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Small area estimation of additive parameters

under unit-level generalized linear mixed models

Tomáš Hobza1, Yolanda Marhuenda2 and Domingo Morales2

Abstract

Average incomes and poverty proportions are additive parameters obtained as averages of a

given function of an income variable. As the variable income has an asymmetric distribution, it

is not properly modelled via normal distributions. When dealing with this type of variable, a first

option is to apply transformations that approximate normality. A second option is to use non-

symmetric distributions from the exponential family. This paper proposes unit-level generalized

linear mixed models for modelling asymmetric positive variables and for deriving three types of

predictors of small area additive parameters, called empirical best, marginal and plug-in. The pa-

rameters of the introduced model are estimated by applying the maximum likelihood method to the

Laplace approximation of the likelihood. The mean squared errors of the predictors are estimated

by parametric bootstrap. The introduced methodology is applied and illustrated under unit-level

gamma mixed models. Some simulation experiments are carried out to study the behaviour of

the fitting algorithm, the small area predictors and the bootstrap estimator of the mean squared

errors. By using data of the Spanish living condition survey of 2013, an application to the estima-

tion of average incomes and poverty proportions in counties of the region of Valencia is given.

MSC: 62J12 Generalized linear models; 62P25 Applications to social sciences; 62D05 Sampling

theory, sample surveys.

Keywords: Average income, poverty proportion, generalized linear mixed models, empirical best

predictor, mean squared error, bootstrap.

1 Introduction

Many of the socioeconomic indicators published by statistical offices are additive pa-

rameters. These parameters are the sums of the transformed values that an objective vari-

able takes in the population units and its definition depends on the selected variable and

transformation. This paper deals with the small area estimation (SAE) of additive pa-

rameters, with particularizations to average incomes and poverty proportions. The prob-

lems of SAE appear when the sample sizes are small in the target population subsets,
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4 Small area estimation of additive parameters under unit-level generalized linear mixed models

called small areas or domains, so that the direct estimators are not reliable. A domain

direct estimator is obtained by using only the domain data. The low amount of data

can be overcome by using statistical models that introduce additional information via

auxiliary variables, data from other domains and variance-covariance structures. Model-

based predictors of domain parameters are generally more efficient than direct estima-

tors. See the monograph of Rao and Molina (2015) for an introduction to SAE, linear

mixed models (LMM) and related issues.

Average incomes and some income-based poverty indicators are sums of transformed

individual incomes. Some SAE methods based on unit-level models have been proposed

in the literature for this type of parameters. Elbers, Lanjouw and Lanjouw (2003) intro-

duced estimators based on the predictions of a fitted marginal nested error regression

(NER) model. Molina and Rao (2010) proposed empirical best predictors (EBP) by

employing the predictions of a NER model conditioned to the observed sample. This

approach was extended to two-fold NER models by Marhuenda et al. (2017). Hobza

and Morales (2013) derived predictors of means of household normalized net annual

incomes under random regression coefficient models. Molina, Nandram and Rao (2015)

proposed a hierarchical Bayes approach and Guadarrama, Molina and Rao (2014) com-

pared several poverty mapping methods based on unit level models. Hobza and Morales

(2016), Hobza, Morales and Santamarı́a (2018) derived EBPs based on unit-level logit

mixed models, Tzavidis et al. (2008), Chambers, Salvati and Tzavidis (2012, 2016) in-

troduced predictors based on M-quantile regression models. Karlberg (2014) proposed

log-transformation mixed small area prediction models incorporating a logistic compo-

nent for skewed data in the presence of zeroes. Dreassi, Petrucci and Rocco (2014), Fab-

rizi, Ferrante and Trivisano (2017) and Moura, Silva and Neves (2017) gave hierarchical

Bayes procedures for skewed survey data. By using temporal and spatio-temporal area-

level models, Esteban et al. (2012a, 2012b), Marhuenda, Molina and Morales (2013)

and Morales, Pagliarella and Salvatore (2015) derived also model-based predictors of

poverty indicators. Boubeta, Lombardı́a and Morales (2016, 2017) introduced empirical

best predictors (EBP) of poverty proportions based on Poisson mixed models. Further

references can be found in Pratesi (2016). A common feature of the above cited refer-

ences is the use of predictors based on generalized linear mixed models (GLMM).

This paper extends the EBP methodology of Molina and Rao (2010) by introducing

predictors of additive parameters based on unit-level GLMMs. The introduced method-

ology is applied to the prediction of small area average incomes and poverty indica-

tors under unit-level gamma mixed models (GMM). The GLMMs have random effects

taking into account the between-domains variability that is not explained by the auxil-

iary variables. The random effects are usually assumed to be normally distributed. The

maximum likelihood (ML) estimation of GLMM parameters have some computational

difficulties because the likelihood may involve high-dimensional integrals which cannot

be evaluated analytically. For calculating the ML estimators of model parameters, this

paper maximizes the Laplace approximation to the log-likelihood.
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The paper introduces EBPs for estimating domain additive parameters. The pro-

posed EBPs are based on unit-level GLMMs. Two more predictors, called plug-in and

marginal, are also considered and empirically studied in a simulation experiment.

The mean squared error (MSE), also called prediction variance in the model-based

approach to SAE, is a standard accuracy measure for predictors of domain parameters.

Hall and Maiti (2006a,b) introduced bootstrap estimators of MSEs of predictors of func-

tions of fixed and random effects under SAE models. As we are interested in estimating

small area additive parameters, we consider the parametric bootstrap estimator of the

MSE introduced by González-Manteiga et al. (2007), but adapted to GLMMs. This ap-

proach was extended by González-Manteiga et al. (2008a,b) to nested error regression

models and to multivariate area-level models respectively.

In the particular case of GMMs, we carry out simulation experiments for investigat-

ing the behaviour of the fitting method, the predictors of average incomes and poverty

proportions and the parametric bootstrap estimator of the MSE. We present an appli-

cation to data from the Spanish living conditions survey (SLCS) of 2013 in the region

of Valencia (east of Spain). The target is the estimation of 2013 average incomes and

poverty proportions at county level.

The extension of the methodology of Molina and Rao (2010), where the EBPs are

introduced under unit-level LMMs, to unit-level GLMMs have three main mathematical

and computational difficulties: (1) under LMMs, the distribution of the unobserved part

of the vector of target variables conditioned to the observed part can be calculated explic-

itly, but not in the case of GLMMs; (2) the likelihoods of GLMMs are high dimensional

integrals, so they need more specialized fitting algorithms; (3) it can not be assumed that

the shape parameters (or shape function) of GLMMs are all equal to a known common

constant, so a procedure for estimating them is needed. This paper faces these three is-

sues by studying the applicability of two unit-level GLMMs to the estimation of small

area additive parameters.

The paper is organized as follows. Section 2 introduces two unit-level GLMMs. As

the shape parameters of the second model are known constants multiplied by a com-

mon parameter, this model cannot be fitted by using standard software; for example

by using the glmer function of lme4 library of the R programming language (R Core

Team 2019). This is why Section 3 describes the employed ML-Laplace algorithm that

we have programmed in R for fitting the model. Sections 4, 5, 5.1 and 5.2 present the

empirical best, the marginal and the plug-in predictors of functions of model effects,

additive parameters, means and poverty proportions respectively. The calculation of the

EBPs uses a census file as auxiliary information. It is shown that this restriction can

be avoided if the auxiliary variables are categorical. In that case, it is sufficient to have

the population sizes of the domains crossed with the categories. Section 6 gives a para-

metric bootstrap method for estimating the MSE. Section 7 presents three simulation

experiments. Simulation 1 analyses the behaviour of the fitting algorithm. Simulation 2

compares the performances of the three introduced predictors. Simulation 3 empirically

studies the parametric bootstrap estimators of the MSEs. Section 8 applies the developed
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methodology to unit-level data from the 2013 SLCS and takes the aggregated auxiliary

information from the Spanish Labour Force Survey (SLFS). The target is the estimation

of 2013 average incomes and poverty proportions at county level. Section 9 gives some

conclusions. The paper contains two appendices. Appendix A gives the components of

the updating equation of the ML-Laplace algorithm for the GMM. Appendix B presents

some complementary tables and figures for the application to real data.

2 The unit-level generalized linear mixed models

This section introduces two unit-level GLMMs. Let D denote the number of small ar-

eas (or domains) under consideration. Both models have a set of random area effects

{vd : d = 1, . . . ,D} that are i.i.d. N(0,1). In matrix notation, we have v = col
1≤d≤D

(vd) ∼

ND(0,ID), i.e.

fv(v) = (2π)−D/2 exp
{

−
1

2
v

T
v
}

.

For d = 1, . . . ,D, j = 1, . . . ,nd , the GLMMs assume that the conditional distribution of

the target variable yd j, conditioned to vd, belongs to the exponential family, i.e. yd j|vd
∼

Exp(θd j,νd j;a,b,c), with the probability density function (p.d.f.)

f (yd j|vd) = f (yd j|θd j,νd j;a,b,c) = exp
{yd jθd j−b(θd j)

a(νd j)
+ c(yd j,νd j)

}

, (1)

where a(·) > 0, b(·) and c(·) are known real-valued functions specifying the selected

distribution and νd j > 0. Further, we assume that b(·) is one-to-one and three times

continuously differentiable with one-to-one first derivative. This is to say, we consider

a nested data structure where subindexes d and j denote domain and unit (within do-

main) respectively and nd is the sample size of domain d. Under (1), the expectation and

variance of yd j, given vd, are

µd j = E[yd j|vd ] =
∂b(θd j)

∂θd j

= ḃ(θd j) var[yd j|vd] = a(νd j)
∂ 2b(θd j)

∂θ2
d j

= a(νd j)b̈(θd j).

Parameters µd j and νd j are called mean and shape parameters respectively. For a twice

continuously differentiable and monotonous link function g(·) of the mean parameter,

we assume that

ηd j = g(µd j) = x
T

d jβββ+φvd, d = 1, . . . ,D, j = 1, . . . ,nd ,

where φ > 0 is a standard deviation parameter, βββ = col
1≤k≤p

(βk) is a vector of regression

parameters and xd j = col
1≤k≤p

(xd jk) is a vector of auxiliary variables which are assumed to
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be constant (fixed regression design). Further, we assume that the yd j’s are independent

conditioned to v. The sample size is n = ∑D
d=1 nd and the domain target vector is yd =

col
1≤ j≤nd

(yd j). The conditional p.d.f. of y = col
1≤d≤D

(yd), given v, and the marginal p.d.f. of

y are

f (y|v) =
D

∏
d=1

nd

∏
j=1

f (yd j|vd), f (y) =
∫

RD
f (y|v) fv(v)dv.

Let us note that the assumption of normality of the random effects is typical for mixed

models used in SAE. Sinha and Rao (2009) and Benavent and Morales (2016) carried

out simulation experiments to investigate the robustness of EBLUPs of linear parame-

ters against deviations from the hypothesis of normality under nested error regression

and Fay-Herriot models respectively. They showed that EBLUPs works well when de-

viations are small, but their behaviour become poor when deviations are big. Similar

conclusions hold also for EBP under the presented model. A specific comment concern-

ing this issue is given in Remark 8.1 in Section 8.

An example of unit-level GLMM is the GMM, where

yd j|vd ∼ Gamma(νd j, µd j/νd j), d = 1, . . . ,D, j = 1, . . . ,nd .

For yd j > 0, the conditioned p.d.f. is

f (yd j|vd) =
( νd j

µd j

)νd j y
νd j−1

d j

Γ(νd j)
exp

{

−
νd j

µd j

yd j

}

(2)

= exp







yd j

(

− 1
µd j

)

− logµd j

1
νd j

+νd j logνd j− logΓ(νd j)+(νd j−1) logyd j







.

Under (2), the expectation and variance of yd j, given vd, are

E[yd j|vd ] =
νd j

νd j/µd j

= µd j, var[yd j|vd ] =
νd j

ν2
d j/µ

2
d j

=
µ2

d j

νd j

.

The natural parameter and the functions a(·)> 0, b(·) and c(·) of GMMs are

θd j =−
1
µd j
, b(θd j) = logµd j = log

(

− 1
θd j

)

=− log(−θd j),

a(νd j) = 1/νd j, c(yd j,νd j) = νd j logνd j− logΓ(νd j)+(νd j−1) logyd j.

For the mean parameter in GMMs, we consider the link function

ηd j = g(µd j) =
1

µd j

= x
T

d jβββ+φvd, d = 1, . . . ,D . (3)
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Depending on the assumptions on the shape parameters, we consider two GLMMs.

Model 1 assumes that νd j = ν > 0, d = 1, . . . ,D, j = 1, . . . ,nd and ν is unknown. Model

2 assumes that νd j = ad jϕ with ad j > 0 known and ϕ > 0 unknown, d = 1, . . . ,D,

j = 1, . . . ,nd . This is to say, Model 1 is Model 2 with ad j = 1 and ν = ϕ> 0 unknown.

Under the gamma distribution (2) with the link function (3), these models are called

gamma Model 1 and 2 respectively. For some distributions of the exponential family,

Model 1 can be fitted with the glmer function of lme4 library of the R programming

language. However, glmer cannot be applied to estimate the parameters of Model 2.

Section 3 presents the ML-Laplace algorithm for fitting GLMMs, with a particulariza-

tion to gamma Model 2.

Model 1 is quite popular in Gamma regression modelling. Under Model 1, the condi-

tioned variance is var[yd j|vd] = ν−1µ2
d j. The direct proportionality to the mean is a rigid

condition that sometimes does not allow a good fit of the model to the data. This fact

was observed in the application to real data and motivated the use of Model 2. Under

Model 2, a good selection of ad j for the conditioned variance will produce a better fit of

the GMM to the data. This is illustrated in Section 8.

Alternative link functions for gamma regression models are g(µd j)=µd j and g(µd j)=

logµd j. The link function (3) allows giving linear predictors of the natural parameter θd j

and moreover it is the canonical link function for the Gamma distribution which implies

some good properties of the ML estimators. That is why we investigate GMMs with the

inverse link function in the simulations and we use it in the application to real data.

3 The Laplace approximation algorithm

This section describes an approximation of the loglikelihood of GLMMs and the cor-

responding algorithm for estimating the unknown parameters of Model 2. In what fol-

lows ψ−1(·) denotes the inverse mapping of a one-to-one real valued function ψ(·). As

µd j = g−1(ηd j) and θd j = (ḃ)−1(µd j), it holds that

∂µd j

∂ηd j

=
1

∂ηd j

∂µd j

=
1

ġ(µd j)
,

∂θd j

∂µd j

=
1

∂µd j

∂θd j

=
1

b̈(θd j)
,

∂ηd j

∂vd

=
∂ (xT

d jβββ+φvd)

∂vd

= φ.

Therefore

∂µd j

∂vd

=
∂µd j

∂ηd j

∂ηd j

∂vd

=
φ

ġ(µd j)
,

∂ ġ(µd j)

∂vd

=
∂ ġ(µd j)

∂µd j

∂µd j

∂vd

= g̈(µd j)
φ

ġ(µd j)
,

∂θd j

∂vd

=
∂θd j

∂µd j

∂µd j

∂vd

=
φ

b̈(θd j)ġ(µd j)
,

∂b(θd j)

∂vd

=
∂b(θd j)

∂θd j

∂θd j

∂vd

=
φ ḃ(θd j)

b̈(θd j)ġ(µd j)
.
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The vectors y1, . . . ,yD are unconditionally independent with marginal p.d.f.

f (yd) =
∫ ∞

−∞

nd

∏
j=1

f (yd j|vd) f (vd)dvd

= κd

∫ ∞

−∞
exp

{

−
v2

d

2
+

nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

dvd = κd

∫ ∞

−∞
exp

{

h(vd)
}

dvd,

where κd = (2π)−1/2 exp
{

∑nd
j=1 c(yd j,νd j)

}

,

h(vd) =−
v2

d

2
+

nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)
, (4)

ḣ(vd) = −vd +
nd

∑
j=1

1

a(νd j)

{ φyd j

b̈(θd j)ġ(µd j)
−

φ ḃ(θd j)

b̈(θd j)ġ(µd j)

}

,

= −vd +φ
nd

∑
j=1

1

a(νd j)b̈(θd j)ġ(µd j)

(

yd j−µd j

)

,

and

ḧ(vd) =−1+φ2
nd

∑
j=1

1

a(νd j)b̈2(θd j)ġ2(µd j)

·

{

−
b̈(θd j)ġ(µd j)

ġ(µd j)
− (yd j−µd j)

[ ...

b(θd j)

b̈(θd j)ġ(µd j)
ġ(µd j)+ b̈(θd j)

g̈(µd j)

ġ(µd j)

]}

=−1−φ2
nd

∑
j=1

1

a(νd j)b̈2(θd j)ġ2(µd j)

{

b̈(θd j)+(yd j−µd j)

[ ...

b(θd j)

b̈(θd j)
+ b̈(θd j)

g̈(µd j)

ġ(µd j)

]}

.

The Laplace algorithm looks for v0d maximizing the function h(vd), i.e. such that ḣ(v0d)=

0 and ḧ(v0d)< 0. The Laplace approximation to f (yd) is

f (yd)≈

∣

∣

∣

∣

∣

1+φ2
nd

∑
j=1

1

a(νd j)b̈2(θ0d j)ġ2(µ0d j)

{

b̈(θ0d j)+(yd j−µ0d j)
[

...

b(θ0d j)

b̈(θ0d j)

+ b̈(θ0d j)
g̈(µ0d j)

ġ(µ0d j)

]}

∣

∣

∣

∣

−1/2

· exp
{

−
v2

0d

2
+

nd

∑
j=1

yd jθ0d j−b(θ0d j)

a(νd j)

}

exp
{

nd

∑
j=1

c(yd j,νd j)
}

,
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where θ0d j = (ḃ)−1(µ0d j), µ0d j = g−1(xT

d jβββ+φv0d). The GLMM loglikelihood is ℓ =

∑D
d=1 ℓd and

ℓd = log f (yd)≈ ℓ0d =
nd

∑
j=1

c(yd j,νd j)−
1

2
logξ0d−

v2
0d

2
+

nd

∑
j=1

yd jθ0d j−b(θ0d j)

a(νd j)
, (5)

where

ξ0d =

∣

∣

∣

∣

∣

1+φ2
nd

∑
j=1

1

a(νd j)

{

1

b̈(θ0d j)ġ2(µ0d j)

+ (yd j−µ0d j)

[ ...

b(θ0d j)

b̈3(θ0d j)ġ2(µ0d j)
+

g̈(µ0d j)

b̈(θ0d j)ġ3(µ0d j)

]}∣

∣

∣

∣

∣

.

For the GMMs, we have θd j = −
1
µd j

, g(µd j) =
1
µd j

, ġ(µd j) = −
1

µ2
d j

, g̈(µd j) =
2

µ3
d j

,

b(θd j) =− log(−θd j), ḃ(θd j) =−
1
θd j

= µd j, b̈(θd j) =
1

θ2
d j

= µ2
d j,

...

b(θd j) =−
2

θ3
d j

= 2µ3
d j,

h(vd) =−
v2

d

2
+

nd

∑
j=1

{

νd j log(xT

d jβββ+φvd)−νd jyd j(x
T

d jβββ+φvd)
}

,

ḣ(vd) =−vd +
nd

∑
j=1

{ νd jφ

xT

d jβββ+φvd

−φνd jyd j

}

=−vd +φ
nd

∑
j=1

νd j(µd j− yd j),

ḧ(vd) =−
(

1+φ2
nd

∑
j=1

νd j

(xT

d jβββ+φvd)2

)

=−
(

1+φ2
nd

∑
j=1

νd jµ
2
d j

)

.

In this particular case, it holds that ḧ(vd) < 0 for all possible values of vd. The compo-

nents of the Laplace approximation to the GMM loglikelihood are

ℓ0d =
nd

∑
j=1

{

νd j logνd j +(νd j−1) logyd j− logΓ(νd j)
}

−
1

2
logξ0d−

v2
0d

2

+
nd

∑
j=1

{

νd j log(xT

d jβββ+φv0d)−νd jyd j(x
T

d jβββ+φv0d)
}

, (6)

where ξ0d = 1+φ2 ∑nd
j=1 νd jµ

2
0d j and µ0d j = (xT

d jβββ+φv0d)
−1. Under gamma Model 2,

i.e. under the assumption νd j = ad jϕ, Appendix A gives the partial derivatives of ℓ0d

with respect to the components of θθθ = (βββT,φ,ϕ)T. It also gives the score vector U0(θθθ)
and the Hessian matrix H0(θθθ) containing the first and the second partial derivatives of

ℓ0d respectively.
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A first Newton-Raphson algorithm maximizes ℓ0(θθθ) = ∑D
d=1 ℓ0d , with fixed vd = v0d ,

d = 1, . . . ,D. The updating equation is

θθθ(k+1) = θθθ(k)−H−1
0 (θθθ(k))U0(θθθ

(k)). (7)

For d = 1, . . . ,D, a second Newton-Raphson algorithm maximizes h(vd) = h(vd,θθθ), de-

fined in (4), with θθθ = (βββT,φ,ϕ)T = θθθ0 fixed. The updating equation is

v
(k+1)
d = v

(k)
d −

ḣ(v
(k)
d ,θθθ0)

ḧ(v
(k)
d ,θθθ0)

. (8)

Algorithm. By combining the two Newton-Raphson algorithms, the ML-Laplace ap-

proximation algorithm for Model 2 is obtained. The steps are

1. Set the initial values i = 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, θθθ(0), θθθ(−1) = θθθ(0) + 1,

v
(0)
d = 0, v

(−1)
d = 1, d = 1, . . . ,D.

2. Until |v
(i)
d − v

(i−1)
d |< ε3, d = 1, . . . ,D, ‖θθθ(i)−θθθ(i−1)‖2 < ε4, do

(a) Apply algorithm (8) with seeds v
(i)
d , d = 1, . . . ,D, convergence tolerance ε1

and θθθ = θθθ(i) fixed. Output: v
(i+1)
d , d = 1, . . . ,D.

(b) Apply algorithm (7) with seed θθθ(i), convergence tolerance ε2 and v0d = v
(i+1)
d

fixed, d = 1, . . . ,D. Output: θθθ(i+1).

(c) i← i+1.

3. Output: θ̂θθ = θθθ(i), v̂d = v
(i)
d , d = 1, . . . ,D.

To get some algorithm seed θθθ(0), we can e.g. fit Model 1 (this can be done for several

distributions from the exponential family by using the glmer function of the R statistical

package lme4) to obtain the estimates β̃ββ, φ̃ and ν̃ and use the seedsβββ(0) = β̃ββ, φ(0) = φ̃ and

ϕ(0) = ν̃/ad , where ad = 1/nd ∑nd
j=1 ad j. Let us also note that the Laplace approximation

algorithm gives at convergence not only estimators of the model parameters but also the

mode predictors, v̂d , of the random effects.

4 Predictors of functions of model effects

This section considers a finite population U of N elements partitioned into D domains

Ud of size Nd , d = 1, . . . ,D. From the population, a sample s of size n is selected with

subsamples sd of sizes nd from domains Ud . Let yd = col
1≤ j≤Nd

(yd j) be the random vector
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containing the values of a target variable on the Nd units of domain d. Let yds be the

sub-vector of yd corresponding to the units in the sample sd and ydr the sub-vector of

domain units in the non-sampled domain population Ud− sd. By reordering the domain

units, we can write yd = (yT

ds,y
T

dr)
T. We define ys = col

1≤d≤D
(yds) and yr = col

1≤d≤D
(ydr) and

we follow a fully model-based approach by assuming that y = (yT

s,y
T

r)
T follows Model 2.

We are thus assuming a non-informative sampling setup.

The conditional distribution of ys, given v, is

f (ys|v) =
D

∏
d=1

f (yds|vd),

where

f (yds|vd) = exp
{ nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

exp
{ nd

∑
j=1

c(yd j,νd j)
}

and the p.d.f. of v is

f (v) =
D

∏
d=1

f (vd), f (vd) = (2π)−1/2 exp
{

−
1

2
v2

d

}

.

The conditional distribution of ydr, given yds, is

f (ydr|yds) =
f (ydr,yds)

f (yds)
=

∫

R f (ydr,yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=

∫

R f (ydr|vd) f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

. (9)

The aim of this section is to introduce the EBP and the plug-in predictor of µd j and

µ̄d = 1
Nd

∑Nd
j=1µd j under Model 2. The corresponding predictors under Model 1 can be

obtained in a similar way.

If θθθ = (βββT,φ,ϕ)T is known, the best predictor of µd j = µd j(θθθ,vd) = g−1(xT

d jβββ+φvd)
is µ̂d j(θθθ) = Eθ[µd j|ys]. In this case, we have that Eθ[µd j|ys] = Eθ[µd j|yds] and

µ̂d j(θθθ) = Eθ[µd j|yds] =

∫

R g−1(xT

d jβββ+φvd) f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=
Ad j(yds,θθθ)

Bd(yds,θθθ)
,
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where Ad j = Ad j(yds,θθθ) and Bd = Bd(yds,θθθ) are

Ad j =

∫

R
g−1(xT

d jβββ+φvd)exp
{ nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (vd)dvd,

Bd =
∫

R
exp

{
nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (vd)dvd. (10)

The EBP of µd j is µ̂d j(θ̂θθ) and can be approximated by the following Monte Carlo pro-

cedure.

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and put ν̂d j = ad jϕ̂.

2. For ℓ= 1, . . . ,L, generate v
(ℓ)
d i.i.d. N(0,1) and v

(L+ℓ)
d =−v

(ℓ)
d .

3. Calculate the approximation of the EBP µ̂d j = Âd j/B̂d , where

Âd j =
1

2L

2L

∑
ℓ=1

g−1(xd jβ̂ββ+ φ̂v
(ℓ)
d )exp

{ nd

∑
i=1

ydiθ̂
(ℓ)
di −b(θ̂

(ℓ)
di )

a(ν̂di)

}

,

B̂d =
1

2L

2L

∑
ℓ=1

exp
{ nd

∑
i=1

ydiθ̂
(ℓ)
di −b(θ̂

(ℓ)
di )

a(ν̂di)

}

(11)

and θ̂
(ℓ)
di = (ḃ)−1(µ̂

(ℓ)
di ) for µ̂

(ℓ)
di = g−1(xT

diβ̂ββ+ φ̂v
(ℓ)
d ).

The derived best predictors have minimum MSE in the class of unbiased estimators.

Unfortunately, this property does not hold for EBPs which are obtained by substituting

the true parameters by their estimates and therefore they are not unbiased. The EBPs

are asymptotically unbiased under the assumption that the estimates of the model pa-

rameters are consistent but the domain sample sizes are usually small in SAE problems.

Thus, it make sense to empirically investigate the behaviour of the plug-in predictors

which are less computationally demanding. The plug-in predictor of µd j is

µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d), (12)

where β̂ββ, φ̂ and v̂d are taken from the output of the ML-Laplace approximation algo-

rithm. The EBP and the plug-in predictor of µ̄d =
1

Nd
∑Nd

j=1µd j are

ˆ̄µE
d = ˆ̄µE

d (θ̂θθ) =
1

Nd

Nd

∑
j=1

µ̂d j, ˆ̄µP
d =

1

Nd

Nd

∑
j=1

µ̃d j. (13)
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5 Predictors of additive parameters

This section introduces predictors of additive parameters of small areas under Model 2.

Similar predictors can be obtained under Model 1. An additive domain parameter is

δd =
1

Nd

Nd

∑
j=1

h(yd j),

where h is a known measurable function. If j ∈ sd , then Eθ[h(yd j)|yds] = h(yd j). If j ∈

Ud− sd, then f (yd j|yds) is obtained from (9). Therefore, the best predictor of δd is

δ̂B
d =

1

Nd

Nd

∑
j=1

Eθ
[

h(yd j)|yds

]

=
1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

Eθ
[

h(yd j)|yds

]

}

,

where

Eθ[h(yd j)|yds] =

∫

R

∫

R h(yd j) f (yds|vd) f (yd j|vd) f (vd)dyd j dvd
∫

R f (yds|vd) f (vd)dvd

=
Ahd j(yds,θθθ)

Bd(yds,θθθ)
,

Ahd j =
∫

R

∫

R
h(yd j)exp

{
nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (yd j|vd) f (vd)dyd j dvd

and Bd was defined in (10). The EBP of of δd is

δ̂E
d =

1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

Eθ̂

[

h(yd j)|yds

]

}

, Eθ̂

[

h(yd j)|yds

]

=
Ahd j(yds,θ̂θθ)

Bd(yds,θ̂θθ)
.

If j ∈ Ud − sd, then the numerator and denominator of Eθ̂[h(yd j)|yds] can be approx-

imated by Monte Carlo simulation. The numerator is a bivariate integral that can be

written in the form of two iterative univariate integrals. Therefore, we implement an

iterative Monte Carlo algorithm which approximates the inner integral by simulating

positive random numbers y
(ℓ1,ℓ2)
d j from f (yd j|v

(ℓ1)
d ) and approximates the outer integral

by simulating random numbers v
(ℓ1)
d from f (vd). Under Model 2, the iterative Monte

Carlo algorithm is

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and ν̂d j = ad jϕ̂.

2. For ℓ1 = 1, . . . ,L1, generate v
(ℓ1)
d i.i.d. N(0,1) and v

(L1+ℓ1)
d =−v

(ℓ1)
d , calculate µ̂

(ℓ1)
d j =

g−1(xT

d jβ̂ββ+φ̂v
(ℓ1)
d ) and θ̂

(ℓ1)
d j =(ḃ)−1(µ̂

(ℓ1)
d j ). For ℓ1 = 1, . . . ,2L1, ℓ2 = 1, . . . ,L2, gen-

erate y
(ℓ1,ℓ2)
d j ∼ Exp

(

θ̂
(ℓ1)
d j , ν̂d j;a,b,c

)

.
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3. Approximate the EBP Êθ̂[h(yd j)|yds]≈ Âhd j/B̂d , where

Âhd j =
1

2L1L2

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

} L2

∑
ℓ2=1

h(y
(ℓ1,ℓ2)
d j ),

B̂d =
1

2L1

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

}

. (14)

The plug-in predictor of δd is

δ̂P
d =

1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

h(µ̃d j)
}

, µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d).

Simulation 2 shows that the plug-in predictor does not work well in some situations. For

this reason we propose another predictor of the additive domain parameter δd . Instead of

using the conditional distribution deriving the EBPs, we consider the predicted marginal

distribution of yd j with parameters ν̂d j and θ̃d j = (ḃ)−1(µ̃d j), where µ̃d is the plug-in

predictor of µd j. This is to say, we consider the p.d.f. f (yd j|θ̃d j, ν̂d j;a,b,c) from the

exponential family. Based on the marginal distribution, we define the marginal predictor

of δd ,

δ̂M
d =

1

Nd

(

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

ĥM
d j

)

,

where

ĥM
d j , E

[

h(yd j)| θ̃d j, ν̂d j;a,b,c
]

=

∫

R
h(y) f (y|θ̃d j, ν̂d j;a,b,c)dy.

For calculating the empirical best, the plug-in and the marginal predictors, we need two

files: (1) a survey file with the unit-level sample data (main file), and (2) a census file

containing the values of the employed explanatory variables in all the population units

(auxiliary file). However, not all the values xd j, d = 1, . . . ,D , j = 1, . . . ,Nd , are available

in many practical cases. If in addition some of the auxiliary variables are continuous,

the three introduced predictors are not applicable. An important particular case, where

these predictors can be calculated under the assumed fixed regression design, is when the

number of values of the vector of auxiliary variables is finite and the ad j’s take a common

value adk in the domain d and the covariate class k. In this situation, called “categorical

setup”, we only need a smaller auxiliary file containing the aggregated (domain-level)

values of the explanatory variables. More concretely, the categorical setup is

xd j ∈ {z1, . . . ,zK}, ad j = adk if xd j = zk, j = 1, . . . ,Nd , d = 1, . . . ,D. (15)
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Under the categorical setup (15), the EBP of δd is

δ̂E
d = δ̂E

d (θ̂θθ) =
1

Nd

[

∑
j∈sd

h(yd j)+
K

∑
k=1

Ndk−ndk

∑
i=1

Eθ̂

[

h(ydki)|yds

]

]

=
1

Nd

[

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)Eθ̂
[

h(ydk)|yds

]

]

, (16)

where the size Ndk of Udk = { j ∈Ud : xd j = zk} is available from external data sources

(aggregated auxiliary information), ndk is the size of sdk = { j ∈ sd : xd j = zk} and ydki

denotes the value that the target variable takes in the ith unit of the subset Udk − sdk.

Under Model 2, the expectation Eθ̂

[

h(ydk)|yds

]

is approximated (similarly to (14)) by

Monte Carlo integration as follows.

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and put ν̂dk = adkϕ̂.

2. For ℓ1 = 1, . . . ,L1 generate v
(ℓ1)
d i.i.d. N(0,1) and v

(L1+ℓ1)
d =−v

(ℓ1)
d , calculate µ̂

(ℓ1)
dk =

g−1(zT

kβ̂ββ+ φ̂v
(ℓ1)
d ) and θ̂

(ℓ1)
dk = (ḃ)−1(µ̂

(ℓ1)
dk ). For ℓ1 = 1, . . . ,2L1, ℓ2 = 1, . . . ,L2, gen-

erate y
(ℓ1,ℓ2)
dk ∼ Exp

(

θ̂
(ℓ1)
dk , ν̂dk;a,b,c

)

.

3. Calculate Eθ̂

[

h(ydk)|yds

]

= Âhdk/B̂d, where

Âhdk =
1

2L1L2

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

} L2

∑
ℓ2=1

h(y
(ℓ1,ℓ2)
dk ),

B̂d =
1

2L1

2L1

∑
ℓ=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

}

. (17)

If (15) holds, the plug-in predictor of δd is

δ̂P
d =

1

Nd

{

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)h(µ̃dk)
}

, µ̃dk = g−1(zT

kβ̂ββ+ φ̂v̂d),

and the marginal predictor of δd is

δ̂M
d =

1

Nd

{

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)ĥ
M
dk

}

, ĥM
dk =

∫

R
h(y) f (y|θ̃dk, ν̂dk;a,b,c)dy.
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5.1 Predictors of small area means

This section introduces predictors of the small area mean

Y d =
1

Nd

Nd

∑
j=1

yd j,

which is an additive parameter with h(y) = y. The best predictor of yd j is ŷd j(θθθ) =
Eθ[yd j|ys]. If j ∈ sd , then Eθ[yd j|ys] = yd j. If j ∈Ud − sd , then Eθ[yd j|ys] = Eθ[yd j|yds]

and

ŷd j(θθθ) = Eθ[yd j|yds] =

∫

R

∫

R yd j f (yd j|vd) f (yds|vd) f (vd)dyd j dvd
∫

R f (yds|vd) f (vd)dvd

=

∫

Rµd j f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=
Ad j(yds,θθθ)

Bd(yds,θθθ)
= Eθ[µd j|yds] = µ̂d j(θθθ),

where Ad j = Ad j(yds,θθθ) and Bd = Bd(yds,θθθ) are defined in (10). The EBP of yd j is ŷd j =

ŷd j(θ̂θθ) = µ̂d j(θ̂θθ). Thus, the EBP of yd j is ŷd j = yd j if j ∈ sd and ŷd j = µ̂d j if j ∈Ud− sd ,

where µ̂d j is the EBP of µd j given in (11).

The EBP and the plug-in and marginal predictors of Y d are

Ŷ
E

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̂d j

]

,Ŷ
P

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̃d j

]

,

Ŷ
M

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̂M
d j

]

,

where µ̃d j is the plug-in predictor of µd j given in (12) and

µ̂M
d j , E

[

yd j| θ̃d j, ν̂d j;a,b,c
]

=
∫

R
y f (y|θ̃d j, ν̂d j;a,b,c)dy = g−1(xT

d jβ̂ββ+ φ̂v̂d) = µ̃d j,

so that Ŷ
M

d = Ŷ
P

d . Under the categorical setup (15), the EBP and the plug-in predictors

of Y d are

Ŷ
E

d =
1

Nd

[

∑
j∈sd

yd j +
K

∑
k=1

(Ndk−ndk)µ̂dk

]

, Ŷ
P

d =
1

Nd

[

∑
j∈sd

yd j +
K

∑
k=1

(Ndk−ndk)µ̃dk

]

,

where µ̃dk = g−1(zT

kβ̂ββ+ φ̂v̂d), µ̂dk = Âz
dk/B̂d, B̂d is defined in (10) and Âz

dk is the Monte-

Carlo approximation of
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Az
dk =

∫

R
g−1(zT

kβββ+φvd)exp
{ nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

f (vd)dvd.

This is to say, Âz
dk can be calculated as

Âz
dk =

1

2L

2L

∑
ℓ=1

g−1(zT

kβ̂ββ+ φ̂v
(ℓ)
d )exp

{ nd

∑
j=1

yd jθ̂
(ℓ)
d j −b(θ̂

(ℓ)
d j )

a(νd j)

}

,

where v
(ℓ)
d are i.i.d. N(0,1) and v

(L+ℓ)
d =−v

(ℓ)
d , ℓ= 1, . . . ,L, θ̂

(ℓ)
d j = (ḃ)−1(µ̂

(ℓ)
d j ) and µ̂

(ℓ)
d j =

g−1(xT

d jβ̂ββ+ φ̂v
(ℓ)
d ).

5.2 Predictors of poverty proportions

This section deals with the estimation of domain poverty proportions, which are the

proportion of people in the domain whose welfare is below the poverty line. Let yd j be

a welfare variable (i.e. income or expenditure) for individual j from domain d and let z

be the poverty line. Then, the poverty proportion is the additive parameter

pd =
1

Nd

Nd

∑
j=1

h0(yd j) ,

where h0(yd j) = I
(

yd j < z
)

. The EBP of pd is

p̂E
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

Eθ̂ [h0(yd j)|yds]
)

,

where Eθ̂ [h0(yd j)|yds] is calculated by applying (14) with h = h0.

The plug-in and the marginal predictors of pd are

p̂P
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

h0(µ̃d j)
)

, p̂M
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

p̂M
d j

)

,

where µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d) and

p̂M
d j = E

[

I(yd j < z)|θ̃d j, ν̂d j;a,b,c
]

= P

(

Exp(θ̃d j, ν̂d j;a,b,c)< z

)

, F(z|θ̃d j, ν̂d j;a,b,c).

In the previous formula, F(·) denotes the cumulative distribution function of the corre-

sponding distribution from the exponential family.
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Under the categorical setup (15), the EBP of pd is

p̂E
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk)Eθ̂
[

h0(ydk)|yds

]

]

,

where Eθ̂

[

h0(ydk)|yds

]

is calculated by applying (17) with h = h0. The marginal and the

plug-in predictors of pd are

p̂M
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk) p̂M
dk

]

,

p̂P
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk)h0(µ̃dk)
]

,

where p̂M
dk = F(z|θ̃dk, ν̂dk;a,b,c), θ̃dk = (ḃ)−1(µ̃dk), ν̂dk = adkϕ̂ and µ̃dk = g−1(zT

kβ̂ββ +

φ̂v̂d).

6 Bootstrap estimation of the MSE

This section presents a parametric bootstrap estimator of the MSE of ˆ̄µE
d and δ̂E

d appli-

cable to the categorical setup (15). Under Model 2, the algorithm steps are

1. Fit the model to the sample and calculate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T, put ν̂dk = adkϕ̂.

2. Repeat B times (b = 1, . . . ,B):

(a) The population. For d = 1, . . . ,D, k = 1, . . . ,K generate v
∗(b)
d i.i.d. N(0,1)

and calculate µ
∗(b)
dk = g−1

(

zT

kβ̂ββ + φ̂v
∗(b)
d

)

and θ
∗(b)
dk = (ḃ)−1(µ

∗(b)
dk ). For j =

1, . . . ,Nd generate

y
∗(b)
d j ∼ Exp

(

θ
∗(b)
dk , ν̂dk;a,b,c

)

, where k is such that xd j = zk.

Calculate the true bootstrap quantities

µ̄
∗(b)
d = µ̄d(θ̂θθ,v

∗(b)
d ) =

1

Nd

K

∑
k=1

Ndkµ
∗(b)
dk , δ

∗(b)
d =

1

Nd

Nd

∑
j=1

h(y
∗(b)
d j ).

(b) The sample. The bootstrap sample has the same units as the real data sam-

ple. It is not extracted at random. The model is on the population, therefore
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the source of randomness comes from the generation of the population. For

each bootstrap sample, calculate θ̂θθ
∗(b)

and the EBPs

ˆ̄µ
E∗(b)
d = ˆ̄µE

d (θ̂θθ
∗(b)

), δ̂
E∗(b)
d = δ̂E

d (θ̂θθ
∗(b)

).

3. Output: mse∗( ˆ̄µE
d ) =

1
B ∑B

b=1

(

ˆ̄µ
E∗(b)
d − µ̄

∗(b)
d

)2
, mse∗(δ̂E

d ) =
1
B ∑B

b=1

(

δ̂
E∗(b)
d −δ

∗(b)
d

)2
.

The above algorithm can be easily modified to the case of fitting a GLMM with at

least one continuous auxiliary variable. For this sake, a census file is needed with the

values of xd j for all the units of the population. In addition, the census file must have

the same unit identifier variable as the sample file. This modification is equivalent to

adapting the parametric bootstrap method of González-Manteiga et al. (2007) to the

current unit-level GLMMs.

7 Simulation experiments

This section presents three simulation experiments for gamma Model 2. Simulation 1

analyses the behaviour of the ML-Laplace approximation algorithm for estimating pa-

rameters. Simulation 2 compares the performances of the EBPs, the plug-in predictors

and the marginal predictors. Finally, Simulation 3 empirically studies the bootstrap es-

timators of the MSEs.

In all the experiments data are simulated in the following way. For d = 1, . . . ,D

and j = 1, . . . ,nd , define regressors representing four possible classes of labour sta-

tus. This is to say, (xd j1,xd j2) = (0,0) for unemployed, (xd j1,xd j2) = (0,1) for em-

ployed, (xd j1,xd j2) = (1,0) for inactive and (xd j1,xd j2) = (1,1) for ≤ 15. Generate

(xd j1,xd j2) ∈ {(0,0),(0,1),(1,0),(1,1)}with probabilities p00 = 0.1+ (d−1)
D−1

0.2, p01 =

0.5− (d−1)
D−1

0.2, p10 = 0.2, and p11 = 0.2, respectively. For each covariate class and do-

main d, the constants ad j (which are assumed to be known in Model 2) are generated

independently from a normal distribution with mean 1.5 and standard deviation 0.2 in

order to be close to the values appearing in the application to the real data. The auxil-

iary variables, xd j1, xd j2, and the shape constants, ad j, are generated before starting the

simulation loop, so they are constant in the three simulation experiments. The model

parameters are taken as β0 = 0.8, β1 =−0.15, β2 = 0.2, φ= 0.1 and ϕ= 2.5.

Within each iteration, the three simulation algorithms generate the random effect

vd ∼N(0,1), d = 1, . . . ,D, and the income variable yd j ∼Gamma(νd j,
νd j

µd j
), where νd j =

ad jϕ and

µd j = (β0 + xd j1β1 + xd j2β2 +φvd)
−1, d = 1, . . . ,D, j = 1, . . . ,nd .
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7.1 Simulation 1

The target of Simulation 1 is to check the behaviour of the fitting algorithm. We take

D = 30,60,120,180 and nd = 10,25,50. The steps of simulation 1 are

1. Repeat I = 1000 times (i = 1, . . . , I)

1.1. Generate a sample {y
(i)
d j : d = 1, . . . ,D, j = 1 . . . ,nd} from Model 2.

1.2. Calculate β̂
(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

2. Output: For θ ∈ {β0,β1,β2,φ,ϕ}, calculate the relative bias and relative root-MSE,

i.e.

RBIAS =
1

|θ|

1

I

I

∑
i=1

(θ̂(i)− θ), RRMSE =
1

|θ|

(1

I

I

∑
i=1

(θ̂(i)− θ)2
)1/2

.

Tables 1, 2 and 3 presents the results of the simulation experiment for nd = 10, nd =
25 and nd = 50 respectively. The relative bias is basically negligible. The relative root-

MSE decreases as D or nd increases. Simulation 1 empirically illustrates the consistency

of the implemented ML-Laplace approximation algorithm.

Table 1: RBIAS (left) and RRMSE (right) in % for nd = 10.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.9932 0.6967 0.7074 0.6254 6.1918 4.5492 3.3014 2.5208

β̂1 0.3361 0.5187 −0.0944 0.0275 32.9073 24.1085 16.6784 13.0500

β̂2 −0.2629 0.0504 0.0892 0.3631 25.7537 18.1448 12.4199 9.8741

φ̂ −11.1515 −3.9887 −0.5083 0.1928 41.0300 27.3513 18.3789 15.0615

ϕ̂ 1.5736 0.9871 0.5349 0.3370 8.5560 6.0136 4.1093 3.4281

Table 2: RBIAS (left) and RRMSE (right) in % for nd = 25.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.8245 0.9708 0.8585 0.9259 4.2377 3.2867 2.2593 1.9043

β̂1 −0.4093 0.3290 0.9417 0.2324 20.0357 14.1744 10.1065 8.3685

β̂2 0.4219 0.2353 −0.1183 0.0690 14.8132 11.1234 7.7572 6.3451

φ̂ −4.1686 −2.7112 −1.3648 −0.7450 22.0699 15.8384 10.9345 8.6654

ϕ̂ 0.6263 0.2041 0.2512 0.2021 5.1735 3.5982 2.5533 2.0827
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Table 3: RBIAS (left) and RRMSE (right) in % for nd = 50.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.9193 1.2258 1.1286 1.2008 3.4704 2.6633 2.0673 1.8352

β̂1 0.1209 0.2595 0.0680 −0.0676 14.3711 10.0332 7.3633 5.8110

β̂2 0.5331 −0.0164 −0.0452 0.0878 11.1165 7.7034 5.3727 4.4457

φ̂ −5.3541 −2.2712 −1.3643 −1.1853 18.5763 12.1674 8.7474 6.9339

ϕ̂ 0.2439 0.1738 0.1221 0.0634 3.4888 2.5094 1.8352 1.4415

7.2 Simulation 2

The target of Simulation 2 is to investigate the behaviour of the EBP, the marginal and

plug-in predictors of the mean Y d and the poverty proportion pd. Before starting the sim-

ulation loop, a first set of target variables {y
(0)
d j : d = 1, . . . ,D, j = 1, . . . ,Nd} is generated

and the poverty threshold z is taken as the first sample quartile of these variables.

The model is fitted by the ML-Laplace approximation algorithm. The EBP is approx-

imated with L1 = L2 = 100 Monte Carlo iterations and the domain sizes are Nd = 1000,

d = 1, . . . ,D. The steps of Simulation 2 are

1. Repeat I = 104 times (i = 1, . . . , I)

1.1. Generate the i-th population {y
(i)
d j : d = 1, . . . ,D, j = 1 . . . ,Nd} in the same

way as the sample in Simulation 1.

1.2. Calculate Y
(i)
d = 1

Nd
∑Nd

j=1 y
(i)
d j , p

(i)
d = 1

Nd
∑Nd

j=1 I(y
(i)
d j < z), d = 1, . . . ,D.

1.3. For d = 1, . . . ,D, select a sample s
(i)
d of size nd . The indexes of the samples

s
(i)
d remain constant across the iterations. Calculate β̂

(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

1.4 Calculate the predictors Ŷ
E ,i

d , Ŷ
P,i

d , Ŷ
M,i

d , p̂
E ,i
d , p̂

P,i
d , p̂

M,i
d and the direct estima-

tors Ŷ
dir,i

d = 1
nd

∑nd
j=1 y

(i)
d j , p̂

dir,i
d = 1

nd
∑nd

j=1 I(y
(i)
d j < z), d = 1, . . . ,D.

2. For ξ
(i)
d ∈{Y

(i)
d , p

(i)
d } and ξ̂

(i)
d ∈{Ŷ

dir,i

d ,Ŷ
E ,i

d ,Ŷ
P,i

d ,Ŷ
M,i

d , p̂dir,i
d , p̂E ,i

d , p̂P,i
d , p̂

M,i
d }, d = 1, . . . ,D,

calculate the performance measures

ξd =
1

I

I

∑
i=1

ξ
(i)
d , REd =

(1

I

I

∑
i=1

(

ξ̂
(i)
d − ξ

(i)
d

)2
)1/2

, RBd =
1

|ξd |

1

I

I

∑
i=1

(ξ̂
(i)
d − ξ

(i)
d ),

RREd =
REd

|ξd |
, RB =

1

D

D

∑
d=1

|RBd|, RRE =
1

D

D

∑
d=1

RREd.
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Table 4 presents the results of Simulation 2 for sample sizes nd = 10,25,50,75,100,

which are of similar magnitude to most of the county sample sizes presented in Table

10. For estimating the domain mean, the EBP Ŷ
E

d has had lower RB but higher RRE than

the marginal/plug-in predictor Ŷ
P

d = Ŷ
M

d . Further, the model-based predictors are more

efficient than the direct estimator. For estimating the domain proportion, the plug-in es-

timator is not recommended and the marginal and EB predictors are both more efficient

than the direct estimator. The marginal predictor has obtained slightly better results than

the EBP in relative bias and root-MSE. This fact can be explained by the variability

derived from approximating the EBP with L1 = L2 = 100 Monte Carlo iterations.

Table 4: RB (left) and RRE (right) in % for D = 30.

nd 10 25 50 75 100 10 25 50 75 100

Ŷ
Dir

d 4.27 2.18 1.63 1.43 0.98 17.69 10.99 7.71 6.22 5.25

Ŷ
E

d 0.33 0.31 0.38 0.23 0.25 11.11 8.50 6.57 5.54 4.82

Ŷ
P

d 0.79 0.53 0.46 0.24 0.25 11.09 8.45 6.54 5.46 4.75

Ŷ
M

d 0.79 0.53 0.46 0.24 0.25 11.09 8.45 6.54 5.46 4.75

p̂Dir
d

7.53 4.21 3.03 2.49 1.78 55.10 34.32 24.03 19.33 16.37

p̂E
d 0.57 0.56 0.68 0.43 0.39 21.18 16.62 13.17 11.29 10.06

p̂P
d 98.99 97.50 95.01 92.55 90.04 101.78 100.22 97.65 95.15 92.55

p̂M
d 0.76 0.49 0.31 0.27 0.21 21.17 16.56 13.08 11.18 9.97

Remark 7.1 Since it is complicated to calculate analytically the error of the Monte
Carlo approximation because we approximate the integrals of numerator and denom-
inator, we tried to study the accuracy numerically. Namely, for one choice of nd = 25
and one selected iteration of Simulation 2 we have approximated the EBP 1000 times
for each domain and different values of L. Then we calculated the standard deviation of
these approximations in each domain. This quantity express the variability of the Monte
Carlo approximations. The means of the obtained standard deviations over areas are
presented in Table 5 for the two cases of predicting the area mean Y d and the area
proportion pd .

Table 5: Standard deviations of 1000 MC approximations of EBP for nd = 25 and different values of L.

Predictor L = 50 L = 100 L = 200 L = 300 L = 500

Ŷ
E

d 0.01370 0.00960 0.00665 0.00552 0.00421

p̂E
d 0.00593 0.00380 0.00250 0.00202 0.00152

In the simulation experiments we have used L = 100 from time reasons but from the

Table 5 it follows that in practical applications a higher value of L, e.g. L = 300, could

be recommended. Higher values of L than 300 increase substantially the computing

time.
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As a consequence of the results of Simulation 2, we will consider only the marginal

predictor in Simulation 3 and we recommend using the marginal predictor in applica-

tions to real data.

For explaining the poor behaviour of plug-in predictors p̂P
d of domain proportions

pd, we recall that

p̂P
d =

1

Nd

[

∑
j∈sd

I(yd j < z)+
K

∑
k=1

(Ndk−ndk)I(µ̃dk < z)
]

,

where K = 4 and the poverty threshold z is taken as the lower sample quartile of the

generated target variables. Since µ̃dk is the predictor of the expectation of the target

variable distribution, then µ̃dk tends to be greater than z in most of the iterations of the

simulation experiment. This is to say, the probability that one of the terms I(µ̃dk < z) is

equal to 1 is very small. In other words, the observed value of a Bernoulli variable is a

bad estimator of the probability of success. This means that the summands in the second

sum will be equal to zero with high probability and therefore the auxiliary information

is almost not taken into account. Moreover, only the sample sd is used in the first sum as

in the case of direct estimators, but this sum is divided by the population size Nd instead

of the sample size nd .

7.3 Simulation 3

Simulation 3 investigates the behaviour of the bootstrap MSE estimator of the marginal

predictors. We take D = 30, nd = 50, Nd = 1000, I = 500 and B = 25,50,100,200,300,

400. We take Ed = (REd)
2 from the output of Simulation 2. The steps of Simulation 3

are

1. Repeat I = 500 times (i = 1, . . . , I)

1.1. Generate the population in the same way as sample in Simulation 2.

1.2. For d = 1, . . . ,D, select a sample sd of size nd with fixed indexes and calculate

β̂
(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

1.3. For each ξ̂
(i)
d ∈ {Ŷ

M,i

d , p̂M,i
d }, calculate mse

∗(i)
d = mse∗d(ξ̂

(i)
d ).

2. Calculate the relative performance measures

Rbd =
1

|Ed |

1

I

I

∑
i=1

(mse
∗(i)
d −Ed), Red =

1

|Ed |

(1

I

I

∑
i=1

(mse
∗(i)
d −Ed)

2
)1/2

,
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Rb =
1

D

D

∑
d=1

|Rbd |, Re =
1

D

D

∑
d=1

Red.

Table 6 summarizes the results of Simulation 3. Figure 1 presents the boxplots of the

relative biases Rbd (left) and the relative root-MSEs Red (right) of MSE estimators for

average incomes. Figure 2 presents the same boxplots for poverty proportions.

Table 6: Relative biases and root-MSEs (in %) of MSE estimators for average incomes (top) and poverty

proportions (bottom).

B = 25 B = 50 B = 100 B = 200 B = 300 B = 400

Y d Rb 5.91 5.59 6.46 6.91 6.87 6.47

Re 32.74 24.65 19.51 16.76 15.54 14.84

pd Rb 1.77 1.51 1.62 2.06 1.57 1.77

Re 31.10 23.20 18.09 14.83 14.23 13.29

From the figures we observe that the parametric bootstrap method slightly under-

estimate the MSEs of the marginal predictors and that root mean squared error of the

estimates is decreasing with increasing B. On the basis of the results we recommend

to use at least B = 200 bootstrap iterations for estimating the MSEs of the marginal

predictors.
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Figure 1: Boxplots of relative biases Rbd (left) and root-MSEs Red (right) of MSE estimators of average

incomes.
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Figure 2: Boxplots of relative biases Rbd (left) and root-MSEs Red (right) of MSE estimators of poverty

proportions.

8 Application to SLCS data

This section presents an application to unit-level data from the 2013 SLCS of the region

of Valencia. The SLCS is carried out in all the Spanish territory and the planned domains

are the regions. The counties, within the region of Valencia, have rather small sample

sizes and they are considered as small areas by the Spanish Statistical Office. We esti-

mate average incomes and poverty proportions. The SLCS contains data from D = 26

Valencian counties and these counties are the domains of interest. The target variable

yd j is the average annual net income (in 104 euros) of individual j from domain d. The

selected auxiliary variables are the labour status categories (employed, unemployed,

inactive and below 15 years old). In addition to the SLCS data, we take auxiliary aggre-

gated data from the SLFS, which contains survey data about the labour market. As the

regional sample sizes of the SLFS are much greater than the corresponding ones of the

SLCS, the sizes of counties crossed by the labour status categories are estimated from

the SLFS and considered as known quantities.

