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Independent increments in group sequential

tests: a review

KyungMann Kim1,∗ and Anastasios A. Tsiatis2

Abstract

In order to apply group sequential methods for interim analysis for early stopping in clinical trials,

the joint distribution of test statistics over time has to be known. Often the distribution is mul-

tivariate normal or asymptotically so, and an application of group sequential methods requires

multivariate integration to determine the group sequential boundaries. However, if the increments

between successive test statistics are independent, the multivariate integration reduces to a uni-

variate integration involving simple recursion based on convolution. This allows application of

standard group sequential methods. In this paper we review group sequential methods and the

development that established independent increments in test statistics for the primary outcomes

of longitudinal or failure time data.

MSC: 62-02, 62H10, 62L10, 62L15.

Keywords: Failure time data, interim analysis, longitudinal data, clinical trials, repeated signifi-

cance tests, sequential methods.

1 Introduction

In most chronic disease clinical trials, the primary outcome of interest is either longitu-

dinal data taken at successive follow-up visits with possibly missing data or failure time

data, i.e. time to an event such as death with possible right censoring. Typically partic-

ipants enter the study serially in a way known as staggered entry, and the final analysis

is conducted either after a pre-specified number of follow-up visits for each participant

for longitudinal data or after a pre-specified follow-up period or a pre-specified number

of events of interest for failure time data.

For ethical as well as practical reasons, these clinical trials are often monitored se-

quentially over time during the course of the study, and if a sufficiently large treatment

difference is observed at an interim analysis, they may be considered for early stopping

to avoid unnecessary experimentation on human subjects. Such an approach is known
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as a sequential method. When clinical trials are monitored in this way using a sequen-

tial method, multiplicity from repeatedly applying statistical testing over time has to be

accounted for to control the overall type I error probability at an acceptable significance

level. In order to determine the sequential boundaries that preserve the operating charac-

teristic of a statistical test applied repeatedly, the joint distribution of test statistics over

time has to be known.

For clinical trials in which the primary outcome of interest is taken only once from

each participant, the joint distribution of test statistics over time is simply a product of

the distributions of test statistics at each interim analysis as each participant contributes

data to the test statistics only once and the increments between successive test statistics

are independent. However, for the primary outcome that is either longitudinal or failure

time data, it is no longer the case as each participant possibly contributes outcome data

to test statistics more than once over interim analyses.

Modern-day clinical trials since the mid 1990s or even earlier have been routinely

monitored by data and safety monitoring boards or data monitoring committees to en-

sure the safety of participants and whether risks versus benefits are acceptable for con-

tinuing the study. This is accomplished using standard group sequential methods in in-

terim analyses for possible early stopping if there is clear statistical signal of differences

in efficacy of an investigational intervention as compared to a control intervention that

may include a placebo or standard of care or if there is major concerns for safety of par-

ticipants. This review article on independent increments in group sequential tests is an

attempt to describe the development of statistical methods for interim analyses leading

up to mid 1990s.

For longitudinal data, the joint distribution of test statistics over time has been inves-

tigated by many including Armitage, Stratton and Worthington (1985), Geary (1988),

Wei, Su and Lachin (1990a), Lee and DeMets (1991, 1992), Reboussin, Lan and DeMets

(1992), Su and Lachin (1992), Wu and Lan (1992), Gange and DeMets (1996), and

Lee, Kim and Tsiatis (1996). Likewise, for failure time data, the joint distribution of

test statistics over time has been investigated by many including Tsiatis (1981, 1982),

Gail, DeMets and Slud (1982), Slud and Wei (1982), Sellke and Siegmund (1983), Slud

(1994), Tsiatis, Rosner and Tritchler (1985), Gu and Lai (1991), Lin (1992), Gu and

Ying (1995), and Tsiatis, Boucher and Kim (1995).

Often the joint distribution turns out to be multivariate normal or at least asymptot-

ically so, and subsequently sequential methods require multivariate numerical integra-

tion. The MULNOR program by Schervish (1984) can be used to this end, but it involves

very intensive numerical computation. Also the program can handle multivariate inte-

grations of only up to seven dimensions, thus limiting the tests to be applied up to seven

times only.

If the increments between successive test statistics are independent, however, the

multivariate numerical integration reduces to univariate numerical integration involving

simple recursion based on convolution of two independent variables as noted by Ar-

mitage, McPherson and Rowe (1969) and McPherson and Armitage (1971). This is ob-
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viously the case when the outcomes are measured only once as noted earlier. Moreover,

this allows the use of standard group sequential methods such as by Pocock (1977),

O’Brien and Fleming (1979), and Lan and DeMets (1983) for design and analysis of

group sequential clinical trials.

The joint distributions established by these authors dealt with specific test statis-

tics under selected statistical models for longitudinal data and failure time data. Jenni-

son and Turnbull (1990) and Scharfstein, Tsiatis and Robins (1997), however, provided

generalized theory for independent increments in sequential test statistics. The former

considered the joint distribution of test statistics for treatment effect in the presence of

covariates in regression model setting, while the latter considered the joint distribution

of semiparametric-efficient test statistics.

The rest of this paper is organized as follows. In Section 2, we first review the his-

torical development of sequential methods including classical and the so-called group

sequential methods specifically for application in clinical trials as a background. We

then review repeated significance testing and univariate recursive numerical integration

when increments between successive test statistics are independent in contrast to the

multivariate numerical integration required for sequential test statistics with correlated

increments. In Section 3, we review the historical development for the joint distribu-

tion of sequential test statistics and independent increments for group sequential tests of

longitudinal data and failure time data. In Section 4, after introducing general notations

and formulation of the problem, we review joint distributions of sequentially computed

test statistics for general regression models of independent data and various parametric,

semiparametric and nonparametric models for longitudinal data and failure time data.

In Section 5, we briefly review how the error spending function and information frac-

tion is used for design and analysis of group sequential clinical trials and demonstrate

independent increments in sequential test statistics for longitudinal data and failure time

data using real clinical trials data and simulated data. We close with concluding remarks

and observations in Section 6.

2 Sequential methods

2.1 Early sequential methods

According to Armitage (1990), “[a] scientific investigation is sequential if its conduct

at any stage depends on the outcome at previous stages.” Probably the earliest applica-

tion of sequential methods can be found in Dodge and Romig (1929) in which “double

sampling schemes” are used in industrial batch sampling for quality monitoring. These

two-stage sequential methods were adapted in cancer drug screening trials, e.g. in Gehan

(1961), Lee et al. (1979), and Simon (1989). In a theoretical development, Stein (1945)

derived a sequential procedure that uses estimated variance from the first-stage sample

in choosing the size of the second-stage sample to achieve a desired power of a two-stage

t-test.
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For a fixed sample test of the null hypothesis H0 : θ = θ0 against the alternative

hypothesis H1 : θ = θ1, let f (x;θ) be the probability density or mass function for a

random variable X . According to Neyman and Pearson (1933), one rejects H0 in favor

of H1 if Ln > cα where

Ln =
n

∏
i=1

f (xi;θ1)

f (xi;θ0)

is the likelihood ratio. The critical value cα is determined for the test to be of size α.

Then the test is most powerful, that is, the type II error probability β is smallest amongst

all tests with size ≤ α.

(a) SPRT

(c) Restricted plan (d) RST plan

(b) Combination of two SPRTs

nn

nn

n0n0

tntn

tntn

Figure 1: Sequential boundaries from Fig. 6.1 in Armitage (1990).
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Following what came to be known as Neyman-Pearson’s fundamental lemma above,

Wald (1947) developed the sequential probability ratio test (SPRT) to discriminate be-

tween two simple hypotheses. Specifically Wald SPRT shows that when the sample size

is not fixed in advance, further improvement is possible. The best procedure in a certain

sense made precise by Wald and Wolfowitz (1948) is 1) to continue sampling as long as

B < Ln < A for some constant B < 1 < A and 2) to stop sampling and decide in favor of

H1 or H0 as soon as Ln > A or Ln < B, respectively, where

A ≈ 1−β

α
and B ≈ β

1−α
.

A specific case when θ0 = 0 and θ1 > 0 is a one-tailed test as shown in Fig. 1(a). There

are two different versions of its generalization for a two-tailed test with H1 : θ 6= 0.

One is a two-tailed test obtained by defining a density function f1 = ( f−+ f+)/2 where

f− and f+ are the probability density or mass functions corresponding to alternative

hypotheses H− : θ < 0 and H+ : θ > 0 in two directions as suggested by Wald (1947)

(Chapter 9). The other is a combination of two separate one-tailed tests, each with type

I error probability α/2, by Sobel and Wald (1949), as shown in Fig. 1(b).

One drawback of SPRTs is that sampling may continue indefinitely. A restricted plan

by Armitage (1957) is a modification of the two-tailed version of a SPRT by Sobel and

Wald (1949) to avoid this possibility by imposing a maximum sample size with the inner

wedge removed or pushed out as shown in Fig. 1(c). A similar sequential plan was later

developed by Armitage et al. (1969) as a repeated significance test plan as shown in

Fig. 1(d) and described in detail in Subsection 2.3 as a means to adjust the critical value

to account for multiple testing leading to a constant critical value. Of note, the operating

characteristics of these two sequential tests in Figs. 1(c) and 1(d) are very similar.

2.2 “Sampling to reach a foregone conclusion”

Let X1,X2, . . . be independent and identically distributed and drawn from N(µ,σ2) with

known variance σ2, and consider a statistical test of H0 : µ = 0 against H1 : µ 6= 0. For

a single sampling plan with a fixed sample size n, one would reject H0 if and only if

|Sn|> 1.96σ
√

n at a significance level α= 0.05 where Sn = ∑n
i=1 Xi.

A need for adjustment in the critical value for repeated testing is recognized by the

law of the iterated logarithm described here. Assume only that Xi, i = 1,2, . . . are simply

independent and identically distributed with mean µ and finite variance 0 < σ2 < ∞. In

addition assume that n is not fixed in advance, and data become available sequentially

one at a time. If Sn is computed for each n ≥ 1, |Sn| is certain to exceed 1.96σ
√

n for

some n, even if H0 is true, for the law of the iterated logarithm asserts that

limsup
n→∞

Sn −nµ

σ
√

2n loglogn
= 1 with probability 1.
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Thus an unscrupulous experimenter might be tempted to take a sample of size

N = inf{n ≥ 1 : |Sn|> 1.96σ
√

n},

and report as if it were a fixed sample size and claim rejection of H0 at a significance

level 0.05. However, the experimenter may have to spend some time in the process as

the expected sample size under this sampling scheme is E(N) = ∞.

That one can reach a nominal significance by testing repeatedly was aptly described

as “sampling to reach a foregone conclusion” by Anscombe (1954).

2.3 Repeated significance tests

Controversy regarding control of type I error probability depending on the approach, be

it Bayesian, likelihood-based, or frequentist, led Armitage et al. (1969) to evaluate the

type I error probability of the sequential testing procedure described above to settle the

score, so to speak. The numerical procedure for computing the type I error probability

is described below.

Assume as above that X1,X2, . . . are independent and identically distributed normal

random variables with mean µ and, without loss of generality, variance 1. To test H0 :

µ= 0 against H1 : µ 6= 0 at a significance level α, sampling is terminated the first time

when

|Sk|> bk

where b1,b2, . . . are boundary values. With the maximum number of observations K, the

boundary values have to satisfy the following:

Pr(|Sk|> bk for some k = 1, . . . ,K) = α

or equivalently

Pr(|S1| ≤ b1, . . . , |SK | ≤ bK) = 1−α.

The computation of these probabilities can be simplified by noting that fk, the probabil-

ity density function of Sk under H0 in the sequential procedure, satisfies the following

recursive definition base on convolution:

fk(s) =
∫ bk−1

−bk−1

fk−1(u)φ(s−u)du (2.1)

where f1 is the standard normal density function φ above. This is so because of the

independence between Sk−1 and Sk −Sk−1, i.e. independent increments in Sk.

With k⋆ denoting the random variable for when |Sk|> bk for the first time, the prob-

ability of stopping at or before k is
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Pk = Pr(k⋆ ≤ k) = 1−Pr(|S1| ≤ b1, . . . , |Sk| ≤ bk) = 1−
∫ bk

−bk

fk(u)du

and the probability of stopping at k⋆ = k, i.e. the exit probability Pr(k⋆ = k), is simply

Pk −Pk−1 = Pr(|S1| ≤ b1, . . . , |Sk−1| ≤ bk−1, |Sk|> bk)

=
∫ bk−1

−bk−1

fk−1(u){1−Φ(bk−u)+Φ(−bk−u)}du (2.2)

where Φ is the standard normal distribution function. The overall significance of the

sequential procedure is determined by

α= 1−
∫ bK

−bK

fK(u)du.

The recursive definition of fk above allows direct computation of these probabilities us-

ing standard numerical integration methods, e.g. a Newton-Cotes formula of the second

order, i.e. Simpson’s rule. This same computational procedure works when µ 6= 0 with

Xk replaced by Xk −µ. The above observation led to the notion of repeated significance

tests as described in Armitage et al. (1969), which in turn paved the way for development

of group sequential methods for clinical trials.

2.4 Group sequential methods for clinical trials

Following the seminal work on sequential analysis by Wald (1947), Bross (1952) and

Armitage (1954) appear to have been the first to advocate the use of sequential methods

in clinical trials. Different from other settings where savings in sample size was the

primary motivation for using sequential methods, it was ethical imperatives in clinical

trials in considering early termination to avoid unnecessary experimentation on human

subjects in the presence of clear evidence of benefits or harms of interventions.

Suppose that response to treatment is a normal random variable with means µA and

µB for treatments A and B, respectively, and known variance σ2, a typical two-sample

problem. Consider a test of H0 : µA = µB against H1 : µA 6= µB or, equivalently, H0 : δ= 0

against H1 : δ 6= 0 where δ = µA −µB. A fixed sample size test with a significance level

α= 0.05 with n participants on each treatment rejects H0 when

Z =

∣∣∣∣∣
X̄A − X̄B√

2σ2/n

∣∣∣∣∣> 1.96

where X̄A and X̄B denote the sample means.

Group sequential designs call for monitoring of accumulating data over time period-

ically after groups of observations become available using sequential tests. Wald (1947)

(pp 101–103) refers to taking groups of observations and applying SPRTs for binary
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outcome. One strategy of a group sequential test is to reject the null hypothesis of no

treatment difference if, at any of the interim analyses, the test statistic becomes suffi-

ciently large; otherwise, do not reject (accept) the null hypothesis.

Consider examining the accumulating data after a group of every 2n observations, n

on each treatment, become available, namely,

Yj =
X̄A j − X̄B j√

2σ2/n
∼ N(δ⋆,1)

where δ⋆ = δ/
√

2σ2/n, for up to a maximum of K analyses for a maximum of 2nK

observations. With the score statistics

Sk =
k

∑
j=1

Yj =
k

∑
j=1

X̄A j − X̄B j√
2σ2/n

∼ N(δ⋆k,k) (2.3)

or the Wald statistics

Zk = Sk/k1/2 ∼ N(δ∗k1/2,1), (2.4)

a group sequential test rejects H0 for the first time when

|Sk|> bk or equivalently |Zk|> ck.

Figure 2: Group sequential critical values from Fig. 1 in DeMets and Lan (1984).
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Hence, if we want a level α test, we choose the boundary values, b1, . . . ,bK , or equiv-

alently the critical values, c1, . . . ,cK, such that, under H0,

Pr(|S1| ≤ b1, . . . , |SK | ≤ bK) = Pr(|Z1| ≤ c1, . . . , |ZK | ≤ cK) = 1−α. (2.5)

Note that there is an equal increment of statistical information in sample size, i.e. 2n,

between sequentially computed test statistics and that the increments are independent so

that the computational procedure by Armitage et al. (1969) can be used in this type of

group sequential tests.

Several group sequential methods are used for determining the boundary or the crit-

ical values. These values for Pocock (1977) and O’Brien and Fleming (1979) group se-

quential methods are obtained by solving (2.5) under the conditions of c1 = · · ·= cK and

b1 = · · ·= bK , respectively (see Fig. 2). Note that Pocock’s method is the group sequen-

tial version of the repeated significance test method discussed in Subsection 2.3. One

practical drawback of these methods is that they depend on the assumption of equal sam-

ple size or more generally, equal amount of statistics information, accumulated between

two successive analyses. Otherwise the group sequential methods by Pocock (1977) and

O’Brien and Fleming (1979) cannot be applied. In order to address this situation, a flex-

ible approach was proposed by Slud and Wei (1982) in which the boundary values, bk,

k = 1, . . .K, are determined with prespecified αk, k = 1, . . . ,K, such that αk = Pk −Pk−1

in (2.2) under the null hypothesis and ∑K
k=1αk =α, the overall significance level. A prac-

tical downside to this approach is the arbitrariness in specifying αks and the possibility

of the group sequential test not meeting the criterion for early stopping at an interim

analysis and meeting the criterion at the next interim analysis with the increment in the

statistical information between the two interim analyses in the opposite direction, an

obvious logical inconsistency.

Generalizing the idea in Slud and Wei (1982), Lan and DeMets (1983) introduced

the notion of “alpha spending” instead of arbitrarily specifying αks. As a method of

allocating the type I error probability α into αks as in Slud and Wei (1982), Lan and

DeMets (1983) instead proposed allocating the type I error probability α according to an

“error spending function,” α⋆(t), which is a nondecreasing function of the information

time or fraction t, 0 ≤ t ≤ 1, defined below with α⋆(0) = 0 and α⋆(1) = α. For k =

1, . . . ,K, the type I error probability allocated for the kth interim analysis is determined

as αk = α⋆(tk)−α⋆(tk−1) where t0 = 0 and tK = 1 so that ∑K
k=1αk = α. For a one-tailed

Pocock (1977) and O’Brien and Fleming (1979) procedures, Lan and DeMets (1983)

proposed α⋆
P(t) = α log{1+ (e− 1)t} and α⋆

OF(t) = 2{1−Φ(zα/2/
√

t)}, respectively,

where zγ is the upper γ quantile of the standard normal distribution. The information

fraction t is the fraction of statistical information corresponding to an interim analysis

relative to the maximum information required. For example, tk = k/K for the group

sequential tests with equal samples of size n between two successive analyses as in the

score statistics in (2.3). If we consider unequal sample sizes nk between the (k− 1)th

and the kth interim analyses, tk = nk/nK instead.
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Figure 3: Cumulative type I error probability for group sequential tests with α= 0.05.

The cumulative type I error probabilities for the Pocock (P) and O’Brien-Fleming

(OF) group sequential procedures with K = 5 and α = 0.05 and the error spending

functions α⋆
P(t) for Pocock (P-type) and α⋆

OF(t) for O’Brien-Fleming (OF-type) from

above are plotted in Fig. 3 to indicate similarities between the standard group sequential

methods and group sequential methods based on the suitably chosen error spending

functions.

From a historical perspective, Pocock (1977), following the repeated significance

test of Armitage et al. (1969), popularized the group sequential methods for clinical

trials with normal outcome. However, it was Elfring and Schultz (1973) who first coined

the term “group sequential designs” for clinical trials with binary outcome. Jennison

and Turnbull (1990) present a detailed review of group sequential methods including

comparisons of methods by Pocock (1977), O’Brien and Fleming (1979), Slud and Wei

(1982), and Lan and DeMets (1983).

2.5 Covariance under independent increments

As noted earlier in Subsection 2.3, in order to apply group sequential methods, one has

to solve the following multivariate integral

∫ b1

−b1

· · ·
∫ bK

−bK

f (s1, . . . ,sK)ds1 · · ·dsK = 1−α

where f is the joint density function of the sequential test statistics. However, if the

following holds
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Cov(Sk,Sl) = Var(Sk) or equivalently Cov(Sk−1,Sk −Sk−1) = 0

for 1 ≤ k ≤ l ≤ K with S0 = 0, i.e. if the sequential test statistics have independent

increments, the multivariate integration above becomes univariate integration involving

simple recursion based on convolution as indicated in (2.1).

To assess the joint distributions of Sk in (2.3) or Zk in (2.4), 1 ≤ k ≤ K, consider the

fully sequential setting again as in Subsection 2.3. From the standard normal theory and

the independent increments structure of Sk, it follows that the joint distribution of the

score statistics Sk, 1 ≤ k ≤ K, is multivariate normal with marginals Sk ∼ N(µk,k) and

covariance

Cov(Sk,Sl) = k = Var(Sk), 1 ≤ k ≤ l ≤ K.

Since Sk is equivalent to the Wald statistic Zk = Sk/k1/2 = Sk/
√

Var(Sk), the correspond-

ing joint distribution of the Wald statistics Zk, 1 ≤ k ≤ K, are found to be multivariate

normal with marginals Zk ∼ N(µk1/2,1) and

Cov(Zk,Zl) =
√

k/l =
√

Var(Sk)/Var(Sl), 1 ≤ k ≤ l ≤ K.

Hence, any one of the two conditions above gives an independent increments structure

of the sequential test statistics. For the two-sample group sequential test as described in

Subsection 2.4, replacing µ with δ∗, these results also hold.

More generally, three different test statistics can be considered as in Jennison and

Turnbull (1997). For 1 ≤ k ≤ l ≤ K, the following holds:

θ̂k
a∼ N(θ,I−1

k (θ)) and Cov(θ̂k, θ̂l) = Var(θ̂l) = I
−1
l (θ) (2.6)

for the maximum likelihood estimates where Ik(θ) is the Fisher information;

Sk
a∼ N(θIk(θ),Ik(θ)) and Cov(Sk,Sl) = Var(Sk) = Ik(θ) (2.7)

for the score statistics; and

Zk
a∼ N(θI

1/2

k (θ),1) and Cov(Zk,Zl) =
√

Ik(θ)/Il(θ) (2.8)

for the Wald statistics Zk = θ̂k/SE(θ̂k) where SE stands for standard error.

Note that these distributional properties of the sequential test statistics are still true

under the general alternatives as well as the null hypothesis, and hence power of the

sequential tests can also be evaluated through the univariate integration technique as in

McPherson and Armitage (1971). When the underlying distribution is not normal, we

consider a class of local alternatives {µn}, where
√

nµn → δ 6= 0. Then normality and

an independent increments structure of the sequentially computed test statistics can be

established asymptotically under the null and a class of local alternatives so that the

standard sequential procedures described in this section are still applicable asymptoti-

cally.
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2.6 Intuition about independent increments

With normal outcome, it is intuitive that group sequential test statistics would have in-

dependent increments, thus allowing application of the classical group sequential meth-

ods. With time to event outcome, it is unclear since each participant contributes follow-

up data possibly multiple times over group sequential tests. With longitudinal outcome,

again it is unclear since each participant contributes follow-up data multiple times longi-

tudinally. Both with longitudinal data and failure time data, a participant contributes data

more than once over the course of study in group sequential tests and as a consequence

it is not intuitive why sequential tests statistics would have independent increments.

As summarized in Jennison and Turnbull (1990), independent increments structures

have been found to hold in many circumstances case by case. Scharfstein et al. (1997)

showed with great generality that the efficient score statistics in parametric and semi-

parametric models have an independent increments structure. Jennison and Turnbull

(1997) also gave a unified explanation based on efficiency of the test statistics for the

independent increments structure. For instance, in our fully sequential setting, since

the sample mean X̄k is the maximum likelihood estimator, or least squares estimator

of µ, the corresponding sequential score and Wald tests, Sk and Zk, have an indepen-

dent increments structure following their theorems. In this review paper, we consider

the group sequential score tests with independent increments derived from several esti-

mating methods such as the maximum likelihood and least squares method. For some

of them, the independent increments structures are explained by efficiency of the test

statistics, while it is not for others.

3 Joint distributions of sequential test statistics

In this section we provide a review of the historical development of independent incre-

ments in group sequential tests used in clinical trials with longitudinal data and failure

time data as the primary endpoint of interest for evaluation of efficacy of intervention.

The emphasis on these types of outcome data is because of the fact that they are widely

used in clinical trials in chronic diseases. But more importantly it is not intuitive as to

why some group sequential tests for these types of outcome data have an independent

increments structure while others do not. This is in contrast to the settings in which

outcome data are measured only once from each participant, which intuitively have an

independent increment structure.

3.1 Longitudinal data

The joint distribution of sequential test statistics for longitudinal data has been inves-

tigated by many authors for application of group sequential methods in clinical trials

with such outcome data: Armitage et al. (1985), Geary (1988), Lee and DeMets (1991),

Reboussin et al. (1992), and Wu and Lan (1992) based on parametric models; Lee and
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DeMets (1992) based on linear rank tests; Su and Lachin (1992) based on a multivariate

generalization of the Hodges and Lehmann (1963) estimator of a location shift; Wei et

al. (1990a), Gange and DeMets (1996), and Lee et al. (1996) based on semiparamet-

ric models in generalized estimation equations; and Spiessens et al. (2002) based on a

random-effects model for longitudinal ordinal outcome. Lee (1994) and Spiessens et al.

(2000) provide review of some of these sequential tests for longitudinal data.

When the primary outcome is longitudinal data with repeated measurements, each

participant can contribute outcome data to test statistics more than once. Thus it is not

intuitively obvious that sequential test statistics can have independent increments due to

apparent correlation among repeated measurements from the same participant. Indeed

the joint distributions of the sequential test statistics by Armitage et al. (1985), Geary

(1988), Wei et al. (1990a), Lee and DeMets (1992), and Su and Lachin (1992), all turn

out to have correlated increments. But as summarized below, properly formulated test

statistics and semiparametric-efficient tests for longitudinal data under various paramet-

ric and semiparametric models have independent increments.

Under a linear mixed-effects model of Laird and Ware (1982), Lee and DeMets

(1991) show that the asymptotic joint distribution of the sequential test statistics for

comparing the rates of change computed over time is multivariate normal under miss-

ing at random and includes as special cases those by Armitage et al. (1985) and Geary

(1988). Later Reboussin et al. (1992) showed that the test statistics of Lee and DeMets

(1991) have an independent increments structure.

In order to account for informative drop-out, Wu and Lan (1992) proposed group

sequential tests to compare areas under the response change curves between two treat-

ments based on the two-stage random effects model of Wu and Bailey (1989). It is

shown that when the response curve is linear and drop-out non-informative, the test by

Wu and Lan (1992) reduces to that by Lee and DeMets (1991) above and that the joint

distribution of the test statistics computed over time has independent increments.

Wei et al. (1990a), Gange and DeMets (1996), and Lee et al. (1996) all proposed a

group sequential test based on a semiparametric model using the generalized estimating

equations approach of Liang and Zeger (1986). Wei et al. (1990a) assume an indepen-

dence model for the working variance for repeated measures, while Gange and DeMets

(1996) and Lee et al. (1996) assume that the covariance matrix for repeated measures

is correctly specified or consistently estimated by the working covariance matrix as in

Liang et al. (1992).

As indicated by Scharfstein et al. (1997), the joint distribution of the sequentially

computed score statistics based on an independence model by Wei et al. (1990a) results

in correlated increments as the test is not semiparametric efficient. Gange and DeMets

(1996) show that the joint distribution of the regression estimators, i.e. estimators based

on the generalized estimating equations, over time is asymptotically multivariate normal

with independent increments, while Lee et al. (1996) show that the joint distributions of

the sequentially computed score and Wald statistics both are asymptotically multivariate

normal with independent increments.
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As noted above, standard group sequential methods can be used if one uses an effi-

cient test statistics over time. With random-effects models for ordinal longitudinal data,

a Wald-type test can be used with standard group sequential methods. Spiessens et al.

(2002) show that, even when the random-effects distribution is misspecified, the joint

distribution of the Wald-type test computed over time is asymptotically multivariate

normal and showed through simulation studies that a sandwich-type correction to the

covariate matrix leads to an approximately independent increments structure.

3.2 Failure time data

Many authors also investigated the joint distribution of sequential test statistics for fail-

ure time data under various settings for application of group sequential methods: Tsiatis

(1981) and Sellke and Siegmund (1983) under the proportional hazards model; Gail et

al. (1982) for two-sample logrank score test; Tsiatis (1982), Slud (1994), and Gu and

Lai (1991) for general linear rank tests; Slud and Wei (1982) for the modified Wilcoxon

statistics, i.e. a generalized Wilcoxon test by Gehan (1965); Tsiatis et al. (1985) and

Gu and Ying (1995) under the proportional hazards model with covariate adjustment;

Lin (1992) for logrank tests adjusting for covariates under the accelerated failure time

model; and Tsiatis et al. (1995) for general parametric survival models.

When failure time is a primary outcome, each participant can contribute statistical

information to group sequential tests more than once before event of interest or random

censoring occurs. Hence it seems natural for the increments in successive test statistics

to be correlated. Indeed the joint distributions of the test statistics over time by Slud and

Wei (1982) for Gehan’s test by Gehan (1965) and by Lin (1992) for the logrank test

under the accelerated failure time model turn out to have correlated increments. In the

case of a general class of linear rank tests, Tsiatis (1982) provides the condition for the

weight function under which the joint distribution of the linear rank tests computed over

time has independent increments.

Tsiatis (1981) was the first to develop the joint distribution of sequential test statistics

and establish independent increments for a sequential test for failure time data. First

the asymptotic joint distribution of the sequentially computed score statistics for the

proportional hazards model was established and shown to to converge asymptotically

to a multivariate Gaussian process with independent increments when participants enter

randomly throughout the course of the trial. This allows group sequential methods to be

based on the logrank test as a special case of the efficient scores test for the proportional

hazards model in clinical trials with failure time data subject to random censoring, thus

proving the conjecture made earlier in Armitage (1975) (pp 140–143).

Gail et al. (1982) investigated the operating characteristics of the logrank score test,

computed after fixed numbers of events and applied to various group sequential meth-

ods, using simulation studies. They show empirically that the joint distribution of the

logrank score test computed over time follows a multivariate normal distribution with

independent increments reasonably well in a realistic setting in clinical trials.



KyungMann Kim and Anastasios A. Tsiatis 237

Tsiatis (1982) generalizes the results in Tsiatis (1981) to a general class of nonpara-

metric linear rank tests statistics and shows that the asymptotic joint distribution of the

sequential test statistics within this general class of nonparametric tests is a multivari-

ate normal distribution. This general class of nonparametric tests is characterized by a

random function corresponding to the weight functions described by Tarone and Ware

(1977) and Prentice and Marek (1979) and as a special case includes a constant weight

for the logrank test, a weight function for the modified Wilcoxon test which is the sur-

vival function.

Sellke and Siegmund (1983) show that the score process of the partial likelihood and

the maximum partial likelihood estimator under the proportional hazards model behave

asymptotically like a Brownian motion. This relies on the approximation of the score

process by a suitable martingale and a random rescaling of time based on the observed

Fisher information. As such, the resulting joint distributions of the score process and the

maximum partial likelihood estimator over time both have independent increments.

Slud (1994) shows that under the null hypothesis of no difference in survival distri-

butions the sequentially computed logrank statistics of Mantel (1966) have exactly un-

correlated increments under very general patterns of enrollment, allocation to treatment

and lost to follow-up in clinical trials. Gu and Lai (1991) considers the general class

of linear rank test statistics investigated in Tsiatis (1982) and develops a general weak

convergence theory for the joint distribution of the sequential linear rank test statistics

for two sample problems in a realistic clinical trial setting.

Tsiatis et al. (1985) investigates the joint distribution of the sequentially computed

efficient scores for the treatment effect derived from a partial likelihood under the pro-

portional hazards model with adjustment for other covariates. They show that the se-

quential efficient scores test for the treatment effect in the presence of other covariates

has asymptotically the same joint distribution as the sequentially computed ordinary lo-

grank test with no covariates. The motivation for this work was the efficiency gain in

the test by adjusting for the effects of other covariates. Gu and Ying (1995) show that

a general Cox-type partial likelihood score process for staggered entry with covariate

adjustment is asymptotically equivalent to a Gaussian process with independent incre-

ments, including the case in which the covariates being adjusted for are not independent

of the covariates of primary interest, typically a randomized treatment indicator.

