001/article/14822-eng.pdf?st=bHGvydRV


122 Choi et al.: Bayesian predictive inference of small area proportions under selection bias 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Nandram, B., Bhatta, D., Bhadra, D. and Shen G. (2013). Bayesian predictive inference of a finite 

population proportion under selection bias. Statistical Methodology, 11, 1-21. 

 

Nandram, B., Choi, J.W., Shen, G. and Burgos, C. (2006). Bayesian predictive inference under 

informative sampling and transformation. Applied Stochastic Models in Business and Industry, 22, 559-

572. 

 

Opsomer, J.D., Glaeskens, G., Ranalli, M.G., Kauermann, G. and Breidt, F.J. (2008). Non-parametric 

small area estimation using penalized spline regression. Journal of the Royal Statistical Society, Series 

B, 70, 265-286. 

 

Pfeffermann, D. (1988). The effect of sampling design and response mechanism on multivariate 

regression-based predictors. Journal of the American Statistical Association, 83, 824-833. 

 

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International 

Statistical Review, 61, 317-337. 

 

Pfeffermann, D., and Sverchkov, M. (2007). Small-area estimation under informative probability sampling 

of areas and within selected areas. Journal of the American Statistical Association, 102, 1427-1439. 

 

Pfeffermann, D., Krieger, A.M. and Rinott, Y. (1998). Parametric distributions of complex survey data 

under informative probability sampling. Statistica Sinica, 8, 1087-1114. 

 

Si, Y., Pillai, N.S. and Gelman, A. (2015). Bayesian nonparametric weighted sampling inference. 

Bayesian Analysis, 10, 3, 605-625. 

 

Sverchkov, M., and Pfeffermann, D. (2004). Prediction of finite population totals based on the sample 

distribution. Survey Methodology, 30, 1, 79-92. Paper available at 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004001/article/6996-eng.pdf. 

 

Zangeneh, S.Z., and Little, R.J.A. (2015). Bayesian inference for the finite population total from a 

heteroscedastic probability proportional to size sample. Journal of Survey Statistics and Methodology, 

3, 162-192. 

https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004001/article/6996-eng.pdf?st=gR6Y-YHA
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2004001/article/6996-eng.pdf?st=gR6Y-YHA


Survey Methodology, June 2021 123 
Vol. 47, No. 1, pp. 123-149 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Marius Stefan, Faculty of Applied Sciences, Polytechnic University of Bucharest, Splaiul Independentei, nr. 313. E-mail: 

mastefan@gmail.com; Michael A. Hidiroglou, Statistics Canada Alumnus. E-mail: hidirog@yahoo.ca. 

 

Small area benchmarked estimation under the basic unit 

level model when the sampling rates are non-negligible 

Marius Stefan and Michael A. Hidiroglou1 

Abstract 

We consider the estimation of a small area mean under the basic unit-level model. The sum of the resulting 

model-dependent estimators may not add up to estimates obtained with a direct survey estimator that is 

deemed to be accurate for the union of these small areas. Benchmarking forces the model-based estimators to 

agree with the direct estimator at the aggregated area level. The generalized regression estimator is the direct 

estimator that we benchmark to. In this paper we compare small area benchmarked estimators based on four 

procedures. The first procedure produces benchmarked estimators by ratio adjustment. The second procedure 

is based on the empirical best linear unbiased estimator obtained under the unit-level model augmented with a 

suitable variable that ensures benchmarking. The third procedure uses pseudo-empirical estimators 

constructed with suitably chosen sampling weights so that, when aggregated, they agree with the reliable 

direct estimator for the larger area. The fourth procedure produces benchmarked estimators that are the result 

of a minimization problem subject to the constraint given by the benchmark condition. These benchmark 

procedures are applied to the small area estimators when the sampling rates are non-negligible. The resulting 

benchmarked estimators are compared in terms of relative bias and mean squared error using both a design-

based simulation study as well as an example with real survey data. 
 

Key Words: Small area; Benchmarking; Empirical estimator; Pseudo-empirical estimator; Constrained estimator. 

 

 

1. Introduction 
 

Small area estimation (SAE) has grown in importance in recent years due to the demand for reliable 

small area statistics. Direct estimators are used to estimate parameters of interest when the sample size is 

reasonably large. However, they have large standard errors and coefficients of variation when it comes to 

applying them to small areas, as the realized sample size will be quite small. It is therefore necessary to 

use models that borrow strength from other related areas or from past surveys to have stable estimators for 

these small areas. Model-based estimates typically show a substantial improvement over direct estimates 

in terms of mean squared error (MSE). 

The available theory for small area estimation is based on either area-level or unit-level models, 

depending on the level of available auxiliary information. Unit-level based methods use the data of the 

individual units as auxiliary information, whereas area-level based methods use aggregates or means of 

the data of the units within the small areas. Fay and Herriot (1979), denoted hereafter as the FH model, is 

the most used area-level model in small area estimation. The one-fold nested error regression model 

proposed in Battese, Harter and Fuller (1988), also known as the basic unit-level model, is frequently used 

when unit-level information is available. We denote this model as the BHF model. Both are special cases 

of a general linear mixed model in SAE (see Rao and Molina, 2015 for an excellent account of the small 

area estimation). 

Small area means or totals are the most frequent linear parameters estimated in SAE. In these cases, the 

most popular small area method is the use of linear mixed models to derive the best linear unbiased 
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predictors (BLUP) for the small area mean or total. BLUP estimators minimize the MSE among the class 

of linear unbiased estimators. Alternatively, it can be shown that the BLUP estimator can be obtained by 

solving mixed model equations with unknowns given by the fixed and random parameters of the model. 

The mixed model equations result from the maximization of the joint density of the data and the vector of 

random small area effects. A BLUP estimator depends on the variances (and covariances) of random 

effects which can be estimated by the Henderson method of fitting constants (FC), the maximum 

likelihood (ML) or restricted maximum likelihood (REML). Using these estimated components in the 

BLUP estimator leads to a two-stage estimator referred to as the empirical best linear unbiased predictor 

(EBLUP). 

A potential difficulty with EBLUP estimators is that when they are aggregated over all the small areas, 

they may not agree with the overall estimate for a larger area obtained via direct estimation. Statistical 

agencies favor an overall agreement between the sum of the model-based small area estimates and the 

direct estimate at a higher level that corresponds to the union of the small areas. Benchmarking is a 

method of modifying the model-based estimates to agree with the direct estimator for the larger area.  

Existing benchmarking methods are either frequentist or Bayesian. In this paper, we focus on the 

frequentist approach to benchmarking (for Bayesian benchmarking procedures, see You, Rao and Dick, 

2004; Datta, Ghosh, Steorts and Maples, 2011 and Nandram and Sayit, 2011). The frequentist methods 

can be applied to obtain benchmark small area estimates for both the area-level and unit-level models. 

We briefly summarize the existing literature for both types of models. We first describe the procedures 

developed to benchmark area-level based estimates. Pfeffermann and Barnard (1991) obtained a 

constrained benchmarked estimator by maximizing the joint density of the data and the vector of random 

small area effects given the benchmark restriction. Their benchmark estimator was constructed with 

modified estimates of fixed and small area effects that are solutions to the constrained maximization 

problem. Wang, Fuller and Qu (2008) developed a benchmarked EBLUP for the FH area-level model, by 

minimizing a loss function subject to the constraint given by the benchmark condition. They obtained a 

second benchmarked estimator by adding a suitable auxiliary variable to the FH model without imposing a 

constraint. They showed that the EBLUP estimator based on the augmented FH model is self-

benchmarked: the estimator satisfied the benchmark condition without further adjustments. Bell, Datta and 

Ghosh (2013) generalized the result in Wang et al. (2008) to the case of multiple benchmark constraints 

by considering a more general loss function. You, Rao and Hidiroglou (2013) obtained another self-

benchmarked estimator under the FH model by replacing the regression vector used in the EBLUP 

estimator with an alternative estimator that depends on the benchmarking weights. 

We now turn to procedures that benchmark unit-level model-based estimates. The objective is to obtain 

small area estimators that benchmark to a direct estimator at a given level of aggregation of the small 

areas. The direct estimators that are mostly used by Statistical agencies are the Generalized Regression 

Estimator (GREG) in Särndal, Swensson and Wretman (1989) or more generally the calibration estimator 

based on procedures in Deville and Särndal (1992). You and Rao (2002) developed a pseudo-EBLUP 

predictor (YR predictor) that incorporates survey weights. A property of this estimator is that it is 
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self-benchmarked, that is, the sum of the small area estimates adds up to an estimator that has the same 

form as the GREG. However, it is not a direct estimator because the estimated regression vector that is 

part of this estimator reflects the error structure of the nested error model. Assuming that the sampling 

rates are negligible, Stefan and Hidiroglou (2020) proposed several procedures to ensure that the EBLUP 

and pseudo-EBLUP estimators would benchmark to the GREG estimator, given that both the model and 

the GREG estimator used the same vector of auxiliary variables. Ugarte, Militino and Goicoa (2009) 

developed a restricted EBLUP estimator for a small area total that satisfies the benchmarking property to a 

synthetic estimator. 

The objective of this paper is to compare several benchmarked estimators of a small area mean for the 

basic unit level model when the sampling rates are non-negligible. We compare six benchmarked 

estimators: two benchmarked estimators based on the procedures proposed by Stefan and Hidiroglou 

(2020), two restricted estimators based on the procedure proposed by Ugarte et al. (2009) and two ratio 

estimators obtained by multiplying each small area EBLUP and YR estimators by a common adjustment 

factor. The paper is organized as follows. Section 2 presents a summary of EBLUP and pseudo-EBLUP 

estimators under the basic unit-level model. Section 3 describes the six benchmarked estimators. The first 

two estimators are based on simple ratio adjustments. Then, we show how the two benchmarking 

procedures proposed by Stefan and Hidiroglou (2020) in the case of negligible sampling rates can be 

adapted to produce benchmarked small area mean estimators when the sampling rates are non-negligible. 

Finally, we describe the restricted EBLUP estimator of Ugarte et al. (2009) and propose a pseudo 

restricted estimator which is a variant of the restricted EBLUP that incorporates survey weights. We also 

propose a re-parameterized restricted maximum likelihood (reREML) method for estimating the variance 

components. This method of estimation is useful when computing restricted EBLUP small area mean 

estimators as it results in strictly positive variance components estimates. Section 4 presents the results of 

a Monte Carlo simulation based on generated data sets, whereas Section 5 reports the results of a 

simulation study based on a real data set. Finally, Section 6 gives some concluding remarks. 

 
2. EBLUP and pseudo-EBLUP estimation 
 

Consider the one-fold nested error regression model 

 , 1, , ; 1, , ,T
ij ij i ij iy v e i m j N= + + = =x β  (2.1) 

where ijy  is the variable of interest for the thj  population unit in the thi  small area, ( )1, ,x
T

ij ij ijpx x=  

is a vector of auxiliary variables with 1 1,ijx = ( )1, ,β
T

p =  is a 1p   vector of regression 

parameters and iN  is the number of population units in the thi  small area, iU . The random small area 

effects iv  are assumed to be i.i.d. ( )20, ,vN   and independent of the unit errors ,ije  which are assumed 

i.i.d. ( )20, .eN   We draw samples is  of size in  independently within each small area ,i  according to a 

specified sampling design with first-order inclusion probabilities denoted by ,ij  for 1, , .ij N=  The 

total sample size is ,n  where 
1

.
m

ii
n n

=
=   The resulting basic design weights are given by 1 .ij ijd =  
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We assume that the sample design is ignorable, and that selection bias is absent. This implies that model 

(2.1) also holds for the sample data: 

 , 1, , ; 1, , ,T
ij ij i ij iy v e i m j n= + + = =x β  (2.2) 

Model (2.2) is a special case of the general linear mixed model. Defining ( )1, , ,
i

T

i i iny y=y  

( )1, , ,
i

TT T
i i in=X x x ( )1, ,v

T

mv v=  and ( )1, , ,
i

T

i i ine e=e  it follows that model (2.2) can be 

expressed in a matrix form by stacking the observations. The resulting equation is 

 ,= + +y Xβ Zv e  (2.3) 

where ( )1col ,i m i =y y ( )1col ,i m i =X X  1diagZ 1
ii m n =  and ( )1col ,i m i =e e  with 1

in  a 

vector of dimension in  composed of ones. We denote by G  and R  the variance matrices of the random 

vectors v  and e  respectively. Then 2G Iv m=  and 2 .e n=R I  It follows that the variance matrix of 

vector ,y  denoted as ,V  is given by .T= +V R ZGZ  

The parameters of interest are the small area means ,iY  where 1

1
, 1, , .

iN

i i ijj
Y N y i m−

=
= =  If iN  

is large, the sampling fraction 1 ,i i if N n−=  of the thi  small area is negligible. This set-up corresponds to 

the case of an infinite population or negligible sampling rates. It follows that the small area means 
iY  can 

be approximated by i  (see Rao and Molina, 2015, page 174), where X βT
i i iv = +  and 

1
X x

iN

i ij ij
N

=
=   is the vector of population means of the ’sijx  for the thi  area. An estimator of i  is 

given by ˆˆ ˆX βT
i i iv = +  (Rao and Molina, 2015, page 175), where β̂  and ˆ

iv  are estimators of β  and iv  

respectively. If iN  is not large enough or if the sampling rates if  are not negligible, parameters 
iY  cannot 

be approximated by linear combinations of β  and .iv  This corresponds to the case of a finite population. 

Let ir  be the set of the i iN n−  unobserved y -values in small area .i  If we assume that we know the 

’sijx  for each individual in the population, an estimator ˆ
iY  of 

iY  is based on the observed values 

, ,ij iy j s  and predicted values ˆˆ ˆx βT
ij ij iy v= +  for .ij r  That is, estimator ˆ

iY  is given by 

 ( )
1ˆ ˆ .

i i

i ij ij
j s j ri

Y y y
N  

= +   (2.4) 

Much of the SAE theory deals with the infinite population case, whereas the literature on the finite 

population case is more limited. In this paper we focus on finite population (or non-negligible sampling 

rates) case, thereby constructing estimators based on (2.4). 

 
2.1 EBLUP estimation 
 

We denote by β  and ( )1, ,v
T

mv v=  the BLUP predictors of β  and v  respectively. These 

estimators are given by ( )
11 1β X V X X V yT T−− −=  and ( )1 .T −= −v GZ V y Xβ  Under the normality 

assumption of e  and ,v  it can be shown that β  and v  can be obtained by maximizing the joint density of 

y  and v  with respect to β  and .v  This is equivalent to minimizing the function 

 ( ) ( )1 1 .
T T − −= − − − − +y Xβ Zv R y Xβ Zv v G v  (2.5) 



Survey Methodology, June 2021 127 
 

 
Statistics Canada, Catalogue No. 12-001-X 

This leads to the following mixed model equations  

 ,
 

= 
 

β
A b

v
 (2.6) 

where 

 

1 1 1

1 1 1 1

     
and .

  

T T T

T T T

− − −

− − − −

   
= =   

+   

X R X X R Z X R y
A b

Z R X Z R Z G Z R y
 (2.7) 

(see Rao and Molina, 2015, page 99 for details). The variance components 2 2( , )v e   in equations (2.6) 

and (2.7) are generally unknown. Three methods of estimation, FC, ML and REML, are commonly used 

in SAE to estimate the variance components ( )2 2, .v e   A well-known difficulty with these methods is 

that the estimate of 2
v  can take on negative values. This estimate is truncated to zero when this occurs, 

that is 2ˆ
v  is set to 0. Empirical versions of A  and ,b  denoted as Â  and ˆ ,b  are obtained if the unknown 

variance components ( )2 2,v e   are replaced by estimators ( )2 2ˆ ˆ, .v e   It follows from equation (2.6) that 

EBLUP estimators of model parameters ( ), ,β v  denoted as β̂  and ( )1
ˆ ˆ ˆ, , ,

T

mv v=v  are given by  

 1
ˆ

ˆ ˆ .
ˆ

−
 

= 
 

β
A b

v
 (2.8) 

Using (2.8), it can be proved that β̂  and v̂  are 

 
( )

( )

1
1 1

1

ˆ ˆ ˆ
,

ˆ ˆˆˆ   

T T

T

−
− −

−

  
=       − 

X V X X V yβ

v GZ V y Xβ
 (2.9) 

where 2ˆ ˆG Iv m=  and 2 2ˆ ˆ ˆ .T
e n v = +V I ZZ  

Remark 1. It is easier to invert matrices 2ˆ ˆG Iv m=  and 2ˆ ˆR Ie n=  than ˆ .V  Consequently, it is simpler to 

use the mixed model equations (2.8) than equations (2.9) for computing β̂  and ˆ .v  However, when 2ˆ
v  is 

equal to zero, equations (2.8) cannot be used because the 1Ĝ −  term in matrix Â  does not exist. In such 

cases, β̂  and v̂  can only be computed using (2.9). 

Under model (2.2), it can be shown that β̂  and ˆ
iv  in ( )1

ˆ ˆ ˆ, ,v
T

mv v=  satisfy 

 ( )
1

ˆ ˆ 0.
i

m
T

ij ij ij i
i j s

y v
= 

− − = x x β  (2.10) 

Estimators β̂  and ˆ
iv  are used to compute EBLUP predictions EBLUPˆ

ijy  for the i iN n−  unobserved 

units in small area :i
EBLUP ˆˆ ˆx βT
ij ij iy v= +  for .ij r  An EBLUP estimator of ,iY  denoted as EBLUPˆ ,iY  is 

obtained by replacing in (2.4) ˆ
ijy  by EBLUPˆ .ijy  It follows that EBLUPˆ

iY  is 

 ( )EBLUP
1ˆ ˆ ˆ ,

i

T
i ij ir i i i

j si

Y y N n v
N 

 = + + −
  
 x β  (2.11) 
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where x x
i

ir ijj r
=   represents the sum of non sampled values .ijx  

 

2.2 You-Rao estimation 
 

You and Rao (2002) proposed a pseudo-EBLUP small area mean estimator (YR estimator) that 

incorporates the design weights ijd  into the formula of the EBLUP estimator. A property of the pseudo-

EBLUP estimator is that the design consistency is preserved as the area sample size increases. 

Furthermore, the YR predictor offers protection against model failure or an informative sampling design 

(see among others Hidiroglou and Estevao, 2016 and Verret, Rao and Hidiroglou, 2015 for details). 

Pseudo EBLUP estimators can be constructed using the procedure in You and Rao (2002) with survey 

weights ijw  that may be calibrated on some vector of auxiliary variables. Let YRβ̂  and 

( )YR YR YR
1

ˆ ˆ ˆ, ,v
T

mv v=  be the YR estimators of β  and v  respectively based on weights ijw  (see You 

and Rao, 2002 for details). The estimators YRβ̂  and YRˆ
iv  satisfy the estimating unit-level based equations 

 ( )YR YR

1

ˆ ˆ 0.
i

m
T

ij ij ij ij i
i j s

w y v
= 

− − = x x β  (2.12) 

Equations (2.12) represent the survey-weighted version of equations (2.10). You-Rao predictions YRˆ
ijy  of 

ijy  are computed as YR YR YRˆˆ ˆx βT
ij ij iy v= +  for .ij r  Replacing ˆ

ijy  by YRˆ
ijy  in (2.4) leads to the YR 

estimator of 
iY  in the case of non negligible sampling rates: 

 ( )YR YR YR
1ˆ ˆ ˆ .

i

T
i ij ir i i i

j si

Y y N n v
N 

 = + + −
  
 x β  (2.13) 

Estimators YRβ̂  and YRv̂  can alternatively be obtained as solutions to weighted mixed model 

equations similar to (2.6) (see Huang and Hidiroglou, 2003 for details). To this end, we define matrices 

 1diag ,
ii j n ijw =W  1diagW Wi m i =  and  1diag ,i m i =Ω  where 2

i i
i ij ijj s j s

w w
 

=    

for 1, , .i m=  Let w  be the sample weighted version of ,  where 

 ( ) ( )1 2 1 1 2 1 2 1 1 2 ,
T T

w
− −= − − − − +y Xβ Zv W R W y Xβ Zv v Ω G Ω v  (2.14) 

with 1 2W  and 1 2Ω  representing the square root of matrices W  and Ω  respectively. In the first term of 

,w  the model error associated with the observation ijy  is weighted by the corresponding survey weight 

,ijw  whereas in the second term of ,w  the factor i  in the diagonal matrix Ω  represents the weight 

attached to the small area effect .iv  It can be shown that the minimization of w  with respect to β  and v  

leads to ( )YR YRˆ ˆ, .β v  It follows that ( )YR YRˆ ˆ,β v  are given by 

 
YR

1

YR

ˆ
ˆ ˆ ,

ˆ
w w
−

 
= 

 

β
A b

v
 (2.15) 

where the known values of wA  and wb  are given by 

     

1 2 1 1 2 1 2 1 1 2 1 2 1 1 2

1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2

     
and ,

    

T T T

w wT T T

− − −

− − − −

   
= =   

+   

X W R W X X W R W Z X W R W y
A b

Z W R W X Z W R W Z Ω G Ω Z W R W y
 (2.16) 
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and Â w  and b̂ w  are empirical versions of A w  and b w  obtained by estimating G  and R  by 2ˆ ˆG Iv m=  

and 2ˆ ˆR Ie n=  respectively. Equation (2.15) can alternatively be written as 

 
( )

( )

1
YR 1 1

YR 1 YR

ˆ ˆ ˆ
,

ˆ ˆˆˆ   

T T
w w

T
w

−
− −

−

  
=     −   

β X V X X V y

v G Z V y Xβ
 (2.17) 

where 1 2 1 2ˆ ˆG Ω GΩ
− −=  and 1 2 1 2 ˆˆ ˆ .T

w 
− −= +V W RW ZG Z  

 
3. Benchmarked estimators 
 

We now proceed to develop benchmarked estimators of the small area means 
iY  using unit level model 

(2.2) or augmented versions of it. We assume that a reliable direct estimator 
1

ˆ
i

m

w ij iji j s
Y w y

= 
=   of the 

population total Y  is available, where 
1

,
m

ii
Y Y

=
=   and 

i i iY N Y=  is the total of small area .i  Let ˆ
iY  be 

the model-based small area estimator of .iY  It is desirable to ensure that the aggregated values of ˆ ,iY  agree 

with the reliable estimator ˆ .wY  The small area means estimators ˆ ,iY 1, , ,i m=  are said to be 

benchmarked to ˆ
wY  if 

 
1

ˆ ˆ .
m

i i w
i

N Y Y
=

=  (3.1) 

Let ˆ
wY  be a GREG estimator with weights calibrated at the population level on a vector of auxiliary 

variables * .ijx  This estimator is analogous to the combined regression estimator if one views the small 

areas as strata. The vector of auxiliary variables *x ij  may or may not be the same as .ijx  We distinguish 

two cases in this context: *x xij ij  and * .ij ijx x  The first case, * ,ij ijx x  implies that all the 

components of x ij  also belong to * ,ijx  and that *x ij  may or may not have additional components that are 

different from those contained in .ijx  The second case, * ,ij ijx x  implies that some of the components of 

x ij  do not appear in * .ijx  We assume that the first component of both vectors x ij  and *x ij  are equal to one, 

as they represent an intercept term. 

For a given sample ,s  auxiliary data *x ij  and basic design weights 1 ,ij ijd =  the GREG estimator of 

the population total Y  is given by 

 GREG GREG

1

ˆ ,
i

m

ij ij
i j s

Y w y
= 

=    

where the GREG weights GREG
ijw  are given by 

 ( )
1

GREG * *HT * * *

1

ˆ1 .
i

m
T

T
ij ij ij ij ij ij

i j s

w d d

−

= 

  
= + −  

  
X X x x x  (3.2) 

In equation (3.2), * *

1
,

m

ii=
= X X  where * *

1
X x

iN

i ijj=
=   represents the known small area total, whereas 

*HT *HT

1
ˆ ˆX X

m

ii=
=   and *HT *X̂ x

i
i ij ijj s

d


=   represent respectively the direct design-based Horvitz-

Thompson estimators of *X  and *.iX  Note that 



130 Stefan and Hidiroglou: Small area benchmarked estimation under the basic unit level model 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 GREG * *

1

.
i

m

ij ij
i j s

w
= 

= x X  (3.3) 

Using the GREG weights GREG ,ijw  estimators of iN  and X i  are given by 

 GREG GREG GREG GREGˆ ˆand .
i i

i ij i ij ij
j s j s

N w w
 

= = X x  (3.4) 

The small area estimates EBLUPˆ
iY  and YRˆ

iY  given respectively by (2.11) and (2.13), do not satisfy the 

benchmarking equation (3.1) for GREGˆ ˆ :wY Y=  that is the total estimates EBLUP EBLUP

1

ˆˆ ,
m

i ii
Y N Y

=
=  and 

YR YR

1

ˆˆ m

i ii
Y N Y

=
=   do not match the GREG estimator GREGˆ .Y  We need to adjust EBLUPˆ

iY  and YRˆ
iY  so 

that the sum of these modified small area estimators add up to GREGŶ  when they are summed over all the 

m  small areas. 

A very simple modification to the EBLUPˆ ’siY  and YRˆ ’siY  is called ratio benchmarking. It consists of 

multiplying each EBLUPˆ
iY  and YRˆ

iY  by the common adjustment factors GREG EBLUP

1

ˆˆ m

i ii
Y N Y

=  and 
GREG YR

1

ˆˆ m

i ii
Y N Y

=  respectively, leading to the ratio benchmarked estimators 

 
GREG GREG

EBRat EBLUP YRat YR

EBLUP YR

1 1

ˆ ˆ
ˆ ˆ ˆ ˆand .

ˆ ˆib i ib im m

i i i ii i

Y Y
Y Y Y Y

N Y N Y
= =

= =

 
 (3.5) 

It readily follows that both EBRatˆ
ibY  and YRatˆ

ibY  satisfy equation (3.1) with GREGˆ ˆ .wY Y=  In equation (3.5) 

and hereafter the subscript b  denotes that the estimators are benchmarked to GREGˆ .Y  

Note that the EBLUPˆ ’siY  and YRˆ ’siY  in equation (3.5) are multiplied by the same factor regardless of 

their precision and ignoring the particular small area characteristics, such as the variability of the units 

within a small area, or the small area sample size. Consequently, the resulting benchmarked estimators, 
EBRatˆ

ibY  and YRatˆ ,ibY  based on this simple procedure, are just proportional modifications of estimators 
EBLUPˆ

iY  and YRˆ
iY  respectively, to obtain the desired concordance. This limitation can be avoided by using 

the small area model (2.2) to construct the benchmarked estimators.   

We now proceed to show how model (2.2) can be used to obtain estimators benchmarked to GREGˆ .Y  In 

Sections 3.1 and 3.2 we adapt the procedures in Stefan and Hidiroglou (2020) for obtaining benchmarked 

estimators to the case of non-negligible sampling rates. In Sections 3.3 and 3.4 we introduce two restricted 

benchmarked estimators based on the procedure proposed by Ugarte et al. (2009). The benchmarked 

estimators of Sections 3.1 and 3.2 rely on the assumption that * ,ij ijx x  whereas the estimators of 

Sections 3.3 and 3.4 can be computed for any vector x ij  or * .ijx  

 
3.1 Augmented EBLUP benchmarked estimators 
 

The GREG weights GREG
ijw  should be used in the estimation to achieve benchmarking to GREGˆ .Y  A 

possible way that GREG
ijw  can be incorporated in the estimation is by augmenting the small area model 

(2.2) with a suitable auxiliary variable that is a function of GREG .ijw  This procedure is based on the 

augmented model approach used by Wang et al. (2008), whereby estimates obtained using the FH 
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area-level model could be forced to add up to specified totals. Stefan and Hidiroglou (2020) adapted the 

Wang et al. (2008) approach under the basic unit-level model and for negligible sampling rates. They 

showed that benchmarking to GREGŶ  could be obtained by augmenting model (2.2) with the GREG 

weights GREG .ijw  We extend Stefan and Hidiroglou (2020) to the case when the sampling rates are non-

negligible. For this case, benchmarking to GREGŶ  is achieved by augmenting model (2.2) with 
GREG 1.ij ijq w= −  This leads to the augmented model given by 

 1 2 , 1, , ; .T
ij ij a ij a ia ija iy q v e i m j s= + + + = x β  (3.6) 

The random effects iav  are assumed to be i.i.d. ( )20, vaN   and independent of the unit errors ,ijae  and the 

’sijae  are assumed to be i.i.d. ( )20, .eaN   The EBLUP estimators of ( )1 2,β β
TT

a a a=  and iav  in (3.6) are 

respectively denoted by ( )1 2
ˆ ˆ ˆ,β β

T
T

a a a=  and ˆ .iav  We can now spell Result 1 for β̂ a  and ˆ .iav  

Result 1. The EBLUP estimators β̂ a  and ˆ
iav  based on model (3.6) obey the following equation 

 ( )GREG GREG
1 2

1 1 1 1

ˆ ˆ ˆ ˆˆ ,
i

Tm m m m

ij ir a iw a i i ia
i j s i i i

y q N n v Y
=  = = =

 
+ + + − = 
 

   x β  (3.7) 

where 2 GREG 2( 1) .
i i

iw ij ijj s j s
q q w

 
= = −   

Proof: See Appendix A.  

