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181 



SORT 45 (2) July-December 2021, 93-120 DOI: 10.2436/20.8080.02.111 

Nonparametric estimation of the probability of 
default with double smoothing 

Rebeca Pel´ 1, Ricardo Cao2 and Juan M. Vilar2aez 

Abstract 

In this paper, a general nonparametric estimator of the probability of default is proposed 
and studied. It is derived from an estimator of the conditional survival function for cen-
sored data obtained with a double smoothing, on the covariate and on the variable of 
interest. An empirical study, based on modifed real data, illustrates its practical appli-
cation and a simulation study shows the performance of the proposed estimator and 
compares its behaviour with smoothed estimators only in the covariate. Asymptotic ex-
pressions for the bias and the variance of the probability of default estimator are found 
and asymptotic normality is proved. 

MSC:62G05, 62G07, 62G08, 62G20, 62N02, 62P20. 

Keywords: Censored data; kernel method, probability of default, risk analysis, survival analysis. 

1. Introduction 

Credit risk is an important research area. It is useful for fnancial companies to assess 
the risk of insolvency caused by unpaid loans. Estimating the probability of default on 
consumer credits, loans and credit cards is one of the main problems that banks, savings 
banks, savings cooperatives and other credit companies must address. For a fxed time, 
t, and a horizon time, b, the probability of default (PD) can be defned as the probability 
that a credit that has been paid until time t becomes unpaid not later than time t + b. To 
estimate the PD, banks and fnancial institutions typically use features of the credit and 
the clients. They usually build some linear combination (credit scoring) based on these 
informative variables and the probability of default is allowed to depend on this scoring 

1 Research Group MODES, Department of Mathematics, CITIC, University of A Coruña, A Coruña, Spain. 
2 Research Group MODES, Department of Mathematics, CITIC, University of A Coruña and ITMATI, A 

Coruña, Spain. 
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x, PD(t|x). A common aproach in credit scoring is using logistic regression to build the 
index. The logistic model of credit scoring has been studied by Wiginton (1980), Srini-
vasan and Kim (1987), Steenackers and Goovaerts (1989), Thomas, Crook and Edelman 
(1992) and Samreen and Zaidi (2012), among others. 

It can be deduced from the defnition of the PD that it is a relevant measure in other 
felds apart from the fnancial one. For example, companies that provide energy services 
(electricity, gas), water, streaming services (TV, cinema, music), telephone or internet 
are interested in estimating the probability that a customer who receives their services at 
time t will leave the company before time t + b. 

There is an extensive literature in which survival analysis methods are used for 
solving credit risk problems. Among others, we mention the work of Naraim (1992), 
Stepanova and Thomas (2002), Hanson and Schuermann (2004), Glennon and Nigro 
(2005), Allen and Rose (2006), Baba and Goko (2006), Beran and Djaı̈dja (2007) and 
Cao, Vilar and Devia (2009). A common feature of all these papers is the use of paramet-
ric or semiparametric regression techniques for modelling the time to default, including 
exponential models, Weibull models and Cox’s proportional hazards models, which are 
typical in this literature. Nonparametric curve estimation is a fexible approach that only 
uses the information that the data provides without making assumptions about the shape 
of the curve. Therefore, it is very convenient in this context. Following this idea, Cao 
et al. (2009) proposed a PD estimator using Beran’s estimator for the conditional sur-
vival function, Beran (1981). This work was expanded in the paper of Peláez, Cao and 
Vilar (2021b) who studied four nonparametric estimators of the probability of default in 
credit risk derived from estimators of the conditional survival function for censored data. 

In the recent work, Peláez, Cao and Vilar (2021a), a general nonparametric estimator 
of the conditional survival function with double smoothing is proposed and studied. This 
survival estimator is not only smoothed in the covariate but also in the time variable. A 
large simulation study shows there that the estimator with double smoothing improves on 
the corresponding nonparametric estimator of the survival function which is smoothed 
only in the covariate. Here, a general nonparametric estimator of the PD with double 
smoothing is proposed and studied. It is derived from the survival estimator with double 
smoothing studied in Peláez et al. (2021a). 

The remainder of this paper is organized as follows. In Section 2, the nonparamet-
ric estimator of the probability of default with double smoothing is defned, the doubly 
smoothed PD estimator based on Beran’s estimator is applied to a set of modifed real 
data and its asymptotic properties are presented. In Section 3, a simulation study shows 
the improvement obtained by using the double smoothing in several nonparametric esti-
mators of the probability default. Finally, Section 4 contains some concluding remarks. 
Appendix A includes terminology, assumptions and detailed theoretical results. Ap-
pendix B includes a sketch of proof of the theoretical results. 
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2. Nonparametric PD estimator with double smoothing 

Let {(Xi,Zi,δi)}n
i=1 be a simple random sample of (X ,Z,δ ) where X is the covariate, 

Z = min{T,C} is the follow-up time variable, T is the time to occurrence of the event, 
C is the censoring time and δ = I{T≤C} is the uncensoring indicator. It is assumed that 
an unknown relationship between T and X exists. In credit risk, usually, X is the credit 
scoring, Z is the observed maturity, T is the time to default and C is the time until the end 
of the study or the anticipated cancellation of the credit. The distribution function of T 
is denoted by F(t) and the survival function by S(t). The functions F(t|x) and S(t|x) are 
the conditional distribution and survival functions of T given X = x evaluated at t. In this 
context, let x be a fxed value of the covariate X and b any fxed value (typically, b = 12 
in months). Then the probability of default in a time horizon t + b from a maturity time, 
t, is defned as follows: 

PD(t|x) = P(T ≤ t + b|T > t,X = x) 

F(t + b|x) − F(t|x) S(t + b|x) (1) 
= = 1 − .

1 − F(t|x) S(t|x) 

Therefore, an estimator of PD(t|x) could be obtained by replacing S(t + b|x) and 
S(t|x) in (1) with appropriate estimators. Following this idea, Cao et al. (2009) and 
Peláez et al. (2021b) used nonparametric estimators of the conditional survival func-
tion, Sbh(t|x) with h = hn being the smoothing parameter for the covariate, to obtain the 
corresponding nonparametric estimator of PD(t|x) denoted by cPDh(t|x). 

In Peláez et al. (2021a) the following nonparametric estimator of the conditional 
survival function with double smoothing is proposed and studied: � �n t − Z(i)eSh,g(t|x) = 1 − ∑ s(i)K , (2)

gi=1 bwhere s(i) = Sh(Z(i−1)|x) − Sbh(Z(i)|x) with i = 2, ...,n and s(1) = 1− Sbh(Z(1)|x), Z(i) is the 
i-th element of the sorted sample of Z, K(t) is the distribution function of a kernel K,R tK(t) = −∞ K(u)du, and g = gn is the smoothing parameter for the time variable. This 
survival estimator, defned in (2), is not only smoothed in the covariate but also in the 
time variable. It is based on the idea of estimating the survival function in a point t 
conditional on x by means of a weighted mean of the values that the estimator Sbh(u|x) 
takes in points near t. 

Estimating the probability of default, PD(t|x), by means of the nonparametric es-
timator of the conditional survival function with double smoothing is the aim of this 
paper. For this purpose, S(t|x) in (1) is replaced by the doubly smoothed nonparametric 
estimator, Seh,g(t|x), obtaining the following nonparametric estimator of PD(t|x): 

eSh,g(t + b|x)fPDh,g(t|x) = 1 − . (3)eSh,g(t|x) 
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Since Sbh(t|x) is any arbitrary conditional survival estimator, the probability of de-
fault estimator fPDh,g(t|x) is very general. From now on, this paper focuses on the dou-
bly smoothed Beran’s estimator SeB (t|x) associated through (2) with the classic Beran’s h,g 
estimator of the survival function given by � �n 

Sb 
h
B(t|x) = ∏ 1 − 

I{Zi≤t, δi=1}wi,n(x) 
, (4) 

i=1 1 − ∑n
j=1 I{Z j<Zi}w j,n(x) 

where � � 
K (x − Xi)/h 

wi,n(x) = � � 
∑

n (x − Xj)/hj=1 K 

with i = 1, ...,n and h = hn is the smoothing parameter for the covariable. 
Using SeB (t|x) in (3), the smoothed probability of default estimator based on Beran’s h,g 

B
survival estimator is obtained. It is denoted by f 

h,gPD (t|x). 
However, any other estimator of the conditional survival function could be consid-

ered to obtain the corresponding smoothed estimator defned in (2) and then, to estimate 
the probability of default through the expression given in (3). In particular, two other sur-
vival estimators are considered in this work: the Weighted Nadaraya-Watson estimator 
(WNW) and the Van Keilegom-Akritas estimator (VKA). The WNW estimator was built 
following the idea of Cai (2003), where the survival estimator is based on local linear 
regression. Since the weighted local linear estimator presents problems when estimating 
probabilities, a constant ft is proposed in Peláez et al. (2021b). The VKA estimator was 
defned in Van Keilegom and Akritas (1999) and Van Keilegom, Akritas and Veraver-
beke (2001). The expressions for both estimators are shown in Section 2 of Peláez et al. 

SWNW SV KA (2021a) and they are denoted by b (t|x) and b (t|x). Their smoothed versions areh h 
built according to Equation (2), obtaining the following smoothed survival estimators: 
SeWNW (t|x) and SeV KA(t|x). Replacing Seh,g(t|x) with SeWNW (t|x) and SeV KA(t|x) in Equation h,g h,g h,g h,g 

WNW 
(3) gives the nonparametric smoothed estimators of PD(t|x) denoted by f (t|x) andPDh,g 

V KA fPD (t|x).h,g 

2.1. Application to real data 

In order to illustrate the use of these smoothed estimators in the context of credit risk, a 
real data set is analysed using the doubly smoothed Beran’s estimator. The data consists 
of a sample of 10000 consumer credits from a Spanish bank registered between July 
2004 and November 2006. They are also considered by Peláez et al. (2021b), where 
the PD is estimated using parametric and non-parametric methods for S(t|x) which are 
not smoothed in t, as is the case in this paper. The data set provides the credit scor-
ing computed for each borrower, the observed lifetime of the credit in months and the 
uncensoring indicator. To obtain each customer’s credit scoring, the fnancial institu-
tion adjusted a scoring model on several informative variables collected in the dataset: 
gender, marital status, profession, place of residence, type of housing, age, employment 
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history and bank account balance. See Devia (2016) for more details. Due to confden-
tiality, the estimated coeffcients of the original explanatory variables are not reported 
here. The resulting credit scoring is used as a covariate in this analysis. The sample cen-
soring percentage is 92.8%; equivalently, the proportion os credits for which the default 
is observed is 7.2%. An intentionally biased subsample was obtained from the original 
sample, so as so as not to show the true solvency situation of the bank and thus preserve 
confdentiality. 

Figure 1. Estimation of S(t|x) (left) and estimation of PD(t|x) (right) at horizon b = 5 for x = 0.5 
by means of the smoothed Beran estimator on the consumer credits dataset for h = 0.05 and three 
different values of g. 

The probability of default for x = 0.5 at horizon b = 5 months is estimated in a time 
grid along the interval [0,25] using the smoothed Beran’s estimator. The estimation is 
obtained with some different possible values of the time variable smoothing parameter, 
while the covariate bandwidth is fxed to a reasonable value (h = 0.05), since it has a 
very slight infuence on the estimation. Figure 1 shows the results. 

Beran’s estimation and the smoothed Beran’s estimation of the conditional survival 
function and the PD for h = 0.05 and g = 3 are shown in Figure 2. Although the survival 
estimations are very similar with both estimators, it can be seen how the roughness of 
the curve estimation is reduced and the jumps are removed when using the smoothed 
Beran’s estimator. This is even more remarkable when estimating the probability of 
default. 

According to the smoothed Beran’s estimation, the probability of default has an in-
creasing tendency. It follows from it that the higher the debt maturity, the higher the 
probability of falling into default for an individual with this credit scoring. 

Finally, sample quartiles of the credit scoring are considered for the group of clients 
with observed default (uncensored group) and the group with unobserved default (cen-
sored group). Figure 3 shows the PD estimation by means of the smoothed Beran’s 
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estimator for these values of the credit scoring at horizon b = 5 months with h = 0.05 
and g = 3. 

Figure 2. Estimation of S(t|x) (left) and estimation of PD(t|x) (right) at horizon b = 5 for x = 0.5 
by means of Beran’s estimator (dashed line) and smoothed Beran’s estimator (solid line) using 
the bandwidths h = 0.05 and g = 3 on the consumer credits dataset. 

Figure 3. Smoothed Beran’s estimation of PD(t|x) at horizon b = 5, for large (left) and small 
(right) values of the score x, using bandwidths h = 0.05 and g = 3. The large values chosen are 
the three sample quartiles of the score for nondefaulted credits, while the small values are the 
three sample quartiles of the score for the defaulted credits. 

2.2. Asymptotic results of the doubly smoothed Beran’s PD estimator 

B
Asymptotic properties of the smoothed Beran’s estimator of the PD, f (t|x), are ob-PDh,g 
tained using the results for the smoothed Beran’s survival estimator presented in Peláez 
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et al. (2021a). An intuitive idea of these results is shown here. The simplifed expression
B

of the asymptotic bias of f (t|x) is as follows: PDh,g � B �f 2ABias PD (t|x) = c1h2 + c2g ,h,g 

B
and the asymptotic variance of f (t|x) is given byPDh,g � B � 1 g hfAVar PD (t|x) = c3 + c4 + c5 ,h,g nh nh n 

for some real constants c1, c2, c3, c4 and c5. For detailed expressions of these constants 
and the asymptotic normality of the estimator, see Appendix A. For proofs of these 
results see Appendix B. 

It is diffcult to use the theoretical bias and variance in an applied context in order to 
compare estimators or to obtain optimal smoothing parameters, since the constants c1, 
c2, c3, c4 and c5 involved are complex and depend on too many population functions. 

3. Simulation study 

Intuitively, the improvement coming from smoothing in the time variable in the con-
ditional survival function estimator will lead to a similar gain for nonparametric PD 
estimators. The aim of this section is to explore this by simulation. 

Two models are considered and three different censoring scenarios are distinguished 
for each model. Model 1 is close to a proportional hazards model, while Model 2 moves 
away from this Cox’s model. The covariate X follows a U(0,1) distribution in both 
models. 

For Model 1, the time to occurrence of the event conditional on the covariate, T |X = x, 
follows a Weibull distribution with parameters d = 2 and A(x)−1/d where A(x) = 1+ 5x, 
and the censoring time conditional on the covariate, C|X = x, follows a Weibull distri-

2bution with parameters d = 2 and B(x)−1/d where B(x) = 10 + b1x + 20x , for some 
suitable values of b1. The conditional survival function, the probability of default and 
the censoring conditional probability of this model are the following: 

−A(x)td
S(t|x) = e , 

e−A(x)(t+b)d 

PD(t|x) = 1− , 
e−A(x)td 

P(δ = 0|X = x) = 
B(x) 

.
A(x)+ B(x) 

Setting x = 0.6, the chosen values are b1 = −27, b1 = −22 and b1 = −2, so that the 
censoring probability is 0.2, 0.5 and 0.8, respectively. The time horizon is b = 0.1 (20% 
of the time range) and the estimation is obtained in a time grid 0 < t1 < · · · < tnt of size 
nt where tnt + b = F−1(0.95|x = 0.6). 
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Model 2 considers an exponential distribution with parameter Γ(x) = 2 + 58x − 
2160x + 107x3 for the time to occurrence of the event conditional on the covariate, 

2T |X = x and an exponential distribution with parameter ∆(x) = 10 + d1x + 20x , for 
some suitable values of d1, for the censoring time conditional on the covariate, C|X = x. 
In this case, the conditional survival function, the probability of default and the censoring 
conditional probability are given by: 

−Γ(x)tS(t|x) = e , 

−Γ(x)bPD(t|x) = 1 − e , 

P(δ = 0|X = x) = 
∆(x) 

.
Γ(x)+ ∆(x) 

Setting x = 0.8, the chosen values are d1 = −113/4, d1 = −55/2 and d1 = −123/5, 
so that the censoring conditional probability is 0.2, 0.5 and 0.8, respectively. The time 
horizon is b = 0.7 (20% of the time range) and the PD is estimated in a time grid 0 < 
t1 < · · · < tnt of size nt where tnt + b = F−1(0.95|x = 0.8). 

The standard Gaussian kernel truncated in the range [−50,50] is used for both co-
variate and time variable smoothing. The sample size is n = 400, and the size of the 
lifetime grid is nt = 100. The boundary effect is corrected using the refexion principle 
proposed in Silverman (1986). 

These models were previously used in the simulation study of Peláez et al. (2021a). 
This makes it possible to compare the results obtained in both studies.

B
First, the performance of Beran’s PD estimator, c 

h (t|x), and the smoothed Beran’s PD 
B

PD estimator, f 
h,gPD (t|x), are compared. 

B
The optimal bandwidth for c 

h (t|x), h1, is taken as the value which minimises aPD 
Monte Carlo approximation of the mean integrated squared error (MISE) given by �Z � 

� cMISEx(h) = E PDh
B 
(t|x) − PD(t|x) 

�2dt 

based on N = 100 simulated samples. The value of MISEx(h) using this smoothing 
parameter is approximated from N = 1000 simulated samples and used, along with 
its square root (RMISE), as a measure of the estimation error which is committed by 

BcPDh (t|x). 
B

The smoothed PD estimator f (t|x) depends on two bandwidths: h that measures PDh,g 
the smoothing degree introduced in the covariate and g that measures the smoothing in 
the time variable. Two strategies are used in order to obtain these smoothing parameters. 

Strategy 1 

It consists in fxing the covariate smoothing parameter to the the optimal h1 for Be-
ran’s estimator and approximating the optimal smoothing parameter g. The error to 
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minimise is �Z � 
� 

B �2 fMISEx(h1,g) = E PD (t|x) − PD(t|x) dt h1,g 

considered as a function of the bandwidth g. It is approximated from N = 100 simulated 
samples in a grid of 50 g values and the bandwidth which provides the smaller error 
is chosen as g1. Then, N = 1000 samples are simulated to approximate MISEx(h1,g1) 

B 
which is the measure of the estimation error of f (t|x).PDh,g 

Strategy 2 

The optimal bandwidth (h2,g2) is chosen (from a meshgrid of 50 values of h and 50 
values of g) as the pair which minimises some Monte Carlo approximation of �Z � 

� 
B �2 fMISEx(h,g) = E PD (t|x) − PD(t|x) dt h,g 

based on N = 100 simulated samples. Then, the value of the MISE committed by 
B fPD (t|x) is approximated from N = 1000 simulated samples. h2,g2 

Figure 4. MISEx(h1,g) function approximated via Monte Carlo for the smoothed Beran’s 
estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with 
P(δ = 0|x) = 0.2 (left), P(δ = 0|x) = 0.5 (center) and P(δ = 0|x) = 0.8 (right). 
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Figure 5. MISEx(h,g) function approximated via Monte Carlo for the smoothed Beran’s es-
timator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with 
P(δ = 0|x) = 0.2 (left) and P(δ = 0|x) = 0.8 (right). 

The main advantage of using Strategy 1 is its lower computational cost, but it pro-
vides rather worse results than Strategy 2. It should be noted that neither the bandwidth 
obtained with Strategy 1 nor Strategy 2 can be used in practice but they produce a fair 
comparison since the estimators are built using the best possible smoothing parameters. 

The error curve MISEx(h1,g), which is minimised to obtain the optimal time smooth-
ing parameter according to Strategy 1, is shown in Figure 4 for each level of censoring 
conditional probability and each model. It follows from these graphs that the optimal 
bandwidth g is easily approximated by Strategy 1. 

The function MISEx(h,g) for Models 1 and 2 for the lowest and highest censoring 
levels is shown in Figure 5. These plots show the two-dimensional functions to be min-
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imised using Strategy 2. The red area is the region where this minimum is reached and 
its coordinates provide the optimal smoothing bandwidths. It is clear that the choice 
of the time bandwidth (g) notably affects the estimation the estimation error, whereas h 
seems not to affect much the quality of the estimator. 

On the contrary, the value of g for which the smallest error is committed does not 
seem to depend too much on the value of the covariate bandwidth (h). Figure 6 shows 
MISEx(h,g) as a function of g for some fxed values of h within the interval where the 
optimum is reached. The curves are similar and close for all values of h, mainly at the 
highest level of censoring conditional probability. 

Figure 6. MISEx(h, g) as a function of g, approximated via Monte Carlo for the smoothed 
Beran’s estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) 
for some fxed equispaced values of h ∈ [0.1, 0.5] with P(δ = 0|x) = 0.2 (left), P(δ = 0|x) = 0.5 
(center) and P(δ = 0|x) = 0.8 (right). 

The optimal bandwidths and the estimation errors that are committed by Beran’s 
estimator and the smoothed Beran’s estimator with both Strategies 1 and 2 for each 
model are shown in Table 1. The value of Ri is defned as follows: � B �fRMISE PD (·|x)hi,giRi(x) = � B � , cRMISE PD (·|x)h1 

with i = 1,2 depending on whether Strategy 1 or 2 is used. They help to compare the 
behaviour of the estimators and quantify the improvement of the double smoothing over 
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the smoothed estimator only in the covariate. The closer to 0 the value of R1 or R2, the 
greater the improvement with respect to Beran’s estimator. The relation between R1 and 
R2 (R1 greater than R2 or viceversa) also informs which of the two strategies reduces the 
error most. 

Table 1. Optimal bandwidths, RMISE, R1 and R2 of the PD estimation for Beran’s estimator, the 
smoothed Beran’s estimator with Strategy 1 and the smoothed Beran’s estimator with Strategy 2 
in each level of censoring conditional probability for Model 1 and Model 2. 

Model 1 Model 2 

P(δ = 0|x) 0.2 0.5 0.8 0.2 0.5 0.8 

BcPDh1 

h1 0.35714 
0.05437 

0.34694 
0.11195 

0.39796 
0.25738 

0.10306 
0.27128 

0.12265 
0.49813 

0.14224 
0.67999RMISE 

BfPDh1,g1 

h1 0.35714 
0.08347 
0.04065 
0.74765 

0.34694 
0.12265 
0.06574 
0.58723 

0.39796 
0.18633 
0.07246 
0.28153 

0.10306 
1.18571 
0.25222 
0.92974 

0.12265 
1.47755 
0.24154 
0.48489 

0.14224 
1.82245 
0.20558 
0.30233 

g1 

RMISE 

R1 

BfPDh2,g2 

h2 0.21429 
0.09327 
0.03845 
0.70719 

0.15714 
0.13735 
0.05941 
0.53068 

0.18980 
0.19612 
0.06208 
0.24120 

0.10816 
1.21122 
0.09210 
0.33950 

0.25918 
1.61020 
0.12350 
0.24793 

1.00000 
1.90204 
0.13434 
0.19756 

g2 

RMISE 

R2 

In all cases, RMISE values are lower for the smoothed Beran’s estimator with both 
Strategies 1 and 2 than for Beran’s estimator and this difference becomes bigger when

B
increasing the censoring conditional probability. The estimator f (t|x) with optimal PDh,g 
bandwidth (h2,g2) (Strategy 2) provides more accurate estimations than the others, since 
the relation 0 < R2 < R1 < 1 is satisfed for all cases. 

When the censoring conditional probability is 0.2 or 0.5 in Model 1, the time smooth-
ing with Strategy 1 reduces the error by about 35% and this improvement is about 60% 
when the conditional probability of censoring is 0.8. This improvement increases by an 
additional 5 − 10% when using Strategy 2. The error reduction in Model 2 with respect 
to the nonsmoothed PD estimator is more signifcant, reaching 50% and 70% when us-
ing Strategy 1 and censoring is moderate or heavy, respectively. This reduction is bigger 
when using Strategy 2, reaching 75 − 80%. 

A brief study not included here shows that the results of these simulations hold when 
the distribution of X is not uniform but a more realistic asymmetric distribution if X 
denotes the credit scoring. 

The computation time of both estimators should be considered in the comparison. 
Table 2 shows the CPU times (in seconds) that Beran’s estimator and the smoothed 
Beran’s estimator spend on estimating the probability of default curve in a 100-point 
time grid and a fxed value of x, for different values of the sample size. The smoothing 
parameters are fxed to the optimal ones for estimating estimating the curve. 
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Table 2. CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for each 
estimator and different sample sizes. 

n 50 100 200 400 1200 
Beran 0.01 0.01 0.01 0.02 0.03 

SBeran 0.03 0.03 0.03 0.05 0.20 

Table 2 shows that the second smoothing increases the CPU time and the Beran’s 
PD estimator with double smoothing is more affected by the increase in sample size 
than Beran’s estimator. 

