
Statistics and Operations Research Transactions, 

vol. 43, n. 1 (2019)

A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel 
times……………..…......…………………………………………………………………………………..……..…p. 3-24
Lorena Reyes-Rubiano, Daniele Ferone, Angel A. Juan, Javier Faulin

New L2-type exponentiality tests……………...................................……………………………. p. 25-50
Marija Cuparić, Bojana Milosević, Marko Obradović

Bayesian joint spatio-temporal analysis of multiple diseases.....…........…………..………… p. 51-74
Virgilio Gómez-Rubio, Francisco Palmí-Perales, Gonzalo López-Abente, Rebeca Ramis-Prieto, 
Pablo Fernández-Navarro

Internalizing negative externalities in vehicle routing problems through green taxes and green
tolls……………………………………..…………………………………………….............……...........…… p. 75-94
Adrián Serrano-Hernández, Javier Faulìn

A probabilistic model for explaining the points achieved by a team in football competition. 
Forecasting and regression with applications to the Spanish competition………………....p. 95-112
Emilio Gómez-Déniz, Nancy Dávila Cárdenes, José María Pérez Sánchez

Automatic regrouping of strata in the goodness-of-fit chi-square test…..………….……. p. 113-142
Vicente Núñez-Antón, Juan Manuel Pérez-Salamero, Marta Regúlez-Castillo, Manuel Ventura-Marco, 
Carlos Vidal-Meliá

On the optimism correction of the area under the receiver operating characteristic curve in 
logistic prediction models………………………………………………………………..………….……. p. 145-162
Amaia Iparragirre, Irantzu Barrio, María Xosé Rodríguez-Álvarez

Efficient algorithms for constructing D- and I-optimal exact designs for linear and non-linear 
models in mixture experiments………………………………………………………..………….……. p. 163-190
Raúl Martín, Irene García-Camacha, Bernard Torsney



SORT 43 (1) January-June 2019, 3-24 DOI: 10.2436/20.8080.02.77

A simheuristic for routing electric vehicles with

limited driving ranges and stochastic travel times

Lorena Reyes-Rubiano1,∗, Daniele Ferone2, Angel A. Juan3,4

and Javier Faulin1

Abstract

Green transportation is becoming relevant in the context of smart cities, where the use of electric

vehicles represents a promising strategy to support sustainability policies. However the use of

electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This

paper analyses a realistic vehicle routing problem in which both driving-range constraints and

stochastic travel times are considered. Thus, the main goal is to minimize the expected time-

based cost required to complete the freight distribution plan. In order to design reliable routing

plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start

metaheuristic, which also employs biased-randomization techniques. By including simulation,

simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series

of computational experiments are performed to test our solving approach as well as to analyse

the effect of uncertainty on the routing plans.

MSC: 90B08.

Keywords: Vehicle routing problem, electric vehicles, green transport and logistics, smart cities,
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1. Introduction

The growing public concern about living conditions and environmental preservation,

specially in the context of modern cities, leads to the emergence and consolidation of

the sustainable city concept, which integrates social, environmental, and economic di-

mensions (McKinnon et al., 2015). Smart sustainable cities call for an intelligent man-

agement of resources considering the social welfare in order to achieve a sustainable

growth (Bibri and Krogstie, 2017). On the one hand, companies need to satisfy an in-
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creasing consumers’ demand that requires an intense freight transportation activity. This

activity has to be carried out without generating economic inefficiencies. On the other

hand, the welfare and environmental deterioration brings to light the need for smarter

distribution systems that guarantee sustainability of this transportation activity. Nowa-

days, the main initiatives and policies in the area of transportation and logistics consider

pollution targets. Typically, governmental urban guidelines focus on improving passen-

ger and freight transportation due to their noticeable impact on the citizens’ quality of

life. Indeed, freight transportation generates around 10% of the greenhouse gases and

ozone precursors released in the atmosphere (Eurostat, 2016). Since these emissions

affect people’s health, their reduction does not only generate an environmental benefit,

but also social and economic gains. According to The World Bank (2018), 60% of the

operation costs in developing countries are referred to energy bills. This reinforces the

idea of a strong correlation between the different sustainability dimensions.

Consequently, the sustainability concept promotes the use of vehicles running on al-

ternative fuel technologies. In particular, electric vehicles (EVs) represent a promising

option to mitigate the negative impacts caused by transport activities in city logistics.

Governments in many countries promote initiatives and regulations that aim at increas-

ing the use of EVs, specially in city logistics and transportation activities. As a result,

urban mobility is evolving to incorporate EVs. These incentives are motivated by the

potential of zero-emission vehicles to reduce externalities on the citizens and the envi-

ronment (Eurostat, 2016). As a way of responding to the aforementioned challenges

related to sustainable logistics, a number of relevant initiatives have been released, e.g.:

(i) Lean and Green Europe (www.lean-green.eu); (ii) US / Canada Smartway Trans-

port Partnership (www.nrcan.gc.ca); or (iii) UNCTAD Sustainable Freight Transport

and Finance (www.unctad.org). Some of these initiatives are supported and sponsored

by private companies that acknowledge the importance of an environmentally sustain-

able growth. Responding to social and business needs, a large number of enterprises are

incorporating both EVs and hybrid vehicles in their supply chain activities. In summary,

the traditional paradigm of freight distribution in modern cities is changing with the in-

troduction of these new technologies and the adoption of distribution concepts based on

horizontal cooperation (Pérez-Bernabeu et al., 2015, Serrano-Hernández et al., 2017).

However, despite these technological advances there are still barriers to the full de-

velopment of sustainable freight transportation. Examples of these barriers are: ineffi-

cient operations, poor infrastructures, or lack of sustainable policies. EVs require extra

operational efforts due to the limited life of their batteries, the amount of time required

to refill them, and the lack of recharging stations in modern cities. These technical lim-

itations introduce driving-range constraints that do not exist in the case of traditional

internal combustion vehicles (Juan et al., 2016). In addition to the previously described

barriers, one has to take into account that the battery consumption rate depends on a wide

range of random or difficult to predict factors, such as traffic congestion, road character-

istics affecting the energy consumption, weather conditions, driving style, etc. In other

words, real-life is full of uncertainty that has to be taken into account when consider-

www.lean-green.eu
www.nrcan.gc.ca
www.unctad.org
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ing travel times. Accordingly, this paper analyses the electric vehicle routing problem

with stochastic travel times (EVRPST), which also considers time-based driving-range

constraints (Figure 1). Being a rich extension of the classical vehicle routing problem

(VRP), the EVRPST is also an NP-hard optimization problem, which justifies the use

of heuristic-based solving approaches. Our main goal is to design an ‘efficient’ routing

plan that satisfies a set of customers’ demands using a homogeneous fleet of electric

vehicles, each of them characterized by a limited loading capacity and driving range.

Furthermore, we consider a more realistic VRP in which transport times are not de-

terministic but random variables instead. Efficiency will be measured in terms of total

transport time. In other words, our main goal is to minimize the total expected time

necessary to complete the delivery. Notice that random travel times could cause the

exhaustion of the vehicle battery before completing its assigned route. Such a route

failure will require a costly corrective action, which will be also measured in time units

(Eshtehadi, Fathian and Demir, 2017).

Figure 1: A simple representation of the EVRPST with driving-range constraints.

To solve the EVRPST, a novel simheuristic approach integrating Monte Carlo sim-

ulation within a multi-start framework is proposed. A review on basic concepts of

simheuristic algorithms can be found in Juan et al. (2015). Also, the generation of

solutions inside the multi-start framework is based on the use of biased-randomized

techniques, which allow to extend deterministic heuristic into enhanced probabilistic

algorithms. Grasas et al. (2017) provide an updated review of biased-randomized algo-

rithms. Our solving approach considers the use of energy safety stocks: that is, during

the design of the routing plan, a certain percentage of the battery is reserved for covering

emergency situations with higher-than-expected travel times. Notice that using higher

levels of safety stock leads to shorter routes and a higher number of required vehicles.
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In contrast, using lower levels of safety stock will increase the probability of suffering a

route failure. Whenever this occurs, we assume that the failing battery has to be replaced

by a new one. In our computational experiments, this corrective action has a time-based

penalty cost equivalent to a round-trip from the depot to the current position of the

battery that needs to be replaced. All in all, the main contributions of this paper are: (i)

to mitigate the lack of works on vehicle routing problems considering both driving-range

limitations and uncertainty conditions; (ii) to develop and test a simheuristic approach

for the EVRPST; and (iii) to analyse the effect of random travel times and the use of

energy safety stocks on the routing plans.

The remaining of the paper is organized as follows: Section 2 reviews related work

in the transportation literature; Section 3 provides some additional details on the prob-

lem under study; our simheuristic solving approach is explained in Section 4; Section 5

describes a series of computational experiments, while the associated results are dis-

cussed in Section 6; finally, Section 7 concludes the paper and identifies potential lines

for future research.

Figure 2: Frequent attributes and constraints in the G-VRP.

2. Literature review

The use of EVs in transport activities is related to several urban changes in terms of

infrastructure and distribution strategies. On the one hand, some of these challenges re-

late to infrastructure and fleet configurations (Juan, Goentzel and Bektaş, 2014b, Shao,

Guan and Bi, 2018). On the other hand, EVs have started to replace conventional vehi-

cles in city logistics, redefining transport operations (Hof, Schneider and Goeke, 2017).

Many logistics and transportation problems in smart cities can be modeled as rich VRP

variants (Cáceres-Cruz et al., 2014). The rich VRP has been a very active research line

in combinatorial optimization problems. This is partly due to the difficulty of manag-

ing multiple attributes and constraints, such as the different sustainability dimensions:

economic, social, and environmental (McKinnon et al., 2015). In particular, the ‘green’
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VRP (G-VRP) is a rich VRP which considers routing problems using alternative fuel

vehicles (AFVs) (Erdoğan and Miller-Hooks, 2012). One popular G-VRP variant is the

so-called pollution routing problem or PRP (Bektaş and Laporte, 2011). In the PRP, the

main objective is to minimize the energy consumption. It also includes time windows

as a realistic constraint. Figure 2 provides a scheme that summarizes different attributes

and constraints frequently associated with the G-VRP (Lin et al., 2014).

2.1. The deterministic G-VRP

A key restriction in VRPs with EVs is the limited capacity of their batteries, which

might require multiple recharging stops. Hence, (Erdoğan and Miller-Hooks, 2012)

solve a G-VRP allowing intermediate stops by implementing procedures based on the

well-known savings heuristics (Clarke and Wright, 1964) and the popular density-based

clustering algorithm. Demir, Bektaş and Laporte (2012) solves a PRP with time win-

dows, where customer sequences are first defined and, afterwards, the travel speeds are

optimized by means of an adaptive large neighbourhood search (ALNS) metaheuris-

tic. Juan et al. (2014b) address the G-VRP with multiple driving ranges. The goal of

this work is to define alternative fleet configurations based on EVs and hybrid-electric

vehicles. The authors describe an integer programming formulation and a multi-round

heuristic algorithm that iteratively constructs a solution. Schneider, Stenger and Goeke

(2014) propose an ALNS metaheuristic with some local searches with the aim of min-

imizing the total distribution cost, which includes the cost of using a fleet of vehicles

plus the actual routing cost. Additionally, these authors considered intermediate stops in

recharging stations. Similarly, the ALNS metaheuristic is hybridized with the adaptive

variable neighbourhood search framework by Schneider, Stenger and Hof (2015), who

deal with a routing problem with EVs-related constraints and also consider intermediate

stops. Koç and Karaoglan (2016) design a simulated annealing metaheuristic, based on

an exact method, to solve the G-VRP for the small-scale instances proposed by Erdoğan

and Miller-Hooks (2012). Hiermann et al. (2016) study the VRP with EVs, time win-

dows, and recharging stations. Hof et al. (2017) consider EVs to solve a location-routing

problem where the objective is to determine whether the battery swap stations should

be defined from candidate locations or closer to the set of customers. Finally, the G-

VRP with multiple objectives – including both monetary and environmental costs – is

discussed by Sawik, Faulin and Pérez-Bernabeu (2017a, b, c).

2.2. The stochastic G-VRP

Stochastic combinatorial optimization has received increasing interest during the last

decades (Bianchi et al., 2009, Ritzinger, Puchinger and Hartl, 2015). Solving a stochas-

tic VRP requires a methodology able to deal with the random components of the prob-

lem, which is not straightforward, as discussed in Juan et al. (2011a, 2013). The most

frequent random variables are: customers’ demands, service and travel times, and fre-
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quency of order placing (Bozorgi, Farasat and Mahmoud, 2017). The previous articles

highlight the importance of dealing with uncertainty, and study realistic characteristics

such as urban transport dynamics. In most existing works, travel times are assumed to

be constant, but this is not a realistic assumption. Hence, Ritzinger et al. (2015) propose

to deal with uncertain travel times by modelling them as stochastic and time-dependent

variables.

Uncertainty conditions are sometimes addressed by means of stochastic program-

ming. This approach provides high quality solutions for small instances (Bozorgi-Amiri,

Jabalameli and Al-e Hashem, 2013). Erdoğan and Miller-Hooks (2012) present an exact

model to solve the VRP with stochastic travel times. These authors assess the influence

of route duration on environmental indicators, such as energy consumption. Another rel-

evant problem is the time-dependent VRP, where the travel times are different depending

on the specific period. Gendreau, Ghiani and Guerriero (2015) provides a literature re-

view on these topics. Travel times may vary by exogenous variables, such as traffic

congestion, weather conditions, moving targets, or mobile obstacles. They might also

be influenced by endogenous variables: for example, by varying the vehicles’ speeds or

by choosing highways over standard roads.

Recently, Eshtehadi et al. (2017) address a VRP with stochastic demands and travel

times. These authors develop a solving approach based on an exact method that is able

to solve instances with up to 20 nodes considering multiple scenarios. The authors

tackle the stochasticity describing two scenarios that represent the best and the worst

conditions for demand and travel times. To conclude this literature review, Table 1

Table 1: An illustrative set of works covering the most popular G-VRP variants.

Papers Atributes Constraints Solution Approach

Shao et al. (2018) Driving range GA

Eshtehadi et al. (2017)
Stochastic demands

Stochastic travel times
Driving range SP

Sawik et al. (2017a,b,c) Multi criteria Driving range EM

Koç and Karaoglan (2016) Driving range SAM and EM

Hiermann et al. (2016) Full recharges Time windows EM

Desaulniers et al. (2016)
Full recharges

Partial recharges

Driving range

Time windows
EM

Schneider et al. (2015) Full recharges Driving range ALNS

Felipe et al. (2014) Full recharges Driving range GSA

Juan et al. (2014a) Heterogeneous fleet Driving range RMS

Schneider et al. (2014) Full recharges Driving range ALNS

Erdoğan and Miller-Hooks (2012)
Stochastic travel time

Full recharges
Driving range SP

ALNS: Adaptive large neighbourhood search. EM: Exact method. SP: Stochastic programming.

RMS: A randomized multi-start algorithm. GA: Genetic algorithm.GSA: Greedy algorithm. SH: Savings heuristic.

SAM: Simulated annealing metaheuristic. DC: Density-based clustering algorithm
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summarizes some illustrative works providing evidence about the most studied G-VRP

variants.

3. Additional details on the EVRPST

The EVRPST is defined on an undirected graph G = (N,A). Here, N contains the depot

(node 0) and a set of customers N∗= {1,2, . . . ,n}. Also, A= {(i, j) | i, j ∈N, i 6= j} is the

set of edges connecting any two nodes in N. Each customer i ∈ N∗ has a demand di > 0.

There is a set V of homogeneous vehicles, each of them with a loading capacity of q >>

max{di}. As it is usual in most VRPs (Toth and Vigo, 2014), the following assumptions

hold: (i) all customers’ demands must be satisfied; (ii) each vehicle route starts and

ends at the depot; (iii) each customer is visited exactly once; and (iv) the demand to be

served in each route does not exceed the vehicle loading capacity. Moreover, the time-

based cost of traversing each edge (i, j) is given by an independent random variable

Ti j = Tji > 0, which follows a known probability distribution with mean E(Ti j) = ti j.

Thus, the additional constraint is considered as well: the expected travel time employed

by a vehicle to complete its route is limited by the battery duration, tmax > {
∑

E[Ti j]}.

However, considering stochastic travel times implies introducing uncertainty about

how much energy will be required to complete a route. Energy consumption and travel

times depend on multiple factors, such as current load of the vehicle, road type, vehicle

speed, driving skills, etc. This uncertainty makes it hard to guarantee feasible solutions

when hard time-related constraints on batteries duration are considered. In particular,

electric vehicles have a risk of batteries exhaustion during the trip, which is considered

as a route failure. Decision makers may define corrective actions to properly address

these failures when they happen. They might also define preventive actions to be applied

before the vehicle runs out of battery. Figure 3 illustrates some examples of these types

of actions.

On the one hand, a corrective action to resume the routing plan is required when a

vehicle A runs out of energy after visiting a customer j (failure type I). In our compu-

tational experiments, we will assume that the cost of this corrective action is the time

needed for a new vehicle B to complete a round-trip from the depot to the current lo-

cation of A to supply a new battery. On the other hand, a preventive action could also

be applied: if there is a high risk of running out of battery after serving a customer j,

vehicle A might decide to return from j to the depot for recharging or swapping batter-

ies (failure type II); after that, it might resume its planned route from the next customer,

k. The time-based cost of such a preventive action could be estimated as the time re-

quested to visit the depot for recharging batteries plus the time employed in moving

from the depot to the next customer in the original route, k.

Although the simheuristic methodology introduced in this paper is quite flexible and

could be easily extended to consider preventive actions, in our computational experi-

ments we have only considered corrective actions (i.e., type I failures). Accordingly,
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(a) Preventive action for type II failure

(b) Corrective action for type I failure

Figure 3: Different actions to deal with route failures while using electric vehicles.

the objective function minimizes the expected time-based cost required to complete the

delivery process. Notice that this time-based cost is a non-smooth function, since it

includes the ‘penalty’ cost associated with applying these corrective actions whenever

route failures occur. Hence, if Tv represents the total time employed by vehicle v in

completing its route, the objective function can be expressed as:

min E

(

∑

v∈V

Tv

)

(1)
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with:

Tv =



















∑

i, j∈N
i6= j

Ti j · zi jv if
∑

i, j∈N
i6= j

Ti j · zi jv ≤ tmax

∑

i, j∈N
i6= j

Ti j · zi jv +2 ·Tj0 otherwise
(2)

where the decision variable zi jv takes the value 1 if vehicle v covers the edge (i, j), while

it takes the value 0 otherwise.

4. A simulation-optimization approach

Some of the first works employing simulation-optimization methods to deal with the

VRP are due to Faulin and Juan (2008) and Faulin et al. (2008). Our solving method-

ology relies on a simheuristic approach, which proposes the integration of simulation

techniques within a heuristic framework to address stochastic optimization problems in

a natural way (Juan et al., 2015). In a simheuristic approach, the metaheuristic compo-

nent is responsible for searching and filtering out promising solutions, while the simu-

lation component is responsible for estimating different statistics associated with these

promising solutions when considered in a stochastic environment. When properly de-

signed, the simulation component can also provide feedback that is then used by the

heuristic framework to better guide the search process De Armas et al. (2017). In this

paper, we propose to integrate Monte Carlo simulation (MCS) into a biased-randomized

multi-start framework. Biased-randomized versions of a constructive heuristic allow for

fast generation of high-quality solutions (Grasas et al., 2017). These techniques have

been successfully applied in solving different combinatorial optimization problems in

areas such as vehicle routing (Dominguez, Juan and Faulin, 2014, Dominguez et al.,

2016b, a, c), scheduling (Juan et al., 2014c, Ferone et al., 2018, Gonzalez-Neira et

al., 2017) and facility location (Alvarez Fernandez et al., 2018). When complemented

with some local search and encapsulated inside a multi-start (or similar) framework,

they constitute a strong basis that can be easily extended into a simheuristic frame-

work (Grasas, Juan and Lourenço, 2016). Our biased-randomized multi-start (BR-MS)

simheuristic approach builds upon the biased-randomized version of Clarke and Right

Savings (BRCWS) procedure proposed by Juan et al. (2011b). The complete algorithm

is summarized in Pseudo-code 1 and described next in more detail.

First, the stochastic instance is transformed into a deterministic one by using ex-

pected travel times as initial estimates for the real stochastic values. Then, following the

Clarke and Wright (1964) heuristics, a dummy solution is created and the savings associ-

ated with traversing each edge are computed. This initial solution (initSol) is improved

by the classical 2-Opt local search operator, and its expected travel time (stochastic

cost) is estimated by using a fast MCS with just sSim runs – typically in the order of

a few hundreds. Notice that, as any other solution we will generate, initSol will have
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Algorithm 1: BR-MS simheuristic for the EVRPST.

1: procedure Simheuristic solve(test, nodes, edges)

⊲ test: maxTime, β, sSim, lSim, s

⊲ nodes: coordinates, demand

⊲ edges: travel time

2: savings← computeSavings (nodes, edges)

3: initSol ← savingsHeuristic (nodes, savings) ⊲ Clarke and Wright (1964)

4: initSol ← localSearch (initSol) ⊲ 2-Opt

5: stochCost(initSol)← simulation (initSol, sSim)

6: baseSol← initSol

7: bestStochSolList← add (initSol) ⊲ elite solutions

8: while (elapsedT ime < maxTime) do

9: newSol ← BRCWS (nodes, savings, β, s) ⊲ Juan et al. (2011b)

10: newSol ← localSearch (newSol) ⊲ 2-Opt

11: if (detCost(newSol) < detCost(baseSol)) then

12: stochCost(newSol)← simulation (newSol, sSim)

13: if (stochCost(newSol) < detCost(baseSol)) then

14: baseSol← newSol

15: end if

16: update (bestStochSolList)

17: end if

18: end while

19: for (each sol in bestStochSolList) do

20: stochCost(sol) ← simulation (sol, lSim)

21: end for

22: return bestSol in bestStochSolList

23: end procedure

two time-based costs: the one associated with the deterministic version of the problem

(detCost) and the one associated with the stochastic one (stochCost). At this stage,

initSol is stored as our temporary reference or ‘base’ solution (baseSol) and included in

a list of ‘elite’ stochastic solutions (bestStochSolList). Afterwards, a multi-start process

is repeated until a termination criterion (maxTime) is met. In each iteration, a new

deterministic solution (newSol) is generated by using the BRCWS procedure. Once a

fast local search is applied, this solution is labeled as ‘promising’ if its deterministic

time-based cost is lower than that of baseSol. If it is not promising, newSol is discarded
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and a new iteration starts. If it is promising, a new fast MCS is applied to estimate the

stochastic cost (expected time) associated with newSol. Whenever appropriate, baseSol

is replaced by newSol and the bestStochSolList is updated. Once the ending criterion is

met, the expected time associated with each elite solution in bestStochSolList is assessed

again, this time using a more intensive MCS with lSim runs, typically in the order of

a few thousands. Notice that while the assessments in the main loop are required to

be fast, because the number of solutions to assess may be extraordinarily high, those

applied to a reduced list of elite solutions can employ more computing time.