It follows from equation (3.7) that small area estimators benchmarked to GREGŶ  are given by   

 ( )EBLUP GREG
1 2

1ˆ ˆ ˆ ˆ ˆ .
i

T
iab ij ir a iw a i i ia

j si

Y y q N n v
N




 = + + + −
  
 x β  (3.8) 

The subscript a  indicates that EBLUPˆ
iabY  is based on an augmented small area model.  

 
3.2 You-Rao benchmarked estimators 
 

The procedure proposed by You and Rao (2002) can be used with any survey weights .ijw  However, 

there is no guarantee that the resulting YR estimator will be benchmarked to GREGˆ .Y  When the sampling 

rates are negligible, Stefan and Hidiroglou (2020) obtained benchmarked estimators with the You and 

Rao’s (2002) procedure based on the weights GREG
ij ijw w=  of the GREG estimator. When the sampling 

rates are non-negligible, we now show that the weights GREG 1ij ijw w= −  lead to YR benchmarked 

estimators.  

Let YRβ̂  and ( )YR YR YR
1

ˆ ˆ ˆ, ,v
T

mv v=  be YR estimators of β  and v  respectively with ijw  replaced by 
GREG 1.ijw −  Using YRˆ ,β YRˆ

iv  and the i iN n−  estimates YR YR YRˆˆ ˆx βT
ij ij iy v= +  for ,ij r  a YR estimator, 

denoted as YRˆ ,iY  can be computed with equation (2.13). However, YRˆ
iY  is not benchmarked to GREGŶ  

even if it uses the weights GREG 1.ijw −  The original YR procedure leads to a self-benchmarked estimator 

in a limited number of cases. 

To achieve the benchmark to GREGˆ ,Y  a YR modified estimator, denoted as YRˆ ,ibY  is defined as follows: 
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 ( )YR YR GREG YR
1ˆ ˆ ˆ ˆ .

i

T
ib ij ir i i i

j si

Y y N n v
N 

 = + + −
  
 x β  (3.9) 

The following proves that YRˆ
ibY  defined by (3.9) benchmarks to GREGˆ .Y  

Result 2. Let YRβ̂  and ( )YR YR YR
1

ˆ ˆ ˆ, ,v
T

mv v=  be respectively the YR estimators of β  and ,v  

constructed with weights GREG 1.ijw −  Then, ( )YR YRˆ ˆ,β v  satisfy the following equation: 

 ( )YR GREG YR GREG

1 1 1

ˆ ˆ ˆˆ .x β
i

m m m
T

ij ir i i i
i j s i i

y N n v Y
=  = =

+ + − =     

Proof: See Appendix A. 

Given * ,ijx  the weights GREG
ijw  are calibrated on *x ij  at the small area level if they satisfy the following 

equations  

 GREG * * , for 1, , .
i

ij ij i
j s

w i m


= = x X  (3.10) 

Equations (3.10) implies equation (3.3), however, the reverse is not true. If the weights GREG
ijw  satisfy 

(3.10), and since * ,ij ijx x  it follows that the weights GREG
ijw  are also calibrated on x ij  at the small area 

level. In turn, this implies that GREGˆ ,i iN N=  as we assume that vector x ij  contains the constant regressor 

equal to 1. It follows that YR YRˆ ˆ .i ibY Y=  Thus, the YR estimator YRˆ
iY  constructed with GREG 1ijw −  is self-

benchmarked to GREGŶ  in the special case when the GREG weights are calibrated at the small area level 

(see You and Rao, 2002). 

 

3.3 Restricted EBLUP benchmarked estimator 
 

In Section 2 we showed that the EBLUP estimators of ( ),β v  can be obtained if the function   defined 

in (2.5) is minimized with respect to ( ), .β v  It therefore follows that an EBLUP estimator can be viewed 

as the solution to an unrestricted minimization problem. The idea of restricted EBLUP estimators is to 

obtain new estimators of ( ),β v  by minimizing   subject to the restriction given by the benchmark 

condition. The procedure was used by Pfeffermann and Barnard (1991) under the FH area-level model. 

More recently, Ugarte et al. (2009) applied the procedure under the BHF unit-level model to obtain 

benchmarking to a synthetic estimator. Ugarte et al. (2009) described the restricted estimator as a 

generalized least squares estimator subject to a restriction by noticing that the minimization can be 

conducted as in the econometrics theory of regression estimation under linear constraints. We now 

describe the procedure in Ugarte et al. (2009). 

We denote by β̂ R  and ( )1
ˆ ˆ ˆ, ,v

TR R R
mv v=  the new restricted EBLUP estimators of ( ), .β v  Then, the 

restricted EBLUP estimator of ,iY  denoted as REBLUPˆ ,ibY  is given by equation (2.4), where ˆ
ijy  are replaced 

by ˆˆ ˆ ,R T R R
ij ij iy v= +x β  for .ij r  We impose that the estimators REBLUPˆ , 1, ,ibY i m=  be benchmarked to 

GREGˆ ,Y  that is they satisfy equation (3.1) with GREGˆ ˆ .wY Y=  After carrying out some algebra, it can be 

shown that the benchmark to GREGŶ  of estimators REBLUPˆ , 1, ,ibY i m=  is equivalent to the following 

linear constraint equation 
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 GREG
1 2

ˆ ˆˆ ,T R T R
rY+ =a β a v  (3.11) 

where 1 1
,

m

iri=
= a x ( )2 1 1, , ,

T

m mN n N n= − −a
1 i

m

r iji j s
Y Y y

= 
= −   is the total of non-

observed ijy  values with 1, , ; ,ii m j r=   and GREG GREG

1
ˆ ˆ

i

m

r iji j s
Y Y y

= 
= −   is an estimator of rY  

based on GREGˆ .Y  The restricted EBLUP estimators ( )ˆ ˆ,β vR R  are therefore obtained as the solution to the 

minimization of function   given by (2.5) subject to the linear constraint (3.11). 

The Lagrange multiplier method can be used to solve the constrained minimization of .  After 

straightforward algebra, it can be shown that estimators ( )ˆ ˆ,β vR R  are given by 

 1 GREG
ˆ ˆ ˆ1

ˆ ˆ ,
ˆˆ ˆˆ

R

T
rTR

Y−
      

= + −      
     

β β β
A a a

a Aav vv
 (3.12) 

where ( )ˆ ˆ,β v  are the (unconstrained) EBLUP estimators of ( ), ,β v Â  is the empirical version of matrix 

A  defined in (2.7), and ( )1 2 .
TT T=a a a  Then, using ˆ R

ijy  in (2.4), the estimator REBLUPˆ
ibY  can be rewritten as 

 ( )REBLUP
1ˆ ˆ ˆ .

i

T R R
ib ij ir i i i

j si

Y y N n v
N 

 = + + −
  
 x β  (3.13) 

Remark 2. The matrix Â  does not exist for samples when 2ˆ 0.v =  In such cases, we noticed that 

equation (2.8) cannot be used to compute the unconstrained estimators ( )ˆ ˆ, .β v  However ( )ˆ ˆ,β v  can still 

be computed when 2ˆ 0v =  because the alternative equation (2.9) can be used for ( )ˆ ˆ,β v . Equation (3.12) 

clearly shows that the constrained ( )ˆ ˆ,β vR R  cannot be computed for samples when estimator 2ˆ
v  is 

truncated to zero, and no alternative equation exists in these cases. 

It, therefore, follows that the methods of estimation for the variance components commonly used in 

SAE cannot be used to compute the restricted EBLUP estimator. In Section 3.4 and Appendix B we 

describe an alternative method that produces a strictly positive estimation of 2
v  that can be applied in 

conjunction with ( )ˆ ˆ,β vR R  such that a restricted benchmarked estimator of 
iY  always exists. 

 
3.4 Restricted You-Rao benchmarked estimator 
 

We showed in Section 2.2 that YR estimators of β  and v  can be obtained as a solution to mixed 

model equations obtained by minimizing the sample weighted function w  given by (2.14). That is, we 

showed that, by defining a function w  with weights   , 1, , ;ij iw i m j s=   and   , 1, , ,i i m =  

and then minimizing ,w  we obtain the same estimators as those given by the You and Rao’s (2002) 

procedure. We now minimize function w  under the benchmark constraint given by (3.11). The result is a 

restricted YR estimator that is benchmarked to GREGˆ .Y  

Minimization of w  given the benchmark restriction (3.11) results in estimators of , 1, ,iY i m=  

that are guaranteed to be benchmarked for any weights that define the function .w  Thus, one may choose 

any set of weights ijw  in .w  In a limited design-based simulation study, we compared three restricted 

YR estimators based on three options with respect to :ijw  i. GREG 1;ij ijw w= −  ii. GREG
ij ijw w=  and 

iii. .ij ijw d=  We found no significant difference between these three estimators in terms of design mean 
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squared error. Given this last point and that the unrestricted benchmarked YR estimators described in 

Section 3.2 were based on GREG 1,ij ijw w= −  we chose to define the restricted YR estimator based on these 

weights. 

Let w  be defined in terms of GREG 1ij ijw w= −  and 2 .
i i

i ij ijj s j s
w w

 
=    Minimization of w  

with respect to ( ),β v  subject to the benchmark constraint (3.11) results in the restricted YR estimators of 

( ), ,β v  denoted as ( )RYR RYRˆ ˆ, .β v  They are given by: 

 
RYR YR YR

1 GREG

RYR YR YR

ˆ ˆ ˆ1
ˆ ˆ ,

ˆˆ ˆ ˆ

T
w rT

w

Y−
      

= + −      
      

β β β
A a a

a A av v v
 (3.14) 

where estimators ( )YR YRˆ ˆ,β v  are given by (2.15), and Â w  is the empirical version of A w  given by 

(2.16). Using RYRβ̂  and RYRˆ
iv  of ( )RYR RYR RYR

1
ˆ ˆ ˆ, , ,

T

mv v=v  restricted YR estimates 
RYR RYR RYRˆˆ ˆx βT
ij ij iy v= +  of unobserved ijy  for ij r  are then used to compute a benchmarked restricted 

YR estimator: 

 ( )RYR RYR RYR
1ˆ ˆ ˆ .

i

T
ib ij ir i i i

j si

Y y N n v
N 

 = + + −
  
 x β  (3.15) 

As in the case of the restricted EBLUP estimator, the estimators ( )RYR RYRˆ ˆ,β v  given by (3.14) do not 

exist if FC, ML or REML results in a truncated estimate for 2 .v  Consequently, 
iY  can only be estimated 

by RYRˆ
ibY  with a method of estimation for the variance components that always leads to strictly positive 

estimates for 2 .v  

A null estimate of 2
v  poses no problem in computing EBLUP and YR estimators. However, we 

noticed that the restricted EBLUP and the restricted YR estimators cannot be computed if 2ˆ 0.v =  In 

order to get around this problem, we use a method proposed by Moghtased-Azar, Tehranchi and Amiri-

Simkooei (2014) that guarantees that the estimator of 2
v  will be strictly positive. This method is based on 

the concept of a re-parameterized restricted maximum likelihood estimation (reREML). Their idea is to 

use functions whose range is the set of all positive real numbers, namely positive-valued functions (PVFs), 

for unknown variance components in the stochastic model instead of using variance components 

themselves. Their numerical results showed the successful estimation of non-negativity estimation of 

variance components (as positive values) as well as covariance components (as negative or positive 

values).  

We used a Fisher-scoring algorithm to obtain iteratively the reREML estimates of the variance 

components of the basic unit-level model given by (2.2) (see Appendix B for details). We also carried out 

a small simulation and found out that for area sample sizes equal to or larger than 3, the Fisher-scoring 

algorithm converged in less than 15 iterations. When we only considered the samples that produced a null 

estimate 2ˆ 0,v =  we observed that the algorithm converged even faster (see Figure 4.1 in Section 4). 

 
4. Simulation study 
 

We report in this section the results of a design-based simulation study as it is in line with measures 

that are computed by the National Statistical Offices. A design-based study is one where a fixed finite 
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population is first generated using an assumed model, and then for each simulation run, a sample is drawn 

employing the fixed finite population. The aim of the simulation study is to evaluate the properties of the 

benchmarked estimators described in Section 3 in terms of design bias and design mean squared error. We 

considered two scenarios: Scenario 1 corresponds to the case of correct modeling, whereas Scenario 2 

corresponds to the case of incorrect modelling. Model diagnostics such as those given in Rao and Molina 

(2015, pages 114-118), can be used to test whether the models are correct or not. Such model diagnostics 

include residual analysis to detect departures from the assumed model, selection of auxiliary variables for 

the model, and case-deletion diagnostics to detect influential observations.    

 
4.1 Simulation set-up for generating the finite populations  
 

For each scenario, we considered five populations. Each population had m = 30 small areas, with 

iN = 100 population units within each small area. The populations corresponding to Scenario 1 were 

created using the following model   

 0 1 , 1, , ; 1, , ,ij ij i ij iy x v e i m j N = + + + = =  (4.1) 

where 0 10 =  and 1 5. =  For generating the populations in Scenario 2, we split the 30 small areas into 

three equal groups of small areas, denoted as ,G  for 1, 2, 3.=  The first group 1G  contains areas 

1, , 10,i =  the second group 2G  contains areas 11, , 20,i =  and the third group 3G  contains areas 

21, , 30.i =  The model within a given group is given by 

 0, 1, , ; 1, , ,ij ij i ij iy x v e i G j N = + + +  =  (4.2) 

where ( )0,1 1,110, 1 = =  for areas 1 ,i G ( )0,2 1,220, 5 = =  for areas 2 ,i G  and 

( )0,3 1,330, 10 = =  for areas 3 .i G  Both (4.1) and (4.2) use the auxiliary variable ( )1,x
T

ij ijx=  

whose values , 1, ,ij ix j N=  were generated from an exponential distribution with mean equal to 5 and 

variance equal to 25.  

The random components in (4.1) and (4.2) were generated from the normal distributions ( )2~ 0,i vv N   

and ( )2~ 0, .ij ee N   The five populations corresponding to Scenario 1, denoted as A1, B1, C1, D1 and E1, 

were generated based on (4.1) and the following variance parameters doublets: i. ( )2 20.2, 20Av e = =  for 

population A1; ii. ( )2 21, 20Bv e = =  for population B1; iii. ( )2 22, 20Cv e = =  for population C1; 

iv. ( )2 24, 20Dv e = =  for population D1; and ( )2 220, 20Ev e = =  for population E1. Note that, for 

populations A1 through E1, the value of 2
e  is kept fixed, whereas the values for 2

v  vary. The 2’sv  are 

chosen to obtain the following variance ratios 2 2
v e  =  as 0.01, 0.05, 0.1, 0.2 and 1. The five 

populations in Scenario 2, denoted as A2, B2, C2, D2 and E2, were generated based on (4.2) with the 

same variance parameters doublets as for Scenario 1. 

A stratified sampling design was used by drawing independent probability proportional to size samples 

(pps) of size in  within the thi  small area. The small area sample sizes were taken 3in =  for 

1, , .i m=  The selection probabilities were computed as 
1

,
iN

ij ij ijj
p b b

=
=   where the size measures 
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are .ij ijb x=  We used Conditional Poisson Sampling (CPS) to select the pps samples within each small 

area (see Tillé (2006), Chapter 5). The basic design weights are given by ( )1 .ij i ijd n p=  

In Scenario 1, we fitted the nested regression model (4.1) and its augmented version to pps sampling 

data selected from one of the five populations generated with model (4.1). This scenario represents correct 

modeling as the model fitted and the model used to generate the finite population coincide. In Scenario 2, 

we fitted the nested regression model (4.1) and its augmented version to pps sampling data selected from 

one of the five populations generated with model (4.2). This scenario represents incorrect modeling as the 

model fitted and the model used to generate the finite population do not coincide.  

We selected G = 30,000 stratified pps samples from each of the ten finite populations: populations A1 

to E1 corresponding to Scenario 1, and populations A2 to E2 corresponding to Scenario 2. For 

1, ,g G=  let ( ) ( )( )2RE 2REˆ ˆ,g g
v e   and ( ) ( )( )2reRE 2reREˆ ˆ,g g

v e   denote respectively the estimates of ( )2 2,v e   

given by the truncated REML method and its re-parameterized version, that correspond to the thg  sample. 

The starting values in equation (B.2) were ( ) ( )( )0 2RE
1

ˆlog 0.1 g
v = +  and ( ) ( )( )0 2RE

2
ˆlog .g

e =  Equation 

(B.2) reached convergence in less than 15 iterations for all the populations and both scenarios. Based on 

the G  simulated samples selected in each of the five populations corresponding to Scenario 1, we 

computed the Monte Carlo value of the probability to obtain a zero truncated REML estimate for 2
v  as  

 ( ) ( )( )2RE 2RE
MC

1

1
ˆ ˆ0 0 ,

G
g

v v
g

P I
G

 
=

= = =   

where ( )I A  is an indicator function with value 1 if condition A  holds, and 0 otherwise. 

Table 4.1 displays the Monte Carlo values of the probability to get a zero estimate for 2REˆ .v  It can be 

seen that the simulated probability ( )2RE
MC

ˆ 0vP  =  can be as high as 0.47 for  = 0.01. As   increases, 

this empirical probability decreases. Table 4.1 clearly shows that estimates ( )2RE 2REˆ ˆ,v e   cannot be used 

to compute the restricted EBLUP and YR estimators for samples selected in populations A1, B1, C1 

and D1.  

 
Table 4.1 

Values of ( )2REˆ 0 :
v

P  =  Scenario 1 
 

 
Pop A1 

0.01 =  

Pop B1 

0.05 =  

Pop C1 

0.1 =  

Pop D1 

0.2 =  

Pop E1 

1 =  

( )2RE
MC

ˆ 0vP  =  0.47 0.40 0.21 0.06 0.00 

 
Figure 4.1 displays the number of iterations to convergence of the Fisher-scoring algorithm for the 

estimate 2reREˆ
v  of 2 .v  The algorithm stops when the value of ( ) ( )2reRE 1 2reREˆ ˆr r

v v + −  is less than 510 ,−  

where ( )2reREˆ r
v  represents the thr  iteration computed with equation (B.2) in Appendix B. The percentages 

of Figure 4.1 are based only on samples with a truncated REML estimate of 2 ,v  that is 2REˆ 0.v =  We 

only considered populations A1, B1, C1 and D1, as these four populations have non-negligible 
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probabilities for 2REˆ
v  to be null. Figure 4.1 clearly shows that the convergence is attained in a maximum 

of 11 iterations. 

 
Figure 4.1 Percentage of iterations to convergence in samples with 2REˆ 0.

v
 =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.2 Comparison between the benchmarked estimators 
 

The aim of the simulation study is to compare the benchmarked estimators described in Section 3 in 

terms of design bias and design mean squared error. We used both scenarios as we wanted to check how 

benchmarking protects against incorrect modeling. Furthermore, we considered the benchmark to two 

GREG estimators: GREG
1Ŷ  and GREG

2
ˆ .Y  Estimator GREG

1Ŷ  has weights given by (3.2) calibrated on the 

auxiliary vector ( )1,x ij ijx=  associated with the small area model. It follows that estimator GREG
1Ŷ  

corresponds to the case * .ij ijx x  The second GREG estimator GREG
2Ŷ  has weights given by (3.2) based 

on auxiliary vector ( )* *1, ,ij ijx=x  where the values * , 1, ,ij ix j N=  were generated from an exponential 

distribution with mean equal to 5 and variance equal to 25, and independently of the values 

, 1, , .ij ix j N=  It follows that estimator GREG
2Ŷ  corresponds to the case * ,ij ijx x  since the auxiliary 

variable ijx  associated with the unit-level model (4.1) do not belong to vector *x ij  used to obtain the 

weights associated with GREG
2

ˆ .Y  
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For a fixed finite population, let 
iY  be the mean of the small area i  and ˆ

iY  a generic estimator of .iY  

We denote by ( )ˆ g
iY  the value of ˆ

iY  based on the thg  simulated sample, for 1, , .g G=  The estimators 

described in Section 3 respect the benchmark property regardless of the method used to estimate the 

variance components. Since the restricted benchmarked estimators are based on estimates 
( ) ( )( )2reRE 2reREˆ ˆ, ,g g

v e   we decided to use reREML for computing ( )ˆ g
iY  for each estimator ˆ

iY  evaluated in 

this simulation study.  

We considered the following performance measures: 
 

Average Absolute Relative Bias 

 
( )

1 1

ˆ1 1
ARB ARB with ARB 1

gm G
i

i i
i g i

Y

m G Y= =

= = −    

Average Relative Root Mean Squared Error 

 
( )

2

1 1

ˆ1 1
RRMSE RRMSE with RRMSE 1 .

gm G
i

i i
i g i

Y

m G Y= =

 
= = −  

 
    

 

This portion of the simulation is summarized in four tables. We provide the results separately for 

Scenarios 1 and 2. The results for the case when the benchmarking is to GREG
1Ŷ  (the case * )ij ijx x  are 

summarized in Tables 4.2 (Scenario 1) and 4.3 (Scenario 2). Those for the case when the benchmarking is 

to GREG
2Ŷ  (the case * )ij ijx x  are summarized in Tables 4.4 (Scenario 1) and 4.5 (Scenario 2). 

 

Benchmarking to GREG
1Ŷ  (the case *

ij ij )x x  

We computed the ARB  and RRMSE  for two non benchmarked estimators, EBLUPˆ
iY  and YRˆ ,iY  as well 

as their corresponding estimators benchmarked to GREG
1
ˆ .Y  For EBLUPˆ ,iY  we have three benchmarked 

estimators EBRatˆ ,ibY EBLUPˆ
iabY  and REBLUPˆ ,ibY  given respectively by equations (3.5), (3.8) and (3.13). For YRˆ ,iY  

the corresponding benchmarked estimators are YRatˆ ,ibY YRˆ
ibY  and RYRˆ ,ibY  given respectively by equations 

(3.5), (3.9) and (3.15).  

We first discuss their properties when the model is correct (Scenario 1). Comparing the ARB’s  across 

all the estimators in Table 4.2, we observe that there is not much difference between the estimators. The 

EBLUP estimators have somewhat smaller ARB’s  than the estimators based on the YR procedure. The 

benchmarked estimator EBLUPˆ
iabY  has the smallest ARB’s,  whereas the ARB’s  of the benchmarked 

estimators EBRatˆ
ibY  and REBLUPˆ

ibY  are identical to those of EBLUPˆ .iY  The ARB  values associated with 

estimators YRˆ ,iY YRatˆ
ibY  and RYRˆ

ibY  are close, whereas estimator YRˆ
ibY  has a somewhat larger relative bias, 

especially for larger values of 2 2 .v e  =  For all the estimators, the ARB’s  increase as   increases: 

slight exceptions occur when 1. =  

Next, we report on the RRMSE’s.  As expected, the smallest RRMSE’s  are associated with EBLUPˆ ,iY  

whereas estimator YRˆ
iY  has somewhat larger RRMSE  values due to the use of survey weights under 
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correct modeling. Benchmarking results in an increase of the RRMSE.  Note that the RRMSE’s  of the 

benchmarked estimators EBLUPˆ
iabY  and YRˆ

ibY  given in Sections 3.1 and 3.2 respectively, are higher than 

those associated with the restricted methods REBLUPˆ
ibY  and RYRˆ

ibY  given in Sections 3.3 and 3.4 respectively. 

The naïve ratio procedures EBRatˆ
ibY  and YRatˆ

ibY  have RRMSE’s  that are quite comparable to those of the 

benchmarked that use the restricted methods. The RRMSE’s  increase as   increases.  

We conclude the following in the case *x xij ij  and when the small area model is correctly specified. 

The restricted benchmarked or ratio type estimators perform better than those that use an augmented 

model for EBLUP or a modified YR method. When the restricted or the ratio benchmarking techniques 

are used, the resulting estimators have bias values that are similar to those associated with their non 

benchmarked versions, whereas their mean squared error values are slightly larger than those of the non 

benchmarked versions. The small area estimators and the GREG estimator GREG
1Ŷ  are based on the same 

auxiliary variables, whereas the model is correct. Consequently, EBLUPˆ
iY  and YRˆ

iY  do not have to be 

severely modified to achieve benchmarking to GREG
1
ˆ .Y  

 
Table 4.2 

ARB  (%) and RRMSE  (%) for Scenario 1: the benchmark to GREG

1
Ŷ ( )*x x

ij ij
  

 

Estimator Measure 
Pop A1 

0.01 =  

Pop B1 

0.05 =  

Pop C1 

0.1 =  

Pop D1 

0.2 =  

Pop E1 

1 =  

EBLUPˆ
iY  ARB  

RRMSE  

1.1 

2.7 

1.9 

3.4 

2.3 

3.9 

2.7 

4.9 

2.6 

6.5 

YRˆ
iY  ARB  

RRMSE  

1.2 

3.1 

2.0 

3.7 

2.4 

4.2 

2.9 

5.3 

3.1 

7.2 

EBRatˆ
ibY  ARB  

RRMSE  

1.1 

3.2 

1.9 

3.8 

2.3 

4.3 

2.7 

5.2 

2.6 

6.9 

YRatˆ
ibY  ARB  

RRMSE  

1.2 

3.1 

2.0 

3.7 

2.4 

4.3 

2.9 

5.3 

3.1 

7.4 

EBLUPˆ
iabY  ARB  

RRMSE  

1.0 

9.6 

1.6 

9.8 

2.1 

10.1 

2.4 

11.1 

2.3 

13.9 

YRˆ
ibY  ARB  

RRMSE  

1.2 

3.5 

2.0 

4.8 

2.5 

5.4 

3.0 

11.7 

3.7 

14.5 

REBLUPˆ
ibY  ARB  

RRMSE  

1.1 

3.2 

1.9 

3.8 

2.3 

4.3 

2.7 

5.3 

2.6 

7.0 

RYRˆ
ibY  ARB  

RRMSE  

1.2 

3.1 

2.0 

3.7 

2.4 

4.3 

2.9 

5.3 

3.2 

7.5 

 
The results for not using the correct model are given in Table 4.3. The value of   does not have much 

impact on the ARB’s  and RRMSE’s  across all estimators. The ARB’s  and RRMSE’s  of the EBLUP 

estimators, whether they are benchmarked or not, are higher than those associated with the YR estimators. 

It follows that if we have incorrect modeling, the use of the YR estimators is recommended. Since GREG
1Ŷ  
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and the estimators based on the YR procedure use the same vector of auxiliary information, it follows that 

there is not much difference in terms of ARB  and RRMSE  between the non benchmarked estimator 
YRˆ

iY  and its benchmarked versions, YRatˆ ,ibY YRˆ
ibY  and RYRˆ .ibY  However, it can be noticed that the 

benchmarked estimator YRˆ
ibY  has the smallest ARB  values, whereas the restricted benchmarked estimator 

RYRˆ
ibY  has the smallest RRMSE’s.  

 
Table 4.3 

ARB  (%) and RRMSE  (%) for Scenario 2: the benchmark to GREG

1
Ŷ ( )*x x

ij ij
  

 

Estimator Measure 
Pop A2 

0.01 =  

Pop B2 

0.05 =  

Pop C2 

0.1 =  

Pop D2 

0.2 =  

Pop E2 

1 =  

EBLUPˆ
iY  ARB  

RRMSE  

42.3 

59.8 

42.7 

60.5 

43.2 

61.1 

43.0 

60.6 

41.5 

59.0 

YRˆ
iY  ARB  

RRMSE  

13.5 

42.8 

13.8 

43.2 

13.8 

43.5 

13.6 

43.2 

13.5 

42.4 

EBRatˆ
ibY  ARB  

RRMSE  

42.9 

61.2 

43.4 

61.9 

43.9 

62.7 

43.6 

62.1 

42.1 

60.3 

YRatˆ
ibY  ARB  

RRMSE  

13.8 

43.9 

14.1 

44.4 

14.1 

44.7 

13.9 

44.4 

13.8 

43.5 

EBLUPˆ
iabY  ARB  

RRMSE  

19.8 

66.2 

20.2 

66.7 

20.2 

67.6 

20.2 

67.3 

19.6 

66.6 

YRˆ
ibY  ARB  

RRMSE  

10.9 

47.3 

10.6 

47.6 

11.5 

48.1 

12.5 

47.9 

10.7 

47.8 

REBLUPˆ
ibY  ARB  

RRMSE  

41.2 

58.2 

41.8 

59.0 

41.8 

59.1 

41.7 

58.9 

40.6 

57.4 

RYRˆ
ibY  ARB  

RRMSE  

12.5 

42.4 

12.7 

42.9 

12.6 

43.1 

12.5 

42.9 

12.5 

42.1 

 
Benchmarking to GREG

2Ŷ  (the case *
ij ij )x x  

The results of this case are given in Tables 4.4 and 4.5 for Scenarios 1 and 2, respectively. The 

weighting is with respect to GREG
ijw  given by (3.2) .We investigated the following four estimators EBRatˆ( ,ibY

REBLUPˆ ,ibY YRatˆ ,ibY  and RYRˆ )ibY  that are benchmarked to GREG
2

ˆ .Y  The first two estimators, EBRatˆ
ibY  and 

REBLUPˆ ,ibY  are given by equations (3.5) and (3.13) respectively, while the last two, YRatˆ
ibY  and RYRˆ ,ibY  are 

given by equations (3.5) and (3.15).  