We start the data analysis by doing a preliminary step. We fit gamma Model 1 to the

data (yd j,xd j1,xd j2), d = 1, . . . ,D, j = 1, . . . ,nd , where xd j1 and xd j2 are the dichotomic

variables indicating if an individual is employed and unemployed (yes = 1, no = 0)

respectively. The K = 3 covariate classes are z1 = (1,0), z2 = (0,1) and z3 = (0,0)
for employed, unemployed and rest (≤ 15 or inactive) respectively. For d = 1, . . . ,D,

j = 1, . . . ,Nd , we consider the population model (Model 1)

yd j|vd
∼ Gamma

(

ν, ν/µd j

)

, g(µd j) =
1

µd j

= β0 +β1xd j1 +β2xd j2 +φvd.
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By using the glmer function of the R statistical package lme4, we fit Model 1 by ap-

plying the ML-Laplace approximation algorithm. Table 7 (left) gives the estimates of

the regression parameters and their estimated standard deviations and p-values. Table

7 (right) presents the estimates of parameters φ and ν and the corresponding quantile-

based 95% confidence intervals calculated from 1000 parametric bootstrap samples.

Table 7: Regression (left) and var/shape (right) parameter estimates under Model 1.

estimate standard error p-value estimate 95% conf. interval

β̃0 0.771 0.0310 < 2E-16 φ̃ 0.093 (0.0496, 0.0991)

β̃1 -0.142 0.0163 < 2E-16 ν̃ 2.858 (2.270, 2.952)

β̃2 0.142 0.0287 7.42E-07

Let us note that initially we have calculated the EBP’s and marginal predictors of

average incomes and poverty proportions under Model 1 but the results were unsatis-

factory. The predicted values had very small variability between domains and for large

sample sizes nd they did not correspond to direct estimators. So the assumption νd j = ν

for all d and j is too rigid in this case and a more general model is needed.

We take the plug-in predictors µ̃d j = (β̃0+ β̃1xd j1+ β̃2xd j2+ φ̃ṽd)
−1 calculated under

Model 1 as a preliminary step and we use them as inputs of the algorithmic procedure

for fitting the more complex unit-level gamma Model 2. For d = 1, . . . ,D, j = 1, . . . ,Nd ,

we consider the population model (Model 2)

yd j|vd
∼Gamma

(

νd j, νd j/µd j

)

, νd j = ad jϕ, g(µd j) =
1

µd j

= β0+β1xd j1+β2xd j2+φvd.

For fitting Model 2 to the data, we first need the constants ad j. Since they are not known

in our case, we estimate them by the following algorithmic procedure.

1. For a grid of values of t in the interval (0.25, 3) and step equal to 0.01, fit the Model

2 to the data, assuming that ad j = µ̃t
d j is known. If t = 2 and ad j is equal to µt

d j,

then var[yd j|vd ] = 1/ϕ, which corresponds to the homoscedastic case. Calculate

the estimator ϕ̂(t) for each considered t.

2. For each considered t, calculate the plug-in predictors µ̂
(t)
d j , the raw residuals ê

(t)
d j =

yd j− µ̂
(t)
d j and the sum of the squared residuals r2(t). Select t∗ minimizing r2(t).

3. Do the inferences with Model 2 and ad j = µ̃t∗
d j known, i.e. νd j = ϕ̂(t∗)µ̃

t∗
d j.

For the considered data set, the selected optimal choice of t is t∗ = 0.60. Figure

3 presents a plot of the function r2(t) and a boxplot of the optimal shape constants

ad j = µ̃t∗
d j.
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Figure 3: Function r2(t) (left) and boxplot of ad j (right).

Table 8 gives the parameter estimates of Model 2. The signs of the regression param-

eter and the form of the link function indicate that employment (unemployment) has a

positive (negative) effect on income.

Table 8: Parameter estimates under Model 2.

estimate standard error p-value

β̂0 0.775 0.0132 < 2E-16

β̂1 -0.141 0.0157 < 2E-16

β̂2 0.140 0.0300 3.09E-06

φ̂ 0.1113 0.0112 < 2E-16

ϕ̂ 2.4646 0.0675 < 2E-16

For the sake of comparisons, we also fit the unit-level log-linear normal mixed model

(Model 3)

zd j = b0 +b1xd j1 +b2xd j2 +ud + ed j, d = 1, . . . ,D, j = 1, . . . ,nd ,

where zd j = log(yd j + 1), ud ∼ N(0,σ2
u), ed j ∼ N(0,σ2

e) and the random effects ud ∼
N(0,σ2

u) and the random errors ed j ∼ N(0,σ2
e) are mutually independent. By using

the lmer function of the R statistical package lme4, we fit Model 3 by applying the

REML method. The estimates of the model standard deviations are σu = 0.0886 and

σe = 0.3036. Table 9 presents the estimates of the regression parameters of Model 3.

Table 9: Parameter estimates under Model 3.

estimate standard error p-value

b̂0 0.803 0.0201 < 2E-16

b̂1 0.137 0.0135 < 2E-16

b̂2 -0.112 0.0180 5.41E-10
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Figure 4: Q-Q plot of random effects for models 2 (left) and 3 (right).

In order to check the assumption that the random effects have the standard normal

distribution, we take the mode predictors v̂d and ûd of the random effects under Model

2 and Model 3 respectively and we plot the normal Q-Q plots in Figure 4. We do not

observe significant deviations from normality. Moreover, the Kolmogorov-Smirnov test

does not reject the hypothesis H0 : Fv̂1,d
= FN(0,1) with p-values equal to 0.763 (Model

2) and 0.925 (Model 3).

Remark 8.1 In Figure 4 (left) there are two domains that are far from the straight line

indicating normality in the bottom-left corner. To illustrate robustness of the method we

have investigated what happens if we drop out all the observations of these two domains.

We have fitted Model 2 without the mentioned observations and the results are presented

in Table 11 of Appendix B. Since the parameter estimates are very similar to those given

in Table 8, we can say that the methodology is robust with respect to small deviations

from the hypothesis of normality of the random effects.

Figure 5 presents graphs of raw residuals for Model 2 (left) and Model 3 (right).

There are not significant visual differences between both models.

The sum of squares of raw residuals for models 2 and 3 are

r2
2 =

D

∑
d=1

nd

∑
j=1

(yd j− µ̂d j)
2 = 1897.35, r2

3 =
D

∑
d=1

nd

∑
j=1

(yd j− (exp(ẑd j)−1))2 = 1938.30.

As we observe that Model 2 has a slightly better fit to data, we do the estimation of

the small area parameters (average income and poverty proportion) under Model 2. This

application illustrates that it may have sense to consider more general GLMM instead

of using normal mixed model for some transformation of data.
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Figure 5: Dispersion graphs of raw residuals for Model 2 (left) and Model 3 (right).

Remark 8.2 In order to study the importance of the random area effects in the model,

we have fitted the following Gamma model without area effects (referred to as Model 0)

yd j|vd ∼ Gamma(ν, ν/µd j), d = 1, . . . ,D, j = 1, . . . ,nd ,

ηd j = g(µd j) =
1

µd j

= x
T

d jβββ, (18)

and calculated the corresponding marginal predictors based on this model. The param-

eter estimates can be obtained by the R function glm and are presented in Table 12 in

Appendix B. Unfortunately this model has a bad fit to data (the sum of squares of raw

residuals r2
0 = 2010.56 in comparison with r2

2 = 1897.35 obtained for model 2) and

it does not explain the between domain variability which is not described by the aux-

iliary variables. Since the sizes of population classes are quite homogeneous between

domains, it results in a quite over-smoothed behaviour of the predictors as can be seen

from Table 13 of Appendix B. This table presents the marginal predictors under Model

2 and Model 0 and the corresponding bootstrap estimates of the MSE. The results for

proportion predictions are presented also in Figure 8. From this figure one can see the

smoothing effect of Model 0 and also that the estimated MSEs are for this model higher

than the estimated MSEs of the direct estimators for sample sizes higher than 60.

In order to get the marginal predictor of proportions, we need the ad j values for the

whole population or at least the values adk for the covariate classes zk, k = 1,2,3. Figures

6 and 7 were obtained by the choice

adk = µ̃t∗
dk,
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Figure 6: Predictions of average incomes in 104 euros (left) and estimated MSEs (right).
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Figure 7: Predictions of poverty proportions (left) and estimated MSEs (right).

where µ̃dk is the predictor of µdk derived under Model 1 (νd j = ν) and t∗ = 0.60 is the

optimal choice of t. This means that for every unit j of domain d and covariate class

zk ∈ {z1,z2,z3}, we take ad j = adk if xd j = zk, d = 1, . . . ,26, j = 1, . . . ,nd , k = 1,2,3.

Table 10 presents county codes (c), sample sizes (nd), population sizes (Nd), marginal

predictions of average incomes in 104 euros (Y M), marginal predictions of poverty pro-

portions (pM), direct estimates of average incomes in 104 euros (Y dir) and direct es-

timates of poverty proportions (pdir). It also gives the corresponding MSE estimates

(mse) based on 500 bootstrap samples generated from the fitted Model 2. As auxiliary

population data, we took the SLFS data file of the region of Valencia in 2013. The

poverty line for the region of Valencia was 6999.6 euros in 2013.

Figure 6 plots the marginal predictions (Y M) and the direct estimates (Y dir) of av-

erage incomes in 104 euros (left) and their corresponding model-based MSE bootstrap

estimates (right). Figure 7 plots the marginal predictions (pM) and the direct estimates

(pdir) of poverty proportions (left) and their corresponding model-based MSE bootstrap

estimates (right). In all cases, the counties are sorted by sample size. We observe that the

model-based marginal predictions have a more smooth behaviour across counties than
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the direct estimates. Further, the marginal predictions and the direct estimates tend to be

close when sample size increases. As expected, the marginal predictors have had lower

estimated MSEs than the direct estimators.

Table 10: Predictions and estimated MSEs for average incomes and poverty proportions.

c nd Nd Y M mse pM mse Y dir mse pdir mse

27 82 124270 1.2496 0.00718 0.2545 0.00051 1.1738 0.01031 0.2909 0.00252

28 57 70944 1.2924 0.00951 0.2374 0.00072 1.2471 0.01253 0.1217 0.00339

29 69 225440 1.5033 0.00680 0.1702 0.00058 1.5825 0.01725 0.0364 0.00339

30 132 227463 1.2945 0.00583 0.2362 0.00040 1.1461 0.01344 0.2998 0.00270

31 56 166774 1.3584 0.01025 0.2127 0.00064 1.2932 0.01600 0.0520 0.00388

32 293 459626 1.6860 0.00243 0.1248 0.00019 1.6821 0.00335 0.0685 0.00076

33 128 268924 1.1260 0.00589 0.3121 0.00043 0.9728 0.00858 0.3436 0.00169

34 59 292243 1.4540 0.00947 0.1809 0.00068 1.6162 0.01536 0.1166 0.00393

3 57 87560 1.0701 0.01149 0.3401 0.00069 0.8361 0.01629 0.4612 0.00364

5 91 246942 1.7397 0.00503 0.1162 0.00039 1.3659 0.02225 0.3263 0.00373

6 82 179798 1.5543 0.00651 0.1555 0.00051 1.5869 0.00885 0.1805 0.00225

7 10 26007 1.3613 0.03368 0.2112 0.00219 1.3245 0.06582 0.0000 0.01899

11 118 189865 1.2552 0.00551 0.2534 0.00040 1.1662 0.00752 0.1668 0.00170

12 15 89136 1.7504 0.02317 0.1144 0.00140 2.0290 0.05904 0.0000 0.01028

13 138 187515 1.4426 0.00454 0.1853 0.00033 1.6057 0.00738 0.0253 0.00154

14 189 370540 1.4513 0.00347 0.1836 0.00026 1.3552 0.00705 0.1438 0.00185

15 405 771129 1.6043 0.00163 0.1419 0.00013 1.5332 0.00279 0.0966 0.00061

16 93 131337 1.6408 0.00536 0.1340 0.00043 1.4531 0.01237 0.0623 0.00353

17 12 33122 1.5576 0.03806 0.1547 0.00211 1.8238 0.07683 0.2857 0.01779

18 35 54545 1.8157 0.01318 0.1057 0.00090 2.1590 0.02103 0.0000 0.00419

20 125 256553 1.6029 0.00543 0.1437 0.00039 1.7224 0.00642 0.0314 0.00145

21 49 52958 1.2107 0.01308 0.2704 0.00090 1.1340 0.01760 0.2205 0.00430

22 13 33126 1.2050 0.03257 0.2727 0.00198 1.0174 0.06239 0.2086 0.01433

23 40 70642 1.1452 0.01513 0.3002 0.00118 1.0109 0.02518 0.1611 0.00591

24 65 80434 1.3719 0.00942 0.2082 0.00070 1.3600 0.01306 0.0000 0.00271

25 79 180619 1.2386 0.00833 0.2598 0.00060 1.2238 0.01157 0.1371 0.00280

9 Concluding remarks

This paper introduces predictors of additive parameters under unit-level GLMMs. The

introduced models are applicable also to continuous positive target random variables

that have asymmetric distributions, like income or expenditure. In some practical cases,

a GLMM can be a good alternative to the log-normal nested error model considered by

Molina and Rao (2010). In the application to real data, we give a three-step procedure to

determine the shape constants ad j of gamma Model 2. This model has a high flexibility

for fitting real data because the ad j’s depend on d and j and therefore they vary within

and between domains.

Among the three considered predictors, the simulations show that the empirical best

and the marginal predictors have a similarly good behaviour. As the computation of the

marginal predictor is less time demanding, we recommend it. Overall when reporting

MSEs estimated by parametric bootstrap.
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The new small area estimation methodology is applied to the SLCS data from Va-

lencia, a region in east of Spain, in the period January-December 2013. The selected

gamma Model 2 has had a slightly better fit to the data than the corresponding log-

normal nested error regression model. Therefore the average incomes and poverty pro-

portions per county are finally estimated by using the marginal predictors with its MSEs

calculated by parametric bootstrap under gamma Model 2.

The simulations and the application to real data have been carried out with the pro-

gramming language R. The codes are available upon request to the authors.
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A Appendix

This appendix gives the partial derivatives of the function ℓ0d , defined in (6), for gamma

Model 2. The first derivatives of µ0d j and ξ0d are

∂µ0d j

∂βr

=−xd jrµ
2
0d j,

∂µ0d j

∂φ
=−v0dµ

2
0d j,

∂µ0d j

∂ϕ
= 0,

η0dr =
∂ξ0d

∂βr

=−2φ2
nd

∑
j=1

ad jϕxd jrµ
3
0d j, η0dϕ =

∂ξ0d

∂ϕ
= φ2

nd

∑
j=1

ad jµ
2
0d j,

η0d =
∂ξ0d

∂φ
=

nd

∑
j=1

{

2φad jϕµ
2
0d j−2φ2ad jϕv0dµ

3
0d j}.

The first derivatives of ℓ0d with respect to βr, φ and ϕ are

∂ℓ0d

∂βr

=−
1

2

η0dr

ξ0d

+
nd

∑
j=1

{

ad jϕxd jrµ0d j−ad jϕxd jryd j

}

,

∂ℓ0d

∂φ
=−

1

2

η0d

ξ0d

+
nd

∑
j=1

{

ad jϕv0dµ0d j−ad jϕv0dyd j},

∂ℓ0d

∂ϕ
=

nd

∑
j=1

{

ad j logad j +ad j logϕ+ad j +ad j logyd j−ad jψ(ad jϕ)
}

−
1

2

η0dϕ

ξ0d

+
nd

∑
j=1

{

ad j log(xd jTβββ+φv0d)−ad jyd j(x
T

d jβββ+φv0d)
}

,

where ψ(z) = d logΓ(z)
dz

is the digamma function. It holds that

∂η0dr

∂βs

=
nd

∑
j=1

{

6φ2ad jϕxd jrxd jsµ
4
0d j
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,
∂η0dr
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3
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∂η0dr
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3
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4
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2
0d j−φ

2ad jv0dµ
3
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∂η0d
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∂ϕ
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∂η0dϕ

∂φ
=

∂η0d

∂ϕ
,

∂η0dϕ

∂ϕ
= 0.
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The second partial derivatives of ℓ0d are

∂ 2ℓ0d
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where ψ̇(z) = dψ(z)
dz

is the trigamma function.

For r,s = 1, . . . , p the components of the score vector and the Hessian matrix are

U0r =
D

∑
d=1

∂ℓ0d

∂βr

, U0p+1 =
D

∑
d=1

∂ℓ0d

∂φ
, U0p+2 =

D

∑
d=1

∂ℓ0d

∂ϕ
,

H0rs = H0sr =
D
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d=1

∂ 2ℓ0d

∂βs∂βr

, Hrp+1 = Hp+1r =
D
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∂ 2ℓ0d

∂φ∂βr

,

Hrp+2 = Hp+2r =
D
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∂ 2ℓ0d
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,H0p+1p+1 =
D
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∂ 2ℓ0d

∂φ2
,

H0p+1p+2 = H0p+2p+1 =
D
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∂ 2ℓ0d

∂φ∂ϕ
, H0p+2p+2 =

D
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∂ 2ℓ0d

∂ϕ2
.

In matrix form, we have U0 =U0(θθθ)= col
1≤r≤p+2

(U0rs) and H0 =H0(θθθ)= (H0rs)r,s=1,...,p+2,

where θθθ = (βββT,φ,ϕ)T.

B Appendix

This appendix presents some additional results in the form of tables and figures.
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Table 11: Parameter estimates under Model 2 without two domains.

estimate standard error p-value

β̂0 0.790 0.0137 < 2E-16

β̂1 -0.142 0.0165 < 2E-16

β̂2 0.134 0.0297 6.68E-06

φ̂ 0.1081 0.0111 < 2E-16

ϕ̂ 2.8269 0.0792 < 2E-16

Table 12: Parameter estimates under Model 0 without random effects.

estimate standard error p-value

β̂0 0.731 0.0130 < 2E-16

β̂1 -0.158 0.0179 < 2E-16

β̂2 0.151 0.0315 1.77E-06

ν̂ 2.532

Table 13: Predictions and estimated MSEs for average incomes and poverty proportions under Model 2

(left) and Model 0 (right).

c nd Nd Y M mse pM mse Y
0
M mse p0

M mse

27 82 124270 1.2496 0.00718 0.2545 0.00051 1.4581 0.06089 0.2155 0.00362

28 57 70944 1.2924 0.00951 0.2374 0.00072 1.4429 0.04642 0.2191 0.00328

29 69 225440 1.5033 0.00680 0.1702 0.00058 1.4554 0.05166 0.2178 0.00342

30 132 227463 1.2945 0.00583 0.2362 0.00040 1.4916 0.05851 0.2069 0.00304

31 56 166774 1.3584 0.01025 0.2127 0.00064 1.4776 0.06149 0.2107 0.00334

32 293 459626 1.6860 0.00243 0.1248 0.00019 1.4871 0.04135 0.2085 0.00286

33 128 268924 1.1260 0.00589 0.3121 0.00043 1.4505 0.05769 0.2176 0.00398

34 59 292243 1.4540 0.00947 0.1809 0.00068 1.4485 0.04983 0.2160 0.00341

3 57 87560 1.0701 0.01149 0.3401 0.00069 1.4739 0.05191 0.2114 0.00373

5 91 246942 1.7397 0.00503 0.1162 0.00039 1.4657 0.04944 0.2140 0.00345

6 82 179798 1.5543 0.00651 0.1555 0.00051 1.4591 0.04928 0.2155 0.00343

7 10 26007 1.3613 0.03368 0.2112 0.00219 1.4591 0.06097 0.2143 0.00382

11 118 189865 1.2552 0.00551 0.2534 0.00040 1.4683 0.05872 0.2137 0.00333

12 15 89136 1.7504 0.02317 0.1144 0.00140 1.4808 0.06417 0.2089 0.00405

13 138 187515 1.4426 0.00454 0.1853 0.00033 1.4804 0.04735 0.2097 0.00298

14 189 370540 1.4513 0.00347 0.1836 0.00026 1.4777 0.04929 0.2112 0.00297

15 405 771129 1.6043 0.00163 0.1419 0.00013 1.4792 0.03782 0.2100 0.00270

16 93 131337 1.6408 0.00536 0.1340 0.00043 1.4422 0.04166 0.2194 0.00322

17 12 33122 1.5576 0.03806 0.1547 0.00211 1.4776 0.05186 0.2100 0.00351

18 35 54545 1.8157 0.01318 0.1057 0.00090 1.4850 0.04623 0.2101 0.00329

20 125 256553 1.6029 0.00543 0.1437 0.00039 1.4736 0.04957 0.2121 0.00350

21 49 52958 1.2107 0.01308 0.2704 0.00090 1.4572 0.05194 0.2147 0.00338

22 13 33126 1.2050 0.03257 0.2727 0.00198 1.4573 0.05235 0.2167 0.00337

23 40 70642 1.1452 0.01513 0.3002 0.00118 1.4558 0.04925 0.2155 0.00342

24 65 80434 1.3719 0.00942 0.2082 0.00070 1.4588 0.05811 0.2155 0.00364

25 79 180619 1.2386 0.00833 0.2598 0.00060 1.4628 0.05700 0.2156 0.00342
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Figure 8: Direct estimators and marginal predictors (under Model 2 and Model 0) of poverty proportions

(left) and corresponding estimated MSEs (right).
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Finding archetypal patterns for binary

questionnaires

Ismael Cabero1 and Irene Epifanio2

Abstract

Archetypal analysis is an exploratory tool that explains a set of observations as mixtures of pure

(extreme) patterns. If the patterns are actual observations of the sample, we refer to them as

archetypoids. For the first time, we propose to use archetypoid analysis for binary observations.

This tool can contribute to the understanding of a binary data set, as in the multivariate case.

We illustrate the advantages of the proposed methodology in a simulation study and two appli-

cations, one exploring objects (rows) and the other exploring items (columns). One is related to

determining student skill set profiles and the other to describing item response functions.

MSC: 62H99, 62P25, 97D60.

Keywords: Dichotomous item test, archetypal analysis, functional data analysis, item response

theory, skill profile.

1 Introduction

Mining binary survey data is of utmost importance in social sciences. Many raw data

from exams, opinion surveys, attitude questionnaires, etc. come in the form of a binary

data matrix, i.e. examinees’ responses are coded as 0/1 (1 if examinee i answers item h

correctly, otherwise 0). The binary matrix can be viewed from two points of views. In

the first, the interest lies in the rows, i.e. in the people, while in the second, the interest

lies in the columns that contain the items or variables. In both cases, exploratory data

analysis (EDA) aims to find information in data and generate ideas (Unwin, 2010). In

order to be useful as a tool for EDA on data sets, the tool should be simple and easy to

use, with few parameters, and reveal the salient features of the data in such a way that

humans can visualize them (Friedman and Tukey, 1974).

For the first time, we propose the use of the exploratory tool Archetypoid Analy-

sis (ADA) for this kind of data in order to understand, describe, visualize and extract

information that is easily interpretable, even by non-experts. ADA is an unsupervised
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statistical learning technique (see Hastie, Tibshirani and Friedman, 2009, Chapter 14)

for a complete review of unsupervised learning techniques). Its objective is to approxi-

mate sample data by a convex combination (a mixture) of k pure patterns, the archety-

poids, which are extreme representative observations of the sample. Being part of the

sample makes them interpretable, but also being extreme cases facilitates comprehen-

sion of the data. Humans understand the data better when the observations are shown

through their extreme constituents (Davis and Love, 2010) or when features of one ob-

servation are shown as opposed to those of another (Thurau et al., 2012).

ADA was proposed by Vinué et al. (2015) for real continuous multivariate data as

a derivative methodology of Archetype Analysis (AA). AA was formulated by Cutler

and Breiman (1994), and like ADA, it seeks to approximate data through mixtures of

archetypes, also for real continous multivariate data. However, archetypes are not actual

cases, but rather a mixture of data points. Recently, Seth and Eugster (2016b) proposed a

probabilistic framework of AA (PAA) to accommodate binary observations by working

in the parameter space.

AA and ADA have been applied to many different fields, such as astrophysics (Chan,

Mitchell and Cram, 2003), biology (D’Esposito, Palumbo and Ragozini, 2012), climate

(Steinschneider and Lall, 2015; Su et al., 2017), developmental psychology (Ragozini,

Palumbo and D’Esposito, 2017), e-learning (Theodosiou et al., 2013), finance (Moliner

and Epifanio, 2019), genetics (Thøgersen et al., 2013), human development (Epifanio

2016; Epifanio, Ibáñez and Simó, 2020), industrial engineering (Epifanio et al., 2013;

Epifanio, Ibáñez and Simó, 2018; Millán-Roures, Epifanio and Martı́nez, 2018; Alcacer

et al., 2020), machine learning (Mørup and Hansen, 2012; Seth and Eugster, 2016a,b;

Ragozini and D’Esposito, 2015; Cabero and Epifanio, 2019), market research (Li et

al., 2003; Porzio, Ragozini and Vistocco, 2008; Midgley and Venaik, 2013), multi-

document summarization (Canhasi and Kononenko, 2013, 2014), nanotechnology (Fer-

nandez and Barnard, 2015), neuroscience (Tsanousa, Laskaris and Angelis, 2015; 2016)

and sports (Eugster, 2012; Vinué and Epifanio, 2017, 2019).

Archetypal analysis techniques lie somewhere in between two well-known unsuper-

vised statistical techniques: Principal Component Analysis (PCA) and Cluster Analysis

(CLA). In data decomposition techniques, a data set is viewed as a linear combination

of several factors to find the latent components. Different prototypical analysis tools

arise depending on the constraints on the factors and how they are combined (Mørup

and Hansen, 2012; Vinué, Epifanio and Alemany, 2015). The factors with the least re-

strictions are those produced by PCA, since they are linear combinations of variables.

One of the advantages is that this helps explain the variability of the data; however, the

interpretability of the factors is compromised. Instead, the greatest restrictions are found

in cluster tools, such as k-means or k-medoids. Their factors are readily interpreted be-

cause they are centroids (means of groups of data) or medoids (concrete observations)

in the case of k-means and k-medoids, respectively. The price that clustering tools pay

for interpretability is their modeling flexibility due to the binary assignment of data to

the clusters. Archetypal tools, on the other hand, enjoy higher modeling flexibility than
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cluster tools but without losing the interpretability of their factors. A table summarizing

the relationship between several unsupervised multivariate techniques is provided by

Mørup and Hansen (2012) and Vinué et al. (2015).

AA and ADA were originally thought of for real-valued observations. The aim of this

work is to extend archetypal tools to binary data. For AA, as the factors (archetypes) are

a mixture of data, they would not necessarily be binary vectors, and as a consequence

they would not be interpretable. In ADA though, the factors (archetypoids) are actual

cases, so ADA can be applied to binary data without losing the interpretability of the

factors. So, among the possible archetypal techniques (AA, PAA and ADA), we propose

to use ADA for binary data.

To perform a sanity check and provide insight we analyze the solutions obtained by

AA, PAA and ADA through a simulation study, where ADA shows its appropriateness

versus AA or PAA for binary data sets. Furthermore, we present two real applications

and compare ADA solutions with those of other established unsupervised techniques

to illustrate the advantages of ADA in educational and behavioral sciences, when used

as another useful tool for data mining in these fields (Slater et al., 2017). In the first

application, we are interested in rows, while in the second application in columns.

The outline of the paper is as follows: In Section 2 we review AA and ADA for real-

valued multivariate and functional data and PAA, besides other multivariate techniques

used in the comparison. In Section 3 we introduce the analysis for binary multivariate

data. In Section 4, a simulation study with binary data compares the different strategies

for obtaining archetypal patterns. In Section 5, our proposal is applied to two real data

sets and compared to the results of other well-known unsupervised statistical learning

techniques. Section 6 contains conclusions and some ideas for future work.

The data sets and code in R (R Development Core Team, 2019) for reproducing

the results for both artificial and real data are available at http://www3.uji.es/ epifanio/

RESEARCH/adaedu.rar.

2 Preliminary

2.1 AA and ADA in the real-valued multivariate case

Let X be an n×m real-valued matrix with n observations and m variables. Three matrices

are established in AA: a) the k archetypes z j, which are the rows of a k ×m matrix

Z; b) an n× k matrix α = (αi j) with the mixture coefficients that approximate each

observation xi by a mixture of the archetypes (x̂i =
k

∑
j=1

αi jz j); and c) a k × n matrix

β= (β jl) with the mixture coefficients that characterize each archetype (z j = ∑n
l=1β jlxl).

To figure out these matrices, we minimize the following residual sum of squares (RSS)

with the respective constraints (‖ · ‖ denotes the Euclidean norm for vectors):

http://www3.uji.es/~epifanio/RESEARCH/adaedu.rar
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RSS =
n

∑
i=1

‖xi −
k

∑
j=1

αi jz j‖
2 =

n

∑
i=1

‖xi −
k

∑
j=1

αi j

n

∑
l=1

β jlxl‖
2, (1)

under the constraints

1)
k

∑
j=1

αi j = 1 with αi j ≥ 0 for i = 1, . . . ,n and

2)
n

∑
l=1

β jl = 1 with β jl ≥ 0 for j = 1, . . . ,k.

As previously mentioned, archetypes do not necessarily match real observations. In-

deed, this will only happen when one and only one β jl is equal to one for each archetype,

i.e. when each archetype is defined by only one observation. So, in ADA the previous

constraint 2) is substituted by the following one, and as a consequence in ADA a mixed-

integer problem is optimized instead of the AA continuous optimization problem:

2)
n

∑
l=1

β jl = 1 with β jl ∈ {0,1} and j = 1, . . . ,k.

As regards the location of archetypes, they are on the boundary of the convex hull

of the data if k > 1 (see Cutler and Breiman, 1994), although this does not necessarily

happen for archetypoids (see Vinué et al., 2015). Nonetheless, the archetype is equal to

the mean and to the medoid in case of the archetypoid (Kaufman and Rousseeuw, 1990),

if k = 1.

We want to emphasize that archetypal analysis is an EDA technique based on a geo-

metric formulation (no distribution of data is assumed). It is not an inferential statistical

technique, i.e. it is not about fitting models, parameter estimation, or testing hypotheses.

Nevertheless, a field to study in the future would be to view archetypal analysis as a

feature extraction method (Hastie et al., 2009, Ch. 5), where the raw data are prepro-

cessed and described by α, which can be used as inputs into any learning procedure for

compositional data (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015).

2.1.1 Computation of AA and ADA

The estimation of the matrices in the AA problem can be achieved by means of an

alternating minimizing algorithm developed by Cutler and Breiman (1994), where the

best α for given archetypes Z and the best archetypes Z for a given α are computed

by turns. To solve the convex least squares problems, a penalized version of the non-

negative least squares algorithm by Lawson and Hanson (1974) is used. Eugster and

Leisch (2009) implemented that algorithm in the R package archetypes, although with

some changes. Specifically, the data are standardized and the spectral norm in equation
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1 is used instead of Frobenius norm for matrices. In our R implementation those changes

were annulled, i.e. the data are not standardized by default and the objective function to

minimize is defined by equation 1.

With respect to the estimation of the matrices in the ADA problem, it can be achieved

using the algorithm developed by Vinué et al. (2015). It is composed of two steps: the

BUILD step and the SWAP step. The objective of the BUILD step is to determine an

initial set of archetypoids that will be upgraded during the following step. The objective

of the SWAP step is to improve the primitive set by exchanging the selected instances

for unselected observations and checking whether these replacements decrease the RSS.

Vinué (2017) implemented that algorithm in the R package Anthropometry with three

possible original sets in the BUILD step: candns, candα and candβ. These sets corre-

spond to the nearest neighbor observations in Euclidean distance to the k archetypes,

the cases with the maximum α value for each archetype j and the observations with the

maximum β value for each archetype j, respectively. Then three possible solutions are

obtained once these three sets go through the SWAP step, but only the solution with

lowest RSS (often the same final set is returned from the three initializations) is chosen

as the ADA solution.

One important point is the selection of k, since archetypes are not necessarily nested

and neither are archetypoids. If the user has prior knowledge of the structure of the data,

the value of k can be chosen based on that information. Otherwise, a simple but effective

heuristic (Cutler and Breiman, 1994; Eugster and Leisch, 2009; Vinué et al., 2015; Seth

and Eugster, 2016b) such as the elbow criterion can be used. With the elbow criterion,

we plot the RSS for different k values and the value of k is selected as the point where

the elbow is located.

2.1.2 Illustrative example

In Figure 1 a toy two-dimensional data set is used to illustrate what archetypoids mean

and the differences compared with CLA and PCA, as well as to provide some intuition

on what these pure and extreme patterns imply in behavioral sciences. Two numeric vari-

ables are considered from the data set personality-1.0 of the R package neuropsychol-

ogy (Makowski, 2016), which contains personality traits data from an online question-

naire: Empathy.Agreeableness and Honesty.Humility. We apply k-means and ADA with

k = 3, i.e. we find 3 clusters and archetypoids. We also apply PCA. Archetypoids are peo-

ple with extreme values, which have clear profiles: archetypoid 1 is characterized by a

very low Empathy.Agreeableness value together with a high Honesty.Humility value (1,

5.25), archetypoid 2 has the maximum values for both Empathy.Agreeableness and Hon-

esty.Humility (7,7), while the third archetypoid has a very high Empathy.Agreeableness

value together with the lowest Honesty.Humility value (6,0). Archetypoids are the purest

people. The rest of the individuals are expressed as mixtures (collected in alpha coef-

ficients) of these ideal people. For example, an individual with values of 6.25 and 0.75

for Empathy.Agreeableness and Honesty.Humility, respectively, is explained by 11% of
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archetypoid 2 plus 89% of archetypoid 3.
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Figure 1: (a) Plot of the toy example. The size of the points depends on their frequency. The red crosses

represent the archetypoids, while the green stars represent the centroids of each cluster; (b) PC scores. Pro-

jected archetypoids are represented by red crosses; (c) k-means cluster assignments; (d) ADA assignments

by the maximum alpha, i.e. assigned to the archetypoid that best explains the corresponding observation.

This is compatible with the natural tendency of humans to represent a group of ob-

jects by its extreme elements (Davis and Love, 2010). Figure 1 d) shows the partition

of the set generated by assigning the observations to the archetypoid that best explains
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each individual. However, when we apply k-means to this kind of data set, without dif-

ferentiated clusters, the centroids are in the middle of the data cloud. Centroid profiles

are not as differentiated from each other as archetypoid profiles. This happens because

centroids have to cover the set in such a way that the set is partitioned by minimizing the

distance with respect to the assigned centroid (see Wu, Kamar and Horvitz, 2016) about

the connection between set partitioning and clustering). On the one hand, this means

that the set partition generated by k-means and ADA would be different (Figures 1 c)

and d)). On the other hand, centroids are not the purest, and therefore their profiles are

not as clear as those of archetypoids. For example, centroids 2 and 3 have values (4.1,

5.7) and (5.3, 3.5), which are not as intuitively interpretable as archetypoids. If we look

again at the individual with values (6.25, 0.75) from the clustering point of view this

individual is clearly assigned to cluster 3, with centroid (5.3, 3.5), but clustering does

not say anything about the distance of this point with respect to the assigned centroid,

or in which direction they are separated. In fact, (6.25, 0.75) is quite far from (5.3, 3.5).

This happens because the objective of clustering is to assign the data to groups, not to

explain the structure of the data more qualitatively. Finally, note that archetypoids do

not coincide with the individuals with the most extreme PC scores (see Figure 1 b)).

In summary, depending on our objective, the appropriate analysis should be selected.

The objective of PCA is to reduce data dimension. Although PCA returns the location

of the observations in the new dimensions by PC scores, there is no guarantee that the

principal components are interpretable. In other words, observations are expressed in a

new base, but in general the PCA base is not easily interpretable. However, the objective

of CLA is to segment the data, i.e. to make groups of data by finding modes in data. Al-

though the modes can be easily interpretable, CLA does not return an expression about

the location of each observation with respect to each mode. On the other hand, finding

extreme profiles, which are easily interpretable, is not the objective of PCA or CLA, but

that of AA or ADA. These techniques also return the location of the observations as a

function of the extreme profiles, in fact as a mixture (a convex combination), which is

more easily interpretable than a linear combination. This provides a complete overview

of the data set, generally supported by visual methods, i.e. this allows data to tell us

more beyond the formal modeling or hypothesis testing task.

2.2 Probabilistic archetype analysis

The idea underlying PAA is to work in a parameter space instead of the observation

space, since the parameter space is often vectorial even if the sample space is not. The

key is to assume that data points come from a certain distribution (from the Bernoulli

distribution in the case of binary observations). Then the maximum likelihood estimates

of the parameters of the distributions are seen as the parametric profiles that best de-

scribe each observation, and archetypal profiles are computed in the parameter space by

maximizing the corresponding log-likelihood under the constraints for α and β. In sum-
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mary, probabilistic archetypes lie in the parameter space, whereas classical archetypes

lie in the observation space. Thus, archetypal profiles for binary data are the probability

of a positive response. Details can be found in Seth and Eugster (2016b).

2.3 AA and ADA in the functional case

In Functional Data Analysis (FDA) each datum is a function. Therefore, the sample is a

set of functions {x1(t), . . . ,xn(t)} with t ∈ [a,b], i.e. the values of the m variables in the

standard multivariate context are replaced by function values with a continuous index t.

We assume that these functions belong to a Hilbert space, satisfy reasonable smoothness

conditions and are square-integrable functions on that interval. Simplistically, the sums

are replaced by integrals in the definition of the inner product.

AA and ADA were extended to functional data by Epifanio (2016). In the func-

tional context, functions from the data set are approximated by mixtures of archetypal

functions. In functional archetype analysis (FAA), we seek k archetype functions that

approximate the functional data sample by their mixtures. In other words, the objective

of FAA is the same as AA, but now both archetypes (z j(t)) and observations (xi(t)) are

functions. As a consequence, RSS is now calculated with a functional norm instead of a

vector norm. We consider the L2-norm, ‖ f‖2 =< f , f >=
∫ b

a f (t)2dt. The interpretation

of matrices α and β is the same as in the classical multivariate case.

Analogously, FADA is also a generalization of ADA, where k functional archety-

poids, which are functions of the sample, approximate the functions of the sample

through the mixtures of these functional archetypoids. Again, vectors are replaced by

functions and vector norms by functional norms, and the matrices are interpreted is the

same way as before.

To obtain FAA and FADA in a computationally efficient way (Epifanio (2016)),

functional data are represented by means of basis functions (see Ramsay and Silverman

(2005) for a detailed explanation about smoothing functional data). Let Bh (h = 1, . . . ,m)

be the basis functions and bi the vector of coefficients of length m such that xi(t) ≈

∑m
h=1 bh

i Bh(t). Then, RSS is formulated as (see Epifanio (2016) for details):

RSS =
n

∑
i=1

‖xi −
k

∑
j=1

αi jz j‖
2 =

n

∑
i=1

‖xi −
k

∑
j=1

αi j

n

∑
l=1

β jlxl‖
2 =

n

∑
i=1

a
T

iWai, (2)

where aT

i = bT

i−∑k
j=1αi j ∑n

l=1β jlb
T

l and W is the order m symmetric matrix with the inner

products of the pairs of basis functions wm1,m2
=
∫

Bm1
Bm2

. If the basis is orthonormal,

for instance the Fourier basis, W is the order m identity matrix and FAA and FADA can

be estimated using standard AA and ADA with the basis coefficients. If not, W has to

be calculated previously one single time by numerical integration.
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2.4 Other unsupervised learning techniques

The following well-known multivariate analysis tools for binary data are used in the

comparison. We use homogeneity analysis (multiple correspondence analysis) using the

R package homals (de Leeuw and Mair, 2009) (HOMALS). HOMALS can be consid-

ered as an equivalent to PCA in the case of categorical data. For CLA we use Partitioning

Around Medoids (PAM) from the R package cluster (Maechler et al., 2018; Kaufman

and Rousseeuw, 1990), since it returns representative objects or medoids among the ob-

servations of the data set. The pairwise dissimilarities between observations in the data

set needed for PAM are computed with the daisy function from the R package cluster

(Maechler et al., 2018), specifically using Gower’s coefficient (Gower, 1971) for binary

observations. Other popular clustering methods (Flynt and Dean, 2016) are also used in

the comparison: latent class analysis (LCA) from the R package poLCA (Linzer and

Lewis, 2011), which is a finite mixture model clustering for categorical data, and clas-

sical k-means clustering (Lloyd, 1982). It is used in the literature (Henry et al., 2015),

despite not being recommended for binary data (IBM Support, 2016). For that reason,

we also consider PAM, since it is a robustified version of k-means (Steinley, 2006) that

can be used with distances other than Euclidean, and observations, rather than centroids,

serve as the exemplars for each cluster.

3 Archetypal analysis for binary data

Let X be an n×m binary matrix with n observations and m variables. The idea behind

archetypal analysis is that we can find a set of archetypal patterns, and that data can

be expressed as a mixture of those archetypal patterns. In the case of binary data, on

the one hand the archetypal patterns should also be binary data, as the population from

which data come. For example, if pregnancy was one of the binary variables, it would

not make sense to consider as an archetypal observation a woman who was pregnant 0.7.

In other words, archetypal patterns should be binary in order to have a clear meaning

and not lose their interpretability, which is the cornerstone of archetypal techniques, i.e.

they should not be ‘mythological’, but rather something that might be observed. On the

other hand, in order to describe data as mixtures, we should assume that observations

exist in a vector space, i.e. that observations can be multiplied by scalars (in this case in

the interval [0,1]) and added together.

A solution that meets all these ideas is to apply ADA to X, since the feasible archety-

pal patterns belong to the observed sample. In fact, ADA was originally created as a

response to the problem in which pure non-fictitious patterns were sought (Vinué et al.,

2015).

Instead, the archetypes returned by applying AA or PAA do not need to be binary,

i.e. they do not need to belong to the feasible set of solutions. In fact, Seth and Eugster

(2016b) binarized the archetypes obtained by AA or PAA in experiments. However,
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using a continuous optimization problem to solve a problem whose feasible solutions

are not continuous can fail badly (Fletcher, 2000, Ch. 13). Indeed, there is no guarantee

that this approach will provide a good solution, even by examining all the feasible binary

solutions in a certain neighborhood of the continuous solution.

Therefore, we propose to use ADA to handle binary observations.

4 Simulation study

We have carried out a simulation study to assess all the alternatives in a controlled sce-

nario. The design of the experiment has been based on simulation studies that appear

in Vinué et al. (2015) and Seth and Eugster (2016b). We generate k = 6 archetypes,

ζi, with m = 10 binary variables by sampling them from a Bernoulli distribution with

a probability of success p = 0.7, A = [ζ1, ζ2, ζ3, ζ4, ζ5, ζ6]. Given the archetypes, we

generate n = 100 observations as the binarized version of xi = Ãihi + Ei, where Ãi con-

tains the archetypes after adding salt and pepper noise to them, hi is a random vector

sampled from a Dirichlet distribution with α = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8), and Ei is a

10-dimensional random vector of Gaussian white noise with a mean of zero and standard

deviation of 0.1. The binarized versions are obtained by replacing all values above 0.5

with 1 and others with 0. The noise density added to A is 0.05 (the default value used in

MATLAB). With salt and pepper noise, a certain amount of the data is changed to either

0 or 1. To ensure that Ãi’s are archetypes, we chose α = 0.8, a value near to but less than

one.

We compute PAA, AA and ADA. The archetypes returned by PAA and AA are

binarized for comparison with the true ones, A. We calculated the Hamming distance

(Manhattan distance between binary vectors), which is the same as the misclassification

error used with binary images, between each archetypal solution and the true archetypes

after permuting the columns of each archetypal solution to match the true archetypes in

such a way that the least error with the city block distance is provided.

This was repeated 100 times. The first 10 times are displayed in Figure 2. The solu-

tions returned by all the methods are quite similar to the true archetypes, i.e. the num-

ber of errors (a zero in the solution where the true value is 1, or vice versa) is very

small. Nevertheless, there are differences between the methods, which are more evident

in columns 5 and 6. For columns 5 and 6, the number of errors for PAA is 5 and 5,

it is 4 and 2 for AA, but only 2 and 2 for ADA. Table 1 shows a the summary of the

Table 1: Summary of misclassification errors of the archetype profiles

for each method over 100 simulations.

Method PAA AA ADA

Mean (Std. dev.) 4.20 (1.86) 3.59 (1.99) 3.19 (1.88)
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Figure 2: Comparison between true archetypes and those returned by PAA, AA and ADA, respectively. The

10 columns represent the first 10 repetitions of the simulation. Black represents 0 and white 1.

misclassifications. The archetypoids returned by ADA match the true archetypes better

than those returned by AA or PAA, in this order, i.e. ADA provides the smallest mean

misclassification error.

5 Applications

5.1 An initial mathematical skills test for first-year university students

5.1.1 Data

The first application corresponds to the first point of view of the binary matrix (analy-

sis of the rows). We analyze the data set described by Orús and Gregori (2008), which

was obtained through the application of a test on the initial mathematics skills of 690

first-year students of the College of Technology and Experimental Sciences at Jaume

I University (Spain) at the beginning of the 2003-04 academic year. The test consisted
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of 17 questions corresponding to 21 single items, the answers to which were coded as

0 (incorrect or unanswered) or 1 (correct). The items of the test were selected in or-

der to ascertain some given didactic hypotheses on the didactic discontinuities between

mathematics at pre-university and university levels. It is not a test designed to rank

the students and return a unique score. The complete description of the questions can be

seen in Orús and Gregori (2008). With ADA, we could obtain students’ skill set profiles.

In this way, students can be grouped by their similar mastery of skills. For instance, stu-

dents showing consistently high levels of aptitude may be selected for an advanced class

or students with similar difficulties could receive extra instruction as a group and also

teaching strategies could also be adapted to suit their level. A classical way to group stu-

dent skill set profiles is by using a clustering method, as carried out by Dean and Nugent

(2013), but in terms of human interpretability, the central points returned by clustering

tools do not seem as favorable as the extreme points returned by ADA. Results from

different exploratory tools are compared.

5.1.2 Results and discussion

We would like to estimate the skill set profiles hidden in the data set. In other words,

we would like to discover the data structure. Our intuition tells us that skill sets vary

continuously across students, i.e. we do not expect there to be clearly differentiated

(separate) groups of students with different abilities. Even so, CLA has been used to

generate groups of students with similar skill set profiles (Chiu, Douglas and Li, 2009;

Dean and Nugent, 2013). Here, we are going to consider the raw binary data and let

the data speak for themselves, as ADA is a data-driven method. We compare the ADA

solution with others from well-established unsupervised techniques introduced in Sec-

tion 2.4 to highlight the information about the quality understanding of data provided

by ADA.

For the sake of brevity and as an illustrative example, we examine the results of k

= 3. The RSS elbow for ADA and the Bayesian Information Criterion (BIC) elbow for

LCA are found at k = 3 (see Figure 3). According to the silhouette coefficient (a method

of interpretation and validation of consistency within clusters of data, see Kaufman and

Rousseeuw (1990) for details), the optimal number of clusters are k = 2 and k = 3 for

PAM. However, the highest value of the silhouette coefficient is 0.22 (for k = 2 and k = 3

clusters), which means that no substantial cluster structure was found, as we predicted.

We perform an h-plot (a multidimensional scaling method that is particularly suited

for representing non-Euclidean dissimilarities, see Epifanio (2013) for details) on the

dissimilarities used by PAM to graphically summarize the data set and to visualize the

obtained clusters by PAM in two dimensions (see Figure 4). Effectively, separate clusters

do not seem to exist.

This is also corroborated by Figure 5, where the students’ scores from HOMALS are

plotted in two dimensions. As regards the interpretation of the dimensions of HOMALS,
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the loadings are displayed in Figure 6 and Table 2 shows their exact values, together

with the number of correct answers. As also happens with PCA, their interpretation is

not always easy and immediate. For the first dimension, all the coefficients are positive

(as a measure of size), which can indicate a kind of sum score. The highest coefficients

more or less correspond to the last questions of the test, which fewer students answered

correctly. The second dimension compares, above all, questions 4, 5, 6a and 6b (with

high positive coefficients) with 13a and 13b (with low negative values), while in the third

dimension, questions 1, 3, 7, 8 and 10 (with high positive coefficients) are compared

with 14a and 14b (with low negative values). However, we do know how the meaning

of these contradistinctions is interpreted.
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Figure 3: Initial mathematical skills test data: Screeplot of ADA (left-hand panel); screeplot of LCA (right-

hand panel).
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Figure 4: H-plot of dissimilarities for the initial mathematical skills test data. We perform PAM. The black

circles represent data points assigned to the first cluster, the red triangles to the second cluster and the blue

crosses to the third cluster.
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Figure 5: HOMALS of the initial mathematical skills test data. Plot of students’ scores. The numbers

indicate the code of each of the 690 students (left-hand panel). We perform LCA. The black circles represent

data points assigned to the first cluster, the red triangles to the second cluster and the blue crosses to the

third cluster (right-hand panel).
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Figure 6: HOMALS of the initial mathematical skills test data. Loadings plot.

LCA returns the conditional item response probabilities by outcome variable for

each class. Table 3 lists these probabilities for correct answer. The predicted classes

for each student are shown in Figure 5, since the profiles of cluster 1 and 3 are mainly

differentiated in questions 4, 5, 13a and 13b, which are the most relevant variables of

dimension 2 of HOMALS.
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Table 2: Number of correct answers and loadings of the first three dimensions by HOMALS for the initial

mathematical skills test data.

Question No. correct answers D1 D2 D3

1 621 0.02863 −0.00232 0.10936

2 589 0.05797 0.06268 0.05200

3 301 0.09098 0.02291 0.07621

4 233 0.07597 0.09596 −0.00863

5 253 0.09922 0.09102 0.00465

6a 231 0.05414 0.08397 −0.05947

6b 105 0.05230 0.08735 −0.04804

7 270 0.07408 0.03324 0.07881

8 140 0.0601 −0.01729 0.10596

9 109 0.07749 0.07059 −0.04028

10 202 0.09541 −0.02469 0.07325

11 71 0.07485 0.07870 −0.01717

12 329 0.08006 0.01380 0.01518

13a 177 0.12934 −0.12748 −0.02185

13b 132 0.12953 −0.12312 −0.01241

14a 114 0.11951 −0.03559 −0.09643

14b 22 0.07565 −0.04544 −0.06506

15 183 0.10749 −0.03665 0.01754

16 236 0.12062 −0.00018 −0.00465

17a 47 0.12116 0.00354 −0.00952

17b 62 0.10884 0.00955 −0.02249

Table 3 also lists the profiles of the medoids, centroids of k-means and the archety-

pal profiles for AA, PAA and ADA. For medoids and archetypoids, the code of the

corresponding observation is also displayed. To facilitate the analysis we also show the

binarized profiles of AA and PAA, referred as BAA and BPAA, respectively.

As a simple summary of the profiles, we compute the percentage of correct answers

for each profile. For PAM, the percentages are 9.5%, 33.3% and 57.1%; for binarized

LCA, 38.1%, 9.5% and 33.3%; for binarized k-means, 38.1%, 9.5% and 42.9%; for

BAA, 9.5%, 47.6% and 61.9%; for BPAA, 9.5%, 42.9% and 57.1%; and for ADA,

57.1%, 52.4% and 9.5%, respectively. Note that the median of the percentage of correct

answers in the data set is 28.6% (the minimum is 0, the first quartile is 19.1%, the third

quartile is 38.1%, while the maximum is 95.2%).

One profile is repeated in all the methods, a student who only answers questions 1

and 2 correctly, i.e. a student with a serious lack of competence. We therefore concen-

trate the analysis on the other two profiles for each method.
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Table 3: Profiles for the initial mathematical skills test data, for PAM, LCA, k-means (k-M), AA (and

binarized, BAA), PAA (and binarized, BPAA) and ADA, with k = 3. The numbers in brackets for PAM and

ADA indicate the code of the representative student.

Methods 1 2 3 4 5 6a 6b 7 8 9 10 11 12 13a 13b 14a 14b 15 16 17a 17b

PAM (661) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PAM (586) 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

PAM (162) 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0

LCA 1 0.93 0.88 0.57 0.36 0.48 0.37 0.17 0.49 0.32 0.20 0.51 0.14 0.62 1.00 0.85 0.43 0.10 0.50 0.55 0.18 0.19

LCA 2 0.88 0.79 0.28 0.17 0.15 0.24 0.07 0.30 0.14 0.03 0.15 0.02 0.32 0.05 0 0.03 0 0.13 0.14 0 0

LCA 3 0.91 0.94 0.60 0.62 0.65 0.48 0.27 0.47 0.23 0.35 0.36 0.23 0.63 0.04 0 0.20 0.03 0.31 0.53 0.09 0.17

k-M 1 0.91 0.95 0.64 0.70 0.74 0.43 0.25 0.53 0.24 0.32 0.38 0.22 0.63 0.05 0.00 0.19 0.02 0.33 0.52 0.10 0.15

k-M 2 0.88 0.78 0.26 0.13 0.11 0.27 0.09 0.27 0.13 0.05 0.14 0.02 0.32 0.06 0.01 0.03 0.01 0.12 0.15 0.01 0.01

k-M 3 0.93 0.91 0.59 0.34 0.49 0.37 0.17 0.50 0.33 0.20 0.54 0.14 0.64 1 0.88 0.46 0.10 0.52 0.58 0.18 0.19

AA 1 0.85 0.68 0.02 0 0 0.05 0 0.04 0.05 0 0.01 0 0.16 0 0 0 0 0.01 0 0 0

AA 2 0.90 1 0.87 1 1 1 0.63 0.82 0.19 0.52 0.24 0.38 0.65 0 0 0.16 0 0.07 0.43 0.09 0.15

AA 3 1 1 0.89 0.32 0.53 0.19 0.06 0.71 0.58 0.26 1 0.17 1 1 1 0.67 0.18 1 1 0.36 0.37

BAA 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAA 2 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

BAA 3 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0

PAA 1 0.86 0.72 0.13 0 0 0 0 0.12 0.07 0 0 0 0.23 0 0 0 0 0 0 0 0

PAA 2 0.90 1 0.78 1 1 1 0.61 0.73 0.27 0.40 0.38 0.31 0.66 0 0 0 0 0 0.43 0 0

PAA 3 0.99 1 0.82 0.36 0.57 0.25 0 0.66 0.44 0.27 0.86 0.12 0.85 1 1 0.73 0.15 1 1 0.32 0.42

BPAA 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BPAA 2 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

BPAA 3 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0

ADA (182) 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1

ADA (274) 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0

ADA (1) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In contrast with the third archetypoid, i.e. the student with very poor skills, the first

and second archetypoids correspond to students with very high percentages of correct

answers. In fact, the first archetypoid corresponds to the 92nd percentile of the data

set, while the second archetypoid corresponds to the 88th percentile. Nevertheless, both

profiles are quite different. In fact, the Hamming distance between archetypoids 1 and

2 is 13, which means that although they answered a lot of items correctly, these cor-

rectly answered items do not coincide. In other words, archetypoids 1 and 2 are some-

how complementary. Both answered items 1, 2, 3, 12 and 16 correctly, which were

among the most correctly answered items. Neither of them answered items 11, 14b

and 17a correctly, which were among the least correctly answered items. On the one

hand, the items that archetypoid 1 answered correctly, but archetypoid 2 did not are

8, 10, 13a, 13b, 14a, 15 and 17b. These items are about nonlinear systems and lin-

ear functions. On the other hand, the items that archetypoid 2 answered correctly, but
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Figure 7: Ternary plot of αs of ADA together with a plot density estimate for the initial mathematical skills

test data.

archetypoid 1 did not are 4, 5, 6a, 6b, 7 and 9. These items are about the calculation of

derivatives and integrals and algebraic interpretation. The skills of these archetypoids

are clear and different to each other.