It is expected that the two strategies used to fnd the optimal bandwidths will also 
have different computational effciency. Table 3 shows the CPU time (in minutes) for 
each strategy and several number of trials to check this. For both strategies the size of 
each sample is n = 400 and the PD is estimated in a time grid of size 100. The number of 
simulated samples to approximate the MISE by Monte Carlo is the parameter that varies 
in order to compare the CPU time of each strategy. Strategy 1 has a clear computational 
advantage over Strategy 2, since Strategy 2 is signifcantly slower. 

B
Table 3. CPU time (in minutes) for approximating the optimal bandwidth (h,g) for f (t|x)PDh,g 
with Strategies 1 and 2. 

N 50 100 150 200 
Strategy 1 3.01 4.28 5.40 7.32 
Strategy 2 80.61 204.51 228.01 296.95 

Since the improvement in statistical effciency that the time variable smoothing pro-
vides to Beran’s PD estimator has been verifed, it is interesting to check if other PD 
estimators based on other estimators for the survival function are equally improved by 
applying this type of smoothing. With this aim, in a second simulation study, the be-

WNW 
haviours of the smoothed Weighted Nadaraya-Watson estimator (SWNW), f (t|x),PDh,g 

V KA 
and the smoothed Van Keilegom-Akritas estimator (SVKA), f (t|x), are comparedPDh,g 
to each other as well as to the smoothed Beran’s estimator. 

Since the computational times of these estimators are pretty high, only Strategy 1 
is used to look for the optimal smoothing parameters, since Strategy 2 would further 
increase the computation time of the simulations. 

In order to quantify the improvement that the smoothing provides to the PD esti-
mators and compare the performance of the three estimators, the ratios R• S and R• are 
defned as follows: � • �fRMISE PD (·|x)h1,g1R• S(x) = � � ,•cRMISE PD (·|x)h1 � • �fRMISE PD (·|x)h1,g1R•(x) = c � B � ,fRMISE PD (·|x)h2,g2 

c 



being • = B, WNW, V KA and they are included in Table 4 along with the approximation 
of the optimal smoothing parameters and the error committed by each estimator. 

Table 4. Optimal bandwidths, RMISE, R• S and R• of the PD estimation for the smoothed Beran’s c 
estimator, the smoothed WNW estimator and the smoothed VKA estimator with Strategy 1 for 
each level of censoring conditional probability for Models 1 and 2. 

P(δ = 0|x) = 0.2 P(δ = 0|x) = 0.5 P(δ = 0|x) = 0.8 

SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA 

Model 1 

h1 0.35714 0.38776 0.25918 0.34694 0.90102 0.22857 0.39796 1.00000 0.23469 

g1 0.08347 0.14020 0.06327 0.12265 0.20531 0.11653 0.18633 0.28367 0.19347 

RMISE 0.04065 0.03513 0.06418 0.06574 0.03260 0.09957 0.07246 0.04705 0.09816 

R• S 0.74765 0.50036 0.88744 0.58723 0.19457 0.76112 0.28153 0.14115 0.38976 

R• c 1.05722 0.91365 1.66918 1.10655 0.54873 1.67598 1.16720 0.75789 1.58119 

Model 2 

h1 0.10306 0.09143 0.04567 0.12265 0.10694 0.05380 0.14224 0.11857 0.12837 

g1 1.18571 1.55102 1.44286 1.47755 1.77551 1.45714 1.82245 1.92857 1.52857 

RMISE 0.25222 0.12628 0.49730 0.24154 0.13406 0.37621 0.20558 0.13375 0.11410 

R•  0.92974 0.33177 1.63226 0.48489 0.19828 0.88273 0.30233 0.16480 0.16868 S
R• c 2.73855 1.37112 5.39957 1.95580 1.08551 3.04623 1.53030 0.99561 0.84934 
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The values of R• S report the infuence of the smoothing. The smaller the value, the 
better the estimation obtained with the smoothed estimator compared to the correspond-
ing nonsmoothed estimator. Since its value is less than 1 in almost all cases of Models 1 
and 2, it is confrmed that the smoothing in the time variable is an improvement of any 
of the estimators, mainly when censoring is heavy. In addition, the smaller the value of 
R• S, the greater the improvement that smoothing provides to the estimator. In this line, 
the doubly smoothed WNW estimator is the estimator whose error is reduced the most. 

The value of R• is useful to compare the behaviour of the three estimators withc 
B

the behaviour of f (t|x) (the smoothed Beran’s estimator with Strategy 2). SincePDh2,g2 

almost all the R• values obtained are greater than 1, it can be concluded that the smoothed c 
Beran’s estimator with Strategy 2 provides more accurate estimations of the probability 
of default. Moreover, the closer to 1 the value of R• c , the better the estimators. Thus, in 
general terms, the smoothed Beran’s estimator with Strategy 1 is the second best option 
for estimating the probability of default. 

In some cases the smoothed WNW estimator presents an R• less than 1, which in-c 
dicates that the error it makes is occasionally smaller than the errror committed by the 
smoothed Beran’s estimator with Strategy 2. Therefore, the smoothed WNW estimator 
appears to be competitive with Beran’s in some contexts. 

It is also appropriate to analyse the differences between the computacional times 
os these techniques. Table 5 shows the CPU time (in seconds) that is needed by each 
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estimator to obtain the probability of default curve in a time grid of size 100 and a fxed 
value of x for different values of the sample size. 

Table 5. CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for every 
estimator and different sample sizes. 

n Beran SBeran SWNW SVKA 

50 0.01 0.03 2.30 0.42 
100 0.01 0.03 6.33 1.80 
200 0.01 0.03 25.97 7.34 
400 0.02 0.05 140.62 53.99 

1200 0.03 0.20 1459.35 507.36 

The time variable smoothing clearly implies an increase of the CPU time. The three 
doubly smoothed PD estimators which were considered have higher CPU times than 
Beran’s estimator. It should be noted that the smoothed Beran’s estimator is least affected 
by the increase of the sample size and it is the fastest of the three doubly smoothed 
estimators. The CPU time of the smoothed VKA increases very fast with the sample 
size but the slowest method and most affected by the sample size is the smoothed WNW 
estimator. 

4. Conclusions 

A general doubly smoothed estimator of the probability of default is proposed in this pa-
per. Asymptotic properties of the smoothed PD estimator based on the smoothed Beran’s 
estimator for the survival function are proved and its asymptotic distribution is found. 
This doubly smoothed Beran’s estimator of the PD showed a remarkably good behavior 
in the scenarios analysed in the simulation study. The time variable smoothing results 
in a signifcant improvement of the PD estimator, since the estimation error (MISE) is 
reduced, mainly when using Strategy 2 for approximating the optimal bandwidth. How-
ever, the computational time is increased. These same evidences were observed in any of 
the smoothed PD estimators studied by simulation. Nevertheless, the smoothed Beran’s 
estimator of the PD turned out to have the most stable behaviour and to be the fastest 
of all. The selection of the smoothing parameters for the smoothed Beran’s estimator 
is still an outstanding problem. The study of automatic methods probably based on the 
bootstrap is an appealing idea to be considered for future work. 
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A. Asymptotic results of the doubly smoothed Beran’s estimator of 
the PD 

B
Asymptotic properties of the smoothed Beran’s estimator of the PD, f (t|x), arePDh,g 
shown in this section. The following notation is used. 

Let R : R −→ R be any function and defne the constants Z Z 
cR = R(t)2dt, dR = t2R(t)dt, 

and the functions Z u 
Rl(u) = ulR(u), Rl(u) = Rl(t)dt. (5) 

−∞ 

Given any function f : Rk −→ R, its frst derivatives with respect to the frst and 
second variables are denoted as follows: 

∂ f (x1, ...,xk) ∂ f (x1, ...,xk)f ′ (x1, ...,xk) = , ḟ (x1, ...,xk) = 
∂ x1 ∂ x2 

Correspondingly, the second derivatives with respect to the frst or second variable are 
¨ denoted by f ′′ (x1, ...,xk) and f (x1, ...,xk), respectively. Finally, let f ∗ g be the convolu-

tion of any two functions f and g. 
The required assumptions are listed below. They are standard in the literature and 

not too restrictive in this context. They were previously assumed in Peláez et al. (2021a), 
Dabrowska (1989) and Iglesias-Pérez and González-Manteiga (1999) in the nonparamet-
ric conditional survival function estimation setup. 

A.1. X , T , C are absolutely continuous random variables. 

A.2. The density function of X , m, has support [0,1]. 

A.3. Let H(t) = P(Z ≤ t) be the distribution function of Z and H(t|x) be the conditional 
distribution function of Z|X = x, 

(a) Let I = [x1,x2] be an interval contained in the support of m such that, 

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} = Γ < ∞ 

for some Ic = [x1 − c,x2 + c] with c > 0 and 0 < cΓ < 1. 

(b) For any x ∈ I, the random variables T |X = x and C|X = x are independent. 

(c) Denoting lH(·|x) = inf{t/H(t|x) > 0} and uH(·|x) = inf{t/H(t|x) = 1}, for any 
x ∈ Ic, 0 ≤ lH(·|x), 0 ≤ uH(·|x) 

(d) There exist l,u,θ ∈ R with l < u, satisfying inf{1 − H(u|x) : x ∈ Ic} ≥ θ > 0. 
Therefore 1− H(t|x) ≥ θ > 0 for every (t,x) ∈ [l,u] × Ic. 
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A.4. The frst and second derivatives of m, m ′ (x) and m ′′ (x), respectivaly, exist and are 
continuous in Ic. 

A.5. Let H1(t) = P(Z ≤ t,δ = 1) be the subdistribution function of Z when δ = 1. The 
corresponding density functions of H(t) and H1(t) are bounded away from 0 in 
[l,u]. 

A.6. Let H1(t|x) the conditional subdistribution function of Z|X = x when δ = 1. The 
frst and second derivatives with respect to t of the functions H(t|x) and H1(t|x), 
i.e. H ′ (t|x), H1 

′ (t|x), H ′′ (t|x) and H1 
′′ (t|x), exist and are continuous in [l,u] × Ic. 

A.7. The second partial derivatives frst with respect to x and second with respect to t 
of the functions H(t|x) and H1(t|x), i.e. Ḣ ′ (t|x) and ˙

1(t|x) respectively, exist and H ′ 

are continuous in [l,u] × Ic. 

A.8. The kernel, K, is a symmetric, continuous and differentiable density function with 
compact support [−1,1]. 

A.9. The smoothing parameters h = hn and g = gn satisfy h → 0, g → 0, and nh3 → ∞ 
and nhg2 → ∞ when n → ∞. 

Using the asymptotic results for the smoothed Beran’s estimator of the conditional 
survival function given in Peláez et al. (2021a), the asymptotic properties of the estimator 

BfPD (t|x) are obtained. The following are the functions required to state these results: h,g 

1{Z≤t,δ =1} 
Z t 1{u≤Z}

ξ (Z,δ , t,x) = − � �2 dH1(u|x),1− H(Z|x) 0 1 − H(u|x)Z � � 
η(Z,δ , t,x) = K(u) 1− F(t − gu|x) ξ (Z,δ , t − gu,x)du,� � 
Φξ (u, t,x) = E ξ (Z1,δ1, t,x)|X1 = u ,� � 
J(t|x) = 1− F(t|x) L(t|x),Z t dH1(z|x)L(t|x) = � �2 , o 1 − H(z|x)� � 
Dg(u, t1, t2,x) = Cov η(Z1,δ1, t1,x),η(Z1,δ1, t2,x)|X1 = u m(u),� � 
N(u, t1, t2,x) = E ξ (Z1,δ1, t1,x)ξ (Z1,δ1, t2,x) X1 = u ,� 
D(t,x) = 

� 
1− F(t|x) 

�2 m ′′ (x)N(x, t, t,x)+ m(x)N′′ (x, t, t,x)+ 2m ′ (x)N′ (x, t, t,x)� 
−2cKm(x)Φ′ 

ξ (x, t,x)Φ
′ 
ξ (x, t,x) ,� � 

dK 1− F(t|x) � � 
B1(t,x) = 2Φ

ξ 
′ (x, t,x)m ′ (x)+ Φ′′ 

ξ (x, t,x) ,2m(x) 
1

B2(t,x) = − dKF ′′ (t|x),
2 � � 

2cK � � t2 − t1C1(t1, t2,x) = J(t1|x) 1 − F(t2|x) K ∗ K , 
m(x) g 
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� � � 
cK t1 − t2C2(t1, t2,x) = 2J(t1|x) f (t2|x)K ∗ K1 m(x) g� ��� � t2 − t1 
+2J′ (t1|x) 1 − F(t2|x) K ∗ K1 , 

g�dK2 � �� � 
Φ′C3(t1, t2,x) = m(x) 1 − F(t1|x) 1− F(t2|x) ξ (x, t1,x)Φ

′ 
ξ (x, t2,x)m2(x) �1

D′′ + g(x, t1, t2,x) ,2 cKV1(t,x) = 
� 
1− F(t|x) 

�2L(t|x), 
m(x) 
cK(cK − 1)� �2V2(t,x) = 1 − F(t|x) L′ (t|x), 

m(x)� �dK2 � �2� �2 1
V3(t,x) = m(x) 1 − F(t|x) Φ′ 

ξ (x, t,x) + D(t,x) . 
m2(x) 2 

Another assumption related to the differentiability of the above functions is required: 

A.10 Let (t,x) ∈ [l,u] × Ic. The frst derivative of L(u|x) with respect to u exists at (t,x). 
The second derivative of m(u) exists et u = x. The second derivative of S(u|x) exists 
at (t,x) and (t + b,x). The second derivative of Φξ (u, t,x) exists at (x, t,x). The 
second derivative of J(u|x) exists at (t,x). The second derivative of Dg(u, t1, t2,x) 
exists at (x, t, t + b,x). The second derivatie of N(u, t1, t2,x) exists at (x, t, t,x). 

Theorem A.1. Let (t,x) ∈ [l,u] × Ic be such that S(t|x) > 0. Under assumptions A.1-
B � B �fA.10, expressions for the asymptotic bias of PDf 
h,g(t|x), ABias PD (t|x) , and theh,g 

B � B �fasymptotic variance of PDf 
h,g(t|x), AVar PDh,g(t|x) , are the following: � �� B � 1− PD(t|x) B1(t,x) − B1(t + b,x)f h2ABias PD (t|x) =h,g S(t|x)� � 

1 − PD(t|x) B2(t,x) − B2(t + b,x) 2+ g ,
S(t|x) � �� B � V1(t + b,x) S(t + b|x)C1(t, t + b,x) S(t + b|x)2V1(t,x) 1

AVar PD = − 2 +f (t|x)h,g S(t|x)2 S(t|x)3 S(t|x)4 nh � � 
V2(t + b,x) S(t + b|x)C2(t, t + b,x) S(t + b|x)2V2(t,x) g

+ − 2 +
S(t|x)2 S(t|x)3 S(t|x)4 nh � � 

V3(t + b,x) S(t + b|x)C3(t, t + b,x) S(t + b|x)2V3(t,x) h 
+ − 2 + .

S(t|x)2 S(t|x)3 S(t|x)4 n 
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Theorem A.2. Under the assumptions of Theorem A.1 and assuming Ch := limn→∞ n1/5h > 
B1/50 and Cg := limn→∞ n g > 0, the limit distribution of f (t|x) is given by PDh,g 

√ � B � dfnh PD (t|x) − PD(t|x) −→ N(µ,s0),h,g 

where � � 

C5/2 1− PD(t|x) B1(t,x) − B1(t + b,x)
µ = h S(t|x)� � 

1 − PD(t|x) B2(t,x) − B2(t + b,x) 
+C1/2Cg 

4/2 
h S(t|x) 

and � �� � 
V1(t + b,x) S(t + b|x) cK 1− F(t|x) 1 − F(t + b|x) L(t|x)2s = − 40 S(t|x)2 S(t|x)3 m(x) 

S(t + b|x)2V1(t,x)
+ .

S(t|x)4 

Remark 1. Assuming Ch := limn→∞ n1/5h > 0, but n1/5g → 0, the asymptotic distribution √ � B � dfof the smoothed Beran’s PD estimator is nh PD (t|x) − PD(t|x) −→ N(µe,s0). withh,g � � 

C5/2 1 − PD(t|x) B1(t,x) − B1(t + b,x)
µe = .h S(t|x) 

nh1/5h → 0, n1/5Assuming n g → 0 and → ∞, the asymptotic distribution of the 
(lnn)3 

√ � B � dsmoothed Beran’s PD estimator is nh PD (t|x) − PD(t|x)f 
h,g −→ N(0,s0). 

B. Proofs 

Proofs of the results shown in Appendix A are done using results from papers Peláez 
et al. (2021b) and Peláez et al. (2021a). 

Proof of Theorem A.1. 

P
Denote P = S(t + b|x), Q = S(t|x) and PD(t|x) = 1 − . Similarly, Pe = SeB (t + b|x),h,gQ eB P
Qe = e (t|x) and f (t|x) = 1 − . As a consequence of the proof of Theorem 1 in SB PDh,g h,g 

Qe 
Peláez et al. (2021b): � B � 

ABias PDf (t|x) = α1 + α2 + α3, (6)h,g 
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� B �fAVar PD (t|x) = β1 + β2 + β3,h,g (7) 

where 

P E( eP)
α1 = − ,

Q E( eQ) 

eCov( eP,Q)
α2 = ,

E( eQ)2 

h i�e �2P eE Q − E( eQ)eQ
α3 = − 

E( eQ)2 
(8) 

and 
Var( eP)

β1 = ,
E( eQ)2 

E( e eP)Cov( eP,Q)
β2 = −2 ,

E( eQ)3 

E( eP)2Var( eQ)
β3 = . 

E( eQ)4 
(9) 

The asymptotic expressions for the bias, the covariance and the variance of the sur-
vival estimator SeB (t|x) are obtained from Theorems 3 and 4 of Peláez et al. (2021a): h,g � � 

SeB 2Bias (t|x) = B1(t,x)h2 + B2(t,x)g + o(h2), (10)h,g � � 
Cov SeB (t1|x),SeB (t2|x) = C1(t1, t2,x) 

1 
+C2(t1, t2,x) 

g 
h,g h,g nh nh (11)h 

+C3(t1, t2,x) + Rn(t,x), n � � 1 g h
Var SeB (t|x) = V1(t,x) +V2(t,x) +V3(t,x) + Rn(t,x), (12)h,g nh nh n� � 

g2 h
where Rn(t,x) = o + .

nh n 
Considering Equations (8)-(12), detailed expressions for α1, α2 and α3 are obtained 

as follows: 
2P P + B1(t + b,x)h2 + B2(t + b,x)g + o(h2)+ o(g2)

α1 = −
Q Q + B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

2PQ + PB1(t,x)h2 + PB2(t,x)g + o(h2)+ o(g2) 
= � �+ 

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

2−PQ − QB1(t + b,x)h2 − QB2(t + b,x)g + o(h2)+ o(g2)� � 
Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

PB1(t,x)h2 − QB1(t + b,x)h2 + o(h2)+ o(g2) 
= � �+ (13) 

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

2PB2(t,x)g2 − QB2(t + b,x)g + o(h2)+ o(g2)� � 
Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2)� � 
1 − PD(t|x) B1(t,x) − B1(t + b,x)

h2 
S(t|x) 

= � � 
1− PD(t|x) B2(t,x) − B2(t + b,x) 2+ g + o(h2)+ o(g2),

S(t|x) 
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C1(t, t + b,x) 1 C2(t, t + b,x) g C3(t, t + b,x) h
α2 = + + + Rn(t,x), (14)

S(t|x)2 nh S(t|x)2 nh S(t|x)2 n h 
P � �2 

i eE Qe − E(Qe)
Qe Var(Qe)

α3 = ≤ 
E(Qe)2 E(Qe)2 (15) 

V1(t,x) 1 V2(t,x) g V3(t,x) h 
= + + + Rn(t,x).S(t|x)2 nh S(t|x)2 nh S(t|x)2 n 

Plugging (13), (14) and (15) into (6) and using Assumption A.9, � �� B � 1− PD(t|x) B1(t,x) − B1(t + b,x)f h2ABias PD (t|x) =h,g S(t|x)� � 
1 − PD(t|x) B2(t,x) − B2(t + b,x) 2+ g ,

S(t|x) 

and the bias part in Theorem A.1 is proved. 
Now, expressions (9), (10), (11) and (12) lead to 

V1(t + b,x) 1 V2(t + b,x) g V3(t + b,x) h
β1 = + + + Rn(t,x), (16)

S(t|x)2 nh S(t|x)2 nh S(t|x)2 n 

S(t + b,x)C1(t, t + b,x) 1 S(t + b,x)C2(t, t + b,x) g
β2 = −2 − 2

S(t|x)3 nh S(t|x)3 nh 
(17)

S(t + b,x)C3(t, t + b,x) h −2 + Rn(t,x),S(t|x)3 n 

S(t + b,x)2V1(t,x) 1 S(t + b,x)2V2(t,x) g
β3 = +

S(t|x)4 nh S(t|x)4 nh 
(18)

S(t + b,x)2V3(t,x) h 
+ + Rn(t,x),S(t|x)4 n 

and plugging Equations (16), (17) and (18) in (7) the variance part in Theorem A.1 is 
proved. ■ 

Proof of Theorem A.2 

From Equations (1) and (3) follows: 

SeB 
h,g(t + b|x) S(t + b|x) � B �f− = − PDh,g(t|x) − PD(t|x) . (19)eSB (t|x) S(t|x)

h,g 

1 S(t + b|x)
On the other hand, denoting a1 = , a2 = − and

S(t|x) S(t|x)2 � � � � e SB� � S(t|x) SB (t + b|x) − S(t + b|x) − S(t + b|x) e (t|x) − S(t|x)h,g h,gC SeB (t|x) = ,h,g 
SeB (t|x)S(t|x)h,g 
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it holds 

eSh
B 
,g(t + b|x) S(t + b|x) � � � � 

− = a1 SeB (t + b|x) − S(t + b|x) + a2 SeB (t|x) − S(t|x)h,g h,gSeB (t|x) S(t|x)
h,g � �e� � SB (t|x)h,ge+C SB (t|x) 1 − ,h,g S(t|x) 

and considering (19): 

BfPD(t|x) − PD (t|x)h,g� � � � 
= a1 SeB (t + b|x) − S(t + b|x) + a2 SeB (t|x) − S(t|x)h,g h,g� �� � SeB (t|x) 

(20) 
h,ge+C SB (t|x) 1 − .h,g S(t|x) 

peSince SeB (t|x) is a consistent estimator of S(t|x), SB (t|x) −→ S(t|x). Thus,h,g h,g 

SeB (t|x)h,g p
1 − −→ 0.

S(t|x) 

√ � B �fTherefore, the asymptotic distribution of nh PD (t|x) − PD(t|x) is the same as theh,g 
asymptotic distribution of the linear combination 

√ � � √ � � 
a1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x) .h,g h,g 

From Lemma 1 in Peláez et al. (2021a), SeB (t|x) is split up into the following terms h,g 

n 
SeB 

h,g(t|x) = S(t|x)+ ∑ 
i=1 

ϕn,i(t,x)+ B2(t,x)g2 + Rn(t|x), (21) 

� � 
1 K (x − Xi)/h 

where ϕn,i(t,x) = η(Zi,δi, t,x) are independent and identically dis-
nh m(x) 

tributed random variables for all i = 1, ...,n and Rn(t|x) is negligible with respect to 
the other terms: � �3/4 � � nlnn 12)+ Op h2

∑ ϕn,i(t,x).Rn(t|x) = Op + √+ o(g
nh nh i=1 

Using (21), 
√ � � √ � � 

a1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x)h,g h,g 
√√n (22)

∑ ϕen,i(t,x)+ a1B2(t + b,x)g2 nh + a2B2(t,x)g2 nh+ Re n(t,x),= 
i=1 
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where √ � � 
ϕen,i(t,x) = nh a1ϕn,i(t + b,x)+ a2ϕn,i(t,x) (23) 

and √ � � 
Re n(t,x) = nh a1Rn(t + b,x)+ a2Rn(t,x)� �3/4√ lnn √ 

= nh(a1 + a2)Op + nh(a1 + a2)o(g2)
nh (24)� � n 

+Op h2 + √ 
1 

∑ ϕen,i(t,x). 
nh i=1 � � 

Since h → 0 and nh → ∞, the term Op h2 + √ 
1 

∑
n
i=1 ϕen,i(t,x) in (24) is negligible 

nh 
with respect to ∑n 

ϕn,i(t,x) in (22). Given that g → 0, the term 
√ 

nh(a1 + a2)o(g2) ini=1 e √ √ 
(24) is negligible with respect to a1B2(t +b,x)g2 nh+a2B2(t,x)g2 nh in (22). Finally, 

√ 
� �3/4lnn

the term nh(a1 + a2)Op in (24) is negligible with respect to ∑n
i=1 ϕen,i(t,x) innh 

4/5nh Chn
(22) because = → ∞. The variance of the dominant term in (22) is O(1): 

(lnn)3 (lnn)3 � � � � 
Var ∑

n
i=1 ϕen,i(t,x) = nVar ϕen,1(t,x)� � � � � 

= n2h a1
2Var ϕn,1(t + b,x) + a2

2Var ϕn,1(t,x) (25)� �� 
+2a1a2Cov ϕn,1(t + b,x),ϕn,1(t,x) . 