In Table 4.4, we summarize the average ARB and RRMSE values when the model is correct. That is, 

both the sample and the population data respect model (4.1). We first discuss their properties in terms of 

the ARB’s.  Comparing the ARB’s  across all the estimators in Table 4.4, we observe once more that, 

under correct modeling, the original EBLUP estimator, EBLUPˆ ,iY  has the smallest ARB’s.  The ARB’s  

increase when benchmarking is required, and this is different from what we noticed from Table 4.2. There 

is not much difference in terms of ARB  between the benchmarked estimators obtained using ratio 
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adjustment methods, EBRatˆ
ibY  and YRatˆ ,ibY  and those obtained by restricted methods, REBLUPˆ

ibY  and RYRˆ .ibY  

The ARB’s  increase as   increases: slight exceptions occur when 1. =  

Next, we report on the RRMSE’s.  As expected, the smallest RRMSE’s  are associated with EBLUPˆ
iY  

which is optimal under correct modeling. Benchmarking results in an increase of RRMSE.  Note that the 

RRMSE’s  associated with all four benchmarking procedures in Table 4.4 are quite high compared to the 

RRMSE’s  associated with the non benchmarked estimators EBLUPˆ
iY  and YRˆ .iY  The estimators EBRatˆ

ibY  and 
YRatˆ

ibY  have similar efficiency, whereas REBLUPˆ
ibY  and RYRˆ

ibY  have RRMSE  values that are somewhat larger 

than those of EBRatˆ
ibY  and YRatˆ .ibY  The RRMSE’s  increase as   increases. 

When * ,ij ijx x  there are larger differences between the small area estimators based on model (2.2) 

that uses the vector ,ijx  and the GREG estimator that uses * .ijx  Notice that we considered a somewhat 

extreme situation when x ij  and *x ij  have no variable in common. It follows that the modifications needed 

to obtain benchmarked estimators are more accentuated in this case as compared to the case * .ij ijx x  

This explains why in Table 4.4 the benchmarked estimators have significantly larger ARB  and RRMSE  

values than the estimators that are not benchmarked to GREG
2

ˆ .Y  

 
Table 4.4 

ARB  (%) and RRMSE  (%) for Scenario 1: the benchmark to GREG

2
Ŷ ( )*x x

ij ij
  

 

Estimator Measure 
Pop A1 

0.01 =  

Pop B1 

0.05 =  

Pop C1 

0.1 =  

Pop D1 

0.2 =  

Pop E1 

1 =  

EBLUPˆ
iY  ARB  

RRMSE  

1.1 

2.7 

1.9 

3.4 

2.3 

3.9 

2.7 

4.9 

2.6 

6.5 

YRˆ
iY  ARB  

RRMSE  

1.2 

3.1 

2.0 

3.7 

2.4 

4.2 

2.9 

5.3 

3.1 

7.2 

EBRatˆ
ibY  ARB  

RRMSE  

4.2 

13.0 

4.3 

13.2 

4.5 

13.5 

4.9 

14.0 

4.6 

14.6 

YRatˆ
ibY  ARB  

RRMSE  

4.2 

13.0 

4.3 

13.2 

4.5 

13.5 

5.0 

14.0 

4.8 

14.0 

REBLUPˆ
ibY  ARB  

RRMSE  

4.2 

13.1 

4.3 

13.3 

4.5 

13.5 

5.0 

14.1 

4.8 

15.0 

RYRˆ
ibY  ARB  

RRMSE  

4.2 

13.5 

4.3 

13.7 

4.6 

13.8 

5.1 

14.5 

5.0 

16.2 

 
The impact of using an incorrect model is given in Table 4.5. We see that EBLUPˆ

iY  suffers the most in 

terms of both ARB  and RRMSE  because the EBLUP procedure assumes that the model is correct. The 

benchmarked versions of EBLUP, EBRatˆ
ibY  and REBLUPˆ ,ibY  also have high ARB’s  and RRMSE’s.  Although 

the original You and Rao (2002) estimator, YRˆ ,iY  has much smaller ARB  than the EBLUP estimator, its 

RRMSE  is fairly high. The ARB  and RRMSE  associated with the ratio benchmarked version of YRˆ ,iY  
YRatˆ ,ibY  are a bit higher than those associated with YRˆ .iY  The benchmarked YR estimator, RYRˆ ,ibY  which is 

based on the restricted procedure given in Section 3.4, has an ARB  that is the smallest amongst the 
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estimators in Table 4.5. Due to benchmarking, its RRMSE  is slightly larger than the one associated 

with YRˆ .iY  

 
Table 4.5 

ARB  (%) and RRMSE  (%) for Scenario 2: the benchmark to GREG

2
Ŷ ( )*x x

ij ij
  

 

Estimator Measure Pop A2 

0.01 =  

Pop B2 

0.05 =  

Pop C2 

0.1 =  

Pop D2 

0.2 =  

Pop E2 

1 =  

EBLUPˆ
iY  ARB  

RRMSE  

42.3 

59.8 

42.6 

60.4 

43.2 

61.1 

43.0 

60.7 

41.6 

59.1 

YRˆ
iY  ARB  

RRMSE  

13.6 

42.8 

13.6 

43.1 

13.9 

43.5 

13.7 

43.3 

13.5 

42.4 

EBRatˆ
ibY  ARB  

RRMSE  

43.8 

65.4 

44.4 

66.1 

44.9 

67.0 

44.6 

66.4 

43.3 

64.5 

YRatˆ
ibY  ARB  

RRMSE  

15.0 

47.9 

15.2 

48.2 

15.6 

48.7 

15.2 

48.3 

14.9 

47.3 

REBLUPˆ
ibY  ARB  

RRMSE  

37.3 

57.4 

38.0 

58.2 

38.1 

58.5 

37.8 

58.2 

37.1 

56.7 

RYRˆ
ibY  ARB  

RRMSE  

9.9 

43.4 

10.1 

43.8 

10.4 

44.2 

10.0 

43.9 

10.1 

43.1 

 
5. Real data example 
 

In this section, we compare the benchmarked estimators through a real data analysis. The data set we 

studied is the corn and soybean data provided by Battese et al. (1988). They considered the estimation of 

mean hectares of corn and soybeans per segment for twelve counties in north-central Iowa. The response 

variable ijy  is the number of hectares of corn in the thj  segment of the thi  county. The auxiliary 

variables, 1ijx  and 2 ,ijx  are the number of pixels classified as corn and soybeans respectively, in the thj  

segment of the thi  county. We report only results for ,iY  the mean number of hectares of corn per 

segment for county .i  

Following Battese et al. (1988), we deleted the sample data from the second sample segment in Hardin 

county because the corn area for that segment looked erroneous. Among the twelve counties, there were 

three counties with a single sample segment. Following Prasad and Rao (1990), we combined these three 

counties into a single one, resulting in 10 counties in our data set with sample size in  ranging from 2 to 5 

in each county. The total number of segments iN  (population size) within each county ranged from 402 to 

1,505. Following You and Rao (2002), we assumed simple random sampling within each county, and the 

basic design weight was computed as ij i id N n=  for unit j  in the 
thi  county. 

We base our calculations on the unit level sampling model given by 

 0 1 1 2 2 , 1, , ; 1, , 10,ij ij ij i ij iy x x v e j n i  = + + + + = =  (5.1) 
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where iv  and ije  are normally distributed errors with common variances 2
v  and 2 .e  We fitted model 

(5.1) to the sample data to obtain EBP estimates of β  and ,iv  denoted as ( )
0 1 2

ˆ ˆ ˆ ˆ, ,β
T

  =  and ˆ ,iv  and 

re-parameterized REML estimates of the variance components, denoted as ( )2reRE 2reREˆ ˆ, .v e   The EBLUP 

estimates of the model fixed effects are 0̂ = 58.5, 1̂ = 0.316 and 2̂ = -0.150, whereas the reREML 

estimates of the variance components are 2reREˆ
v = 135.6 and 2reREˆ

e = 155.9. The estimated   is 0.869 

which is close to 1. For each unit in the sample, we replicated the vector ( )1 21, ,x
T

ij ij ijx x=  several times 

equal to   ,ijd  the closest integer to the sampling weight .ij i id N n=  Thus, we obtained a pseudo-

population of x -values, denoted as ( )ps ps ps
1 21, , ,

T

ij ij ijx x=x  with county population size equal to ps
iN =  

  .i i in N n  The y -values of our pseudo-population, denoted as ps ,ijy  are defined as: ps
ij ijy y=  for 

,ij s  and ps ps ps ps
0 1 1 2 2

ˆ ˆ ˆ ˆ
ij ij ij i ijy x x v e  = + + + +  for ps ,ij r  where ( )ps 2reREˆ~ 0,ij ee N   and ps

ir  is 

composed of the ps
i iN n−  non-observed units in the thi  small area. Prasad and Rao (1990) used a similar 

procedure to generate a pseudo-population with a larger number of counties than the data set provided by 

Battese et al. (1988). Their pseudo population composed of twenty counties was obtained in two steps: 

first, the values of the auxiliary variables associated with the original data set were duplicated; then, the 

values of the response variable were computed from the model, by using the duplicated x -values and the 

estimates of the model parameters.   

Let ( )
ps

1ps ps

1

iN

i i ijj
Y N y

−

=
=   and 

10 ps

1 i ii
Y N Y

=
=   be respectively the mean of the thi  small area and the 

total of the pseudo-population. At the population level we estimate Y  by the GREG estimator GREGŶ  

based on weights given by (3.2) where the vector ps*x ij  is the two-dimensional vector ( )ps* ps
11, .

T

ij ijx=x  It 

follows that ps ps*x xij ij  given that ( )ps ps ps
1 21, ,x

T

ij ij ijx x=  and ( )ps* ps
11, .

T

ij ijx=x  

From the pseudo-population ( )ps ps ps, , 1, , ; 1, , 10,ij ij iy j N i= =x  we drew G = 30,000 stratified 

simple random samples without replacement of size ,in  and treating each county as a stratum. These 

sample sizes were equal to those of the original data set. We used the design relative bias (RB) and mean 

squared error (RRMSE) to evaluate the performance of six estimators: two non benchmarked estimators, 

EBLUPˆ
iY  and YRˆ ,iY  and four benchmarked estimators, EBRatˆ ,ibY YRatˆ ,ibY REBLUPˆ

ibY  and RYRˆ ,ibY  that can be 

computed in the case ps ps*.ij ijx x  Let ˆ
iY  be a generic estimator of the thi  small area mean ,iY  and ( )ˆ g

iY  

its value associated with the thg  sample, for 1, , .g G=  Its RB and RRMSE values are given by  

 
( ) ( )

2

1 1

ˆ ˆ1 1
RB 1 and RRMSE 1 .

g gG G
i i

i i
g gi i

Y Y

G Y G Y= =

 
= − = −  

 
    

Table 5.1 reports on the design RB and RRMSE of the six estimators of 
iY  for the ten counties of the 

pseudo population. From this example, we see that the RBs and RRMSEs are quite similar across all 

estimators and sample sizes. This follows because the model that generated the population data is correct, 

whereas both the small area model and the GREG estimator have in common the auxiliary variable equal 

to the number of pixels classified as corn. 
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Table 5.1 

RB (%) and RRMSE (%): the benchmark to GREGŶ ( )ps ps*x x
ij ij
  

 

County 
i

n  Measure EBLUPˆ
i

Y  YRˆ
i

Y  EBRatˆ
ib

Y  YRatˆ
ib

Y  REBLUPˆ
ib

Y  RYRˆ
ib

Y  

Cerro Hamilton Worth 3 RB  

RRMSE  

1.6 

5.2 

1.4 

5.4 

1.3 

5.3 

1.3 

5.4 

1.0 

5.6 

1.2 

5.4 

Humboldt 2 RB  

RRMSE  

2.0 

4.5 

1.9 

4.5 

1.7 

4.5 

1.8 

4.5 

1.8 

4.4 

1.8 

4.5 

Franklin 3 RB  

RRMSE  

-3.3 

5.2 

-3.4 

5.4 

-3.5 

5.5 

-3.5 

5.5 

-3.5 

5.4 

-3.5 

5.4 

Pocahontas 3 RB  

RRMSE  

-3.1 

6.2 

-3.4 

6.5 

-3.4 

6.4 

-3.5 

6.6 

-3.3 

6.4 

-3.5 

6.6 

Winnebago 3 RB  

RRMSE  

2.6 

5.4 

2.3 

5.3 

2.3 

5.3 

2.2 

5.3 

2.3 

5.3 

2.2 

5.2 

Wright 3 RB  

RRMSE  

-0.4 

3.7 

-0.6 

3.8 

-0.7 

3.9 

-0.7 

3.9 

-0.6 

3.8 

-0.6 

3.9 

Webster 4 RB  

RRMSE  

-2.6 

5.2 

-2.9 

5.4 

-2.9 

5.5 

-3.0 

5.5 

-2.8 

5.4 

-2.9 

5.5 

Hancock 5 RB  

RRMSE  

0.9 

4.2 

0.7 

4.1 

0.6 

4.2 

0.6 

4.2 

0.8 

4.2 

0.7 

4.2 

Kossuth 5 RB  

RRMSE  

3.5 

5.9 

3.3 

5.8 

3.2 

5.8 

3.2 

5.8 

3.2 

5.8 

3.2 

5.8 

Hardin 5 RB  

RRMSE  

-1.5 

4.2 

-1.7 

4.3 

-1.8 

4.4 

-1.8 

4.5 

-1.7 

4.3 

-1.8 

4.4 

 
6. Conclusion 
 

In general, the sum of model-based small area estimates is not equal to a direct estimate obtained 

across the union of these small areas. The weight that is associated with the direct estimator can be the 

sampling weight or one obtained as a result of using the GREG estimator. The auxiliary data that are used 

to obtain the GREG and the unit-level small area estimates may not necessarily coincide. In this paper, we 

have suggested several benchmarking procedures for two well-known small area estimators (EBLUP and 

YR) that are based on the unit level model. We considered the case when the sampling rates are not 

negligible, and that the sample design is ignorable. In the event that it is deemed that the sample design is 

not ignorable for some of the survey items, the auxiliary data vector x ij  in model (2.2) could be 

augmented by including an additional variable ijg  specified function of the survey weights to offset the 

potential bias of the EBLUP or YR estimators. Verret et al. (2015) proposed a number of choices for ijg  

that included the survey weight .ijw  In the case of the EBLUP estimator, benchmarking is achieved by 

adding the variable GREG 1.ij ijq w= −  Since ijq  should be highly correlated to ,ijw  the suggested 

procedure for benchmarking EBLUP should provide good protection against possible non ignorable 

sampling. The simulations in Verret et al. (2015) illustrated that the YR procedure, on its own, provides 

good protection as well against possible non ignorable sampling. Their simulation also showed that further 

protection can be obtained by their setting ijg  equal to .i ijn w  

We extended the benchmarking procedures in Stefan and Hidiroglou (2020) to the case of non-

negligible sampling rates within each small area. These procedures are based on estimators that were 

initially developed by Battese et al. (1988) (EBLUP estimator), and You and Rao (2002) (YR estimator) 
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when the sampling rates within each small area are negligible. Ugarte et al. (2009) proposed a different 

benchmarked estimator which is a restricted EBLUP estimator. We extended the procedure in Ugarte et al. 

(2009) to obtain a benchmarked estimator that incorporates the survey weights, and that is essentially a 

restricted YR estimator. We also considered two benchmarked estimators based on simple ratio 

adjustments applied on the EBLUP and YR estimators respectively. We carried out a simulation study to 

compare the properties of these six benchmarked estimators. 

If the auxiliary data used to estimate the small area means are the same as those used in the GREG, and 

if the model is correct, the restricted procedure in Ugarte et al. (2009) and the ratio adjusted EBLUP 

estimator will have the smaller ARB’s  and RRMSE’s.  On the other hand, if the model is incorrect and 

the auxiliary data are the same ones, the YR estimator based on Stefan and Hidiroglou (2020) procedure, 

adapted to non-negligible sampling rates, has the smallest ARB’s,  whereas the restricted YR estimator 

has the smallest RRMSE’s.  On the other hand, if the auxiliary data used to estimate the small area means 

are not the same as those used in the GREG, we come to the following conclusions. The restricted EBLUP 

and the ratio adjusted EBLUP estimators are the benchmarked estimators that have the smallest ARB’s  

and RRMSE’s  if the model is correct. If the model is not correct, the restricted YR estimator is the 

preferred choice both in terms of ARB  and RRMSE. 

Benchmarking should be based on the EBLUP procedure if the linear mixed effects model is 

appropriate. If the linear model and the benchmark (the GREG estimator) have in common a large amount 

of auxiliary information, the benchmarked estimators are similar to their non benchmarked versions, 

otherwise the loss of efficiency due to benchmarking may be important. If the model is not correct, the YR 

procedure should be used to achieve benchmarking. In this case, benchmarking may bring about important 

gains in terms of ARB  and RRMSE,  especially if the small area model and the GREG estimator share a 

small number of auxiliary variables. The finite populations associated with incorrect modeling were 

generated based on model (4.2), with mean function incorrectly specified. However, there are many ways 

in which a model may be wrong, and the conclusions associated with these cases may be different. 
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Appendix A 
 

Proof of Result 1. The EBLUP estimators ( )( )1 2
ˆ ˆ ˆ,β β

TT

a a a=  and ˆ ,iav  that are based on model (3.6), 

satisfy the equation 

 ( )1 2
1

ˆ ˆ ˆ 0.
i

m
ij T

ij ij a ij a ia
i j s ij

y q v
q


= 

 
− − − = 

 


x
x β  (A.1) 
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Equation (A.1) has the form of equation (2.10) and corresponds to augmented model (3.6). Expanding the 

second equation in (A.1), we obtain that 

 2
1 2

1 1 1 1

ˆ ˆ ˆ .
i i i i

m m m m
T

ij ij a ij a ij ia ij ij
i j s i j s i j s i j s

q q q v q y
=  =  =  = 

+ + =   x β  (A.2) 

The variable ijq  is defined as GREG 1.ij ijq w= −  The right-hand side of (A.2) is 

 ( )GREG GREG

1 1 1

ˆ1 .
i i i

m m m

ij ij ij ij ij
i j s i j s i j s

q y w y Y y
=  =  = 

= − = −    (A.3) 

The sums that appear on the left-hand side of (A.2) are given by 

 ( )GREG

1 1 1 1

1 ,
i i i

T Tm m m m
T T

ij ij ij ij i ij ir
i j s i j s i j s i

q w
=  =  =  =

   
= − = − =   

  
    x x X x x  (A.4) 

 2

1 1

,
i

m m

ij iw
i j s i

q q
=  =

=   (A.5) 

 ( ) ( )GREG GREG

1 1 1

ˆ1 .
i i

m m m

ij ij i i
i j s i j s i

q w N n
=  =  =

= − = −    (A.6) 

In establishing that last equality of (A.4), we used that *x xij ij  and that weights GREG
ijw  satisfy equation 

(3.3). Result 1 follows by replacing (A.3), (A.4), (A.5) and (A.6) into (A.2). 

 

Proof of Result 2. The survey-weighted estimating equations that defines YRβ̂  and YRv̂  are given by 

(2.12) constructed with the weights GREG 1:ijw −  

 ( ) ( )GREG YR YR

1

ˆ ˆ1 0x x β
i

m
T

ij ij ij ij i
i j s

w y v
= 

− − − = .  

Since the first term of x ij  is one (representing an intercept), it follows that 

 ( ) ( )GREG YR YR

1

ˆ ˆ1 0.
i

m
T

ij ij ij i
i j s

w y v
= 

− − − = x β  (A.7) 

The terms in (A.7) are given by: 

 ( )GREG GREG

1 1

ˆ1 ,
i i

m m

ij ij ij
i j s i j s

w y Y y
=  = 

− = −   (A.8) 

 ( )GREG YR YR YR

1 1 1

ˆ ˆ ˆ1 ,
i i

T Tm m m
T

ij ij i ij ir
i j s i j s i

w
=  =  =

   
− = − =   

  
   x β X x β x β  (A.9) 

and 
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 ( ) ( )GREG YR GREG YR

1 1

ˆˆ ˆ1 .
i

m m

ij i i i i
i j s i

w v N n v
=  =

− = −   (A.10) 

Plugging (A.8), (A.9) and (A.10) into (A.7) leads to 

 ( )YR GREG YR GREG

1 1 1

ˆ ˆ ˆˆ .
i

Tm m m

ij ri i i i
i j s i i

y N n v Y
=  = =

 
+ + − = 
 

  x β  (A.11) 

Equation (A.11) proves Result 2. 

 
Appendix B 
 

Re-parameterized REML estimation of variance components 
 

Let ( )1 2,δ  =  be the vector of variance components, where 2
1 v =  and 2

2 .e =  We define the 

vector ( )1 2,α  =  such that 12
v e =  and 22 .e e =  The restricted maximum log-likelihood function, 

denoted as ( )αl  is 

 ( ) ( ) 1
1 2

1 1 1
, log log ,

2 2 2

T Tl l c  −= = − − −α V X V X y Py  (B.1) 

where c  is a generic constant, 1 2V ZZ IT
ne e = +  and ( )

11 1 1 1.T T−− − − −= −P V V X X V X X V  Notice 

that .=PX 0  The solution to the maximization of ( )αl  is obtained iteratively using the Fisher-scoring 

algorithm by updating the following equation 

 ( ) ( ) ( )( ) ( )( )
11 .r r r r−+ = +α α I α s α  (B.2) 

Here, ( )( ) ( )( ) ( )( )( )1 2,s α α α
Tr r rl l =      is the vector of first-order partial derivatives of ( )αl  with 

respect to ,α  and ( )( ) ( )( )( )
, 1, 2

I α αr r
jk j k

I
=

=  is the matrix of expected second-order derivatives of ( )αl−  

with respect to ,α  where ( )( ) ( )( )( )2 .r r
jk j kI E l  = −  α α  

Under the BHF model, the first-order partial derivatives of ( )αl  are given by 

 ( ) ( )( ) ( )

1 1
tr , 1, 2,

2 2
jT

j j

j

l
e j




  
= − + =  

α PV y PV Py  (B.3) 

where ( )1V ZZT=  and ( )2 .n=V I  The expected values of the second-order partial derivatives of ( )αl  are 

 ( ) ( ) ( )( )
2 1

tr , , 1, 2.
2

j k

j k

j k

l
E e j k

 

 

+ 
= − = 

  
α PV PV  (B.4) 

The re-parameterized REML estimator of δ  is obtained as  

 ( ) ( )1 2ˆ ˆreRE 2reRE 2reREˆ ˆ ˆ, , .v e e e  = =δ  (B.5) 
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Estimation of domain discontinuities using Hierarchical 

Bayesian Fay-Herriot models 

Jan A. van den Brakel and Harm-Jan Boonstra1 

Abstract 

Changes in the design of a repeated survey generally result in systematic effects in the sample estimates, 

which are further referred to as discontinuities. To avoid confounding real period-to-period change with the 

effects of a redesign, discontinuities are often quantified by conducting the old and the new design in parallel 

for some period of time. Sample sizes of such parallel runs are generally too small to apply direct estimators 

for domain discontinuities. A bivariate hierarchical Bayesian Fay-Herriot (FH) model is proposed to obtain 

more precise predictions for domain discontinuities and is applied to a redesign of the Dutch Crime 

Victimization Survey. This method is compared with a univariate FH model where the direct estimates under 

the regular approach are used as covariates in a FH model for the alternative approach conducted on a reduced 

sample size and a univariate FH model where the direct estimates for the discontinuities are modeled directly. 

An adjusted step forward selection procedure is proposed that minimizes the WAIC until the reduction of the 

WAIC is smaller than the standard error of this criteria. With this approach more parsimonious models are 

selected, which prevents selecting complex models that tend to overfit the data. 

 

Key Words: Area level models; Bivariate Fay-Herriot model; Small area estimation; Survey redesign; Measurement 
bias; MCMC; Gibbs sampler. 

 

 

1. Introduction 
 

Official statistics produced by national statistical institutes are generally based on repeated sample 

surveys. Much of their value lies in their continuity, enabling developments in society and the economy to 

be monitored, and policy actions decided. Survey samples contain besides sampling errors different 

sources of non-sampling errors that have a systematic effect on the outcomes of a survey. As long as the 

survey process is kept constant, this bias component is not visible. This is often an argument to keep 

survey processes of repeated surveys unchanged as long as possible. From time to time changes in surveys 

are needed to improve the efficiency, reduce the survey related costs, or meet new requirements, and this 

is seen strongly in the use of mixed-mode surveys including web-based questionnaires in official statistics. 

A redesign of the survey process generally has systematic effects on the survey estimates, since the biases 

induced by the aforementioned non-sampling errors are changed, disturbing comparability with figures 

published in the past. 

Systematic differences in the outcomes of a repeated survey due to redesign of the survey process are 

called discontinuities. To avoid the implementation of a new survey process disturbing the comparability 

of estimates over time, it is important to quantify these discontinuities. This avoids confounding real 

change in the parameters of interest with changing measurement bias due to alteration of the survey 

process. 
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Several methods to quantify discontinuities are proposed in the literature (van den Brakel, Smith and 

Compton, 2008). A reliable and straightforward approach is to conduct the old and new approach 

alongside of each other at the same time for some period of time, further referred to as a parallel run. 

Ideally this is based on a randomized experiment that can be embedded in the probability sample of the 

survey (van den Brakel, 2008). In this paper small area estimation methods for estimating domain 

discontinuities are proposed. We consider the situation where the regular survey, used for the production 

of official figures, is conducted at the full sample size and is conducted in parallel with an alternative 

approach. Due to budget limitations, the sample that is assigned to the alternative approach is often not 

sufficiently large to observe minimum detectable differences at prespecified significance and power levels 

using standard direct estimators, particularly for sub populations or domains. 

To explain the problem addressed in this paper, some notation is introduced. Let i  denote the real 

population value of a variable of interest for domain .i  Furthermore, ˆ r
iy  and ˆ a

iy  denote direct estimates 

of i  based on the regular survey and the alternative survey approach, respectively. Since the regular 

survey is conducted at the regular sample size, ˆ r
iy  is a reliable direct estimate for ,i  at least for the 

planned domains. Due to the reduced sample size of the new survey in the parallel run ˆ ,a
iy  however, will 

be insufficiently precise. More precise domain estimates with the small sample available under the new 

approach can be obtained with the Fay-Herriot (FH) model (Fay and Herriot, 1979), which is defined as 

ˆ = ,a t a
i i i iy e + +x  with ix  a vector with covariates at the domain level,   the regression coefficients, 

i  the random domain effects and a
ie  the sampling error. To obtain more precise domain estimates for the 

alternative approach, van den Brakel, Buelens and Boonstra (2016) proposed an hierarchical Bayesian 

(HB) univariate FH model, where sample estimates of the regular survey are considered as potential 

auxiliary variables in a model selection procedure. This implies that ˆ r
iy  is used as a covariate in ,ix  

besides the usual covariates that are available from registers or censuses. This results in an area level 

model, with measurement error (Ybarra and Lohr, 2008). The use of reliable direct estimates observed in 

the regular survey significantly increased the precision of the domain estimates for the alternative 

approach conducted at reduced sample size (van den Brakel et al., 2016). 

Let a
iy  denote the small area prediction for i  based on the aforementioned FH model under the small 

sample assigned to the alternative survey approach. In the approach followed by van den Brakel et al. 

(2016), point estimates for domain discontinuities are obtained as the difference between the direct 

estimate obtained with the regular survey and the model based domain prediction obtained under the 

alternative approach, i.e., ˆ= .r a
i i iy y −  The use of the direct estimate of the regular survey as an 

auxiliary variable in the small domain predictions of the alternative survey, results in strong positive 

correlations between both estimators, which cannot be ignored when computing the standard errors for the 

discontinuities. More precisely, ( ) ( ) ( ) ( )ˆ ˆVar = Var MSE 2Cov , .r a r a
i i i i iy y y y + −  Since ˆ r

iy  is also 

used as a covariate in ix  in the FH model for ,a
iy ( )ˆCov ,r a

i iy y  will be nonzero. To this end, two analytic 

approximations for the standard errors of the discontinuities are proposed. The first approach combines the 

design-based variance estimate of the direct estimator of the regular survey ( )( )ˆVar r
iy  with the posterior 
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variance of the HB domain predictions of the alternative survey ( )( )MSE a
iy  and a design-based estimator 

for the covariance between both point estimates ( )( )ˆCov , .r a
i iy y  This approach is unstable in the sense 

that even negative variance estimates occur in the case of strong positive covariance estimates. A related 

issue is that design-based and model-based variance approximations are combined in one uncertainty 

measure for the discontinuities. Therefore a second analytic approximation was proposed, where a design-

based estimator for the variance of the HB domain predictions ( )( )MSE a
iy  is derived and combined with 

the design-based variance for the direct estimator for the regular survey and the design-based covariance 

between both point estimates. 