Tsiatis et al. (1995) consider the joint distribution of sequentially computed score

statistics and the maximum likelihood estimator in parametric models for failure time

data in the presence of nuisance parameters. By representing the sequentially computed

score test as a stochastic integral of a counting process martingale, they drive the asymp-

totic joint distribution of the test statistics over time and show that the joint distributions

of the score test and the maximum likelihood estimator are multivariate normal with in-

dependent increments. This work and the work by Lee et al. (1996) served as a seed for

group sequential methods based on semiparametric efficient test statistics by Scharfstein

et al. (1997).
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Scharfstein et al. (1997) noted that joint distributions of many group sequential statis-

tics used to analyze longitudinal or failure time data are asymptotically multivariate nor-

mal with an independent increments structure. This limiting distribution arises naturally

when one uses an efficient test statistic to test a single parameter in a semiparametric

model. They develop most general results based on semiparametric efficient tests and

show that many previously developed cases of independent increments structure are a

special case of a semiparametric efficient test.

4 Independent increments

In this section we review most general cases of independent increments for sequential

tests for longitudinal and failure time data. First we define some notations and consider

the formulation of the problem.

Consider a group sequential study with a maximum number of K interim analyses

at calendar times tk, k = 1, . . . ,K. We allow staggered entry of subjects and denote nk

to be the number of subjects who have entered the study at the kth interim analysis.

Let Yik be the outcome of the ith subject. When repeated measures are made as in a

longitudinal study, let Yik = (Yi1k, . . . ,Yi,dik ,k)
T where dik denote the number of repeated

measures of the ith subjects. At each k, Yik, i = 1, . . . ,nk, are assumed to be independent.

Let Xik = (Zik,Wik) denote a dik × p dimensional covariate (design) matrix including a

treatment indicator Zik and p−1 time-varying covariate vectors Wik, and let θ = (γ,βT)T

denote a corresponding parameter vector which consists of a treatment effect parameter

γ and covariate effect parameters β. The total number of subjects at the last analysis is

set as nK = n, and let Ti be the entry time of the ith subject.

Our primary interest is focused on the group sequential tests with independent incre-

ments for the hypotheses of

H0 : γ = 0 vs H1 : γ 6= 0 (4.1)

where the parameters β are regarded as nuisance parameters adjusting for covariates.

A test for the hypotheses in (4.1) is obtained from the “score” vector. At the kth in-

terim analysis, let the p dimensional score vector or, more generally, “estimating equa-

tions” to be used to estimate θ, be denoted by

Sk(θ) =
nk

∑
i=1

Sik(θ), (4.2)

and let θ̂k denote the estimator of θ satisfying Sk(θ̂k) = 0 if it exists. For example, in the

fully sequential method described in Subsection 2.3, we can consider a kind of score

vector Sk(µ) = ∑k
i=1(Xi−µ). By solving the estimating equation Sk(µ̂k) = 0, it produces

the estimator µ̂k = X̄k and the Wald test µ̂k/SE(µ̂k) = Sk/
√

k, where SE stands for stan-

dard error. Note that, under the null hypothesis of µ = 0, the score vector becomes the

score test Sk = Sk(0) which is equivalent to the Wald test.
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In fact, the score vector given by (4.2) contains several important estimating equa-

tion vectors such as the efficient score vector in (4.11) defined by differentiating a log-

likelihood with respect to θ and the “least squares” score vector (4.5) obtained from the

least squares estimation method. In the sequel, the explicit form of score vectors will be

defined case by case.

To construct a sequential score statistics in the presence of nuisance parameters β,

we partition, under the null hypothesis of γ = 0, the score vector (4.2) as

Sk(θ)|γ=0 = (Sk,γ(β),Sk,β(β)
T)T

where Sk,γ(β) denotes a score function with respect to the treatment effects parameter

γ and Sk,β(β) denotes a (p− 1) dimensional score vector with respect to the nuisance

parameters β. Then as test statistics at the kth interim analysis, one can use the score

statistics Sk,γ(β̂k) and Wald statistics γ̂k/SE(γ̂k) where β̂k is the restricted estimator of

β computed under the null hypothesis and γ̂k is the estimator of γ obtained by solv-

ing Sk(θ̂k) = 0. Though both the Wald and the score tests can be used to test the null

hypothesis, we will use mainly the score tests for convenience.

The score statistics Sk,γ(β̂k) are usually expressed, at least approximately, as a lin-

ear combination of the scores Sk,γ(β) and Sk,β(β) so that the joint distribution and the

independent increment structure of the sequentially computed score statistics can be es-

tablished by the distributional properties of Sk,γ(β) and Sk,β(β). For example, the Taylor

expansions of Sk,γ(β̂k) and Sk,β(β̂k) at β = β0, when applicable, yield

Sk,γ(β̂k)≃ Sk,γ(β0)+S′
k,γ(β0)(β̂k −β0),

0 = Sk,β(β̂k)≃ Sk,β(β0)+S′
k,β(β0)(β̂k −β0),

where S′
k,γ(β0) = ∂Sk,γ(β)/∂β|β=β0

and S′
k,β(β0) = ∂Sk,β(β)/∂β|β=β0

. They are com-

bined yielding

Sk,γ(β̂k)≃ Sk,γ(β0)−S′
k,γ(β0){S′

k,β(β0)}−1Sk,β(β0).

Since the score vector (4.2) depends only on observations accumulated up to stage k and

it has a form of sum of independent observations, so do Sk,γ(β) and Sk,β(β). Even in

the case of repeated measurement (dik ≥ 2), we can define Sik(θ) to accomodate the de-

pendency in Yik through such a method used in the generalized least squares estimation,

and hence the structure of sum of independent observations will still hold. Therefore,

applying the central limit theorem, the joint distribution of the sequential score statistics

Sk,γ(β̂k) as well as those of Sk,γ(β) and Sk,β(β) would be a (asymptotic) multivariate

normal distribution under some regularity conditions, and also they are expected to have

the independent increment structure. If it is the case, the standard group sequential meth-

ods described in Subsection 2.4 can be applied to the score statistics Sk,γ(β̂k) to carry

out testing for the null hypothesis.
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In the asymptotic approach, to avoid the problem caused when nk are random, we

assume the data structure described in Scharfstein et al. (1997). That is, at the kth interim

analysis, consider the accumulated data set {Yik, i = 1, . . . ,nk} as {(Yik, I(Ti ≤ tk)), i =

1, . . . ,n} where I(Ti ≤ tk) is defined as 1 if the ith patient has entered the study by the

time of the kth interim analysis and 0 otherwise. Then the score vector (4.2) can be

written as

Sk(θ) =
n

∑
i=1

Sik(θ)I(Ti ≤ tk), (4.3)

and we can establish the asymptotic results based on the total sample size n. With this

in mind, we will use the expression of (4.2) rather than that of (4.3).

The more detailed theory of maximum likelihood and generalized least squares es-

timation can be found, for example, in Cox and Hinkley (1974) and McCullagh and

Nelder (1989), respectively.

4.1 Parametric regression models for independent data

We start with the simple model for independent data. Consider a regression model be-

low:

Yik = Xikθ+ ǫik

= Zikγ+Wikβ+ ǫik, i = 1, . . . ,nk ; k = 1, . . . ,K, (4.4)

where the independent error terms ǫik have a common distribution function F and a

common density function f with mean zero and varianceσ2. Then the usual least squares

score vector, at the kth interim analysis, is defined by

Sk(θ) =
nk

∑
i=1

X
T

ik(Yik −Xikθ). (4.5)

From (4.5), the partitioned scores of Sk(θ) under the null hypothesis of γ = 0 in the

presence of a nuisance parameter β are given by

Sk,γ(β) =
nk

∑
i=1

Zik(Yik −Wikβ) (4.6)

and

Sk,β(β) =
nk

∑
i=1

W
T

ik(Yik −Wikβ). (4.7)
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Under the null hypothesis, the restricted estimator of β satisfying Sk,β(β̂k) = 0 in (4.7)

is the least squares estimator denoted by

β̂k =

(
nk

∑
i=1

W
T

ikWik

)−1
nk

∑
i=1

W
T

ikYik.

Plugging it into (4.6), the score statistics Sk,γ(β̂k) are written as a linear combination of

observations Yik as follows:

Sk,γ(β̂k) =
nk

∑
i=1

Zik(Yik −Wikβ̂k)

=
nk

∑
i=1

ZikYik −
(

nk

∑
i=1

ZikWik

)(
nk

∑
i=1

W
T

ikWik

)−1
nk

∑
i=1

W
T

ikYik. (4.8)

Note that we can also express the score statistics (4.8) as one having a form of (4.6),

Sk,γ(β̂k) = Sk,γ(0)−S′
k,γ(0){S′

k,β(0)}−1Sk,β(0)

or equivalently,

Sk,γ(β̂k) = Sk,γ(0)−Γk,γβΓ−1
k,ββSk,β(0) (4.9)

where Γk,γβ and Γk,ββ are submatrices of the partitioned matrix

Γk = Var{(Sk,γ(0),Sk,β(0)
T)T}=

[
Γk,γγ Γk,γβ

Γk,βγ Γk,ββ

]
. (4.10)

From the equation (4.8), (4.9) and (4.10), we have

E{Sk,γ(β̂k)}= γIk

and

Var{Sk,γ(β̂k)}= Ik

where

Ik =Γk,γγ−Γk,γβΓ−1
k,ββΓk,βγ =





nk

∑
i=1

Z2
ik −

(
nk

∑
i=1

ZikWik

)(
nk

∑
i=1

W
T

ikWik

)−1(
nk

∑
i=1

ZikWik

)T


σ2.

To show the independent increments structure of Sk,γ(β̂k), we first express Sl,γ(0) and

Sl,β(0) in the equations (4.9) as sums of two independent variables,

Sl,γ(0) = Sk,γ(0)+{Sl,γ(0)−Sk,γ(0)}
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and

Sl,β(0) = Sk,β(0)+{Sl,β(0)−Sk,β(0)}

for k ≤ l. Then we can show that

Cov{Sk,γ(0),Sl,γ(0)}= Var{Sk,γ(0)}= Γk,γγ ,

Cov{Sk,β(0),Sl,β(0)}= Var{Sk,β(0)}= Γk,ββ

Cov{Sk,γ(0),Sl,β(0)}= Cov{Sl,γ(0),Sk,β(0)}= Cov{Sk,γ(0),Sk,β(0)}= Γk,γβ,

and

Var{Sl,β(0)}= Var{Sk,β(0)}= Γk,ββ.

These equations produce the independent increments such that

Cov{Sk,γ(β̂k),Sl,β(β̂l)}= Ik = Var{Sk,γ(β̂k)}.

We established the independent increments structure of sequentially computed score

statistics Sk,γ(β̂k) without normality assumption for the error distribution. Hence, one

might construct the exact sequential tests by replacing the normal density function with

an underlying density function f in the methods given in Subsection 2.3. If the asymp-

totic methods are preferred for a non-normal distribution, we can use the asymptotic re-

sults established by the multivariate central limit theorem and the Cramér-Wold device.

That is, the asymptotic joint distribution of the sequential score statistics n−1/2Sk,γ(β̂k),
k = 1, . . . ,K}, under the null hypothesis, is multivariate normal with mean 0 and covari-

ance matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= VarA{n−1/2Sk,γ(β̂k)}= Īk, 1 ≤ k ≤ l ≤ K,

where CovA and VarA denote asymptotic covariance and variance matrices and

Īk = lim
n→∞

n−1Ik.

Further, under a class of local alternatives {γn}, where
√

nγn → δ 6= 0, we can show

that the asymptotic distribution of n−1/2Sk,γ(β̂k) is normal with mean δĪk and the same

variance as under the null hypothesis.

It should be mentioned that the variance σ2 has been assumed known. In addition to

the known variance case, the asymptotic results are still valid if there exists a consistent

estimator of the variance when unknown. Although there are some exact tests such as

exact t, χ2 and F tests proposed by Jennison and Turnbull (1991), we restrict our at-

tention to two cases: the known variance case and the unknown variance case where a

consistent estimator exists.

For the regression model (4.4), the score vector (4.5) coincides with the efficient

score vector based on the likelihood function when the underlying distribution is normal.
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As shown in Jennison and Turnbull (1997) and Scharfstein et al. (1997), the asymptotic

joint distribution of the sequentially computed efficient score statistics is multivariate

normal with independent increments for more general models.

To summarize their results, we consider the model given in Jennison and Turnbull

(1997) where Yik has a density function fik(yik;θ) satisfying some regularity conditions

necessary to establish the asymptotic results. Then, for observation i, defining the effi-

cient score Sik(θ) and information matrix Iik as

Sik(θ) =
∂

∂θ
log fik(Yik;θ) (4.11)

and

Iik(θ) = E

{
− ∂

∂θ
Sik(θ)

T

}
,

we have, at the kth interim analysis, the efficient score vector Sk(θ) = ∑nk
i=1 Sik(θ) and

information matrix Ik(θ) = ∑nk
i=1 Iik(θ). Note that Ik(θ) = Var{Sk(θ)}. Further, taking

β̂k as the restricted maximum likelihood estimator of β under the null hypothesis, the

efficient score statistics Sk,γ(β̂k) can be approximated as, for a fixed β0 of β,

Sk,γ(β̂k)≃ Sk,γ(β0)− Ik,γβI−1
k,ββSk,β(β0)

where Ik,γβ and Ik,ββ are submatrices of the partitioned matrix

Ik{(0,β′
0)

′}= Var{(Sk,γ(β0),Sk,β(β0)
T)T}=

[
Ik,γγ Ik,γβ

Ik,βγ Ik,ββ

]
.

Therefore, by applying the same arguments as those for the least squares method, it

can be shown that the asymptotic joint distribution of the sequential score statistics

n−1/2Sk,γ(β̂k), k = 1, . . . ,K}, is multivariate normal with mean µ and covariance matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= Īk, 1 ≤ k ≤ l ≤ K,

where Īk = limn→∞ n−1(Ik,γγ − Ik,γβI−1
k,ββIk,βγ) and µ is 0 under the null hypothesis and

δĪk under local alternatives. The variance matrix Īk can be replaced by the consistent

estimator based on sample information matrices

Îik{(0, β̂T

k)
T}= − ∂

∂θ
Sik(θ)

T

∣∣∣∣
γ=0,β=β̂k

.
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4.2 Longitudinal data

In this subsection, we review selected recently developed methods for group sequen-

tial tests which, when properly formulated, turn out to have independent increments,

starting with parametric models followed by semiparametric models. We still consider

the regression model (4.4) and discuss methods based on the generalized least squares

estimates and generalized estimating equations rather than the maximum likelihood es-

timates.

4.2.1 Parametric regression models

For the model (4.4), assume dik ≥ 1 and ǫik has mean 0 and variance matrix Vik. Then,

based on the generalized least squares methods, the score vector Sk(θ), the generalized

least squares estimator β̂k of β under the null hypothesis and score statistics Sk,γ(β̂k) are

given by

Sk(θ) =
nk

∑
i=1

X
T

ikV
−1
ik (Yik −Xikθ) , (4.12)

β̂k =

(
nk

∑
i=1

W
T

ikV
−1
ik Wik

)−1
nk

∑
i=1

W
T

ikV
−1

ik Yik,

and

Sk,γ(β̂k) =
nk

∑
i=1

Z
T

ikV
−1

ik (Yik −Wikβ̂k)

=
nk

∑
i=1

Z
T

ikV
−1

ik Yik −
(

nk

∑
i=1

Z
T

ikV
−1

ik Wik

)(
nk

∑
i=1

W
T

ikV
−1

ik Wik

)−1
nk

∑
i=1

W
T

ikV
−1
ik Yik.

The partitioned scores Sk,γ(β), Sk,β(β) of Sk(θ) under the null and variance Ik of Sk,γ(β̂k)

are similarly defined as

Sk,γ(β) =
nk

∑
i=1

Z
T

ikV
−1

ik (Yik −Wikβ),

Sk,β(β) =
nk

∑
i=1

W
T

ikV
−1

ik (Yik −Wikβ)

and

Ik = Γk,γγ −Γk,γβΓ−1
k,ββΓk,βγ

=
nk

∑
i=1

Z
T

ikV
−1

ik Zik −
(

nk

∑
i=1

Z
T

ikV
−1

ik Wik

)(
nk

∑
i=1

W
T

ikV
−1

ik Wik

)−1(
nk

∑
i=1

Z
T

ikV
−1
ik Wik

)T

(4.13)

where Γk is defined and partitioned the same as (4.10).
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Following the arguments developed by Lee, Kim and Tsiatis (1996), we can es-

tablish the joint distribution of sequentially computed score statistics n−1/2Sk,γ(β̂k),
k = 1, . . . ,K, and can show an independent increments structure. When the underly-

ing distribution is normal, the joint distribution of Sk,γ(β̂k), k = 1, . . . ,K, is multivariate

normal with mean µ and

Cov{Sk,γ(β̂k),Sl,β(β̂l)}= Var{Sk,γ(β̂k)}= Ik, 1 ≤ k ≤ l ≤ K

where µ is 0 under H0 and δĪk under local alternatives. Furthermore, under suitable reg-

ularity conditions for a non-normal underlying distribution, the asymptotic joint distri-

bution of n−1/2Sk,γ(β̂k), k = 1, . . . ,K, is multivariate normal with mean µ and covariance

matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= VarA{n−1/2Sk,γ(β̂k)}= Īk, 1 ≤ k ≤ l ≤ K

where Īk = limn→∞ n−1Ik and µ is 0 under H0 and δĪk under local alternatives. When Ik

or Īk is unknown, a consistent estimator can be obtained from (4.13) by substituting Vik

with (Yik −Xikθ̂k)(Yik −Xikθ̂k)
T where θ̂k is the generalized least squares estimator of θ.

A random effects model can be also applied to construct a sequential procedure to

test the null hypothesis H0 : γ = 0. Instead of the model (4.4), consider a random effects

model

Yik = Zikγ+Wikβi + ǫik, i = 1, . . . ,nk and k = 1, . . . ,K

where γ is a fixed effect parameter, ǫik ∼N(0,Σik) and βi ∼N(β,Σβ) are all independent.

The parameter βi can be interpreted as participant effects parameter. This model can also

be written as Yik = Zikγ+Wikβ+Wikβ
∗
i + ǫik where β is also fixed and β∗

i ∼ N(0,Σβ) so

that it is included in the model (4.4) with Vik =WikΣβWT

ik +Σik.

4.2.2 Semiparametric models

In this subsubsection, we review the results of Lee et al. (1996). Assume that at the kth

interim analysis, the marginal mean of Yik given Xik is

E(Yik|Xik) = µik(θ) = g(Xik,θ)

where g is a known function. Denote a working variance to be used instead of the un-

known true variance Vik = Var(Yik|Xik) by vik(θ,α) with additional variance parameters

α. Then, the score vector or generalized estimating equations has the form

Sk(θ,α) =
nk

∑
i=1

Sik(θ,α) =
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)(Yik −µik(θ))
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where Dik(θ)= ∂µik(θ)/∂θ. Note that this score vector is reduced to (4.12) whenµik(θ)=

Xikθ and vik(θ,α) = Vik, and hence, it can be regarded as a generalization of the least

squares methods in Subsection 4.1.

When a consistent estimator α̂ of α is available, Liang and Zeger (1986) showed that

Sk(θ, α̂) is asymptotically equivalent to Sk(θ,α), and hence the asymptotic properties

regarding the inference on θ remain unchanged when using Sk(θ, α̂) instead of Sk(θ,α).

We assume that α is known or a consistent estimator α̂ is available, and denote gen-

eralized estimating equations estimators of θ for both cases as the same θ̂k. Note that

θ̂k is consistent. For more details about estimation of α, refer to, for example, Crowder

(1995) and Lee et al. (1996).

Partition Sk(θ,α) as {Sk,γ(γ,β,α),Sk,β(γ,β,α)
T}T and let β̂k be the restricted gener-

alized estimating equations estimator of β under the null hypothesis. Then, as shown

by Rotnitzky and Jewell (1990), it can be shown that the score statistic Sk,γ(0, β̂k,α) is

asymptotically equivalent to Tk(0,β,α) where

Tk(γ,β,α) = Sk,γ(γ,β,α)−Γk,γβΓ−1
k,ββSk,β(γ,β,α) (4.14)

and Γk,γβ and Γk,ββ are submatrices of the partitioned matrix of Γk,

Γk = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Dik(θ) =

[
Γk,γγ Γk,γβ

Γk,βγ Γk,ββ

]
.

That is,

Sk,γ(0, β̂k,α) ≃ Sk,γ(0,β,α)−Γ0k,γβΓ−1
0k,ββSk,β(0,β,α) = Tk(0,β,α) (4.15)

where the subscript 0 means “evaluated at γ = 0”, or equivalently, “evaluated under the

null hypothesis”.

Since the score vector n−1/2Sk(θ,α) has a form of sum of independent variables, the

asymptotic distribution of n−1/2Sk(θα) is multivariate normal with mean 0 and variance

Ωk = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Vik v−1
ik (θ,α)Dik(θ).

By asymptotic normality of n−1/2Sk(θ,α) together with the linear equation (4.14), the

asymptotic joint distribution of {n−1/2Tk(γ,β,α),k = 1, . . . ,K} becomes multivariate

normal with mean 0. The asymptotic covariance of n−1/2Tk(γ,β,α) and n−1/2Tl(γ,β,α),
for k ≤ l, is given by

Mkl = Ωkl,γγ +Γk,γβΓ−1
k,ββΩkl,ββΓ−1

l,ββΓl,βγ −Ωkl,γβΓ−1
l,ββΓl,βγ −Γk,γβΓ−1

k,ββΩkl,βγ
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where Ωkl,γγ , Ωkl,γβ , Ωkl,βγ and Ωkl,ββ are submatrices of the partitioned matrix

Ωkl =

[
Ωkl,γγ Ωkl,γβ

Ωkl,βγ Ωkl,ββ

]

and

Ωkl = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Vikl v−1
il (θ,α)Dil(θ).

Note that Vikl denotes the true covariance matrix of Yik and Yil . When the true variance

functions are correctly specified, as shown in Lee et al. (1996), the asymptotic covari-

ances Mkl (1 ≤ k ≤ l ≤ K) are reduced to Ik,

Ik = Γk,γγ −Γk,γβΓ−1
k,ββΓk,βγ = VarA{n−1/2Tk(γ,β,α)},

indicating an asymptotic independent increments structure.

By applying similar arguments to the equation (4.15), it can be shown that the asymp-

totic joint distribution of sequential score statistics n−1Sk,γ(0, β̂k,α), k = 1, . . . ,K, is

multivariate normal with mean 0 and covariance M0kl , k, l = 1, . . . ,K. Furthermore, with

a correct specification of the variance functions, we have M0kl = I0k = VarA

{n−1/2Sk,γ(0, β̂k,α)}, which establish an asymptotic independent increments structure

of sequentially computed score statistics.

The asymptotic variances Γk and Ωk can be estimated consistently by evaluating

Dik(θ) and vik(θ,α) at the consistent estimators α̂ and θ̂k and by substituting {Yik −
µik(θ̂k)}{Yik − µik(θ̂k)}T for Vik. Under the null hypothesis, we use θ̂k = (0, β̂T

k)
T. As

pointed out by Lee et al. (1996), these consistent estimators also lead to an asymp-

totic independent increments structure of sequentially computed n−1/2Tk(γ,β,α) and

n−1Sk,γ(0, β̂k,α) when the variance functions are correctly specified.

4.3 Failure time data

In this subsection, we review the results for a general parametric model, Cox propor-

tional hazards model by Cox (1972), and accelerated failure time model of Lin (1992),

in the framework of counting process and martingale integration which can be referred

to, for example, Fleming and Harrington (1991) and Anderson et al. (1993)

First, consider the notations for failure time data. Assume that n patients enter the

trial at times e1, . . . ,en which are considered as constants. Each patient i has a poten-

tial failure time Ti, potential censoring time Ci, treatment indicator Zi and covariate

vector Wi = (Wi1, · · · ,Wip). It is assumed that Ti and Ci are conditionally independent

given {Zi,Wi} and {Ti,Ci,Zi,Wi}, i = 1, . . . ,n, are identically and independently dis-

tributed. If the data were analyzed at time t, the observable random variables would be

{Xi(t),∆i(t),Zi,Wi} for all i = 1, . . . ,n such that ei ≤ t. Here Xi(t) = min(Ti,Ci, t −ei) is

the time to failure or censoring, and ∆i(t) = I{Ti < min(Ci, t − ei)} denotes the failure
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indicator. For simplicity, we assume that the covariate vector Wi is time-invariant, but

the same results are obtained for a time-varying covariate, as shown in Gu and Ying

(1995) for the proportional hazards model.

We assume a hazard function λ(u,Zi,Wi,θ) with θ = (γ,βT)T where γ is a treatment

effect parameter and β is a vector of nuisance parameters denoting covariate effects.

As in the previous sections, we are interested in testing the null hypotheses (4.1). For

notational simplicity, we set Ri = (Zi,W
T

i )
T.

It is convenient to express the failure time data in terms of counting process notation.

Define the counting process of observed death for the ith patient at analysis time t by

Ni(u, t) = I{Xi(t) ≤ u,∆i(t) = 1} for u ≥ 0. Note that whenever ei > t, Ni(u, t) = 0

for u ≥ 0 and when ei ≤ t, Ni(u, t) = Ni(t, t) for u ≥ t. Similarly, the at-risk process

Yi(u, t) = I{Xi(t)≥ u}, which is the indicator of whether the ith patient is at risk u units

after entry into the study if the data were analyzed at calendar time t.

With the filtration F(u), u ≥ 0, defined by Tsiatis et al. (1995), denote the F(u)

martingale process associated with Ni(u, t) by

Mi(u, t) = Ni(u, t)−
∫ u

0
λ(x,Ri,θ)Yi(x, t)dx.

Also, following the same procedure as in Tsiatis et al. (1995), we define the count-

ing process of death observed between two successive analysis times tk and tk−1 as

DNi(u, t1) = Ni(u, t1) and DNi(u, tk) = Ni(u, tk)−Ni(u, tk−1), k = 2, . . . ,K, where t1 <

· · ·< tK denote the analysis times. Let DYi(u, tk) =Yi(u, tk)−Yi(u, tk−1), then the martin-

gale process associated with DNi(u, t) can be written by

DMi(u, t) = DNi(u, t)−
∫ u

0
λ(x,Ri,θ)DYi(x, t)dx.

Note that since any two processes of DNi(u, tk), k = 1, . . . ,K, will not take jumps at the

same time, DMi(u, tk) and DMi(u, tl) are orthogonal, that is, Cov{DMi(u, tk),DMi(u, tl)}=
0 if k 6= l. Also, note that Mi(u, tk) = ∑k

j=1 DMi(u, t j) for k = 1, . . . ,K. So far, we defined

the data structure, and related counting processes and martingales. We will use this com-

mon notations in the next subsubsections.

4.3.1 Parametric regression models

Assume that the hazard function λ(u,Ri,θ) is known, then using standard results for

failure time data, the likelihood of the data available at time t is proportional to

L(t,θ) = Π(i:ei<t)[λ{Xi(t),Ri,θ}]∆i(t) exp

{
−
∫ Xi(t)

0
λ(u,Ri,θ)du

}
.
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With the counting process notations, we can express the score vector at analysis time t

as

S(t,θ) =
n

∑
i=1

∫ ∞

0
h(u,Ri,θ){dNi(u, t)−dµi(u, t,θ)}

=
n

∑
i=1

∫ ∞

0
h(u,Ri,θ)dMi(u, t) (4.16)

or equivalently, at analysis time tk,

S(tk,θ) =
k

∑
j=1

n

∑
i=1

∫ ∞

0
h(u,Ri,θ){dDNi(u, t j)−dDµi(u, t,θ)}

=
k

∑
j=1

n

∑
i=1

∫ ∞

0
h(u,Ri,θ)dDMi(u, t j) (4.17)

where

h(u,Ri,θ) = ∂ logλ(u,Ri,θ)/∂θ,

dµi(u, t,θ) = λ(u,Ri,θ)Yi(u, t)du

and

dDµi(u, t,θ) = λ(u,Ri,θ)DYi(u, t)du.

Denote the part taken from the second sum in (4.17) by S j. Then, by the standard ar-

guments for counting processes, e.g. in Fleming and Harrington (1991), the vector of

martingale integrals S j is also martingale, and we have

E{dNi(u, t)|Ri}= dµi(u, t,θ)

and

E{dDNi(u, t)|Ri}= dDµi(u, t,θ)

so that

E{dMi(u, t)|Ri}= E{dDMi(u, t)|Ri}= 0,

Var{dNi(u, t)|Ri}= Var{dMi(u, t)|Ri}= dµi(u, t,θ),

and

Var{dDNi(u, t)|Ri}= Var{dDMi(u, t)|Ri}= dDµi(u, t,θ).

Hence, S j has mean 0 and variance

Var(S j) =
n

∑
i=1

∫ ∞

0
h(u,Ri,θ)h(u,Ri,θ)

T
dDµi(u, t j,θ).
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Furthermore, since Cov{DMi(u, tk),DMi(u, tl)} = 0 if k 6= l and observations are inde-

pendent, S j, j = 1, . . . ,k, are uncorrelated, and hence the score vector S(tk,θ) has a sim-

ilar form to (4.2), sum of uncorrelated variables. Applying the martingale central limit

theorem, we can show that the asymptotic joint distribution of n−1/2S(tk,θ), k = 1, . . . ,K,

is multivariate normal with mean 0. It can also be shown that

CovA{n−1/2S(tk,θ),n
−1/2S(tl,θ)}= VarA{n−1/2S(tk,θ)}= Γ(tk), 1 ≤ k ≤ l ≤ K,

which indicates an independent increments structure. Here the asymptotic variance

Γ(tk) = lim
n→∞

∫ ∞

0
n−1

n

∑
i=1

h(u,Ri,θ)h(u,Ri,θ)
T
dµi(u, tk,θ). (4.18)

Now, partition the score vector S(t,θ) as {Sγ(t,γ,β),Sβ(t,γ,β)
T}T, where Sγ(t,γ,β) =

∂ logL(t,γ,β)/∂γ and Sβ(t,γ,β) = ∂ logL(t,γ,β)/∂β. Then the score test of the null

hypothesis H0 : γ = 0 in the presence of nuisance parameters β, evaluated at calendar

time t, is given by Sγ(t,0, β̂t) where β̂t is the restricted maximum likelihood estimator

of β when γ = 0. Using standard results of likelihood theory, Cox and Hinkley (1974,

Sec 9.3), the score test Sγ(t,0, β̂t) is asymptotically equivalent to

T (t,0,β) = Sγ(t,0,β)−Γγβ(t)Γ−1
ββ(t)Sβ(t,0,β)

where Γγβ and Γββ are submatrices of the partitioned matrix of Γ0(t), which is Γ(t) in

(4.18) evaluated at γ = 0,

Γ0(t) =

[
Γγγ(t) Γγβ(t)

Γβγ(t) Γββ(t)

]
.

Since n−1/2T (t,0,β) is a linear combination of the elements of the score vector n−1/2

S(t,θ), which converges in distribution to a multivariate normal with independent in-

crements, this implies that n−1/2T (t,0,β) also converges in distribution to a normal

with mean µ and variance I(t), where I(t) = Γγγ(t)−Γγβ(t)Γ−1
ββ(t)Γβγ(t), and µ = 0

under the null hypothesis and µ= δI(t) under the local alternatives defined in Subsub-

section 4.2.1. Therefore, following the same arguments as in the previous sections, we

can show that the asymptotic joint distribution of {n−1/2Sγ(tk,0, β̂tk
),k = 1, . . . ,K} is

multivariate normal with mean µ and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Sγ(tk,0, β̂tk
),n−1/2Sγ(tl,0, β̂tl

)}= VarA{n−1/2Sγ(tk,0, β̂tk
)}= I(tk), (4.19)

which implies an independent increments structure of the asymptotic joint distribution.