The computational time of the algorithm is bounded by maxTime. Regarding its

computational complexity, each iteration has three stages: the construction with BR-

CWS, the local search, and the simulation phase. The computational complexity of

BRCWS is bounded by the number of the edges m, since the merging can be done in

constant time but it is necessary to examine all savings. Since each client is served ex-

actly once, the local search swapping moves are bounded to O(n2) = O(m). Finally, the

complexity of the simulation stage is O(m · sSim). Therefore, the complexity of each

iteration is dominated by the simulation phase, and it is O(m · sSim).
As usually done in the related literature (Grasas et al., 2017), the biased-randomized

procedure is based on the use of a geometric probability distribution, which makes use

of a parameter β (0 < β < 1). The BRCWS heuristic is adapted from the one proposed

by Juan et al. (2011b) to ensure the feasibility of the generated solutions. In particular, it

is guaranteed that the expected travel time of each vehicle will not exceed the duration of

the batteries. However, as discussed before, under stochastic conditions it is not possible

to guarantee that a route is failure-free. Accordingly, the reliability of each solution (i.e.,

the probability that a solution does not suffer any route failure) is also estimated from

the data obtained in the previous simulation runs. As a way to increase these reliability

levels, different levels of safety stock are considered for each vehicle. In other words,

during the route-design stage, a given percentage of the vehicle driving-range capacity

(s%) is reserved as a safety stock to be used in case of higher-than-expected travel times.

The specific value of s is a decision variable to be determined during the simulation-

optimization process, since it will depend on the specific instance being analysed as

well as on the probability distribution used to model travel times.

Notice that a relatively high value of s leads to short and reliable routes, i.e., routes

employing short travel times and with a low probability of experiencing a failure due to

the existence of a noticeable safety stock. Unfortunately, this also requires the use of

more vehicles to cover all customers. On the contrary, a relatively value of s produces

longer routes with a higher probability of suffering a failure (low reliability), but it

requires a lower number of routes to cover all customers.

Regarding the MCS module, the steps followed to assess the stochastic performance

(expected travel time) of a given solution are: (i) using random sampling from the as-

signed probability distributions, we run different executions of the routing plan in order

to obtain random observations of the total travel time associated with it; (ii) from these

random observations, different statistics can be computed for each routing plan, e.g.:
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average time, variability of these times, etc.; (iii) using the same simulation outcomes,

we estimate the reliability of each routing plan as the quotient between the number of

route failures and the number of simulation runs. These experiments are repeated for

different percentages of the safety stock level, s.

5. Computational experiments

This section presents a set of extensive computational experiments carried out to test our

simheuristic approach for the EVRPST. Firstly, we introduce the instances that will be

used to test our approach. Secondly, the algorithm parameters are discussed. Finally, the

computational results are provided – they will be fully analysed in the next section. The

algorithm has been implemented as a Java application. A standard personal computer

with an Intel Core i5 CPU at 3.2 GHz and 4 GB RAM has been employed to perform

all the experiments.

5.1. Benchmark instances

As a benchmark for our test, a set of 27 instances originally proposed by Uchoa et

al. (2017) are selected. The original instances already included a maximum distance

per route. They have been adapted so they use time-based costs instead of distance-

based ones; i.e., Euclidean distances are considered to be travel times and the maximum

distance per route is transformed into a maximum time per route. These instances are

derived from the ones proposed by Christofides (1976), Golden et al. (1998), and Li,

Golden and Wasil (2005). Table 2 shows the main characteristics of these instances.

In order to perform numerical experiments under uncertainty conditions, the afore-

mentioned deterministic instances have been extended to consider stochastic travel times

as follows: if the original instance shows a determinisitic travel time ti j = t ji > 0 when

moving from node i to node j (with i 6= j), then we consider that the stochastic travel

time Ti j is a random variable following an exponential probability distribution with

E[Ti j] = ti j and Var[Ti j] = t2
i j. In a real-life scenario, the specific probability distribu-

tions associated with each stochastic travel time would need to be fitted from historical

observations, but our solving approach would still be valid. Furthermore, different lev-

els of safety stock – as a percentage of the battery capacity (i.e., vehicle driving range) –

have been considered in our experiments: s ∈ {0%,5%,10%, . . . ,35%}.

5.2. Parameter settings

One of the advantages of our algorithm is that it does not require a complex fine-tuning

process. In fact, after some quick trial-and-error experiments, the following values were

set for each parameter:
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Table 2: Characteristics of the benchmark instances.

Instance n |V | q tmax

Golden 1 240 9 550 650

Golden 2 320 10 700 900

Golden 3 400 10 900 1200

Golden 4 480 10 1000 1600

Golden 5 200 5 900 1800

Golden 6 280 7 900 1500

Golden 7 260 9 900 1300

Golden 8 440 10 900 1200

CMT6 50 6 160 200

CMT7 75 11 140 160

CMT8 100 9 200 230

CMT9 150 14 200 200

CMT10 199 18 200 200

CMT13 120 11 200 720

CMT14 100 11 200 1040

Li 21 560 10 1200 1800

Li 22 600 15 900 1000

Li 23 640 10 1400 2200

Li 24 720 10 1500 2400

Li 25 760 19 900 900

Li 26 800 10 1700 2500

Li 27 840 20 900 900

Li 28 880 10 1800 2800

Li 29 960 10 2000 3000

Li 30 1040 10 2100 3200

Li 31 1120 10 2300 3500

Li 32 1200 11 2500 3600

n = number of customers; |V |= number of vehicles

q = capacity of each vehicle

tmax = maximum time allowed per route

• The biased-randomized selection during the construction process was generated

by using a geometric probability distribution with parameter β ∈ (0.23,0.30) –

i.e., at each iteration a random value inside the previous interval was assigned to

β.

• The number of simulation runs was set to sSim= 400 for fast simulations (on each

promising solution) and to lSim = 10,000 for intensive simulations (on each elite

solution).

• For each instance, the algorithm was run 20 times, each time employing a different

seed for the pseudo-random number generator.

• For each instance and seed, the algorithm was executed for maxTime = 90 sec-

onds. Notice that this time does not include the time employed in computing the

intensive simulations – however, since the number of elite solutions is reduced,

this final step takes just a few additional seconds.
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5.3. Computational results

Table 3 summarizes the results obtained both using the BRCWS procedure – a deter-

ministic component inside the simheuristic – and the complete MS-BR simheuristic al-

gorithm. Both approaches were run using the same parameters setting as described in

Section 5.2. Also, in this comparison, no safety stock is considered, i.e., s = 0%.

Table 3: Performance of best deterministic and stochastic solutions.

BRCWS (deterministic component) MS-BR Simheuristic

Instance BDS-Det BDS-Stoch (a) Reliability BSS-Stoch Reliability

CMT6 546.59 586.75 0.97 586.75 0.97

CMT7 856.26 1060.14 0.86 1040.29 0.88

CMT8 870.60 911.39 0.97 911.14 0.97

CMT9 1118.03 1189.43 0.95 1183.26 0.96

CMT10 1375.31 1439.11 0.95 1431.04 0.96

CMT13 1537.88 1544.24 0.99 1539.03 0.99

CMT14 823.11 823.24 0.99 823.24 0.99

Golden 1 5786.96 9939.65 0.02 9298.79 0.05

Golden 2 8646.93 13376.35 0.01 12754.47 0.03

Golden 3 12828.23 17757.94 0.01 16416.42 0.06

Golden 4 17963.58 23019.70 0.02 21764.50 0.06

Golden 5 7334.24 7679.08 0.78 7602.17 0.83

Golden 6 9829.11 12119.12 0.14 11371.87 0.30

Golden 7 12270.11 15998.37 0.04 15274.38 0.08

Golden 8 13753.22 18831.50 0.01 17869.64 0.03

Li 21 20465.47 24826.35 0.03 23939.78 0.08

Li 22 16612.02 23985.19 0.00 23330.96 0.00

Li 23 23192.07 27986.58 0.02 27176.38 0.07

Li 24 26160.76 30327.41 0.04 30086.13 0.06

Li 25 17618.46 27426.64 0.00 26942.85 0.00

Li 26 28728.31 34534.97 0.01 32076.98 0.09

Li 27 18460.02 28341.25 0.00 28160.91 0.00

Li 28 32654.00 35986.88 0.08 35547.75 0.20

Li 29 35230.52 38188.93 0.10 36485.80 0.87

Li 30 40363.61 44088.03 0.07 42891.96 0.48

Li 31 44248.09 47195.81 0.13 46263.44 0.58

Li 32 45959.99 50720.75 0.04 49407.09 0.15

Average 16490.84 19996.24 0.31 19340.31 0.40

BDS-Det: Best deterministic solution in a deterministic scenario.

BDS-Stoch: Best deterministic solution in a stochastic scenario.

BSS-Stoch: Best stochastic solution in a stochastic scenario.

Hence, column BDS-Det shows the cost (in total travel time) associated with the

best-found solution obtained for the deterministic version of the problem when it is

applied in a deterministic scenario (without uncertainty); column BDS-Stoch provides

the expected cost of the same solution when it is employed in a stochastic scenario;

the reliability column gives an estimate of the probability that the best deterministic

solution can be used in a stochastic scenario without suffering any route failure – notice
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that reliabilities can be low in some cases since no safety stock is considered. Similarly,

column BSS-Stoch shows the expected cost of the best-found solution for the stochastic

version of the problem when applied in a stochastic scenario. Finally, the reliability

column provides an estimate of the probability that this solution can be completed as

designed – without route failures. As depicted in Figure 4, BDS-Det and BDS-Stoch act

as a lower bound and an upper bound, respectively, for BSS-Stoch. Thus, in general, it

is not a good idea to apply the best-found solution for the deterministic version of the

problem to a scenario under uncertainty, since it might often result in a sub-optimal plan.

Instead, it is better to use a simulation-optimization approach to generate solutions with

a better performance under stochastic conditions (usually by offering a higher reliability

level and thus avoiding expensive corrective actions).

Figure 4: Visual comparison among BDS-Det, BDS-Stoch, and BSS-Stoch.

For each instance and safety stock level s, Table 4 shows the expected cost (in total

travel time) provided by our simheuristic algorithm in a stochastic scenario. The table

also shows the reliability associated with each solution – which tends to increase with

the safety stock level –, as well as the gap with respect to the solution obtained without

using any safety stock.
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One should notice that, in most cases, using a safety stock during the design stage

might be a good strategy to reduce the impact of route failures whenever travel times

are higher than expected. This concept is further discussed in the next section. Also,

note that for a safety stock level of 35% (or higher), there are some instances that cannot

be solved during the design stage; i.e., assuming such a high safety stock level, some

customers in instances Li 25 and Li 27 cannot be reached from the depot in the reduced

‘standard’ time of the batteries (i.e., without considering the extra time that can be pro-

vided by the energy safety stock). That justifies that we focus on safety stock levels

between 0% and 35% of the original battery capacity.

6. Analysis of results

For each considered safety stock level, s ∈ {0%,5%,10%, . . . ,35%}, Figure 5 uses box-

plots to illustrate the distribution of the reliability indices associated with the best-found

stochastic solutions for each instance.

Figure 5: Reliability values for different safety stock levels.

Notice that the higher the safety stock level, the higher the average reliability index

is. Moreover, increasing the safety stock level also contributes to reduce the variability

in these reliability indices – i.e., increasing the safety stock has the expected effect of

reducing the number of route failures, which in turn reduces the extra costs generated

by corrective actions. Of course, increasing the safety stock level makes the solution

more ‘robust’ against uncertainty (thus reducing the cost due to corrective actions), but

it also requires the use of additional routes in the solution, which raises the cost (total

time employed) of the final distribution plan. Therefore, this trade-off must be taken

into account when finding the right level of safety stock for each individual instance.
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Finally, Figure 6 shows the expected travel times, across all instances, for each safety

stock level. The most relevant observation here, is that the expected cost (total travel

time) can be reduced, on average, by using safety stock levels between 20% and 25%

of the original capacity. Of course, the specific safety stock level to use will depend

upon the actual instance as well as on the probability distribution employed to model

the travel times. Still, the point here is that the use of safety stocks can contribute to

reduce the total expected cost of the distribution plan by making this plan less sensitive

to the risk of route failures.

Figure 6: Expected travel times for different safety stock levels.

7. Conclusions and future research

The transportation sector is one of the most pollutant ones in modern societies. As a

consequence, a number of government regulations have been set to promote the use of

electric vehicles in order to reduce the air pollution. However, the current infrastructure

of cities makes it difficult to fully develop green logistics and transportation practices.

For instance, the use of electric vehicles for freight distribution has to deal with multi-

ple obstacles, such as scattered network configuration and the technical limitations of

those vehicles. So far, only a reduced number of works have studied the electric vehicle

routing problem with stochastic travel times. Aiming at reducing this gap in the lit-

erature, the paper analyses the aforementioned problem considering also driving-range

limitations, which might cause route failures when the vehicle runs out of battery.

Our methodology combines Monte Carlo simulation with a multi-start framework,

which also integrates a biased-randomized constructive heuristic. Our simheuristic al-

gorithm also makes use of safety stocks during the routing design stage, thus decreasing
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the risk of suffering route failures. In other words, we focus on constructing reliable

solutions with a low risk of requesting corrective actions. Our results prove that using

deterministic solutions in stochastic scenarios might lead to sub-optimal distribution

plans that can be easily improved by using a simulation-optimization technique such

as the one proposed here. They also illustrate how the use of the suitable energy safety

stock levels during the routing design stage can increase the reliability of the distribution

plans, thus reducing the total expected costs.

Some future lines can extend this work. In particular, we are interested in: (i)

analysing the effect of preventive strategies – such as the ones already described in this

paper – on the expected cost of the considered instances; (ii) extending our methodology

(e.g., by hybridizing it with Petri nets) so it can also take into account possible corre-

lations among travel times associated with different edges; (iii) extending our results to

the heterogeneous fleet scenario, where vehicles might have different driving ranges and

batteries; and (iv) including different sustainability dimensions related to environmental

and social costs of these distribution activities, specially in the context of smart cities.
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New L2-type exponentiality tests
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Abstract

We introduce new consistent and scale-free goodness-of-fit tests for the exponential distribu-

tion based on the Puri-Rubin characterization. For the construction of test statistics we employ

weighted L2 distance between V -empirical Laplace transforms of random variables that appear in

the characterization. We derive the asymptotic behaviour under the null hypothesis as well as un-

der fixed alternatives. We compare our tests, in terms of the Bahadur efficiency, to the likelihood

ratio test, as well as some recent characterization based goodness-of-fit tests for the exponential

distribution. We also compare the power of our tests to the power of some recent and classical

exponentiality tests. According to both criteria, our tests are shown to be strong and outperform

most of their competitors.

MSC: 62G10, 62G20.

Keywords: Goodness-of-fit, exponential distribution, Laplace transform, Bahadur efficiency, V-

statistics with estimated parameters.

1. Introduction

The exponential distribution is one of the most widely studied distributions in theoretical

and applied statistics, and many models assume exponentiality of the data. For this rea-

son, a great variety of goodness-of-fit tests, for the case of the exponential distribution,

have been proposed in the literature.

The classical approach is to use the time-honoured goodness-of-fit tests based on

an empirical distribution function, such as Kolmogorov-Smirnov, Cramer-von Mises,

Anderson-Darling, applied to the case of the exponential distributions. The alterna-

tive approach is to use tests specifically designed for testing exponentiality. These test

statistics are mainly based on empirical counterparts of certain special properties of the

exponential distribution. Some of the tests employ properties related to different in-

tegral transforms such as: characteristic functions (see e.g. Henze, 1992, Henze and

Meintanis, 2002b, Henze and Meintanis, 2005); Laplace transforms (see e.g. Henze
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and Meintanis, 2002a, Klar, 2003, Meintanis, Nikitin and Tchirina, 2007); and other

integral transforms (see e.g. Klar, 2005, Meintanis, 2008). Other tests exploit proper-

ties such as maximal correlations (see Grané and Fortiana, 2009, Grané and Fortiana,

2011, Strzalkowska-Kominiak and Grané, 2017), entropy (see Alizadeh Noughabi and

Arghami, 2011), etc.

Among the various properties, those that characterize the distribution stand out. The

simple form of the exponential distribution give rise to many equidistribution type char-

acterizations. The equality in distribution can be expressed in many ways (equality

of distribution functions, densities, integral transforms, etc.), and hence is suitable for

building different types of test statistics. Such tests have become very popular in re-

cent times, as they are proven to be rather efficient. Tests that use U-empirical and V-

empirical distribution functions, of integral-type (integrated difference) and supremum-

type, can be found in Nikitin and Volkova (2010), Volkova (2015), Jovanović et al.(2015),

Milošević and Obradović (2016b), Milošević (2016), Nikitin and Volkova (2016). A

class of weighted integral-type tests that uses U-empirical Laplace transforms is pre-

sented in Milošević and Obradović (2016a).

Motivated by the power and efficiency of those tests, we create a similar test based on

an equidistribution characterization. The test statistics, measuring the distance between

two V-empirical Laplace transforms of the random variables that appear in the charac-

terization, are, for the first time, of weighted L2-type. This guarantees the consistency

of the test against all alternatives.

The paper is organized as follows. In Section 2 we introduce the test statistics and

derive their asymptotic properties, both under the null and the alternative hypotheses. In

Section 3 we calculate the approximate Bahadur slope of our tests, for different close

alternatives, and inspect the impact of the tuning parameter to the efficiencies of the

test. We also compare the proposed tests to their recent competitors via approximate

local relative Bahadur efficiency. In Section 4 we conduct a power study. We obtain

empirical powers of the tests, against different common alternatives, and compare them

to some recent and classical exponentiality tests. We also apply an algorithm for data

driven selection of the tuning parameter and obtain the corresponding powers in the

small sample case. Real data applications are presented in Section 5, while the proofs,

the datasets, and the code can be found in the appendices.

2. Test statistic

Consider the following characterization by Puri and Rubin (1970).

Characterization 2.1. Let X1 and X2 be two independent copies of a random variable

X with pdf f (x). Then X and |X1−X2| have the same distribution, if and only if for some

λ> 0, f (x) = λe−λx, for x ≥ 0.
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Let X1,X2, . . . ,Xn be independent and identically distributed (i.i.d.) non-negative

random variables with an unknown absolutely continuous distribution function F . We

consider the transformed sample Yi = ̂λnXi, i = 1,2..,n., where ̂λn is the reciprocal sam-

ple mean. For testing the null hypothesis H0 : F(x) = 1− e−λx, λ > 0, in view of the

characterization 2.1, we propose the following family of test statistics, depending on the

tuning parameter a > 0:

Mn,a(̂λn) =

∞
∫

0

(

L(1)
n (t)−L(2)

n (t)
)2

e−at dt, (1)

where

L(1)
n (t) =

1

n

n
∑

i1=1

e−tYi1

L(2)
n (t) =

1

n2

n
∑

i1,i2=1

e−t|Yi1
−Yi2

|

are V-empirical Laplace transforms of Y1 and |Y1 −Y2| respectively.

In order to explore the asymptotic properties we rewrite (1) as

Mn,a(̂λn) =

∞
∫

0





1

n

n
∑

i1=1

e−tXi1
̂λn −

1

n2

n
∑

i1,i2=1

e−t|Xi1
−Xi2

|̂λn





2

e−atdt

=
1

n4

∞
∫

0

∑

i1,i2,i3,i4

(

e−tXi1
̂λn − e−t|Xi1

−Xi2
|̂λn

)(

e−tXi3
̂λn − e−t|Xi3

−Xi4
|̂λn

)

e−atdt

=
1

n4

∑

i1,i2,i3,i4

∞
∫

0

g(Xi1,Xi2 , t;
̂λn)g(Xi3,Xi4 , t;

̂λn)e
−atdt

=
1

n4

∑

i1,i2,i3,i4

h(Xi1,Xi2 ,Xi3 ,Xi4 ,a;̂λn),

where ̂λn = X
−1

n is a consistent estimator of λ and

h(X1,X2,X3,X4,a;̂λn) =
1

4!

∑

π(4)

∞
∫

0

g(Xi1,Xi2 , t;
̂λn)g(Xi3,Xi4 , t;

̂λn)e
−atdt,

with π(4) being the set of all 4! permutations of the numbers 1,2,3,4.
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Let us first focus on Mn,a(λ), for a fixed λ > 0. Notice that Mn,a(λ) is a V -statistic

with kernel h. Moreover, under the null hypothesis, its distribution does not depend on λ,

so we may assume λ= 1. It is easy to show that its first projection on a basic observation

is equal to zero. After some calculations, one can obtain its second projection given by

˜h2(x,y,a) = E(h(X1,X2,X3,X4,a)|X1 = x,X2 = y)

=−
1

2
+

1

3
(e−x + e−y)+

1

6
ea−x−yEi(−a)

(

a(ex −2)(ey−2)− ex− ey +4
)

+
1

6
e−a−x−y

(

Ei(a)(4a+ ex+ ey −4)− (Ei(a+ x)(4(a+ x−1)+ey)

+Ei(a+ y)(4(a+ y−1)+ ex)−4(a+ x+ y−1)Ei(a+ x+ y))
)

+
1

6(a+ x+ y)
,

where Ei(x) = −
∫ ∞

−x
e−t

t
dt is the exponential integral. The function ˜h2 is non-constant

for any a > 0. Hence, kernel h is degenerate with degree 2.

Since kernel h is bounded and degenerate, from the theorem for the asymptotic distri-

bution of U-statistics with degenerate kernels (Korolyuk and Borovskikh, 1994, Corol-

lary 4.4.2), and the Hoeffding representation of V -statistics, we get that, Mn,a(1), being

a V -statistic of degree 2, has the following asymptotic distribution

nMn,a(1)
d
→ 6

∞
∑

k=1

δkW
2

k , (2)

where {δk} are the eigenvalues of the integral operator Ma defined by

Maq(x) =

+∞
∫

0

˜h2(x,y,a)q(y)dF(y), (3)

and {Wk} is the sequence of i.i.d. standard Gaussian random variables.

Our statistic Mn,a(̂λn) can be rewritten as

Mn,a(̂λn) =

∞
∫

0





1

n2

n
∑

i1,i2=1

g(Xi1,Xi2 , t,a;̂λn)





2

e−atdt

=

∞
∫

0

Vn(̂λn)
2e−atdt.

Here Vn(̂λn) is a V -statistic of order 2 with an estimated parameter, and kernel g(Xi1,Xi2 ,

t,a;̂λn).
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Since the function g(x1,x2, t,a;γ) is continuously differentiable with respect to γ at

the point γ = λ, the mean-value theorem gives

Vn(̂λn) =Vn(λ)+(̂λn −λ)
∂Vn(γ)

∂γ
|γ=λ∗ ,

for some λ∗ between λ and ̂λn.

