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The radiant diagrams of Florence Nightingale

Michael Friendly1 and RJ Andrews2

1 Psychology Department, York University. 2 Independent Author.

Abstract

This article is a tribute to the contributions of Florence Nightingale to statistics and statistical
graphics on her bicentennial. We start with her most famous “rose” diagram and describe how
she came to this graphic, designed to influence medical practice in the British army. But this study
takes us backward in time to consider where and when the ideas of radial diagrams arose, why
they were useful, and why we call these her “radiant diagrams.”

MSC: 62-03, 62-09.

Keywords: Data visualization, polar area diagram, radial diagram, nursing, sanitation.

Introduction

This article is a celebration of Florence Nightingale (FN), on the slightly belated occa-
sion of the 200th anniversary of her birth on May 12, 1820, but in time for the Inter-
national Year of Women in Statistics and Data Science: A Tribute to Florence Nightin-
gale, being promoted by many statistical societies worldwide. In her time, she achieved
prominence as a reformer of hygiene in hospitals and medical practice, motivated by
her experience in the Crimean War. She became known as the “Lady with the Lamp”1

and is today considered the mother of modern nursing. Mobile Army Surgical Hospitals
(MASH units) are part of her legacy, recounted in the eponymous TV series.
However, it is her pen rather than her lamp we pay tribute to here. Following her

time in the Crimea, she launched a campaign to further the cause of army hospital re-
form and wielded impressively detailed data and radiant diagrams to convince those
with influence in the merit of her cause. The lady with the lamp became a “passionate
statistician.”2

In the popular appreciation of FN’s statistical work, she is most well-known for the
singular Diagram of the Causes of Mortality in the Army of the East that appeared in
1859 (Figure 1).

1. This phrase comes from an 1857 poem by H. W. Longfellow: “Lo! In that house of misery / A lady with a lamp I
see”.

2. This phrase is attributed to Edward T. Cook’s 1913 biography, The Life of Florence Nightingale. Her biography as
a statistician is told by Kopf (1916).
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Figure 1: Nightingale’s radial diagram of mortality, showing the number of deaths from preventable zy-
motic diseases (outer, blue wedges), compared wtih deaths from wounds (pink), and from all other causes
(dark gray). Source: Nightingale (1859, p. 19).

The full story of her contributions to visual design and graphic rhetoric is fascinating
(Andrews, 2019; Brasseur, 2005) but would take us too far afield from this brief tribute.
Rather, we focus on the historical antecedents of her radiant radial diagram, some steps
that led her to this, and other diagrams that followed her inspiration.

Life and career

Nightingale was born to a wealthy, landed British family. As a young girl, she exhibited
an interest in and flair for mathematics, encouraged by her father, William. One of her
mathematics tutors was the renowned James Joseph Sylvester [1814–1897], a contribu-
tor to the theory of matrices. Later, she was profoundly influenced by reading Adolphe
Quetelet’s 1835 Sur L’Homme et le Developpement de ses Facultés, in which he outlined
his conception of statistical method as applied to the life of man. She also felt a strong
religious calling to the service of others, and against her mother’s strenuous objections,
she decided that nursing would be her vocation.

The Crimean War

The Crimean War was fought by Russia against the forces of France, Britain, and the
remnants of the Ottoman Empire. It began in October 1853, over disputed claims of the
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rights of Roman Catholics vs. the Eastern Orthodox Church, and lasted until February
1856. Press reports from the war zone soon enraged the British public. These accounts
listed high death tolls and descriptions of dying patients crowded on floors of blood-
soaked straw, with vermin-infested laundry. In short, the field hospitals were killing
British soldiers faster than the enemy. Blame was placed on the government and the
military.
The British government knew it had to react. In October 1854, Nightingale appealed

to her friend Sidney Herbert, secretary of state for war, to send her and a team of nurses
to the Crimea. She soon recognized that most of the deaths occurred, not from battle,
but from preventable causes: zymotic diseases (mainly cholera) and insufficient sanitary
policy in the hospitals that treated the soldiers.

The Sanitary Commission

Nightingale was more appalled by what she witnessed in the Crimea than what she
had read in the newspapers. She developed a system to keep meticulous records of the
causes of mortality among the British troops. Her initial attempts to understand these
data through tables and charts led to shocking comparisons: deaths in the first seven
months of the Crimean campaign amounted to an annual 60% mortality from disease
alone. This exceeded that of the Great Plague in London (1665-1666) and that of cholera
epidemics in 1848 and 1854. Following her persistent requests to the War Office, a
Sanitary Commission was formed around April 1855 to investigate the causes of high
mortality of the British Army in the Crimea.

The Royal Commission

After her return to England in July 1856, Nightingale pressed the government (with
some support from Queen Victoria) to establish a Royal Commission to examine the
causes of mortality in the army. She submitted a report with many tables and concrete
proposals for reform, but little was done. How could she turn her insight from experience
and data into a powerful call for action?
She met and was befriended by William Farr, the chief statistician of the General

Register Office (G.R.O.) established by Parliament to track births and deaths. Farr had
become influential in reporting on deaths due to cholera (Farr, 1852), and became an
advocate for the careful use of data toward the goal of improving the health of the na-
tion. Farr and Nightingale worked together to access and organize data from the Crimea,
systematically analyze it with the help of Farr’s team of G.R.O. clerks, and produce per-
suasive arguments in the form of a series of publications with corresponding text, tables,
and diagrams. Farr was an accomplished presenter of statistical “reports.” Nightingale
elevated their collaborative craft to new heights with her infectious motivation to per-
suade the British government to adopt sweeping reforms to the entire treatment of sol-
diers. She said, “The main end of Statistics should not be to inform the Government as
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to how many men have died, but to enable immediate steps to be taken to prevent the
extension of disease and mortality.” (Nightingale, 1858a, p. 329).

Compared to what?

Nightingale’s most celebrated diagram (Figure 1) was just one of several attempts by
her and others to portray the deaths among British soldiers in the Crimea in a way that
would capture attention of her readers and provide motivation for a call to action. To
understand her graphic design, one key rhetorical question that permeates this work is
“compared to what?”3 She broke new ground here in several interesting ways.
Initially, she had just total mortality data, month by month in selected field hos-

pitals of the East. But, how could she make these results most dramatic? For reasons
we describe below, she employed what we would now classify as a “radial, polar area
chart”. Unlike a pie chart, which uses sectors of varying angle and equal radius to show
amounts, FN’s diagram in Figure 1 uses wedges of equal angle (for the months) and
varying radius to portray deaths. Nightingale had no particular name for this chart form,
but it is common and acceptable to call them “rose diagrams”
Perhaps the most striking feature of her design of this diagram was the separation of

the months into two charts, one (on the right) for the period April 1854-March 1855 and
the other for April 1855-March 1856. She could have placed the data for all 24 months
in one chart, but her design makes a direct comparison of the deaths before the arrival of
the Sanitary Commission with those after. Just a pre-attentive, millisecond glance shows
the great difference in size (deaths) between the two portions.
A small puzzle is the arrangement of these two pieces. Normally, one would draw the

before/after portions left to right, and in each piece, the initial month would be drawn at
12:00 or 3:00. But this made it more difficult to connect the data for March 1855 with
that for April, the following month. Her right-to-left design, starting each diagram at
9:00, made it easier to connect these adjacent months with a dotted line.

FN’s earlier attempts

We now consider howNightingale arrived at the well-known diagram ofmortality shown
in Figure 1. She had seen a polar diagram in William Farr’s 1852 report on potential
causes of mortality due to cholera and was much impressed. In this (Figure 2) he drew
circular diagrams showing weekly temperature and cholera deaths in London over the
period 1840-1849, as if to establish some link between the two. This kind of chart is
sometimes called a radar chart today. It uses annular rings with radii proportional to the
a given measure; alternatively: a time-series line graph in polar coordinates, where the
radial lines serve as axes for the 52 weeks of the year.

3. JW Tukey quote: “The purpose of [data] display is comparison (recognition of phenomena), not numbers. . . ”
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Figure 2: Farr’s radial diagram of temperature and mortality in London by week for the years 1840-1850.
The yearly charts are arranged row-wise from 1840 at the top left. The chart at the bottom right corner
shows the average over the years 1840-1849. Outer circles show weekly deaths; inner circles show weekly
temperature. Source: Farr (1852), plate IV.

The outer charts show average weekly deaths, relative to the mean over all years,
shaded black when they exceed the average (excess mortality), and yellow otherwise. It
was immediately apparent that something horrible had happened with cholera deaths in
London in the summer of 1849 (row 3, column 2). But cholera deaths had also spiked
in the winter months in 1847 (row 2, column 3).
Farr was searching for easily found associations with cholera mortality here. No

direct link to temperature or other factors that he tried (e.g., elevation above the Thames)
could be found, until John Snow (1855) argued for a water-born causative agent. But for
FN, this radial diagram form seemed exciting and novel; something she could use to
make her case.

The Bat-Wing Diagram

Nightingale was impressed enough with Farr’s use of a radial diagram to adopt this form
for her own data. In her first version (Figure 3), printed privately for the Secretary of War
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Figure 3: Initial design of Nightingale’s diagram, using a linear scale. The two diagrams at the top show
relative deaths from zymotic diseases, wounds (red) and other causes (black). The bottom left diagram
shows the annual rate of mortality at Scutari from October 1854 to June 1855. Source: Nightingale (1858b,
Diagram K, p. 47).

in 1858, she followed Farr’s design, which plotted deaths on a linear scale (of deaths per
1000) as distances from the origin, with radial axes corresponding to 100, 200, 300, . . .
What she saw here was beyond astounding. The deaths from preventable causes

(zymotic diseases) totally swamped those from battle wounds or other causes, and totally
dominated the scale. In her Fig. 2 at the bottom left in our Figure 3, she shows the annual
rate of mortality in the sick population of Scutari, where the fraction reached 415% in
February by her calculations. Here she notes, “Had Fig. 2 been projected on the same
scale as the other figures on this sheet, the longest radius, showing the mortality in
February, would have projected 40 inches from the centre” (Nightingale, 1858b).
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She quickly realized that although the data were correct, this graph was deceptive,
because the eye tends to perceive the area rather than length in such displays: doubling
the death rate would give a perceived area four times as large. In her subsequent versions,
Nightingale plotted deaths in each month as the square roots of distance from the center,
so the area of each wedge reflected the number of deaths. It is easily seen that deaths
from preventable diseases (the outer blue wedges in Figure 1) totally dominate those
from battlefield wounds and other causes. This was yet another aspect of her graphical
insight that “compared to what” meant that meaningful comparisons had to be on a
reasonable scale.

The Manchester Rose

In other earlier versions, Nightingale tried different definitions of “compared to what,”
to make her argument salient. Figure 4 is stylistically similar to Figure 1, except that the
smaller dotted circles represent “what the mortality would have been for the whole year
if the army had been as healthy as men of army age are in Manchester, which is one of
the most unhealthy towns in England” (Nightingale, 1859). Her goal here, as in other
versions, was to shock the viewer: compared to even Manchester, the army in the East
was suffering unfathomable losses.

Figure 4: Diagram of the mortality in the British Army in the east during April 1854 to March 1855 (right)
and April 1855 to March 1856 (left) in comparison to that of Manchester, represented by the circular dotted
line. Source: Nightingale (1859), p. 320.



10 The radiant diagrams of Florence Nightingale

Radial diagrams before FN

We described earlier how the immediate stimulus for Nightingale’s use of radial dia-
grams developed from what she learned from Farr (Figure 2) and how she discovered
that such diagrams were more perceptually accurate when counts of deaths were pre-
sented on a square root scale, so that wedges had areas proportional to the count (Figure
4). But while Nightingale is often credited as the inventor of such charts, it is useful to
consider earlier origins.

Guerry’s Cycles

As we have argued elsewhere (Friendly, 2007, 2007b), the earliest direct precursor of
Nightingale’s rose diagram appeared in an 1829 publication by André-Michel Guerry.
His goal here was to try to determine if relationships among meteorological variation
and physiological phenomena could be found by graphical means; but particularly to
show how these could be represented as cyclical phenomena, over months of the year,
hours of the day, days of the week and so forth.
Weather phenomena included wind direction, temperature, days of thunder, frost,

rain, snow, etc. Physiological phenomena were comprised of various causes of admis-
sion to hospital. He also included data on weddings, mortality, suicides by month, and
hourly data on births and deaths.
Figure 5 shows the portion of his diagram using the radial wedge form to show av-

erage trends for some periodic phenomena at different scales; he called these “courbes
circulaires,” meaning he saw them as curves wrapped around a circle. The top row here
shows average wind directions for four quarters of the year, using the conventional com-
pass orientations. He says:

We have represented by these circular areas, and from the observations of
9 years, the number of days that the various winds blow in Paris during a
three-month period. . . According to popular opinion, the south winds pre-
vail especially in summer, northerly winds in winter. We see that the exact
opposite is happening.

This establishes his idea that diagrams of cyclical phenomena can reveal consisten-
cies not easily seen in tables. Graphical methods were still on the rise in 1829. To cite
an authority, and frame his study in a wider context, he quotes von Humboldt’s (1813)
memoir on finding lines of isotherms.

The use of graphic means will throw a lot of light on phenomena of the high-
est interest. If, instead of geographical maps, we had only latitude, longitude
and height coordinates, a large number of curious relationships offered by
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the configuration and inequality of the continents would have remained for-
ever unknown.

Figure 5: Guerry’s radial charts of cyclical phenomena. The top row, charts I.-IV. Show the averages of
prevailing wind direction by circular area over 9 years according to compass directions. The bottom row,
charts XXIX and XXX show, respectively the number of births and deaths over hours of the day. Source:
Guerry (1829).

The bottom row in Figure 5 illustrates how he thought that circular diagrams of
compass directions could be generalized to other domains. These charts (XXIX and
XXX) show variations in births and deaths. He says:

Since the diurnal period represents in some respects the annual period, we
have sought if, as with the seasons, there would not be, for some hours,
greater ease of births or deaths.

As far as we are aware, this is the first general statement of the graphical principle
of radial diagrams for cyclical phenomena, using wedges of constant angle and varying
radius.
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The French Connection: Guerry →→→ Farr

The link from Farr to Nightingale is clear, but the question arises whether Farr had gotten
inspiration for radial diagrams from Guerry. The historical evidence suggests that this
is highly likely, though uncertain. What follows is a reasonable account based on our
knowledge.
In the early 1800s, following the societal chaos after Napoleon’s 1815 defeat, a new

idea of “social medicine” or “social epidemiology” began in France (Pinell, 2011).
Some leading proponents were Alexandre Parent du Châtelet, Louis-René Villermé
and Benoiston de Chateauneuf. In 1829, they launched a new journal, Les Annales
d’Hygiène Publique et de Médecine Légale, and Guerry published his study in their
first volume.
This journal soon became a hub of professional exchange for anyone in the country

interested in what was called social hygiene but had a broader scope. It is known that
Farr received a bequest in 1828, studied medicine in France and Switzerland, and most
likely struck up a friendship with Guerry through the network of the Annales d’Hygiène
Publique.
Guerry (1833) published his Essai sur La Statistique Morale de la France, for which

he won the prestigious Montyon Prize upon the recommendation of the Académie Fran-
çaise. In this, Guerry argued that the relations among social and moral variables (liter-
acy, crime rates, suicide, etc.) could be understood using graphs and shaded (choropleth)
maps. More importantly he asserted that lawful relations among moral variables could
be found, analogous to those of physics. Within a short period of time, this work at-
tracted considerable attention in European statistical circles and Farr was among his
admirers.
Guerry’s final and most ambitious work was a comparative study of moral variables

in England and France which appeared in 1864. Farr is acknowledged for having helped
him in obtaining access to court records and other documents in England. In the 30 years
between these two works, Guerry displayed his maps and charts in several expositions in
Europe. In 1851, he had two exhibitions –an honored public one in the Crystal Palace at
the London Exhibition and a second one at the British Association for the Advancement
of Science (BAAS) in Bath, England. By October, 1864, Guerry had been made an
honorary member of the Statistical Society of London, and was invited again by Farr to
attend the BAAS meetings. The Statistique Morale de l’Angleterre... (Guerry, 1864) and
its splendid plates were put on public display for the nearly 2800members who attended,
and became the subject of a public commentary by W. Heywood, vice-president of the
Society.
Farr was not a graphic innovator, but he was tuned-in enough to recognize useful

graphical methods and apply them in his work. It is quite likely that his radial diagrams
(Figure 2) were inspired by Guerry, and perhaps Léon Lalanne, considered next.
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Lalanne’s Winds

Another French connection was Léon Lalanne, an engineer of the École Nationale des
Ponts et Chaussées (along with Charles-Joseph Minard). Lalanne made several inno-
vations in graphical methods, but the one of interest here is his polar area plot of wind
directions (Figure 6). This figure shows the average relative frequency of wind directions
recorded at Aigue-Mortes in Occitanie, France over some period of time.

Figure 6: Average prevailing wind directions at Aigue Mortes. The NW quadrant is considered land winds;
the SE quadrant, sea winds. An arrow labeled 0.30◦ N is apparently the average overall wind direction.
Source: originally from Lalanne (1843); this rendition from Marey (1885, Fig. 31, p. 68).
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He draws attention to compass directions with primary N-S, E-W axes, and adds
secondary axes, NW-SE and NE-SW. But the main message is what he has discovered
from this diagram: Winds that blow primarily in the NE quadrant he considers land
winds (in the direction toward land). Winds that blow toward the SE quadrant are sea
winds. An overall average is shown by a large arrow labeled 0.30◦ N.
What is remarkable here is that the shaded contour is really a smoothed represen-

tation of the data and represents another level of sophistication in radial diagrams: a
level-curve (iso-contour) of circular data. Earlier, Lalanne had used polar diagrams to
display the frequency, duration, and direction of winds over the months of the year near
Calcutta, India. The data for individual years were quite variable, but he recognized (fol-
lowing von Humbodlt’s (1813) isothermal diagrams) a more general principle, that such
level curves could be found for other coordinate systems.