Several references to design-based mean squared error estimation in small area estimation can be 

found in the literature. Gonzalez and Waksberg (1973) introduced the concept of an average design-based 

mean squared error of a set of synthetic estimators and proposed an estimator that, however, can be 

unstable and take negative values. Marker (1995) proposed a more stable but biased estimator for the 

design-based mean squared error for small area estimates, which can also take negative values. Lahiri and 

Pramanik (2019) proposed a design-based estimator that cannot take negative values, following the 

concepts of an average design-based mean squared error, originally introduced by Gonzalez and 

Waksberg (1973). Rivest and Belmonte (2000) proposed an estimator for the mean squared error that 

measures the uncertainty with respect to the sampling design conditional on the random effects of the 

model and assuming normality of the sampling model. Rao, Rubin-Bleuer and Estevao (2018) and 

Pfeffermann and Ben-Hur (2018) also propose a model for the design-based mean squared error in small 

area estimators. Rao et al. (2018) estimate the model parameters through restricted maximum likelihood 

while Pfeffermann and Ben-Hur (2018) applies a bootstrap method. 

The complications with variance estimation of domain discontinuities under a univariate FH model can 

also be circumvented by setting up a full Bayesian framework for the analysis of the domain 

discontinuities. Two approaches are proposed in this paper. The first approach is a bivariate FH model to 

model the direct estimates under the regular and alternative approach simultaneously, i.e., a bivariate area 

level model for the vector ( )ˆ ˆ, .
tr a

i iy y  The random component of this model accounts for the correlation 

between the domain parameters under the regular and alternative approach. The precision of the estimated 

discontinuities is improved by increasing the effective sample size within the domains by means of cross-

sectional correlations. In addition, a positive correlation between the random domain effects further 

decreases the standard error of the estimated discontinuities. The second approach uses a univariate FH 

model for the direct estimates of the discontinuities, i.e., a univariate FH model for ˆ ˆ ˆ= .r a
i i iy y −  This 

method is considered as a less complex alternative for the bivariate FH model. It is, however, anticipated 

that it is harder to construct good prediction models, since the available covariates from registers might be 

good predictors for the target variables of the sample survey but probably not for systematic differences 

between the differences of two estimates for the same variable obtained with different survey processes. 

The univariate FH model proposed by van den Brakel et al. (2016) was applied to estimate domain 

discontinuities in five key target variable of the Dutch Crime Victimization Survey (CVS) using data 
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obtained in a parallel run where the regular survey is conducted at the regular sample size and the 

alternative survey at a sample size that is about one fourth of the regular sample size. In this paper the 

bivariate FH model and the univariate FH model for the domain discontinuities are also applied to the 

same redesign of the CVS. The results are compared with the univariate FH model proposed in 

van den Brakel et al. (2016). 

Model selection in this paper is based on a step forward selection procedure that minimizes the WAIC 

criteria (Watanabe, 2010, 2013). To avoid selecting over-parameterized models, it is proposed to add 

covariates in a step forward selection procedure only if they decrease the WAIC by more than the standard 

error of the WAIC. This prevents selection of several covariates that only marginally improves the WAIC, 

resulting in models that tend to overfit the data. 

The FH model (Fay and Herriot, 1979) is frequently applied in the context of small area estimation 

(Rao and Molina, 2015). FH models are particularly appropriate if auxiliary information is available at the 

domain level. Datta, Ghosh, Nangia and Natarjan (1996) employed a multivariate FH model fitted in an 

HB framework to estimate median income. Multivariate FH models fitted in a frequentist framework are 

considered in Gonzales-Manteiga, Lombardia, Molina, Morales and Santamaria (2008); Benavent and 

Morales (2016). Several authors provided time-series FH models to use sample information from previous 

editions of a survey as a form of small area estimation (Rao and Yu, 1994; Datta, Lahiri, Maiti and Lu, 

1999; You and Rao, 2000; Estaban, Morales, Perez and Santamaria, 2012; Marhuenda, Molina and 

Morales, 2013). Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006); van den Brakel and Krieg 

(2016); Bollineni-Balabay, van den Brakel, Palm and Boonstra (2017) are some examples of FH time-

series models casted in a state-space framework. Boonstra and van den Brakel (2019) discuss how FH 

time series models can be expressed either in a state space frame work and fitted with the Kalman filter or 

alternatively expressed as time series multilevel models in an hierarchical Bayesian framework, and 

estimated using a Gibbs sampler. 

The paper is structured as follows. In Section 2 the Crime Vicitimization Survey, the redesign and the 

set up of the parallel run are described. The bivariate FH model is explained in Section 3, including the 

HB framework and the model selection and evaluation approach. Results are presented in Section 4. The 

paper ends with a discussion in Section 5. 

 
2. The crime victimization survey 
 

The Dutch crime victimization survey (CVS) is a long-standing survey conducted by Statistics 

Netherlands at an annual frequency with the purpose to publish reliable figures about crime rates, safety 

feelings, and satisfaction about police performance in the Netherlands. The CVS is designed to provide 

reliable figures at the national level and at the level of police districts, which is a subdivision of the 

Netherlands in 25 regions. The CVS is based on a stratified simple random sampling design for people 

aged 15 years or older residing in the Netherlands. Strata are formed by police regions to control the 
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precision of these planned domain estimates. The sampling frame is based on the Dutch government’s 

register of all residents in the Netherlands, called Municipal Basis Administration. The yearly sample of 

the regular CVS is designed such that about 19,000 respondents are observed. The sample is equally 

divided over the strata, such that about 760 observations are obtained in each stratum. The general 

regression (GREG) estimator (Särndal, Swensson and Wretman, 1992) is used to estimate population 

parameters at the national level and for police districts. 

The CVS has been redesigned in 2008. The data collection changed from a mixed-mode design via 

computer-assisted personal interviewing (CAPI) and computer-assisted telephone interviewing (CATI) to 

a sequential mixed-mode design that starts with web interviewing (WI) and is followed up for 

nonrespondents with CAPI and CATI. In addition the questionnaire is changed to improve the wording as 

well as the order of the questions. To quantify discontinuities induced by this redesign, the regular survey 

used for official publication purposes was conducted in parallel with the alternative survey approach with 

a sample size of about 6,000 respondents. In this application, the regular approach was based on the new 

survey design using WI, CATI and CAPI and the alternative approach was based on the old design using 

CAPI and CATI data collection only. The sample design for the parallel run is based on stratified simple 

random sampling where police districts are the strata, using proportional allocation. This results in a 

sample design that is optimal to estimate figures at the national level but suboptimal for domain 

estimation. 

This survey reports on many different outcome variables. In the present study five key survey variables 

are considered, see Table 2.1. Estimates for these variables at the national level under the regular and 

alternative survey are specified in Table 2.2. The sample size allocated to the alternative approach is 

sufficiently large to estimate discontinuites at the national level using the GREG estimator but insufficient 

to estimate discontinuities at the domain level of the 25 police districts. The direct estimates for the 

discontinuities at the national level are indeed significantly different from zero, contrary to the unweighted 

averages of the direct domain estimates and their standard errors. To obtain more precise predictions for 

domain discontinuities a model-based small area estimation method based on area level models (Fay and 

Herriot, 1979) is proposed in the next section. 

 
Table 2.1 

Five key CVS survey variables considered in the present study 
 

Variable  Description  

nuisance Perceived nuisance in the neighborhood on a ten point scale; this includes nuisance by drunk people, 

neigbours, or groups of youngsters, harassment, and drug related problems.  

unsafe Percentage of people feeling unsafe at times.  

propvict Percentage of people saying to have been victim to property crime in the last 12 months.  

offtot Total number of offenses per 100 people.  

satispol Percentage of people satisfied with police at their last contact (if contact in last 12 months).  
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Table 2.2 

GREG estimates for the regular and alternative survey approach averaged over districts and national level. 

Standard errors between brackets 
 

Variable Average over 25 police districts National level 

regular alternative ̂  regular alternative ̂  

offtot 42.29 (4.73) 33.28 (5.73) 9.01 (7.69) 43.79 (1.07) 34.09 (1.04) 9.70 (1.49) 

unsafe 24.38 (2.03) 19.86 (2.87) 4.52 (3.57) 25.07 (0.44) 20.48 (0.52) 4.59 (0.68) 

nuisance 1.61 (0.11) 1.28 (0.13) 0.33 (0.17) 1.67 (0.02) 1.34 (0.02) 0.33 (0.03) 

satispol 60.61 (4.23) 55.58 (6.88) 5.04 (8.21) 59.88 (0.92) 55.10 (1.25) 4.78 (1.55) 

propvict 12.55 (1.60) 9.78 (2.19) 2.78 (2.77) 13.02 (0.36) 10.32 (0.39) 2.70 (0.53) 

 
3. Methods 

 
3.1 Small area estimation for domain discontinuities 
 

Testing hypotheses about differences between estimates of a finite population parameter observed 

under different survey processes implies the existence of measurement errors. Therefore a measurement 

error model is required to explain systematic differences between survey estimates for the same 

population parameter observed under two different survey approaches. Let i  denote the population 

parameter of domain = 1, , .i m  Let r
iy  and a

iy  denote the observed value for i  in the case of a 

complete enumeration under the regular approach and alternative approach, respectively. Direct estimates 

for r
iy  and a

iy  are obtained with the GREG estimator based on the samples assigned to the regular and 

alternative survey and are denoted as ˆ r
iy  and ˆ a

iy  respectively. 

The relation between the observed values under a complete enumeration and the real population 

parameter is:  = ,q q
i i iy  + = 1, , ,i m = , ,q r a  with q

i  the real measurement bias if i  is 

measured with survey approach .q  Without any external information, it is not possible to estimate .q
i  

From the sample data only the relative bias, say = =r a r a
i i i i iy y   − −  is identifiable. Direct estimates 

for these discontinuities are obtained from the survey data as the contrast between the GREG estimates, 

i.e., ˆ ˆ ˆ= .r a
i i iy y −  

In the case of the Dutch CVS the sample size of the regular survey is large enough to obtain 

sufficiently precise direct estimates for the planned domains, since the sample is designed to publish 

official statistics for these domains. The sample assigned to the alternative survey for the parallel run has 

only a size of one third of the regular sample size, which is insufficient to obtain precise direct estimates 

for the planned domains. In an earlier paper (van den Brakel et al., 2016) univariate FH models were 

developed to obtain more precise predictions for the domain parameters observed with the small sample 

size assigned to the alternative survey approach using auxiliary variables derived from three different 

sources. The first source contains demographic variables derived from the Municipal Basis Administration 

(MBA), which is an administration of all people residing in the Netherlands. The second source contains 

related variables available in the Police Register of Reported Offences (PRRO). The third source, which is 

unique in the case of a parallel run, contains direct estimates for the same variables observed under the 
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regular survey, which are sufficiently precise at least for the planned domains like police districts. The 

direct estimates from the regular survey are often selected as auxiliary variables for these univariate FH 

models. This comes not as a surprise since these are survey estimates for the same population parameters. 

Although measured with a different survey process, strong positive correlations can be expected. Strong 

improvements of the precision of small domain prediction are indeed found if the set of potential auxiliary 

variables, i.e., from MBA and PRRO, is extended with the direct estimates from the regular CVS. 

In this application the sampling error in the auxiliary variables that come from the regular CVS can be 

ignored in the FH model, since the sample size and therefore the sampling error for these domains is more 

or less equal for the domains (Ybarra and Lohr, 2008). This implies that the variance component of the 

random domain effects is inflated with the sampling error of the auxiliary variables, which is fine as long 

as the sampling error does not differ between domains. In most applications this is not the case and the 

methods proposed by Ybarra and Lohr (2008) should be used to account for sampling error in the 

auxiliary variables. 

FH multilevel models can be fitted under a frequentist approach using EBLUP or under an HB 

approach (Rao and Molina, 2015). In van den Brakel et al. (2016) the HB approach is preferred over the 

EBLUP, since the strong auxiliary information in the fixed effect part of the model often results in zero 

estimates for the variance component of the random domain effects, giving too much weight to the 

synthetic regression part and too little weight to the direct estimates in the EBLUP, (Bell, 1999; Rao and 

Molina, 2015). This problem can also be overcome with adjusted maximum likelihood estimation, see 

e.g., Li and Lahiri (2010) and Hirose and Lahiri (2018). 

Let a
iy  denote the HB prediction for domain i  under the alternative approach. Now domain 

discontinuites are obtained by ˆ= .r a
i i iy y −  Using direct estimates of the regular survey as auxiliary 

variables in the fixed part of the FH model for the alternative survey considerably increases the 

complexity of the variance estimation for the discontinuities. The variance of 
i  can be expressed as 

( ) ( ) ( ) ( )ˆ ˆVar = Var MSE 2cov , .r a r a
i i i i iy y y y + −  The use of ˆ r

iy  or related sample estimates as 

auxiliary variables to predict ,a
iy  results in non-zero values for ( )ˆcov ,r a

i iy y  that cannot be ignored. To 

approximate ( )Var ,i  van den Brakel et al. (2016) proposed an approximately design-unbiased estimator 

for ( )ˆcov ,r a
i iy y  and ( )ˆVar ,r

iy  while the ( )MSE a
iy  is approximated with the posterior variance of the 

HB domain predictions. A major disadvantage of this approach is that model-based and design-based 

uncertainty measures are intertwined. On the one hand, the MSE’s for a
iy  are approximated with their 

posterior variances. On the other hand, the covariances between ˆ r
iy  and a

iy  are approximated from a 

design-based perspective. Consequently, naive application of this approach may give negative variance 

estimates for the discontinuities. This drawback has been solved using a design-based approximation for 

the ( )MSE ,a
iy  resulting in a fully design-based approximation for the uncertainty of the estimated 

domain discontinuities. 

In this paper a full HB framework for estimating domain discontinuities is proposed as an alternative 

by developing a bivariate FH model for the domain parameters observed under both the regular and 
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alternative approach. The advantage of this approach is that it improves the precision of both the direct 

estimates of the regular and alternative domain estimates by borrowing strength from other domains and 

both surveys. Negative variance estimates for the estimated domain discontinuities are precluded by 

definition under this multivariate HB framework. This method is compared with a simple alternative, 

namely a univariate FH model for the direct estimates of the discontinuities. As mentioned in the 

introduction, it is anticipated that it might be hard to find covariates in the available registers that explain 

the discontinuities. An advantage of both models is that they avoid the complications of accounting for 

sampling error in the auxiliary variables, which is necessary if the survey estimates of the regular survey 

are used as covariates in univariate FH models and the sampling error differs between domains. 

 

3.2 Bivariate Fay-Herriot model 
 

A bivariate version of the FH model (Fay and Herriot, 1979) starts with a measurement model for the 

two GREG estimates observed in each domain:  

 ˆ = , = 1, , ,i i i i m+y y e  (3.1) 

with ( )= , ,
tr a

i i iy yy ˆ
iy  a vector containing the GREG estimates of iy  and ( )= ,

tr a
i i ie ee  a vector with 

the sampling errors of ˆ
iy  for which it is assumed that  

 ( )
ind

2
~ , , = 1, , .i i i me 0 ΨN  (3.2) 

Here 20  is a 2 dimensional column vector with each element equal to zero. Since the sample for the 

regular and alternative survey are drawn independently, it is assumed that ( )= Diag ,r a
i i i Ψ  where 

q
i  is the design variance of ˆ .q

iy  It is also assumed that these design variances are known although they 

are replaced by their estimates in practice. The true domain parameters are modelled with a multilevel 

model. For the fixed effects it is assumed that the regular and alternative approach share the same 

covariates. In the most general case the regression coefficients for the fixed part are different for both 

variables i.e., = ,q t q q
i i iy +x β  with ( )1= , ,

t

i i ipx xx  a p -vector with covariates of domain ,i qβ  a 

p -vector of regression coefficients, which are equal over the domains but might be different between the 

two survey approaches. It is assumed that 1 = 1ix  corresponds to the intercept. Furthermore q
i  are 

random domain effects. This gives rise to the following bivariate multilevel model for the two domain 

parameters:  

 = , = 1, , ,i i i i m+y X β ν  (3.3) 

where 
2= ,t

i iX I x ( )= , ,
t

ttr aβ β β 2I  a 2 dimensional identity matrix, and ( )= , .
tr a

i i i ν  For the 

random domain effects it is assumed that  

 ( )
IID

2
~ , , = 1, , ,i i mν 0 ΣN  (3.4) 

with Σ  a general 2 2  covariance matrix for the random domain effects. Inserting (3.3) into (3.1) gives:  

 ˆ = , = 1, , ,i i i i i m+ +y X β ν e  (3.5) 
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with model assumptions (3.2) and (3.4). 

Since the number of domains in this application is small, it is important to select parsimonious models. 

One way to reduce model complexity is to assume that the regression coefficients are equal for both 

survey approaches. In this case a dummy indicator, say ,i  is introduced, which is equal to zero for the 

regular survey and equal to one for the alternative survey. In this case 1 = 1ix  corresponds to the overall 

intercept and 2 =i ix   is the indicator whose coefficient measures the differences between intercepts of 

the variables observed under both surveys. So =q t q
i i iy +x β  and in (3.3) = ,t

i iX x  and β  a vector with 

the corresponding regression coefficients. As a result, two versions for the fixed effects are considered:   

• FE_uq: A fixed effect model where the regular and alternative approach share the same covariates, 

but have different regression coefficients. In this case, domain discontinuities are given by  

 ( ) ( ),
=1

= .
p

r a r a
i i j j j i i

j

x     − + −  (3.6) 

• FE_eq: A more parsimonious version for the fixed effect component by assuming that the 

regression coefficients are equal for the regular and alternative approach. In this case domain 

discontinuities are given by  

 ( )2= ,r a
i i i   − + −  (3.7) 

with 2  the regression coefficient for 2 = .i ix   
 

The following covariance structures for the random domain effects are considered:   

• RE_f: A full covariance matrix Σ  for the random domain effects. Positive correlation between the 

random domain effects will further increase the precision of the estimates for the domain 

discontinuities since domain estimates borrow strength not only from different domains but also 

across the two surveys.  

• RE_d: A diagonal covariance matrix with separate variances for the regular and alternative 

approach, i.e.: ( )2 2= Diag , .r a Σ  This covariance structure in combination with model FE_uq 

comes down to applying a univariate FH model to both surveys separately. In this case models only 

use sample information from other domains within the same survey but not across the two surveys 

to improve the precision of the estimates for domain discontinuities.  

• RE_s: A diagonal covariance matrix with equal variances for the regular and alternative approach, 

i.e.: 2
2= .Σ I  

 

3.3 Univariate Fay-Herriot model for domain discontinuities 
 

The univariate FH model for the direct estimates of the discontinuities starts with defining a 

measurement error model for the GREG estimates of the discontinuities:  

 ˆ =i i iz  +  (3.8) 
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with = r a
i i iy y −  the true discontinuity of domain i  under a complete enumeration of the population 

under both approaches, ˆ ˆ ˆ= r a
i i iy y −  the GREG estimate for i  based on the parallel run and 

= r a
i i iz e e−  the sampling error of ˆ .i  It is assumed that iz  ≃ ( )0, r a

i i +N  and that the design 

variances of the sampling errors are known. For i  the following linear model is assumed:  

 = ,t
i i iv +x β  (3.9) 

with iv  ≃ ( )20, .vN  Inserting (3.9) into (3.10) gives:  

 ˆ = .t
i i i iv z + +x β  (3.10) 

 

3.4 Estimation of the bivariate Fay-Herriot model 
 

The models developed in Subsections 3.2 and 3.3 are fitted with a HB approach using Markov Chain Monte 

Carlo (MCMC) sampling. In particular the Gibbs sampler is used. The following priors are used for the model 

parameters and hyperparameters. For the regression coefficients uniform improper priors are assumed, i.e., 

~ 1.β  For the random domain effects a multivariate normal prior is used: ν Σ  ≃ ( )2 , .m m 0 I ΣN  

In the case of a full covariance matrix for the random domain effects, the prior for Σ  is taken to be a scaled 

inverse Wishart distribution (O’Malley and Zaslavsky, 2008). This distribution is obtained by writing 

( ) ( )= Diag Diag ,Σ ξ Σ ξ  with ( )= ,
tr a ξ  and assuming a standard normal distribution for r  and ,a  

i.e., x ≃ ( )0, 1 ,N ( )( ),x a r  and an inverse Wishart distribution for ,Σ  i.e., Σ≃ ( )Inv Wish , ,v vv− Φ  

with = 1vv d +  degrees of freedom, with d  the dimension of Σ  which is equal to 2 in this application, and 

scale parameter 2= .vΦ I  In the case of a diagonal covariance matrix for the random domain effects, the 

priors for q  (in the case of unequal variances) or   (in the case of equal variances) are half-Cauchy 

distributions. These are more robust prior distributions than the more commonly used inverse chi-squared 

distribution (Gelman, 2006). The inverse chi-squared distribution might be informative, even in the case of 

small scale and shape parameters. In addition convergence problems might occur with the Gibbs sampler. Both 

problems are largely avoided with a redundant multiplicative parametrization of the random effects (Gelman, 

2006; Gelman, Van Dyk, Huang and Boscardin, 2008; Polson and Scott, 2012). See van den Brakel and 

Boonstra (2018) for more details on the priors of this model. 

Let ŷ  denote the 2m  column vector obtained by stacking the m  column vectors ˆ ,iy  and X  the 

matrix obtained by stacking the matrices .iX  In the case of unequal regression coefficients, X  is a 

2 2m p  matrix. In the case of equal regression coefficients, X  is a 2m p  matrix. The likelihood 

function can be written as  

 ( ) ( )ˆ = , ,p +y θ Xβ ν ΨN  (3.11) 

with 
=1= m

i iΨ Ψ  a 2 2m m  diagonal matrix with the design variances of the direct estimates ŷ  and θ  

a vector containing all model parameters. The joint prior distribution ( )p θ  equals the product of the 

aforementioned priors. The posterior distribution of θ  is proportional to the joint density, i.e., 

( ) ( ) ( )ˆ ˆ .p p pθ y θ y θ  The model is fitted using the Gibbs sampler Geman and Geman (1984); 
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Gelfand and Smith (1990). The full conditional distributions used in the Gibbs sampler are specified in 

van den Brakel and Boonstra (2018). 

For each model considered, the Gibbs sampler is run in three independent chains with randomly 

generated starting values. The length of each chain after the burn-in period for each run is 10,000 

iterations. This gives 30,000 draws to compute estimates and standard errors. The convergence of the 

MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin potential 

scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. The 

diagnostics suggest that all chains converge well within 500 draws. The estimated Monte Carlo simulation 

errors are small compared to the posterior standard errors for all parameters, so that the number of draws 

are more than sufficient for our purposes. 

The estimands of interest are expressed as functions of the parameters, and applying these functions to 

the MCMC output for the parameters results in draws from the posteriors for these estimands. Domain 

predictions for the target variables under the bivariate FH model are obtained as the posterior means 

approximated by the Gibbs sampler output and are denoted as , FH .q b
iy  Domain predictions for the 

discontinuities are obtained as the posterior means of (3.6) or (3.7) approximated by the Gibbs sampler 

output and are denoted as FH .b
i  Mean squared errors for , FHq b

iy  and FHb
i  are obtained as posterior 

variances approximated from the Gibbs sampler output. 

The methods are implemented in R using the mcmcsae  R-package (Boonstra, 2020). 

 

3.5 Pooling design variances 
 

Estimates for the design variances r
i  and a

i  are available from the GREG estimator and are used as 

if the true design variances are known. This is a standard assumption in small area estimation. Therefore it 

is important to provide reliable estimates for these design variances. For the regular survey the variance 

estimates of the GREG estimates are considered to be reliable enough to be used in the FH model. For the 

alternative survey the estimates of the design variances are unreliable and therefore smoothed to improve 

their stability of the estimates of .a
i  Under the assumption that the population variances of the GREG 

residuals under the alternative approach are equal accross domains, the analysis-of-variance type of 

pooled variance estimator is used:  

 ( )
2

; GREG
1

1 1
= 1

a m
ia a a

i i ia a
ii

f
n S

n n m


=

−
−

−
   

with a
if  the sample fraction in domain i  of the alternative survey, a

in  the number of respondents in 

domain i  under the alternative survey, 
=1

= ,
ma a

ii
n n  and 

2

;GREG
a
iS  the estimated population variance of 

the GREG residuals. 

Alternatively, variance estimates of the direct estimates can be smoothed by modeling the variance 

estimates along with the GREG estimates themselves, (You and Chapman, 2006) and Sugasawa, Tamae 

and Kubokawa (2017). Their approach can be traced back to Arora and Lahiri (1997). Another possibility 
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is to smooth variance estimates by applying generalized variance functions, (Wolter (2007), Chapter 7, 

and Hawala and Lahiri (2018)). 

 
3.6 Model selection and evaluation 
 

Frequently applied model selection criteria in HB settings are the Widely Applicable Information 

Criterion or Watanabe-Akaike Information Criteria (WAIC) (Watanabe, 2010, 2013) and the Deviance 

Information Criteria (DIC) (Spiegelhalter, Best, Carlin and van der Linde, 2002). They are popular 

because they are easy to compute from MCMC simulation output and because of their ability to make a 

reasonable tradeoff between model fit and model complexity. The WAIC is seen as an improvement on 

the DIC since the latter can produce negative estimates for the effective number of parameters and it is not 

defined for singular models (Vehtari, Gelman and Gabry, 2017). The penalty used for model complexity 

in DIC and WAIC is closely related to the effective number of parameters proposed by Hodges and 

Sargent (2001) for linear multilevel models where each fixed effect contributes one degree of freedom and 

the random effects contribute a value in the range between zero and ,m  depending on the size of the 

variance component. As follows from the definition of WAIC, models with lower WAIC values are 

preferred. The WAIC estimates are uncertain and an approximation of its standard error is provided by 

Vehtari et al. (2017) equation (23) and can be computed using R package loo  (Vehtari, Gelman and 

Gabry, 2015). 

Covariates are selected from the set of auxiliary variables listed in van den Brakel and Boonstra (2018) 

using a step-forward selection procedure. Various models are compared using the aforementioned WAIC 

estimates. From the set of potential covariates, the covariate with the lowest WAIC value is selected in the 

model. This selection process is iteratively repeated as long as adding a new covariate further decreases 

the WAIC value. In this application, this step-forward selection procedure, further abbreviated as step-

WAIC, often results in models with a large number of covariates. Since the WAIC values are estimates 

that contain error, it appears that it might not be desirable to minimize the WAIC by adding covariates to 

the model as long as it reduces the point estimates of the WAIC. As an alternative we applied a step-

forward selection procedure where covariates are added to the model as long as a new covariate decreases 

the WAIC with a value that exceeds the estimated standard error of the WAIC. This method will be 

referred to as step-WAIC-se. 

The step-forward selection procedure is applied to each of the six different combinations of the two 

fixed effect versions (FE_uq and FE_eq) and the three covariance structures of the random component 

(RE_f, RE_d, and RE_s). From the resulting six models the one with the lowest WAIC value is selected. 

Model adequacy of these six selected models is evaluated with posterior predictive checks. This implies 

that replicate data sets, simulated from the posterior predictive distribution are compared with the 

originally observed data to study systematic discrepancies and to evaluate how well the selected model fits 

the observed data (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin, 2004). Posterior predictive p -

values are calculated for six different tests that evaluate particular aspects of the posterior predictive 
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distribution. Posterior predictive p -values for the domain discontinuities are defined as =p  

( ) ( )( )simˆ ˆ ˆ, , ,P T TΔ Δ Δ Δ y  where ( )sim sim sim
1

ˆ ˆ ˆ= , ,
t

m Δ  are replicates of the observed 

discontinuities for the m  domains under the posterior predictive distribution, ( )
1

ˆ ˆ ˆ= , ,
t

m Δ  the 

observed direct estimates for the m  domain discontinuities and simˆ( , )T Δ Δ  (or ˆ( , ))T Δ Δ  a test statistic 

that depends on simΔ̂  (or ˆ )Δ  and unknown true values for the m  domain discontinuities 

( )1= , , .
t

m Δ  Posterior predictive p -values are estimated from the Gibbs sampler output as the 

average over the S  Monte Carlo samples  

 ( ) ( )( )
=1

1
ˆ ˆˆ = , , ,

S
s s s

s

p I T T
S

 Δ Δ Δ Δ  (3.12) 

with ( )I A  the indicator function with value one if the condition A  is fulfilled and zero otherwise, 

( )
1

ˆ ˆ ˆ= , ,
t

s s s
m Δ  the m  observed domain discontinuities in the ths  replicate of the MCMC simulation 

and ( )1= , ,
ts s s

m Δ  the true values of the m  domain discontinuities in the ths  replicate of the 

MCMC simulation. If a model fits the observed data adequately, then it is expected that ( )ˆ , sT Δ Δ  is in 

the bulk of the histogram of the replicates ( )ˆ , .s sT Δ Δ  Therefore p -values close to zero or one are 

indications of a poor fit with respect to that test statistic. In the expressions below, it is understood that 

,xT  for = 1, , 6,x  is a function of ( )ˆ ,s sΔ Δ  or ( )ˆ , ,sΔ Δ  depending on the component that is 

evaluated in (3.12). The following posterior predictive tests are defined (You, 2008): 

1. A general goodness-of-fit test statistic ( ) ( )
2

1 =1
ˆ ˆ= Var .

m

i i i ii
T  −     Here 

( )ˆVar = .r a
i i i i   +  

2. ( )
2

ˆ= max iT   and ( )
3

ˆ= min iT   which are sensitive for deviations in the tails of the 

distribution.  