From the proof of Theorem 3 in Peláez et al. (2021a), � � 
Cov ϕn,1(t1,x),ϕn,1(t2,x) � � � � 

2cK � �� � t2 − t1 1 g 
= 1− F(t1|x) 1 − F(t2|x) L(t1|x)K ∗ K + O . 

m(x)n2 g h n3h � � � � 
t2 − t1 b

In particular, for t1 = t, t2 = t + b, K ∗ K = K ∗ K and 
g g � � Z +∞b

lim K ∗ K = lim K(y)K(u− y)dy 
n→∞ g u→∞ −∞Z Z+∞ +∞ 

= lim K(u − y)K(y)dy = K(y)dy = 1. 
u→∞−∞ −∞ 

Consequently,� � 
Cov ϕn,1(t + b,x),ϕn,1(t,x) � � � � 

2cK � �� � 1 g 1 
= 1 − F(t|x) 1− F(t + b|x) L(t|x) + O + o . (26)

m(x)n2 h n3h n2h 

For t1 = t2, 
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� � Zt2 − t1K ∗ K = K ∗ K(0) = K(u)K(−u)du 
g Z Z �Z � Z Zu 

= K(u)K(u)du = K(u) K(v)dv du = K(u)K(v)dudv 
−∞ {v≤u�}�Z Z Z Z1 

= K(u)K(v)dudv + K(v)K(u)dvdu 
2 Z Z {v≤u} {u≤v}
1 1 

= K(u)K(v)dudv = .
2 R2 2 

So, � � cK � �2� 1 
� 

g 
� 

Var ϕn,1(t,x) = 1 − F(t|x) L(t|x) + O . (27)
m(x)n2 h n3h 

Replacing (26) and (27) in (25), � � 
Var ∑

n
i=1 ϕen,i(t,x) 

2 cK � �2 2 cK � �2 
= a 1 − F(t + b|x) L(t + b|x)+ a 1− F(t|x) L(t|x)1 m(x) 2 m(x) 

cK � �� � � 
g 
� 

+4a1a2 1− F(t|x) 1 − F(t + b|x) L(t|x)+ O + o(1). 
m(x) n � � 

Thus, Var ∑
n
i=1 ϕen,i(t,x) = O(1) and the linear combination can be expressed as (22) 

with Re n(t,x) negligible with respect to the term ∑n
i=1 ϕen,i(t,x). Therefore, we proceed to 

analyse the asymptotic distribution of ∑n
i=1 ϕen,i(t,x). 

As the variables ϕn,i(t,x) are independent and identically distributed for all i =� � 
1, ...,n, the variables ϕen,i(t,x) are also so. In addition, Var ϕen,i(t,x) exists and it is 
fnite for all i = 1, ...,n. In this scenario, if Lindeberg’s condition for triangular arrays 
(see Theorem 7.2 in Billingsley (1968)) is satisfed, then 

n � � �� 
d

∑ ϕen,i(t,x) − E ϕen,i(t,x) −→ N(0,s0), (28) 
i=1 

where 
cK � �2 cK � �22 2 2s = a 1 − F(t + b|x) L(t + b|x)+ a 1 − F(t|x) L(t|x)0 1 2m(x) m(x)

cK � �� � (29) 
+4a1a2 m(x) 

1− F(t|x) 1 − F(t + b|x) L(t|x). 

We will now check Lindeberg’s condition: 

1 
� n � � ��2 

� 

lim E ∑ ϕen,i(t,x) − E ϕen,i(t,x) 1n,i = 0 (30)
n→∞ s2 

0 i=1 

for every ε > 0, where 1n,i denotes the indicator function given by � � 
1n,i = 1 ϕen,i(t,x) − E[ϕen,i(t,x)] > εs0 . 
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Using assumption A.3d, ξ (Z,δ , t,x) is found out to be bounded: 

1{Z≤t,δ =1} 
Z t dH1(u|x)|ξ (Z,δ , t,x)| = − � �21 − H(Z|x) 0 1− H(u|x) 

1{Z≤t,δ =1} 
Z t dH1(u|x) 1 Z t dH1(u|x)≤ + � �2 ≤ +

1 − H(Z|x) 0 1 − H(u|x) θ 0 θ 2 

1 H(t|x) 1 1 ≤ + ≤ +
θ θ 2 θ θ 2 

and, consequently, η is also bounded: Z � �� � 1 1 |η(Z,δ , t,x)| ≤ K(u) 1 − F(t − gu|x) + du 
θ θ 2� �� �21 1 � � g � � 

= + 1 − F(t|x) + dK 1− F ′′ (t|x) + O(g2).
θ θ 2 2 � 

Since η is bounded, K and m(x) have compact support and nh → ∞, ϕen,i(t,x), i = 
1, ...,n, n ∈ N is a sequence of random variables which is bounded by a convergent to 
zero sequence. Hence, there exists n0 ∈ N such that for all i = 1, ...,n, 1n,i = 0 for all 
n ≥ n0 and accordingly, 

1 
� n � � ��2 

� 

lim E ϕen,i(t,x) − E ϕen,i(t,x) 1n,i = 0, 
n→∞ s2 ∑ 

0 i=1 

which proves Lindeberg’s condition given in (30). 
Furthermore, from Theorem 3 in Peláez et al. (2021a), � �� � h2 h2 

E ϕn,1(t,x) = B1(t,x) + o , 
n n 

so, � � � � 
E ∑i

n 
=1 ϕen,i(t,x) = nE ϕen,1(t,x)√ � � √ � � 

= a1n nhE ϕn,1(t + b,x) + a2n nhE ϕn,1(t,x)√ � � 
= nh5 a1B1(t + b,x)+ a2B1(t,x)+ o(h2) . 

Therefore, taking into account that h = Chn−1/5, we have 

n 
d

∑ ϕen,i(t,x) −→ N(µ0,s0), 
i=1 

where � � 
C5/2 

µ0 = h a1B1(t + b,x)+ a2B1(t,x) . 

Consequently, recalling (22) and assuming g = Cgn−1/5, 
√ � � √ � � d a1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x) −→ N(µ1,s0),h,g h,g 



120 Nonparametric estimation of the probability of default with double smoothing 

where 
C4/2 

µ1 = µ0 +C1/2 
g 

� 
a1B2(t + b,x)+ a2B2(t,x) 

� 
.h 

1 S(t + b|x)
Finally, using equation (20) with a1 = and a2 = − , the asymptotic 

S(t|x) S(t|x)2 

distribution of the PD estimator holds: 
√ � B � dfnh PD (t|x) − PD(t|x) −→ N(µ,s0),h,g 

where µ = −µ1. Then, � � 

C5/2 S(t + b|x) B1(t + b,x)
µ = h B1(t,x) −S(t|x)2 S(t|x)� � 

+C1/2C4/2 S(t + b|x) B2(t + b,x) 
h g S(t|x)2 B2(t,x) − 

S(t|x)� � 

C5/2 1− PD(t|x) B1(t,x) − B1(t + b,x) 
= h S(t|x)� � 

1 − PD(t|x) B2(t,x) − B2(t + b,x) 
+C1/2Cg 

4/2 
h S(t|x) 

and � �2 � �2
1 cK 1 − F(t + b|x) L(t + b|x) S(t + b|x)2 cK 1 − F(t|x) L(t|x)2s = +0 S(t|x)2 m(x) S(t|x)4 m(x)� �� � 
S(t + b|x) cK 1 − F(t|x) 1 − F(t + b|x) L(t|x)

−4 
S(t|x)3 m(x)� �� � 

V1(t + b,x) S(t + b|x) cK 1 − F(t|x) 1 − F(t + b|x) L(t|x) 
= − 4

S(t|x)2 S(t|x)3 m(x) 
S(t + b|x)2V1(t,x)

+ .
S(t|x)4 

■ 
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Modifed almost unbiased two-parameter 
estimator for the Poisson regression model with 

an application to accident data 
2Mustafa I. Alheety1, Muhammad Qasim2, Kristofer Månsson 

and B.M. Golam Kibria3 

Abstract  

Due to the large amount of accidents negatively affecting the wellbeing of the sur-
vivors and their families, a substantial amount of research is conducted to determine 
the causes of road accidents. This type of data come in the form of non-negative inte-
gers and may be modelled using the Poisson regression model. Unfortunately, the com-
monly used maximum likelihood estimator is unstable when the explanatory variables of 
the Poisson regression model are highly correlated. Therefore, this paper proposes a 
new almost unbiased estimator which reduces the instability of the maximum likelihood 
estimator and at the same time produce smaller mean squared error. We study the sta-
tistical properties of the proposed estimator and a simulation study has been conducted 
to compare the performance of the estimators in the smaller mean squared error sense. 
Finally, Swedish traffc fatality data are analyzed to show the beneft of the proposed 
method. 

MSC: 62J05; 62J07. 

Keywords: Applied traffc modeling, Maximum likelihood estimator, Mean squared error matrix, 
Poisson regression, Simulation study, Traffc fatality. 

1.  Introduction  

According to the World Health Organization (2015), fatalities caused by motor vehicle 
collisions leads to more than 1.2 million deaths worldwide. This large amount of acci-
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dents negatively affects the wellbeing of the survivors and their families (Donaldson, 
Brooke and Faux, 2009). Therefore a great interest exists in developing new models and 
methods to estimate the causes of accidents. Examples of previous research where new 
methods are suggested have appeared in Ivan, Wang and Bernardo (2000), Lyon et al. 
(2003), Lord, Manar and Vizioli (2005b), Chiou and Fu (2013) and Shi, Abdel-Aty and 
Lee (2016) among others. This paper is motivated by the work of Shi et al. (2016) and 
focuses on the issue of multicollinearity which is defned as the situation when two or 
more explanatory variables are highly correlated. 

The problem of multicollinearity has signifcant impact on the performance of ordi-
nary least squares (OLS) estimation of unknown regression coeffcients. Furthermore, it 
leads to instability and a high variance of the parameters estimated by OLS and eventu-
ally provides the wrong sign of the regression coeffcients. Another consequence of mul-
ticollinearity is the wider confdence interval, decreased statistical power which result in 
increased probability of type II error in hypothesis testing in terms of the parameters. As 
a solution to this problem for linear regression models, Hoerl and Kennard (1970a, 1970b) 
proposed the ridge regression (RR) method, which is a biased or shrinkage estimator, as 
an alternative to ordinary least squares. They showed that one may reduce the variance 
of the estimated coeffcients substantially by introducing a small amount of bias. This 
method was generalized in order to be used for models estimated by maximum likeli-
hood estimator (MLE) such as the logit and Poisson models by Schaefer, Roi and Wolfe 
(1984) and M˚ ansson and Shukur ansson and Shukur (2011), among others. Kibria, M˚ 
(2015) proposed several estimators for estimating the ridge parameter k based on Poisson 
ridge regression (PRR) model. Liu (1993) by taking the advantage of ridge regression 
and Stein estimator (1956), proposed a new biased estimator and showed its merit for the 
linear regression model. The ridge (Hoerl and Kennard, 1970a), Liu (1993) and Liu-type 
estimators have been developed for other generalized linear models such as negative bi-
nomial regression, Poisson regression, zero infated Poisson regression, gamma regres-
sion and beta regression models, for instances, see Månsson (2011), Månsson (2013), 
Asar and Genç (2018), Cetinkaya and Kaciranlar (2019), Toker, Ustundağ and Qasim 
(2019), Qasim et al. (2020a, 2020b), Kibria, Månsson and Shukur (2013), Huang and 
Yang (2014), Kurtoglu and Ozkale (2016), Qasim, Amin and Amanullah (2018), Luk-
man et al. (2020), Amin, Qasim and Amanullah (2019), Amin et al. (2020a, 2020b), 
Karlsson, M˚ ˚ansson and Kibria (2020), Qasim, Mansson and Kibria (2021) among others. 

In this paper, we propose a new general biased estimator for Poisson regression 
model, which will be called the modifed almost unbiased two-parameter Poisson esti-
mator (MAUTPPE). The previous methods suggested by Månsson and Shukur (2011) 
and Shi et al. (2016) have disadvantages of inducing much bias. This is an unattractive 
property to applied researchers of these estimators and therefore, in this paper, we sug-
gest a bias correction that substantially reduces the bias and still solves the problem of 
multicollinearity. As an illustration of this new method, we model traffc fatality data 
of Sweden. We show a substantial increase of predictive power of this new method as 
compared to MLE and the standard ridge regression method. 
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The organization of the paper is as follows. The proposed estimator and its superi-
ority are given in Section 2. The estimation of the shrinkage parameters are outlined in 
Section 3. To compare the performance of the estimators, a simulation study has been 
conducted in Section 4. An application about the traffc fatalities in Sweden is given in 
Section 5. Finally some concluding remarks are given in Section 6. 

2.  Statistical  methodology  

2.1.  Maximum  likelihood  estimator  for  the  Poisson  regression  model  

The Poisson regression model is used when the dependent variable (yi) comes in the 
form of count data and distributed as P(µi) , where µi is a parameter of the Poisson 
distribution and it can be written as µi = exp(xiβ ) as mean response function for the 
Poisson regression model, where xi is the i-th row of X which is a n × (p + 1) data 
matrix with p explanatory variables and β is a (p + 1) × 1 vector of coeffcients. The 
traditional MLE is used to estimate β . The log likelihood of this model corresponds to: 

n n n 
L(β ;y) = ∑ exp(xiβ )+ ∑ yi log(exp(xiβ )) + log(∏yi!) (1) 

i=1 i=1 i=1 

Solving L(β ;y) with respect to β results in: 

n
∂ L 

= ∑(yi − exp(xiβ ))xi = 0
∂β i=1 

Now, we use the iteratively re-weighted least squares (IRLS) algorithm to get the MLE 
which can be written as follows: 

= (XT ˆβ̂ WZ = (S)−1XT ˆ (2)WX)−1XT ˆ WZ, 

ˆ ˆwhere S = XTWX , W = diag(µ̂i) and Z is the column vector with 

yi − µ̂iZi = log(µ̂i) 
µ̂i 

The MLE of β̂ is asymptotically unbiased estimator of β . When the explanatory vari-
ables are suffering for high correlation, the matrix S is ill-conditioned and the MLE be-
comes unstable with high variance. To solve this problem, Månsson and Shukur (2011) 
introduced the Poisson ridge estimator (PRE) as follows: 

β̂PRR = (S + kIp)
−1Sβ̂ ,k > 0 (3) 

Also, Månsson et al. (2012) and Qasim et al. (2019) proposed the Poisson Liu regression 
estimator (PLRE) as: 

β̂ (S + Ip)
−1(S + dIp)β̂PLE = 
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= [Ip − (1− d)(S + Ip)
−1]β̂ , 0 < d < 1 (4) 

In order to get an estimator that performs better than the PRE and PLRE, Asar and 
Genç (2018) proposed the following two-parameter Poisson estimator (TPPE) as: 

β̂TPE = Tk,d β̂ , k > 0, 0 < d < 1 (5) 

where Tk, d = (S + kIp)
−1(S + kdIp). 

2.2. The proposed estimator 

The TPPE (Asar and Genç, 2018) is the biased estimator and it has disadvantage of in-
ducing considerable bias. This is an unattractive property to applied researchers. There-
fore, in this section, we propose a bias correction that substantially reduces the bias and 
is more effcient than TPPE as well as improved estimators. The new estimator, which 
we called the modifed almost unbiased two-parameters Poisson estimator, denoted by 
β̂MAUTPPE and defned as follows: 

β̂MAUTPPE = Fk,d β̂ , k > 0, 0 < d < 1 (6) 

where Fk,d = [Ip − (1 − d)2(S + Ip)
−2](Ip + kS−1)−1 , 0 < d < 1,k > 0. 

The estimator in (6) is motivated from the following fact: The bias of β̂PLE in Eq. 
(4) is given as 

Bias(β̂PLE) = −(1− d)(S + Ip)
−1

β . 

Hence, by following Kadiyala (1984), the biased corrected of β̂PLE can be defned as 

β̃PLE = β̂PLE +(1 − d)(S + Ip)
−1

β̂ . 

Therefore, by following Ohtani (1986), we replace the β̂ by β̂PLE to get the almost 
unbiased PLRE, β̃PLE: 

β̃PLE = [Ip − (1− d)(S + Ip)
−1]β̂PLE 

= [Ip − (1− d)2(S + Ip)
−2](Ip + kS−1)−1

β̂ (7) 

Now, if we replace β̂ in Eq. (7) by β̂PRE from Eq. (3), we get the proposed estimator in 
Eq. (6). 

The properties of the MAUTPPE are obtained as follows: 

E(β̂MAUTPPE) = Fk, dβ 

The bias of the MAUTPPE: 

Bias(β̂MAUTPPE) = (Fk, d − Ip)β 
= [(Ip − (1 − d)2(S + Ip)

−2)(Ip + kS−1)−1 − Ip]β 
= = S−1{−k(S + Ip)

2 − S(1− d)2}(S + Ip)
−2(S + kIp)

−1Sβ 
∗ = B1. (8) 

The variance covariance matrix of the MAUTPPE is given as: 

Cov β̂MAUTPPE = Fk, dS−1Fk,d . (9) 
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2.3. Properties of the estimators 

We use the spectral decomposition in order to fnd the matrix mean square error (MMSE) 
and scalar mean squared error (SMSE). So, we can rewrite the matrix S as S = PΛPT , 
where P and Λ are the eigenvectors and eigenvalues of the matrix S, respectively, such 
that Λ = diag(λ1, . . . ,λp). Since MAUTPPE is the biased estimator, we have to use the 
MMSE as a criterion for goodness of ft where it is containing all relevant information 
regarding the estimators (such as, variance and biased). The MMSE of an estimator β̃ 

of β can be written as: 

MMSE(β̃ ) = E(β̃ − β )(β̃ − β )T 

= Var(β̃ )+(Bias(β̃ ))(Bias(β̃ ))T 

MMSE(β̂MAUTPPE) = P(Ip + kΛ
−1)−1(Ip − (1 − d)2(Λ + Ip)

−2) 
+ B1BT

Λ
−1(Ip − (1− d)2(Λ + Ip)

−2)(Ip + kΛ
−1)−1PT 

1,(10) 

where k and d are the biasing parameters and B1 = Bias(β̂MAUTPPE) = (Fk, d − Ip)α , 
where α = PT

β . 
If we take the trace of MMSE, then we get SMSE as follows: 

SMSE(β̃ ) = tr(MMSE(β̃ )) (11) 

So, � �2 2p (λ j + 1)2 − (1 − d)2 + α2 + λ j(1− d)2λ j k(λ j + 1)2 

MMSE(β̂MAUTPPE) = ∑ 
j=1 (λ j + k)2(λ j + 1)2 

(12) 
Asar and Genç (2018) computed the MMSE and SME of the TPPE as: 

+ B2BTMMSE(β̂TPE) = P(Λ + k)−1(Λ + kdIp)Λ
−1(Λ + kdIp)(Λ + k)−1PT 

2, 

p p α2(λ j + kd)2 
j (d − 1)2k2 

SMSE(β̂TPE) = ∑ + ∑
λ j(λ j + k)2 (λ j + k)2 

j=1 j=1 

where B2 = Bias(β̂TPE) = P(Λ + kIp)
−1α(d − 1)k. 

The MMSE and SMSE of the MLE are defned respectively as follows: 

= PΛ
−1PTMMSE(β̂ ) = S−1 . 

p 

∑ 
1

SMSE(β̂ ) = 
j=1 λ j 
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2.4. The performance of the proposed estimator 

2.4.1. The comparison between the MLE and MAUTPPE 

The comparison between MLE and MAUTPPE are illustrated using matrix mean squared 
error (MMSE): 

MMSE(β̂ ) = S−1 . 

MMSE(β̂MAUTPPE) = Fk,dS−1Fk,d + B1BT 
1, 

We state the following theorem to demonstrate the comparison between MLE and 
MAUTPPE. 

Theorem 2.1. Under MMSE criterion, the MAUTPPE (β̂MAUTPPE ) is superior to the 
MLE (β̂ ), namely, MMSE(β̂ ) − MMSE(β̂MAUTPPE) ≥ 0 if and only if: 

BT 
1[S

−1 − Fk, dS−1Fk,d ]
−1B1 ≤ 1 

Proof. The difference of MMSE values between MLE and MAUTPPE can be found as 

∆1 = MMSE(β̂ ) − MMSE(β̂MAUTPPE) = S−1 − (Fk, dS−1Fk, d + B1BT 
1) 

= D1 − B1BT 
1, 

where D1 = S−1 − Fk,dS−1Fk,d . 
Let D1 = PϒPT = Pdiag{γ1, . . . ,γp} PT by using the spectral decomposition, where 

ϒ = Λ−1 −(I+kΛ
−1)−1(I−(1−d)2(Λ+I)−2)Λ(−1)(I−(1−d)2(Λ+I)−2)(I+kΛ

−1)−1 . 

Therefore, 

−2 (1−d)2 (1−d)2k1− 1 + 1 − 
(λ j+1)2 1 − 

(λ j+1)2λ j 

γ j = , j = 1, . . . , p
λ j � 

(1−d)2 
�−2

kSince 2 < 1 and 1 + 
λ j 

< 1 for k > 0,0 < d < 1 and λ j > 0. Then
(λ j+1) 

−2 
k (1− d)2 (1− d)2 

1+ 1 − 1 − > 1;
λ j (λ j + 1)2 (λ j + 1)2 

and that means γ j > 0,∀ j. 
This implies that D1 is positive defnite Now, in order to fnd the conditions that 

make ∆1 is positive defnite, we have to introduce the Lemma 2.1: 

Lemma 2.1 (See Farebrother, 1976). Let M be a positive defnite matrix and α be a 
vector, then M − αα

T ≥ 0 if and only if αTM−1α ≤ 1. 

Therefore, by applying Lemma 2.1, the proof is completed. 
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2.4.2. The comparison between the TPPE and MAUTPPE estimators 

The properties of TPPE are obtained as follows: 

Bias(β̂TPPE) = k(d − 1)(S + kIp)
−1

β 

= B2 

and 

Cov(β̂TPPE) = Tk,dS−1Tk, d . 

The MMSE of TPPE is given as follows: 

MMSE(β̂TPPE) = Tk,dS−1Tk,d + B2BT 
2. (13) 

The following theorem is demonstrated the comparison between TPPE and MAUTPPE. 

Theorem 2.2. For 0 < d < 1 for fxed k, under Poisson regression model, the MAUTPPE 
β̂MAUTPPE is superior to TPPE β̂TPPE in the sense of MMSE if and only if 

BT 
1D−1B1 ≤ 1.2 

Proof. The difference of MMSE values between them can be given by: 

∆2 = MMSE(β̂TPPE) − MMSE(β̂MAUTPPE) 

= PD2PT + B2BT 
2 − B1BT 

1 
−2 (1 − d)2 (1 − d)2 pk

1 + 1 − 1 − 
(λ j + kd)2 λ j (λ j + 1)2 (λ j + 1)2 

PT + B2BT = Pdiag − 2 − B1BT 
1,

λ j(λ j + k)2 λ j 

j=1 

where 

D2 = (Λ + kIp)
−1(Λ + kd)Λ−1(Λ + kd)(Λ + kIp)

−1 

− (Ip − (1 − d)2(Λ + Ip)
−2)(I + kΛ

−1)−1
Λ
−1(Ip + kΛ

−1)−1 

(Ip − (1 − d)2(Λ + Ip)
−2) 

Since B2BT 
2 is nonnegative defnite, we focus upon the quantity 

−2 (1−d)2 (1−d)2k1+ 1 − 
(λ j+1)2 1− 

(λ j+1)2(λ j + kd)2 λ j 

λ j(λ j + k)2 − 
λ j 

for searching on the condition or conditions that make ∆2 is positive defnite. 
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Therefore, ∆2 is positive defnite if 
−2 

(λ j + kd)2 k (1 − d)2 (1 − d)2 
≥ 1 + 1− 1 − 

(λ j + k)2 λ j (λ j + 1)2 (λ j + 1)2 

Let k be fxed, then after some simplifcations for the above expression, we get: 

(1 − d)2 +(λ + 1)−2 k
d ≥ 0

λ j 

Since 0 < d < 1 , k > 0 and λ j > 0 , the above inequality is hold and after applying 
Lemma 2.1, the proof is completed. 