The difference consists merely in that the isothermals are applied to points,
the existence of which on the surface of the terrestrial globe is real; whilst the
curves of the equal duration of the winds in the same place, during the differ-
ent seasons of the year, are applied to points, whose position on a plane, or
a sphere, or a cone, has been determined by pure convention, by a particular
choice of co-ordinates to represent two variable elements [p. 514].

Antecedents of polar diagrams

Circular diagrams go back to antiquity, first with spatial directions for an observer of
the sun and stars, and later for compass charts, based on a circle of 360◦. Fractions of
(0:3) * 1/4 easily corresponded to N, E, S, W. Intermediate fractions of 1/8 gave NE, SE,
SW, NW. Half-way between these gave NNE, NNW, etc. A navigator could always use
direct degrees for a compass heading. Wind directions could be referenced in the same
coordinates.
Similarly, the idea of a 24-hour day goes back at least 4000 years, with 12 sections

for the night marked by stars that rose and fell, and an equal number of sections for
the day. As mechanical clocks developed after the 13th Century, a double 12-hour clock
face evolved, synchronized with noon or midday as AM (ante meridiem) and PM (post
meridiem). A 12-hour clock face could be divided into 1/4 fractions (3, 6, 9, 12) or thirds
(4, 8, 12).
The origin of pie charts (Spence, 2005) showing parts of a whole is usually traced to

Playfair (1801), but there are earlier examples based on clock faces. Among these, the
engraving by Nicolas Guérard (undated, but ca. 1700) shown in Figure 7 captures the
style and intent in a graphic story illustrated by clock faces.4

4. We are grateful to Antoine de Falguerolles for discovering and translating this image.
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Figure 7: Clock-face drawing by Nicolas Guérard (1648?-1719) showing a circular (pie chart) repre-
sentation for compositional data, namely time-budgets. The two clock shields are supposed to repre-
sent the paradise for women, and purgatory for men, with the horse in Hell. Source: https://gallica.
bnf.fr/ark:/12148/btv1b8407520q.item

https://gallica.bnf.fr/ark:/12148/btv1b8407520q.item
https://gallica.bnf.fr/ark:/12148/btv1b8407520q.item
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A hermaphrodite rider (left: woman; right: man) rides a horse, each holding a 24-
hour clock representing the way she/he spends a typical day. The content is a totally
sexist, deplorable depiction of the daily life of women (left shield) vs. men (right) show-
ing the supposed fractional composition of activities in a day by hours on a clock. Seg-
ments are labeled for women (dressing, church, promenade, . . . ) and for men (different
forms of work), but the main visual message is shown by the shaded sectors: 10 hours of
repose for women compared with 4 hours for men. Perhaps the title: Aujourd’hui d’une
façon demain de l’autre (today one way, tomorrow the other) can be read as a call to
greater gender equality.

More radiant diagrams

Following Nightingale, the graphical idea of radial diagrams took off, but nowhere in
as impressive a form as used by Émile Cheysson, in various volumes of the Albums
de Statistique Graphique. As Charles-JosephMinard had demonstrated earlier (Minard,
1858) in his use of pie charts as proportional symbols on a map, Cheysson saw the
potential to illustrate time-varying phenomena in a spatial context to make many aspects
of the data visually apparent. If we can think of Minard’s pie-chart map of consumption
of meat in Paris as Playfair 2.0, then surely Cheysson’s wedge maps in the Albums can
be considered Nightingale 2.0.

Paris theaters

Figure 8 is just one example, designed to show the gross receipts in theaters in Paris
from 1878 to 1889, but to highlight the influence of the Universal Expositions in 1878
and 1889. Each diagram is positioned on a map of Paris, with a size proportional to the
total receipts over all years. This places the diagrams for the theaters in spatial context
and allows the eye to easily compare them in size and shape. Clearly, the Opéra was
most popular overall, followed by the Opéra-Comique.
Within each diagram, the wedges are area-proportional to receipts in each year, high-

lighting the exposition years in yellow. The immediate impression is that in both Expo
years, more people attended the theaters than in other years.

A rose by any other name

The history of Florence Nightingale and her radial diagrams has many stems and buds.
These charts at the time were so novel for her audience that they demanded attention to
her essential point: mortality in the army could be decimated by simple medical hygiene
measures, just as we all wear masks today to prevent the spread of COVID.
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Figure 8: A portion of “Gross receipts of theaters in Paris from 1878 to 1889” (Recettes brutes des théatres
et spectacles de Paris 1878 à 1889), highlighting those in the exposition years. Source: Album de Statistique
Graphique, 1889, Plate 26. https://www.davidrumsey.com/luna/servlet/detail/RUMSEY 8 1 309502 900
79343:Statistical-Diagram–VI–Exposition

But they also seem to demand an equally iconic name. Nomenclature is one stem
with multiple buds: “rose”, “coxcomb”, “wedge” diagram are all terms used to refer to
these. None of these names have evidence in her writing that she called is such. All of
these are somewhat fanciful but attest to a desire to nominate these as a new graphic
form.
Here, we announce a new name: Radiant Diagram to celebrate FN’s bicentennial

and the graphic joy following her footsteps.
In case you were wondering,

• there is indeed a variety of rose called a Nightingale Rose,
• there is also a nightingale bird (Luscinia megarhynchos)
• in 1888, Oscar Wilde wrote The Nightingale and the Rose, having little to do with
our subject, except for its’ lovely alternative title. We might have used this, if it
had not already been taken.
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naturelles en général. In Cours Complet de Météorologie, by L. F. Kaemtz. Paris: Paulin, 1-35.
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Verifying compliance with ballast water standards:

a decision-theoretic approach
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Abstract

We construct credible intervals to estimate the mean organism (zooplankton and phytoplankton)

concentration in ballast water via a decision-theoretic approach. To obtain the required optimal

sample size, we use a total cost minimization criterion defined as the sum of the sampling cost

and the Bayes risk either under a Poisson or a negative binomial model for organism counts,

both with a gamma prior distribution. Such credible intervals may be employed to verify whether

the ballast water discharged from a ship is in compliance with international standards. We also

conduct a simulation study to evaluate the credible interval lengths associated with the proposed

optimal sample sizes.
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1 Introduction

With the expansion of maritime traffic, ballast water has become the leading dispers-

ing agent of invasive organisms with serious environmental, public health and economic

consequences as indicated in Strayer (2010), McCarthy et al. (1992) and Marbuah, Gren

and McKie (2014). In order to reduce the introduction of invasive species, specially zoo-

plankton and phytoplankton, the international maritime community adopted the Ballast

Water Management Convention (BWM Convention) in 2004, that has finally entered

into force in 2017. Among other restrictions, the D-2 standard requires that deballasted

water should contain no more than 10 viable organisms (referred to simply as organisms

in the remainder) with maximum dimension between 10 µm and 50 µm per mL (IMO,

2004).

Given the large amount of ballast water carried by some vessels, it is impractical to

analyze the whole water volume and an alternative is to rely on sampling methods that
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guarantee some acceptable error rates associated to the decision of whether a given de-

ballasting process complies with the D-2 standard. Many authors (First et al., 2013;

Carney et al., 2013; Gollasch and David, 2017; Casas-Monroy, Rajakaruna and Bai-

ley, 2020) have addressed this issue, mentioning the quest for “representative” samples,

without a consensus on a clear definition and examining samples obtained from a limited

number of ship trips.

Very few articles deal with a more structured approach, in which a required sam-

ple size is computed to meet some maximum acceptable sampling error (Basurko and

Mesbahi, 2011; Miller et al., 2011; Frazier et al., 2013). Costa, Lopes and Singer (2015,

2016), on the other hand, define “representative samples” as those that can be used to es-

timate the organism concentration in the ballast water tank with a pre-specified precision

and use a frequentist approach to compute the optimal sample size with this characteris-

tic. Costa, Paulino and Singer (2021) adopted a Bayesian approach to compute sample

sizes required for estimating organism concentration obtained via two optimality crite-

ria: the average coverage and the average length of credible intervals.

As many different tools or methods (e.g., Niskin or Van Dorn bottles, plankton nets,

pumps, or the in-line method) may be employed to collect samples from ballast water

(Casas-Monroy et al., 2020), it seems reasonable to include costs in the optimal sample

size determination. With this in mind, we propose a Bayesian decision approach based

on a criterion which minimizes the sum of the sampling method cost and the Bayes risk.

An advantage of this approach is that the cost of collecting the sample is explicitly taken

into account.

The proposed approach depends on an ad hoc loss function defined to accommodate

the implications of using a credible interval for the organism concentration λ to decide

for compliance or not with the D-2 standard. In a different setup, Etzioni and Kadane

(1993) use a similar criterion with quadratic and logarithmic loss functions under a

normal model. Sahu and Smith (2006) consider a loss function for the hypothesis testing

problem of the parameter of a normal model. Islam (2011) and Islam and Pettit (2012,

2014) consider quadratic, linex and bounded linex loss functions for point estimation

of the mean and the variance of a normal model with normal prior distributions, and

also exponential and Poisson models both with a gamma prior distribution for point

estimation of their respective parameters. Following a similar or the same approach, we

may cite Pham-Gia and Turkkan (1992), Bernardo (1997), Lindley (1997), Parmigiani

and Inoue (2009), De Santis and Gubbiotti (2017), among others.

Consider a sample xxxn =(x1, . . . ,xn) consisting of the counts of organisms in n aliquots

(sub-samples) with a given volume w collected from a ballast water tank and a specified

loss function L. The objective is to obtain the optimal sample size no that minimizes a

total cost function consisting of the sum of a risk function r and a sampling cost C(n).

Once the required optimal sample size has been determined, the corresponding aliquots

with volume w are collected (possibly on board or during the deballasting process), the

organisms in these aliquots are counted and a credible interval with lower a(xxxno) and

upper b(xxxno) limits for the mean organism concentration λ is computed. Considering
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that the D-2 standard requires λ< 10 for compliance, the ship is declared not compliant

if a(xxxno) ≥ 10 or compliant, if b(xxxno) < 10. Otherwise, if a(xxxno) < 10 < b(xxxno), more

data are needed to make a decision.

In Section 2, we describe two Bayesian models required to compute the credible in-

tervals. The first is appropriate for situations where the organisms are homogeneously

distributed in the ballast water tank and the second may be needed for heterogeneous dis-

tributions. Sample size determination is presented in Section 3 in terms of a convenient

loss function in a decision-theoretic approach. Additionally, we conduct a simulation

study to evaluate the lengths of the credible intervals obtained for different combinations

of the parameters governing the models and different sampling costs. We conclude, in

Section 4, with a discussion of the results and of the difficulties associated to the estab-

lishment of the cost components.

2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Let X be the number of organisms in an aliquot of volume w collected from a ballast

tank with mean organism concentration λ. The expected number of organisms in this

aliquot is wλ, i.e., E [X |λ] = wλ. Suppose that, given λ, X follows a Poisson distribution

with mean wλ; this essentially corresponds to the assumption that the organisms are

homogeneously distributed in the ballast tank. A possible and first natural choice for a

prior distribution is the conjugate gamma distribution for which the density function is

h(λ) ∝ λθ0−1 exp(−θ0λ/λ0),

where λ0 and θ0 are positive and known fixed constants, respectively interpreted as the

prior mean and as a quantity inversely proportional to the prior variance. Thus, the larger

(smaller) is θ0, the smaller (larger) is the prior uncertainty about λ.

Considering a random sample of size n of X |λ and a gamma prior distribution for λ,

we may write the model hierarchically as follows

Xi|λ iid∼ Poisson(wλ), i = 1,2, . . . ,n; (1)

λ∼ Gamma(θ0,θ0/λ0). (2)

In this context, the posterior distribution of λ is also a gamma distribution with parame-

ters θ0+sn and nw+θ0/λ0, where sn =∑n
i=1 xi, i.e., λ|xxxn ∼Gamma(θ0+sn,nw+θ0/λ0).

Details are presented in the Supplementary Material.
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2.2 Negative binomial model with a gamma prior distribution

Suppose that the organism concentration in the i-th aliquot is ℓi and the corresponding

number of organisms is Xi, i = 1,2, . . . ,n. The expected number of organisms in the

i-th aliquot is E [Xi|ℓi] = wℓi. For i = 1,2, . . . ,n, suppose that, given ℓi, Xi follows a

Poisson distribution with mean wℓi and that given a mean concentration λ in the tank,

ℓi ∼ Gamma(φ,φ/λ), so that E [ℓi|λ|] = λ and Var [ℓi|λ] = λ2/φ. Thus, given λ and φ, Xi

follows a negative binomial distribution with E [Xi|λ,φ] = wλ and Var [Xi|λ,φ] = wλ+

(wλ)2/φ, where φ is a shape (or agglomeration) parameter assumed known (see Amaral

Turkman, Paulino and Müller, 2019, Appendix A on the Poisson-gamma mixture). We

use the notation Xi|λ,φ∼NB(wλ,φ) and again assume a gamma prior distribution for λ.

Considering a random sample of size n from X |(λ,φ) and a gamma prior distribution

for λ, we may write the model hierarchically as

Xi|λ,φ iid∼ NB(wλ,φ), i = 1,2, . . . ,n; (3)

λ∼ Gamma(θ0,θ0/λ0). (4)

In this context, the posterior distribution of λ is not a known distribution and the comput-

ing of its summaries is analytically intractable. Thus, we rely on Markov chain Monte

Carlo (MCMC) methods to generate random samples from the distribution of interest. In

our case, we use the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970) based on a random walk to generate random samples from the posterior distribu-

tion of λ. With these samples we may compute related inference summaries. Details are

presented in the Supplementary Material.

3 Sample size determination

An approach to the problem of sample size determination and credible interval estima-

tion is to consider it as a decision problem (Lindley, 1997; Parmigiani and Inoue, 2009;

Islam and Pettit, 2014). For this purpose, given that λ is the parameter of interest, it is

necessary to specify a loss function L(λ,dn) based on a sample XXXn = (X1,X2, . . . ,Xn)

and a decision function dn ≡ dn(XXXn). For a given n, the action dn(xxxn) consists of the

specification of two quantities, the lower [say, a(xxxn)] and the upper [say, b(xxxn)] limits of

a credible interval for λ.

Letting f (xxxn|λ) be the sampling distribution for XXXn and h be a prior distribution for

the unknown parameter λ, the Bayes risk is (see Parmigiani and Inoue, 2009)

r(h,dn) :=
∫

Λ

∫

Xn
L(λ,dn) f (xxxn|λ)h(λ)dxxxndλ, (5)

where Λ is the parameter space and X
n is the sample space. The Bayes risk r(h,dn)

may be viewed as the mean of the sampling expected loss expressed as a function of
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the parameter of interest weighted by the prior distribution; this summarizes the sam-

pling expected loss over all possible values of the parameter of interest (here, the mean

concentration λ).

The decision d∗
n that minimizes r(h,dn) among all possible decisions dn is called a

Bayes rule. Note that if the order of the integration may be inverted, we have

r(h,dn) =
∫

Xn

[∫

Λ
L(λ,dn)h(λ|xxxn)dλ

]
f (xxxn)dxxxn

=
∫

Xn
E
[
L(λ,dn)

∣∣xxxn

]
f (xxxn)dxxxn, (6)

where f (xxxn) is the marginal distribution of the data, so that the decision d∗
n that mini-

mizes r(h,dn) is the same that minimizes the posterior expected value of the loss func-

tion, namely E
[
L(λ,dn)

∣∣xnxnxn

]
, for each xnxnxn. Given the specified action (the determination

of the lower and upper limits of a credible interval for λ in our case), one must define

a criterion to obtain an optimal sample size taking both the Bayes risk and the sam-

pling cost into account. With this purpose, we minimize the total cost function TC(n),

customarily expressed by

TC(n) = r(h,d∗
n)+C(n),

where the function C(n) needs to be specified. Here, we take C(n) = cn, with c being

the cost of sampling an aliquot.

The additive structure of TC(n) in terms of the cost of an action regarding the mag-

nitude of λ and of the sample collection cost presupposes that they are measurable or

scalable in some common unit (see Raiffa and Schlaifer, 1961, for example). In fact, we

can view C(n) as the relative cost of sampling expressed in terms of the cost associated

to the Bayes risk.

Often it is not possible to compute r(h,d∗
n) analytically. In such cases, we may use

Monte Carlo simulations as an alternative. Since simulation methods are used, the es-

timates of TC(n), denoted by tc(n), may show a variation around its true value. We

may reduce this variation by: (i) taking the number of Monte Carlo replicates as large

as possible and/or, (ii) fitting a curve by least squares or some other method to a set of

points (n, tc(n)). Müller and Parmigiani (1995) propose to fit the following curve to the

estimates of TC(n),

tc(n) =
E

(1+Hn)G
+ cn,

where E , H and G are parameters to be estimated. The numerical methods required

to estimate these parameters sometimes do not reach convergence depending on the

initial values adopted to implement the corresponding algorithms. In order to simplify

the fitting procedure and observing that the parameters H and G play similar roles and

essentially represent the decreasing rate of the Bayes risk, we propose to fit the function
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tc(n) =
E

(1+n)G
+ cn,

that may be linearized as

log[tc(n)− cn] = logE −G log(1+n), (7)

where the term − log(1+n)may be interpreted as an explanatory variable and log[tc(n)−
cn], as a dependent variable in a linear regression model. Assuming that an error is

added, the estimates of E and G may be computed by least squares. Then, the optimal

sample size no is the largest integer closest to

(
ÊĜ

c

)1/(Ĝ+1)

−1, (8)

where Ê and Ĝ are, respectively, the least squares estimates of E and G.

We adopt the loss function

L(λ,dn) = γτ +(λ−m)2/τ ,

where γ > 0 is a fixed constant, τ = (b− a)/2 is the half-length and m = (a+ b)/2

is the center of the credible interval (see Rice, Lumley and Szpiro, 2008). The first

term involves the half-width of the interval which we may interpret as its precision. The

second term, namely, the square of the distance between the parameter of interest (λ) and

the center of the interval divided by the half-width to maintain the same measurement

unit of the first term, may be interpreted as the bias divided by the precision. If the

precision increases (τ decreases) the second term of the loss function increases. The

weights attributed to each term are γ and 1, respectively. If γ < 1, we attribute the

largest weight to the second term, prioritizing lower bias over precision; if γ > 1, the

situation is reversed and if γ = 1, the two terms have the same weight.