From the Law of large numbers for V-statistics (Serfling, 2009, 6.4.2.), the partial

derivative
∂Vn(γ)

∂γ
converges to

E
(

t|X1 −X2|e
−t|X1−X2|γ− tX1e−tX1γ

)

= 0.

Since
√

n(̂λn − λ) is stochastically bounded, it follows that statistics
√

nVn(̂λn) and
√

nVn(1) are asymptotically equally distributed. Therefore, nMn,a(̂λn) and nMn,a(1) will

have the same limiting distribution. We summarize this in the following theorem.

Theorem 2.2. Let X1, . . . ,Xn be an i.i.d. sample with distribution function F(x) = 1−

e−λx for some λ> 0. Then

nMn,a(̂λn)
d
→ 6

∞
∑

k=1

δkW
2

k , (4)

where {δk} are the eigenvalues of the integral operator Ma defined in (3), and {Wk} is

the sequence of i.i.d standard Gaussian random variables.

2.1. Limiting distribution under fixed alternative

Now we consider the asymptotic behaviour of our statistics Mn,a under a fixed alternative

with finite expectation µ. Here, it is also easy to show that the first projection of kernel

h,

h1(s,a) = E(h(X1,X2,X3,X4,a;µ)|X1 = s)

is a non-constant function, hence the kernel is non-degenerate. Therefore, the limiting

distribution will differ from the null case. We present this in Theorem 2.3, where, for

brevity, we introduce the following notation: xxx = (x1,x2,x3,x4); GGG(xxx) = ∏
4
i=1 G(xi);

h′(xxx,a;µ) = ∂h(xxx,a;γ)
∂γ

∣

∣

∣

γ=µ
.

Theorem 2.3. Let X1, . . . ,Xn be an i.i.d. sample from an alternative distribution with

distribution function G. Then

√
n(Mn,a(µ̂)−∆)

d
→N(0,Σ),
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where µ̂= Xn, ∆ = E(Mn,a(µ)), and

Σ = 16Var (h1(X1,a))+

(
∫

(R+)4

h′(xxx,a;µ)dGGG(xxx)

)2

Var(X1)+8

(
∫

(R+)4

x1h(xxx,a;µ)dGGG(xxx)

−

∫

R+

x1dG(x1)

∫

(R+)4

h(xxx,a;µ)dGGG(xxx)

)

.

(5)

Proof. See Appendix A.

3. Local approximate Bahadur efficiency

One way to compare tests is to calculate their relative Bahadur efficiency. We briefly

present it here. For more details we refer to Bahadur (1971) and Nikitin (1995).

For two tests with the same null and alternative hypotheses, H0 : θ ∈ Θ0 and H1 :

θ ∈ Θ1, the asymptotic relative Bahadur efficiency is defined as the ratio of sample sizes

needed to reach the same test power, when the level of significance approaches zero.

For two sequences of test statistics, it can be expressed as the ratio of Bahadur exact

slopes, functions proportional to the exponential rates of the decrease of their sizes,

for the increasing number of observations and a fixed alternative. The calculation of

these slopes depends on large deviation functions which are often hard to obtain. For

this reason, in many situations, the tests are compared using the approximate Bahadur

efficiency, which is shown to be a good approximation in the local case (when θ→ ∂Θ0).

Suppose that Tn = Tn(X1, . . . ,Xn) is a test statistic with its large values being signifi-

cant. Let the limiting distribution function of Tn, under H0, be FT , whose tail behaviour

is given by log(1−FT (t)) = − aT t2

2
(1+ o(1)), where aT is a positive real number, and

o(1)→ 0 as t →∞. Suppose also that the limit in probability limn→∞ Tn/
√

n= bT (θ)> 0

exists for θ ∈ Θ1. Then the relative approximate Bahadur efficiency of Tn, with respect

to another test statistic Vn (whose large values are significant), is

e∗T,V =
c∗T (θ)

c∗V (θ)
,

where c∗T (θ) = aT b2
T (θ) i c∗V (θ) = aV b2

V (θ) are approximate Bahadur slopes of Tn and Vn,

respectively.

We may suppose, without loss of generality, that Θ0 = {0}. Consequently, the ap-

proximate local relative Bahadur efficiency is given by

e∗T,V = lim
θ→0

e∗T,V (θ).
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Let G= {G(x,θ), θ > 0} be a family of alternative distribution functions with finite

expectations, such that G(x,θ) = 1− e−λx, for some λ> 0, if and only if θ = 0, and the

regularity conditions for V-statistics with weakly degenerate kernels from (Nikitin and

Peaucelle, 2004, Assumptions WD) are satisfied.

The logarithmic tail behaviour of the limiting distribution of Mn,a(̂λn), under the null

hypothesis, is derived in the following lemma.

Lemma 3.1. For the statistic Mn,a(̂λn) and a given alternative density g(x,θ) from G,

the Bahadur approximate slope satisfies the relation cM(θ)∼
bM(θ)

6δ1
, where bM(θ) is the

limit in Pθ probability of Mn,a(̂λn), and δ1 is the largest eigenvalue of the sequence {δk}
from (2).

Proof. See Appendix A.

The limit in probability of our test statistic, under a close alternative, can be derived

using the following lemma.

Lemma 3.2. For a given alternative density g(x;θ) whose distribution belongs to G, we

have that the limit in probability of the statistic Mn,a(̂λn) is

bM(θ) = 6

∞
∫

0

∞
∫

0

˜h2(x,y) f (x) f (y)dxdy · θ2+o(θ2),θ→ 0,

where f (x) = ∂
∂θ

g(x;θ)|θ=0.

Proof. See Appendix A.

To calculate the efficiency one needs to find δ1, the largest eigenvalue. Since we can

not obtain it analytically, we use the following approximation, introduced in Božin et al.

(2018).

It can be shown that δ1 is the limit of the sequence of the largest eigenvalues of linear

operators defined by (m+1)× (m+1) matrices M(m) = ||m
(m)
i, j ||, 0 ≤ i ≤ m,0 ≤ j ≤ m,

where

m
(m)
i, j = ˜h2

(

Bi

m
,

B j

m

)
√

e
B(i)
m − e

B(i+1)
m ·

√

e
B( j)

m − e
B( j+1)

m ·
1

1− e−B
, (6)

when m tends to infinity and F(B) approaches 1.

In Table 1, we present the largest eigenvalues for a =0.5, 1, 2 and 5, obtained using

(6) with m = 4500 and B = 10.
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Table 1: Approximate eigenvalues of Ma.

a 0.5 1 2 5

δ1 1.32 ·10−2 5.32 ·10−3 1.73 ·10−3 2.80 ·10−4

3.1. Efficiencies with respect to likelihood ratio tests

Lacking a theoretical upper bound, the approximate Bahadur slopes are often compared

(see e.g. Meintanis et al., 2007) to the approximate Bahadur slopes of the likelihood ra-

tio tests (LRT), which are known to be optimal parametric tests in terms of Bahadur ef-

ficiency. Hence, we may consider the approximate relative Bahadur efficiencies against

the LRT as a sort of “absolute” local approximate Bahadur efficiencies. We calculate it

for the following alternatives:

• a Weibull distribution with density

g(x,θ) = e−x1+θ
(1+ θ)xθ,θ > 0,x ≥ 0; (7)

• a Gamma distribution with density

g(x,θ) =
xθe−x

Γ(θ+1)
,θ > 0,x ≥ 0; (8)

• a Linear failure rate (LFR) distribution with density

g(x,θ) = e−x−θ x2

2 (1+ θx),θ> 0,x ≥ 0; (9)

• a mixture of exponential distributions with negative weights (EMNW(β)) with

density (see Jevremovic (1991))

g(x,θ) = (1+ θ)e−x− θβe−βx
,θ ∈

(

0,
1

β−1

]

,x ≥ 0; (10)

It is easy to show that all densities given above belong to the family G.

The efficiencies, as functions of the tuning parameter a, are shown on Figure 1.

We can notice that the local efficiencies range from reasonable to high, and for some

values of a they are very high. Also, their behaviour with respect to the tuning parameter

a is very different. In the cases of Weibull and Linear failure rate alternatives, they are

increasing functions of a, while in the Gamma case, the function is decreasing. In the

case of EMNW(3), the efficiencies increase up to a certain point and then decrease.
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Figure 1: Local approximate Bahadur efficiencies w.r.t. LRT.

3.2. Comparison of efficiencies

In this section, we calculate the local approximate Bahadur relative efficiency of our

tests against some recent, characterization based integral-type tests, for the previously

mentioned alternatives.

The characterizations are of the equidistribution type and take the following form.

Let X1, . . . ,Xmax(m,p) be i.i.d with d.f. F, ω1 : Rm 7→ R1 and ω2 : Rp 7→ R1 two sample

functions. Then the following relation holds

ω1(X1, . . . ,Xm)
d
= ω2(X1, . . . ,Xp)

if and only if F(x) = 1− e−λx, for some λ> 0.

Notice that the Puri-Rubin characterization 2.1 is an example of such characteriza-

tions.

The first class of competitor tests consists of the integral-type tests with test statistic

In =

∞
∫

0

(

G(1)
n (t)−G(2)

n (t)
)

dFn(t),

where G
(1)
n (t) and G

(2)
n (t) are V -empirical distribution functions of ω1 and ω2, respec-

tively and Fn is the empirical distribution function.

In particular, we consider the following integral-type test statistics:

• I
(1)
n,k , proposed in Jovanović et al. (2015), based on the Arnold and Villasenor char-

acterization, where ω1(X1, . . . ,Xk) = max(X1, . . . ,Xk) and ω2(X1, . . . ,Xk) = X1 +
X2
2
+ · · · Xk

k
(see Arnold and Villasenor, 2013, Milošević and Obradović, 2016c);
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• I
(2)
n , proposed in Milošević and Obradović (2016b), based on the Milošević-Obra-

dović characterization, where ω1(X1,X2) = max(X1.X2) and ω2(X1,X2,X3) =

min(X1,X2)+X3 (see Milošević and Obradović, 2016c);

• I
(3)
n , proposed in Milošević (2016), based on the Obradović characterization, where

ω1(X1,X2,X3)=max(X1,X2,X3) andω2(X1,X2,X3,X4)=X1+med(X2,X3,X4) (see

Obradović, 2015);

• I
(4)
n , proposed in Volkova (2015), based on the Yanev-Chakraborty characteriza-

tion, whereω1(X1,X2,X3)=max(X1,X2,X3) andω2(X1,X2,X3)=
X1
3
+max(X2,X3)

(see Yanev and Chakraborty, 2013).

We also consider integral-type tests of the form

Jn,a =

∞
∫

0

(

L(1)
n (t)−L(2)

n (t)
)

Xne−atdt, (11)

where L
(1)
n (t) and L

(2)
n (t) are V -empirical Laplace transforms of ω1 and ω2, respec-

tively. This approach has been originally proposed in Milošević and Obradović (2016a).

There, particular cases of Desu characterization, with ω1(X1) = X1 and ω2(X1,X2) =

2min(X1,X2), and Puri-Rubin characterization were examined. We denote the corre-

sponding test statistics with JDn,a and JPn,a, respectively. The results are presented in Table

2. We can notice that in most cases tests that employ V -empirical Laplace transforms

are more efficient than those based on V -empirical distribution functions. On the other

hand, new tests are comparable with JPn,a and more efficient than JDn,a.

4. Power study

In this section we compare the empirical powers of our tests with those of some common

competitors. We choose the values of the tuning parameter to be 0.5, 1, 2 and 5. We

also consider the limiting case when a tends to infinity. The expression for this limiting

statistic is given in the following theorem.

Theorem 4.1. For fixed n, we have

lim
a→∞

a3Mn,a(λ̂n) = 2

(

1

n2

n
∑

i, j=1

|Yi −Yj|−Y n

)2

,

where Yi = λ̂nXi, i = 1,2, . . . ,n.
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Table 2: Relative Bahadur efficiency of Mn,a with respect to its competitors.

I
(1)
n,2 Weibull 1.27 1.33 1.37 1.42

Gamma 1.14 1.13 1.10 1.06

LFR 2.44 3.13 3.93 5.08

EMNW (3) 1.25 1.34 1.40 1.42

I
(1)
n,3 Weibull 1.19 1.24 1.28 1.32

Gamma 1.17 1.15 1.12 1.09

LFR 1.59 2.04 2.56 3.31

EMNW (3) 1.08 1.17 1.22 1.23

I
(2)
n Weibull 1.05 1.10 1.14 1.17

Gamma 1.04 1.02 1.00 0.97

LFR 1.22 1.56 1.96 2.53

EMNW (3) 1.02 1.10 1.15 1.17

I
(3)
n Weibull 1.06 1.10 1.14 1.18

Gamma 1.18 1.16 1.14 1.10

LFR 0.82 1.05 1.32 1.71

EMNW (3) 0.94 1.02 1.06 1.08

I
(4)
n Weibull 1.21 1.27 1.31 1.35

Gamma 1.30 1.28 1.25 1.21

LFR 1.23 1.57 1.98 2.56

EMNW (3) 1.04 1.12 1.16 1.18

JPn,a Weibull 0.97 0.97 1.01 1.00

Gamma 0.98 0.99 1.00 1.02

LFR 0.97 0.93 0.91 0.93

EMNW (3) 0.97 0.98 0.99 1.00

JDn,a Weibull 1.00 0.95 0.93 0.95

Gamma 2.16 1.64 1.33 1.13

LFR 1.17 1.07 1.01 0.99

EMNW (3) 1.42 1.18 1.06 0.99

Proof. See Appendix A.

As competitor tests we use the following tests, listed in Henze and Meintanis (2005),

Milošević and Obradović (2016a) and Torabi, Montazeri and Grané (2018):

• the test based on mean density (see Epps and Pulley, 1986):

EPn =
√

48n

(

1
n

n
∑

j=1

e−Y j − 1
2

)

, where Yj =
X j

Xn
;

• the tests based on the mean residual life function (see Baringhaus and Henze,

2000a):
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KSn =
√

nsup
t≥0

∣

∣

∣

∣

1

n

n
∑

j=1

min(Yj, t)−
1

n

n
∑

j=1

I{Yj ≤ t}

∣

∣

∣

∣

;

CMn = n

∞
∫

0

(

1

n

n
∑

j=1

min(Yj, t)−
1

n

n
∑

j=1

I{Yj ≤ t}

)2

e−tdt;

• the Cramer-von Mises test: ω2
n =

∞
∫

0

(Fn(x)− (1− e−x))2e−xdx;

• the Kolmogorov-Smirnov test: KSn = sup
x≥0

|Fn(x)− (1− e−x)|;

• the test based on the integrated distribution function (see Klar, 2001):

KLn,a = na3

∞
∫

0

(ψn(t)−ψ(t))2e−atdt, where

ψ(t) =

∞
∫

t

(1−F(x))dx = e−t and ψn(t) =

∞
∫

t

(1−Fn(x))dx;

• the test based on spacings and Gini index (see D’Agostino and Stephens, 1986):

Sn =
n−1
∑

j=1

U j, where U j =
∑ j

i=1 Di∑n
i=1 Xi

and D j = (n+1− j)(X( j)−X( j−1));

• the score test of Cox and Oakes (1984): COn = n+
n

∑

j=1

(1−Yj) logYj;

• the test of Milošević and Obradović: JDn,a and JPn,a from (11);

• the tests based on discrepancy measure (see Torabi et al., 2018):

H
(k)
n = 1

n

n
∑

j=1

hk

(

1+F0(
X j

Xn
)

1+Fn(X j)

)

, where h1(x)= (ex−1−x)I[0,1](x)+
3
√

|x3 −1|I[1,∞)(x)

and h2(x) = (ex−1 − x)I[0,1](x)+
(x−1)2

(x+1)2 I[1,∞)(x);

• the test based on maximal correlations (see Fortiana and Grané, 2003): Qn =
sn

Xn
ρ+(Fn,F0), where s2

n is sample variance and ρ+(F1,F2) is Hoeffding maximum

correlation.

The Monte Carlo study is done for the small sample size n = 20, and a moderate

sample size n = 50, with N = 10000 replicates, for the level of significance α = 0.05

and the following alternative distributions:

• a Weibull W (θ) distribution with density (7);

• a Gamma Γ(θ) distribution with density (8);
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• a half-normal HN distribution with density

g(x) =

√

2

π
e−

x2

2 ,x ≥ 0;

• a uniform U distribution with density

g(x) = 1,0 ≤ x ≤ 1;

• a Chen’s CH(θ) distribution with density

g(x,θ) = 2θxθ−1exθ−2(1−exθ )
,x ≥ 0;

• a linear failure rate LF(θ) distribution with density (9);

• a modified extreme value EV (θ) distributions with density

g(x,θ) =
1

θ
e

1−ex

θ +x
,x ≥ 0.

The powers are presented in Tables 3 and 4.

Table 3: Percentage of rejected hypotheses for n = 20.

A
lt

.

E
x

p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U

C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

EP 5 36 48 21 66 63 15 84 28 42 45 25 67 20 64

KS 5 35 46 24 72 47 18 79 32 44 48 28 55 22 6

CM 5 35 47 22 70 61 16 83 30 43 47 27 66 21 63

ω2 5 34 47 21 66 61 14 79 28 41 43 33 62 23 65
KS 5 28 40 18 52 56 13 67 24 34 35 30 58 20 56
KL 5 29 44 16 61 77 11 76 23 34 37 35 66 21 63
S 5 35 46 21 70 63 15 84 29 42 46 24 67 19 62

CO 5 37 54 19 50 80 13 81 25 37 37 33 60 25 72

JDn,1 5 42 64 20 45 15 15 15 29 40 36 47 32 28 72

JDn,5 5 48 64 28 70 20 21 21 36 52 53 33 57 24 70

JPn,1 5 49 65 29 73 21 22 21 38 51 54 34 41 24 68

JPn,5 5 48 62 32 79 23 23 23 41 56 58 27 59 21 65

H
(1)
n 5 49 60 31 78 0 24 91 40 55 23 33 0 30 74

H
(2)
n 5 6 10 2 18 79 2 29 4 7 8 8 71 4 20

Qn 5 32 38 23 86 43 17 85 30 42 54 18 61 15 50

Mn,0.5 5 46 66 25 64 19 18 19 35 49 46 57 1 39 81

Mn,1 5 49 66 28 72 21 21 21 38 52 53 51 2 37 81

Mn,2 5 50 67 31 75 22 23 23 40 55 56 45 6 37 81

Mn,5 5 48 62 32 80 22 23 24 40 56 58 42 21 33 80

Mn,∞ 5 47 59 31 81 23 23 23 40 56 59 33 51 26 73
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Table 4: Percentage of rejected hypotheses for n = 50.
A

lt
.

E
x

p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U

C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

EP 5 80 91 54 98 94 38 100 69 87 90 45 95 39 97

KS 5 71 86 50 99 90 36 100 65 82 88 62 92 43 96

CM 5 77 90 53 99 94 37 100 69 87 90 65 95 44 97

ω2 5 75 90 48 98 95 32 100 64 83 86 76 94 52 98
KS 5 64 83 39 93 92 26 98 53 72 75 71 91 46 95
KL 5 72 93 37 97 99 23 100 54 75 79 92 94 66 99
S 5 79 90 54 99 94 38 100 69 87 90 47 95 39 97

CO 5 82 96 45 91 99 30 100 60 80 78 66 92 55 99

JDn,1 5 78 96 36 76 23 24 23 51 71 64 93 64 72 100

JDn,5 5 86 97 55 97 41 40 40 72 89 89 70 90 55 100

JPn,1 5 85 96 54 97 38 38 38 70 87 87 77 78 58 99

JPn,5 5 86 96 63 99 46 46 45 77 91 93 58 92 47 98

H
(1)
n 5 88 94 65 99 0 50 100 79 92 94 51 0 50 98

H
(2)
n 5 37 62 13 78 98 7 94 24 44 46 47 95 23 87

Qn 5 73 79 59 100 77 47 100 74 89 96 26 93 25 86

Mn,0.5 5 84 97 48 95 34 33 33 65 83 81 94 36 77 100

Mn,1 5 85 97 54 97 38 38 38 69 87 86 89 50 72 100

Mn,2 5 86 96 57 98 41 41 41 73 89 90 83 65 67 100

Mn,5 5 87 96 63 99 45 45 45 76 91 93 71 80 59 99

Mn,∞ 5 84 94 63 99 47 46 46 78 92 94 53 92 48 98

It can be noticed that our tests have good empirical sizes and their power ranges from

reasonable to high. In the majority of cases, our tests are either the most powerful or

their power is very close to the one of the most powerful competitor.

4.1. On a data-dependent choice of the tuning parameter

The powers of the proposed tests depend on the values of the tuning parameter a. There-

fore, a well-chosen value of a would help underpin making the right decision. However,

since the “right” value of a is rather different for various alternatives, a general conclu-

sion on which a is most suitable in practice, can not be made. Hence, in what follows,

we present an algorithm for a data driven selection of the tuning parameter, proposed

initially by Allison and Santana (2015):

1. fix a grid of positive values of a,(a1, . . . ,ak);
2. obtain a bootstrap sample XXX∗

n from the empirical distribution function of XXXn;

3. determine the value of the test statistic Mn,ai
, i = 1, . . . ,k, for the obtained sample;

4. repeat steps 2 and 3 B times and obtain series of values of test statistics for every

a, M∗
j,ai

, i = 1, . . . ,k, j = 1, . . . ,B;
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5. determine the empirical power of the test for every a, i.e.

P̂ai
=

1

B

B
∑

j=1

I{M j,ai
≥ Čn,ai

(α)}, i = 1, . . . ,k,

where I{·} is the indicator function;

6. for the next calculation â = argmax
a∈{a1 ,...,ak}

P̂a will be used.

The critical value Čn,â is determined using the Monte Carlo procedure with N1 repli-

cates. Then, the empirical power of the test is determined based on the new sample from

the alternative distribution

p =
1

N1

N1
∑

i=1

I{Mn,â ≥ Čn,â(α)}.

The previously described procedure is repeated N times and the average value is taken

as the estimated power:

˜P =
1

N

N
∑

i=1

pi.

The code of this algorithm is provided in Appendix C.

The results are presented in Tables 5 and 6. The numbers in the parentheses represent

the percentage of times that each value of a equals the estimated optimal one. It is im-

portant to note that these bootstrap powers are comparable to the maximum achievable

power for the tests calculated over a grid of values of the tuning parameter.

Table 5: Percentage of rejected samples for different value of a, n = 20, α= 0.05.

0.5 1 2 5 â

W (1.4) 46(50) 49(12) 50(15) 48(23) 48

Γ(2) 66 (63) 65(12) 65(10) 63(15) 65

HN 25(35) 28(14) 30(17) 32(34) 29

U 64(20) 72(9) 75(21) 80 (50) 75

CH(0.5) 19(37) 21(15) 22(17) 22(31) 21

CH(1) 18(35) 21(15) 23(16) 23(34) 21

CH(1.5) 19(35) 20(11) 20(20) 24(34) 21

LF(2) 35(33) 37(12) 38(20) 41 (35) 38

LF(4) 49(35) 53(14) 54(16) 54(35) 52

EW (1.5) 46(24) 53(12) 56(20) 58(44) 54

LN(0.8) 57(92) 51(3) 45(4) 42(1) 56

LN(1.5) 2(13) 3(2) 6(2) 20(83) 17

DL(1) 39(73) 37(8) 37(10) 33(9) 38

DL(1.5) 82(71) 81(6) 82(12) 79(11) 82
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Table 6: Percentage of rejected samples for different value of a, n = 50, α= 0.05.