Also, we can state the following theorem: 

Theorem 2.3. For k > 0 and let d be fxed, under Poisson regression model, the MAUTPPE 
is superior to TPPE in the MMSE if and only if 

BT 
1D−1 

2 B1 ≤ 1. 

Proof. Same proof of Theorem 2.2. 
Since the proposed estimator depends on the unknown parameters, d and k, we dis-

cuss their estimation techniques in the section follow. 

3. New estimating methods for selection of k and d 

It is a complicated challenge for practitioners to choose an appropriate value of k and 
d. Based on the work of Hoerl and Kennard (1970a), Alkhamisi et al. (2006), Kibria 
(2003), we propose some estimation methods for the selection of k and d. 

Asar and Genç (2018) provided optimal values of k and d. Now, we derive the opti-
mal value of k by taking derivative of SMSE(β̂MAUTPPE) with respect to k and equating 
the resulting function to zero and solve for k. The procedure of estimating the optimal 
value is stated as: n o 

∂ SMSE(β̂MAUTPPE) p 2α2 
j 
� 

k(λ j + 1)2 +(1 − d)2λ j 
= ∑

∂ k j=1 (λ j + 1)2(λ j + k)2 

n o 
p 2 α2 

j ((λ j + 1)2k +(1 − d)2λ j)
2 + λ j((λ j + 1)2 − (1 − d)2)2 

− ∑ (λ j + 1)4(λ j + k)3 
j=1 

Equating the above equation to zero and solve for k: n o 
λ j 

2 + 2− α2 
j (1− d)2 λ j − d2 + 2d 

k j = ,∀ j = 1,2, . . . , p.
α2 

j (λ j + 1)2 
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Since the parameter k is positive, therefore, we suggest to apply absolute | . | as 

k̂ j =| k j | 

. We propose the following new estimating methods for choosing the value of k based 
on the work of Hoerl and Kennard (1970a), Alkhamisi et al., (2006) and Kibria (2003). 

k̂1 = min(| k j |). 

k̂2 = max(| k j |). 

k̂3 = mean(| k j |). 

k̂1 = median(| k j |). 

In addition, we derive the optimal value of d by taking derivative of β̂MAUTPPE with 
respect to d and equating the resulting function to zero and solve for d: � �� �1/2 

(kλ j)
1/2 α2 α2 2 + α2 2 

j λ j + α2 
j j λ j + 1 j λ j + 1 

d j = 
α2 2 + 1j λ j 

Since the value of d j is limited between 0 and 1, therefore, we should use following 
estimating methods with min operator to get the value of d j as follows: 

ˆ 2 2α j λ j + 1 
d̂ j = � �� , (14)�1/2

ˆλ j)1/2 ˆ 2 ˆ 2 ˆ 2 2 + 1 ˆ 2 2 + 1(k α j λ j + α j α j λ j + α j λ j 

where λ j > 0 ,α2 
j > 0 and k̂ > 0 which implies that the value of estimator d̂ is between 

0 and 1. 
Now, we use the following algorithm to estimate parameters k and d. 

1. Since k̂1 − k̂4 needs an initial value of d, we start by setting d equals some number 
between 0 and 1 and obtain k̂. 

2. By using Eq. (14), we estimate parameter d by plugging-in the value of k found 
in the frst step. 

3. In order to get a suitable value of k̂, we use one of the k̂1 − k̂4 estimators by 
plugging-in the value of d̂  found in the second step. 

4. Finally, to choose the best estimate of the parameter d using one of the k̂1 − k̂4 

from step 3 in Eq. (14) and then compute the d̂  estimator. 
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4. A Simulation Study 

In this section, we study the performance of the estimators using Monte Carlo simula-
tion under different factors such as degrees of multicollinearity, different values of the 
shrinkage parameter d and number of explanatory variables. Different parameters are 
used with some specifed value, illustrated in Table 1. 

4.1. The design of an experiment 

Following is the design of an experiment for the Poisson regression model: 

1. The correlated explanatory variables are generated by considering the work of 
McDonald and Galarneau (1975). 

xi j = (1 − ρ2)0.50wi j + ρwip+1 ; j = 1, ..., p; i = 1, . . . ,n, (15) 

where wi j are the independent standard normal pseudo-random numbers, ρ is 
quantifed correlation between any two explanatory variables is stated as ρ2 and 
xi j is the number of explanatory variables. After generated correlated explanatory 
variables, we standardized these variables using length scaling. 

2. The response variable, Yi(i = 1, . . . ,n) are generated from the Poisson distribution 
Po(µi) : 

Yi ∼ Po(µi), 

where 

µi = E(Yi) = exp(β0 + β1xi1 + ... + βpxip); j = 1,2, ..., p + 1. 

3. The parameter vectors corresponding to p = 3, p = 6 and p = 9 are selected by 
imposing the restriction on the coeffcients β1,β2, ...,βp as normalized eigenvec-

2tors corresponding to the largest eigenvalues of the matrix XTX so that ∑p
j=1 β j = 1 

(see for more details; Kibria, 2003). 

4. We use different estimators that given in Eq. (3) , (5) and (6) in this experiment. 
The βdTPE is estimated with the best shrinkage parameter " # 

kmax = max 
λ j 

,
λ j(1 − d)α2 

j − d 
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and it was suggested by Asar and Genç (2018). For β̂MAUTPPE, we propose an 
algorithm for choosing values of the shrinkage parameters k and d. In addition, 
we consider initial value of d which are 0.10, 0.50 and 0.99. These values are 
chosen due to 0 < d < 1 (e.g. see, Asar, Erişoğlu and Arashi, 2017). 

5. In order to investigate the performance of the proposed estimators, we use MSE 
and bias. h i 

∑
5000 (β̂ 

r − β )T(β̂ 
r=1 r − β ) 

MSE(β̂ ) = . (16)
5000 

∑
5000 | E(β̂ 

r) − β |r=1Bias(β̂ ) = , (17)
5000 

where β̂ 
r is the estimated value of any estimator. 

Table 1. Factors, notations and values are used in the simulation. 

Factors Notations Values 
Multicollinearity 
Number of explanatory variables 
Initial value of shrinkage parameter 
Sample size 
Number of Replications 

ρ2 

p 
d 
n 
R 

0.85, 0.90, 0.95, 0.99 
3, 6, 9 
0.10, 0.50, 0.90 
25, 50, 100, 150, 200, 500 
5000 

4.2. Results and Discussion 

The estimated MSE and bias of the estimators are computed under different effective pa-
rameters such as sample size (n), degrees of correlation (ρ2), initial value of the shrink-
age parameter (d) and number of explanatory variables (p) and summarized them in 
Tables 2 to 5. All together, we created six simulation tables where we analyze the per-
formance of MLE, TPPE and MAUTPPE by assuming different initial value of d which 
are 0.10, 0.50 and 0.99 (e.g. see for more details, Asar et al., 2017). To summarize the 
results and reduce the length of the paper, four representative tables (2-5) are included in 
the study. From the simulation results, it is perceived that proposed estimator MAUTPPE 
has the best performance as compared to the MLE and TPPE in sense of smaller MSE 
and bias. The MSE and bias of the MAUTPPE with (d̂, k̂2)is minimized as compared to 
other shrinkage parameters (k̂1, k̂3 and k̂4). 



   

p2 

Table 2. Estimated MSE and bias of the estimators when p = 3. 

    Estimated MSE   Estimated Bias 

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                   

0.85 25 4.3700 3.6225 1.6484 1.5851 1.8466 3.0288  0.9101 0.6309 0.6387 0.6803 0.8034 

 50 4.0496 3.5229 1.3957 1.4171 1.6462 2.0619  0.8912 0.6065 0.5756 0.6081 0.7142 

 100 4.0184 3.3228 1.0442 1.2850 1.5154 2.0482  0.8686 0.4958 0.5541 0.5874 0.6465 

 150 3.8890 3.1757 1.0151 1.2524 1.4106 2.0450  0.8444 0.4898 0.5253 0.5469 0.6337 

 200 3.0153 2.0234 0.9514 0.8246 0.6644 0.1358  0.4607 0.4180 0.0182 0.3577 0.0750 

 500 0.0114 0.0094 0.0071 0.0117 0.0116 0.0109  0.0071 0.0045 0.0047 0.0042 0.0038 

0.90 25 4.4092 3.9826 1.7537 1.6586 2.2018 2.8577  0.9440 0.6548 0.6347 0.6954 0.7851 

 50 4.0614 3.9435 1.5955 1.6100 1.9665 2.4220  0.9195 0.6114 0.6201 0.6882 0.7501 

 100 4.0314 3.6039 1.4783 1.5610 1.9043 2.3502  0.9039 0.6066 0.6027 0.6506 0.7369 

 150 4.0044 3.4187 1.2395 1.4477 1.8472 2.2683  0.8891 0.5597 0.5921 0.6483 0.6963 

 200 3.8303 3.4145 1.2090 1.2460 1.4398 1.5617  0.8760 0.5489 0.5762 0.6040 0.6217 

 500 0.0179 0.0112 0.0081 0.0170 0.0176 0.0171  0.0061 0.0044 0.0042 0.0038 0.0036 

0.95 25 4.5039 3.9561 3.0520 1.8006 2.3236 3.0005  0.9703 0.7548 0.6258 0.6971 0.7840 

 50 4.1655 3.8989 2.4713 1.6244 2.0000 2.7034  0.9695 0.7485 0.6182 0.6758 0.7560 

 100 4.0666 3.8809 1.4129 1.5621 1.9589 2.6450  0.9651 0.5776 0.6161 0.6701 0.7466 

 150 4.0547 3.7768 1.3792 1.5208 1.9571 2.3203  0.9406 0.5661 0.5757 0.6301 0.7066 

 200 4.0317 3.5604 1.3585 1.5114 1.9229 2.2465  0.9067 0.5525 0.5592 0.6199 0.6848 

 500 0.0734 0.0335 0.0169 0.0375 0.0541 0.0643  0.0061 0.0036 0.0060 0.0041 0.0034 

0.99 25 5.5687 3.8433 3.7017 1.6010 1.9174 3.0569  1.0205 0.9152 0.6104 0.6565 0.8338 

 50 4.9333 3.7302 3.5376 1.4350 1.7870 2.6267  1.0127 0.9133 0.5784 0.6214 0.7447 

 100 4.2879 3.5995 3.3014 1.4221 1.7789 2.4104  0.9755 0.8361 0.5725 0.6148 0.7334 

 150 4.1000 3.5868 3.2060 1.4197 1.6664 2.4072  0.9561 0.8241 0.5710 0.6019 0.6612 

  200 3.9870 3.3639 3.0154 1.2841 1.5114 1.9330   0.9219 0.7374 0.5346 0.5821 0.6558 

 500 0.7039 0.2528 0.0122 0.0538 0.1486 0.4296  0.0043 0.0045 0.0075 0.0045 0.0033 



   

d = 0.10 d = 0.50 d = 0.99 

pz 

Table 3. Estimated MSE of the estimators when p = 6 under consider different values of d. 

           

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                             

0.85 25 4.600 3.771 2.193 1.313 1.731 2.529  3.880 2.193 1.313 1.731 2.529  4.559 2.193 1.313 1.731 2.529 

 50 4.205 3.610 1.507 1.262 1.654 2.437  3.790 1.507 1.262 1.654 2.437  4.069 1.507 1.262 1.654 2.437 

 100 4.084 3.602 1.419 1.201 1.522 2.393  3.782 1.419 1.201 1.522 2.393  4.029 1.419 1.201 1.522 2.393 

 150 4.040 2.993 1.107 1.143 1.318 2.175  3.518 1.107 1.143 1.318 2.175  4.001 1.107 1.143 1.318 2.175 

 200 4.006 2.518 1.033 1.121 1.299 1.893  3.510 1.033 1.121 1.299 1.893  3.978 1.033 1.121 1.299 1.893 

 500 0.0071 0.0910 0.0071 0.0095 0.0077 0.0071  0.0357 0.0061 0.0069 0.0066 0.0065  0.0357 0.0061 0.0069 0.0066 0.0065 

0.90 25 5.135 3.997 2.628 1.339 1.739 3.127  3.882 2.628 1.339 1.739 3.127  4.894 2.628 1.339 1.739 3.127 

 50 4.213 3.677 1.936 1.254 1.596 2.671  3.868 1.936 1.254 1.596 2.671  4.805 1.936 1.254 1.596 2.671 

 100 4.096 3.451 1.756 1.206 1.466 2.566  3.733 1.756 1.206 1.466 2.566  4.797 1.756 1.206 1.466 2.566 

 150 4.044 3.326 1.254 1.193 1.462 2.484  3.713 1.254 1.193 1.462 2.484  4.208 1.254 1.193 1.462 2.484 

 200 4.003 2.744 1.065 1.126 1.408 2.165  3.656 1.065 1.126 1.408 2.165  3.997 1.065 1.126 1.408 2.165 

 500 0.0141 0.0181 0.0135 0.0133 0.0134 0.0136  0.0139 0.0069 0.0078 0.0077 0.0077  0.0139 0.0069 0.0078 0.0077 0.0077 

0.95 25 5.536 3.899 3.401 1.424 2.119 3.292  3.959 3.365 1.420 2.110 3.290  5.246 3.385 1.422 2.115 2.530 

 50 4.322 3.834 2.800 1.371 1.836 3.280  3.942 2.784 1.381 1.844 3.279  4.289 2.797 1.376 1.832 2.915 

 100 4.137 3.694 2.366 1.316 1.832 2.896  3.932 2.353 1.315 1.829 2.899  4.141 2.378 1.322 1.828 2.904 

 150 4.054 3.508 1.577 1.283 1.649 2.893  3.901 1.589 1.278 1.644 2.898  4.063 1.595 1.279 1.650 3.284 

 200 4.008 2.985 1.156 1.220 1.600 2.554  3.865 1.157 1.216 1.594 2.521  4.010 1.156 1.216 1.593 3.286 

 500 0.0606 0.0491 0.0598 0.0474 0.0541 0.0602  0.0234 0.0071 0.0105 0.0103 0.0103  0.0234 0.0071 0.0105 0.0103 0.0103 

0.99 25 9.054 3.917 5.368 1.606 2.109 3.675  5.244 5.331 1.603 2.101 3.669  8.290 5.416 1.607 2.107 3.667 

 50 4.993 3.900 3.873 1.525 2.105 3.628  4.195 3.879 1.510 2.083 3.641  4.931 3.882 1.520 2.099 3.633 

 100 4.541 3.845 3.836 1.374 2.039 3.606  4.084 3.836 1.370 2.025 3.601  4.498 3.839 1.369 2.029 3.611 

 150 4.228 3.767 2.765 1.364 1.904 3.594  4.037 2.743 1.367 1.916 3.558  4.217 2.766 1.364 1.906 3.596 

  200 4.082 3.619 2.573 1.241 1.762 3.560   3.976 2.565 1.237 1.754 3.539   4.074 2.572 1.241 1.763 3.556 

 500 0.0492 0.0353 0.0186 0.0315 0.0355 0.0391  0.0353 0.0186 0.0315 0.0355 0.0391  0.0353 0.0186 0.0315 0.0355 0.0391 



   

d = 0.10 d = 0.50 d = 0.99 

p2 

Table 4. Estimated bias of the estimators when p = 6 under consider different values of d. 

       

    
TPPE 

MAUTPPE   
TPPE 

MAUTPPE   
TPPE 

MAUTPPE 

 n                             

0.85 25 0.759 0.592 0.459 0.515 0.607  0.782 0.592 0.459 0.515 0.607  0.880 0.592 0.459 0.515 0.607 

 50 0.751 0.483 0.454 0.497 0.600  0.778 0.483 0.454 0.497 0.600  0.817 0.483 0.454 0.497 0.600 

 100 0.742 0.480 0.446 0.485 0.585  0.774 0.480 0.446 0.485 0.585  0.813 0.480 0.446 0.485 0.585 

 150 0.687 0.428 0.442 0.479 0.578  0.772 0.428 0.442 0.479 0.578  0.809 0.428 0.442 0.479 0.578 

 200 0.646 0.415 0.440 0.466 0.557  0.765 0.415 0.440 0.466 0.557  0.799 0.415 0.440 0.466 0.557 

 500 0.0694 0.0070 0.0095 0.0077 0.0070  0.0310 0.0081 0.0077 0.0073 0.0071  0.0310 0.0081 0.0077 0.0073 0.0071 

0.90 25 0.798 0.642 0.463 0.516 0.674  0.789 0.642 0.463 0.516 0.674  0.890 0.642 0.463 0.516 0.674 

 50 0.757 0.530 0.462 0.503 0.628  0.782 0.530 0.462 0.503 0.628  0.838 0.530 0.462 0.503 0.628 

 100 0.723 0.525 0.457 0.497 0.621  0.780 0.525 0.457 0.497 0.621  0.820 0.525 0.457 0.497 0.621 

 150 0.713 0.449 0.431 0.470 0.592  0.778 0.449 0.431 0.470 0.592  0.806 0.449 0.431 0.470 0.592 

 200 0.670 0.422 0.429 0.467 0.590  0.758 0.422 0.429 0.467 0.590  0.798 0.422 0.391 0.467 0.590 

 500 0.0163 0.0065 0.0068 0.0066 0.0065  0.0055 0.0023 0.0024 0.0023 0.0023  0.0055 0.0023 0.0024 0.0023 0.0023 

0.95 25 0.779 0.718 0.479 0.568 0.696  0.794 0.715 0.478 0.567 0.695  0.890 0.717 0.479 0.567 0.696 

 50 0.777 0.628 0.475 0.530 0.691  0.794 0.627 0.475 0.531 0.692  0.835 0.628 0.476 0.530 0.692 

 100 0.741 0.593 0.471 0.526 0.656  0.789 0.592 0.472 0.526 0.656  0.813 0.595 0.471 0.525 0.658 

 150 0.738 0.492 0.452 0.519 0.639  0.787 0.493 0.451 0.518 0.639  0.803 0.494 0.451 0.519 0.640 

 200 0.692 0.439 0.436 0.488 0.635  0.773 0.439 0.436 0.487 0.631  0.799 0.439 0.436 0.487 0.632 

 500 0.0360 0.0068 0.0105 0.0083 0.0068  0.0183 0.0073 0.0066 0.0061 0.0059  0.0183 0.0073 0.0066 0.0061 0.0059 

0.99 25 0.783 0.844 0.510 0.573 0.753  0.811 0.841 0.509 0.572 0.749  0.880 0.846 0.510 0.573 0.755 

 50 0.778 0.773 0.487 0.559 0.741  0.797 0.774 0.485 0.556 0.740  0.827 0.775 0.486 0.558 0.742 

 100 0.763 0.761 0.463 0.550 0.741  0.794 0.761 0.462 0.548 0.740  0.809 0.762 0.463 0.548 0.740 

 150 0.763 0.634 0.461 0.530 0.734  0.788 0.631 0.462 0.531 0.735  0.802 0.634 0.461 0.530 0.735 

  200 0.745 0.619 0.453 0.525 0.729   0.782 0.618 0.453 0.524 0.729   0.798 0.619 0.453 0.525 0.729 

 500 0.0279 0.0055 0.0075 0.0063 0.0057  0.0279 0.0055 0.0075 0.0063 0.0057  0.0279 0.0055 0.0075 0.0063 0.0057 



   

µ2 

Table 5. Estimated MSE and bias of the estimators when p = 9. 

    Estimated MSE   Estimated Bias 

  
MLE TPPE 

MAUTPPE  
TPPE 

MAUTPPE 

 n                   

0.85 25 4.9867 3.9254 3.3671 1.2180 1.6399 3.7194  0.6837 0.6095 0.3820 0.4310 0.6537 

 50 4.4573 3.8356 1.6960 1.1597 1.5815 3.5295  0.6735 0.4555 0.3808 0.4290 0.6320 

 100 4.1008 3.5133 1.5471 1.1421 1.5178 3.1586  0.6383 0.4285 0.3775 0.4221 0.5877 

 150 4.0432 3.3801 1.3994 1.1229 1.5028 2.7216  0.6138 0.4080 0.3724 0.4204 0.5519 

 200 4.0187 2.7509 1.3574 1.0992 1.3052 2.1693  0.5777 0.4034 0.3688 0.4087 0.5087 

 500 0.0157 0.0130 0.0121 0.0159 0.0160 0.0145  0.0189 0.0151 0.0154 0.0153 0.0147 

0.90 25 5.1892 3.8377 3.6209 1.2633 1.7033 3.4648  0.6238 0.6320 0.3792 0.4333 0.6107 

 50 4.2100 3.7621 2.6786 1.2155 1.6710 3.4088  0.6521 0.5576 0.3870 0.4411 0.6248 

 100 4.1743 3.6540 1.7841 1.2143 1.6565 3.3917  0.6500 0.4694 0.4043 0.4586 0.5801 

 150 4.0396 3.5072 1.6078 1.1832 1.6184 3.0263  0.6710 0.4380 0.3754 0.4338 0.6278 

 200 4.0243 3.4173 1.1155 1.1415 1.5880 2.8179  0.6613 0.3694 0.3824 0.4362 0.5802 

 500 0.0240 0.0163 0.0087 0.0234 0.0238 0.0208  0.0051 0.0052 0.0054 0.0054 0.0053 

0.95 25 5.9292 3.9792 4.1619 1.3290 2.2126 3.8283  0.6920 0.6726 0.4023 0.5082 0.6664 

 50 4.1767 3.8952 2.3592 1.3283 1.9382 3.6988  0.6786 0.5121 0.3945 0.4637 0.6503 

 100 4.1462 3.7097 2.1484 1.2887 1.8386 3.6626  0.6576 0.5014 0.3942 0.4592 0.6375 

 150 4.0412 3.7050 2.1469 1.1858 1.6857 3.4699  0.6423 0.4952 0.3781 0.4410 0.6182 

 200 4.0278 3.6487 2.1459 1.1145 1.4582 3.2969  0.6413 0.4951 0.3671 0.4106 0.6094 

 500 0.1204 0.0599 0.0185 0.0828 0.0960 0.0808  0.0203 0.0164 0.0252 0.0200 0.0143 

0.99 25 78.7139 78.7125 9.3212 1.9733 2.7194 78.4760  0.9057 0.6977 0.4703 0.5470 0.9037 

 50 11.8039 4.0722 5.4770 1.3071 1.9804 3.9385  0.6820 0.6891 0.4045 0.4825 0.6748 

 100 5.6412 3.9143 4.3348 1.2536 1.9150 3.8780  0.6812 0.6647 0.3895 0.4693 0.6699 

 150 4.3063 3.9019 3.8198 1.1253 1.5446 3.8354  0.6689 0.6526 0.3716 0.4268 0.6673 

  200 4.0859 3.8468 3.6952 1.0334 1.5223 3.7788   0.6641 0.0491 0.3449 0.2861 0.6609 

 500 0.9683 0.4018 0.0077 0.1194 0.2088 0.1181  0.0067 0.0058 0.0080 0.0063 0.0052 
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Table 6. Estimated Coeffcients and SMSE of the MLE, TPPE and MAUTPPE. 

Estimators MLE TPPE 

MAUTPPE 

 [1] 

    

Intercept 2.240 2.254 2.291 2.295 2.290 2.288 2010 

Unemployment 0.075 0.067 0.051 0.046 0.045 0.045 223.2 

Cars -9.559 -6.799 -0.062 -0.282 -0.647 -0.875 186.54 

Trucks 4.018 3.123 0.669 1.072 1.446 1.566 14.157 

15-24 years 1.971 1.460 0.042 0.209 0.464 0.560 0.581 

25-64 years 2.004 1.424 -0.030 0.101 0.202 0.242 0.224 

> 64 years 1.979 1.185 -0.280 -0.755 -1.113 -1.138 0.047 

MSE 27.749 14.969 8.699 7.520 6.390 6.059  

[1] ( ) are the eigenvalues and Condition Index = = 207.77   

Increasing the degree of correlation has an adverse effect on the estimators in terms 
of MSE. However, the estimated bias of the estimators are decreasing when the degrees 
of correlation is increased particular especially for MAUTPPE with k̂2 and k̂3. When 
the sample size increases the estimated MSE and bias are decreased. The sample size 
makes a good effect on the estimators in sense of large sample size. An increase in 
the number of explanatory variables has a negative effect in sense of estimated MSE 
and positive effect in sense of estimated bias for some cases. The estimated bias of the 
TPPE is reduced when the number of explanatory variables are increased. However, the 
proposed MAUTPPE has lowest bias in all cases than the TPPE. It is also noted that the 
estimated bias of all the estimators are reduced when the p = 6 and then slight increase 
in the estimated bias when p = 9 and ρ2 = 0.99 for only TPPE and MAUTPPE (d̂, k̂4). 
The performance of MAUTPPE (d̂, k̂2) is signifcant in terms of estimated MSE and 
MAUTPPE (d̂, k̂1)is almost unbiased when the ρ2 = 0.99,n = 200 and p = 9. 