For this loss function, the Bayes rule corresponds to the quantities which define

the interval [a∗(xxxn),b
∗(xxxn)] = [m∗ −SVγ ,m

∗+SVγ ], where m∗ = E
[
λ
∣∣xxxn

]
and SVγ =

γ−1/2(Var
[
λ
∣∣xxxn

]
)1/2. For more details see Parmigiani and Inoue (2009), Rice et al.

(2008) or Schervish (1995).

In a practical situation, once the required optimal sample size no has been determined

along with the corresponding organism counts xxxno , the credible interval limits a∗(xxxno)

and b∗(xxxno) are obtained via E
[
λ
∣∣xxxno

]
and Var

[
λ
∣∣xxxno

]
, expressed in terms of the models

described in the preceding section.

An algorithm to obtain the optimal sample size satisfying the total cost minimization

criterion for the adopted loss function is outlined in the Supplementary Material and the

corresponding R code is available in Costa, Paulino and Singer (2020). In Tables 1-2 we

present optimal sample sizes computed for different values of the parameters defining

the prior distributions for both models considered in Section 2. We set λ0 and obtain the
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Figure 1: Estimated total cost as a function of n for the negative binomial/gamma model with γ = 1/2,

φ = 22, w = 1, c = 0.01, λ0 = 10 and prior variance equal to 4; the vertical line indicates the optimal

sample size no = 36.

value of θ0 such that the prior variance is a constant, say, σ2, i.e., θ0 = (λ0/σ)
2. See

Figure S2 in the Supplementary Material. The values considered for φ were chosen to

cover the range of estimates obtained from real data reported in Casas-Monroy et al.

(2020). In Figure 1 we depict a curve fitted to the estimated total cost as a function of n

for the negative binomial/gamma model with γ = 1/2, φ= 22, w = 1, c = 0.01, λ0 = 10

and prior variance equal to 4. The vertical line indicates the optimal sample size no = 36.

We also carried out a simulation study to evaluate the lengths of the credible intervals

and the respective Bayesian coverage probability computed from samples obtained with

the proposed optimal sample sizes. For such purposes, we considered the optimal sam-

ple sizes obtained via either the Poisson/gamma or the negative binomial/gamma model

for combinations of different values of c, θ0 (and φ in the negative binomial/gamma

model). For each scenario, we drew 1000 samples xxxno with the optimal sample size no,

obtained the limits a∗(xxxno) and b∗(xxxno) of the corresponding credible intervals, computed

the mean of their lengths and the mean of the Bayesian coverage probabilities (see Sup-

plementary Material for more details). The results for the average lengths are displayed

(within parentheses) in Tables 1-2. The average acceptance rates for the Metropolis-

Hastings algorithm used in the negative binomial/gamma model ranged between 31%

and 71%. The results for the Bayesian coverage probability are discussed in Section 4.
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Table 1: Optimal sample sizes no and estimated mean posterior credible interval lengths (within parenthe-

ses) under the Poisson/gamma model (1)-(2) with w = 1 and λ0 = 10.

γ
Aliquot Prior variance

cost (c) 1 2 4

1/2
0.001 145 (0.72) 157 (0.70) 164 (0.69)

0.010 28 (1.45) 32 (1.50) 34 (1.48)

1
0.001 184 (0.45) 198 (0.44) 207 (0.44)

0.010 35 (0.94) 40 (0.94) 43 (0.94)

2
0.001 237 (0.28) 252 (0.28) 263 (0.27)

0.010 46 (0.60) 51 (0.60) 55 (0.59)

A simple algorithm with the steps required for the determination of no and for the

decision with respect to D-2 standard follows.

Step 1. Set the values of λ0 and θ0 (prior distribution), φ (only for negative binomial

model), w (aliquot volume), c (aliquot cost) and γ (loss function).

Step 2. Obtain the corresponding optimal sample size no using the algorithm provided

in the Supplementary Material with the parameter values defined in Step 1.

Step 3. Sample no aliquots of water from the ballast tank of the ship and count the

number of organisms in each aliquot. We denote these no organism counts as

xxxno = (x1, . . . ,xno).

Step 4. With the organism counts xxxno and γ compute the credible interval limits a∗(xxxno)
and b∗(xxxno) via E

[
λ
∣∣xxxno

]
and Var

[
λ
∣∣xxxno

]
. If there is no closed form for these

moments of the posterior distribution, compute estimates for these quantities

simulating values from the posterior distribution (using MCMC or another si-

mulation-based method) and taking the respective sample moments.

Step 5. Use the credible interval limits to decide for compliance with the D-2 standard

as follows: declare compliance if b∗(xxxno)< 10, or non-compliance if a∗(xxxno)≥
10. Otherwise, if a∗(xxxno) < 10 < b∗(xxxno), more data are required to make a

decision.

4 Discussion

We propose a decision-theoretic approach to obtain an optimal number of aliquots re-

quired to estimate the organism concentration in ballast water and indicate how the

results may be employed to verify compliance with the D-2 standard.

The results in Table 1 obtained under the Poisson/gamma model indicate that the op-

timal sample size no increases as the prior uncertainty (variance) about λ increases, but

the average interval length remains the same. For the negative binomial/gamma model

we observe a similar behavior (see Table 2).
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Table 2: Optimal sample sizes no and estimated mean posterior credible interval lengths (within parenthe-

ses) under the negative binomial/gamma model (3)-(4) with w = 1 and λ0 = 10.

γ
Aliquot

φ
Prior variance

cost (c) 1 2 4

1/2
0.001

1 276 (1.51) 345 (1.48) 347 (1.52)

4 220 (1.05) 246 (1.03) 259 (1.03)

8 162 (0.99) 185 (0.96) 206 (0.91)

13 162 (0.89) 180 (0.87) 192 (0.85)

22 156 (0.83) 172 (0.80) 182 (0.79)

0.010
1 - 29 (3.25) 60 (3.18)

4 21 (2.23) 37 (2.26) 42 (2.35)

8 26 (1.93) 32 (2.05) 40 (1.99)

13 25 (1.82) 33 (1.84) 38 (1.82)

22 23 (1.75) 31 (1.74) 36 (1.71)

1
0.001

1 365 (0.96) 436 (0.95) 458 (0.96)

4 232 (0.73) 267 (0.70) 292 (0.68)

8 217 (0.61) 243 (0.59) 260 (0.58)

13 208 (0.56) 229 (0.55) 244 (0.53)

22 200 (0.52) 219 (0.51) 231 (0.50)

0.010
1 - 48 (2.07) 78 (2.04)

4 34 (1.42) 47 (1.47) 56 (1.47)

8 36 (1.24) 45 (1.26) 51 (1.26)

13 35 (1.16) 43 (1.17) 49 (1.15)

22 35 (1.08) 42 (1.09) 47 (1.07)

2
0.001

1 478 (0.61) 510 (0.63) 678 (0.56)

4 301 (0.46) 344 (0.44) 373 (0.43)

8 281 (0.39) 310 (0.37) 331 (0.36)

13 268 (0.35) 293 (0.34) 309 (0.34)

22 257 (0.33) 279 (0.32) 292 (0.31)

0.010
1 - 75 (1.31) 109 (1.27)

4 61 (0.85) 70 (0.89) 70 (0.95)

8 51 (0.78) 56 (0.82) 65 (0.80)

13 51 (0.72) 54 (0.75) 62 (0.73)

22 49 (0.68) 53 (0.70) 59 (0.68)

For both models and for all no in Tables 1-2 the average Bayesian coverage pro-

babilities obtained in the simulation study were approximately 0.84, 0.68 and 0.52 for

γ = 1/2,1 and 2, respectively. These values are similar to the probabilities that a stan-

dard normal variable lies in the intervals (−
√

2,
√

2), (−1,1) and (−1/
√

2,1/
√

2), re-

spectively, and are consistent with the asymptotic normality of the corresponding poste-

rior distributions. See Ferguson (1996, pg. 140), for example. However, we observe that

this approximation also occurs for no ≈ 30. To explain this, first, note that as θ0 → ∞
the gamma distribution approaches a normal distribution (McCullagh and Nelder, 1989,

pg. 287). For the Poisson/gamma model (1)-(2) the respective posterior distribution is

also gamma with shape parameter θ0 + sn, and the cases for which no ≈ 30 are those
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where the prior variance is equal to 1 or 2 and correspond to θ0 equal to 100 or 50,

respectively. We may consider these values of θ0 large enough to guarantee a reasonable

approximation by the normal distribution.

The posterior distribution for the negative binomial/gamma model (3)-(4) is neither a

gamma distribution nor a known distribution. To verify whether the normal approxima-

tion also holds in this case, we considered the smallest sample size in Table 2, namely

no = 21 and generated 100 samples of size 100 from the posterior distribution of λ.

We applied the Shapiro-Wilk test to each of these samples and observed that 90 out of

100 p-values were greater than 0.05, i.e., that the normal approximation seems reason-

able even for the smallest no in Table 2. This suggests, for example, that in order to

obtain a Bayesian coverage probability of 0.95, we must have γ = 1/1.962. In general,

if we want a Bayesian coverage probability approximately equal to 1−ρ, we must set

γ = 1/[Φ−1(1−ρ/2)]2, where Φ−1(·) is the inverse probability function of the standard

normal distribution. In other words, larger coverage probabilities requires smaller values

for γ, which places more emphasis on the center than on the length of the corresponding

credible interval.

We also observe that when the cost of sampling an aliquot c increases, the optimal

sample size (and consequently, the average interval length) decreases (increases) under

either model, but at the expense of an increase in the total cost (Tables 1-2). For example,

if we set the prior variance equal to 4, γ = 1/2 and φ= 1, from the results in Table 2, it

follows that the optimal sample size for c = 0.001 is 347, generating a sampling cost of

C(347)= 0.001×347= 0.347; the optimal sample size for c= 0.010, on the other hand,

is 60, generating a sampling cost C(60) = 0.010×60 = 0.60, an increase of ≈ 73%.

Although the aggregation parameter φ represents an important feature related to the

heterogeneity of the organism distribution in the ballast water tank, under the total cost

minimization approach, the optimal sample size is only slightly affected when φ in-

creases (with the other parameters fixed) for c = 0.01. As displayed in Table 2, for φ≥ 4

the optimal sample sizes are almost the same for different values of the prior variance.

Also, note that for c = 0.01, φ = 1 and prior variance equal to 1 we have no entry in

Table 2 because there is no associated optimal sample size. This means that the cost of

sampling outweighs the cost of decreasing the Bayes risk and it is not worth obtaining

aliquots. This was also observed by Etzioni and Kadane (1993) and Islam and Pettit

(2014, Table 1).

Such considerations point to a major difficulty of the proposed approach which is

the quantification of the “costs” associated to the Bayes risk and to the sampling effort.

Although the latter may be objectively calculated in terms of the technical aspects of

the actual collection and analysis methods, the former certainly poses a complicated

problem since it depends on quantitatively evaluating consequences of declaring a ship

compliant or not based on a rule defined in terms of the credible interval. This is certainly

a controversial and difficult problem; however, it permeates directly or indirectly, all

methods of sample size determination and decision making.
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Table 3: Simulated organism counts obtained via the negative binomial model with φ = 8, w = 1 and λ

fixed as reported.

λ counts

7
8 6 5 10 18 2 5 13 3 8 10 4 7

7 8 11 6 3 3 4 12 3 1 6 2 7

8 1 11 3 1 5 8 5 2 8 5 5 11

4 4 3 11 6 2 10 6 6 7 7 8

10
11 5 22 23 12 4 13 13 3 18 5 10 10

15 20 27 3 15 4 5 11 11 21 7 3 6

10 5 9 8 8 5 12 12 2 5 11 9 14

10 9 10 15 15 10 11 8 7 7 8 6

13
15 6 21 31 19 17 5 23 7 13 12 25 24

6 24 12 3 11 7 23 13 5 3 9 16 9

9 12 11 7 15 16 3 7 15 12 17 13 11

13 17 20 9 11 8 9 11 8 12 3 13

For illustrative purposes, we consider a set of hypothetical organism counts to obtain

the associated credible interval based on the optimal sample size. Casas-Monroy et al.

(2020) obtained estimates for φ varying from 8 to 22. For φ= 8, the optimal sample size

under the negative binomial/gamma model with λ0 = 10, prior variance equal to 4 and

c = 0.010 is no = 51 (Table 2). We generated 51 observations from a negative binomial

model with λ = 7, φ = 8 and w = 1 (see Table 3). Given the generated observations,

we drew a sample of size 10,000 from the posterior distribution of λ with a burn-in

of 1,000 iterations and a thinning of 10. The corresponding credible interval [a∗,b∗] is

[6.10,7.05]. Now, if we generate 51 observations from a negative binomial model with

λ = 10 (Table 3), the corresponding credible interval is [9.61,10.89]. Finally, if we set

λ = 13 to generate the 51 observations, the corresponding interval is [11.58,13.04]. In

all cases, the credible interval contains the value of the parameter of interest and lead to

correct decisions relatively to compliance v.s. non-compliance with the D-2 standard.
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Abstract

Dating is a key element for archaeologists. We propose a Bayesian approach to provide chronol-

ogy to sites that have neither radiocarbon dating nor clear stratigraphy and whose only information

comes from lithic arrowheads. This classifier is based on the Dirichlet-multinomial inferential pro-

cess and posterior predictive distributions. The procedure is applied to predict the period of a set of

undated sites located in the east of the Iberian Peninsula during the 4th and 3rd millennium cal BC.
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1 Introduction

Dating is a key element for archaeologists. A time scale to locate the information col-

lected from excavations and field work is always necessary in order to build, albeit

with uncertainty, our most remote past. Archaeological scientists generally use strati-

graphic expert information and dating techniques for examining the age of the relevant

artifacts. Bayesian inference is commonly used in archaeology as a tool to construct

robust chronological models based on information from scientific data as well as expert

knowledge (e.g. stratigraphy) (Buck, Cavanagh and Litton, 1996).

Radiocarbon dating is one of the most popular techniques for obtaining data due to

carbon’s presence in any being that has lived on Earth. However, it is not always possible

in all studies to collect organic material and obtain that type of information or to have

good stratigraphic references. In these cases, the challenge is to be able to assign non
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radiocarbon dated collections to specific chronological times. The relevant information

is based on cultural material that includes elements with markers that point out the dif-

ferent cultural traits of the social groups involved as well as the social relationships

between them. One of these useful items is the lithic productions, and more specifically

the arrowheads.

During the 4th and 3rd millennium cal BC bifacial flint arrowheads appear and

spread in the east of the Iberian Peninsula. Archaeological research suggests that the

shape of these arrowheads could be related with specific period and/or geographical

social units spatially defined.

In this context, we propose an automatic Bayesian procedure, very popular in text

classification (Wang, Hodges and Tang, 2003), based on predictive probability distri-

butions for classifying the period to which an undated site belongs according to the

type and number of arrows found in it. This proposal takes into account the Dirichlet-

multinomial inferential process for learning about the proportion of different types of

arrowheads in each chronological period, and the concept of posterior predictive distri-

bution for a new undated site.

This paper is organized in five sections. Following this introduction, Section 2 briefly

introduces the archaeological framework and the lithic material that will be the basis for

the classification process. Section 3 describes the two stages of the Bayesian statistical

analysis. The first is of an inferential type and focuses on the study of the abundance

of different types of arrows in the different periods considered. The second uses the

information from the first stage to predict the period of an undated site from the number

and type of arrowheads encountered. Section 4 applies the methodological procedure

from the previous section to a set of sites in the east of the Iberian Peninsula during Late

Neolithic and Chalcolithic (4th-3rd millennium BC). Finally, Section 5 concludes.

2 Chronological periods and lithic information

One of the main goals in archaeological research is focused on the way the members of

the prehistoric cultures interact with the landscape and the objects. From an evolutive

perspective, the way human cultures change through space-time is determined by inher-

itance patterns, adaptation and interaction (Shennan, Crema, and Kerig, 2015). There-

fore, the analysis of items from the archaeological records, able to capture the cultural

evolution of the human groups, would be a main goal for the researcher.

The concept of “culture” covers many factors. Hence, we will use the material culture

as an archaeologic proxy in order to analyse the evolution and dispersion of the cultural

traits in the study area. Not all the items included in material culture are useful for that.

Those which show a wide geographic and cultural dispersion or whose variability is low

are not convenient to detect changes. This is not the case with lithic productions, and

more specifically arrowheads, which provide information not only for understanding
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the socio-economic and cultural structures of human groups, but they can be used as a

valuable tool for chronological dating.

The arrival of the neolithic economy, based on domestic resources, in the Iberian

Peninsula is dated on the first half of the 6th millennium cal BC. We will have to wait

until the 4th-3rd millennium to be able to witness clear winds of change. This is the

moment of the appearance of a higher level of hierarchy in some societies. The Late Ne-

olithic (4th-3rd millennium cal BC) in the oriental Iberian façade is the time of the transit

to a higher complexity in social and economic terms. This process will last long and it

will crystallize by the end of the 3rd millenium cal BC (Bernabeu and Orozco, 2014).

The evaluation of this process in such a huge frame faces some problems which need

to be addressed. One of these difficulties is closely associated with the chronological

attribution of a big part of the period’s archaeological record due to scarce radiocarbon

data.

Type 1 with rhomboid or rhombus-eye shape

Type 2 with side appendages or cruciform

Type 3 leaf-like

Type 4 with peduncle but without flints

Type 5 with a concave base

Type 6 asymmetric

Type 7 with peduncle and flints

Figure 1: Arrowhead types used for the study.

The classification of the arrowheads in this period is based on the previous works per-

formed around the typological formalization for the study area. They are mainly inspired
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by morpho-descriptive typologies. Therefore, the classification contains a functional and

morphological meaning. Arrowheads constitute a very representative tool group of the

Late Neolithic and Chalcolithic. Their function is quite proved thanks to the studies in

traceology, experimental archaeology and etnoarchaeology. Some well known exam-

ples are the spectacular findings of arrowheads still nailed into the victim bones, present

in many burials from the 4th and 3rd millennium BC (i.e. San Juan ante Portam Lati-

nam: Vegas 2007). We cannot forget the awesome finding of a full equipment Ötzi, the

“Iceman”, discovered in the Alps (Cave-Browne, 2016), and exceptionally conserved.