0.5 1 2 5 â

W (1.4) 84(43) 86(19) 86(16) 87(22) 85

Γ(2) 97(68) 97(15) 96(11) 95(6) 97

HN 48(21) 53(13) 57(23) 62(43) 57

U 95(31) 97(12) 98(20) 99(37) 98

CH(0.5) 34(19) 37(11) 41(20) 44(50) 41

CH(1) 33(18) 37(13) 41(18) 46(51) 41

CH(1.5) 33(18) 37(13) 42(19) 44(50) 41

LF(2) 65(20) 69(12) 74(24) 76(44) 72

LF(4) 83(25) 86(16) 89(20) 91(39) 88

EW (1.5) 81(17) 87(13) 89(22) 93(48) 89

LN(0.8) 95(92) 89(6) 82(2) 70 (0) 94

LN(1.5) 38(2) 50(1) 64(4) 79(93) 78

DL(1) 77(81) 72(11) 68(4) 60(4) 67

DL(1.5) 100(84) 100(11) 100(4) 99(1) 100

5. Real data examples

In this section we apply our tests to three real datasets. The first dataset represents inter-

occurrence times of fatal accidents to British-registered passenger aircraft, 1946-1963,

measured in number of days and listed in the order of their occurrence in time (see Pyke,

1965).

The second dataset represents failure times for right rear breaks on D9G-66A Cater-

pillar tractors (see Barlow and Campo (1975)). The third dataset represents failure and

running times (1000 cycles) of a sample of 30 units of a larger electrical system (see

Meeker and Escobar (2014)). The third set was also analysed in Shakeel et al. (2016).

The datasets are given in Tables 8-10 of Appendix B, while their empirical and theoret-

ical density, cumulative distribution function, Q-Q and P-P plots, are shown in Figures

2-4. The figures suggest that the exponential distribution provides a good fit for the first

dataset, unlike for the remaining two.

In Table 7 we present, for all three datasets, the p-values of our test with data driven

selection of the tuning parameter, as well as for Mn,∞. For comparison purposes, we also

include some exponentiality tests that were shown to have good power performance in

Tables 3 and 4.

We can see that our tests confirm the conclusions suggested by the plots 2-4. While

the competitor tests mostly point to the same decisions, it is worth noting that, at the 5%

level of significance, few of them fail to reject the null hypothesis for the third dataset.
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Figure 2: Plots for dataset 1.

Table 7: p-values for three datasets.

Stat. EP ω2 CO H
(1)
n H

(2)
n JPn,1 Mn,â Mn,∞

Dataset 1 0.4037 0.9103 0.4907 0.6062 0.8737 0.3708 0.4902 0.8917

Dataset 2 0 0 0 0 0.0005 0 0 0

Dataset 3 0.0279 0.0059 0.1536 0.0420 0.0940 0.0163 0.0092 0.0074
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Figure 3: Plots for dataset 2.

6. Conclusion

In this paper we propose new consistent scale-free exponentiality tests based on the

Puri-Rubin characterization. The proposed tests are shown to be very efficient in the

Bahadur sense. Moreover, in the small sample case, the tests have reasonable to high

empirical powers. They also outperform many recent competitor tests in terms of both

efficiency and power. The quality of their performance is confirmed on two real data

examples. This makes them attractive for use in practice.
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Figure 4: Plots for dataset 3.

Appendix A - Proofs

Proof of Theorem 2.3. Since the kernel h is non-degenerate, from the theorem for V -

statistics with non-degenerate kernels (Korolyuk and Borovskikh, 1994, Theorem 4.2.5),

it follows √
n(Mn,a(µ)−∆)

d
→N(0,16Var(h1(X1,a))).

As the function h(x1,x2,x3,x4,a;γ) is continuously differentiable with respect to γ

at the point γ = µ, the mean-value theorem gives

√
n(Mn,a(µ̂)−∆(µ)) =

√
n(Mn,a(µ)−∆(µ))+

√
n(µ̂−µ)

∂Mn,a(γ)

∂γ
|γ=µ∗ ,

for some µ∗ between µ and µ̂.

Using the Law of large numbers for V-statistics, the Slutsky theorem, and the fact

that the limit distribution of
√

n(Mn,a(µ)−∆, µ̂−µ) is two dimensional normal, it fol-
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lows that
√

n(Mn,a(µ̂)−∆(µ)) will converge in distribution to zero mean normal random

variable, with the variance equal to

16Var(h1(X1,a))+ lim
n→∞

E

(

∂Mn,a(γ)

∂γ

)2

Var(
√

nµ̂)+2 lim
n→∞

Cov(
√

nMn,a(µ),
√

nµ̂).

Calculating the limits, we obtain (5).

Proof of Lemma 3.1. Using the result of Zolotarev (1961), the logarithmic tail behaviour

of limiting distribution function of ˜Mn,a(̂λn) =
√

nMn,a(̂λn) is

log(1−F
˜Ma
(t)) =−

t2

12δ1

+o(t2), t → ∞.

Therefore, a
˜Ma
= 1

6δ1
. The limit in probability Pθ of ˜Mn,a(̂λn)/

√
n is

b
˜Ma
=
√

bM(θ).

Inserting this into the expression for Bahadur slope completes the proof.

Proof of Lemma 3.2. For brevity, denote xxx = (x1,x2,x3,x4) and GGG(xxx;θ) = ∏
4
i=1 G(xi;θ).

Since Xn converges almost surely to its expected value µ(θ), using the Law of large

numbers for V -statistics with estimated parameters (see Iverson and Randles, 1989),

Mn,a(̂λn) converges to

bM(θ) = Eθ(h(XXX,a;µ(θ)))

=

∫

(R+)4

(

µ(θ)

x1 + x3 +aµ(θ)
−

µ(θ)

x3 + |x1 − x2|+aµ(θ)

−
µ(θ)

x1 + |x3 − x4|+aµ(θ)
+

µ(θ)

|x1 − x2|+ |x3 − x4|+aµ(θ)

)

dGGG(xxx;θ).

We may assume that µ(0) = 1 due to the scale freeness of the test statistic under the null

hypothesis. After some calculations we get that b′M(0) = 0. Further,

b′′(0) =

∫

(R+)4

h(xxx,a;1)
∂ 2

∂θ2
dGGG(xxx,0) = 6

∫

(R+)2

˜h2(x,y) f (x) f (y)dxdy.

Expanding bM(θ) into the Maclaurin series we complete the proof.
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Proof of Theorem 4.1. Denote g(t) =
(

L
(1)
n (t)−L

(2)
n (t)

)2

. Then the test statistic can be

expressed as Mn,a(λ̂n) =
∞
∫

0

g(t)e−atdt. The Maclaurin expansion of g(t) is

g(t) = t2

(

1

n2

n
∑

i, j=1

|Yi −Yj|−Y n

)2

+ t3

(

1

n2

n
∑

i, j=1

|Yi −Yj|−Y n

)(

Y n −
1

n2

n
∑

i, j=1

(Yi −Yj)
2

)

+
t4

4

(

Y n −
1

n2

n
∑

i, j=1

(Yi −Yj)
2

)

+o(t4).

Using an Abelian theorem for the Laplace transform from (Widder, 1946, Chapter 5.2.)

(see also from Baringhaus, Gürtler and Henze, 2000b, Proposition 1.1), and

lim
s→∞

Γ(4)s3

s
∫

0

g(t)dt = 2

(

1

n2

n
∑

i, j=1

|Yi −Yj|−Y n

)2

,

follows the statement of the theorem.

Appendix B - Datasets

Table 8: Dataset 1: inter-occurrence times of fatal accidents.

20 106 14 78 94 20 21 136 56 232 89

33 181 424 14 430 155 205 117 253 86 260

213 58 276 263 246 341 1105 50 136

Table 9: Dataset 2: failure times for right rear breaks.

56 83 104 116 244 305 429 452 453 503 552

614 661 673 683 685 753 763 806 834 838 862

897 904 981 1007 1008 1049 1060 1107 1125 1141 1153

1154 1193 1201 1253 1313 1329 1347 1454 1464 1490 1491

1532 1549 1568 1574 1586 1599 1608 1723 1769 1795 1927

1957 2005 2010 2016 2022 2037 2065 2096 2139 2150 2156

2160 2190 2210 2220 2248 2285 2325 2337 2351 2437 2454

2546 2565 2584 2624 2675 2701 2755 2877 2879 2922 2986

3092 3160 3185 3191 3439 3617 3685 3756 3826 3995 4007

4159 4300 4487 5074 5579 5623 6869 7739

Table 10: Dataset 3: failure and running times of units of an electrical system .

275 13 147 23 181 30 65 10 300 173

106 300 300 212 300 300 300 2 261 293

88 247 28 143 300 23 300 80 245 266
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Appendix C - Code

• expTestL2puri is a C-function which calculates the value of statistic Mn,a;

• bootstrapStat is an R-function which calculates statistics Mn,a based on boot-

strapped resamples from the initial sample;

• optimal_a is an R-function which implements the data-driven procedure from

Section 4.1.

double expTestL2puri(NumericVector x,double a)

{

int n = x.size();

double n1=double(n);

double total=0;

for(int i=0;i<n;i++)

{

for(int k=0;k<n;k++)

{

total+=n1*n1/(a+x[i]+x[k]);

for(int j=0;j<n;j++)

{

total-=2*n1/(a+x[k]+fabs(x[i]-x[j]));

for(int l=0;l<n;l++)

{

total+=(1.0/(a+fabs(x[i]-x[j])+fabs(x[k]-x[l])));

˝

˝

˝

˝

double stat=total/n1/n1/n1/n1;

return stat;

˝

bootstrapStat<-function(x,a,B=300){

n<-length(x)

Xs<-sample(x,B*n,replace = TRUE)

Xs<-array(Xs,c(n,B))

Tb<-apply(Xs/mean(Xs),2,expTestL2puri,a)

return(Tb)

˝

optimal_a<-function(y,a,B)

{

n=length(y)

P<-rep(0,length(a))

for(k in 1:length(a)){
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ts0<-rep(0,10000)

for(i in 1:10000){

x<-rexp(n)

ts0[i]<-expTestL2puri(x/mean(x),a[k])

˝

C<-quantile(ts0,0.95)

Tb<-bootstrapStat(y,a[k],B)

P[k]<-sum(Tb>=C)/B

˝

m<-which.max(P)

return(a[m])

˝
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Baringhaus, L., Gürtler, N. and Henze, N. (2000b). Theory & methods: weighted integral test statistics and

components of smooth tests of fit. Australian & New Zealand Journal of Statistics, 42, 179–192.

Barlow, R. E. and Campo, R. (1975). Total time on test processes and applications to failure data analysis.

In Reliability and Fault Tree Analysis, pp. 451–481. SIAM.
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Abstract

In this paper we propose a Bayesian hierarchical spatio-temporal model for the joint analysis of

multiple diseases which includes specific and shared spatial and temporal effects. Dependence

on shared terms is controlled by disease-specific weights so that their posterior distribution can

be used to identify diseases with similar spatial and temporal patterns.

The model proposed here has been used to study three different causes of death (oral cavity,

esophagus and stomach cancer) in Spain at the province level. Shared and specific spatial and

temporal effects have been estimated and mapped in order to study similarities and differences

among these causes. Furthermore, estimates using Markov chain Monte Carlo and the integrated

nested Laplace approximation are compared.

MSC: 62F15, 62H11, 62M10.

Keywords: Bayesian modelling, Joint modelling, Multivariate disease mapping, Shared compo-

nents. Spatio-temporal epidemiology.

1. Introduction

Bayesian hierarchical models are a popular approach to analyse public health spatio-

temporal data. These data often come as counts of cases of disease at different adminis-

trative levels and time periods. Hierarchical models for these data are based on a Poisson

regression model that includes different types of spatial, temporal and spatio-temporal

effects in the linear predictor of the model (see, for example, Lawson, 2013, for a re-

view). Spatial effects are often modelled using a conditionally autoregressive (CAR)

specification (Besag, York and Mollié, 1991). Temporal effects often rely on smooth

terms, such as random walks or splines. For non-separable space-time models, Knorr-
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Held (2000) describes different interactions for spatial and temporal effects. When

studying spatio-temporal trends in disease mapping, several authors have proposed dif-

ferent models to detect specific patterns in particular areas. For example, Abellan,

Richardson and Best (2008) and Guangquan et al. (2012) propose models that can iden-

tify areas that follow a spatio-temporal trend with similar structure or that show a spe-

cific spatio-temporal pattern.

The spatial analysis of several diseases often relies on multivariate models with

shared spatial effects to capture similar patterns. For example, Knorr-Held and Best

(2001) use this approach to model two diseases by considering a shared spatial term

in the model with a different weight for each disease. Downing et al. (2008) propose

a model with several spatial effects to model six cancers jointly. Botella-Rocamora,

Martı́nez-Beneito and Banerjee (2015) and Martı́nez-Beneito, Botella-Rocamora and

Banerjee (2016) propose a general approach for multivariate disease mapping that can

help to identify diseases with similar spatial distributions. Marı́-Dell’Olmo et al. (2014)

use a smoothed analysis of the variance for the analysis of several diseases in ecological

models.

We have developed a novel Bayesian spatio-temporal joint model for several diseases

with specific and shared spatial and temporal effects. The shared spatial and temporal

terms would account for common spatial and temporal patterns. The effect of these

common patterns on specific diseases is controlled by specific-weights that measure

the dependence of a given disease on these patterns. By considering specific spatial and

temporal patterns we allow for departures from the shared patterns for different diseases.

Finally, the posterior distribution of the weights is able to capture dependence between

diseases with similar spatial or temporal patterns.

Bayesian model fitting has been tackled by using Markov chain Monte Carlo

(MCMC) methods (Gilks et al., 1996), which can be slow for complex spatio-temporal

models. For this reason, we have also fit the models presented using the approximation

provided by the integrated nested Laplace approximation (INLA) method (Rue, Mar-

tino and Chopin, 2009). INLA is able to fit the proposed models in a fraction of the

time required by MCMC and provide an approximation to the posterior marginals of the

model parameters. Given that INLA focuses on approximating the posterior marginals

of the model parameters, multivariate posterior inference on several parameters may be

difficult to do with INLA and we will still rely on MCMC for this.

The structure of this paper is as follows. First, we give an introduction to spatio-

temporal disease mapping in Section 2. In Section 3 several models for the joint analysis

of several diseases are described. Next, our new spatio-temporal model is fully described

in Section 4. An example on three death causes in Spain is discussed in Section 5.

Finally, a summary of the paper and discussion of the main results is given in Section 6.
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2. Spatio-temporal disease mapping

Disease mapping (Lawson, 2013, Elliot et al., 2000, Banerjee, Carlin and Gelfand, 2014)

is commonly employed in public health and epidemiology in order to describe the spatial

(and temporal) variation of disease. In the analysis of public health data, we often

find the number of cases at different n administrative areas and T time periods. We

will denote by Oi,t the number of cases in area i and time period t. As studying the

distribution of the cases alone is misleading, expected number of cases Ei,t are also

computed using the population structure and direct or indirect standardization (Elliot

et al., 2000). In addition, area-level covariates Xi,t may be available and these can be

incorporated into the models to account for socio-economic inequalities, risk exposure

and other relevant risk factors.

In order to model the observed number of cases, a Poisson distribution is often used:

Oi,t |Ei,t ,θi,t ∼ Po(Ei,tθi,t) (1)

Here, θi,t is the relative risk. Values of the relative risk higher that one indicate an area

of increased risk because, in that case, the mean µi,t = Ei,tθi,t is higher than the expected

number of cases according to the population in the area. As stated above, it is more

informative to map the relative risk θi,t than the observed cases.

The relative risk can be modelled using a Poisson log-linear model. For example, if

the relative risk is thought to be dependent of area-level covariates it can be modelled

as:

log(θi,t) = α+βXi,t , (2)

with α an intercept and β a vector of coefficients of covariates Xi,t . Other fixed and

random effects or smooth terms can be added on the right-hand side of the previous

equation, as discussed below.

Bayesian hierarchical models for disease mapping have been widely used since the

seminal paper by Besag et al. (1991) was published. In this paper, the relative risk

depends on area level covariates, spatially correlated random effects vi and independent

random effects ui. This model can be extended to the spatio-temporal case as follows:

log(θi,t) = α+βXi,t + vi +ui +wt (3)

Here, vi is a spatial random effect, ui is an independent random effect and wt is a tem-

poral effect.

Independent random effects ui are assigned a Gaussian prior with zero mean and

precision τu. Spatially correlated random effects follow an intrinsic conditionally au-

toregressive (CAR) specification. In this case, the conditional distribution of vi given all

the other spatial effects v−i is Gaussian with mean
∑

j 6=i wi jv j/
∑

j 6=i wi j and precision

τv
∑

j 6=i wi j. In the previous expressions, wi j are spatial weights and τv is the precision

of the spatial random effect.
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Spatial weights wi j are often taken as 1 if areas i and j are neighbors and 0 otherwise.

In this case, if by i ∼ j we denote that regions i and j are neighbors and by ni the

number of neighbors of region i, the conditional distribution of vi under an intrinsic

CAR specification is

vi|v−i ∼ N





∑

j∼i

v j

ni

,τvni



 (4)

When a vector of random effects v = (v1, . . . ,vn) has a prior that is an intrinsic CAR

specification with weight matrix W and precision τv, we will write that as v ∼ CAR

(W,τv).

Temporal effects wt are often assigned a random walk prior with precision τw or a

CAR prior in one dimension, with a temporal adjacency defined so that consecutive time

periods are neighbors. Knorr-Held (2000) describes a number of space-time interactions

that could be added to the model in Equation (3).

Regarding models that specifically try to identify differential spatial or temporal pat-

terns, Richardson, Abellan and Best (2006) propose a joint model for two diseases with

specific space and temporal terms for the second disease which allows for the identifica-

tion of disease-specific patterns. Abellan et al. (2008) propose a spatio-temporal model

with a spatio-temporal term that is a mixture of terms. Each term is Normally distributed

with zero mean and one has a smaller variance than the other. This allows the model to

classify areas according to small or large variation. Areas with large variance indicate a

strong departure from the common separable spatio-temporal pattern.

Similarly, Guangquan et al. (2012) propose a Bayesian hierarchical spatio-temporal

model in which the log-relative risk is modelled on a mixture of two linear predictors

with different effects. The first one is the sum of an intercept, a spatial effect and a

temporal effect and, the second one is the sum of an area-specific intercept and an space-

time non-separable random effect.

Both Abellan et al. (2008) and Guangquan et al. (2012) propose models that include

terms to highlight areas with patterns that differ from the overall spatio-temporal pattern

by using a mixture of terms. These models are aimed at targeting areas which depart

from the shared spatial and temporal patterns. In Section 4 we propose a new multivari-

ate model to identify diseases with specific spatial or temporal patterns that are different

from the shared spatio-temporal pattern.

3. Joint modelling of multiple diseases

The models described in the previous section can be applied to different diseases to

produce space-time risk estimates that can be mapped and analysed to identify particular

patterns of high risk. Diseases with similar etiologies may show similar patterns, i.e.,

similar spatial or temporal variation, and a multivariate analysis could be performed to
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obtain better estimates of these shared patterns. At the same time, the model must allow

for specific departures from the shared pattern in certain areas.

In order to build joint models for D different diseases, we will denote by O
(d)
i,t and

E
(d)
i,t the observed and expected cases, respectively, of disease d in area i and time period

t. Hence, the distribution of the number of cases O
(d)
i,t is a Poisson with mean E

(d)
i,t θ

(d)
i,t ,

where θ
(d)
i,t is the relative risk.

In a joint model, relative risks include terms that are shared by several diseases. The

effect of the shared effects may be weighted, so that these weights measure the depen-

dence of the geographic or temporal distribution of the disease on the shared pattern.

For example, Knorr-Held and Best (2001) consider a model for two diseases in which

the shared spatial effect has weight δ for one disease and 1/δ for the second disease. δ

is a parameter that is estimated and it measures the dependence of each disease on the

shared pattern.

For example, this joint model for two diseases could be written down as:

O
(d)
i |E

(d)
i ,θ

(d)
i ∼ Po(E

(d)
i θ

(d)
i ), d = 1,2

log(θ
(1)
i ) = α(1)+ δSi +D

(1)
i

log(θ
(2)
i ) = α(2)+

1

δ
Si +D

(2)
i (5)

Here, α(d) is a disease-specific intercept, Si is the shared spatial pattern, and D
(d)
i are

disease-specific (spatial) patterns.

The model by Knorr-Held and Best (2001) can be extended to consider more than

two diseases. For instance, Downing et al. (2008) develop a joint model for six smoking

related cancers in the Yorkshire region of England. They used a Bayesian model with

shared effects to explore the patterns of spatial correlation and to estimate the relative

weight of some covariates like smoking and other shared risk factors.

Several authors have generalized the univariate spatial models to the multivariate

case in a number of ways, such as the spatial factor modelling proposed by Wang

and Wall (2003) or the smoothed analysis of variance proposed by Zhang, Hodges and

Banerjee (2009). Other multivariate disease mapping proposals are based on Gaussian

Markov random fields (Rue and Held, 2005) and multivariate conditional autoregressive

distributions.

A multivariate conditional autoregressive distribution is a generalization of the con-

ditional autoregressive distribution (Mardia, 1988). Gelfand and Vounatsou (2003) gen-

eralized the proper conditional autoregressive distribution to the multivariate setting. In

Jin, Carlin and Banerjee (2005), the authors propose a conditional approach to the mul-

tivariate problem too. MacNab (2011) proposed a multivariate generalization of spatial

structures beyond conditional autoregressive distributions, where the well-known con-

volution prior (Besag et al., 1991) is generalized. Martı́nez-Beneito (2013) proposed

a novel framework that encompasses most of the models already proposed by reorga-
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nizing the Kronecker products of covariance matrices as simple matrix products. This

allows the combination of several different spatial structures with different multivariate

dependence structures and avoid computations with Kronecker products and large co-

variance matrices. This last work has been reformulated in order to be more efficient

in computational terms (Botella-Rocamora et al., 2015). Other recent approaches for

the analysis of multivariate data in disease mapping include the smoothed analysis of

variance (Marı́-Dell’Olmo et al., 2014) in ecological studies.