We can use the alpha values for each of the students to learn about their relation-

ship to the archetypoid profiles. The ternary plot in Figure 7 displays the alpha values

that provide further insight into the data structure. Note that the majority of the data is

concentrated around archetypoid 1, i.e. the one with very poor skills. If we wanted to

form three groups using the alpha values, we could assign each student to the group in

which their corresponding alpha is the maximum, as we did in Figure 1 (d). In this way,

the number of students similar to archetypoid 1 is 113, to archetypoid 2 it is 110 and to

archetypoid 3 it is 467.

The profiles of medoids 2 and 3 are not as complementary as the previous archety-

poids. In fact, medoid 2 corresponds to the 56th percentile, while medoid 3 corresponds

to the 92nd percentile. In this case, the percentage of correct answers for medoid 2 is not

high. The Hamming distance between the two medoids is only 7. On the one hand, both

answered items 1, 2, 3, 5, 7 and 12 correctly, which are the most correctly answered

items. On the other hand, both failed items 6a, 6b, 8, 9, 11, 14b, 17a and 17b, many

more items than in the case of ADA. The only item that medoid 2 answered correctly but
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medoid 3 did not is item 4. The items that medoid 3 answered correctly but medoid 2

did not are 10, 13a, 13b, 14a, 15 and 16. It seems as if the cluster definition was guided

by the number of correct answers rather than by the kind of item answered correctly.

This is the reason why PAM selects medoid 2 in the middle of the data cloud. PAM, and

usual clustering methods, tries to cover the set in such a way that every point is near to

one medoid or one cluster center. The number of students belonging to each cluster is

398, 179 and 113, respectively. Note that the size of the cluster of students with poor

skills is smaller than in the case of ADA, because some of those students are assigned

to the cluster of medoid 2.

The binarized profile of LCA 1, corresponding to the 75th percentile, is similar to

medoid 3, but with a lower number of correct answers (5, 7, 14a and 15), while the

binarized profile of LCA 3, corresponding to the 56th percentile, is similar to medoid 2,

only differentiated by two items (7 and 16). Therefore, they are even less complementary

than the previous medoids. The Hamming distance between both LCA-profiles is only

5. The number of students belonging to each cluster is 155, 352 and 183, respectively.

Note that the size of the cluster of students with poor skills is smaller than in the case of

PAM.

The binarized profile of the first centroid of k-means, corresponding to the 75th per-

centile, is similar to medoid 2, only differentiated by item 16, while the binarized profile

of the third centroid, corresponding to the 82nd percentile, is similar to medoid 3, but

with a lower number of correct items (5, 7 and 14a). The Hamming distance between

both centroids is 7. The level of complementarity between both centroids is similar to

that of the medoids of PAM, but the number of correct answers of medoid 3 is higher

than binarized centroid 3. The number of students belonging to each cluster is 196, 349

and 145, respectively. Note that the size of the cluster of students with poor skills is

smaller than in the case of PAM, but larger than in the case of PAM for cluster 3, which

in both clustering methods corresponds to the students with more correct answers.

In the clustering methods, the profiles of each cluster are not as extreme as archety-

poids. Archetypoids are also more complementary, which makes it clearer to establish

which kinds of features distinguish one group from another. Remember also that clus-

tering is limited to assign each student to a group but alpha values of ADA allows to

know the composition, i.e. ADA returns a richer information.

The profiles of BAA2 and BAA3 and BPAA2 and BPAA3 are quite similar to the pro-

files of archetypoid 2 and 1, respectively, but with slight differences. The percentiles cor-

responding to correctly answered items are also high, although for one of the archetypes

not as high as for archetypoids. The percentiles are the 82nd and 94th for BAA2 and

BAA3, and the 75th and 92nd for BPAA2 and BPAA3, respectively. Therefore, the

archetypoids are more extreme than the binarized archetypes of AA and PAA. Although

the profiles for BAA and BPAA are also complementary, they are not as complementary

as the two archetypoids. The Hamming distance between BAA2 and BAA3 is 11, and 9

between BPAA2 and BPAA3. Archetypoids therefore manage to find more complemen-

tary profiles.
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5.2 An American College Testing (ACT) Mathematics Test

5.2.1 Data

This application corresponds to the second point of view of the binary matrix (analysis

of the columns). We use the same data and approach followed by Ramsay and Silverman

(2002, Ch. 9) and Rossi, Wang and Ramsay (2002), although another strategy could be

considered (Ramsay and Wiberg, 2017). The data used are the 0/1 (incorrect/correct)

responses of 2115 males from administration of a version of the ACT Program 60-item

Mathematics Test. Unlike the test introduced in Section 5.1.1, the objective of the test is

to relate a student’s ACT score with probability of him or her earning a college degree,

i.e. to rank students. It seeks that the difficulty of questions increases as you get to higher

question numbers.

Although this binary matrix does not seem curvaceous at first sight, by making the

simplifying assumption that the probabilities Pih (probability that examinee h gets item

i right) vary in a smooth one-dimensional way across examinees, we can estimate the

ability space curve that this assumption implies. Then, we can work with item response

functions (IRFs) Pi(θ) as functional data (Ramsay and Silverman, 2005), where θ is the

charting variable that measures out positions along the ability space curve. Or rather,

we can work with the log odds-ratio functions Wi(θ), since these transformations of the

item response functions have the unconstrained variation that we are used to seeing in

directly observed curves. Ramsay and Silverman (2002, Ch. 9) and Rossi et al. (2002)

used functional PCA (FPCA) to study variations among these functions. Instead, we

propose to use functional ADA (FADA), which reveals very interesting patterns that

were not discovered with FPCA.

Note that in the literature, we find other terms for IRFs, such as option characteristic

curves, category characteristic curves, operating characteristic curves, category response

functions, item category response functions or option response functions (Mazza, Punzo

and McGuire, 2014).

5.2.2 Results and discussion

As mentioned previously, we used the same data and approach followed by Ramsay and

Silverman (2002, Ch. 9) and Rossi et al. (2002) to estimate IRFs, Pi(θ), and their logit

functions, Wi(θ) = log(Pi(θ)/(1−Pi(θ))). In particular, a penalized EM algorithm was

used and functions were expanded by terms of 11 B-spline basis functions using equally

spaced knots. Figure 8 displays the estimated IRFs, exp(Wi(θ))/(1+ exp(Wi(θ))), and

their log odds-ratio functions Wi(θ) for the 60 items. As expected, this kind of graphs

with superimposed curves is largely uninformative and aesthetically unappealing (Jones

and Rice, 1992).

To explore a set of curves Jones and Rice (1992) proposed the use of functions with

extreme principal component scores. This could be viewed as finding the archetypoid

functions. Nevertheless, the aim of PCA is not to recover extreme patterns. In fact,
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Figure 8: Estimated IRFs (left-hand panel) and log odds-ratio functions (right-hand panel) for the ACT

math exam estimated from the male data.

curves with extreme PCA scores do not necessarily correspond to archetypal observa-

tions. This is discussed in Cutler and Breiman (1994) and shown in Epifanio, Vinué and

Alemany (2013) through an example where archetypes could not be restored with PCA,

even if all the components had been considered. Not only that, Stone and Cutler (1996)

also showed that AA may be more appropriate than PCA when the data do not have

elliptical distributions.

In order to show the advantages of ADA over PCA, we compute FPCA and FADA for

W (θ), since they are unconstrained, therefore making them more appropriate for PCA

application than the bounded Pi(θ). This is not a problem with FADA as it works with

convex combinations. Figure 9 displays the first four PCs after a varimax rotation having

been back-transformed to their probability counterparts, as performed by Ramsay and

Silverman (2002, Ch. 9) and Rossi et al. (2002). We base the interpretation of each PC

on the detailed description carried out by Ramsay and Silverman (2002, Ch. 9).

The percentage of total variation explained by those four components is nearly 100%,

while the percentage explained by each component is reported in Figure 9. The first

component concentrates on the middle part of the ability range, in such a way that an

item with a high (low) score in that component has a higher (lower) slope than the

mean from approximately 0 to 2, i.e. it quantifies a discriminability trade-off between

average students and those with rather high abilities. Analogously, the fourth component

quantifies a discriminability trade-off between average examinees and those with rather

low abilities. On the contrary, the second component concentrates on the upper end of

the ability range. As Rossi et al. (2002) explained, the 3PL model is not well suited to

modeling this type of variation. An item with a low score on this component is good at

sorting out very high ability students from others of moderately high ability, whereas if
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Figure 9: The first four functional PCs in IRFs after VARIMAX rotation. Plus (negative) signs indicate

the effect of adding (subtracting) a multiple of a component to the mean function. The mean function is the

dashed line.
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Figure 10: Bivariate plots of principal component scores of IRFs. PC1 versus PC2 (left-hand panel); PC3

versus PC4 (right-hand panel).

the score for this item is high, it will discriminate well among most of the population

but will be found to be of approximately equal difficulty by all the very good students.

Nevertheless, conclusions on the extreme part of the ability range should be made with
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Figure 11: ACT data: The four IRF archetypoids are items 2, 18, 28 and 60.

See the legend inside the plot.

caution, since the estimation is carried out using a relatively small numbers of students.

The third component also accounts for variation in the characteristics of test items in

the extreme ability range, but now in low ability ranges. PC scores for these four com-

ponents can be seen in Figure 10. Note that to evaluate the 4 PC scores simultaneously

and combine them to give an idea about each item, it is not easily comprehensible or

human-readable.

Figure 11 displays the archetypoids for k = 4 explaining 97% of the variability, which

is nearly as high as FPCA. The archetypoids are items 2, 18, 28 and 60. These four items

describe the extreme patterns found in the sample. Item 2 has very high scores in PC

3 and PC 4, high scores in PC 1 and a score of nearly zero for PC 2. Its IRF is quite

flat with a very slight slope, it seems to be a very easy item, with high probabilities of

success throughout the ability range. The other archetypoids discriminate better between

low and high ability students but in very different ways. Item 18 has a very high score

for PC 2 and a negative score for PC 3, but nearly zero for PC 1 and PC 4. It is an item

that is quite difficult even for the students in the very high ability range. The IRF of item

28 is quite similar to that of item 18 for the low ability range until θ 0, but its slope for

the high ability range is higher, and the probabilities of success are higher than 0.9 for

θs higher than 1. On the contrary, the probabilities of success of the IRF of item 60 are

quite low as far as 1.5, which means that it is a difficult item, but the probabilities of

success for the best students are high. In fact, the probabilities of success for item 60 for

θ higher than 2 are higher than those of item 18. Item 28 has high score for PC 1 and

low score for PC2, while it has a score of nearly zero for PC 3 and PC 4. However, item

60 has low scores for PC 1 and PC 4, a high score for PC 2 and nearly zero for PC 3.

In other words, it would have been very difficult to guess the extreme representatives of

the sample returned by ADA from an analysis of the scores in Figure 10.
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Figure 12: Star plots of the alphas of each archetypoid for IRFs. The item number appears below each

plot. The archetypoids are 2, 18, 28 and 60.

The alpha values (from 0 to 1) tell us about the contribution of each archetypoid

to each item. Remember that they add up to 1. Figure 12 shows star plots of the alpha

values for each archetypoid, thus providing a complete human-readable view of the

data set. The 4 alpha values in this case are represented starting on the right and going

counter-clockwise around the circle. The size of each alpha is shown by the radius of

the segment representing it. The items that are similar to the archetypoids can be clearly

seen (for example, 7 and 8 are somehow similar to 2; 15 and 19 are somehow similar to

18; 14 and 16 are somehow similar to 28; and 56, 57 and 59 are similar to 60), as can

the items that are a mixture of several archetypoids (for example, item 1 is a mixture of

mainly item 2, together with items 28 and 18, to a lesser extent). Item 1 was selected

by Ramsay and Silverman (2002, Ch. 9) and Rossi et al. (2002) as an example of a low

difficulty item, although it seems that item 2 would be a better representative of this kind

of item. Item 9 was selected by Ramsay and Silverman (2002, Ch. 9) and Rossi et al.

(2002) as an example of a medium difficulty item, and it is mainly a mixture of items 18

and 28. Finally, item 59 was selected by Ramsay and Silverman (2002, Ch. 9) and Rossi

et al. (2002) as an example of a hard item. Item 59 was mainly explained by item 60.
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Results of applying FADA with kernel and parametric IRF estimates are discussed

in the Supplementary Material.

6 Conclusion

We have proposed to find archetypal patterns in binary data using ADA for a better

understanding of a data set. A simulation study and results provided in two applications

have highlighted the benefits of ADA for binary questionnaires as an alternative that can

be used instead of (or in addition to) other established methodologies.

Although, much of statistics is based on the idea that averaging over many elements

of a data set is a good thing to do, in this paper we adopt a different perspective. We have

selected a small number of representative observations, archetypal observations, and the

data composition is explained through mixtures of those extreme observations. We have

shown that this can be highly informative and is a useful tool for making a data set more

“human-readable”, even to non-experts.

In the first application, we have shown how ADA returns the most complementary

profiles, which can be more useful in order to establish groups of students with similar

mastery of skills. Furthermore, ADA returns composition information of each observa-

tion through alpha values, which is a richer information than the simple assignation to

groups returned by CLA. In the second application, FADA has discovered the extreme

patterns in the data, which cannot be recovered by FPCA. Furthermore, we have ex-

plained each item of the ACT math exam as a percentage of the archetypal items, which

is easily understandable even for non-experts.

As regards future work, throughout the paper all variables share the same weight, but

for certain situations some variables could have more weight in RSS. Another direction

of future work would be to consider ADA for nominal observations, for example, by

converting those variables into dummy variables, i.e. with binary codes. Furthermore,

this work is limited to binary data, but questionnaires can also have Likert-type scale

responses. Therefore, archetypal techniques for ordinal data would be very valuable.

Another not so immediate extension, would be to consider the case of mixed data, with

real valued and categorical data, together with missing data. Finally, from the compu-

tational point of view, in case of working with a very big data set, the ADA algorithm

described in Section 2.1.1 could be slow. In that case, a recent alternative implemented

in the R package adamethods (Vinue and Epifanio, 2019) for computing ADA with

large data sets could be used.
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Integer constraints for enhancing interpretability

in linear regression

Emilio Carrizosa1, Alba V. Olivares-Nadal2 and Pepa Ramı́rez-Cobo3

Abstract

One of the main challenges researchers face is to identify the most relevant features in a prediction

model. As a consequence, many regularized methods seeking sparsity have flourished. Although

sparse, their solutions may not be interpretable in the presence of spurious coefficients and corre-

lated features. In this paper we aim to enhance interpretability in linear regression in presence of

multicollinearity by: (i) forcing the sign of the estimated coefficients to be consistent with the sign

of the correlations between predictors, and (ii) avoiding spurious coefficients so that only signifi-

cant features are represented in the model. This will be addressed by modelling constraints and

adding them to an optimization problem expressing some estimation procedure such as ordinary

least squares or the lasso. The so-obtained constrained regression models will become Mixed In-

teger Quadratic Problems. The numerical experiments carried out on real and simulated datasets

show that tightening the search space of some standard linear regression models by adding the

constraints modelling (i) and/or (ii) help to improve the sparsity and interpretability of the solutions

with competitive predictive quality.
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1 Introduction

A plethora of real world data involve multiple features interacting between them. As a

consequence, one of the most common research challenges is trying to predict a variable

by making use of attributes that are deterministic or easier to access. A widely studied

tool to achieve this is the linear regression model

Y = β0 +βββX+a (1)

1 Institute of Mathematics of the University of Seville (IMUS).
2 The University of Chicago Booth School of Business, 5751 S. Woodlawn Ave., Chicago, Illinois 60637. Email:

alba.nadal@chicagobooth.edu
3 Department of Statistics and Operational Research, Universidad de Cádiz.

Received: January 2019

Accepted: April 2020



68 Integer constraints for enhancing interpretability in linear regression

where Y = (y1, . . . ,yK)
′ contains the K realizations of the random variable to be pre-

dicted, X ∈ R
K×N contains the observations of the attributes X1, . . . ,XN that influence

on Y, and a ∈ R
K denotes the error term. In practice, the coefficients βββ need to be esti-

mated and thus, the user needs to select an estimation method, which is usually derived

from solving an optimization problem of the form:

min
βββ

f (βββ)

s.t βββ ∈B

(2)

where B denotes the feasible region.

Since the data collection technologies are improving altogether with communication

systems and computers’ memories and processors, the dimension of the data sets to be

handled is increasing drastically. As a consequence, nowadays researchers aim to return

an interpretable output which explains the main interactions between the features that

conform the pile of data and the dependent variables. Usually, this is understood as a

problem of choosing the most relevant features for prediction (Friedman, Hastie and

Tibshirani, 2001; Cai, Tsay and Chen, 2009; Hastie, Tibshirani and Wainwright, 2015).

Sparse methods will yield solutions βββ in (2) with a large number of zero coefficients, in

which only the most significant features are associated with the non-zeroes (Tibshirani,

1996; Hastie et al., 2015). Although sparsity may be a desirable property for our solu-

tion, we should take into account that other characteristics need to be sought in order to

obtain a more interpretable output. First, correlated variables can provide highly variable

estimated coefficients that make it difficult to understand the impact of a feature on the

predictive variable. Second, spurious coefficients complicate the judgement of whether

a feature is truly relevant for prediction or not. We will explain these two issues with

further detail in what follows and motivate why we aim to alleviate them in this paper

while still seeking for a sparse solution.

It is known that ordinary least squares (OLS) provides solutions that may be highly

dense. A good representative of a possibly sparse estimation method in the form (2)

is the lasso (Tibshirani, 1996), which adds a ℓ1-norm penalization term to the OLS

objective:

f (βββ) = ‖y−β0 −βββX‖2
2 +λ‖βββ‖1 (3)

B= R
N .

The lasso encompasses OLS when the penalty parameter λ equals zero, but when λ in-

creases the solution becomes more sparse. The lasso is computationally feasible and,

under certain technical conditions on the data matrix X, it enjoys good statistical prop-

erties, see Friedman et al. (2001); Bühlmann and van de Geer (2011). However the lasso

also presents certain shortcomings well-documented in the literature (for a brief review,

see Bertsimas et al. (2016) and the references therein). In particular, it is known that

estimation through OLS or the lasso may be quite unstable in the presence of strong
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collinearity on the data (Silvey, 1969; Sengupta and Bhimasankaram, 1997; Hesterberg

et al., 2008). On one hand, the presence of correlated variables may yield a high vari-

ability in the estimated coefficients, complicating thus the interpretation of the results

(Farrar and Glauber, 1967; Watson and Teelucksingh, 2002; Montgomery, Peck and Vin-

ing, 2012). On the other hand, a consequence of collinearity that leads to problems for

interpreting the effect of the regressors is that two variables that are highly positively

(negatively) correlated may have associated estimated coefficients with different (same)

signs. This problem can be illustrated through the following numerical example in Hes-

terberg et al. (2008). Consider the diabetes database (Efron and Hastie, 2003), which

consists of the measures of 10 variables (age, sex, body mass index, average blood pres-

sure and six different blood serums) on 442 patients. The top panel of Figure 1 depicts

the path of solutions of the lasso for this database; that is to say, the estimates of the co-

efficients βββ obtained are depicted against the different values of the penalty λ. As noted

by Hesterberg et al. (2008), features tc and ldl (bottom left panel), have a correlation

of 0.89. However, their estimated coefficients take opposite signs, which is in contra-

diction with their dependence degree. Similarly, the coefficients for variables hdl and

tch (bottom right panel), which show a correlation of −0.73, have the same sign when

estimated by the OLS (the case λ= 0 in Figure 1). Hence it seems that the coefficients

of highly correlated variables may take values that compensate each other. Finally, an

additional inconsistency is that the sign of the estimated coefficient of hdl (squared blue

line, left bottom panel) varies depending on the level of sparsity required.

The negative effects of collinearity have been differently addressed in the litera-

ture. On one hand, some authors (Chatterjee and Hadi, 2015; Montgomery et al., 2012)

suggest to remove variables that are highly correlated or unimportant, often carrying

out significancy tests to determine if a variable can be discarded. However, the re-

sults of these tests may be misleading in the presence of strong collinearity (Watson

and Teelucksingh, 2002). In this line, the recent paper by Bertsimas and King (2015)

proposes to tighten the estimation procedure (2) by adding constraints that explicitly

forbid the coefficients of variables with a high pairwise correlation to be simultane-

ously non-zero. Nonetheless, as it will be seen in Section 3.3.1, these approaches may

be detrimental if highly correlated features own a strong predictive power. On the other

hand, some authors encourage highly correlated predictors to be altogether in the model.

The graph-guided fused lasso (GFlasso hereafter, proposed in Kim and Xing, 2009)

encourages two highly correlated variables to have similar estimated coefficients by

adding the penalization γ|βi − sign(ρi j)β j| to the lasso objective function, where ρi j

denotes the correlation between X i and X j. The SRIG method (Sparse Regression In-

corporating Graphical Structure Among Predictors, introduced in Yu and Liu, 2016),

determines the value of the coefficient β j not only by feature X j but also by all features

X i such that ρi j is large in absolute value. Under certain technical conditions, the SRIG

is endowed with nice properties that, for instance, ensure the recovery of the original

model. However, as it will be shown in Section 3.2, these conditions may not be ful-

filled in real databases, yielding outputs that may not improve the performance of the
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Figure 1: Top: path of solutions of the lasso for the diabetes database (the size of the coefficients βββ are

depicted against the values of the penalty λ). Bottom: problematic paths.

current methodologies. Our approach is less restrictive than the previous one, since it

neither encourages the removal of variables nor the presence of groups of correlated

features. Instead, we propose a constraint (called sign coherence constraint) that aims

to elude the signs’ inconsistency phenomenon related to collinearity shown in Figure

1, avoiding that the coefficients of highly correlated variables compensate each other.

This constraint provides more flexible models, as for some cases two highly correlated

variables may appear altogether in the output, and for some other cases one feature of a

highly correlated pair may be removed. This will be illustrated in Figure 5, Section 3.2.

Our approach is not the first one to restrict the sign of the estimated coefficients in linear

regression. For instance, Meinshausen (2013) makes use of non-negative least squares to

recover the real sparsity pattern in high-dimensional data under certain conditions. Also,

the LARS algorithm (Efron, Hastie, Johnstone and Tibshirani, 2004) emulates the lasso
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solution by requiring the sign of the coefficients to match the sign of their correlation

with the residuals. Another well-known example is the non-negative garotte (Breiman,

1995), which performs subset selection while forcing the signs of the coefficients to

match the signs of the OLS estimates.

To conclude, there are further remedies to alleviate collinearity issues, consisting of

harvesting more observations (Sengupta and Bhimasankaram, 1997; Montgomery et al.,

2012) or applying methods that decorrelate the data (Cao, Guo and Bouman, 2010;

Massy, 1965). Nevertheless, the later approaches imply the transformation of the vari-

ables and thus complicate the interpretation of the final models with respect to the orig-

inal features. More recently, optimization approaches bounding the Variance Inflation

Factor (VIF) and condition number of the correlation matrix have also been proposed

(Tamura et al., 2019; Jou, Huang and Cho, 2014; Tamura et al., 2017).

On top of the unreliable interpretation of coefficients in presence of high correla-

tions, the lasso also suffers a drawback, mitigated in this paper: the presence of spurious

coefficients. For λ> 0 the ℓ1-norm performs a shrinkage of the coefficients in the lasso

solution that eventually attains sparsity as a side effect. However, as will be shown in

the numerical section, the solutions of the lasso may be still dense for large datasets due

to these spurious coefficients. In this paper we avoid this negative effect of shrinkage

by defining a novel constraint (called significance constraint) that forces the estimated

coefficients to be either zero or larger than a fixed value (to be tuned).

In summary, in this paper we model two novel constraints which will tighten the

search space for βββ in Problem (2). As a result, the interpretability of the solutions is im-

proved since (i) the signs of the coefficients are coherent with the sign of the correlations

between highly or moderately correlated predictors, and (ii) the shrinkage is combatted

while avoiding spurious coefficients, which may lead to the annihilation of some coef-

ficients, thus increasing the sparsity. As will be shown in the numerical experiments,

such better interpretability is obtained without damaging the predictive power of the

model. When discerning the suitability of these constraints for a particular database, the

user should realize that constraints modelling (i) become inactive if no highly correlated

predictors are found, while constraints expressing (ii) do if all the variables have non-

spurious estimated coefficients. Hence, the user might want to analyse the correlations

before adding the sign coherence constraints. However, we do recommend adding the

significance constraint if a regularized method is used for estimation.

The resulting optimization problems will belong to the class of Mixed Integer Qua-

dratic Programs (MIQP), which have recently proven very suitable in different statistics

problem as linear regression (Tamura et al., 2019; Bertsimas and King, 2015), time

series (Carrizosa, Olivares-Nadal and Ramı́rez-Cobo, 2016), classification (Carrizosa,

Nogales-Gómez and Morales, 2016; Carrizosa, Nogales-Gómez and Morales, 2017), or

dimensionality reduction (Carrizosa and Guerrero, 2014). Indeed, Bertsimas and King

(2015); Bertsimas et al. (2016) use MIQP theory to solve (in tractable way) the best
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subset selection problem (Miller, 2002):

f (βββ) = ‖y−β0 −βββX‖2
2 (4)

B=
{

βββ ∈ R
N : ‖βββ‖0 ≤VT

}

,

where the ℓ0-norm is the cardinality function ‖βββ‖0 = #( j : β j 6= 0) and

‖βββ‖0 ≤VT , (5)

denotes the cardinality constraint which leads to attain the desired level of sparsity given

by the value VT . In this work, the two novel constraints (sign coherence and significance

constraints) will be combined with the cardinality constraint (5), so that sparsity is also

achieved in addition to a better interpretability.

The paper is structured as follows. In the next section we model the new constraints

to be added to Problem (2) in order to enhance interpretability through mathematical

programming. The numerical experiments are carried out in Section 3, where the es-

timation methods under comparison and the design of experiments are also discussed.

The last section is devoted to concluding remarks and extensions.

2 Mathematical model formulation

In this paper, it is our aim to enhance the interpretability of the outputs by replacing any

estimation procedure in the form (2) by:

min
βββ

f (βββ)

s.t βββ ∈B∩S

(6)

where S will gather the proposed constraints. Tightening an estimation procedure by

adding constraints, i.e., solving (6) instead of (2), has already been considered in the

literature in order to improve the performance of linear regression estimation methods

like (2), see for example Bertsimas and King (2015).

In this section we model the tightening set S by defining constraints that can be added

to a classic (possibly sparse) linear regression estimation method (2), in order to enhance

the interpretability of the outcome as well as improving its sparsity. As commented in

the previous section, the first novel constraint, called sign coherence constraint, imposes

coherence between the signs of the estimated coefficients and the signs of large pairwise

correlations between predictors. The second novel constraint, the so-called significance

constraint, allows only for truly significant features to be considered in the model. The

idea is that the user should feel free to add any of these constraints, when compatible, to

her selected estimation method given by (2), yielding (6).
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2.1 The sign coherence constraint

The presence of correlated variables in the data is demonstrated to lead to undesired

consequences, such as a high variability on the estimated coefficients and the sign in-

consistencies explained in the introduction; see e.g. Bartholomew et al. (2008). As it

was commented, the traditional procedure to avoid these undesired behaviour consists

of removing highly correlated variables. In particular, Bertsimas and King (2015) for-

bids two highly correlated variables to be simultaneously non-zero. Specifically, the

following pairwise correlation constraints are modelled

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη, (7)

where Ωη = {(i, j) : |ρi j| ≥ η} is the set of pairs of features considered to be highly

correlated, and γi, γ j are defined as

γ j =

{

1 if β j 6= 0

0 if β j = 0.
(8)

From now on, the constraint defined by Bertsimas and King (2015) and stated as (7) will

be called correlation constraint.

In contrast to Bertsimas and King (2015), we propose here a less restrictive approach

that allows two highly correlated variables to be in the model at the same time, but

forbids misleading interpretations and misrepresentative coefficients. Our aim is to avoid

sign inconsistencies while allowing the model to include two correlated variables if they

contribute to improve or maintain the prediction quality. Therefore, we propose to model

constraints that avoid the compensation of coefficients for correlated variables. Under

the light of the example illustrated in Figure 1, these are the requirements we aim to

gather when modelling the sign coherence constraint:

1. The coefficients of two features that are moderately or highly positively correlated

must have the same sign.

2. The coefficients of two features that are moderately or highly negatively correlated

must have opposite signs.

In order to model these constraints, we introduce the following binary variables:

ν+j =

{

1 if β j > 0

0 otherwise

ν−j =

{

1 if β j < 0

0 otherwise
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Therefore, the previous requirements 1-2 can be easily formulated as constraints as:

ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α (9)

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α (10)

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α (11)

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α (12)

where Ω+
α and Ω−

α are the sets of pairs of features that are moderately or highly corre-

lated, expressed as Ω+
α = {(i, j) : ρi j ≥ α} and Ω−

α = {(i, j) : ρi j ≤−α}. That is to say,

constraints (9)-(10) mean that, if two variables i, j are highly positively correlated (i.e.

(i, j) ∈ Ω+
α), then we do not allow one of the coefficients to be positive and the other

negative. Similarly, constraints (9)-(10) imply that, if two variables i, j are highly nega-

tively correlated (i.e. (i, j) ∈ Ω−
α ), we forbid their coefficients to be both positive or both

negative.

Note that variables ν+j ,ν
−
j are linked with γ j, defined in Equation (8), as follows:

γ j = ν+j +ν−j ,

and thus the cardinality constraint (5) can be also written as:

N

∑
j=1

(ν+j +ν−j )≤VT .

In order to illustrate the impact of these constraints we compare the path of solutions

depicted in Figure 1 for the lasso applied to the diabetes dataset, against the lasso

tightened with the sign coherence constraints, as depicted in Figure 2. As it can be

observed, the use of constraints (9)-(12) to tighten the feasible region of the lasso might

avoid the sign of a coefficient to vary depending on the level of sparsity required, easing

the interpretation of the impact of the predictors over the response variable.

2.2 The significance constraint

In this section we formulate a novel constraint that helps combatting the negative effects

of shrinkage of the lasso while discarding spurious coefficients. The idea is to allow only

for significant variables to be represented in the model and to improve the sparsity of the

output. Intuitively, large coefficients are identified with the significance of a feature once

the data are normalized. Following this reasoning we propose to establish a threshold of

significance that a feature must be able to exceed to be allowed in the model. We model

the significance constraint as follows:

|β j| ∈ {0}∪ [ǫ,+∞) j = 1, . . . ,N (13)
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Figure 2: Path of solutions of the tightened lasso by the sign coherence constraint for the diabetes database.

where ǫ is called here the significance threshold, to be fixed by the user or to be tuned

(see Section 3.1). In (13), a forbidden region in (0,ǫ) is defined with the aim to avoid

shrinkage and to forbid spurious coefficients in the solution. This constraint was already

used by Carrizosa et al. (2016) to discover potential causalities in multivariate time

series. Note that using the binary variables ν+j and ν−j defined in Section 2.1, constraints

(13) can be expressed in a more manageable form via two sets of linear constraints

β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N
(14)

where M is a large constant. This big M, often appearing when modelling problems

with integer variables, is large enough so it does not exclude reasonable values of the

parameters β j (see, e.g. Camm, Raturi and Tsubakitani, 1990). In order to clarify the

effect of the significance constraint (13), consider the heat map given by Figure 3. The

left panel depicts the values of the estimated coefficients for the lasso, in the first column,

and the lasso with the significance constraint (taking ǫ= 0.3), in the second column, for

the golf2009 database (Winner, 2016). The right panel represents the values of the

estimated coefficients for the OLS and its counterpart tightened with the significance

constraint (taking ǫ= 0.05) for the compact database (Torgo, 2016). Such datasets will

be described with further details in Section 3. The colour represents the sign of the

coefficients β j (blue for negative, red for positive) and the intensity is related to the

magnitude of such coefficients. In Figure 3 it can be observed that adding significance

constraints establishes a clearer cut between zero and non-zero coefficients. Also note
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that the tightened approach is not equivalent to making zero all the coefficients estimated

by the lasso to be smaller in absolute value than our threshold ǫ. For instance, in the left

panel β4, estimated to be 0.143, is enlarged to ǫ = 0.3, while β3 is enlarged to −0.436

despite being estimated by a value of −0.311, which was already larger in absolute value

than ǫ. Finally, it should be noted that the solutions under the significance constraint

lead to an improvement of 10.58% over the out-of-sample mean squared error (MSE

hereafter) of the lasso for the considered database. Moreover, on the right panel we

observe that the tightened OLS shrinks coefficient β14 =−0.024 to zero, while enlarges

coefficient β4 = 0.012 to ǫ= 0.05, despite being smaller in absolute value. Also, adding

the significance constraints yields to an improvement of 1.72% over the out-of-sample

MSE of the OLS.
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Figure 3: Heatmaps representing the coefficients βββ estimated by the lasso (left panel) and the OLS (right

panel) and their respective counterparts tightened by adding significance constraint (13) for the golf2009

and compact datasets.

3 Numerical illustrations

In this section we describe and undertake the numerical experiments performed to com-

pare two benchmark estimation methods in linear regression of the form (2) against their

tightened versions (6) derived from reducing the search of the coefficients βββ ∈B = R
N

to the set B∩ S, where S is defined through some constraints. Specifically, in the next

section we outline the design of the experiments, Section 3.2 shows the results for real

databases, Section 3.3.1 replicates the simulated study in Yu and Liu (2016), while in

Section 3.3.2 the databases are generated following the simulations in Bertsimas and

King (2015).
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3.1 Design of experiments

In order to assess the impact of the novel constraints over the estimated coefficients βββ

and the predictive quality of the solutions, we will analyse the differences in the per-

formance between Problems (2) and (6). As baseline estimation methods (i.e. Problem

(2)), we consider the lasso (Problem (3)) and the OLS (Problem (3) with λ = 0). Their

tightened versions (Problem (6)) consider the same objective functions but reduce the

search space of the coefficients βββ to the so-called tightened regions B∩S.

In our numerical setting, we consider various tightening sets S, whose related prob-

lems, taking form (6), are explicitly formulated in Appendix A. In order to analyse

the effect of the first novel constraint proposed in this paper, the sign coherence con-

straint, we consider the set S1 = {(9)− (12)}. To compare our approach with the re-

cent constraints by Bertsimas and King (2015), the correlation constraint, we will also

test the performance of the set S2 = {(7)}. Both sets will be considered in the first

part of Section 3.2 where the sign coherence constraint is analysed. Then, to clarify

the performance of the new significance constraint, the tightening set S3 = {(14)} will

be considered in the second part of Section 3.2. Finally, we will analyse the global

performance of our novel constraints when the cardinality constraint is also imposed

(that is, S4 = {(5), (9)− (12), (14)}) in comparison to the tightening set of Bertsimas

and King (2015), for which S5 = {(5), (7)}. In these cases we also show the predic-

tive quality and number of non-zero coefficients for the elastic net (Enet hereafter)

(Zou and Hastie, 2005), the SRIG method in Yu and Liu (2016) and the GFlasso in

Kim and Xing (2009). The Enet, which trades off between lasso and ridge regres-

sion, is known to avoid erratic paths of correlated variables in the lasso (Hastie et al.,

2015). In fact, for non-trivial values of the parameters, the Enet problem has a unique

solution, no matter the correlations between the regressors. This shall be addressed

in the last part of Section 3.2 as well as Sections 3.3.1 and 3.3.2. The Enet method

was run using R cran package glmnet, and the SRIG method was run using the R

packages recommended by the authors in Yu and Liu (2016). All the tightened pro-

cedures and the GFlasso were easily coded in the algebraic language AMPL (Fourer,

Gay and Kernighan, 2002), but the latter was solved using Knitro solver. As Problems

(2) and (6) are MIQPs with quadratic convex objective function and linear constraints,

they were solved using CPLEX. For the interested reader, the code is included in Ap-

pendix D of the Supplementary Material. Even though MIQP problems may be hard

to solve, the current solvers already incorporate a plethora of heuristics that turn them

into highly efficient optimizers. For instance, CPLEX incorporates various preprocess-

ing steps whose aim is to reduce the size of the problem and improve its formulation

(Savelsbergh, 1994; Atamurk, Nemhauser and Savelsbergh, 2000). On the other hand,

many other techniques and local search heuristics are implemented and implicitly run

during the process (see, for instance, Danna, Rothberg and LePape, 2005; Fischetti and

Lodi, 2005; Rothberg, 2007). As done in Bertsimas and King (2015), a time limit of 20

seconds was imposed to solve each MIQP for K ≤ N, although this limit was reached
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only for the largest datasets and in most cases cases the optimal solution was attained

in a few seconds. For the case with K > N, a time limit of 40 seconds was imposed

instead.

In order to make a fair comparison against existing procedures, the experiments de-

veloped here closely follow those in Bertsimas and King (2015). First, unless otherwise

specified, the datasets are normalized and divided in train, test and validation sets (50%,

25% and 25% of the data, respectively). All the problems are solved in the training set,

and the solution that minimizes the MSE in the test set is chosen. Two criteria are used

to compare the methods, namely, the MSE and the sparsity. All the MSEs reported in

this paper correspond to the values obtained in the validation sets and are normalized

by dividing by the MSE of the OLS solution; that is to say, when any method attains a

MSE greater than 1 their prediction power is estimated to be worse than that of the OLS,

while for smaller values the accuracy has improved.

The sparsity of the solution of the unconstrained lasso increases as its regularization

parameter λ ∈ R
+ does. The critical values of λ are easily computed using any imple-

mentation of the LAR algorithm in various standard statistical packages. In particular,

in this paper the lasso set of solutions was obtained by using the lars() function of

R-cran package lars (Hastie and Efron, 2013).

For the tightened MIQPs (6), the pairwise correlation considered to generate the sets

Ω+
α and Ω−

α in constraints (9)-(12) is fixed to α = 0.6. Following Bertsimas and King

(2015), the maximum pairwise correlation allowed is η = 0.8; that is to say, the set Ωη

in (7) is defined here as Ωη = {(i, j) : |ρi j| ≥ 0.8}.

The significance parameter ǫ in constraints (13) is tuned by chosing amongst the

ten values {0.05,0.06,0.08,0.1,0.125,0.15,0.175,0.2,0.25,0.3} so as to minimize the

MSE in the test set. The parameter VT controlling the sparsity is chosen sequentially

in {1, . . . ,N}. However, in order to restrict the search only to likely values of VT , a

stopping criterion is imposed: when no more features are added to the model (i.e., when

the constraint (5) becomes inactive), no larger values of VT are considered. On top of

this, to further improve the speed of the tightened procedures, we have restricted the

size of the parameters grids for large instances, as recommended in Tibshirani et al.

(2005). In particular, for large simulated datasets we have required our output to have a

maximum of 25% of non-zeroes over N, the number of predictors.

3.2 Real datasets

In this section we show the results obtained for some real datasets, which are eas-

ily reachable on internet and well referenced in the literature (Bertsimas and King,

2015). Further details about the data sets and their sources are displayed in Table 1. The

columns provide information about the name, number of observations (K), the number

of covariates (N), and data source.
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Table 1: Real data sets specifications and sources.

K N Source

cpu 105 6 Lichman (2016)

yacht 154 6 Lichman (2016)

whitewine 2499 11 Lichman (2016)

redwine 800 11 Lichman (2016)

golf2008 78 6 Winner (2016)

golf2009 73 11 Winner (2016)

compact 4096 21 Torgo (2016)

The median MSE and number of non-zeroes attained by the different estimation

procedures are displayed in Tables 2-4, where the first column of results corresponds to

the normalized MSE and number of non-zero coefficients (NZ), and each row shows the

results of a real dataset. To obtain such results, the databases were randomly divided ten

times in training, test and validation sets.

3.2.1 The effect of the sign coherence constraints

The sign coherence constraints described in Section 2.1 and formulated as (9)-(12) are

claimed to avoid the inconsistencies shown by Figure 1. Now we analyse the effect of

such constraints in the accuracy and sparsity of the obtained solutions. In addition, the

results are compared with those under the correlation constraint (7) by Bertsimas and

King (2015). The first three rows of Table 2 show the results for the untightened OLS,

and the OLS with tightening sets S1 (the novel sign coherence constraint) and S2 (the

correlation constraint of Bertsimas and King (2015)), respectively. Analogously, the re-

maining rows display the performance of the untightened and tightened lasso problems.

Table 2: Predictive quality (MSE) and sparsity degree (NZ) for the baseline methods and the approaches

tightened by the correlation-based constraints.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S1 1.031 5 0.970 4 1.009 9 0.999 10 1.004 5 0.896 7.5 1.014 15

S2 1.042 5 0.996 5 1.007 10 1.000 10 0.998 5 0.971 8 1.016 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S1 1.036 4 0.954 3.5 1.009 9 0.996 10 1 5 0.79 8 1.010 14

S2 1.049 4.5 0.961 4 1.008 10 0.994 8.5 0.986 4 0.966 7 1.013 14

From Table 2 it can be deduced that both constraints related to multicollinearity

yield a similar performance: adding sign coherence constraints slightly improves spar-

sity for yacht and whitewine databases, but may also attain slightly more dense solu-
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tions (golf2008 and the tightened lasso in redwine database). Regarding the predic-

tive quality, the MSEs are quite similar in most cases. An exception is the golf2009

database, where the tightening set S1 improves the predictive power of the tightening

set S2 in a 7.5% for the OLS and a 17.6% for the lasso. We conclude that, not only

the sign coherence constraint improves the interpretability of the results by avoiding the

inconsistencies described in Section 1, but also it does not damage the level of sparsity

and predictive power. Indeed, when comparing the novel coherence constraints (9)-(12)

against the correlation constraint (7), they give overall the same accuracy and sparsity.

We should remark that, in addition, our constraints yield more stable results than the

correlation constraint when used in the lasso model. To illustrate this, consider Figure

4, which displays the paths of solutions attained for the baseline and tightened lasso in

random shuffles of the golf2009 and yacht databases. The path of solutions attained

by the baseline lasso on the golf2009 database (top left panel) shows that coefficients

β11 and β6 grow quickly in opposite directions for small values of λ. These coeffi-

cients are inflated due to the high pairwise correlation (0.91) between these variables.

This phenomenon disappears when we strictly forbid coefficients β11 and β6 to be si-

multaneously non-zero (central left panel). However, coefficients β3, β4 and β6, which

are considerably less correlated (ρ3,4 = 0.05, ρ3,6 = 0.77 and ρ4,6 = −0.39), still show

this behaviour. Moreover, coefficient β10, which was significant even for large values of

the penalty λ, suddenly disappears as λ approaches zero. On the contrary, sign coher-

ence constraints (bottom left panel) seem to avoid the inflation of coefficients β3, β4,

β6 and β11, also leading to smoother paths. A similar behaviour is observed for yacht

database, where coefficients β2, β3, β4 and β5 explode for λ = 0 in the baseline lasso

(right top panel). Since the pairwise correlations between these variables do not exceed

the threshold 0.8 imposed by Bertsimas and King (2015) (indeed, the largest correlation

coefficient is ρ3,5 = 0.63), they are not explicitly forbidden simultaneously in the model,

thus yielding the same solution path as the lasso when adding the correlation constraint

(central right panel). As sign coherence constraints are less restrictive, they allow highly

correlated variables to simultaneously appear in the model. This may lead to alternative

solutions that may improve the stability of the estimated parameters βββ in the presence

of highly correlated variables. In fact, the bottom right panel represents a considerably

stable path of solutions along λ, which clearly identify the more significant feature for

prediction.

As mentioned in the introduction, our constraints differ from most of the approaches

previously considered in the literature: we do no explicitly forbid two highly correlated

variables in the model (as recommended in Chatterjee and Hadi (2015); Bertsimas and

King (2015)), nor encourage groups of correlated variables to be altogether in or out of

the model (Yu and Liu, 2016; Kim and Xing, 2009). An example of this is illustrated

on Figure 5, representing the estimated βββ in the 10 shuffles of golf2009 database. The

βββ have been estimated by the classic OLS (first row), the lasso (second row), and two

tightened OLS approaches: adding the correlation constraint (7) of Bertsimas and King

(2015) (tightening set S2) or adding the sign coherence constraints (9)-(12) (tightening
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Figure 4: Paths of solutions of the lasso (top panels), the lasso with the correlation constraint (mid panels)

and sign coherence constraints (bottom panels) in shuffle 9 of the Golf2009 database (left panels) and

shuffle 7 of the Yacht database (right panels).
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set S1). In this heatmap, features X6 and X10, with correlation 0.91, do not appear si-

multaneously in the same shuffle when adding the correlation constraints. Nonetheless,

their coefficients are non-zero simultaneously in various shuffles when considering sign

coherence constraints.
β
1

β
2

β
3

β
4

β
5

β
6

β
7

β
8

β
9

β
1
0

β
1
1

OLS ∩S1

OLS ∩S2

Lasso

OLS

Estimated coefficients for 

golf2009 database

Figure 5: Heatmap representing the coefficients βi estimated by OLS, lasso and OLS tightened by adding

correlation constraints (tightening set S2), or sign coherence constraints (tightening set S1) for golf2009

database.

The above results were obtained for fixed values of η and α, which were set to 0.6

and 0.8, respectively. These numerical examples followed the experimental design in

Bertsimas and King (2015), who fixed the correlation threshold α. However, in Ap-

pendix B we explore the sensitivity of the tightening procedures to changes in η and

α. We conclude that, in general, the calibration of these parameters seem to yield less

sparse solutions with a similar MSE. As a consequence the results shown in our numer-

ical experiments disregard the calibration of the correlation thresholds.

3.2.2 The effect of the significance constraint

Now we aim to study the impact of adding significance constraints (13) to the OLS

and the lasso. This was briefly analysed in Section 2.2, where heat maps representing

the estimated coefficients βββ were represented in Figure 3. We observed that imposing

a threshold ǫ to the estimates may lead to more sparse solutions by avoiding spurious
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coefficients and discarding unimportant variables. The first two rows of Table 3 display

the results for the untightened OLS and its counterpart tightened with S3 (significance

constraint). Analogously, the last two rows display the results for the unrestricted and

tightened lasso. In this table, we observe that tightening the feasible region of the OLS

and the lasso by using the set S3 always improves the sparsity of the output while usu-

ally attaining a competitive predictive quality. For instance, the significance constraints

improves the MSE of the OLS and the lasso in a 4% and a 2.6% for yacht database,

respectively, while reducing in 3.5 and 1.5 the number of non-zeroes. However, an ex-

ception is found in golf2009 dataset, where the novel constraint worsens the accuracy

of the OLS and the lasso, although yielding 3 more zeroes in both cases.

Table 3: Predictive quality (MSE) and sparsity degree (NZ) for the baseline methods and the approach

tightened by the significance constraint.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S3 0.978 4.5 0.960 2.5 0.999 8 1.000 7.5 1.007 5 1.205 8 1.002 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S3 0.989 4 0.934 1 0.999 8 1.001 7 0.987 3 0.936 6.5 1.003 13
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Figure 6: Improvements over the MSE of the lasso when tightened via the significance constraint.

Since it is not straightforward to choose a grid of thresholds ǫ to calibrate from, we

will try to gain some intuition by studying the improvement of the predictive quality

when adding the significance constraints for each value of ǫ considered. To this aim,

Figure 6 shows the median improvement on the lasso MSE for each value of the penalty

λ and each threshold in the proposed grid for whitewine (left panel) and compact (right

panel) database.
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From Figure 6 we observe that the behaviour for the largest ǫ (0.3, 0.25) can be more

effective specially for the larges values of λ. That is to say, a large ǫmay help combating

the strong shrinkage of the lasso when highly sparse solutions are sought. Still large but

more conservative values of the threshold (ǫ= 0.2,0.175,0.15) seem to also improve the

MSE of the lasso with large λ, also providing less extreme behaviours than the choices

ǫ= 0.3,0.25. Finally, the smallest values of the threshold (ǫ = 0.06,0.05) may slightly

improve the lasso with small λ and the OLS. In conclusion, there is no straightforward

a priori choice for the parameter ǫ, which should be calibrated. Nevertheless, if the user

is seeking a highly sparse solution (i.e., the user is choosing a high penalty λ) it seems

advisable to choose larger values for ǫ in order to combat the shrinkage more effectively.

On the other hand, when estimating via OLS (or lasso with small values of λ) the user

might want to focus on a grid with a majority of small values of ǫ.

3.2.3 Global performance

Finally, we show in Table 4 the results when our novel constraints are jointly considered

in combination to the cardinality constraint, or equivalently, when the set S4 (cardinal-

ity + sign coherence + significance constraints) is used to tighten the OLS or lasso ap-

proaches. For comparison reasons, the table also shows the results under the tightening

set S5 (cardinality + correlation constraints) proposed in Bertsimas and King (2015).

Table 4 also displays the predictive quality and number of non-zero coefficients for the

Enet, the SRIG method in Yu and Liu (2016) and the GFlasso method in Kim and Xing

(2009).

Table 4: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the real datasets.

Method
Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S4 0.990 4 0.934 1 1.011 6 1.002 6 0.999 3 0.963 4 1.012 9

S5 1.002 4 0.934 1 1.008 8 1.000 6 1.006 3 1.024 5 1.016 11

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S4 0.993 4 0.934 1 1.013 6 0.998 6 0.982 3 0.971 4.5 1.013 9

S5 1.049 4 0.934 1 1.008 7.5 0.995 6 0.988 3 1.045 4 1.015 11.5

SRIG 0.988 6 0.942 2 1.000 11 0.999 11 0.983 6 1.016 11 0.999 21

Enet 0.917 5.5 0.948 2 1.000 11 0.998 11 0.994 4 0.805 9.5 1.000 21

GFlasso 0.972 6 0.959 2.5 1.000 11 0.996 11 1.000 4 0.866 9.5 1.001 20

First, we analyse the performance of the baseline estimation procedures (OLS and

lasso) against their tightened counterparts. We can conclude that reducing the search

space of the coefficients βββ by intersecting with either S4 or S5 always improves the

sparsity of the solutions. Moreover, the predictive quality is usually similar to that of

the OLS and the lasso. In particular, for yacht database, both tightened approaches
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improve the MSE of the OLS and the lasso estimates by a 6.6% and a 2.6%, respectively.

However, these tightened procedures worsens the accuracy of the lasso in the golf2009

database.

Second, we compare the performance of the two tightening sets. From the table

it can be observed that they deliver a similar accuracy-sparsity trade-off for 3 out of

the 7 real datasets (yacht, redwine, golf2008). For the remaining databases, the

approaches attain different trade-offs between sparsity and predictive quality. Indeed,

the novel set S4 maintains the sparsity attained by the set S5 og Bertsimas and King

(2015) on the cpu database, while slightly improving the MSE in a 1.2% and a 5.3%

for the tightened OLS and lasso, respectively. In contrast, the proposed tightening set

provides more sparse solutions, with a similar predictive quality for whitewine and

compact datasets. Finally, S4 improves the MSE of the OLS and the lasso in a 6% and

7.1% in golf2009 database, but it provides a slightly more dense solution for the lasso.

Note that the best accuracy for the lasso in this database was attained when adding

exclusively sign coherence constraints (see Table 2), although the solution provided was

more dense. Third, both the SRIG and GFlasso are clearly outperformed by the tightened

approaches. On top of this, for the real datasets considered here there is no guarantee that

the necessary assumptions to preserve the theoretical properties of the SRIG are fulfilled.

In order to compare the performance of our approach against these methods under a

more favourable scenario for the later, in the next section we replicate the simulation

study of Yu and Liu (2016), hence assuring the non-violation of the conditions for the

SRIG method.

3.3 Simulations

In the previous section, the behaviour of the novel constraints for the case of real datasets

with a small number of predictors was analysed. In this section we aim to examine the

sensitivity of the tightened procedures under various settings. First, we will simulate

data as in Yu and Liu (2016) to understand the behaviour of the methodology under

different correlation structures and for different sizes of the training sample. Second, we

aim to test the proposed methodology for larger datasets and for different correlations

intensities. To do so we simulate data as in Bertsimas and King (2015).

3.3.1 Sensitivity to correlation structure and training sample size

In this section we aim to test the proposed methodology for datasets simulated following

the three examples and training sizes described in Yu and Liu (2016). Ten instances have

been generated for each example and for training and testing sizes of 40, 80 and 120.

For both Examples 1 and 2, βi = 3 for i = 1, ..,15, and βi = 0 for i = 16, . . . ,100. In

Example 1, however, the predictors were generated as follows:

X i = Z j +0.4ai
X , Z j ∼ N(0,1), ai

X ∼ N(0,1)
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for 5( j− 1)+ 1 ≤ i ≤ 5 j and j = 1,2,3. For i > 15, X i ∼ N(0,1). In Example 2, the

k-th vector of observations
(

X1
k , . . . ,X

N
k

)

was generated following a multivariate normal

distribution with zero mean and covariance matrix Σ = (σi j), where σi j = 0.5|i− j|. Anal-

ogously, in Example 3 the vector of observations was also drawn from a multivariate

normal distribution with zero mean but with covariance matrix Σ = (B+ψI)−1, where

bi j = 0 for i = j, and bi j = 0.5δi j, δi j ∼ Be(0.05) otherwise. Parameter ψ is fixed so

that the condition number of Σ−1 equals N. The real coefficients are βββ = Σ−1Σxy, where

Σxy is the cross-covariance vector whose elements equal 10 for the four predictors with

the largest degrees and 0 otherwise. These three examples have different structures of

correlation and, as it will be seen later, this may influence on the performance of the

approaches making use of constraints taking into account pairwise correlations. As an

illustration, Figure 8 of the Appendix C of the Supplementary Material displays the pairs

of variables appearing in the correlation constraints of Bertsimas and King (2015) and

our sign coherence constraints.

As done in Bertsimas and King (2015), the grid of values of the parameter λ to be

tuned for the tightened MIQP with lasso objective function is logarithmically generated

in the interval (0,λmax], where λmax is the penalty provided by the lars for which only

one coefficient is non-zero. Analogously to the real datasets results, Table 5 shows the

median MSE and number of non-zeroes (NZ). In particular, for each example (rows) and

training sizes (columns), each row shows the results obtained for an estimation method,

namely the OLS, the lasso, and their tightened counterparts, which take the form of

Problem (6) with tightening sets S4 (cardinality + sign coherence + significance con-

straints) and S5 (cardinality + correlation constraints). The last rows for each exam-

ple display the results for the methods dealing with correlated variables: the Enet, the

SRIG, and the GFlasso. To make it easier to discuss these results, in Figure 7 we have

represented the MSE against the number of nonzeroes for the three simulated examples

of Table 5. The different estimation methods have been assigned different colours, the

solid items representing the approaches making use of our proposed tightening set. The

diversity of training samples have been represented by unalike symbols.

In the top panel of Figure 7 we can observe that, in Example 1, the MIQPs (i.e., the

approaches proposed in Bertsimas and King (2015) and in this paper) tend to attain more

sparse solutions than the continuous optimization methods (i.e., the lasso, SRIG and

GFlasso). As it can be observed in Figure 8 in the Appendix, the true generating model

contains predictors that hold a high pairwise correlation and, therefore, are forbidden

to appear simultaneously in the outputs yielded by the tightening set of Bertsimas and

King (2015). As a consequence, the approaches making use of this set S5 are not able

to recover the original graph, hence delivering more sparse solutions but with worse

predictive quality than our tightening set. In constrast, the sign coherence constraints

flexibility allows the simultaneous presence of all the variables in the generating model.

As a consequence, S4 yields outputs with similar performance to that of the SRIG, that

is the best approach amongst those based on continuous optimization models.
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Figure 7: Median MSE and NZ for each method in the simulated datasets of Yu and Liu (2016).