Moreover, the existence of excavated sites (Ereta del Pedregal) in which the whole ar-

rowhead operative chain process can be observed, has provided additional information

(Juan-Cabanilles, 1994).

The arrowhead types present in the archaeological records have been classified in

seven types following a morphological criterion, based on previous typologies for the

study area (Juan-Cabanilles, 2008) (See Figure 1).

3 Bayesian classification process

Bayesian classification within the framework of archaelogical datation with lithic infor-

mation will provide a probability distribution for the period to which an undated site

belongs in which a given set of different types of arrowheads has been found. This

probability distribution depends on the knowledge of the abundance of each type of

arrowheads in each period, expressed via the posterior distribution for the probability

associated with each type of arrowhead, and the posterior predictive distribution for the

period of that particular updated site.

3.1 Dirichlet-multinomial inferential process

Let Yi j be the random variable that describes the number of type j, j = 1, . . . ,J arrow-

heads, of the total ni collected in the sites belonging to period i, i= 1, . . . , I. We define the

random vector Yi = (Yi1,Yi2, . . . ,Yi,J−1)
T and the probability vectorθθθi = (θi1,θi2, . . . ,θi,J−1)

T,

where θi j is the probability that an arrowhead of period i is of type j. A probabilistic

model for Yi | θθθi is the multinomial distribution, Mn(θθθi,ni), with probability distribution

f (yi | θθθi) =
ni!(

∏J−1
j=1 yi j!

)
yiJ!

( J−1

∏
j=1

θ
yi j

i j

)
θ

yi j

iJ , (1)

where yi is an observation of Yi, yiJ = ni −∑J−1
j=1 yi j is the total number of arrowheads of

type J in the sites of period i, and θiJ = 1−∑J−1
j=1 θi j is the probability that an arrowhead

of period i is of type J.
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The combination of a multinomial sampling model with a conjugate Dirichlet prior

distribution was proposed by Lindley (1964) and Good (1967) as the generalisation

of the beta-binomial model. The Dirichlet distribution for θθθi with parameters αααi =

(αi1, . . . ,αiJ)
T, αi j > 0, j = 1, . . . ,J, Dir(αααi), is a multivariate continuous distribution

with joint density function

π(θθθi) =
Γ(αi+)

∏J
j=1 Γ(αim)

( J−1

∏
j=1

θ
αi j−1

i j

)
θ
αiJ−1
iJ , (2)

where Γ(·) represents the gamma function and αi+ = ∑J
j=1 αi j.

We assume an inferential process for each θθθi, i = 1, . . . , I in the framework of the

Dirichlet-multinomial process with a non-informative prior distribution for θθθi that gives

all the protagonism of the process to the data. There are many proposals for elicit the

parameters αααi in a non-informative way: Haldane’s prior, Perks’ prior or reference dis-

tance prior, hierarchical approach prior and Jeffreys’ prior or common reference prior,

and Bayes-Laplace prior. All them have good theoretical properties but they also have

some small shortcomings. We choose the Perks’ prior as a result of Alvares, Armero and

Forte (2018). This prior was firstly proposed by Perks (1947), but recently it has been

also obtained as the reference distance prior by Berger et al. (2015). This is a Dirich-

let distribution with all parameters equal to 1/J, where J is the number of arrow types.

Figure 2 shows the density and other characteristics of a Perk’s distribution with three

categories.

Figure 2: Perks’ distribution when the number of types of arrowheads is J = 3 (a), its projection onto the

simplex triangle (b), and the marginal prior distribution for each individual component, a beta distribution

with parameters 1/3 and 2/3, Be(1/3, 2/3), which maintains high density values close to 0 and 1(c).

The posterior distribution for θθθi when data yi are observed is also a Dirichlet distri-

bution (Lindley, 1964; Good, 1967),

π(θθθi | yi) = Dir(αi1 = yi1 +(1/J), . . . ,αiJ = yiJ +(1/J)). (3)
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This posterior distribution has an important and positive feature: never assigns absolute

probabilities 1 or 0 to the presence of any type of headarrows. This fact avoids working

with absolute values of the probabilities, 0 and 1, which would prevent future updates

of their values generated by new data.

The marginal posterior distribution for each probability θi j is the beta distribution

(Gelman et al., 2014)

π(θi j | yi) = Be(αi j,αi+−αi j), (4)

with posterior mean and variance αi j/αi+ and αi j(αi+−αi j)/(α
2
i+ (αi++ 1)), respec-

tively.

3.2 Predictive process

After learning about the distribution of the proportion of arrowheads types in each site,

we have to assign a probability distribution to the random variable that describes the

period m∗ to which a new undated site s∗ belongs given that a total of n∗ arrowheads

y∗ = (y∗1, . . . ,y
∗
J)

T have been observed in it. Following Bayes’ theorem:

P(m∗ = mi | y∗,y) ∝ P(Y∗ = y∗ | m∗ = mi,y)P(m∗ = mi | y), i = 1, . . . , I, (5)

where y = (y1, . . . ,yI)
T are the observed data in the previous estimation process and

Y∗ = (Y ∗
1 , . . . ,Y

∗
J )

T is the random vector that describes the number of arrowheads of the

different types that will be recorded in that new site. It is important to note that Y and Y∗

in capital letters refer to the random vector that generate or will generate the data y and

y∗, respectively, which we always represent by lower case letters. The asterisk is used to

represent the subsequent random variables and observations of the prediction process.

The posterior predictive distribution in (5) is proportional to the product of two terms.

The first one is:

P(Y∗ = y∗ |m∗ = mi,y) =
∫

P(Y∗ = y∗ | θθθi,m
∗ = mi,y)π(θθθi | m∗ = mi,y)dθθθi

=
∫

n∗!

y∗1!y∗2! · · ·y∗J!
θ

y∗1
i1 θ

y∗2
i2 · · ·θ

yJ∗
iJ

Γ(αi+)

∏J
j=1 Γ(αi j)

θ
αi1−1
i1 θ

αi2−1
i2 · · ·θαiJ−1

iJ dθθθi

=
n∗!

y∗1!y∗2! · · ·y∗J!

Γ(αi+)

∏J
j=1 Γ(αi j)

∫
θ
αi1+y∗1−1

i1 θ
αi2+y∗2−1

i2 · · ·θαiJ+yJ∗−1

iJ dθθθi

=
n∗!

y∗1!y∗2! · · ·yJ∗!

Γ(αi+)

Γ(αi++n∗)

J

∏
j=1

Γ(αi j + y∗j)

Γ(αi j)
.

The first probability in the integrand, P(Y∗ = y∗ | θθθi,m
∗ = mi,y), is associated with new

experimental results in the presence of θθθi and the data y from the estimation process
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which are irrelevant due to the presence of θθθi. It is a multinomial probability computed

from (1). The second term, π(θθθi | m∗ = mi,y), is the Dirichlet posterior distribution for

θθθi given in (3).

The second element in the product in (5), P(m∗ = mi | y), can be estimated as the

proportion of sites in the sample for each of the periods under consideration (Barber,

2012).

4 East of the Iberian Peninsula sites during the 4th and

3rd millennium cal BC

We apply the classification procedure above to a set of undated sites in the East of the

Iberian Peninsula during the 4th and 3rd millennium cal BC. Data for the inferential pro-

cess of the study come from 31 archaeological sites radiocarbon dated with arrowheads,

clear contexts and stratigraphy.

4.1 Inferential process

All 14C dated sites have been filtered using only those whose radiocarbon dates come

from short-lived singular samples. The final levels used for the periodization are: Are-

nal de la Costa (Bernabeu, 1993), Barranc del Migdia (Soler Dı́az et al., 2016), Beni-

teixir (Pascual Beneyto, 2010), Camı́ de Missena (Pascual Beneyto, Barberà and Ribera,

2005), Colata (Gómez Puche et al., 2004), Cova del Randero (Soler Dı́az et al., 2016),

Cova dels Diablets (Aguilella, Olaria Puyoles and Gusi Jener, 1999), Jovades (Bernabeu,

1993), La Vital (Pérez-Jordà et al., 2011), Niuet (Bernabeu, Pascual Benito, Orozco

Köhler, Badal Garcı́a, Fumanal Garcı́a and Garcı́a Puchol, 1994), and Quintaret (Garcı́a

Puchol et al., 2014). These sites are located in the eastern Mediterranean area. Figure 3

Figure 3: Situation map of the sites with arrowheads present in the study area.
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shows a map with the dated sited as well as the sites without 14C datation whose chrono-

logical classification is the final object of this study.

Based on the chrono-stratigraphic and available expert information, we have pro-

posed five intervals or chronological periods organization comprised between ca. 4600-

3200 cal BC. Table 1 includes the period of each of the periods considered as well as

the sites included in each of them.

Each site usually contains many different archaeological levels attached to differ-

ent moments of occupation. In this specific case, archaeological contexts containing

arrowheads have been dated through radiocarbon determinations. Some of these sites

contain different dated levels in which arrowheads were present. Hence we have de-

scribed them with the name of the site and a number to differentiate them. Based on the

chrono-stratigraphic and available expert information, we have proposed five successive

intervals or chronological periods comprised between ca. 4600-2150 cal BC. These pe-

riods have resulted from the application of Bayesian radiocarbon modeling methods to

the archaeologic information available for each period.

Table 1: Periods and sites extracted from clear archaeological contexts with radiocarbon determinations.

Sites 14C dated Period

Jovades 1, Jovades 2, and Niuet 1 1

Colata 1, Colata 2, Jovades 3, Jovades 4, Niuet 2, 2

and Quintaret

Beniteixir, Diablets 1, Diablets 2, Diablets 3, 3

Jovades 5, La Vital 1, La Vital 2, Migdia 1,

Missena 1, Niuet 3, Niuet 4, Randero 1,

and Randero 2

La Vital 3, Migdia 2, Missena 2, and Missena 3 4

Arenal Costa, La Vital 3, Missena 4, Missena 5, 5

and Missena 6

Table 2: Posterior Dirichlet distribution for the proportion of arrowheads from type 1 to type 7 in each of

the periods considered.

Period Posterior distribution

1 Dir(15/7, 22/7, 8/7, 1/7, 1/7, 1/7, 1/7)

2 Dir(29/7, 36/7, 15/7, 8/7, 1/7, 1/7, 1/7)

3 Dir(43/7, 1/7, 43/7, 64/7, 29/7, 1/7, 71/7)

4 Dir(15/7, 1/7, 15/7, 8/7, 15/7, 1/7, 43/7)

5 Dir(1/7, 1/7, 1/7, 15/7, 1/7, 8/7, 36/7)

Table 2 includes the posterior distribution of the different types of arrowheads in

each of the periods considered. In all of them the selected prior distribution is the Perk
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Figure 4: Posterior marginal distribution for the probability associated with each type of arrowhead in

each of the periods in the study.

distribution Dir(1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7). Therefore, those parameters of the cor-

responding posterior distribution that continue to be worth 1/7 correspond to those types

of arrows that have not been observed in the sample.

Table 3 shows the posterior mean for the probability associated with each type of

arrowhead in each of the periods in the study. Figure 4 shows the posterior marginal

distribution of the probability of the different types of arrowheads in each of the five

chronological periods considered. Results in Table 3 and Figure 4 indicate that the dis-

tribution of the different types of arrowheads is very similar in Periods 1 and 2: Type

1 and 2 arrowheads are the most abundant and about the 75% and 70% of the total of

arrowheads in both periods are type 1 or 2. Type 3 arrowheads have poor relevance in

both Periods and types 4, 5, 6, and 7 are virtually nonexistent. In Period 3, we find

practically no type 2 and 6 arrowheads. The remaining arrowheads in this period have a

presence quite similar but type 4 and 7 have a slightly higher presence. Period 4 shows

a large presence of type 7 arrows and, to a lesser extent, of type 1, 3 and 5 arrows (pro-

babilities of about 0.15). Arrowheads of type 2 and 6 have no relevance. Approximately

57% and 24% of the arrows of Period 5 are of type 7 and 4, respectively. The remaining

arrowhead types, except possibly those of type 6, are essentially irrelevant.
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Table 3: Posterior mean of the probability associated to each type of arrowhead in each of the periods of

the study.

Type Period 1 Period 2 Period 3 Period 4 Period 5

1 0.3061 0.3187 0.1706 0.1531 0.0159

2 0.4490 0.3956 0.0040 0.0102 0.0159

3 0.1633 0.1648 0.1706 0.1531 0.0159

4 0.0204 0.0879 0.2540 0.0816 0.2380

5 0.0204 0.0110 0.1151 0.1531 0.0159

6 0.0204 0.0110 0.0040 0.0102 0.1270

7 0.0204 0.0110 0.2817 0.4387 0.5714

4.2 Predictive process

Undated sites between the 4th and 3rd millennium cal BC. used to explore the predictive

approach include burial sites, villages, and caves: Barranc Cafer 2, Barranc Parra 3, Casa

Colorà, Cova Ampla del Montgó, Cova Santa Vallada B, Cova de les Aranyes, Cova dels

Anells, Cova del Negre, Cova del Petrolı́, Cova Pardo, Cova Santa Vallada A, Ereta I,

Ereta II, Ereta III, Ereta IV, Escurrupenia, Font de Mahiques, Garrofer 3, Garrofer K,

Garrofer I-J, Rambla Castellarda, Sima de la Pedrera, Niuet s3, Torreta UE1, and Torreta

UE2 (See Figure 3).

The posterior probability that a new site belongs to each of the periods considered

was estimated as 0.15 for Periods 1, 4 and 5, 0.20 for Period 2, and 0.35 for Period 3.

Figure 5 presents the posterior predictive distribution of the period to which the

above undated sites belong, whose only available information is based on the number

and type of arrows found collected.

The results obtained show a high concordance with the expert information provided

by archaeologists. Thus, for example, in those sites that present stratigraphic correla-

tions (Ereta del Pedregal and La Torreta) the chronological evaluation obtained from the

predictive approach is consistent with the chrono-statigraphical information. The case

of Cova Santa de Vallada B is interesting, which from the archaeological information is

situated in phase 3-4. However, based on Bayesian modeling, this indicates that it should

be located in Period 3. This aspect is totally coherent not only because of the typology

of the arrowheads themselves but also because of the presence of other diagnostic ele-

ments such as the presence of metal and the absence of bell-beaker ceramics. The result

is totally consistent with the cases of Casa Colorà and Cova del Garrofer I-J, which both

the previous experience and the Bayesian application place in Period 3. Finally, there

are some cases in which the results qualify the chronological proposal established by

expert knowledge, such as the case of Barranc de Parra 3, where previous knowledge

places it in Period 2-3 but predictive analysis places it either in Period 1 or in Period 4.

In this sense, we must bear in mind both that there may be a persistence of certain types
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of arrowheads throughout the entire sequence analyzed, as is the case of the arrowheads

of the peduncle, as well as the possible reuse of projectiles located in places of habitat

as has been documented in the Clovis culture, North America. In this sense both the

incorporation of other complementary diagnostic archaeological information (presence

of metal and bell-shaped ceramics) may help to establish a more precise chronology.

Niuet Rambla Castellarda Sima Pedrera Torreta 1 Torreta 2

Escurrupenia Mahiques Garrofer I J Garrofer K Garrofer S3

Cova Santa B Ereta I Ereta II Ereta II Ereta V

Cova Negre Cova Petrol Cova Anells Cova Pardo Cova Santa A
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Figure 5: Posterior predictive distribution associated with each chronological period for each non-dated

site in the study.

Conclusions

In short, results obtained present a good agreement with the expert information of the

archaeologists, so it is a proposal that can be very useful in archaeological research.

However, there is no doubt that both the application of stratigraphic contexts of higher

resolution and the use of associated radiometric dates related to the most diagnostic

archaeological items will allow to improve this approach.
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Puchol, O., Orozco, Köhler, T., Pascual Benito, J. and Carrión Marco, Y. (2004). El yacimiento de Colata
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Joint outlier detection and variable selection using

discrete optimization

Mahdi Jammal1, Stephane Canu2 and Maher Abdallah3

Abstract

In regression, the quality of estimators is known to be very sensitive to the presence of spurious

variables and outliers. Unfortunately, this is a frequent situation when dealing with real data. To

handle outlier proneness and achieve variable selection, we propose a robust method performing

the outright rejection of discordant observations together with the selection of relevant variables. A

natural way to define the corresponding optimization problem is to use the ℓ0 norm and recast it as

a mixed integer optimization problem. To retrieve this global solution more efficiently, we suggest

the use of additional constraints as well as a clever initialization. To this end, an efficient and

scalable non-convex proximal alternate algorithm is introduced. An empirical comparison between

the ℓ0 norm approach and its ℓ1 relaxation is presented as well. Results on both synthetic and real

data sets provided that the mixed integer programming approach and its discrete first order warm

start provide high quality solutions.

MSC: 62J05, 62J20, 62J07, 62G35, 90C11, 68T05.

Keywords: Robust optimization, statistical learning, linear regression, variable selection, outlier

detection, mixed integer programming.

1 Introduction

We consider the linear regression model:

y = Xβ+ ǫ.

where y ∈R
n is the response vector, X ∈R

n×p is the model matrix, β ∈R
p is the vector

of regression coefficients and ǫ ∈ R
n is the error vector. It is convenient to estimate β

with a sparse vector, especially for high values of p.
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It is well known that dimension reduction or feature selection is an effective strategy

to handle contaminated data and to deal with high dimensionality while providing better

prediction (Bertsimas, King and Mazumder, 2015). Outliers, i.e. atypical or corrupted

observations, can also have a considerable bad influence on estimators (Yang et al.,

2010; Rousseeuw and Hubert, 2018). Usually, outliers are eliminated in a time consum-

ing data cleaning pretreatment (Hodge and Austin, 2004; Campos et al., 2016) while

variable selection is performed together with parameter estimation using the Lasso (Tib-

shirani, 1996), its variants (Tibshirani, Wainwright and Hastie, 2015) or the best subset

(Bertsimas et al., 2015) algorithms just to name a few. For a recent comparison of these

algorithms, see for instance Hastie, Tibshirani and Tibshirani (2017). However, it is well

known that, due to the ordinary least square (OLS) criterion used in the lasso, it is not

robust to outliers. For instance, Alfons et al. (2013) show that the breakdown point of

the lasso is 1/n, that is, only one single outlier can make the lasso estimate completely

unreliable.