Regarding the analysis of multivariate disease mapping models with several compo-

nents in the linear predictor, different authors have already tackled this problem. Cor-

berán-Vallet (2012) apply the shared components approach to the detection of disease

outbreaks proposing a multivariate model in which spatial shared components are mul-

tiplied by indicator variables to select one of the components. Carroll et al. (2016)

propose a space-time mixture model that includes in the linear predictor a purely spa-

tial term, a spatio-temporal term or a mixture of the two. Carroll et al. (2017) apply

these ideas to the spatio-temporal analysis of two types of respiratory cancers and allow

for the temporal variation of the coefficients of the covariates. In Carroll et al. (2017),

three different types of cancer are analysed jointly and they propose mixture models to

choose among different spatial, temporal and spatio-temporal terms in the linear pre-

dictor. Finally, Lawson et al. (2017) present similar mixture models with spatially and

spatio-temporally varying mixture parameters.

In the next section we develop a joint spatio-temporal model for multiple diseases.

This model includes two types of spatial and temporal effects, to account for the shared

pattern and allow for disease-specific patterns. In addition, the weights associated to

the shared spatial and temporal effects retain the associations between different diseases

with similar spatial or temporal variation. It is worth noting that our model provides

a simpler and more modular specification of the different spatial and temporal effects

in the model than the models discussed above and it is still able to find diseases with

similar spatial and temporal patterns.

Our approach differs from previous literature in a number of ways. First of all, our

goal is to detect similar spatial or temporal behaviors of different diseases in a simple

way. The structure of our model is different as well, as it is not based on mixture

models but on spatial and temporal shared components. The application is also different,

because our aim is not to detect changes at the area level in space and time but to identify

shared and specific spatial and temporal patterns that can lead to the identification of

diseases with a similar aetiology.

4. Spatio-temporal joint modelling of multiple diseases

When modelling spatio-temporal data our aim is to identify shared and specific patterns

of disease both in space and time. For this reason, our model will combine several ideas

from the models outlined in Sections 2 and 3. In particular, our model is as follows:
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O
(d)
i,t |E

(d)
i,t ,θ

(d)
i,t ∼ Po(E

(d)
i,t θ

(d)
i,t )

log(θ
(d)
i,t ) = α

(d)+Φ
(d)
i +Ψ

(d)
t

(6)

Now, α(d) are disease-specific intercepts, and Φ
(d)
i and Ψ

(d)
t are spatial and temporal

effects for disease d in area i and time period t, respectively. These two effects are

defined by including disease-specific and shared patterns in the following way:

Φ
(d)
i = u

(d)
i + δSdUi

Ψ
(d)
t = v

(d)
t + δTd Vt

(7)

In the previous equation we can find shared and disease specific effects. The effect of the

shared spatial effect Ui on the relative risk is modulated through weights δSd . Similarly,

the effect of the shared temporal pattern on the relative risk is controlled via weights δTd .

The vectors of disease-specific and shared effects are defined using an intrinsic CAR

specification:

u(d) ∼CAR(W,τSd) d = 1,2,3; U ∼CAR(W,τS0)

v(d) ∼CAR(Q,τTd ) d = 1,2,3; V ∼CAR(Q,τT0 )
(8)

Here, W is the spatial adjacency matrix and Q defines a temporal adjacency structure.

Finally, τSd , τTd , τS0 and τT0 are the precisions of the different effects.

Note that the previous model does not account for space-time interactions. These

could be included but additional constraints would be needed (Knorr-Held, 2000, Ri-

chardson et al., 2006, Goicoa et al., 2018), making the model more complex. By adding

disease-specific spatial and temporal effects we are already allowing for departures from

any shared spatial and temporal trends. This means that the diseases under study may

have different spatial or temporal behavior. Furthermore, uncorrelated random effects

have not been considered for the same reason.

Regarding the priors for the remainder of the parameters, several options can be

considered. Disease specific intercepts α(d) are assigned improper flat priors. Spatial and

temporal weights have been assigned a log-Normal prior with zero mean and precision

1/5.9 (similarly as in Downing et al., 2008).

This assumes that weights are positive, but the prior 0.25 and 0.975 quantiles are

0.0086 and 116.8319, which allows for ample variation in the values of the weights. This

will also imply that the weights can take very small values. Small weights will produce a

negligible effect of the shared spatial or temporal terms in the linear predictor even if the

weights are not exactly zero. Hence, it is not necessary that the diseases in the model

are correlated in advance as the model can produce very small weights in this case.

Constraining the weights to be positive also means that high values of the shared

effects will indicate a similar higher mortality pattern for all the diseases with non-
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negligible weights. This is important in order to interpret the results and the role of the

shared spatial and temporal terms.

τS
d τS

0 τT
d τT

0

v
(d)
tu

(d)
i

VtUi δ S
d δ T

d

α(d)Φ
(d)
i Ψ

(d)
t

θ
(d)
i,t

O
(d)
i,t

E
(d)
i,t

Spatial effects Temporal effects

Figure 1: Graphical representation of the joint spatio-temporal model.

For the scale parameters of the random effects in the model we suggest trying dif-

ferent priors in order to conduct a sensitivity analysis on the results and investigate how

different priors impact on the estimates of the relative risks and other parameters in the

model. We propose fitting three different models in which all scale parameters have

the same priors. First of all, we propose a uniform distribution between 0 and 10 on

the standard deviations, which seems to be less informative than inverted Gammas on

the precisions (Gelman, 2006). Following Gelman (2006), a half-Cauchy (with scale

parameter equal to 25) as a prior for all standard deviations in the model could also be

used. Finally, as an inverted Gamma is a common choice for the precision priors, a

third model could be considered in which all precisions have an inverted Gamma with

parameters 0.01 and 0.01 as prior.

In this model, terms Ui and Vi in the model are multiplied by disease specific weights.

This may cause an identifiability problem between weights δSd and δTd , and the scale of

the effects, i.e., precisions τS0 and τT0 . For this reason, improper priors on these param-

eters are not recommended. Furthermore, precisions τS0 and τT0 can be set to 1 so that

the scale of spatial and temporal shared effects is incorporated into weights δSd and δTd .
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Having said this, we have not observed any identifiability problem of effects Φ
(d)
i and

Ψ
(d)
t in the models fitted in the example in Section 5.

Spatial dependence between two or more diseases can be assessed by looking for

correlation of weights {δSd}
D
d=1 in the posterior joint distribution. Similarly, temporal

dependence can be assessed with the joint posterior correlation of weights {δTd }
D
d=1. For

this reason, we will produce plots of the bivariate posterior distributions of (δSk ,δ
S
l )k 6=l

and (δTk ,δ
T
l )k 6=l for all pairs of diseases to assess any posterior correlation between the

weights. Furthermore, for a single disease, spatio-temporal interactions can also be

inspected by considering correlations in the joint posterior distribution of (δSd ,δ
T
d ). This

analysis based on the bivariate joint posterior distributions is shown in the example

developed in Section 5 using the MCMC output given that INLA focuses on marginal

inference.

5. Example: Joint spatio-temporal disease mapping in Spain

In order to assess the qualities and properties of the model presented in the previous sec-

tion, we develop here an example on the analysis of three causes of death in Spain. We

have considered oral cavity (which includes lip, bucal cavity and pharynx), esophagus

and stomach cancer. The International Classification of Disease (ICD-10) codes for the

three causes that we are studying are C00-C14 for the oral cavity cancer, C15 for the

esophagus cancer and C16 for the stomach cancer. All these are cancers of the upper

gastrointestinal tract and are relatively frequent. Ferlay et al. (2012) has pointed out that

gastric cancers were estimated to be the fourth most common cancer and the second

leading cause of death in both sexes in 2008. Furthermore, oral cavity and pharyngeal

cancers ranked eighth in number of new cancer cases and deaths. Also, esophageal

cancer ranked sixth in terms of the number of deaths and ninth in terms of cases.

In Spain, López-Abente et al. (2007, 2014) and Aragonés et al. (2007) have studied

the spatial and temporal trends of these cancers. They have provided evidence of the

similarities among the spatial and temporal trends of these cancers. In particular, their

analysis of oral cavity, pharynx and esophagus supported the hypothesis of shared risk

factors (which could be preventable factors), such as alcohol consumption and smoking

(Seoane-Mato et al., 2014). These tumors also share a South-North geographical pattern

in Spain.

Population and mortality data have been obtained from the Spanish Office for Na-

tional Statistics (INE). Population data contains records by age group and gender from

1996 to 2014. Mortality data comprises all deaths in Spain from 1985 to 2014, for which

cause of death, age, gender and other relevant information is available.

In this analysis, the number of deaths per province in peninsular Spain in the period

1996 to 2014 has been considered. The expected number of cases per province and sex

has been computed using as reference the age-specific mortality rates and the population

from years 1996 to 2014. The analysis has been carried out at the province level for both
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Figure 2: Standardized mortality ratios O
(d)
i,t /E

(d)
i,t .
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sexes together. See López-Abente et al. (2014) for a discussion on the importance of the

criteria for computing the expected number of cases in a spatio-temporal analysis.

Figure 2 shows the standardized mortality ratios for the three causes of death. Oral

cavity and esophagus cancers seem to have a similar spatio-temporal pattern, whilst

stomach cancer shows a different pattern. However, the three causes seem to have a

region of high risk in the north of the country. These spatial patterns have already

been described by Aragonés et al. (2009); López-Abente et al. (2014a,b) for stomach

cancer and by Aragonés et al. (2007) for esophageal cancer for slightly different time

periods to the one considered now. Furthermore, López-Abente et al. (2014); Seoane-

Mato et al. (2014) also describe a decreasing temporal pattern of the risk for stomach

and esophageal cancers. Finally, López-Abente et al. (2007) provide a spatial analysis

of a number of types of cancer from 1989 to 1998 in Spain at the municipality level.

Although our analysis has been conducted at different spatial and temporal levels, we

observe a very similar pattern and we expect these patterns to show up in the analysis

and to be picked up by the different effects in our model.

The model that we have fitted to the data is the one described in Section 4. The

results that we show here correspond to the model with uniform priors on the standard

deviations of the spatial and temporal random effects. We have also fitted the same

model using half-Cauchy on the standard deviations and inverted Gamma priors on the

precision parameters. A summary is provided in the sensitivity analysis in Section 5.4.

Models have been fitted using the WinBUGS software (Lunn et al., 2000) using the

R2WinBUGS package (Sturtz, Ligges and Gelman, 2005) for the R software (R Core

Team, 2016). Regarding the MCMC simulations, we have used 4 different chains with

200,000 simulations each, of which 10% (i.e., 20,000) were used as a burn-in and we

have kept one in 200 simulations to reduce autocorrelation.

In addition, INLA has been used to estimate the posterior marginals of the parameters

of the models presented above. However, given the way in which INLA computes the

approximations, a uniform between zero and infinity has been used instead of a uniform

between 0 and 10 on the standard deviations. Details on the construction of the priors

for INLA as provided in Appendix A, and computational details and R code to fit the

models using MCMC and INLA are provided in the supplementary materials provided

with this paper available from https://github.com/becarioprecario/joint st disease map-

ping INLA.

5.1. Spatial analysis

First of all, we will consider the analysis of the different spatial effects in the model. Fig-

ure 3 shows the posterior means of the total spatial effect Φ
(d)
i (i.e., sum of shared plus

specific effects). MCMC and INLA provide very close estimates of the posterior means.

Oral cavity and esophagus cancer show very similar spatial patterns, with areas of high

risk in the north-west and southwest. This pattern is similar to the spatial distribution of

https://github.com/becarioprecario/joint_st_disease_mapping_INLA
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Figure 3: Posterior means of the spatial effect

Φ
(d)
i = u

(d)
i +δSdUi for MCMC (left) and INLA (right).
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Figure 4: Posterior means of shared spatial effect Ui (top maps) and disease specific

spatial effects u
(d)
i for MCMC (left) and INLA (right).
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Table 1: Summary statistics of the weights for shared spatial and temporal effects

for MCMC (left) and INLA (right).

MCMC INLA

Parameter Mean Median 2.5% q. 97.5% q. Mean Median 2.5% q. 97.5% q.

δS1 1.455 1.425 0.854 2.263 0.716 0.371 0.022 3.501

δS2 1.555 1.538 0.864 2.469 0.766 0.399 0.024 3.735

δS3 0.551 0.546 0.332 0.914 0.062 0.031 0.001 0.297

δT1 0.867 0.807 0.434 1.484 0.204 0.088 0.006 1.122

δT2 0.943 0.892 0.515 1.483 0.270 0.109 0.007 1.530

δT3 1.279 1.220 0.659 2.148 0.395 0.164 0.120 2.210

esophageal cancer between 1989 and 1998 described in Aragonés et al. (2007). Stomach

cancer shows a different spatial pattern with some areas of high risk in the north. These

findings are similar to the spatial patterns described by Aragonés et al. (2009) in the

period 1994-2003, and López-Abente et al. (2014a,b) in the period 1989-2008.

Posterior means of the shared and disease specific spatial effects are displayed in

Figure 4, and Table 1 shows summaries of the posterior distribution of the weights

δSd of the shared spatial effect for each disease. The estimates of the different spatial

effects with MCMC and INLA are very similar but for the shared spatial term, which

seems to show a very similar pattern but at different scales. This is probably due to a

mild identifiability problem between the spatial weights and the precision of the shared

spatial term. However, as stated above, total spatial effects are very similar between

MCMC and INLA.

In all maps in Figure 4, a few areas of high risk can be found in the north part of

the country. Also, the specific spatial pattern for stomach cancer seems to show more

extreme values than those for oral cavity and esophagus cancer. This may be due to the

lower dependence of stomach cancer on the shared spatial pattern (as seen in Table 1)

which makes the specific pattern to account for most of its spatial pattern.

Table 1 shows the differences in the estimation of the weights between MCMC and

INLA. This is due to the fact that INLA is not able to identify well the weights and

the precision of the effects. However, as seen in Figure 3 and Figure 4 the estimates of

the spatial effects are very close between MCMC and INLA. Furthermore, the results

obtained with INLA also support a stronger dependence on the spatial shared term for

oral cavity and esophagus cancers, and a similar dependence on the temporal shared

term for all three cancers. As stated earlier, a simple way to have a better identification

of the weights is by fixing the precisions of the shared terms.

Regarding the weights on the shared spatial component Ui, oral cavity and esopha-

gus cancers seem to have a very similar weight which is significantly higher than one.

Stomach cancer has a lower weight, which is significantly lower than one. This means

that oral cavity and esophagus cancer have a higher dependence on the shared spatial

effect, i.e., the spatial pattern is very similar to the shared pattern.
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Figure 5: Posterior means of shared temporal effect Vt (top), specific temporal effect v
(d)
t (middle)

and total temporal effect Ψ
(d)
t = v

(d)
t +δTj Vt (bottom) for MCMC (left) and INLA (right).

Finally, the dependence between oral cavity and esophagus cancers is confirmed

in the analysis of weights δSi on the shared spatial component shown in Section 5.3

using the MCMC output. As seen in Figure 8 (bottom row), the bivariate distribution

of weights associated to oral cavity and esophagus cancers shows a strong correlation.

This correlation is inexistent in the plots of each one of these causes against esophagus

cancer.

5.2. Temporal analysis

Similarly, posterior means of shared and specific temporal effects are shown in Figure 5.

The shared temporal effect clearly indicates a decrease in risk over time and MCMC and
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INLA provide similar estimates but on different scales. Now, all three cancers show a

very similar temporal pattern. The disease-specific and total temporal trends estimated

by MCMC and INLA are very close.

The specific temporal effects of the three cancers do not indicate a strong departure

from the shared temporal pattern and these three specific temporal patterns have an

effect very close to zero for all the years. It is worth noting that the shared temporal

effect captures the overall decreasing trend in time whilst the disease-specific effects are

negligible, with estimates very close to zero for all years. Seoane-Mato et al. (2014)

describe temporal trends for different types of tumors in the period 1952-2006. For all

the causes analysed in this paper, they report a decreasing trend from 1996 to 2006,

which is consistent with our findings.

Summary statistics of weights δTd for the shared temporal trend are shown in Table 1.

As in the spatial case, MCMC and INLA provide estimates in different scales due to

the different identifiability between the temporal weights and the precision of the shared

temporal term. However, the estimates of the total temporal trends are very similar

between MCMC and INLA.

Oral cavity and esophagus cancers have very similar weights, with stomach cancer

having a slightly higher weight. In this case, all three diseases seem to have a strong

dependance on the shared temporal pattern as the weights are very close to one, which

also explains the weak disease-specific temporal trends.

A joint analysis of weights δTd could be done using the MCMC output to assess

temporal dependence between diseases. Figure 8 (top row) shows bivariate plots of

these weights. Oral cavity and esophagus cancer clearly show some correlation. Now,

stomach cancer also shows a positive correlation with the other two types of cancer.

5.3. Joint spatio-temporal analysis

So far, we have analysed the results with a focus on the spatial or temporal patterns.

Figure 6 shows the smoothed spatio-temporal relative risks obtained with our model.

The three types of cancers considered in this study show correlation of the temporal

weights. However, stomach cancer shows a different spatio-temporal pattern.

Figure 7 shows the probability of having a relative risk higher than one. Looking at

the areas of high probability we can find areas of increased risk. Again, oral cavity and

esophagus cancers show a very similar spatio-temporal pattern, which also seems to be

persistent over time. Furthermore, the areas of high risk in our analysis are very similar

to the ones reported by Aragonés et al. (2007) in the 1989-1998 period for esophageal

cancer, where regions of high risk were found in the northwest and southwest of Spain.

Stomach cancer shows a persistent spatial pattern at the beginning of our study period

that changes at the end, as seen in Figure 7. The areas of high risk are similar to those

found by Aragonés et al. (2009) in the period from 1994 to 2003, and López-Abente

et al. (2014) in the 1989-2008 period.
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Figure 6: Posterior means of spatio-temporal relative risks θ
(d)
i,t .
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Figure 7: Probabilities of having an estimation of the relative risk

θ
(d)
i,t greater than 1 to identify areas of high risk.
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Figure 8: Bivariate posterior distributions of weights δTd (top row) and δSd (middle row), and bivariate

posterior distribution of the spatial and temporal weights for a given type of cancer (bottom row).

The analysis of the posterior bivariate distribution of weights on the spatial and tem-

poral shared effects can help to assess dependence between the different causes of death

considered. Figure 8 shows the posterior bivariate distribution of each pair of weights

δTt (top row) and δSi (middle row). In this case, spatial and temporal weights appear to

be independent from each other and no correlation can be observed in the plots.

Figure 6 and Figure 7 have been produced using the MCMC output, but INLA pro-

vided similar estimates. Figure 8 has been created from the MCMC output given that

it requires the bivariate joint posterior distributions of each pair of weights. These joint
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distributions can be approximated with INLA, but we have preferred to use the MCMC

output instead.

5.4. Sensitivity analysis

The results shown so far correspond to the model described in Section 4 with uniform

priors on the standard deviations of the random effects. We have decided to use these

priors because several authors (see, for example, Gelman, 2006) have questioned the

use of the inverted Gamma as a prior for the precisions in the model. For this reason,

we have conducted a sensitivity analysis by considering different priors for the scale

parameters of the random effects in the model. We have fitted three versions of the joint

spatio-temporal models where each of three options for the priors of the variances are

used, as explained at the end of Section 4.

Our results show that the estimates of the relative risks do not differ when different

priors for the variances of the random effects are used. Spatial and temporal effects are

very similar too, as well as the estimates of the spatial and temporal weights.

6. Discussion

We have presented a Bayesian hierarchical model for the joint analysis of spatio-temporal

public health data. It combines ideas from other models for spatio-temporal disease

mapping (Richardson et al., 2006; Abellan et al., 2008; Guangquan et al., 2012) and the

joint analysis of several diseases (Downing et al., 2008). In this way, our new model

allows us to define common and specific spatial patterns of disease that are able to

identify similarities and differences in the distribution of the relative risks associated to

each disease. Dependence on the common spatial and temporal patterns are governed

by disease-specific weights, which can help to identify diseases with shared spatial and

temporal patterns. The model has been fitted using MCMC and INLA, and both methods

provide similar estimates of the main effects in the model.

The analysis of the specific spatial effects can be used to detect areas with a different

trend for a given disease. Similarly, by inspecting disease-specific temporal effects it

is possible to highlight diseases with a different temporal variation. Furthermore, this

model can help to highlight areas of high risk by looking at the posterior probabilities of

the relative risk. These probabilities can also be used to detect shared patterns of high

risk among several diseases.

In the example shown in this paper, we have studied oral cavity, esophagus and stom-

ach cancers in Spain from 1996 to 2014. Our model has been able to identify a common

spatial pattern between oral cavity and esophagus cancers, and a different spatial pattern

for stomach cancer. It has also been able to identify that all these three types of can-

cer have a very similar temporal variation. All these findings are consistent with other
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similar studies (Aragonés et al., 2007, Seoane-Mato et al., 2014, López-Abente et al.,

2014a,b, Aragonés et al., 2009) and they support the hypothesis of a strong relationship

between the spatio-temporal distribution of oral cavity and esophagus cancers.

Finding diseases with similar spatial and temporal patterns is important in public

health because these patterns are often caused by similar risk factors. Hence, by identi-

fying diseases with similar patterns it is also likely that some shared risk factors will be

discovered as well. This can clearly be seen in our example as oral cavity and esopha-

gus cancers show strong similar patterns and incidence of these cancers depends of pre-

ventable factors such as alcohol consumption and smoking (Seoane-Mato et al., 2014).

Finally, compared to other recent developments for multivariate disease mapping

(see, for example, Botella-Rocamora et al., 2015, and the references therein) our model

provides a simple and modular specification of different shared and specific patterns

that can be explored to identify trends in the geographical and temporal distribution of

disease. In the example presented in this paper we have only considered three different

causes of death, but the model can be easily extended to a larger number of diseases

simply by including the corresponding spatial and temporal effects.

In the future, we plan to extend this model in a number of ways. First of all, an au-

tomatic procedure could be implemented to assess for the need of the different disease-

specific terms in the model. For example, in our example the disease-specific temporal

trends can probably be removed given that all diseases have a very similar temporal vari-

ation. For this, being able to fit the models with INLA quickly will allow us to explore

different models faster. Furthermore, model assessment criteria implemented in INLA

can play an important role here to select the best model for the data.

Another way to extend this model is by clustering diseases into groups so that only

diseases within the same group share spatial and temporal terms. This would involve

creating a new indicator parameter for each disease to identify to which group it belongs.

By computing the posterior probabilities of these indicator variables it is possible to

assess what diseases have a shared spatial and temporal variation. Given that this will

require exploring a large number of models, INLA will be an important asset in the

implementation of this method.