In addition, we analyzed the performance of TPPE and MAUTPPE by assuming 
different initial value of d which are 0.10, 0.50 and 0.99 (e.g. see for more details, Asar 
et al., 2017). These results are illustrated in Tables 3-4. The performance of TPPE and 
MAUTPPE do not change substantially when we consider the different initial values of 
d and one can see this fndings in Table 3 and Table 4. The estimated MSE and bias 
values of the MAUTPPE are approximately same when the ρ2 = 0.85 and ρ2 = 0.90. 
One can see the insignifcant change in the estimated MSE and bias of the MAUTPPE 
when the ρ2 = 0.95 and ρ2 = 0.99. Meanwhile, the estimated MSE and bias values of 
the TPPE are increased when the d rises. The performance of TPPE is near to MLE 
when the d = 0.99, ρ2 = 0.99 and n = 200. For large sample size (n = 500), the bias of 



  

  

g 
w 
Q) 

! 
(/) 
C 

"' Q) 

~ 

'" ro 
0 

(/) 

0 
("') 

tO 

\ 

/ 

,, 

/ 

/ 

MLE 
TPPE 
MAUTPPE 

tO -~--, ----~,-------, ----~,------~,----~,~ 

0.0 0.2 0.4 0.6 0.8 1.0 

k & d 

Mustafa I. Alheety, Muhammad Qasim, Kristofer Månsson and B.M. Golam Kibria 137 

MAUTPPE is close to zero which indicate the beneft of the proposed estimator in the 
sense of bias correction. Simulation results demonstrate that a bias correction estimator 
(MAUTPPE) substantially reduces the bias and more effcient than TPPE as well as 
improved estimators under certain conditions. 

We can conclude that the performance of MLE is worsted in almost all condi-
tion. The MLE is not good choice in the presence of multicollinearity. The proposed 
MAUTPPE has quite good performance as compared to the TPPE and MLE under dif-
ferent conditions. However, the MAUTPPE with (d̂, k̂2) has better performance than the 
other estimators in almost all conditions. 

Figure 1. Emperical estimated SMSE of MLE, TPPE and MAUTPPE. 

5. Application 

To illustrate the fndings of the paper, Swedish traffc fatality data for the year 2019 are 
analyzed in this section. The data are taken from the Statistics Sweden and Swedish 
transport administration. The aim of this case study is to see the impact of external fac-
tors on the traffc fatalities in Sweden, where the number of traffc fatalities is considered 
as dependent variable. As discussed by Wiklund, Simonsson and Forsman (2012), the 
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main factors are economic conditions defned as unemployment rate, traffc exposure 
that we measure as number of vehicles (cars and trucks), and demographic variables, all 
of which are considered as explanatory variables. By following the study of Stipdonk et 
al., (2013), we divide all individuals into three different age groups (age 15-24 years, age 
25-64 years and more than 64 years). The estimated results of the model are presented 
in Table 6. The eigenvalues of XTX matrix are 2010, 223.2, 186.54, 14.157, 0.581, 0.224q

λmaxand 0.047. The condition index, CI = = 207.77 , which confrmed that there
λmin 

are serious problems of multicollinearity. Therefore, we used TPPE and MAUTPPE 
to combat the multicollinearity problem. The unemployment rate coeffcient is positive 
which shows that the number of fatalities increases and this impact is considerable low 
for MAUTPPE (d̂, k̂4). The traffc exposure variables (cars and trucks) have negative and 
positive coeffcients. This shows that more accidents occur when trucks are used and less 
accidents occur when cars are used. Age group 15-24 and 25-64 year’s parameters are 
positive except MAUTPPE (d̂, k̂1). Age group more than 64 years is positive when we 
use MLE and TPPE but it is negative for MAUTPPE which shows the robust results. The 
number of fatalities decreases when the drivers have more experience and this result can 
be seen only by using proposed estimator (MAUTPPE). The SMSE of MLE is infated 
due to multicollinearity problem and biased estimation methods (TPPE and MAUTPPE) 
have lower SMSE than the MLE. One can see that a substantial decrease of the SMSE 
when applying MAUTPPE than the MLE and TPPE. Figure 1 illustrates the empirical 
SMSE of MLE, TPPE and MAUTPPE. The SMSE of MAUTPPE is smaller than the 
MLE and TPPE. In summary, the application shows the benefts of the proposed estima-
tor. Program code in R for analyzing this application data set is given in Supplementary 
Material. 

6. Some concluding Remarks 

This paper proposes a new almost unbiased estimator for the parameters of the Poisson 
regression model. The MSE properties of the proposed estimator is investigated and a 
comparison is made with some existing estimators. Furthermore, a simulation study has 
been conducted to compare the performance of the estimators under several parametric 
conditions. Finally, an example illustrates the beneft of the new MAUTPPE. The overall 
results of the paper show the beneft of the new estimator as compared to previously 
suggested estimators such as TPPE and MLE. Based on both the simulation study and 
empirical application, we may recommend MAUTPPE with parameter combinations 
(d̂, k̂2) and (d̂, k̂4) to researchers. 



 

Mustafa I. Alheety, Muhammad Qasim, Kristofer Månsson and B.M. Golam Kibria 139 
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Toker S., Ustundağ Şiray G. and Qasim M. (2019). Developing a frst order two parame-
ter estimator for generalized linear model. 11th International Statistics Congress, (ISC 
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Abstract 

Laparoscopy is an operation carried out in the abdomen through small incisions with 
visual control by a camera. This technique needs the abdomen to be insuffated with 
carbon dioxide to obtain a working space for surgical instruments’ manipulation. Iden-
tifying the critical point at which insuffation should be limited is crucial to maximizing 
surgical working space and minimizing injurious effects. A Bayesian nonlinear growth 
mixed-effects model for the relationship between the insuffation pressure and the intra– 
abdominal volume generated is discussed as well as its plausibility to represent the 
data. 

MSC: 62P10, 62F25. 
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1. Introduction 

Laparoscopy is an operation carried out in the abdomen or pelvis through small inci-
sions with the help of a camera. It is performed by insuffating CO2 into the abdomen 
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that yields a working space, i.e., pneumoperitoneum, and passing surgical instruments 
through small incisions using a camera to have external visual control of the procedure 
(Neugebauer et. al., 2010). Laparoscopy has been gaining ground since its inception be-
cause it is associated with less morbidity than the traditional method performed through 
a single, larger skin incision (Pache et al., 2017). 

The introduction of CO2 into the abdomen is operated by medical devices, i.e., la-
paroscopic insuffators, through small plastic tubes, i.e. trocars, inserted in the patient’s 
abdominal wall. Laparoscopy technological development has been limited to improve-
ments in camera image quality, whereas little innovation has been made in insuffation 
devices (Colon Cancer Laparoscopic or Open Resection Study Group, 2009). 

The CO2 insuffation pressure, i.e., intra–abdominal pressure (IAP), is set manu-
ally on the insuffator by the surgical team. IAP is measured in millimeters of mercury 
(mmHg), and the usual fgures during laparoscopic surgery range between 12 and 15 
mmHg. Although international guidelines recommend working with the lowest IAP 
value that ensures an adequate working space, the standard practice is still to initially set 
the IAP value without further adjustments regardless of the amount of generated intra– 
abdominal volume (IAV ) (Neudecker et al., 2002), measured in litres (L). Operating at 
such high IAP increases perioperative morbidity since it leads to decrease abdominal 
blood perfusion, greater postoperative pain, peritoneal injury, and increased risk of pul-
monary complications. 

The abdominal compartment shows an anisotropic behaviour during pneumoperi-
toneum which is explained by its combination of rigid borders, e.g., spine, rib cage, and 
pelvis, and semirigid borders, e.g., abdominal wall muscles and the diaphragm (Becker 
et al., 2017). Initially, marginal gains in volume in response to pressure increments 
are proportional. In other words, the abdominal compliance (Cabd), which defnes the 
change in volume determined by a change in pressure, follows an approximately lin-
ear relationship (Mulier et al., 2009). According to biomechanics laws, the yield stress 
point is eventually reached, after which applying additional pressure leads to diminish-
ing gains in volume (Forstemann et al., 2011). Identifying this critical point at which 
insuffation should be limited is crucial to maximizing surgical working space while 
minimizing injurious IAP effects. 

The abdomen pressure–volume dynamics during pneumoperitoneum has been dis-
cussed in previous papers (Diaz-Cambronero et al., 2019, 2020; Mazzinari et al., 2020, 
2021). These studies suggest the adequacy of an increasing sigmoidal model for describ-
ing the relationship between both variables. Our aim in this work is twofold. On the one 
hand, we want to estimate such a model to gain knowledge about the relationship be-
tween IAP and IAV , especially about the parameters that determine the different growth 
stages of the process in accordance with the specifc characteristics of the individuals in 
the target population. On the other hand, the second goal of the paper is to discuss the 
quality of the ft of the model to the data. This is a relevant question since the logistic 
growth curve is a previously used model for the topic. The hypothesis is that, in a per-
sonalised medicine environment, patient responses to insuffation can be estimated and 
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predicted so that an ideal IAP value could be determined to optimise IAV with the lowest 
risks of potential negative effects. 

The statistical framework of this study is that of nonlinear growth mixed-effects 
models, also known as hierarchical nonlinear growth models. They have a long and im-
portant scientifc tradition for describing biological, medical, and environmental growth 
phenomena such as pharmacokinetics (Giltinan, 2006), epidemiology (Lindsey, 2001), 
physiological-response processes (Peek et al., 2002), or forestry (Fang and Bailey, 2001) 
among others. One of the major appeals of these models is that their parameters contain 
direct and intuitive information on the process under study. This fact generates a multi-
faceted knowledge about the phenomena in question of great scientifc value (Davidian, 
2008). 

Data for the study come from a repeated measures design (Lindstrom and Bates, 
1990). In our case, the variable of interest IAV is measured for each individual with 
regard to different IAP values. This design generates two types of data: data from the 
same individual and data from several individuals. Random effects in these models are 
essential elements to glue together the different observations of the same individual as 
they could be considered as a within-individual variation (Laird and Ware, 1982). 

The statistical analysis of the problem has been carried out using Bayesian inference. 
This statistical methodology accounts for uncertainty in terms of probability distribu-
tions (Loredo, 1989, 1992) and uses Bayes’ theorem to update all relevant information. 
The Bayesian approach simplifes the implementation and interpretation of mixed effects 
models. The conditional formulation of this type of model, which explicitly includes 
random effects in the conditional mean, allows individual and population inferences to 
be made. This is due to the simplicity process of integrating out the random effects of 
the model, that is, moving from the conditional formulation of the model to its marginal 
formulation (Lee and Nelder, 2004). This feature of Bayesian models is of utmost im-
portance in the case of growth models because it expresses in a natural probabilistic way 
all information about the parameters and other relevant features of the growth process 
through the respective posterior distribution. Furthermore, model checking can be con-
ducted in a straightforward way to detect possible systematic bias in the model. This is 
particularly important for medical applications to avoid patients from receiving a sub-
optimal medical treatment. 

The paper is organised as follows. Section 2 presents the data with a brief description 
that emphasises the particular features of the repeated-means design through the number 
of observations per individual and their IAV trajectories according to the IAP values. 
Section 3 introduces and formulates the statistical modelling. Section 4 accounts for 
posterior inferences and prediction. Section 4.1 discusses the posterior distribution of the 
estimation process. Sections 4.2 and 4.3 contain, respectively, some relevant results of 
clinical interest at specifc individual levels and in general terms for different population 
groups. Section 5 deals with model checking by means of the cross-validated predictive 
density. The paper ends with an overview of the results and some conclusions. 
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2. Intra-abdominal volume and intra-abdominal pressure data 

The data for the current modelling come from a previously published individual patient 
meta–analysis (Mazzinari et al., 2021) that included experimental information from three 
previous homogeneous clinical studies (Mazzinari et al., 2020; Diaz-Cambronero et al., 
2019, 2020). All patients in these studies underwent a standardized pneumoperitoneum 
insuffation at a constant low fow, i.e., 3 Lmin−1, under deep neuromuscular block with 
a posttetanic count (PTC) between one and fve assessed by quantitative monitoring. 
The insuffation was carried out through a leakproof trocar up to an IAP of 15mmHg for 
abdominal wall prestretching and then stepwise changes in IAP in the 8 to 15 mmHg 
pressure range were recorded. In all studies, patients’ legs were placed in padded leg-
holder supports with hips fexed before the initial insuffation. 
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Figure 1. Number of repeated measures in the men’s group (top panel) and in the women’s 
group (bottom panel). Each bar corresponds to a person and its ordinate is the number of 
measurements of that person during the study. Patients are ordered according to their age from 
youngest to oldest. 

The original databank had information on 204 patients, but 6 patients presented miss-
ing information on IAP, IAV , and/or age values. There are very few individuals whose 
missing observations do not appear to have been generated by non-ignorable mecha-
nisms. For this reason, we decided to eliminate them directly and not engage in a very 
unhelpful imputation process. The fnal databank has 198 patients, 118 men and 80 
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women, and a total of 1361 observations. We have a repeated measures design with a 
very different number of observations per individual: from individuals with only one 
observation to individuals with 15. Figure 1 shows the number of repeated measures for 
the group of men and women in order of age. It is interesting to note that women have 
in general less measurements than men in all ages. 

The data have a very wide age range. The youngest patient is 23 years old and the 
oldest is 92, with a mean age of 64.65 years. In the men’s group, the minimum and 
maximum also are 23 and 92, respectively, and their average is 64.49 years. Women 
have a minimum age of 34 and a maximum of 85, and their mean is 64.87 years. 

IAP values range between 0 and 16 mmHg, and IAV values between 0.5 and 13 L. 
Figure 2 shows a spaghetti plot of IAV for men and women. They all show a fairly 
similar pattern of the IAV with IAP, although a greater range of values is observed in 
men, especially in large values of IAP. In both groups there are individuals with different 
behaviour but men behave more homogeneously than women. 
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Figure 2. IAV profles (in L) according to IAP (in mmHg) for men (top panel) and women 
(bottom panel) in the sample. 

3. Logistic growth mixed-effects modelling 

Let the nonlinear mixed-effects model for the response random variable IAVi j that records 
the intra-abdominal volume value for individual i, i = 1, . . . ,n with standardized intra-
abdominal pressure value IAPi j, j = 1, . . . ,Ji, defned in terms of a conditional normal 
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distribution as follows 
(IAVi j | µi j,σ

2) ∼ N(µi j,σ
2), (1) 

where µi j is the mean of the IAV value of a patient with IAPi j value and can be expressed 
in terms of the conditional logistic growth function 

ai
(µi j | ai,bi,ci, IAPi j) = , (2)

1+ exp{−(bi + ci IAPi j)} 

with parameters ai, bi, and ci determining the growth of the function, and σ2 the un-
known variance associated to the random measurement error of the normal (1). 
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Figure 3. Graphics of the logistic growth function 5/[1 + exp{−(−10 + x)}], the subsequent 
asymptotic value, and its MAP, IP, ADP, and MDP points. 

The logistic growth model for µi j has important features which are very valuable to 
better understand the relationship between IAP and IAV (Davidian, 2008): 

• It is an increasing sigmoid function (see Figure 3), or S-curve, whose name comes 
from its shape and was introduced by the mathematician Pierre-François Verhulst 
in the 19th century to study the growth of populations in autocatalytic chemical 
reactions (Cramer, 2004). 

• The asymptotic value of IAV when IAP goes to infnity is ai. 

• The infection point (IP), where the curve changes from being concave downward 
to concave upward and therefore it is the point at which the acceleration of the 
process switches from positive to negative, is −bi/ci for IAP. The value of IAV at 
this point is ai/2. 

• The maximum acceleration and deceleration point, MAP and MDP respectively, √ 
have the following IAP and IAV coordinates, ((−(ln(2 + 3) + bi)/ci, ai/(3 −√ √ √ 

3)) and (−(−ln(2− 3)+ bi)/ci, ai/(3 + 3)). 
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• The asymptotic deceleration point (ADP) is calculated by equalling the fourth 
derivative to 0. It is located after the maximum deceleration point, and it indicates 
the point in which the acceleration is negative but close to 0. Therefore, it is 
expected that the increase of the function is not of much practical interest. The√ 
ADP is −(ln(5 − 2 6)+ bi)/ci for IAP. The value of IAV at this point is ai(3 +√ 

6)/6. 

By way of illustration, Figure 3 shows the graph of the logistic growth model y = 
5/[1 + exp{−(−10 + x)}] with generic variables x and y, and the location on the graph 
of the special points described above. 

Hierarchical modelling for parameters ai and bi was based on expert information and 
connected them with standardized age and gender covariates. Parameter ci was associ-
ated to covariate gender. We discarded its connection to covariate age as a consequence 
of a previous analysis of variable selection that we will discuss later. Furthermore, ai 

and bi also included a random effect specifcally associated to each individual that allow 
to connect all their repeated observations. We have not included any random effect in 
the modelling of the parameter ci because it would generate a random interaction term 
with the IAP values that would be diffcult to understand and justify. Following this 
reasoning, our model would be 

(a)
+ β (a)ai = β (a) + u IW (i)+ β (a)Agei, (3)0 i W A 

bi = β (b) (b)
+ β (b) 0 + ui IW (i)+ βA 

(b)Agei, (4)W 

+ β (c)ci = β (c) W IW (i), (5)0 

,β (b) ,β (c)where β 0 = (β (a) )T stands for the common intercept with the men group being0 0 0 
the reference group, IW (i) is the indicator variable with value 1 if individual i is a woman 
and 0 otherwise, βW = (β (a) ,β (b) ,βW 

(c)
)T and β A = (β (a) ,β (b))T are the vector of regres-W W A A 

sion coeffcients associated with individual i being a woman and their standardized age, 
(a) (b)respectively. Random effects u and u , i = 1, . . . ,n, are assumed conditional inde-i i 

(a)pendent given σ2 and σb 
2 and normally distributed according to (u |σ2)∼N(0,σ2) anda i a a 

(b)
(u |σb 

2)∼N(0,σb 
2).i 

The Bayesian model is completed with the elicitation of a prior distribution for the 
parameters and hyperparameters θ = (β 0, βW , β A,σ ,σa,σb)

T of the model. We assume 
prior independence between them and select the uniform distribution U(0,10) for all 
standard deviation terms. The elicited marginal prior distributions for β (a) and β (c) are0 0 
U(0,20) and U(0,10), respectively. These uniform distributions are suffciently large 
to cover generously the whole range of possible values of both parameters. A normal 
distribution N(0,102) is selected for β (b) , β (a) , β (b) , β (c) , β (a) , and β (b) to allow the0 W W W A A 
parameters to move freely between a wide range of positive and negative values. 
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4. Posterior inferences and predictions 

4.1. Posterior distribution 

The relevant quantities in the inferential process are the parametric vector θ and the set of 
random effects associated to the individuals in the sample u = (u1, . . . , un)

T , where ui = 
(a) (b)

(u ,u ). The posterior distribution π(θ , u | D), where D represents the observed IAVi i 
and IAP data of all individuals in the sample as well as their age and gender, contains all 
the relevant information of the problem and it is usually the starting point of all relevant 
inferences. It was approximated by means of Markov Chain Monte Carlo (MCMC) 
simulation methods through the JAGS software (Plummer, 2003). For the estimated 
model, we ran three parallel chains with 1,000,000 iterations and a burn-in of 500,000. 
Chains were also thinned by storing every 1,000th iteration to reduce autocorrelation in 
the sample. Convergence to the joint posterior distribution was guaranteed by visualising 
every autocorrelation function plot by means of mcmcplot package for the R software 
and assuring an effective number of independent simulation draws greater than 100. For 
the sake of reproducibility we have generated a fctitious databank, which together with 
the R code for the analyses is available as supplementary material here https://github. 
com/gcalvobayarri/intra abdominal volume model.git. 

Table 1. Posterior summaries (mean, standard deviation and 95% credible interval) for the 
parameters and hyperparameters of the logistic growth model with covariates gender and stan-
dardized age. 

Logistic growth model 
Parameters mean sd CI0.95 

β (a) 0 

β (a) W 

β (a) A 

σa 

5.729 

−0.418 

0.101 
1.670 

0.377 

0.259 

0.124 
0.090 

(4.968, 6.452) 

(−0.927, 0.095) 

(−0.145, 0.349) 
(1.501, 1.860) 

β (b) 0 

β (b) W 

β (b) A 

σb 

1.080 

−0.270 

0.134 
0.650 

0.181 

0.125 

0.054 
0.041 

(0.730, 1.440) 

(−0.517, −0.028) 

(0.026, 0.241) 
(0.572, 0.736) 

β (c) 0 

β (c) W 

2.260 

−0.264 

0.120 

0.082 

(2.029, 2.503) 

(−0.431, −0.101) 

σ 0.490 0.011 (0.469, 0.513) 

Table 1 summarizes π(θ , u | D). The posterior mean of β (a) and β (b) provides an0 0 
approximate overall assessment of the baseline values of ai and bi for male patients. In 

https://github.com/gcalvobayarri/intra_abdominal_volume_model.git
https://github.com/gcalvobayarri/intra_abdominal_volume_model.git
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the case of the asymptotic value ai, it decreases by about 0.418 in the female group (al-
though this estimation has a lot of uncertainty), and shows a slight positive trend with 
age. Differences between individuals are relevant as it can be seen from the estimation of 
the standard deviation of the random effect in ai, 1.67. The parameter bi has an approxi-
mate basal value of 1.08 in the men group, which decreases by −0.27 units in the women 
group. Age also has a positive estimation and the random effect associated to individuals 
are also important for bi, especially because this term appears on an exponential scale 
and negative sign in the quotient of the growth curve. Finally, the posterior mean for 
the ci term is about 2.26 in the men group and decreases in 0.264 units in the group of 
women. The posterior mean of the standard deviation associated to the measurement 
error is not very large but it does have a very high accuracy. The fact that the IAP value 
of the IP, ADP, MAP and MDP of individual i depends on bi and ci proportionally to 
−bi/ci, and that the estimated coeffcient associated to age is positive for bi implies that 
the relationship of the IP, ADP, MAP and MDP for IAP coordinate with age is negative 
but barely important. 
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Figure 4. Posterior mean and 95% credible interval of the ADP (IAP value) of the men (top 
panel) and the women (bottom panel) in the sample. Patients are ordered in the x-axis in terms 
of their age. 

As mentioned above, the posterior distribution is the starting point for the analysis of 
the different outcomes of interest in the study. In the following, we will present different 
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results that may be useful to better understand the relationship between IAV and IAP 
at both the individual and population level and thus be able to answer the scientifc 
questions raised by the study. But frst we would like to make a brief comment on the 
variable selection process discussed above for parameter ci of the growth model. In this 
context, we considered different modelling approaches for ci with regard to covariate 
gender. The Deviance Information Criterion (Spiegelhalter et al., 2002) was used for 
model comparison and according to this criterion the best model was the one with only 
the gender covariate and a common population term in parameter ci as stated before. 

4.2. Posterior individual outcomes 

The basic inferential process allows the Bayesian methodology to obtain information 
both individually and in terms of the target population. In the following we focus on 
ADP. The mean of the IAP value of ADP for individual i, ADPi, depends on bi and ci, 
which in turn depends on (θ , ui). Consequently, we can compute the posterior distribu-
tion of the true ADPi of each individual i in the sample from the subsequent posterior 
distribution π(θ , ui | D). Figure 4 shows the posterior ADP mean and a 95% credible 
interval for the individuals in the sample ranked by age. The frst thing that is striking 
in both graphs is the great difference in both the men and women groups in the range 
of credibility intervals, which is mainly explained by the differences in the number of 
repeated observations for each of them. 
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Figure 5. Posterior predictive mean of the IAV and 95% predictive interval with regard to IAP 
values for a man (top panel) and a woman (bottom panel) aged 64.65 years (the sample mean). 
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Figure 6. Posterior predictive mean of the IAV with regard to IAP values for a man (top panel) 
and a woman (bottom panel) stratifed by age. 