Note that h(u,Ri,θ) does not depend on the calendar time t, and this make it much

easier to establish the independent increments structure in (4.18) and (4.19). In fact,

it can be shown that when we use a weighted score vector with a weight function
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Q(u, t,θ) which converges in probability to a function q(u, t,θ), the independent in-

crements structure holds as long as q(u, t,θ) does not depend on the calendar time t.

Therefore, choosing a suitable weight function, we can construct a group sequential test

having asymptotic normality and independent increments structure. This may be par-

ticularly useful when the efficient test is difficult to be built explicitly, as found in the

accelerated failure time model. For weighted tests, the limiting optimal weight function

is proportional to the limit of h(u,Ri,θ) = ∂ logλ(u,Ri,θ)/∂θ because the score vec-

tors in (4.16) and (4.17) are efficient scores. Tsiatis (1982) and Lin (1992) also showed,

for the proportional hazards model and accelerated failure time model, that the limiting

weight functions preserve the independent increments structure.

It is also interesting to note that the score vectors given by (4.16) and (4.17) can be

regarded as the score vectors based on the generalized estimating equations accommo-

dating time dependent structure of the failure time data by a stochastic integral. Consid-

ering dNi(u, t) as the ith observation and expressing h(u,Ri,θ) in (4.16) as

h(u,Ri,θ) = {∂dµi(u, t,θ)/∂θ}/Var{dNi(u, t)|Ri},

we have the generalized estimating equations

S(t,θ) =
n

∑
i=1

∫ ∞

0
n−1{∂dµi(u, t,θ)/∂θ} [Var{dNi(u, t)|Ri}]−1 {dNi(u, t)−dµi(u, t,θ)}.

In this framework, choosing a weight function corresponds to choosing a working vari-

ance.

4.3.2 Proportional hazards models

Consider the Cox proportional hazards model where the hazard function λ(u,Ri,θ) is

given by

λ(u,Ri,θ) = λ0(u)exp(θT
Ri)

where λ0 is an arbitrary baseline hazard fuction. We can express the score vector based

on the partial likelihood (Cox, 1975) at the analysis time t as

U(t,θ) =
n

∑
i=1

∫ ∞

0
{Ri − R̄(u, t,θ)}dNi(u, t)

=
n

∑
i=1

∫ ∞

0
{Ri − R̄(u, t,θ)}dMi(u, t) (4.20)

where R̄(u, t,θ) = ∑n
i=1 RiYi(u, t)exp(θTRi)/∑n

i=1Yi(u, t)exp(θTRi).

The partial likelihood score vector (4.20) has the same form as the maximum likeli-

hood score vector (4.16) if h(u,Ri,θ) in (4.16) is replaced with Ri − R̄(u, t,θ). Though

Ri − R̄(u, t,θ) may depend on the calendar time t, as shown in Jennison and Turnbull
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(1997), the independent increments structure of the score vector U(t,θ) still holds.

Therefore, the arguments in Subsubsection 4.3.1 can be applied to produce the following

results:

Denote the score test statistic for the null hypothesis by Uγ(t,0, β̂) where Uγ(t,γ,β)
is the first element of the partitioned score vector U(t,θ) = {Uγ(t,γ,β),Uβ(t,γ,β)

T}T

and β̂ is the restricted maximum partial likelihood estimator of β when γ = 0. Then the

asymptotic joint distribution of {n−1/2Uγ(tk,0, β̂tk
),k = 1, . . . ,K} is multivariate normal

with mean µ and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Uγ(tk,0, β̂tk
),n−1/2Uγ(tl,0, β̂tl

)}= VarA{n−1/2Uγ(tk,0, β̂tk
)}= I(tk),

which implies an independent increments structure of the asymptotic joint distribution.

Here, I(t) = Γγγ(t)−Γγβ(t)Γ−1
ββ(t)Γβγ(t) and

Γ0(t) =

[
Γγγ(t) Γγβ(t)
Γβγ(t) Γββ(t)

]
,

which is obtained by evaluating, at γ = 0, Γ(t),

Γ(t) = lim
n→∞

∫ ∞

0
n−1

n

∑
i=1

{Ri − R̄(u, t,θ)}{Ri− R̄(u, t,θ)}T
Yi(u, t)λ0(u)exp(θT

Ri)du.

The variance matrix I(t) can be consistently estimated by substituting β and λ0(u) in

Γ0(t) with β̂t and the Breslow estimator evaluated under the null hypothesis,

λ̂0(u,0, β̂t) =
n

∑
i=1

dNi(u, t)/
n

∑
i=1

Yi(u, t)exp(β̂T

tWi).

In general, the Breslow estimator is given by

λ̂0(u, θ̂) =
n

∑
i=1

dNi(u, t)/
n

∑
i=1

Yi(u, t)exp(θ̂T
Ri)

where θ̂ is the maximum partial likelihood estimator of θ, and if there are no covariates,

it becomes the Nelson-Aalen estimator by Aalen (1978).

As mentioned in Subsection 4.1, we can consider the weighted score vector UQ(t,θ)

with a weight function Q(u, t,θ),

UQ(t,θ) =
n

∑
i=1

∫ ∞

0
Q(u, t,θ){Ri− R̄(u, t,θ)}dNi(u, t),

and we can show that the independent increments structure of sequentially computed

score statistics holds when Q(u, t,θ) converges in probability to a limit q(u,θ) free of t.
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When there are no covariates, the weighted score vector leads to the well known two-

sample weighted logrank tests which were studied by Tsiatis (1982).

For a given θ, let λ̂0(u,θ) denote the Breslow estimator. Then, comparing the partial

likelihood score vector (4.20) with the maximum likelihood score vector (4.16), we can

show that U(t,θ) = S(t,θ, λ̂0) where S(t,θ, λ̂0) is the score vector obtained by replacing

λ0(u) with λ̂0(u,θ) in (4.16) or (4.17). It seems that the score vector (4.16) can also be

expressed in the generalized estimating equations framework as

U(t,θ) =
n

∑
i=1

∫ ∞

0
{∂dµ̂i(u, t,θ)/∂θ}

[
V̂ar{dNi(u, t)|Ri}

]−1{dNi(u, t)−dµi(u, t,θ)}

where dµ̂i(u, t,θ) = V̂ar{dNi(u, t)|Ri} = Yi(u, t)λ̂0(u,θ)exp(θTRi). By the consistency

of the Breslow estimator λ̂0(u,θ), this score vector can be regarded as the generalized

estimating equations score vector obtained when the true variances are consistently es-

timated.

4.3.3 Accelerated failure time models

Consider the linear model

Ti = θT
Ri + ǫi, i = 1, . . . ,n

where ǫi are independent with a common hazard function λ0. Here, Tis are usually log

transformed observation of the original nonnegative failure time data so that they are

allowed to have negative values. Further, assume that the treatment indicator Zi is inde-

pendent of the covariates Wi as in usual clinical trials.

For a given λ0, the efficient score vector (4.16) can be written as

S(t,θ) =
n

∑
i=1

∫ ∞

−∞
Ri{λ′

0(u− θT
Ri)/λ0(u− θT

Ri)}{dNi(u, t)−Yi(u, t)λ0(u− θT
Ri)du}.

When λ0 is unknown, replacing λ0(u) with λ̂0(u, t,θ) and λ′
0(u)/λ0(u) with a weight

function Q(u,θ), we have

S(t,θ, λ̂0) =
n

∑
i=1

∫ ∞

−∞
Q(u,θ)Ri{dNi(u+ θT

Ri, t)−Yi(u+ θT
Ri, t)λ̂0(u,θ)du},

where λ̂0(u, t,θ)du = ∑n
i=1 dNi(u+ θTRi, t)/∑n

i=1Yi(u+ θTRi, t) is a Nelson-Aalen type

estimator of λ0(u) at the analysis time t. Furthermore, let

R̄(u, t,θ) =
n

∑
i=1

RiYi(u+ θT
Ri, t)/

n

∑
i=1

Yi(u+ θT
Ri, t).
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Then S(t,θ, λ̂0) is equivalent to a rank score vector

U(t,θ) =
n

∑
i=1

∫ ∞

−∞
Q(u,θ){Ri− R̄(u, t,θ)}dNi(u+ θT

Ri, t)

=
n

∑
i=1

∫ ∞

−∞
Q(u,θ){Ri− R̄(u, t,θ)}dMi(u+ θT

Ri, t) (4.21)

where Mi(u+ θTRi, t) = Ni(u+ θTRi, t)−
∫ u
−∞ Yi(x+ θTRi, t)λ0(x)dx is a martingale asso-

ciated with the counting process Ni(u+ θTRi, t) of the residual Xi(t)− θTRi. This class

of linear rank tests (4.21) were studied by Tsiatis (1990), Ritov (1990), Wei, Ying and

Lin (1990b), and Lin (1992). As shown in Tsiatis (1990), note that the limiting opti-

mal weight function is proportional to λ′
0(u)/λ0(u). This rank score vector can also be

interpreted in the generalized estimating equations framework, as described in Subsub-

section 4.3.2.

At a glance, it seems that the rank score (4.21) has the same form as those of ef-

ficient scores for the parametric model and the proportional hazards model, and hence

that the same arguments as discussed in the previous sections can be applied. However,

as pointed out in several researches such as Tsiatis (1990) and Lin, Wei and Ying (1998),

because the rank score is a step function of θ, any exact solution of U(t, θ̂) = 0 may not

exist. Therefore, θ̂ is defined as a value θ for which U(t,θ) changes sign or as a mini-

mizer of ‖ U(t,θ) ‖ where ‖ a ‖= (aTa)1/2. For more discussions on this minimization

problem, refer to Wei et al. (1990b) and Lin et al. (1998).

For simplicity, assume Q(u,θ) = 1 temporarily and let Ei(t,β) = Xi(t)−βTWi for i =

1, . . . ,n. Further, define N∗
i (u, t) = ∆i(t)I{Ei(t,β) ≤ u} and Y ∗

i (u, t) = I{Ei(t,β) ≥ u}.

Then, under the null hypothesis, U(t,θ) is partitioned as

Uγ(t,β) =
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}dN∗

i (u, t)

=
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}dM∗

i (u, t)

and

Uβ(t,β) =
n

∑
i=1

∫ ∞

−∞
{Wi −W̄ (u, t,β)}dN∗

i (u, t)

=
n

∑
i=1

∫ ∞

−∞
{Wi −W̄ (u, t,β)}dM∗

i (u, t)

where

Z̄(u, t,β) =
n

∑
i=1

ZiY
∗

i (u, t)/
n

∑
i=1

Y ∗
i (u, t),
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W̄ (u, t,β) =
n

∑
i=1

WiY
∗

i (u, t)/
n

∑
i=1

Y ∗
i (u, t)

and

M∗
i (u, t) = N∗

i (u, t)−
∫ u

−∞
Y ∗

i (x, t)λ0(x)dx,

which is a martingale. Note that the score function Uγ(t,β) has the same form as the

score functions Sγ(t,0,β) and Uγ(t,0,β) in Subsubsections 4.3.1 and 4.3.2, respectively,

so that we can apply the similar arguments to establish the asymptotic results of Uγ(t,β).

That is, the asymptotic joint distribution of {n−1/2Uγ(tk,β),k = 1, . . . ,K} is multivariate

normal with mean 0 and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Uγ(tk,β),n
−1/2Uγ(tl,β)}= VarA{n−1/2Uγ(tk,β)}= I(tk),

where

I(t) = lim
n→∞

n−1
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}2Y ∗

i (u, t)λ0(u)du. (4.22)

Since the rank score U(t,θ) is a step function of θ, we can not apply the usual Taylor

expansions to find out a test statistic asymptotically equivalent to Uγ(t, β̂t), where the

restricted estimator β̂t is the minimizer of ‖ Uβ(t,β) ‖. Under the assumption of in-

dependence of Zi and Wi, however, Lin (1992) showed that Uγ(t, β̂t) is asymptotically

equivalent to Uγ(t,β). In this case, as shown in Lin (1992), we can simplify I(t) in

(4.22). Note that Z̄(u, t,β) converges in probability to µz = E(Zi) and

E

{∫ ∞

−∞
Y ∗

i (u, t)λ0(u)du

}
= E{Ni(∞, t)}= Pr{∆i(t) = 1}.

Furthermore, Zi are independent of the other variables so that I(t) = σ2
z Pr{∆i(t) = 1},

where σ2
z = E{(Zi − µz)

2}. Hence, we have that the asymptotic joint distribution of

{n−1/2Uγ(tk, β̂tk
),k = 1, . . . ,K} is multivariate normal with mean 0 and covariance ma-

trix {σ2(tk, tl);k, l = 1, . . . ,K} where σ2(t, t ′) = σ2(t, t) = σ2
z Pr{∆i(t)= 1} for t ≤ t ′. Un-

der the null hypothesis, denote Q(u,θ) and λ̂0(u, t,θ) by Q(u,β) and λ̂0(u, t,β). Then,

for a given weight function Q(u,β), the variance function σ2(t, t) can be consistently

estimated by

Î(t) = n−1
n

∑
i=1

∫ ∞

−∞
Q2(u, β̂t){Zi − Z̄(u, t, β̂t)}2Y ∗

i (u, t, β̂t)λ̂0(u, t, β̂t)du

= n−1

∫ ∞

−∞
Q2(u, β̂t)

{
∑n

i=1 Z2
jY

∗
j (u, t, β̂t)

∑n
i=1Y ∗

j (u, t, β̂t)
− Z̄2(u, t, β̂t)

}
n

∑
i=1

dN∗
i (u, t, β̂t)

where Y ∗
i (u, t, β̂t) and N∗

i (u, t, β̂t) are obtained by substituting β with β̂t in Y ∗
i (u, t) and

N∗
i (u, t), respectively.
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5 Examples

5.1 Error spending based on information

As mentioned in Subsection 2.4, standard group sequential methods by Pocock (1977)

and O’Brien and Fleming (1979) require equal increments of information at each in-

terim analysis and a pre-specification of the maximum number of analyses. However,

these conditions are often not met in practice. The error spending function approach of

Lan and DeMets (1983) guarantees an overall type I error probability to a desired signif-

icance level without having to fix the number and times of repeated analyses in advance.

When designing a study, the number and times of repeated analyses have to be fixed

at least tentatively based on the projected duration of enrollment and follow-up and the

desired frequency of interim analyses for possible early stopping. This is an issue of par-

ticular interest in designing clinical trials with failure time data. A natural approach is to

use the notion of statistical information and design the trial as a maximum information

trial as in Kim et al. (1995), Lee et al. (1996), and Scharfstein et al. (1997).

At the kth interim analysis, k = 1, . . . ,K, denote the standardized score statistics by

Sk = S(β̂k)/SE{S(β̂k)} and the standardized Wald test by Wk = γ̂k/SE(γ̂k) for testing the

null hypothesis γ = 0 in the presence of the nuisance parameters β, where S(β̂k) is the

usual score statistics presented in the previous sections with the restricted estimator β̂k of

β under the null hypothesis. For the Wald test, γ̂k is obtained from the estimating equa-

tions such as the maximum likelihood estimating equations, the least squares estimating

equations, the generalized estimating equations and the rank type estimating equations

described in the previous sections. Then the information Ik at the kth interim analy-

sis is defined by Ik,u = Var{S(β̂k)} for the score test and Ik,e = {Var(γ̂k)}−1 for Wald

test. The information Ik can be estimated by replacing Var with V̂ar. We denote it as Îk.

For an error spending function α⋆(t) described in Subsection 2.4, we can use the

information fraction tk for the kth interim analysis given by a ratio of the information at

the kth interim analysis to the maximum information IK predetermined by design, i.e.

tk = Ik/IK . At the time of the kth interim analysis, Ik is obtained from the test statistics.

The maximum information is defined as

IK =

(
zα/2 + zβ

γA

)2

IF (5.1)

where α and 1− β are the type I error and the power to be required, respectively; γA

denotes the treatment effects under the alternative hypothesis; and IF is the so-called

inflation factor. The required inflation in statistical information to compensate for the

loss of power through multiple testing was discussed by Kim and DeMets (1987). The

inflation factor IF is determined as a function of α, β and the number K and timing

of repeated testing and depends on the selected error spending function or the group

sequential method. Scharfstein et al. (1997) also provide a table of the inflation factors
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for methods by Pocock (1977) and O’Brien and Fleming (1979) under various design

schemes.

For a given IK in (5.1), the critical value ck is calculated by solving the equation

Pr(|Z1| ≤ c1, . . . , |Zk−1| ≤ ck−1, |Zk|> ck) = α⋆(tk)−α⋆(tk−1), (5.2)

where (Z1, . . . ,ZK) is multivariate normal with mean 0 and covariance

(Ik/Il)
1/2 , 1 ≤ k ≤ l ≤ K. (5.3)

Reboussin et al. (2000) provided programs for calculating group sequential boundaries

using the Lan and DeMets (1983) method. The boundary values bk,u for the score test

Sk and bk,e for the Wald test Wk are obtained by replacing tk in (5.2) with tk,u and tk,e,

and replacing Ik/Il in (5.3) with Îk,u/Îl,u and Îk,e/Îl,e, respectively. Here tk,u = Îk,u/IK and

tk,e = Îk,e/IK. If |Sk|> bk,u for the score test and |Wk| > bk,e for the Wald test, one stops

and rejects the null hypothesis. Note that the covariance (5.3) implies the independent

increments structure so that we can use the recursion formula in Subsection 2.3.

5.2 Longitudinal data

To examine the finite sample properties of the “score” test and the Wald test for the

semiparametric model for longitudinal data, we use a semiparametric model suggested

by the data from the National Cooperative Gallstone Study (NCGS) in Schoenfield et al.

(1981). For illustration, we consider only the comparison of cholesterol levels between

the placebo (305 patients) group and the high-dose chenodiol (305 patients) group.

The four repeated cholesterol values are modeled as a linear function of the baseline

cholesterol value (Bi) and the treatment indicator (Ti) for i = 1, . . . ,n and j = 1 : 4 and

the kth interim analysis as

E(Yi jk|Xik) = β1Ti +β0 jIi jk +β1 jIi jkBi.

The estimated covariance matrix of the score test statistics and the Wald test statistics

over time are, respectively, as follows:




0.1027 0.1044 0.1064 0.1075

0.1490 0.1497 0.1495

0.1927 0.1824

0.2217




and 


8.8741 6.2173 5.0184 4.3387

6.1136 4.8675 4.1597

4.9627 4.0206

4.1814


 .
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These results confirm empirically the independent increments structure in the sequential

test statistics as noted in (2.7) and (2.6) from (2.8), respectively.

5.3 Failure Time data

We describe a simulation study reported in Tsiatis et al. (1995) to illustrate how the

group sequential tests for parametric model for failure time data work with moderate

sample sizes that are typical in clinical trials. In the simulation, 100 patients were entered

uniformly over a 10 year period, and each patient entering the trial in a staggered fashion

was randomly allocated with equal probability to one of two treatments indicated by

Z = 0 or 1. A failure time Wi for patient i was obtained as a function of treatment

assignment Zi and trial entry time Ei by generating an exponentially distributed random

variable given by the exponential model with the hazard rate

λ(u|Z,E,β,θ) = exp(θ1 +βZ + θ2E)

which is a function of both treatment and entry time. We considered a test of the null

hypothesis of no treatment difference, β = 0, with the nuisance parameters θ1 = 0 and

θ2 = 0.1.

We analyzed the accumulating data at four times after equal increments in calendar

time, i.e. t = 2.5,5.0,7.5, and 10 years, using all the data available at those times. At

each of the four times, we calculated the maximum likelihood estimate β̂(t), the score

statistic S0{t,β = 0, θ̂(β = 0)}, and the observed information {I00(t)}−1. The maximum

information was set equal to the average {I00(10)}−1 obtained from 10,000 repetitions.

To empirically examine the type I error probability, we recorded the proportion of

rejections for both the score test and the Wald test, using the Pocock and O’Brien-

Fleming type error spending functions at the 0.05 level of significance in another set of

10,000 repetitions. With the group-sequential test based on the Pocock type error spend-

ing function α⋆
P(t), 598 and 525 of the 10,000 simulations rejected the null hypothesis

for the score test and Wald test, respectively. With the group-sequential test based on the

O’Brien-Fleming type error spending function α⋆
OF(t) = 2{1−Φ(zα/2/

√
t)}, 531 and

519 of the 10,000 simulations rejected the null hypothesis for the score test and the Wald

test, respectively. These results seem to suggest that the Wald test produces the type I

error probability close to the target significance level as compared to the score test. Also

O’Brien-Fleming type group sequential test produces the type I error probability close

to the target significance level as compared to the Pocock type group sequential test.

In order to verify the independent increments structure in the sequentially computed

test statistics, we computed the empirical correlation matrix of the increments of the

score test and the Wald test pre-multiplied by the observed information matrix. They are
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


1 −0.0169 0.0011 0.0002

1 −0.0059 0.0003

1 −0.0176

1




for the score test and




1 0.0054 −0.0028 −0.0007

1 −0.0032 −0.0025

1 −0.0159

1




for the Wald test. In both the score test and the Wald test, the simulation results appear to

confirm the theory, as indicated by the off-diagonal entries being all very close to zero.

As a second example, we consider the Children’s Cancer Group study 251 (CCG

251) in which 508 eligible children with untreated acute myeloid leukemia were en-

rolled between September 1979 and October 1983 in a staggered entry to receive an

induction chemotherapy followed by either allogeneic bone marrow transplant or main-

tenance chemotherapy as reported in Lee and Sather (1995). Post-remission treatment

was determined by whether patient had an HLA-matching sibling donor or not without

randomization.

A total of 340 children achieved remission and were subsequently allocated to either

transplant or chemotherapy. The primary outcome was disease-free survival from the

end of induction chemotherapy. As there was apparent cure of disease in a substantial

portion of children (30-45%), we analyzed disease-free survival using the mixture model

with cure, also known as the cure rate model given by the survival function

S(t|Z,β,θ) = νZ +(1−νZ)HZ(t)

where the cure probability νZ is parametrized as

νZ =
exp(α+βZ)

1+ exp(α+βZ)

and

HZ(t) = exp{−exp(γo +γ1Z)t}δ.

Here β is the parameter of interest and θ = (α,γ0,γ1,δ)
′ is the nuisance parameter.

The study was originally conducted as a fixed sample trial. In order to illustrate the

application of group sequential methods using the O’Brien-Fleming type error spending

function α⋆
OF(t) = 2{1−Φ(zα/2/

√
t)}, we applied the score test and the Wald test at

yearly intervals starting in October 1982 for three times with 255, 324, and 340 chil-

dren. Tables 1 and 2 summarize the results for the score test and the Wald-type test,

respectively.
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Table 1: Interim Analyses of CCG 251 with the Score Test.

Reject

k β̂ V̂ar(β̂) tk α⋆
OF(t) |S(tk)| ck H0

1 2.77 4.63 0.307 0.0001 1.29 3.88 No

2 5.97 6.80 0.451 0.0017 2.29 3.14 No

3 9.50 13.38 0.888 0.0348 2.60 2.18 Yes

Table 2: Interim Analyses of CCG 251 with the Wald Test.

Reject

k β̂ V̂ar(β̂) tk α⋆
OF(t) |W (tk)| ck H0

1 0.515 0.177 0.374 0.0005 1.22 3.48 No

2 0.748 0.125 0.532 0.0043 2.12 2.87 No

3 0.684 0.071 0.931 0.0404 2.56 2.17 Yes

Unlike in Lee and Sather (1995) where the critical values had to be determined us-

ing multivariate normal integration as in Schervish (1984), the critical values in Tables

1 and 2 were determined using univariate normal integration thanks to independent in-

crements. Note that the different test resulted in different estimates of the information

fractions at each of the three interim analyses. With both the score test and the Wald test,

the trial would have been terminated early in October 1984 with less than full informa-

tion of 0.888 and 0.931, respectively.

6 Discussion

After the theoretical development in sequential analysis with the seminal work of Wald

(1947), ethical imperatives of having to avoid unnecessary experimentation with human

subjects in clinical trials motivated early pioneers such as Peter Armitage leading rapid

development of sequential methods for clinical trials, e.g. including the first edition

of the textbook “Sequential Medical Trials” by Peter Armitage in 1960. Soon there

was a recognition, however, that classical sequential methods were not very realistic in

most clinical trials and subsequently group sequential methods started to appear in the

literature in 1970s.

In order for group sequential methods to be applied correctly, the joint distribution of

sequential test statistics computed over time has to be known to determine the group se-

quential boundaries. In many settings the joint distribution turned out to be a multivariate

normal distribution or asymptotically so. This required multivariate normal integration

which can be challenging and applicable for up to seven dimensions. However, if the

joint distribution has an independent increments structure in its covariance matrix, the

multivariate integration reduces to univariate integration involving simple recursion in

successive test statistics.
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Many authors established the multivariate normality of the joint distributions of se-

quential test statistics. Many joint distributions turned out to have correlated increments

between successive test statistics requiring multivariate normal integration. Examples

include tests by Armitage et al. (1985), Geary (1988), Wei et al. (1990a), Lee and

DeMets (1992), and Su and Lachin (1992) for longitudinal data and Gehan’s test by

Slud and Wei (1982) and logrank test under the accelerated failure model by Lin (1992)

for failure time data.

Fortunately, joint distributions of many useful test statistics computed over time turn

out to have independent increments, thus requiring only univariate integration based on

convolution of two independent random variables. Independence of increments in the

joint distribution of sequential test statistics was conjectured in Armitage (1975), but

the theoretical development started with the initial work in Tsiatis (1981), followed by

many noted in Section 3, and culminating with the most general results by Jennison and

Turnbull (1997) and Scharfstein et al. (1997).

The limited simulation studies and the real clinical trials data analysis reported here

show that the joint distributions of the sequential test statistics investigated have inde-

pendent increments even for moderate sample sizes. This affirms that standard group

sequential methods can be readily applied in interim analysis for possible early stop-

ping of clinical trials in chronic diseases with the very common primary outcome of

longitudinal data and failure time data.
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Discrete generalized half-normal distribution and

its applications in quantile regression

Diego I. Gallardo1, Emilio Gómez-Déniz2 and Héctor W. Gómez3

Abstract

A new discrete two-parameter distribution is introduced by discretizing a generalized half-normal

distribution. The model is useful for fitting overdispersed as well as underdispersed data. The

failure function can be decreasing, bathtub shaped or increasing. A reparameterization of the

distribution is introduced for use in a regression model based on the median. The behaviour of the

maximum likelihood estimates is studied numerically, showing good performance in finite samples.

Three real data set applications reveal that the new model can provide a better explanation than

some other competitors.

MSC: 62E10, 62F10, 62P05.

Keywords: Discretizing, generalized half-normal distribution, failure function, health, quantile re-

gression, stochastic order.

1 Introduction

Kemp (2008) introduced a discrete version of the half-normal distribution which, by

analogy with the continuous half-normal distribution, is the maximum entropy distribu-

tion with specified mean and variance and support on N0 = N∪{0}. Another way of

introducing a discrete version of a continuous model is by discretizing it as follows: if

SY (x) denotes the survival function of a continuous random variable Y with domain in

the positive line, the probability mass function (PMF) of its analogue discrete random

variable, X , is given by

P(X = k) = pk = SY (k)−SY(k+1), k ∈ N0. (1)
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A classical example is geometric distribution, which can be derived by applying

the above discretizing procedure to the negative exponential distribution. Other exam-

ples can be found in Nakagawa and Osaki (1975), which obtained the discrete Weibull

distribution, Krishna and Singh (2009), the discrete Burr distribution, Gómez-Déniz and

Calderı́n (2011), the discrete Lindley distribution, among many others. This method was

also applied by Gómez-Déniz, Vázquez-Polo and Garcı́a-Garcı́a (2014) to obtain a dis-

crete version for a generalization of the half-normal distribution based on a skew version

of the normal distribution. The resulting discrete distribution differs from that studied in

Kemp (2008). The reader can consult the work of Chakraborty (2015) in which different

methods and classification are exposed in the discretization procedure of a continuous

random variable.

The generalization of the half-normal distribution used in Gómez-Déniz et al. (2014)

is based on the idea in Marshal and Olkin (1997). Other generalizations of the half-

normal distribution have been proposed in the statistical literature. Here we consider

the one in Cooray and Ananda (2008), whose derivation follows from considerations of

the relationship between static fatigue crack extension and the failure time of a certain

specimen. Its survival function is given by

SY (x;σ,β) = 2Φ
(
−
( x

σ

)β)
, x ≥ 0, (2)

for some σ,β > 0, where Φ(·) stands for the cumulative distribution function (CDF) of

the standard normal distribution. If a positive random variable Y has survival function

(2) we will say that it has a generalized half-normal (GHN) distribution and it will be

denoted as Y ∼ GHN(σ,β). The associated discrete version X obtained by applying (1),

which will be called the discrete generalized half-normal (DGHN) distribution, has PMF

P(X = k;σ,β) = p(k;σ,β) = 2
{

Φψ

(
(k+1)β

)
−Φψ

(
kβ
)}

, x ∈ N0 (3)

for some σ,β > 0, where ψ = σβ and Φσ(x) = Φ(x/σ). If a random variable X taking

values on N0 has PMF (3), we write X ∼DGHN(σ,β). The new model is different from

the one studied in Kemp (2008); for β = 1 it coincides with that introduced in Gómez-

Déniz et al. (2014); for other parameter values, the resulting models are rather different.

Figure 1 displays the PMF of X for several parameter. Looking at this figure we see that

quite different shapes can be obtained by varying the parameter values.

The discretization of a continuous variable in order to obtain a discrete distribution

has been developed with great enthusiasm in recent decades. The simple idea is to start

from a continuous random variable that follows a certain probability distribution and for

which the distribution function (survival) has a closed form expression. Except for a few

occasions (the discretization of the exponential distribution that gives rise to the geomet-

ric discrete distribution and the discretization of the Lindley distribution (Gómez-Déniz

and Calderı́n, 2011), the mean and any other superior moment are not obtained in a

closed manner.
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Figure 1: Some examples of probability mass functions of the DGHN distribution for different

values of the parameters β and σ.

This is a great disadvantage for a researcher who wishes to carry out more in-depth

studies on the variable that he wishes to study. For example, a regression study, i.e.

explaining the effect that a series of factors can have on the dependent variable, is im-

possible to perform by ordinary methods.

However, the fact that the distribution function has a closed form makes it easier to

calculate the quantile function and therefore to obtain the median. In this case, the initial

probability function can be reparametrized as a function of certain parameters, one of

which is precisely this quantile, the median. This procedure allows regression analysis

to be carried out in a similar way to that traditionally used when trying to explain the

mean of the response variable as a function of covariates, which is impossible for the

distribution studied here. We therefore propose this line of action in the present work:
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we will study the factors that affect the median of the distribution initially verifying that

the reparameterization on the median provides a good fit of the data analysed.

The paper is organized as follows. Section 2 gives the expression of some functions

associated with the model: the CDF, the survival function and the quantile function;

it also explains how to generate random values from the new law, and studies some

properties of the model such as unimodality and the fact that its members can be ordered

stochastically. Graphical representations show that the family is quite flexible in several

senses: it can used to model overdispersed and underdispersed data; it is also seen that

the failure function can be decreasing, bathtub shaped or increasing. Section 3 deals

with the point estimation of the two parameters. We offer a method of getting a starting

point for the optimization problem involved by means of maximum likelihood (ML)

estimates. The performance of the ML estimators is studied numerically and shows good

behaviour. Finally, Section 4 considers three real data sets. The data are fitted both to the

model presented in this paper and to other competitors. The proposed family provides a

much better explanation than the other distributions, showing the practical usefulness of

the new distribution.