Different attempts have been made to solve this problem by mixing variable selection

and outlier detection. A popular idea is to replace the OLS criterion of the lasso by a

loss robust to outliers such as the absolute deviation (Wang, Li and Jiang, 2007), the

least trimmed squares estimator (Alfons et al., 2013) introduced by Rousseeuw and

Leroy (1987) or the Huber’s loss (Dalalyan and Thompson, 2019). Also, to deal with

the specific case of cellwise contamination, that is the presence of outliers in the design

matrix, Öllerer, Alfons and Croux (2016) introduced the shooting S-estimator.

However, none of these approaches considered the use of the pseudo ℓ0 norm as

recently introduced by Bertsimas et al. (2015). In this paper we propose to get robust

estimates by solving these two problems of variable selection and outliers detection to-

gether using pseudo ℓ0 norms for both. Such an approach leads to reformulating the

double robust regression problem as a mixed integer program providing a global so-

lution with convergence guarantee in case of early stopping as well as flexibility and

adaptability. It also allows the use of efficient solvers such as Gurobi, the one used in

our experiments to obtain good results on both synthetic and real data.

Brief Context and Background

Let X = (x1, . . . ,xn)
T be a n× p design matrix and y ∈Rn a response vector. We consider

the following linear model to accommodate outliers:

∀i ∈ {1, . . . ,n}, yi =

{
xT

iβ+ ǫi if observation i is regular

γi if observation i is an outlier to be trimmed,
(1)

where β ∈ R
p is the unknown parameter vector to be estimated, ǫ ∈ R

n is the noise

vector and γ ∈ R
n an intervention vector. A way to model doubtful observations to be

trimmed is to introduce a vector τ ∈ R
n modeling outliers:
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∀i∈{1, . . . ,n}, τi =

{
0 if observation i has to be taken into account

yi− xT

iβ− ǫi if observation i is an outlier to be trimmed,

The model (1) can be rewritten as the following linear model She and Owen (2011):

y = Xβ+ ǫ+ τ . (2)

We are interested in minimizing the norm of the noise vector while selecting kv variables

and removing ko outliers, that is, solving the following optimization problem Chen,

Caramanis and Mannor (2013), for some q ∈ {1,2},

min
β∈Rp,τ∈Rn

1
q
‖Xβ+ τ − y‖q

q

s.t. ‖β‖0 ≤ kv

‖τ‖0 ≤ ko,

(3)

This formulation allows the selection of relevant variables and the avoidance of outliers.

When ko = 0, no outlier detection is performed and this problem boils down to the best

subset selection problem Miller (2002); Bertsimas et al. (2015); Miyashiro and Takano

(2015). When kv = p, no variable selection is performed, the resulting problem is known

as the least trimmed squares regression problem Rousseeuw and Leroy (1987); Giloni

and Padberg (2002). Due to the nature of the cardinality constraints, Problem (3) is a

non-convex optimization problem and has been shown to be NP-hard and considered

as an intractable problem. Mainstream research focused on solving a relaxed version of

Problem (3), by using the ℓ1 norm instead of the ℓ0 norm:

min
β∈Rp,τ∈Rn

1
2
‖Xβ+ τ − y‖2

2

s.t. ‖β‖1 ≤ λ

‖τ‖1 ≤ γ

(4)

where λ and γ are two nonnegative regularization parameters. Problem (4) will be de-

noted by ℓ1-RR. However, this approach is not globally optimal in the sense of (3) since

it will not necessarily provide the same solution provided by (3). We recall that the

lagrangian relaxation of Problem (4) is given by:

min
β∈Rp,τ∈Rn

1
2
‖Xβ+ τ − y‖2

2 +λ||β||1 +γ||τ ||1 (5)

Statistical properties of Problem (5) have been explored in Dalalyan and Thompson

(2019); Nguyen and Tran (2013). To retrieve the global minimum of Problem (3), we

propose to recast Problem (3) as a mixed integer optimization problem (MIO), which

allows the use of efficient solvers to solve it, “Gurobi” for example. The MIO approach

has a computational cost, but two decades of progress enabled its effective practical use

for moderately sized problems. We also present a discrete first order algorithm that pro-
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vides a high quality solution that could be used as a warm start for the MIO algorithm.

In addition, it is useful for high-dimensional data sets since it provides solutions in a

short time.

The remainder of the paper is organized as follows. In Section 2, we present our

approach for variable selection and outliers detection using the ℓ0 together with its for-

mulation as a mixed integer optimization allowing to obtain the global solution. Section

3 introduces a relaxation that provides efficiently a local solution to this problem. This

is followed by Sections 4 and 5 reporting empirical evidence on both synthetic and real

data sets respectively. Finally, the paper is concluded in Section 6.

2 Variable Selection and Outlier Detection as a MIO

We propose to reformulate Problem (3) as a mixed integer (binary) optimization (MIO)

problem by introducing binary variables representing whether or not variables and ob-

servations are useful.

2.1 Introducing Binary Variables

Variable selection involves the ℓ0 norm function to count the number of useful variables.

This counting function can be represented by introducing p binary variables z j ∈ {0,1}
such that

‖β‖0 =
p

∑
j=1

z j and z j = 0⇒β j = 0.

Different approaches can be used to force z j = 0⇔ β j = 0 into an optimization problem,

such as:

1. Replace β j by z jβ j for j = 1, . . . , p.

2. Set |β j|(1− z j) = 0 for j = 1, . . . , p or
p

∑
j=1

|β j|(1− z j) = 0.

3. Use a big-M constraint, |β j| ≤Mvz j for j = 1, . . . , p and for some fixed constant Mv

large enough (such as Mv ≥ max j |β⋆
j |, β⋆

j being the solution of the optimization

problem). In the setup of experimental resuls for synthetic data sets, we explain

how we can set a priori value of Mv.

4. Treat z j = 0⇔ β j = 0 as logical implications (also called indicator constraints

or special ordered set SOS-1). Note that this kind of logical implication can be

efficiently handled in a branch-and-bound procedure for MIO problems.

We now discuss and give a short overview of the advantages and drawbacks of each

approach. The two first approaches involve nonlinear interaction terms between binary

and continuous variables. Their interest lies in the possibility of obtaining interesting
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continuous relaxations. The main advantage of the big-M method (approach 3) is that it

brings only linear inequality constraints, but the value of the M term needs to be chosen

carefully since it shows a great deal of practical influence on the solver performance.

Logical implications (approach 4) have the advantage of avoiding these types of prob-

lems, as they do not rely on a separate constant value. However, they tend to have weaker

relaxations, a condition which may lead to longer solve times in a model. In this paper

we will use the third approach for our implementation since the presented discrete first

order algorithm allows to obtain a good upper bound of M and since the brought linear

inequality constraint do not have a significant influence on the computational time.

Outlier detection also involves the ℓ0 norm function to count the number of outliers.

As done above, this counting function can be represented by introducing n binary vari-

ables ti ∈ {0,1} such as

‖τ‖0 =
n

∑
i=1

ti and ti = 0⇒ τi = 0, (xi,yi) is not an outlier.

2.2 A MIO Formulation

Introducing binary variables for both variables and outliers with two big-M constraints,

given appropriate parameters kv,ko,Mv and Mo, Problem (3) becomes for some q ∈
{1,2}:

min
β∈Rp,τ∈Rn,z∈{0,1}p ,t∈{0,1}n

1
q
‖Xβ+ τ − y‖q

q

s.t.
p

∑
j=1

z j ≤ kv and |β j| ≤ z jMv, j = 1, . . . , p

n

∑
i=1

ti ≤ ko and |τi| ≤ tiMo i = 1, . . . ,n.

(6)

This problem turns out to be a mixed binary quadratic program when q = 2, it will be

denoted by ℓ0-RR and it will be used in the rest of the paper. However, we will introduce

other formulations that could also be efficient without using these formulations in the

experiments.

2.3 Convergence to the Global Optimum

Figure (1) shows the influence of the SNR value on the speed of convergence. In fact,

we consider a synthetic data set without adding outliers. When ko = 5%, the time needed

to certify the optimality decreased from 120 seconds for SNR = 0.5 to 52 seconds for

SNR = 5. In addition, after three hours of computation and when ko = 10%, the MIO-

Gap decreased from 0.2 (SNR = 0.5) to 0.1 (SNR = 5).
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Figure 1: The typical evolution of the MIO formulation (6) for a synthetic dataset with n = 150, p = 15,s =
5. The top and the bottom panels show the evolution of the corresponding MIO gap with time. The red line

is the y = 0 reference line.

In Figure (2) we shed light on the importance of estimating the true percentage of

outliers in the data set (10% in our case). When we set ko as the true percentage of

outliers (right panel), the optimality was certified in about three minutes. But when the

true percentage of outliers is underestimated (ko = 2.5%), the MIO-Gap was still about

0.2 even after 3 hours. Note that when we overestimate the percentage of outliers (ko =

15% for example) we observe slow convergence as we did when underestimating it.

In summary, the convergence rate depends on many factors:

• the size of the data set: smaller data leads to faster convergence to optimality,

• the estimation of the parameters kv and ko: better estimation of the number of rele-

vant features and of the percentage of outliers increases the speed of convergence

to optimality,

• the noise in the data (SNR): more time is needed to certify optimality for lower

SNR values.
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Figure 2: The typical evolution of the MIO formulation (6) for a synthetic dataset with n= 500, p= 100,s =
5. The left and the right panels show the evolution of the corresponding MIO gap with time. The red line is

the y = 0 reference line.

3 Proximal Alternating Linearized Minimization Algorithm

In this section, an efficient alternate projected gradient algorithm providing a local so-

lution to the optimization Problem (3) is introduced. This algorithm will be used as a

warm-start procedure for the MIO solver as well as an optimization algorithm itself

since it could provide high quality solutions in a short time. Before entering into the

details of the alternate projected gradient algorithm, it is appropriate to introduce the

problem of finding the projection of a vector u ∈R
p onto the set of k≤ p sparse vectors

min
v∈Rp

1
2
‖v−u‖2

s.t. ‖v‖0 ≤ k.
(7)

This problem is easy and its solution v⋆ is given by sorting on the absolute value of

vector |u|, that is by a sequence of indices ( j) such that |u(1)| ≥ |u(2)| ≥ . . . |u( j)| ≥ · · · ≥
|u(p)|. Using these indices, the projection v⋆ = Pk(u) of u is the vector u itself with its

smallest coefficients set to 0 that is

v⋆ = Pk(u) =

{
u j if j ∈ {(1), . . . ,(k)}
0 else.

(8)

We propose to use this projection mechanism, on both β and τ , to get a solution to the

initial Problem (3) at a low computing cost.
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A possible way to achieve this goal consists of using the so-called block Gauss-

Seidel iteration scheme on variables β and τ , also known as alternating minimization.

To this end, a sequence
{
(βℓ,τ ℓ)

}
ℓ∈N is generated starting from some (β0,τ 0) using the

following scheme:





βℓ+1 = argmin
β∈Rp

(β−βℓ)TXT(Xβℓ+τ ℓ−y)

s.t. ‖β‖0 ≤ kv

‖β−βℓ‖2 ≤ dv





τ ℓ+1 = argmin
τ∈Rn

(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)

s.t. ‖τ‖0 ≤ ko

‖τ −τ ℓ‖2 ≤ do.

(9)





1
2‖Xβ+τ ℓ−y‖2 ≤ 1

2
‖Xβℓ+τ ℓ−y‖2 +(β−βℓ)TXT(Xβℓ+τ ℓ−y)+

1

2ρv
‖β−βℓ‖2

1
2‖Xβℓ+1 +τ −y‖2 ≤ 1

2
‖Xβℓ+1 +τ ℓ−y‖2 +(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)+

1

2ρo
‖τ −τ ℓ‖2.

(10)

Where dv and do are two given positive parameters that can be changed each step. The

idea of the proximal method is, at each iteration, to minimize a regularized first-order

approximation of the cost that can be interpreted as a local trust region mechanism (for

details see for instance Parikh and Boyd, 2014). This surrogate loss is also a local upper

bound of the targeted loss since, for well chosen ρv and ρo, the Lagrange multipliers

associated with the trust region constraints





1
2‖Xβ+τ ℓ−y‖2 ≤ 1

2
‖Xβℓ+τ ℓ−y‖2 +(β−βℓ)TXT(Xβℓ+τ ℓ−y)+

1

2ρv
‖β−βℓ‖2

1
2‖Xβℓ+1 +τ −y‖2 ≤ 1

2
‖Xβℓ+1 +τ ℓ−y‖2 +(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)+

1

2ρo
‖τ −τ ℓ‖2.

(11)

For each iteration, this method introduced by Bolte, Sabach and Teboulle (2014) and

called the proximal alternating linearized minimization (PALM) algorithm, consists of

minimizing the upper bounds as follows:





βℓ+1 = argmin
β∈Rp,‖β‖0≤kv

(β−βℓ)T
X

T(Xβℓ+ τ ℓ− y)+
1

2ρv

‖β−βℓ‖2

τ ℓ+1 = argmin
τ∈Rn,‖τ‖0≤ko

(τ − τ ℓ)T(Xβℓ+1 + τ ℓ− y)+
1

2ρo

‖τ − τ ℓ‖2.
(12)

That is, after some algebra,





βℓ+1 = argmin
β∈Rp,‖β‖0≤kv

1
2
‖β−βℓ+ρvX

T(Xβℓ+ τ ℓ− y)‖2

τ ℓ+1 = argmin
τ∈Rn,‖τ‖0≤ko

1
2
‖τ − τ ℓ+ρo(Xβℓ+1 + τ ℓ− y)‖2.

(13)

These two minimization problems are of the same kind as Problem (7) and thus the

sequence can be generated by using two ℓ0 projected gradient, that is:

{
βℓ+1 = Pkv

(
βℓ−ρvX

T(Xβℓ+ τ ℓ− y)
)

τ ℓ+1 = Pko

(
τ ℓ−ρo(Xβℓ+1 + τ ℓ− y)

)
.

(14)
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Algorithm 1 presents the pseudo code of the PALM algorithm.

Algorithm 1: Proximal alternating linearized minimization (PALM) Bolte et al. (2014)

Data: X ,y initialization β,τ = 0

Result: β,τ
set ρv ≤ 1

σ2
M

and ρo ≤ 1

while it has not converged (||βn+1−βn||2 > 10−6) do

d← β−ρvX⊤(Xβ+ τ − y) variable selection

β← Pkv(d)

δ← τ −ρo(Xβ+ τ − y) eliminating outliers

τ ← Pko(δ)

This algorithm converges towards a local minima of Problem (3) since it fulfills

the assumptions needed for Theorem 3.1 in Bolte et al. (2014). Indeed, if we con-

sider G(β,τ) = 1
2
||Xβ + τ − y||22, PALM converges if the partial gradients Gβ(β) =

X⊤(Xβ+ τ − y) and Gτ (τ) = (Xβ+ τ − y) are globally Lipschitz with modules L1 and

L2 respectively. It could be easily shown that Gβ(β) and Gτ (τ) are 1

σ2
M

and 1 Lipschitz

respectively, σM being the largest singular value of X . Thus the step sizes could be cho-

sen such that ρv ≤ 1

σ2
M

and ρo ≤ 1 as proved in Bolte et al. (2014).

4 Results for Synthetic Data Sets

In this section we show the empirical performance of the MIO approach.

4.1 Setup

In Hastie et al. (2017), a follow-up paper to Bertsimas et al. (2015), the authors provide

a synthetic setup considering a wide range of SNR values. We use it here to compare

the best subset selection (Formulation (6) with ko = 0), the lasso, PALM, the ℓ0 robust

regression - ℓ0 RR and the ℓ1 robust regression - ℓ1 RR. The same notations as Hastie

et al. (2017) were used, namely n, p (problem dimensions), s (sparsity level), beta-type

(pattern of sparsity), ρ (predictor auto-correlation level) which controls correlations be-

tween predictor variables, and ν (SNR level).

• We define coefficients β0 ∈ R
p according to s and the beta-type, as described be-

low.

• We draw the rows of the matrix X ∈ R
n×p from Np(0,Σ), where Σ ∈ R

p×p has

entry (i, j) equal to ρ|i− j|, and ρ= 0.35.
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• We draw the vector y ∈Rn from Nn(Xβ0,σ
2I), with σ2 defined to meet the desired

SNR level, i.e., σ2 = βT
0 Σβ0/ν.

• We use 5-fold cross-validation and the tuning was performed by minimizing pre-

diction error on the test set.

• To assess the influence of outliers, 5% of outliers were added to the data set by

following a normal N(50,σ) instead of N(0,σ).

• We considered two configurations: the low setting with n = 150, p = 15, and the

medium setting n = 500, p = 100. For each configuration, we also considered two

settings: the first one with outliers generated as mentioned above, and the second

one without adding outliers.

• The lasso was tuned over 100 values of λ (as it is in glmnet).

• In order to determine the values of kv, Mv, ko and Mo, we run the PALM algorithm

for kv ranging from 1 to p and for ko ranging from 0 to 10% with a step size of

2.5%. Then, we choose the solution with the minimal error ||Xtestβpalm− ytest ||22.

• Mv = (1+α)||βpalm||∞, Mo = (1+α)||τpalm||∞ with α = 0.1, kv and ko are set as

the number of nonzero elements in the solutions βpalm and τpalm respectively.

• The ℓ1 robust regression (ℓ1 RR) algorithm was tuned over five values of λ from

zero to 1.5||βlasso||∞ where βlasso is the solution obtained by the lasso method,

and over fifty one values of γ from 0 to 5000 with a step size of 100 for the low

dimensional case, and from 0 to 10000 with a step size of 200 for the medium

dimensional case.

• We run the best subset selection, the lasso, PALM, the ℓ0 robust regression (ℓ0 RR)

the ℓ1 robust regression (ℓ1 RR) using a 5-fold cross-validation. The tuning was

performed by minimizing the error on the test set.