In the bottom panels of Figure 7 we observe that the MIQP approaches are clustered

together. For both Examples 2 and 3 it is evident that the methods based on integer

optimization improve the sparsity of the outputs with no damage to the predictive qual-

ity. More specifically, in Example 3 all the methods based on continuous optimization

conform a unique cluster with higher density and similar or slightly worse MSE than

the MIQP approaches. Nonetheless, in Example 2 the SRIG and the lasso attain more

sparse solutions than the rest of continuous optimization approaches, yet still yielding

more non-zeroes than the tightened procedures. In this case, all the approaches attain a

similar accuracy.
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Table 5: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with N = 100.

Ntrain= 40 Ntrain= 80 Ntrain= 120

MSE NZ MSE NZ MSE NZ

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 0.689 7.5 0.240 7.5 0.081 12.0

S5 1.138 3.5 0.767 3.0 0.579 3.0

lasso 0.358 24.0 0.131 27.5 0.043 31.0

S4 0.306 14.0 0.154 17.0 0.062 20.0

S5 1.231 4.5 0.731 4.0 0.564 3.5

SRIG 0.082 15.0 0.050 15.0 0.082 15.0

Enet 0.351 27.0 0.111 32.0 0.351 27.0

Example 1

GFlasso 0.188 26.0 0.064 31.5 0.188 26.0

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 1.380 5.0 0.197 6.5 0.133 9.0

S5 1.560 4.0 0.206 6.0 0.142 9.0

lasso 0.756 27.5 0.096 30.0 0.080 31.5

S4 1.160 7.0 0.115 12.0 0.105 15.5

S5 0.841 18.5 0.115 15.5 0.102 15.5

SRIG 0.913 9.5 0.149 28.5 0.111 28.5

Enet 0.862 53.0 0.157 53.0 0.125 50.0

Example 2

GFlasso 0.638 38.5 0.053 80.0 0.038 53.5

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 0.412 5.0 0.101 13.5 0.106 15.0

S5 0.424 2.0 0.110 8.5 0.101 11.5

lasso 0.494 18.5 0.135 44.0 0.151 47.5

S4 0.391 7.5 0.083 18.0 0.097 14.5

S5 0.325 7.5 0.078 13.5 0.097 16.5

SRIG 0.537 34.5 0.110 43.5 0.185 51.0

Enet 0.525 28.0 0.148 45.5 0.165 49.5

Example 3

GFlasso 0.494 23.5 0.135 44.0 0.151 51.0

3.3.2 Scalability and sensitivity to correlation intensity

In this section we aim to test the proposed methodology for larger datasets with diverse

correlation intensities. As the overall design of experiments, the synthetic generation of

the data is similar to that of Bertsimas and King (2015). The k-th vector of observations
(

X1
k , . . . ,X

N
k

)

was generated following a multivariate normal distribution with zero mean

and covariance matrix Σ = (σi j), where σi j = ρ|i− j|. In particular, we chose ρ = −0.9
and ρ=−0.5 so as to test the performance of the constraints under highly and moderate

correlations. The regression model is taken in small dimension, but with quite a number

of irrelevant covariates. More precisely, the number of features was set to 500, only 10 of
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which corresponding to explanatory variables, the remaining 490 being noise. For each

value of ρ, 10 instances were generated as follows. The βi were uniformly generated

in the interval (−2,2) for i such that i modulus N/10 = 0. The response was generated

following (1), with β0 = 0 and the error terms i.i.d. following a normal distribution with

zero mean and variance as in Bertsimas and King (2015). As done in Section 3.3.1, the

sequence of λ has been logarithmically generated. Table 6 shows the median MSE and

number of non-zeroes (NZ) of the solutions for the OLS, the lasso and their tightened

counterparts, as well as the SRIG, Enet and GFlasso.

Table 6: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with N = 500.

r = 0 5– . r = – 0 9.

OLS 1.000 500 1.000 500

S4 0.745 6 0.732 6

S5 0.849 6 1.474 4

lasso 0.535 80.5 0.533 183

S4 0.526 10.5 0.528 11

S5 0.501 13 0.807 19

SRIG 0.630 34 0.792 102

Enet 0.535 50 0.534 51.5

GFlasso 0.537 70.5 0.533 54.5

MSE NZMSE NZ

Note that, for the simulated data with moderately correlated features (ρ = −0.5),

the correlation constraints (7) and the sign coherence constraints (9)-(12) are inactive,

since the highest pairwise correlation in absolute value is roughly 0.5. In this case, both

sets of tightening constraints help to considerably improve the sparsity of the base-

line estimation procedures. Indeed, the density of the OLS is drastically reduced by

increasing in 494 the zeroes of the output, while its predictive quality is also substan-

tially improved. However, the novel tightening set S4 provides an accuracy 12.2% better

than the attained with the set S5 proposed in Bertsimas and King (2015). On the other

hand, the benchmark sparse regression method, the lasso, attains a median of 80.5 non-

zeroes, while its tightening counterparts produce much more sparse solutions with better

MSEs. Although the predictive quality of the outputs of the tightened procedure with S5

is slightly better than that obtained with S4, this comes at the price of yielding more

dense solutions. More generally, the methods based on MIQP solvers clearly outper-

form the approaches relying on continuous optimization techniques: the former manage

to considerably reduce the sparsity of the later with a slightly better predictive quality.

Amongst the later approaches, the GFlasso is outperformed by the Enet which, with a

similar accuracy, provides a much more sparse solution. Nonetheless, the most sparse

of these methods is the SRIG, although yielding the worst predictive quality.
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Table 7: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with ρ=−0.9 and N = 50,500,1000.

N = 50 N 500= N 1000=

MSE NZ MSE NZ MSE NZ

OLS 1.000 50 1.000 500 1.000 1000

S4 0.662 8 0.732 6 1.035 5

S5 0.634 8 1.474 4 1.310 5.5

lasso 0.671 24.5 0.533 183 0.555 56

S4 0.637 8.5 0.528 11 0.904 8

S5 0.595 19 0.807 19 0.406 10

SRIG 0.127 42 0.792 102 0.835 103.5

Enet 0.108 26 0.534 51.5 0.538 49.5

GFlasso 0.693 41 0.533 54.5 0.615 359

The simulated instances with highly correlated features, ρ = −0.9, show a simi-

lar behaviour. Nevertheless, the lasso provides significantly more dense outputs in this

case, with a median of 183 non-zeroes. The tightening set S5 proposed in Bertsimas and

King (2015) worsens its predictive quality although improving substantially its sparsity.

In contrast, the novel tightening set S4 attains around eight more zeroes than the later

while maintaining the lasso’s accuracy. Regarding the OLS, both tightened estimation

methods reduce drastically the density of the solutions, although the S4 obtains around

two more non-zero coefficients than the tightening set S5. However, the price paid for

two extra non-zeroes is shown in the accuracy of the solution: while adding cardinality,

sign coherence and significance constraints improves the MSE of the OLS in a 26.8%,

adding cardinality and correlation constraints instead worsens the accuracy in 47.4%.

Analysing the results for the continuous optimization based methods, we observe that

the best performance is yielded by the Enet and GFlasso which, with a similar MSE,

significantly enhance the sparsity of the classic lasso. Nonetheless, when tightened with

S4, the later attains outputs with comparable predictive quality and many more zero

coefficients (around 40 more).

In order to analyse the scalability of our methodology we have also simulated data as

in Bertsimas and King (2015) with 50 and 1000 variables, and a maximum correlation

of 0.9. For the later, the MIQP to be solved would have 3001 variables and more than

2000 constraints. As the size of the problem is considerably larger, we have allowed for

a time limit of 40 seconds in this case, which was also the time limit considered for high

dimensional data where N > K. The results are collected in Table 7. As it can be ob-

served, MIQP approaches attain solutions that are considerably more sparse than their

continuous counterparts while still delivering a good predictive quality. In particular,

SRIG delivers the most dense outputs from the sparse continuous methods, while the

GFlasso is outperformed both in terms of accuracy and sparsity. Regarding the MIQP,
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they attain different accuracy-sparsity trade-offs. Although the proposed constraints at-

tain better accuracy when combined with the OLS objective, this is not true when the

regularization penalty λ is positive. Nonetheless, in this case the tightening set S4 yields

more sparse outputs than S5.

Summarizing, tightening the search space of the OLS and the lasso provides consid-

erably more sparse solutions, although the sign coherence and significance constraints

yield a better accuracy-sparsity trade-off than the correlation constraint. Indeed, the later

can substantially worsen the predictive quality of the baseline methods in order to reduce

the density of the outputs, while the former entails a more competitive MSE.

4 Concluding remarks

The aim of this paper is to enhance the interpretability in a regression model without

worsening its predictive quality. We assume we have a baseline regression estimation

procedure based on solving an optimization problem (e.g. OLS or lasso), and then the

underlying optimization problems are modified by adding new constraints to those defin-

ing the search space. These constraints avoid misleading estimators that may be obtained

in the presence of highly correlated variables and detect the most important features for

the prediction.

In order to assess the impact of adding the two novel constraints over various estima-

tion procedures, in our numerical experiments we consider the OLS and the lasso. The

search space of βββ is reduced in these methods by using the tightening set composed by

the sign coherence constraints (9)-(12) and/or the significance constraints (14), possibly

in combination with the cardinality constraint (5). The first constraint forces the sign of

the coefficients to be coherent with the sign of large and moderately large pairwise corre-

lations between features, while the second avoids spurious coefficients and combats the

shrinkage of regularized regression. We compare the performance of our tightening set,

including all the proposed constraints, with the recent tightening set by Bertsimas and

King (2015), which also defines a MIQP and includes the cardinality constraint (5) and

the correlation constraint (7) which explicitly forbids two highly correlated variables to

be simultaneously in the regression model. These methods are compared against other

approaches also dealing with correlated variables but based on continuous optimiza-

tion techniques: the Enet (Zou and Hastie, 2005), the SRIG (Yu and Liu, 2016), and

the GFlasso (Kim and Xing, 2009). The results show that the novel constraints yield

tractable optimization problems, solvable in short time by standard solvers, and may

enhance the interpretability while often improving or maintaining the predictive quality

and level of sparsity. More specifically, the MIQP approaches attain a different trade

off between sparsity and predictive quality than the methods based on continuous op-

timization, usually yielding more sparse solution with similar or better MSE. Amongst

the former methods, the novel constraints tend to improve the predictive quality of the

outputs obtained with the tightening set proposed in Bertsimas and King (2015).
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Although we have proposed some heuristics to further improve the speed of the

tightened procedures, such as reducing the grid of parameters for large datasets, in the

future we aim to develop tailored heuristics that improve the computational times of the

MIQPs when they particularly model linear regression problems.
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A Mathematical formulation of the methods under comparison

The optimization problems that are solved in the numerical study take the form of Prob-

lem (6), whose objective function is that of the lasso or of OLS (i.e., the objective func-

tion in Problem (3), where λ= 0 in the case of the latter). The tightening sets are denoted

as Sm, m= 1, ..,5, and were defined in Section 3.1. For the sake of comprehension, these

problems will be explicitly stated now.

A.1 Lasso regression problem with tightening set S1S1S1

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t



























ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(15)

A.2 Lasso regression problem with tightening set S2S2S2

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t

{

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη

γ j ∈ {0,1} ∀ j = 1, . . . ,N

(16)

A.3 Lasso regression problem with tightening set S3S3S3

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t







β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(17)
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A.4 Lasso regression problem with tightening set S4S4S4

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t































































N

∑
j=1

(ν+j +ν−j )≤VT

β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N

ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(18)

A.5 Lasso regression problem with tightening set S5S5S5

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t



















N

∑
j=1

γ j ≤VT

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη

γ j ∈ {0,1} ∀ j = 1, . . . ,N

(19)

B Calibration of correlation thresholds

In this section we calibrate the correlation thresholds η and α in the grid

{0.2,0.25,0.3,0.35,0.4,0.45,0,5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9}. Table 8 reports

the predictive quality and the number of non-zero coefficients attained by calibrating

these parameters. In comparison to results in Table 2, attained for fixed η and α, the

calibrateD methods yield more dense outputs with a similar accuracy.
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Table 8: Predictive quality (MSE) and sparsity (NZ) for the approaches tightened with the correlation-based

constraints when parameters η and α are calibrated.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S1 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S2 1.038 5 0.987 5 1.000 10 0.999 7 1.005 3.5 0.889 8 1.016 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S1 1.000 6 1.000 6 1.000 11 0.999 11 0.999 6 0.871 9.5 1.000 21

S2 1.042 5 0.969 5 1.000 10 1.000 8 0.998 3.5 0.812 7.5 1.015 15

C Correlated variables in simulated data with N = 100N = 100N = 100

In order to better understand the results of the tightened procedures displayed in Table

5 and Figure 7, in Figure 8 we have represented heatmaps that indicate whether two

variables are highly correlated (|ρ| ≥ 0.8) or moderately correlated (|ρ| ≥ 0.6) for a

random instance of each example of simulated data in Section 3.3.1. Orange colour

indicates that the correlation constraint (7) is included in the tightening set S5 and also

that sign coherence constraints (9)-(12) are added to the tightening set S4. Green colour

stands only for the presence of sign coherence constraints (9)-(12) in S4. Left panels

represent the correlations amongst all features, while right panels show the correlations

only amongst the predictors truly appearing in the generating model (i.e. βi 6= 0). As it

can be observed, some features appearing in the generating model of Example 1 have a

correlation larger than 0.8 in absolute value, and therefore they are forbidden to appear

together in the output model of S5.
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Figure 8: Features exceeding a pairwise correlation of 0.8 in absolute value (orange), hence appearing

in the correlation constraint (7) and also sign coherence constraints (9)-(12), and features exceeding a

pairwise correlation of 0.6 in absolute value (green), appearing solely in the sign coherence constraints.
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D AMPL code

#DATA PARAMETERS

param N; #Number of predictors

param K; #Number of observations

#SETS OF INDICES

set Nvar:=1..N;

set Nobs:=1..K;

#THE MATRIX OF DATA

param X {i in Nobs,j in 1..(N+1)}; # Kx(N+1) matrix of data

# Includes response variable in position N+1

#PARAMETERS OF THE METHODS

param lambda; # Lasso penalty

param NZ; #Upper-bound on the total number of non-zeroes

param eps; #Significance threshold

param M default 100; #Upper bound for the coefficients beta

#SETS OF HIGHLY/MODERATELY CORRELATED VARIABLES

set conjcorrpos dimen 2; # Positively correlated features

set conjcorrneg dimen 2; # Negatively correlated features

#VARIABLES

var c ; # Intercept

var beta {j in Nvar}; # Slopes

var nupos {j in Nvar}, binary;

var nuneg {j in Nvar}, binary;

var v {j in Nvar} >=0 ; # Auxiliar variables to express the absolute value

#OBJECTIVE FUNCTION

minimize fun: (1/N)*sum{ i in Nobs} (X [i,p+1] -c-sum{ j in Nvar} (beta[j]*X[i,j]))̂ 2

+(1/N)*lambda*sum{ j in Nvar} v[j];

#CONSTRAINTS

#SPARSITY CONSTRAINT

subject to sparsity: sum{j in Nvar} (nuneg[j]+nupos[j])<=NZ;

#SIGNIFICANCE CONSTRAINTS

subject to significancepos {j in Nvar}: beta[j]>=eps*nupos[j]-nuneg[j]*M;

subject to significanceneg {j in Nvar}: beta[j]<=-eps*nuneg[j]+nupos[j]*M;

#SIGN COHERENCE CONSTRAINTS

subject to coherencepos1 {(j,r) in conjcorrneg}: nupos[j]+nupos[r]<=1;

subject to coherencepos2 {(j,r) in conjcorrneg}: nuneg[j]+nuneg[r]<=1;

subject to coherenceneg1 {(j,r) in conjcorrpos}: nupos[j]+nuneg[r]<=1;

subject to coherenceneg2 {(j,r) in conjcorrpos}: nuneg[j]+nupos[r]<=1;

#AUXILIAR CONSTRAINTS

subject to abs1 {j in Nvar}: v[j]>=beta[j];

subject to abs2 {j in Nvar}: v[j]>=-beta[j];

subject to sumnusj {j in Nvar}: nuneg[j]+nupos[j]<=1;
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Bartlett and Bartlett-type corrections for censored

data from a Weibull distribution
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Abstract

In this paper, we obtain the Bartlett factor for the likelihood ratio statistic and the Bartlett-type

correction factor for the score and gradient test in censored data from a Weibull distribution. The

expressions derived are simple, we only have to define a few matrices. We conduct an extensive

Monte Carlo study to evaluate the performance of the corrected tests in small sample sizes and

we show how they improve the original versions. Finally, we apply the results to a real data set

with a small sample size illustrating that conclusions about the regressors could be different if

corrections were not applied to the three mentioned classical statistics for the hypothesis test.
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mum likelihood estimates, type I and II censoring.

1 Introduction

Hypothesis testing is an essential step in statistical inference in order to help investiga-

tors identify and understand the effect of covariates on the response variable. Survival

regression models are required when the response variable is censored, i.e., only partial

information is available. Parametric survival models are often used in health economic

applications (Latimer, 2013) because the survival function is fully specified (Ishak et al.,

2013) and data from multiple time periods can be easily combined (Benaglia, Jackson

and Sharples, 2015).

The likelihood ratio (LR), Wald, score and gradient tests are commonly used for

hypothesis testing. Under the null hypothesis (H), each test statistic is asymptotically

chi-squared distributed, i.e., the four statistics are asymptotically equivalent. Since they

are coupled with asymptotic properties, the chi-squared distribution may not be a good

approximation to the null distribution of each statistic in small or moderate sample sizes,
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then the use of these statistics become less justifiable. In practical situations, this fact

can produce a type I error that should be greater (or less) than the fixed nominal value

(usually 1%, 5% or 10%).

An approach to improve inferences in small/moderate samples using in the LR test is

the Bartlett correction (Bartlett, 1937; Lawley, 1956). In this approach, the LR statistic

is multiplied by a correction factor. Bartlett-type corrections were also developed for

the score and gradient statistics, see Cordeiro and Ferrari (1991) and Vargas, Ferrari and

Lemonte (2013).

Our main goal in this paper is to improve the likelihood inference in censored data

from a Weibull distribution, where the scale parameter is known. Two particular models

are obtained from this case: the exponential and Rayleigh distributions, but if unknown,

the scale parameter may be replaced by a consistent estimate. First, we derive the Bartlett

and the Bartlett-type correction for these censored data models. Next, we perform Monte

Carlo simulation experiments to evaluate and compare the finite-sample performance of

the improved LR, score and gradient tests with the usual LR, Wald, score and gradient

tests. To the best of our knowledge, Bartlett and Bartlett-type corrections for LR, score

and gradient statistics in the Weibull survival model were not specified so far. Moreover,

it is the first presentation of corrections for the gradient statistic in survival models. All

these results are illustrated by a comprehensive simulation study.

The paper is structured as follows. In Section 2, we describe the censored data from

a Weibull distribution and discuss estimation and hypothesis testing inference on the

regression parameters. The Bartlett and the Bartlett-type correction factors are derived

in Section 3. Monte Carlo simulation results are presented and discussed in Section 4.

An empirical application that use real data are presented and discussed in Section 5. The

paper closes up with a brief discussion in Section 6.

2 Weibull distribution

A continuous random variable T is called Weibull, denoted by WE(θ,σ), if its probabil-

ity density function (pdf) is

f (t;θ,σ) =
1

σθ1/σ
t1/σ−1 exp

{
−(t/θ)1/σ

}
, t > 0,

where σ> 0 is the shape parameter and θ> 0 is the scale parameter. Weibull distribution

is commonly used in the analysis of time-to-event or lifetime data and it is still the aim of

several works, as in Jafari and Zakerzadeh (2015), Nekoukhou and Bidram (2015), Lina,

Williamson and Kim (2019), Magalhães, Gallardo and Gómez (2019), for instance. Two

particular models under this parametrization are obtained for σ = 1 and σ = 1/2, which

represent the exponential and the Rayleigh models with mean θ and θ
√
π/2, respec-

tively. In this work, we focused on those models. However, if σ is unknown, we assume

that it can be replaced by a consistent estimate. In lifetime data, censoring is very com-
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mon because of time limits and other restrictions on data collection. To describe these

data, we consider that, for a sample size of n, L1, . . . ,Ln are stochastically independent

random variables representing the failure times and T1, . . . ,Tn are stochastically inde-

pendent Weibull random variables and independent of the L′s, denoting the censoring

times. Under the right censoring, the observed information is

ti = min(Ti,Li) and δi =

{
1, Ti ≤ Li

0, Ti > Li
.

For L1, . . . ,Ln fixed, we have the type I mechanism and if L1, . . . ,Ln = L, a random

variable, type II censoring. Under the assumption that the censoring times L′s do not

depend on θ (known in the literature as a non-informative censoring assumption), we

have that the log-likelihood function for the two types of censoring has the form

L(θ) =
n

∏
i=1

{
1

σθ1/σ
t
1/σ−1
i

}δi

exp
{
−(ti/θ)

1/σ
}

=
(
σθ1/σ

)−r

exp

{(
1

σ
−1

)
W1 −

1

θ1/σ
W2

}
,

where r = ∑n
i=1 δi, W1 = ∑n

i=1 δi log ti and W2 = ∑n
i=1 t

1/σ
i . The regression structure can be

incorporated in the model by making θi = exp
(
x
⊤
i βββ

)
, where βββ is a p-vector of parame-

ters and xi is a vector of regressors related to the i-th observation. Usually, the regression

modelling considers the distribution of Yi = log(Ti) instead of Ti. The distribution of Yi

is of the extreme value form with pdf given by

f (yi;xi) =
1

σ
exp

{
yi −µi

σ
− exp

(
yi −µi

σ

)}
, −∞< yi < ∞,

where µi = logθi = x
⊤
i βββ is the linear predictor related to the i-th observation. The log-

likelihood function derived from this regression model is given by

ℓ(βββ) =
n

∑
i=1

[
δi

(
−n logσ+

yi −µi

σ

)
− exp

(
yi −µi

σ

)]
.

The total score function and the total Fisher information matrix for βββ are given, respec-

tively, by

Uβββ = σ−1
X

⊤
W

1/2
v and Kββββββ = σ−2

X
⊤

WX,

where X = (x1, . . . ,xn)
⊤, the model matrix, assuming the rank(X) = p, W = diag(w1,

. . . ,wn), wi = E
[
exp

(
yi−µi
σ

)]
and v = (v1, . . . ,vn)

⊤, vi =
{
−δi + exp

(
yi−µi
σ

)}
w
−1/2
i . It

can be observed that the value of wi depends on the mechanism of censoring. That means

wi = 1− exp
{
−L

1/σ
i exp(−µi/σ)

}
and wi =

r

n
,
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for types I and II censoring, respectively. The proofs are presented in Magalhães et al.

(2019). The maximum likelihood estimator of βββ, β̂ββ, is the solution of Uβββ = 0. The MLE

β̂ββ cannot be expressed in closed-form. It is typically obtained by numerically maximiz-

ing the log-likelihood function using a Newton or quasi-Newton nonlinear optimization

algorithm. Under mild regularity conditions and in large samples, β̂ββ ∼ Np(βββ,K
−1
ββββββ

), ap-

proximately.

Consider the p-dimensional parameter vector βββ = (βββ⊤
1 ,βββ

⊤
2 )

⊤, where βββ1 is a q-di-

mensional vector and βββ2 is the remaining p−q parameters. In a test of hypotheses, the

interest lies in H : βββ1 = βββ
(0)
1 , the null hypothesis, where βββ

(0)
1 is a known q-vector, in

other words, the null hypothesis imposes q restrictions on the parameter vector. Hence,

βββ2 is the vector of nuisance parameters and βββ1 is the vector of interest parameters. This

partition induces the corresponding partitions

Uβββ =
(

U
⊤
βββ1
,U⊤

βββ2

)⊤
, with Uβββ1

= σ−1
X

⊤
1 W

1/2
v, Uβββ2

= σ−1
X

⊤
2 W

1/2
v,

Kββββββ =

(
Kβββ1βββ1

Kβββ1βββ2

Kβββ2βββ1
Kβββ2βββ2

)
= σ−2

(
X

⊤
1 WX1 X

⊤
1 WX2

X
⊤
2 WX1 X

⊤
2 WX2

)
,

and X = [X1 X2], X1, X2 being n× q and n× (p− q), respectively. The LR, score and

gradient statistics for testing H can be expressed, respectively, as

SLR = 2
[
ℓ
(
β̂ββ1,β̂ββ2,σ

)
− ℓ

(
βββ
(0)
1 ,β̃ββ2,σ

)]
,

SR = ṽ
⊤

W̃
1/2

X1

(
R̃

⊤
W̃R̃

)−1
X

⊤
1 W̃

1/2
ṽ,

ST = σ−1
ṽ
⊤

W̃
1/2

X1

(
β̂ββ1 −βββ(0)

1

)
,

where
(
β̂ββ1,β̂ββ2

)
and

(
βββ
(0)
1 ,β̃ββ2

)
are the unrestricted and restricted MLEs of (βββ1,βββ2),

respectively, R = X1 −X2A, with A =
(
X

⊤
2 WX2

)−1
X

⊤
2 WX1 represents a (p− q)× q

matrix whose columns are the vectors of regression coefficients obtained in the weighted

normal linear regression of the columns of X1 on the model matrix X2 with W as a

weight matrix. Here, tildes and hats indicate quantities available at the restricted and

unrestricted MLEs, respectively. Under the null hypothesis H, these three statistics have

an asymptotic χ2
q distribution with approximation error of order n−1.

3 Improved inference

As discussed in Section 2, when the sample size is not sufficiently large, the chi-squared

distribution may be a poor approximation to the null distribution of the statistics. Thus,

it is paramount to obtain refinements for inference based on these tests.
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From the second-order asymptotic theory, three works can be mentioned: Lawley

(1956), Cordeiro and Ferrari (1991) and Vargas et al. (2013). These works obtained gen-

eral correction factors, respectively, for the LR, score and gradient statistics, which re-

duced the approximation error of the asymptotic χ2
q distribution from n−1 to n−2. Those

correction factors are based on the derivatives of the log-likelihood function.

From the result of Lawley (1956), we derived the specific Bartlett-correction factor

for LR statistic for testing H : βββ1 = βββ
(0)
1 in censored data from a Weibull distribution, it

is given by

εp = (1/4)σ−2tr
{

F1Ż
(2)
}
+(1/12)σ−6

1
⊤

W

(
2Z

(3)+3ŻZŻ

)
W1 (1)

+σ−5
1
⊤

W

(
Z
(3)+ ŻZŻ

)
W

′
1+σ−4

1
⊤

W
′
(

Z
(3)+ ŻZŻ

)
W

′
1,

where F1, W
′, Z and Ż are given in the Appendix and all the algebraic manipulations

are presented in the Supplementary Material, Section D.1. The three Bartlett corrected

test statistics are

SLR*1 =
SLR

(1+ c)
, SLR*2 = SLR× exp{−c} and SLR*3 = SLR× (1− c),

where c = (εp − εp−q)/q, both εp and εp−q, can be obtained from (1). The statistic

SLR*1 is the original Bartlett corrected likelihood ratio statistic. However, the others are

equivalent to order O(n−1). It is noteworthy that SLR*2 assumes only positive values.

From Cordeiro and Ferrari (1991), we have written the specific Bartlett-type cor-

rected score statistic for censored data from a Weibull distribution as

SR* = SR{1−
(
cR +bRSR+aRSR2

)
}, (2)

where aR = AR3/12q(q+ 2)(q+ 4), bR = (AR2 − 2AR3)/12q(q+ 2), cR = (AR1 −AR2 +

AR3)/12q and, for the sake of brevity, the quantities AR1 to AR3 are presented in the

Appendix.

For σ = 1, the expressions (1) and (2) reduce to exponential censored data case,

derived by Cordeiro and Colosimo (1997) and Cordeiro and Colosimo (1999), respec-

tively. For more details on the Bartlett and the Bartlett type corrections, see Cordeiro

and Cribari-Neto (2014).

Finally, using the general result of Vargas et al. (2013), we obtained the specific

Bartlett-type corrected gradient statistic for censored data from a Weibull distribution as

ST* = ST
{

1−
(
cT +bT ST+aT ST2

)}
, (3)

where aT = AT3/12q(q+2)(q+4), bT = (AT2 −2AT3)/12q(q+2), cT = (AT1 −AT2 +

AT3)/12q and the quantities AT1 to AT3 are also presented in the Appendix. For fur-

ther discussion about gradient test and its Bartlett-type correction as well, see Lemonte

(2016).
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4 Simulation studies

In this section, we present four simulation studies to assess different aspects of our

proposal. The first study is related to evaluating the type I error from the different

corrected statistics under different combinations of (p,q), σ, % of censoring (C) and

sample sizes. The second study is devoted to assessing the power of the corrected

statistics. The third study evaluates the behaviour of the corrected statistics if the as-

sumption of known σ is changed by the respective estimate, i.e., σ = σ̂, where σ̂ is

some consistent estimator of σ. Finally, the fourth study assessed the performance of

the corrected statistics if the scheme used to draw the censoring times is random (in-

stead of censoring type I or type II), but considering as they were censoring type I. In

all studies, we considered three values for σ: 0.5,1 and 3; eight combinations for (p,q):

(3,1),(3,2),(5,1),(5,2),(5,3),(7,1),(7,3) and (7,5); 3 values for C: 10%,25% and

50%; and 3 sample sizes: 20, 30 and 40, totaling 216 cases. We also considered βββ = 0p,

i.e., a vector of zeros with dimension p. However, only the first q components of βββ were

tested to be zero. For each combination of σ, (p,q), % of censoring and sample size we

considered 20,000 Monte Carlo replicates. Each vector of covariates xi was drawn from

the multivariate standard normal distribution with dimension p. Values from the Weibull

model were drawn using the inverse transformation method and right censoring type II

scheme was used, i.e., the first n× (1−C/100) times (rounded to the upper whole num-

ber) represented a failure time and the rest of units were censored at the (1−C/100)-th
quantile. The exception was the simulation study 4, where a right censoring scheme was

used. For each sample and considering σ as known (except for simulation study 3 where

such parameter was estimated from the sample) we compute the traditional statistics

SLR, SR and ST and their modified version discussed in Section 3 to test H0 : βββq = 0q

versus H1 : the contrary. In all cases, we reported the percentage of times where the re-

spective test rejected the null hypothesis giving a specified type I error. All simulations

were performed using the R software (R Core Team, 2017).

4.1 Assessing the type I error

In this simulation study, we evaluate the type I error for the usual versions of SLR, SR

and ST and their corrected versions discussed in Section 3 to test H0 : βββq = 0q versus

H1 : the contrary. We consider the four scenarios for (p,q), σ, % of censoring and sam-

ple sizes mentioned in the introduction of this section. We report the percentage of times

where the test rejected the null hypothesis with a 5% significance. Table 1 summarizes

the cases where σ = 0.5, C = 25%, n = 30. The complete results are presented in the

Supplementary Material, Section B.1. In general, the correction produces a rejection rate

closer to the nominal 5% significance in the three tests. Considering the 216 involved

cases, the mean of the rejection rates was 7.9%, 6.1% and 8.1% for the SLR, SR and ST

tests and 5.6%, 5.5%, 5.3%, 5.6% and 5.3% for the SLR*1, SLR*2, SLR*3, SR* and

ST* tests, respectively, showing a better performance in average terms to the corrected
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statistics. We also compute the percentage of times where the corrected version of the

test provides a rejection rate closer (in absolute value) to the nominal value. Such per-

centages were 99.5% for the SLR*1, SLR*2 and SLR*3, 69.0% for the SR* and 98.6%

for the ST* test. Results suggest a huge improvement in the corrected version of the

statistics when compared with their traditional pairs. As p and q increase, the differ-

ences in the rejection rates between the traditional statistics and the corrected ones seem

to be getting larger. There are two possibles reasons, for a fixed sample size n: (a) Fixing

q. As p increases, worse is the model fit and, consequently, the approximation to the null

distribution of each statistic. (b) Fixing p. As q increases, there is the family-wise error

rate (FWER), i.e., more restrictions in the null hypothesis make type I error larger, in-

flated. In the both situations, the corrected statistics seem to be less affected. Finally, we

remark that the SR seems the most robust statistic among the three traditional statistics

in this context.

Table 1: Simulated rejection rates for H0 :βββq = 0q, with σ = 0.5, C = 25%, n = 30 and different values for

p and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 7.0 6.2 7.0 5.8 5.8 5.7 5.9 5.7

2 7.5 6.3 7.6 6.1 6.0 6.0 6.3 6.2

5 1 7.5 6.5 7.7 6.0 6.0 5.9 5.8 5.4

2 8.3 6.5 8.4 6.1 6.0 5.9 6.0 5.9

3 8.7 6.7 9.2 6.3 6.2 6.1 6.5 6.3

7 1 8.4 6.8 8.5 6.3 6.1 5.9 5.7 4.7

3 10.4 7.5 10.7 6.8 6.6 6.4 6.6 6.3

5 10.6 6.6 11.5 6.7 6.5 6.3 6.6 6.8

4.2 Assessing the power of the tests

In this simulation study, we assessed the power of the test for the usual versions of SLR,

SR and ST and their corrected versions. We considered n = 20 and p = 5 in all the cases,

q varying in the set {1,3}, σ in {0.5,1,3} and C in {10%,25%,50%}. To simulate the

data, we further considered βββ = 0p. However, we have an interest in the hypothesis of

the form H0 : βββq = ψ1q, where 1q is a vector of ones with dimension q and ψ is taken

in the set {0.05,0.10,0.25,0.50,1.00,2.00}. Table 2 shows the results for σ = 1 and

C = 10%. The complete results are presented in the Supplementary Material, Section

B.2. As expected, the power of the test is increased when ψ is increased (because the

value being tested is further than the value used to simulate the data) and when q is

increased. We also noted that the power of each test is greater than its corrected version

for some values of ψ and is lower than its corrected version for other values of ψ. There-

fore, as usual in most problems related to hypothesis tests, there is no unique most pow-

erful test. However, the powers of the three ordinary and corrected tests seem similar.
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Table 2: Simulated rejection rates to the corrected version of the SLR, SR and ST tests for H0 : βββq = ψ1q,

with σ = 1, C = 10%, n = 20, p = 5 and different values for q.

ψ

q statistic 0.05 0.10 0.25 0.50 1.00 2.00

1 SLR 6.9 8.0 16.5 42.0 86.9 99.7

SR 5.4 6.6 15.6 41.9 86.3 99.6

ST 6.9 8.1 16.7 41.9 86.9 99.7

SLR*1 7.7 8.7 17.0 41.3 86.1 99.7

SLR*2 7.7 8.7 16.9 41.2 86.0 99.7

SLR*3 7.6 8.7 16.9 41.2 85.9 99.7

SR* 5.4 6.6 15.6 41.9 86.3 99.6

ST* 6.7 7.8 17.3 44.7 88.8 98.5

3 SLR 7.5 10.0 28.9 75.9 99.3 100.0

SR 6.4 9.8 33.0 79.1 99.4 100.0

ST 8.1 10.8 30.1 76.5 99.3 100.0

SLR*1 8.2 10.9 29.3 75.5 99.3 100.0

SLR*2 8.2 10.9 29.3 75.5 99.3 100.0

SLR*3 8.1 10.9 29.2 75.5 99.3 100.0

SR* 6.4 9.8 33.0 79.1 99.4 100.0

ST* 7.8 10.6 31.4 78.8 98.5 98.9

4.3 Changing the assumption of σσσ known

Up to this moment, we considered σ as a known value. However, in practice we also

need to estimate it. An alternative is to fix σ = σ̂ML and apply all the discussed method-

ology, where σ̂ML denotes the ML estimator of σ for the complete model (i.e., with

all covariates). However, as we are working in a framework with a small sample size,

the bias of σ̂ML can be considerable. Previous studies performed by us suggest that the

performance of the corrected statistics does not differ substantially from the traditional

statistics to test βββq = 0q versus H1 :βββq 6= 0q. For this reason, in this simulation study, we

considered fixing σ = σ̂J , where σ̂J is the jackknife estimator for σ. A third alternative

not explored by us was to fix σ = σ̂B, where σ̂B is a bootstrap estimator for σ. However,

σ̂J provides satisfactory results and σ̂J is determined in a unique form to a fixed sample,

whereas σ̂B typically is computed based on B >> n bootstrap resample, which is not

unique and is more expensive in computational terms. We consider the four scenarios

for (p,q), σ, % of censoring and sample sizes mentioned in the introduction of this sec-

tion. We report the percentage of times where the test rejected the null hypothesis with

a 5% significance. Table 3 summarizes the cases where σ = 1, C = 25%, n = 20. The

complete results are presented in the supplementary material, Section B.3. Consider-

ing the 216 involved cases, the mean of the rejection rates was 12.2%, 6.8% and 8.0%

for the SLR, SR and ST tests and 8.8%, 8.5%, 8.2%, 6.3% and 5.6% for the SLR*1,
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SLR*2, SLR*3, SR* and ST* tests, respectively, showing a better performance in aver-

age terms than the corrected statistics. We also compute the percentage of times where

the corrected version of the test provides a rejection rate closer (in absolute value) to the

nominal value. Such percentages were 100% for the SLR*1, SLR*2, SLR*3 and ST*

and 73.6% for the SR*. Results suggest a huge improvement for the corrected version

of the statistics when compared with their traditional counterparts.

Table 3: Simulated rejection rates for H0 :βββq = 0q, with σ = 1, C = 25%, n = 20 and different values for p

and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 6.9 5.6 6.9 5.6 5.5 5.4 5.2 5.2

2 7.1 5.1 7.6 5.5 5.4 5.4 5.1 5.5

5 1 7.8 6.0 7.9 5.9 5.8 5.7 5.0 4.3

2 8.9 6.0 9.1 6.0 5.8 5.5 5.3 5.2

3 8.9 5.3 9.3 5.9 5.7 5.5 5.1 5.6

7 1 9.0 6.7 9.0 6.3 6.0 5.8 5.0 3.3

3 11.5 6.6 12.0 6.7 6.4 6.0 5.6 5.0

5 11.0 4.8 12.3 6.0 5.8 5.4 4.9 6.0

4.4 Changing the assumption of censoring type I or II

Up to this moment, all the development in this work was performed based on the as-

sumption that the censoring scheme is either a type I or II. In this simulation study, we

changed such assumption assuming that the censoring times L1, . . . ,Ln were indepen-

dent random variables and independent from T1, . . . ,Tn. For simplicity, we assumed that

Li ∼ W E(λi,1), i.e., the exponential distribution with mean λ−1
i . If the percentage of

censoring times was fixed at C%, we required that P(Ti > Li) =C/100. It was straight-

forward to show that such a condition was equivalent to

∫ ∞

0
fTi
(u;θi,σ)× e−λiudu =C/100, (4)

where fTi
(·;θi,σ) denotes the density function of WE(θi,σ). Then, for a fixed value for

θi,σ and C it was possible to solve numerically (4) to find λi. The same four scenar-

ios for (p,q), σ, % of censoring and sample sizes mentioned in the introduction of this

section were considered. We reported the percentage of times where the test rejected

the null hypothesis with a 5% significance. Table 4 summarizes the cases where σ = 3,

C = 50%, n = 20. The complete results are presented in the Supplementary Material,

Section B.4. Considering the 216 involved cases, the mean of the rejection rates were

6.5%, 4.8% and 6.4% for the SLR, SR and ST tests and 5.1%, 5.1%, 5.0%, 4.8% and

4.9% for the SLR*1, SLR*2, SLR*3, SR* and ST* tests, respectively, showing a better
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performance in average terms to the corrected statistics. We also computed the percent-

age of times where the corrected version of the test provided a rejection rate closer (in

absolute value) to the nominal value. Such percentages were 84.7%, 84.3% and 83.3%

for the SLR*1, SLR*2 and SLR*3, respectively, 62.0% for the SR* and 73.1% for the

ST* test. Furthermore, results suggest a huge improvement for the corrected version of

the statistics when compared with their traditional pairs. The percentages of times where

the corrected statistics are closer to the nominal value in comparison with the traditional

statistics are lower than in simulation study 1, where σ is assumed as known. However,

such percentages remain high and the correction is suggestible.

Table 4: Simulated rejection rates for H0 :βββq = 0q, with σ = 3, C = 50%, n = 20 and different values for p

and q.

p q SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

3 1 7.2 5.8 7.4 5.3 5.2 5.0 5.0 5.6

2 7.5 4.6 7.7 5.5 5.4 5.2 4.7 5.9

5 1 9.0 6.9 9.1 6.2 5.8 5.5 5.3 6.0

2 9.0 5.8 9.3 5.7 5.5 5.2 4.8 5.7

3 10.0 4.8 10.1 6.0 5.7 5.4 4.6 5.9

7 1 10.7 8.2 10.8 6.9 6.4 5.8 5.5 5.8

3 12.8 6.7 12.7 6.9 6.3 5.6 5.3 5.8

5 13.3 4.5 12.3 6.7 6.2 5.6 4.8 5.6

5 Application

In this section we present a real data application related to clams in order to illustrate a

case where conclusions obtained from a hypothesis test may be different if the correc-

tions discussed in Section 3 are not considered in censored data from a Weibull distri-

bution. In Section A of the Supplementary Material, we present a second application.

Clams data set

Bonnail et al. (2016) performed a study to assess sediment quality using the freshwater

clam Corbiculafluminea to determine its adequacy as a biomonitoring tool in relation

to theoretical risk indexes and regulatory thresholds. The clams were exposed to sedi-

ments contaminated with acid mine drainage (polymetallic acid lixiviate derived from

mining activity). The study contains 27 observations with measurements, among other

characteristics, of the dry weight tissue of the clams (dry, in gr), wet weight tissue (wet,

in gr), shell length (length, in mm) and the concentration of scandium (sc), niobium

(nb), beryllium (be) and terbium (tb) bioaccumulated in the soft tissue. These minerals

were considered in micrograms per liter (µg/L). In this case, we focused on modelling

the dry weight of such clams based on the rest of available information considering the

Weibull regression model, i.e., dryi ∼WE(θi,σ), where



Tiago M. Magalhães and Diego I. Gallardo 137

logθi = x
⊤
i βββ = β1sci +β2nbi +β3bei +β4 +β5weti +β6lengthi,

with x
⊤
i = (sci,nbi,bei,1,weti,lengthi) and βββ = (β1,β2, . . . ,β6)

⊤, i = 1, . . . ,27. The

order of covariates was organized in order to test if minerals sc, nb and be explain the

dry weight of the claims, i.e., to test H0 : β1 = β2 = β3 = 0 versus H1 : β j 6= 0, for at least

one 1 ≤ j ≤ 3. For this particular problem p = 6, q = 3 and n = 27, so as the sample size

is small a correction might be required in traditional tests. We estimated σ̂J = 0.0317

based on the jackknife method, which was used as known in the computation of the dif-

ferent statistics to test H0. Results for traditional and corrected versions of the SLR, SR

and ST tests are presented in Table 5. Note that, without correction, only the SR test does

not reject H0 considering a significance of 10%. However, all the corrected versions of

the tests do not reject the null hypothesis with the same level of significance. Therefore,

we cannot conclude that minerals sc, nb and be explain the dry weight of clams. Finally,

to test if the WE model is suitable for this data set, we compute the quantile residuals

(Dunn and Smyth, 1996). If the model was correct, these residuals would behave as a

random sample from the standard normal distribution. The Kolmogorov-Smirnov test

to verify such a hypothesis provides p-values of 0.206 and 0.568 to the complete and

reduced model, respectively. Therefore, the assumption of WE distribution is acceptable

under any usual level of significance.

Table 5: Different statistics to test H0 in the clams data set.

Statistic SLR SR ST SLR*1 SLR*2 SLR*3 SR* ST*

Observed 6.54 4.98 6.63 5.82 5.78 5.73 5.32 6.00

p-value 0.088 0.173 0.085 0.121 0.123 0.125 0.150 0.112

6 Concluding remarks

Weibull distribution is used for the analysis of time-to-event or lifetime data, with the

maximum likelihood theory as the main methodology to estimate the parameters. Hy-

potheses regarding these parameters are tested using the likelihood, score and gradient

tests. However, in small or moderate sample sizes, these procedures can not be reliable.

In this paper, we derived the respectively corrected versions that improve their perfor-

mance. For simplicity, we focus on the Weibull with known shape parameter (σ) to find

those expressions. Nonetheless, our results show good properties for the situation when

σ can be replaced by a consistent estimate based on the jackknife method. We also

present an application that illustrates the usefulness of the main result of the paper. The

matrices expressions for the Bartlett and Bartlett-type corrections are quite simple to be

implemented in statistical software as R (R Core Team, 2017), together with the library

flexsurv (Jackson, 2016), for instance. Noteworthy, we did not use bootstrap correc-

tions because they have different natures and they add three uncertainties: the number

of replications, the size of each replication and the type, parametric or nonparametric,

besides being computationally costly for practitioners.
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Appendix

In order to express the corrected LR, score and gradient statistics, equations (1) to (3)

, it is helpful to define the quantities w′
i = −σ−1L

1/σ
i exp{−L

1/σ
i exp(−µi/σ)−µi/σ},

w′′
i =−σ−1w′

i

[
L

1/σ
i exp(−µi/σ)−1

]
, f1i =−σ−2wi−4σ−1w′

i−4w′′
i , f2i =−2σ−2w2

i +

6σ−2wi +10σ−1w′
i +5w′′

i , f3i =−3σ−2w2
i +9σ−2wi +14σ−1w′

i +6w′′
i , i = 1, . . . ,n, and

the following matrices:

W
′ = diag(w′

1, . . . ,w
′
n), W

′′ = diag(w′′
1, . . . ,w

′′
n),

F1 = diag( f11, . . . , f1n), F2 = diag( f21, . . . , f2n), F3 = diag( f31, . . . , f3n),

Z = XK
−1
ββX

⊤ = σ2
X
(
X

⊤
WX

)−1
X

⊤, Ż = diagonal{Z},

Z2 = σ2
X2

(
X

⊤
2 WX2

)−1
X

⊤
2 , Ż2 = diagonal{Z2}, Z

(2) = Z⊙Z, Z
(3) = Z

(2)⊙Z,

where ⊙ represents a direct product and 1 is an n-dimensional vector of ones.

The remaining quantities to define an improved statistic in the score test, see equation

(2), are:

AR1 = 3σ−6
1
⊤ (W+2σW

′) Ż2 (Z−Z2) Ż2 (W+2σW
′)1

+6σ−6
1
⊤ (W+2σW

′) Ż2Z2

(
Ż− Ż2

)
(2W+3σW

′)1

+6σ−6
1
⊤ (3W+4σW

′)
[
Z
(2)
2 ⊙ (Z−Z2)

]
(W+2σW

′)1

−6σ−2tr
{

F2Ż2

(
Ż− Ż2

)}
,

AR2 =−3σ−6
1
⊤ (2W+3σW

′)
(
Ż− Ż2

)
Z2

(
Ż− Ż2

)
(2W+3σW

′)1

−6σ−6
1
⊤ (2W+3σW

′)
(
Ż− Ż2

)
(Z−Z2) Ż2 (W+2σW

′)1

−6σ−6
1
⊤ (2W+3σW

′)
[
Z2 ⊙ (Z−Z2)

(2)
]
(2W+3σW

′)1

+3σ−2tr
{

F3

(
Ż− Ż2

)(2)}
,

AR3 = σ−6
1
⊤ (

2W+3σW
′){3

(
Ż− Ż2

)
(Z−Z2)

(
Ż− Ż2

)
+2(Z−Z2)

(3)
}(

2W+3σW
′)

1.

The quantities AT1 to AT3, in the equation (3), to define an improved gradient test are,

respectively:
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AT 1 = 3σ−6
1
⊤

W

{(
Ż− Ż2

)
(Z+Z2) Ż2 + Ż2 (Z−Z2) Ż2 +2(Z−Z2)⊙Z

(2)
2

}
W1

+6σ−5
1
⊤

W

{
(Z2 +Z)⊙

(
Z
(2)−Z

(2)
2

)
+
(
Ż− Ż2

)(
Z2Ż2 +ZŻ

)

+ 2
[
Ż2

(
ZŻ−Z2Ż2

)
+Z

(2)
2 ⊙ (Z−Z2)

]}
W

′
1

+12σ−4
1
⊤

W
′
{

ŻZŻ− Ż2Z2Ż2 +Z
(3)−Z

(3)
2

}
W

′
1

−6σ−4 tr
{

W
(
Ż− Ż2

)
Ż2 +σW

′ (
Ż− Ż2

)(
Ż+3Ż2

)
+2σ2

W
′′
(

Ż
(2)− Ż

(2)
2

)}
,

AT 2 =−3σ−6
1
⊤

W
{
(1/4)

(
Ż− Żp−q

)
(Z−Zp−q)

(
3Ż+ Żp−q

)

+
(
Ż− Żp−q

)
Zp−q

(
Ż− Żp−q

)
+(1/2)(Z−Zp−q)

(2)⊙ (Z+3Zp−q)
}

W1

−6σ−5
1
⊤

W

{
(Z−Zp−q)⊙

(
Z
(2)−Z

(2)
p−q

)
+
(
Ż− Żp−q

)(
ZŻ−Zp−qŻp−q

)}
W

′
1

+3σ−4 tr
{

W
(
Ż− Żp−q

)(2)
+2σW

′ (
Ż− Żp−q

)(2)}
,

AT 3 = (1/4)σ−6
1
⊤

W

{
3
(
Ż− Żp−q

)
(Z−Zp−q)

(
Ż− Żp−q

)
+2(Z−Zp−q)

(3)
}

W1.

Although the expressions for the three corrected statistics entails a great deal of algebra,

the expressions only involve simple operations on diagonal matrices. Additionally, for

type II censoring, i.e., W
′ = 0, the expressions presented in (1) to (3) are simpler. For

instance, the Bartlett-correction factor for LR statistic reduces to:

εp = (1/4)σ−2tr
{

F1Ż
(2)
}
+(1/12)σ−6

1
⊤

W

(
2Z

(3)+3ŻZŻ

)
W1.
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Abstract

The logratio-normal-multinomial distribution is a count data model resulting from compounding

a multinomial distribution for the counts with a multivariate logratio-normal distribution for the

multinomial event probabilities. However, the logratio-normal-multinomial probability mass func-

tion does not admit a closed form expression and, consequently, numerical approximation is re-

quired for parameter estimation. In this work, different estimation approaches are introduced and

evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation

algorithm provides the best overall results. Building on this, the performances of the Dirichlet-

multinomial and logratio-normal-multinomial models are compared through a number of examples

using simulated and real count data.
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1 Introduction

A compound distribution of a random vector is the probability distribution resulting

from assuming that its parameters are themselves random variables (Mosimann, 1962).

This type of distribution plays an important role in mixture models (Lindsay, 1995)

and Bayesian statistics, among others (Robbins, 1964, 1980). Practical applications are

found in diverse areas such as genetics, microbiome studies, document classification

and economics (Blei and Lafferty, 2007; Bouguila, 2008; Layton, and Siikamäki, 2009;

Holmes, Harris and Quince, 2012; Silverman et al., 2018; Grantham et al., 2019).

Two classical distributions to model multivariate count data are the multinomial dis-

tribution and the multivariate Poisson distribution. Whilst in the first case the total num-

ber of counts per observation is a parameter, in the second it is not and it depends on

the magnitude of the Poisson rates. In the literature, the multivariate Poisson distri-
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butions has been compounded with Gamma distributions (Nelson, 1985) and with the

multivariate log-normal distribution (Aitchison and Ho, 1989). In this article, we focus

on distributions which are compounded with the multinomial distribution.

The Dirichlet-multinomial (DM) compound distribution (also called multivariate

Pólya-Eggenberger distribution) is the most commonly used for modelling and analysing

multivariate count data when they depend on a total number of trials and, unlike the ordi-

nary multinomial distribution, some data overdispersion is present (Chapter 40, Johnson,

Kotz and Balakrishnan, 1997). Let X be a random vector of counts. The DM distribu-

tion results from compounding a multinomial M(x;n,πππ = p) for the measured vector of

counts X, with parameters n and πππ being the total number of trials and the vector of prob-

abilities for the range of possible discrete outcomes respectively, and a Dirichlet D(p;ααα)
for the probabilities p, with a parameter ααα. The probability mass function (pmf) of a

DM distribution is DM(x;n,ααα) = Pr(X = x;n,ααα) =
∫

SD D(p;ααα)M(x;n,p)dp, where

SD refers to the unit simplex. The unit simplex is the sample space of random vectors

p of length D consisting of strictly positive components adding up to one (Aitchison,

1986), i.e.

S
D =

{

p = (p1, . . . , pD) ∈ R
D

∣

∣

∣

∣

∣

pk > 0 and
D

∑
k=1

pk = 1

}

.

The closed form expression for the DM pmf is

DM(x;n,ααα) =
n! Γ

(

∑D
k=1αk

)

Γ
(

n+∑D
k=1αk

)

D

∏
k=1

Γ(xk +αk)

xk! Γ(αk)
,

where Γ(·) is the well-known gamma function. The DM distribution is defined on the

sample space of random count vectors. That is, the {n,D}-simplex lattice

S
(n,D) =

{

x = (x1, . . . ,xD)

∣

∣

∣

∣

∣

xk ∈ {0,1, . . . ,n} and
D

∑
k=1

xk = n

}

, (1)

consisting of random vectors of counts with components in the non-negative integer do-

main and sum equal to n (Scheffé, 1958). As stressed in Aitchison (1986) and Comas-

Cufı́, Martı́n-Fernández and Mateu-Figueras (2016), the Dirichlet distribution imposes a

very strong independence structure: any pair of ratios between different components of

p are assumed to be statistically independent. This heavily restricts its potential for data

modelling when the analysis is based in ratios between parts, as it is the case of compo-

sitional data analysis (Comas-Cufı́ et al., 2016). Some generalisations of the Dirichlet

have been proposed to overcome this difficulty with limited success (Connor and Mosi-

mann, 1969; Minka, 2004; Ongaro and Migliorati, 2013).

In the 1980’s John Aitchison introduced the compositional approach to model and

analyse multivariate random vectors defined on the simplex (Aitchison, 1986). A num-

ber of methodological and practical contributions have been recently published in differ-
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ent areas such as statistics Comas-Cufı́, Martı́n-Fernández and Mateu-Figueras (2019),

waste management (Edjabou et al., 2017), health (Chastin et al., 2015) and animal sci-

ence (Palarea-Albaladejo et al., 2017).

We focus here on the logratio-normal-multinomial distribution resulting from com-

pounding a multinomial distribution for the vector of counts X with a logratio-normal

distribution for the corresponding vector of multinomial probabilities p. The logratio-

normal distribution was introduced in Mateu-Figueras, Pawlowsky-Glahn and Egozcue

(2013) to model compositions. Also known as the normal distribution on the simplex

(we denote it by NSD), it is defined using the ordinary multivariate normal probability

density function (pdf) over a vector of orthonormal logratio coordinates (Egozcue et al.,

2003) as follows:

NSD(p;µµµ,Σ) =N(h;µµµ,Σ) = (2π)−
D−1

2 |Σ|− 1
2 exp

(

−1

2
(h−µµµ)′Σ−1(h−µµµ)

)

, (2)

where µµµ and Σ are the usual expectation and covariance parameters, and h = (h1, . . . ,

hD−1) are orthonormal logratio coordinates of a composition p defined on S
D with

respect to a predefined orthonormal basis of the simplex, see (Egozcue et al., 2003).

Although the logratio-normal is a reparametrisation of the logistic-normal distribution

(Aitchison and Shen, 1980), its definition avoids using the logistic transformation in or-

der to focus on the appropriate reference measure (see Mateu-Figueras et al. (2013) for

details). In our developments, we will use so-called isometric logratio (ilr) coordinates

obtained from a particular choice of orthonormal basis as introduced in Egozcue et al.