2 Some properties of the discrete generalized half-normal

distribution

Let X ∼ DGHN(σ,β), from (3) it readily follows that

pk

pk−1

=
Φψ

(
(k+1)β

)
−Φψ

(
kβ
)

Φψ (kβ)−Φψ ((k−1)β)
, k = 1,2, . . . ,

where p0 = 1−2Φψ(1).

Let X ∼ DGHN(σ,β), from (3) it readily follows that the CDF of X is given by

F(k;σ,β) = 2Φψ((k+1)β)−1, k ∈ N0,

the survival function of X is

S(k;σ,β) = 2Φψ(−(k+1)β), k ∈ N0,

and the quantile function is given by

Q(u;σ,β) =

[
σ

{
Φ−1

(
1+u

2

)}1/β

−1

]
, u ∈ (0,1),
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where [·] denotes the integer part. As a special case, the median is

Q(0.5;σ,β) =

[
σ

{
Φ−1

(
3

4

)}1/β

−1

]
≈
[
σ (0.6745)1/β−1

]
. (4)

Because the DGHN distribution is a discrete version of the GHN model, random values

can be generated from this distribution as follows:

(i) Generate u ∼ U(0,1).

(ii) Compute t = σ
(
−Φ−1 (u/2)

)1/β
.

(iii) Do X = [t].

2.1 Moments

The moments of X are given by

E(X r) = 2 ∑
k≥0

kr
{

Φψ

(
(k+1)β

)
−Φψ

(
kβ
)}

= 2 ∑
k≥0

{(k+1)r − kr}Φψ

(
−(k+1)β

)
. (5)

As [Y ]r ≤Y r, for r ≥ 1, it follows directly that E(X r)< ∞, ∀r ∈ N.

In practice, many count data sets exhibit overdispersion and, although less frequently,

also underdispersion. Figure 2 shows the value of the quotient D =Var(X)/E(X) when

1 2 3 4 5

0
2

4
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1

0
1
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D

Figure 2: D=Var(X)/E(X) for σ= 1 (dotted), σ= 5 (dashed) and σ= 10 (solid), the horizontal

line D = 1 is in grey.
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X ∼ DGHN(σ,β) for σ = 1,5,10 as a function of β. Looking at this figure it can be

seen that for each σ the value of D can be greater than, equal to or less than 1 as the

value of β increases. In this sense, the new model is quite flexible.

2.2 Mode

Looking at Figure 1 we see that in all cases the PMF is unimodal. Next we show that

this is the case for all members in the family. Moreover, we will prove that for 0< β < 1

the PMF is decreasing. With this aim, we first give a preliminary lemma.

Lemma 1 If Y ∼ GHN(σ,β) with probability density function f (x;σ,β), then, as a

function of x,

(a) f (x;σ,β) is strictly decreasing, if 0< β < 1, ∀σ > 0.

(b) f (x;σ,β) is (strictly) log-concave , if β ≥ 1, ∀σ > 0.

Proof (a) If 0 < β < 1 then f (x;σ,β) is proportional to the product of two strictly

decreasing functions: f1(x) = xβ−1 and f2(x) = exp(−0.5x2β/σ2β); thus it is a strictly

decreasing function.

(b) Routine calculations show that ∂ 2

∂x2 f (x;σ,β) = −β−1

x2 − β(2β−1)

σ2β x2(β−1), which is

strictly negative, thus implying the result. �

Now, we state the following proposition related to the DGHN model.

Proposition 1 Let X ∼ DGHN(σ,β).

(a) If 0< β < 1 and σ > 0, then p(k;σ,β)> p(k+1;σ,β), ∀k ∈ N0.

(b) If β ≥ 1 and σ > 0, then p(k;σ,β)2 ≥ p(k−1;σ,β)p(k+1;σ,β), ∀k ∈ N0.

We study separately the two cases: 0< β < 1 and β ≥ 1.

Proof (a) It is a direct consequence of Lemma 1 (a).

(b) Note that P(X = k;σ,β) in equation (3) can be written as P(X = k;σ,β) =∫ k+1
k f (x;σ,β)dx. Then, for β ≥ 1, it is a direct consequence of Theorem 2.8. in Dhar-

madhikari and Joag-Dev (1988) taking g(x) = f (x;σ,β) (which is log-concave by

lemma 1 part b), Bn = (0,∞) and B = (k,k + 1) ⊆ Bn, that the DGHN distribution

is log-concave; the result is immediate. �

As an immediate consequence of Proposition 1 we state the following.
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Corollary 1 Let X ∼ DGHN(σ,β). X is unimodal. If 0 < β < 1 the unique mode is

attained at x = 0.

As commented in Keilson and Gerber (1971), unimodality guarantees that the dis-

tribution has all moments, and that the convolution of pk with any unimodal discrete

distribution is also unimodal and log-concave.

2.3 The failure rate function

The failure (or hazard) rate function for the probability function under consideration is

given by

h(k;σ,β) =
Φψ(−kβ)

Φψ(−(k+1)β)
−1, k ∈ N0.

Theorem 9.6 in Dharmadhikari and Joag-Dev (1988) showed that if a random variable

is log-concave then it has an increasing failure rate (IFR). Furthermore, Lariviere and

Porteus (2001) introduced the concept of generalized failure rate function, defined as

g(k;σ,β) = k h(k;σ,β) for k ∈ N0, and showed that the distributions with increasing

generalized failure rate (IGFR) have useful applications in operations management (see

also Lariviere 2006). It is clear that if a random variable is IFR then it is also IGFR.

Accordingly, by the log-concavity of the distribution discussed in Section 2.2, the fol-

lowing result can be established for the discrete generalized half-normal distribution.

Corollary 2 (i) If β ≥ 1 then the DGHN(σ,β) distribution is IFR and IGFR .

Figure 3 displays the failure rate function for several parameter values. Looking at

this figure, it can be seen that the model is useful for fitting a wide range of shapes:

decreasing, bathtub and increasing. Figure 4 shows the different patterns of the failure

rate function (IFR, Bathtub and DFR) accordingly to the values of σ and β. We highlight

that for 0< β ≤ 1/2 the model seems to be DFR, whereas for 1/2< β < 1 the behaviour

of the failure rate also depends on σ.

The next proposition shows the limit of the failure rate for k →+∞.

Proposition 2 Let X ∼ DGHN(σ,β). Therefore, the failure rate satisfies

lim
k→∞

h(k;σ,β) =





0 if 0< β < 1/2,

exp
(

1
2σ

)
−1 if β = 1/2,

∞ if β > 1/2.
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Figure 3: Failure rate function for several parameter values.

Proof Using the L’Hôpital rule and the continuity of the limit, we have

lim
k→∞

h(k;σ,β) = lim
k→∞

(
k

1+ k

)β−1

exp



− 1

2σ2β
lim
k→∞

[
1−
(
1+ 1

k

)2β
]

k−2β



−1

Applying the L’Hôpital rule again in the second limit, we have

lim
k→∞

h(k;σ,β) = exp

{
1

2σ2β
lim
k→∞

(
1+ 1

k

)2β−1

k−2β+1

}
−1

= exp

{
1

2σ2β
lim
k→∞

(1+ k)2β−1

}
−1.

The result is obtained separating the cases 0< β < 1/2, β = 1/2 and β > 1/2. �
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Figure 4: Shapes for the failure rate of DGHN(σ,β) for 0< β < 1.

2.4 Stochastic orderings

This subsection shows that the members of the new model can be stochastically

ordered according to the parameter values. With this aim, we first recall the following

definition:

Definition 1 Let X1 and X2 be two random variables with distribution functions F1 and

F2, respectively. Then X1 is said to be stochastically smaller than X2, denoted by X1 ≤st

X2, if F1(x)≥ F2(x) for all x.

The DGHN family can be ordered in the following way.

Proposition 3 (a) Let X1 ∼ DGHN(σ,β1) and X2 ∼ DGHN(σ,β2), for some σ,β1,

β1 > 0. Then, X2 ≤st X1 if and only if β1 ≥ β2.

(b) Let X1 ∼ DGHN(σ1,β) and X2 ∼ DGHN(σ2,β), for some σ1,σ2,β > 0. Then,

X2 ≤st X1 if and only if σ1 ≥ σ2.

Proof (a) Let ψi = σβi , i = 1,2. We have X2 ≤st X1 if and only if P(X2 ≥ x)≤ P(X1 ≥ x)

for all x ∈ N0 if and only if 2Φψ2
(−(x+1)β2)≤ 2Φψ1

(−(x+1)β1) for all x ∈ N0 if and

only if β1 ≥ β2.

(b) The result can be shown using a similar argument to (a). �
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The following corollary is a consequence of Proposition 3.

Corollary 3 (i) If X1 ∼ DGHN(σ,β1) and X2 ∼ DGHN(σ,β2), with β1 ≥ β2, then

E(X r
2)≤ E(X r

1), for all r > 0.

(ii) If X1 ∼ DGHN(σ1,β) and X2 ∼ DGHN(σ2,β), with σ1 ≥ σ2, then E(X r
2) ≤

E(X r
1), for all r > 0.

3 Point estimation

3.1 Without covariates

Let X1, . . . ,Xn be independent and identically distributed (IID) from X ∼ DGHN(σ,β),

and let the observed values be denoted by x1, . . . ,xn. The log-likelihood function for

(σ,β) is

ℓ(σ,β) = n log(2)+
n

∑
i=1

log
{

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

)}
. (6)

The derivatives of the log-likelihood function are

∂
∂σ

ℓ(σ,β) =−β
σ

n

∑
i=1

φ
(
(xi+1)β

σβ

)
(xi+1)β

σβ
−φ

(
x
β
i

σβ

)
x
β
i

σβ

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

) , (7)

∂
∂β

ℓ(σ,β) =
1

σβ

n

∑
i=1

φ
(
(xi+1)β

σβ

)
(xi +1)β log

(
xi+1
σ

)
−φ

(
x
β
i

σβ

)
x
β
i log

(
xi
σ

)

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

) . (8)

The ML estimates of the parameters satisfy the system that results from equating to 0 in

equations (7) and (8). Nevertheless, since this system does not have an explicit solution,

in order to obtain the ML estimates it is preferable to maximize function (6). This can be

carried out, for example, by using the BFGS algorithm available in the optim function

of the R programming language (R Core Team, 2016). The BFGS algorithm requires a

starting point, which must be inside the feasible region. The estimators obtained from

equating any two observed frequencies to their theoretical values can be used as the

starting point. For example, if p̂i denotes the observed frequency of the value i, for

i = 0,1 (the zero-frequency and the one-frequency method), the system is

p̂0 = 2Φψ (1)−1 and p̂1 = 2
{

Φψ

(
2β
)
−Φψ (1)

}
.
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The solutions for ψ and β obtained from the above equations are

ψ̃ =

[
Φ−1

(
1+ p̂0

2

)]−1

and β̃ =
log ψ̃+ logΦ−1

(
p̂1/2+Φ

(
1/ψ̃

))

log2
.

Therefore, the solution for σ is σ̃ = ψ̃1/β̃ .

In order to assess numerically the performance of the ML estimates, a simulation

study was carried out. Below we describe the study and summarize the results obtained.

For several values of the parameters (β = 0.8, 1.0, 1.3 and σ = 1, 5) and sample sizes

(n = 30, 50, 100) 1000 random samples were generated. In each case, the ML estimates

of β and σ were computed, as well as their standard error based on the hessian matrix

of the model. Table 1 reports the bias, the root of the mean squared error (
√

MSE) and

the coverage probability (CP) of the 95% level interval obtained from the asymptotic

normality of the ML estimates. As expected, the bias and the
√

MSE decrease as the

sample size increases. Also as expected, the closeness of the CP to its nominal value

increases as the sample size increases.In all cases the empirical coverages is quite close

to 0.95.

Table 1: Results for the ML estimates in the DGHN model.

n = 30 n = 50 n = 100

β σ bias
√

MSE CP bias
√

MSE CP bias
√

MSE CP

0.8 1 β̂ 0.157 0.443 0.970 0.067 0.249 0.962 0.030 0.125 0.954

σ̂ 0.006 0.211 0.955 0.001 0.166 0.952 0.003 0.117 0.950

5 β̂ 0.040 0.150 0.955 0.027 0.113 0.950 0.013 0.075 0.952

σ̂ -0.007 0.901 0.926 -0.007 0.695 0.933 -0.003 0.490 0.940

1 1 β̂ 0.304 0.679 0.970 0.156 0.468 0.971 0.047 0.210 0.961

σ̂ -0.002 0.166 0.969 0.001 0.131 0.963 -0.002 0.094 0.953

5 β̂ 0.055 0.190 0.949 0.030 0.137 0.952 0.015 0.092 0.954

σ̂ -0.017 0.708 0.931 -0.005 0.550 0.937 -0.009 0.387 0.944

1.3 1 β̂ 0.648 0.948 0.975 0.520 0.868 0.975 0.266 0.620 0.975

σ̂ -0.002 0.118 0.980 -0.001 0.094 0.980 0.001 0.070 0.957

5 β̂ 0.071 0.237 0.958 0.039 0.175 0.948 0.021 0.116 0.957

σ̂ -0.023 0.549 0.926 -0.020 0.427 0.932 -0.006 0.299 0.947

3.2 Estimation in a DGHN regression model

Unfortunately, the mean of the DGHN has a complicated form (see equation (5)). For

this reason, an alternative way to use this model in a regression context is through the

median (see equation (4)). Let Q0.5 be the median of the model. The pmf of the model
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with reparametrization based on Q0.5 and β is given by

pk = 2
1

∑
j=0

(−1) jΦ

(
τ

(
k+ j

1+Q0.5

)β)
, k = 0,1,2, . . . (9)

where τ = 0.674489.

A common specification for Q0.5 is exponential, ensuring the non–negativity of this

parameter. That is,

logQ0.5i =
κ

∑
s=1

xisγs, i = 1, . . . , t,

where xi1,xi2, . . . ,xiκ are covariates and γ1,γ2, . . . ,γκ are unknown regression coeffi-

cients. The log-likelihood for the vector (γ,β) is

ℓ(γ,β) = n log2+
n

∑
i=1

log

{
Φ

(
τ

(
k

1+Q0.5i

)β)
−Φ

(
τ

(
k+1

1+Q0.5i

)β)}
. (10)

Again, the mle of (γ,β) can be obtained maximizing (10) in relation to them.

4 Applications

This section presents applications to three real data sets.

4.1 An application in ecology

This data set (Kulasekera and Tonkyn, 1992 and Table 2 here) consists of the number of
weevil eggs laid per bean and contains 193 observations.

Table 2: Number of weevil eggs laid per bean

Number / bean 0 1 2 3 Total

Obs. Freq. 5 68 88 32 193

To analyse the data we considered the model proposed in this paper, comparing it to

the models in Kemp (2008), Gómez-Déniz et al. (2014) and in Kulasekera and Tonkyn

(1992) (denoted as Kula in the tables). ML estimators of the parameters for each model

are shown in Table 3. This table also shows the value of the maximized log-likelihood,

L, and the Akaike information criterion, Akaike (1974), defined as AIC = 2r−2logL,

where r is the number of parameters. As is well-known, the model with lower AIC is

preferred. Therefore, according to this criterion, the proposed model provides a better

fit than the other laws. To illustrate the performance of the DGHN model for this data,
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we estimate the probability of the events X = 0, X = 1, X = 2, X = 3 and X ≥ 4 for

all the models with their respective 95% confidence intervals based on the delta method

(we exclude the estimations provided by Kulasekera and Tonkyn (1992) because their

intervals are very wide). Results are presented in Table 4. Note that the DGHN model is

the only one for which the confidence intervals always include the observed frequencies.

Therefore, the proposed distribution may be an attractive alternative to models for data

taking values in N0.

Table 3: Model ML estimates and standard errors (in parentheses).

Kemp Gómez-Déniz et al. (2014) DGHN Kula

θ̂ = 12.9970 (15.2697) α̂= 54.1196 (0.2091) β̂ = 2.8873 (3.0927) α̂= 11.0943 (13.8496)

q̂ = 0.1393 (0.0490) σ̂ = 1.0860 (0.0562) σ̂ = 2.6519 (0.0251) q̂ = 0.0125 (0.0057)

L –223.956 –222.9054 –218.7891 –221.9045

AIC 451.9119 449.8108 441.5782 447.8090

Table 4: Estimated probabilities for P(X = k),k = 0,1,2,3, and P(X ≥ 4) and their 95% confi-

dence intervals (CI).

X = 0 X = 1 X = 2 X = 3 X ≥ 4

model point 95% CI point 95% CI point 95% CI point 95% CI point 95% CI

Kemp 0.022 (0.011,0.034) 0.291 (0.249,0.333) 0.527 (0.476,0.577) 0.133 (0.093,0.173) 0.005 (0.000,0.009)

Gómez-Déniz et al. (2014) 0.061 (0.039,0.084) 0.280 (0.235,0.324) 0.522 (0.463,0.581) 0.131 (0.090,0.172) 0.006 (0.001,0.011)

DGHN 0.048 (0.025,0.069) 0.294 (0.253,0.356) 0.505 (0.449,0.561) 0.152 (0.106,0.199) 0.001 (0.000,0.003)

observed 0.026 0.352 0.456 0.166 0.000

4.2 A real application in the health framework

Since the seminal work of Koenker and Bassett (1978) quantile regression has attracted

much research, particularly in recent years, probably due to the help of computers. This

technique allows a natural generalization of the generalized linear models for certain

well-known robust estimators of location. The methodology we propose in this Section

is simple and, enables us to explain the median by the effects of covariate factors, as

discussed in Section 3.2.

Many authors in the literature have focused on the factors that affect the mean of the

dependent variable under study. The proposal presented here is based on studying the

factors that can affect the median of the dependent variable. As far as we know, there are

few studies in the theoretical or applied statistical literature of regression of quantiles for

a discrete variable (parametric model).

A common specification for the median parameter, Q0.5, is exponential, ensuring the

non–negativity of the parameter. That is,

logQ0.5 =
κ

∑
s=1

xisγs, i = 1, . . . , t,
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obtaining the conventional log-linear model such that Q0.5 = exp
{
γ⊤x

}
, where x is the

vector of covariates and γ is an unknown vector of regression coefficients.

The marginal effect, which reflects the variation of the conditional median due to a

one-unit change in the jth covariate ( j = 1, . . . ,κ), has a similar consideration to that in

generalized linear models. For indicator variables such as xκi which takes only the values

0 or 1, the marginal effect is δ j = Q0.5(ki|x j = 1,x1, . . . ,xκ)/Q0.5(ki|x j = 0,x1, . . . ,xκ)≈
exp(β j), i = 1, . . . ,n; j = 1, . . . ,κ. Therefore, the conditional median is exp(β j) times

larger if the indicator variable is one rather than zero.

For the present purpose we used data obtained from the 1977-78 Australian Health

Survey, a well-known data set previously studied by Cameron and Trivedi (1998); see

also Cameron and Trivedi (1986). This data set can be downloaded from the web page

http://cameron.econ.ucdavis.edu/racd/racddata.html

Details of this data source can also be consulted in the “Ecdat” R (data(DoctorAUS))

package. The data set consists of 5190 elements with fifteen variables. The variable

ILLNESS, the number of illnesses in past 2 weeks is taken as the dependent variable.

The minimum value of this variable is 0, the maximum value 5 and the median is 1. A

different count variable could be taken as the dependent variable if another study were

required. Fundamentally, the convenience of this approach is based on the fact that by

testing all the count variables appearing in the data, the variable ILLNESS presents a

median different from zero and a larger index of dispersion.

In our study, CHCOND (chronic condition) is not considered, and INSURANCE

(medlevy : medibanl levy, levyplus: private health insurance, freepoor: government in-

surance due to low income, freerepa : government insurance due to old age disability or

veteran status) is converted into three dichotomous variables, FREEPOR, FREEREPA

AND LEVYPLUS. Therefore, MEDLEVY is the reference variable.

Descriptive statistics on the variables in this dataset are given in Cameron and Trivedi

(1986, p.68) (see Table 3.2 in this work). In our study the following distributions were

also considered for comparison purposes: a Poisson (P) distribution with parameter β >
0; a negative binomial (NB) distribution with parameters β > 0 and mean q > 0; a

generalised Poisson (GP) distribution with parameters β > 0 and mean q > 0 and of

course the proposed distribution studied here. Among the various parameterisations of

the generalized Poisson distribution, we used the one described in Consul and Famoye

(1992).

Tables 5 and 6 show the estimation in the case of non including and including co-

variates, respectively. Again, in view of the maximum value of the logarithm of the like-

lihood function, the proposed distribution studied here is superior to the remainders. We

estimated the two parameters, β and q = Q0.5 by maximizing directly the log-likelihood

function given by L = ∑n
i=1 log pki

. We also show the value obtained for the Akaike In-

formation Criterion (AIC). (Note that AIC = 2(k−L), where k is the number of model
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parameters and L is the maximum value of the log–likelihood function). The goodness

of fit is also corroborated by looking at the graph shown in Figure 5, in which it can be

observed that the model seems to be a reasonable choice for the given data.

Table 5: Coefficient estimates and p-values for the different models considered without covariates.

P NB GP DGHN

Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value

β̂ 1.431 0.000 3.801 0.000 0.120 0.000 0.082 0.000

q̂ 1.431 0.000 1.432 0.000 0.015 0.000

L -8390.942 -8264.408 -8266.708 -8255.156

AIC 16783.90 16532.80 16537.40 16514.30

Table 6: Coefficient estimates and p-values for the different models considered with covariates.

The cases of P, NB and GP correspond to maximizing the mean link and the GHN to maximizing

the median

P NB GP DGHN

Variable Estimate Pr> |t| Variable Pr> |t| Variable Pr> |t| Variable Pr> |t|
SEX 0.022 0.259 0.021 0.419 0.021 0.407 0.013 0.750

AGE 0.151 0.026 0.143 0.081 0.142 0.080 0.367 0.003

INCOME -0.125 0.000 -0.125 0.001 -0.125 0.001 -0.186 0.002

HSCORE 0.082 0.000 0.084 0.000 0.084 0.000 0.126 0.000

DOCTORCO 0.043 0.000 0.045 0.000 0.045 0.000 0.060 0.002

NONDOCCO 0.009 0.253 0.008 0.415 0.008 0.384 0.000 0.962

HOSPADMI -0.014 0.433 -0.012 0.614 -0.012 0.611 -0.011 0.716

HOSPDAYS 0.000 0.475 0.000 0.655 0.000 0.638 0.001 0.463

MEDECINE 0.071 0.000 0.072 0.050 0.072 0.000 0.095 0.000

PRESCRIB 0.077 0.000 0.078 0.037 0.078 0.000 0.097 0.000

NONPRESC 0.103 0.000 0.105 0.007 0.105 0.000 0.154 0.000

FREEPOR 0.008 0.610 0.009 0.936 0.009 0.720 -0.040 0.209

FREEREPA 0.103 0.003 0.107 0.015 0.107 0.011 0.136 0.044

LEVYPLUS 0.008 0.610 0.009 0.936 0.009 0.720 0.049 0.128

CONSTANT -0.064 0.084 -0.068 0.122 -0.069 0.114 -0.968 0.000

β̂ 38.373 0.053 0.013 0.053 1.213 0.000

L -7590.674 -7588.737 -7588.696 -7759.528

As can be seen, most of the covariates considered are statistically significant except

SEX, NONDOCCO, HOSPADMI, HOSPDAYS, FREEPOR and LEVYPLUS in all the

models used. Observe that the sign of the regressors coincides for all the models.

It can be seen that the maximum value of the log-likelihood function is lower in

the case of the quantile regression although the estimates are similar in terms of sign

and significance. This is not surprising since the link used affects the mean in classical

models and the median in the distribution studied here. Thus from our point of view, the

model is viable for cases in which classical distributions provide a poor fit of the variable

to be studied, as will be seen in the last example provided in the next subsection.

The different models considered were analysed using the BFGS algorithm (Broyden,

Fletcher, Goldfarb and Shanno), with RATS and Mathematica (Wolfram) software, for
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both the inflated and the non-inflated models. In all of the models considered, the con-

vergence of the algorithm is extremely fast. In general, the algorithm converged in fewer

than 30 iterations.
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Figure 5: Empirical and fitted data for the number of illness in the past two weeks.

4.3 An actuarial application

Usually in automobile insurance rate-making the target is to estimate the probability of

a claim in order to compute a premium according to a premium calculation principle. In

this example we consider a dataset of Swedish third party automobile insurance claims

which is well-known in the actuarial literature. Some of the most important factors of

claim frequency will be taken into account. The variable kilometres (Km) is the kilo-

meters travelled by a vehicle, here grouped into seven categories (category 1, less than

1000 km per year, category 2, 1000-15000 km per year, etc.); Zone gives the graphic

zone, also grouped into seven categories; Bonus is a variable representing the driver

claim record grouped into seven categories; Insured starts in the class 1 and is moved

up one class, to a maximum of 7, for each year in which there is no claim; finally, Make

represents the type of vehicle (nine specified makes of car). The dependent variable is

the Number of claims. More details can be seen in Frees (2010).

For comparison purposes we have considered the Poisson and the negative binomial

distributions, which are very widely used in the actuarial context, to fit the number of
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Figure 6: Empirical and fitted data for Swedish automobile claims.

claims. The values of the maximum of the log-likelihood function for these models

are -221571.00 and -93806.541, respectively, compared to -8920.57 for the distribution

proposed here. Therefore, the proposed distribution is very much superior to the others.

The estimated values of the parameters are β̂ = 0.324(0.005) and q̂ = 1.571(0.197)

(standard errors in parentheses).

Figure 6 shows the empirical and fitted distributions obtained using Poisson, negative

binomial and our proposed distribution. This graphic confirms the superiority of the

proposed distribution over the others.

Using a similar idea to that proposed in Heras, Moreno and Vilar-Zanón (2018), we

have used the covariates explained above in order to explain the median of the dependent

variable given by the number of claims. The results are shown in Table 7. As we can see

the value of the maximum of the log-likelihood function has been much reduced.

It can be seen that all the variables are highly significant, and the signs (see Frees ,

2010) are similar to those of the classical regression model when the Number of claims

is considered as the dependent variable, except for the covariate Km; when this last is

studied in detail, the interpretation is observed to be similar; the covariable Km takes

values from 1 to 5, increasing with the number of kilometers traveled by the insured.

The negative value of the regressor indicates that the greater the number of kilometers

traveled, the smaller will be the value of the median. The insured will have better insur-

ance terms than justified by his claim record (because he has travelled more kilometers).

Finally, the premium for this automobile insurance portfolio, which is not computed

here, can be obtained by using the quantile principle used by Heras et al. (2018).
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Table 7: Parameter estimates from the new count distribution using quantile (median) regression

Parameter Estimate S.E. t–Wald Pr> |t|
km –0.536 0.035 15.096 0.000

zone –0.394 0.026 14.802 0.000

bonus 0.253 0.020 12.382 0.000

make 0.289 0.015 19.251 0.000

β̂ 0.410 0.006 58.834 0.000

constant 2.485 0.183 13.581 0.000

L =−8516.35

AIC = 17044.70

Conclusions

This work introduces the discrete version of the continuous GHN distribution. We have

presented its most important probabilistic properties. Parameter estimation was ap-

proached by maximum likelihood. Using three applications to real data sets, we have

shown that the discrete generalized half-normal distribution proposed in this work pro-

vided a better fit than other extensions of the discrete half-normal model, illustrating

that the model is competitive with other discrete models depending on two parameters.

One of the disadvantages of the discretization of a continuous variable is that the

average does not appear expressed in a closed form allowing simple reparameterization

of the distribution in order to incorporate covariables. However, as noted, this drawback

can be avoided by carrying out quantile regression (the median in our case). This is pos-

sible due to the fact that the discretization is carried out from the distribution function,

which has a simple, closed expression. This particularity has been incorporated into this

work with an application in the health scenario, which take into account the fact that on

many occasions the median is a more intuitive, manageable and practical characteristic

than the mean.
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Abstract

A major operational task in city logistics is related to waste collection. Due to large problem sizes

and numerous constraints, the optimization of real-life waste collection problems on a daily basis

requires the use of metaheuristic solving frameworks to generate near-optimal collection routes

in low computation times. This paper presents a simheuristic algorithm for the time-dependent

waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a

biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds

between different network nodes are accounted for. The algorithm is tested using real instances

in a medium-sized city in Spain.
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1 Introduction

Due to its high operational costs and numerous related negative externalities such as

air pollution, noise, and traffic congestion, waste management is among the most im-

portant public services (Strand, Syberfeldt and Geertsen, 2020). The complete process

of collecting and disposing different types of garbage is a complex task shaped by

various optimization problems related to facility location, clustering of service terri-

tories, and vehicle routing (Ghiani et al., 2014). Considering rising population num-

bers in urban areas around the world, especially waste collection processes need to be

organized in an efficient manner in order to ensure a sustainable, cost-efficient, and
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citizen-friendly metropolitan garbage collection (Bing et al., 2016). The waste collection

problem (WCP) is a rich extension of the well-known vehicle routing problem (VRP)

with the aim of minimizing a certain objective function, e.g.: distances, travel times,

CO2 emissions, etc. (Kim, Kim and Sahoo, 2006). Problem inputs include a set of waste

containers that hold a positive amount of waste, which has to be collected from a num-

ber of capacitated garbage collection vehicles located at a central depot. Moreover, the

problem setting includes one or more landfills at which collected waste is disposed if a

vehicle is full or before it returns to the central depot.

Given the practical nature of the WCP, realistic problem instances discussed in the

literature typically include several hundred waste containers and several constraints re-

lated to maximum route travel times, driver lunch breaks, time windows, etc. (Benjamin

and Beasley, 2010; Buhrkal, Larsen and Ropke, 2012). This imposes certain limits on the

use of exact methods to solve this NP-hard problem, calling for the application of meta-

heuristic algorithms that are able to generate near-optimal solutions to large-scaled and

realistic WCP settings in calculation times of only a few seconds or minutes. However,

most metaheuristic solving methodologies still make simplifying assumptions about the

nature of input variables. On the one hand, most routing optimization frameworks as-

sume travel times between different network nodes to be static over time. Especially

in the context of daily collection of waste, this is an unrealistic assumption due to the

natural time dependency of edge traversing duration and vehicle velocities (Gendreau,

Ghiani and Guerriero, 2015). On the other hand, a frequent drawback of many solving

approaches is that they do not consider uncertainty in input variables. In the context of

vehicle routing, information regarding travel times, demands, or customers themselves is

typically not perfectly known in advance. Indeed, they are more likely to be of stochastic

or even dynamic nature (Pillac et al., 2013; Ritzinger, Puchinger and Hartl, 2016).

Figure 1 illustrates the effects of time-dependent and stochastic travel speeds. Given

the distance of traversing any edge in a routing problem, the travel duration to pass this

edge can be calculated as the quotient of travel distance and the expected vehicle speed.

In time-dependent routing scenarios, driving velocities vary according to different time

periods within the route planning horizon. Apart from the expected travel speeds, realis-

tic problem settings should also consider travel time variances due to different levels of

planning uncertainty. The effects of different travel time assumptions are highlighted as

optimistic and pessimistic vehicle speeds below, showing that variances in vehicle ve-

locities can significantly impact the necessary time to visit a number of nodes, whereas

the traveled distance is the same in all cases. This input uncertainty naturally occurs

in most real-life routing problems, especially in metropolitan areas where actual travel

times between different points are almost impossible to predict. A solution for the time-

dependent VRP with time windows was already proposed by Figliozzi (2012), although

the work lacks of real time implementations as well as alternative route constructions.