A User-defined priors in INLA

INLA provides a simple way to define priors using the muparser library. For com-

putational reasons, INLA works with an internal representation of the parameters and

instead of dealing with the precision parameter of the random effects τ, it works with

θ = log(τ). Hence, the prior must be specified on θ. Here, we will follow Ugarte, Adin

and Goicoa (2016) to derive the two non-implemented priors on the standard deviation

σ of the random effects.
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First of all, note that σ= (1/τ1/2) = 1/exp(θ/2) = exp(−θ/2). Hence, the prior on

θ is defined as

π(θ) = π(σ)|
∂σ

∂θ
|

Also, note that

|
∂σ

∂θ
|=

1

2
exp(−θ/2)

For the uniform prior on σ, this must be a uniform between 0 and infinity (for com-

putational reasons), i.e., π(σ) ∝ 1. Hence,

π(θ) ∝ 1 · (
1

2
exp(−θ/2))

Similarly, the half-Cauchy prior with scale parameter γ on σ is defined as

π(σ|γ) =
2

πγ(1+(σ/γ)2)

Hence, the prior on θ is defined as

π(θ|γ) =
2

πγ[1+(exp(−θ/2)/γ)2]
· (

1

2
exp(−θ/2))

Priors must be passed to INLA in the log-scale and constants can be dropped (but

this will change the estimate of the marginal likelihood). Hence, the uniform prior can

be set in INLA as

log(π(θ))≡−θ/2

and the half-Cauchy prior can be set using

log(π(θ|γ))≡ log(1+ exp(−θ)/γ2)− θ/2

Implementation details can be found at

https://github.com/becarioprecario/joint st disease mapping INLA.
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Internalizing negative externalities in vehicle

routing problems through green taxes

and green tolls
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Abstract

Road freight transportation includes various internal and external costs that need to be accounted

for in the construction of efficient routing plans. Typically, the resulting optimization problem is for-

mulated as a vehicle routing problem in any of its variants. While the traditional focus of the

vehicle routing problem was the minimization of internal routing costs such as travel distance or

duration, numerous approaches to include external factors related to environmental routing as-

pects have been recently discussed in the literature. However, internal and external routing costs

are often treated as competing objectives. This paper discusses the internalization of external

routing costs through the consideration of green taxes and green tolls. Numeric experiments with

a biased-randomization savings algorithm, show benefits of combining internal and external costs

in delivery route planning.

MSC: 90B06.

Keywords: Vehicle routing problem, biased randomization, green logistics, negative road exter-

nalities, internalization.

1. Introduction

Vehicle routing management is one of the most important operational activities in road

freight transportation. Delivery routes are typically established by solving the NP-hard

vehicle routing problem (VRP) in any of its variants (Caceres-Cruz et al., 2014; Toth

and Vigo, 2014). However, the optimization of explicit operational costs is only one

side of the coin. Delivery route planning has long focused on monetary aspects. Never-

theless, the negative externalities of road freight transportation related to air pollution,

excessive noise levels, and traffic congestion are particularly noticeable in urban ar-

eas (European Union, 1999b; United Nations, 2016; United States Environmental Pro-

tection Agency, 2014; European Commission, 2009). In this context, different green
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logistics concepts aiming to reduce the negative impacts of road transportation have been

presented (Bekta and Laporte, 2011; Gajanand and Narendran, 2013; Lin et al., 2014).

Furthermore, the topic is still catching the interest of the academia as recent papers con-

tinue addressing the topic (Xiao et al., 2012; Kancharla and Ramadurai, 2018; Sawik,

Faulin and Pérez-Bernabeu, 2017a, 2017b). In these papers, typically, some kind of

emission estimation based on routing characteristics such as distance, load levels, vehi-

cle type, road gradient, etc. are included in the optimization models. These estimations

are then considered in the objective function in order to minimize the relevant variable.

By either focusing on monetary or environmental objectives, different factors are

treated as competing variables, looking for either the cheapest solution or the least pol-

luting option. Therefore, a way to internalize negative externalities into operational costs

is of utmost interest. This paper proposes internalization through green taxes and green

tolls, and evaluates the effects on company behaviours of such fiscal policies. More-

over, this paper reviews relevant literature about monetization of environmental costs

and propose those values as taxation.

2. Literature review

Within the context of green logistics and road freight transportation, environmentally

aware delivery route planning has received much attention in recent years (Helo and

Ala-Harja, 2018). Next to new optimization problems arising from the use of new tech-

nologies such as electric vehicles (Juan et al., 2016) and the development of innova-

tive supply chain strategies such as horizontal collaboration aimed at reducing routing

related emissions (Serrano-Hernandez et al., 2017), especially the inclusion of green

minimization objectives has been discussed. In this context, the green VRP (GVRP)

focuses on minimizing fuel consumption instead of traditional cost- or distance based

optimization targets (Erdogan and Miller-Hooks, 2012). The environmental routing im-

pact is typically estimated with respect to the operating vehicle and some distinct criteria

effecting predicted consumption/emission values. Especially travel speed, vehicle load

levels, routing distances, and road gradients have been discussed (Bekta and Laporte,

2011; Demir, Bektas and Laporte, 2014; Lin et al., 2014).

Even though the GVRP is still a rather new topic, some optimization approaches

have already been presented (Ubeda, Arcelus and Faulin, 2011). The energy minimiz-

ing VRP is defined by Kara, Kara and Kadri Yetis (2007), who propose a cost function

for the VRP based on the product of vehicle load and travel distance. In Tavares et al.

(2009), road gradient and vehicle weight is considered in optimizing fuel consumption

in waste collection processes. The time dependent VRP is addressed by Kuo (2010).

While the author considers different travel times and varying vehicle speed depending

on the time of the day, the objective function is the minimization of fuel emissions con-

sidering vehicle loads and travel speed. The resulting model is solved with a simulated

annealing metaheuristic, showing significant reductions of fuel consumption compared
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to objectives based on the minimization of travel time/distance. A fuel consumption rate

based on vehicle load levels (similar to the approach applied in this paper) is proposed

in the work of Xiao et al. (2012). The potential benefits of applying environmentally

driven models compared to traditional VRPs is also shown using a simulated annealing

approach. Even though not directly related to the GVRP, the load dependent vehicle

routing problem is closer examined by Zachariadis, Tarantilis and Kiranoudis (2015).

The authors consider cargo weight variations in routing activities in which transported

cargo accounts for a significant amount of vehicle weight. Fuel consumption is, how-

ever, not directly addressed in their work. Regarding internalization in logistics activ-

ities, it is noticeable the Abdallah et al. (2012) work who presented a novel approach

to greening the supply chain. They took into account a carbon trading mechanism for

pricing emissions. Later, they formulated a mixed integer program that minimizes the

sum of supply chain costs and carbon trading costs.

More recently, some papers from Sawik et al. (2017a, 2017b) consider multicriteria

approaches to deal with economic and environmental criteria at the same time. Nev-

ertheless, in those works there is not an explicit internalization of environmental costs

(i.e. no pricing is performed). Likewise, Xiao et al. (2012) also propose a multiobjective

model for the GVRP in which speed is a relevant variable to optimize. However, they

focus on their suggested algorithm and show the advantages of the hybrid quantum im-

mune heuristic. Finally, the driving behaviour is taken into consideration in Kancharla

and Ramadurai (2018) paper as they address the effect of acceleration on fuel consump-

tion and emissions. Similarly, there is a lack of explicit internalization of external costs

derived from the emissions, although they consider a richer model for estimating such

emissions.

2.1. Routing externalities and internalization

Considering the definition by Laffont (2008), externalities are (...) indirect effects of

consumption or production activity, that is, effects on agents other than the originator of

such activity which do not work through the price system. Thus, it becomes clear that

not only environmental aspects related to emission factors have to be included in routing

optimization. According to Ranaiefar and Amelia (2011), negative routing externalities

can be classified into four different impact areas: (i) economy, which include congestion,

road damage and longer travel times; (ii) society, comprising accidents, visual intrusion

and noise pollution; (iii) ecology, encompassing biodiversity destruction and climate

change; and (iv) the environment, including waste, air, and water pollution. Many works

have tried to physically measure such externalities. To this respect, Demir et al. (2015)

give an extensive review on externalities modeling in which they accounted for several

different methodologies to deal with emissions, noise, congestion and accidents. The

same paper also includes a pricing section, concluding that further research should be

made in that direction.
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In order to incorporate such externalities in delivery route planning, monetary values

have to be considered to be able to price these factors. Different approaches were car-

ried out by Litman (2006) and Delucchi and McCubbin (2010) reports. In the extensive

Litman (2006) one, it is reviewed plenty of prior works regarding transportation costs

(internal and external). Noise and air pollution are visited listing various circumstances

to estimate the external cost. For instance, noise costs depend on the type of vehicle,

density of the area, type of road and daytime. According to their revision, the 34 tonne-

truck noise costs range from USD(2007) cents 0.0088 to USD(2007) cents 0.235294 per

tonne and mile whereas the Delucchi and McCubbin (2010) one estimates in USD(2006)

cents 0.0-5.3. On the other hand, air pollution cost is usually analysed from the “damage

function” approach described by Adamowicz (2003). It consists of valuating the rela-

tionship in welfare due to a change in the emissions, mainly divided into different types

of harmful emissions: CO2, CO, PM10, CH4, and so on. Later, a price is assigned to

each based on health care costs. Then, physical emissions are calculated and translated

into monetary units using the previous prices. In the report, Litman (2006) concluded

the automobile air pollution costs range from USD(2007) cents 0.0032 to 0.7352 per

tonne and mile similarly to Delucchi and McCubbin (2010) who estimated such costs in

USD(2006) cents 0.1-18.7. Note that the high variation between these reports is due to

the different characteristics in the vehicle, road and weather conditions, thus being one

of the main drawbacks.

3. Internalization of green taxes and green tolls

The capacitated VRP can be formulated on a graph G = (V,E). Vertex set V = L∪0

describes a subset L= 1,2, . . . , l of l customer nodes with demand di ≥ 0 for all i∈ L and

the central depot 0, at which a homogeneous fleet of vehicles with maximum capacity

Q is located. Set E = (i, j) : i, j ∈ V, i 6= j describes the connections between any two

nodes i and j, whereas the travel distance disti j to traverse any edge are assumed to be

known. The objective of the (traditional) VRP is to minimize a distance-based costs

function driven by a fleet of vehicles to serve a set of customers, subject to the following

constraints: (i) vehicle routes start and end at the same depot, (ii) no customer node is

visited twice, and (iii) vehicle capacities need to be adhered to.

Naturally, the objective of minimizing overall travel distance can be enhanced. Our

approach introduces external costs extCosti j for each edge (i, j) ∈ E that are made of

green taxes ti j and green tolls vi j. Therefore, the full cost f ullCosti j associated to each

edge is described in Equation 1:

f ullCosti j = intCosti j + extCosti j = intCosti j + ti j + vi j (1)

The green taxes are charged on fuels so they will depend on fuel consumption

whereas green toll costs are charged as tolls if the vehicle enters in high quality envi-
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ronmental areas that may be somehow protected. Note that now we deal with a directed

graph since f ullCosti j may not be equal to f ullCost ji. A real example of a green toll

is functioning in some European countries. Known as Eurovignette (European Union,

1999a), it is a road user charge for heavy vehicles to account for external costs of air

and noise pollution, among other costs. Therefore, the objective function consists of

two components: the traditional distance-based (internal) costs and the external costs,

compounded by the green taxes and the green tolls.

1. Internal costs. These costs comprise driver wage, asset depreciation and fuel cost

and can be summarized as shown in Equation 2 where Cd is a cost parameter per

unit of distance for any edge.

intCosti j =Cd disti j (2)

2. External costs. Green tax costs are charged to fuel. Therefore, the amount of

green tax paid is described in Equation 3, where Ct is a cost parameter per unit

of fuel consumed ϕi j. On the other hand, the green toll is paid according to the

environmental category of the area as described in Equation 4.

ti j =Ct ϕi j (3)

vi j =







































Cl
v, if node j belongs to a low environmental

value area and node i does not

Cm
v , if node j belongs to a medium environmental

value area and node i does not

Ch
v , if node j belongs to a high environmental

value area and node i does not

0, otherwise

(4)

Being Cl
v ≤Cm

v ≤Ch
v Note that we distinguish three different quality areas in order

to give more flexibility for policymaking. In this sense, consider a high quality

environmental area those places that could be significantly affected by the trans-

portation activity, i.e. national parks, biosphere reserves, world heritage sites, etc.

The medium quality area is devoted for a lower level of protection such particu-

lar landscapes proposed by local/regional authorities. The rest of places could be

categorized as low environmental quality area.

3.1. Measuring fuel consumption

Estimating properly the fuel consumption is of utmost interest in our work since most

pollutants are released to the environment when fuel is burnt. Thus, we have used for

this purpose the methodology proposed in Knörr et al. (2011) since it is updated, well

documented, and takes into account upstream energy consumption (generation and dis-
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tribution of energy), also known as well to tank (WTT). Note that this approach consid-

ers also the final pipeline energy consumption made in the transportation activity (the

tank to wheel – TTW). As a combination of both, the WTT and the TTW, we get the

well to wheel (WTW).

In such methodology, energy consumption is measured in megajoules and it depends

on distance, payload, road slope, speed, and vehicle characteristics. All in all, for any

given distance, the fuel consumption φ can be represented as a function of load weight

as shown in Equation 5 where φe is the fuel consumption when empty, φ f is the fuel

consumption when fully loaded, P is the payload and Q is the vehicle capacity.

φ= φe +(φ f −φe)P/Q (5)

3.2. Pricing air pollution and GHG emissions- Estimating CtCtCt

Air pollution is caused by emission of air pollutants like NOx, CO2, non-methane

volatile organic compounds (NMVOC), and particulate matters (PM) that affect people,

vegetation, materials, and global climate. Climate change or global warming impacts of

road transport are, mainly, generated by emissions of greenhouse gases (GHG): carbon

dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Nevertheless, CO2 is the dom-

inant anthropogenic GHG, and the remaining GHG can be expressed as CO2 equivalent

(CO2e) as described in Equation 61:

CO2e =CO2 +25CH4 +298N2O (6)

Table 1, based on Korzhenevych et al. (2014) shows average EU prices for 1 kg of

pollutant component, in EUR(2010). On one hand, air pollution components are priced,

generally, attending to the related health costs and crop losses. Later they are computed

based on the average exposure. On the other hand, GHG, i.e CO2e, are priced attending

to prevention costs to reduce risk of climate change and the damage costs of increasing

global temperature.

Table 1: Prices for 1 kg of emitted component in EUR(2010), based on Korzhenevych et al. (2014).

Component Harmful effects EUR(2010)/Kg

NOx Smog, soil acidification 12.81

NMVOC Smog, damage to health 1.89

SO2 Soil acidification, damage to health 12.35

PM Damage to health 47.73

CO2e Climate change 0.11

1. CO2e is computed using the Global Warning Power (GWP) of the GHG relatively to the CO2 . To this respect, it is
assumed that CO2 GWP is 1, CH4 GWP is 25 times the CO2 GWP, and N2O GWP is 298 times the CO2 GWP. Further
information can by found in the didactic document written by Brander (2012).
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4. Solving approach

The vehicle routing problem (VRP) is one of the most studied problems in combinatorial

optimization, with many real-world applications as well as logistics and transportation

(Toth and Vigo, 2014). Since its appearance in 1959 by Dantzig and Ramser (1959), who

made for the first time a formulation of the problem for a fuel distribution application,

the study of the VRP problem has generated numerous research works and thousands of

articles have been written about many variants of the classical problem (Caceres-Cruz

et al., 2014). VRP is known to be a NP-hard problem and its exact solution can be only

achieved for very small instances. Therefore, heuristics algorithms are widely used for

solving the VRP. To this respect, the savings heuristic proposed by Clarke and Wright

(1964) is still widely used because it is simple to implement and it returns relatively

good and extremely fast solutions. Nevertheless, many improvements can be made to

this classical heuristics in order to obtain better solutions.

A biased randomization of the classical savings heuristic is proposed in this paper

following the ideas described in Grasas et al. (2017), Juan et al.(2015) and Juan et al.

(2010) who showed the competitiveness of the proposed algorithm. This randomization

is performed in the constructive phase using a probability distribution for selecting the

nodes to merge. By doing so, every time the heuristic is executed, a different solution

is returned that may outperform the best solution obtained so far. Therefore, the main

difference of the randomized version of the savings heuristic is that it does not always

pick the first position in the savings lists. Moreover, the biased adjective is added in

such a way that the probability of selecting the nodes is not uniformly distributed but

biased, contrary to greedy proposals. These biased randomized processes rely on the

use of the geometric probability distribution, which is characterized by a single and

bounded parameter (p). Actually, when p becomes closer to 1, the greedy behaviour of

the heuristic is retrieved. Being an approach with few parameters, the algorithm does

not require fine-tuning processes, which tend to be time consuming. The Figure 1 shows

the flowchart of the proposed algorithm.

Given that we have to decide on the value of the aforementioned parameter (p), a

learning mechanism for dynamically setting the value is implemented. Initially, we set

the value at 0.2 as it is shown values belong to the (0.05, 0.25) interval provide a good

performance of the algorithm (Juan et al., 2010). However, instead of using the same

parameter value for all iterations we update it according to the results we are obtaining.

We set the threshold for updating p at 5%. It means that if the current iteration gives

a solution at least 5% worse than the best solution achieved so far, then the parameter

value p is updated in the same proportion. For instance, consider the Table 2 in which we

have a best solution of 100 obtained with parameter value of 0.2 and a current solution

of 110 at iteration k. As our new solution is 10% worse than the best one, we will

change the parameter value to 0.22 and 0.18 (± 10%) for our next two iterations (k+1

and k+2). We now look into those two new solutions and three different outcomes are

possible.
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Figure 1: Biased-randomized savings algorithm.

Table 2: Numerical example on the application of the learning mechanism.

Before iteration k

Best solution= 100

p = 0.2

Iteration k

Current solution= 110

p = 0.2

Case A Case B Case C

Iteration k+1

Current solution= 115

p = 0.22

Iteration k+1

Current solution= 102

p = 0.22

Iteration k+1

Current solution= 115

p = 0.22

Iteration k+2

Current solution= 98

p = 0.18

Iteration k+2

Current solution= 104

p = 0.18

Iteration k+2

Current solution= 120

p = 0.18

Before Iteration k+3

Best solution= 98

p = 0.18

Before iteration k+3

Best solution= 100

p = 0.2

Before iteration k+3

Best solution= 100

p = 0.253 → p = 0.25

Before iteration k+4

Best solution= 100

p = 0.187

• Case A: a new best solution is achieved from one or both of those two iterations.

Then for the next iteration it is considered the parameter value associated to the

best solution obtained so far.

• Case B: no improvements are made and threshold is not exceeded. Then consider

the previous solution and the initial parameter value.
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• Case C: no improvements are made and threshold is exceeded. Then take the

solution closest to the best solution (i.e. 150) and update the parameter value

properly (± 15%). Additionally, if the value of the parameter lays out of the

previous interval (0.05, 0.25), then it is used the closest value in the interval. Later,

the process continues.

5. Experimental results

5.1. Parameter setting

Augerat et al. (1995) set A instances are used as database because its wide implemen-

tation in which coordinates are random points in a [100, 100] grid and demands are

generated from a uniform distribution U(1,30) (Uchoa et al., 2017; Faulin et al., 2011).

Vehicles are defined as a standard EURO V 26-40 truck, i.e. Q = 26 and curb weight =

14; for parameter setting, based on Ecotransit estimations (Knörr et al., 2011). Since up-

stream energy consumption is taken into account, conversion factors referring to WTW

are used as shown in Table 3. A standard desktop with an Intel® Core™ i5- 3570 CPU

@ 3.40 GHz and 8GB RAM was used to run all the experiments with a time limit set at

120 seconds.

Table 3: Conversion factors for tank to wheel (TTW) and considering upstream energy consumption- well

to wheel (WTW).

TTW WTW

MJ/l diesel 35.86 42.68

gr NOx/l diesel 6.79 8.25

gr NMVCO/l diesel 0.12 0.93

gr SO2/l diesel 0.01 1.08

gr PM/l diesel 0.11 0.16

kgCO2e/l diesel 2.67 3.24

With the following estimated diesel fuel (liters) consumption function per kilometer

based on payload, where parameters φe and φ f have been replaced by their real values

according to the aforementioned vehicle.

φ= 0.2364+0.15P/26;0≤ P ≤ 26 (7)

The green tax is set through the economic valuation of air pollution and GHG de-

scribed in the Table 1 of Section 3. The computation is shown in Table 4.
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Table 4: Details of computation of parameter Ct .

Pollutant kg emitted per liter Price per kg (EUR) Total

NOx 0.00825 12.61 0.1040

NMVCO 0.00093 1.73 0.0016

SO2 0.00108 12.03 0.0130

PM 0.00016 47.43 0.0076

CO2e 3.24000 0.11 0.3564

Total (Ct ) 0.4826

Figure 2: Example of area allocation corresponding to the instance A-n45-k6.

With respect to the cost parameter related to the internal costs, (Cd), it corresponds

to the traditional distance-based VRP in which a cost parameter of 1.15 EUR/km has

been applied. This value is considered appropriate for an average articulated truck that

operates in Spain (Spanish Ministry of Transportation, 2016). Green tolls are set at 0,

10 and 30 for Cl
v, Cm

v , and Ch
v respectively. We consider those values appropriate in or-

der to significantly influence driver behaviours. Nevertheless they are in line to those

proposed in the EU for the Eurovignette (European Union, 1999a). Moreover, for our

experiments, the nodes have to be assigned to one of the proposed environmental area:

low, medium, and high. That process is executed for all instances in such a way that

it guarantees that (i) the depot is always in the low environmental quality area, (ii) low

environmental quality area represents 50% of the total area, (iii) medium environmental

quality area represents 25% of the total area and, (iv) high environmental quality area

represents 25% of the total area. The detailed description of the process is as follows.

Firstly, the centre of gravity is computed with all the customers. Secondly, the perpen-

dicular line at centre of gravity resulting from linking the depot to the centre of gravity

is set as the border for the low environmental quality area that the depot belongs to.

Thirdly, the other region is also divided into two subregions, following the line from

linking the depot to the centre of gravity. Finally, the region with fewer customers is set

as high environmental quality area and the other is set as medium environmental qual-
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ity area. If there is a tie in customers, areas are randomly assigned. As an illustrative

example, the Figure 2 shows the area allocation corresponding to the instance A-n45-k6.

5.2. Results

Detailed results are depicted in the Tables 5-8 considering the implementation of the

green taxes (Table 5), green tolls (Tables 6 and 7) and both at the same time (Table 8).

The structure of the instances is A-nX-kY where X is the number of nodes and Y is the

number of vehicles available, i.e. maximum routes (Augerat et al., 1995). All tables

have same structure. The first block contains the values corresponding to the traditional

approach, i.e. the objective function is minimizing the internal costs (IC). Information

about external costs (EC) was also saved when solving and it is shown in that approach.

Finally, FC accounts for the full costs of operation; that is, including internal and ex-

ternal costs. The second block corresponds to the approach which includes EC; that

is, objective function is minimizing the FC. Finally, a difference block is reported to

compare the approaches.

Table 5 details the results when EC are included as green taxes. On average, includ-

ing green taxes would lead to a reduction of 26.34% of external costs paid. That fact

is achieved by increasing 1.57% the internal costs invoice. All in all, a reduction of

1.62% in FC is reached. Reasons behind such a reduction have to do with a much better

utilization of vehicle load as well as a smarter way to do the deliveries. This is achieved

by delivering high loads sooner in order to drive higher distances with a lighter vehicle.