3. 1
4 =1

ˆ ˆ= ,
m

im i
T     i.e., the mean which is sensitive for bias in the domain predictions.  

4. ( )
2

1
5 1 =1

ˆ ˆ= ,
m

im i
T

−
 −   i.e., the variance of the domain estimates, which is sensitive for e.g., 

overshrinkage.  

5. ( ) ( )
6

ˆ ˆ= max min ,i iT  −  −  −   with 1

=1
=

m

im i
   which is sensitive to asymmetry in 

the distribution.  

 
4. Results 

 
4.1 Model selection 
 

In Subsection 3.2, two different versions for the fixed effects (FE_uq and FE_eq) and three different 

covariance structures of the random effects (RE_f, RE_d and RE_s) are considered for the bivariate FH 

model. The step-forward selection procedure from Subsection 3.6 is applied to each of these six 

combinations separately to select covariates. Recall from Subsection 3.1 that for the bivariate FH model 



164 van den Brakel and Boonstra: Estimation of domain discontinuities using Hierarchical Bayesian Fay-Herriot models 

 

 

Statistics Canada, Catalogue No. 12-001-X 

and the univariate FH model for the discontinuities, potential covariates are available from the Municipal 

Base Administration and the Police Register of Reported Offences. Names of these covariates start with 

MBA_  and PR_  respectively. For the univariate FH model for the alternative survey, direct estimates 

from the regular CVS are also considered as covariates (van den Brakel et al., 2016). Names of these 

covariates start with .CVSR_  See the appendix for an overview of the covariates. 

The finally selected models for the bivariate FH model are summarized in Table 4.1. The models 

presented in Table 4.1 are selected with the step-WAIC-se procedure. The step-WAIC procedure 

selects models with a substantially larger amount of covariates which improve the WAIC only marginally. 

For offtot  and unsafe  the step-WAIC result in a model with 4 covariates with unequal regression 

coefficients and diagonal covariance matrices for the random effects (RE_d and RE_s). For satispol 

and propvict  the step-WAIC result in a model with respectively 3 and 2 covariates with unequal 

regression coefficients, also with diagonal covariance matrices with equal variances for the random effects 

(RE_s). With only 25 domains, there is a substantial risk that these models overfit the data. An exception 

is ,nuisance  where both selection procedures result in the same model. 

With the step-WAIC-se procedure more parsimonious models are obtained as follows from 

Table 4.1. For total offences, offtot  and ,nuisance  a model with only one covariate with equal 

regression coefficients for both surveys (FE_eq) is obtained in combination with a full covariance matrix 

(RE_f) with large random domain effects with a strong positive correlation of 0.98 for offtot  and 0.81 

for .nuisance  Also for unsafe  a more parsimonious model, with one covariate and equal regression 

coefficients (FE_eq) is obtained with the step-WAIC-se procedure. In this case a diagonal covariance 

matrix with equal variances (RE_s) is selected. For propvict  and satispol the step-WAIC-se 

procedure avoids the selection of large amounts of covariates, found with the step-WAIC approach. The 

selected model for propvict  has a full covariance matrix with a weak positive correlation of 0.1 

(RE_f), and one covariate with unequal regression coefficients (FE_uq). The model for satispol has 

a diagonal covariance matrix with equal variances (RE_s) and one covariate with unequal regression 

coefficients (FE_uq). Since parsimonious models are preferred in this application, the models obtained 

with the step-WAIC-se approach are finally selected. See van den Brakel and Boonstra (2018) for a 

more detailed discussion of the model selection resulting in the finally selected models. 

The models selected with the univeriate FH model for the direct estimates of the discontinuities, 

developed in Subsection 3.3, are summarized in Table 4.2. The models are selected with the step-

WAIC-se procedure. For unsafe  the step-WAIC results in a model with four covariates. For the 

other variables the same models are selected as with the step-WAIC-se procedure. The univariate FH 

models developed in van den Brakel et al. (2016) for the alternative survey approach are summarized in 

Table 4.3. 

Standard model diagnostics test the underlying assumptions that the random domain effects and the 

residuals are normally and independently distributed. Since the number of domains in this application is 
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small, the power of the tests for normality are weak and do not indicate deviations from normality. 

Therefore the posterior predictive tests as summarised in Subsection 3.5 are used to evaluate the model 

adequacy. In addition, the domain predictions aggregated to the national level are compared with the 

direct estimates at the national level to evaluate the bias introduced with the small area estimation 

procedures in Subsection 4.2. The posterior predictive p -values for the domain estimates of the target 

variables and the discontinuities are summarized in Table 4.4 for the bivariate FH model and Table 4.5 for 

the univariate FH model for the discontinuities. The general measure for goodness-of-fit ( )1T  indicates 

that the fit for the discontinuities of offtot  is of reduced quality (other models considered had similar 

high values). The values for the bivariate FH model are slightly better compared to the univariate FH 

model for the discontinuities. The posterior predictive p -values for maximum ( )2T  and minimum ( )3T  

values do not indicate problems with the tails of the distributions. For these posterior predictive p -values 

there are no systematic differences between bivariate and univariate FH model. The values for 4 ,T 5 ,T  and 

6T  for the discontinuities of the bivariate model are comparable with the values for the univariate model. 

The posterior predictive values for the mean ( )4T  and asymmetry of the distribution ( )6T  indicate that the 

distributions are symmetrically concentrated around their mean. The posterior predictive p -values for the 

variance ( )5T  indicate some undershrinkage for the discontinuities of ,nuisance  ,propvict  and 

offtot  under both the bivariate and univariate FH model. 

 
Table 4.1 

Final models bivariate FH model selected with step-WAIC-se. All models contain an intercept. ρ : 

correlation between the random effects 
 

Variable Model 
Covariance structure random effects 

type 
2

r
  2

a
    

offtot FE_eq: 
i  + PR_weapon  RE_f 8.77 5.32 0.98 

unsafe FE_eq: 
i  + PR_propcrim  RE_s 1.17 1.17 - 

nuisance FE_eq: 
i  + MBA_immigrnw  RE_f 0.20 0.14 0.81 

satispol FE_uq: MBA_immigr  RE_s 0.78 0.78 - 

propvict FE_uq: PR_propcrim  RE_f 0.79 0.39 0.2 

 
Table 4.2 

Final models univariate FH model for direct estimates of the discontinuities. All models contain an intercept 
 

Variable Model Variance random effects ( )2

v
  

offtot PR_propcrim  0.80 

unsafe MBA_benefit  1.03 

nuisance PR_threat  0.038 

satispol MBA_benefit  0.928 

propvict PR_assault  0.485 
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Table 4.3 

Final models univariate FH model for alternative CVS from van den Brakel et al. (2016). All models contain 

an intercept 
 

Variable Model Variance random effects ( )2

v
  

offtot CVSR_victim  0.003 

unsafe CVSR_nuisance  + MBA_benefit + PR_propcrim  

+ PR_drugs 

2.997 

nuisance CVSR_nuisance  + MBA_old  0.805 

satispol CVSR_funcpol 4.995 

propvict PR_propcrim  + MBA_old  7.725 

 
Table 4.4 

Posterior predictive p-values for the final multivariate FH models from Table 4.1 
 

Variable 

1
T  

2
T  

3
T  

4
T  

5
T  

6
T  

Discontinuities 

offtot 0.980 0.797 0.069 0.337 0.968 0.416 

unsafe 0.343 0.841 0.833 0.454 0.437 0.912 

nuisance 0.927 0.940 0.034 0.345 0.988 0.465 

satispol 0.772 0.595 0.392 0.610 0.762 0.484 

propvict 0.925 0.261 0.029 0.258 0.970 0.070 

 Target variables 

offtot 0.859 0.249 0.024 0.317 0.524 0.089 

unsafe 0.308 0.779 0.492 0.420 0.474 0.708 

nuisance 0.766 0.317 0.108 0.433 0.504 0.156 

satispol 0.742 0.929 0.584 0.457 0.875 0.797 

propvict 0.695 0.339 0.168 0.379 0.655 0.194 

 
Table 4.5 

Posterior predictive p-values for the final univeriate FH models for direct estimates of the discontinuities from 

Table 4.2 
 

Variable 

1
T  

2
T  

3
T  

4
T  

5
T  

6
T  

Discontinuities 

offtot 0.985 0.828 0.071 0.390 0.972 0.438 

unsafe 0.382 0.885 0.816 0.464 0.523 0.920 

nuisance 0.970 0.941 0.072 0.434 0.978 0.554 
satispol 0.814 0.607 0.378 0.607 0.783 0.488 
propvict 0.946 0.272 0.052 0.383 0.963 0.092 

 
4.2 Estimation results 
 

In this Subsection estimation results for the three different modelling approaches are discussed. In 

Subsection 4.2.1 the HB predictions for the target variables under the regular and alternative survey 

obtained with the bivariate FH model are compared with the direct estimates and with the domain 

predictions obtained with the univariate FH model where the direct estimates of the regular approach are 
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potential auxiliary variables in the model selection. Subsequently results for the domain discontinuities are 

discussed in Subsection 4.2.2. Here the results obtained with the univariate FH model for the 

discontinuities are also discussed. 

With model-based small area estimation, the design variance of the direct estimators is reduced at the 

cost of accepting some amount of design bias. To evaluate differences in the direct point estimates and the 

small domain predictions, the following two measures are defined. The first one is the Mean Relative 

Difference (MRD), which summarizes the differences between the direct estimates and the domain 

predictions:  

 
=1

ˆ100%
MRD = , = , ,

ˆ

q qm
i i

q
i i

y y
q r a

m y

−
  (4.1) 

and q
iy  is the domain prediction based on the bivariate FH model or the univariate FH model. The second 

measure is the Absolute Mean Relative Difference (AMRD) between the direct estimate and the domain 

prediction, which is defined as:  

 
=1

ˆ100%
AMRD = , = , ,

ˆ

q qm
i i

q
i i

y y
q r a

m y

−
  (4.2) 

the increased precision of the small domain predictions is measured with Mean Relative Difference of the 

Standard Errors (MRDSE) between the direct estimates and the domain predictions and is defined as  

 
( ) ( )

( )=1

ˆ100% SE SE
MRDSE = , = , ,

ˆSE

q qm
i i

q
i i

y y
q r a

m y

−
  (4.3) 

these measures are defined in a similar way for the estimates and predictions of the domain discontinuities 

ˆ
i  and .i  

 
4.2.1 Results for variables under the regular and alternative survey 
 

In Table 4.6 the domain predictions and their standard errors averaged over the domains as well as the 

MRD, AMRD and MRDSE are given for the alternative survey under the univariate FH model with the 

models presented in Table 4.3. Results under the bivariate FH model, based on the final models of 

Table 4.1, are presented in Table 4.7 for the variables under the alternative survey and in Table 4.8 for the 

variables under the regular survey. Comparing the standard errors (SE) and the MRDSE in Table 4.6 and 

Table 4.7 shows that the bivariate FH model results in stronger reductions of the standard errors for all 

variables with the exception of .nuisance  This comes at the cost of an increased bias. Comparing 

MRD and AMRD in both tables shows that the deviations between the direct estimates and the small area 

predictions are larger under the bivariate FH model. Comparing the SE and MRDSE in Tables 4.7 and 4.8 

shows that the improvement in precision with the bivariate FH model for the regular survey is smaller, as 

expected since the sample size of the regular survey is larger. The bias in the bivariate FH model 
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predictions for the regular survey are also smaller, which follows from a comparison of MRD and AMRD 

in Tables 4.7 and 4.8. 

The domain predictions under the univariate and bivariate FH model are plotted against the GREG 

estimates in Figures 4.1 through 4.5. The graphs also contain the GREG estimate at the national level 

versus the domain predictions aggregated to the national level according to (4.4). Figures 4.1 and 4.3 show 

that there is only a small amount of shrinkage for offtot  and .nuisance  Figure 4.2 shows for 

unsafe  that the bivariate FH model shrinks the domain predictions for the alternative survey while the 

amount of shrinkage for the univariate FH model for the alternative CVS and the bivariate FH model for 

the regular survey is smaller. For ,propvict  see Figure 4.4, there is a small difference between the 

amount of shrinkage of the alternative CVS under the bivariate and univariate model. From Figure 4.5 it 

follows that the bivariate FH model for satispol cannot adequately model the observations under the 

alternative survey with the auxiliary information from the two registers (MBA and PRRO). In this case the 

domain predictions of satispol under the alternative approach display extreme overshrinkage. The 

univariate FH model indeed selects the same auxiliary variable from the regular survey only, see Table 4.3 

and results in more realistic domain predictions. 

For variables related to opinions and views such as unsafe  and ,satispol  the reduction in the 

standard errors is accompanied by a relatively strong increase in the bias. This is especially the case with 

the small area prediction of the bivariate FH model for the alternative survey. For these variables, there are 

no strongly correlated covariates in the MBA and PRRO. In these cases the univariate FH model performs 

better since related covariates from the regular survey are selected (see Table 4.3), while the bivariate 

model doesn’t detect correlation between the random effects (see Table 4.1). 

 
Table 4.6 

Average of domain predictions alternative survey with univariate FH model from van den Brakel et al. (2016) 
 

Variable HB est. SE MRD (%) AMRD (%) MRDSE (%) 

offtot 33.21 2.90 -0.44 7.03 47.74 

unsafe 19.83 1.64 -0.96 7.58 41.16 

nuisance 1.29 0.08 -0.74 5.02 37.96 

satispol 55.09 2.54 -0.11 6.43 61.98 

propvict 9.85 0.84 -3.17 11.86 60.69 

 
Table 4.7 

Average of domain predictions alternative survey with bivariate FH model 
 

Variable HB est. SE MRD (%) AMRD (%) MRDSE (%) 

offtot 33.26 2.82 -0.99 6.93 49.36 

unsafe 19.82 1.21 -2.54 11.97 56.47 

nuisance 1.28 0.08 -0.98 4.28 35.72 

satispol 55.08 1.97 -0.49 8.97 70.06 

propvict 9.91 0.73 -4.81 14.70 65.35 
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Table 4.8 

Average of domain predictions regular survey with bivariate FH model 
 

Variable HB est. SE MRD (%) AMRD (%) MRDSE (%) 

offtot 41.34 3.76 0.96 4.56 17.95 

unsafe 24.22 1.07 -0.01 6.02 46.78 

nuisance 1.60 0.09 0.38 2.62 15.93 

satispol 60.82 1.47 -0.77 5.38 64.83 

propvict 12.18 0.88 1.58 7.84 43.70 

 
The direct estimates at the national level are accurate estimates since they are based on sufficiently 

large sample sizes. Therefore the bias in model-based domain predictions is often assessed by comparing 

the direct estimates at the national level with the domain predictions aggregated to the national level. The 

target variables in this application are all defined as population means. Therefore the aggregated domain 

predictions are obtained as the average over the domains weighted with the relative domain sizes,  

 
=1

=
m

iq q
i

i

N
y y

N
  (4.4) 

with iN  the population size of domain i  and N  the size of the total population. 

Table 4.9 compares the weighted average of the domain predictions according to (4.4) with the 

national GREG estimates. For the univariate FH model for the alternative CVS, the aggregated domain 

predictions are almost exactly equal to the GREG estimates at the national level. For the bivariate FH 

model the differences are slightly larger but the aggregated domain predictions are still very close to the 

GREG estimates at the national level. The largest relative difference amounts to 3% and is observed for 

offtot  under the regular survey. 

 
Table 4.9 

GREG estimates national level and aggregated HB predictions regular and alternative survey approach (4.4) 
 

Variable Regular Alternative Discontinuity 

GREG biv. FH GREG biv. FH uni. FH GREG biv. FH uni. FH  FH *)  

offtot 43.79 42.47 34.09 34.02 34.09 9.7 8.45 9.7 9.04 

unsafe 25.07 24.89 20.48 20.49 20.48 4.59 4.40 4.59 4.69 

nuisance 1.67 1.66 1.34 1.34 1.34 0.33 0.32 0.34 0.33 

satispol 59.88 60.36 55.10 55.06 55.12 4.78 5.29 5.04 5.07 

propvict 13.02 12.76 10.32 10.33 10.32 2.70 2.43 2.70 2.63 
*) :  FH are the HB predictions with univariate FH model for the direct estimates of the discontinuities, weighted similarly to (4.4). 
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Figure 4.1 Domain estimates GREG versus HB predictions offtot. Upper panel: regular survey using 

bivariate FH model, middle panel: alternative survey using bivariate FH model, lower panel 

alternative survey using univariate FH model. Domain predictions are aggregated at the national 

level according to (4.4). 
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Figure 4.2 Domain estimates GREG versus HB predictions unsafe. Upper panel: regular survey using 

bivariate FH model, middle panel: alternative survey using bivariate FH model, lower panel 

alternative survey using univariate FH model. Domain predictions are aggregated at the national 

level according to (4.4). 
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Figure 4.3 Domain estimates GREG versus HB predictions nuisance. Upper panel: regular survey using 

bivariate FH model, middle panel: alternative survey using bivariate FH model, lower panel 

alternative survey using univariate FH model. Domain predictions are aggregated at the national 

level according to (4.4). 
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Figure 4.4 Domain estimates GREG versus HB predictions propvict. Upper panel: regular survey using 

bivariate FH model, middle panel: alternative survey using bivariate FH model, lower panel 

alternative survey using univariate FH model. Domain predictions are aggregated at the national 

level according to (4.4). 
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Figure 4.5 Domain estimates GREG versus HB predictions satispol. Upper panel: regular survey using 

bivariate FH model, middle panel: alternative survey using bivariate FH model, lower panel 

alternative survey using univariate FH model. Domain predictions are aggregated at the national 

level according to (4.4). 
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4.2.2 Results for discontinuity estimates 
 

In the last four columns of Table 4.9, the GREG estimates for the discontinuities at the national level 

are compared with the domain predictions obtained with the univariate FH model for the alternative CVS, 

the bivariate FH model and the univariate FH model for the discontinuities, aggregated to the national 

level using (4.4). The differences between the GREG estimates for the discontinuities at the national level 

and the aggregated domain predictions are the largest for the bivariate model and the smallest for the 

univariate FH model for the alternative CVS. This can be expected since the bivariate FH model shrinks 

both the domain estimates for the regular and alternative survey. With the univariate FH model for the 

alternative CVS, only the estimates for the alternative survey are replaced by domain predictions, while 

the estimates for the regular survey are not adjusted. In addition the domain predictions for the alternative 

survey have larger MRD’s and AMRD’s under the bivariate FH model compared to the univariate FH 

model (compare Table 4.6 and 4.7). The differences for the univariate FH model for the discontinuities are 

smaller compared to the bivariate FH model but larger compared to the univariate FH model for the 

alternative CVS. 

In Tables 4.10, 4.11, and 4.12 the domain predictions and their standard errors for the discontinuities 

averaged over the domains as well as the MRD and MRDSE are summarized for the univariate FH model 

for the alternative CVS, bivariate FH model and the univariate FH model for the discontinuities 

respectively. The MRD’s are large because the GREG estimates for the discontinuities in the denominator 

of (4.11) frequently take values close to zero, which make these indicators unstable. Therefor the AMRD 

is replaced by the median of the absolute relative differences, ( )ˆ ˆ ,q q q
i i iy y y−  and is abbreviated as 

MARD. The latter are indeed more stable indicators for bias. The MARD is the smallest for the univariate 

FH model for the alternative CVS, since this approach only adjusts the domain predictions of the 

alternative CVS. The MARD values for the bivariate FH model on their turn are smaller than those for the 

univariate FH model for the discontinuities. 

With the exception of nuisance  the standard errors for the domain predictions under the bivariate 

FH model are smaller compared to the univariate FH model for the alternative CVS. In the case of 

propvict  and ,offtot  this is the result of slightly more precise domain predictions for the 

alternative survey with respect to the univariate FH model (compare Table 4.6 with 4.7), a clear 

improvement in precision of the domain predictions of the regular survey compared to the GREG 

estimators (Table 4.8 and 2.2) and the positive correlation between the random effects. In the case of 

satispol and unsafe  this is mainly the result of a clear improvement of precision of the domain 

predictions with the bivariate FH model for the regular compared to the GREG estimators (Table 4.8 and 

2.2) and also a clear improvement of the precision of the domain predictions with the bivariate FH model 

for the alternative survey compared to the univariate model (compare Table 4.6 with Table 4.7). 
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For all five variables, the smallest standard errors are obtained with the univariate FH model for the 

discontinuities. This comes at the cost of a larger bias, as illustrated with the MARD values. An exception 

is ,satispol  for which the bias in terms of MARD for the bivariate FH model is clearly larger than the 

univariate FH model for the discontinuities. For this variable the bias is the lowest with the univariate FH 

model for the alternative CVS, but the reduction of the standard errors is also smaller. 

The last columns of Tables 4.11 and 4.12 contain the shrinkage factors for the domain discontinuities 

averaged over the domains. For the univariate FH model for the discontinuities the shrinkage factors for 

the predictions of the domain discontinuities, i.e., the weights attached to the direct estimator for the 

discontinuities, are defined as ( )( )2 2ˆ ˆ= .r a
i v v i i    + +  For the bivariate model the shrinkage factors 

for the predictions of the domain discontinuities are defined as ( )( )ˆ ˆ= ,t t r a
i i i  + +ιΣι ιΣι  with 

( )= 1, 1 .
t

−ι  The average shrinkage factor is defined as 
=1

= 1 .
M

ii
M   Note that this statistic is not 

available for the discontinuities obtained with the univariate FH model for the alternative CVS, since 

under this approach domain discontinuities are obtained as the contrast between the GREG estimate for 

the regular survey and the domain prediction for the alternative approach. With the exception of 

,satispol  the shrinkage factors under the univariate FH model for discontinuities are a factor 10 

smaller compared to those of the bivariate FH model. The question rises whether the extremely small 

shrinkage factors of the univariate FH model for the discontinuities overshrink the direct estimates of the 

discontinuities. 

 
Table 4.10 

Domain predictions for discontinuities univariate FH model for the alternative CVS 
 

Variable HB est. SE MRD (%) MARD (%) MRDSE (%) 

offtot 9.08 3.92 -5.67 22.14 48.47 

unsafe 4.55 2.46 42.98 23.44 29.45 

nuisance 0.33 0.07 -5.80 11.49 57.49 

satispol 5.52 4.72 99.26 47.72 40.86 

propvict 2.70 1.83 -142.60 30.49 32.75 

 
Table 4.11 

Domain predictions for discontinuities bivariate FH model 
 

Variable HB est. SE MRD (%) MARD (%) MRDSE (%)   

offtot 8.07 2.68 1.94 23.34 63.60 0.208 

unsafe 4.40 1.56 55.49 41.24 55.09 0.317 

nuisance 0.31 0.09 -4.01 18.43 44.47 0.327 

satispol 5.74 2.46 228.50 73.43 68.75 0.019 

propvict 2.27 1.10 -113.00 27.11 59.02 0.376 
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Table 4.12 

Domain predictions for discontinuities univariate FH model for the direct estimates of the discontinuities 
 

Variable HB est. SE MRD (%) MARD (%) MRDSE (%)   

offtot 8.35 2.25 -33.39 26.63 69.35 0.012 

unsafe 4.43 1.48 45.45 42.14 59.99 0.082 

nuisance 0.32 0.06 -13.85 20.97 63.04 0.049 

satispol 5.67 2.39 186.07 65.33 69.61 0.014 

propvict 2.54 0.91 -55.59 45.73 65.84 0.032 

 
Plots of discontinuities estimated with the GREG estimator, the univariate FH model for the alternative 

CVS, the bivariate FH model and the univariate FH model for the discontinuities are provided in 

Figures 4.6 through 4.10. The predictions for the domain discontinuities obtained with the three models 

are more stable compared to the GREG estimates. This is e.g., clearly illustrated with unsafe  

(Figure 4.7), where the GREG estimates for the discontinuity are sometimes positive and sometimes 

negative. The predictions for the domain discontinuities under the bivariate FH model and the univariate 

FH model for the discontinuities are consistently positive, which appears more plausible since it is 

unlikely that the domain discontinuities have opposite signs. The predictions for the domain 

discontinuities under the univariate FH model for the alternative CVS are closer to the GREG estimates 

and consequently less stable. A similar pattern can be observed for the other variables. 

These plots illustrate that for ,propvict offtot  and unsafe  the bivariate FH model results in a 

clear improvement of the predictions for the domain discontinuities compared to the univariate FH model 

for the alternative CVS. For nuisance  the standard errors for the discontinuities increase with the 

bivariate FH model compared to the univariate FH model for the alternative CVS. The bivariate FH model 

for satispol cannot adequately model the observations under the alternative survey with the auxiliary 

information from the two registers (MBA and PRRO). In this case the domain predictions of satispol 

under the alternative approach display overshrinkage. The univariate FH model indeed selects an auxiliary 

variable from the regular survey, see Table 4.3, and clearly performs better. 

It was anticipated that it would be difficult to produce reasonable predictions for the domain 

discontinuities with the univariate FH model for the direct estimates of the discontinuities since it is hard 

to imagine that the available auxiliary variables from registers like the MBA and PRRO contain good 

predictors for systematic differences in survey errors. Nevertheless, reasonable results are obtained with 

this more pragmatic approach. A possible interpretation is that the discontinuities are to some extent 

proportional to the values of the target variable and therefore show some systematic pattern that can be 

explained partially with the selected covariates. A point of concern are the very small shrinkage factors 

under this model, which might be an indication that the model gives too much weight to the synthetic 

estimator. 
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Figure 4.6 Discontinuities offtot based on the GREG estimator (upper panel), univariate FH model (second 

panel), bivariate FH model (third panel) and univariate FH model for direct estimates 

discontinuities (lower panel) with a 95% confidence interval. 
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Figure 4.7 Discontinuities unsafe based on the GREG estimator (upper panel), univariate FH model 

(second panel), bivariate FH model (third panel) and univariate FH model for direct estimates 

discontinuities (lower panel) with a 95% confidence interval. 
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Figure 4.8 Discontinuities nuisance based on the GREG estimator (upper panel), univariate FH model 

(second panel), bivariate FH model (third panel) and univariate FH model for direct estimates 

discontinuities (lower panel) with a 95% confidence interval. 
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Figure 4.9 Discontinuities propvict based on the GREG estimator (upper panel), univariate FH model 

(second panel), bivariate FH model (third panel) and univariate FH model for direct estimates 

discontinuities (lower panel) with a 95% confidence interval. 
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Figure 4.10 Discontinuities satispol based on the GREG estimator (upper panel), univariate FH model 

(second panel), bivariate FH model (third panel) and univariate FH model for direct estimates 

discontinuities (lower panel) with a 95% confidence interval. 
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5. Discussion 
 

Survey process redesigns often result in discontinuities that disturb the comparability of the outcomes 

over time obtained with a repeated survey. To avoid confounding real period-to-period change with 

differences in measurement bias, it is important that such discontinuities are quantified during the 

implementation of a new survey process. A straightforward approach is to collect data under the old and 

new design in parallel to each other for some period of time. Available budgets for parallel data collection 

often do not meet the minimum required sample sizes that come from power calculations to detect 

minimum prespecified differences at certain significance and power levels. This might be sufficient for 

quantifying discontinuities at the national level but not at the domain level, even for the planned domains 

of the regular survey. To obtain more precise predictions for the domain discontinuities a small area 

estimation approaches based on hierarchical Bayesian Fay-Herriot (FH) models is proposed. 

In an earlier paper (van den Brakel et al., 2016) a univariate FH model is proposed, where reliable 

direct domain estimates of the regular survey are considered as potential auxiliary variables in a step-

forward model selection procedure to build adequate models for small domain prediction of the small 

sample assigned to the alternative survey. In this paper a bivariate FH model for the direct estimates 

obtained under both the regular and alternative survey is proposed as an alternative to obtain adequate 

predictions for domain discontinuities. In addition a univariate FH model applied to the direct estimates of 

the discontinuities is considered as a simple alternative. The methods are applied to a small scale parallel 

run conducted to quantify discontinuities in a survey process redesign of the Dutch Crime Victimization 

Survey (CVS). 

Using direct estimates from the regular survey as auxiliary variables in models for small domains 

under the alternative approach results in a substantial improvement of precision, compared to univariate 

models that only use auxiliary variables from available registers. This can be expected since both surveys 

attempt to measure the same variables with a different survey approach. A drawback of the univariate 

approach is that the variance estimation procedure for the discontinuities is complex, since a non-

negligible covariance between the direct estimates from the regular design and the model based 

predictions for the alternative design arises. The method is complex since a model-based MSE is 

combined with a design-based variance of a direct estimator. This might even result in negative variance 

estimates for the discontinuities. These complications are partially circumvented by developing a design-

based estimator for the MSE of the small domain predictions and the covariance component 

(van den Brakel et al., 2016). 

Under a bivariate FH model in a fully Bayesian framework negative variance estimates are avoided 

since the variances for disontinuities are derived from positive-definite covariance matrices of the 

bivariate model. The bivariate FH model improves the predictions for the domain discontinuities since the 

model improves the precision of the estimates of both the regular and alternative approach, and the strong 

positive correlation between the random domain effects further reduces the variance of the contrasts. For 

four out of five variables of the Dutch CVS the bivariate FH model indeed resulted in more precise 
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predictions for domain discontinuities compared to the univariate FH model. Another advantage of the 

bivariate model is that it improves the domain predictions of both the regular and alternative model while 

the univariate model assumes that the sample size of the regular survey is sufficiently large to make 

reliable precise direct domain estimates. The bivariate model is therefore also appropriate in parallel runs 

where e.g., the sample size of the regular survey is reduced in order to increase the sample size for the 

alternative survey. Finally the bivariate FH model avoids the complications to account for sampling error 

in the covariates, which is often required if the direct estimates of the regular survey are used as covariates 

in a univariate FH model. 