In general, one of the main issues related to routing problems applied in an ur-

ban context with uncertainty related to the transportation costs is how to define real-

istic instances (Tadei, Perboli and Perfetti, 2017). Usually algorithms are compared bet-
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Figure 1: The effect of stochastic travel duration due to time-varying vehicle speeds in time-

dependent routing scenarios.

ween them by using a common database. Although this is very helpful to compare algo-

rithms, it is mandatory to connect the algorithm with real data from users to apply them.

This paper presents a simheuristic approach (Juan et al., 2018) to solve the time-

dependent WCP with stochastic travel times (TDWCPST). By integrating Monte Carlo

simulation into a metaheuristic framework, both time dependencies and stochastic travel

speeds can be accounted for. Our metaheuristic framework combines biased randomiza-

tion techniques (Quintero-Araujo et al., 2017) with an iterated local search algorithm

(ILS) by Lourenço, Martin and Stützle (2003). The inclusion of a simulation procedure

during the optimization process leads to a couple of advantages over traditional meta-

heuristic solving approaches. Apart from the consideration of stochastic travel times, it

allows for a closer statistical risk analysis of the obtained solutions. This enables the

creation of additional decision-making dimensions related to route robustness in un-

certainty scenarios, e.g.: standard deviations or different quartiles obtained during the

simulation phase. The implementation and performance of the solving methodology is

tested on a large-scale case study. This case study refers to the waste collection process

in the medium-sized city of Sabadell, which is located within the autonomous region of

Catalonia, in northern Spain. It is important to note that real data from the waste col-

lector department of the city is transformed to create real instances where to apply the

algorithm.

Thus, the contributions of this work are threefold: (i) motivated by a real-life case, a

rich TDWCPST is proposed; (ii) a large real-life data set, with several realistic routing

constraints, is used to show the applicability of the proposed optimization procedure;

and (iii) the potential of the simheuristic approach is illustrated in a range of computa-

tional experiments, hence yielding various managerial insights.
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The paper is structured as follows: relevant literature on metaheuristic approaches

for time-dependent routing problems and waste collection is reviewed in Section 2; the

TDWCPST and the real-life problem setting are detailed in Section 3; Section 4 out-

lines our simheuristic solving framework; Section 5 describes different computational

experiments and analyses obtained results; finally, Section 6 concludes this work and

discusses possible future research directions.

2 Literature Review

This section reviews recent literature regarding metaheuristic solving frameworks for

time-dependent VRPs and the WCP. For a more detailed overview on previous research

regarding time-dependent routing problems the reader is referred to the work of Gen-

dreau et al. (2015). A more extensive literature review on operational challenges and

optimization methodologies in waste management is provided by Beliën, De Boeck and

Van Ackere (2014) and Han and Ponce-Cueto (2015).

2.1 Metaheuristic solving methodologies for time-dependent

routing problems

In the field of vehicle routing optimization, time dependency was not considered up

to the early 2000s apart from a few exceptions. Malandraki and Daskin (1992) formu-

lated travel times as a step function of the time of the day. This approach has the major

drawback that the no-passing, first-in-first-out (FIFO) property is not guaranteed. Thus,

a vehicle leaving node i might arrive later at node j than a vehicle leaving node i at

a posterior starting time due to varying travel times. This drawback in the travel time

function was improved by Hill and Benton (1992), who developed the first travel time

model based on time-varying vehicle speeds, which implies the FIFO characteristic.

Later, Ichoua, Gendreau and Potvin (2003) used an improved version of this vehicle

speed model in combination with a parallel tabu search heuristic to show the bene-

fits of time-dependent vehicle routing compared to its static counterpart. The impact of

time-dependent travel times to avoid traffic congestion was also studied by Kok, Hans

and Schutten (2012), who showed that late arrivals at customers and extra duty times

through traffic jams can be significantly reduced through smart congestion-avoidance

strategies.

An iterated local search algorithm for the time-dependent VRP with time windows

(TDVRPTW) was presented by Hashimoto, Yagiura and Ibaraki (2008). Computational

experiments include a variety of problem instances with up to 1,000 nodes. The TD-

VRPTW was also addressed in the works of Balseiro, Loiseau and Ramonet (2011)

and Harwood, Mumford and Eglese (2013). The former developed an ant colony sys-

tem hybridized with insertion heuristics which is tested on problem instances with up

to 100 clients. The latter established quick estimates of time-dependent travel times for
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the traveling salesman problem. Their results show that their estimations can lead to

significant reductions in computation time. The TDVRP with simultaneous pickup and

deliveries was addressed by Zhang, Chaovalitwongse and Zhang (2014) through an in-

tegrated ant colony and tabu search approach. A total of 100 customers were considered

in their work. During the last decade, much attention has also been paid to the environ-

mental effects of routing, in the context of the so called pollution routing problem. Kuo

(2010) developed a simulated annealing algorithm for establishing emission minimizing

vehicle routes while taking into account varying edge traversing times. Computational

results are provided using benchmark instances with up to 100 customers. The trade-off

between travel times and CO2 emissions in time-dependent VRPs was analyzed by Ja-

bali, Van Woensel and de Kok (2012). The time-dependent pollution routing problem

was also analyzed in the work of Franceschetti et al. (2013). The authors proposed an

integer linear programming formulation for cases without any traffic congestion. Envi-

ronmental considerations are also included in the work of Soysal, Bloemhof-Ruwaard

and Bektas (2015), who addressed the time-dependent two-echelon VRP through a com-

prehensive mixed integer linear programming (MILP) formulation.

All previously cited works focused on the deterministic version of the TDVRP. For

stochastic problem settings the literature is more scarce. Lecluyse, VanWoensel and

Peremans (2009) developed a tabu search metaheuristic for the TDVRP with stochastic

travel times. Nahum and Hadas (2009) developed an extended version of the well-known

savings algorithm to address the stochastic TDVRP. Tas et al. (2014) proposed a tabu

search and adaptive large neighbourhood search metaheuristic for the TDVRP with soft

time windows and stochastic travel times.

2.2 Metaheuristic frameworks in the optimization of waste collection

Different metaheuristic approaches have been presented in the solution of various WCPs

and their extensions. Even though many works include a case study to show the real-life

potentials of their frameworks, to the best of our knowledge, time dependency in the

WCP has not yet been considered in the literature.

Baptista, Oliveira and Zúquete (2002) elaborated an extension of the Christofides

and Beasley heuristic for the multi-period WCP modeled as a periodic VRP (PVRP)

to combine vehicle scheduling over multiple time periods with route planning. The au-

thors used their approach to improve municipal waste collection in the Portuguese city of

Almeda. Also addressing a multi-period WCP, Teixeira, Antunes and de Sousa (2004)

developed a cluster-first route-second heuristic to schedule and plan waste collection

routes for different waste types in a case study in Portugal with over 1600 collection

sites. Nuortio et al. (2006) presented a guided variable thresholding metaheuristic to

solve a multi-period WCP with several thousand collection points in Eastern Finland.

Hemmelmayr et al. (2013) addressed the PVRP with different waste types and up to 288

containers, which they solved with a variable neighbourhood search metaheuristic. They

consider the landfills as intermediate facilities, which are inserted in pre-constructed
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routes using dynamic programming. In the same work, the authors also discussed the

single period WCP with multiple depots, in which the landfills serve as vehicle depots

and disposal sites at the same time. Ramos, Gomes and Barbosa-Póvoa (2014) extended

the typical objective of minimizing routing costs in order to include environmental con-

cerns, considering multiple waste types and numerous vehicle depots in a case study in

Portugal.

Only focusing on waste collection routing, Kim et al. (2006) developed an exten-

sion of Solomon’s insertion algorithm to optimize routes of a North American waste

management service provider, considering a capacitated vehicle fleet, time windows,

and driver lunch breaks. The authors reported reduced routing distances of up to 10%.

Furthermore, a benchmark set of 10 realistic instances based on the original case study

ranging from 102 TO 2,100 nodes is provided. Using the same benchmark set, Ben-

jamin and Beasley (2010) combined tabu search with a variable neighbourhood search

metaheuristic. By exchanging containers and landfills within and between routes, the

solution search space is systematically increased. Likewise, Buhrkal et al. (2012) put

forward an adaptive large neighbourhood search metaheuristic. Based on an initial so-

lution, their approach applies a range of destroy-and-repair methods to examine several

solution neighbourhoods. It is called adaptive since the choice of methods depends on

the solution quality obtained during the construction of earlier solutions. Moreover, an

acceptance criterion for new solutions based on simulated annealing is included. Like-

wise, Markov, Varone and Bierlaire (2016) presented a multiple neighbourhood search

heuristic for a real-word application of the waste collection VRP with intermediate facil-

ities. The authors consider a heterogeneous vehicle fleet and flexible depot destinations

in their approach. Gruler et al. (2017a) developed a metaheuristic algorithm to assess

the potentials of horizontal collaboration in urban waste collection.

Concerning the WCP under input uncertainty, the literature is more scarce with most

works focusing on stochasticity concerning expected waste levels. Ant colony optimiza-

tion and a hybrid approach based on a genetic algorithm and tabu search for a case study

with 50 containers in Malaysia is presented in Ismail and Irhamah (2008) and Ismail and

Loh (2009). After planning aprioristic routes, waste levels are simulated according to

a discrete probability distribution. Routes undergo a recourse action (i.e., an additional

disposal trip) whenever actual demand exceeds the planned collection amount. Nolz,

Absi and Feillet (2014) formulated a collector-managed inventory routing problem for

a case study on the collection of infectious waste. By using real information obtained

through radio frequency identification, their adaptive large neighbourhood search algo-

rithm is able to consider stochastic waste collection levels. Alshraideh and Abu Qdais

(2017) combined a multi-period WCP with time windows and stochastic demands in a

real case study of medical waste collection from 19 hospitals in Northern Jordan. They

used a genetic algorithm and a probability constraint regarding a pre-defined service

level to solve the problem. Also, Gruler et al. (2017b) presented a variable neighbour-

hood search based simulation-optimization approach for the WCP with stochastic de-

mands. Although metaheuristics are becoming the predominant methodology in solving
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WCP under rich and realistic scenarios (Hannan et al., 2018; Asefi et al., 2019), other

approaches such as mixed-integer programming are also being employed by some ex-

perts (Mohsenizadeh, Tural and Kentel, 2020).

3 Problem Description

This section outlines the real-life case study of collecting waste under different routing

constraints and travel time assumptions in the city of Sabadell. Furthermore, the time-

dependent WCP with stochastic travel times (TDWCPST) and the applied travel speed

model for different time periods is discussed in more detail.

3.1 The waste collection problem in Sabadell

Sabadell is a medium-sized city of roughly 200,000 inhabitants located within the au-

tonomous Spanish region of Catalonia. Collection vehicles are located at a central depot

and collected garbage is disposed in a single landfill. Expected waste levels in each con-

tainer, average service times at each node, and the average vehicle travel speeds during

different time periods are known. The problem settings consists of a total of 921 paper

waste containers which are currently visited on 9 different routes. The locations of the

vehicle depot, the landfill, waste containers, and the original route assignation can be

seen in Figure 2 (the central depot and the landfill are marked by the square symbols).

According to the managers, in a scenario with dynamic travel times as the one being

considered, the total time required to complete the waste collection process is the main

key performance indicator. On the one hand, the operational times directly affect the

operational costs associated with the waste collection process in terms of wages and

vehicle usage costs. On the other hand, an important routing constraint is that collection

routes need to be completed between 9 a.m. and 4 p.m., as these are the opening hours of

the central depot at which the collection vehicles are stationed. Moreover, different time

periods within the daily planning horizon can be identified regarding expected traffic

speeds:

• Heavy traffic on all streets is expected during the rush hour from 9 a.m. to 10 a.m.

and from 1 p.m. to 2 p.m.

• Traffic jams are expected in streets close to primary schools in the time periods of

9 a.m. to 10 a.m., 12 p.m. to 1 p.m., and 3 p.m. to 4 p.m.

Especially the latter observation is of importance in the planning of waste collection

routes. Containers in the affected streets should not be visited within the depicted time

period. Due to parents picking up their children from primary schools, streets within a

certain distance radius of the school building should be avoided in the given period if



292 A simheuristic algorithm for time-dependent waste collection management...

Figure 2: Node locations and original route assignation.

possible. According to the experience of the decision-taker, a radius of 500 m around

primary schools is considered. Apart from delays in the collection process, visiting these

streets during the most busy hours affects many citizens and can even be dangerous due

to children exiting the primary school facilities. The influenced streets in the city centre

of Sabadell for which the additional constraints apply are highlighted in Figure 3.

3.2 A time dependent travel speed model for the WCP

The TDWCPST can be described on a graph G = (V,E):
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Figure 3: Streets to be avoided during highly occupied traffic periods.

• Node set V =V d ∪V f ∪V c includes:

(i) A central depot V d = {0} at which a homogeneous fleet of waste collection

vehicles, each of them with capacity C, is located.

(ii) A set V f = {1,2, . . . ,m} of m landfills at which collected waste must be dis-

posed if vehicle capacities are reached and before a vehicle returns to the

central depot (making more than one landfill trip per route possible if no

other route constraints are violated).
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(iii) A set of n waste containers V c = {m+ 1, . . . ,m+ n} with associated waste

levels qi > 0 (∀i ∈ V c). Service times for emptying any container and for

disposing collected garbage at any landfill are defined as si > 0 (∀i ∈V \V d).

• Edge set E = {(i, j)/i, j ∈V, i 6= j} describes all edges connecting any two nodes.

• Travel distances di j ≥ 0 between any two nodes in V are known.

• Additional routing constraints include a maximum amount of waste to be collected

during each route and the maximum route duration defined by the opening and

closing times at the central depot.

Our travel speed model for time varying vehicle velocities is based on the discus-

sions of Ichoua et al. (2003). The planning horizon (defined by the depot opening hours)

is divided into p time periods T1,T2, . . . ,Tp. Travel durations tteT to cross any edge

in e ∈ E can be calculated as the quotient of travel distances and vehicle speeds vT

(T ∈ {T1,T2, . . . ,Tp}), such that tteT = de/vT . In the specific case of waste collection

in Sabadell, different travel speeds can be defined for different edges, e.g., due to rush

hour traffic or other events such as opening or closing hours of schools. For this reason,

edge set E is partitioned into S subsets with Es (s = 1,2, . . . ,S). Thus, travel speeds can

be formulated as ttsT to show the travel speed of any edge of the edge subset Es during

time period T . This step-wise travel speed model along different times of the planning

horizon is a natural way of estimating travel duration of different edges in real-world

conditions. Furthermore, it implies the satisfaction of the FIFO property.

4 Solving Framework

The different stages of the proposed simheuristic solving methodology for the TD-

WCPST are summarized in Figure 4. By integrating simulation into a biased-randomized

iterated local search (BR-ILS) algorithm, a set of promising stochastic solutions are

constructed. These solutions are then refined in a more intensive simulation procedure.

Finally, the defined set of solutions undergoes a more detailed risk analysis according to

different criteria. All steps are outlined in more detail in the following subsections.

4.1 Constructing an initial time-dependent WCP solution

Our approach starts by constructing a feasible initial solution with an enhanced frame-

work of the well-known savings heuristic for routing problems (Clarke and Wright,

1964). In the original procedure, the savings si j of including any edge e connecting two

customers i and j in a constructed solution are calculated as si j = s ji = ci0 + s0 j− ci j.

However, this assumption does not hold in the special case of waste collection, as the

round trip costs between the central depot and any waste container are asymmetric due

to the additional landfill visit at the end of any completed route. Thus, the route travel
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direction influences the savings values assigned to each edge. In order to account for the

necessary landfill visit in every route, the expected savings of each edge are calculated as

average values of completing a route in both directions, such that E[si j] = (si j + s ji)/2.

After each merge, this initial estimate is updated to account for the real travel times

depending on the hour of the day.

Figure 4: Simheuristic solving methodology.

Apart from this algorithm adaption to the problem setting, we enhance the greedy

edge selection process of the savings procedure through a probabilistic construction be-

haviour based on biased randomization techniques (Ferone et al., 2019). As highlighted

in Algorithm 1, a candidate set of edges is ranked according to their respective sav-

ings value. In the following, a feasible waste collection route is created by iteratively

adding solution elements from the eligible edges. Selection probabilities follow a geo-

metric distribution defined through parameter α (0 < α < 1), which depicts the prob-

ability of the most promising solution element to be chosen. This process is similar to
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the GRASP procedure discussed in the work of Resende and Ribeiro (2010). However,

while GRASP is based on a restricted candidate list and a uniform selection probabil-

ity, selection probabilities are inclined to more promising solution elements –which are

all potentially eligible at each solution construction step– in this biased randomization

approach. In a biased-randomized algorithm, the choice of the skewed probability dis-

tribution has an impact on the quality of the final solution. As discussed in Grasas et al.

(2017), the geometric and the decreasing triangular probability distributions have been

successfully used in previous work, but other probability distributions (either theoretical

or empirical) are possible as well.

Algorithm 1: Biased randomization to create an initial TDWCP solution

Input: Skewed probability distribution f, parameter α, edge set E
1 sol← /0
2 initialize candidate set: CL← E
3 sort CL according to savings value
4 while solution sol is not complete do
5 Randomly select pos ∈ CL according to distribution function f (α)
6 sol← sol ∪ pos

7 CL← CL \ pos
8 sort CL

end
9 return TDWCP solution sol

4.2 A simheuristic framework for the time-dependent WCP

with stochastic travel times

Our simheuristic procedure to solve the TDWCPST is outlined in Algorithm 2. Once

an initial solution is constructed and set as the current incumbent baseSol and bestSol

solutions, an iterated local search algorithm is started (Lourenço et al., 2003). During

a predefined stopping criterion, new TDWCP solution neighbourhoods are created by

perturbating the current baseSol. Each perturbated solution newSol then undergoes a

local search phase to find the local minimum within the current solution structure. As

perturbation operator a double-bridge move is applied. Hereby, a solution is partitioned

into four pieces of random size, which are subsequently joined in an arbitrary order. As

local search movement, a 2-opt operator is employed (Muyldermans et al., 2005).

Up to this point, deterministic (expected) travel duration between difference net-

work nodes are considered. In order to account for uncertainty in input variables, Monte

Carlo simulation is applied to any promising solution found in the metaheuristic search.

A TDWCP solution newSol is deemed promising if its deterministic travel duration out-

perform those of the currently incumbent baseSol or if if a simulated annealing-like

acceptance criterion is met. The travel duration between all edges of a promising so-

lution are simulated from a log-normal probability distribution during nSim simulation

runs. At this stage any other probability distribution could be applied, but the log-normal

one is a “natural” choice to model non-negative random variables, such as travel times
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in routing problems or times-to-failure in reliability studies (Faulin et al., 2008). Dur-

ing each simulation iteration, expected travel duration ttsT between any two points are

defined as distribution mean of the probability function. Variance factor k defines travel

duration variance levels. With E[ttsT ] = ttsT and Var[ttsT ] = k · ttsT , the location param-

eter µi and scale parameter σi defined for the probability function can be formulated

as:

µi = ln(E[ttsT ])−
1

2
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As a result of time varying travel speeds, the variability in solution waste collection

durations estimated after each simulation run can be expected to increase with higher

variance levels. In particular, waste collection close to primary school locations is pe-

nalized by significantly reduced travel speeds during predefined time periods. After the

simulation phase, the stochastic travel durations of newSol are defined as the average of

all simulation results.

If the stochastic costs of the considered solution outperform the estimated stochastic

travel durations of the incumbent baseSol and/or bestSol, they are updated respectively.

Moreover, each solution that is defined as incumbent baseSol during any stage of the

simheuristic procedure is included in a TDWCPST solution set eliteSols. After the al-

gorithm stopping criterion is reached, solutions included in this exclusive set of elite

solutions undergo a more intensive simulation phase defined by a higher number of sim-

ulation runs. This allows a more accurate estimation of the best found WCP solutions in

stochastic travel time scenarios.

The described combination of simulation with metaheuristics leads to several advan-

tages over deterministically focused optimization approaches. Firstly, the search phase

is driven by the stochastic solution estimates obtained during the simulation (i.e., the

baseSol is updated according to the cost estimates provided by the simulation com-

ponent). Secondly, TDWCPST solutions can be realistically evaluated under different

uncertainty scenarios. Finally, the simheuristic methodology allows the evaluation of

different solutions according to additional criteria instead of simply focusing on the

defined objective function. Due to the stochasticity in real-life travel duration, the com-

pletion of waste collection plans is likely to vary with respect to the predicted driving

times. For this reason, decision-makers need a more insightful decision support than

simply focusing on the minimization of expected travel times. Thus, we implement a

final risk analysis for the elite solutions in our simheuristic procedure. At this stage,

additional dimensions related to the robustness of a considered solution, such as the

standard deviation or the quartiles, are computed.
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Algorithm 2: A simheuristic for the TDWCPST

Input: f , E, α, nSimshort , nSimlong, k
1 nodes← getNodes(E)
2 costMatrix← getCostMatrix(E)
3 initSol← generateBRSolution(f, α, E) // Biased-Randomized Algorithm

4 baseSol← initSol
5 stochDuration(baseSol) ← infinite
6 bestSol← baseSol
7 elitSols← /0
8 while stopping criterion not reached do
9 newSol← perturbate(baseSol, costMatrix) // perturbation stage

10 newSol← localSearch(newSol, costMatrix) // local search stage

11 delta← detDuration(baseSol) − detDuration(newSol)
12 if delta ≥ 0 then
13 credit ← delta

14 stochDuration(newSol)← simulation(newSol,nSimshort ,k)
15 if stochDuration(newSol) ≤ stochDuration(baseSol) then
16 includeInEliteSolutionSet(newSol)
17 baseSol ← newSol // simulation driven baseSol

18 if stochDuration(newSol) < stochDuration(bestSol) then
19 bestSol← newSol

end

end

end
20 else if −delta≤ credit then
21 credit ← 0

22 stochDuration(newSol)← simulation(newSol,nSimshort ,k)
23 baseSol← newSol

end

end
24 for eliteSol ∈ eliteSols do
25 stochDuration(eliteSol)← simulation(eliteSol,nSimlong,k)

end
26 return bestSol

4.3 Creating a real-life distance matrix

In this subsection we show the process followed to generate a real-life distance matrix.

The data was obtained through a collaboration agreement between the Internet Comput-

ing and Systems Optimization (ICSO@IN3) research group and the company SMATSA,

which is responsible for the collection of waste in the inner-city area of Sabadell. The

problem dealt in the present paper involves the waste disposal vehicle routing in order

to design efficient routes between 886 paper waste containers. A single depot and land-

fill are considered. Locations are given as Longitude/Latitude (Long/Lat) and postal ad-

dresses are also available. The goal is to create a real-life distance matrix from these data.

In the creation of this distance matrix only open software has been used. In par-

ticular, we have used: QGIS 2.18 (https://www.qgis.org) as a geographic infor-

mation system (GIS); PostGIS (https://postgis.net), which is the geographic ex-

tension of the database PostgreSQL (https://www.postgresql.org); and pgRouting

(https://pgrouting.org) to obtain the distances between pairs of locations. In ad-

dition, Open Street Map or OSM (https://www.openstreetmap.org) has been em-

https://www.qgis.org
https://postgis.net
https://www.postgresql.org
https://pgrouting.org
https://www.openstreetmap.org
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ployed as a base map. The first step is to download the base map for the zone of Sabadell

from OSM. This downloaded file is then processed with osm2po (https://osm2po.de)

to transform it into a routable file. One of the outputs of the program is an SQL file that

can be executed in PostgreSQL with the PostGIS extension. The output is a table that

can be visualized in QGIS with the Add PostGIS table function.

At this step the map is available in a GIS and, although the aspect is visually correct,

it does not have topology, which is required to connect nodes and to obtain real distances.

The topology can be created with the pgrouting query pgr createTopology, which can

be run from QGIS thanks to the database manager plug in. Once the map has a topology,

pgRouting can be run to obtain the shortest path between two given points. Figure 5

shows the uploaded map with the route between two points.

Figure 5: Route between two points obtained with pgRouting in QGIS after uploading the base

map and having introduced the topology.

After this process, we had the map of the working area in a GIS and prepared to

obtain the distance between any two points. The next step is uploading the location of

the 886 containers, the depot and the landfill. Although the location is quite precise, there

https://osm2po.de
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may be some errors and it is important to verify out-layer nodes. Usually these points

can be visually located in the map and corrected using the postal address (Figure 6).

Figure 6: Network nodes and imported point location layer.

On the other hand, the position of the nodes does not correspond to the street lines

of the map in QGIS, since the streets have a width and they are represented as a line

axe. Therefore, every point has to be linked to its corresponding street axis. It has been

done with the NNJoin QGIS plug in, which obtains the nearest neighbour between every

single point and the start / end node of street axes. Figure 6 shows the nodes within

the network and the imported nodes. Thus, it has been possible to obtain the closest

point from the axes to every single container, which generates a new list of points, but

this time, within the routable network. This introduces a little error in the position of

the containers if they are not in the end node of the street axe. A more precise solution

would have been to locate the nearest point of the axe and split the axe at that point.

However, since containers are usually located at the corner of the streets, and according

to the managers’ opinion, the error introduced can be considered as a non-relevant one

for the purposes of this study.
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Finally, we can obtain the distance matrix using PostgreSQL (with the extensions

PostGIS and pgRouting). The distance in km is set as cost, and a distance matrix of the

first 10 nodes is established. The name of the output file is sabadel 2po 4pgr.

5 Computational Experiments and Analysis of Results

The proposed simheuristic solving framework is applied to the real-life waste collec-

tion problem setting described in section 3. The algorithm is implemented as a Java

application and tests are run on a personal computer with 4GB RAM and an Intel Pen-

tium®processor with 2.16GHz. The necessary algorithm parameters to complete the

described tests are specified as follows. These parameters have been obtained after a

quick calibration based on the methodology proposed by Calvet et al. (2016):

• Skewed probability distribution f : geometric with parameter α = 0.3.

• nSimshort : 100.

• nSimlong: 1000.

• BR-ILS stopping criterion per instance: 30 seconds.

According to the observations of the decision maker, the average vehicle speed in

normal traffic conditions is 25 km/h. The travel speed is divided by 5 and 25 dur-

ing heavy traffic and traffic jams, respectively. Average vehicle service times at each

container are set to 90 seconds, while 45 minutes are necessary to empty a vehicle at

the landfill. Stochastic travel times are generated with three different variance factors,

k = 1,2.5,10, representing different (low / medium / high) uncertainty levels. All vari-

ance scenarios are represented in Figure 7, showing the travel times of edge subset s

during time period T with an expected traversing time of E[ttsT ] = 25 time units. The

shadowed area under each curve represents 95% of the simulated values. In the low-

variance scenario (k = 1), 95% of actual driving times fall between 16.64 and 36.15 time

units with a high density around the expected value. As the variance level is increased,

the maximum density of the simulated times for all edges decreases and a higher vari-

ability can be observed. Note that the overall driving duration of a solution will increase

as the expected travel time uncertainty increases. Moreover, the special case of k = 0 is

equivalent to the deterministic routing case.

5.1 Experimental results

In order to evaluate the performance of our simheuristic algorithm, its results are com-

pared to the nine waste collection routes currently completed on a daily basis in Sabadell.

The comparison of the current routes (i.e., those built by SMATSA) and the best found

solution of the BR-ILS algorithm in different variance scenarios is listed in Tables 1
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(deterministic case and low variance) and 2 (medium and high variance). A total of 10

independent executions were run (each one using a different seed for the random num-

ber generator), and the best-found solution was returned by the algorithm. Each route

holds between 79 and 122 waste containers to be emptied. To allow a fair comparison,

the current order of visiting waste containers is evaluated in accordance with the neces-

sary algorithm parameters described before. Since the distance matrix has been created

using real-life distances, it is possible to make the comparison in order to know if the

cost function is actually improved.

Figure 7: Log-normal distribution of different variance levels around an expected travel time of

25 time units.

It is important to note that comparing the nine routes separately, instead of designing

new routes, allows us to compare our algorithm with the current situation in a real prob-

lem. The comparison is performed in terms of total time employed in completing the

collection process, since this is the main key performance indicator for the managers.

In all travel duration variance scenarios, the BR-ILS is able to significantly out-

perform the current waste collection routes (by over 12% on average). Moreover, the

solution travel duration in different uncertainty scenarios provided by our metaheuristic

show that estimated travel duration increase with higher variance levels. The best re-

sults with the simheuristic BR-ILS algorithm are obtained when considering all 921

waste containers in a “global” waste collection instance. In this case, new route-to-

containers assignments are established instead of solely focusing on reordering pre-

established waste collection routes. For example, in the deterministic routing case, and
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using a running time of 120 seconds, the global solution yields a overall driving dura-

tion of 2,820.5 minutes, with only 8 necessary garbage collection routes, thus saving

one route to the company. Regarding the solution to the stochastic version of the prob-

lem, the proposed simheuristic has been run for a maximum time of 5 minutes before

returning the best-found solution. This maximum computational time was suggested by

the managers, who have to plan the collection routes every morning.

Table 1: Driving duration in minutes of current routes compared to our best found solution (de-

terministic case and low variance scenario).

Route
k = 0 Diff (%)

([2]-[1])/[1]

k = 1 Diff (%)

([4]-[3])/[3]Current

[1]

Our Best

[2]

Current

[3]

Our Best

[4]

1 392.5 357.3 −9.0 391.3 362.7 −7.3

2 379.9 265.0 −30.2 381.3 271.6 −28.8

3 470.8 345.5 −26.6 455.5 346.0 −24.0

4 386.4 342.3 −11.4 384.2 341.8 −11.0

5 374.3 335.1 −10.5 387.9 342.7 −11.7

6 396.2 371.4 −6.2 397.1 388.7 −2.1

7 372.8 340.4 −8.7 364.2 340.6 −6.5

8 393.9 326.7 −17.0 399.8 342.1 −14.4

9 407.9 323.0 −20.8 411.1 323.6 −21.3

Total 3,574.5 3,006.7 –15.9 3,572.3 3,059.9 –14.3

Table 2: Driving duration in minutes of current routes compared to our best found solution

(medium and high variance scenario).

Route
k = 2.5 Diff (%)

([2]-[1])/[1]

k = 10 Diff (%)

([4]-[3])/[3]Current

[1]

Our Best

[2]

Current

[3]

Our Best

[4]

1 391.6 363.0 −7.3 392.7 367.5 −6.4

2 381.4 281.3 −26.2 388.1 293.4 −24.4

3 457.9 349.8 −23.6 460.2 363.3 −21.0

4 383.9 342.6 −10.7 384.2 340.2 −11.4

5 389.7 342.7 −12.0 395.4 355.2 −10.2

6 397.2 386.9 −2.6 397.3 387.5 −2.5

7 362.3 337.7 −6.8 360.4 340.1 −5.6

8 398.8 344.0 −13.8 398.9 355.0 −11.0

9 410.6 329.4 −19.8 414.0 346.5 −16.3

Total 3,573.3 3,077.3 –13.9 3,591.1 3,148.7 –12.3

5.2 Risk analysis of different TDWCPST solutions

For each waste collection plan (i.e., for each solution to the TDWCPSD), our simheuris-

tic algorithm not only generates information about its expected travel duration and ex-
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pected driving distance, but it can also provide the plan’s probabilistic profile (including

risk and reliability analyses). Thus, statistical values such as the standard deviation of

travel duration, the median, or the third quartile can be obtained during the simulation

runs without increasing the computing effort.