• We repeat 10 times for the low dimensional setting and 5 times for the medium

dimensional setting and average the results.

Coefficients: We considered three settings for the coefficients β0 ∈ R
p as in Hastie

et al. (2017):

• beta-type 1: β0 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ,0︸ ︷︷ ︸
p−10 times

);

• beta-type 2: β0 has its first 5 components equal to 1, and the rest equal to 0;

• beta-type 5: β0 has its first 5 components equal to 1, and the rest decaying expo-

nentially to 0, specifically, β0i = 0.5i−s, for i = s+1 . . . p, where s = 5;

Following Bertsimas et al. (2015); Hastie et al. (2017), we use, as an accuracy metric,

the relative risk (R.R) defined by:

R.R(β̂) =
E(xT

0 β̂− xT
0 β0)

2

E(xT
0 β0)2

=
(β̂−β0)

T Σ(β̂−β0)

βT
0 Σβ0

,
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The best score is 0 (when β̂ = β0) and the null score is 1, obtained when β̂ = 0.

We also use the proportion of variance explained (PVE) defined by:

PVE(β̂) = 1− E(y0− xT
0 β̂)

2

Var(y0)
= 1− (β̂−β0)

T Σ(β̂−β0)+σ2

βT
0 Σβ0 +σ2

.

The maximum value for the PVE, also called the perfect score, is SNR/(SNR+1) (see

Hastie et al. (2017) for details).

4.2 Computational Costs

For the lasso, we used the Matlab “lasso” function with 100 values of λ as implemented

in glmnet. The solution is delivered in a very short time. For the best subset selection

problem, we implemented the method using the MIO Formulation (6) with ko = 0, used

PALM to compute a warm start and then call Gurobi through its Matlab interface. We

used a time limit of 3 minutes for Gurobi to optimize the best subset selection problem

for both low and medium dimensional case. The same procedure is followed for the ℓ0

robust regression problem but with a time limit increased to 10 minutes for the medium

dimensional setting.

For the ℓ1 robust regression, we obtained 5×51 = 255 ( 5 values of λ and 51 values

of γ) solutions for each test. The time needed to obtain each solution depends on the

size of the dataset, but it varies from 0.16 second to about 1 second.

We can conclude that for low dimensional setting, we faced around 15 hours of com-

putation (10 repetitions), and more than 45 hours for the medium dimensional setting

(5 repetitions) for each type of β. Using only one cross-validation loop would decrease

significantly the computational time of the experiments. We note that the computations

were carried on in a windows 10 64-bit server - Intel(R) Core(TM) i7-4700MQ CPU @

2.40 GHz and 8 GB of Ram. So using a more powerful machine would help to decrease

the computational cost.

4.3 Results

Figures (3)-(8) plot the relative risk (left panel) and the proportion of variance explained

(right panel) as functions of signal-to-noise ratio (SNR). The results can be divided into

two main categories:

4.3.1 No Outliers

In this case, no outliers were added to the synthetic data sets generated as mentioned

before. Figures (3), (4), (5), (6), (7) and (8) show that for small SNR values, the ℓ1

methods (lasso and ℓ1 RR) have the lead on the other methods (best subset selection,

PALM and ℓ0 RR). While for high SNR values the ℓ0 approaches outperform the ℓ1
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approaches even though all the methods perform quite similarly for high SNR values.

These results shed the light on the capability of the MIO approach to perform well when

no outliers exist in the data set.

4.3.2 Presence of Outliers

In this case, Figures (3), (4), (5), (6), (7) and (8) show that PALM, ℓ0 RR and ℓ1 RR

outperform the best subset selection and the lasso, which is not surprising since the last

two methods are not robust to outliers. The obtained results ensure that adding the vari-

able τ helped to improve the performance of the estimators and guaranteed obtaining

robust methods. In addition, for SNR < 0.25 the ℓ1 RR performs, in general, better than

PALM and the ℓ0 RR. But for higher SNR values, there is no clear winner. An important

caveat to emphasize up front is that the Gurobi MIO algorithm for ℓ0 RR was given only
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Figure 3: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 1 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).
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Figure 4: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 2 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).

10 minutes per problem, which may have caused the ℓ0 RR to underperform, and that

the performance of the MIO algorithm depends on the parameters tuned using PALM.

4.4 Detection Rate for the Feature Selection and Outlier Detection Tasks

To determine whether the ℓ0 robust regression approach can detect the outliers and select

the right features, we generated two low-dimensional and two medium-dimensional data

sets using the β type-2, with SNR values 0.5 and 5. We added 5% of outliers in the

response vector (as in the setup of the synthetic data sets). kv and ko were set as the true

sparsity level of β and as the percentage of outliers (5%). In all cases, the detection rate

of both outliers and features was 100%, noting that no cross-validation was performed.
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Figure 5: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 5 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).

In the experiments performed on both real and data sets, we used PALM to tune the

parameters kv and ko. Thus the performance of the MIO approach depends on PALM.

To this end, each data set was split into two parts: the training set (70%) and the testing

set (30%). We added 5% of outliers in the training set’s response vector. PALM was per-

formed for kv ∈ [1, . . . , p] and ko
n
∈ [0,0.025,0.05,0.075,0.1]. PALM failed to estimate

the true sparsity level and the true percentage of outliers as seen in Figures (9) and (10).

This leads the PALM-MIO approach to fail at detecting the percentage of outliers and

selecting the correct number of relevant features, even though all the true outliers were

considered as outliers by this approach.
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Figure 6: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 1 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).

5 Real Data Sets

The performances of all methods have been compared on real data sets. To this end we

have used 7 data sets presented in Table 1. The different methods have been compared

on all these data sets according to the following setup:

• The response vector y and the columns of the matrix X have been standardized to

have zero mean and unit standard deviation;

• Two 5-fold cross-validation loops have been implemented. The inner one has been

used to give a relevant choice for the hyper-parameters. The outer one has been

used to estimate the average mean squared error MSE;
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Figure 7: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 2 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).

• As for synthetic data sets, we run PALM for kv ranging from 1 to p, and ko ranging

from 0 to 10% with a step seize of 2.5%, and pick the solution with smallest cross-

validation error. This obtained solution is used to set the values of Mv and Mo and

as a warm start for the ℓ0 robust regression algorithm as well;

• The hyper-parameter λ of the lasso was tuned over 100 values as per the default in

glmnet;

• The ℓ1 robust regression algorithm was tuned over 5 values of λ (as for the syn-

thetic data sets) and over 40 values of γ varying from 0 to 2000 with a step size

of 50. We remarked that, for the normalized and standardized data set considered,

it’s enough to bound ||τ ||1 by 2000;

• Outliers were generated by replacing 5% of the response vector values yi by yi +

2(max(y)−min(y)) that is a constant value set to the range of the response variable

in the training set;
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Figure 8: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 5 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).
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Figure 10: Percentage of outliers over estimation by PALM. The percentage of outliers in the data set is

5%.

Each experiment is repeated 3 times. Tables 2 and 3 report the average of the results

and the standard deviation in parentheses for the raw data.

Table 1: Periods and sites extracted from clear archaeological contexts with radiocarbon determinations.

Name of the dataset number of instances n number of attributes p Origin

Body Fat 252 15 lib.stat.cmu.edu

Concrete Compressive Strength 1030 9 UCI

Concrete Slump Test 103 10 UCI

Real Estate Valuation 414 7 UCI

Diabetes 442 10 stat.ncsu.edu

Boston Housing 489 3 Web1

Auto Mpg 398 8 UCI

Table 2: Cross-validation MSE rates (standard deviations) of the best subset, lasso, PALM, ℓ0 robust re-

gression (ℓ0 RR) and ℓ1 robust regression (ℓ1 RR) on 7 real datasets.

Best subset Lasso Palm ℓ0 RR ℓ1 RR

Body Fat 2.2797 (7.2e−5) 4.2644 (1.5e−4) 2.5958 (5.2e−5) 2.6270 (4.77e−5) 4.5008 (6.2e−5)

Concrete Compressive Strength 0.3588 (0.018) 0.3602 (0.019) 0.3692 (4.2e−4) 0.3693 (3.5e−4) 0.3603 (0.015)

Slump Test 0.0880 (0.008) 0.0863 (0.012) 0.0864 (0.011) 0.0880 (0.008) 0.0869 (0.010)

Real Estate Valuation 0.2994 (0.024) 0.2924 (0.036) 0.3010 (0.026) 0.2992 (0.026) 0.2950 (0.033)

Diabetes 0.3917 (0.037) 0.3914 (0.038) 0.3889 (0.028) 0.3888(0.038) 0.3952 (0.039)

Boston Housing 0.2460 (0.007) 0.2460 (0.007) 0.2446 (0.008) 0.2440 (0.009) 0.2448 (0.006)

Auto Mpg 0.1469 (0.002) 0.1458 (0.005) 0.1523 (0.007) 0.1516 (0.007) 0.1478 (0.008)

An important caveat to emphasize upfront is that the ℓ0 robust regression algorithm

was given 10 minutes time limit per problem instance per subset size. This practical

restriction may have caused this algorithm to underperform in some cases. For the best

subset selection problem, the time limit was set to 2 minutes. We note that the optimality

was certified for almost every case in less than two minutes. In the absence of outliers,

results in Table 2 show that there is no clear winner. It is remarkable that all methods

lib.stat.cmu.edu
stat.ncsu.edu
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performed quite similarly, with a little advantage of using the lasso. In the presence of

outliers, results in Table 3 show the dominance of the robust regression algorithms used

over the best subset selection and the lasso. The ℓ0 robust regression performed better

than the other methods.

Table 3: Cross-validation MSE rates (standard deviations) of the best subset, lasso, PALM, ℓ0 robust re-

gression (ℓ0 RR) and ℓ1 robust regression (ℓ1 RR) on 7 real datasets corrupted by 5% of outliers in the

initial response vector y.

Best subset Lasso Palm ℓ0 RR ℓ1 RR

Body Fat 0.3923 (0.023) 0.4039 (0.034) 0.3679 (0.024) 0.3764 (0.009) 0.3882 (0.023)

Concrete compressive strength 0.5891 (0.063) 0.5877 (0.059) 0.5843 (0.070) 0.5842 (0.071) 0.5857 (0.755)

Slump test 0.2749 (0.186) 0.2463 (0.128) 0.1110 (0.022) 0.0958 (0.012) 0.1039 (0.018)

Real estate valuation 0.6581 (0.131) 0.6680 (0.146) 0.6587 (0.137) 0.6580 (0.138) 0.6688 (0.147)

Diabetes 0.5087 (0.015) 0.5002 (0.011) 0.5012 (0.009) 0.5009 (0.011) 0.4923 (0.014)

Boston housing 0.5408 (0.240) 0.5293 (0.231) 0.5425 (0.241) 0.5441 (0.241) 0.5235 (0.225)

Auto mpg 0.5498 (0.139) 0.5596 (0.128) 0.5406 (0.160) 0.5406 (0.160) 0.5370 (0.163)

6 Conclusion

In this paper we propose a method for linear regression which solves the underlying

optimization problem that handles both variable selection and outlier detection. We for-

mulate the problem as a mixed-integer optimization problem and present a fast alternat-

ing minimization algorithm to find local minima. Furthermore, we present an empirical

comparison between this method and its ℓ1 relaxation on both synthetic and real data.

We have found that neither the ℓ0 norm problem nor its ℓ1 relaxation dominates the other.

Our recommendation is to use the ℓ0 norm problem for large SNR while ℓ1 relaxation

is preferred when SNR is small. While the ℓ0 approach is considered to be intractable,

especially, for high dimensional regimes, one can propose to use screening rules helping

in accelerating the solvers. Moreover, we have shown that if the true number of features

and percentage of outliers are well estimated, the speed of convergence to the global

minimum decreases significantly. Dealing with data sets of high dimensionality is the

main limitation of the proposed MIO approach because of the high computational cost.

However, we suggest to use the PALM algorithm in the high-dimensional case since it

provides high quality solutions in a short time.
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discrete data
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Abstract

This paper proposes a generalized framework to analyze spatial count data under a unilateral

regular lattice structure based on thinning type models. We start from the simple spatial integer-

valued auto-regressive model of order 1. We extend this model in certain directions. First, we

consider various distributions as choices for the innovation distribution to allow for additional

overdispersion. Second, we allow for use of covariate information, leading to a non-stationary

model. Finally, we derive and use other models related to this simple one by considering simplifi-

cation on the existing model. Inference is based on conditional maximum likelihood approach. We

provide simulation results under different scenarios to understand the behaviour of the conditional

maximum likelihood. A real data application is also provided. Remarks on how the results extend

to other families of models are also given.
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1 Introduction

Problems with spatial count data occur in several disciplines. For example, consider the

Human West Nile virus counts spread (Tevie, Bohara and Valdez, 2014), the infant death

syndrome for the counties in North Carolina (Cressie and Chan, 1989), the number of

vehicle burglary incidents in counties of Texas (Chun, 2014) and most recently, the cases

and/or deaths of COVID-19 outbreak.

Spatial data usually viewed as an aggregation or average of the events of interest

emanates from a lattice structure. There are two main broad ways of representing the

spatial observations (Cressie, 1993). The first, and most common way, is when the ob-

1 Department of Economics and Statistics, University of Mauritius, Mauritius.
2 Department of Statistics, Athens University of Economics and Business, Greece.
3 Department of Mathematics, University of Mauritius, Mauritius.

Received: December 2020

Accepted: April 2021



68 Spatial models for discrete data

servation is in the form of a single indexed variable obtained from an areal unit k within

some defined boundaries and in which case the spatial event is denoted as Yk, for the kth

areal unit. In the second way, the spatial count observation is indexed in two dimensional

forms, in terms of the location or site coordinate (or also termed as the latitude and

longitude position (i, j)), denoted as Yi j, situated over a regular or irregular grid. Under

both representations, the spatial count observation is supplemented by a neighbourhood

structure, defined by terms of areal units or sites within the lattice structure. The second

form of representation is useful since the two-dimensional representation considers all

border cells in the region of interest (see, e.g. Tjøstheim, 1978a; Basu and Reinsel,

1993). Details on these representations can be found in Cressie (1993, Chap 6).

In the analysis of spatial data, it is important to investigate the spatial dependence

between observations from the different neighbouring areal units or sites. Next, such

analysis can also shed light on the possible factors or effects influencing the spatial ob-

servations and these can include variables such as the distance metric, elevation, slope,

rock type and land use fault types (see, e.g. Tobler, 1969).

Several models have been studied in the literature to analyze spatial processes. The

majority of the literature treats spatial continuous or discrete processes involving areal

units, while only few papers consider the spatial data with a coordinate system, espe-

cially for the discrete case. Besides, such spatial observations are seen mostly in the

agricultural, disease mapping, environmental and in the field of criminology. Specifi-

cally, in agriculture, the plantation field is usually split into small areas or say, square

grids or cells with location (i, j) and wherein each cell, the investigator is interested on

the number of plants cultivated subject to factors influencing its cultivation (see Krui-

jer et al. (2007) and references therein) and along with how the plants in the different

neighbouring cells impact on the harvest in the (i, j)th position. Similarly in epidemiol-

ogy, researchers are often concerned on the factors influencing the number of infected

or death cases as a result of an outbreak of a virus in a region and how this is affecting

the number of cases in the neighbouring regions. Such data has been treated in Cressie

and Chan (1989), Wakefield (2007) while some more examples can be found in Law-

son et al. (1999) and Lawson and Williams (2001). Moreover, in environmental field,

the occurrences of road traffic accidents at different segments also illustrate spatial data

analysis. In fact, in a hotspot analysis conducted in Barcelona, it was shown, via the

local Moran statistics, that road accidents are concentrated in close neighbouring ar-

eas that have a complex road network systems with large roundabouts (Alvarez, 2020).

Some other related research include the works by Valverde and Jovanis (2008) and Sa-

tria and Castro (2016). Last but not least, Mburu and Bakillah (2016) reported on the

number of vehicle burglary incidents in small neighbouring regions of London which

were highly spatially autocorrelated. Their study also revealed several influential factors

such as unemployment and crimes in these areas of London.

Unsurprisingly, there is influx of models for the areal-type spatial data that include

mainly the class of conditional autoregressive (CAR) models (Besag, 1974) and its ex-

tensions to Intrinsic CAR (ICAR) (Besag and Kooperberg, 1995), the Besag-Yorke-
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Mollie (BYM) (Besag, Mollié and York, 1991) models and among several other ex-

tended CAR-based models; a review can be found in Obaromi (2019).

In fact, for the regular lattice data of discrete nature that are represented in terms

of the site coordinates, the only works appearing in the literature so far use the spatial

integer-valued auto-regressive model of order 1 (SINAR(1)) by Ghodsi, Shitan and Bak-

ouch (2012) and Ghodsi (2015). The model was constructed by introducing dependence

between the observation of interest with its unilateral spatial neighbouring observations

via the binomial thinning operator defined by Steutel and Harn (1979). The structure is

similar to the observation-driven integer-valued time series models defined in McKenzie

(1986). Properties of the model including asymptotic properties of the CML estimators

were thereon established and the spatial process was proven to be stationary and ergodic.

In the present paper we extend the model in certain directions. Firstly, we introduce

different distributions for the innovations to enlarge the model and allow for larger vari-

ance, usually observed in spatial data due to clustering effects. Secondly, we allow for

further spatial information to be used in the form of covariates that affect the model,

leading to a non-stationary model. For this new model we discuss inference based on

the CML. Moreover we discuss and apply some models related to the basic one that are

parsimonious and easier to interpret, while they allow for easier extension to a broader

family of models. Throughout the paper, some computational issues arising are also

discussed.

The remaining of the paper proceeds as follows: The basic model and its extensions

are described in Section 2. Simulations to further support the approach are provided in

Section 3. A real data application related to the new models is provided in Section 4.

Extensions of the current model and concluding remarks can be found in Section 5.