For one variable (satisfaction with police performance) no adequate model could be constructed with 

the available auxiliary variables from the registers only. For this variable the multivariate model seems to 

result in overshrinkage of the predictions for the domain discontinuities. The results of the univariate 

model are clearly better in this case since the direct estimates from the regular survey are the only 

auxiliary variables that result in an adequate model for small domain predictions. 

The univariate FH model for the direct estimates of the domain discontinuities turns out to be a 

reasonable alternative. It avoids the complications of the univariate FH model for the alternative CVS and 

the method is considerably simpler compared to the bivariate FH model. A point of concern are the 

extremely small shrinkage factors, which are an indication that the model puts too much weight on the 

synthetic part of the domain predictions. The bias of these domain predictions is indeed larger compared 

to that of the bivariate FH model. 

A general problem in this application with the step-forward model selection procedure where 

covariates are included in the model as long as the WAIC value is reduced, is that this results in models 

with relatively large sets of covariates. With the limited number of domains in this application there is a 

real risk of overfitting the data. For some variables the covariates appear to be strong predictors for the 

domain variables, resulting in small random effects. Fitting a model without these covariates results in 

models with large random effects and strong positive correlations between the regular and alternative 

survey estimates. For other variables a model with a full covariance structure automatically results in 

parsimonious models for the fixed effect part, probably because the set of available covariates are less 

strong predictors for these target variables. 

The aformentioned issue of selecting models with too many covariates is circumvented with an 

alternative step-forward selection approach. Since the WAIC values are estimated from the Gibbs sampler 

output, these values are observed with some degree of uncertainty. This is an argument not to include 

covariates if they only result in a small reduction of the WAIC. In an alternative step-forward selection 

approach, covariates are only selected if the decrease in the WAIC value exceeds the estimated standard 

error of the WAIC. With this approach parsimoneous models are selected since it avoids the selection of 

one or more covariates that only marginally improve the WAIC. For variables where initially large sets of 

covariates were selected, this approach results in a reasonable compromise between model fit and model 

complexity. As an alternative, models with equal regression coefficients can be considered. Such models 
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are, however, less appropriate for predicting domain discontinuities if the random effects are small. In 

such situations the dummy indicator is the only model component that discriminates between the regular 

and alternative approach. This results in synthetic predictions for domain discontinuities that are almost 

equal over the domains, and approximately equal to the direct estimator for the discontinuity at the 

national level. Depending on the type of changes in the survey process, it might be correct to assume that 

domain discontinuities are equal. In that case the best estimate is obtained with the direct estimator at the 

national level. 

For a better understanding of the properties and behaviour of the three different models for estimating 

domain discontinuities, including the proposed model selection approach, a comprehensive simulation is 

required. This will provide a better understanding under what conditions, which of the three different 

modeling approaches are preferred. Such a study is left for future research. 
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Appendix 

 
Table A.1 

Overview auxiliary data 
 

Variable Description Source 

MBA_benefit  Percentage of social benefit claimants MBA 

MBA_immigr  Percentage of immigrants in population MBA 

MBA_immigrnw  Percentage of non-western immigrants in population MBA 

MBA_old  Percentage of elderly people (aged over 65) MBA 

MBA_benefit  Percentage of social benefit claimants MBA 

PR_assault  Peported physical assaults PRRO 

PR_propcrim  Property crimes PRRO 

PR_threat Reported threats PRRO 

PR_weapon  Weapon offences PRRO 

PR_drugs Illicit drug offences PRRO 

CVSR_nuisance  Perceived nuisance in the neighbourhood regular survey 

CVSR_victim  Percentage of people saying that they have been victim to a crime regular survey 

CVSR_funcpol Opinion on functioning of the police on a 10-point scale regular survey 
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Bayesian pooling for analyzing categorical data from small 

areas 

Aejeong Jo, Balgobin Nandram and Dal Ho Kim1 

Abstract 

Bayesian pooling strategies are used to solve precision problems related to statistical analyses of data from 

small areas. In such cases, the subpopulation samples are usually small, even though the population might not 

be. As an alternative, similar data can be pooled in order to reduce the number of parameters in the model. 

Many surveys consist of categorical data on each area, collected into a contingency table. We consider 

hierarchical Bayesian pooling models with a Dirichlet process prior for analyzing categorical data based on 

small areas. However, the prior used to pool such data frequently results in an overshrinkage problem. To 

mitigate for this problem, the parameters are separated into global and local effects. This study focuses on 

data pooling using a Dirichlet process prior. We compare the pooling models using bone mineral density 

(BMD) data taken from the Third National Health and Nutrition Examination Survey for the period 1988 to 

1994 in the United States. Our analyses of the BMD data are performed using a Gibbs sampler and slice 

sampling to carry out the posterior computations. 

 

Key Words: Categorical data; Dirichlet process; Nonparametric hierarchical Bayesian pooling; Slice sampling; Small 
area. 

 

 

1. Introduction 
 

Many surveys collect categorical data for individual areas, which are then stored in a contingency 

table. For example, in a typical obesity rate comparison survey, the researcher might classify the measured 

sample data by the degree of obesity. Then, the regional obesity rate is estimated using the number of 

samples assigned to each category. In such cases, we need to consider how the precision is affected by the 

sample size and the number of parameters in the model, particularly for estimations based on small areas 

(Rao and Molina, 2015). In general, the precision of a model decreases as the number of parameters 

increases, assuming the same sample data. To prevent this decrease in precision, the constructed model 

needs to be as simple as possible. That is, the number of parameters must be reduced in the model. 

However, the model loses the ability to reflect the detailed effects in each area. Another way to resolve the 

precision problem is to increase the sample size allowed per parameter. That is, we can employ pooling 

strategies when analyzing categorical data based on small areas. 

Interest in pooling methods is growing among researchers. Malec and Sedransk (1992) developed a 

Bayesian procedure for estimating the mean of an experiment in a set of seemingly similar experiments. 

They constructed the prior distribution for a location parameter to reflect their assumptions. They 

identified subsets of parameters, with subscripts indicating the similarity between the subsets, in which 

there is uncertainty about the composition of the subsets. They specified the prior distribution for a 

parameter by conditioning on the same subscript in similar experiments. Their flexible prior distribution 
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allows the intensity and nature of the pooling to be influenced by the sample data. Later, Evans and 

Sedransk (1999) proposed a more flexible Bayesian model using covariates. In addition, Evans and 

Sedransk (2003) provided a fully Bayesian justification for the results of Malec and Sedransk (1992). 

These three works have since been extended based on the same key concept of specifying a model in 

which subscripts are used to indicate similar experiments (Consonni and Veronese, 1995 and DuMouchel 

and Harris, 1983). Also, Dunson (2009) suggested a generalization of the Dirichlet process (DP) proposed 

by Ferguson (1973) that allows for dependent local pooling and the borrowing of information. The goal is 

to borrow information in order to more efficiently estimate the individual functions. The proposed process 

for local pooling offers a simple, but flexible approach to specifying the local selection process. They 

suggest using slice sampling, proposed by Walker (2007), to carry out the posterior computations. This is 

a simple and efficient method that allows for posterior computations for an infinite-dimensional process 

that is similar to those of a finite-dimensional process. Here, we construct a pooling model using these 

basic concepts for data based on small areas. Recently, Nandram, Zhou and Kim (2019) proposed a pooled 

Bayes test of independence for sparse contingency tables. They constructed the model based on a 

Dirichlet-multinomial hierarchical Bayesian model, see also Nandram (1998) who constructed a prior 

using the Dirichlet distribution for pooling the data in the models. Of course, a DP is assumed for the 

parameters of interest, which is the cell probability parameters in our contingency table. 

In this study, we use bone mineral density (BMD) data, taken from the Third National Health and 

Nutrition Examination Survey (NHANES III) for the six-year period from October 1988 to September 

1994. BMD is the quantity of mineral in bone tissue, measured as the optical density per 2cm  of bone 

surface using medical imaging. BMD is used in clinical arenas as an indirect indicator of osteopenia, 

osteoporosis, fractures, and so on. BMD is statistically correlated with the probability of fractures, which 

are an important public health problem, especially in elderly women. Therefore, BMD data are important 

indicators used to identify osteoporotic patients who might benefit from early management to improve 

their bone strength. 

NHANES III contains clinical data on 33,994 people who participated in the survey and is sampled for 

individual areas. Each person is categorized into three BMD levels: (1) normal, (2) osteopenia and (3) 

osteoporosis. Our study used Bayesian inference on categorical tables. See Agresti and Hitchcock (2005) 

and Leonard (1977) for inference on second multinomial tables. The original data were gathered from 

mobile examination centers across the United States. NHANES III, which is an important program of the 

National Center for Health Statistics (NCHS), examines the state of health and nutritional in the United 

States. The program started in the 1960s, and has conducted surveys on various health- and nutrition-

related topics. As a result, NHANES provides surveys based on large samples in the United States. 

However, the NCHS is also interested in estimates for smaller geographical areas and study domains. 

When the sample size of a subpopulation is small, we need to consider an alternative estimator based on a 

pooling strategy in order to analyze the data. 

As a result, we focus on predicting the finite population proportion of each area. The finite population 

proportion is estimated by inputting the sample data into the model to predict the unobserved nonsample 

part of the finite population, then obtaining the weighted sum of the observed sample data and the 

predicted nonsample obtain to the sample proportion. First, we estimate the cell probability parameters 
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from the sample data. During this process, the observed count by category in NHANES III is employed as 

the sample part of the finite population. Second, these parameters are used to predict values for the 

nonsample part. Finally, we get the finite population proportions by combining the sample data and 

prediction value of nonsample part. 

The remainder of the paper proceeds as follows. In Section 2, we introduce the hierarchical Bayesian 

pooling strategies used to analyze categorical data from small areas. In Section 3, we present and discuss 

the results of our data analysis of the BMD survey data set. Section 4 concludes the paper. Appendix A 

and B include the computation process for hierarchical Bayesian pooling model. 

 
2. Hierarchical Bayesian models 
 

2.1 Parametric models 
 

For a hierarchical Bayesian baseline model, we consider an I K  contingency table, where ikn  

indicates the thk  response in the thi  area, for = 1, , , = 1, , .i I k K  Let 
ik  denote the 

corresponding proportion for each cell. Then, we assume that  

 ( )
iid

.Multin ,l~ omina ,i i i inn π π  (2.1) 

where ( )1= , ,i i iKn nn  for = 1, , ,i I  is a vector of responses, . =1
=

K

i ikk
n n  is the sum of the 

responses in area ,i  and ( )1= , , ,π i i iK  0 1,ik 
=1

1,
K

ikk
 =  is the proportion vector for each 

area. The model does not allow any pooling and is denoted as a baseline to compare our models. The 

parameters 
i  are independent and do not share a common effect. That is, the areas are unrelated. 

There are five categories of parametric pooling models, classified according to the priors of the 

proportion vectors in a multinomial distribution. First, the four prior distributions for parametric Bayesian 

inferences are given as follows:  

1) No pooling, ( )
iid

;Dir l~ ich etπ 1i  

2) Complete pooling, Dirichlet~π ( )1  with 1 = = = ;π π πI  

3) Adaptive pooling, ( )
iid

;Diri e~ chl tπ μi   

4) Restricted pooling, ( ) ( ) ( )
ind

Dirichlet Dir ;ich1 le~ tπ μ 1i   + −  

 

where ( )1= , , ,μ K   0 1,k 
=1

= 1
K

kk
  and > 0  are the hyperparameters of the Dirichlet 

distribution. We further assume that ( ) ( ) ( )
2

, = 1 ! 1 ,μ K  − +  a shrinkage prior. We note that Yin 

and Nandram (2020a, b) place a Dirichlet process on the sampling process to accomodate gaps, outliers 

and ties in survey data, see also Nandram and Yin (2016a, b) for additional discussion of the Dirichlet 

process. The ( ) ,unifor~ m 1 2, 1 1 2   means that more weight is attached to adaptive pooling. 

Model 1 is a no-pooling model that estimates the parameter without any data sharing from other areas. 

Model 2, on the other hand, is a complete pooling model that estimates the parameter while treating the 

different areas as one. When conducting parameter estimations on a small area with a small number of 

data using Model 1, the estimation may face the small area problem, as the parameter is estimated by 

relying on insufficient data. Although the complete pooling model alleviates this issue, it faces problems 
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of its own: Overshrinkage and individual areas cannot be discerned. Hence, this paper introduces various 

pooling approaches to find a model that delivers better estimates. In Model 3, the adaptive pooling model 

introduced by Nandram, Zhou and Kim (2019), all areas share the same hyperparameters; hence, they 

share their area data information as well. This is an indirect complete pooling method that preserves some 

area variation but, in general, assumes all areas to have identical traits; see also Nandram (1998). This 

creates variations in estimating the hyperparameters. Thus, we propose the restricted pooling model, 

which alters Model 3 by removing data-sharing information between distinct areas. In this new model, 

distinct areas use their local data to estimate parameters, and areas with similar traits share information 

through pooling based on the same hyperparameter, thereby improving the estimation. This model, 

however, assigns the same hyperparameter to areas with similar traits, which may lead to the 

overshrinkage problem when smoothing in the category occurs. To mitigate this issue, we propose Model 

5, the global-local pooling model, see Dunson (2009). The global-local pooling model pools information 

in data among areas with similar traits but also preserves each variation in the category through the local 

effect model, thereby reducing the smoothing in the categorical effect. Indeed, Model 5 is flexible and 

robust. 

The fifth prior distribution used for parametric Bayesian inferences is called global–local pooling. In 

this case, we use different notation for the proportion vector of each area. Let ,p i
 for = 1, , ,i I  denote 

the corresponding cell proportion vector in the thi  area. We assume that  

 ( )
ind

.Multinomia ,~ , , = 1,l ,i i i in i In p p  (2.2) 

where ( ) ( ) ( ) ( )( )11

1 1 1

=1 =1 =1
= 1 , , 1 , 1 1 .p i Ki ik ik ik

K K K

i k k k
e e e e e        −

− − −
++ + + +


+ + +    Here, 

ip  is 

composed of two components, namely,   and ,ik  and   reflects the basic probability that brought all 

the areas together. The global-local effect is reflected in the component ( )( )1 1= , , .ηi i i K  −
  

Specifically,  

 ( ) ( ) ( ) ( )
1 1

iid
22

0 1
=1 =1

~ N 0, N 0, ,
i i

K K

i kz z
k k

I I 
− −

= =+ η  (2.3) 

where ( )2N 0,   is the normal distribution of the global parameter 2 , ( )2N 0, k  is the normal 

distribution of the local parameters 2
k  for each category, where each area is denoted by a different index. 

Then, ,iz = 1, , ,i I  follows a Bernoulli distribution with a hyperparameter ,  which adjusts the 

proportion between the global and local effects. Thus, if we need to focus on the global effect, the prior 

for   is set using the uniform distribution on ( )1 2, 1 .  Specifically, we assume that  

 ( )
iid

Bernoul ,~ , = 1li , ,iz i I    

 
1

~ , 1 ,
2

Uniform
 
 
 

  

 ( )
( )2

a Cauchy prior,
1

= ,
1

 
 +

  

 ( )
( ) ( )

1

2 2 2
1 1 2 222

=1

1 1
, , , = ,

1 1

K

K
k k

   
 

−

−
+ +

   
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where ,ik−    = 1, , 1,k K − 2 0,   and 2 0,k  = 1, , 1.k K −  We have used the 

Cauchy prior for   and shrinkage priors for variance components. The shrinkage priors are similar to the 

half Cauchy prior and they are mathematically more convenient when we make transformations to ( )0, 1 .  

The models proposed in this paper are based on the adaptive pooling model (Nandram, Zhou and Kim, 

2019), which applies the principle of assigning the same subscripts of parameter in prior distribution to 

similar experiments (Malec and Sedransk, 1992) to categorical data. In particular, the no pooling model 

and complete pooling model represent two extreme cases of adaptive pooling, with parameters μ  and .  

On the other hand, the restricted pooling model has a pooling principle such as adaptive pooling model, 

but the model also reflects uncertainty through the weighting parameter .  However, the same parameter 

in the prior distribution used to pool such data frequently results in an overshrinkage problem. To 

compensate for this problem, we propose the global-local pooling model. The effects of the parameters are 

separated into global and local effects in this model. As a result, we propose two new models, restricted 

pooling model and global-local pooling model, and we compare these models with existing ones. 

 

2.2 Nonparametric models 
 

We consider the DP prior for 
iπ  of (2.1) in Section 2.1. The prior structure is as follows:  

 
( )

iid

0

~

~ DP , ,

i G G

G G




  

where 0G  is the base distribution and the positive real number, ,  is the concentration parameter in the 

DP prior. The model is specified by the structure of the base distribution. We note here that Yin and 

Nandram (2020a, b) used a DP on the sampling process to accommodate gaps, outliers and ties in survey 

data. First, we define the model using two prior distributions, as follows:  

6) Nonparametric adaptive pooling  ( )
0 ;Dirichlet μG   

7) Nonparametric restricted pooling  ( ) ( ) ( )0 11 .Dirichlet Dirichletμ 1 KG     + −  

 

We assume ( ) ( ) 2, = 1 ! (1 ) ,μ K  − + ( ) ( )
2

1 1 ,   +  and ( ) .unifor~ m 1 2, 1  In 

Models 6 and 7, we use a stict-breaking process for the DP prior (Sethuraman, 1994). 

The last model is a nonparametric version of (2.2) in Section 2.1, used for global-local pooling. Here, 

iη  are used to construct the nonparametric Bayesian setting, as follows:  

 ( ) ( )

1
iid

00 1
=1

~η
i i

K

i kz z
k

I G I G
−

= =+    

 ( )( ) ( )( )22
0 0 1~ DP , MVN , , ~ DP , 0, ,0 I k kG G N      

where ( )( )1 1= , , ,i i i K  −
η ( ) ,Berno l~ ui liiz  ( ) 1,   ( ) ,unifor~ m 1 2, 1 ( )2 2 2

1 1, , , =K    −  

( ) ( ) 1 22 22

=1
1 1 1 ,

K

kk
 

−
+ +  for = 1, , .i I  This is model (A.1), nonparametric global-local 

pooling. 

The distribution of i  involves a mixture of global and local pooling areas. While global pooling is 

conducted according to the same principle as the aforementioned nonparametric models, the Dirichlet 
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process prior, where the normal distribution is the base distribution for each cell, is independently defined, 

thereby alleviating the overshrinkage problem that could arise owing to global pooling. Here, ,iz  which 

represents the weight of the model, follows the Bernouilli distribution with   greater than 1 2  as its 

parameter, and   follows the uniform distribution. Hence, the local pooling area is weighted so that it is 

defined as the form that can better alleviate the degree of shrinkage. In addition, to ensure simplicity of the 

model, the heavy tail and noninformative characteristic of   distribution follow the improper prior which 

is identical to, but simpler than, the previous parametric model and the posterior distribution is presented 

properly.  

 
3. Data analysis 
 

In this section, we present the empirical results from comparing the performance of the five parametric 

pooling models described in Section 2 and the three nonparametric pooling versions described in 

Section 3. We use BMD data for the period 1988 to 1994, taken from the NHANES III, which collected 

data from mobile examination centers across the United States. 

Our analysis is conducted using contingency tables with a cell count for three categories of BMD in 31 

counties in the U.S. Here, BMD is categorized into one of three levels. The normal category is defined as 

those with a BMD value less than one standard deviation (SD) below the non-Hispanic white (NHW) 

adult mean 2(0.82 mg cm BMD).  The osteopenia category is defined as a BMD value between 1 and 

2.5 SD below the young NHW adult mean 2 2(0.64 mg cm BMD 0.82 mg cm ).   Then, the 

osteoporosis category corresponds to a BMD of more than 2.5 SD below the young NHW adult mean 

2(BMD 0.64 mg cm ).  

We predict the finite population proportion for the BMD distribution in each area using the Bayesian 

pooling model. The survey covers roughly 0.02% of the population, and prediction as needed for the 

remainder 99.98%, an enormous job. Table 3.1 shows the sample data, which have a cell count for each 

categorized level in each area. We estimate the finite population proportion by predicting the nonsample 

part of the finite population from a multinomial distribution with parameter ( ), = 1, , = 31i i Iπ  at each 

MCMC iteration. Specifically, let ikN  for = 1, 2, 3k  be the total BMD level in area ,i  where the value 

is unknown. We have the value ( )ikn  for the sample part of the finite population. Then, we compute the 

finite population proportion ( )ikP  for ( )= 1, , = 31i I I  as follows:  

 ( ) 
1

= , = 1, 2, 3,ik ik ik ik

i

P n N n k
N

+ −  (3.1) 

where 
3

=1
= ,i ikk

N N ik ikN n−  is the nonsample part for each BMD level ( )= 1, 2, 3k k  in area ,i  

taken from the multinomial distribution with parameter ˆ ,π i  estimated using the MCMC in each model. 

Then, the posterior mean and standard deviation of ikP  are obtained using the estimated empirical 

distribution of .ikP  
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Table 3.1 

BMD categorical data for 31 counties from NHANES III 
 

Areas BMD  

Normal Osteopenia Osteoporosis 

1 33 24 9 
2 46 39 5 
3 40 25 8 
4 48 25 6 
5 40 15 10 
6 74 30 12 
7 47 19 7 
8 38 15 6 
9 49 16 11 

10 99 40 14 
11 39 18 2 
12 63 27 4 
13 48 18 5 
14 42 16 4 
15 40 15 4 
16 110 44 7 
17 37 14 3 
18 55 18 5 
19 47 12 6 
20 296 95 17 
21 59 18 4 
22 78 21 7 
23 196 55 15 
24 149 44 9 
25 69 19 5 
26 49 10 6 
27 73 19 3 
28 76 14 3 
29 77 13 4 
30 96 13 6 
31 88 12 4 

 
We use 1,000 iterations to “burn in” the MCMC samples, and take every th10  value to obtain the 

1,000 iterations. In addition, we use autocorrelation plots of the model to adjust the number of repetitions 

and thinning intervals. For example, in a nonparametric model with a relatively large number of 

parameters, we take every th20  estimated value from 1,001 to 20,000. We set the initial value of 

proportion iπ  for = 1, , 31i  based on the column proportion of the sample values in each area. 

The groups are categorized according to the quartile values of the first column proportion. The tuning 

parameter , = 1, , ,j j J  is initially set to = 0.5, and then is revised based on the performance of 

each model. 

In Table 3.2, we report the posterior means (PM) and posterior standard deviations (PSD) of the finite 

population proportions for the eight models and some areas. The cases of Model 1 and Model 2 are the 

most extreme pooling structures. The PM of Model 1 has the results 0.511, 0.496, 0.901, 0.826, and 0.820 

for the corresponding areas 1, 2, 28, 29, and 31, respectively, in the normal BMD, implying that the areas’ 

fluctuations are greater than those in Model 2’s PM (0.652, 0.654, 0.714, 0.716, 0.719). For Model 3, the 

fluctuations (0.644, 0.612, 0.793, 0.816, 0.798) show a trend similar to that in Model 1’s PM for each area 

but are smoother than those in Model 1. This could be interpreted as the indirect pooling effect through the 
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hyper-parameter rather than the direct pooling effect in Model 2. For the restricted pooling, in areas that 

show similar characteristics, the estimated values are calculated through indirect pooling and hyper-

parameters as in Model 3, and the estimated values are smoother than those in Model 1 (PM of areas 28, 

29, 31: 0.827, 0.779, 0.864, respectively). However, in areas where similar characteristics are not shown, 

the estimated values are close to those in Model 1 because the parameter is estimated by solely relying on 

the information in its associated areas (PM of areas 1, 2: 0.523, 0.510, respectively). Model 5, which is 

proposed to alleviate the overshrinkage problem that could arise owing to information pooling, shares 

information in nearby areas and alleviates the excessive shrinkage by reflecting the local effect of each 

cell, thereby rendering the estimated values that are between those in Model 1 and Model 2 (PM of Model 

5: 0.581, 0.511, 0.711, 0.836, 0.808). It should be noted that the nonparametric Bayesian model assigns 

the areas with indexes as the same group according to the characteristics of information through hyper-

parameter ( ), = 1, , = 31 ,id i I  and the same group shares the parameter directly. For BMD data, the 

number of the group ranges from one to three, showing the highest frequency, and the PM is estimated as 

in Model 2. The characteristics of the estimated values of PM for each model are shown identically in 

osteopenia BMD and osteoporosis BMD as well. 

The posterior means, standard deviations (SD) and posterior coefficients of variation (CV) of the finite 

population proportions for the eight models can also be seen in Figure 3.1-3.3. 

In Figure 3.1, the variation of PM for eight models is the largest in the normal BMD, which takes up 

the largest proportion. Especially, we can see that PMs of the nonparametric model are similar to that of 

the complete pooling model. During data analysis, we found one to three group index. Through this, we 

were able to discover that the BMD distribution is quite similar across the areas in NHANES III. Hence, 

all areas share their information with others to estimate the same hyperparameter. Thus, the nonparametric 

and complete pooling models give similar estimates. Therefore, pooling can solve problems associated 

with small area estimates when areas share similar traits. Furthermore, Figure 3.2 shows that the 

performance of the nonparametric models are good through the fact that the SD of the nonparametric 

models with many parameters are similar or smaller than that of the parametric models. 

In addition, we can see the CV of the models by BMD status in Figure 3.3. In the case of CV, 

osteoporosis BMD shows the greatest difference between models. Also it can be seen that the CV of the 

nonparametric versions is relatively low compared to the parametric version, which is not different for 

each BMD status. Furthermore, it is very meaningful that the nonparametric version had a smaller CV 

than the models of the parametric version, even though it had infinite parameter space. 

To estimate the parameters, we use a Gibbs sampler. Whereas the parameters with restricted parameter 

spaces are sampled using the grid method, the other parameters are sampled using the Metropolis-Hastings 

algorithm. We tune to get acceptance rate 30-70%. In the actual analysis, the acceptance rate of the 

algorithm is 34-49%. We compare the two measures in terms of the performance of each model. First, we 

calculate the deviance information criterion (DIC), a typical Bayesian model choice criterion, to compare 

the hierarchical Bayesian models. The DIC was proposed by Spiegelhalter et al. (2002), where a lower 

DIC value indicates better performance. Second, we evaluate the performance of the eight models by 
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calculating the logarithmic conditional predictive ordinate (LCPO), which is a comparison method that 

uses cross validation. The average LCPO, proposed by Gneiting and Raftery (2007), is calculated as 

follows:  

 ( )
=1

1
ˆLCPO = log CPO ,

I

i
iI

−   (3.2) 

where ( )( )
=1

ˆCPO = = ,Ω
H

h
i hh

w P Y y ( )( ) ( )( )
=1

= = = ,Ω Ω
H

h h
h h

w f Y y f Y y  for = 1, , ,i I  

and ( )( )hP Y y= Ω  is the likelihood of a single observation of a given parameter ( ) ,Ω h  and 

= 1, ,h H  denotes the iterations from the MCMC result under the hierarchical Bayesian pooling 

model. 