(2003). Namely, h = ilr(p) with elements

hi =

√

i

i+1
ln

i

√

∏i
j=1 p j

pi+1

, i = 1, . . . ,D−1. (3)

Note that the composition p associated with orthonormal logratio coordinates h is

obtained by inverse transformation p = ilr−1(h). Importantly, using this particular ilr

representation does not imply a lack of generality, since the results are invariant under

change of orthonormal basis. This is because different orthonormal logratio coordinate

systems are orthogonal rotations from one to another. In Billheimer, Guttorp and Fa-

gan (2001) the multivariate logistic-normal-multinomial distribution was defined for

modelling multinomial counts by compounding the multinomial distribution with the

additive-logistic-normal distribution (Chapter 6, Aitchison (1986)). Practical applica-

tions of this model can be found in (Xia et al., 2013; Silverman et al., 2018) for micro-

biome data, or Hughes, Munkvold and Samita (1998) where the additive-logistic-normal

was combined with the binomial distribution to model two-part compositions. In the

following, we refer to the distribution obtained by composing the logratio-normal and

the multinomial distribution as the logratio-normal-multinomial distribution (referred

to as LNM in the following). From a probabilistic point of view, the logratio-normal-

multinomial and the logistic-normal-multinomial models define the same law of prob-
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ability. Nevertheless, we have decided to call it logratio-normal-multinomial in order

to emphasize that, instead of using the logistic transformation, we use the orthonormal

logratio coordinates together with the reference measure compatible with the algebraic-

geometric structure of the simplex and with the compositional approach introduced by

(Aitchison, 1986).

Markov Chain Monte Carlo (MCMC) methods have been used so far for parameter

estimation with these models. For the case of multivariate logistic-normal-multinomial

distribution see (Billheimer et al., 2001) and (Xia et al., 2013). Quasi-Monte Carlo meth-

ods (QMC) are well-known tools used to approximate high-dimensional integrals (Mo-

rokoff and Caflisch, 1995; Leobacher and Pillichshammer, 2014). They deviate from

standard Monte Carlo in the type of sampling procedure used to approximate the in-

tegral. While classic Monte Carlo uses pseudo-random samples, QMC methods use

quasi-random samples or low-discrepancy sequences. QMC methods have been suc-

cessfully used in different parameter estimation scenarios (Drmota and Tichy, 1997;

Pan and Thompson, 2007; Kuo et al., 2008) and have shown an improvement of the ef-

ficiency when embedded in an Expectation-Maximisation (EM) algorithm (Jank, 2005).

Building on these results, we propose more efficient tools to estimate the parameters

of a LNM distribution. Their performance in modelling count data is compared with the

DM distribution.

The work is organised as follows. In Section 2, some basic definitions are formally

introduced. In Section 3, we derive the E and the M steps of an EM scheme for pa-

rameter estimation. We propose to combine QMC integration with the EM algorithm to

estimate the parameters of the LNM distribution. Section 4 illustrates the use of DM and

LNM distributions in three different examples based on simulated and real data. Lastly,

Section 5 concludes with some final remarks.

All data analyses discussed in this work were conducted using the R statistical pro-

gramming environment (R Development Core Team, 2015). Computer routines imple-

menting the methods and the data sets can be obtained at https://github.com/mcomas/

SORT-normal-multinomial.

2 Basic definitions and properties

The simplex SD has an Euclidean vector space structure of dimension D− 1 with its

own basic operations (perturbation and powering), an inner product and a distance (so-

called Aitchison distance) (Egozcue et al., 2003). According to this algebraic-geometric

characterisation, compositions can be mapped onto the ordinary real space using lo-

gratio coordinates. The logratio-normal distribution is a model which is closed under

the main operations in the simplex SD (Mateu-Figueras et al., 2013). Also, it is a flex-

ible distribution because it can model compositions whose components have different

forms of dependence. Importantly, the density function (2) is defined with respect to

what is called the Aitchison measure on the simplex, a probability measure different

https://github.com/mcomas/SORT-normal-multinomial
https://github.com/mcomas/SORT-normal-multinomial
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from the ordinary Lebesgue measure on real space (Pawlowsky-Glahn and Egozcue,

2001; Mateu-Figueras, Pawlowsky-Glahn and Egozcue, 2011). The Aitchison measure

is a natural measure on the simplex, compatible with its vector space structure and ab-

solutely continuous with respect to the Lebesgue measure in the space of logratio coor-

dinates (Mateu-Figueras et al., 2013).

As said above, the LNM is the distribution resulting from compounding the multi-

nomial distribution M(x;n,πππ = p) with the logratio-normal distribution NSD(p;µµµ,Σ).

a random vector of counts X generated from a LNM distribution with parameters n, µµµ

and Σ is obtained in two steps:

• Firstly, a random composition p is generated using the logratio-normal distribution

with parameters µµµ and Σ.

• Secondly, a count random vector X is generated using the multinomial distribution

with parameters n and πππ = p.

The pmf of a LNM distributions, expressed in terms of orthonormal logratio coordi-

nates, is

LNM(x;n,µµµ,Σ) = Pr(X = x;n,µµµ,Σ) =
∫

SD
NSD(p;µµµ,Σ)M(x;n,p)dAp (4)

=
∫

RD−1
N(h;µµµ,Σ)

n!

∏D
k=1 xk!

D

∏
k=1

ilr−1
k (h)

xk dh,

(5)

where ilr−1
k (h) stands for the k-th component of the composition p = ilr−1(h). Note that

expression (4) is written with respect to the Aitchison measure, while expression (5) is

written with respect to the Lebesgue measure in the logratio coordinate space. The LNM

distribution is defined on S
(n,D) (Eq. 1).

Note that definition of the LNM distribution is similar to the definition of the DM

distribution. The difference is that in the former the composition p is modelled by a

normal distribution in terms of ilr-coordinates, instead of using a Dirichlet distribution.

Using the pmf given in (4) or (5), the following properties can be easily derived.

Property 1 For a fixed x we have

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =M
(

x;n,πππ = ilr−1(µµµ)
)

.1

1. lim‖Σ‖→0 stands for any sequence of covariance matrices such that their highest eigenvalue goes to 0.
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Proof. See Appendix A. �

Property 2 Let x = (x1, . . . ,xD) and x1 + · · ·+ xD = n. If limn→∞
xi
n
= πi and πi > 0 for

1 ≤ i ≤ D, then

lim
n→∞

nD−1 ·LNM(x;n,µµµ,Σ) =NSD(πππ;µµµ,Σ)
1√
D

1

π1 . . .πD

Proof. See Appendix A. �

Hence, depending on the parameters n and Σ, the LNM distribution can be approx-

imated by either a multinomial distribution or a logratio-normal distribution. The first

property suggests that for count data sets where the random vector p has low variability,

modelling based on either the LNM or multinomial distributions will provide similar

results. The second property implies that a LNM distribution with large values of the

number of trials n converges to the NSD distribution. That is, for large n, the distribution

of the random count vectors X on the simplex lattice S
(n,D) will be very similar to the

distribution of the random vector p on the simplex SD.

3 Monte Carlo EM algorithm for logratio-normal-multinomial

parameter estimation

Let X = {x1, . . . ,xN} be an independent and identically distributed sample of multivari-

ate count data, with N denoting the sample size. To estimate the LNM parameters µµµ and

Σ it is necessary to maximise the likelihood of the observed data given by

L(µµµ,Σ;X) =
N

∏
i=1

Pr(X = xi;n,µµµ,Σ) . (6)

Denoting by H the non-observed ilr-coordinates, i.e. H = {h1, . . . ,hN}, the EM al-

gorithm (Dempster, Laird and Rubin, 1977) allows to maximise (6) by iteratively using

an expected augmented likelihood L(µµµ,Σ;X,H) = ∏N
i=1 f (xi,hi;µµµ,Σ), where the joint

probability density function of random vectors X and H is

f (x,h;µµµ,Σ) =N(h;µµµ,Σ)
(∑D

k=1 xk)!

∏D
k=1 xk!

D

∏
k=1

ilr−1
k (h)

xk .

In the E step, the expected value at the (s+1)-th iteration of the algorithm is calcu-

lated using the expression
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Q(µµµ,Σ | µµµ(s),Σ(s)) = E
H |X;µµµ(s),Σ(s) [lnL(µµµ,Σ;X,H)]

= E
H |X;µµµ(s),Σ(s)

[

N

∑
i=1

ln( f (xi,hi;µµµ,Σ))

]

,

for a random vector H conditioned to X with parameters µµµ(s) and Σ
(s) obtained in the

previous iteration. In the M step, the function Q(µµµ,Σ | µµµ(s),Σ(s)) is maximised with

respect to the parameters µµµ and Σ. By expanding Q(µµµ,Σ | µµµ(s),Σ(s)), it holds that

Q(µµµ,Σ | µµµ(s),Σ(s)) = E
H |X;µµµ(s),Σ(s)

[

N

∑
i=1

ln

(

N(hi;µµµ,Σ)
(∑D

k=1 xik)!

∏D
k=1 xik!

D

∏
k=1

ilr−1
k (hi)

xik

)]

=
N

∑
i=1

{

Ehi |xi;µµµ
(s),Σ(s) [ln(N(hi;µµµ,Σ))]

}

+

+
N

∑
i=1

{

ln

(

(∑D
k=1 xik)!

∏D
k=1 xik!

)

+
D

∑
k=1

Ehi |xi;µµµ
(s),Σ(s)

[

ln
(

ilr−1
k (hi)

xik
)]

}

.

To optimise the function Q with respect to the parameters µµµ and Σ, it is only neces-

sary to optimise the terms where µµµ and Σ are involved. That is, the term Q∗(µµµ,Σ|µµµ(s),

Σ
(s)) = ∑N

i=1

{

E
hi |xi;µµµ

(s),Σ(s) [ln(N(hi;µµµ,Σ))]
}

. Using the linearity of the expectation

E
hi |xi;µµµ

(s),Σ(s) , this term is maximised at the basic statistics µµµ(s+1) = 1
N ∑N

i=1Ehi |xi;µµµ
(s),Σ(s)

[hi] and Σ
(s+1) = 1

N ∑N
i=1Ehi |xi;µµµ

(s),Σ(s) [h
⊺
i hi]− µ̂µµ⊺µ̂µµ. In consequence, the critical point

when applying the EM algorithm here is the calculation of the expected values

E
hi |xi;µµµ

(s),Σ(s) [hi] and E
hi |xi;µµµ

(s),Σ(s) [h
⊺
i hi].

3.1 Quasi-Monte Carlo approximation to the E step

The expected valuesEhi |xi;µµµ
(s),Σ(s) [hi] and Ehi |xi;µµµ

(s),Σ(s) [h
⊺
i hi] are calculated using Monte

Carlo approximation, then turning the EM algorithm into a Monte Carlo EM algorithm

(Jank, 2005; Neath, 2013). To simplify the exposition, in this subsection we denote the

expected value Ehi |xi;µµµ
(s),Σ(s) by simply E. The vector E [h] = (E [hk])k=1,...,D−1 and the

matrix E [h⊺h] = (E [hkhr])k,r=1,...,D−1 are particular cases of the general expression

E [ϕ(h)] =
∫

RD−1
ϕ(h) f (h | x ; µµµ(s),Σ(s))dh, (7)

where ϕ : RD−1 → R and f (h | x ; µµµ(s),Σ(s)) = f (x,h ;µµµ(s),Σ(s))

Pr({X=x} ;n,µµµ(s),Σ(s))
. Moreover, note that

Pr
(

X = x ; n,µµµ(s),Σ(s)
)

=
∫

RD−1 f (x,h;µµµ(s),Σ(s))dh. Hence, to evaluate (7), we need to

approximate the integral
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I

(

ϕ,x,µµµ(s),Σ(s)
)

=

∫

RD−1
ϕ(h) f (x,h;µµµ(s),Σ(s))dh (8)

for different functions ϕ.

In Xia et al. (2013), a MCMC method based on the Metropolis algorithm is used

to estimate E [h]. Although the authors approximate the second moment, E [h⊺h], with

the square of the first moment, E [h]⊺ ·E [h], we here estimate the first and the sec-

ond moments, i.e. ϕ(h) = h and ϕ(h) = h⊺h, separately in the E step. To approximate

I
(

ϕ,x,µµµ(s),Σ(s)
)

, we used Monte Carlo integration with importance sampling (Caflisch,

1998). In each E step, importance sampling is performed using a normal distribution

centred at m = E [h] with covariance S = E [(h−m)⊺(h−m)] calculated in the previ-

ous E step. The integral I
(

ϕ,x,µµµ(s),Σ(s)
)

is approximated by

I
(

ϕ,x,µµµ(s),Σ(s)
)

=
∫

h∈RD−1

ϕ(h) f (x,h;µµµ(s),Σ(s))

N(h;m,S)
N(h;m,S)dh

= EW∼N(m,S)

[

ϕ(w) f (x,w;µµµ(s),Σ(s))

N(w;m,S)

]

≈ 1

M

M

∑
r=1

ϕ(wr) f (x,wr;µµµ
(s),Σ(s))

N(wr;m,S)
, (9)

where the values wr, r = 1, . . . ,M, are sampled from a normal distribution N(m,S).

We here adopt a QMC approach which, instead of using pseudo-random normal gen-

erators, employs low-discrepancy sequences to generate the random values wr (Caflisch,

1998; Wang and Fang, 2003; Leobacher and Pillichshammer, 2014). A low-discrepancy

sequence is an equidistributed sample defined on a particular domain that is generated

at a low computational cost (Chapter 2, Leobacher and Pillichshammer (2014)). Al-

though different low-discrepancy sequences exist, we only considered Halton and Sobol

sequences (Chapter 1, Drmota and Tichy (1997)). To choose between them we followed

Morokoff and Caflisch (1995), which suggests best performance of Sobol sequences

when the dimension of h is higher than six. Halton sequences are instead recommended

for lower dimensions. QMC methods have shown to improve efficiency when combined

with an EM algorithm (Jank, 2005).

Appendices B and C include a comparative of the performance of different methods

in a univariate but extreme case and on a number of multidimensional cases respectively.

In these scenarios, the best approximations for the first and second moments were ob-

tained using the QMC approach. By contrast, methods based on MCMC algorithms

showed the worst performance and highest computing time.
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4 Examples

In this section, we consider three different contexts where N multinomial observations

X = {x1, . . . ,xN} are generated from N probability vectors p1, . . . ,pN . In the first sce-

nario we consider a pure multinomial process (i.e. p1 = · · ·= pN). In the second scenario

we consider each pi in Hardy-Weinberg equilibrium (i.e. pi2 = 4pi1 pi3, which implies

a correlation of minus one between the logratios ln( p·1
p·2
) and ln( p·3

p·2
)). The last case is a

real scenario where no implicit relation between pi’s is assumed. In these three scenar-

ios we compare the ability to model the sample X using both DM and LNM compound

distributions. The main aim is to investigate how probability vectors pi are modelled

using the expected posterior probabilities calculated using distributions DM and LNM,

i.e. p̂i,DM = EP |X=xi; α̂αα
[P] and p̂i,LNM = ilr−1

(

EH |X=xi; µ̂µµ,Σ̂
[H]
)

respectively.

For the LNM distribution we considered two different possibilities as starting point

for the EM algorithm (SP1 and SP2 below):

- SP1: Given model parameters µµµ∗
t and Σ

∗
t evaluated at iteration t and observation x,

the maximum h∗ of f (h | x ; µµµ∗
t ,Σ

∗
t ) can be easily calculated. Thus, the follow-

ing iterative algorithm was defined:

1. Set t = 0 and initiate µµµ∗
0 and Σ

∗
0 using sample mean and identity matrix in

logratio coordinates.

2. For each xi ∈ X calculate h∗
i maximising f (h | xi ; µµµ

∗
t ,Σ

∗
t ).

3. Set µµµ∗
t+1 =

1
N ∑h∗

i and Σ
∗
t+1 =

1
N ∑(h∗

i −µµµ∗
t+1)

⊺(h∗
i −µµµ∗

t+1).

4. If ‖µµµ∗
t+1 −µµµ∗

t ‖∞ > 0.001 go to step 2. Otherwise, stop and set µµµ0 = µµµ∗
t+1

and Σ0 =Σ
∗
t+1.

- SP2: Set µµµ0 = ilr(pDM) and Σ0 = Cov [ilr(pDM)]. That is, LNM estimation started

using the final estimates of the mean vector and covariance matrix in logratio

coordinates obtained from the DM compound distribution.

To estimate the parameters of the LNM distribution, we iterated the EM algorithm

until the distance between two consecutive estimates was lower than a certain tolerance

value τ = 0.001. The expected values in (7) were approximated using 10000 iterations

of a QMC simulation scheme based on Sobol sequences for the first and third example

and Halton sequences for the second example.

4.1 A pure multinomial process

A sample X = {x1, . . . ,xN} was generated, with xi ∼ M(x; n,πππ = p) using a unique

probability vector p. Following Martı́n-Fernández et al. (2015), we designed nine differ-

ent settings for p (see details in Appendix D). For each one we considered an increasing

number of multinomial trials n ∈ {50,100,200,500}, resulting in 9×4 different scenar-
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ios. For each scenario we generated 10 different replicates of X with N = 1000 count

vectors from the corresponding multinomial model. In total, we used 9× 4× 10 = 360

samples of size 1000. For each of the replicates X, we calculated the expected value

p̂i,DM and p̂i,LNM. It is reasonable that for any vector of counts xi, expected values p̂i·
will be close to p. To evaluate how close estimations p̂i· were to p we computed the

mean of the Aitchison distances, distA, between them; or, equivalently, the mean of the

Euclidean distances, distE, between the corresponding ilr coordinates (Egozcue et al.,

2003):

1

1000

1000

∑
i=1

distA (p, p̂i·) =
1

1000

1000

∑
i=1

distE (ilr(p), ilr(p̂i·)) . (10)
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Figure 1: Pure multinomial process: average of Aitchison distances between true p and estimated p̂i· values

using models DM (red bars), LNM with starting point SP1 (green bars) and LNM with starting point SP2

(blue bars). Nine different scenarios were set up considering four different number of trials in each one (n

from 50 to 500). See Appendix D for details.

This value was afterwards averaged across the 10 replicates. Figure 1 shows the re-

sults for the nine scenarios. As expected, DM and LNM produced similar results when

modelling probabilities p. Note that, in this example considering a multinomial setting,

the estimate for Σ is close to the zero matrix (Property 1). Because of this, in some
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scenarios after initialisations SP1 and SP2, the covariance matrix Σ0 was close to de-

generate and the EM algorithm stopped in the first iteration (see Table 2). In general,

when the number of trials increases the error decreases as expected.

4.2 The Hardy-Weinberg equilibrium

In this case the variability of the unobserved vectors of probabilities p1, . . . ,pN is gov-

erned by the Hardy-Weinberg equilibrium (Graffelman, and Weir, 2016). In brief, a bial-

lelic genetic marker with alleles A and B with respective frequencies q and (1−q) is in

Hardy-Weinberg equilibrium if the genotype frequencies x = ( fAA, fAB, fBB) are given

by p = (q2,2q(1−q),(1−q)2). To obtain our sample X = {x1, . . . ,xN}, we generated N

uniform random variables qi, taking values between 0 and 1, in six different scenarios:

1. qi ∼Uni f (0,1),
2. qi ∼Uni f (0,0.5),

3. qi ∼Uni f (0,0.25),

4. qi ∼Uni f (0.25,0.5),
5. logit(qi)∼ Norm(0,1), and

6. logit(qi)∼ Norm(1,1).

The probabilities pi were calculated using qi according to the Hardy-Weinberg equi-

librium. Observations xi were drawn from a multinomial distribution with parameters

n ∈ {50,100,200,500}, and π = pi (Graffelman, 2015). After fitting DM and LNM

models to sample X, we computed the expected probability vector of probabilities p̂i,DM

and p̂i,LNM using DM and LNM models respectively.

We compared estimations p̂i· to vector pi = (q2
i ,2qi(1− qi),(1− qi)

2) by using the

average of Aitchison distances (10) as in the previous example. The results are displayed

in Figure 2. Unlike with the pure multinomial process, there is a linear relation between

the three parts of the composition. Consequently, the probabilities pi could be better

approximated in all cases using LNM instead of DM, with negligible differences for

different starting points SP1 or SP2. Again, the error decreases with increasing number

of trials as expected.

To illustrate the performance of the models in presence of variability in the probabil-

ity vectors pi, we used ternary diagrams to graphically represent the first 50 simulated

allele genotype probability vectors (Figure 3) and their genotype frequency (Figure 4).

Figure 3 (left) shows probability vectors {p1 . . . ,p50} satisfying the Hardy-Weinberg

equilibrium which were generated from the first scenario above (q ∼Uni f (0,1)). Note

that they exactly fit a (compositional) line described by the parametric equations {(t2,
2t(1 − t),(1 − t)2) : 0 < t < 1}. Figure 3 (centre) shows that estimates {p̂1,DM, . . . ,

p̂50,DM} from the DM model are far more scattered with respect to the equilibrium state

than those from the LNM model {p̂1,LNM, . . . , p̂50,LNM} (Figure 3 (right)). Taht is, while

the LNM model is able to capture the variability along the compositional line the DM is
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not.
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Figure 2: Hardy-Weinberg equilibrium: average of Aitchison distances between true πππ and estimated pi

values using models DM (red bars), LNM with starting point SP1 (green bars) and LNM with starting point

SP2 (blue bars). Six different scenarios were set up considering four different numbers of trials in each one

(n from 50 to 500).
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Figure 3: Probabilities pi in the Hardy-Weinberg equilibrium. Original probabilities pi distributed accord-

ing to Scenario 1 (left), estimates p̂i,DM using the Dirichlet-multinomial model (centre), estimates p̂i,LNM

using the logratio-normal-multinomial model (right).

This behaviour is made more evident when samples of count data are generated with

both models. Figure 4 (left) shows genotype frequency data vectors {x1 . . . ,x50} gen-

erated from the Hardy-Weinberg equilibrium using a multinomial distribution (Graffel-

man, 2015). In the centre we can see how data randomly generated from a DM model

with parameter α̂αα = (0.642,0.858,0.622), which was estimated from sample X, spread

all over the ternary diagram. On the right-hand side, data were randomly generated using

a LNM model with parameters
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µ̂µµ= (−0.460,0.343) and Σ̂=

(

1.528 2.706

2.706 4.816

)

estimated from X. In this case, the obtained sample is a fairly accurate realisation of the

original data.
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Figure 4: Genotype frequencies xi in the Hardy-Weinberg equilibrium. Original frequencies xi generated

in Scenario 1 (left), genotype frequencies simulated by Dirichlet-multinomial model (centre), genotype fre-

quencies simulated by logratio-normal-multinomial model (right).

4.3 Catalan parliamentary elections

Final vote shares by municipality from the 2015 Catalan parliamentary elections were

provided by the Statistical Institute of Catalonia (http://www.idescat.cat/en/). A subsam-

ple was drawn for statistical inference based on the DM and LNM models. We aimed to

evaluate by simulation the ability of an opinion poll to reflect voting intention. Table 1

shows the vote counts registered in some municipalities out of 947. We only consid-

ered votes for the six main parties obtaining seats in the parliament: Junts pel sı́ (jxsi),

Partit socialista de Catalunya (psc), Partit popular (pp), Catalunya si que es pot (catsp),

Ciutadans (cs) and Candidatura d’unitat popular (cup). Moreover, in order to have rea-

sonable estimates for our simulations, we only considered those municipalities with at

least 1000 votes registered (369 municipalities). The number of votes registered in these

municipalities ranged from 1006 votes to 836687 votes.

Table 1: Distribution of votes by municipality across political parties in 2015 Catalan parliamentary elec-

tion (only some municipalities shown).

Municipality jxsi psc pp catsp cs cup Population

Abella de la Conca 57 11 5 3 9 18 170

Abrera 1685 1275 619 938 1771 453 12125

Àger 271 14 25 10 18 45 594

Agramunt 1940 161 185 104 252 152 5515

Aguilar de Segarra 121 0 4 5 4 18 251

Agullana 298 26 15 16 31 80 826

...
...

...
...

...
...

...
...

http://www.idescat.cat/en/
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Using all available data, for each municipality i we calculated the vector of proba-

bilities pi =
1
n′i

(

n′i,jxsi, . . . ,n
′
i,cup

)

, where n′i, j is the total number of votes to party j in

municipality i and n′i = n′i,jxsi + · · ·+ n′i,cup. In this example, the vector of probabilities

pi , i = 1 . . .369, was considered the gold standard. That is, the best available estima-

tion of the vote probabilities across parties in each municipality. We created an artificial

survey by selecting for each municipality a subsample consisting of ni registered votes.

More formally, we created a sample X = {x1, . . . ,x369} with xi following a multivariate

hypergeometric distribution with population size
(

n′i,jxsi, . . . ,n
′
i,cup

)

and sample size ni.

We considered two scenarios for ni:

1. Proportional size: ni as percentage of n′i, ranging from 0.5% to 5%.

2. Constant size: ni constant for all municipalities, with ni ranging from 10 to 200.

In both cases, we repeated the experiment five times for each value of ni . Given a

data set X, we compared estimates p̂i,DM and p̂i,LNM with the gold standard pi. Because

data did not follow any particular distribution, we used three different criteria in this

comparative analysis as proposed in Palarea-Albaladejo and MartÃn-Fernández (2008):

• Average of Aitchison distances: 1
369 ∑369

i=1 distA(pi, p̂i·),

• Frobenius distance between the covariance matrix, Σp =
(

σp
i j

)

∈ R
5×5, obtained

from {ilr(p1), . . . , ilr(p369)} and the covariance matrix, Σp̂· =
(

σ
p̂·
i j

)

∈ R
5×5, ob-

tained from {ilr(p̂1·), . . . , ilr(p̂369·)} , i.e.

∥

∥Σp −Σp̂·

∥

∥

F
=

√

√

√

√

5

∑
i=1

5

∑
j=1

(σp
i j −σ

p̂·
i j )

2,

and

• STRESS (standardised residual sum of squares) index given by

STRESS =

√

√

√

√

∑369
i=1 ∑369

j=1

(

dA(pi,p j)−dA(p̂i·, p̂ j·)
)2

∑369
i=1 ∑369

j=1 dA(pi,p j)
2

.

Figure 5 shows the results for different sample sizes. The values of the three mea-

sures decreased when the size ni increased in all cases (Fig. 5). A parallelism between

the results for DM and LNM compound distributions is observed. Noticeably, the per-

formance of DM was worse than LNM in all the cases. The alternative starting points,

either SP1 or SP2, showed similar behaviour, specially using the average Aitchison dis-
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tance criterium. Importantly, for a similar sample size, the results for the second scenario

(constant size) were better than those for the first scenario (proportional size).
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Figure 5: Performance measures for the 2015 Catalan election example: average of Aitchison distance

(top), Frobenius distance (centre), STRESS index (bottom). Estimates obtained using models DM (dashed

red line), LNM (starting point SP1, dotted blue line) and LNM (starting point SP2, solid green line). Two

scenarios with different sample sizes (see text for details).
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4.4 Comparison of computing times

Table 2: Mean computing time in seconds for the three examples shown in Section 4 (95% confidence

interval in parenthesis). Calculations performed on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

Times marked with 1 did not iterated trough the EM algorithm because after initialisation Σ0 was singular.

DM LNM (SP1) LNM (SP2)

Pure multinomial process example

Scenario 1 (D=9) 11.6 [4.2, 23.7] 152.6 [133.7, 172.9] 22.2 [9.6, 31.9]1

Scenario 2 (D=12) 16.1 [3.1, 28.6] 194.7 [169.2, 223.8] 23.1 [13.6, 39.2]1

Scenario 3 (D=15) 20.0 [10.7, 35.0] 231.3 [189.8, 310.7] 25.4 [19.1, 43.3]1

Scenario 4 (D=16) 22.6 [6.5, 39.3] 255.9 [156.8, 334.6] 28.7 [13.6, 51.1]1

Scenario 5 (D=20) 24.8 [11.5, 35.4] 145.3 [2.2, 310.6] 35.3 [18.8, 52.3]1

Scenario 6 (D=25) 22.2 [12.6, 32.2] 218.2 [1.8, 535.5] 33.0 [23.7, 476.5]1

Scenario 7 (D=30) 34.3 [9.2, 42.9] 2.4 [2.4, 2.7]1 41.6 [10.9, 51.9]1

Scenario 8 (D=36) 27.8 [11.2, 53.4] 3.5 [3.4, 3.6]1 44.2 [14.9, 65.7]1

Scenario 9 (D=50) 58.0 [11.1, 80.3] 7.0 [6.9, 9.0]1 77.1 [45.2, 92.6]1

Hardy-Weinberg equilibrium example

Scenario 1 (D=3) 2.3 [1.8, 2.5] 219.2 [152.6, 286.9] 216.7 [153.8, 263.4]

Scenario 2 (D=3) 1.8 [1.6, 1.9] 878.7 [735.1, 1015.3] 565.6 [484.4, 612.3]

Scenario 3 (D=3) 2.3 [2.1, 2.6] 1319.0 [1208.2, 1548.5] 695.6 [593.3, 757.5]

Scenario 4 (D=3) 1.8 [1.6, 1.9] 66.3 [55.9, 92.7] 129.5 [89.5, 179.7]

Scenario 5 (D=3) 2.0 [1.9, 2.3] 160.7 [101.9, 208.3] 146.4 [116.1, 198.1]

Scenario 6 (D=3) 1.6 [1.5, 1.8] 327.6 [232.4, 431.0] 195.3 [140.7, 253.3]

Catalan parliamentary election example

Scenario 1 (D=6) 1.5 [1.4, 1.7] 508.6 [430.4, 617.2] 430.2 [379.7, 510.0]

Scenario 2 (D=6) 0.8 [0.7, 1.3] 124.7 [84.3, 208.5] 186.6 [116.7, 272.2]

For the three examples above, the computing time spent on parameter estimation us-

ing LNM was higher than using DM (see Table 2). For LNM, both choices of starting

points (SP1 and SP2) provided similar results, although SP1 tended to be slower. For the

second example (subsection 4.2), the computing time was remarkably higher in scenar-

ios 2 and 3 using LNM. Note that these scenarios were characterised for being the ones

with the smaller probability in the first component. As expected, data dimensionality

was the major factor affecting computing time.

5 Final remarks and conclusions

Count data are commonly generated in modern scientific areas such as text mining or

genomic and microbiome studies based on next generation sequencing technologies.

The DM distribution is a popular choice to model multivariate counts. However it may

not be appropriate for complicated correlation structures because, amongst others, it

imposes a negative correlation between every pair of multinomial categories. This might
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not be realistic when analysing for example microbiome data (Mandal et al., 2015).

Consequently, there is a need for models allowing more flexible dependence structures

in multivariate count data.

The LNM compound probability distribution has been introduced in this work as

a flexible model for multivariate count data. Rooted on the theoretical framework for

compositional data modelling, the LNM model is fully compatible with the geometry of

the simplex, the sample space where multinomial probabilities lay. Accordingly, multi-

nomial probabilities can be conveniently mapped onto real space through logratio coor-

dinates with respect to an orthonormal basis of the simplex for the purpose of parameter

estimation. Importantly, results are invariant under changes of orthonormal basis. Pa-

rameter estimates for the LNM model cannot be computed analytically though. Differ-

ent estimation approaches have been discussed and compared in this work. One based

on a quasi-Monte Carlo EM algorithm is concluded to be preferable. This approach

improves estimates obtained by Markov Chain Monte Carlo based on the Metropolis al-

gorithm as used in previously works. Because inference is based on the EM algorithm,

likelihood estimation can get stuck in some local maxima. Even though in the examples

shown in this manuscript the global maximum is obtained, it is possible that different

initialisations can be necessary to find it in particular cases.

In terms of modelling, we have shown that the LNM model produces better results

than the DM. In particular, we have shown that in realistic cases LNM outperforms DM

in its ability to model the underlying probabilities from the observed counts. It is impor-

tant to remark that the number of parameters for a DM and a LNM grow linearly and

quadratically respectively. So when the number of dimension is high, it is recommended

to consider some parametrisation for the covariance matrix (Pinheiro and Bates, 1996,

for an example where different restrictions on the spectral decomposition are applied to

Gaussian finite mixtures see (Banfield and Raftery, 1993) ).

Modelling multivariate count data using the LNM provides extra flexibility for the

multinomial parameter distribution. In addition, it opens up the possibility of defining

new statistical inference tools for compositional data analysis. Areas for future develop-

ment include improved procedures for obtaining fast and reliable maximum likelihood

estimates, e.g. along the lines of recent work by (Silverman et al., 2019). These and other

questions in relation to the proposed LNM model will be addressed in future work.
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transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

Graffelman, J. (2015). Exploring Diallelic Genetic Markers: The HardyWeinberg Package Journal of

Statistical Software, 64.

Graffelman, J. and Weir, B. S. (2016). Testing for Hardy-Weinberg equilibrium at biallelic genetic markers

on the X chromosome Heredity, 116, 558–568.

Grantham, N. S., Guan, Y., Reich, B. J., Borer, E. T., and Gross, K. (2019). MIMIX: A Bayesian Mixed-

Effects Model for Microbiome Data From Designed Experiments Journal of the American Statistical

Association, 0, 1–16.

Holmes, I., Harris, K. and Quince, C. (2012) Dirichlet Multinomial Mixtures: Generative Models for

Microbial Metagenomics PLOS ONE, 7, e30126.

Hughes, G., Munkvold, G. P. and Samita, S. (1998). Application of the logistic-normal-binomial distribution

to the analysis of Eutypa dieback disease incidence. International Journal of Pest Management, 44, 35–

42.

Jank, W. (2005) Quasi-Monte Carlo sampling to improve the effciency of Monte Carlo EM Computational

Statistics & Data Anaylsis, 48, 685–701.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions Series in proba-

bility and statistics. John Wiley & Sons, Inc, New York (1997).

Kuo, F. Y., Dunsmuir,W. T. M., Sloan, I. H., Wand, M. P. and Womersley, R. S. (2008). Quasi-Monte

Carlo for Highly Structured Generalised Response Models. Methodology and Computing in Applied

Probability, 10, 239–275.



M Comas-Cufı́, J.A. Martı́n-Fernández, G. Mateu-Figueras and J. Palarea-Albaladejo 117
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A Proof of properties 1 and 2

Property 1 For a fixed x we have

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =M
(

x;n, ilr−1(µµµ)
)

.2

Proof. Let h be a real vector defined on R
D−1 and let x be a count vector defined on Sn,D.

Because ilr−1
1 (h)

x1 · · · ilr−1
D (h)

xD ≤ x1
x1 · · ·xD

xD , for any fixed x = (x1, . . . ,xD) we have:

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =
∫

h∈RD−1

n!

x1! · · ·xD!
ilr−1

1 (h)
x1 · · · ilr−1

D (h)
xD

lim
‖Σ‖→0

N(h;µµµ,Σ)dh

=
∫

h∈RD−1

n!

x1! . . .xD!
ilr−1

1 (h)
x1 · · · ilr−1

D (h)
xDδ (h−µµµ)dh

=
n!

x1! . . .xD!
ilr−1

1 (µµµ)
x1 · · · ilr−1

D (µµµ)
xD =M

(

x;n, ilr−1(µµµ)
)

.

�

Property 2 Let x = (x1, . . . ,xD) and x1 + · · ·+ xD = n. If limn→∞
xi

n
= πi and πi > 0 for

1 ≤ i ≤ D, then

lim
n→∞

nD−1 ·LNM(x;n,µµµ,Σ) =NSD(πππ;µµµ,Σ)
1√
D

1

π1 . . .πD

Proof. Let πππn = (πn,1, . . . ,πn,D) =
1
n
(x1, . . . ,xD). We have that

lim
n→∞

nD−1
LNM(x;µµµ,Σ) = lim

n→∞

(n+D−1)!

n!
LNM(x;µµµ,Σ). (11)

Substituting x by nπππn and using the LNM probability mass function (5), we can

rewrite (11) as

∫

h∈RD−1
N(h;µµµ,Σ) lim

n→∞

(n+D−1)!

n!

n!

(nπn,1)! . . . (nπn,D)!
ilr−1

1 (h)
nπn,1 . . . ilr−1

D (h)
nπn,D

dh

(12)

Considering the change of variable given by (3), which has the Jacobian

dh =
1√

D p1 . . . pD

dp,

2. lim‖Σ‖→0 stands for any sequence of covariance matrices such that their highest eigenvalue goes to 0.
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we can express (12) with respect to p

∫

p∈SD⊂RD
N(ilr(p);µµµ,Σ)

1√
D p1 . . . pD

lim
n→∞

(n+D−1)!

(nπn,1)! . . . (nπn,D)!
p1

nπn,1 . . . pD
nπn,Ddp,

(13)

where dp is measured using Lebesgue measure.

Note that for the Dirichlet distribution with parameters αi = nπn,i +1, 1 ≤ i ≤ D, we

have

∫

p∈SD⊂RD

(n+D−1)!

(nπn,1) . . .!(nπn,D)!
p1

nπn,1 . . . pD
nπn,Ddp = 1, (14)

and using the Stirling’s approximation we have

ϕ(p) = lim
n→∞

(n+D−1)!

(nπn,1)! . . . (nπn,D)!
p1

nπn,1 . . . pD
nπn,D

= lim
n→∞

(n+D−1)!

(2πn)
D−1

2
√
πn,1 . . .πn,D

p1
nπn,1 . . . pn,D

nπD

π
nπn,1

1 . . .π
nπn,D
D

.

Moreover, it can be seen that p = πππn is a global maximum for p1
πn,1 . . . pD

πn,D when

p1 + · · ·+ pD = 1. Moreover, because limn→∞πππn = πππ, we have that

ϕ(p) = lim
n→∞

(n+D−1)!

(2πn)
D−1

2
√
πn,1 . . .πn,D

(

p1
πn,1 . . . pD

πn,D

πn,1
πn,1 . . .πn,D

πn,D

)n

=

=

{

∞ when p = πππ

0 otherwise,

which implies, together with Equation 14, that ϕ is the Dirac delta function centred at

πππ.

Putting all together, (13) can be rewritten as

∫

p∈SD⊂RD
N(ilr(p);µµµ,Σ)

1√
D p1 . . . pD

δ (p−πππ)dp =

N(ilr(πππ);µµµ,Σ)
1√

Dπ1 . . .πD

=NSD(πππ;µµµ,Σ)
1√

Dπ1 . . .πD

.

�

Observe that we obtain the logratio-normal distribution on the simplex expressed

with respect to the Lebesgue measure. The term 1/(
√

Dπ1 . . .πD) relates the Aitchison

measure with the Lebesgue measure (Mateu-Figueras et al., 2013).
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B E-step convergence in a simple univariate but extreme case

Let x = (1,0) be an observed vector of counts, with mean µ= 0 and standard deviation

σ = 1. Consider the S2 basis given by B=
{

b1 =
1

e
√

1/2+e−
√

1/2

(

e
√

1/2,e−
√

1/2
)}

. The

coordinates of an element p = (p1, p2) of S2 with respect to the basis B, are

h = ilr(p) =

√

1

2
ln

p1

p2

,

and an element of S2 with respect to its coordinates is

p = ilr−1(h) = h⊙b1 =
1

eh
√

1/2 + e−h
√

1/2

(

eh
√

1/2,e−h
√

1/2
)

.

Using Equation 5 we calculate the marginal probability

Pr({X = (1,0)};µ= 0,σ = 1) =
∫ ∞

−∞

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2 + e−h
√

1/2

)

dh ≈ 0.50.

Using numerical integration we obtain an approximation of these expected values:

E
H |X;µµµ(s),Σ(s) [h] =

∫ ∞

−∞
h

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2+e−h
√

1/2

)

Pr({X = (1,0)};µ= 0,σ = 1)
dh ≈ 0.5136.

E
H |X;µµµ(s),Σ(s)

[

h2
]

=
∫ ∞

−∞
h2

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2+e−h
√

1/2

)

Pr({X = (1,0)};µ= 0,σ = 1)
dh ≈ 1.0.

After performing a fixed number of simulations, we compare the estimate and the

variance of the error when approximating the expected valuesEh|x,µ,σ (h) andEh|x,µ,σ
(

h2
)

using five different Monte Carlo approaches: MC method via importance sampling

as described in Section 3.1, MC method via importance sampling and antithetic vari-

ates (Caflisch, 1998), QMC method using Halton low-discrepancy sequences, MCMC

method based on the Metropolis algorithm with a standardised gaussian proposal (Xia

et al., 2013), and MCMC method based on the Hamiltonian algorithm (Chapter 5, Neal

(2010)). For QMC estimation, the variability was estimated using scrambling techniques

(see Owen (1995); L’Ecuyer and Lemieux (2002) for further details). Importance sam-

pling for MC and QMC was conducted using m = Eh|x,µ,σ (h) and s = 1. MCMC meth-

ods were initiated at h0 = Eh|x,µ,σ (h).
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Table 3: Mean and standard deviation (in parenthesis) of 500 different approximations to Eh|x,µ,σ (h) and

Eh|x,µ,σ
(

h2
)

when x = (1,0), µ= 0 and σ = 1. Computing time is shown with respect to the MC method.

Method First moment Second moment Time

Numerical approximation 0.5135884 1.0000000

MC 0.5136272 (0.02412) 1.0008430 (0.03998) ×1.00

MC (Antithetic variates) 0.5136542 (0.00148) 1.0017754 (0.04047) ×0.96

QMC 0.5135818 (0.00071) 0.9999877 (0.00171) ×2.03

MCMC (Metropolis) 0.5133551 (0.02928) 0.9996497 (0.04716) ×6.70

MCMC (Hamiltonian) 0.5163096 (0.04394) 1.0037255 (0.07058) ×90.12
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Figure 6: Approximation of moments: Eh|x,µ,σ (h) (left); Eh|x,µ,σ
(

h2
)

(right). For x = (1,0), µ = 0 and

σ= 1 using different MC techniques to approximate the E step: Monte Carlo (MC) via importance sampling

(black), MC via importance sampling and antithetic variates (red), QMC using Halton sequences (green),

MCMC based on the Metropolis algorithm (blue) and MCMC based on the Hamiltonian algorithm (purple).

Horizontal dashed line (black) is approximation calculated by numerical integration.

Figure 6 shows the behaviour of the methods for the first 1000 iterations in one

simple approximation. The horizontal dashed line (in black) represents the expected

values calculated by numerical integration. This exercise was repeated 500 times. Table

3 shows the mean and the standard deviation of the corresponding 500 approximations

obtained by each procedure in the first 1000 iterations. In addition, a comparison of the

computing time was conducted. The computing time was very similar for all methods,

except for MCMC methods. The best results produced by the classical MC method.

Regarding to the approximation of the first and second moment, QMC estimation clearly

outperformes the other approaches. Remarkably, the MCMC algorithms has the worst

performance. The standard deviations obtained by the Metropolis algorithm (0.044 and

0.071) were the largest and far from the standard deviations obtained by QMC. Figure 6
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illustrates this behaviour. Note that the lines for the methods whose standard deviation

was close to zero are close to the horizontal line representing the exact values.

C E-step convergence in multivariate cases

To evaluate the performance of the estimation procedures, we set up a simulation study

parametrised by the following five parameters:

• Dimension of the random vector H. We considered dimension d ∈ {1,5,25,125}.

• Multinomial sample size, n ∈ {10,100}.

• Location of parameter µµµ. Concretely, we parameterised the Aitchison norm for the

mean of the multivariate normal (MVN) distribution, λ ∈ {0,1,2}.

• Variability of parameter Σ. To this end, we parameterised the quotient between

the trace and the dimension of the covariance matrix of the MVN distribution,

ν ∈ {0.5,1,2}.

• Agreement between count x and parameter µµµ. We considered two scenarios, a first

scenario were count x was generated by a multinomial distribution with parame-

ter πππ = ilr(µµµ), and a second scenario were count x was generated by a multino-

mial distribution with parameter πππ= ilr(−µµµ). We parameterised the two scenarios

with a parameter ξ ∈ {0,1} to modelate the two multinomial distributions with

πππ = ilr−1 ((2ξ−1)µµµ). Parameter ξ measures the change from a situation with dis-

agreement between x and µµµ to a situation with agreement between them.

In each of the previous 144 scenarios we repeated the following simulation 100

times:

1. A vector µµµ ∈ R
d was uniformly generated from the d-sphere with radius λ, i.e.

{µµµ ∈ R
d ; ‖µµµ‖2 = λ}.

2. A covariance matrix Σ ∈ Rd×d was generated as Σ = ν

tr(A)/d
A, where A ∼

Wishart(d,Id) (ensuring that
tr(Σ)

d
= ν).

3. A vector X was generated following a multinomial distribution with sample size n

and probability πππ = ilr−1 ((2ξ−1)µµµ).

4. We approximated the first and second moment of the random variable H con-

ditional to X, µµµ and Σ using Monte Carlo, Monte Carlo with antithetic variate,

Quasi Monte Carlo and MCMC (using the Metropolis-Hastings algorithm). Ap-

proximations were conducted generating 100 random variables.
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In each scenario, for the first and second moment, gold standards were obtained with

100000 replicates using standard Monte Carlo integration and MCMC. We evaluated

the accuracy of each method by calculating the infinity norm of the difference between

the approximation and the gold standard.

Table 4: Results obtained after adjusting a linear model to the logarithm of the error.

Dependent variable: ln(error)

First moment Second moment

Effect (95% CI) Effect (95% CI)

MC (Reference) 1 1

MC-AV 0.404 (0.378, 0.429) 0.888 (0.861, 0.915)

QMC 0.443 (0.417, 0.469) 0.612 (0.585, 0.639)

MCMC 2.182 (2.156, 2.208) 2.014 (1.987, 2.041)

d 1.020 (1.020, 1.020) 1.023 (1.023, 1.024)

n 0.994 (0.994, 0.994) 0.989 (0.989, 0.989)

λ 1.156 (1.145, 1.167) 1.532 (1.521, 1.544)

ν 1.583 (1.569, 1.598) 1.851 (1.835, 1.866)

ξ 1.056 (1.037, 1.074) 1.176 (1.157, 1.195)

R2 0.574 0.600

To assess the results we fitted a linear model to investigate differences in logarithmic

error with respect to the methods used. Results were further adjusted by the five param-

eters: d, n, λ, ν and ξ (Table 4). The table shows the relative effect of each parameter

when estimating the error. On average, QMC produced 44.3% and 61.2% of the error

to estimate the first and second moment respectively in comparison to standard MC. In

contrast, MCMC methods doubled the error in both moments with respect to MC (2.182

and 2.014). The use of antithetic variables (MC-AV) provided the best results when ap-

proximating the first moment. In relation to the parameters, as it is expected, the higher

the dimension the higher the error. We also observe the high impact of the MVN vari-

ability, ν, parameter in both moments (1.58 and 153 respectively). In minor measure,

the same occurred for the norm, λ, and the disagreement, ξ. On the contrary, the higher

the sample size, n, the lower the error.

To have a visual summary of the results, Figure 7 shows different boxplots of the

parameters d, λ and ν. As seen in Table 4, this graphic illustrates how antithetic vari-

ates perform specially well in low dimensions when estimating the first moment. QMC

method performs well in almost all scenarios, when estimating both moments.
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Figure 7: Results obtained in the simulation study for the first and second moment. Results are shown for

each method with respect to parameters d, λ, ν.
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D Choices for the probability vector p

Table 5: Probability vectors p used in the first example. Column k shows the scenario number, column D

refers to the number of components. The column on the right-hand side accounts for the initial numbers of

trials.

k D p

1 9 0.057 0.077 0.078 0.105 0.105 0.105 0.141 0.141 0.191

2 12 0.066 0.071 0.072 0.076 0.078 0.078 0.084 0.086 0.087 0.096 0.097 0.109

3 15 0.024 0.033 0.033 0.044 0.044 0.044 0.059 0.059 0.059 0.080 0.080 0.080

0.108 0.108 0.145

4 16 0.024 0.031 0.031 0.041 0.041 0.041 0.056 0.056 0.056 0.056 0.075 0.075

0.075 0.102 0.102 0.13

5 20 0.016 0.020 0.020 0.028 0.028 0.028 0.037 0.037 0.037 0.037 0.050 0.050

0.050 0.050 0.068 0.068 0.068 0.092 0.092 0.124

6 25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.50

7 30 0.021 0.023 0.023 0.025 0.025 0.026 0.028 0.028 0.028 0.028 0.030 0.030

0.031 0.031 0.031 0.033 0.034 0.034 0.034 0.034 0.037 0.038 0.038 0.038

0.042 0.042 0.042 0.047 0.047 0.052

8 36 0.019 0.019 0.020 0.020 0.021 0.021 0.021 0.021 0.022 0.022 0.023 0.023

0.024 0.024 0.024 0.024 0.024 0.026 0.026 0.027 0.027 0.028 0.028 0.029

0.029 0.030 0.032 0.032 0.033 0.033 0.037 0.037 0.038 0.043 0.043 0.050

9 50 0.02 (50 times)
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Abstract

The introduction of Electric Vehicles (EVs) in modern fleets facilitates green road transportation.

However, the driving ranges of EVs are limited by the duration of their batteries, which arise

new operational challenges. Hybrid fleets of gas and EVs might be heterogeneous both in loading

capacities as well as in driving-range capabilities, which makes the design of efficient routing plans

a difficult task. In this paper, we propose a new Multi-Round Iterated Greedy (MRIG) metaheuristic

to solve the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges and loading

capacities (HeVRPMD). MRIG uses a successive approximations method to offer the decision

maker a set of alternative fleet configurations, with different distance-based costs and green levels.

The numerical experiments show that MRIG is able to outperform previous works dealing with the

homogeneous version of the problem, which assumes the same loading capacity for all vehicles

in the fleet. The numerical experiments also confirm that the proposed MRIG approach extends

previous works by solving a more realistic HeVRPMD and provides the decision-maker with fleets

with higher green levels.
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1 Introduction

Transportation is one of the main activities in modern supply chains, and accordingly,

it has a significant effect on the customer level of satisfaction (Crainic, 2000). Like-

wise, CO2 and greenhouse-gas emissions play an important role in producing the side
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effects (externalities) of noise pollution, air pollution, and traffic congestion (Faulin

et al., 2019). Therefore, enterprises must consider both customer satisfaction and en-

vironmental impact when planning their transportation operations. In fact, some gov-

ernments are making noticeable efforts for promoting ‘green’ (environment-friendly)

policies. One of these policies is related to shifting from Internal-Combustion-Engine

Vehicles (ICEVs) to zero-emission Electric Vehicles (EVs) or, at least, to Plug-in Hy-

brid Electric Vehicles (PHEVs) (Mattila and Antikainen, 2011). Both ICEVs and PHEVs

consume oil and produce a higher percentage of CO2, greenhouse emissions, and other

pollutant effects compared to EVs. It is then clear that a shift from a fossil fuel fleet to

an electric-powered fleet is necessary to reduce pollutant emissions in cities. Also, by

introducing special taxes, governments are approving policies aimed at decreasing the

pollution level generated by transportation (Faulin, Lera-López and Juan, 2011). Other

ways of promoting green technologies refer to offer incentives for companies to reduce

carbon footprint, diminish the risk associated with the dependence on oil-based energy

sources, make more affordable the acquisition of EVs, and develop alternative-energy

technologies (Williams et al., 2012). Therefore, from both an environmental and energy

standpoints, the use of EVs should be a first priority for the reduction of primary energy

consumption.

Although EVs show many advantages regarding the use of a greener energy, this

technology is currently facing some drawbacks. In particular, these vehicles make use

of electronic batteries, which limit their driving-range capabilities. These batteries have

long-recharge processing times and cannot be charged in classical service stations on the

road (Chan et al., 2009; Wirasingha, Schofield and Emadi, 2008; Ferreira et al., 2011;

Achtnicht, Bühler and Hermeling, 2012). On the contrary, the driving ranges of ICEVs

and PHEVs are assumed to be unlimited as they can be easily refueled at any station

along their route. With EVs becoming more prevalent among current fleets of vehicles,

an efficient routing of hybrid fleets of vehicles with multiple driving-ranges is an emer-

gent challenge in the transportation industry. Thus, the Vehicle Routing Problem with

Multiple Driving ranges (VRPMD) takes into account a hybrid fleet of EVs, PHEVs,

and ICEVs. However, the different vehicles of the fleet are assumed to have the same

loading capacity.

In this paper, we propose a more realistic model by also considering heterogeneous

fleets of vehicles in terms of loading capacity and driving ranges. The novel model

is called the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges

(HeVRPMD). To solve this new model, we propose a Multi-Round Iterated Greedy

(MRIG) metaheuristic based on a successive approximations method. The final solution

for the heterogeneous case is obtained by solving a series of homogeneous cases and

then combining the resulting partial solutions into a global one. In order to validate the

performance of the MRIG metaheuristic, we first solve the homogeneous VRPMD and

compare our results with the ones published in existing literature. Then, we extend the

MRIG metaheuristic to solve the HeVRPMD. To solve this problem, we create a new

set of instances based on the classical ones for the heterogeneous fleet vehicle routing
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problem with unlimited driving ranges. The performance of the new metaheuristic is

evaluated considering the distance-based costs and the green level of the fleet config-

urations. The green level of the fleet is measured by using two novel correlated green

indexes. The first green index measures how green a fleet configuration is based on the

fraction of ‘green’ vehicles in the fleet. The second green index directly computes the

estimated environmental cost associated with the use of each vehicle in the fleet. The rest

of the paper is organised as follows. First, we review the related literature in Section 2.

Then, Section 3 provides the mathematical optimization model. The MRIG metaheuris-

tic is described in Section 4. Section 5 presents the definition of the proposed green

indexes and the computational experiments. The obtained results for the homogeneous

case are analysed in Section 6, while the ones associated with the heterogeneous case

are discussed in Section 7. Finally, some conclusions are provided in Section 8.

2 Literature review

The classical vehicle routing problem (VRP) and its variants have received extensive

attention from practitioners and the research community (Laporte, 2009). While most

VRP articles assume a fleet of homogeneous vehicles to serve the customers, in real-life

it is usual to consider heterogeneous fleets of vehicles in terms of loading capacity (Koç

et al., 2016; Dell’Amico et al., 2007; Dominguez et al., 2016). This section focuses on

reviewing the following two streams of research: the green VRP and the VRP with a

heterogeneous fleet of vehicles. The green VRP is a relatively recent variant of the VRP

having the goal of reducing greenhouse gas emissions by considering alternative fuel-

powered vehicle fleets, such as electricity (Erdoğan and Miller-Hooks, 2012). In addi-

tion to the reduction of the amount of gas emissions, the use of electricity imposes some

restrictions, such as the limited driving-range autonomy. As a result, most of the electric

VRP literature reports on alternative fuel stations to recharge the battery. In this context,

Erdoğan and Miller-Hooks (2012); Schneider, Stenger and Goeke (2014) and Montoya

et al. (2014) presented a green VRP considering alternative fuel stations to refill the

tank or recharge the battery, while Jie et al. (2019) and Verma (2018) proposed another

remedy to meet EVs’ limited driving ranges . In these research papers, EVs should visit

battery swapping stations to swap their batteries before their battery power runs out or

their driving ranges terminate. Likewise, Lin, Zhou and Wolfson (2016) considered the

vehicle load effect on the battery consumption while designing the optimal routing plan.