Particularly interesting is the case of instance A-n54-k7 where a huge reduction in EC is

achieved by slightly increasing the IC. That suggest that in some cases there exist strong

possibilities of reducing EC with simply taking them into account when optimizing. In

general, those opportunities arise in bigger instances.

Table 6 depicts the results when implementing EC as green tolls. In that case a re-

duction of 14.38% in EC can be achieved, again slightly increasing the IC. Nevertheless,

the effect on FC is lower than in the case of green taxes. Highly interesting is the in-

formation referred in the Table 7 in which H, M, L state for the fuel consumed on the

areas of high, medium and low environmental quality. A last column (T) is the total

fuel consumption within the three areas. Those results suggest the application of green

tolls would lead to a reduction in the fuel consumed, i.e. emissions, in the high environ-

mental quality area and an increase in the other two areas. On average, it is obtained a

fuel consumption reduction of 2.84% in the high quality area and 0.37% in the medium

quality area against an increase of 17.99% in the low environmental quality area. How-

ever, that also means that an increase in the fuel consumption is requested. Note that the

behaviour of the medium quality area is irregular and it is not guaranteed a reduction in

fuel consumption in that area as a consequence of implementing green tolls.

Finally, Table 8 combines the result of applying green taxes and green tolls as EC. As

can be observed, an increase in IC of 1.23% is borne for reducing a 17.56% and a 7.52%

the green taxes and green tolls costs, respectively. This finally led to a reduction of
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1.49% in the FC. Note that those figures are intermediate values to the one obtained

when individually implemented the green taxes and the tolls. However the effect on

FC is not so penalized and a reduction on fuel consumption (i.e. emissions) is obtained,

contrarily to the implementation of just green tolls. At the same time, given the reduction

of the green tolls, it is also gained a redistribution of fuel consumption from the highest

environmental quality area to poorer ones.

6. Conclusions and future research

The consideration of external cost of routing is of utmost interest in present-day society

that is increasingly suffering from air pollution, among other externalities. In this sense,

literature about transportation externalities has mainly focused on achieving the greenest

solution, usually omitting the economic implications of those approaches. However,

they are both sides of the same coin and the treatment of environmental and economic

objectives as competing variables would lead to a myopic solutions. For that reason,

this article considers the internalization of external costs within the economic structure

of the company. Thus, not only the traditional approach of distance-based internal costs

of routing is taken into account but also the external costs are used as the objective

function: that is, minimization of the full costs. Two protocols of internalizing are

further analysed and discussed: green taxes and green tolls.

The effect of implementing green taxes is doubtless. In one hand, behaviour of com-

panies when internalize their external costs through a green taxes significantly changes.

That means that they plan a different route in order to minimize their full costs. On the

other hand, this change allows for a noticeable reduction on fuel consumption, i.e. emis-

sions. Green tolls effects are rather limited. Even though it also contributes to a change

in the behaviour of the companies, it is not achievable a reduction in emissions. Instead,

an increase and a redistribution of emissions within different environmental areas are

obtained. However, those insights are pretty interesting from the policy maker’s point

of view since it is possible to transfer emissions from cherished environmental areas to

a valueless ones. This is particularly applicable to protected areas such as national parks

or high value landscapes. Through combining both mechanisms, an intermediate point

is reached. That is, it is possible to change the delivery planning routes in order to make

them greener, in the sense that a reduction of fuel consumption is achieved. Moreover,

it is possible to obtain fairer scenarios, in the sense that emissions are transferred from

high quality environmental areas to poorer ones; and economically supported, in the

sense that a real cost function is minimized.

Many limitations arise as a consequence of the assumptions made, though. Firstly,

the way fuel consumption is calculated can be fairly enriched with many other factors

such as speed, road gradient, and so on. Secondly, parameters for the green taxes and

green tolls can be also enchanted and plenty of sensitivity analysis can be performed in

that direction. Finally, our results and conclusions are structured within a capacitated
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vehicle routing problem and may be not valid in any other variant. Therefore, those

limitations make the base for the future research lines: richer variants of the VRP, more

exhaustive fuel consumption estimation and deeper analysis in the parametrization.
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A probabilistic model for explaining the points

achieved by a team in football competition.

Forecasting and regression with applications to

the Spanish league

Emilio Gómez-Déniz1, Nancy Dávila-Cárdenes1

and José Marı́a Pérez-Sánchez2

Abstract

In the last decades, a lot of research papers applying statistical methods for analysing sports data

have been published. Football, also called soccer, is one of the most popular sports all over the

world organised in national championships in a round robin format in which the team reaching the

most points at the end of the tournament wins the competition. The aim of this work is to develop

a suitable probability model for studying the points achieved by a team in a football match. For this

purpose, we built a discrete probability distribution taking values, zero for losing, one for a draw

and three for a victory. We test its performance using data from the Spanish Football League (First

division) during the 2013-14 season. Furthermore, the model provides an attractive framework

for predicting points and incorporating covariates in order to study the factors affecting the points

achieved by the teams.

MSC: 62J02, 62J20, 62F15.

Keywords: Covariate, football data, forecasting, regression, sport statistics, truncated distribution,

weighted distribution.

1. Introduction

Football or soccer sparks interest not only among its supporters or fans, but has also

become one of the most profitable industries, with a significant economic impact in

infrastructure development, TV rights, sponsorships and transfers of players. Accord-

ing to Marian Otamendi, director of the World Football Summit, the international event

of the football industry, gathering the most influential professionals, football could be-

come the 17th largest world economy. Beyond the game, the growth in revenues and
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the worldwide interest in football prove a successful and lucrative industry in which the

aggregate revenue for the top 20 Money League clubs rose 6 percent to 7.9 billion e in

2016/17 (from Deloitte Football Money League 2018). Therefore, football and money

go hand in hand and it is also interesting to see, as a simple example, how the emergence

of the Chinese Super League and its financially and politically powerful clubs impact

on the established European football business order.

Focusing on the game itself, a football competition is played under two basic types of

tournaments around the world, the round robin and the knock-out. In the first one, each

team plays against each opponent twice in home and away. The possible outcomes are

win, draw or loss and the teams receive three, one or none points respectively depending

on the result. At the end of a season, the team with the largest number of points wins

the championship. This sport has become a multi-billion dollar business, where tactics

are basic to the game and with many styles and playing formations available (see for

example, (Brillinger, 2008)). Statisticians started to create models to analyse the several

aspects involved in a football match, from predicting the outcome of soccer games to

determine the best playing strategies, see Dı́az and Núñez (2010) and Louzada, Suzuki

and Salasar (2014), among others. According to Karlis and Ntzoufras (2000), research

in soccer statistics can be divided into three main categories. The first one models the

outcome of a game what can be used for ranking soccer teams and it may be extended to

quantify the home effect. The second one investigates models for predicting about the

number of goals scored by each team, and the third one concentrates in modelling other

characteristics of the game. As pointed out by Rue and Salvesen (2006), the outcome

of a soccer match depends on many factors, among these are: the home-away ground

effect, the effect of injured players, psychological effects, etc. A good knowledge about

these factors only determines the result up to significant, but not too dominant, random

components. Other papers have focused on modelling football outcomes through the

number of goals scored as Karlis and Ntzoufras (2003) who made use of the correlation

of the goals scored by the two teams. Also, Rue and Salvesen (2006) predicted the

outcome using a Bayesian methodology, whose predictive accuracy is better than other

techniques. Finally, Baio and Blangiado (2010) predicted football results making use of

a Bayesian hierarchical model.

The method for assigning three points for a win, no points awarded to the losing team

and one point assigned to each team if the game ends with a draw, is a standard scoring

system used in many sports leagues and tournaments, especially in football, field hockey,

the rugby union, ice hockey, among others. However, the scoring system has changed

over time. Many leagues and competitions originally awarded two points for a win and

one point for a draw, before switching to the three points for a win system. The increase

in rewards for a win from two to three points was adopted in 1995. Hon and Parinduri

(2016), using regression discontinuity design as the empirical strategy, did not find ev-

idence that the three-point rule makes games more decisive, increases the number of

goals, or decreases goal differences, they found some evidence that the three-point rule

increases the second-half goals of the losing first-half team. In this paper, far from pre-
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Figure 1: Index of dispersion for the different teams in the Spanish League.

dicting football results or analysing the effect of the scoring system in the results, we

consider soccer matches played in a league in which the teams play against each other

twice (home and away) where many explanatory variables may influence the result of a

forthcoming soccer match. In this context, we analyse the factors that could affect the

points achieved by a football team using data from the Spanish League during the 2013-

2014 season. A similar analysis could be done to other leagues and sports for which a

data base were available.

Empirical analysis shows that the sequence of points for teams with a lot of points,

and therefore fighting for the title of the competition, is characterized for being under-

dispersed (variance lower than the mean) while the teams with less points at the end

of the competition show over-dispersion (variance larger than the mean). Let X be

the random variable which gives us the sequence of points achieved by a team in a

competition. The index of dispersion is defined as ID = var(X)/E(X). This value is

represented in Figure 1 for the twenty teams of the Spanish Football League at the end

of the competition in 2013-14 season. As we can see, this index is lower than 1 for the

five best teams of the competition while is larger than 1 for the worst teams.

In this work, we present a probability model to analyse the points achieved by a

team in a football match competition. That is, we propose a probability model which

takes values in the set {0,1,2,3} and with zero mass probability in x = 2. Furthermore,

the model accommodates for over-dispersion and under-dispersion and it is suitable

for incorporating covariates. The proposed model is simple and the estimation of the
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parameters is easily obtained. Therefore, it is a candidate for fitting data sets of points

in football match competitions.

The rest of this paper is organised as follows. The main model together with some

of its most important properties are developed in Section 2. In Section 3, an applica-

tion to the Spanish Football League in 2013-14 season is given. Finally, summary and

discussion of the results are shown in the last Section.

2. Probabilistic model for points

The Poisson distribution represents a simple model as a starting point to construct a

probability mass function (pmf) in the scenario we are considering. In football sport the

number of goals scored by each team in a match has been assumed to follow a Poisson

distribution by numerous authors. Some examples in which the Poisson distribution has

been used to predict football results are Karlis and Ntzoufras (2000), Greenhough et al.

(2002) and Saraivaa et al. (2016). However, to our knowledge, the distribution of the

number of points, which is a discrete variable, has not been formally treated. Let us to

start with the classical Poisson distribution whose pmf is given by,

fθ(x) =
θx exp(−θ)

x!
, x = 0,1, . . . , θ > 0. (1)

We need a random variable X which takes only 4 values, to say 0,1,2 and 3 and with

the constraint that for x = 2 the mass of probability should be zero. Therefore, it has a

two-parameter pmf of the form: P(X = 0) = 1− p− q, P(X = 1) = q, P(X = 2) = 0

and P(X = 3) = p, with 0 < p < 1, 0 < q < 1, p+ q < 1. The “probability generating

function (pgf)” is g(t) = 1− p− q+ qt + pt3 and E(X) = q+ 3p. In order to simplify

the model, we attend to the particular case p = θ3κ(θ) and q = θκ(θ), where

κ(θ) =
6

24+ θ(6+ θ2)
. (2)

Thus, the expression

gθ(x) = κ(θ)(x−2)2θ
x

x!
, x = 0,1,3 (3)

defines a genuine pmf with support in X = {0,1,3}. Recall that for a distribution with

pmf fθ(x), X with support in X, depending on a vector of parameteres θ ∈ Θ, we can

construct a new distribution with pmf (see for instance Fisher, 1934, Patil and Rao, 1978

and Harandi and Alamtsaz, 2013) using a weighted function, w(x)> 0,

gθ(x) =
w(x)

E fθ(X)(w(X))
fθ(x), (4)
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Figure 2: Probabilities of victory, draw and defeat depending on θ.

where it is assumed that E fθ(X)(w(X))< ∞, and w is a weighted function depending on

X . Now, it is easy to see that the pmf given in (3) is a weighted version of the pmf given

in (1) by taking w(x) = (x−2)2 and restricting (truncating) its support to take only the

values 0, 1 and 3. Therefore we are using truncation and weighting, where the latter can

be viewed as a particular case of the first (see Johnson, Kemp and Kotz, 2005, p. 63 for

details).

Figure 2 shows the graph of the values of p, q and 1− p− q, i.e. the values of the

probability of victory, draw and defeat, in the definition domain of θ parameter.

It can be easily proved that the following chains of inequalities are satisfied among

the probabilities of the three events that are intended to be modelled through the pmf

given in (3):

0 < θ < 2.45 : Pr(X = 0)> Pr(X = 1)> Pr(X = 3),

2.45 < θ< 2.88 : Pr(X = 0)> Pr(X = 3)> Pr(X = 1),

2.88 < θ< 4 : Pr(X = 3)> Pr(X = 0)> Pr(X = 1),

θ> 4 : Pr(X = 3)> Pr(X = 1)> Pr(X = 0).

Therefore, the teams that have the expectation of playing Champions League will be

characterized by the achievement of points that make the θ parameter greater than 4. In

contrast, teams that only aspire to maintain the category are characterized by θ values

less than 2.45. Hence, the θ parameter can be interpreted as the value that will position

a team in the four areas in which a football competition can be divided: Champions,

Euroleague, no-relegation and relegation zones.
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2.1. Statistical properties

The moments can be obtained from the pgf. In particular, the mean and second order

moment about zero are given by

E(X) =
κ(θ)

2
θ(2+ θ2), (5)

E(X2) =
κ(θ)

2
θ(2+3θ2). (6)

Using (5) and (6) we get the variance, given by

var(X) =
κ(θ)2

3
2θ
[

6+ θ2(9+ θ)
]

(7)

and some computations provide the index of dispersion, which is

ID =
var(X)

E(X)
=

4κ(θ)
[

6+ θ2(9+ θ)
]

3(2+ θ2)
. (8)

Figure 3 shows the ID given in (8) for some values of the support of the parameter θ.
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Figure 3: Index of dispersion of the probability model depending on θ.



Emilio Gómez-Déniz, Nancy Dávila-Cárdenes and José Marı́a Pérez-Sánchez 101
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Figure 4: Plot of the pmf in (3) for selected values of the parameter θ.

It is simple to verify that the pmf accommodates over-dispersion (variance larger than

the mean) when 0.250081 < θ< 3.54676 and under-dispersion when 0 < θ< 0.250081

and when θ > 3.54676. Furthermore, the maximum value of the ID is reached for θ =
1.68365, taking the value of 1.544.

Furthermore, the relation connecting the cumulants k[r] and the moments about the

origin µr can be obtained using expression (8) in Noack (1950). Relations between

factorial-cumulants and cumulants can also be given using results in Khatri (1959). See

also Johnson et al. (2005, p. 77).

Figure 4 shows the probability mass function of the proposed model for different

parameter values.

In view of this figure, a large value of the parameter θ gives more mass of probability

to the value x = 3, and then to the victory, which is consistent with the values that give

rise to an index of dispersion lower than one. For the teams that finally remain in the

leaderboard in the highest positions, the dispersion index is lower than one, as shown

in Figure 1. Additionally, for values of the parameter between 0.25 and 3.5 (such as

θ = 0.3 and θ = 1) the distribution assigns more weight to the values x = 0 and x = 1,

therefore it represents teams which have obtained few victories and, in consequence,

these teams will remain in the lagging positions at the end of the season.

The cumulative distribution function can be written in terms of the exponential inte-

gral function given by En(z) =
∫ ∞

1
exp(−zt)/tn dt, and it results
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Pr(X ≤ x) =
κ(θ)

x!

[

θx+1(3− x− θ+(4+ θ(θ−3))exp(θ)Eθ(−x)
]

.

2.2. Parameter estimates

In this subsection, two estimation methods for estimating the parameter of the distri-

bution are analysed. First, the method of moments for which let x̃ = (x1,x2, . . . ,xn) be

a random sample obtained from model (3). Then, using (5) it is simple to see that the

estimator of θ is the real solution of the equation

θ3(3− x̄)+6θ(1− x̄)−24x̄ = 0, (9)

where x̄ is the sample mean.

Second, the maximum likelihood estimation that it will be used here and where the

θ estimator is easy to derive. The log-likelihood function is proportional to

ℓ(x̃;θ) ∝ n logκ(θ)+nx̄ logθ. (10)

The likelihood equation obtained from (10) results

θκ′(θ)+ x̄κ(θ) = 0,

and provides the unique maximum likelihood estimator of θ, which is the same solution

of the equation given in (9). Thus, the moment and the maximum likelihood estimators

of the parameter θ are the same.

A little algebra provides the Fisher’s information matrix, given by

I(̂θ) = E

[

−
d2ℓ(θ; x̃)

dθ2

]

θ=̂θ

=
2nκ(̂θ)2

3̂θ

[

6+̂θ2(9+̂θ)
]

,

where var(̂θ) =
[

I(̂θ)
]−1/2

. The discrete distribution proposed in this work satisfies the

regularity conditions (see Lehmann and Casella, 1998, p. 449) under which the unique

maximum likelihood estimator θ̂ of θ is consistent and asymptotically normal. They are

simply verified in the following way. Firstly, the parameter space {0,1,3} is a subset

of the real line and the range of x is independent of θ. Additionally, the parameter θ is

identifiable, that is, if θ1 6= θ2 then ∃x ∈X such that gθ1
(x) 6= gθ2

(x). By using expression

(10) it is easy to show that E( ∂ loggθ(x)
∂θ

) = 0. Now, because,
∂ 2ℓ(x̃;θ)

∂θ2

∣

∣

∣

θ=̂θ
< 0, the Fisher’s

information is positive. Finally, by taking M(x) = ∂ 3 loggθ(x)

∂θ3 + 1, a function which may

depend on θ, we have that

∣

∣

∣

∂ 3 loggθ(x)

∂θ3

∣

∣

∣
≤ M(x) and E(M(x)) is finite. Therefore the

maximum likelihood estimator ̂θ of θ is consistent and asymptotically normal and
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√
n(̂θ− θ)

d
−→ N(0,I−1(̂θ)),

where N(·, ·) represents the normal distribution. For details about this assert, the reader

can consult Corollary 3.11 in Lehmann and Casella (1998). Due to this, we conclude

that the maximum likelihood estimator of θ is asymptotically efficient.

2.3. Including covariates

In this section, we investigate the covariates that may affect the number of points achieved

by the teams playing in home (and later away). Let X be a response variable, and let yyy

be an associated k×1 vector of covariates. For the sake of convenience, we rewrite (3)

in another form, so that covariates may be introduced into the model. By equating (5)

to µ we get the same equation as the one given in (9). Now, by using Cardano’s method

of solution of the cubic polynomial equation we get θ=
∑2

i=1 Ri, where

Ri =
3

√

√

√

√

(−1)i

√

4

(

µ

µ−3

)2

+

[

1−µ

3(3−µ)

]3

−
2µ

µ−3
.

The solution for the θ ≡ θ(µ) parameter given above can also be written in another

way.1 A common specification for the mean parameter µ is in terms of exponential

functions, ensuring the non-negativity of this parameter. That is,

µi =
3exp

(

βββ⊤yyy
)

1+ exp
(

βββ⊤yyy
) , (12)

where yyy is the vector of covariates and βββ= (β1, . . . ,βq)
⊤ is an unknown vector of regres-

sion coefficients. Expression (12) ensures that the mean is a positive-valued function

with support in [0,3]. Now, (3) is written as

gθi
(xi) = κ(θ(µi))(xi−2)2 θ(µi)

xi

yi!
, i = 1,2, . . . ,n,

1. The closed expression for the θ parameter results

θ ≡ θ(µ) =

3
√

2
[

3
√

2(3+µ(µ−4))−ψ(µ)2/3
]

(µ−3)ψ(µi)1/3
,

where

ψ(µ) = 6µ(µ−3)2 +
√

2(µ−3)3(µ(3+19µ(µ−3))−1). (11)
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where again κ(θ(µi)) is as in (2). The log-likelihood of the model with covariates is

proportional to

ℓ(x̃;βββ) ∝

n
∑

i=1

[log(κ(θ(µi)))+ xi logθ(µi)] .

The normal equations which provide the maximum likelihood estimates of the pa-

rameters β j, j = 1, . . . ,q, are

∂ℓ(x̃;βββ)

∂β j

=
n
∑

i=1

1

κ(θ(µi j))

∂

∂β j

κ(θ(µi j))+
n
∑

i=1

xi j

θ(µi j)

∂

∂β j

θ(µi j) = 0, (13)

for j = 1,2, . . . ,q. The second partial derivatives can be seen in the Appendix Section.

Maximising the log-likelihood function (13) with respect to β j ( j = 1, . . . ,q) is sim-

ple via the scoring algorithm or Newton-Raphson iteration. The solutions of the nonlin-

ear equations shown in the Appendix provide the maximum likelihood estimates of these

parameters. However, these equations cannot be explicitly solved and the solutions may

be obtained either by maximising the log-likelihood function or by numerical methods.

Different initial values of the parametric space can be considered as a seed points. In

this study, the FindMaximum function of Mathematica software package v.11.0 (see for

instance, Wolfram, 2003 and Ruskeepaa, 2009) was used, although the same results can

be obtained by other methods, such as Newton, PrincipalAxis or QuasiNewton (all of

which are available in this package), or by other packages such as R, Matlab or Win-

Rats. Finally, the standard errors of the parameter estimates were obtained by inverting

the Hessian matrix.

2.4. Marginal effects

The marginal effect reflects the variation of the conditional mean of X due to a one-unit

change in the j-th covariate, and is calculated as

∂µi

∂β j

= y jµi

(

1−
µi

3

)

,

for i = 1, . . . ,n and j = 1, . . . ,q. Thus, the marginal effect indicates that a one-unit

change in the j-th regressor increases or decreases the expectation of the points, pointing

out that it depends on the sign, positive or negative, of the regressor for each mean. For

indicator variables such as yk, which takes only the value 0 or 1, the marginal effect

in term of the odds-ratio is exp(β j). Therefore, the conditional mean is exp(β j) times

larger if the indicator variable is one rather than zero.
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3. Numerical application

In this section, we consider the data corresponding to the points obtained by the 20

teams participating in the First Division of the Spanish Football League in the 2013-14

season. This section is divided into two parts. First, we analyse the predictive capacity

of the proposed model without including covariates. So, we study the expected points

of the whole season and the expected points and positions based on the first 19 matches

of the season (the middle of the competition). Second, we try to identify the significant

factors which can explain the expected number of points of the home team by including

covariates in the analysis.

3.1. Number of points without covariates

1. Prediction of the final points for the home teams. Figure 5 shows the observed and

fitted accumulated points for home teams. The estimated value of the θ parameter

is 3.370 and the standard error is 0.131.

Observed Expected

050100150 50 100 150

0

1

3

Home

Figure 5: Observed (left) and fitted (right) home points.