 
 

Table 3.2 
Posterior summaries for finite population proportions of BMD data under the eight models by areas 
 

Areas Model Normal BMD Osteopenia BMD Osteoporosis BMD 

PM PSD 95% CI PM PSD 95% CI PM PSD 95% CI 

1 1 0.511 0.024 (0.467, 0.561) 0.380 0.024 (0.333, 0.427) 0.109 0.015 (0.082, 0.139) 
2 0.652 0.023 (0.603, 0.692) 0.264 0.021 (0.227, 0.306) 0.084 0.013 (0.061, 0.109) 
3 0.644 0.024 (0.594, 0.691) 0.288 0.023 (0.242, 0.338) 0.068 0.011 (0.048, 0.091) 
4 0.523 0.024 (0.476, 0.570) 0.385 0.024 (0.336, 0.432) 0.092 0.013 (0.070, 0.118) 
5 0.581 0.022 (0.536, 0.627) 0.327 0.022 (0.285, 0.370) 0.092 0.013 (0.067, 0.118) 
6 0.651 0.022 (0.606, 0.696) 0.258 0.020 (0.218, 0.297) 0.090 0.014 (0.067, 0.117) 
7 0.656 0.023 (0.612, 0.700) 0.260 0.021 (0.218, 0.300) 0.084 0.013 (0.061, 0.109) 
8 0.658 0.022 (0.615, 0.703) 0.267 0.021 (0.230, 0.311) 0.075 0.012 (0.052, 0.100) 

2 1 0.496 0.021 (0.458, 0.534) 0.442 0.021 (0.402, 0.484) 0.061 0.010 (0.042, 0.080) 
2 0.654 0.021 (0.617, 0.693) 0.277 0.019 (0.242, 0.316) 0.068 0.010 (0.047, 0.087) 
3 0.612 0.020 (0.570, 0.652) 0.313 0.019 (0.273, 0.353) 0.075 0.012 (0.053, 0.098) 
4 0.510 0.022 (0.470, 0.551) 0.438 0.022 (0.396, 0.478) 0.052 0.009 (0.036, 0.071) 
5 0.511 0.023 (0.466, 0.554) 0.425 0.023 (0.381, 0.472) 0.064 0.011 (0.045, 0.085) 
6 0.653 0.020 (0.618, 0.693) 0.271 0.017 (0.237, 0.304) 0.075 0.012 (0.053, 0.096) 
7 0.659 0.020 (0.618, 0.702) 0.273 0.018 (0.239, 0.311) 0.068 0.011 (0.047, 0.089) 
8 0.651 0.021 (0.609, 0.689) 0.292 0.019 (0.254, 0.329) 0.058 0.011 (0.040, 0.079) 

28 1 0.901 0.011 (0.881, 0.920) 0.081 0.010 (0.062, 0.099) 0.018 0.005 (0.010, 0.028) 
2 0.714 0.020 (0.677, 0.751) 0.223 0.017 (0.189, 0.256) 0.064 0.011 (0.043, 0.088) 
3 0.793 0.017 (0.757, 0.826) 0.154 0.015 (0.126, 0.184) 0.053 0.010 (0.034, 0.073) 
4 0.827 0.016 (0.796, 0.856) 0.123 0.013 (0.099, 0.148) 0.050 0.010 (0.032, 0.069) 
5 0.711 0.021 (0.672, 0.751) 0.244 0.020 (0.209, 0.283) 0.046 0.010 (0.028, 0.064) 
6 0.715 0.018 (0.680, 0.748) 0.216 0.016 (0.184, 0.249) 0.070 0.011 (0.049, 0.092) 
7 0.721 0.019 (0.683, 0.757) 0.217 0.018 (0.185, 0.251) 0.062 0.011 (0.043, 0.084) 
8 0.729 0.022 (0.686, 0.770) 0.220 0.020 (0.181, 0.261) 0.052 0.011 (0.034, 0.073) 

29 1 0.826 0.015 (0.796, 0.855) 0.153 0.015 (0.124, 0.184) 0.020 0.005 (0.011, 0.030) 
2 0.716 0.019 (0.679, 0.755) 0.219 0.017 (0.187, 0.253) 0.065 0.010 (0.047, 0.085) 
3 0.816 0.016 (0.785, 0.847) 0.139 0.014 (0.113, 0.168) 0.045 0.008 (0.030, 0.060) 
4 0.779 0.017 (0.746, 0.815) 0.134 0.014 (0.105, 0.160) 0.087 0.012 (0.065, 0.111) 
5 0.836 0.016 (0.807, 0.866) 0.117 0.013 (0.095, 0.145) 0.047 0.009 (0.031, 0.067) 
6 0.715 0.020 (0.677, 0.755) 0.213 0.018 (0.179, 0.248) 0.072 0.012 (0.051, 0.096) 
7 0.721 0.019 (0.685, 0.756) 0.214 0.017 (0.183, 0.251) 0.066 0.011 (0.045, 0.085) 
8 0.729 0.021 (0.690, 0.768) 0.217 0.020 (0.179, 0.257) 0.053 0.011 (0.034, 0.075) 

31 1 0.820 0.015 (0.792, 0.849) 0.136 0.014 (0.110, 0.161) 0.044 0.008 (0.030, 0.061) 
2 0.719 0.019 (0.680, 0.758) 0.216 0.017 (0.181, 0.253) 0.065 0.010 (0.046, 0.087) 
3 0.796 0.016 (0.765, 0.827) 0.159 0.015 (0.133, 0.188) 0.046 0.008 (0.031, 0.063) 
4 0.864 0.013 (0.838, 0.889) 0.095 0.011 (0.075, 0.119) 0.041 0.008 (0.027, 0.056) 
5 0.808 0.018 (0.773, 0.841) 0.153 0.017 (0.122, 0.188) 0.038 0.008 (0.024, 0.054) 
6 0.721 0.018 (0.685, 0.756) 0.207 0.017 (0.177, 0.239) 0.072 0.011 (0.052, 0.092) 
7 0.724 0.018 (0.688, 0.758) 0.211 0.017 (0.180, 0.243) 0.065 0.010 (0.045, 0.085) 
8 0.739 0.020 (0.698, 0.774) 0.208 0.019 (0.171, 0.247) 0.053 0.011 (0.033, 0.073) 
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Figure 3.1  The posterior means plot of the finite population proportion. 
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Figure 3.2  The posterior standard deviations plot of the finite population proportion. 
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Figure 3.3  The coefficients of variation plot of the finite population proportion. 
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Table 3.3 shows the results of the two measures for each Bayesian pooling model. The model is 

considered to perform better as its estimated measures are smaller. The LCPO and DIC in parametric 

models are compared using the global-local pooling model, and LCPO and DIC have 12.707 and 

4,984.56, respectively, implying the best performance. The restricted pooling model in Model 4 has an 

LCPO value of 12.886, showing the second-best performance after the global-local pooling model, but the 

DIC in the adaptive pooling model has a value of 4,998.90, which is lower than that in the restricted 

pooling model. 

 
Table 3.3 
Comparisons of LCPO  and DIC (95% CI) under Models 1-8 
 

Model LCPO  DIC 

Parametric models No pooling 13.167 4,999.19 

Complete pooling 13.151 5,011.45 

Adaptive pooling 13.411 4,998.90 

Restricted pooling 12.886 5,000.21 

Global-local pooling 12.707 4,984.56 

Nonparametric models Adaptive pooling 13.105 5,001.17 

Restricted pooling 12.837 4,983.88 

Global-local pooling 12.694 4,768.47 

 
Another point to keep in mind is that the nonparametric version using the same pooling method shows 

similar values to those of the parametric method. In particular, although the nonparametric global-local 

pooling model has the greatest number of parameters to be estimated, its LCPO and DIC have values of 

12.694 and 4,768.47, respectively, thereby indicating that it has the best performance among all the 

models. Additionally, in the restricted pooling model, the nonparametric model’s LCPO and DIC have 

values of 12.837 and 4,983.88, respectively, showing better performance than the parametric model. These 

results are identical in the LCPO scale of the adaptive pooling (i.e., base) model (LCPO (parametric vs 

nonparametric) = (13.411 vs 13.105)). This means the performance of the nonparametric version is very 

good for our data, even though the parameter space has infinite dimensions. 

Table 3.4 illustrates the calculated statistical values to estimate the shrinkage of the model. To estimate 

shrinkage, we calculated the average and standard deviation of the absolute difference from the no 

shrinkage model for each BMD category. Let PM ,ik = 1, , ,i I = 1, 2, 3k  denote the posterior mean 

of the finite population proportion for each cell in area .i  The average (ASE) and standard deviation 

(SDSE) of the shrinkage estimator are 

 0

=1 0

1 PM PM
ASE = , = 31,

PM

I
ik ik

k
i ik

I
I

−
  (3.3) 

 

2

0

=1 0

1 PM PM
SDSE = ASE ,

1 PM

I
ik ik

k k
i ikI

− 
− 

−  
  (3.4) 
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where 
0PM ik

 is the posterior mean for the finite population proportion of Model 1, a no poooling model. 

Based on this calculation, we show that the ASE and SDSE in the normal cell are the smallest in the 

global-local pooling model. Drawing from the data analysis, with the BMD data applied in this study, the 

number of groups of slice sampling is 1 to 3, and we can confirm that the data characteristics are identical 

for most regions. In the global-local model, however, it can be shown that the problem of overshrinkage 

induced by pooling is solved by looking at the smallest shrinkage degree. In addition, osteopenia cells and 

ostoporosis cells could confirm the tendency of low shrinkage relative to other models, and the SDSE in 

the global-local pooling model can be shown to be small. Meanwhile, in the case of nonparametric 

models, the group index had the highest number of 1 because of slice sampling; therefore, it could be 

suspected that data dependence was excessive in the no pooling model. 

Also, Geweke’s test, autocorrelation plot and effective sample size (ESS) were applied for the 

diagnosis of the model, and they showed strongly mixing chains. 

 
Table 3.4 
A comparision of shrinkage in the eight models, see equations (3.3) and (3.4) 
 

Model Normal Osteopenia Osteoporosis 

Mean Std Mean Std Mean Std 

No pooling(no shrinkage model)       

Complete pooling  0.087  0.072  0.217  0.320  0.522  0.622 

Adaptive pooling  0.066  0.064  0.147  0.166  0.474  0.501 

Restricted pooling  0.088  0.071  0.210  0.302  0.587  0.728 

Global-local pooling  0.054  0.043  0.157  0.137  0.456  0.682 

NP Adaptive pooling  0.088  0.074  0.209  0.306  0.524  0.609 

NP Restricted pooling  0.065  0.049  0.249  0.354  0.335  0.362 

NP Global-local pooling  0.085  0.072  0.206  0.311  0.427  0.430 

NP: Nonparametric  

 
4. Conclusion 
 

In this study, we construct hierarchical parametric Bayesian pooling models and their nonparametric 

versions using the Ferguson (1973) Dirichlet process prior to pool the data. The pooling methodologies 

developed here are useful for analyzing survey data. We used the grid method to draw the parameters with 

nonstandard posterior densities and support that lies in a finite interval. However, we used the Metropolis-

Hastings algorithm to draw the parameters with support in an infinite interval. 

The Dirichlet process is assumed for the parameter of interest ,π i  for = 1, , ,i I  in our models. We 

apply the slice sampling algorithm for the specification of Dirichlet process prior, which is an extension of 

the widely used stick-breaking prior proposed by Ishwaran and James (2001). Five parametric models are 

modeled in a finite-dimensional parameter space, and three nonparametric versions have an infinite-

dimensional parameter space. The eight hierarchical Bayesian models are also distinguished according to 

the type of effects in the model parameters. For the basic model (2.1), we can construct more effective and 
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efficient models that allow for a borrowing effect from neighboring areas in small-area estimations. 

However, exchangeable priors in a hierarchical Bayesian model may cause an overshrinkage problem. To 

compensate for this problem, the effect of a parameter is divided into two elements, as shown in the basic 

model (2.2), called the hierarchical Bayesian global-local pooling model. The model allows for grouping 

of similar experiments (area) and the borrowing of information in each area. 

To compare the eight models using real data, we use the BMD data provided by the NHANES III. 

BMD is statistically correlated with the probability of fractures, which are an important public health 

problem, especially in elderly women. Therefore, BMD is an important indicator in diagnoses of 

osteoporosis, where patients might benefit from early management to improve their bone strength. For 

each sample, we assign an indicator based on three categories (normal, osteopenia, osteoporosis) before 

analyzing the data. The resulting hierarchical models with a pooling prior for BMD data outperformed the 

other models. To compare the models’ performances, we calculated the DIC and the LCPO. Here, we 

found the best performance in the global–local pooling model. Although the nonparametric versions of the 

models have an infinite-dimensional parameter space, they showed similar values for the two comparison 

measures to those of the parametric pooling model with a finite-dimensional parameter space. Therefore, 

we should be careful in interpreting the results. 
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Appendix 
 

A. Computations for parameteric models 
 

Let ( )1= , , I
n n n  be the response matrix and ( )1= , , I

π π π  be the proportion parameter 

matrix for (2.1). In an adaptive pooling model, let ( )= , , ,Ω π μi i  = 1, , .i I  Here, no pooling and 

complete pooling are special cases of adaptive pooling, with parameters μ  and .  The full conditional 

posterior density of the parameters for the given data is obtained in the usual way by combining the 

likelihood and the priors, as follows:  

 

( ) ( ) ( )  ( )

( )

( )

( )
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 
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  
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where ( ) ( ) ( )
=1=1

= .μ
K K

k kkk
D         

To run a Gibbs sampler, we draw values as follows: 

(a) Full conditional for , = 1, , :π i i I  Draw ( )( ) .Diric, t, ~ hleπ n μ n μi i i +  
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(b) Full conditional for :μ  Draw  

                 ( )
( )

( )

1=1

=1 =1
=1

, , .k

K
I K

kk

ikK
i k

kk

 
 

  
 

−
  

  
  


 


μ n π  (A.1) 

Let ( ) , = 1, ,k k Kμ  denote the vector of parameters other than the thk  component .k  Then, we 

obtain the conditional posterior density of ,k  given ( ) ,μ k  in each stage. Here, we need to estimate the 

1K −  components of parameter μ  sequentially. Then, we can calculate the thK  component value of μ  

using 
1

=1
= 1 .

K

K kk
 

−
−   Using the conditional posterior density (3.1), we can draw , =k k  

1, , 1K −  using the grid method, with support 
1

=1,
1 .

K

kk k k


−

 
−  

 

(c) Full conditional for :  Draw  

                 ( )
( )

( ) ( )

1=1

2
=1 =1

=1

1
, , .

1

k

K
I K

kk

ikK
i k

kk

 
 

  
 

−
  

  
+  


 


n π μ   

We can use the grid method for   in this case as well. Because the grid method can be used for closed 

support, we transform   to ( )= 1 1 , 0 < < 1.  +  The absolute Jacobian is 21 .  Then, the 

conditional posterior density of   can be expressed as follows:  

 ( )
( )

( )

1
1

1=1

1
=1 =1

=1

, , .
k

K
I K

kk

ikK
i k

kk













  



−
−

−

−

  
  

  


 


n π μ   

The full conditional posterior density in the case of restricted pooling is obtained from the likelihood 

and the priors, constructed from ( ), ,μ   and from an additional prior for , = 1, , :i I  

 ( ) ( ) ( )  ( ) ( )
1

=1

, , = , ,
I

I i i
i

f     Ω Ω n n π π μ   

where ( )= , , , ,Ω π μi i   = 1, , .i I  

For the Gibbs sampler, we consider the latent variables , = 1, ,iz i I  from a Bernoulli distribution 

with parameter .  Here, the joint posterior density is given as follows:  

 

( ) ( ) ( ) ( )  ( ) ( )

( )
( )

( )

( ) ( )( )1

2

1
=1

1

1

=1 =1 =1

2 , 1

, , ,

1
1

1 !
.

1

Ω Ω n n π π μ

μ

i i

k ik ik

I

I i i i i
i

z zI K K
n n

ik ik
i k k

f z z

D

K
I

 



      

   




−

+ −





    
 −        

−


+



     

Then, our Gibbs sampler is described as follows:  

(a) Full conditional for :  Draw  

                 ( ) ( ) =1=1

1
, , , 1 , 1.

2

II
ii ii

I zz     
− −  n μ z   
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In other words, given , , ,μ z  and the data,   follows a truncated beta distribution with parameters 

=1

I

ii
z  and 

=1
,

I

ii
I z−   and the lower bound of   is 1 2.  

 

(b) Full conditional for , = 1, , :iz i I  Draw ( ) ,B n, , , e~ r oullin π μi i iz p  where 

                 ( )( ) ( ) ( )
( )( )

=1

1 1

=1 =1 =1
= 1 .k k

K

ikk

K K

i ik ikk k
p D D I K

   


      − −

+ −


 μ μ   

(c) Full conditional for , = 1, , :π i i I  Draw  

                 ( )
1

1 1 1

=1 =1

, , , .
i i

k ik ik

z zK K
n n

i i ik ik
k k

z
    

−

+ − + −   
       
 π n μ   

In the case of = 1,iz  we can generate the value of 
iπ  from a Dirichlet distribution with parameters μ  

and .  In other cases, we can interpret that as the uncertainty of the modeling. That is, for 
iπ  given 

1 = 0,z n  draws its value from a uniform Dirichlet distribution with a 1K   parameter vector, where 

each component has the value one. 
 

(d) Full conditional for :μ  Draw  

                 ( )
( )

( )

1=1

=1 =1
=1

, , .k

i

K
K

kk

ikK
z k

kk

 
 

  
 

−
  

  
  


 


μ n π   

(e) Full conditional for :  Draw  

                 ( )
( )

( ) ( )

1=1

2
=1 =1

=1

1
, , .

1

k

i

K
K

kk

ikK
z k

kk

 
 

  
 

−
  

  
+  


 


n π μ   

Of course, the generating process for parameters μ  and   is similar to that of the parameter in adaptive 

pooling. In addition, the data used for μ  and   are = 1, = 1, , .iz i I  

Otherwise, the parameter vector corresponding to area i  in global-local pooling consists of 

2 2
1, , , , , , ,η z     and 2

1.K −  Then, the full conditional posterior density for the given data in the 

model is as follows:  

 

( ) ( )  ( )  ( )

( ) ( ) ( ) ( )

2 2 2 2
1 1 1

=1 =1

2 2
1 1

1

1 1
=1 =1

=1 =1=1

2

22

, , , , , , ,

, ,

! 1
=

1 1!

1 1
exp

22

Ω Ω n n η η

z

ik iK
ik

il ik

I I

I i i i i K
i i

K

n nI K
i

K K K
i k

ik l lk

ik
k

f z

n e

e en

 

   

       

        




−

−

− +


− −
+ +





        
        + +        

 
 − 

 

 

 
 

( ) ( ) ( )
( )  ( )

11 1

2

22
=1 =1 =1

1
1

1 2 12 2 222
=1 =1

1 1
exp

22

1 1 1
1 ,

11 1

i i

i
i

z zI K K

ik
i k kk

K I
zz

k ik

I 




 
  

−− −

−
−

 

     
−           

 
 − 

++ + 

  

 
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where ( )2 2 2
1 1= , , , , , , , ,Ω ηi i i Kz     − = 1, , ,i I ( )1= , , I

η η η  and ( )1= , , .z Iz z   

Then, the Gibbs sampler is as follows:  

(a) Full conditional for :  Draw ( )1
2=1 =1

others truncated Be 1 .ta~ , , ,
I I

i ii i
z I z −   

(b) Full conditional for , = 1, , :iz i I  Draw ( )others Be ,l~ rnou lii iz p  with =ip

( )( ) ( ) ( )1 1
2 22 2 2 2

=1 =1
exp 2 2 exp 2 2 1

K K

ik ikk k
        

− −
− − + − 

( )( )1
2 2 2

=1
exp 2 2 .

K

ik k kk
  

−
−  

(c) Full conditional for :  Draw  

                 ( )
1

1 1 2
=1 =1

=1 =1

1 1
others .

11 1

ik iK
ik

il il

n nI K

K K
i k

l l

e

e e

 

   
 



− +

− −
+ +

    
         ++ +      


 
  

(d) Full conditional for ( ), = 1, , , = 1, , 1 :ik i I k K −  Draw  

                 

( ) ( )  

( )

=1

=1

1 1

2
1 1 2

=1 =1
=1

1 1

2
0 1 2

=1 =1
=1

1 1 1
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21

1 1 1
exp .
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K
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i
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K

ikk

i
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n
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ik ik ik ikz K
k k

l

n
K K

ik ik ikz K
k k k

l
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e

I n
e

 

 

   


 


− −

= −
+

− −

= −
+


 

 −  + 


   

+ −   +   

 


 


  

(e) Full conditional for 2 :  Draw  

                 ( )
( ) ( ) ( )=1

1

22

2 21 1 2 =1 =1

1 1
others exp .

21
I

ii i

K

ik
K I z

z k

  
 

−

− =

 
 − 

  +
   

(f) Full conditional for ( )2 = 1, , 1 :k k K −  Draw  

                 ( )
( ) ( )0=1

22

22 =02

1 1
others exp .

21
I

zii i

ik
I

zk
k k

  
 =

 
 − 

  +
   

In this model, we suggest using the Metropolis-Hastings algorithm, which is the most commonly used 

Markov Chain Monte Carlo (MCMC) algorithm used to estimate the value of the location parameter, 

( ), .η  Of course, ( )( )22 2
1 1, , , K   −  is drawn from the above full conditionals, and the Gibbs sampler 

is performed using the grid method. 

 
B. Computations for nonparameteric models 
 

In order to pool the parameters in nonparametric Bayesian models, we apply the slice sampling mehtod 

introduced by the Kalli, Griffin and Walker (2011). They proposed an efficient version of the slice 

sampler for Dirichlet process mixture models constructed by Walker (2007). Suppose that the 

observations , = 1, ,iy i I  are generated in the Dirichlet process mixture model with parameter .  

That is,  
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( )

iid

0

~G G

G ~ DP , G

iy


  

Here, we write ( )0G ~ DP , G  to denote that G  follows a Dirichlet process with parameter > 0.  

Then G  has a stick-breaking representation (Sethuraman, 1994) given by  

 ( ) ( )
=1

, =i j i j
j

P y G w f y 


   

where 
1 2 3, , ,    are independent and identically distributed (iid) form 

0P  and  

 ( )1 1= , = 1j j l
l j

w w  


−   

with the j  being iid from ( )Beta 1, ,  see also Antoniak (1974). 

The Slice sampler algorithm proposed by Walker (2007) introduces a latent variable ( )0, 1 ,u   

= 1, 2,id  to perform sampling on the joint distribution. First, the latent variable 
iu  has a joint density 

as follow  

 ( ) ( ) ( )
=1

, , = .
i ji i u w i j

j

P y u G I f y 


   

Later, they introduced a latent variable 
id  representing the group assignment of the observation .i  At this 

time, the joint density of ( ), ,i i iy u d  is as follow  

 ( ) ( ) ( )
=1

, , , = .
i d ji

i i i u w i j
j

P y u d G I f y 
=



   

Then we need to sample the parameter , ,  and   including latent variables u  and d  at each iteration 

of a Gibbs sampler. Kalli et al. (2011) introduces how to perform slice sampling for Dirichlet process 

mixture models by processing u  and   as blocks in the basic algorithm described by Walker (2007). The 

algorithm is as follow. 

1. ( ) ( ) ( )0 =
,

i
j j i jd j

G f y      

2. ( ) ( ) ,Beta ,j j ja b    where ( )=1
= 1

i

I

j d ji
a I =+   and ( )=1

= ,
i

I

j d ji
b I +   

3. ( ) ( )0 ,
i di

i uu I     where ( ) 1= 1 ,j
j   −−  and   is a constant, 

4. ( ) ( ) ( ):= ,
k ii k k i kk uP d k I w f y    

5. ( ) ( ) ( )
1

=1
1 .

J
J

jj


     

−
 −  

 

For this paper, we need to sample the following variables at each iteration of a Gibbs sampler:  

 ( ) ( ) , , = 1, 2, , ; , , = 1, , .j j i ij d u i Iπ   

In general,   is equal to 0.5. However, we use   as a tuning parameter for the hierarchical Bayesian 

model. Then, the full posterior density for the nonparametric adaptive pooling of he given data is given as 

follows:  
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( ) ( )  ( ) ( ) ( )

( ) ( )

( )

( ) ( )
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( )
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.
=1 =1 =1 =1

1

2 2
=1

, , , , ,

1
!

!

1 ! 1 1
1 ,

1,1 1

ik

i i k

i di

i
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i
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d d k

u i ik
i k i kd ik
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j
j

P

w
I n

n D

K

B

 
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       




 


 

−



−

    
    

   

−   
 −  

+ +  



   



n d u ν π π μ μ ν

μ
  

where ( )1= , , ,d Id d ( )1= , , ,u Iu u ( )1= , , ,ν j   and the hyperparameters are mutually 

independent. Then, our Gibbs sampler can be performed in two steps. 

The first step is the pooling of the data: 

(a) Draw for 
iu  from ( )Uniform 0, .

id  

(b) Draw for 
id  from ( ) ( ) =1

= others = !.ik

i j

K n

i u j j jk ikk
P d j I w n     Next, we can generate the 

value of each parameter from the following conditional density: 

(c) Draw ,π j = 1, , ,j J  from ( )=
.D 1irichlet μ n

i
id j

 + −  

(d) Draw ,j = 1, , ,j J  from ( ) ( )( )
=1 =1

.B 1t ,e a
i i

I I

d j d ji i
I I= =+ +   

(e) Draw μ  from  

                 ( )
( )

1

=1 =1

1
| others .μ

μ
k

J K

jk
j kD

  


−
     

(f) Draw   from  

                 ( )
( )

( )

( )

1

2
=1 =1

1 1 !
| others .

1μ
k

J K

jk
j k

K

D

   
 

−
− 

  
+ 

    

For our Gibbs sampler, we need to transform   to ( )= 1 1 , + 0 1   because we need to use 

the grid method for ,  which is taken from the noninformative prior with variable support equal to ( )0, .  

                 ( )
( )

( )
1

1

1
=1 =1

1
| others 1 !.

k

J K
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j k

K
D





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
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−

−

−

 
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 
 

μ
  

(g) Draw   from  

                 ( ) ( )
( )

1

2
1

| others 1 .
1

J J

j
j

 
  



−

=

 
 − 

+ 
   

The parameter   is also taken from the noninformative prior with variable support equal to ( )0, ,  as 

in the case of .  Therefore, we need to transform   to ,  with Jacobian 21 .  Then, the conditional 

density for   is given as follows:  

 ( ) ( )
1

1

=1

1
| others 1 .

JJ

j
j






  


−
− −  

 −   
  

   

The nonparametric version for the restricted pooling has ( )1= , , ,π j j jK  ( )1= , , ,μ K   

0 1,k 
=1

= 1,
K

kk
 ( )1= , , ,d Id d  and =id j  for = 1, 2, , .j J  Then, we compose the full 

posterior density for the given data using equation, as follows:  
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 ( ) ( ) ( ) ( ) ( ) ( )
=1

, , , , , , .
J

j
j

P           
 
 
 
n d u ν π π μ μ ν   

In our Gibbs sampler, we consider the latent variables ,jz  for = 1, , ,j J  as the parametric version 

for restricted pooling, where the subscripts for the parameter are equal to the parameter .π  At this time, 

the pooling step for the data is the same as above, and generating the parameter is as follows: 

(a) Draw   from truncated ( )( )1
2=1 =1

Beta , , , 1 .
J J

j jj j
z J z −    

(b) Draw jz  from ( ) ,Bernoulli jp  

where ( )( ) ( ) ( )
( ) 

1

1 1

=1 =1 =1
= 1 1 .μ μk

K

jkk

K K
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j jk jkk k
p D D I K
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
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(c) Draw jπ  from 
( ) ( )( )1 0 =

.Dirichlet μ 1 n
j j i

z z id j
I I= =+ +   
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i i

I I
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(f) Draw   from  
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Lastly, the full posterior density is calculated using the joint posterior density and the priors for their 

parameters in the nonparametric Bayesian global-local pooling model. Here, the data pooling algorithm is 

the same as above inference. Then, we estimate each parameter as follows: 
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A note on multiply robust predictive mean matching 

imputation with complex survey data 

Sixia Chen, David Haziza and Alexander Stubblefield1 

Abstract 

Predictive mean matching is a commonly used imputation procedure for addressing the problem of item 

nonresponse in surveys. The customary approach relies upon the specification of a single outcome regression 

model. In this note, we propose a novel predictive mean matching procedure that allows the user to specify 

multiple outcome regression models. The resulting estimator is multiply robust in the sense that it remains 

consistent if one of the specified outcome regression models is correctly specified. The results from a 

simulation study suggest that the proposed method performs well in terms of bias and efficiency. 

 

Key Words: Multiple robustness; Nearest-neigbour imputation; Survey data; Variance estimation. 

 

 

1. Introduction 
 

Predictive mean matching (PMM), a procedure closely related to nearest-neighbour imputation (NNI, 

Chen and Shao, 2000; Beaumont and Bocci, 2009; Yang and Kim, 2019), is a popular imputation 

procedure in practice (Little, 1988; Yang and Kim, 2020). In NNI, a missing value to a survey variable y  

is replaced by the y -value of the closest respondent with respect to a vector of fully observed variables .x  

However, with NNI, the resulting imputed estimator may suffer from a non-negligible bias when the 

dimension of x  is large (Yang and Kim, 2019), a problem often referred to as the curse of dimensionality. 

In contrast, PMM starts with fitting a parametric model (e.g., a linear regression model) based on the 

responding units with y  as the response variable and x  as the set of explanatory variables. This leads to a 

set of predicted values or scores, ˆ ,m  for all the sample units (respondents and nonrespondents). A missing 

value to the survey variable y  is then replaced by the y -value of the closest respondent with respect to 

ˆ .m  The latter may be viewed as a scalar summary of the information contained in the vector x . 

Therefore, unlike NNI, PMM is not sensitive to the dimension of ,x  which is a desirable feature.  

Both NNI and PMM belong to the class of nonparametric procedures. Therefore, both procedures are 

less vulnerable to model misspecification unlike parametric methods (e.g., linear regression imputation). 

Also, both NNI and PMM belong to the class of donor imputation procedures; that is, they produce 

eligible imputed values as they use actual observed values “borrowed” from the respondents.  