Additionally, Keskin and Çatay (2016) included a partial recharging feature for electric

VRP with time windows. This partial-recharging assumption has been included to make

recharging times shorter. Also related to this research line, Felipe et al. (2014) proposed

an electric VRP model which determines the amount of energy recharged and the tech-

nology used. A detailed review on the challenges of electric vehicles in logistics and

transportation can be found in Juan et al. (2016).
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The second stream of research addressed in this study is the heterogeneous VRP. As

stated before, using a heterogeneous fleet of vehicles makes the model more realistic. In

this regard, the use of hybrid fleets combining EVs, ICEVs, and PHEVs is a promising

research area. Hiermann et al. (2016) and Vaz Penna et al. (2016) proposed an opti-

mization problem combining the fleet size, mix VRP with time windows, and the use

of EVs. The fleet size and mix VRP only cover conventional vehicles but they distin-

guish different types of vehicles according to their transportation capacity, battery size,

and fixed cost. Goeke and Schneider (2015) incorporated an energy consumption model

including speed, gradient, and cargo load distribution into a fleet size and mix VRP

with time windows and the use of EVs. Despite the recent advances on EV-related tech-

nology and infrastructure, the development of recharging facilities throughout the road

transportation networks might be only an option on the long run. Therefore, the travel

range still remains as one of the main issues concerning the use of EVs in transportation

activities. This issue has been addressed in Almouhanna et al. (2020), by discussing a

location routing problem with constrained distance which is used EVs in the location

and routing decisions. They developed a heuristic and a metaheuristic to minimize the

total cost, which includes the opening cost of depots, the variable distance-based cost

of vehicles, and the fixed cost of using vehicles. In Juan, Goentzel and Bektas (2014b),

the authors addressed this issue by solving a VRP variant which considers a hybrid

fleet of vehicles with multiple driving ranges and assume that all vehicles are homo-

geneous in terms of loading capacity. The use of multiple driving ranges is due to the

fact that vehicles use different energy sources or even alternative battery types. These

authors developed a Multi-Round Heuristic (MRH) that iteratively builds a solution for

the problem. In Reyes-Rubiano et al. (2019), authors studied a VRP including homoge-

neous fleet of electric vehicles with a limited loading capacity and driving ranges and

stochastic travel times. The authors proposed a simheuristic algorithm to design reliable

routing plans in order to minimize the expected timebased cost required to complete the

freight distribution plan.

A research stream related to the VRP with multiple driving ranges is the distance-

constrained VRP. Few papers have studied the distance-constrained VRP. Among them,

we can highlight the works of Kek, Cheu and Meng (2008), Li, Simchi-Levi and Des-

rochers (1992), and Laporte, Desrochers and Nobert (1984). In the context of alterna-

tive fuel-powered vehicle fleets, Erdoğan and Miller-Hooks (2012) developed a similar

model to a distance-constrained VRP by considering a single driving range limitation

on the tour duration. The VRP and its variants are NP-hard problems and different ap-

proaches, from exact methods to heuristics and metaheuristics, have been employed to

solve them (Hokama, Miyazawa and Xavier, 2016; François et al., 2016; Andreatta

et al., 2016). Soft computing based methods are very frequent when solving the VRP

family of optimization problems. Authors of Brito et al. (2015) used fuzzy logic as a

way of defining the constraints of the VRP optimization problem and made use of ant

colony optimization as the solving strategy. Fuzzy logic was also used to define pref-

erence information of customers with respect to the satisfaction for a service time in a
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multi-objective optimization problem using a solving strategy based on a genetic algo-

rithm Ghannadpour et al. (2014). Genetic algorithms, both single- and multi-objective,

have been widely used for VRPs and their variants. Karakatič and Podgorelec (2015)

presented a complete review on the use of genetic algorithms for multi-depot VRPS. Re-

cently, Pierre and Zakaria (2017) proposed a genetic algorithm with additional stochastic

rules for a VRP with time windows and AbdAllah, Essam and Sarker (2017) presented

an enhanced genetic algorithm that tries to increase both diversity and the capability

to escape from local optima to solve a dynamic VRP in which not all customers are

known in advance, but are revealed as the system progresses. The research developed in

this paper extends previous work in two main directions. First, it proposes a new MRIG

metaheuristic which outperforms the existing approaches for the homogeneous version

of the problem – i.e., assuming that all vehicles have the same loading capacity. Sec-

ondly, it extends this MRIG metaheuristic so it can deal with the heterogeneous version

of the problem too.

3 HeVRPMD optimization model

In this section, we describe the proposed HeVRPMD model, which considers a hetero-

geneous fleet of vehicles with respect to loading capacities as well as driving ranges.

This VRP model can be seen as a combination of two distinct problems: (i) the VRP

considering heterogeneous fleets of vehicles in terms of loading capacity Baldacci, Bat-

tarra and Vigo (2008); and (ii) the VRP with multiple driving ranges (VRPMD), where

fleets are hybrid in terms of driving range but all vehicles are assumed to have the same

loading capacity (Juan et al., 2014b). In the next subsections, we define the mathemati-

cal optimization model for the HeVRPMD. The proposed model aims to find alternative

‘green’ fleet configurations with minimum distance-based cost. The concept of green

refers to the fact that we give priority to the use of small-size EVs over medium-size

EVs, large-size ICEVs and PHEVs. In addition, as in many other vehicle routing prob-

lems, the following constraints need also to be fulfilled: (i) each route starts and ends at

the depot, and it is associated with a vehicle type; (ii) each customer belongs to exactly

one route; and (iii) loading capacities and driving ranges of the vehicles are never ex-

ceeded – notice that the considered vehicles are heterogeneous both in loading capacity

and driving range.

A model representation of the HeVRPMD can be a directed graph G = (N,A) con-

sisting of a set N of n+1 nodes, N = {0,1, . . . ,n} and a set A = {(i, j) : i, j ∈ N, i 6= j}

which represents the arcs connecting pairs of nodes. Node 0 denotes the depot, where

the vehicle fleets are located, and the remaining nodes represent the n customers. Each

customer i has a known demand qi > 0. We denote the distance-based cost associated

with traveling from node i to node j by di j, with di j = d ji ≥ 0. In addition, there is a

set K of k different types of vehicles, K = {1,2, . . . ,k}. The number of vehicles for each

type is assumed to be unlimited. Each vehicle of type l has a loading capacity Ql as



146 Green hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem...

well as a maximum driving range T l . Three different decision variables are used in the

model: (i) a binary decision variable xl
i j, which takes the value of 1 if vehicle l ∈ K trav-

els from node i to j, and 0 otherwise; and (ii) two continuous decision variables ul
i and

vl
i which represent the cumulative amount of load carried and distance traveled, respec-

tively, by vehicle l ∈ K when leaving customer i ∈ N\{0}. The objective function is the

minimization of total distance-based cost, subject to:

1. Satisfying all customers’ demands.

2. Balancing of flows between nodes.

3. Loading capacity of vehicles.

4. Driving ranges of the vehicles.

5. Non-negativity and binary constraints.

To define the constraints we used the model provided by (Baldacci et al., 2008) to

define the set of constraints related to items 1 to 3, and the model introduced by (Juan

et al., 2014b) to define the set of constraints related to driving ranges of the vehicles.

The objective function of the optimization model is defined in Equation 1. This func-

tion calculates the total distance-based cost of all used vehicles by adding the traveled

distance by each vehicle l over all arcs (i, j) ∈ A:

Minimize z = ∑
l∈K

∑
(i, j)∈A

di jx
l
i j (1)

The constraints of the HeVRPMD model are defined from Equation 2 to 9. Equations 2

ensures that every customer is visited exactly once by a single vehicle:

∑
l∈K

∑
j∈N,i6= j

xl
i j = 1 ∀i ∈ N\{0} (2)

Equation 3 guarantees the flow conservation from and to a given customer node using

a vehicle of type l. By doing so, a connection between node i and node j ∈ N\{i} is

assured:

∑
j∈N,i6= j

xl
i j− ∑

j∈N,i6= j

xl
ji = 0 ∀i ∈ N\{0}, l ∈ K (3)

Equations 4 and 5 ensure that the total load capacity of a vehicle type l on each tour does

not exceed the vehicle capacity Ql . More precisely, Equation 4 ensures that the load of

the vehicle in the next node j depends on the load of the vehicle in the previous node i

as well as on the demand of node j. As a result, the last node on a tour will denote the

total amount of load carried by the vehicle:

ul
i ≤ ul

j−q jx
l
i j +Ql(1− xl

i j) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (4)
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Equation 5 ensures that load ul
i is always greater than zero and less than the maximum

capacity Ql for a vehicle of type l:

0≤ ul
i ≤ Ql ∀l ∈ K, i ∈ N\{0} (5)

Constraints 6 and 7 guarantee that the total length of the route does not exceed the

maximum range of vehicle l. Constraint 6 restricts the route travelled up to customer

j (v j) to be larger than the route travelled up to previous visited node i (vi) plus the

distance travelled between customer node i to customer j.

0≤ vl
i ≤ vl

j−di jx
l
i j +T l(1− xl

i j) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (6)

Constraint 7 ensures that the current route travelled to be smaller than the maximum

driving range of vehicle type l ∈ K minus the route traveled between node i ∈ N and

node j ∈ N.

0≤ vl
i ≤ T l−di jx

l
i j ∀l ∈ K,∀(i, j) ∈ N, i 6= j (7)

Notice that constraints 4 to 7 in our model forbid sub-tours in the solution. In fact,

similar constraints have been widely used in the VRP literature in order to eliminate

sub-tours Erdoğan and Miller-Hooks (2012); Feillet (2010). Finally, Equations 8 and 9

guarantee the binary and non-negativity conditions of the decision variables:

xl
i j ∈ 0,1 ∀l ∈ K,∀(i, j) ∈ A (8)

ul
i,v

l
i ≥ 0 ∀l ∈ K,∀i ∈ N\{0} (9)

Even for small-scale instances of the homogeneous (simplified) version of this problem,

it is not possible to obtain solutions in reasonable computing times using commercial

optimization packages such as CPLEX. Therefore, in the remaining of this paper, we

propose the use of a metaheuristic algorithm as the most effective way to deal with both

the homogeneous and the heterogeneous versions.

4 The MRIG metaheuristic

This section describes the proposed MRIG metaheuristic to solve both the homogeneous

VRPMD and its heterogeneous version. This algorithm is inspired by the successive

approximations method proposed by Juan et al. (2014a) to solve the heterogeneous VRP.

Accordingly, MRIG is a multi-round approach that solves the global heterogeneous VRP

by dividing it into different homogeneous VRP. The main components of the algorithm

are the construction of the initial solution, local improvement, and acceptance criterion.

Each round of the MRIG approach consists of an optimization routing algorithm, run
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inside an Iterated Greedy (IG) framework. At each round, the algorithm first selects

a new subset of nodes and a new type of vehicles, thus defining a homogeneous fleet

VRPMD. Then, the routing algorithm integrated into the IG framework searches for a

near-optimal solution for the selected subset of nodes and vehicle type. Additionally,

and in order to facilitate the generation of solutions with different fleet configurations,

a penalty-based diversification mechanism is integrated within MRIG. This mechanism

is applied after the construction of the initial solution and before the local improvement

of the selected subset of nodes of the route. The penalty mechanism is applied for all

the iterations of the algorithm and slightly modifies the initial driving range of each

vehicle at random. This diversification technique has been extensively used in some

metaheuristic approaches such tabu search and others. Mathematically, the penalty cost

modifies the driving range of a vehicle of type l (T l) to a new driving range value with

random noise (T l′ ), always with a variation below the 10% of the initial driving value of

the vehicle.

The routing algorithm of the MRIG extends and enhances the popular Clarke and

Wright’s savings heuristic (Clarke and Wright, 1964), and the savings list of edges. One

of the advantages of using this routing algorithm is that it does not require any complex

parameter fine-tuning and is efficient to solve VRP, as reported in Quintero-Araujo et al.

(2017); Ferone et al. (2019). Another important component of the MRIG is the heuristic.

This heuristic is relatively simple, yet effective, which has obtained high-quality results

in areas such as scheduling (Ruiz and Stützle, 2007), arc routing problems (González-

Martı́n et al., 2012), and vehicle routing problems (Ruiz and Stützle, 2008; Chebbi and

Chaouachi, 2015), among others. In a nutshell, it generates a sequence of promising

solutions by iterating over greedy constructive heuristics using two main phases: de-

struction (some solution components are removed from a complete solution), and recon-

struction (a greedy constructive heuristic is applied to reconstruct a complete solution).

Once a candidate solution has been completed, an acceptance criterion decides whether

or not the new constructed solution will replace the reference solution. Figure 1 shows

a flowchart to illustrate the MRIG algorithm and its main components.

4.1 Construction of the initial candidate solution

The first step of the algorithm uses a multi-round process with a routing algorithm to

obtain the initial solution. This routing algorithm is applied to each round of the process

for each type of vehicle among the unused vehicles. This also means that assuming

an unlimited fleet of vehicles of the same type and with the same loading capacity, a

homogeneous VRPMD is solved for the nodes which are not yet served.

Thus, for example, a multi-round process will typically need three rounds to generate

a global feasible solution when facing a problem with a fleet configuration composed

of ICEs, PHEVs, and two types of EVs with two different battery capacities. The three

rounds are associated with the unlimited range ICEs and PHEVs, medium range EVs

with larger batteries, and short range EVs with smaller batteries, respectively. At each
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Figure 1: Diagram of the multi-round algorithm to build the initial candidate solution.

round of the solving method, a different homogeneous fleet capacitated VRP with a

route length restrictions (CVRP*) is solved. The maximum route distance considered

for each round is given by the maximum driving range of the corresponding unused

vehicles. In the first round, when the problem specification includes unlimited driving-

range vehicles (ICEs and PHEVs), no restriction is assumed on the route length, and the

VRP is solved. In the remaining two rounds, when limited driving range vehicles are

available, a CVRP* is solved considering the maximum route distance for the vehicles

in this specific round (Belloso, Juan and Faulin, 2019). After solving the successive

CVRP* with different types of vehicles and different driving ranges, the solution with

the minimum distance-based cost is selected as the incumbent best solution. To produce

the new solution, a ratio p of the routes of the current best solution are randomly selected

to be discarded. The remaining 1− p routes are saved as partial solutions. The algorithm

releases the associated nodes of the discarded routes and the same constructive process

is used again to create the sub-solutions from these nodes which belong to the discarded

routes. When all the nodes are served, the complete candidate solution, referred to as πC,

is built by merging the partial best sub-solutions obtained by the rounds of the algorithm.

The process of the initial candidate solution construction is shown in Figure 2.
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Figure 2: Flowchart of the MRIG algorithm and its main components.

4.2 Improvement phase

The second step of MRIG consists of two local search operators: destruction and recon-

struction. The goal of this step is to improve the distance-based cost of the candidate

solution, πC. In the destruction phase, a sub-set of nodes, D, from the total n nodes is

selected by using a ratio d ∈ [0,1]. This subset of nodes is removed from the routes and

inserted into an archive list in the order they were selected. Note that, by following this

process, there will not be any empty route (i.e., each route has at least one node). This

destruction procedure explained in Algorithm 1, returns the list of removed nodes D as

well as the list of routes containing the non-removed nodes. We denote τr to be the list

of nodes assigned to route r ∈ R of a candidate solution πC.

During the construction phase, all the nodes of sub-set D are selected one by one

according to the list order. Later, they are re-inserted into the existing routes. Among all



Sara Hatami, Majid Eskandarpour, Manuel Chica, Angel A. Juan and Djamila Ouelhadj 151

Algorithm 1 Destruction πC(d)

i← 0
while i < ⌊dn⌋ do

r← Route randomly selected
a← Node randomly selected among the remaining nodes in the route r
if |τr|> 1 then

D← Insert node a
τr ← Remove node a from τr

i← i+1
end if

end while
return D and all τr,r ∈ R

the possible position, the chosen location for each node is the one in the route with the

smallest distance-based cost. This process is repeated ⌊dn⌋ times, until all the nodes of

D are re-inserted, thus leaving D empty.

4.3 Acceptance criterion

Finally, MRIG uses an acceptance criterion that allows it to accept, from time to time,

a degradation of the base solution. The criterion adds more diversity into the search

and prevents the algorithm from getting stuck in a local optima. The acceptance crite-

rion is applied once the improvement of the candidate solution, πC, has been completed.

Therefore, this step determines if the new generated solution should replace the base

solution πI even if it has a higher cost. The acceptance criterion of worse solutions is

based on the probabilistic acceptance criterion of simulated annealing (Ruiz and Stützle,

2008; Yu and Lin, 2015; Wang et al., 2015). In MRIG, the acceptance criterion works

as follows. Let C(πI) denotes the distance-based cost of the current base solution πI. The

newly generated solution, πC, is automatically accepted as the updated base solution if

C(πC) < C(πI). Otherwise, the solution πC is accepted as an update of the base solution

only if a certain criterion is met. This criterion relies on a probabilistic mechanism that

takes into account the so-called temperature parameter and the change in the objective

function value. It is defined in Equation 10, where random is a random number uni-

formly distributed between 0 and 1, and Temp is the temperature parameter originally

proposed by Osman and Potts (1989):

random≤ e
−

C(πC)−C(πI )
Temp (10)

Hatami, Ruiz and Andrés-Romano (2015) simplified the latter acceptance mechanism

by considering two aspects. First, they eliminated the Temp factor. Secondly, the prob-

ability of accepting a worse solution in the original mechanism of Equation 10 only de-

pends on the difference between C(πC) and C(πI). This dependency provokes that the dif-

ference could be the same for instances with non-similar deterioration levels in terms of

relative values. In order to solve this potential shortcoming, the difference, C(πC)−C(πI),
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is substituted by the Relative Percentage Difference (RPD) between the cost values of

these two solutions. RPD value is obtained by RPD(πC,πI) =
C(πC )−C(πI )

C(πI )
× 100. The

improved criterion is simple and it does not need any parameter fine-tuning process.

Therefore, we use it in the MRIG metaheuristic as shown in Equation 11.

random≤ e−RPD(πC,πI) (11)

5 Computational experiments

This section describes the experimental setup to evaluate the performance of MRIG.

First, we describe how we evaluate the costs of the solutions (Section 5.1), as well as two

new green indexes (Section 5.2). Secondly, Section 5.3 shows the benchmark instances

used for the experiments.

5.1 Distance-based cost evaluation

Three types of vehicles are considered in the experiments: (i) large range ICEVs and

PHEVs with no driving range limitations; (ii) medium range EVs, which have an auton-

omy of 200 distance units; and (iii) small range EVs, with an autonomy of 100 distance

units. These three types of vehicles are denoted by L, M, and S, respectively. Accord-

ingly, a fleet configuration for each problem instance is represented by S/M/L (i.e., the

number of vehicles of each type). In the computational experiments, the distance-based

cost associated with the fleet configuration is computed. An analysis on how the substi-

tution of ICEVs/PHEVs by EVs increases the distance-based cost is also provided.

5.2 Green indexes for fleet configurations

In order to compare the performance of MRIG with previous results from the literature,

we have considered that one configuration is greener than another if: (i) it substitutes

vehicles of type L by vehicles of type M or S, where S is always preferred over M; or (ii)

vehicles of type M are substituted by vehicles of type S without increasing the number

of vehicles of type L.

As mentioned before, vehicles of type S and M are EVs. It is assumed that a vehicle

of type S has a lower driving range and a lower loading capacity than a vehicle of type

M. A vehicle of type S can easily access high congested streets with limited parking

space in many cities, and it is constrained to a lesser degree by the existence of traffic

congestion or lack of parking areas than other larger-size vehicles (Juan et al., 2016).

For these reasons, a vehicle of type S is considered greener than one of type M. In order

to compare the green level of two different fleet configurations, we introduce two novel

indexes. The first one, GI1, is defined by Equation 12 and measures the fraction of S and

M vehicles with respect to all vehicles in the fleet:
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GI1 =
S+ωM

S+M+L
(12)

where ω ∈ (0,1), and S, M, and L, denote the number of vehicles of each type. In the

numerical experiments, we have set ω to 0.7, since the idea is that using a larger fraction

of type M vehicles contributes to make the fleet greener, but not as much as using a

larger fraction of vehicles of type S (considered to be the ‘greenest’ ones). Notice that

this index will take the value of 0 whenever all the vehicles in the fleet are of type L (i.e.,

ICEVs or PHEVs), while it will take the value of 1 only when all the vehicles in the fleet

are of type S (i.e., the greenest possible EVs). The second proposed index, GI2, directly

considers the environmental cost associated with using each type of vehicle. This index

measures environmental unit cost for each fleet configuration. It is assumed that vehicles

of type L have an associated cost of α monetary units. The environmental unit costs for

vehicles of type M and S, which are less pollutant than type L, are set to β and γ, with

α> β > γ > 0. This index is defined by Equation 13. When applying this GI2 index to

a practical scenario, these cost values are required to be set based on additional data on

the specific characteristics of each vehicle type. In our numerical experimentation we set

α= 100, β = 30, and γ = 10. These values are based on a preliminary experimentation

where we tested different sets of values from the expert knowledge of a routing business

collaborator. For example, in our experimental scenario, each vehicle of type L produces

10 times more environmental units than vehicles of type S; and each vehicle of type M

is 3 times more pollutant than a vehicle of type S.

GI2 = γS+βM+αL (13)

These two green indexes offer alternative ways of measuring the degree of environment-

friendly associated with a given fleet configuration. The idea here is that GI1 can be used

as a proxy for index GI2 in those real-life situations in which estimating the exact val-

ues of α, β, and γ cannot be easily achieved due to the lack of accurate data. Figure 3

illustrates, for some of the solutions obtained in the numerical experiments which are

discussed in the next section, the existence of a strong linear relationship between both

indexes. Note that, in all the analysed instances, the determination coefficient is above

90%, which guarantees that – at least for the set of instances and numerical values con-

sidered in the experiments – GI1 could be used to accurately estimate the value of GI2,

if necessary.

5.3 Problem instances and computing resources

We have used 33 classical VRP instances to validate our solving approach for both the

VRPMD and HeVRPMD scenarios. These instances have been selected from a large set

of instances available at http://www.branchandcut.org.The criteria we used to select

these instances were to include those ones with detailed information on routes for the

optimal or pseudo-optimal solution and having between 22 and 135 nodes. The charac-
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teristics of these instances are also different among them (e.g., the number of nodes, the

vehicle capacity, the location of the depot with respect to the clients, and their scattered

or clustered topology). In addition, we need to set different loading capacities for the

vehicles in the HeVRPMD scenario. To achieve this we assume that the fixed capacity

in classical VRP instances, Q0, corresponds to a vehicle of type M. Accordingly, the ca-

pacity associated with vehicles of types S and L is set to 0.8Q0 and 1.25Q0, respectively.

MRIG was implemented using the Java programming language and run on an Intelr

Core™i5 CPU M520 2.40GHz with 4GB RAM, and Windows 7 Pro as the operating

system. The experimental results for each instance are obtained after 30 runs using dif-

ferent seeds for the random number generation. Our stopping criterion is the maximum

CPU time, set to 300 seconds, which allows enough iterations for the metaheuristic to

reach a good convergence for the majority of the instances. Finally, the p parameter of

the initial solution construction is set to 0.6, while the d parameter of the destruction

operator is set to 0.5. These values were obtained after a preliminary experimentation,

according to the statistical learning methodology proposed in Calvet et al. (2016).

Figure 3: Linear relationship between GI1 and GI2 for four problem instances.
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6 Analysis of results for the homogeneous VRPMD

To the best of our knowledge, the only algorithm considered in the literature to solve the

homogeneous version of the VRPMD is the MRH one proposed in Juan et al. (2014b).

The authors evaluated the performance of their MRH algorithm using 20 CVRP in-

stances. In our paper, the number of instances tested has been increased up to 33, in-

cluding the original 20 plus 13 additional ones. This allows us to directly compare the

performance of our approach with the ones already published. The results are presented

in Tables 1-3. These tables show the following information for each instance: its name,

number of customers, vehicle capacity, and the distance-based cost of the best known

solution (BKS) for the homogeneous VRP – without considering driving-range limita-

tions – as provided in http://www.branchandcut.org. Also, these tables show a set of

diverse feasible fleet configurations (FleetCFG) shown by S/M/L those are found by

the MRIG and MRH algorithms. For each instance, more than one feasible configuration

has been found. However, only those solutions offering better values, either in distance-

based cost or in green level, have been included in the tables. Notice that the “greener”

configuration is considered. A configuration is greener than the other if it substitutes

vehicles of type L by vehicles of type M or S (with S preferred over M), or vehicles of

type M by vehicles of type S (without increasing the number of vehicles of type L). The

associated distance-based cost for each fleet configuration, DBCost, is also included.

The RPD column in each table shows the gap between the BKS and the distance-based

costs provided by both algorithms. The best distance-based cost for each instance, and

the associated gaps are indicated in bold. The last column of both tables shows the “di-

versified ratio”, which is the ratio between the number of fleet configurations obtained

using MRIG and MRH. Notice that, on the average, our MRIG provides 1.95 times more

diversified fleet configurations than the MRH algorithm. In addition, the best distance-

based cost obtained by MRIG is better than or equal to the one obtained by MRH in

80% of the instances.

Figure 4 illustrates the comparison using boxplots between three alternative solutions

(A, B, and C) provided by both algorithms to show the gap differences with respect

to the BKS of the problem. MRH-A and MRIG-A denote the best solution – in terms

of distance-based cost – provided by each algorithm. Similarly, MRH-B and MRIG-B

refer to alternative solutions that are greener than the previous ones. Finally, MRH-C

and MRIG-C are solutions even greener than the ones provided by configuration B.

Notice that solutions A provided by algorithms MRH and MRIG perform quite well

in terms of their associated distance-based costs, since they offer very low gaps with

respect to the BKS for the classical VRP – which is not considering any range constraint.

As expected, the distance-based-cost gap with respect to the BKS increases as greener

fleet configurations (suffixes B and C) are used. However, the average gap associated to

MRIG is noticeably lower than the one associated to MRH for both B and C alternative

configurations.
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Figure 4: Visual comparison using boxplots of three alternative solutions (A, B, and C) found by MRIG and

MRH.

Being able to select among different fleet configurations enriches the decision-making

process. Thus, for example, the set of fleet configurations found by MRIG are more di-

versified and greener than those found by MRH in instance F-n135-k7. Moreover, MRIG

can solve the instance using less vehicles of type L (ICEVs or PHEVs), since these are

substituted by vehicles of types S and M (small- and medium-range EVs). Likewise,

for the same fleet configuration, MRIG can find routes with a lower distance-based

cost. For example, the greenest fleet configuration obtained by MRH is 3/2/2, i.e.: it

includes 3 vehicles of type S, 2 vehicles of type M, and 2 vehicles of type L. The asso-

ciated distance-based cost is 1,190.07. For the same instance, MRIG was able to find a

solution with an associated distance-based cost of 1,175.68 using the same fleet config-

uration. Furthermore, MRIG could find greener fleet configurations, such as 1/5/1 and

2/4/1, where the number of type L vehicles is decreased even further.
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Table 1: Experimental results for 20 classical VRP instances

Instance

name

Number of

nodes
Capacity BKS

MRH MRIG RPD
Diversified

RatioFleet CFG.
DBCost

Fleet CFG.
DBCost MRH MRIG

S/M/L S/M/L

A-n32-k5 32 100 787.81
2/1/2 787.08 2/1/2 787.08 0.00 0.00

1
1/3/1 829.41 1/3/1 829.41 5.38 5,38

A-n38-k5 38 100 734.18

0/5/0 733.95 0/5/0 733.95 0.00 0.00

1.25

1/3/1 734.18 1/3/1 734.18 0.03 0,03

1/4/0 735.05 1/4/0 735.05 0.15 0,15

3/3/0 763.13 3/3/0 755.89 3.97 2,99

1/5/0 733.95 - -

A-n65-k9 65 100 1181.69

1/8/0 1183.31 1/8/0 1181.69 0.14 0.00

1

2/7/0 1191.27 2/7/0 1188.03 0.81 0.54

5/5/0 1276.21 5/5/0 1280.81 8.00 8.39

3/6/1 1238.33 3/6/1 1226.60 4.79 3.80

4/6/0 1253.81 4/6/0 1230.52 6.10 4.13

3/5/1 1297.31 3/6/0 1233.86 - -

A-n80-k10 80 100 1766.50

2/5/3 1776.19 2/5/3 1775.75 0.55 0.52

2.5

1/7/2 1785.05 1/7/2 1785.04 1.05 1.05

2/6/2 1794.42 - -

0/9/1 1994.16 - -

2/8/1 2016.21 - -

B-n50-k7 50 100 744.78

2/5/0 744.23 2/5/0 744.23 0.00 0.00

1.67

3/4/0 744.67 3/4/0 744.67 0.06 0.06

4/3/0 751.24 4/3/0 750.42 0.94 0.83

5/2/0 785.01 - -

6/1/1 836.38 - -

B-n52-k7 52 100 750.08

4/2/1 752.63 4/2/1 750.03 0.35 0.00

1.53/4/0 756.71 3/4/0 756.71 0.89 0.89

5/0/3 899.58 - -

B-n57-k9 57 100 1603.63

0/4/5 1602.29 0/4/5 1602.29 0.00 0.00

1.6

0/5/4 1603.37 0/5/4 1603.37 0.07 0.07

0/6/3 1631.66 0/6/3 1631.85 1.83 1.84

1/3/5 1642.53 1/3/5 1636.34 2.51 2.13

1/4/4 1646.65 1/4/4 1637.44 2.77 2.19

1/5/3 1650.87 - -

2/2/6 1694.09 - -

0/7/2 1707.81 - -

B-n78-k10 78 100 1229.27

4/6/0 1253.10 4/6/0 1245.64 1.94 1.33

0.6

6/5/0 1292.60 6/5/0 1288.67 5.15 4.83

3/7/0 1251.83 3/7/0 1246.21 1.84 1.38

4/5/1 1236.33 0.57 -

4/4/2 1252.76 - -

E-n22-k4 22 6000 375.28

2/2/0 375.28 2/2/0 375.28 0.00 0.00

2
3/1/0 383.52 3/1/0 383.52 2.20 2.20

1/3/0 386.03 - -

6/0/0 519.13 - -

E-n30-k3 30 4500 535.80

1/3/0 505.01 1/3/0 505.01 0.00 0.00

4
2/1/1 579.78 - -

3/0/2 597.65 - -

3/1/1 633.37 - -
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Table 2: Continued - Experimental results for 20 classical VRP instances

Instance

name

Number of

nodes
Capacity BKS

MRH MRIG RPD
Diversified

RatioFleet CFG.
DBCost

Fleet CFG.
DBCost MRH MRIG

S/M/L S/M/L

E-n51-k5 51 160 524.94

3/2/0 524.63 3/2/0 524.61 0.00 0.00

35/1/0 556.92 - -

6/0/0 578.01 - -

E-n76-k10 76 140 837.36

7/3/0 845.80 7/3/0 842.57 1.01 0.62

4
8/2/0 856.70 8/2/0 848.73 2.31 1.36

11/0/0 854.42 9/1/0 864.70 - -

10/0/0 879.88 - -

E-n76-k14 76 100 1026.71

13/2/0 1031.94 13/2/0 1043.48 0.51 1.63

1.5

14/1/0 1041.58 14/1/0 1044.28 1.45 1.71

13/1/0 1043.29 13/1/0 1060.05 1.61 3.25

15/0/0 1045.77 15/0/0 1050,79 1.86 2.35

12/3/0 1038.48 1.15

14/0/0 1075.74 - -

F-n135-k7 135 2210 1170.65

3/1/3 1175.73 3/1/3 1168.01 0.66 0.00

2.5

3/2/2 1190.07 3/2/2 1175.68 1.89 0.66

2/3/2 1171.18 - -

1/5/1 1215.14 - -

2/4/1 1241.70 - -

M-n101-k10 101 200 819.81

8/2/0 821.11 8/2/0 819.56 0.19 0.00

39/1/0 847.42 - -

10/1/0 868.31 - -

M-n121-k7 121 200 1045.16

2/3/2 1047.96 2/3/2 1044.64 0.32 0.00

2
1/7/0 1274.60 1/7/0 1287.52 22.01 23.25

3/2/3 1050.66 - -

1/5/1 1129.40 - -

P-n50-k10 50 100 699.56 10/0/0 700.66 10/0/0 700.66 0.16 0.16 1

P-n55-k15 55 70 991.48 16/0/0 952.02 16/0/0 953.18 0.00 0.12 1

P-n70-k10 70 135 830.02

8/2/0 834.38 8/2/0 843.63 0.53 1.64

2.5

10/0/0 841.56 10/0/0 851.39 1.39 2.57

6/4/0 841.42 - 1.37

9/1/0 844.35 - -

7/3/0 842.36 - -

P-n76-k5 76 280
635.04

1/4/0 638.44 1/4/0 636.40 0.55 0.23

1.3
2/3/0 647.51 2/3/0 653.07 1.97 2.85

4/2/0 696.63 4/2/0 666.60 9.71 4.98

0/5/0 634.97 - 0.00

Average
2.08 1.92

1.95
0.28 0.26
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Table 3: Experimental results for 13 additional VRP instances

Instance name Number of nodes Capacity BKS
MRIG

RPD

Fleet CFG. S/M/L Cost

A-n45-k7 45 100 1147.28

2/2/3 1146.77 0.00

1/4/2 1154.43 0.67

2/3/2 1155.60 0.77

1/5/1 1191.29 3.88

0/5/2 1174.01 2.38

0/6/1 1230.27 7.28

1/7/0 1463.93 27.66

2/4/1 1186.46 3.46

A-n55-k9 55 100 1074.46

3/6/0 1074.46 0.00

4/5/0 1092.88 1.71

6/4/0 1150.04 7.03

A-n60-k9 60 100 1355.8 2/6/1 1357.72 0.14

A-n61-k9 61 100 1039.08

4/6/0 1040.31 0.12

5/5/0 1045.40 0.61

6/4/0 1057.00 1.72

7/3/0 1091.31 5.03

E-n33-k4 33 8000 838.72
0/2/2 837.67 0.00

0/3/1 847.37 1.16

E-n76-k7 76 220 687.60

3/4/0 690.20 0.38

4/3/0 695.26 1.11

5/2/0 705.97 2.67

6/1/0 733.74 6.71

F-n45-k4 45 2010 724.57
1/2/1 723.54 0.00

2/0/2 792.37 9.51

F-n72-k4 72 30000 248.81 4/0/0 241.97 0.00

P-n22-k8 22 3000 601.42
8/1/0 588.79 0.00

9/0/0 647.63 9.99

P-n40-k5 40 140 461.73 5/0/0 461.73 0.00

P-n65-k10 65 130 796.67 10/0/0 797.82 0.14

P-n76-k4 76 350 598.22
0/4/0 600.55 0.39

1/3/0 618.53 3.40

P-n101-k4 101 400 692.28

0/3/1 691.29 0.00

0/4/0 694.67 0.49

1/1/2 703.91 1.83

1/2/1 700.88 1.39

2/3/0 729.90 5.59

Regarding the 13 new instances analysed in this work, the results obtained with our

MRIG approach are provided in Table 3. Notice that even considering the driving-range

limitation, the distance-based cost of the best solution provided by the MRIG in 300

seconds is always similar to the classical BKS for the unconstrained problem. In other

words, using an algorithm such as MRIG, it is frequently possible to find alternative so-

lutions for the VRPMD with greener fleet configurations while, at the same time, these
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solutions offer reasonably low distance-based costs – i.e., similar to the best ones that

can be obtained for the classical VRP without driving-range limitations. Table 3 also

shows that, in 9 out of 13 instances, the MRIG algorithm was able to generate alterna-

tive solutions with greener fleet configurations using less large vehicles. Even in these

cases, the associated distance-based costs obtained by our algorithm are reasonably low.

All in all, this section has shown that our algorithm is able to outperform the previ-

ous existing one for solving the homogeneous version of the VRPMD, both in terms

of distance-based cost as well as in terms of green level of the solutions. Also, from a

managerial perspective, the message is clear: (i) the introduction of EVs – with limited

driving range – in transportation fleets does not have to cause a significant increase in

distance-based costs (at least as far as an intelligent algorithm is used to optimize the

associated routing problem); and (ii) among the different routing plans that such an algo-

rithm can generate in just a few minutes, it is usually possible to choose one that offers

a low distance-based cost while, at the same time, employs less contaminant vehicles.

Despite the clear advantages of our approach, being a metaheuristic algorithm it cannot

guarantee the optimality of the best-found solution. In addition, there is not a unique

way of measuring the green level of a routing solution, since this is still a controversial

concept in the scientific literature Juan et al. (2016).

7 Analysis of results for the heterogeneous HeVRPMD

The proposed algorithm is not only able to outperform the state-of-the-art results for

the homogeneous VRPMD, but it can also solve the realistic heterogeneous version of

the problem (i.e., HeVRPMD). Tables 4 to 6 show the results obtained by the algorithm

when solving the HeVRPMD problem. These tables show the instance name and load-

ing capacity in the homogeneous case Q0 (first column), the best known solution (BKS)

for the classical VRP without driving range limitations (second column), and loading

capacities V S-V M-V L for small, medium, and large vehicles, respectively (third col-

umn). As stated in Section 5.3, heterogeneous instances were generated by considering

V S = 0.8Q0, V M = Q0, and V L = 1.25Q0. The MRIG algorithm provides, for each het-

erogeneous instance, a set of solutions. The solution with the minimum distance-based

cost (DBCost) found by the MRIG is shown in bold and therefore, its corresponding

RPD value is 0. Apart from the solution with the minimum DBCost, two sets of three

solutions each are shown (SetGI1 and SetGI2). These three different fleet configurations

are shown based on the minimum, medium, and maximum number of large vehicles,

noted by Ls, Lm, and Ll , respectively. Green indexes GI1 and GI2 are shown for all the

solutions (sixth and seventh columns for those of SetGI1 and, 11-th and 12-th columns

for those of SetGI2). Therefore, Tables 4 to 6 report between six or seven solutions for

each instance, depending on the case the minimum DBCost solution also belongs to

the set of “green” solutions. At the end of Table 6, the average RPD values are also

shown. About 42% of the solutions provided by MRIG reach the maximum green level
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Table 4: Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

A-n32-k5(100) 787.81 80-100-125

1/0/3 687.58 0.25 310 0.00

0/0/4Ls 730.19 0.00 400 6.20 0/0/5Ls 1151.57 0.00 500 67.48

1/1/2Lm 695.44 0.43 240 1.14 1/1/3Lm 726.91 0.34 340 5.72

4/2/1Ll 830.40 0.77 200 20.77 2/2/1Ll 738.58 0.68 180 7.42

A-n38-k5(100) 734.18 80-100-125

0/0/4Ls 644.25 0.00 400 0.00 0/1/5Ls 1235.46 0.12 530 91.77

2/1/3Lm 672.16 0.45 350 4.33 2/0/3Lm 676.67 0.40 320 5.03

6/3/0Ll 903.39 0.90 150 40.22 3/3/0Ll 780.15 0.85 120 21.09

A-n45-k7(100) 1147.28 80-100-125

1/0/5 990.18 0.17 510 0.00

0/0/6Ls 1079.11 0.00 600 8.98 1/1/7Ls 1663.92 0.19 740 68.04

3/1/5Lm 1167.23 0.41 560 17.88 2/2/4Lm 1100.33 0.43 480 11.12

5/7/0Ll 1675.26 0.83 260 69.19 1/7/0Ll 1459.94 0.74 220 47.44

A-n55-k9(100) 1074.46 80-100-125

0/0/7Ls 942.84 0.00 700 0.00 1/0/8Ls 1326.54 0.11 810 40.70

4/0/6Lm 1014.94 0.40 640 7.65 1/3/4Lm 968.22 0.39 500 2.69

8/4/0Ll 1272.33 0.90 200 34.95 8/4/0Ll 1272.33 0.90 200 34.95

A-n60-k9(100) 1355.8 80-100-125

0/1/6 1153.56 0.10 630 0.00

0/0/7Ls 1164.19 0.00 700 0.92 0/1/8Ls 1697.11 0.08 830 47.12

2/2/5Lm 1184.15 0.38 580 2.65 1/2/5Lm 1175.03 0.30 570 1.86

5/6/1Ll 1422.37 0.77 330 23.30 2/6/1Ll 1334.07 0.69 300 15.65

A-n61-k9(100) 1039.08 80-100-125

1/0/7 909.60 0.13 710 0.00

0/0/8Ls 935.72 0.00 800 2.87 2/0/8Ls 1323.97 0.20 820 45.55

4/1/5Lm 965.43 0.47 570 6.14 4/2/4Lm 988.82 0.54 500 8.71

11/3/0Ll 1311.24 0.94 200 44.15 9/3/0Ll 1230.46 0.93 180 35.27

A-n65-k9(100) 1181.69 80-100-125

1/0/7 1051.34 0.13 710 0.00

0/0/8Ls 1068.09 0.00 800 1.59 1/1/8Ls 1604.55 0.17 840 52.62

4/0/5Lm 1142.82 0.44 540 8.70 1/4/4Lm 1081.21 0.42 530 2.84

8/5/0Ll 1464.39 0.88 230 39.29 7/5/0Ll 1398.35 0.88 220 33.01

A-n80-k10(100 1766.5 80-100-125

0/1/7 1511.77 0.09 730 0.00

0/0/8Ls 1516.03 0.00 800 0.28 0/0/10Ls 2368.14 0.00 1000 56.65

4/0/7Lm 1674.59 0.36 740 10.77 1/2/6Lm 1533.72 0.27 670 1.45

3/8/1Ll 1948.24 0.72 370 28.87 1/8/1Ll 1857.37 0.66 350 22.86

B-n50-k7(100) 744.78 80-100-125

2/0/4 615.88 0.33 420 0.00

0/0/5Ls 619.18 0.00 500 0.54 1/0/6Ls 952.27 0.14 610 54.62

0/4/2Lm 643.47 0.47 320 4.48 1/2/3Lm 623.59 0.40 370 1.25

9/2/0Ll 950.75 0.95 150 54.37 7/2/0Ll 848.22 0.93 130 37.73

B-n52-k7(100) 750.08 80-100-125

0/0/5Ls 650.00 0.00 500 0.00 1/0/6Ls 948.90 0.14 610 45.98

3/0/4Lm 686.33 0.43 430 5.59 2/2/3Lm 662.08 0.49 380 1.86

5/4/0Ll 802.93 0.87 170 23.53 3/4/0Ll 773.18 0.83 150 18.95

B-n57-k9(100) 1603.63 80-100-125

0/0/7Ls 1317.27 0.00 700 0.00 0/0/9Ls 2183.29 0.00 900 65.74

2/1/6Lm 1337.82 0.30 650 1.56 1/1/6Lm 1324.36 0.21 640 0.54

1/9/2Ll 2013.19 0.61 480 52.83 0/6/2Ll 1565.40 0.53 380 18,84

B-n78-k10(100) 1229.27 80-100-125

0/0/8Ls 1048.11 0.00 800 0.00 0/1/9Ls 1718.67 0.07 930 63.98

4/1/6Lm 1124.33 0.43 670 7.27 2/2/5Lm 1066.13 0.38 580 1.72

6/6/0Ll 1327.24 0.85 240 26.63 6/6/0Ll 1327.24 0.85 240 26.63

E-n22-k4(6000) 375.28 4800-6000-7500

1/1/2 369.19 0.43 240 0.00

0/0/3Ls 377.68 0.00 300 2.30 1/1/3Ls 439.38 0.34 340 19.01

2/0/2Lm 376.90 0.50 220 2.09 1/3/1Lm 373.37 0.62 200 1.13

6/0/0Ll 533.15 1.00 60 44.41 6/0/0Ll 533.15 1.00 60 44.41
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Table 5: Continued - Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

E-n30-k3 (4500) 535.8 3600-4500-5625

0/1/2 477.66 0.23 230 0.00

0/0/3Ls 507.64 0.00 300 6.28 1/0/4Ls 922.54 0.20 410 93.14

1/1/2Lm 480.54 0.43 240 0.60 2/1/2Lm 480.54 0.54 250 0.60

3/3/0Ll 507.17 0.85 120 6.18 0/3/0Ll 550.91 0.70 90 15.33

E-n33-k4(8000) 838.72 6400-8000-10000

0/0/3Ls 704.32 0.00 300 0.00 1/0/4Ls 930.78 0.20 410 32.15

1/2/3Lm 856.47 0.40 370 21.60 0/0/3Lm 704.32 0.00 300 0.00

2/3/1Ll 998.74 0.68 210 41.80 0/3/1Ll 829.35 0.53 190 17.75

E-n51-k5(160) 524.94 128-160-200

0/0/4Ls 497.74 0.00 400 0.00 1/1/4Ls 656.74 0.28 440 31.94

3/0/3Lm 522.59 0.50 330 4.99 2/1/2Lm 520.60 0.54 250 4.59

7/0/0Ll 598.69 1.00 70 20.28 7/0/0Ll 598.69 1.00 70 20.28

E-n76-k7(220) 687.60 176-220-275

1/0/5 648.07 0.17 510 0.00

0/0/6Ls 1083.78 0.00 600 67.23 0/0/6Ls 1083.78 0.00 600 67.23

4/0/4Lm 695.36 0.50 440 7.30 2/1/3Lm 667.59 0.40 350 3.01

9/0/0Ll 791.22 1.00 90 22.09 9/0/0Ll 791.22 1.00 90 22.09

E-n76-k10(140) 837.36 112-140-175

0/0/8Ls 757.81 0.00 800 0.00 1/1/8Ls 903.53 0.17 840 19.23

5/0/5Lm 824.65 0.50 550 8.82 1/6/3Lm 819.66 0.52 490 8.16

18/0/0Ll 1235.73 1.00 180 63.07 13/0/0Ll 986.11 1.00 130 30.13

E-n76-k14(100) 1026.71 80-100-125

1/0/11 902.69 0.08 1110 0.00

0/0/12Ll 930.71 0.00 1200 3.10 18/0/0Ls 1251.03 1.00 180 38.59

8/0/8Lm 990.48 0.50 880 9.73 4/5/5Lm 988.25 0.54 690 9.48

19/0/0Ls 1238.74 1.00 190 37.23 1/0/12Ll 946.84 0.08 1210 4.89

F-n45-k4 (2010) 724.57 1608-2010-2512

0/0/3Ls 690.89 0.00 300 0.00 2/0/4Ls 1126.57 0.33 420 63.06

2/0/3Lm 714.90 0.40 320 3.48 0/3/2Lm 810.13 0.42 290 17.26

4/2/1Ll 744.86 0.77 200 7.81 3/1/1Ll 860.73 0.74 160 24.58

F-n72-k4(30000) 248.81 24000-30000-37500

0/3/1 237.53 0.53 190 0.00

1/0/3Ls 242.82 0.25 310 2.23 3/0/3Ls 269.56 0.50 330 13.48

2/0/3Lm 250.35 0.40 320 5.40 0/3/1Lm 237.53 0.53 190 0.00

5/0/0Ll 270.60 1.00 50 13.92 5/0/0Ll 270.60 1.00 50 13.92

F-n135-k7(2210) 1170.65 1768-2210-2762

1/0/5 1053.07 0.17 510 0.00

0/0/6Ls 1070.75 0.00 600 1.68 2/0/7Ls 1838.11 0.22 720 74.55

4/0/5Lm 1206.49 0.44 540 14.57 1/2/4Lm 1071.17 0.34 470 1.72

10/2/1Ll 1455.24 0.83 260 38.19 4/3/1Ll 1217.92 0.76 230 15.65

M-n101-k10(200) 819.81 60-200-250

1/0/7 757.61 0.13 710 0.00

0/0/8Ls 787.39 0.00 800 3.93 0/0/8Ls 787.39 0.00 800 3.93

4/2/5Lm 861.15 0.49 600 13.67 4/1/4Lm 790.40 0.52 470 4.33

14/1/0Ll 1122.67 0.98 170 48.19 11/1/0Ll 1014.53 0.98 140 33.91

M-n121-k7(200) 1045.16 60-200-250

1/0/5 953.34 0.17 510 0.00

0/0/6Ls 965.17 0.00 600 1.24 3/0/7Ls 1680.06 0.30 730 76.23

4/0/6Lm 1537.13 0.40 640 61.24 1/2/4Lm 967.07 0.34 470 1.44

4/7/0Ll 1393.23 0.81 250 46.14 1/7/0Ll 1289.11 0.74 220 35.22

P-n22-k8(3000) 601.42 2400-3000-3750

1/1/5 507.16 0.24 540 0.00

0/0/7Ls 524.97 0.00 700 3.51 0/0/7Ls 524.97 0.00 700 3.51

3/2/4Lm 536.91 0.49 490 5.87 2/3/3Lm 541.46 0.51 410 6.76

14/1/0Ll 876.21 0.98 170 72.77 10/1/0Ll 783.15 0.97 130 54.42
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Table 6: Continued - Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

P-n40-k5(140) 461.73 112-140-175

0/1/3 431.67 0.18 330 0.00

0/0/4Ls 432.23 0.00 400 0.13 2/0/4Ls 584.80 0.33 420 35.47

3/0/3Lm 457.78 0.50 330 6.05 4/0/2Lm 463.83 0.67 240 7.45

6/0/0Ll 514.97 1.00 60 19.30 6/0/0Ll 514.97 1.00 60 19.30

P-n50-k10(100) 699.56 80-100-125

0/0/8Ls 607.39 0.00 800 0.00 0/1/8Ls 658.36 0.08 830 8.39

5/0/5Lm 669.00 0.50 550 10.14 0/6/3Lm 657.15 0.47 480 8.19

13/0/0Ll 805.71 1.00 130 32.65 13/0/0Ll 805.71 1.00 130 32.65

P-n55-k15(70) 991.48 56-70-87

0/0/13Ls 824.21 0.00 1300 0.00 0/1/13Ls 883.51 0.05 1330 7.20

8/0/8Lm 915.58 0.50 880 11.09 3/8/4Lm 919.94 0.57 670 11.62

20/0/0Ll 1126.70 1.00 200 36.70 20/0/0Ll 1126.70 1.00 200 36.70

P-n65-k10(130) 796.67 104-130-162

0/0/8Ls 726.51 0.00 800 0.00 3/0/8Ls 831.83 0.27 830 14.50

5/0/5Lm 779.95 0.50 550 7.36 0/6/3Lm 766.30 0.47 480 5.48

13/0/0Ll 931.96 1.00 130 28.28 13/0/0Ll 931.96 1.00 130 28.28

P-n70-k10(135) 830.02 108-135-196

0/0/8Ls 760.93 0.00 800 0.00 1/1/8Ls 916.60 0.17 840 20.46

5/0/5Lm 821.68 0.50 550 7.98 1/6/3Lm 812.82 0.52 490 6.82

13/0/0Ll 969.13 1.00 130 27.36 13/0/0Ll 969.13 1.00 130 27.36

P-n76-k4(350)
598.22 280-350-437

1/1/2 594.64 0.43 240 0.00

0/0/4Ls 695.78 0.00 400 17.01 2/1/4Ls 935.17 0.39 450 57.27

2/0/2Lm 606.86 0.50 220 2.06 0/2/2Lm 597.13 0.35 260 0.42

8/0/0Ll 744.71 1.00 80 25.24 8/0/0Ll 744.71 1.00 80 25.24

P-n76-k5(280) 635.04 224-280-350

0/0/4Ls 601.29 0.00 400 0.00 2/0/5Ls 974.60 0.29 520 62.09

3/0/3Lm 632.18 0.50 160 5.14 1/3/2Lm 646.81 0.52 300 7.57

8/0/0Ll 767.63 1.00 80 27.66 8/0/0Ll 767.63 1.00 80 27.66

P-n101-k4(400) 692.28 320-400-500

0/0/3Ls 679.68 0.00 300 0.00 3/1/4Ls 983.43 0.46 460 44.69

2/0/2Lm 711.54 0.50 220 4.69 2/2/2Lm 690.92 0.57 280 1.65

11/0/0Ll 1004.26 1.00 110 47.76 11/0/0Ll 1004.26 1.00 110 47.76

Average

3.94Ls 45.04Ls

8.85Lm 4.62Lm

35.31Ll 27.19Ll

regarding index GI1. Moreover, MRIG is able to provide routes with a lower cost than

the ones in the homogeneous case. This is due to an increase in the loading capacity

of vehicles of type L. For a randomly selected subset of 20 instances, Figure 5 shows

a scatter-plot of distance-based cost (DBCost) versus green level (as measured by the

GI1 index). The left point (circle) in each panel represents the best solution in terms

of distance-based cost, while the right point (square) represents an alternative ‘greener’

solution (i.e., one with a higher value of GI1). Notice that it is usually possible to choose

a greener solution without having to assume a noticeable increase in the distance-based

cost (instances E-n76-k10, F-n72-k4, P-n101-k4, or P-n40-k5 are good examples). Just

in a few cases (e.g., instance M-n121-k7), a noticeable increase in the green level might

also require paying a much higher distance-based cost.

Finally, Figure 6 illustrates eight alternative fleet configurations for the A-n45-k7

instance. The auxiliary index GI2i = 1/GI2 has been employed instead of GI2 to fa-
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Figure 5: A comparison of best DBCost solutions (circles) and ‘greener’ alternatives (squares).

Figure 6: Cost and green indexes values of eight alternative fleet configurations for instance A-n45-k7.
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cilitate the readability of the figure (i.e., higher values of both GI1 and GI2i represent

greener configurations). In this figure, we can see that the best configuration, in terms of

distance-based cost, is 2/2/3. However, the green level of the other solutions is higher.

Therefore, the decision-maker could prefer alternative configurations such as 2/3/2 and

2/4/1. The latter two solutions offer greener configurations without a significant in-

crease in distance-based cost. This illustrative plot shows how decision-makers can ben-

efit from being able to choose from alternative fleet configurations with different green

levels.

8 Conclusion and future work

The paper has introduced a realistic version of the vehicle routing problem in which hy-

brid fleets of gas and electric vehicles are considered. The introduction of electric vehi-

cles in the model offers clear benefits in terms of making transportation more environment-

friendly. However, due to the limited driving-range capabilities of electric batteries, the

use of these vehicles also imposes new challenges that need to be solved. We have

proposed a novel metaheuristic, MRIG, to solve both the homogeneous and heteroge-

neous version of the vehicle routing problem with multiple driving ranges. Our MRIG

algorithm has outperformed the state-of-the-art results in the case of the homogeneous

version. In addition, our approach has been able to solve the heterogeneous version too.

This version considers hybrid fleets of vehicles with both different driving ranges and

loading capacities.

The metaheuristic is designed to generate a set of fleet configurations with different

green levels including small- and medium-driving range electric vehicles instead of gas-

fueled vehicles. This solution can be used by decision-makers to help them choose the

fleet configuration that fits best with their needs among a set of provided solutions. In

some cases, greener configurations might have a higher distance-based cost, but the

extensive experiments carried out in this paper showed that it is frequently possible to

choose a greener configuration without a significant increase in the distance-based cost.

We highlight here some research directions to extend this work, based on considering

more realistic variants thus, following a common trend in logistics Solos, Tassopoulos

and Beligiannis (2016); Solano-Charris, Prins and Santos (2015). First, we aim to design

a multi-objective optimization problem and method Martin et al. (2009) to optimize both

the distance-based cost and green level of the fleet configuration. Additionally, we will

consider the development of a stochastic model and the corresponding solving approach

in the presence of uncertainty (e.g., random demands or random traveling times).
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Montoya, A., C. Guéret, J. E. Mendoza, and J. G. Villegas (2014). A multi-space sampling heuristic for the

green vehicle routing problem. Transportation Research Part C: Emerging Technologies, 70, 113–128.

Osman, I. and C. Potts (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17,

551–557.

Pierre, D. M. and N. Zakaria (2017). Stochastic partially optimized cyclic shift crossover for multi-objective

genetic algorithms for the vehicle routing problem with time-windows. Applied Soft Computing, 52,

863–876.

Quintero-Araujo, C. L., J. P. Caballero-Villalobos, A. A. Juan, and J. R. Montoya-Torres (2017). A biased-

randomized metaheuristic for the capacitated location routing problem. International Transactions in

Operational Research, 24, 1079–1098.