Prediction of observations for new individuals of the target population is an impor-
tant issue that Bayesian statistics approaches in a natural way. The posterior predictive 
distribution of the random variable Yn+1, j that records the IAV value for a new indi-
vidual, n + 1, of the population with regard to their IAP, standardized age and gender 
values, which from now on we will denote by xn+1, j, depends on the conditional model 
in (1) and the posterior distribution π(θ , un+1 | D), where un+1 are the random effects 
associated to that individual n + 1. It is computed as follows Z 

f (yn+1, j | xn+1, j,D) = f (yn+1, j | xn+1, j,θ , un+1)π(θ , un+1 | D)d(θ , un+1), (6) 

where the posterior π(θ ,un+1 | D) factorizes in terms of the marginal posterior distri-
bution π(θ | D) and the conditional distributions for the random effects (ua

n+1 | σ2)∼a 
bN(0,σ2) and (un+1 | σb 

2)∼N(0,σb 
2). Figure 5 shows the posterior predictive mean anda 

a 95% predictive interval for the IAV value of a new individual of the target population 
with age 64.65, the sample mean of the data, with respect to their IAP value and their 
gender. Both groups behave very similarly. The stabilisation of the values of IAV in both 
groups can be clearly seen, as well as the variability associated with the predictive pro-
cesses, which is always greater in comparison with the estimation processes themselves. 
Finally, Figure 6 shows the posterior predictive mean for the response IAV variable with 
regard to IAP values of men and women with different ages. Of course, as we observed 
with the approximate posterior distribution of β (b) in the Table 1, a positive relationshipA 
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between IAV and age can be observed in the graphic, but it is very mild and possibly not 
very relevant for practical purposes in clinical scenarios. 

4.3. Posterior population outcomes 

Random effects connect the different repeated measures of the same individual in the 
statistical model and allow for the computation of individual-specifc outcomes. We 
would also like to be able to have not only that individual information, but also outcomes 
that can provide general information about the target population. This aim implies to 
work with the marginal formulation of the model in (1) and (2) which we would obtain 
by integrating out the random effects of the conditional modelling as follows Z Z 

f (yi j | xi j, θ ) = f (yi j | xi j, θ , u) f (u | θ)du = N(µi j,σ
2) f (u | θ )du. (7) 

This marginal formulation only depends on the parameter and hyperparameters of 
the model θ and is the basis for the computation of any feature of this marginal model. 
For simplicity, we only focus on the true asymptotic IAV value and the true asymptotic 
deceleration point ADP for a patient with an average age. 

Figure 7 shows the posterior distribution of the asymptotic IAV for men and women 
aged 64.65 years (the mean of the sample). There is not much difference between the 
two distributions. An estimation of the asymptotic IAV in the group of men is 5.60 L. 
while in the group of women it is 5.25 L. Figure 8 shows the joint posterior distribution, 
in terms of contour lines, of the ADP pressure point and the subsequent volume value for 
men and women aged 64.65 years (the sample mean) as well as the marginal distributions 
of both quantities. Posterior mean for the ADP’s pressure and volume is 10.06 mmHg. 
and 5.05 L. in men aged 64.65, and 10.87 mmHg. and 4.74 L. in the group of women 
with the same age, respectively. A similar analysis is possible for MAP, IP and MDP. 
However, their posterior results for both coordinates (IAP and IAV ) are proportional to 
those of ADP and their information would be repetitive. 
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Figure 7. Posterior distribution of the asymptotic IAV for men (on the left) and women (on the 
right). 
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5. Model checking 

Model checking is an essential component of any statistical analysis which has gener-
ated an extensive literature within the Bayesian reasoning (Vehtari and Ojanen, 2012). 
Our interest in this subject focuses on assessing, following the philosophy in Gelman et 
al (2014), whether the possible shortcomings of our model have a relevant effect on the 
derived results. We approach model checking via posterior predictive distributions fol-
lowing the ideas by Box (1980), who states that prediction (and not estimation) enables 
“criticism of the entertained model in light of current data”. 
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Figure 8. Joint posterior distribution and contour lines of the IAP and IAV coordinates for the 
true ADP and posterior marginal distribution for each of both quantities for men (top panel) and 
women (bottom panel) aged 64.65 years (the sample mean). The horizontal and vertical lines 
represent the approximate posterior mean of IAV − ADP and the approximate posterior mean of 
IAP − ADP, respectively. 
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We check our model through the cross-validated predictive density Gelfand, Dey and 
(rep)Chang (1992) defned as the conditional posterior density of a future IAV value y fori j 

individual i, i = 1, . . . ,n with standardized IAP value xi j of a replicate experiment 

Z 
(rep) | D−(i j)) = (rep) | xi j, θ , u)π(θ , u | D−(i j))d(θ , u),f (y f (yi j i j 

where D−(i j) are all the data in D except for the observation yi j (leave-one-out (LOO) 
procedure). 

The fundamental idea underlying this proposal assumes that if the estimated model is 
correct, each observation can be considered as a random value from the cross-validated 
predictive density Chen, Shao, and Ibrahim (2000). In this framework, we consider two 
complementary characteristics of such predictive distribution assessed at each observed 
value yi j. These quantities are the conditional predictive ordinate (CPO) and the cross-
validated probability integral (PIT), and are defned as: 

CPOi j = f (yi j | D−(i j)), 

PITi j = P(Y (rep) ≤ yi j | D−(i j)).i j 

CPOi j values correspond to the ordinates in the yi j of the cross-validated predictive 
density. Large CPOi j values support the selected model because indicate a good tuning 
between the data and the model. PITi j is the posterior probability that the replicated 
(i j)th observation is less or equal the subsequent observed value. When the model is 
well calibrated these probabilities follow a uniform distribution in the unit interval. 

The direct implementation of these quantities is computationally very expensive be-
cause we would need to approximate as many posterior distributions as we have ele-
ments in D. This is not necessary because the application of self-normalized importance 
sampling allows CPOs and PITs to be approximated from draws of the posterior distribu-
tion π(θ , u | D) computed with the complete data D (Gelfand, 1996; Ntzoufras, 2011). 
Computation of CPOs and PITs was done by means of the R software from the posterior 
outputs obtained with JAGS. 

Figure 9 shows the histogram of CPOs and PITs respectively. The information pro-
vided in both cases suggests that the model used has some shortcomings that can be 
improved. We have some values of the CPO that are small and the PITs do not seem to 
be uniformly distributed mainly due to a remarkable abundance of values close to zero. 

′Figure 10 shows how PIT values are distributed along IAP. Theoretically, PIT s 
should be uniformly distributed between 0 and 1 at each IAP point. However, from 
IAP ≈ 6.5 (vertical red line) to IAP ≈ 14 PIT values do in general do not exceed 0.5. 
This behaviour indicates that our model performs well when we work with small values 
of IAP, overpredicts observations of IAV for medium and medium-high values of the 
covariate IAP, and fnally, it seems to improve with large IAP values. 
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Figure 9. Histogram of the approximate CPO (on the top) and density histogram of the approx-
imate PIT (in the bottom) quantities for all the observations. 
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Conclusions 

Precision medicine tenets are that different interventions have distinct effects in different 
people and that this variability can, at least in part, be characterized and predicted (Senn, 
2016). In this study we have tried to lay the foundation for the mathematical modeling 
of the abdomen behaviour during pneumoperitoneum insuffation. We have also pa-
rameterized such model to achieve predictive capability based on a few simple baseline 
characteristics. This is the frst step in a precision medicine approach to pneumoperi-
toneum insuffation for laparoscopic surgery. This process can be potentially scaled up 
and recursively performed throughout the duration of the surgical intervention to ensure 
that even if conditions change, we could be able to provide an optimal surgical feld to 
the surgeon while exposing the patient the lowest possible pressure. 

With this procedure, we would like to achieve an optimal surgical workspace while 
minimizing the pressure administered to the patient. In other words, each subject would 
receive a titrated pressure according to her/his characteristics. Also, the ability to pre-
dict where the marginal gain in volume diminishes by deriving critical points on the 
parameterized curve have an especially interesting clinical potential. 

Bayesian inference can provide a suitable inferential framework in this context. 
First of all, Bayesian hierarchical models are useful to elicit and formulate the differ-
ent sources of variation and uncertainty of the problem and incorporate suitable terms 
into the model to account for them. In this particular case, the model includes nonlinear 
effects through a logistic growth function. As model ftting relies on MCMC meth-
ods, inference about particular elements of interest in the model becomes feasible. For 
example, the logistic growth model has a known parametric form from which some cru-
cial critical points can be derived analytically but inference on these points is far from 
straightforward. However, the output produced by MCMC during model ftting can be 
exploited to compute the posterior marginals of these particular points as well as those 
of the other model parameters. This provides extra information that can be used during 
the laparoscopic surgery. Inference about these critical points under other inferential 
frameworks would not be so straightforward. 

The most important critical point in our study is ADP, as this controls how much 
air is insuffated during surgery. From a clinical point of view, when operating on new 
patients, ADP’s predictive distribution can help physicians provide adequate insuffation 
during laparoscopic surgery. 

As we have illustrated, model checking is critical for health applications of statistical 
methodology as this will allow potential bias to be detected. We believe that the use of 
the model checking techniques should be widely adopted when relying on statistical 
models for medical practice to detect and avoid systematic biases in medical treatment 
(Obermeyer et al., 2019). 

The study presented in this paper illustrates a preliminary analysis in which 198 pa-
tients have been enrolled. In the future, we aim to conduct a larger trial so that a wider 
range of patients is represented. Furthermore, other covariates will be recorded and in-
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cluded into the model to reduce the uncertainty about the estimates and predictions, and 
increase the accuracy of insuffation. We plan to refne our model with anthropometric 
measurements. We are recording not only height and weight, but also waist and hip 
circumference and abdomen sagittal height to have abdominal, volume and body mass 
surface and update our model with these new data. Furthermore, data from medical 
imaging such as abdominal volume estimation based on routine preoperative computer-
ized tomography images or ultrasonic assessment of the abdominal wall thickness and 
fat component can be explored as covariate alternatives. We will also record the number 
of previous open and laparoscopic abdominal surgeries, as well as, in the case of women, 
the number of pregnancies. Finally, models with different assumptions will be consid-
ered such as non-homoscedastic models with increasing variability, different types of 
curves such as the Gompertz curve (Funatogawa and Funatogawa, 2018), or even the 
inclusion of random effects to assess the possible variability among the different studies. 
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Abstract 

Bilinear regression models involving a nonlinear interaction term are applied in many 
felds (e.g., Goodman’s RC model, Lee-Carter mortality model or CAPM fnancial model). 
In many of these contexts data often exhibit extreme values. We propose the use of bi-
linear models to estimate the median of the conditional distribution in the presence of 
extreme values. The aim of this paper is to provide alternative methods to estimate me-
dian bilinear models. A calibration strategy based on an iterative estimation process of a 
sequence of median linear regression is developed. Mean and median bilinear models 
are compared in two applications with extreme observations. The frst application deals 
with simulated data. The second application refers to Spanish mortality data involving 
years with atypical high mortality (Spanish fu, civil war and HIV/AIDS). The performance 
of the median bilinear model was superior to that of the mean bilinear model. Median 
bilinear models may be a good alternative to mean bilinear models in the presence of 
extreme values when the centre of the conditional distribution is of interest. 
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1. Introduction 

In regression analysis the effect of the interaction between two explanatory variables on 
the dependent variable is often of great interest. Two-way analysis of variance (ANOVA) 
models have been widely applied in linear regression analysis when a measurement de-
pendent variable is regressed on two categorical independent variables, and the aim 
is to assess the main effect of the two nominal variables but also the interaction ef-
fect between them (Yates and Cochran, 1938). Two-way ANOVA models are linear 
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regression models where the joint interaction effect is included as an additional regressor. 
So, linear regression techniques may be directly applied to estimate parameters, such as 
least squares or maximum likelihood methods. 

A more fexible modelling in two-way tables are the regression models in which 
the multiplicative interaction structure is specifed as a nonlinear term. These models 
are usually named bilinear models (Gabriel, 1978), although other names are often in 
use for these models, such as biadditive models (Denis and Pázman, 1999) or additive 
main effects and multiplicative interaction (AMMI) models (Van Eeuwijk, 1992, 1995). 
The unknown parameters of bilinear models may be also estimated by least squares or 
maximum likelihood. Least squares estimators of the nonlinear term are derived using 
singular value decomposition of the matrix of residuals (Gabriel, 1978; Lee and Carter, 
1992). Maximum likelihood estimators may be obtained by an iterative process (Good-
man, 1979, 1981). 

Bilinear regression models involving multiplicatively structured interactions are 
widely applied. Many models used in social sciences fts to this setting, including the 
row-column association model for two-way tables (Goodman, 1979, 1981), the uni-
form difference (UNIDIFF) or layer effect model for three-way tables (Erikson and 
Goldthorpe, 1992; Xie, 1992), generalized additive main effects and multiplicative in-
teraction effects (GAMMI) models for crop yields (Van Eeuwijk, 1992, 1995), the one-
dimensional Rasch-type model for binary responses (Turner, Firth and Kosmidis, 2013) 
or the stereotype regression model for ordered multinomial data (Anderson, 1984). In 
time series analysis, statistical factor models can be understood as multiplicative interac-
tion models (Croux et al., 2003). Factor models are widely applied in fnance for calcu-
lating the investment risk in asset pricing theory, such as the capital asset pricing model 
(CAPM) model or the Fama-French model (Black, Jensen and Scholes, 1972). In de-
mography and actuarial science, factor models are used to predict the future mortality. In 
fact, most of mortality projections models, such as Lee-Carter and Renshaw-Haberman 
models can be understood as multiplicative interaction models (Lee and Carter, 1992; 
Renshaw and Haberman, 2006; Macias and Santolino, 2018; Moyano-Silva et al., 2020). 

In many of these contexts data often show extreme values. When the centre of the 
conditional distribution is of interest, a common practice is to consider extreme values 
as outliers and remove them from the dataset prior to estimation. Formally, an outlier is 
a data point that deviates so far from the other observations because it was generated by 
a totally different mechanism or simply by error (Hawkins, 1980; Justel, Pena˜ and Tay, 
2001). Deleting outliers is important because those values can increase error variance 
and infuence estimates. However, this strategy should be taken very cautiously when 
data points are extreme values but not outliers. Extreme values are events that might 
happen, so we should be very cautious before deleting these values from datasets. 

A different approach is here followed. It is well known that the median is a robust 
measure of central tendency. Median bilinear models may be a good alternative to mean 
bilinear models in the presence of extreme values (Gabriel and Odoroff, 1984). In this 
article we propose the use of the bilinear regression setting to model the median of the 
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conditional distribution as a nonlinear function of predictors. The aim of this article is 
twofold: 1) to show how the parameters of the median bilinear model can be estimated 
and, 2) to compare the performance of the conditional median bilinear regression and 
the conditional mean bilinear regression in the presence of extreme values. 

The main contribution of the paper is to review alternative methods to estimate me-
dian bilinear models. Bilinear models are nonlinear regressions. The techniques avail-
able for estimating nonlinear regression models for the conditional median are not as 
well developed as those for the conditional mean estimation. Koenker and Park (1996) 
proposed to calibrate median nonlinear regression models by means of the linearization 
of the objetive function. Here we propose an alternative calibration approach based on an 
iterative estimation process of a sequence of median linear regressions. This second al-
ternative is novel. It was frst used by Moyano-Silva, P´ ın and Santolino (2020)erez-Mar´ 
to estimate the Lee-Carter stochastic mortality model. We here generalize this strategy 
to estimate median bilinear models with two main factors. To solve the underlying linear 
optimization problems, we use interior point methods (Koenker and Park, 1996; Portnoy 
and Koenker, 1997) and the maximum likelihood approach (Sánchez, Labros and Labra, 
2013). This paper focuses on the evaluation of goodness-of-ft of mean and median bi-
linear models in presence of extreme values. However, bootstrapping techniques can be 
used to estimate standard errors when inference on coeffcient estimates is of interest 
(Buchinsky, 1995). 

Two applications are illustrated for the comparison of the median and mean bilinear 
models. The frst application is based on simulated data. In the second application real 
Spanish mortality data are used to estimate the median and mean (log)bilinear stochastic 
mortality models. In both applications, bilinear models are calibrated using the whole 
sample. The performance of the ftted models is then evaluated computing a series of 
goodness-of-ft measures for the whole sample and when extreme values are removed. 

The article is structured as follows. Section 2 introduces the mean and median bilin-
ear regression models. Section 3 shows the parameter estimation methods of the mean 
bilinear regression model. Section 4 describes the calibration strategies of the median 
bilinear regression model. The two applications are illustrated in Section 5. Main con-
clusions are summarized in Section 6. 

2. Bilinear regression model 

Let Y be a continuous random variable with fnite expectation and cumulative distribu-
tion function FY defned by FY (y) = P(Y ≤ y). The inverse function of FY is known 
as quantile function, Q. The quantile of order α is defned as Qα (Y ) = F−1(α) = Y 
inf{y | FY (y) ≥ α} where α ∈ (0,1). The quantile is a left-continuous increasing func-
tion. If FY is continuous and strictly increasing, the mathematical expectation can beR 1represented as E(Y ) = 0 Q1−u(Y )du. The median is the quantile of order 0.5. 

Let consider two categorical variables. The frst factor has I levels (i ∈ {1, . . . , I}) 
and the second has J levels ( j ∈ {1, . . . ,J}). The sample size is N such as N = I · J. 
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Let yi j be the random variable conditional on the levels i and j. The bilinear regression 
model in two-way tables is defned as: 

yi j = ai + b j + ci · d j + εi j (1) 

where ai is the main effect of the level i and b j is the main effect of the level j. The 
coeffcients of the nonlinear term are ci and d j capturing the interaction effect of the two 
levels. Finally, εi j is the error random variable. Note that infnite solutions exist in (1). 

˜For any scalars z, u and v, the following transformations {ãi,b j, c̃i, d̃ j} = {ai − z · ci,b j − 
ci + v

d j · v − z · v, ,u · (d j + z)} give unaltered outcome values. To overcome the lack of 
u 

identifability and to help in the interpretation, the following two constraints are often 
set: ∑i ci = 1 and ∑ j d j = 0. 

In the case of independent and identically zero-mean distributed random errors, the 
conditional expected value of yi j may be expressed as 

E(yi j) = ai + b j + ci · d j (2) 

Analogously, in case of independent and identically zero-median distributed random 
errors, the median of yi j may be expressed as (Bassett and Koenker, 1978), 

Q0.5 (yi j) = ai + b j + ci · d j (3) 

Sections 3 and 4 are devoted to estimate the vectors of coeffcients, a = (a1, . . . ,aI), 
b = (b1, . . . ,bJ), c = (c1, . . . ,cI) and d = (d1, . . . ,dJ) in (2) and (3), respectively. 

3. Mean bilinear model: calibration 

Two widely used techniques to estimate the parameters of (2) are the least squares and 
the maximum likelihood methods. 

Least squared errors 

The expectation is the value that minimizes the sum of squared deviations. One strategy 
for estimating the parameters is to minimize the sum of squared errors, as follows: 

min ∑(yi j − ai − b j − ci · d j)
2 (4)

θ ∈R2·(I+J) i, j 

where θ is the set of parameters to estimate, θ = (a,b,c,d). Coeffcients in (4) cannot be 
directly estimated by ordinary least squares because the right-hand side of equation (2) 
is not linear with the parameters. To estimate the coeffcients, Gabriel (1978) proposed 
to ft the bilinear models in a two-stage process: (1) ft the linear part of the model, then 
take residuals, and (2) ft the bilinear part to the residuals. 

Stage 1 uses linear least squares to solve the least squares problem. The resulting 
vectors â = (â1, . . . , âI) and b̂ = (b̂1, . . . , b̂J) are then introduced into the joint ftting 
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problem. The (I × J)-matrix A, where the (i, j)-element is ai j = yi j − âi − b̂ j, is de-
composed by singular value decomposition, svd(A) = UΛVT . The vector of estimates 
ĉ = (ĉ1, . . . , ĉI) is the frst column of U , ĉ = (u1,1, . . . ,uI,1), and the vector of esti-
mates d̂  = (d̂1, . . . , d̂J) is the frst column of V multiplied by the frst eigenvalue λ1,1, 
d̂ = λ1,1 · (v1,1, . . . ,vJ,1). 

Maximum likelihood 

Goodman (1979) proposed to use a iterative method for estimating bilinear models by 
maximum likelihood. Suppose the log-likelihood function is given by l(θ )= ∑i, j log( f (yi j)), 
where f is the density function of yi j. The function l may be maximized by an iterative 
process in which the elementary newton method is applied for the score functions of 
each set of parameters. In the mean bilinear model we have three sets of parameters. 
Denote the vector of initial values θ̂ 0 = (â0 , b̂0 , ĉ0 , d̂0) and l0 = l(θ̂ 0). In the iteration 
step v, parameters are updated as follows: 

∂ lv/∂ a ∂ lv/∂ b1. Given θ̂ v , âv+1 = âv − 
∂ 2lv/∂ a2 , b̂v+1 = b̂v − 

∂ 2lv/∂ b2 , ĉv+1 = ĉv and d̂v+1 = d̂v . 

∂ lv+1/∂ c2. Given θ̂ v+1, ĉv+2 = ĉv+1 − 
∂ 2lv+1/∂ c2 and âv+2 = âv+1, b̂v+2 = b̂v+1 and d̂v+2 = 

d̂v+1 . 

∂ lv+2/∂ d3. Given θ̂ v+2, d̂v+3 = d̂v+2 − 
∂ 2lv+2/∂ d2 , âv+3 = âv+2, b̂v+3 = b̂v+2 and ĉv+3 = ĉv+2. 

4. If lv+3 − lv ≤ η then stop, where η is the tolerance value, otherwise, θ̂ v = θ̂ v+3 

and move to step 1. 

An application of this method to model the Poisson distributed number of deaths is 
shown by Brouhns, Denuit and Vermunt (2002). 

4. Median bilinear model: Least absolute errors 

The mean minimizes the sum of squared deviations and the median is the value that 
minimizes the sum of absolute deviations. The parameters of the median regression are 
estimated minimizing absolute errors, as follows: 

min ∑ yi j − ai − b j − ci · d j (5)
θ ∈R2·(I+J) i, j 

The expression (5) can be rewritten as the following minimization problem: � � 
min 0.5 ∑ui j + ∑vi j (6)

θ∈R2·(I+J),u≥0,v≥0 i, j i, j 

subject to 
yi j − ai − b j − ci · d j − ui j + vi j = 0. 
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where ui j = εi j if εi j > 0 or 0 otherwise, and vi j = |εi j| if εi j < 0 or 0 otherwise, and εi j = 
yi j −ai −b j −ci ·d j. Let us use the following notation εi j(θ ) = yi j − fi j(θ ), with fi j(θ ) = 
ai + b j + ci · d j, to indicate that εi j depends on the set of parameters θ . Two alternative 
strategies are adopted to estimate the parameters in (6) based on the conversion of the 
original nonlinear optimization problem in a sequence of linear problems. 

4.1. Strategy A: Linearization of the objective function 

Strategy A transforms the nonlinear problem (6) in a sequence of linear problems. Pro-
vided that the functions εi j(θ ) are continuously derivable in θ , the Lagrangian function 
may be expressed as L(s, t,w) = uT (0.51N − s − t)+ vT (0.51N + s− w)+ ε(θ)Ts, where 
1T 

N is a N-column vector of 1’s, ε(θ ) = (ε1,1(θ ), ...,εi j(θ ))T and s, t and w are the multi-
pliers of Lagrange with t and w are non-negative vectors. Taking partial derivatives with 
respect to the model parameters θ and the decision variables u and v, we obtain the dual 
feasibility conditions. The dual version of (6) can be then expressed as, 

max ε(θ)T s s.t J(θ)T s = 0, (7) 
s∈[−0.5,0.5]N 

where J(θ ) is the vector of frst derivatives of fi j(θ) with respect to θ (El-Attar, Vidya-
sagar and Dutta, 1979). 

4.1.1. Calibration: Affne scale method 

Let us consider the locally linearized approximation ε(θ +∆) ≈ ε(θ )−J(θ ) ·∆. Koenker 
and Park (1996) propose to replace ε(θ) by the linear approximation ε(θ +∆) and, then, 
to apply iteratively the affne scaling method to solve the dual optimization problem (7). 