In the first step of PMM, the information contained in the vector x  is compressed into a single score 

m̂  through the use of a parametric model (e.g., a linear regression model). If the specified model provides 

an accurate description of the relationship linking y  and ,x  we expect PMM to perform well in terms of 

bias. On the other hand, if the specified model is grossly misspecified, PMM may yield biased estimators. 
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Multiply robust approaches with multiple outcome regression and nonresponse models have been 

shown to improve the robustness against model misspecification, see Han and Wang (2013), Han (2014), 

and Chen and Haziza (2019a) among others. In this note, we propose a novel PMM procedure that allows 

for multiple models, each which may be based on a different functional and/or a different set of 

explanatory variables. Postulating multiple models may prove useful in a number of situations; e.g., see 

Chen and Haziza (2017) and Chen and Haziza (2019b) for a discussion. The specified models may be 

parametric or nonparametric. The rationale behind the proposed method is to fit each of these specified 

models based on the responding units, which leads to multiple set of predicted values (scores) for all the 

sample units. After describing the theoretical setup in Section 2, we show how to combine these scores to 

construct the imputed values in Section 3. The proposed PMM procedure is multiply robust in the sense 

that the resulting estimator is consistent if all but one model are misspecified. Because the true model 

linking y  and x  is unknown, the proposed approach is attractive because it provides some protection 

against model misspecification. Also, unlike the multiply robust imputation procedure considered in Chen 

and Haziza (2017), the proposed method belongs to the class of donor imputation procedures. In 

Section 4, we conduct a simulation study to assess the performance of the proposed method in terms of 

bias and efficiency. 

 
2. Basic setup 
 

Consider a finite population ( ) = , , = 1, 2, , ,xN i iy i NF  assumed to have been generated from 

the following superpopulation model:  

 ( )= ,i i iy m +x  (2.1) 

where ( )m   is an unknown functional, ix  is a vector of fully observed variables attached to unit ,i  and 

the ’si  are mutually independent random variables such that ( ) = 0xi iE  and ( ) 2= .xi i V  For 

simplicity, we assume that the variance structure is homoscedastic but our method can be easily extended 

to the case of unequal variances. 

The interest lies in estimating the population mean, ( )= .y E  Given the finite population, a 

probability sample ,S  of size ,n  is selected according to a sampling design with first-order inclusion 

probabilities i  and second-order inclusion probabilities .ij  The sampling weight attached to unit i  is 

denoted by 1= .i iw  −  

Let ir  be response indicator attached to unit i  such that = 1ir  if iy  is observed, and = 0ir  if iy  is 

missing. Let  = : = 1r iS i S r  denote the set of respondents to the survey variable .y  We assume that 

the data are Missing At Random (MAR):  

 ( ) ( )Pr = 1 , Pr = 1 .i i i i ir y r=x x  (2.2) 

The customary PMM procedure can be described as follows. We first postulate a parametric outcome 

regression model ( ) = ; ,x βimM  where β  is a vector of unknown parameters (Yang and Kim, 2020). 

For ,i S  we compute the score ( )ˆˆ = ; ,x βi im m  where β̂  is a suitable estimator of β  based on the 
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responding units. Then, the imputed value for the missing 
iy  is * = ,i jy y  where j  is the index of the 

nearest-neighbour of unit ,i  which satisfies ( ) ( )ˆ ˆ ˆ ˆ, ,j i j im m m mD D  for any ,rj S   where ( ), D  

denotes a distance function; e.g., the Euclidean distance. In order for PMM to be robust against 

misspecification, the specified parametric model must satisfy the Lipschitz continuity condition (Yang and 

Kim, 2020). This condition may not be satisfied for some commonly used models and functional forms, 

including quadratic models; see Yang and Kim (2020) for a discussion. 

 
3. Proposed method 
 

The proposed method allows the user to specify multiple outcome regression models for the survey 

variable .y  This grants a greater probability of selecting a model that performs well at replicating the 

relationship between the response variable and the explanatory variables, making the approach multiply 

robust without requiring the Lipschitz continuity condition to hold. As long as one of the specified models 

is correctly specified, the resulting estimator will be consistent. 

We consider a class of outcome regression models: ( ) ( )( ) = ; , = 1, 2, , .x βk k
im k KM  To 

impute the missing values, we proceed as follows:   
 

(Step1). Obtain the estimators ( )ˆ kβ  of ( ) ,β k = 1, 2, , ,k K  by solving the following survey 

weighted estimating equations:  

                  ( ) ( )( ) ( ) ( )( ) 
( ) ( )( )

( )

;
ˆˆ = ; = 0.

k k
ik k k k

m i i i i k
i S

m
U w r y m




−




x β
β x β

β
 (3.1) 

 

(Step2). For ,i S  obtain the K -vector of predicted values  

                  ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 2 2ˆ ˆ ˆ= ; , ; , , ; .V x β x β x βK K
i i i im m m

T
  

 

(Step3). Fit a weighted linear regression model without intercept with y  as the response variable and 

V  as the vector of explanatory variables. Let ( )ˆˆ ˆ; ,iM x β η  be the resulting predicted value 

attached to unit :i  

                  ( )ˆˆ ˆ ˆ; , = ,x β η V ηi iM T   

where ( ) ( ) ( )( )1 2ˆ ˆ ˆ ˆ= , , , Kβ β β β  and  

                   
1

ˆ = .i i i i i i i i
i S i S

w r w r y

−

 
 η VV VT  (3.2) 

 

(Step4). The imputed value for the missing iy  is * = ,i jy y  where j  is the index of the nearest-

neighbour of unit ,i  which satisfies ˆ ˆˆ ˆ ˆˆ ˆ ˆ{ ( ; , ), ( ; , )} { ( ; ),j i jM M M x β η x β η x ηD D  

ˆˆ ˆ( ; , )}iM x β η  for any .rj S   
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After applying (Step1)-(Step4), we construct the imputed estimator of :  

 ( ) *MR

1
ˆ = 1 ,

ˆ i i i i i
i S

w r y r y
N




+ −  (3.3) 

where ˆ .ii S
N w


=  Using an approach similar to the one used by Yang and Kim (2020), it can be shown 

that the estimator MR̂  is multiply robust in the sense that it is consistent if all but one model are 

misspecified.  

Estimating the variance of MR̂  can be done through replication variance estimation procedures; see 

e.g., Rust and Rao (1996) and Wolter (2007). In the context of PMM for survey data, Yang and Kim 

(2020) also considered replication procedures. Let L  denote the number of replicates and ( )g
iw  be a 

replication weight attached to unit i  in the thg  replicate. A replication variance estimator of MR̂  is given 

by  

 ( ) ( )( )
2

rep MR MR MR
=1

ˆ ˆ ˆˆ = ,
L

g
g

g

V c  −  (3.4) 

where  

 ( ) ( ) ( ) ( ) *
MR

ˆ = 1g g g
i i i i i

i S

w r y r y


+ −   

denote the estimator MR̂  in the thg  replicate with ( )* g
iy  denoting the imputed value attached to unit i  in 

the thg  replicate, obtained from (Step1)-(Step4) above, based on the replication weight ( )g
iw  instead of the 

original weights .iw  The factor gc  in (3.4) is determined by the replication method. For instance, with the 

delete-one jackknife, we have = ,L n ( )= 1gc n n −  and ( ) ( )= 1g
i iw n n w−  if i g  and ( ) = 0g

iw  if 

= .i g  

 
4. Simulation study 
 

To assess the performance of the proposed method in terms of bias and efficiency, we conducted a 

limited simulation study. We generated =B 2,000 finite populations, each of size =N 20,000. First, the 

explanatory variables 
1x -

4x  were generated from a multivariate standard normal distribution. Then, given 

1x - 4 ,x  we generated the survey variable y  according to the following outcome regression models: 
 

(M1). 1 2 3 4= 1 ,y x x x x + + + + +  where ( )~ 0, 1 .N  

(M2). 2 2
1 2 3 4 3 4= 1 ,y x x x x x x + + + + + +  where ( )~ 0, 1 .N  

Note that both (M1) and (M2) are linear models based on the explanatory variables 1x - 4 ,x  except that 

(M2) includes quadratic terms and an interaction term. 
 

From each finite population, a probability sample S  was selected according to probability 

proportional-to-size (PPS) systematic sampling based on the size variable ( )= log 0.1 4 ,i i iz y v+ +  



Survey Methodology, June 2021 219 

 

 

Statistics Canada, Catalogue No. 12-001-X 

where ( )~ 0, 1 .iv N  The first-order inclusion probabilities are given by 
=1

=
N

i i ii
nz z   with =n

200, 500 and 1,000. 

In each sample, the response indicators 
ir  were generated from a Bernoulli distribution with 

probability ,ip  where  

 
( )

( )

0 1 1 2 2 3 3 4 4

0 1 1 2 2 3 3 4 4

exp
= 0.1 0.9 .

1 exp

i i i i

i

i i i i

x x x x
p

x x x x

    

    

+ + + +
+ 

+ + + + +
 (4.1) 

We used two sets of values for ( )0 1 2 3 4, , , , :     ( )0, 1, 1, 1, 1  and ( )1.38, 1, 1, 1, 1 .  These led to 

response rates approximately equal to 70%, and 50%, respectively. 

We computed the following estimators of   
 

(Naive). The weighted mean of the respondents, naive
ˆ = .

r r
i i ii S i S

w y w
    

(Reg). The imputed estimator based on deterministic linear regression imputation, assuming the 

model ( )M1 .  

(PMM1). The imputed estimator based on PMM, where the score ˆ , ,im i S  was obtained by fitting 

the model ( )M1 .  

(New1). The imputed estimator based on the proposed multiply robust PMM procedure using both 

models (M1) and (M2).  

(New2). The imputed estimator based on the proposed multiply robust PMM procedure using models 

(M1), (M2), and two additional models (M3) and (M4), where (M3) uses 1x  only as the 

predictor and (M4) uses 2
1x  only as the predictor.  

 

We computed the Monte Carlo relative bias (MCRB), the Monte Carlo relative standard error (MCRSE) 

and the Monte Carlo relative root mean squared error (MCRMSE), defined respectively as  

 
( )2,0001

=1

MC

ˆ2,000
MCRB = ,

b bb
 



− −
  

 
( ) ( )

2
1

MC=1

MC

ˆ ˆ1
MCRSE =

B

bb
B  



−
− −

  

and  

 
( ) ( )

2
1

MC=1

MC

ˆ1
MCRMSE = ,

B

bb
B  



−
− −

  

where b  denotes the population mean in the thb  population, ˆ
b  denotes the estimator ̂  in the thb  

sample, = 1, ,b 2,000, and  

 
2,000 2,000

MC MC
=1 =1

1 1
ˆ ˆ= , = .

2,000 2,000
b b

b b

       



220 Chen et al.: A note on multiply robust predictive mean matching imputation with complex survey data 

 

 

Statistics Canada, Catalogue No. 12-001-X 

The results are presented in Tables 4.1 and 4.2. The naive estimator exhibited a significant bias in all 

the scenarios, as expected. When the true model was given by (M1), we note from Table 4.1 that linear 

regression imputation performed very well in terms of bias, as expected. Both PMM and the proposed 

method showed negligible bias for =n 1,000 and a slight bias for =n 500 and =n 200. For instance, 

for =n 200 and a response rate of 70%, the value of RB was equal to 2.4% for PMM, New1 and New2. 

In terms of efficiency, linear regression imputation slightly outperformed both PMM and the proposed 

methods, as expected. For instance for =n 1,000 and a response rate of 70%, the value of RMSE was 

equal to 7.5% for linear regression imputation and equal to 8.0% for both PMM, New1 and New2. It is 

worth pointing out that both PMM and the proposed methods exhibited almost identical performances in 

all the scenarios presented in Table 4.1. Therefore, incorporating two additional models did not seem to 

affect the efficiency of the resulting estimator (New2). 

When the true model was given by (M2), we note from Table 4.2 that both linear regression imputation 

and PMM led to significant biases in all the scenarios, as expected. Being a parametric imputation 

procedure, linear regression imputation is vulnerable to model misspecification. On the other hand, PMM 

showed smaller biases than linear regression imputation, suggesting some robustness against model 

misspecification. For instance, for =n 1,000 and a response rate of 70%, the value of RB was equal to 

-9.2% for linear regression imputation and -3.7% for PMM. The proposed methods outperformed both 

linear regression imputation and PMM in terms of bias, standard error and mean square error in all the 

scenarios. Finally, both New1 and New2 exhibited almost identical performances.  

 
Table 4.1 

Monte Carlo relative bias (MCRB), relative standard error (MCRSE), and relative root mean squared error 

(MCRMSE) when the true model is (M1) 
 

 Method 

Response rate Sample Size Measure ( )2×10  Naive Reg PMM1 New1 New2 

70% 1,000 MCRB 64.7 -0.1 0.4 0.4 0.4 

MCRSE 7.5 7.5 8.0 8.0 8.0 

MCRMSE 65.1 7.5 8.0 8.0 8.0 

70% 500 MCRB 65.3 0.5 1.4 1.4 1.4 

MCRSE 10.7 10.4 11.2 11.2 11.2 

MCRMSE 66.1 10.4 11.3 11.3 11.3 

70% 200 MCRB 64.6 0.3 2.4 2.4 2.4 

MCRSE 16.5 16.7 17.5 17.5 17.6 

MCRMSE 66.7 16.7 17.7 17.7 17.7 

50% 1,000 MCRB 99.3 0.0 0.7 0.7 0.6 

MCRSE 8.8 8.1 9.0 9.0 9.0 

MCRMSE 99.7 8.1 9.1 9.1 9.1 

50% 500 MCRB 98.9 -0.1 1.3 1.3 1.3 

MCRSE 12.1 11.2 12.5 12.5 12.5 

MCRMSE 99.6 11.2 12.6 12.6 12.6 

50% 200 MCRB 99.8 0.8 4.3 4.3 4.4 

MCRSE 19.3 17.7 19.6 19.6 19.6 

MCRMSE 101.6 17.7 20.1 20.1 20.0 
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Table 4.2 

Monte Carlo relative bias (MCRB), relative standard error (MCRSE), and relative root mean squared error 

(MCRMSE) when the true model is (M2) 
 

 Method 

Response rate Sample Size Measure ( )2×10  Naive Reg PMM1 New1 New2 

70% 1,000 MCRB 7.5 -9.2 -3.7 0.1 0.1 

MCRSE 3.5 3.5 3.9 3.1 3.1 

MCRMSE 8.2 9.9 5.4 3.1 3.1 

70% 500 MCRB 7.5 -9.4 -4.0 0.2 0.2 

MCRSE 5.0 5.1 5.6 4.5 4.5 

MCRMSE 9.0 10.7 6.9 4.5 4.5 

70% 200 MCRB 7.6 -9.2 -4.0 0.1 0.1 

MCRSE 7.8 7.9 8.5 6.8 6.8 

MCRMSE 10.9 12.1 9.4 6.8 6.8 

50% 1,000 MCRB 16.6 -11.3 -3.1 0.3 0.3 

MCRSE 4.0 4.5 5.0 3.3 3.3 

MCRMSE 17.1 12.2 5.9 3.3 3.3 

50% 500 MCRB 16.5 -11.5 -3.5 0.3 0.3 

MCRSE 5.7 6.3 7.0 4.8 4.7 

MCRMSE 17.5 13.2 7.8 4.8 4.8 

50% 200 MCRB 16.5 -12.0 -3.9 -0.1 -0.1 

MCRSE 9.1 9.9 11.0 7.4 7.4 

MCRMSE 18.8 15.6 11.7 7.4 7.4 

 
Acknowledgements 
 

S. Chen was supported by the National Institute on Minority Health and Health Disparities (NIMHD) 

at National Institutes of Health (NIH) (1R21MD014658-01A1) and the Oklahoma Shared Clinical and 

Translational Resources (U54GM104938) with an Institutional Development Award (IDeA) from 

National Institute of General Medical Sciences. The content is solely the responsibility of the authors and 

does not necessarily represent the official views of the National Institutes of Health. The work of 

D. Haziza was supported by grants from the Natural Sciences and Engineering Research Council of 

Canada. 

 
References 

 

Beaumont, J.-F., and Bocci, C. (2009). Variance estimation when donor imputation is used to fill in 

missing values. Canadian Journal of Statistics, 37, 400-416. 

 

Chen, S., and Haziza, D. (2017). Multiply robust imputation procedures for the treatment of item 

nonresponse in surveys. Biometrika, 102, 439-453. 

 

Chen, S., and Haziza, D. (2019a). Multiply robust nonparametric multiple imputation for the treatment of 

missing data. Statistica Sinica, 29, 2035-2053. 

 



222 Chen et al.: A note on multiply robust predictive mean matching imputation with complex survey data 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Chen, S., and Haziza, D. (2019b). Recent developments in dealing with item nonresponse in surveys: A 

critical review. International Statistical Review, 87, S192-S218. 

 

Chen, J., and Shao, J. (2000). Nearest-neighbour imputation for survey data. Journal of Official Statistics, 

16, 583-599. 

 

Han, P. (2014). Multiply robust estimation in regression analysis with missing data. Journal of the 

American Statistical Association, 109, 1159-1173. 

 

Han, P., and Wang, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika, 100, 

417-430. 

 

Little, R.J.A. (1988). Missing-data adjustments in large surveys. Journal of Business and Economic 

Statistics, 6, 287-296. 

 

Rust, K.F., and Rao, J.N.K. (1996). Variance estimation for complex surveys using replication techniques. 

Statistical Methods in Medical Research, 5, 283-310. 

 

Wolter, K. (2007). Introduction to Variance Estimation, 2nd Edition. Springer, Berlin. 

 

Yang, S., and Kim, J.K. (2019). Nearest neighbor imputation for general parameter estimation in survey 

sampling. Advances in Econometrics - The Econometrics of Complex Survey Data: Theory and 

Applications, 39, 209-234. 

 

Yang, S., and Kim, J.K. (2020). Predictive mean matching imputation in survey sampling. To appear in 

the Scandinavian Journal of Statistics.  



 223 

 

JOURNAL OF OFFICIAL STATISTICS 
 

An International Review Published by Statistics Sweden 

 
JOS is a scholarly quarterly that specializes in statistical methodology and applications. Survey methodology and 

other issues pertinent to the production of statistics at national offices and other statistical organizations are 

emphasized. All manuscripts are rigorously reviewed by independent referees and members of the Editorial Board. 

 

 

Contents 

Volume 36, No. 4, December 2020 
 

Letter to the Editors 

 Andreas V. Georgiou ............................................................................................................................................ 729 
 
Basic Statistics of Jevons and Carli Indices under the GBM Price Model 

 Jacek Białek ........................................................................................................................................................... 737 
 
Developing Land and Structure Price Indices for Ottawa Condominium Apartments 

 Kate Burnett-Isaacs, Ning Huang and W. Erwin Diewert.................................................................................. 763 
 
An Improved Fellegi-Sunter Framework for Probabilistic Record Linkage Between Large Data Sets 

 Marco Fortini ......................................................................................................................................................... 803 
 
Three-Form Split Questionnaire Design for Panel Surveys 

 Paul M. Imbriano and Trivellore E. Raghunathan .............................................................................................. 827 
 
Double Barreled Questions: An Analysis of the Similarity of Elements and Effects on Measurement Quality 

 Natalja Menold ...................................................................................................................................................... 855 
 
The Representativeness of Online Time Use Surveys. Effects of Individual Time Use Patterns and  

Survey Design on the Timing of Survey Dropout 

 Petrus te Braak, Joeri Minnen and Ignace Glorieux ........................................................................................... 887 
 
Comparing the Ability of Regression Modeling and Bayesian Additive Regression Trees to Predict Costs  

in a Responsive Survey Design Context 

 James Wagner, Brady T. West, Michael R. Elliott and Stephanie Coffey ........................................................ 907 
 
Book Review: Paul C. Beatty, Debbie Collins, Lyn Kaye, Jose-Luis Padilla, Gordon B. Willis, and  

Amanda Wilmot. Advances in Questionnaire Design, Development, Evaluation and Testing. 2019,  

Wiley, ISBN: 978-1-119-26362-3, 816 pages 

 Jennifer Edgar ........................................................................................................................................................ 933 
 
Book Review: Yuling Pan, Mandy Sha, and Hyunjoo Park. The Sociolinguistics of Survey  

Translation. 2020, New York: Routledge, ISBN 978-1-138-55087-2, 166 pages 

 Patricia Goerman ................................................................................................................................................... 937 
 
Book Review: Paul J. Lavrakes, Michael W. Traugott, Courtney Kennedy, Allyson L. Holbrook,  

Edith D. de Leeuw, and Brady West. Experimental Methods in Survey Research: Techniques that  

Combine Random Sampling with Random Assignment. 2019, Wiley, ISBN: 978-1-119-08374-0, 544 pages 

 Katherine Jenny Thompson .................................................................................................................................. 941 
 
Editorial Collaborators ...................................................................................................................................................... 945 

Index to Volume 36, 2020 ................................................................................................................................................ 953 
 
 

All inquires about submissions and subscriptions should be directed to jos@scb.se 

mailto:jos@scb.se


224  

 

JOURNAL OF OFFICIAL STATISTICS 
 

An International Review Published by Statistics Sweden 

 
JOS is a scholarly quarterly that specializes in statistical methodology and applications. Survey methodology and 

other issues pertinent to the production of statistics at national offices and other statistical organizations are 

emphasized. All manuscripts are rigorously reviewed by independent referees and members of the Editorial Board. 

 

 

Contents 

Volume 37, No. 1, March 2021 
 

Building a Sample Frame of SMEs Using Patent, Search Engine, and Website Data 

 Sanjay K. Arora, Sarah Kelley and Sarvothaman Madhavan ................................................................................ 1 
 
Optimal Reconciliation of Seasonally Adjusted Disaggregates Taking Into Account the Difference  

Between Direct and Indirect Adjustment of the Aggregate 

 Francisco Corona, Victor M. Guerrero and Jesús López-Peréz ........................................................................... 31 
 
Panel Conditioning in the U.S. Consumer Expenditure Survey 

 Stephanie Eckman and Ruben Bach ...................................................................................................................... 53 
 
Weighted Dirichlet Process Mixture Models to Accommodate Complex Sample Designs for Linear and  

Quantile Regression 

 Michael R. Elliott and Xi Xia ................................................................................................................................. 71 
 
Identifying Outliers in Response Quality Assessment by Using Multivariate Control Charts Based on  

Kernel Density Estimation 

 Jiayun Jin and Geert Loosveldt .............................................................................................................................. 97 
 
Can Smart City Data be Used to Create New Official Statistics? 

 Rob Kitchin and Samuel Stehle ........................................................................................................................... 121 
 
An App-Assisted Travel Survey in Official Statistics: Possibilities and Challenges 

 Danielle McCool, Peter Lugtig, Ole Mussmann and Barry Schouten............................................................... 149 
 
Measuring and Modeling Food Losses 

 Marco Mingione, Carola Fabi and Giovanna Jona Lasinio................................................................................ 171 
 
Survey Mode Effects on Objective and Subjective Questions: Evidence from the Labour Force Survey 

 Joachim Schork, Cesare A.F. Riillo and Johann Neumayr ................................................................................ 213 
 
Generalised Regression Estimation Given Imperfectly Matched Auxiliary Data 

 Li-Chun Zhang ...................................................................................................................................................... 239 
 
 

All inquires about submissions and subscriptions should be directed to jos@scb.se 

mailto:jos@scb.se


 225 

 

The Canadian Journal of Statistics La revue canadienne de statistique 
 
  
CONTENTS TABLE DES MATIÈRES 
 

 
 

Volume 48, No. 3, September/septembre 2020 
 
 
 
Issue Information .............................................................................................................................................. 339 

 

 

Original Articles 
 

Using ranked set sampling with binary outcomes in cluster randomized designs 

 Xinlei Wang, Mumu Wang, Johan Lim and Soohyun Ahn ................................................................... 342 

 

A backward procedure for change‐point detection with applications to copy number variation detection 

 Seung Jun Shin, Yichao Wu and Ning Hao ........................................................................................... 366 

 

Empirical likelihood for nonlinear regression models with nonignorable missing responses 

 Zhihuang Yang and Niansheng Tang..................................................................................................... 386 

 

Robust multivariate change point analysis based on data depth 

 Shojaeddin Chenouri, Ahmad Mozaffari and Gregory Rice .................................................................. 417 

 

Post model‐fitting exploration via a “Next‐Door” analysis 

 Leying Guan and Robert Tibshirani....................................................................................................... 447 

 

A semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data 

 Kexin Ji and Joel A. Dubin .................................................................................................................... 471 

 

Estimation of the additive hazards model with interval‐censored data and missing covariates 

 Huiqiong Li, Han Zhang, Liang Zhu, Ni Li and Jianguo Sun................................................................ 499 

 

Nonparametric change point detection for periodic time series 

 Lingzhe Guo and Reza Modarres........................................................................................................... 518 

 

Partial deconvolution estimation in nonparametric regression 

 Jianhong Shi, Xiuqin Bai and Weixing Song ........................................................................................ 535 

 

On the role of local blockchain network features in cryptocurrency price formation 

 Asim K. Dey, Cuneyt G. Akcora, Yulia R. Gel and Murat Kantarcioglu .............................................. 561 

 

Nonparametric beta kernel estimator for long and short memory time series 

 Taoufik Bouezmarni, Sébastien Bellegem and Yassir Rabhi ................................................................ 582 

 

Optimal balanced block designs for correlated observations 

 Razieh Khodsiani and Saeid Pooladsaz ................................................................................................. 596 

 



226 

 

The Canadian Journal of Statistics La revue canadienne de statistique 
 
  
CONTENTS TABLE DES MATIÈRES 
 

 
 

Volume 48, No. 4, December/décembre 2020 
 
 
 
 
Issue Information .............................................................................................................................................. 605 

 

 

Original Articles 
 

Estimation in the Cox cure model with covariates missing not at random, with application to disease 

screening/prediction 

 Lisha Guo, Yi Xiong and X. Joan Hu .................................................................................................... 608 

 

Correlated and misclassified binary observations in complex surveys 

 Hon Yiu So, Mary E. Thompson and Changbao Wu ............................................................................. 633 

 

Inference for misclassified multinomial data with covariates 

 Shijia Wang, Liangliang Wang and Tim B. Swartz ............................................................................... 655 

 

Homogeneity testing under finite location‐scale mixtures 

 Jiahua Chen, Pengfei Li and Guanfu Liu ............................................................................................... 670 

 

Copula‐based predictions in small area estimation 

 Kanika Grover, Elif F. Acar and Mahmoud Torabi ............................................................................... 685 

 

A sequential split‐and‐conquer approach for the analysis of big dependent data in computer experiments 

 Chengrui Li, Ying Hung and Minge Xie ............................................................................................... 712 

 

A Bayesian mixture of experts approach to covariate misclassification 

 Michelle Xia, P. Richard Hahn and Paul Gustafson .............................................................................. 731 

 

Continuous threshold models with two‐way interactions in survival analysis 

 Shuo Shuo Liu and Bingshu E. Chen ..................................................................................................... 751 

 

A Gaussian alternative to using improper confidence intervals 

 André Plante .......................................................................................................................................... 773 



GUIDELINES FOR MANUSCRIPTS 

 
Authors are invited to submit their articles through the Survey Methodology hub on the ScholarOne Manuscripts website 

(https://mc04.manuscriptcentral.com/surveymeth). Before submitting the article, please examine a recent issue of Survey 

Methodology as a guide and note particularly the points below. Articles must be submitted in Word or Latex, preferably in Word 

with MathType for the mathematical expressions. A pdf version is also required for formulas and figures. 
 

1. Layout 
 

1.1 Documents should be typed entirely double spaced with margins of at least 1½ inches on all sides. 

1.2 The documents should be divided into numbered sections with suitable verbal titles. 

1.3 The name (fully spelled out) and address of each author should be given as a footnote on the first page of the manuscript. 

1.4 Acknowledgements should appear at the end of the text. 

1.5 Any appendix should be placed after the acknowledgements but before the list of references. 
 

2. Abstract and Introduction 
 

2.1 The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid 

mathematical expressions in the abstract. 

2.2 The last paragraph of the introduction should contain a brief description of each section. 
 

3. Style 
 

3.1 Avoid footnotes and abbreviations. 

3.2 Limit the use of acronyms. If an acronym is used, it must be defined the first time it occurs in the paper. 

3.3 Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(·)” and 

“log(·)”, etc. 

3.4 Short formulae should be left in the text but everything in the text should fit in single spacing. Long and important equations 

should be separated from the text and numbered with arabic numerals on the right if they are to be referred to later. Use a 

two-level numbering system based on the section of the paper. For example, equation (4.2) is the second important equation 

in section 4. 

3.5 Bold fonts should normally be used to distinguish vectors and matrices from scalars. 
 

4. Figures and Tables 
 

4.1 All figures and tables should be numbered with arabic numerals, with titles that are as self explanatory as possible, at the top 

of tables or figures. Use a two-level numbering system based on the section of the paper. For example, table 3.1 is the first 

table in section 3. 

4.2 A detailed textual description of figures may be required for accessibility purposes if the message conveyed by the image is 

not sufficiently explained in the text. 
 

5. References 
 

5.1 References in the text should be cited with authors’ names and the date of publication. If part of a reference is cited, indicate 

after the reference, e.g., Cochran (1977, page 164). 

5.2 The first time a reference is cited in the text, the name of all authors must be written. For subsequent occurrences, the names 

of all authors can again be written. However, if the reference contains three or more authors, the names of the second and 

subsequent authors can be replaced with “et al.”. 

5.3 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 

chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year of publication. 

Journal titles should not be abbreviated. Follow the same format used in recent issues. 
 

6. Short Notes 
 

6.1 Documents submitted for the short notes section must have a maximum of 3,000 words, including tables, figures and 

references. 

https://mc04.manuscriptcentral.com/surveymeth

	Insert from: "12-001-x2021001-eng.pdf"
	Page 1
	Page 2