2 Generalised SINAR(1) model (GSINAR(1))

We consider spatial processes defined on a regular rectangular grid in two dimensions

with sites labelled (i, j), with an associated random variable Yi j defined at each site. Ex-

amples of such phenomena include data collected on a regular grid of size n1 ×n2 from

satellites and from agricultural field trials. The unilateral model (see, e.g. Tjøstheim,

1978b, 1983; Basu and Reinsel, 1993) defines the neighbouring sites that provide infor-

mation for the site (i, j), namely we denote as Si j the set of indices (k, ℓ) of sites that are

considered as neighbours of the site (i, j) and we define this as

Si j = {(k, ℓ) ∈ Z2 : k ≤ i, ℓ≤ j}−{(i, j)}.

Tjøstheim (1983) described the model of order (p1, p2) for continuous data as:

Yi j =
p1

∑
k=0

p2

∑
ℓ=0

φkℓYi−k, j−ℓ+ ǫi j,
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Yi−1, j−1 Yi−1, j Yi−1, j+1

Yi, j−1 Yi, j Yi, j+1

Yi+1, j−1 Yi+1, j Yi+1, j+1

Figure 1: A diagram representing the unilateral model. The arrows indicate which site influence the site
under consideration. Only sites located at the left and upper from the site into consideration influence the
site.

where φ00 = 0 and the errors ǫi j follow a N(0,σ2) distribution. The model of order

p1 = p2 = 1 is described in Basu and Reinsel (1993). In the present paper we restrict

our interest on this spatial structure, i.e. only of order 1. The assumed structure can be

seen in Figure 1. One can see that for each point, only three neighbouring points coming

from the upper left direction affect the point, implying a restricted spatial structure. In

other words the spatial effect is propagated from left to the right and from top to the

bottom only.

2.1 The stationary model

Ghodsi et al. (2012) extended the model for count data. Hence, they defined that the

spatial observation located at site coordinate (i, j) follows an auto-regressive equation

of the form:

Yi j = α1 ◦Yi−1, j +α2 ◦Yi, j−1 +α3 ◦Yi−1, j−1 + ǫi j, (1)

where i = 1, . . . ,n1, j = 1, . . . ,n2.

The dependence of Yi j on its neighbours as defined by set Si j is handled in equation

(1) through the binomial thinning operator “◦ ”. The binomial thinning mechanism em-

anates from the work of Steutel and Harn (1979) (see also Scotto, Weiß and Gouveia,

2015) for a summary of such operators) and is expressed as:

α◦Y =
Y

∑
s=1

Bs(α), (2)

where α ∈ [0,1], and Bs(α), s = 1, . . . ,Y are identically and independently distributed

Bernoulli r.v with P(Bs(α) = 1) = 1−P(Bs(α) = 0) = α. In parsimony, we impose the

assumption of independent thinning operator (Du and Li, 1991; Bu, McCabe and Hadri,

2006). In (1), {ǫi j}i=1,...,n1, j=1,...,n2
represents the corresponding innovation sequence of

independent non-negative integer-valued random variables with finite mean λǫ and finite

variance τ 2
ǫ and has a distributional form as Pǫi j

(·). Furthermore, at any position (i, j),

ǫi j is assumed to be independent of all Yi−k, j−ℓ. In this simple form, the model in (1) is

stationary if
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α1 +α2 +α3 < 1. (3)

Properties of this SINAR(1) model as well as estimation can be found in Ghodsi et al.

(2012) and Ghodsi (2015). The process in equation (1) is proven to be ergodic in Ghodsi

(2015) and Markovian in Pickard (1980).

2.2 The non-stationary model

Here, we extend the model to the non-stationary case by allowing site specific covariates

to influence the mean of the innovation process. We denote the mean and variance of the

innovation term as λi j and τ 2
ǫi j

respectively. We further consider λi j as a function of some

position-variant and invariant covariates i.e. λi j = f (xT

i jβββ) with xi j = [xi j1, . . . ,xi jp]
T and

regression coefficients βββ = [βββ0, . . . ,βββ p]
T. Note that a log function is a standard choice

for such cases leading to

logλi j = x
T

i jβββ.

We name this model as Generalized SINAR of order 1 (GSINAR(1)).

From the following binomial thinning properties,

E(α◦Y) = αE(Y )

V (α◦Y) = α(1−α)E(Y)+α2V (Y )

Cov(α1 ◦Y1,α2 ◦Y2) = α1α2Cov(Y1,Y2),α j ∈ (0,1), j = 1,2

and then we get the unconditional expectation of Yi j to be

E(Yi j) = µi j = α1µi−1, j +α2µi, j−1 +α3µi−1, j−1 +λi j. (4)

For the variance we get

V (Yi j) = σ2
i j = α1(1−α1)µi−1, j +α2

1σ
2
i−1, j

+α2(1−α2)µi−1, j +α2
2σ

2
i, j−1

+α3(1−α3)µi−1, j−1 +α2
3σ

2
i−1, j−1

+2α1α2Cov(Yi−1, j,Yi, j−1)

+2α1α3Cov(Yi−1, j,Yi−1, j−1)

+2α2α3Cov(Yi, j−1,Yi−1, j−1)+ τ 2
ǫi j
.

(5)

By letting γ(k, ℓ) = Cov(Yi−k, j−ℓ,Yi j), we obtain a difference equation of the form:

γ(k, ℓ) = α1γ(k−1, ℓ)+α2γ(k, ℓ−1)+α3γ(k−1, ℓ−1). (6)
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Closed form expressions for the above moments are difficult to obtain under non-statio-

nary conditions. Whilst, unless assuming weak-stationarity, that is, ǫi j has constant mean

λǫ and variance τ 2
ǫ , we obtain simple expression for the mean and variance with the

covariances obtained by solving the difference equation γ(k, ℓ) using the approach in

Basu and Reinsel (1993). However, the derivation of the covariance structure in equation

(6) is not required in the estimation of the model parameters when using the conditional

maximum likelihood equation illustrated as follows. Conditional on the neighbourhood

Si j, the probability mass function for the GSINAR(1) model is given by:

P(Yi j|Si j) = ∑R1
s1=0 ∑R2

s2=0 ∑R3
s3=0 pα1

(s1|Yi−1, j)pα2
(s2|Yi, j−1)pα3

(s3|Yi−1, j−1)

Pǫi j
(Yi j − s1 − s2 − s3),

(7)

where R1 = min{Yi−1, j,Yi j}, R2 = min{Yi, j−1,Yi j − s1} and R3 = min{Yi−1, j−1,Yi j − s1−
−s2} and pα(s|Y ) =

(
Y
s

)
αs(1−α)Y−s; s = 0,1, . . . ,Y , i.e. the probability mass function

of a binomial distribution. In the present paper we have considered different choices

for Pǫi j
(·). The standard assumption of a Poisson distribution limits the variability we

expect in the data (see Appendix). A natural improvement is to consider mixed Poisson

alternatives. We consider the negative binomial, Poisson-Inverse Gaussian as well as

the Poisson-Lindley in order to allow for quite different effects. Also, we consider the

COM-Poisson distribution in order to allow for a general model which accounts for

underdispersion if we need so. We postpone the details until section 3.

Therefore, the log conditional maximum likelihood (CML) equation is then given by:

ℓ(θθθ) = logL(θθθ) =
n1

∑
i=2

n2

∑
j=2

logP(Yi j|Si j), (8)

where θθθ = [α1,α2,α3,βββ,ν], ν refers to the dispersion parameter of the innovation dis-

tribution if it exists and βββ is the vector of regression coefficients for the mean of the

innovation. It can be seen in (Ghodsi, 2015) that

θ̂− θ ∼ N(0, I−1(θ)),

where I(θ) is the Hessian matrix. The CML equation in (8) is then maximized.

Some computational details are the following. We have used the optim function in

R. Note that the conditional distribution needs to derive the convolution of three binomi-

als plus the distribution of the innovation term. This can be computationally intensive.

We have reduced the computational burden by observing that the probabilities of the

binomial distribution are just the coefficients of a polynomial of order N where N is the

number of trials in the binomial. As such computing the convolution of two binomial

is equivalent to multiply two polynomials for which there are very fast procedures, like

those in the library pracma in R. This reduced the computational effort and improved

with respect to the errors produces by huge finite summations. Overall, maximization of

(8) was rather simple even for complicated innovation distributions.
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2.3 Related models

The general model in (1) has three parameters to introduce the spatial correlation, namely

α1, α2 and α3 that described the vertical, horizontal and diagonal dependence respec-

tively. One may eliminate some of the effects by setting the corresponding α parameter

equal to 0. For example setting α3 = 0 we assume no-upper diagonal effect, while set-

ting α2 = 0 we assume no horizontal effect. Such submodels can be very useful in order

to examine and interpret the underlying situation for a dataset. For example, we may test

and recognize which effect the vertical or horizontal is more important.

Another way to simplify the model is by assuming one common effect using the

same parameter α for all directional relationships. Such a model takes the following

form due to the properties of thinning operators:

Yi j = α◦ ∑
(k,ℓ)∈Si j

Yk,ℓ+ ǫi j. (9)

The model assumes that all neighbouring sites contribute the same to the structure. Such

a model resembles simple INAR(1) time series models. It has the advantage of having

less parameters to estimate and explain; all neighbours contribute the same. On the other

hand, this may be restrictive since the spatial effects may differ due to direction and thus

the model may fail to capture them correctly.

Model (9) allows for easy extensions to a general neighbouring structure. It is evi-

dent that by considering the set Si j defining the neighbouring sites, this model can be

generalized to a large extend including the non-regular lattice case which is more real-

istic in many applications. The model just assumes that all neighbours contribute to the

observation at hand. Properties of such models as well as estimation is straightforward

based on the results of the current section.

Finally, in the present paper we assume that the covariates enter in the model by

the mean of the innovations. One may consider that spatial correlation parameters α j

may relate to some covariate information through a logit link function. For example, we

can assume that logit(α1i j) = xT

i jδδδ1, where xi j is some covariate information for the site

(i, j) and δδδ1 some vector of regression coefficients. In this case we assume that each

point in space has a different spatial effect α1 depending on some characteristics xi j. For

example, we may assume that altitude can change the spatial effect, which makes sense

if we measure for example something which can be altered due to wind conditions. We

believe that such a model, while it has some potential is special cases, it can complicate

the model interpretation, especially if we have regression effects in both the mean and

the autocorrelation parameters.
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3 Simulation study

In this section, we perform simulation experiments, using equation (1), with differ-

ent innovation distributions namely the Poisson, Negative Binomial (NB), Poisson-

Lindley (PL), Conway-Maxwell Poisson (COM-Poisson / CMP) and Poisson-Inverse

Gaussian (PIG) with rate or mean parameters commonly indicated by a link predictor

λi j = exp(xT

i jβββ) and dispersion index ν. As it is described in more details in the Ap-

pendix, using a distribution for the innovations that allows over/under dispersion, we

also extend such properties to the observed spatial distribution and hence more realis-

tic and flexible fitting can be achieved. In the present paper we consider the following

distributions for the innovations.

• For Poisson innovations we assume that

P(ǫi j) =
e−λi jλ

ǫi j

i j

ǫi j!
;ǫi j = 0,1, . . . ;λi j ≥ 0.

• For NB innovations we use the following parametrization:

P(ǫi j) =
Γ(ν+ ǫi j)

Γ(ν)ǫi j!

(
λi j

λi j +ν

)ν( ν

λi j +ν

)ǫi j

;ǫi j = 0,1, . . . ;λi j ≥ 0,ν ≥ 0.

For this parametrization the mean is λi j and the variance λi j +λ2
i j/ν.

• For PL innovations we use

P(ǫi j) =
λ2(ǫi j +λi j +2)

(λi j +1)ǫi j+3
;ǫi j = 0,1, . . . ;λi j > 0.

The mean is (λi j +2)/(λi j(λi j +1)) while the variance is

λ3
i j +4λ2

i j +6λi j +2

λ2
i j(λi j +1)2

PL can have different shapes than the other Poisson mixtures like the NB and PIG

models.

• For COM-Poisson innovations we use

P(ǫi j) =
λ
ǫi j

i j

(ǫi j)!ν
1

Z(λi j,ν)
;ǫi j = 0,1, . . . ; j = 0,1, . . . ;λi j ≥ 0;ν ≥ 0,

where Z(λi j,ν) = ∑∞
j=0

λ
j
i j

j!ν
. Note that λi j is not the mean of the distribution; the

mean is hard to be written in closed form, but it is approximated by λ
1/ν
i j .
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• For PIG innovations we use the parameterization from the package actuar in R.

Namely the pmf is defined with parameters λ and dispersion ν as

P(ǫi j) =

(
2ν

π

)1/2

exp

(
ν

λi j

)(ai j

ν

)−(x− 1
2 )

K
x− 1

2
(ai j), x = 0,1, . . . , λi j,ν > 0,

where a2
i j = 2ν

(
1+ ν

2λ2
i j

)
and Kx(a) is the modified Bessel function of the third

kind. The mean is λi j and the variance is λi j +λ3
i j/ν.

The choice of the distributions for the innovation term attempts to cover a range of

possible models. So, we have used the Poisson distribution as a starting point, two of

the most famous mixed Poisson ones (negative binomial and Poisson-Inverse Gaussian),

the COM-Poisson to allow for under-dispersion as well and finally the Poisson-Lindley

since this is a tractable mixed Poisson distribution with very different shapes.

In order to simulate the grid we followed the following approach: We added an ad-

ditional row and column with all values equal to 0, i.e. we set Y0 j =Yi0 = 0 for all i and

j. Then we simulated the grid Yi j, i = 1, . . . ,n1 +10 and j = 1, . . . ,n2 +10 based on the

model in (1) using the chosen innovation distribution. Then we rejected the rows and

columns from 0 up to 10 so as to keep the grid n1 ×n2.

3.1 Numerical Results: No covariates

For scenario 1, the simulation study assumes the following combinations of (α1,α2,α3,

λ,ν) and grids:

1. C1: (0.35, 0.15, 0.2, 5, 0.5) and grid 25 x 25

2. C2: (0.25, 0.25, 0.3, 3, 0.8) and grid 40 x 40

3. C3: (0.6, 0.2, 0.15, 7, 2) and grid 50 x 50

Note that for Poisson-Lindley and COM-Poisson cases parameter λ is not the mean

while ν has a different interpretation. So, in the simulations this is the value used to

simulate the data. For Poisson, negative binomial and Poisson-Inverse Gaussian, λ is

the mean and ν is the dispersion parameters, equal to 1 for the Poisson. Obviously for

ν → ∞ we get the Poisson distribution in such cases.

For each scenario 1000 replications were obtained. The simulated mean estimates,

their biases, root mean square errors (RMSEs) and standard deviations (SDs) are re-

ported. The results are displayed in Tables 1, 2 and 3.
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Table 1: Mean, Bias, RMSE and SD of estimates under different innovations under C1. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.3503 0.1485 0.2018 4.9558
Bias 0.0003 −0.0015 0.0018 −0.0442

RMSE 0.0360 0.0425 0.0438 0.7580
SD 0.0350 0.0405 0.0338 0.7571

NB

Mean 0.3555 0.1502 0.2178 5.5005 0.5660
Bias 0.0055 0.0002 0.0178 0.5005 0.0660

RMSE 0.0521 0.0601 0.0489 0.7280 0.4180
SD 0.0355 0.0436 0.0426 0.6597 0.5296

PL

Mean 0.3477 0.1466 0.1969 5.0892
Bias −0.0023 −0.0034 −0.0031 0.0892

RMSE 0.0367 0.0538 0.0715 0.7141
SD 0.0369 0.0541 0.0719 0.7233

CMP

Mean 0.3557 0.1478 0.2035 4.2440 0.5770
Bias 0.0057 −0.0022 0.0035 −0.7560 0.0770

RMSE 0.0385 0.0502 0.0485 0.8524 0.5912
SD 0.0381 0.0402 0.0414 0.6915 0.5996

PIG

Mean 0.3414 0.1416 0.2101 4.8164 0.4990
Bias −0.0086 −0.0084 0.0101 0.1836 −0.0010

RMSE 0.0345 0.0350 0.0490 0.7839 0.5813
SD 0.0399 0.0111 0.0261 0.6781 0.5793

Table 2: Mean, Bias, RMSE and SD of estimates under different innovations under C2. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.2500 0.2489 0.2989 3.0290
Bias 0.0000 −0.0011 −0.0011 0.0290

RMSE 0.0010 0.0009 0.0011 0.0172
SD 0.0008 0.0007 0.0010 0.0152

NB

Mean 0.2497 0.2505 0.3012 3.0389 0.7990
Bias −0.0003 0.0005 0.0012 0.0389 −0.0010

RMSE 0.0218 0.0238 0.0294 0.6433 0.2543
SD 0.0118 0.0218 0.0154 0.6354 0.2891

PL

Mean 0.2491 0.2479 0.2999 2.9990
Bias −0.0009 −0.0021 −0.0001 −0.0010

RMSE 0.0216 0.0216 0.0245 0.2654
SD 0.0206 0.0211 0.0204 0.2655

CMP

Mean 0.2487 0.2481 0.3009 3.0266 0.8009
Bias −0.0023 −0.0019 0.0009 0.0266 0.0009

RMSE 0.0223 0.0227 0.0239 0.4625 0.4728
SD 0.0222 0.0225 0.0209 0.4619 0.4731

PIG

Mean 0.2480 0.2488 0.2979 2.9901 0.8111
Bias −0.0020 −0.0012 −0.0021 −0.0099 0.0111

RMSE 0.0183 0.0176 0.0210 0.3014 0.4467
SD 0.0182 0.0106 0.0209 0.3004 0.4807
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Table 3: Mean, Bias, RMSE and SD of estimates under different innovations under C3. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.5997 0.2070 0.1495 6.9875
Bias −0.0003 0.0070 −0.0005 −0.0125

RMSE 0.0009 0.0003 0.0010 0.0101
SD 0.0005 0.0003 0.0009 0.0100

NB

Mean 0.5996 0.2004 0.1511 6.9973 2.0010
Bias −0.0004 0.0004 0.0011 −0.0027 0.0010

RMSE 0.0211 0.0120 0.0151 0.0910 0.2170
SD 0.0218 0.0140 0.0170 0.0987 0.2281

PL

Mean 0.6067 0.2016 0.1503 6.9898
Bias 0.0067 0.0016 0.0003 −0.0102

RMSE 0.0207 0.0140 0.0133 0.0119
SD 0.0195 0.0134 0.0123 0.0102

CMP

Mean 0.5982 0.1918 0.1529 7.0131 2.0210
Bias −0.0018 −0.0082 0.0029 0.0131 0.0210

RMSE 0.0210 0.0130 0.0214 0.3798 0.3720
SD 0.0214 0.0134 0.0215 0.3898 0.3731

PIG

Mean 0.5991 0.1992 0.1499 6.9997 1.9830
Bias −0.0009 −0.0008 −0.0001 −0.0003 −0.0170

RMSE 0.0151 0.0116 0.0150 0.0998 0.5430
SD 0.0152 0.0115 0.0154 0.0950 0.4450

The simulation results illustrate that the estimates of the different parameters are

consistent. This remark is noticed for all the SINAR with the different innovation dis-

tributions and under the different combinations of C1, C2, C3. The simulations also

ensured that the estimates of the α̂’s satisfy the stability condition for stationarity given

in (3).