Table 3 shows different attributes of three elite solutions of the global TDWCPSD

with all garbage containers in a high variance scenario (k = 10). The deterministic and

stochastic travel duration, driving distance, standard deviation, median, third quartile,

and the number of waste collection routes of each TDWCPST solution are provided. As

highlighted in the radar chart shown in Figure 8, each solution outperforms the others in

a different decision-making dimension. While solution B is the most promising solution

regarding deterministic travel duration, solution A shows the best results in terms of

expected travel times and overall travel distance. However, the standard deviation of

travel duration obtained during the long simulation run (which can be seen as a reliability

indicator of a given solution) is the lowest for solution C. This solution behaviour is

also observed in the multiple boxplot shown in Figure 9. It can be clearly seen that

the most promising deterministic solution B yields the highest travel duration variance,

suggesting a low reliability of the constructed waste collection routes. Likewise, the

median and third quartile could be considered in a closer risk analysis according to

the preferences of the waste collection route planner. Since this work is addressed to a

real situation scenario, it is important for the planner this degree of freedom that allows

to find different solutions. In this experiment we offered three solutions to the planner

or decision maker. In other settings, the specific number could be adjusted taking into

account the magnitude of the differences among solutions and the preferences of the

planner.

Figure 8: Ranking of TDWCPST solutions according to different quality dimensions.
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Table 3: Analysis of different TDWCPST solutions (high variance scenario).

Solution

Det.

Duration

(min)

Stoch.

Duration

(min)

Distance

(km)

Stand.

Dev.
Median

Third

Quartile

#

Routes

A 2,879.61 2,936.05 264.58 31.98 2,932 2,956 8

B 2,827.49 2,938.67 278.45 64.59 2,930 2,969 9

C 2,897.58 2,952.18 280.27 26.46 2,951 2,967 8

Figure 9: Comparison of simulation results of different TDWCPST solutions.

6 Conclusions

This work presents a simheuristic algorithm for the time-dependent waste collection

problem with stochastic travel times to improve the real-life case of the waste collection

process of several hundred waste containers in the Spanish city of Sabadell. The algo-

rithm works by integrating simulation into a metaheuristic framework, which is based

on a biased-randomized iterated local search. Uncertainty in travel duration between

different nodes in a the city logistics network is considered as well.

The work also shows the process followed to obtain the real-life distances. Work-

ing with real-life distances allows the comparison of the algorithm results with the real

routes that are used in Sabadell nowadays. Results suggest significant travel duration

reductions in different variance scenarios. Furthermore, a risk analysis of obtained so-

lutions along different dimensions such as the standard deviation of travel duration is

performed. The results underline the importance of risk aware route planning in the

process of waste collection.
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The research completed in this paper can be extended in several directions. Although

a simheuristic algorithm has been used to obtain garbage collection routes with real-life

distances to compare then with the routes of Sabadell, other standard algorithms of the

literature could also be tested and compared with them. This work would allow to see

the relative difference between several algorithms in a real situation. Moreover, different

procedures to generate the initial solution can be tested and their effect on the global

performance of the algorithm can be assessed.

In addition, our simheuristic procedure could be extended to consider additional in-

put variables that are typically shaped by some kind of stochastic behaviour, e.g.: waste

to be collected or even waste containers themselves. Similarly, the problem setting could

be enriched by including historical data to construct a more realistic travel speed model

for the study area. An interesting concept in this context is the emerging technique of

learnheuristics (Calvet et al., 2017), which complements the simheuristic solving frame-

work by including machine learning techniques to consider problem dynamic inputs

–e.g., varying traffic conditions at different times.
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Nuortio, T., Kytöjoki, J., Niska, H. and Bräysy, O. (2006). Improved route planning and scheduling of waste

collection and transport. Expert Systems with Applications, 30, 223–232.
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Abstract

Many decision-making processes in our society involve NP-hard optimization problems. The large-

scale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone

optimization methods. The same applies for isolated simulation models, which do not have the po-

tential to find optimal solutions in a combinatorial environment. This paper discusses the utilization

of modelling and solving approaches based on the integration of simulation with metaheuristics.

These ‘simheuristic’ algorithms, which constitute a natural extension of both metaheuristics and

simulation techniques, should be used as a ‘first-resort’ method when addressing large-scale

and NP-hard optimization problems under uncertainty –which is a frequent case in real-life ap-

plications. We outline the benefits and limitations of simheuristic algorithms, provide numerical

experiments that validate our arguments, review some recent publications, and outline the best

practices to consider during their design and implementation stages.
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1 Introduction

Decision makers in areas such as transportation, logistics, supply-chain management,

health care, production, telecommunication systems, and finance have to face complex

challenges when tackling optimization problems in real-world applications. Most of

these optimization problems are NP-hard, while others have a lack of complete informa-

tion that makes their exact definition or formulation quite challenging if not impossible.

These facts limit the use of exact optimization methods to small- and medium-sized
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instances, in which the optimal values can be obtained in reasonable computing times.

Moreover, traditional optimization methods might require the use of simplifying as-

sumptions, which do not always reflect the actual system characteristics in a proper

manner. Driven by economic and technological factors, real-world systems are becom-

ing increasingly large and complex. Among these factors, we could include trends such

as globalization, increased computing power, information technologies, as well as the

availability of vast amounts of data (Xu et al., 2015).

Metaheuristic algorithms have gained popularity as a predominant approach for solv-

ing real-world optimization problems (Dokeroglu et al., 2019). These algorithms are

able to deal with non-trivial objective functions (e.g., multi-objective, non-convex, non-

smooth, and noisy functions), soft constraints, and decision variables of different nature.

Metaheuristics allow decision makers to obtain near-optimal solutions to large and com-

plex problems in reasonably low computing times, sometimes even in real time (e.g., a

few seconds). Therefore, they have become effective methodologies in application areas

where optimization of system resources is needed. In addition, approaches hybridiz-

ing exact methods with metaheuristics are also widely used. For instance, matheuristics

(Boschetti et al., 2009) combine both approaches to get the best from each of them.

Typically, they employ the metaheuristic component to deal with the large global prob-

lem, while the exact component is used to cope with specific parts of it (Fischetti and

Fischetti, 2018). Nonetheless, both exact optimization methods and metaheuristics fre-

quently assume that the problem inputs, the underlying objective functions, and the set

of optimization constraints are deterministic or follow simple probabilistic rules. These

are strong assumptions and, as a consequence, many deterministic models are over-

simplified versions of real-world systems. Coping with the inherent uncertainty of the

systems to optimize during problem solving has recently gained relevance (Keith and

Ahner, 2019). For instance, robust approaches for metaheuristics have been proposed

to handle such uncertainty (Beyer and Sendhoff, 2007). Most of these approaches are

extensions of exact optimization models, and they can be classified as deterministic (i.e.,

based on a set of plausible scenarios), probabilistic (i.e., assuming a given probabilistic

function), or possibilistic (i.e., fuzzy-interval measures).

Simulation can be understood as the process of model ‘execution’ that takes a model

through its evolution over time. This evolution can produce changes in the system state

or not (stationary system). In addition, these changes can occur discretely or continu-

ously through time. In discrete simulation, the event-oriented view works with the logic

occurring at the instantaneous discrete events themselves, rather than with entities and

resources (Wainer, 2017). However, the process-oriented world-view describes how en-

tities move through various processes, where each process may require one or more

resources and takes a certain (usually stochastic) amount of time (Couture et al., 2018).

Simulation allows us to represent the real system in detail and can maintain better con-

trol over experimental conditions than by experimenting with the real system itself. A

simulation model can be defined as a set of rules (e.g., equations, flowcharts, or state

machines) that define how the system evolve in the future and how uncertain the system
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is at its present state. A valid simulation model might be able to capture the existing

complex reality in a realistic and precise way. A well validated simulation should be

one of the preferred approaches to employ when modelling uncertainty in real-world

complex optimization problems. As Lucas et al. (2015) noted, “simulation is now an

option that should be, in many ways, regarded as the method of choice for analysing

complex systems in the face of astounding advances in affordable processing power,

modelling paradigms and tools, and supporting analysis capabilities”. Still, stand-alone

simulation methods show limitations when dealing with optimization problems of com-

binatorial nature, since a classical simulation approach does not incorporate efficient

search methods to explore vast solution spaces.

Hence, both simulation-optimization (Fu, 2015) and simulation-based optimization

(Gosavi, 2015) methods can provide practitioners with a flexible and rich tool when

dealing with optimization problems in uncertain domains. In particular, we focus here

on a subset of these methods that uses metaheuristics for the optimization compo-

nent. When properly designed, these ‘simheuristics’ are capable of solving NP-hard and

stochastic optimization problems where the simulation component copes with the uncer-

tainty of the system and interacts with the metaheuristic component (Juan et al., 2018).

The latter component, in turn, searches the solution space for a near-optimal result. In the

past, some optimization problems have been solved by using simulation to evaluate the

quality of solutions in engineering. Notice, however, that simheuristic algorithms go one

step beyond in the sense that: (i) the feedback from the simulation should also be used to

guide the metaheuristic search process itself; and (ii) all the information provided by the

simulation component for a solution to the stochastic optimization problem (stochastic

solution) allows considering a risk / reliability analysis; then, this analysis can be used to

assess alternative stochastic solutions to the stochastic optimization problem. All these

characteristics, plus the fact that integration of simulation techniques with metaheuristic

algorithms is relatively simple, make simheuristics a ‘first-resort’ method when dealing

with real-world optimization problems under uncertainty conditions. In this paper, we

analyse some of the advantages of using simheuristics over traditional methods, as well

as some of their limitations. Advantages range from a better understanding of the sys-

tem behaviour to the use of the generated information through the different simheuristic

stages. For example, visualization, machine learning, and sensitivity analysis can be eas-

ily used to obtain richer information about the optimization process. We also describe

how this combination of metaheuristics and simulation can be carried out to build a suc-

cessful simheuristic. Several construction guidelines are given to help researchers and

practitioners reach their goals. Thus, for instance, validation and stakeholders’ discus-

sion of the simulation model used within the simheuristic design and testing stages are

encouraged. As simulation can tolerate far less restrictive modelling assumptions, even

simple simulations must be correctly validated (Chica et al., 2017) and agreed to by as

many decision makers as possible in order to lead to better decisions (Voinov and Bous-

quet, 2010). These guidelines promote the use of different stages to avoid jeopardizing

the optimization process itself, thus obtain the best possible results with reduced com-
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puting times. The paper also includes some computational experiments that contribute

to support our claims, as well as a number of references to recent publications with addi-

tional numerical results. These ‘auxiliary’ references show applications of simheuristics

to different fields.

The rest of the paper is structured as follows: Section 2 provides a short overview

of metaheuristic algorithms. Section 3 discusses how uncertainty has been traditionally

addressed in optimization problems. Section 4 analyses the basic concepts behind a

simheuristic approach. Section 5 reviews previous simheuristic applications in terms

of their constituent components and general results. Section 6 lists the most important

advantages of using simheuristics, while Section 7 studies their main limitations and

how they can be partially overcome. Section 8 provides some guidelines that can be

useful during the design and implementation stages of a simheuristic algorithm. Finally,

concluding remarks are provided in Section 9.

2 An overview on metaheuristic optimization

According to Glover and Kochenberger (2006), metaheuristics can be defined as “an

iterative process that guides the operation of one or more subordinate heuristics (which

may be from a local search process to a constructive process of random solutions) to

efficiently produce quality solutions for a problem”. Metaheuristics are a family of ap-

proximate non-linear optimization techniques that provide acceptable solutions (typ-

ically near-optimal ones), in a reasonable amount of time, for solving computation-

ally hard and complex problems in science, engineering, and other fields. Unlike exact

optimization algorithms, metaheuristics do not guarantee provably optimal solutions.

However, for many large-scale real-world problems, metaheuristics might be preferred

over gradient-based methods or mathematical programming (Singh and Jana, 2017). The

same is true in the case of optimization problems with non-smooth objective functions

(Juan et al., 2020). There are also effective gradient-based methods, like the simulta-

neous perturbation stochastic approximation one (Spall, 2005). These methods are suit-

able for adaptive modelling and optimization under uncertainty (Bhatnagar et al., 2003)

and control optimization (Li, Jafarpour and Mohammad-Khaninezhad, 2013). However,

these methods show limitations in the presence of non-smooth objective functions (like

the ones due to the existence of realistic soft constraints), where gradients cannot be eas-

ily computed. Metaheuristics, on the other hand, are derivative-free optimization meth-

ods.

Metaheuristics can be classified according to various characteristics (Talbi, 2009):

nature-inspired vs. not nature-inspired, deterministic vs. stochastic, population-based

vs. single-solution, iterative vs. greedy, etc. Another issue to be taken into account when

selecting a metaheuristic is its exploration versus exploitation capabilities. This concept

is usually linked to different sub-families. Thus, while single-solution-based algorithms

manipulate and transform a single solution during the search (high intensification),
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population-based algorithms evolve a whole population of solutions (high diversifica-

tion). Single-solution-based metaheuristics could be viewed as ‘walks’ through neigh-

bourhoods or search trajectories across the search space of the problem at hand. They

are performed by iterative procedures that move from the current solution to another one

based on local search methods. Among others, some of the most prominent metaheuris-

tics of this sub-family are: tabu search (Glover and Laguna, 2013), simulated anneal-

ing (Kirkpatrick, Gelatt and Vecchi, 1983), variable neighbourhood search (Hansen,

Mladenovic and Moreno, 2010), the greedy randomized adaptive search procedure, or

GRASP (Feo and Resende, 1995), and iterated local search (Lourenço, Martin and

Stutzle, 2010). Within the set of population-based metaheuristics, evolutionary algo-

rithms and, in particular, genetic algorithms are frequently used in many engineer-

ing and production problems (Lee, 2018). There are many other algorithms that are

based on handling a set of solutions at every iteration. These are ant-colony optimiza-

tion (Dorigo and Stützle, 2004), particle-swarm optimization (Kennedy, 2010), scatter

search (Laguna and Marti, 2012), and estimation of distribution algorithms (Larranaga

and Lozano, 2002), among others. Finally, memetic algorithms (Moscato and Math-

ieson, 2019) can be seen as a marriage between population-based metaheuristics and

single-solution metaheuristics. A recent and complete review on metaheuristics can be

found in Hussain et al. (2019).

3 Handling with uncertainty in optimization problems

The traditional formulation of optimization problems is inherently static and determinis-

tic. However, reality is dynamic and uncertain: environmental parameters fluctuate, ma-

terials wear down, processing or transportation times vary, clients change their demands,

etc. (Beyer and Sendhoff, 2007). When uncertainty is absent from the optimization for-

mulation, the optimized solutions for those systems may be unstable and sensitive to

small changes in the input parameters. A traditional way to tackle this uncertainty in op-

timization is by providing a high degree of robustness in the solutions. In optimization

problems, robust solutions are those that remain relatively unchanged when exposed to

uncertainty. Thus, a robust solution can be seen as one which is less sensitive to the

perturbation of their environmental or operating conditions, uncertainties in the model

outputs, and / or imprecision when measuring the decision variables. Strictly speaking,

robust solutions are guaranteed to remain insensitive to changes in the system –at least

within a certain range. Recoverable robustness requires that a solution is recoverable in

all outcomes. Beyond these definitions, there are more relaxed and attainable degrees

of robustness. In general, a robust solution possesses some specified minimum level of

reliability or performance level over all outcomes and eventualities (Faulin et al., 2008).

Taguchi (1989) envisioned a three-stage design methodology for robust optimization:

the system, parameters, and tolerance designs. In Taguchi’s method, there are two main

classes of optimization parameters: (i) controllable parameters x that are to be tuned;
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and (ii) uncontrollable noise factors ξ, such as environmental conditions or production

tolerances. In a real-world system, an optimal design has to face different types of ro-

bustness depending on the source of uncertainties on the latter parameters: changing en-

vironmental and operating conditions, production tolerances and actuator imprecision,

uncertainties in the system output, and feasibility uncertainty. These types of uncer-

tainties are usually handled by optimization methods in three different ways (Beyer and

Sendhoff, 2007): deterministic, probabilistic, and possibilistic. A common approach fol-

lowed in robust optimization is to consider the worst-case scenario. However, this is a

conservative approach since it can result in poor optimization performance, and even in

a solution that is useless in reality. Another methodology is to consider a predefined set

of deterministic scenarios, where some of the parameters of the problem are uncertain

or depend upon future actions (Chica et al., 2016). As an extension of this approach, an

associated probability distribution could be assigned to each of these potential scenar-

ios. Also, the search for optimal robust designs often appears as a multi-criteria decision

problem, e.g.: while optimizing a conditional expectation and a large dispersion or vari-

ance. In all these cases there is a trade-off between maximal expected performance and

variance. For example, one proposal along these lines is the multi-objective six sigma of

Shimoyama, Oyama and Fujii (2005), who define robustness as “stability of the system

against uncertainty”.

Simulation-optimization methods in general (Fu, 2002), and simulation-based op-

timization in particular (Gosavi, 2015) constitute an excellent choice to deal with op-

timization problems with stochastic components. Modern computing hardware, mod-

elling paradigms, and advanced simulation software have together made these approaches

the methods of choice that can produce results to complex stochastic problems, which

cannot be easily and efficiently addressed using more traditional methodologies. Sim-

ulation optimization has benefited from the development of both general computing,

metaheuristics, stochastic programming, and simulation-specific modelling paradigms.

Thus, simulation-optimization methods –which include simulation-based optimization

and simheuristics, among others– might be an excellent choice when solving complex

problems where time dynamics and uncertainty are important. Simheuristics (Juan et al.,

2018) can be seen as a particular type of simulation-based optimization. Combining

metaheuristics with simulation models is becoming popular as an effective procedure

to deal with complex combinatorial optimization problems. To the best of our knowl-

edge, it was with the work of Glover, Kelly and Laguna (1996, 1999) and April et al.

(2003) where this combination was popularized. These authors were the promoters of

OptQuest, a ‘black-box’ optimum-seeking software product that is currently integrated

into several commercial simulation-modelling packages. By using this commercial soft-

ware in concert with simulation-modelling packages, a stochastic simulation model is

developed for a given system. Then, the input parameters of interest are changed in an

attempt to optimize a designated output performance metric (Kleijnen and Wan, 2007).

To end this section, one should mention other approaches that are also used to deal

with stochastic optimization problems. One of the most popular is stochastic program-
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ming (Prékopa, 2013). Stochastic programming integrates uncertainty consideration in

mathematical programming models. This approach might be highly efficient when con-

sidering multi-stage decision processes with a reduced number of possible scenarios at

each stage. However, it might also have scalability issues as the number of scenarios

and stages grows. The literature on stochastic programming is quite huge, so the in-

terested reader is referred to Ruszczyński and Shapiro (2003) for a nice overview of

stochastic programming models. Similarly, stochastic Petri nets (Tigane, Kahloul and

Bourekkache, 2017) provide a powerful set of building blocks for specifying the state-

transition mechanism and event-scheduling mechanism of a discrete-event stochastic

system. These nets are well suited to represent concurrency, synchronization, prece-

dence, and priority phenomena. As such, they have been used in optimization problems

under uncertainty scenarios (Melani et al., 2019). Finally, chaos theory allows analysing

patterns of outcomes over time that evolve according to a deterministic equation, with

these outcomes being extremely sensitive to the initial conditions. This paradigm allows

for the modelling of events that are unexpected, i.e.: ‘black swan’ events (Taleb and

Swan, 2008). Chaos theory can be combined with optimization techniques to address

stochastic optimization problems (Anter and Ali, 2020).

4 The simheuristic approach

As discussed in Hubscher-Younger et al. (2012), it is not always possible to apply a

simulation-optimization software directly out of the box. Instead, it needs to be adapted

to the specific characteristics of the problem. Thus, researchers in the optimization com-

munity proposed more flexible and ‘white-box’ approaches. Basically, simheuristics

make use of a simulation paradigm to extend existing and efficient metaheuristics. As

metaheuristics are primarily designed to cope with deterministic problems, simheuris-

tics can be seen as a metaheuristic extension to be employed when solving optimization

problems under uncertainty. This simheuristics approach can be considered a subset of

the simulation-for-optimization paradigm. For example, Andradóttir (2006) elaborates

on the subject of simulation-based optimization methods, providing a survey on opti-

mization add-ons for discrete-event simulation software. As pointed out by Figueira and

Almada-Lobo (2014), simulation-optimization methods are designed to combine the

best of both approaches in order to deal with: (i) optimization problems with stochastic

components; and (ii) simulation models with optimization requirements. Among these

simulation-optimization methods, the combination of simulation with metaheuristics is

a promising approach for solving stochastic optimization problems that are frequently

encountered by decision makers in the aforementioned industrial sectors (Glover et al.,

1996, 1999). A discussion on how random search can be incorporated in simulation-

optimization approaches is provided in Andradóttir (2006), while reviews and tutorials

on simulation-optimization can be found in Chau et al. (2014) and Jian and Hender-

son (2015). Likewise, simheuristics can be seen as a specialized case of simulation-
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based optimization (April et al., 2003). Hybridization of simulation techniques with

metaheuristics allows us to consider stochastic variables in the objective function of the

optimization problem, as well as probabilistic constraints in its mathematical formula-

tion. Hence, a simheuristic algorithm contains a particular simulation for an optimiza-

tion approach, and it is oriented efficiently to tackle an optimization problem involving

stochastic components. These stochastic components can be either located in the ob-

jective function (e.g., random customers’ demands, random processing times, etc.) or

in the set of constraints (e.g., customers’ demands that must be satisfied with a given

probability, deadlines that must be met with a given probability, etc.). Therefore, most

of the metaheuristic frameworks can be easily extended to simheuristics, as discussed in

Ferone et al. (2019) for the GRASP. For this reason, when dealing with large-scale NP-

hard optimization problems –where uncertainty is present–, researchers should consider

simheuristics as a ‘first-resort’ method, since they empower metaheuristic approaches

to cope with more realistic stochastic models.

While exact and analytical methods offer superior performance in the optimality di-

mension (i.e., the capacity to reach optimal values), they have severe limitations in other

relevant dimensions such as scalability (i.e., ability to deal with large-scale problems),

modelling (i.e., capacity to develop models that accurately represent the real-life sys-

tem), uncertainty (i.e., ability to cope with non-deterministic scenarios), or computing

times (especially for large-scale instances of complex optimization problems). Being an

offspring of metaheuristics and simulation, simheuristics inherits the best properties of

both methodologies, thus extending metaheuristics so they can deal with uncertainty. At

the same time, by adding a metaheuristic optimization component, they also extend sim-

ulation methods with the capability of coping with optimization problems successfully.

Seminal research on these concepts showed applications of this methodology to differ-

ent fields. Thus, for instance, April et al. (2006) constructed a simheuristic based on a

discrete-event simulation model of a hospital emergency room. Their goal was to deter-

mine the optimal configuration of resources that results in the shortest average length of

stay for patients. These authors also developed a simulation-optimization algorithm to

minimize staffing levels for personal claims processing in an insurance company. Juan

et al. (2011) employed a basic simheuristic to deal with the vehicle routing problem with

stochastic demands. An enhanced and extended version of their approach was developed

by Calvet et al. (2019) to solve the multi-depot stochastic vehicle routing problem. Juan

et al. (2014) used a simheuristic to solve the single-period inventory routing problem

with stochastic demands and stock outs, while Gruler et al. (2020a) extended the previ-

ous approach to the stochastic multi-period inventory routing problem. Gonzalez-Neira

et al. (2017) and Hatami et al. (2018) presented simheuristic approaches for solving dif-

ferent permutation flow-shop problems with stochastic processing times. An example of

simheuristic applications to distributed computer networks can be found in Cabrera et al.

(2014), where discrete-event simulation is combined with a simple metaheuristic frame-

work to optimize a very large, dynamic network of non-dedicated computers offering

online services over the Internet. Gruler et al. (2017a, 2020b) developed simheuristic
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approaches for supporting stochastic waste-collection management in urban areas. In

De Armas et al. (2017), the authors extended a metaheuristic approach into a simheuris-

tic one in order to cope with a stochastic version of the facility location problem. Gruler

et al. (2019) propose the use of simheuristics to model human network behaviour. Fi-

nally, Reyes-Rubiano et al. (2019) introduce a simheuristic algorithm for solving the

electric vehicle routing problem with stochastic travel times. Most of the aforementioned

applications refer to the integration of Monte Carlo (MC) simulation with a metaheuris-

tic framework. However, other simulation paradigms are also possible (Rabe, Deininger

and Juan, 2020). Overall, we distinguish four main simulation paradigms to be used

within a simheuristic. Apart from MC simulation, discrete event simulation (Heath et al.,

2011), system dynamics (Sterman, 2001), and agent-based modelling (Kasaie and Kel-

ton, 2015) are specially suitable depending on the optimization-problem characteristics

and available resources.

5 Analysis of existing work and some numerical results

In this section, we reflect on the previous implementations of simheuristics and begin

by analysing the structure of simheuristics when they are applied to different problem

domains. We also consider possible future simheuristic developments, and focus on the

general results that emerge from simheuristic algorithms applied to different fields. Like-

wise, similarities that exist among simheuristic applications are also discussed, as well

as the evolution of the simheuristic framework. Firstly, each simheuristic has the follow-

ing common steps: (i) an input deterministic equivalent model of the stochastic combi-

natorial optimization problem; (ii) an iterative search stage that integrates information

from simulation testing of candidate solutions; and (iii) one or several best stochastic

solutions (i.e., solutions for the stochastic version of the problem), which are returned

as the output at the end of the algorithm. Regarding the variety of cases that arise when

considering different problem domains, the following can be said: in some cases, the

simulation component – which is typically a Monte Carlo simulation or a discrete-event

simulation – is used only in a parameter initialization phase, where the expected costs

of some predefined policies are approximated. This is the case, for instance, in which

the fixed costs are a function of the decision variables but the stochastic/variable costs

are not. In most of the applications considered so far, demand has been the stochastic

element. Other applications consider processing time uncertainty, service costs, node

availability, and cash flows. The simheuristic framework is easily extensible for mul-

tiple stochastic elements. Most simheuristic implementations employ a distinct initial

solution procedure. In some cases this is required because the metaheuristic compo-

nent is, by itself, only capable of considering perturbations of a current base solution.

In other applications the initialization procedure is used because it had been found that

the quality of the initial solution had a significant impact on the quality of the final

solution. In more recent applications, it has become increasingly common to use biased-
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randomized greedy constructive algorithms (Quintero-Araujo et al., 2017) to generate

initial solutions. One of the advantages of such an approach is that it facilitates the use

of multi-start metaheuristics, which guarantee a more comprehensive exploration of the

search space in question. A similar trend can be seen in the choice of the metaheuristic

algorithm. Early applications tended to consider relatively simple but efficient heuris-

tics. Thus, for example, in Gonzalez-Martin et al. (2018) a randomized savings heuristic

for the arc routing problem is utilized. Some simheuristics used a local search algorithm

as the metaheuristic component. Others, such as the one in Pagès-Bernaus et al. (2019),

used iterated local search. Yet, more recent applications use the more advanced variable

neighbourhood search metaheuristic (VNS) framework (Panadero et al., 2020). One of

the advantages of VNS algorithms is that they use multiple neighbourhood structures,

which improve both the exploration and intensification properties of the search trajec-

tory. Given these considerations, the combination of biased-randomization and a VNS

search is a very strong approach for ensuring the quality of the optimization component

of a simheuristic. In general, the choice of the specific metaheuristic framework should

account for the complexity of the simulation component of the problem, as longer sim-

ulation times extend the required run times. In other words, simpler simulation models

enable the use of more complex metaheuristic algorithms and vice-versa.

Another recurrent theme in simheuristic algorithms is that of using the determin-

istic value of a candidate solution as a criteria for determining whether that solution

should be tested in the integrated simulation component – i.e., as a potential candidate

stochastic solution. In applications where simulation runs are not computationally ex-

pensive, all candidate solutions can be tested in the integrated simulation model. In dif-

ferent simheuristic applications, the role of the integrated simulation component varies.

In some cases the simulation is used to check whether a candidate solution adheres to

a number of arbitrary constraints, such as a minimum reliability level (Cabrera et al.,

2014). However, by far the most common purpose of the simulation component is that

of estimating the stochastic value of a candidate solution. One of the advantages of

the simheuristic framework is that both multiple objectives and arbitrary constraints

can be handled easily, so future applications could use more of the information output

from simulation runs. On the whole, the simulation component of a simheuristic can

be utilized during an initial parameter-estimation stage, an optimization stage, and a

reliability-analysis stage. The output of simheuristics takes the form of a best stochas-

tic solution or a pool of elite stochastic solutions. Having a pool of elite solutions can

be useful for three reasons: (i) for storing promising stochastic solutions and complete a

risk / reliability analysis over them; (ii) for storing a Pareto front of non-dominated solu-

tions –in cases where multiple goals are considered, as in Gruler et al. (2017b); and (iii)

for providing decision makers with a range of alternative solutions, so that they might

be able to select a solution that satisfies a number of other arbitrary constraints. In gen-

eral, it can be seen that a simheuristic is built from a number of relatively fixed steps,

including the choice of simulation paradigm, metaheuristic methodology, and output

type. In addition, simheuristics have seen an increasing number of optional steps, in-
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cluding: using simulation to provide initial parameter estimates, the use of a distinct

initial solution method, and a final detailed reliability analysis. Recent applications tend

to include previously introduced steps whilst introducing new ones.

Having discussed the evolving simheuristic framework in some detail, we now con-

sider their possible future evolution. For instance, the input problem that the meta-

heuristic component searches directly is always the deterministic equivalent model of

the stochastic model, where the stochastic variables are replaced by their means. An-

other approach that could be tested in future applications is to periodically change the

deterministic equivalent model by generating random realizations, according to the re-

spective distributions, of some or all of the stochastic variables. Such an approach pro-

vides an additional escape mechanism from local stochastic optima. It could also help

to improve the diversity of the final elite solution set. Additionally, this represents an

alternative method of integrating simulation within the metaheuristic search process.

Another possible extension would be to dynamically adjust the number of simulation

runs used in the integrated simulation component. For example, the integrated simula-

tion could be terminated as soon as the confidence interval of its stochastic value falls

entirely below that of the current best stochastic solution. Such an approach will ben-

efit the run-time of a simheuristic. Yet another possibility would be to generalize the

structure of simheuristic algorithms to the extent that it becomes a decision variable.

For example, the structure of a simheuristic could be encoded as an integer string. The

first integer could correspond to the choice of the initial solution generation method, the

second to the choice of the metaheuristic, and so on. Such an approach adds an addi-

tional layer to the search, and would thus be most useful for cases where sufficient time

is available for generating a solution. In such an investigation, fair testing can be ensured

by setting a simulation budget for each instance of a simheuristic algorithm.

Figure 1 displays the gaps of the best deterministic solutions (those associated with

the deterministic version of the problem when they are used in a stochastic environment)

and the best stochastic solutions (those associated with the stochastic version) found by

different simheuristic algorithms. These gaps are computed with respect to the best-

known solution for the deterministic version of the problem when it is assessed in a sce-

nario without uncertainty. From this figure, one can conclude that optimal/near-optimal

deterministic solutions might have a poor performance in stochastic scenarios. Notice

that this result holds in a wide variety of problem domains. In the following, deter-

ministic scenarios/solutions are denoted as det, while stochastic scenarios/solutions are

denoted as stoch. For example OBSdet,stoch refers to the objective value of our best deter-

ministic solution when evaluated in a stochastic scenario. Then, the Figure also supports

the following general result for a minimization problem: BKSdet,det ≤ E [OBSstoch,stoch]≤
E [OBSdet,stoch], i.e.: the deterministic value of the best-known deterministic solution

(BKSdet,det ) is a lower bound for the stochastic value of the best stochastic solution

(OBSstoch,stoch). At the same time, the latter has the stochastic value of the best-known

deterministic solution (OBSdet,stoch) as an upper bound. Figure 1 also highlights the po-

tential benefits of employing a simheuristic in problems that feature uncertainty.
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Figure 1: Relative gaps of the best stochastic and deterministic solutions found by simheuristics

compared to the deterministic value of the best-known solutions.