0 b̂0 0Consider the set of initial values θ̂ 0 = (â , , ĉ , d̂0). In the iteration step v, parameters 
are updated as follows: 

1. Refne s with Meketon algorithm and estimate ∆ which depends on s and J(θ̂ v), 
and ε(θ̂ v). 

2. To ensure that the linearized approximation generates feasible steps, update θ̂ 
as θ̂ v+1 = θ̂ v + λ ∆̂, where ∆̂ is the direction step and λ the length of the step. 
The length of the step λ ∈ [0,1] is estimated minimizing the primal optimization 
problem (6) for ε(θ̂ v + λ ∆̂ ). � � 

3. If ∑i, j |εi j(θ̂
v+1)|− |εi j(θ̂

v)| ≤ η then stop, where η is the tolerance value. Oth-
erwise, move to step 4. 

4. Project the refned s in the null space of the updated J(θ̂ v+1) and rescale to ensure 
that it is bounded in [−0.5,0.5], and move to the next iteration. 
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4.2. Strategy B: Sequence of median linear regressions 

Under the strategy B, coeffcients in (6) are also estimated by means of an iterative pro-
cess of a sequence of linear optimization problems. Strategy B draws inspiration from 
Wilmoth (1993) who replied the method described by Goodman (1979) to the case of 
minimum least square estimators. Wilmoth (1993) proposed an iterative process to esti-
mate the parameters of the mean bilinear model sequentially by least square techniques. 
Santolino (2020) adopted this strategy to estimate the parameters of the Lee-Carter quan-
tile mortality model by least absolute techniques. We here describe this strategy for the 
median bilinear regression. Like the median polish for additive models (Emerson and 
Hoaglin, 1983), our method relies on the properties of homogeneity and translation in-
variance satisfed by the median, i.e., for any constant k ∈ R, the following two equalities 
are satisfed, Q0.5 (k · yi j) = k · Q0.5 (yi j) and Q0.5 (yi j + k) = Q0.5 (yi j)+ k. 

0 0Let consider the set of initial values θ̂ 0 = (â , b̂0 , ĉ , d̂0). In the iteration v, parame-
ters are updated as follows: � � 

1. Given θ̂ v , estimate the parameters γai and γb j ftting Q0.5 yi j 
v = γai · âi

v + γb j · b̂v
j, 

v+1where yv
i j = yi j − ĉv

i · d̂v
j . Update âi = γ̂ai · âv

i and b̂v
j 
+1 = γ̂b j · b̂v

j, ĉ
v+1 = ĉv and 

d̂v+1 d̂v= . � � 
v+1 v+1 v+12. Given θ̂ v+1, estimate the parameter γci ftting Q0.5 yi j = γci · ĉ , where y = i i j 

v+1−b̂v+1yi j−âi j v+2 v+1 av+2 av+1 b̂v+2 ˆ d̂v+1 
d̂v+1 . Update ĉi = γ̂ci · ĉi , ˆ = ˆ , = bv+1 and d̂v+2 = . 

j � � 
v+2 d̂v+23. Given θ̂ v+2, estimate the parameter γd j ftting Q0.5 yi j = γd j · j , where 

v+2 bv+2yi j−â −ˆ v+2 i j d̂v+3 d̂v+2 av+3 av+2 b̂v+3 ˆyi j = v+2 . Update j = γ̂d j · j , ˆ = ˆ , = bv+2 and 
ĉi 

cv+3 cv+2ˆ = ˆ . � � 
4. If ∑i, j |εi j(θ̂

v+3|− |εi j(θ̂
v| ≤ η then stop, where η is the tolerance value. Oth-

erwise, θ̂ v = θ̂ v+3 and move to step 1. 

4.2.1. Calibration of a median linear regression 

With the application of this strategy, the problem of estimating a median bilinear regres-
sion is converted into a problem of estimating iteratively a sequence of three median 
linear regressions. A median linear regression in matrix notation may be expressed as 
Q0.5 (Y ) = XT

γ , where Y is the response vector, γ is the set of parameters to estimate 
and X is the design matrix. At each step, the following optimization problem has to be 
resolved: 

min 0.51T 
Nu+ 0.51T 

Nv s.t XT
γ + u− v = Y. (8)

γ,u≥0,v≥0 

Different methods may be applied to estimate the parameters. We briefy describe 
two estimation methods which are the Mehrotra’s Predictor-Corrector method (Port-
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noy and Koenker, 1997) and the likelihood-based approach (Machado and Silva, 2011; 
Sánchez et al., 2013). 

Mehrotra’s Predictor-Corrector method 

Alternative algorithms for linear programs with bounded variables may be used to solve 
(8). A widely used algorithm is the Mehrotra’s Predictor-Corrector (MPC) method de-
scribed in Mehrotra (1992). As the affne scale algorithm, the MPC algorithm belongs 
to the class of point interior methods. The MPC method is an appropriate algorithm 
to solve the canonical linear program: min{cTx : Ax = b, x ≥ 0} , where A ∈ RmxN , y, 
b ∈ Rm and c, x, s ∈ RN , and its dual problem, max{bTy : ATy + s = c, s ≥ 0}. The 
MPC method fnds the joint solution of the primal and dual equations (Salahi, Peng and 
Terlaky, 2008). � 

The dual optimization problem of (8) is max yTs : XTs = 0, s ∈ [−0.5,0.5]N , 
where s are the multipliers of Lagrange. Setting a = s + 0.5, the maximization prob-� 

Tlem is converted to max y a : XTa = (0.5)XT1N , a ∈ [0,1]N . Changing the sign of y, 
it becomes a minimization problem which fts in the setting of the canonical linear pro-
gram in which the use of MPC method is appropriate. 

Maximum likelihood 

The likelihood-based approach is based on the asymmetric Laplace distribution to repli-
cate the optimization problem (8). Suppose that the response variable yl follows an 
asymmetric Laplace distribution with location parameter xT 

lγ , scale parameter σ and 
skewness parameter α , where xl is the l row of the design matrix, with l = 1, . . . ,N. The 
likelihood function is 

αN(1− α)N 
( � 

yl − xlγ 
�)

N T 

L(γ,σ) = exp − ∑ ρα ,
σ N

l=1 σ 

where the loss function is defned as ρα (rl) = rl(α − Irl ) for α ∈ (0,1), Irl is an indicator 
function such that Irl = 1 if rl < 0 and zero otherwise. Note that for α = 0.5, if σ 
is considered a nuisance parameter, the maximization of the L(γ,σ) is equivalent to 
minimize the objective function (8). Sánchez et al. (2013) describe the steps to obtain 
the ML estimates based on the expectation-maximization (EM) algorithm. 

5. Results 

In this section it is compared the performance of mean bilinear models and median 
bilinear models in presence of extreme values in two different contexts. We illustrate the 
use of these models with a simulated database and in a real application to the Spanish 
mortality data. The parameters of the mean bilinear regression model were estimated 
by least squares (Mean SVD) and also by maximum likelihood (Mean MV). Median 
bilinear regression models were estimated by the method A and the method B. In the case 
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of the method A, the parameters were estimated by the affne scaling method (Med A-
AS). In the case of the method B, we apply the interior point method with the Mehrotra’s 
Predictor-Corrector algorithm (Med B-MP) and the maximum likelihood approach based 
on the asymmetric Laplace distribution (Med B-MV) to calibrate the model. 

All results were calculated in R (R Core Team, 2020). The estimates of the mean 
bilinear model by maximum likelihood were obtained by means of the gnm package 
(Turner and Firth, 2018) that applies the iterative process in which the linear terms are 
updated by reweighted least squares (Turner and Firth, 2018; Dutang, 2017). The nls 
function in the stats package may be also used to ft a mean bilinear model by a iterative 
process to minimize least square errors. Median regression models may be estimated by 
interior point methods with R package quantreg (Koenker, 2019), but some implemented 
functions can only deal with full-rank design matrices. We use the function rq.ft.fnb of 
the package quantreg and a version of the function nlrq available in Koenker (2020) 
to calibrate median regression models based on the MPC method and on the Meketon 
algorithm. Finally, the R package ALDqr can be used to estimate median linear models 
by maximum likelihood (Sánchez et al., 2013). We modify the function EM.qr of this 
package to deal with sparse matrices. The data and code used in the data analysis are 
publicly available on GitHub (FMBM, 2021) 

5.1. Simulation 

For illustrative purposes a simulated dataset with extreme values is used for the estima-
tion of median bilinear models. We simulate a database generated by the model (1) in 
case that the error is normally distributed and there are shocks involving extreme out-
comes. Let consider the response variable yi j is generated by yi j = ai + b j + ci · d j + εi j, 
where εi j ∼ N(0,0.05). The frst factor a has 50 levels, (i ∈ {1, . . . ,50}), and the second 
b has 40 levels, ( j ∈ {1, . . . ,40}). The description of coeffcients used in the simulation 
are shown in Table (1). 

Table 1. Descriptive statistics of simulated data. 

Min. 1st quartile Median Mean 3rd quartile Max. 
ai 1.34 2.95 3.78 3.72 4.85 5.97 
b j 0.00 0.16 0.27 0.31 0.36 0.72 
ci -2.36 -1.02 -0.42 -0.02 0.2 5.48 
d j -0.03 -0.02 0.00 0.00 0.01 0.08 
yi j 1.32 2.88 4.10 4.04 5.18 7.08 

Now we incorporate the extreme outcomes (shocks) to the simulated data. Suppose 
that the response variable yi j is affected by shocks as follows, ys = yi j + B ·U , wherei j 
B is a bernoulli variable that takes 1 with probability p and U is a discrete random 
variable that takes values {−8,−6,6,8} with probability 0.25 each one. We consider fve 
different scenarios in relation to the frequency of shocks, p = (0,0.01,0.025,0.05,0.1), 

https://N(0,0.05
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that is, scenario without shocks (p = 0), scenario in which the 1% of observations are 
extreme values (p = 0.01), scenario with 2.5% of extreme values (p = 0.025), scenario 
with 5% of extreme values (p = 0.05) and scenario with 10% of extreme values (p = 
0.1). 

The mean bilinear and the median bilinear models are ftted to the simulated data 
in the fve scenarios. The sum of squared errors (SSE) and the sum of absolute errors 
(SAE) are computed for each ftted bilinear model in the scenarios with extreme obser-
vations. In order to evaluate the infuence of extreme values on estimates, the bilinear 
models calibrated in the scenarios with extreme observations are also used to compute 
the statistics of ft for the simulated data without shocks. Results are shown in Table 2. 

Table 2. Statistics of ft of the mean and the median bilinear models. 

Without 
shocks 

1% shocks 
ys 

i j yi j 

2.5% shocks 
ys 

i j yi j 

5% shocks 
ys 

i j yi j 

10% shocks 
ys 

i j yi j 

Mean SVD SAE 75.83 338.38 277.75 925.01 670.65 1620.63 1082.47 2803.60 1825.38 
SSE 4.54 730.60 245.61 2686.90 652.01 5620.11 1313.34 10734.41 2905.55 

Mean MV SAE 75.83 338.38 277.75 925.01 670.65 1616.85 1081.19 2803.27 1825.07 
SSE 4.54 730.60 245.61 2686.90 652.01 5600.56 1313.74 10734.41 2905.64 

Med A-AS SAE 75.80 306.88 238.60 922.89 667.86 1504.16 887.85 2707.61 1543.91 
SSE 4.55 852.07 318.87 2687.99 647.77 6102.31 1167.75 12326.93 2613.01 

Med B-MP SAE 74.21 193.53 74.38 487.85 74.79 932.92 75.55 1767.64 77.59 
SSE 4.74 961.50 4.77 3320.13 4.77 6893.69 4.89 13581.87 5.20 

Med B-MV SAE 75.53 195.57 76.91 493.22 82.09 939.44 84.18 1712.79 193.47 
SSE 4.73 956.70 5.01 3300.06 5.64 6872.17 6.01 12848.81 646.84 

If we focus on the performance of ftted models in the scenario without shocks (sec-
ond column of Table 2), as expected, the lowest SSE is observed for the mean bilinear 
models, and the lowest SAE for the median bilinear models. In fact, this behaviour is 
repeated in the scenarios with extreme observations when the statistics of ft were com-
puted for the simulated data with the shocks (ys 

i j). 
However, this conclusion varies when the estimated bilinear models ftted in the sce-

narios with extreme values are analysed in the scenarios without shocks (yi j). A lower 
SSE associated to mean bilinear models is not longer observed when the shocks are re-
moved from the simulated data and the statistics of ft are computed again. Now, the 
ftted median bilinear models show a lower SAE in all scenarios and also a lower SSE 
in almost all scenarios in comparison with the ftted mean bilinear models. In partic-
ular, the performance of the two median bilinear models ftted by method B is clearly 
better than the performance of the ftted mean bilinear models, and it is also higher than 
that of the median bilinear model estimated by method A. Comparing between the two 
median bilinear models ftted by method B, the MPC method seems to provide more 
stable estimates when the number of extreme values increases. Finally, almost identical 
outcomes were obtained with the two methods of coeffcient estimation for the mean 
bilinear model. 
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5.2. Application to mortality data 

The second example uses Spanish mortality data to illustrate the application of bilin-
ear models in presence of extreme values. One of the most infuential approaches to 
the stochastic modelling of mortality rates is the parametric nonlinear regression model 
introduced by Lee and Carter (1992). The Lee-Carter model proposes estimating the 
conditional mean mortality rate as the nonlinear combination of age and calendar year 
parameters. Santolino (2020) adopts the Lee-Carter framework to estimate the condi-
tional quantile mortality rate. 

The Lee-Carter modelling fts in the setting of the bilinear models defned in (1) 
in which the main effect of level j (calendar year) is equal to zero, i.e. the response 
variable (log of the mortality rate) is regressed by the main effect of level i (age) and 
the interaction between levels i and j. We here estimate the Lee-Carter mean mortality 
model and the Lee-Carter median mortality model for the Spanish male population. The 
number of deaths observed, exposures and central mortality rates for the Spanish pop-
ulation by gender were obtained directly from the Human Mortality Database (HMD, 
2020). Mortality information is available for ages between 0 and 110, but the number of 
observations is ineluctably small at the extreme ages and patterns at very advance ages 
are diffcult to observe (Robine et al., 2007). We select ages between 0 and 100 years, 
which is a common practice in demographics. 
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Figure 1. Mortality rates of Spanish male population at different ages over 1908–2016 period. 

The mortality data cover the observation period between the years 1908 and 2016. 
Social progress has led to a notable reduction in mortality of the Spanish population 
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through this period. However, there are three spans of time in which the decreasing 
trend is disrupted, namely, the Spanish fu, the Spanish Civil War and HIV/AIDS. The 
Spanish fu was a severe infuenza pandemic with deadly consequences in 1918 and the 
following four years (Carreras and Tafunell, 2005). The Spanish Civil War took place 
between 1936 and 1939. The postwar era formally ended in 1953 with the signing of 
the US economic agreement (Pact of Madrid). During the war and the frst half of the 
postwar period, poverty and malnutrition affected remarkably the mortality (Jiménez 
Lucena, 1994). Finally, mortality associated with HIV dramatically increased during the 
late 80s and 90s, particularly in middle-aged population (CNE, 2011). Figure 1 shows 
Spanish male mortality rates at different ages in the period 1908–2016, in which these 
three peaks in the mortality rate are sharply appreciated. 
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Figure 2. Mortality rates at different years of Spanish male population. 

The impact of years involving atypically high mortality rate values may be observed 
in Figure 2. Mortality rates (in log scale) at ages between 0 and 100 are showed for all 
years in Figure 2 (left). Each line corresponds to the log mortality rates at 0-100 ages 
in a particular calendar year, and calendar years are differentiated by colors. In case 
of a continuous reduction in mortality rates over time through the 1908-2016 period, 
the colored lines should not overlap themselves and they do it. In Figure 2 (right) the 
years belonging to the time intervals 1918–1922, 1936–1946 and 1985–1995 are not 
represented. Note that, when these atypical years are removed, the lines seldom overlap 
themselves. 
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The mean and median bilinear models are ftted to the Spanish mortality data. The 
models are calibrated with data involving all calendar years. The measures of goodness-
of-ft are computed for the whole sample and when years belonging to the time intervals 
1918–1922, 1936–1946 and 1985–1995 are excluded. The sum of squared errors and 
absolute errors are shown for each ftted bilinear model in Table 3. 

Table 3. Statistics of ft of bilinear models ftted to Spanish male mortality data. 

SAE SSE 
Without a
SAE 

typical years 
SSE 

Mean SVD 
Mean MV 
Med A-AS 
Med B-MP 
Med B-MV 

1279.07 
1279.07 
1226.87 
1227.25 
1235.09 

272.76 
272.76 
300.96 
301.49 
288.29 

908.44 
908.44 
843.84 
842.90 
857.19 

172.35 
172.35 
171.63 
170.79 
169.49 
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Figure 3. Coeffcient estimates of the Mean MV and Med A-AS models. 

When the goodness-of-ft statistics are computed for the whole sample, the ftted 
mean bilinear models have lower SSE values and higher SAE values compared to the 
ftted median bilinear models. Whether or not atypical years are considered in the com-
putation of the statistics of ft, the ftted median bilinear models show lower SSE and 
SAE values than the ftted mean bilinear models. The performance of the median bilin-
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ear models calibrated by the affne scaling method and the MPC method is very similar. 
Among the ftted median bilinear models, the median bilinear model calibrated by max-
imum likelihood shows the highest SAE value and the lowest SSE value. Comparing the 
calibration methods of the mean bilinear model, the same results are obtained with the 
two methods of coeffcient estimation. 

A comparison of coeffcient estimates of Mean MV and Med A-AS models is pro-
vided in Figure 3. Small differences in coeffcient estimates are observed for ages in the 
20–40 interval and years in time intervals 1936–1946 and 1985–1995. 

In mortality applications it is also important to evaluate the prediction power of mod-
els. Backtesting is applied to evaluate the prediction accuracy of mean and median 
models for annual periods up to fve years. Alternatively, resampling methods could be 
used to analyse the prediction power of stochastic mortality models (Atance, Debón and 
Navarro, 2020). The sum of absolute prediction errors (SAPE) and the sum of squared 
prediction errors (SSPE) are shown for each bilinear model in Table 4. Median bilinear 
models show lower SAPE values in all cases and also lower SSPE values in the four-year 
and fve-year forecasting periods (2013–2016 and 2012–2016, respectively). 

Table 4. Backtesting to evaluate prediction power of bilinear models for different periods of 
forecasting. 

SSPE 
2015–

SAPE 
2016 
SSPE 

2014–
SAPE 

2016 
SSPE 

2013–
SAPE 

2016 
SSPE 

2012–
SAPE 

2016 
SSPE 

Mean SVD 
Mean MV 
Med A-AS 
Med B-MP 
Med B-MV 

15.14 
15.14 
14.52 
14.44 
14.29 

3.82 
3.82 
4.52 
4.51 
4.20 

28.02 
28.02 
27.47 
27.51 
26.99 

6.90 
6.90 
8.89 
8.69 
8.11 

45.60 
45.60 
42.98 
42.89 
42.75 

11.76 
11.76 
13.35 
13.27 
12.75 

67.07 
67.07 
59.46 
59.74 
60.96 

17.31 
17.31 
17.22 
17.30 
17.16 

82.39 
82.39 
73.31 
73.07 
75.00 

21.04 
21.04 
20.83 
20.88 
21.16 

6. Conclusions 

Conditional mean bilinear regression models have been broadly used in many research 
felds. In many of the contexts that mean bilinear models are applied, data have extreme 
observations. It is know that in presence of extreme values the mean may be an inaccu-
rate statistic to refect the centre of the conditional distribution. In this article we have 
compared the performance of the mean bilinear model and the median bilinear model in 
different contexts involving extreme observations. 

In the bilinear modelling the multiplicatively interaction structure is specifed as a 
nonlinear term. Alternative methods of parameter estimation for nonlinear regressions 
are applied. The mean bilinear model is estimated by lest squares and maximum like-
lihood. The method of parameter estimation for nonlinear median regression involving 
the linearization of the objective function is compared with the calibration strategy of 
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the median bilinear model in which coeffcients are estimated by an iterative process of 
a sequence of median linear regressions. This second calibration strategy was frst used 
by Santolino (2020) and here it is generalized to the median bilinear model setting. 

Mean and median bilinear models are compared in two applications involving ex-
treme values. The frst application deals with simulated data with extreme values. The 
second application is illustrated by means of mortality data of the Spanish population 
over the 1908–2016 period. During this period, there were a set of years with a partic-
ular high mortality (Spanish fu, civil war and HIV/AIDS). Statistics of goodness-of-ft 
were compared. The ftted median bilinear models showed the lowest sum of absolute 
errors and the ftted mean bilinear models the lowest sum of square errors. However, 
when observations with extreme values were removed, the ftted median bilinear models 
showed the lowest values in the two statistics of goodness-of-ft. This result would con-
frm that the estimated median is a more appropriate statistic to refect the centre of the 
conditional distribution than the estimated mean in these two applications. In the context 
of COVID-19 using median rather mean approaches when estimating mortality models 
may be relevant due to the unusual data points arising in 2020 and 2021. 

Analysing the two calibration strategies of the median bilinear regression model, we 
found that the strategy involving the sequence of median linear regressions performed 
clearly better than the strategy associated to the linearization of the objective function in 
the application with simulated data and similarly in the application with mortality data. 

We conclude that the application of the median bilinear model may be more appro-
priate than the mean bilinear model in presence of extreme values, whether the centre 
of the conditional distribution is of interest. Parameters of the median bilinear model 
may be easily estimated by means of calibrating sequentially median linear regressions. 
These concluding remarks are relevant in felds such as the stochastic mortality mod-
elling in which researchers have to deal often with data involving extreme observations 
(wars, pandemics, natural disasters, famines, etc.), and, in general, in any context of 
application of bilinear models in which the presence of extreme values is frequent. 
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el uso de una enfermedad colectiva en la legitimación del ’Nuevo estado’. Dynamis : 
Acta Hispanica ad Medicinae Scientiarumque. Historiam Illustrandam, 14, 185–198. 

Justel, A., Peña, D. and Tay, R.S (2001). Detection of outlier patches in autoregressive 
time series. Statistica Sinica, 11, 651–673. 

Koenker, R. (2019). quantreg: Quantile regression. R package version 5.42. 
Koenker, R. (2020). Non linear quantile regression. http://www.econ.uiuc.edu/∼roger/ 

research/nlrq/nlrq.html, Accessed 16 February 2021. 
Koenker, R. and Park, B. J. (1996). An interior point algorithm for nonlinear quantile 

regression. Journal of Econometrics, 71, 265–283. 
Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U. S. mortality. Journal 

of the American Statistical Association, 87, 659–671. 
Machado, J. and Silva, J. S. (2011). MSS: Stata module to perform heteroskedastic-

ity test for quantile and OLS regressions. Statistical Software Components, Boston 
College Department of Economics. 

Macias, Y. and Santolino, M. (2018). Application of Lee-Carter and Renshaw-Haberman 
models in life insurance products. Anales del Instituto de Actuarios Españoles, 24, 
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Exponentiated power Maxwell distribution with 
quantile regression and applications 
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Abstract 

In this paper we introduce an extension of the power Maxwell distribution. We also dis-
cuss a reparametrized version of this model applied to quantile regression. Some prop-
erties of the model and estimation based on the maximum likelihood estimation method 
are studied. We also present a simulation study to assess the performance of estima-
tors in such fnite samples, and two applications to real data sets to illustrate the model. 

MSC: 62E10, 62J02. 

Keywords: Maxwell distribution, exponentiated distributions, maximum likelihood, quantile regres-
sion. 