Note that in all replications almost no problems to maximize the log-likelihood were

detected. Some problems occurred in the COM-Poisson innovations. Problems are re-

lated to the built in functions dcomp and dcompoisson as they could not compute effi-

ciently the normalizing constant Z(λ,ν) in the COM-Poisson implementations in few

simulations.

3.2 Numerical Results: With covariates

For the case with covariates we have added a covariate, say, X for the different scenarios.

So we assume for the innovations that

logλi j = β0 +β1Xi j,

where the covariate Xi j was generated from a standard normal distribution. Again we

have checked different grids, namely 30× 30, 50× 50 and 80× 80 to see how the size
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of the grid scales up the variance and the biases (if any). We have used two scenarios:

• S1: α1 = 0.15,α2 = 0.1,α3 = 0.2,β0 = 0.6,β1 = 0.5,

• S2: α1 = 0.05,α2 = 0.1,α3 = 0.05,β0 = 0.1,β1 =−0.5.

One can see that the second scenario S2 has smaller spatial correlation parameters

closer to the lower boundary and hence we would like to see the behaviour. Now we

need to estimate all 5 parameters.
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Figure 2: Boxplots for all five parameters under scenario S1 for the three different grids. The horizontal
line represents the true value.

Figures 2 and 3 show the boxplots from 1000 replications under the two scenarios for

the different grids. We present results from the Poisson innovations case only and similar
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findings were obtained from the other models as well. The horizontal line represents the

true value. One can see that even in the smaller grid the CML estimates correctly the

true value. The variability as indicated by the boxplots reduces with the grid size as

expected. Also from the boxplots one can see that the shape is symmetrical and confront

with the asymptotic normality of the estimates.
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Figure 3: Boxplots for all five parameters under scenario S2 for the three different grids. The horizontal
line represents the true value.

As far as the computational issues are concerned, no problems were found when

fitting the models. As initial values we have used random value around the true ones,

i.e. we simulated initial values by adding a uniform random variable in the interval

(−0.05,0.05) to the true underlying values. For all runs we got convergence from optim

function. To obey the restrictions of the parameter space we used transformations on the

parameters.
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4 Applications - Beilschmiedia data

4.1 The data

In studies of biodiversity of tropical rainforests, it is of interest to study whether the

spatial patterns of the many different tree species can be related to spatial variations

in environmental variables concerning topography and soil properties. Beilschmiedia

dataset (Bei) in the spatstat package in R (Baddeley, Rubak and Turner, 2015) captures

the locations of 3605 trees in a tropical rain forest . The data cover a 1000 m × 500 m

rectangular sampling region in the tropical rainforest of Barro Colorado Island. This

data set is a part of a much larger data set containing positions of hundreds of thousands

of trees belonging to hundreds of species. More details about the data can be found in

Møller and Waagepetersen (2007).
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Figure 4: Spatial plot of Bei data.

A regular lattice of size 40 × 40 is created from the original dataset considering

the number of trees inside each cell. The mean and variance are 2.25 and 12.4 respec-

tively. The index of dispersion is 5.51 implying overdispersion that we cannot capture

by Poisson innovations. Fitting models that allow for overdispersion is important. Fig-

ure 4 represents a spatial plot of the Bei data. In particular one can see the position of

the trees in the lattice. The grey background depicts the observed counts and darker grey

areas are those with more trees. In addition, Table 4 shows some values of the sample

spatial autocorrelation of order k and ℓ for the Bei data. Here k refers to the horizontal

direction and ℓ to the vertical direction. One can see that the horizontal autocorrelations

are larger, supporting the use of a model like the one derived in section 2. The observed

counts in the 40×40 grid can be also seen in Figure 5.
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Table 4: Some values of the sample spatial autocorrelation for the Bei data.

k
ℓ 0 1 2 3 4

0 1.000 0.497 0.238 0.283 0.269
1 0.379 0.265 0.223 0.228 0.170
2 0.172 0.125 0.104 0.133 0.132
3 0.094 0.090 0.083 0.054 0.049
4 0.083 0.071 0.046 0.039 0.023

4.2 Results

To start with, we have fitted a series of models with different innovation distributions to

capture the different aspects of the data. The fitted model to the Bei data using the CML

estimation approach can be seen in Table 5.

Table 5: Comparison between different innovation distributions using Akaike information criterion (AIC):
Application to BEI count data.

Innovations α̂1 α̂2 α̂3 λ̂ ν̂ AIC

Poisson
Estimates 0.198 0.306 0.108 0.818

s.e (0.019) (0.013) (0.011) (0.034) 7179

NB
Estimates 0.151 0.225 0.053 1.209 0.205

s.e (0.056) (0.017) (0.015) (0.082) (0.018) 5342

PL
Estimates 0.119 0.223 0.008 1.070

s.e (0.016) (0.017) (0.015) (0.039) 5882

CMP
Estimates 0.113 0.212 0.002 0.594 0.001

s.e (0.017) (0.018) (0.015) (0.028) (0.042) 5732

PIG
Estimates 0.151 0.223 0.060 1.214 0.161

s.e (0.015) (0.016) (0.015) (0.097) (0.022) 5343

It is observed from Table 5 that the SINAR(1) model using NB innovation distribu-

tion yields the lowest AIC value and hence outperforms the other models with differ-

ent innovations. However, an interesting observation is that the PIG model has an AIC

value which is really close to the selected model. In fact this implies that we need an

overdispersed innovation distribution to capture the observed overdispersion. Note also

that for all models the dependence parameters α j are significant, supporting the usage

of spatial models. We can also observe that the α j are all positive values showing that

geographically nearby values of the variable of interest are more similar than those of

remote locations. Parameter α2 that measures the horizontal dependence is larger. Per-

haps this may relate to parameters associated with the lattice like the orientation with

respect prevailing winds that expand the vegetation to some particular direction. For the

COM-Poisson distribution, the model tends to a geometric distribution since parameter

ν is almost zero. This may explain why the fit is not that good.



82 Spatial models for discrete data

Table 6: Different models with negative binomial innovation distribution fitted to the Bei data. Models
assumes different (or not ta all) spatial dependence. The full model with all three kind of unilateral effects
is the chosen one.

Model Param Log-lik AIC

No restriction 5 −2666.22 5337.442
M1: α1 = α2 = α3 3 −2686.20 5375.406

M2: α3 = 0 4 −2674.75 5353.490
M3: α2 = 0 4 −2765.51 5535.024
M4: α1 = 0 4 −2717.78 5439.554

M5: α2 = α3 = 0: only verctical 3 −2802.29 5607.586
M6: α1 = α3 = 0: only horizontal 3 −2746.06 5495.128
M7: α1 = α2 = 0: only diagonal 3 −2840.98 5684.954

no spatial effect α1 = α2 = α3 = 0 2 −2938.80 5879.606

Table 6 presents for the chosen negative binomial case some more spatial scenarios

as mentioned in section 2.3. For example, model M1 assumes that all three α’s are the

same, while models M2 to M4 that one of the spatial correlations is not present i.e. we

set α j = 0 for j = 1,2,3 respectively. Actually we remove each time the vertical (M4),

horizontal (M3) and the diagonal effects (M2). Finally, models M5 to M7 suggest that

only one spatial effect suffices. The full model with all three kind of unilateral effects

is the chosen one as judged by AIC, revealing the underlying structure of the data. One

can see that the horizontal effect is larger as judged by the change in the LRT when we

remove each effect.

In addition we use some covariate information available. The Bei data set is accom-

panied by covariate data giving the elevation (altitude) and slope of elevation in the

study region. An important question arises is whether the intensity of Bei trees may be

viewed as a spatially varying function of the covariates. We have fitted different mod-

els to examine the improvement offered by the covariates. Both covariates were found

significant. The selected model can be seen in Table 7.

Table 7: Comparison between Poisson innovation and mixed Poisson innovations using Akaike information
criterion (AIC): Application to Bei count data with both covariates.

Innovations α̂1 α̂2 α̂3 β̂0 β̂1 β̂2 ν̂ AIC

Poisson
Estimates 0.187 0.286 0.102 -6.265 0.037 8.128

s.e (0.012) (0.013) (0.011) (0.671) (0.004) (0.478) 6940

NB
Estimates 0.146 0.219 0.055 -6.897 0.044 8.515 0.242

s.e (0.016) (0.017) (0.016) (1.507) (0.010) (1.327) (0.089) 5293

PL
Estimates 0.115 0.208 0.000 4.904 -0.029 -6.839

s.e (0.016) (0.017) (0.014) (0.645) (0.004) (0.546) 5716

CMP
Estimates 0.111 0.202 0.006 -2.162 0.010 2.089 0.001

s.e (0.016) (0.018) (0.015) (0.116) (0.001) (0.236) (0.031) 5626

PIG
Estimates 0.146 0.221 0.056 -15.053 0.097 16.539 0.210

s.e (0.016) (0.017) (0.015) (2.395) (0.016) (3.451) (0.0213) 5294
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It is observed from Table 7 that the SINAR(1) model using NB innovation distribu-

tion with covariates still yields the lowest AIC value and hence outperforms the other

models with different innovations by producing much better fit to the data. PIG is very

competitive to the NB.

We focus on the selected model with negative binomial innovations. From the results

of Table 7 one can see that both covariates are statistically significant, with positive sign,

hence increasing the altitude and the slope of elevation we obtain an increased number

of trees, having adjusted for the effect of neighbouring areas. From the α’s we see that

the larger effect comes from α2 that measures the horizontal dependence. All spatial

effects are statistically significant at 5%. The model implies a clear spatial dependence.

4.3 Goodness of Fit

In order to jude whether the fitted model is satisfactory we have worked a few ideas. To

start with, we derived the one step ahead predictions based on the models. Namely, we

derived for each data point

E(Yi j|Si j) = α̂1Yi−1, j + α̂2Yi, j−1 + α̂3Yi−1, j−1 + λ̂i j

and
log λ̂i j = β̂0 + β̂1X1i j + β̂2X2i j

Observed Expected value (Fitted)

0 10 20 30 40 50 60 70

Figure 5: The observed counts in the 40× 40 grid and the fitted based on the model. Fitted values are
expected values based on the conditional expectation.
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using the estimated parameters from the selected negative binomial model. The values

can be seen in Figure 5 together with the observed counts. We emphasize that the predic-

tions are the expected means that is why they cannot capture the extreme values. From

the plots one can see that the model captures in a great extend the pattern.
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Points were predicted value is outside the 95% interval

Figure 6: Points in the grid that the true value was outside the 95% prediction interval created.

To further exploit the quality of the predictions we have created for each data point

(i, j) a 95% confidence interval for the prediction. To do so, we simulated 1000 values

from the predictive probability mass function as provided in (7) and then based on them

we created the intervals. Out of the 1521 values we predict (we did not predict the first

row and column) only 33 (2.1%) values were outside of the interval, implying that the

model was quite satisfactory. The values that lay outside the interval are depicted in

Figure 6. One can see again that we have failed to predict some of the extreme values as

one can see compared to the Figure 5.

Another important aspect of the model fitting lies on the ability of the model to

capture the spatial dependence structure. To check this aspect we simulated grids of the

same size 40× 40 from the selected negative binomial using the estimated parameters.

For each simulation we have estimated the spatial covariance at lags k and ℓ by

γ̂(k, ℓ) =
1

n

40

∑
i=k+1

40

∑
j=ℓ+1

(Yi j − Ȳ )(Yi+k, j+ℓ− Ȳ )
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and then we derived the spatial correlation at lag k and ℓ as

ρ̂(k, ℓ) =
γ̂(k, ℓ)

s2
Y

,

where Ȳ and s2
Y are the mean and the variance estimated from the data.

We have used lags k = 0,1,2 and ℓ= 0,1,2 and then we compared them with those

values observed from the data in order to see whether the observed dependence structure

could have been created by the model at hand. We show in Figure 7 the 95% confidence

intervals created by 1000 simulations and the dot indicates the observed value. We see

a good agreement. The two first values need perhaps improvement with a richer model

but overall the model captures the underlying structure in a reasonable way.
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Figure 7: Points in the grid that the true value was outside the 95% prediction interval created.

As a summary, we believe that the current model fits satisfactorily the observed spa-

tial structure.

5 Conclusion

This paper revisits and extends the simple stationary SINAR(1) model introduced by

Ghodsi et al. (2012) and Ghodsi (2015). The SINAR(1) model is the first research in the

modelling of the two dimensional unilateral spatial discrete data based on the thinning

mechanism that allows to model explicitly the discrete nature of the data.
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In the present paper we proposed some novel extensions of the existing SINAR(1)

model. These novelties in fact overcome two important limitations of the simple

SINAR(1). Firstly, in our model specification, we propose to model the data using

overdispersed innovation distributions, while simultaneously allow covariate informa-

tion to be used leading to a non-stationary model. While not treated in this version, one

may also use offset in the regression part, like population size values, if needed. We also

discuss parsimonious representations of the model at hand. The model parameters are

estimated using the CML approach.

We acknowledge some restrictions of the current model which we consider to im-

prove. The proposed model is based on the unilateral regular lattice case. One can extend

the model to capture several other cases. For the regular lattice case, define the set of

indices (k, ℓ) of the neighbouring observations for the (i, j) observation as Si j. Then, in

the general setting, the model can be written as for a general neighbourhood:

Yi j = ∑
(k,ℓ)∈Si j

αkℓ ◦Yk,ℓ+ ǫi j,

where are usual, the ǫi j are the innovations. Defining appropriately the sets Si j one can

derive other models at the expense of parsimony.

Finally consider the typical case in spatial data where observations are indexed sim-

ply as Yj to indicate the value at site j from a map with j = 1, . . . ,n sites, as for example

the different regions of a country. Define as S j the indices of its neighbours. In such case

the model of order 1 can have the form:

Yj = α◦ ∑
k∈S j

Yk + ǫ j

or equivalently if we define the n×n adjacency matrix W with elements wi j with values

equal to 1 if the sites i and j are neighbours and 0 otherwise, then we can write the

models as:

Yj = α◦ ∑
k 6= j

wk jYk + ǫ j

to mimic typical order 1 models for spatial continuous data. Such generalization will be

reported elsewhere.

Also note that in this paper we used only spatial model of first order. One may con-

sider SINAR(p) models with higher order effects. Such extension needs special care. It

is already known that simple INAR(p) models can have different interpretations /rep-

resentations, (see the different approaches in Alzaid and Al-Osh (1990) and Jin-Guan

and Yuan (1991)). Extending to a SINAR(p) model can have a large number of param-

eters making inference quite complex. Perhaps more parsimonious models like the one

in Section 2.3 are easier to extend to higher order.
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A Appendix section

Based on Ghodsi et al. (2012), for the case of a stationary model, we have for the

marginal stationary mean µY and the stationary variance σ2
Y that

µY =
µǫ

1−α1 −α2 −α3

and

σ2
Y =

µY

3

∑
i=1

αi(1−αi)+ τ 2
ǫ

1− (α1 +α2α3)λ− (α2+α1α3)η−α2
3

where η = α2+α3λ
1−α1λ

and

λ=
(1+α2

1 −α2
2 −α2

3)−
√
(1+α2

1 −α2
2 −α2

3)
2 −4(α1 +α2α3)2

2(α1 +α2α3)

In the formulas, µǫ and τ 2
ǫ are the mean and the variance of the innovations respectively.

Note a misprint in Ghodsi et al. (2012) for the variance. Define the index of dispersion

IDY = σ2
Y/µY . Dividing the variance with the mean, we get for the index of dispersion

of the spatial data that

IDY =
σ2

Y

µY

=

3

∑
i=1

αi(1−αi)+ IDǫ(1−α1 −α2 −α3)

1− (α1 +α2α3)λ− (α2+α1α3)η−α2
3

which relates directly the index of dispersion of the innovation distribution IDǫ to that

of the marginal, i.e. IDY . Since the denominator is positive and all the quantities in the

nominator also are positive, an increase of IDǫ will lead to increase of the IDY . Thus

assuming an overdispersed distribution for the innovations we can have much larger

overdispersion in the observed spatial data.

One can see that even for the Poisson innovations the index of dispersion is larger

than 1, however for reasonable values for counts this overdispersion is limited. The intro-

duction of overdispersed innovations increase a lot the overdispersion as one can see in

Figure 8. In Figure 8 the two axes depict the marginal mean and variance for a stationary

model given above. The different lines correspond to different levels of overdispersion

for the innovation distribution. We have used α1 = α2 = α3 = 0.2. The diagonal line

refers to the case of equidispersion. Therefore, above that line we get overdispersion

and below underdispersion. The red line (ID=1) corresponds to Poisson innovations.

One can see that in this case we get small overdispersion for the spatial case. Increasing

the overdispersion on the innovation, as for example considering a mixture of Poisson

we get larger overdispersion. Note that an underdispersed innovation distribution, like

the cases of COM-Poisson distribution, can lead to underdispersion.
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Figure 8: The marginal mean and variance for a stationary model. The different lines correspond to differ-
ent levels of overdispersion for the innovation distribution. for the plot α1 = α2 = α3 = 0.2. The diagonal
line refers to the case of equidispersion. ID implies the index of dispersion of the innovation distribution.
One can see that for Poisson (red line) we get small overdispersion. Increasing the overdispersion of the
innovations lead to increased overdispersion for the spatial distribution.
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