Figure 2: Optimality gaps and relative solutions times of simheuristics compared to exact formu-

lations over a range of simheuristic applications and problem domains.
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Figure 2 displays optimality gaps and solution times relative to those of several exact

methods, for the cases where such experimental results are available. This figure shows

that simheuristics are very competitive in terms of the trade-off between solution quality

and solution time. Hence, simheuristics are able to generate solutions that are very close

to optimality, and can do so in a small fraction of the time required by exact solution

approaches.

Likewise, Figure 3 illustrates the effect that the level of variance in the stochastic

instance has on the value of the simheuristic solution, as compared with the deterministic

value of the best-known solution for the deterministic version of the problem. This figure

shows that, in approximately 50% of the cases, increasing the variance of the stochastic

parameters of an instance also raises the gap of the stochastic solution relative to the

deterministic value of the best-known deterministic solution. In the remaining 50% of

the cases, increasing the variance of the stochastic parameters of a problem instance has

little or no effect.

Figure 3: The effect of increasing the variance of the stochastic variables on the relative gap

between the value of our best stochastic solutions and the deterministic value of the best-known

deterministic solution.
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6 Advantages of using simheuristics in optimization

This section highlights the main advantages of employing simheuristics, which justify

why we propose this methodology as a ‘first-resort’ method for dealing with optimiza-

tion problems under uncertainty:

• Embracing reality by a validated simheuristic: As opposed to the use of stand-

alone analytical models, integrating simulation within a metaheuristic/matheuristic

approach allows researchers and decision makers to construct and study valid mod-

els of complex systems. Most recent simulation paradigms also allow for analysis

of optimization problems under uncertainty with a low number of assumptions.

These paradigms also facilitate involvement of stakeholders, who are not directly

the modellers of the simheuristic, i.e., participatory modelling (Voinov and Bous-

quet, 2010). There are new simulation-optimization paradigms that can better rep-

resent complex reality, and powerful computational resources to run demanding

simulation models. Model validation is a central pillar within the simulation com-

munity, as evidenced by its ubiquity in the leading texts over the years (Kelton,

Sadowski and Zupick, 2015). But validation should be applied to all modelling, in-

cluding analytical, so this is not a disadvantage – but a requirement – when using

simulation-optimization.

• Risk assessment of alternative solutions and sensitivity analysis: Once a simula-

tion is built and validated, finding robust policies and comparing the merits of

various policies are two of the main goals (Kleijnen et al., 2005). Joint use of sim-

ulation and metaheuristics/matheuristics within a simheuristic framework can help

attain these two goals and has advantages compared to other stand-alone method-

ologies. The results of the simulations can be used to obtain additional information

about the probability distribution of the quality of each stochastic solution. This

information is then used to introduce a risk/reliability analysis within the decision-

making process. The risk-analysis capability of simheuristics is one of its major

advantages. This is due to the ability of metaheuritics to generate a set of dif-

ferent solutions, as well as to the ability of the simulation model to provide an

observational sampling of the system. Thus, for instance, stochastic solutions with

similar expected cost might show different variance, or even different reliability

levels; i.e., some routing plans might have a high probability of failure when put

into practice, while others might be more reliable. Running a sensitivity analysis

(Saltelli et al., 2008) is another advantage of using a simulation together with a

metaheuristic method. Sensitivity analysis reveals those input parameters that are

most critical in determining the value of key output performance metrics. Usually,

this is achieved by exploring the model sensitivity to a particular parameter con-

figuration and input-value options. Sensitivity analysis is typically carried out to

gain insights into existing or prospective systems, and this should lead to better

decisions and to improved managerial outcomes. This sensitivity analysis can be
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directly run by studying the output of the different simulation runs. Although a

complete sensitivity analysis requires more advanced methods and specific tools

to this end (Chica et al., 2017), the simheuristic learning process can give the

modeller a first approach to a deeper sensitivity analysis of the system whose op-

timization is sought.

• System understanding and output analysis: When the simheuristic finishes, we

can collect the output-data results and analyse them through machine-learning

algorithms to discover hidden properties or relationships. The goal is to enable

researchers to identify system patterns interactively, run high-dimensional explo-

rations, or even check the veracity of the approximately-optimized simulation sys-

tem (Lucas et al., 2015). This is also called the innovization process in evolutionary-

computation research (Deb et al., 2014). It means that a set of trade-off optimal or

near-optimal solutions, found using metaheuristics, are analysed to decipher use-

ful relationships among problem entities. It provides a better understanding of the

problem to a designer or a practitioner. We extend here this concept by adding

the simulation face of the simheuristic to enrich the innovization process. Addi-

tionally, visualization methods (e.g., histograms, box plots, or scatter plots) can

be directly used to visualize post-run simulation outputs that go beyond the tra-

ditional analysis of the results. There is an increasing number of studies demon-

strating that visualization combined with optimization can promote design innova-

tions and provide decision makers with an improved understanding of the problem

(Bonissone, Subbu and Lizzi, 2009). A good visualization enables decision makers

to enhance insight into the problem and the different solutions to identify differ-

ences and similarities before coming to the final decision (Miettinen, 2014). Ex-

ploratory analysis of the input / output variables space of a model is also employed

to strengthen confidence in the model realism and to improve understanding of the

behaviour of the optimization and simulation models. By analysing the distribu-

tion of the model variables and parameters, the modeller can move forward to

a simpler and easier-to-understand setting. Use of this exploration, together with

sensitivity analysis, provides information on influential factors that significantly

affect the variability of the model results, and allow modellers to reach a deeper

understanding of the complexity of the model, its uncertainties, interrelationships,

and its potential future scenarios (Ligmann-Zielinska et al., 2014).

7 Limitations of Simheuristics

As with any methodology, there are also limitations when using simheuristics. In this

section, we highlight some of these limitations as well as some positive aspects that

ameliorate their negative impact on the optimum-seeking process.
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• Results are not expected to be truly provably optimal: Metaheuristics do not ensure

an optimal solution to an optimization problem, but rather an acceptable solution

in a reasonable amount of time. This fact is amplified when using a simulation to

be optimized. Even more, this simulation is a non-linear complex stochastic sys-

tem that cannot be analytically treated. Therefore, simheuristics are an interesting

alternative for practical cases requiring simple and flexible methods that do not

need to be globally optimal, although they are usually near-optimal.

• Additional stakeholders’ effort is demanded to define the system: The set of advan-

tages and ‘white-box’ paradigms used in a simheuristic also requires additional

effort when defining the simulation system and analysing the results provided by

the simheuristic. However, we think this design and validation effort is justified as

modellers and decision makers can better understand their system from the results

of the simheuristics and can adopt the final optimum-seeking results with higher

confidence.

• More computational resources are required compared to traditional methods: The

integration of a simulation engine within a metaheuristic requires high computa-

tional effort and also depends on the selected type of simulation paradigm. As will

be discussed in Section 8, different strategies can be applied in order to allevi-

ate this effort, such as: (i) ‘filtering’ the solutions generated by the metaheuristic

engine, so that only the ‘promising’ ones are actually sent to the simulation com-

ponent; and (ii) using a small number of simulation runs in a first stage, and then

analysing in more detail only those that can be classified as ‘very promising’ so-

lutions.

8 Best design and implementation practices

In this section we outline a set of guidelines or best practices to build a simheuristic

algorithm appropriately.

• Do not overload simheuristics with long simulations: In general, the modeller has

to be careful not to let the simulation jeopardize the computing time given to the

entire simulation-metaheuristic process. Otherwise, the metaheuristic would not

have time to converge to a good solution if the dimension of the search space is

high. Therefore, we recommend decomposing the simheuristic into various stages.

For instance, a three-stage approach could be considered. During the first stage,

only fast simulations are included in the simheuristic framework. This can be

achieved by running the simulation only a limited number of times to obtain rough

estimates, or by running the simulation for only those new solutions of the meta-

heuristic that can be considered as ‘promising’ ones (e.g., solutions with good
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deterministic performance). During this stage, the simulation component of the

simheuristic is used not only as a natural way to model the real system, but it also

can provide valuable information to the metaheuristic component (i.e., the search

process is simulation-driven). For example, it can be used to filter low quality solu-

tions quickly. In a second stage, the best solutions identified in the previous stage

are sent throughout a new simulation process with a larger number of iterations to

obtain more precise estimates of the uncertain values of the model. The specific

number of iterations might be given by error measures such as confidence inter-

vals of the parameters with high uncertainty. Finally, a third and final stage can

be used to complete a risk / reliability analysis on the best solutions selected by

the decision maker. Dimensions other than the expected value of the solution need

to be considered in a high-uncertainty environment, since a solution with a low

expected value could also show more variability than other alternative solutions.

For example, in a flow-shop scheduling problem with stochastic processing times

there might be several solutions (job permutations) that offer a similar expected

makespan; however, some of these solutions might show a higher variability than

others, or a lower probability of finishing before a given deadline. Similarly, in

a vehicle routing problem with stochastic demands, several solutions might of-

fer similar expected costs, but some of these solutions might also show a higher

variability than others. Consequently, the decision maker would need more infor-

mation to decide which solution to choose based on her / his utility function and

aversion to risk, or would even need more advanced optimization methods – such

as multi-objective optimization – to have a set of solutions with different trade-offs

between expected cost value and robust behaviour in the environment.

• Choose a simulation paradigm that is understandable to decision makers: Three

main goals must be accomplished when developing and selecting the simulation

model (Kleijnen et al., 2005): (i) develop a basic understanding of the simulation

model and the system it emulates; (ii) find robust policies and decisions; and (iii)

compare the merits of various policies or decisions. As mentioned, there is a wide

set of available simulation paradigms and within each variant, many variations

and possible designs arise. Our guideline here is to use, as much as possible, a

participatory simulation-modelling process to increase and share the knowledge

and understanding of the system between all the actors involved in the optimiza-

tion action (Voinov and Bousquet, 2010). This involvement would also clarify and

identify the impacts of solutions to a given problem, usually related to the final

decision-making support.

• Choose an appropriate simulation paradigm for each stage of a simheuristic: Dif-

ferent simulation paradigms can be used for each of the stages of the simheuris-

tic. Then, a more enriched and computationally-intensive simulation model (e.g.,

agent-based modelling) can be used for the last stages of the simheuristic and
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applied only to a reduced set of the solutions provided by the metaheuristic. In

contrast, lighter computational simulation models (e.g., a simple Monte Carlo sim-

ulation over the stochastic simulation model) might be required in the first stage

of the simheuristic. Each individual modelling paradigm has a rich history and ex-

emplar cases in which the strengths of the respective methodology make it a good

choice for a particular modelling situation. There also possibilities for combining

each pair of approaches to develop hybrid models where each paradigm exploits its

strengths (Heath et al., 2011). For instance, Djanatliev and German (2013) present

different multi-paradigm simulation methods.

• Validate the simulation model before running the simheuristic: A decisive phase

when modelling a real-world system is model validation (Oliva, 2003). In our view,

this is also a main guideline when designing the simheuristic, as it applies to the

simheuristic itself and specifically to its simulation component. The validation

requires testing a set of hypotheses, the significance of their behavioural compo-

nents (by assuming that the behaviour is a consequence of the system structure),

and the historical model fitting. Validation is also measured in terms of degrees of

confidence or quality, which is usually difficult to obtain for most non-linear sim-

ulation models in use (Forrester, 2007). The validation and testing of any model

or decision-support system is a decisive step for ensuring its managerial adoption.

Decision makers are all rightly concerned about whether results of each model are

correct (Sargent, 2005). However, the validation of non-linear models and their

effectiveness for real-world problems is not straightforward. The validation stage

can be seen as a learning process where the modeller’s understanding is enhanced

through her / his interaction with the formal and mental model (Morecroft, 2007).

As this process evolves, both the formal and mental perceptions of the modellers

change, leading to a successive approximation of the formal model to reality. Ad-

ditionally, the utility and effectiveness of many non-linear models and their out-

puts are often judged by stakeholders and decision makers (Voinov and Bousquet,

2010). Therefore, it is highly recommended to perform the validation of the mod-

els correctly. A set of validation techniques such as calibration (Sargent, 2005),

sensitivity analysis (Saltelli et al., 2008), boundary adequacy, and extreme cases

tests (Qudrat-Ullah and Seong, 2010) should be carried out for the corresponding

simheuristic component in order to guarantee that the simulation model is a valid

representation of the underlying system.

9 Concluding remarks

The motivation of this paper is to advocate that a combination of simulation models

and metaheuristics / matheuristics should be considered as a first-resort method when

dealing with large-scale NP-hard optimization problems with stochastic components,



Manuel Chica, Angel A. Juan, Christopher Bayliss, Oscar Cordón and W. David Kelton 329

which is a quite common case when considering real-world challenges. In effect, many

real-life optimization problems in areas such as logistics, transportation, scheduling,

etc., are complex, large-scale, and involve uncertainties regarding their constraints, in-

put values, and objective functions. Although there are metaheuristic applications that

add probabilistic and robustness capabilities to analytical models, they are extensions

to the original deterministic model formulation. As we have discussed, integration of

simulation methods with metaheuristics and matheuristics is a natural way to cope with

these problems. Although prohibitive and unaffordable in the past, advanced simula-

tion methods are now commonly used in research and practice due to widespread and

affordable availability of high-performance computing resources and much-improved

software for simulation modelling and analysis. The same is true for metaheuristics and

matheuristics. As it has been shown in a number of recent publications containing exten-

sive computational experiments, the simheuristics methodology can better face complex

reality when seeking optima in uncertain environments.

In this paper we highlighted three main advantages of using simheuristics. First, it is

a better way to embrace the reality of the systems we are seeking to optimize. There is

no need to include many strong and over-simplifying assumptions to render a tractable

model. Second, a simheuristic can easily provide a risk assessment of the optimization-

problem solutions. Third, simheuristics facilitate the understanding of the system’s be-

haviour. A posteriori analysis applied to the output provided by the simheuristic can help

modellers to understand the system dynamics. For instance, one can observe the most

sensitive parameters, or even apply statistical analysis to the returned set of optimization

solutions to find relationships between them. Visualization techniques are also useful to

generate insights about the system, based on the output of the simheuristic method.

Additionally, we have presented the main simulation paradigms to be used within a

simheuristic, and a list of guidelines to take into account when designing a simheuristic.

We suggested the use of a multi-stage approach to alleviate the required computation

effort of the simulation, and the utilization of different simulation paradigms within the

simheuristic. Likewise, the need for using a validated simulation model was affirmed.

Finally, we encourage the use of a simheuristic paradigm that can be aligned with the

‘white-box’ paradigm: being understandable and enhancing the decision makers’ par-

ticipation.
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with correlated and non-normal heterogeneity

effects
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Abstract

Mixed Poisson models are most relevant to the analysis of longitudinal count data in various

disciplines. A conventional specification of such models relies on the normality of unobserved

heterogeneity effects. In practice, such an assumption may be invalid, and non-normal cases are

appealing. In this paper, we propose a modelling strategy by allowing the vector of effects to fol-

low the multivariate skew-normal distribution. It can produce dependence between the correlated

longitudinal counts by imposing several structures of mixing priors. In a Bayesian setting, the es-

timation process proceeds by sampling variants from the posterior distributions. We highlight the

usefulness of our approach by conducting a simulation study and analysing two real-life data sets

taken from the German Socioeconomic Panel and the US Centers for Disease Control and Pre-

vention. By a comparative study, we indicate that the new approach can produce more reliable

results compared to traditional mixed models to fit correlated count data.
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1 Introduction

An important class of models for count data, in the presence of over-dispersion, is the

mixed Poisson. The class includes several popular mixed-Poisson models in terms of

choosing mixing priors for unobserved heterogeneity effects. The normal mixing prior

was originally introduced by Bulmer (1974) and developed by many others, such as

Guo and Trivedi (2002), Miller (2007), and Montesinos et al. (2017) among others. The

mixing strategy generates a marginal distribution of longer-tailed than the routinely used

Gamma prior, which creates the negative binomial (NB) model (Gonzales-Barron and

Butler, 2011). It is also useful in analysing specific over-dispersed count response vari-
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ables (Izsák, 2008; Williams and Ebel, 2012). A familiar list of several mixed Poisson

distributions is presented by Karlis and Xekalaki (2005), Nadarajah and Kotz (2006a),

and Nadarajah and Kotz (2006b). Further models detailed in Kuba and Panholzer (2016)

and Cameron and Trivedi (2013).

Count data analysis may involve dealing with both the occurrence of over-dispersion

and the correlation between repeated outcomes. A comprehensive overview of the dis-

crete correlated data analysis is provided by Molenberghs, Verbeke and Demetrio (2007)

with a discussion on computational issues and the inclusion of many practical applica-

tions. In longitudinal studies, the presence of heterogeneity effects is an indication of

correlated responses of each subject over time and possibly a sign of over-dispersion. In

this scenario, a regular choice to explain variability is the Poisson-multivariate normal

(PMN) model, wherein the distribution of effects is assumed to be multivariate nor-

mal (e.g., see Chib and Winkelmann, 2001; El-Basyouny and Sayed, 2009; Wu, Deng

and Ramakrishnan, 2018). Then, the problem turns to solving an intractable marginal

likelihood and requiring advanced computational techniques, such as the Markov chain

Monte Carlo (MCMC) in the Bayesian framework.

The associated literature reveals that the multivariate normal is the most adopted

mixing prior distribution to the heterogeneity effects. However, it is unlikely to lead al-

ways to the best-fitted model. It was our leading motivation to extend the PMN model

by setting the multivariate skew-normal mixing prior (Azzalini, 1985; Sahu, Dey and

Branco, 2003) for the conditional mean of the Poisson model. The proposed Poisson

multivariate skew-normal (PMSN) regression model includes a vector of skewness pa-

rameters. Thus we can directly introduce it through an additional hierarchy level to the

PMN model. Also, depending on the specific multivariate skew-normal mixing prior,

we can define various types of the PMSN model. The proposed model includes Pois-

son and the PMN as its special cases. Also, the PMSN model reduces to the Poisson

skew-normal (PSN) model when unobserved heterogeneity effects are assumed to be

independent by introducing a skew-normal mixing prior distribution to the structure of

the mixed Poisson model. Specifically, our findings show that the proposed model with

various values of the skewness parameter has different performances. In particular, over-

dispersion in counts increases as the value of the skewness parameter increases. Results

reveal that the PSN over-dispersion is less (more) than the Poisson normal (PN) over-

dispersion provided that the skewness parameter being negative (positive). It illustrates

that the PSN regression model may be more flexible than the PN model if a count data

set exhibits over-dispersion.

From a Bayesian perspective, the proposed models can appear hierarchically to ease

the implementation of the Gibbs sampler technique. Also, we use a stochastic represen-

tation for the conditional mean of the Poisson regression. It simplifies Bayesian compu-

tations due to having the complete conditional posteriors, involved in the Gibbs sampler,

in closed forms of known distributions. The Bayesian analysis of correlated count data

by fitting the PMN model (e.g., Rizzato et al., 2016) is a specific case of our proposed

model. The model fitting is performed by OpenBugs software version 3.2.3, which is
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an excellent platform for Bayesian inference using the Gibbs sampler algorithm (e.g.,

Lunn et al., 2009).

The article is organized as follows. In Section 2, we introduce the PSN model with

independent heterogeneity effects for the analysis of count data. In Section 3, mixed-

Poisson models with various multivariate skew-normal mixing priors are illustrated for

longitudinal count data. In this section, we also emphasize the identification issue in

mixed-Poisson models. In Section 4, we present Bayesian mixed models hierarchically

to derive the complete conditional posteriors required to implement the Gibbs sampling

approach. In Section 5, we conduct a simulation study to compare proposed models

with some competing ones. In Section 6, we fit proposed models for the specific data

sets taken from follow up studies on the national medical expenditure survey and the

polio data. Section 7 gives some concluding remarks.

2 A new modelling methodology to the count data analysis

Assume that the count response Yit , conditioned on the effect uit for subject i = 1, · · · ,n
and at time t = 1, · · · ,T , follows a Poisson distribution with mean exp(θit), where

θit = x′itβββ + uit , xit is a k-dimensional vector of covariates, and βββ is a k-dimensional

vector of coefficients. Moreover, the effects uit , defined on the whole real line, are as-

sumed to follow a common probability distribution function (pdf) G(uit |ηηη), where ηηη is a

vector of parameters that characterize G(·). The marginal density of Yit is called a mixed

Poisson density with the probability mass function (pmf) given by integrating out the ef-

fects uit . The normal mixing prior for uit leads to the well-known Poisson normal (PN)

model. Here, we extend the methodology by letting the mixing prior be skew-normally

distributed with the following specification.

Definition 1 The random variable uit , for subject i = 1, · · · ,n and at time t = 1, · · · ,T ,

follows the skew-normal distribution, denoted by uit
iid∼ SN

(

ξ,σ2,δ
)

, if the density func-

tion of uit is given by

gSN

(

uit |ξ,σ2,δ
)

= 2ϕ
(

uit |ξ,σ2 + δ2
)

Φ
(

δ (uit − ξ)
σ
√
σ2 + δ2

)

, (1)

with location parameter ξ ∈R, scale parameterσ2 ∈R
+ and skewness parameter δ ∈R,

where ϕ(·) denotes the pdf of N
(

ξ,σ2 + δ2
)

and Φ(·) denotes the cumulative density

function (cdf) of the standard normal (Azzalini, 1985; Sahu et al., 2003).

Using usual statistical methods the following basic properties of density (1) hold.
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Properties 1

i. For δ = 0, the original normal mixing prior is retrieved; for δ > 0, positively

skewed and for δ < 0, negatively skewed mixing priors are obtained. Figure 1

confirms these results.

ii. The hierarchical representation of uit is shown to be uit |zit
ind∼ N

(

ξ+ δzit ,σ
2
)

with

Zit
iid∼ HN (0,1), where HN denotes the half-normal distribution. This property

helps us to generate a random variable that follows the skew-normal distribution

and consequently to implement the McMC approach easily.

iii. The r-th moment of wit = exp(uit), for any real r, is finite and equivalent to the

moment generating function (MGF) of the skew-normal distribution. This is ex-

plicitly given by mr = E (wr
it) = 2Φ(δr)exp(rξ+ 1

2
r2
(

σ2 + δ2
)

). In particular, the

mean and variance of w are µw = m1 and σ2
w = m2 −m2

1, respectively.

Without loss of generality, we set ξ = 0 then in what follows we use notation SN
(

σ2,δ
)

for simplicity. This defines the Poisson skew-normal (PSN) regression model as follows,

where ′ denotes vector transpose.

Definition 2 Let for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T the count variable

Yit |uit
ind∼ Pois(exp(θit)), where θit = x′itβββ+uit and uit

iid∼ SN
(

σ2,δ
)

. Then, the pmf of Yit

is of the form

fPSN

(

yit |βββ,σ2,δ
)

=
∫ ∞

−∞
fPois (yit |uit ,βββ)gSN

(

uit |σ2,δ
)

duit , (2)

where fPois (yit |uit ,βββ) is the conditional pmf of Poisson given uit . We denote Yit
ind∼ PSN

(

βββ,σ2,δ
)

.

Clearly, the PN model is a special case of (2) when δ = 0. Let µit = exp(x′itβββ). By

conducting algebraic operations, some properties of (2) are shown below in which any

clear proof is omitted.

Properties 2

i. The mean and variance of Yit are shown to be E (Yit) = µitµw and var(Yit) =
µit

(

µw +µitσ
2
w

)

so that the heterogeneity factor is
(

µw +µitσ
2
w

)

/µw.

ii. The PSN is unimodal.

Proof. Since the skew-normal is unimodal thus the marginal mixed Poisson is also

unimodal (Holgate, 1970).

iii. The PSN tends to Pois(µit) as both σ2 and δ tend to zero.

Proof. The normal mixing prior is regained for uit as δ→ 0. Then, using the trans-

formation vit = exp(uit/σ), the pmf (2) can be written as Evit
{ fPois (yit |µitv

σ
it )},
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where vit is log-normally distributed with fvit
(vit) = 2ϕ(log(vit)), vit ∈R+. Taking

limit as σ2 → 0+ this expectation becomes fPois (yit |µit).

iv. For fixed µit and non-zero δ, let σ2 → 0+. Then (2) tends to a mixed Poisson

density with a truncated normal mixing density supported on the left-bounded

interval (0,∞), for δ > 0, and on the right bounded interval (−∞,0), for δ < 0.

Proof. We first derive the limiting case of gSN

(

uit |σ2,δ
)

as σ2 → 0+. It is easy to

show that the density tends to g1 (uit |δ) = 2ϕ
(

uit |0,δ2
)

for sign(uitδ) = 1, and to

0 otherwise, where sign(·) denotes the sign function. Thus, the random variable

Yit follows a mixed Poisson (2) with the mixing prior g1.

v. For fixed µit and σ2 the probability Pr (Yit = 0) is a decreasing function of δ.

Proof. By setting yit = 0 in (2) and taking the transformation Zit = log(wit), the

first derivative of the probability of zero is given by

∂
∂δ

fPSN

(

0|βββ,σ2,δ
)

=
σ2

√
σ2 + δ2

EZit

(

Zite
−µit e

Zit
)

,

where Zit ∼ N
(

0,σ2
)

. The involved expectation is shown to be negative. Then,

after some manipulation twice of this expectation turns into E

(

|Zit |e−µit e
|Zit |
)

−

E
(

|Zit |e−µit e
−|Zit |

)

. This expression is negative since the first expectation is less

than the second one. This property is also illustrated by Figure 1.

vi. The probability of Yit being zero is greater than the corresponding probability for

a Poisson distribution with the same mean µitµw.

Proof. We have fPSN

(

0|βββ,σ2,δ
)

=Ewit
(e−µitwit ) and by using the Jensen’s inequal-

ity, this becomes greater than e−µitµw = fPois (0|µitµw).

Figure 1 indicates the pmf of PSN for µit ≡ µ = 3, σ2 = 1 and δ = −2,−1,0,1,2. It is

seen that the PSN is skewed right. Also, the tail of the PSN distribution is longer than

Figure 1: (a) Probability density functions of the skew-normal distribution (b) Probability mass

functions of the PSN distribution.
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the tail of the PN distribution for positive values of δ, while is shorter for negative values

of δ. Furthermore, the probability of zero counts increases as δ decreases.

The dispersion index, defined by the ratio of the variance to the mean, is given by

DIit

(

µit ,σ
2,δ
)

=
var(Yit)

E (Yit)
= 1+µite

1
2(σ

2+δ2)

{

Φ(2δ)e(σ
2+δ2)−2Φ2 (δ)

Φ(δ)

}

. (3)

This indicates that DIit > 1, with strict inequality if the mixing distribution is non-

degenerate, i.e., the mixing strategy can deal with additional variation present in count

data. If δ = 0 then (3) reduces to the DI of the PN regression model, denoted by

DIit

(

µit ,σ
2,0
)

. The difference between the dispersion index of two densities,

DDIit

(

µit ,σ
2,δ
)

= DIit

(

µit ,σ
2,δ
)

−DIit

(

µit ,σ
2,0
)

, is shown in Figure 2. Negative and

positive values of DDIit show an advantage over the PN model. This indicates that the

proposed model is more flexible than the PN model for dealing with over-dispersion in

count data. Specifically, we set µit ≡ µ= 3, σ2 = 1 and δ ∈ (−1,1) that gives DDI (δ) ∈
(−2.446,47.769). Figure 2 illustrates that the PSN dispersion index is more than the PN

dispersion index provided that δ > 0 while the difference DDI (δ) is negative for δ < 0.

The differences increase as δ increases. We can also show by graphical techniques that if

δ < 0 then the quantity DDI (δ) is positive over σ2 ∈
(

0,σ2
0

)

for some small σ2
0 , whereas

it is always negative over an interval σ2 ∈
(

σ2
0 ,∞
)

. For any fixed δ the absolute value of

DDI(δ) increases as σ2 increases. Also, DDI(δ) < 0 for δ < 0, while DDI(δ) > 0 for

δ > 0. These graphics are not shown here to save space.

Figure 2: Difference between the DIs for (a) negative and (b) positive values of δ.
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3 The proposed multivariate strategy for correlated count data

In longitudinal studies to count data, responses of each subject over time are usually

correlated due to the existence of subject heterogeneity effects. Also, there may be evi-

dence of over-dispersion in the structure of count responses. In many applications, there

are situations where over-dispersion and the correlation between repeated outcomes can

simultaneously occur. Here, we propose the multivariate skew-normal mixing prior dis-

tribution in the mean structure of mixed Poisson models to make a more adaptable anal-

ysis of correlated count responses. This strategy proceeds within the context of Bayesian

hierarchical modelling together with several constructed specifications to fit related re-

gression models. The specification of these proposed Poisson multivariate skew-normal

(PMSN) models relies mostly on making different assumptions for the underlying mul-

tivariate skew-normal mixing priors.

3.1 The multivariate skew-normal mixing priors

Definition 3 A T-dimensional random vector u follows the multivariate skew-normal

distribution with location vector ξξξ ∈ R
T , positive-definite scale matrix V, and skewness

vector δδδ = (δ1,δ2, · · · ,δT )
′ ∈ R

T , if its pdf is of the form

f (ui|ξξξ,V,δδδ) = 2ϕT

(

ui|ξξξ,V + δδδδδδ′
)

Φ

(

δδδ′V−1 (ui − ξξξ)
√

1+ δδδ′V−1δδδ

)

, (4)

where ϕT (.) is the pdf of T-variate normal and Φ(·) is the standard normal cdf. We

denote ui ∼ SNT (ξξξ,V,δδδ).

The density function (4) defines an attractive alternative to the multivariate skew-

normal distribution introduced previously by Sahu et al. (2003) since instead of the

evaluation of complex function ΦT (·), one needs only to compute one dimensional in-

tegral Φ(·). The Poisson multivariate normal (PMN) model is a special case of (4) when

δδδ = 0.

Properties 3 The following properties hold for ui ∼ SNT (ξξξ,V,δδδ):

i. The hierarchical representation is given by

ui|Zi = zi
ind∼ NT (ξξξ+ δδδzi,V) with Zi

iid∼ HN (0,1) , (5)

Thus, the mean vector and covariance matrix of ui can be derived relatively easy.

We obtain E (ui) = ξξξ+ δδδ
√

2
π
,and var(ui) = V+

(

1− 2
π

)

δδδδδδ′.
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ii. For any vector r =(r1, · · · ,rT )
′ ∈ R

T the MGF is found to be

E

(

er′ui

)

= 2Φ(r′δδδ)exp

{

r′ξξξ+
1

2
r′Vr+

(

δδδ′r
)2

}

. (6)

Now, let wit = exp(uit) be an element of the vector wi = (wi1, · · · ,wiT )
′
. Equation

(6) is equivalent to E
(

∏T
t=1 w

rt
it

)

which shows that all moments of wit , including

E (wi) = µµµw =
(

µwi1
, · · · ,µwiT

)′
and var(wi) = Dw, can be found easily. Specifi-

cally, putting the t-th element of r equal to one and zero otherwise, gives µwit
, and

when rt = rs = 1 and 0 otherwise, E (witwis) is attained. In fact, we derive

µwit
= 2Φ(δt)e

1
2(δ

2
t +σtt), (7)

σwts = 2e
1
2(δ

2
t +δ

2
s +σtt+σss)

{

eδtδs+σtsΦ(δt + δs)−2Φ(δt)Φ(δs)
}

,

where the σwts and σts are, respectively, elements of Dw and V.

iii. Let c = a′ui for any a ∈R
T then c follows the univariate skew-normal distribution,

i.e. c ∼ SN (a′ξξξ,a′Va,a′δδδ).