1. Introduction 

Lehmann (1953) and Durrans (1992) introduced a family of distributions named expo-
nentiated distributions. Their cumulative distribution function (CDF) is defned as 

ϕF (w;γ) = F(w)γ , w ∈ R,γ > 0 (1) 

where F(w) is the CDF for a certain random variable. It follows directly that the proba-
bility density function (PDF) is 

ϕ f (w;γ) = γ f (w)F(w)γ−1 , (2) 

where f (w) is the PDF related to F(w). Durrans (1992) considered this methodology 
by using the normal distribution, i.e., F = Φ and f = φ , the normal CDF and PDF of 
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the standard normal distribution, respectively. This model was also discussed in more 
detail in Gupta and Gupta (2007), Pewsey, G´ ego, Cin-omez and Bolfarine (2012) and Rˆ 
tra and Cordeiro (2012). Gupta and Kundu (1999) used this methodology to introduce 
the generalized exponential distribution, setting F(w) as the CDF of the exponential 
model. Gómez and Bolfarine (2015) consider the case where F(w) is the CDF of a 
half-normal distribution, resulting in a distribution which belongs to the family of beta 
generalized half-normal distributions. Other extensions using this methodology include 
the exponentiated Weibull (Mudholkar and Srivastava, 1993; Mudholkar, Srivastava and 
Freimer, 1995), the exponentiated Pareto (Gupta, Gupta and Gupta, 1998), exponenti-
ated Gumbel (Nadarajah, 2005), exponentiated log-normal (Kakde and Shirle, 2006), 
exponentiated gamma (Nadarajah and Gupta, 2007) and power piecewise exponential 
(Gómez, Gallardo and Arnold, 2017). The Maxwell (M) distribution was proposed by 
Maxwell (1860) in order to model velocities among gas molecules. Maxwell’s research 
was generalized by Boltzmann (1871a,c,b), to develop the distribution of energies among 
molecules. This distribution has diverse applications in the areas of physics, chem-
istry, and physical chemistry, (see Dunbar (1982)). Singh et al. (2018) introduced the 
power Maxwell (PM) distribution, based on taking the power of a random variable that 
has Maxwell distribution. Segovia et al. (2020) introduced the slashed power Maxwell 
(SPM) distribution and use it for outlier data modelling. However they do not use those 
extensions of the PM distribution considering a regression structure. We consider the 
specifc parametrization considered in Huang and Chen (2015), where the CDF and PDF 
of the variable are given by 

FW (w;ψ,β ) = G 
2βw 3 

2ψ2 , 2 
, w ≥ 0 (3) 

4β 3β −1fW (w;ψ,β ) = √ w exp 
(2ψ2)3/2 π 

1 2β− w
2ψ2 , 

respectively, where ψ,β > 0, and G(·,a) denotes the CDF for the gamma distribution 
with shape and scale parameters equal to a and 1, respectively. On the other hand, 
Galarza et al. (2017) used the skewed distributions family (SKD) in order to intro-
duce quantile regression, where one parameter represents the quantile of the distribution. 
Gómez et al. (2019) introduced the Gamma-sinh Cauchy (GSC) distribution aiming at 
applying the model to quantile regression. The resulting model can be either unimodal 
or bimodal depending on the combinations of two parameters, where one of them is fxed 
and depends on the modelled quantile. Gallardo et al. (2020a) introduced a novel para-
metric quantile regression model for asymmetric response variables, where the response 
variable follows a power skew-normal distribution. Gallardo, Gómez-Déniz and Gómez 
(2020b) presented a discrete distribution by discretizing a generalized half-normal distri-
bution, which can be reparametrized for use in a regression model based on the median. 
Sánchez et al. (2020) use a model based on the Birnbaum-Saunders distribution in order 
to perform quantile regression. 



 [ (- -)] 
[ (- -)] - - -

[ (- -)] (- -) 
{ [ (- -)] } 

183 Francisco A. Segovia, Yolanda M. Gómez and Diego I. Gallardo 

The aim of this paper is to introduce an extension of the PM distribution using the 
methodology presented in equation (1), aiming to perform quantile regression. The re-
sulting PDF can be either strictly increasing or unimodal. The manuscript is organized 
as follows. In Section 2 we introduce the exponentiated power Maxwell (EPM) distri-
bution, and we propose the reparametrized EPM (REPM) distribution with some prop-
erties such as its CDF, hazard function (HF) and moments. In Section 3, we discuss 
the inference for the REPM regression model based on the maximum likelihood (ML) 
estimation. In Section 4 we present a simulation study in fnite samples, focusing our 
attention on parameter recovery. In Section 5 we present two applications to real data, 
ftting the REPM distribution to two real data sets. Finally, in Section 6 we present the 
main conclusions of the work. 

2. Exponentiated power Maxwell distribution 

Following the methodology related to equation (1), we introduce the following extension 
of the PM model. 

Defnition 1. A random variable W follows an exponentiated power Maxwell distribu-
tion with scale parameter ψ and shape parameters β and γ , if its CDF, PDF and HF are 
given, respectively, by: 

γ2βw 3
FY (w;ψ,β ,γ) = G , w > 0 (4)

2ψ2 , 2 !
γ−12β 2β −1 2βw 3 β w w 3

fY (w;ψ,β ,γ) = γ G g , w > 0,
2ψ2 , ψ2 2ψ2 ,2 2 

γ−12β 2βw 3 w 32β −1 Gγ G β w
2ψ2 , 2ψ2 ,2 2

hW (w;ψ,β ,γ) = γ , w > 0 
2βw 3

ψ2 1 − G 
2ψ2 , 2 

where ψ,β ,γ > 0 and g(·,a) is the PDF related to G(·,a). 

In Figure 1, we illustrate the PDF, CDF, and HF of the REPM distribution. It is 
interesting to point out that the HF can be strictly increasing, strictly decreasing, or 
have a bathtub shape. The equation for fnding the mode is immediately obtained from 
calculating the frst derivative of the density. However, we consider a parametrization 

1 
for this model based on (µ,β ,γ), where µ = ψ β . We denote this as REPM(µ,β ,γ). 
The main object of this parametrization will be justifed later. 
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Figure 1. Plots of the PDF (a), CDF (b) and HF (c) for different combinations of parameters of 
the REPM(ψ, β , γ) distribution. 

Proposition 1. If W ∼ REPM(µ,β ,γ), the rth non-central moment of W can be calcu-
lated as 

r−2βE(W r) = 
0

1 1 
rw µ

2β (1 − u)γ du 
2βw 3

β g 
2µ2β 

, 
2 

for r ≥ 1, where w = [2µ2β G−1(u,3/2)]1/(2β ), G−1 is the inverse function of G(·,a). 

Proof. By using the defnition of expectation and making the substitution u = G 
2βw 3 

, the result is immediate ■.
2ψ2 , 2 

The gamma distribution is very useful to express both the CDF and the PDF of the 
REPM distribution. However, usual quantities of interest such as he mean and mode of 
the model do not have closed form. Therefore, in order to perform regression analy-
sis in the model, other alternatives should be studied, as we illustrate in the following 
proposition. 

Proposition 2. If W ∼ REPM(µ,β ,γ), then 100 × ρ-th, the ρ-th quantile 0 < ρ < 1, is 
given by 

1/2β 
32β G−1 

ρ
1/γpρ = 2µ , , (5)

2 

Proof. It is immediate using the defnition of quantile ■. 
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Corollary 1. From proposition 2, it follows directly that the median of the REPM distri-
bution is 

1/2β 
32β G−1 0.51/γMe(w) = 2µ , .
2 

Table 1 shows the mean, variance, median and mode for different values of µ , β and 
γ . Note that the mean, variance and median increase as γ increases; all four quantities in-
crease as µ increases. It is also interesting to point out that the variance grows extremely 
as β decreases (β < 1). On the other hand 

Table 1. Mean, variance, median and mode for the REPM model with different combination of 
parameters. 

(µ,β ,γ) Mean Variance Median Mode 

(1.3,1.5,0.5) 1.403 1.386 1.365 0.347 
(1.3,1.5,1.0) 1.738 1.732 1.724 0.254 
(1.3,1.5,1.5) 1.912 1.904 1.891 0.207 
(1.3,1.5,2.0) 2.024 2.015 1.997 0.179 

(2.3,0.5,1.5) 8.566 7.230 4.545 34.909 
(2.3,1.0,1.5) 4.189 4.078 3.848 2.154 
(2.3,1.5,1.5) 3.382 3.369 3.346 0.648 
(2.3,2.0,1.5) 3.055 3.063 3.081 0.305 

(0.6,1.5,1.5) 0.882 0.879 0.872 0.044 
(1.0,1.5,1.5) 1.471 1.465 1.455 0.122 
(1.3,1.5,1.5) 1.912 1.904 1.891 0.207 
(1.6,1.5,1.5) 2.353 2.344 2.328 0.313 

γ 

FW (µ; µ,β ,γ) = G 
1 
, 
3 

= Cγ , (6)
2 2 

with C = G(1/2,3/2) = 2Φ(1) − 2φ(1) − 1 ≈ 0.199. In equation (6), we note that the 
CDF evaluated in µ depends only on the value of γ . As Cγ is a strictly decreasing 
function for γ and 0 < C < 1, the equation FW (µ; µ,β ,γ) = ρ , (for 0 < ρ < 1) has a 
unique solution for γ . Specifcally, 

log(ρ)
FW (µ; µ,β ,γ) = ρ ⇔ γ = .

log(C) 



         

      

 

  

 

 

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

γ(ρ) 1.425 0.996 0.745 0.567 0.429 0.316 0.221 0.138 0.065 

 Table 2. Value of γ(ρ) for some values of ρ . 
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For a fxed ρ , if we set γ = γ(ρ) = log(ρ)/ log(C) as fxed, then µ represents directly 
the ρth quantile of the distribution. Table 2 shows some values for γ(ρ) with different 
values for ρ . Henceforth, we will use the notation REPM(µ,β ,γ) to refer to this alterna-
tive parametrization. This is a very useful result, because in practice many characteris-

tics inherent to each observation are available. For this reason, we introduce a regression 
framework for applying the model to any quantile of the distribution. This also allows 
a more detailed relation among the covariates and the response variable than is possible 
using the regression in a single measure such as mean or median. To be more specifc, 
for a non-homogeneous population, we consider that wi(ρ), the ρ-th quantile of the re-
sponse variable, are independent and are such that wi(ρ) ∼ REPM(µi(ρ),β (ρ),γ(ρ)), 
i = 1, . . . ,n, where the quantile of such variable is related to a set of covariates, say 
xT 

i = (xi1, ...,xip), through the logarithmic link as 

log µi(ρ) = xT 
iτ(ρ), i = 1, . . . ,n, (7) 

where τ(ρ) = (τ0(ρ), . . . ,τp(ρ))
T are the regression coeffcients. These can be inter-

preted as follows: exp(τ0(ρ)) represents the value of the ρ-th quantile of the response 
variable when all covariates are fxed at 0; and exp(τ j(ρ)), j = 1, . . . , p, represents the 
percentage increment (or decrement) in the ρ-th quantile for the response variable when 
the j-th covariate is increased by one unit and the rest of the covariates are fxed. 

To avoid overloading the notation, hereinafter we use simply µi,β and γ instead of 
µi(ρ),β (ρ),γ(ρ) to specify the parameters, but understanding that in a regression model 
context, we are interested in modelling the ρ-th quantile. 

3.  Inference  

In this section, we discuss the ML estimation for the REPM regression model under 
a classical approach. Let Wi(ρ) ∼ REPM(µi,β ,γ) independent variables, where the 
ith observation is related to a set of covariates xi as in equation (7) and γ = γ(ρ) = 
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log(ρ)/ log(C) is fxed. The log-likelihood function for θ = (τT ,β ,γ)T is 

i βG
w 

2β 
, 

3 
+ n log(β ) − 2 log(µi ) + 

n n n 

β2 n 

∑22µ i 1i = 

Γ 3 2 1( / ) wβ i
∑ ∑βlog log log log√− − −( ) ( )+ ( )µw n wi ii β222 µii 1 i 1 i 1= = = 

∑ 

n 
ℓ(θ ) = n log(γ)+(γ − 1)∑ log 

i=1 

2β 
n 

+(2β − 1)∑ . 
i=1 

(8) 

The ML estimators can be obtained by maximizing equation (8), using numeri-
cal procedures such as the Newton-Raphson algorithm. As an alternative, we use the 
optim routine in the R software (R Core Team, 2021) for the L-BFGS-B method, 
which is a limited memory modifcation for the traditional Broyden-Fletcher-Goldfarb-
Shanno algorithm (BFGS), a constrained Quasi-Newton type algorithm which avoids 
the computation of the hessian matrix for the objective function and its respective in-
verse. The asymptotic variance of the ML estimators (say θb) can be estimated as fol-
lows Var\(θ) = diag(−I(θb)−1), where I(θb) is observed Fisher information evaluated in bθ , that is 

∂ ℓ(θ)
I(θb) = − . 

∂ θ∂ θ ⊤ 
θ=θ̂ 

Details about the components of this matrix can be found in appendix A. The asymp-
√ 

totic distribution of θb is n(θb− θ ) ∼ N(0,I(θb)−1),as n → +∞. 

In order to perform a residual analysis, we can use the quantile residuals (see Dunn 
and Smith (1996)) defned as 

ri = Φ−1[FW (wi; θb) ], i = 1,2, ...,n, 

where FW (wi; θb) is the CDF of the REPM model evaluated in the ML estimate of θ . 
As the ML estimator is a consistent estimator (when n → +∞), and if the model is 
appropriate for the data, r1,r2, ...,rn should be a random sample from the standard normal 
distribution. Also note that the independent observation assumption implies that the 
quantile residuals are also independent. The normality assumption can be tested, for 
instance, by a normality test such as the Kolmogorov-Smirnov (KS) (see Kolmogorov 
(1993) and Smirnov (1939)), Shapiro-Wilks (SW) (see Shapiro and Wilks (1965)) and 
Anderson-Darling (AD) (see Anderson and Darling (1952)) tests. 
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4. Simulation study

In this section, we present a simulation study in order to assess the performance of the 
ML estimators for the REPM regression model. We considered one covariate, i.e., µi = 

τ0 + τ1xi, γ(ρ) as fxed, and the covariates x1, . . . ,xn were simulated from the standard 
uniform distribution. We considered six vectors for (β ,τ0,τ1): (2, 2, 0.5), (2, 2, 1.5), (2, 
0.5, 2), (2, 1.5, 2), (0.5, 2, 2), (1.5, 2, 2); three values for the sample size: 50, 100 and 
200; and two values for the modelled quantile: 0.50 and 0.75, totalling 36 combinations 
of parameters, sample size and quantile. Each scenario was replicated 1,000 times. To 
simulate values from the REPM model, we can use the following algorithm based on the 
inverse transform method: 

• Generate Ui ∼ U(0,1), i = 1,2, ...,n.

1/2β 

• Compute Wi = 2µ2β G−1 U1/γ 
, 
3

.i 2 

For each sample, we compute the ML estimates and the estimated standard errors based 
on the estimated hessian matrix. Table 3 summarizes the results, considering the mean of 
the ML estimations, their standard errors (SE), the 95% coverage probability (CP) based 
on the asymptotic normality for the ML estimators and the estimated root mean squared 
error (RMSE). Note that as the sample size increases, the mean of the ML estimators is 
closer to the true value of the parameters, while the RMSE decreases, suggesting than 
the estimators are consistent for the REPM model even in a fnite sample size. Results 
also suggest that the CP terms converge to the nominal values with which they were 
built, suggesting that the asymptotic normality of the estimators is also reasonable in 
fnite samples for the REPM model. 

5. Application

In this section we illustrate our proposal with two real data sets, comparing it with other 
proposals in the literature. In the frst application we ft the REPM model without co-
variates. We compare the results with the M, PM and gamma (G) distributions. In the 
second application we ft our proposal considering covariates, comparing results with the 
GSC, skewed Laplace (SKL) and skewed Student-t (SKT) models. Codes in R software 
(R Core Team, 2021) are avaliable as supplementary material. 



5.1. Reinfection time data 

In certain populations the occurrence of sexually transmitted diseases blue is a major 
problem. Even those that are not lethal represent a threat that must be taken into ac-
count. Specifcally, gonorrhea and chlamydia are a focus of investigation because they 
are often asymptomatic in females. As a result they are often left untreated, which can 
lead to complications such as sterility. The following data set corresponds to the time to 
reinfection of 887 individuals by either gonorrhea or chlamydia, where the subject had 
already been infected with one of these diseases previously (see Klein and Moeschberger 
(2003)). This data set can be found in the std data included in the KMSurv R package 
(Klein, Moeschberger and Yan, 2012). 

Table 4. Descriptive analysis for the reinfection time data. 

mean s.d. median interquartile range min. max. skewness kurtosis 
369.5 370.1 247.0 501.0 1.0 1529.0 1.2 3.5 
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Table 4 shows a descriptive analysis for this data set. Note that 50% of the individuals 
were reinfected within the frst 8 months. The times also present a positive skewness and 
a kurtosis slightly greater than normal distribution. Figure 5 shows the ML estimates 
for the parameters of the M, PM, G and REPM distributions. For each model we also 
present the AIC criteria, which suggest that the REPM model gives a better ft than the 
rest of the models. Figure 2 depicts the histogram with the estimated PDF and comparing 
the empirical CDF with the estimated CDF for the models discussed, showing that the 
REPM model presents a better ft for this data. Finally, Figure 3 shows the quantile-
quantile (QQ) plots for the REPM, PM and G distributions. Note that the QQ plots 
suggest that, of the three models tested, the REPM is the most appropriate for this data 
set. 

5.2. Clotting data 

This data set presents measurements of the clotting time of blood (time, in seconds) for 
normal plasma diluted to nine different percentage concentrations with prothrombin-free 
plasma (lconc, in logarithm scale) for 18 patients. It must also be considered that the 
clotting time was induced by two lots of thromboplastin (lot2, categorized as 0 and 1). 
The data (see MLGdata R package) are available in McCullagh and Nelder (1989) (p. 
302) (see R code below). 



clotting<-data.frame(time=c(118, 58, 42, 35, 27, 25, 21, 19, 

18, 69, 35, 26, 21, 18, 16, 13, 12, 12), 

lconc=c(1.609, 2.303, 2.708, 2.996, 3.401, 3.689, 4.094, 

4.382, 4.605, 1.609, 2.303, 2.708, 2.996, 3.401, 3.689, 

4.094, 4.382, 4.605), 

lot=factor(c(rep(0, 9), rep(1, 9)))) 

Table 5. Maximum likelihood estimates for the data with it’s respective standard deviation in 
parenthesis for the infection time data 

Parameter M PM G REPM 
α < 0.001(0.028) 0.038 (0.004) 0.796 (0.027) — 
β — 0.321 (0.009) 0.002(< 0.001) 1.079 (0.158) 
µ — — — 578.576(0.150) 
γ — — — 0.177(0.195) 

log-likelihood −7593.0 −6053.0 −6033.8 −6013.3 
AIC 15188.0 12109.9 12071.6 
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Figure 2. Histogram and empirical plot for the reinfection time data. 

We aim to model the clotting time for the i-th individual using lconc, lot2 and 
the interaction between those covariates. We considered time(ρ) ∼REPM(µi,β ,γ), 
where γ = γ(ρ) = log(ρ)/ log(C) is fxed and 

µi = µi(ρ) = exp(τ0 + τ1lconci + τ2lot2i + τ3lconci × lot2i) , i = 1, ...,18, 
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Figure 3. Q-Q plot for the REPM, PM and G models for the reinfection time data. 

Table 6 presents a descriptive analysis for the global time, time for lot = 0 
(time0), time for lot = 1 (time1) and lconc for the clotting data set. We can ver-
ify that the global time has a signifcant standard deviation and is positively skewed, 
with a considerable kurtosis coeffcient. Moreover, Figure 4 shows the plots for time 

versus lconc separated by lot. 

Table 6. Descriptive analysis for the clotting data. 

variable mean s.d. median interquartile range min. max. skewness kurtosis 
global time 32.500 26.440 23.000 17.000 12.000 118.000 2.127 7.185 

time0 40.333 31.851 27.000 21.000 18.000 118.000 1.805 5.078 
time1 24.667 18.248 18.000 13.000 12.000 69.000 1.780 5.012 

Table 7 shows the AIC values and p-values obtained in the K-S test for the quan-
tile residuals, for the SKL, SKT, GSC and REPM quantile regression models different 
quantile values. Note that the AIC for the REPM is the lowest value of all the models 
(except for ρ = 0.1); the K-S test does not reject the null hypothesis that quantile resid-
uals for this model are a random sample from the standard normal distribution (except 
for ρ = 0.9) with any signifcance level, suggesting that the model is appropriate for all 
the modelled quantiles (except for ρ = 0.90). 

Figure 5 shows the ML estimator for the regression coeffcients with their their re-
spective asymptotic 95% confdence intervals. Note that lconc and lot2 are signif-
icant in explaining all the quantiles modelled. Figure 6 shows the profle density for 
the ρ-th quantile of time for ρ = 0.5 and ρ = 0.75. Note how the distribution of the 
time according to our model seems to differ from the other distributions, showing a 
better representation of the population. Regarding the interpretation of the coeffcients, 



+ 

+ 
0 

0 

+ 
0 

+ + 
0 O 

+ 
0 

+ + + 
0 0 0 

193 Francisco A. Segovia, Yolanda M. Gómez and Diego I. Gallardo 
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Figure 4. Plot for clotting data. 

for example, we can conclude that 

• For ρ = 0.5 (the median case) we obtain exp(τb1) = 0.528. This means that for a 
fxed type of thromboplastin, the median of the clotting time decreases by 47.2% 
for each unit increase in the lnonc. 

• For ρ = 0.5 (the median case) exp(τb2) = 0.490. This implies that for a fxed 
lnonc, the median of the clotting time decreases by 51.0% when the type of 
thromboplastin is changed from lot2 = 1 to lot2 = 0. 

Table 7. AIC and p-values for the K-S test of SKT, SKL, GSC, and REPM model for the clotting 
data. 

AIC K-S 
ρ SKT SKL GSC REPM SKT SKL GSC REPM 

0.10 121.130 127.916 110.820 111.367 0.003 0.003 0.186 0.431 
0.25 125.554 132.958 118.335 109.253 0.004 0.001 0.119 0.428 
0.50 133.049 143.110 129.903 111.556 0.002 < 0.001 0.250 0.247 
0.75 151.402 155.568 144.733 113.330 0.092 0.500 0.018 0.190 
0.90 149.034 150.596 167.269 130.857 0.125 0.200 < 0.001 < 0.001 
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Figure 5. ML estimation of the regression coeffcientes (with their respectively asymptotic 95% 
confdence interval), for the different values of the ρ-th quantile for the clotting data 

6. Conclusions

Exponentiated distributions have been used to extend a variety of well-known distribu-
tion models, resulting in fexible distributions that can be applied in a greater diversity of 
scenarios. This paper proposes the REPM distribution as an alternative model by which 
to introduce covariates, obtaining interpretations related to the quantile of the distribu-
tion. Nowadays there is a reasonable set of classic distributions with positive support, 
such as the exponential, gamma, Weibull, log-normal (LN), etc. So the question nat-
urally arises “Why consider the REPM model instead of the common distribution that 
works well?”. While it is true that models like LN and G have proved to be fexible 
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Figure 6. Distribution for 0.5 (a) and 0.75 (b) quantiles of time considering lconc and lot2 
equal to 2.3 and 0, respectively. Curves in solid, dashed, dotted and dot-dash line represent 
the density functions estimated by the REPM, GSC, SKL and SKT models, respectively, for the 
clotting data 

enough to cover many situations, there are a few factors that must be borne in mind. 
For example, the LN distribution has a hazard rate function that may be unrealistic in 
some contexts, such as lifetimes data sets, since it is decreasing for long values. On the 
other hand, the G distribution, although it has a less strict hazard rate function, is not as 
fexible as the corresponding REPM model; moreover it does not have a closed function 
for the ρ-th quantile, i.e. quantile regression cannot be applied simply in this model. 
The real data applications above show that the REPM is a competent alternative to such 
traditional models. 
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A. Appendix: Score function and observed Fisher information 

We devote this section to express the components of I(θb) discussed in Section 3. 
If W ∼ REPM(θ), with θ = (µ,β ,γ)T, then we can ∂ 2 log fW (w; θ)/∂ θ∂ θ

T , as fol-
lows 

2 
∂ 2 log fW (w; θ ) 1 ∂ G(·) 1 ∂ logG(·) w ∂ g(·) 

= (γ − 1) − + log g(·)+ ,
∂β 2 G(·) ∂β g(·) ∂β µ ∂β 

2 
∂ 2 log fW (w; θ ) 1 ∂ G(·) 1 ∂ logG(·) ∂ g(·) 

= (1− γ) + − (2β − 1)u−1g(·) ,
∂ µ2 G(·) ∂ µ g(·) ∂ µ ∂ µ 

∂ 2 log fW (w; θ ) 1 
= − 

γ2 ,∂γ2 

2β 
∂ 2 log fW (w; θ ) w w w g(·)2β = −(γ − 1)w µ

−2β −1 1 + 2β log log + ,
∂β∂ µ µ µ µ G(·) 

∂ 2 log fW (w; θ ) 1 ∂ G(·) 
∂β∂γ 

= 
G(·) ∂β 

, 

∂ 2 log fW (w; θ ) 1 ∂ G(·) 
∂ µ∂γ 

= 
G(·) ∂ µ 

, 

where G(·) = G(w2β /2µ2β , 3/2), g(·) = g(w2β /2µ2β , 3/2), and 

2β

∂ G(·) w w 
= g(·) log ,

∂β µ µ 
∂ G(·) 2β = −β µ

−2β −1w g(·),
∂ µ 

2β

∂ g(·) w w 
= g(·) log 1− ,

∂β µ µ 
2β

∂ g(·) β w 
= g(·) − 1 .

∂ µ µ µ 
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