Reyes-Rubiano, L., D. Ferone, A. A. Juan, and J. Faulin (2019). A simheuristic for routing electric vehi-

cles with limited driving ranges and stochastic travel times. SORT-Statistics and Operations Research

Transactions, 43, 3–24.
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Abstract

An important problem in Statistics is the study of longitudinal data taking into account the effect

of other explanatory variables, such as treatments and time and, simultaneously, the incorpora-

tion into the model of the time dependence between observations on the same individual. The

latter is specially relevant in the case of nonstationary correlations, and nonconstant variances

for the different time point at which measurements are taken. Antedependence models consti-

tute a well known commonly used set of models that can accommodate this behaviour. These

covariance models can include too many parameters and estimation can be a complicated opti-

mization problem requiring the use of complex algorithms and programming. In this paper, a new

Bayesian approach to analyse longitudinal data within the context of antedependence models is

proposed. This innovative approach takes into account the possibility of having nonstationary cor-

relations and variances, and proposes a robust and computationally efficient estimation method

for this type of data. We consider the joint modelling of the mean and covariance structures for the

general antedependence model, estimating their parameters in a longitudinal data context. Our

Bayesian approach is based on a generalization of the Gibbs sampling and Metropolis-Hastings

by blocks algorithm, properly adapted to the antedependence models longitudinal data settings.

Finally, we illustrate the proposed methodology by analysing several examples where antedepen-

dence models have been shown to be useful: the small mice, the speech recognition and the race

data sets.
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1 Introduction

Continuous longitudinal data consist of repeated measurements on the same subject over

time. These measurements are typically correlated and there have been several propos-
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als in the literature to handle stationary or nonstationary correlations and variances, as

well as balanced or unbalanced longitudinal data (Diggle et al., 2002; Weiss, 2005; Ver-

beke and Molenberghs, 2000; Fitzmaurice et al., 2009). A general fixed effects regres-

sion model for longitudinal data can be defined by assuming that the response variable

Yi can be explained with the model given by:

Yi = Xiβββ+ǫǫǫi, i = 1, . . . ,m, (1)

where Yi = (Yi1, . . . ,Yini
)T is the ni × 1 vector of responses for subject i, Xi is the ni × q

design matrix of rank q, which includes the covariates for the i-th subject; ǫǫǫi is the vector

of errors, assumed to follow a multivariate normal distribution with mean 0, and a given

variance-covariance matrix so that Var(Yi) = ΣΣΣi(θθθ) = σ2V0i, whereas θθθ = (θ1, . . . ,θk)
T

and βββ = (β1, . . . ,βq)
T are k and q-dimensional vectors of unknown parameters for the

variance-covariance and mean model, respectively. Here, ni represents the number of

observations available for the i-th subject. If the number of observations available for

each subject is the same (i.e., ni = n, ∀i), we have a balanced data set. However, ob-

servations are, in general, not equally spaced. In addition, m represents the number of

individuals in the study, and N = ∑m
i=1 ni represents the total number of observations.

Fitting for the mean and covariance structure can be carried out by using maximum

likelihood estimation methods with numerical maximization, such as the Newton Raph-

son or the EM algorithms (Ware, 1985). The model’s assumptions include independence

of responses from different subjects, multivariate normality of responses, and either no

missing data or, at worst, ignorably missing responses (Laird, 1988).

The approach of fitting a regression model for longitudinal data by means of specify-

ing the variance-covariance structure includes the possibility of having several different

structures, which can be stationary or nonstationary in terms of correlation between

observations along time, and homogeneous or heterogeneous in terms of variance as

a function of the time at which observations are taken. Among the most commonly

used covariance structures featuring homogeneous variances and stationary correlations

are the compound symmetry (CS), autoregressive structures of order p (AR(p)), au-

toregressive with moving average structures of order p and q (ARMA(p,q)) models

(Weiss, 2005). Models for nonstationary correlations and heterogeneous variances in-

clude the heterogeneous versions of the previous models, which are not always the

best-fitting models for this type of settings. Therefore, mode general models, such as

the integrated autoregressive with moving average model (ARIMA) or generalizations

of the autoregressive models, such as the unstructured and structured versions of the

antedependence models of order s (AD(s) or SAD(s)) need to be implemented (Núñez-

Antón and Zimmerman, 2001; Zimmerman and Núñez-Antón, 2010). Estimation in any

of these variance-covariance parametric models is commonly carried out by restricted

maximum likelihood methods, together with the use of recursive algorithms. Some com-

putational software packages such as, for example, SAS© or SPSS©, include the possi-

bility of specifying some particular variance-covariance parametric choices to estimate
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this type of models. Estimation in higher order AD or SAD models usually requires the

use of specific numerical algorithms that need to be directly programmed in specific

computing languages or available software statistical packages.

Bayesian estimation proposals for longitudinal data settings where no specific var-

iance-covariance structure is considered in the model specification were previously de-

veloped (Brown, Kenward and Bassett, 2001), where a Wishart prior distribution was

assumed for the covariance structure. In addition, the joint estimation for the mean struc-

ture and some simple covariance structures under the assumption of prior normal distri-

bution for the mean parameters, and inverse gamma distributions for the variance in the

proposed model were previously proposed (Hui and Berger, 1983). Moreover, the advan-

tages of this proposal for fitting a growth curve model in post-menopause female bone

calcium loss were also illustrated. The first proposal introduced Bayesian longitudinal

models by taking into account regression structures in both the mean and the variance-

covariance matrix of normal observations (Cepeda-Cuervo, 2001). This approach was

based on the modelling proposal that used the Cholesky’s matrix decomposition (Mac-

chiavelli and Arnold, 1994; Pourahmadi, 1999). More specifically, by assuming nor-

mal prior distributions for the mean and variance regression structures parameters, a

Bayesian methodology was introduced to fit the proposed models building the kernel

transition functions from observational working variables (Cepeda-Cuervo, 2001). Re-

sults and some of the extensions of this work have also been presented by several au-

thors (Cepeda and Gamerman, 2004; Cepeda-Cuervo and Núñez-Antón, 2007; Cepeda-

Cuervo and Núñez-Antón, 2009; Cepeda-Cuervo, 2011), where, in addition, observa-

tional units are allowed to be correlated. These proposals included a detailed description

of the optimization algorithms, as well as simulation and case studies that allowed for

the comparison of the Bayesian and classic proposals for the analysis of this type of data.

A Bayesian version of first-order multivariate antedependence model has also been de-

veloped (Jiang et al., 2015). Finally, it is interesting to briefly mention Bayesian AD

models within the framework of Bayesian hierarchical mixed linear models, where, in

general, authors have assumed that the errors are independent and identically distributed

(i.i.d.), and also conjugate prior distributions for the parameters in the proposed models

(Congdon, 2020; Gelman et al., 2014a; Gill, 2014). More specifically, by following the

proposals in Congdon, 2020, some possible extensions of Bayesian hierarchical mixed

linear models can be considered, so that allowing for autocorrelated errors is possible.

That is, there exists the possibility of assuming that the covariance matrix of the ran-

dom errors, or that of the random effects, follows an AD model (Fahrmeir, Kneib and

Lang, 2013). Our proposals would allow researchers to develop these models and to

extend non-Bayesian previous methods for hierarchical mixed linear models with AD

structures, such as, for example, the ones in Jaffrézic and Pletcher (2000), Jaffrézic et

al. (2002) and Yang and Tempelman (2012), to a Bayesian context.

In this paper we propose a Bayesian method for the joint estimation of the mean

and covariance parameters in the regression longitudinal models settings under the nor-

mality assumption, and also allowing for the specification of several different variance-
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covariance structures. Our proposals start by considering variance-covariance models

with stationary correlations and homogeneous variances, as is the case in the CS, AR(1)

and ARMA(1,1) models, so that they are then generalized to consider nonstationary cor-

relations and heterogeneous variances, such as is the case in the structured antedepen-

dence model of order one, or SAD(1) model. That is, we extend the previous proposal

(Cepeda-Cuervo, 2001) to consider parametric more parsimonious variance-covariance

models that have been shown to be more useful in longitudinal data settings than those of

the unstructured AD model previously considered therein. For each one of the variance-

covariance structures considered here, we provide a detailed description of the estima-

tion algorithm constructed for each specific case, including the Gibbs sampling and

the Metropolis-Hasting by blocks algorithm used under each of the assumed covari-

ance structures. In order to be able to assess the behaviour of the estimation proposed

algorithms, for the specific cases of CS, AR(1) and ARMA(1,1) variance-covariance

structures, a real data set analysis for the Small Mice balanced data set (Izenman and

Williams, 1989; Weiss, 2005) is carried out. As for the SAD(1) variance-covariance

structures and given that, as previously mentioned (Zimmerman and Núñez-Antón, 2010),

the proposed variance-covariance model depends on the specific data sets and on their

underlying structure, we compare two specific structured models based on the analysis

of the Speech Recognition data set (Tyler et al., 1988; Núñez-Antón and Woodworth,

1994; Zimmerman, Núñez-Antón and El Barmi, 1998), and also on the analysis of the

100-Km Race data set, kindly provided by Ian Jollife of the University of Kent (Zim-

merman et al., 1998).

The paper is organized as follows. In Section 2, we introduce and describe the basic

characteristics of the variance-covariance models we consider. In Section 3 we include

the Bayesian longitudinal model proposals, as well as the posterior distributions and ker-

nel transition functions for each of the models considered, which include the proposed

algorithms and prior distribution assumptions required for each of them. In Section 4

we introduce and describe the data sets to be analysed, as well as the main objectives of

the data set analyses. In Section 5, we analyse the different data sets under the Bayesian

proposals included, describe the results and compare them with those obtained with

previous classic approaches. We also present a sensitivity analysis for the estimates ob-

tained under our proposals. Finally, in Section 6, we provide some general conclusions

and final practical recommendations.

2 Some covariance structures

As already mentioned by several authors (Weiss, 2005; Núñez-Antón and Zimmer-

man, 2001), some of the clear advantages of parametric modelling approaches for the

variance-covariance matrix in longitudinal data settings are the following: (a) they help

to optimize the obtention of estimates for the parameters in the mean structure; (b) they

allow to obtain the most appropriate estimates for the standard errors for the estimators
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of the parameters included in the mean structure (i.e., βββ); (c) in most cases, they provide

a feasible and effective solution when estimating models in data sets with missing data

or when times at which measurements are taken are not the same for all of the individ-

uals in the study; and (d) estimates are still valid even for the cases where the number

of observations on each individual is relatively large when compared to the number of

individuals in the study.

Specific variance-covariance structures to be introduced in this paper consider that

all of the variances and covariances within a given individual are functions of a vec-

tor of parameters with a small or moderate number of elements, which, as in equation

(1), will be denoted by θθθ. That is, the covariance model ΣΣΣi(θθθ) defines a family of pos-

sible variance-covariance matrices depending on the k-order vector of parameters θθθ.

Parameter estimation for the covariance structure is usually carried out by maximum

likelihood or restricted maximum likelihood methods (Diggle et al., 2002). One of the

main challenges and problems when modelling covariance structures within longitudi-

nal data settings is to be able to select the so-called “best-fitting” or “most appropriate”

covariance structure for the specific data set under study. Most researchers agree that, in

order to do so, a combination of graphical methods, exploratory descriptive analysis, as

well as profile plots tools provides the necessary and required information to be able to

narrow down the possible covariance structure choices to the ones that can be consid-

ered as optimal choices for the data set under study (Verbeke and Molenberghs, 2000;

Fitzmaurice et al., 2009). Our suggestion for proposing or considering “reasonable” co-

variance structures for a specific data set, which we have followed in Section 5, can be

summarized in the following items (Zimmerman and Núñez-Antón, 2010):

• Compute the means for the different time points and build a profile plot, using

the matplot function in R, for the observations in your data set. The behaviour

of the means along time will provide the user clear ideas about the type of mean

function that needs to be used for the mean model. In addition, the profile plot also

provides information about the possible behaviour of the variance for the different

time points in the data set. Compute the variances for the different time points, as

well as the correlation matrix for the corresponding data set, so that stationarity in

variance and correlation can be better assessed.

• Build the corresponding ordinary scatterplot graph - OSM, using the splom func-

tion in the lattice package in R, semivariogram, or PRISM (Zimmerman, 2000),

to better assess the correlation structure in your data set. These graphs are built for

a saturated mean model, which considers a mean parameter for each time point.

Inspection of these graphs will provide the user with a clear idea about the differ-

ent covariance models that could be considered for the data set under study. The

user is now able to propose a set of suitable covariance structures for the data set

under study, and the best fitting covariance model will be selected on the basis of

some specific goodness-of-fit criteria.
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• Finally, the user can test or assess for possible mean model reductions by fitting

alternative mean models and selecting the best fitting one on the basis of specific

tests or goodness-of-fit criteria. Later in this section, specially for antedependence

models, we describe different formulations for the covariance models considered

here. For easiness of comprehension and understanding of these formulations, we

recommend the use of variance-covariance formulations such as the ones in equa-

tions (4), (7), (8) and (9), which are the ones we use in the applications in Section

5, as well as in the Bayesian proposals in Section 4.

We now introduce the different variance-covariance structures, ΣΣΣi(θθθ), that we include

in our methodological Bayesian proposals. It is worth mentioning that, besides the co-

variance structures introduced here, there are additional structures that interested readers

may wish to read about (Weiss, 2005; Núñez-Antón and Zimmerman, 2001).

The simplest variance-covariance structure, besides the obvious independence struc-

ture which is not of real interest within these settings, corresponds to the so-called com-

pound symmetry (CS), equicovariance or equicorrelation model, which is defined by as-

suming that homogeneous or constant variances in time and equal correlations between

different measurements on the same subject. That is, Var(Yi j) = σ2, j = 1, . . . ,ni, and

Corr(Yi j,Yil) = ρ, j 6= l. There is a heterogenous version of the CS model, CSH, where

variances are allowed to change over time (Núñez-Antón and Zimmerman, 2001).

The first order autoregressive structure, AR(1), includes two covariance parameters,

σ2 and ρ, with Var(Yi j) = σ2, j = 1, . . . ,ni, and ρ is the correlation parameter such that

Corr(Yi j,Yil) = ρ|ti j−til |, j 6= l. This type of serial correlation differs from the CS model

correlation because in the autoregressive model of order one, the correlation decreases

as a power function of time. As can be easily seen, the AR(1) model assumes homoge-

neous variances and stationary correlations. That is, variances are constant over time and

correlations between observations taken at equally spaced time points are also constant.

There is, however, a heterogeneous version of the AR(1) model, ARH(1), where vari-

ances are allowed to change with time (Núñez-Antón and Zimmerman, 2001). Differ-

ences between the AR(1) and CS models are very difficult to assess from the exploratory

analysis or the individuals’ profile plots, specially when there are only few observations

available per subject (Fitzmaurice et al., 2009).

The autoregressive with moving average model or order (1,1), ARMA (1,1), rep-

resents a generalization of the previous two models, CS and AR(1). In this model, the

correlation between consecutive observations of the same observational unit is given by:

Corr(Yi j,Yil) =

{
φ | j− l|= 1

φρ|ti j−til |−1 | j− l|> 1,
(2)

with Var(Yi j) = σ2, j = 1 . . . ,ni, and where φ, 0 < φ < 1, is the correlation between

consecutive observations of the same observational unit, ρ, 0 < ρ < 1, is an additional

parameter, which allows the correlation to feature an exponential decreasing behaviour.
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As can be seen the ARMA(1,1) model reduces to the previous models: to the CS model if

ρ= 1, and to the AR(1) model if φ= ρ; and a moving average model of order 1, MA(1),

if ρ= 0 (Weiss, 2005). In addition, the ARMA(1,1) model also assumes homogeneous

variances and stationary correlations.

The concept of antedependence was originally introduced in 1962 (Gabriel, 1962),

and the antedependence models within the longitudinal data settings first defined in 2010

(Zimmerman and Núñez-Antón, 2010). Let Yi = (Yi1, . . . ,Yini
) be the vector of measure-

ments taken on the i-th subject, which is assumed to follow a multivariate normal distri-

bution. The antedependence longitudinal model of order s, AD(s) with an autoregressive

specification (Zimmerman and Núñez-Antón, 2010), is defined as:

Yi1 = x
T

i1βββ+ ǫi1

Yi j = x
T

i jβββ+
s∗

∑
k=1

φ j, j−k(Yi, j−k −x
T

i, j−kβββ)+ ǫi j j = 2, . . . ,ni, (3)

where xi j be a q-vector of covariates associated to Yi j, s∗ = min(s, j− 1), the ǫi j’s are

independent N(0,σ2
j ) random variables, and σ2

j and φ j, j−k are unstructured parameters.

In this model, each variable is regressed on the previous s∗ predecessors in the ordered

list and, in addition, it is also allowed that autoregressive coefficients vary with time (i.e.,

that they depend upon j). In this sense, AD models are nostationary in both variance and

correlation, because variances may vary with time and correlations between equidistant

observations in time are not necessarily assumed to be constant. Specific elements of

the variance-covariance matrix ΣΣΣi(θθθ) in this model can be recursively obtained by using

the well known Yule-Walker equations approach, so that, if an AD(1) model with a

covariance specification is assumed (Zimmerman and Núñez-Antón, 2010), Var(YYY i) =

ΣΣΣi(θθθ) can be specified as:

[ΣΣΣi(θθθ)]kk = σ2
k , k = 1, . . . ,ni

[ΣΣΣi(θθθ)]kl = σkσl

j=l−1

∏
j=k

ρ j, k < l, k, l = 1, . . . ,ni (4)

[ΣΣΣi(θθθ)]kl = ΣΣΣi(θθθ)lk, k > l, k, l = 1, . . . ,ni,

with ρ j = ρ j, j+1. Antedependence models of order s can be not so parsimonious mainly

because the vector of variance-covariance parameters θθθ has, for ni = n,∀i, (s+1)(2n−

s)/2 parameters (Zimmerman and Núñez-Antón, 1997). In addition, as the autoregres-

sive coefficients and the variances of the ǫi j’s in (3) depend on the time at which mea-

surements are taken, variances in this model are heterogeneous and correlations are non-

stationary. That is, variances are allowed to change over time and correlations between

observations taken at equally spaced time points are not constant and, thus, are allowed

to vary. The same holds for the AD(1) model in (4).
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Zimmerman and Núñez-Antón (1997) originally proposed the structured antedepen-

dence (SAD) models in 1997. Their proposed models specify that the correlation pa-

rameters are determined by a Box-Cox power function and the variances for each time

point are determined by a polynomial function of not so many parameters, were able

to model nonstationary correlations and variances. Moreover, Núñez-Antón and Wood-

worth (1994) and Zimmerman and Núñez-Antón (1997) have previously defined the

specific commonly used functions for the parameters in model (3), for a general struc-

tured antedependence model or order s, SAD(s), with ni = n, as:

φ j, j−k = φ
f (ti j,λk)− f (ti, j−k ,λk)

k , j = s+1, . . . ,n; k = 1, . . . ,s (5)

σ2
j = σ2G(ti j,ψψψ), j = 1, . . . ,n, (6)

or equivalently, for (4), with:

ρ j, j−k = ρ
f (ti j,λk)− f (ti, j−k ,λk)

k , j = s+1, . . . ,n; k = 1, . . . ,s (7)

σ2
j = σ2G(ti j,ψψψ), j = 1, . . . ,n, (8)

where

f (ti j,λk) =

{
(t
λk
i j −1)/λk, if λk 6= 0

log(ti j), if λk = 0,
(9)

with φk > 0,0 < ρk < 1,∀k, σ2
j > 0,∀ j, and {ψψψ : G(ti j,ψψψ) > 0}, in such a way that the

variance-covariance matrix for the i-th subject, ΣΣΣi(θθθ), is positive definite. Here, as will

be seen in the applications in Section 5, G(ti j,ψψψ) is usually assumed to be a positive

power or step function of time. In addition, given that the SAD models are special cases

of the AD models, variances in these models are heterogeneous and correlations are also

nonstationary. Equation (9) represents a Box-Cox power law. Moreover, in the SAD(1)

model settings, and if measurement times are equally spaced, then the lag-one correla-

tions (and, as a matter of fact, all same-lag correlations) are a monotone function of t:

they increase if λ < 1 and decrease if λ > 1. For λ = 1, same-lag correlations remain

constant and, in addition, they coincide with those of the AR(1) model. That is, the Box-

Cox power law can be seen as a transformation to the time scale that effects a nonlinear

deformation upon the time axis, such that correlations between measurements equidis-

tant in the deformed scale remain constant. There are some specific special cases of the

SAD(1) model that are worth mentioning:

1. Type 1 - SAD model: We assume an SAD(1) model as in (4), such that (8) holds

with G(ti j,ψψψ)≡ 1, with ρ j = ρ j, j+1 = ρ f (ti, j+1,λ)− f (ti, j ,λ), and f (t,λ) given by equa-

tion (9). This model assumes homogeneous variances and nonstationary correla-

tions.

2. Type 2 - SAD model: We assume an SAD(1) model as in (4), such that (8) holds,

with
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G(t,ψ) =

{
1, if t = 1

ψ, otherwise,
(10)

and ρ j as in the previous model. This model assumes a specific case of heteroge-

neous variances and nonstationary correlations.

3. Type 3 - SAD model: We propose an SAD(1) model as in (4), with ρ j defined as

in the previous models and

h(σ2
j ) = ψ0 +ψ1ti j + · · ·+ψrt

r
i j, (11)

where h is an appropriately chosen link function so that the σ2
j variances are pos-

itive. Some authors (Zimmerman et al., 1998) have previously proposed h to be

the identity link function, whereas we propose, without loss of generality, to use

the logarithmic link function instead. Our proposal is more general in the sense

that it does not require any additional constraints on the parameters for the vari-

ances to be positive. Moreover, this model assumes heterogeneous variances and

nonstationary correlations.

3 Bayesian longitudinal model methodological proposals

Let ti = (ti1, ti2, . . . , tini
)T, represent the times at which observations on the i-th subject

were taken, and Yi j represent the observation taken on subject i at time ti j, j = 1, . . . ,ni.

Let xi j be a q-vector of covariates associated to Yi j, so that Xi = (xi1,xi2, . . . ,xini
)T is

the ni × q design matrix of rank q. In this way, we have that model (1) holds. Thus, if

Y = (Y1,Y2, . . . ,Ym)
T denotes the vector of measurements for all of the m individuals

in the study, having a design matrix X = (XT

1,X
T

2, . . . ,X
T

m)
T, containing the values for the

covariates for all individuals, we have that:

Y = Xβββ+ǫǫǫ, (12)

where ǫǫǫ = (ǫǫǫ1, . . . ,ǫǫǫm)
T is a vector of random errors associated to the corresponding

component in the responses vector YYY , so that the ǫǫǫi’s are assumed to be independent

from each other, ǫǫǫ∼ MV N with mean 0 and block diagonal variance-covariance matri-

ces, so that Var(Y) = ΣΣΣ(θθθ) will be a block diagonal matrix with diagonal components

ΣΣΣ1(θθθ), . . . ,ΣΣΣm(θθθ).

3.1 Prior parameter distributions

In order to provide the required details for our proposed Bayesian longitudinal method,

prior distribution should be assumed for the mean and for the variance-covariance re-

gression structure parameters (Gelman, 2006). For the mean regression parameters,

we assume a q-multivariate normal distribution, so that p(βββ) ∼ N(b0,B0). As for the
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variance-covariance parameters, we assume a prior distribution p(θθθ) that will depend

on the assumed covariance structure. More specifically:

1. For the CS and AR(1) models, if we let ϕ= 1/σ2, the variance-covariance vector

parameter in these models is θθθ = (ϕ,ρ)T, so that its assumed prior distribution is

p(θθθ) = p(ϕ)p(ρ), where:

p(ϕ) ≡ Gamma

(
g0

2
,
g0σ

2
0

2

)
(13)

p(ρ) ≡ Beta(a,b), (14)

where g0, σ2
0, a and b are assumed to be known hyperparameter values (Gelman,

2006).

2. In the ARMA(1,1) structure, given that 0 < φ < 1 and 0 < ρ < 1, the parameter

vector is θθθ=(ϕ,ρ,φ)T, so that its assumed prior distribution is p(θθθ)= p(ϕ)p(ρ)p(φ),

where p(φ) ≡ Beta(a1,b1), p(ρ) ≡ Beta(a2,b2), and, for ϕ = 1/σ2, we have the

same prior distributional assumption as in (13).

3. For the structured antedependence models, we assume the following independent

prior distributions:

(a) Type 1 - SAD model: In this model, assumed prior distributions for σ2 and

ρ, are as above. That is, for ϕ = 1/σ2, we have p(ϕ) ≡ Gamma
(

g0
2
,

g0σ
2
0

2

)

and, for ρ, we have p(ρ) ≡ Beta(a,b). For λ, we assume a uniform prior

distribution, so that p(λ)≡U(−a,a).

(b) Type 2 - SAD model: For this model, the same prior distributions as above

are assumed for ϕ = 1/σ2, ρ and λ. For ψ, if we let ψ = exp(η), we then

assume that the prior distribution for η is such that p(η)≡ N(0,ν2).

(c) Type 3 - SAD model: In this model, the same prior distributions as above

are assumed for ρ and λ. Forψψψ = (ψ0,ψ1, . . . ,ψr)
T, we assume a multivariate

prior normal distribution, so that p(ψψψ)≡ MV N(ψψψ0,K0).

A final comment related to the aforementioned assumed prior distributions for the

different covariance models: we believe that it is relevant to mention that, given that we

do not really have prior information related to the parameters in the models, which will

be the ones that will to be estimated in the applications in Section 5, we have decided to

assume vague prior distributions so we do not include any prior unknown information

that can generate unjustified and unnecessary changes in the posterior distributions that

will be used for inferential purposes in Section 5. However, if we have prior information

available for the mean regression parameters, it can be easily incorporated in the model,

by assuming appropriate values for b0 and B0 in p(βββ) ∼ N(b0,B0). With regard to the
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variance parameters, our recommendation is that the prior information is specified as

follows: (i) the gamma prior distribution for ϕ = 1/σ2 can be specified by the mean

g0 and the variance σ2
0 from the prior information for the parameter σ2 available in the

specific application; (ii) the parameters a and b in the beta prior distribution for ρ can be

specified from their prior mean and variance for ρ available in the specific application;

(iii) the parameters a and b in a more general uniform prior distribution for λ (i.e.,

U(a,b)), can be also specified from the prior information for λ available in the specific

application; (iv) the prior distributions for η and ψ, or ψψψ, in the Type 2 and Type 3 SAD

models, respectively, can be directly specified from their corresponding prior means and

variances information for these parameters available in the specific application.

3.2 Posterior conditional distributions and estimation proposals

Under the model assumptions, apart from a constant term, the likelihood function is

given by:

L(βββ,θθθ|Y) ∝
m

∏
i=1

|ΣΣΣi(θθθ)|
− 1

2 exp

{
−

1

2

[
(Y−Xβββ)TΣΣΣ−1(θθθ)(Y−Xβββ)

]}
, (15)

where θθθ= (σ2,ρ)T in the CS and AR(1) models, θθθ= (σ2,ρ,φ)T in the ARMA(1,1) model,

and θθθ = (σ2,ρρρ,λ,ψψψ) in the SAD models. Thus, the posterior parameter distribution is

given by p(βββ,θθθ|Y)∝L(β,θβ,θβ,θ|Y)p(βββ)p(θθθ). Moreover, given that, under the assumed prior

distribution for βββ we have that:

p(βββ) ∝ exp

{
−

1

2
(βββ−b0)

T
B−1

0 (βββ−b0)

}
, (16)

the posterior conditional distribution ofβββ will be p(βββ|θθθ,Y)≡N(b∗,B∗), where (Cepeda-

Cuervo, 2001; Cepeda and Gamerman, 2004):

b∗ = B∗(B−1
0 b0 +X

TΣΣΣ−1Y) (17)

B∗ = (B−1
0 +X

TΣΣΣ−1X)−1 (18)

Samples of βββ are are taken from the conditional posterior distribution p(βββ|θθθ,Y) ≡
N(b∗,B∗), and accepted with probability one (Gamerman and Lopes, 2006; Gelman

et al., 2014b).

3.3 Posterior conditional distributions for σ2σ2σ2 and ρρρ in the CS and AR(1)

models

Taking into account that, in the in CS and AR(1) models, the variance-covariance matrix

can be written as ΣΣΣ(θθθ) = 1
ϕ

CCC(ρ), with ϕ= 1/σ2, samples of ϕ and ρ are obtained from

their conditional posterior distributions. More specifically, samples of ϕ are obtained
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from its posterior distribution, given by:

p(ϕ) ∝ ϕ

(
m+g0

2 −1
)

exp

(
−ϕ

g0σ
2
0 +R

2

)
, (19)

where R = (Y− Xβββ)TC−1(Y− Xβββ). That is, values for ϕ can be obtained from the

conditional gamma posterior distribution Gamma
(

m+g0
2
,

g0σ
2
0+R

2

)
. For the parameter ρ,

and given that its posterior distribution p(ρ|βββ,ϕ) is analytically intractable for these

covariance models, we propose that samples generating the posterior distribution for ρ

be obtained, using the MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al.,

2014b), from the kernel transition function:

q(ρ(∗)|ρ(k)) =

{
ρ(∗) ∼U(0,2ρ(k)) ρ(k) ≤ 0.5

ρ(∗) ∼U(2ρ(k)−1,1) ρ(k) > 0.5
(20)

3.4 Posterior conditional distributions for σ2σ2σ2, ρρρ and φφφ in the ARMA(1,1)

model

We assume a longitudinal model as in (12) with variance-covariance structure similar

to (2). As in Section 3.3, samples of ϕ = 1/σ2 are obtained from the posterior distri-

bution described before; that is, from the corresponding gamma posterior distribution

Gamma
(

m+g0
2
,

g0σ
2
0+R

2

)
. However, for the parameters ρ and φ, and given that their pos-

terior distributions are analytically intractable for the ARMA(1,1) model, we propose

that samples generating the posterior distribution for ρ be obtained as before, from (20),

and samples for the posterior distribution of φ be obtained, using the MCMC algorithm

(Gamerman and Lopes, 2006; Gelman et al., 2014b), from the kernel transition function:

q(φ(∗)|φ(k)) =

{
φ(∗) ∼U(0,2φ(k)) φ(k) ≤ 0.5

φ(∗) ∼U(2φ(k)−1,1) φ(k) > 0.5
(21)

3.5 Posterior conditional distributions for σ2σ2σ2, ρρρ, λλλ and ψψψ in the SAD(1)

models

As the number of parameters in the variance-covariance matrix for the structured

antedependence models of order one, SAD(1), depend on the specific selected G(ψψψ, t)
function in (8) for the type 1 and 2 models, or (11) for the type 3 model, we have to

propose specific Bayesian estimation modelling approaches for each of them, which will

depend on the type of SAD model being considered. Based on the types of SAD models

described in Section 3.1 above, we describe the different distributions and estimation

algorithms for each of them in what follows.
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1. Type 1 - SAD model: To estimate σ2, we use the proposal in Section 3.3, so

that samples of ϕ = 1/σ2 are obtained from the posterior distribution described

above. As for the ρ parameter, we propose that samples generating their posterior

distribution be obtained, using MCMC and a transition kernel such as the one in

(20). Given that we have assumed a U(−a,a) uniform prior distribution for the

parameter λ, samples from its posterior conditional distribution are obtained by

using an MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b),

assuming that λ(∗) = a(2ν(∗)− 1), where ν(∗) is obtained from a kernel transition

function similar to those previously defined in equations (20) and (21).

2. Type 2 - SAD model: Our Bayesian proposal to estimate σ2, ρ and λ is similar

to the one described for the type 1 SAD model. As for the parameter ψ, we let

ψ = exp(η) and, in addition, assume that the prior distribution for η is such that

p(η)∼ N(0,ν2). In this way, the complete conditional posterior distribution is not

known, so that samples for the posterior distribution of ψ can be obtained, using

the MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b), from

the kernel transition function:

q(ψ(∗),ψ(k)) = ψ(k)+N(0,ν2)

ψ(k) = exp(η(k)) (22)

3. Type 3 - SAD model: Given that the posterior conditional distribution for ψψψ,

p(ψψψ|βββ,λ,ρ,Y), is analytically intractable, we propose a kernel transition function

given by the observational model obtained from Ỹj =
1

m−1 ∑m
i=1 (Yi j − Ȳj)

2
, where

Ȳj =
1
m ∑m

i=1Yi j, and by assuming, without loss of generality, that ni = n, and that

the working observational model

w̃ j = log(Ỹj) = ψ0 +ψ1X1 j +ψ2X2 j + ε j (23)

follows a normal distribution, where ε j ∈ N(0,σ2), with σ2 known, and such that

X̃ j = (1,X1 j,X2 j) and X̃ = (X̃T

1, . . . ,X̃
T

n)
T. Thus, the kernel transition function for

q(ψψψ) is obtained from the combination of the normal prior distribution and the

observational model in (23). That is,

q(ψψψ|Y)≡ N(µµµψ,Kψ), (24)

where µµµψ = Kψ(K
−1
0 ψψψ0 + X̃TΣ̃̃Σ̃Σ−1W̃), with Σ̃̃Σ̃Σ = diag(σ2), W̃ = (w̃1, . . . , w̃n)

T and

Kψ = (K−1
0 + X̃TΣ̃̃Σ̃Σ−1X̃)−1 (Gelman et al., 2014b).

As a final comment to the posterior inferences related to all of the models described

in Section 3, and given that the proposed Bayesian inference is based on the posterior

distribution of the parameters and, in addition, given that, for the models considered
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here, the posterior distributions do not have a closed form expression, inferences are

based on the simulation of the posterior distributions obtained by applying the MCMC

algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b). A first approach to sim-

ulate samples of the posterior distribution may be to apply the Gibbs sampler algorithm,

but this is possible only if all conditional posterior distributions are known. If some or all

of the conditional posterior distributions are not known, as is the case in the longitudi-

nal Bayesian models proposed here, kernel transition functions should be built in order

to be able obtain samples of the unknown conditional distributions using the Metropo-

lis Hastings algorithm. Therefore, a Metropolis-Hastings-within the Gibbs algorithm is

used to be able to draw samples of the posterior distributions, from which the posterior

inferences can be straightforwardly obtained. For example, in CS and AR(1) models,

samples of the mean regression parameters βββ are proposed from a normal distribution

with mean and variance given by equations (17) and (18), respectively, and samples of

ϕ = 1/σ2 are obtained from the gamma distribution given in equation (19), where in

both cases the Gibbs sampler algorithm is used. Moreover, samples of ρ are proposed

from the kernel transition function in equation (20), by applying the Metropolis Hastings

algorithm. Therefore, samples of the target posterior distributions are obtained by apply-

ing an iterative algorithm, so that posterior inferences on the parameters in the models

can be obtained. A proper construction of the kernel transition function is very impor-

tant to improve the convergence of the chains and to be able to obtain better posterior

inferences.

4 Data

4.1 Small Mice Data

The Small Mice data set (Izenman and Williams, 1989) was used to illustrate the pro-

posals along the lines of spectral models for the analysis of longitudinal data. The study

analysed more than 600 mice at birth, 7 days after birth (onset of growth), 14 days (when

eyes open and consumption of solid food begins), 21 days (end of maternal influence

for food) and 42 days (when most mice reach sexual maturity). Of these 600 observa-

tions a particular group of 35 male mice was divided into 4 groups. The Small Mice

data constitutes a balanced set of longitudinal data with the weights in milligrams of

14 mice which make up groups 3 and 4 of the original study (Izenman and Williams,

1989). These weights were taken in the days corresponding to t = 2,5,8,11,14,17,20

after birth by the same person using the same measurement scale. The objective is to

find a parsimonious model describing in the best possible way how weight is related to

the time at which measurements were taken, and weight on previous times.
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4.2 Speech Recognition Data

This set of data comes from the audiological study presented in 1988 (Tyler et al., 1988).

The general study was performed with five different types of implants, three single chan-

nel implants and two multichannel implants. The implants were surgically implanted

five to six weeks before connecting electrically to an external voice processor. The data

includes the scores obtained when performing a speech recognition test on patients with

multichannel cochlear implants. These patients were divided into two groups depending

on the type of implant received (namely A and B): 21 subjects received implant A and

21 subjects received implant B. The individuals in the study were bilaterally deaf, there-

fore the base values of the test were all equal to zero. Measurements were taken at 4

time points: 1,9, 18 and 30 months after having received the implant. In the study there

was a variation in the actual follow-up times, so these times were not exact. In addi-

tion, some subjects did not show up in one or more of their programmed follow-ups, so

some data were missing (there were eight missing observations at month 18 and twenty

missing observations at month 30). It was assumed observations were missing at ran-

dom (Zimmerman and Núñez-Antón, 2010). The interest of studying these data focuses

on describing the audiological performance of the individuals who receive each type of

implant and how their performance depends on the time elapsed since implantation, as

well as on the type of implant. More specifically, the goal is to assess how the average

means of the types of implants are compared to each other, and, secondarily, whether the

audiologic performance of a subject tends to be more consistent over time (Zimmerman

and Núñez-Antón, 2010).

4.3 100-Km Race Data

These data set was kindly provided by Ian Jollife of the University of Kent, and orig-

inally analysed in 1998 (Zimmerman et al., 1998). The data correspond to each of the

partial times in minutes for each of the 80 competitors in each of the 10-kilometer sec-

tions of a 100-km race in the United Kingdom in 1984. In addition to the partial times,

the data features the age of 76 of the 80 competitors. Some descriptive graphs and ex-

ploratory analyses of this data have been previously reported (Everitt, 1994a; Everitt,

1994b). The objective is to find a parsimonious model describing in the best possible

way how competitor’s performance on each 10-km section is related to the section num-

ber ( j = 1,2, . . . ,10), and performance on previous sections.

5 Applications

In this section we illustrate the usefulness of the proposed Bayesian methodology with

the statistical analysis of the three data sets that were briefly introduced in Section

4. Longitudinal models with compound symmetry, CS, autoregressive of order one,

AR(1), and autoregressive with moving average, ARMA(1,1), models for the variance-
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covariance structure were fitted to the first data set, and structured antedependence mod-

els of order one, SAD(1), were fitted to the last two data sets. Unless indicated other-

wise, in all of the analyses reported in this section, parameter estimates were obtained

from 20000 iterations, after a burn-in of 10000 samples. As specific information on the

parameters prior distributions is not available, a N(b0,B0) distribution was assumed,

where independence between the individual distributions for each one of the parame-

ters was assumed, with b0 = (0, . . . ,0)T and variances for each one of the distributions

being equal, so that B0 = diag(10k), where k = 5. In addition, Beta(1,1) prior distri-

butions were assumed for the correlation parameters ρ and φ, a Gamma
(

g0
2
,

g0σ
2
0

2

)
≡

Gamma(10−k,10−k), k = 1,2, . . . prior distribution was assumed for the variance pa-

rameter ϕ= 1/σ2, a U(−1,1) uniform prior distribution was assumed for the time-scale

transforming parameter λ in equation (9), and a N(0,ν2), with ν2 = 1, distribution was

assumed for η, in the Type 2 - SAD model, with ϕ = exp(η). Given that the posterior

estimates of ϕ may change significantly for different values of k, a sensitivity analysis

was performed concluding that, for our specific applications, k = 8 is the appropriate

value minimizing this effect.

5.1 Small Mice Data

From the correlation matrix reported in Table A.1 in the Supplementary Material, it is

worth mentioning that there exists a high correlation between consecutive observations

or lag-one correlations, with the smallest correlation being the one corresponding to the

weights taken between days 5 and 8, and the remaining ones featuring similar values.

Moreover, the values for the correlations outside the super diagonal are smaller, but not

negligible at all. More specifically, the lag-one correlations range from 0.77 to 0.96,

with correlations not being exactly equal, but quite similar to one another, except for the

0.77 value, which is smaller than the others. Thus, it seems reasonable to consider the

initial hypothesis that the lag-one correlations are approximately equal. If we move to

the lag-two and lag-three correlations, they seem to be quite similar for their first two

values, and then their values suddenly increase for the later values. A close analysis of

this matrix seems to suggest that there may be two groups of observations, the early

ones, corresponding to times 2, 5, 8 and 11, and the late ones, corresponding to times

14, 17 and 20. The former feature a pattern of high lag-one correlations, intermediate

values for lag-two correlations, and low lag-three correlations, whereas the latter, if we

consider observations at times 11, 14, 17 and 20, all feature high correlations. Based on

the above, variance-covariance models such as the CS, AR(1) and ARMA(1,1), as de-

scribed in Section 2, should be considered for this specific data set. From the correlation

matrix reported in Table A.1 (see Supplementary Material), it is worth mentioning that

there exists a high correlation between consecutive observations or lag-one correlations,

with the smallest correlation being the one corresponding to the weights taken between

days 5 and 8, and the remaining ones featuring similar values. Moreover, the values for
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the correlations outside the super diagonal are smaller, but not negligible at all. More

specifically, the lag-one correlations range from 0.77 to 0.96, with correlations not be-

ing exactly equal, but quite similar to one another, except for the 0.77 value, which is

smaller than the others. Thus, it seems reasonable to consider the initial hypothesis that

the lag-one correlations are approximately equal. If we move to the lag-two and lag-

three correlations, they seem to be quite similar for their first two values, and then their

values suddenly increase for the later values. A close analysis of this matrix seems to

suggest that there may be two groups of observations, the early ones, corresponding to

times 2, 5, 8 and 11, and the late ones, corresponding to times 14, 17 and 20. The former

feature a pattern of high lag-one correlations, intermediate values for lag-two correla-

tions, and low lag-three correlations, whereas the latter, if we consider observations at

times 11, 14, 17 and 20, all feature high correlations. Based on the above, variance-

covariance models such as the CS, AR(1) and ARMA(1,1), as described in Section 2,

should be considered for this specific data set. Figure A.1 in the Supplementary Ma-

terial displays the profiles for the different mice in the data set, where we can see that

there is an increasing trend for their weights. Given the increasing structure featured by

the Small Mice Data (Weiss, 2005), we assume a longitudinal model with the following

mean regression structure:

Yi j = β0 +β1Day+β2Day2 + ǫi j, (25)

with CS, AR(1) and ARMA(1,1) variance-covariance structures. Parameter estimates

are compared to those obtained by applying restricted maximum likelihood methods

and reported in Weiss (2005). Tables 1, 2 and 3 include the parameter estimated mean

values under the Bayesian proposal, together with their respective standard deviations,

and including median values, as well as estimates obtained by restricted maximum Like-

lihood methods (REML), using the SPSS statistical software package, for the CS, AR(1)

and ARMA(1,1) variance-covariance structures, respectively. To implement and obtain

the estimates under the Bayesian proposal we have used OpenBugs (Spiegelhalter et

al., 2003), together with R (R Core Team, 2013). Based on the estimated parameter

values for the different variance-covariance models fitted to the data, we can conclude

that estimates and standard deviations under the Bayesian proposals and those obtained

by REML are quite similar, which can be used as evidence supporting the fact that

the proposed method is behaving as expected and its results are stable under the prior

distributional assumptions. However, we should be careful about these conclusions in

the sense that this is a very simple, well behaved and balanced data set, and the con-

sidered variance-covariance models are, in terms of complexity, very simple and very

parsimonious models. More complex variance-covariance models, such as the AD or

SAD models, cannot be fitted in most statistical packages and, thus, specific program-

ming is required to fit these models. Selection of the model that best fits the data will

be assessed by using the well-known and commonly used Akaike Information Criterion

(AIC) (Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978) and
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the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). Smaller values of

AIC, BIC or DIC indicate better fitting models.

Table 1: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the CS variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 65.200 (30.158) 64.715 65.745 (29.459)

β1 70.776 (4.469) 70.766 70.328 (4.406)

β2 −1.351 (0.198) −1.350 −1.349 (0.195)

σ2 9889.113 (2663.290) 9348.963 9671.253 (2621.890)

ρ 0.603 (0.095) 0.606 0.626 (0.107)

Table 2: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the AR(1) variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 73.843 (28.129) 73.518 74.083 (28.186)

β1 68.613 (4.089) 68.629 68.588 (3.994)

β2 −1.252 (0.173) −1.254 −1.251 (0.169)

σ2 8622.617 (2663.290) 8130.642 8796.697 (2488)

ρ 0.856 (0.037) 0.857 0.874 (0.038)

Table 3: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the ARMA(1,1) variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 77.556 (28.099) 77.5126 77.418 (28.494)

β1 67.687 (4.534) 67.735 67.620 (4.317)

β2 −1.208 (0.194) −1.210 −1.204 (0.183)

σ2 8169.547 (2293.082) 7684.294 8796.697 (2488)

ρ 0.792 (0.0539) 0.797 0.832 (0.055)

φ 0.842 (0.034) 0.845 0.8732 (0.035)

Table 4: Goodness-of-fit AIC, BIC and DIC values for the CS, Bayesian CS-BCS, AR(1), Bayesian AR(1)-

BAR(1), ARMA(1,1) and Bayesian ARMA(1,1)-BARMA(1,1) variance-covariance structures for the Small

Mice Data.

Model AIC BIC DIC

CS 1109.3 1110.6 –

BCS 1124.3 1137.2 1122.9

AR(1) 1039.3 1040.5 –

BAR(1) 1054.7 1067.6 1053.3

ARMA(1,1) 1038.9 1040.8 –

BARMA(1,1) 1054.6 1070.1 1052.7
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Alternative more recent model selection criteria include the Watanabe-Akaike Infor-

mation Criterion (WAIC) (Watanabe, 2010). Given that the main objective here is the

proposal of a Bayesian methodology and its comparison with previous maximum like-

lihood estimation methods, we have used the AIC and BIC criteria to be able to assess

and compare the performance of our models with those previously fitted. In any case,

and given that the DIC and WAIC are standard model evaluation tools and considered

more appropriate criteria for model selection purposes within the Bayesian framework

(Watanabe, 2010; Choi, Jang and Alemi, 2018), we have also provided the DIC values

for some of the models fitted here. Moreover, we believe that model selection, within

the Bayesian framework, and given the common use of the DIC criterion and the well

known advantages of the WAIC criterion, should be proposed together with the use of

both model selection criteria (Piironen and Vehtari, 2017; Vehtari, Gelman and Gabry,

2017). However, in our view and given that our main objective is to compare and as-

sess the behaviour of our Bayesian proposals with previous non-Bayesian approaches,

we consider that the reported AIC and BIC criteria are appropriate within this context,

specially taking into account that we have assumed vague prior distributions. Table 4

includes the AIC, BIC and DIC values for the CS, Bayesian CS-BCS, AR(1), Bayesian

AR(1)-BAR(1), ARMA(1,1) and Bayesian ARMA(1,1) variance-covariance structures

for the Small Mice Data. Based on these values and keeping in mind that these are

simple models than can be fitted by using REML methods in SPSS or other alternative

statistical packages, the best fitting model based on AIC is the ARMA(1,1) model, with

the AR(1) model being a close competitor. If we use BIC, the best fitting model is the

AR(1), with the ARMA(1,1) model being also a close competitor. The same conclusion

is reached if DIC is used as a model selection criterion, with the BARMA(1,1) model

being the best fitting one, and the BAR(1) following quite closely, a fact that is also sup-

ported is we use the AIC or BIC criteria for the Bayesian model proposals. In summary,

for the Small Mice data, the best fitting models are the autoregressive model of order

one and the autoregressive model with moving average, ARMA(1,1), model.

A final remark on the basis of a comment raised by an anonymous reviewer is that

practitioners may consider using the logarithm of the weight as a response variable in-

stead. They should be aware that when we have higher variance sample values for the

different time points it may be convenient to use this transformation so that these vari-

ance values may be more parsimoniously modelled. However, given that our main ob-

jective was to compare our results to those in previous analyses (see, e.g., Weiss, 2005),

and also to assess if the proposed methodology was able to model specific variance and

correlation behaviours, such as the ones in the small mice data, we decided to use weight

as the response variable for the analyses reported here.

5.2 Speech Recognition Data

Previous analyses (Zimmerman et al., 1998) reported that the likelihood-ratio test for

the equality of the within-group covariance matrices indicated that it was reasonable to
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pool them (p = 0.35). From the pooled correlation matrix reported in Table A.2 in the

Supplementary Material, it is worth mentioning that correlations are positive and quite

large, that correlations between test scores at times t and t+k seem to decrease monoton-

ically as k increases, and that correlations between test scores at adjacent measurement

times increase over time. This latter statement is somehow consistent with a prior be-

lief that subjects may “learn” over time, as with the result that responses equidistant in

time become more highly correlated as the study progressed, which is a clear sign of

nonstationary correlation structures, such as the one modelled by SAD-type models and

the proposed time-transforming scale in equation (9). In addition, variances seem to be

homogeneous at all times points except for the first one. Based on the above, variance-

covariance models such as the SAD, as described in Section 2, should be considered

for this specific data set. Figure A.2 in the Supplementary Material displays the profiles

for the different individuals for each type of implant. As Zimmerman and Núñez-Antón

(2010) have already mentioned in previously presented exploratory analyses, these plots

suggest that there is an increasing trend for the mean audiologic performance, at least

for the initial months, and that audiologic performance seems to stabilize for the later

months, which provides some empirical evidence for the consistency of audiologic per-

formance over time. These plots also suggest that variances seem to increase slightly

from the first to the second measurement, but remain constant thereafter. Several pre-

vious different models were fitted (Zimmerman and Núñez-Antón, 2010), such as, for

example, homogeneous and heterogeneous versions of the CS and AR(1) models, but

finally concluded that the best fitting models models for this data are the structured

antedependence model of order one or SAD(1) models. Given the increasing mean fea-

tured by this data (Núñez-Antón and Woodworth, 1994), in order to be able to compare

our results when fitting the Type 1 - SAD model, we initially propose the mean regres-

sion structure:

Yi j = β0 +β1ti j +β2t2
i j + ǫi j, ti1 = 1, ti2 = 9, ti3 = 18, ti4 = 30 (26)

with the Type 1 - SAD model variance-covariance structure described in Section 2.

Table 5 includes the parameter estimated mean values under the Bayesian proposal, to-

gether with their respective standard deviations, and including median values, as well

as estimates obtained by restricted maximum Likelihood methods (REML), previously

reported by Núñez-Antón and Woodworth (1994), where standard deviations for the

variance-covariance parameters were not provided. Initial values for the regression pa-

rameters were assumed so thatβββ0 =(20,1,0)T. In addition, initial values for the Bayesian

estimation were assumed so that ρ0 = 0.50, λ0 = 0.50 and σ2
0 = 100. The acceptance

rates for ρ and λwere equal to 39% and 32%, respectively. The corresponding goodness-

of-fit information criteria values for this model were AIC=1322.752, BIC=1341.351,

and DIC=1320.714. Núñez-Antón and Woodworth (1994) did not report these values

in earlier analyses, and their computation was not straightforward unless specific pro-

grams to fit the proposed model are implemented. This issue is clearly out of the scope
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of this paper. Based on the estimated parameter values reported in Table A.2 in the Sup-

plementary Material, we can conclude that estimates and standard deviations under the

Bayesian proposal and those obtained by REML are quite similar, which can be used as

evidence supporting the fact that the proposed method is behaving as expected and its re-

sults are stable under the prior distributional assumptions. In addition, fitting of this not

so parameterized and parsimonious model by REML methods requires a more specific

and complex programming and maximization than the ones proposed in this paper. As

an illustration of fitting the Type 2 - SAD model and in order to be able to compare the

results obtained with our proposed methodology, we fitted the same model previously

proposed (Zimmerman et al., 1998), with mean regression structure given by:

Yi j = β0 +β1ti j +β2t2
i j +β3zi +β4ziti j +β5zit

2 + ǫi j, (27)

and also with ti1 = 1, ti2 = 9, ti3 = 18, ti4 = 30, and zi = 1 if the i-th individual received

implant type A, and zi = 0, otherwise. As for the variance-covariance structure, we as-

sume a Type 2 - SAD model given by (4) and (10). Table 6 includes the parameter esti-

mated mean values under the Bayesian proposal, together with their respective standard

deviations, as well as median values. Values previously obtained by restricted maximum

likelihood methods (REML) were not reported (Zimmerman et al., 1998). Initial values

for the regression parameters were assumed so that βββ0 = (20,1,0,8,1,0)T. In addition,

initial values for the Bayesian estimation were assumed so that ρ0 = 0.50, λ0 = 0.50,

ψ0 = 1 and σ2
0 = 100. Table 7 includes the parameter mean values under the Bayesian

proposal for the variance-covariance parameters, together with their standard deviations,

including median values, for the Type 2 - SAD variance-covariance structure, as well as

those obtained by restricted maximum Likelihood methods (REML) (Zimmerman et

al., 1998), where standard deviations for the variance-covariance parameters were not

provided.

Table 5: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the Type 1 - SAD variance-covariance structure for the Speech Recognition Data.

Parameter Mean Median REML-estimates

β0 22.330 (4.294) 22.375 22.850 (4.260)

β1 2.537 (0.313) 2.540 2.520 (0.340)

β2 −0.048 (0.008) −0.048 −0.04695 (0.009)

σ2 602.028 (112.636) 585.562 587.15

ρ 0.933 (0.025) 0.9395 0.940

λ 0.297 (0.144) 0.300 0.300

The acceptance rates for ρ, λ and ψ were equal to 35%, 32% and 34%, respec-

tively. The corresponding goodness-of-fit information criteria values for this model were

AIC=1287.364, BIC=1318.362, and DIC=1283.554. These values were not originally

reported in previous analyses (Zimmerman et al., 1998), and their computation is not
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straightforward unless specific programs to fit the proposed model are implemented.

This issue is clearly out of the scope of this paper. Based on the estimated parameter

values reported in Table 7, we can conclude that estimates under the Bayesian proposal

and those obtained by REML are comparable, except for parameter σ2, which can be

used as evidence supporting the fact that the proposed method is behaving as expected

and its results are stable under the prior distributional assumptions. In addition, fitting of

this not so parameterized and parsimonious model by REML methods requires a more

specific and complex programming and maximization than the ones proposed in this

paper. Moreover, estimates reported in Table 6 for the mean regression structure do not

support the conclusions previously reported (Zimmerman et al., 1998) with regard to the

significance of the parameter β5 in (27). Given the robustness of the proposed method-

ology, the above differences could question the appropriateness of estimates obtained

by REML methods.

Table 6: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, for the Type 2 - SAD variance-covariance

structure for the Speech Recognition Data.

Parameter Mean Median

β0 13.827 (3.959) 13.837

β1 2.249 (0.386) 2.246

β2 -0.044 (0.010) -0.044

β3 14.719 (5.663) 14.634

β4 0.395 (0.551) 0.398

β5 −0.009 (0.015) −0.009

Table 7: Parameter estimated mean values for the variance-covariance structure under the Bayesian pro-

posal, together with their respective standard deviations in parentheses, including median values, for the

Type 2 - SAD variance-covariance structure for the Speech Recognition Data.

Parameter σ2 ρ λ ψ

Mean 334.046 0.928 0.323 1.773

Standard Deviation 71.858 0.0381 0.192 0.316

Median 325.052 0.936 0.330 1.746

REML-estimates 388.7 0.935 0.240 1.615

Table 8: Parameter estimated mean values under the Bayesian proposal for the Type 3 - SAD variance-

covariance structure, together with their respective standard deviations within parentheses, including me-

dian values, and parameter estimates under REML-methods for the 100-Km Race Data.