Without loss of generality, in what follows we set ξξξ = 0 and denote ui ∼ SNT (V,δδδ)

for simplicity. In model multivariate skew-normal specified by (4) no specific form of

V and δδδ is introduced in the data analysis process. It is mostly advisable in practice

to explore possible causes of heterogeneity by allowing some specific forms for the

uit’s. Without having any knowledge on the source of heterogeneity, a priori justification

is to allow uit’s being into the one-way random effects framework. More specifically,

let the ui be of the familiar form ui = αi1T + εεεi, where 1T denotes a unit vector of

order T, the αi represent the heterogeneity effects and the εεεi = (εi1, · · · ,εiT )
′
denote the

residual terms that may reflect time-varying effects such as the effect of unobserved

omitted covariates. In this setting, we specify the following types of the multivariate

skew-normal distribution.

Remark 1 For the above specified multivariate skew-normal model, let αi
iid∼ N

(

0,σ2
α

)

and εεεi
iid∼ SNT (Vε,δδδ) be all mutually independent. Then ui

iid∼ SNT (D,δδδ) where D =
σ2
α1T 1′T +Vε.

For the case with Vε diagonal, we obtain

corr(wit ,wis) =
eδtδs+σ

2
αΦ(δt + δs)−2Φ(δt)Φ(δs)

√

eσtt+δ2
t +σ

2
αΦ(2δt)−2Φ2 (δt)

√

eσss+δ2
s +σ

2
αΦ(2δs)−2Φ2 (δs)

, (8)

for any t 6= s. Note that, the correlation coefficient (8) may take negative or positive

values in the interval (-1,1).
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Remark 2 For the familiar form ui = αi1T +εεεi, let αi
iid∼ SN

(

σ2
α,δ
)

and εεεi
iid∼ NT (0,Vε)

be all mutually independent. Then ui
iid∼ SNT (D,δ1T ).

The correlation between wit and wis is a special case of (8) when δt and δs are replaced

by constant δ for all t,s.

3.2 The Poisson multivariate skew-normal model

Let Yit be the response variable and uit be the corresponding heterogeneity effect of

subject i at time period t for i = 1,2, · · · ,n and t = 1,2, · · · ,T . The scheme of a PSN

regression model in (2) allows for over-dispersion in the Poisson model but without tak-

ing into account the correlation among events. A common way to deal with this issue is

to allow the vector ui = (ui1, · · · ,uiT )
′

to follow a multivariate distribution with corre-

lation amongst ui1, · · · ,uiT , and consequently induce correlated Yi1, · · · ,YiT . A frequent

assumption is multivariate normality of the ui. An alternative is to utilize a multivariate

skew-normal distribution. Several versions of the multivariate skew-normal distribution,

originally introduced by Azzalini and Dalla Valle (1996), have appeared in the literature.

We present below a slight alteration of this distribution and provide its main properties

that are related to our current work.

Definition 4 Let the response vectors Yi = {Yit} of order T be independent for subjects

i= 1, · · · ,n and each Yit conditioned on the effect ui follows Poisson with the conditional

mean exp(θit), where θit = x′itβββ+uit and ui = {uit} iid∼ SNT (V,δδδ). Then the marginal pmf

of Yi is given by

fPMSN (yi|βββ,V,δδδ) =
∫

RT

T

∏
t=1

fPois (yit |uit ,βββ)gMSN (ui|V,δδδ)dui, (9)

where gMSN (ui|V,δδδ) denotes the multivariate skew-normal density function for the i-th

subject. We denote (9) as model PMSN1.

The solution of (9) is not generally available in closed form. Thus, an MCMC scheme

is implemented later to make statistical inferences. Furthermore, through standard cal-

culation (see the supplementary Appendix A) we can straightforwardly show that

E (Yi) = Miµµµw, and var(Yi) = MiDwMi +MiMw, (10)

where Mw and Mi are diagonal matrices with the elements µwit
and µit for t = 1,2, · · · ,T ,

respectively. The corresponding correlation coefficients between counts Yit and Yis are
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given by

corr(Yit ,Yis) = corr(wit ,wis)

√

µit

µit +
µwit
σwtt

√

µis

µis +
µwis
σwss

, (11)

for all i, t, and s. Equation (11) shows that the two correlations corr(Yit ,Yis) and

corr(wit ,wis) have the same sign and that |corr(Yit ,Yis)| < |corr(wit ,wis)|. Also, nega-

tive and positive correlations are allowed by using these mixed models. This fact gives

an advantage over other multivariate models for discrete outcomes such as multinomial

or negative multinomial models that allow only positive correlation. We specify below

two types of the PMSN1 model.

Definition 5 Let ui
iid∼ SNT (D,δδδ). We denote the corresponding model as PMSN2.

The mean vector and covariance matrix of Yi are derived to be particular cases of

(10) and setting (7) in which the scalar σts, for t,s = 1,2, · · · ,T , turns into σts + σ2
α,

i.e. elements of D. In this model, the corresponding correlation coefficient may take

negative or positive values.

Definition 6 Let ui
iid∼ SNT (D,δ1T ). We denote the corresponding model as PMSN3.

By utilizing the correlation between wit and wis, the resultant equation is always

positive showing that PMSN3 permits only positive correlation between events. For a

model with only constant term (no explanatory variable) Equations (10) can be sim-

plified as var(Yit) = cµvµψ + c2
(

σ2
ψσ

2
v +µ

2
vσ

2
ψ+µ

2
ψσ

2
v

)

, cov(Yit ,Yis) = c2µ2
vσ

2
ψ, t 6= s

where c = exp(β0) and parameters µv, σ2
v , µψ and σ2

ψ denote, correspondingly,means

and variances of vit = exp(εit) and ψi = exp(αi) in ui = αi1T + εεεi. It follows that

corr(Yit ,Yis) =
cµ2

vσ
2
ψ

1+ c
(

σ2
ψσ

2
v +µ

2
vσ

2
ψ+µ

2
ψσ

2
v

) , t 6= s. (12)

If the estimate of (12) is statistically significant then the PMSN model fits better to the

data set than the standard Poisson regression model.

3.3 An alternative to deal with the identification issue

In the literature of mixed Poisson models the identification is usually addressed by al-

lowing a restriction to the estimation process in order to make estimable the model

parameters. To clarify this, let the count Yit , for subject i = 1,2, · · · ,n and at time t =

1,2, · · · ,T , follows the PSN distribution in (2), where log(E(Yit)) = x′itβββ+ log(µw). A

common approach used by many researchers (e.g. see Balakrishnan and Peng, 2006)

is to reparameterize the mixing distribution such that µw = 1 to ensure that the loga-
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rithm of the marginal expectation of counts is x′itβββ. This is equivalent to solving the

nonlinear equation 2Φ(δ) = exp
{

−0.5
(

δ2 +σ2
)}

for δ. However, this method does

not work well when the expectation of exponentiated unobserved heterogeneity has a

complex structure. Also, it may cause difficulties in the process of optimization rou-

tines for the reparameterized model. Thus, we use an alternative trick by setting the

regression parameter β0 to be equal to log(µw). A similar trick can be done for models

PMSN1–PMSN3 by setting β0t = log(µwt ) since µwt depends on time t.

4 The computational scheme

This section develops an operational MCMC scheme for the Bayesian analysis of the

proposed regression models. We utilize the Bayesian data-augmentation method (e.g.,

Albert and Chib, 1993), which lets us generate the heterogeneity effects along with other

known quantities in the simulation process. We use the hierarchical representation of all

models to write down the joint likelihood of responses and heterogeneity effects. This

representation is quite useful to estimate parameters by using the MCMC technique. To

complete the model specifications from a Bayesian perspective, we assume that all pa-

rameters are independent. Then, we assign conditionally semi-conjugate priors to these

parameters. This choice simplifies computations since the complete conditional poste-

riors involved in the Gibbs sampler are mostly closed forms of known distributions and

hence easy for simulation. It this section, we let Zit
iid∼ HN (0,1) and Zi

iid∼ HN (0,1).

4.1 Bayesian computation for independent data

To fit the PSN model, we use the data augmentation to θit based on the hierarchical

representation of the skew-normal distribution given in Properties 1 (ii). The related

hierarchical form becomes

Yit |θit
ind∼ Pois(exp(θit)) , (13)

θit |zit ,βββ,σ
2,δ

ind∼ N
(

x′itβββ+ δzit ,σ
2
)

,

for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T . By adopting all parameters to

be independent, we assign the priors βββ ∼ Nk

(

βββ0,Vβββ

)

, δ ∼ N
(

δ0,σ
2
δ

)

, and an inverse-

Gamma, IG(ν0,ν0), for σ2, where all hyperparameters are known. The joint posterior

density of βββ, σ2 , δ, θθθ = (θθθ1, · · · ,θθθn)
′

and z = (z1, · · · ,zn)
′

with θθθi = (θi1, · · · ,θiT )
′

and

zi = (zi1, · · · ,ziT )
′
is then given by

π
(

βββ,σ2, δ,θθθ,z
)

∝
n

∏
i=1

T

∏
t=1

fPois (yit |θi)ϕ
(

θit |x′itβββ+ δzit ,σ
2
)

(14)

ϕ(zit |0,1) I (zit > 0) × ϕk

(

βββ|βββ0,Vβββ

)

ϕ
(

δ|δ0,σ
2
δ

)

fIG

(

σ2|ν0,ν0

)

.
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The marginal posterior is derived by integrating out θθθ and z from (14). This posterior

is analytically intractable and the solution requires implementing advanced numerical

integration techniques or utilizing the MCMC procedures, such as Gibbs sampling. The

Gibbs sampling algorithm simulates iteratively from the complete conditional poste-

rior distribution of each unknown stochastic parameter, or quantity, conditioned on the

remaining parameters and unknown quantities. The complete conditional posterior dis-

tributions are given in the supplementary Appendix B.

4.2 Bayesian computation for the correlated data

Here, we use the following hierarchical representation of the defined models. The Gibbs

sampling to fit model PMSN1 is implemented as follows.

The PMSN1 model. Consider the hierarchical form

Yit |θit
iid∼ Pois(exp(θit)) , (15)

θθθi|zi,βββ,V,δδδ
ind∼ NT (Xiβββ+ δδδzi,V) ,

for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T . Assuming the multivariate normal

prior for βββ, the inverse-Wishart IWT (Ω,m) for matrix V, and NT (δδδ0,Vδδδ) for the vector

of skewness parameters δδδ, where all hyper-parameters are assumed to be known, we

derive the related complete conditional posteriors as given in the supplementary Ap-

pendix B. The specification of models PMSN2 and PMSN3 are given below by using

the multivariate skew-normal mixing prior.

The PMSN2 model. The hierarchical form of PMSN2 is

Yit |θit
ind∼ Pois(exp(θit)) , (16)

θθθi|αi,zi,βββ,Vε,δδδ
ind∼ NT (Xiβββ+αi1T + δδδzi,Vε) ,

αi
iid∼ N

(

0,σ2
α

)

.

The PMSN3 model. The hierarchical form of PMSN3 is

Yit |θit
ind∼ Pois(exp(θit)) , (17)

θθθi|αi,zi,βββ,Vε,δ
ind∼ NT (Xiβββ+αi1T ,Vε) ,

αi|zi
ind∼ N

(

δzi,σ
2
α

)

.

The Bayesian computational details of mixed Poisson models PMSN2 and PMSN3,

including priors and complete conditional posteriors, are given in supplementary Ap-

pendix B. All complete conditional posteriors, except for θθθ, appear in closed forms

of known distributions and thus random samples can easily be generated. However,
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drawing samples from the posterior of θθθ maybe done by the accept-reject algorithm

(Gilks and Wild, 1992) or by the Metropolis-Hastings algorithm within the Gibbs sam-

pler (Chib and Greenberg, 1995). Thus, the Gibbs sampler proceeds by simulating a se-

quence of samples from the complete conditional posteriors. The sampler simulates iter-

atively from these posteriors by running a sufficient burn-in period until convergence to

stationary distributions occurs. Then, the average of samples for each parameter is used

as its Bayes estimate. Convergence is monitored via MCMC chain histories, Gelman-

Rubin diagnostic, autocorrelation, and density plots.

5 Comparative studies using simulation

We conduct two simulation studies to highlight the usefulness of proposed models.

Specifically, we design Monte Carlo experiments to underline the important role of the

skewness parameter and the structure of covariance matrices. We also make compar-

isons between competing models. To implement the Gibbs sampler, the following in-

dependent priors are adopted: N(0,100) for the regression coefficients as well as for

δ, Uniform(−1,1) for ρ, and Inverse-Gamma(0.01,0.01) for the variance components.

Using the OpenBUGs software version 3.2.3, we run 10,000 samples after removing

5,000 burn-in until the convergence occurs. There was no evidence of lack of conver-

gence based on examinations of histories, Gelman-Rubin diagnostic, kernel density, and

autocorrelation plots. Also, by using various values of hyperparameters, we obtained

similar results, which implies that posterior estimates are not sensitive to the prior in

this Bayesian analysis.

a. The simulated model is PMSN1: We generated 1,000 independent Monte Carlo

data sets from model PMSN1 with n = 100 sample size. Consider the longitudinal data

model

Yit |θit
ind∼ Pois(exp(θit)) with θit = β0 +β1Xi1 +β2Xit2 +uit , (18)

for subject i = 1,2, · · · ,100 and at time t = 1,2, · · · ,5. Random counts are generated

according to (9), where ui
iid∼ SN2 (V,δδδ) with δδδ′ = δ1′5 and V =

{

σ2ρ|t−s|} for t,s =

1,2, · · · ,5. The time-constant covariate Xi1 is generated by Bernoulli(0.5) and the time-

varying covariate Xit2 by N (0,1). For all experiments, θit was computed by setting

β1 = −1 and β2 = 1. We set ρ = 0.5, σ2 = 0.36, and δ = −0.8, 0, 0.8. Taking into ac-

count the identification issue, we obtain β0 =−0.36,0.18 and 0.96, respectively. Results

are reported in Tables 1 and 2 along with the fitted standard Poisson model for compari-

son. Biases and the mean squared error (MSE ×10) of estimates are computed. Smaller

values of the MSE indicate a better fit.

In each generation, the variance of Y differs considerably from the mean of Y , unlike

the conventional Poisson density. Figure 3 illustrates this feature for δ= 0.8 and the first

100 generations. This shows strong evidence of over-dispersion. Thus, fitting mixed

Poisson models may be more appropriate to this data set.
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Figure 3: The first 100 generations of model PMSN1 with δ = 0.8.

Therefore, we fit the hypothetical models PMN with V =
{

σ2ρ|t−s|} and PMSN2

with D =σ2
α151′5 +σ

2I5, where δδδ = δ15.

Table 1: Biases and MSEs(×10) for the proposed models.

Poisson PMN PMSN1 PMSN2

δ Bias MSE Bias MSE Bias MSE Bias MSE

−0.8 β0 -0.017 3.404 0.582 2.629 -0.021 0.005 0.038 0.016

β1 -0.117 2.138 -0.512 2.036 -0.013 0.004 -0.140 0.199

β2 -0.036 0.713 -0.155 0.160 -0.003 0.001 -0.031 0.010

σ2 0.085 0.031 -0.001 0.001 -0.035 0.013

δ -0.012 0.004 0.107 0.116

ρ 0.156 0.244 -0.019 0.007

0 β0 0.018 0.904 0.002 0.001 <0.001 0.001 -0.076 0.059

β1 -0.012 0.202 -0.002 0.001 <0.001 0.001 -0.010 0.003

β2 -0.004 0.002 -0.001 0.001 <0.001 0.001 0.006 0.002

σ2 0.004 0.002 0.012 0.002 -0.095 0.090

δ -0.014 0.003 -0.042 0.019

ρ -0.050 0.029 -0.025 0.008

0.8 β0 -0.060 2.037 -0.478 2.284 -0.002 0.001 -0.174 0.304

β1 0.032 0.311 0.487 2.374 -0.007 0.002 0.123 0.153

β2 -0.018 0.210 0.107 0.115 -0.010 0.001 0.035 0.013

σ2 0.287 0.825 -0.040 0.017 0.168 0.284

δ -0.017 0.004 -0.233 0.545

ρ -0.080 0.064 -0.004 0.006

Results, after the convergence is achieved, are reported in Table 1. Note that, we let

δδδ = δ15 which implies equivalence of PMSN2 and PMSN3 models. Also, the concern

was to illustrate the impact of ignoring dependency between the uit’s for t = 1,2, · · · ,T .

Thus, PSN was not fitted. For δ = 0, the PMSN1 performs as well as the PMN model.

This finding shows that the PMSN1 is a flexible model since it can cover either sym-

metric or asymmetric data, depending on the values of its skewness parameter. For

δ = −0.8,0.8 and based on MSEs, the PMSN models, PMSN1 and PMSN2, are bet-
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ter fitted than the conventional Poisson and PMN models. This finding does suggest the

importance of identifying the correlation of the heterogeneity effects. To make a fur-

ther comparison, we compute the relative efficiency r = MSEM/MSEPMSN1, where M

denotes the competitive regression model. Efficiency values, shown in Table 2, are re-

markably greater than 1, illustrating that the PMSN1 estimates are efficient compared to

the parameter estimates in the hypothetical regression models.

Table 2: Relative efficiencies of estimates in the longitudinal study.

δ β̂0 β̂1 β̂2 σ̂2 δ̂ ρ̂

−0.8 Poisson 680.8 534.5 713.0

PMN 525.8 509.0 160.0 31.0 34.8

PMSN2 3.2 49.7 10.0 13.0 29.0

0 Poisson 904.0 202.0 2.0

PMN 1.0 1.0 1.0 2.0 3.6

PMSN2 59.0 3.0 2.0 45.0 6.3

0.8 Poisson 2037.0 155.5 210.0

PMN 2284.0 1187.0 115.0 48.5 10.667

PMSN2 304.0 76.5 13.0 16.7 136.2

b. The simulated model is PMSN2: Here, a simulation study is conducted to dis-

tinguish the performance of the PMSN1 model with V =
{

σ2ρt−s
}

, for t,s = 1,2, when

response values are generated according to the PMSN2 model. We sampled data from

(9) where θit is given in (18) and ui
iid∼ SN2 (D,δδδ) with δδδ′ = (δ1,δ2) and D= σ2

α1T 1′T +Vε.

Also, the covariates Xi1 and Xit2 are generated respectively from a Bernoulli(0.5) and

a standard normal distribution. We set β1 = −1, β2 = 1, σ2
α = 0.25, δ = −4,1, and

the variance components σ2
ε,1 = σ2

ε,2 = 0.25 and σε,12 = 0.75 for Vε. Now, the cor-

relation between observations is negative. Taking into account the identification is-

sue, we obtain β0 = −0.65 and 2, respectively. All parameters are estimated using the

PMSN1 model. The posterior means (each with standard deviation) of estimates are

obtained as β̃0 =−0.663(0.031),2.063(0.033), β̃1 =−1.0090.030, β̃2 = 1.008(0.016),
δ̃1 =−4.144(0.069), δ̃2 = 0.987(0.026), ρ̃= 0.507(0.012), and σ̃2 = 2.035(0.056). We

observe that the bias of each regression coefficient and skewness parameter is small.

Thus, the evidence again recommends that the regression model PMSN1 is appropriate

to analyse the data.

6 Empirical studies

This section considers two examples taken from the literature that have been previously

analysed by several authors. We fit the proposed models using the OpenBugs software.

Priors for the regression coefficients and the skewness parameter were assumed to be
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independent, each distributed normally with zero mean and 0.001 precision, variance

components distributed as inverse-Gamma distribution with parameters both equal to

0.1. The model fitting process has carried out for 10,000 iterations after discarding the

first 5,000 iterations to ensure us the convergence has occurred. There was no evidence

of lack of convergence due to examinations of histories, Gelman-Rubin diagnostic, ker-

nel density, and autocorrelation plots. For illustration, the supplementary Appendix B

shows posterior plots of the PMSN2 and β5 for the health reform data.

A popular model selection in the Bayesian framework is the deviance information

criterion (DIC). However, the DIC in OpenBugs is based on the conditional likelihood

given the random effects. To compare the fitted models marginally we alternatively com-

pute the Akaike information criterion, AIC (θθθ) = D(θθθ)+2p, and the Bayesian informa-

tion criterion, BIC (θθθ) = D(θθθ)+ p log(n), where the deviance D(θθθ) = −2logL(θθθ), p

and n denote the number of parameters and sample size, respectively. To estimate D(θθθ),
we use the deviance evaluated at the Bayes estimates of parameters θθθ, where L(θθθ) is

taken as the underlying marginal likelihood. Smaller values of these criteria indicate

better fit.

6.1 Polio incidence

The Polio data set is taken from the US Centers for Disease Control and Prevention.

The response variable is the monthly number of poliomyelitis cases (Y ), over the years

1970 to 1983. The data were previously analysed by several researchers, such as Zeger

(1988), Oh and Lim (2001), Davis and Wu (2009), Fokianos and Fried (2012) and Kang

and Lee (2014) between others. We fit a similar model as given by Zeger (1988), and Oh

and Lim (2001) by noting that the regression model is organized in terms of a re-centred

version of time t, such that it can be easily convenient within the usual framework of

the cross-sectional data model. The model includes an intercept, a time trend, and some

trigonometric components at periods 6 and 12 months. Fitting a Poisson model, the ratio

of deviance to degrees-of-freedom was 1.925, illustrating evidence of over-dispersion.

Thus, the Poisson model is not suitable to fit the data. We now fit the PSN regression

model, for n = 1, already specified in Section 2. Specifically, let Yt |ut
ind∼ Pois(exp(θt))

for t = 1, · · · ,168, where

θt = β0 +β1t∗×10−3 +β2 cos

(

2πt∗

6

)

+β3 sin

(

2πt∗

6

)

+ β4 cos

(

2πt∗

12

)

+β5 sin

(

2πt∗

12

)

+β6yt−1 +ut ,

and t∗ = t−73 is used to locate the intercept term at January 1976 as in Zeger’s analysis.

We also analyse the polio incidence rates using the PN model; i.e. ut
iid∼ N

(

0,σ2
)

. Bayes

estimates, standard deviations, 95% confidence intervals, and some information criteria

for models comparison are given in Table 3.
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Table 3: Posterior summary statistics for parameters of fitted models.

Model Poisson PN PSN

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

β0
0.046(0.088)

(-0.131,0.215)

0.220(0.068)

(0.108,0.374)

0.031(0.084)

(-0.119,0.217)

β1
-3.753(1.441)

(-6.554,-0.9409)

-4.160(1.816)

(-7.754,-0.663)

-3.508(1.956)

(-7.378,0.299)

β2

0.101(0.103)

(-0.099,0.304)

0.130(0.129)

(-0.119,0.386)

0.125(0.140)

(-0.144,0.403)

β3

-0.410(0.102)

(-0.612,-0.211)

-0.348(0.127)

(-0.596,-0.099)

-0.358(0.137)

(-0.629,-0.090)

β4
-0.181(0.098)

(-0.376,0.010)

-0.125(0.125)

(-0.369,0.122)

-0.140(0.134)

(-0.398,0.126)

β5

-0.464(0.0.111)

(-0.686,-0.250)

-0.443(0.136)

(-0.712,-0.185)

-0.457(0.147)

(-0.750,-0.164)

β6

0.092(0.025)

(0.041,0.140)

0.059(0.038)

(-0.019,0.131)

0.104(0.041)

(0.018,0.181)

σ2 0.440(0.137)

(0.217,0.750)

0.502(0.145)

(0.260,0.829)

δ
-0.296(0.069)

(-0.437,-0.149)

-2logL 531.5 511.9 499.2

AIC 545.5 527.9 517.2

BIC 567.3 552.8 545.3

Results show that the PSN is the best-fitted while the PN is the second one. The

parameter δ differs significantly from 0 based on its confidence interval, and a negative

direction of the difference exists. It again supports our claim that the PSN model is

more appropriate for the polio data. The Bayesian results differ somewhat for the PSN

and Poisson models. Standard deviations for the PSN model are larger, up to 14% and

51%, than those for the PN and Poisson models.

One objective in the analysis of polio data is to investigate whether or not the in-

cidence of polio has been decreasing since 1970. This is indicated by the sign of the

regression coefficient β1. Under the PSN model, the negative sign of the trend term in-

dicates that there is a long term decrease in the number of poliomyelitis cases during the

observation period. This finding goes along with results achieved by Davis, Dunsmuir

and Wang (2000) and Farrell, MacGibbon and Tomberlin (2007). We also note that the

state dependence parameter β6 is significant in the PSN model, which implies the con-

tribution of the lagged response on prediction, while the PN model does not make such

a conclusion.
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6.2 Health reform data

The health-care reform data is taken from the German Socio-Economic Panel for the

years 1995-1999. The main aim of the study was to investigate whether the number

of physician visits by patients decreased after the reform. The data were analysed by

Winkelmann (2004), who noted that the number of visits dropped by about 10% on

average. Rabe-Hesketh and Skrondal (2012) fitted a PLN regression model on the impact

of the 1997 health reform on the number of doctor visits. Then, several studies analysed

the data for various purposes (e.g., Van Ophem, 2011). Our data consist of a subset

taken from Rabe-Hesketh and Skrondal (2012) and are available in Stata and R software

packages. We drop all missing values from the data, giving a subsample of 1,418 women

who were employed full time the year before and after the reform.

The response variable is the utilization of health services, as measured by the self-

reported number of patient visits to a physician’s office three months before the inter-

view. Covariates include an indicator variable for the interview being during the year

after the reform versus the year before the reform, centred age in years, person educa-

tion in years, an indicator for being married, a binary variable for self-reported current

health, being classified as ‘very poor’ or ‘poor’ (versus ‘very good’; ‘good’ or ‘fair’),

and the centred logarithm of household income.

The standard Poisson model makes the unrealistic assumption that the number of

doctor visits before the reform is independent of the number of visits after the reform

for the same person, given the included covariates. A fit of this model gives the ra-

tio of deviance to the degrees-of-freedom equals 3.698, illustrating strong evidence of

over-dispersion and suggests fitting alternative models. Thus, we propose fitting mixed

Poisson regression models with the following specifications. The counts Yit , conditioned

on the effects uit for subject i = 1,2, · · · ,709 and at time t = 1, 2, are taken to be inde-

pendent Pois(exp(θit)) where

θit = β0 +β1reformit +β2 ageit +β3 educit +β4 marriedit

+β5 badhit +β6 logincit +uit .

We fit PMSN1-PMSN3, PSN, PMN, and PN as competitive models and let u′
i =(ui1,ui2),

V = σ2

(

1 ρ

ρ 1

)

and D =σ2
α121′2 +σ

2I2. The heterogeneity effects in PN and PSN mod-

els are assumed to be independent. These models are inappropriate. It should come as

no surprise since no correlation is allowed for the heterogeneity effects, whereas in real-

ity, it exists. The deviance of PN and PSN models are 5917.7 and 5870.8, respectively.

Other findings are dropped here to save space. In addition, the estimate of correlation

(11) for model PMSN2 was found to be 0.383 (s.d., 0.068; 95% confidence interval,

0.248–0.517) while for model PMSN3 it was 0.264 (s.d., 0.011; 95% confidence in-

terval, 0.243–0.284). Combining these findings with (11) indicates strong evidence of

the correlation between the number of patient visits to a physician’s office before and

after the reform. The posterior means and standard deviations for the conventional and
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proposed models are given in Table 4. In models PMSN1 and PMSN2, the intercept is

replaced by β0t for t = 1,2.

Table 4: Posterior summary statistics for proposed PMSN models.

Model PMN PMSN1 PMSN2 PMSN3

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

β01
1.488(0.122)

(1.255,1.733)

0.634(0.062)

(0.510,0.757)

0.419(0.061)

(0.303,0.539)

0.807(0.062)

(0.686,0.932)

β02
-0.005(0.004)

(-0.013,0.002)

1.175(0.103)

(0.986,1.386)

β1
-0.076(0.050)

(-0.174,0.021)

-0.708(0.076)

(-0.220,0.170)

-0.715(0.076)

(-0.865,-0.571)

-0.249(0.048)

(-0.348,-0.155)

β2

-0.005(0.004)

(-0.013,0.002)

-0.003(0.003)

(-0.009,0.006)

-0.002(0.004)

(-0.010,0.006)

-0.001(0.003)

(-0.007,0.007)

β3
-0.004(0.017)

(-0.040,0.029)

-0.006(0.016)

(-0.040,0.026)

-0.006(0.017)

(-0.038,0.028)

-0.011(0.017)

(-0.044,0.021)

β4
0.318(0.063)

(0.192,0.443)

0.128(0.079)

(-0.029,0.281)

0.108(0.073)

(-0.033,0.252)

0.070(0.076)

(-0.077,0.219)

β5

1.127(0.101)

(0.926,1.324)

1.040(0.101)

(0.841,1.236)

1.024(0.097)

(0.834,1.217)

1.017(0.102)

(0.818,1.217)

β6

0.087(0.104)

(-0.111,0.293)

0.114(0.097)

(-0.077,0.305)

0.141(0.099)

(-0.046,0.342)

0.116(0.097)

(-0.074,0.305)

δ1
0.331(0.085)

(0.166,0.496)

0.375(0.075)

(0.221,0.515)

0.469(0.076)

(0.325,0.632)

δ2

1.007(0.087)

(0.841,1.177)

1.047(0.082)

(0.881,1.202)

σ2 0.979(0.066)

(0.854,1.122)

0.693(0.079)

(0.545,0.845)

0.183(0.057)

(0.086,0.301)

0.445(0.059)

(0.341,0.570)

σ2
α

0.465(0.062)

(0.347,0.591)

0.329(0.077)

(0.172,0.479)

ρ
0.519(0.054)

(0.406,0.618)

0.667(0.086)

(0.664,0.824)

-2logL 5645.9 5630.8 5627.4 5635.5

AIC 5660.9 5650.8 5647.4 5653.5

BIC 5697.4 5696.4 5693.0 5694.6

Table 4 also shows Bayes estimates of σ2 and ρ with their 95% confidence inter-

vals (CI) for models PMSN1 and PMN. That is, with 95% probability σ2 lies between

(0.854,1.122), for example. These facts reveal that much variability exists for the num-

ber of visits after the reform. Similarly, all skewness parameters differ significantly from

0 in a positive direction, showing that the distribution of heterogeneity effects is skewed
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right. It indicates that models PMSN1, PMSN2, and PMSN3 are more appropriate than

the PMN model. Also, according to the deviance and the information criteria values

reported in Table 4, we find that the PMSN2 fits the data better than all competitive

models.

Furthermore, in model PMSN2, age, education, married, and loginc are not statisti-

cally significant. However, the health care reform is negatively related to the number of

visits, meaning that reform makes a decrease in the expected number of visits. More-

over, the badh coefficient is significant and positive, meaning that patients with having

bad health make an increase in visits.

7 Concluding remarks

The analysis of correlated counts is challenging since suitable discrete multivariate dis-

tributions that can provide appropriate correlation structure are not always available. In

longitudinal studies, the problem is addressed by letting the counts be independent Pois-

son variates conditioned on a vector of correlated heterogeneity effects. The correlation

between the count variables is then incorporated in the resulting likelihood functions.

In the paper, the correlation was taken into account by adopting that the random ef-

fects followed the multivariate skew-normal distribution with various structures for the

skewness parameters. The modelling strategy allows for both positive and negative cor-

relations among the subsequent counts. Empirical findings showed that the proposed

modelling strategy had many potentials over conventional models. The paper used an

accessible technique to compute the AIC and BIC values by plugging in Bayes esti-

mates at the underlying marginal likelihoods. An interesting subject to future work is

to use other Bayesian models comparison. Also, an extension of mixed modelling to

the multivariate skew-normal random-effects is encouraged for non-Poisson correlated

responses when over-dispersion occurs.
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