Parameter Mean Median REML-estimates

β0 44.585 (1.632) 44.573 43.428

β1 −2.410 (2.102) −2.421 1.354

β2 1.327 (0.752) 1.326 0.253

β3 −0.097 (0.072) −0.097 -0.017
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5.3 100-Km Race Data

From the correlation matrix and sample variance values reported in Table A.3 in the

Supplementary Material, it can be observed that variances tend to increase as the race

progresses, that the correlations among split times are positive and quite large, that the

correlations between the split time for a fixed 10-Km section and split times for suc-

cessive sections tend to decrease monotonically, and that the correlations between split

times for adjacent sections are smaller in the later sections of the race than in the earlier

sections. In addition, variances seem to increase as the race progresses, with the excep-

tion of the seventh section of the race. Based on the above, variance-covariance models

such as the SAD, as described in Section 2, should be considered for this specific data

set. Figure A.3 in the Supplementary Material displays the profiles for the individuals in

the data set, where we can see that there is an increasing trend for the times as the race

progresses. In addition, variances for the different sections also seem to increase mono-

tonically. Based on the above, some authors (Zimmerman et al., 1998) have previously

suggested the fitting of an SAD model of order one, as well as a cubic in time mean

regression model, so that:

Yi j = β0 +β1ti j +β2t2
i j +β3t3

i j + ǫi j, i = 1, . . . ,80; j = 1, . . . ,10 (28)

As for the variance-covariance structure, we assume a Type 3 - SAD model with vari-

ances given by σ2
j = exp(ψ0 +ψ1ti j +ψ2t2

i j), j = 1, . . . ,10,, and covariance structure

given by (4). In the model proposal for the Type 3 - SAD model, there is a slight dif-

ference with that in previous analyses (Zimmerman et al., 1998), where the proposed

variance function was, instead, σ2
j = σ2(1+ψ1ti j +ψ2t2

i j), j = 1, . . . ,10. Therefore, pa-

rameter estimates are not directly comparable. Our variance model variation was neces-

sary for the Bayesian proposal in this paper. In the data analysis reported here, parameter

estimates were obtained from 15000 iterations, after a burn-in of 5000 samples. Initial

values for the regression parameters were assumed so thatβββ0 = (20,1,0,0)T. In addition,

initial values for the Bayesian estimation were assumed so that ρ0 = 0.50, λ0 = 0.50,

ψψψ0 = (1,1,1)T and K0 = diag(k0,k0,k0), with k0 = 0.1384. Table 8 includes the regres-

sion parameter estimated mean values under the Bayesian proposal, together with their

respective standard deviations, and including median values, as well as estimates ob-

tained by restricted maximum Likelihood methods (REML) (Zimmerman et al., 1998),

where standard deviations for the variance-covariance parameters were not provided.

It is worth mentioning that, even though there are differences between the REML es-

timates and those obtained by the Bayesian proposal, the values previously reported

(Zimmerman et al., 1998) for the regression parameters are all within the 95% credi-

bility intervals listed here: CI(0.95)β1
= (−11.77,6.95), CI(0.95)β2

= (−4.90,7.547),

and CI(0.95)β3
= (−0.5433,0.3513), which were generated with the obtained esti-

mated values under the Bayesian proposal. Table 9 includes the estimated values for the

variance-covariance parameters under the Bayesian proposal, together with their respec-

tive standard deviations, and including median values, as well as estimates obtained by
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restricted maximum Likelihood methods (REML), when available (Zimmerman et al.,

1998), where standard deviations for the variance-covariance parameters were not pro-

vided. In any case and in order to be able to compare the estimated variances at each split

time, we also include their REML-estimates for the variance parameters: σ̂2 = 16.952,

ψ̂1 = 0.590, and ψ̂2 = 0.450.

Table 9: Parameter estimated mean values for the variance-covariance parameters under the Bayesian

proposal for the Type 3 - SAD variance-covariance structure, together with their respective standard devi-

ations within parentheses, including median values, and parameter estimates under REML-methods, when

available, for the 100-Km Race Data.

Parameter Mean Median REML-estimates

ρ 0.918 (0.031) 0.924 0.929

λ 1.680 (0.261) 1.684 1.600

ψ0 2.771 (0.308) 2.767 –

ψ1 0.677 (2.128) 0.683 –

ψ2 −0.034 (0.021) −0.034 –

The acceptance rates for ρ, λ and ψψψ, the latter resulting from the working variable

in equation (23), were equal to 34%, 37% and 84%, respectively. The correspond-

ing goodness-of-fit information criteria values for this model were AIC = 1401.88,

BIC = 1425.31, and DIC = 1403.078. These values were not reported in previous anal-

yses (Zimmerman et al., 1998), and their computation is not straightforward unless spe-

cific programs to fit the proposed model are implemented. This issue is clearly out of

the scope of this paper. In order to better assess the behaviour of the estimated split

time variances obtained under the Bayesian proposal, we have computed the estimated

variances under our proposal and under the REML method proposal (Zimmerman et

al., 1998) and report this information, as well as the estimated sample variance values

obtained from the data, in Table 10. In our opinion, it is clear that the Bayesian and

REML estimated values for each of the sections in the race differ from each other, as

well as from the reported sample values. However, it is worth mentioning that the ob-

served increase for the estimated variances under the Bayesian proposal is smaller than

that obtained under the REML methods.

Based on the estimated parameter values reported in Tables 8, 9 and 10, we can con-

clude that estimates under the Bayesian proposal and those obtained by REML are not

exactly similar, but show a similar behaviour, which can be used as evidence support-

ing the fact that the proposed method is behaving as expected and its results are quite

stable even under very general prior distributional assumptions. In addition, fitting of

this not so parameterized and parsimonious model by REML methods requires a more

specific and complex programming and maximization than the ones proposed in this

paper. Given the robustness of the proposed methodology, the above differences could

question the appropriateness of estimates obtained by REML methods. In addition, to

be able to better compare mean split times estimated values under the Bayesian proposal

with the corresponding fitted values that can be obtained from the estimates previously
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reported (Zimmerman et al., 1998), Figure A.4 in the Supplementary Material shows

the residuals obtained for the 100-Km Race Data obtained under the Bayesian and clas-

sic REML methods for the Type 3 - SAD variance-covariance structure. As can be seen

from this figure, there are no significant differences between the residuals resulting from

the model estimation by classic REML estimation and Bayesian estimation methods.

Moreover, the residual sum of squares computed on the model estimated by restricted

maximum likelihood methods is RSS = 83455.21, whereas the corresponding one for

the proposed Bayesian method is RSS = 94598.3. As an additional way of comparing

the behaviour of the residuals for each section of the race, Figures A.5 and A.6 in the

Supplementary Material include the corresponding boxplots for the residuals resulting

from the REML and Bayesian method proposals. Conclusions that can be obtained from

the information provided in these figures suggest that residuals for the different sections

of the race obtained by the two methods do not significantly differ from each other,

which supports the claim that results obtained by the REML classic methodology can

be well approximated by means of a simpler and more flexible Bayesian method, such

as the one included in this manuscript.

Table 10: Estimated sample variances, and parameter estimated variances under the Bayesian proposal for

the Type 3 - SAD variance-covariance structure, and REML-methods for the 100-Km Race Data.

Parameter Sample values REML-estimates Bayesian estimates

σ2
1 26.89 34.58 31.01

σ2
2 34.78 67.48 54.60

σ2
3 49.01 115.61 90.08

σ2
4 58.89 179.013 139.28

σ2
5 91.41 257.67 201.82

σ2
6 149.90 351.58 274.05

σ2
7 107.85 460.75 348.73

σ2
8 152.22 585.18 415.86

σ2
9 144.99 724.86 464.73

σ2
10 167.21 879.80 486.70

5.4 Sensitivity analysis

In this section we study the behaviour of the Bayesian estimate for the variance σ2

under different values of the hyperparameters used in the assumed prior distribution

for ϕ = 1/σ2, which, as already mentioned in previous sections, was assumed to be a

Gamma(k,k) distribution, with k = 10−5. In this case, we illustrate this behaviour in

the analysis of the three different models (i.e., CS, AR(1) and ARMA(1,1)) fitted to the

Small Mice Data (SMD) and the two SAD (i.e., Type 1 and Type 2) models fitted to the

Speech Recognition Data (SRD). Changes in the estimated values for σ2 are observed
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for different values of k in the gamma distribution, such that the assumed values for

the hyperparameter k for this analysis are k = 1× 10−3, k = 1× 10−5, k = 1× 10−8

and k = 1×10−10. Table 11 includes the average variance estimated value of the chains

by means of a Gibbs sample of the resulted conditional posterior distribution, together

with their corresponding standard deviations in parentheses, for different values of the

hyperparameter k in the prior Gamma(k,k) distribution assumed for ϕ = 1/σ2. Fitted

models correspond to the SC, AR(1) and ARMA(1,1) models for the Small Mice Data

(SMD) and to the Type 1 and Type 2 - SAD models for the Speech Recognition Data

(SRD). From the information reported in Table 11, we can conclude that, as the hyper-

parameter in the assumed gamma distribution becomes smaller, the standard deviation

and estimated values obtained under the Bayesian proposal approach those obtained by

the REML estimating method. In addition, and given that variance estimates and their

standard deviations obtained for values of k = 1× 10−8 and k = 1× 10−10 are quite

similar, we can conclude that once the value of k in the prior distribution is equal to

1×10−8, changes in the means of the corresponding chains are negligible, and this was

the main reason for the use of this specific hyperparameter value in the prior distribution

assumed for the analysis of the three data sets in Section 5.

Table 11: Estimated variances, together with their corresponding standard deviations within parentheses,

for different values of the hyperparameter k in the prior Gamma(k,k) distribution assumed for ϕ = 1/σ2.

Fitted models correspond to the CS, AR(1) and ARMA(1,1) models for the Small Mice Data (SMD) and to

the Type 1 and Type 2 - SAD models for the Speech Recognition Data (SRD).

kkk 1×10−3 1×10−5 1×10−8 1×10−10

SMD-CS 12302.35 10672.29 9889.11 9890.02

(4103.29) (3504.29) (2663.29) (2662.79)

SMD-AR(1) 10025.26 9989.30 8622.617 8621.85

(3234.567) (3012.23) (2663.29) (2661.95)

SMD-ARMA(1.1) 10054.53 9867.56 8169.55 8169.00

(2997.72) (2900.32) (2488.56) (2488.32)

SRD-Type 1 SAD 768.34 727.02 602.03 602.24

(172.3452) (156.14) (112.64) (112.45)

SRD-Type 2 SAD 380.65 372.99 334.05 334.05

(83.579) (78.93) (71.86) (71.81)

6 Conclusions and final recommendations

We have proposed alternative Bayesian longitudinal models for fitting compound sym-

metry, autoregressive or order one, autoregressive with moving averages, as well as un-

structured and structured antedependence models for nonstationary in variance and/or

correlation longitudinal data settings. Very flexible distributional prior assumptions were

proposed, and the specific methods to obtain the conditional posterior distribution were
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described. The usefulness of the proposed method was illustrated with the analysis of the

Small Mice Data, the Speech Recognition Data and the 100-Km Race Data, and results

were compared to those obtained by restricted maximum likelihood methods. Results

suggested that the proposed methods behave well under general conditions, and esti-

mated values are in line with with those obtained by classic methods. However, classic

methods require specific programming, whereas the proposed Bayesian methods can be

easily adjusted to the data sets under study by using very flexible and easy programming,

as well as general available software, such as R and OpenBugs. Future work includes

extending these proposals to more complex unstructured and structured antedependence

higher order models. Finally, we would like to mention that, even though the proposed

Bayesian methodology has been shown to have a fast convergence and reasonable ac-

ceptance rates, our future research in the area includes the study of acceptance rates

improvements in terms of making the proposed methodology more efficient, providing

at the same time recommendations useful for researchers in the area. In practice, ac-

ceptance rates are known to improve with the adequate selection of initial values from

the information available in the data, as well as from the appropriate parameter selec-

tion for the prior distributions. They do so by making use of a thorough analysis of the

available prior information, such as, for example, variables rank or proposed models

motivation and/or parameterization. For example, if we let ϕ′ = log(ϕ) and we assume

a normal prior distribution for ϕ′ instead in the CS and AR(1) models. Convergence

rates and acceptance rates can also be improved by applying alternative Monte Carlo

resampling methods, such as the reduced-rejection-rate method (Baldassi, 2017). This

parametrization of ϕ can be also important for the aforementioned problem of sensitiv-

ity of the posterior variance (i.e., precision) estimates to the gamma prior distributions

Gamma(10−k,10−k) assumption, for k = 1,2,3,4, . . . . Thus, when this prior distribution

is assumed and no prior information on ϕ is available, a sensitivity analysis, like the one

described in Section 5.4, should always be included in any statistical data analysis, so

that the sensitivity of ϕ to the smallest changes in the value of k is minimized.
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Zimmerman, D.L and Núñez-Antón, V. (2010). Antedependence Models for Longitudinal Data. CRC Press,

New York.

Zimmerman, D.L., Núñez-Antón, V. and El Barmi, H. (1998). Computational aspects of likelihood-based

estimation of first-order antedependence models. Journal of Statistical Computation and Simulation, 60,

67–84.





SORT 44 (1) January-June 2020, 201-220 DOI: 10.2436/20.8080.02.100

On interpretations of tests and effect sizes in

regression models with a compositional predictor
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Abstract

Compositional data analysis is concerned with the relative importance of positive variables, ex-

pressed through their log-ratios. The literature has proposed a range of manners to compute

log-ratios, some of whose interrelationships have never been reported when used as explanatory

variables in regression models. This article shows their similarities and differences in interpretation

based on the notion that one log-ratio has to be interpreted keeping all others constant. The article

shows that centred, additive, pivot, balance and pairwise log-ratios lead to simple reparametriza-

tions of the same model which can be combined to provide useful tests and comparable effect

size estimates.
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1 Introduction

Compositional Data (CoDa) can be defined as positive vectors containing information

about the relative importance of parts of a whole, not necessarily with a constant sum.

The CoDa tradition started with Aitchison’s seminal work in Aitchison (1982), and

Aitchison (1986) e.g. on chemical and geological compositions. There, only the pro-

portion of each part or component is of interest, since absolute amounts are in general

either not available or irrelevant, as they only inform about the size of the chemical or

soil sample. In the last three decades, CoDa have provided a standardized toolbox for

statistical analyses where the research questions concern the relative importance of mag-

nitudes, in both hard sciences and social sciences (Coenders and Ferrer-Rosell, 2020).

The term compositional analysis (Barceló-Vidal and Martı́n-Fernández, 2016) has even

been coined to stress the fact that what is ultimately compositional is not the data, which
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may even not be parts of any whole, but the research objectives, research questions or

hypotheses focusing on relative importance rather than absolute values. Along similar

lines, CoDa have also been defined as “arrays of strictly positive numbers for which

ratios between them are considered to be relevant” without any further requirement

(Egozcue and Pawlowsky-Glahn, 2019). Examples of applications to data which do

not represent parts of any whole can be found in Ortells et al. (2016) and Linares-

Mustarós, Coenders and Vives-Mestres, 2018. Accessible handbooks have contributed

to extending the use of CoDa (Buccianti, Mateu-Figueras and Pawlowsky-Glahn, 2006;

Boogaart and Tolosana-Delgado, 2013; Filzmoser, Hron and Templ, 2018; Greenacre,

2018; Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn, Egozcue and Tolo-

sana-Delgado, 2015), as has dedicated user-friendly software (Boogaart and Tolosana-

Delgado, 2013; Filzmoser et al., 2018; Greenacre, 2018; Palarea-Albaladejo and Martı́n-

Fernández, 2015; Thió-Henestrosa and Martı́n-Fernández, 2005), although in many

cases standard software can be used after transforming the data.

In compositional research problems, most of the basic statistical analysis tools are

flawed unless they are re-expressed by means of logarithms of ratios as proposed in the

so-called log-ratio CoDa methodology.

The appeal of log-ratios is that once they are computed, standard statistical methods

can be used in many cases, as long as the relative character of the information is taken

into account when interpreting the results. Since one component can only increase in

relative terms if some other(s) decrease, the effects of components as explanatory in a

regression model cannot be interpreted in isolation. The effect of increasing one com-

ponent in relative terms unavoidably depends on which other components are reduced

in its stead. We emphasise the phrase “in relative terms” according to a compositional

research focus, because it could be the case that all components increase in absolute

terms.

In this article we stress the importance of the notion that in ordinary-least-squares

multiple regression models interpretation of a predictor is always subject to keeping

all other predictors constant. In log-ratio terms, the effect of increasing one log-ratio is

understood while keeping all other log-ratios constant. The fact that the same log-ratio

can have different effects and interpretations depending on the manner in which the re-

maining log-ratios in the regression model are constructed is frequently overlooked by

applied researchers. This notion may also make interpretation of log-ratios as explana-

tory variables differ from other statistical analyses, which is also often overlooked.

Many ways of constructing and interpreting log-ratios have been suggested in the

literature, which often lead to the same predictions, residuals and goodness of fit of the

model. Given this circumstance, it is difficult to provide arguments to choose among

them, since “there seems to be little to distinguish between forms of comparable good-

ness of fit. Much discussion has turned on attempts to provide interpretations for the

parameters” (Aitchison (1986), p285). In a sense, the alternative log-ratios do not lead

to different models, but to different reparametrizations of one and the same model. Each

reparametrization aims at one particular manner of interpreting the results. The aim of
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this article is to review some of the most common alternative parametrizations and high-

light their implications regarding parameter interpretation, “keeping all other log-ratios

in the model constant”. To the best of our knowledge, some coincidences and similari-

ties between the interpretations of these parametrizations are reported for the first time

in this article, which will hopefully help researchers find their way in the crossroads

of the many methods proposed in the literature. Some of the parametrizations involve

rerunning the model more than once in order to shed additional light on the meaning of

parameters.

The five particular parametrizations chosen in this article are aimed at easing in-

terpretation and all have comparable and readily interpretable effect sizes, which are

obscured in compositional analyses with more complicated alternatives, whose use pre-

vents effect size interpretation from being a common practice in the applied literature

(Müller et al., 2018).

The article starts with the first parametrizations, chronologically speaking (additive

and centred log-ratios) and continues with some more recently proposed alternatives.

Both statistical tests and effect sizes are interpreted and compared. An illustration using

one of Aitchison’s classic data sets follows. The last section concludes.

2 Basic form of the regression model with an explanatory

composition. Additive log-ratios

Consider a composition x, i.e. a vector in the positive orthant of D-dimensional real

space carrying information about the relative importance of its components. For ease of

formulation and illustration, in this article we consider D = 4 components closed to one

without loss of generality:

x = (x1, x2, x3, x4) ∈ R
4

+, with x j > 0, j = 1,2,3,4,
4

∑
j=1

x j = 1. (1)

The most common CoDa approach is to represent x in terms of logarithms of ratios

among its components (Aitchison, 1986; Egozcue et al., 2003). Log-ratios may, for in-

stance, be computed among all possible pairs of components in the so-called pairwise

log-ratios (Aitchison, 1986; Greenacre, 2019). In this article we follow Müller et al.

(2018) in computing logarithms to base 2, which make for a simple interpretation. A

unit increase in the logarithm to base 2 corresponds to a twofold increase in the original

magnitude.

log2

(

x j

xk

)

= log2

(

x j

)

− log2 (xk) , with j < k,k = 2,3,4, j = 1,2,3. (2)
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A particularly interesting case of pairwise log-ratios is that of additive log-ratios (Aitchi-

son, 1982), in which only D−1 pairwise log-ratios are computed with a common com-

ponent in the denominator, for instance the last. This yields an invertible log-ratio co-

variance matrix and additive log-ratios can thus be directly used as predictors in an

ordinary-least-squares regression model:

log2

(

x j

x4

)

, with j = 1,2,3. (3)

The most useful and general expression of a log-ratio is the log-contrast (Aitchison,

1983; Aitchison and Bacon-Shone, 1984):

4

∑
j=1

α jlog2 (x j) , with
4

∑
j=1

α j = 0. (4)

Log-contrasts led to the first formalization of a regression with a compositional explana-

tory variable (Aitchison and Bacon-Shone, 1984). The regression problem can be un-

derstood as obtaining the log-contrast which is maximally correlated with the dependent

variable:

y = α0 +α1log2 (x1)+α2log2 (x2)+α3log2 (x3)+α4log2 (x4)+ ε,

with
4

∑
j=1

α j = 0,
(5)

where ǫ follows the usual assumptions in the linear regression model. The zero-sum con-

straint of the coefficients in Eq. (5) reflects the fact that a component can only increase

its relative importance if one or more of the others decrease. Geometrically, the zero

sum constraint implies that the vector [α1,α2,α3,α4]
T is orthogonal to the unit vector

[1,1,1,1]T as required for a composition, which is key to the scale invariance property in

CoDa (Egozcue and Pawlowsky-Glahn, 2019): multiplying the individual compositions

by arbitrary positive constants will not modify the regression results. The constraint can

be handled by running the regression model by ordinary least squares on the additive

log-ratios (Aitchison and Bacon-Shone, 1984):

y = β0 +β1log2

(

x1

x4

)

+β2log2

(

x2

x4

)

+β3log2

(

x3

x4

)

+ ε. (6)

All formulations presented in this article lead to the same coefficients when re-expressed

according to Eq. (5). In the additive log-ratio case the re-expression and the fulfilment

of the constraint are trivial:

y = β0 +β1log2 (x1)+β2log2 (x2)+β3log2 (x3)+(−β1 −β2 −β3) log2 (x4)+ ε. (7)
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The α4 coefficient corresponding to log2(x4) can also be obtained by rerunning the

model with a different denominator in the additive log-ratio transformation, for instance

as the coefficient of log2(x4/x3) in a model in which all log-ratios have x3 in the denom-

inator.

The interpretation is as follows. The expected value of the dependent variable in-

creases when increasing the relative importance of components with positive α coeffi-

cients in Eq. (5), especially those with the largest coefficients in absolute value, at the

expense of reducing that of components with negative α coefficients (especially those

with the largest coefficients in absolute value). In compositional regression models, the

interpretation can never be that of “increasing one component while keeping all other

components constant” because this statement is, in relative terms, nonsensical.

Overall tests of all D − 1 effects in Eq. (6) simultaneously (e.g., joint F tests in

linear regression) are invariant for all approaches described in this article. Since the

composition is multivariate by nature, the joint test is normally the one with the greatest

interest. Rejecting the null hypothesis means that the composition as a whole has an

effect on the dependent variable.

Having said this, researchers sometimes like to test other more specific hypotheses.

For this purpose, the proper interpretation of the coefficients of each log-ratio is crucial.

Interpretation does change among the alternative approaches discussed in this article.

In this section we interpret the coefficients of additive log-ratios. As in any multiple

regression model by ordinary least squares, the effect of one log-ratio and its test is

understood as the expected change in y for a one-unit change of the log-ratio when the

other log-ratios are held constant (Pindyck and Rubinfeld, 1976).

Accordingly, when using logarithms to base 2, β1 is the effect of doubling the ra-

tio between x1 and x4 while keeping all other log-ratios constant. Keeping the second

log-ratio constant means that x2 can only vary by the same factor as x4. Keeping the

third log-ratio constant means that x3 can only vary by the same factor as x4. The in-

terpretation of β1 is thus the change in the dependent variable expected value when the

ratio between x1 and each of components 2 to D doubles. It is also the change in the

dependent variable expected value when the ratio between x1 and the geometric mean

of all other components doubles, with the restriction that components 2 to D vary by

a common factor. All effect sizes are hence readily interpretable and comparable: the

interpretation of β j is the change in the dependent variable expected value when the

ratio between x j and each and every of the components x1, ...,x j−1,x j+1, ...,xD doubles.

If we consider the fact that in relative terms one component can only increase if other

components decrease, statistically testing the β j parameter means testing if increasing

the x j component at the expense of reducing all other components by a common factor

has any impact on the dependent variable.

Table 1 shows an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 = 3 as in Eq. (6). It can be noted that, as compared to case 1, case 2 doubles the ratio

of x1 over each and every of the remaining components. As compared to case 1, case 2

increases the first log-ratio by one unit while keeping the remaining log-ratios constant.



206 On interpretations of tests and effect sizes in regression models with a compositional predictor

As a result, as compared to case 1, case 2 increases the expected value E(y) by β1 = 1.

The interested reader may compare cases 3 and 4 with case 1 to arrive at β2 and β3. The

comparison between case 5 and case 1 leads to α4.

Regression effects can also be interpreted in terms of what in CoDa is known as the

perturbation operator, which can be explained in brief as the product of two compo-

sitions, component-wise. Increases in log-ratios correspond to perturbations when ex-

pressed with respect to the original compositions. Therefore, Table 1 can also be inter-

preted in terms of perturbations. Cases 2 to 4 in the table correspond to the perturbation

of the [x1,x2,x3,x4] composition when increasing each log-ratio by one unit. For in-

stance, increasing log2

(

x1
x4

)

by one unit while keeping all other log-ratios constant is

equivalent to perturbing the original composition with [0.4,0.2,0.2,0.2]. The product of

[0.4,0.2,0.2,0.2] and [0.25,0.25,0.25,0.25] yields [0.1,0.05,0.05,0.05] which is closed

back to a unit sum as [0.4,0.2,0.2,0.2]. The inverse log-ratio transformation is the man-

ner in which log-ratios can be expressed back as the original composition. It should be

clear that these perturbations are nothing other than the inverse log-ratio transformations

of vectors [1,0,0], [0,1,0] and [0,0,1]. Indeed, using logarithms to base 2, the inverse

additive log-ratio transformation of [1,0,0] is [21,20,20,20] which, after closing to unit

sum, equals [0.4,0.2,0.2,0.2].

Table 1: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 = 3. Additive log-ratios.

Case x1 x2 x3 x4 log2

(

x1

x4

)

log2

(

x2

x4

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.400 0.200 0.200 0.200 1 0 0 1

3 0.200 0.400 0.200 0.200 0 1 0 2

4 0.200 0.200 0.400 0.200 0 0 1 3

5 0.200 0.200 0.200 0.400 −1 −1 −1 −6

It must be noted that even if the construction of the log-ratio log2(x j/x4) suggests

increasing x j in relative terms to only x4, this does not correspond to its interpretation

when the composition is explanatory, because control of the other log-ratios is a key

issue.

3 Regression model with explanatory centred log-ratios

Log-ratios are often computed between each component and the geometric mean of all

components including itself, in the so-called centred log-ratio (Aitchison, 1983):

log2

(

x j

4
√

x1x2x3x4

)

, with j = 1,2,3,4. (8)
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In order to prevent perfect collinearity, one centred log-ratio must be dropped from the

regression equation. This is by no means a nuisance, as often argued, but is the key to

the proper parameter interpretation, as shown below. Without loss of generality, if we

leave out the last centred log-ratio, the model formulation is:

y = β0 +β1log2

(

x1

4
√

x1x2x3x4

)

+β2log2

(

x2

4
√

x1x2x3x4

)

+β3log2

(

x3

4
√

x1x2x3x4

)

+ ε.

(9)

By expressing Eq. (9) as a the log-contrast in Eq. (5) we obtain:

y = β0 +

(

β1 −
1

4

3

∑
j=1

β j

)

log2 (x1)+

(

β2 −
1

4

3

∑
j=1

β j

)

log2 (x2)+

(

β3 −
1

4

3

∑
j=1

β j

)

log2 (x3)+

(

−
1

4

3

∑
j=1

β j

)

log2 (x4)+ ε. (10)

Univariate tests referring to each particular log-ratio are interpreted as follows. Since

all four centred log-ratios in Eq. (8) add-up to zero, increasing a given centred log-ratio

while keeping the remaining two log-ratios in the equation constant means increasing

the given centred log-ratio while decreasing the omitted centred log-ratio by the same

amount. Individual coefficients and their tests thus show the existence of significant

trade-offs between pairs of components. A positive significant β j coefficient means that

increasing component x j at the expense of reducing component x4 has a significant pos-

itive effect on the dependent variable. If we use the logarithm to base 2, β j is interpreted

as the expected change in the dependent variable when the ratio between x j and x4

increases fourfold. In this manner effect sizes in the model are once more readily inter-

pretable and comparable. Table 2 has an example of a fictitious population with β0 = 0,

β1 = 1, β2 = 2, and β3 = −1 as in Eq. (9). For instance, as compared to case 1, case 2

increases the first log-ratio by one unit while keeping the remaining log-ratios constant

and shows a fourfold increase in the ratio between x1 and x4. Compared to case 1, the

ratio between x1 and any of the remaining components (x2 and x3) is doubled, while the

ratio between x4 and any of the remaining components (x2 and x3) is halved. It must be

noted that the omitted log-ratio log2

(

x4
4
√

x1x2x3x4

)

is equal to −1.

Table 2: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 =−1. Centred log-ratios, where the one with

x4 in the numerator has been dropped.

Case x1 x2 x3 x4 log2

(

x1
4
√

x1x2x3x4

)

log2

(

x2
4
√

x1x2x3x4

)

log2

(

x3
4
√

x1x2x3x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.444 0.222 0.222 0.111 1 0 0 1

3 0.222 0.444 0.222 0.111 0 1 0 2

4 0.222 0.222 0.444 0.111 0 0 1 −1
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In order to get tests and estimates for all possible pairwise trade-offs, the model can

be rerun D times by dropping each time a different centred log-ratio.

It must be noted once more that even if the construction of the log-ratio log2

(

x j
4
√

x1x2x3x4

)

suggests increasing x j in relative terms to all components, this does not correspond to

its interpretation when the composition is explanatory, because control of the other log-

ratios is a key issue.

4 Regression model with explanatory pivot coordinates

Egozcue et al. (2003) were the first to advocate for an orthonormal basis to compute the

log-ratio transformation. The advantages of this approach in many statistical analyses

can be found in Pawlowsky-Glahn et al. (2015). This recommendation was translated to

models with explanatory compositions by Tolosana-Delgado and Boogaart (2011) in the

form of balance coordinates (Egozcue and Pawlowsky-Glahn, 2005). In short, balance

coordinates are scaled log-ratios of the geometric means of two groups of components,

chosen in such a way that the basis is orthonormal.

Within balance coordinates, one particular form (Egozcue et al., 2003; Fišerová and

Hron, 2011; Hron, Filzmoser and Thompson, 2012) which later became known as pivot

coordinates (Filzmoser et al., 2018), makes it possible to interpret the effect of increas-

ing one component at the expense of decreasing all others by a common factor and has

gained widespread acceptance, partly due to the unawareness that the original formu-

lation as additive log-ratios by Aitchison and Bacon-Shone (1984) is interpreted in the

same manner up to a scaling constant when used as explanatory (Coenders, 2019).

In order to provide an easily interpretable and comparable measure of effect size,

Müller et al. (2018) wisely changed the requirement of orthonormality of the basis to

mere orthogonality by removing scaling constants from pivot coordinates, unaware that

this resulted in the same estimates and test statistics as the additive log-ratio represen-

tation. This approach was first referred to as orthogonal coordinates for compositional

regression (Müller et al., 2018). Henceforth we refer to them as simplified pivots.

The first coordinate under the simplified pivot approach is the log-ratio of the first

component over the geometric mean of all other components, the second is the log-ratio

of the second component over the geometric mean of components 3 to D, the third is

the log-ratio of the third component over the geometric mean of components 4 to D,

and so forth. Constructed as just described, the following log-ratios make it possible to

interpret the first log-ratio, which is the one to be called pivot, as the effect of increasing

the first component while reducing all others by a common factor (Hron et al., 2012;

Müller et al., 2018):

y = β0 +β1log2

(

x1

3
√

x2x3x4

)

+β2log2

(

x2

2
√

x3x4

)

+β3log2

(

x3

x4

)

+ ε. (11)
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The model can be rerun D times by permuting the components so that each time one

different component plays the role of the first, which is in the numerator of the first log-

ratio. The order of all other components is irrelevant. Each run provides one of the α

coefficients in Eq. (5).

Table 3 shows an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 = 3 as in Eq. (11). The reader will note that keeping the second and third log-ratios

constant forces all components in the denominator of the first log-ratio to change by a

common factor. Thus, as compared to case 1, case 2 doubles the ratio of x1 over each

and every of the remaining components, exactly as in Table 1. Also as compared to case

1, case 2 increases the first log-ratio by one unit while keeping the remaining log-ratios

constant. Cases 3 and 4 and coefficients β2 and β3 are usually not interpreted in the pivot

coordinate case.

Table 3: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 = 3. Simplified pivots.

Case x1 x2 x3 x4 log2

(

x1
3
√

x2x3x4

)

log2

(

x2
2
√

x3x4

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.400 0.200 0.200 0.200 1 0 0 1

3 0.240 0.380 0.190 0.190 0 1 0 2

4 0.243 0.243 0.343 0.172 0 0 1 3

Since only the β1 coefficient is interpreted in each of the D model runs, sometimes

researchers compile a table including only these, which can give the misleading impres-

sion that there is only one regression model with D log-ratios while there actually are D

regression models, each with D− 1 log-ratios. We do not discuss further the estimates

and tests and their interpretation because they are identical to the additive log-ratio case,

albeit in the simplified pivot case, interpretation is more intuitive in accordance with the

way in which the log-ratio is constructed.

5 Regression model with other explanatory orthogonal coordinates

Besides pivot coordinates, any balance coordinates can be re-expressed as orthogonal

coordinates for compositional regression (Müller et al., 2018) by just dropping the scal-

ing constants. They are thus just the logarithm of the geometric means of two groups of

components, one in the numerator and one in the denominator taking care that the basis

is orthogonal. As ordinary balance coordinates, they can be formed from a sequential

binary partition of the components (Egozcue and Pawlowsky-Glahn, 2005). There are

potentially many ways in which components can be partitioned, and the choice can be

tailored to the research objectives. We provide only an example: we firstly partition the

whole composition into the group of components x1 and x2 on the one hand and the

group x3 and x4 on the other, we secondly partition the first group into its two single

components, and thirdly we do likewise with the second group, according to the rows of
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the following sign matrix, in which positive signs indicate the numerator of the log-ratio

and negative signs the denominator:

x1 x2 x3 x4

+1 +1 −1 −1

+1 −1 0 0

0 0 +1 −1

. (12)

We get the following reparametrization:

y = β0 +β1log2

(

2
√

x1x2

2
√

x3x4

)

+β2log2

(

x1

x2

)

+β3log2

(

x3

x4

)

+ ε. (13)

Since it is feasible to compute potentially many sets of orthogonal coordinates by par-

titioning the components in different ways, the interpretation has to be tailored to the

particular log-ratios. If we consider what it means to keep the second and third log-

ratios constant while interpreting the first one, the estimates and tests of β1 have to be

interpreted as the effect of increasing x1 and x2 by a common factor and reducing x3 and

x4 by a common factor in such a way that the ratio of the geometric means of the first pair

over the second doubles (assuming we use the logarithm to base 2). A sequential binary

partition chosen by the researcher as in Eq. (12) makes it possible to test the effect of

jointly increasing any subset of components by a common factor while decreasing any

other subset of components by a common factor. If we consider what it means to keep

the first and third log-ratio constant while interpreting the second log-ratio, the estimates

and tests of β2 have to be interpreted as the effect of doubling the x1 to x2 ratio without

modifying the relative importance of x3 to x4, nor the relative importance of x3 and x4 to

x1 and x2 in geometric mean terms, in the same way as in the centred log-ratio case. The

actual estimate is half of that obtained with the centred log-ratio and the test result is

identical. The reader will note that, by coincidence, the formulation of the last log-ratio

in Eq. (13) coincides with the additive log-ratio case in Eq. (6), but not its interpretation.

Table 4 has an example of a fictitious population with β0 = 0, β1 = 1, β2 = 2, and

β3 =−2 as in Eq. (13). For instance, as compared to case 1, case 2 increases the first log-

ratio by one unit while keeping the remaining log-ratios constant and shows a twofold

increase in the ratio between x1 and x2 on the one hand and x3 and x4 on the other.

Summing up, orthogonal coordinates for compositional regression have the attrac-

tive property that effects can always be interpreted as increasing the components in

the numerator by a common factor while decreasing those in the denominator by a

common factor in such a way that the ratio has a twofold increase. The perturbation

[0.333,0.333,0.167.0.167] in the second row of Table 4 associated to the log2

(

2
√

x1x2
2
√

x3x4

)

log-ratio is a good example. In the orthogonal coordinate case, interpretation is intuitive

in accordance with the way in which the log-ratio is constructed.
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Table 4: Fictitious population with β0 = 0,β1 = 1,β2 = 2,β3 =−2. Orthogonal coordinates for composi-

tional regression.

Case x1 x2 x3 x4 log2

(

2
√

x1x2
2
√

x3x4

)

log2

(

x1

x2

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.333 0.333 0.167 0.167 1 0 0 1

3 0.343 0.172 0.243 0.243 0 1 0 2

4 0.243 0.243 0.343 0.172 0 0 1 −2

Of course, the original balance coordinates which include scaling constants are equiv-

alent up to a change in scale, which preserves the statistical test results but makes effect

sizes less readily comparable.

6 Regression model with explanatory pairwise log-ratios

Greenacre (2019) suggested a general approach to selecting D− 1 pairwise log-ratios,

which, when introduced as explanatory, provide yet another flexible way of testing hy-

potheses that can be tailored to the research objectives. It boils down to taking care that

each component participates in at least one log-ratio and that exactly D− 1 log-ratios

are computed. This results in an acyclic connected graph in which the D components act

as nodes and the D−1 log-ratios as edges (Greenacre, 2019). Once more, this makes for

a very high number of possible reparametrizations. As in the section above, we present

just one example. The reader will note that the formulation of the first log-ratio coincides

with the additive log-ratio case in Eq. (6), but not its interpretation.

y = β0 +β1log2

(

x1

x4

)

+β2log2

(

x2

x1

)

+β3log2

(

x3

x4

)

+ ε. (14)

The log-ratios in Eq. (14) correspond to the graph in Figure 1.

Figure 1: Acyclic connected graph representing the pairwise log-ratios. Arrows point from the denominator

to the numerator.
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When interpreting each log-ratio the researcher will have to be well aware of what

the model is controlling for. If we use the logarithm to base 2, β1 is interpreted as the

effect of doubling the ratio of x1 over x4. However, keeping the second log-ratio constant

means that x2 can only increase by the same factor as x1, and keeping the third log-ratio

constant means that x3 can only decrease by the same factor as x4. The graph in Figure 1

also shows x2 to be connected to x1, and x3 to x4. Thus the estimates and tests of β1

have to be interpreted as the effect of multiplying x1 and x2 by a common factor and x3

and x4 by a common factor in such a way that the ratio of the first pair over the second

doubles. The interpretation is thus not the same as in the additive log-ratio case, even if

the formulation of the log-ratio is the same as in Eq. (6).

Rearranging the components in the pairwise log-ratios makes it possible to test the

effect of jointly increasing any subset of components by a common factor while de-

creasing all the remaining components by a common factor. The remaining log-ratios

and the acyclic connected graph inform the researcher of which other components are

linked to the numerator and which to the denominator of the log-ratio which is being

interpreted, for which purpose great care has to be exerted. When used as explanatory,

pairwise log-ratios are thus more closely related to orthogonal coordinates for compo-

sitional regression than previously thought, although less flexible, because orthogonal

coordinates make it possible to leave certain components out of both the denominator

and the numerator for interpretation.

Because of the way in which the pairwise log-ratios are computed in this particular

example, the reader can apply the reasoning above to find out that the interpretation

of β2 and β3 is the same as in the additive log-ratio case, and also corresponds to two

particular simplified pivots. For instance, when interpreting β2, keeping the first and

third log-ratios constant implies that x4 and x3 vary by the same factor as x1, respectively,

while no component varies by the same factor as x2. The graph in Figure 1 also shows

x4 and x3 to be connected to x1. β2 thus refers to doubling the ratio of x2 over all other

components assuming that they decrease by a common factor.

Table 5 shows an example of a fictitious population with β0 = 0, β1 = 2, β2 = 1, and

β3 =−1 as in Eq. (14), which illustrates the interpretations above.

Table 5: Fictitious population with β0 = 0,β1 = 2,β2 = 1,β3 =−1. Pairwise log-ratios.

Case x1 x2 x3 x4 log2

(

x1

x4

)

log2

(

x2

x1

)

log2

(

x3

x4

)

E(y)

1 0.250 0.250 0.250 0.250 0 0 0 0

2 0.333 0.333 0.167 0.167 1 0 0 2

3 0.200 0.400 0.200 0.200 0 1 0 1

4 0.200 0.200 0.400 0.200 0 0 1 −1

It must be noted again that even if the construction of the log-ratio log2(x j/xk) sug-

gests increasing x j in relative terms to only xk, this does not correspond to its interpre-

tation when the composition is explanatory, because control of the other log-ratios is a

key issue.
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It must be reminded that cases 2 to 4 in all Tables 1 to 5 can also be interpreted in

terms of the perturbation of the [x1,x2,x3,x4] composition when increasing each log-ratio

by one unit while keeping all other log-ratios constant. In all cases, the perturbations are

obtained as the inverse transformations of vectors [1,0,0], [0,1,0] and [0,0,1] according

to the given log-ratio transformation.

7 Illustration

As an illustration we use one of the original simulated data sets provided by Aitchison

(1986), called Bayesite, which is freely available in the R library compositions (Boogaart

and Tolosana-Delgado, 2013).

In the development of bayesite, a new fibreboard, experiments were conducted to

obtain some insight into the nature of the relationship of its permeability (measured in

microdarcies) to the mix of its four ingredients (n = 21):

• Short fibres (x1).

• Medium fibres (x2).

• Long fibres (x3).

• Binder (x4)

All model parametrizations have an intercept term equal to 317.302, a residual stan-

dard error equal to 46.61 on 17 degrees of freedom, multiple R-squared equal to 0.419,

adjusted R-squared equal to 0.316, and a significant joint F statistic (4.078 on 3 and 17

degrees of freedom, p-value = 0.024), telling that the mix as a whole has an impact on

permeability.

Table 6 shows the coefficients. Those in italics are either redundant or not needed for

interpretation. The most correlated log-contrast with permeability is also the same for

all parametrizations:

19.414log2 (x1)+27.406log2 (x2)−25.953log2 (x3)−20.866log2 (x4) . (15)

This means that permeability increases together with increases of x1 and x2 coupled with

decreases in x3 and x4, in terms of relative importance, x2 and x3 having a greater impact

than x1 and x4.

The additive log-ratio results tell that increasing the relative importance of x2 at the

expense of reducing all other components by a common factor in such a way that the ra-

tio of x2 over any other component doubles, leads to an expected increase of 27.406 mi-

crodarcies in permeability, which is statistically significant at the 0.05 level. The results

also tell that relatively increasing x3 at the expense of reducing all other components by

a common factor in such a way that the ratio of x3 over any other component doubles,

leads to a significant expected decrease of 25.953 microdarcies.
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Table 6: Estimates and tests in four alternative reparametrizations. Redundant or not needed effects in

italics.

Additive log-ratios: Estimate Std. Error t-value p-value

Denominator x4

Numerator x1 19.414 11.560 1.679 0.111

Numerator x2 27.406 11.560 2.371 0.030

Numerator x3 −25.953 11.560 −2.245 0.038

Denominator x3

Numerator x1 19.414 11.560 1.679 0.111

Numerator x2 27.406 11.560 2.371 0.030

Numerator x4 −20.866 16.229 −1.286 0.216

Centred log-ratios:

Log-ratio with x4 numerator omitted

Numerator x1 40.281 23.929 1.683 0.111

Numerator x2 48.272 23.929 2.017 0.060

Numerator x3 −5.087 23.929 −0.213 0.834

Log-ratio with x3 numerator omitted

Numerator x1 45.368 17.694 2.564 0.020

Numerator x2 53.360 17.694 3.016 0.008

Numerator x4 5.087 23.929 0.213 0.834

Log-ratio with x2 numerator omitted

Numerator x1 −7.991 17.694 −0.452 0.657

Numerator x3 −53.360 17.694 −3.016 0.008

Numerator x4 −48.272 23.929 −2.017 0.060

Log-ratio with x1 numerator omitted

Numerator x2 7.991 17.694 0.452 0.657

Numerator x3 −45.368 17.694 −2.564 0.020

Numerator x4 −40.281 23.929 −1.683 0.111

Simplified pivots:

x1 in the first place

Pivot 19.414 11.560 1.679 0.111
Second log-ratio 33.877 11.541 2.935 0.009

Third log-ratio −2.544 11.964 −0.213 0.834

x2 in the first place

Pivot 27.406 11.560 2.371 0.030
Second log-ratio 28.550 11.541 2.474 0.024

Third log-ratio −2.544 11.964 −0.213 0.834

x3 in the first place

Pivot −25.953 11.560 −2.245 0.038
Second log-ratio 10.763 11.541 0.933 0.364

Third log-ratio 24.136 11.964 2.017 0.060

x4 in the first place

Pivot −20.866 16.229 −1.286 0.216
Second log-ratio 12.459 10.216 1.220 0.239

Third log-ratio 26.680 8.847 3.016 0.008

Other orthogonal coordinates (example)

log2

(√
x1x2

/√
x3x4

)

46.820 14.880 3.147 0.006

log2(x1/x2) −3.996 8.847 −0.452 0.657

log2(x3/x4) −2.544 11.964 −0.213 0.834

Pairwise log-ratios (example)

log2(x1/x4) 46.820 14.880 3.147 0.006

log2(x2/x1) 27.406 11.560 2.371 0.030

log2(x3/x4) −25.953 11.560 −2.245 0.038
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The centred log-ratio formulation shows that increasing x1 at the expense of reducing

x3 and increasing x2 at the expense of reducing x3 both lead to a significant increase in

permeability. Doubling x1 at the expense of halving x3 (i.e., multiplying their ratio by

four) leads to a 45.368 microdarcy increase in expected permeability, while multiplying

the ratio between x2 and x3 by four leads to a 53.360 increase in expected permeability.

The results with simplified pivots are identical numerically and interpreted in the

same way as those with additive log-ratios.

In this particular example, the second and third orthogonal coordinates are trade-

offs between pairs of components and are thus related to the results of a centred log-

ratio (estimates are halved but test statistics are identical). For instance, the test statistic

for the coordinate log2(x1/x2) is equivalent to the x1 statistic in the centred log-ratio

formulation with x2 omitted.

Also in this particular example, the second and third pairwise log-ratios provide

the same result as in the additive log-ratio case. Researchers need to carefully tailor

interpretation to the particular log-ratios chosen, especially in the pairwise case. For

instance, keeping the first and third pairwise log-ratios constant while increasing the

second implies increasing the ratio of x2 over all other components by the same factor.

Finally, the results of the first log-ratio both in the particular pairwise log-ratio ex-

ample and the particular orthogonal coordinate example we have chosen, show that the

effect of multiplying x1 and x2 by a common factor and x3 and x4 by another common

factor in such a way that the ratio of the geometric mean of the first pair over the sec-

ond doubles is significant, and amounts to 46.820, in terms of expected permeability in

microdarcies.

8 Discussion

One attractive feature of CoDa is that once the raw composition has been transformed

into log-ratios, classical statistical techniques for unbounded data can, in many cases, be

applied in the usual way, and even with standard software. Log-ratio transformations thus

constitute the easy way out in compositional problems. This includes models in which

the composition is the explanatory variable. The applied researcher can concentrate his

or her efforts in interpreting the results taking the compositional nature of the data and

the research questions into account: what does increase at the expense of decreasing

what? Along these lines, some quick and useful highlights to recap the article are:

• All alternatives considered in this article are reparametrizations of the same model.

In a sense, none can be worse or better than any other as long as the parametriza-

tion provides answers to the researcher’s questions and, above all, is interpreted

correctly. If the researcher wants to interpret the results from more than one per-

spective or to test more than one type of hypotheses, he or she can use more than

one parametrization.
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• When used as explanatory variables, additive log-ratios are not interpreted as in-

creasing a component at the expense of reducing the last component, as their for-

mulation suggests, but as increasing a component at the expense of reducing all

other components.

• When used as explanatory variables, centred log-ratios are not interpreted as in-

creasing a component at the expense of reducing all other components, as their

formulation suggests, but as increasing a component at the expense of reducing

the component whose log-ratio is omitted.

• When used as explanatory variables, simplified pivot coordinates are equivalent to

additive log-ratios.

• Orthogonal coordinates can be tailored to testing particular hypotheses of interest

related to increasing any subset of components at the expense of reducing any

other subset. Moreover, the interpretation of the regression coefficients is intuitive

following the formulation of the corresponding log-ratios.

• When used as explanatory variables, pairwise log-ratios are not interpreted as in-

creasing a component at the expense of reducing another component, as their for-

mulation suggests, but as a tailored tool to interpret the effect of increasing a subset

of components at the expense of reducing all the remaining components. Proper

interpretation requires exerting great care.

• It often pays to embed theoretical knowledge or research questions into (possibly

more than one) parametrizations of the model.

• As in any multiple regression, the full formulation of the model has much to tell

about the log-ratio whose effect is being interpreted.

• Using logarithms to base 2 and removing scaling constants enhances interpretabil-

ity and provides comparable effect size estimates.

• Expressing the effects of the log-ratios as the effects of the corresponding pertur-

bations may help clarify their interpretation under all approaches, and even more

so when tailoring orthogonal coordinates and pairwise log-ratios to the research

objectives. The effect of the first log-ratio in the regression equation is that of per-

turbing the composition with the corresponding inverse log-ratio transformation

of vector [1,0,0,0, ...,0], the second log-ratio refers to perturbing the composition

with the inverse of vector [0,1,0,0, ...,0], and so on.

Great care must be taken if using the test results for simplifying the model (Paw-

lowsky-Glahn et al., 2015). The significance of one log-ratio depends both on the com-

ponents present in the analysis and on the remaining D− 2 log-ratios, which jointly

frame the interpretation as the significant effect of relatively increasing what and how

at the expense of relatively decreasing what and how. If we put it otherwise, dropping

log-ratios changes the interpretation and estimates of whatever is left in the model. For

instance, if we drop the second and third log-ratios in the orthogonal coordinate case in

Eq. (13), then the coefficient of the first log ratio loses its original sharpness and shifts its

interpretation into merely increasing the ratio of the product x1x2 over the product x3x4,
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without knowing if increases and decreases are by a common factor. This is so because

the perturbation can no longer be computed from the inverse transformation. If we put it

yet otherwise, all methods are interpreted with respect to the given set of components in

x. For instance, if we drop x1 in the additive log-ratio case in Eq. (6), then the interpre-

tation of the coefficient of log2(x2/x4) is the outcome of increasing x2 while decreasing

only x3 and x4 by a common factor. Besides that, different parametrizations will un-

avoidably suggest different simplifications, and the simplified models will no longer be

equivalent. In the bayesite example, the pivot and additive log-ratio approaches suggest

that x1 may be dropped from the composition whereas the centred log-ratio approach re-

veals a significant trade-off between x1 and x3. The centred log-ratio approach suggests

to drop x4 while in the pairwise log-ratio approach all the coefficients are significant.

The easy way out is not to simplify the model at all. Of course, if the research is carried

out for predictive or exploratory purposes rather than for theory building or theory test-

ing, then simplifying the model can be the wise path to follow (see below) and parameter

interpretation may not be essential.

We have not dealt with the diagnostic tools used in linear regression models with

a compositional predictor because they are the same as in the general linear regression

case, according to the distributional assumptions for the ǫ disturbance term, for instance

the normal distribution. Any of the parametrizations can be obtained from any other

parametrization by linear transformations. Since the regression model is affine equiv-

ariant, this implies that all parametrizations lead to the same goodness of fit, residuals,

predicted values, and even leverage values and Cook’s distances (Filzmoser et al., 2018).

Conversely, the statistical distribution of the compositional variables plays no specific

role. For this reason, orthogonality or isometry do not constitute requirements for using

compositions as explanatory variables.

Having said this, orthogonal isometric log-ratios, among which balance coordinates

constitute a common example, have very desirable properties in other compositional

analyses, and can be blindly applied with virtually any statistical method. In the ex-

planatory role, any orthogonal coordinates, isometric or not, also have the attractive

property that effects can always be interpreted as increasing the components in the nu-

merator by a common factor while decreasing those in the denominator by a common

factor. Both advantages have no doubt contributed to their widespread use.

The extension from a linear model to a generalized linear model is straightforward

(Coenders, Martı́n-Fernández and Ferrer-Rosell, 2017). For instance, if the dependent

variable is a count, a Poisson regression can be specified, or if the dependent variable

is ordinal or binary, an ordered or a binary logit model can be specified. Interpretation

would then refer to the log expected count, to the logit, or to the appropriate expression

in each case, taking the link function of the generalized linear model into account.

Adding non-compositional predictors in the same model can also be done in a straight-

forward manner (Coenders et al., 2017) and nested models can be used to assess the

predictive power of the compositional versus non-compositional predictors. The results

of the non-compositional predictors are invariant under any of the parametrizations of
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the composition presented in this article. The interpretation of the compositional pre-

dictors is the same as outlined in this article “keeping the non-compositional predictors

constant”. A very interesting particular case is including the total as predictor, which Co-

enders et al. (2017) recommend doing when the composition does not have a constant

sum.

This article is by no means comprehensive. We have purposely selected only the

simplest parametrizations with comparable effect sizes and leading to the same predic-

tions. There are other ways to introduce a composition as explanatory in a regression

model. A first group of methods (stability-based model selection, stepwise selection

of the pairwise log-ratios with the highest explanatory power, spike-and-slab lasso re-

gression modelling, principal balances, selection of the balance coordinate with highest

explanatory power, and compositional principal component analysis, among others) al-

ways simplify the model, each in its own way, and thus lead to different predictions,

do not control for all possible components or all possible log-ratios, and modify the

interpretation. The interested reader may resort to the original sources (Combettes and

Müller, 2019; Greenacre, 2019; Lin et al., 2014; Louzada, Shimizu and Suzuki, 2019;

Martı́n-Fernández et al., 2018; Quinn and Erb, 2020; Rivera-Pinto et al., 2018; Solans et

al., 2019). These data-driven approaches are especially useful when the number of com-

ponents is very large, sometimes even larger than the sample size, when the model is

built with predictive purposes, or when theory is weak and the researcher prefers to em-

brace a data mining perspective. A second group of methods does not imply simplifying

the model. Among them we highlight interpreting the effects of balance coordinates,

which up to a scaling constant are equivalent to those of orthogonal coordinates for

compositional regression (Pawlowsky-Glahn et al., 2015), comparing predictions with

different composition values (Dumuid et al., 2019), converting estimates into a gradi-

ent (Tolosana-Delgado and Boogaart, 2011), and converting estimates into elasticities

(Morais, Thomas-Agnan and Simioni, 2018).

Having said this, we hope that by focusing on the most simple alternatives and on

the comparative interpretation of their effect sizes and tests, we make it easier for re-

searchers to draw fruitful, precise and clear conclusions about the influence of a compo-

sition on a dependent variable. Especially, a focus on effect sizes is as of now lacking in

most applications, with few exceptions.
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Barceló-Vidal, C. and Martı́n-Fernández, J.A. (2016). The mathematics of compositional analysis. Austrian

Journal of Statistics, 45, 57–71.

Boogaart, K.G. Van den and Tolosana-Delgado, R. (2013). Analyzing Compositional Data with R. Springer,

Berlin.

Buccianti, A., Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2006). Compositional Data Analysis in the

Geosciences: from Theory to Practice. Geological Society, London.

Coenders, G. (2019). Compositional explanatory variables: which are the differences between alr and pivot

coordinates? 8th International Workshop on Compositional Data Analysis CoDaWork 2019. Terrassa,

Spain, 3-8 June 2019. https://doi.org/10.13140/RG.2.2.22987.44325

Coenders, G. and Ferrer-Rosell, B. (2020). Compositional data analysis in tourism. Review and future

directions. Tourism Analysis, 25, 153–168.

Coenders, G., Martı́n-Fernández, J.A. and Ferrer-Rosell, B. (2017). When relative and absolute information

matter. Compositional predictor with a total in generalized linear models. Statistical Modelling, 17, 494–

512.

Combettes, P.L. and Müller, C.L. (2019). Regression models for compositional data: General log-contrast

formulations, proximal optimization, and microbiome data applications. arXiv,1903.01050.
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