2. Prediction of the final points based on the first 19 match-days (190 matches). Fig-

ure 6 shows the accumulated observed and expected points based on the first 19

match-days.
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Figure 6: Accumulated observed points (thin line) and expected (dashed line) based on the first 190

matches given the pmf (3) in the Spanish League.

3. Prediction of the position of the teams at the end of the competition based on the

first 19 match-days of the competition. Table 1 shows the estimated value of θ,

the standard error (SE), the value of the maximum of the log-likelihood and the

estimated µ parameter. Figure 7 illustrates the prediction of the positions of the

teams at the end of the competition. The maximum likelihood estimated value of

the θ parameter and the index of dispersion appears between parenthesis.
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Figure 7: Prediction based on the first 19 match-days and real final position of the teams at the end

of the competition.
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Table 1: Estimations based on first 19 match-days.

̂θ S.E. ℓmax µ̂

3.269 0.179 −199.706 1.584

3.2. Number of points including covariates

First, we briefly describe all the variables that have been considered in the study in order

to analyse the factors involved in the total points achieved by a team in a competition,

we consider four groups of variables. Those related to the statistics of the game, one

group of variables directly associated to the match, non-sport variables, and finally those

related to the referee. Among all the considered variables in the different groups, the

following were chosen for the econometric models. In the game statistics category,

the shots on target, for both home and away teams were labeled as “HST” and “AST”,

respectively. It seems to be reasonable that the number of shots on goal are involved

in the result of a match. The number of fouls for both teams were “HF” and “AF”.

Finally, the yellow and red cards labelled as “HYR” and “AYR” for the home and away

team, were also considered. One match variable was introduced and was introduced and

defined as “DERBY”, which represents a match played between teams from the same

city or region, or between the strongest teams of the competition. This variable takes

the value 1 if the match respond to a derby and zero, otherwise.

Variables considered as non-sport were those concerning the team’s budgets, defined

as the logarithm value of the home team budget, “BUDH”, and “BUDA” the logarithm

of the away team budget. Finally, variables related to the referee were the international

referee experience, “INTERNATIONAL”, which was scored as 1 if the referee had such

experience, and 0 otherwise, and the logarithm of the number of years of experience in

the Spanish first division, namely as “AGEXP”. The logarithm of the referee’s age is

denoted by “AGEREF”. A brief description of these variables is shown in Table 2.

In order to check the goodness of the fitting, we have calculated the following in-

formation criterium and statistics. The Akaike information criterium (AIC), the mean

absolute error (MAE) and the root mean square error (RMSE) statistics are obtaining by

AIC = 2k−2ℓmax,

MAE =
1

n

n
∑

i=1

|yi − ŷi|,

RMSE =

(

1

n

n
∑

i=1

(yi− ŷi)
2

)1/2

,

Raw residuals = yi − ŷi,
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where k is the number of parameters of the model and ℓmax is the maximum value of the

log-likelihood function.

Table 2: Description of the variables.

Variable Description

Game statistics

HST Home team shots on target

AST Away team shots on target

HF Number of home team fouls.

AF Number of away team fouls.

HYR Home team yellow and red cards.

AYR Away team yellow and red cards.

Match variable

DERBY Match played between teams from the same city or region or between the

strongest teams in the league.

Extra games

BUDH Logarithm of home team budget

BUDA Logarithm of away team budget

Referee

INTERNATIONAL Scored as 0 if the referee has no international experience and 1 if he does.

AGEXP Logarithm of years of experience in the first division

AGEREF Logarithm of referee’s age

The results both under the standard linear regression model and under the proposed

regression model are shown in Table 3. As we expected, the home and away shots on

target are significant factors with the expected signs and at the 1% level of significance.

Furthermore, the OLS model only detects another significant factor, namely, the home

team’s budget at the 5% significance level. The AIC is equal to 1194.69 and the MAE

and RMSE statistics are 1.008 and 1.182, respectively. The estimations of the proposed

model, in addition to finding the same results as the previous one, detect an important

new factor concerning the referee subject: the fact that a referee is international reduces

the expected points of the home team at the 10% significance level. In this sense, we

can see that the “home effect” is lower in those matches in which there is an interna-

tional referee. The AIC for the proposed model is 691.218 and the MAE and RMSE

statistics are 0.921 and 1.115, respectively, i.e, these values are notably lower than the

ones obtained for the standard linear model.

Figure 8 shows the raw residuals of the OLS and the proposed models (left plot)

and box-and-whisker chart of the raw residuals (right plot). Both plots remark a greater

dispersion of the OLS residuals.
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Table 3: Estimation results for the OLS and the proposed regression models.

OLS Proposed model

Variables β̂ Standard Error p-value β̂ Standard Error p-value

Intercept 2.286∗∗ 1.156 0.049 2.153 1.822 0.238

DERBY 0.139 0.164 0.397 0.203 0.292 0.487

HST 0.130∗∗∗ 0.024 0.000 0.249∗∗∗ 0.047 0.000

AST −0.175∗∗∗ 0.028 0.000 −0.307∗∗∗ 0.052 0.000

HF 0.004 0.016 0.816 −0.012 0.028 0.657

AF 0.014 0.015 0.371 0.015 0.027 0.565

HYR −0.0652 0.045 0.151 −0.115 0.077 0.139

AYR −0.039 0.042 0.345 −0.059 0.072 0.409

BUDH 0.129∗∗ 0.072 0.075 0.235∗ 0.138 0.089

BUDA −0.111 0.069 0.109 −0.166 0.117 0.156

INTERNATIONAL −0.220 0.159 0.165 −0.519∗ 0.281 0.065

ACIENT 0.068 0.177 0.702 0.059 0.050 0.238

AGEREF −0.017 0.031 0.593 −0.047 0.043 0.276

AIC 1194.69 691.218

MAE 1.008 0.921

RMSE 1.182 1.115

x New model o OLS

x

x

x

x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x

x

x
x

x

x

x

x

x

x

x
x

x

x

x

x
x

x

x

x

x
x

x

xxx

x

x

x
x

x

x

x

x

x

x

x
x

x
x
x

x

x
x
x

x

x

x

x

x

x

x
x

xx

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

xx

x

x

x

x

x

x

x
xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

xx
x

x

x

xxx
x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

xxx
x

x

x
x
xx

x

x

x

x

x

x

x

x
xx

x

x

x

x

x

x

x

x

x
x

x

x

x

x

xx

x
x

x
x

xx

x

x

x

x

x
x

x
x

x

x

x

x

x
x
x
x
x

x

x

xx

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x
x

x

x

x

x

x

xx

x
x

x

x

x

x

x

x
xxx

x

x

x
x

x
x

x

x

x

x

x

x

x

x

x
x

x

x
x

x

x

x

x

xx

x

x

x
x
x

x

xx
x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
x

x

x

x

x

xx

x

x

xx

x

xxx

x

xx

x

xx

xx

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

xx

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oooo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o
ooo

o

o

o

o

o

o

o
o

o

o

o

o
o
o

o

o

o
oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

oo
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o
o

o

o

o

o

o
o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
oo

o

oooo
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o
o

o

o
o
o

o

o
o

o

oo

oo

o

o

o

o

ooo

o

o
o

o

o

o

o

o

o

o

o

oo

0 50 100 150 200 250 300 350

-2

0

2

4

Number of matches

ooo
o

oo

o

ooo

-2

0

2

4

6

Figure 8: Raw residuals and the box-and-whisker chart of the OLS (right)

and proposed (left) raw residuals.

Figure 9 illustrates the normal probability plot of the OLS residuals. As we can

observe, the residuals plot is approximately linear supporting the condition that the error

terms are normally distributed.

4. Discussion of results

In this study, we propose a new pmf for modeling the number of points achieved by a

home or visitor team in a football match. In this context, we have analysed the number

of points, firstly, without including covariates and, secondly, including this information.
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Figure 9: Probability plot of the OLS residuals.

The first part of the study includes estimation and prediction of the points achieved

by the teams without using covariates. We can observe that this model provides good

results except for some of the worst teams, i.e., the model fails only for two teams, Elche

and Osasuna. While Elche finally remained in the First Division, Osasuna relegated. The

second part focuses on the introduction of covariates. Several variables are considered

from the Spanish Football League (First division) during the 2013-14 season and two

sets of models are analysed. First, the home linear (standard) regression model. And

second, the home regression model proposed in this paper. The results obtained indicate

that the latter model produces better fits than the other standard model. In view of the

good results obtained in this case and in the estimation without covariates previously

studied, we believe the distribution given in (3) is appropriate for this data set.

Several factors, proposed in earlier studies, were considered relevant to the expected

number of points. Karlis and Ntzoufras (2000) considered the number of goals as an

indicator for the strength of a team and it can be used to determine the performance of

a team. Rue and Salvesen (2006) ignored data as number of near goals, corners or free

kicks and focused on the defending and attacking skills of each team. With the pro-

posed model, home and away team shots on target, which are in some way the attacking

strength, are the most significant factors considering the game statistics variables. With

respect to the coefficients of the budgets, the large budgets home teams have more ex-

pected points. Finally, a significant factor appears regarding the referee variable which

has not been significant in the previous models, namely, the international issue. Inter-

national referees have a negative (positive) relationship with the home (away) teams

indicating that this kind of referee is not influenced by the “home effect” of the match.

Quite the opposite, if there is an international referee in the match, the expected num-

ber of points increases (decreases) for the away (home) team. These findings support

those obtained in Pérez-Sánchez, Gómez-Déniz and Dávila-Cárdenes (2018) in which

the authors proposed a skewed logistic model for estimating the probability of an away

victory.
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To conclude, in this work, significant variables are obtained not only related to the

game itself, but also to the referees or even the economic potential of the teams. This

fact may be used by others actors around the sport of football as coaches or even book-

makers, who analyse all the available information as part of their bets.

Appendix

Second partial derivatives to get the Fisher’s information matrix are:

∂ 2ℓ(x̃;βββ)

∂β2
j

=
n
∑

i=1

∂ 2

∂β2
j

κ(θ(µi j))+
n
∑

i=1

xi j

θ(µi j)

[

∂ 2

∂β2
j

θ(µi j)−

(

1

θ(µi j)

∂

∂β j

θ(µi j)

)2
]

,

∂ 2ℓ(x̃;βββ)

∂β j∂βl

=
n
∑

i=1

∂ 2

∂β jβl

κ(θ(µi j))+
n
∑

i=1

xi j

θ(µi j)

[

∂ 2

∂β jβl

θ(µi j)−

(

1

θ(µi j)

∂

∂β j

θ(µi j)

)2
]

,

for j = 1,2, . . . ,q, l = 1,2, . . . ,q and j 6= l and the derivatives needed are the followings,

dκ(ϕ(µ))

dϕ(µ)
=−

36+18ϕ(µ)2

24+ϕ(µ)(6+ϕ(µ)2)
,

∂µi

∂β j

=
1

3
x jµi exp

(

β⊤xxx
)

,

dϕ(µi)

dµi

= ϕ(µi)

[

3
√

2
(

4−2µi −2/3ψ(µi)
−1/3ψ′(µi)

)

3
√

2
(

3−µi(µi −4)−ψ(µi)2/3
) −

ψ′(µi)

3ψ(µ)
−

1

µi −3

]

,

dψ(µi)

dµi

= µi

[

2(µi −3)+4µi+

√

2(µi −3)(µi −1)(2+19µi(µi −3))
√

µi (3+19µi(µi −3)−1)

]

.
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Abstract

Pearson’s chi-square test is widely employed in social and health sciences to analyse categorical

data and contingency tables. For the test to be valid, the sample size must be large enough to

provide a minimum number of expected elements per category. This paper develops functions for

regrouping strata automatically, thus enabling the goodness-of-fit test to be performed within an

iterative procedure. The usefulness and performance of these functions is illustrated by means

of a simulation study and the application to different datasets. Finally, the iterative use of the

functions is applied to the Continuous Sample of Working Lives, a dataset that has been used in

a considerable number of studies, especially on labour economics and the Spanish public pension

system.
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1. Introduction

Empirical studies require data samples to be representative of the target population with

respect to the principal characteristics. There are many papers on the issue of selecting

representative samples, including Ramsey and Hewitt (2005), Grafstörm and Schelin

(2014), Kruskal and Mosteller (1979a), Kruskal and Mosteller (1979b), Kruskal and

Mosteller (1979c), Kruskal and Mosteller (1980), Omair (2014). One way of determin-
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ing whether a sample is representative of a population is to use a goodness-of-fit test to

check whether the data fits the population distribution. The goal is to test whether the

sample data fits a distribution from a certain population. One procedure commonly used

is Pearson’s χ2 goodness-of-fit test. When the variables under study are grouped in given

categories or strata in the population, the data in the sample are organized in the same

way in order to apply this test. The strata are constructed so that the population is divided

into major categories that are relevant to the research interest. In each category the test

statistic compares the observed frequency in the sample with the expected frequency in

the theoretical or known population.

Pearson’s χ2 and the likelihood ratio test statistic G2 are arguably the two most

widely used statistics in contingency table analysis (see Cai et al. 2006). Both can

be used to test independence between categorical variables in contingency tables and

to test homogeneity to determine whether frequency counts are distributed identically

across different populations. These statistics may also be used to assess goodness-of-

fit in multivariate statistics such as in logistic regression (Hosmer et al. 1997, Hosmer

and Lemeshow 2000), log-linear modelling (Bishop, Fienberg and Holland, 1975, Fien-

berg 2006) and Latent Class Analysis (LCA) (Lazarsfeld and Henry 1968, Goodman

1974). Under some conditions, these statistics have an asymptotic chi-square distri-

bution, where the validity of the test results depends on a minimum size of expected

cell frequencies. As a rule of thumb, that number is established in practice as 5. It is

well known (Cochran 1952) that when some expected cell frequencies or probabilities

are small, their reference asymptotic distribution is not suitable for assessing p-values

or the size of the test. This problem arises frequently in social sciences, biomedical

and health sciences and psychometrics applications (Cai et al. 2006, Bartholomew and

Tzamourani 1999) with sparse contingency tables (Agresti 2002).

Delucchi (1983) reviewed the research conducted after the paper by Lewis and Burke

(1949) in an attempt to address the problems listed by them and to form recommenda-

tions regarding the use and misuse of the chi-square test. The various papers examined

by Delucchi (1983) regarding the problem of working with excessively small expected

frequencies recommend different minimum sizes depending on the type of test for all

the strata or for a percentage of them, with fixed values or values depending on the

number of categories, etc. Along the same lines, Moore (1986) and Wickens (1989) es-

tablished some criteria for the selection of the minimum size. Garcı́a Pérez and Nuñez-

Antón (2009) found, via simulation, that Pearson’s χ2 was sufficiently accurate and

only showed minor misbehaviour when table density was less than two observations per

cell for testing independence or homogeneity in two-way contingency tables. To solve

these limitations, various alternative approaches have been proposed in the literature.

One of them is to use resampling methods such as the parametric bootstrap to obtain

an empirical p-value (Lin, Chang and Pal, 2015, Bartholomew, Knott and Moustaki,

2011, Bartholomew and Tzamourani 1999, Collins et al. 1993). The use of resampling

methods has become increasingly popular given the power of today’s computers. Cai

et al. (2006) pointed out that resampling methods are not very practical from a compu-
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tational perspective given that in comparing the fit of different models the resampling

procedure must be repeated for each model. Moreover, Tollenaar and Mooijaart (2003)

showed that the validity of a bootstrap-based test depends critically on what statistic is

being bootstrapped. In particular, bootstrapping Pearson’s χ2 or the likelihood ratio test

statistic G2 does not provide immediate Type I error rate control under sparseness.

Other alternatives call for Yate’s continuity correction1 to be used (Yates 1934), ap-

plying exact tests such as Fisher’s exact test (Fisher 1935, Mehta and Patel 1983) to test

independence2, or trying to estimate the cumulative distribution function (CDF) of the

statistics (Tsang and Cheng 2006). One last proposal, which has proved very popular in

practice, is to pool or regroup cells to reach the desired minimum number of expected

frequencies. If the test is to be conducted just once and regrouping is the option chosen

(in spite of its limitations3), it could be carried out exogenously before the statistic is

computed.

However, tests can often be used repeatedly in successive studies, or more impor-

tantly there may be techniques that use a test in an iterative process. An example of

the latter would be to carry out sampling or subsampling (Pérez-Salamero González,

Regúlez-Castillo and Vidal-Meliá, 2017), including the goodness-of-fit test in mathe-

matical programming problems. Similar examples could be found (Marsaglia 2003) in

the analysis of random number generation processes, where tests have to be performed

a number of times or in the sequential analysis of goodness-of-fit for different models

using contingency tables. Therefore, if researchers choose to regroup the strata in order

to solve the failure on the minimum size requirement in the goodness-of-fit chi-square

test, automatic re-grouping procedures in statistical software would be very useful, es-

pecially when tests are applied sequentially.

The paper is organized as follows. Section 2 presents an example to motivate the

problem to be solved, and extensively analyse the software that carries out the Pearson’s

χ2 goodness-of-fit test in order to check whether there is any automatic regrouping in

the strata to satisfy the desired requirement of a minimum size. We conclude that, in

general, there is not. Section 3 shows the flowchart that inspired the development of

the proposed functions for regrouping the strata to satisfy the desired minimum require-

ment, independently of whether they are in the tails or in the middle. Section 4 shows

some simulation results to illustrate the performance of the procedure in terms of nomi-

nal significance levels under different settings. Section 5 presents three more examples:

one to illustrate the utility of the functions and to analyse the behaviour of the test in

different software packages, a second to illustrate the use of the regrouping functions

1. This correction reduces the numerical value of the test statistic, and hence weakens the power and significance
level of the test, making it overly conservative (Haviland 1990, Hirji 2006, Agresti 2002, Lydersen, Fagerland and
Laake, 2009).

2. Campbell (2007) and Kroonenberg and Verbeek (2018) compare and discuss the problem of selection from these
alternatives.

3. See for example Bosgiraud (2006) and Bartholomew and Tzamourani (1999) for an excellent discussion on this
issue.
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when it is necessary to estimate parameters of the distribution and finally, an example

that shows the iterative use of the regrouping functions in a mixed integer programming

framework. This is a real problem based on the Continuous Sample of Working Lives

(CSWL), a dataset widely used in numerous studies, especially on labour economics

and the Spanish public pension system. The paper ends with some concluding remarks

and further research proposals. In addition, we provide three appendices in the supple-

mentary material. The first appendix provides a summarized review of selected software

packages as regards whether they include Pearson’s χ2 goodness-of-fit test, or at least

functions that enable that test to be conducted. The second includes the mathematical

approach to the real problem explained in Section 5, i.e. the selection of the larger sub-

sample that verifies the goodness-of-fit χ2 test. The authors can be contacted to supply

the codes developed in Microsoft Excel 2016 and Microsoft Excel VBA (Visual Ba-

sic for Applications 7.1) and Mathematica4 that make automatic regrouping and the

correct application of the χ2 test possible.

2. Illustration of the problem and software review

The χ2 goodness-of-fit test approach can be found in any basic manual of statistical

inference. It is due to the pioneering work of Pearson (1900). It is a nonparametric test

which can be applied to categorical, discrete, and continuous random variables. The

statistic for the test is given by the following expression:

χ2 =
k

∑

i=1

(Oi −Ei)
2

Ei

, (1)

with Oi being the observed values and Ei the expected or theoretical values. For large

samples it is proved that this statistic is distributed under the null hypothesis as a χ2

with v = k − r − 1 degrees of freedom, where k is the number of categories or strata,

depending on how the population and the sample are organized, and r is the number

of parameters estimated using the observed data in the sample. The χ2 goodness-of-fit

test is carried out by comparing the sample value of the statistic with the corresponding

critical value obtained from the χ2 distribution with v degrees of freedom and a level α

of significance. If the test statistic is less than the critical value, then the null hypothesis

that the sample (observed values) has the same distribution as the population (expected

values) is not rejected. The test can also be used based on the p-value obtained from the

sample value of the statistic.

To illustrate the problem that we seek to address with our procedure, we propose the

following example that we call “No Moore rules.” In this example, the dataset does not

4. Mathematica is a registered trademark of Wolfram Research Inc. version 11.
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meet the rules indicated by Moore (1986) for the minimum size required to carry out the

χ2 goodness-of-fit test. Moore established a general minimum size of 1, but it should be

5 in 80% of the categories. As shown in Table 1, in this example the size of the expected

values is below 5 in 5 of the 10 categories, and below 1 in 3 of them. Moreover, there

are intermediate categories that do not satisfy the minimum size requirement, i.e. bins 6

and 7 with values lower than 5. The population distribution used is a multinomial with

probabilities as shown in the second column of Table 1.

Table 1: Example featuring “No Moore rules” conditions. Values for the goodness-of-fit χ2 test statistic,

degrees of freedom (df) and p-values are also reported.

Category Pop. prob.
Original Regrouped

Obs. Exp. Obs. Exp.

1 0.161926968 9 8.0963 9 8.0963

2 0.168545644 3 8.4273 3 8.4273

3 0.037262021 5 1.8631

4 0.162660577 10 8.1330 15 9.9961

5 0.015025858 1 0.7513

6 0.017927913 4 0.8964

7 0.109949741 3 5.4975 8 7.1452

8 0.099373226 5 4.9687

9 0.037554998 3 1.8777 8 6.8464

10 0.189773053 7 9.4887 7 9.4887

Total 1 50 50 50 50

22.5925 7.0503

df 9 6

p-value 0.007 0.217

χ2

There are problems in conducting the test in software packages in general, because

there is no automatic regrouping of the small size categories. The ways in which this

issue is treated in some programs are outlined in Appendix A in the supplementary ma-

terial so as to illustrate the response a potential user would have when carrying out this

test with this kind of data. Applying the automatic regrouping of strata with the proce-

dure developed in this paper as introduced in the next section and the custom functions

in Excel and Mathematica that we present in the supplementary material in Appendix

C, the data are regrouped into 6 categories. The last two columns of Table 1 show how

the categories are regrouped. Considering the 6 categories after regrouping, the sam-

ple value obtained for the χ2 statistic with 5 degrees of freedom gives a p-value equal

to 0.217. It can be seen that without regrouping the categories the null hypothesis is

rejected, but when the custom functions regroup to meet the minimum size require-

ment it is not rejected. If the minimum size requirement for validating the test is not
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taken into account, the results could be wrong and, in this case, opposite to the case of

regrouping.

After a comprehensive review of the software that can carry out this test, Table A1

in Appendix A in the supplementary material summarizes whether selected software

packages can be used for statistical purposes to check whether Pearson’s χ2 goodness-

of-fit test, or at least whether specific functions that enable it to be implemented are

available in them. It also reports whether automatic re-grouping of strata is possible if

the test statistic (1) is computed. Many computer programs have the option of filtering

and/or grouping data before the test is run, but they do not offer automatic regrouping in

the internal instructions for computing the test. There are only two programs that offer

the possibility of automatic regrouping of strata when the required or desired minimum

size is not reached:

a. MATLAB, which allows users to choose the minimum size so as to regroup giving

a positive integer as the value for the argument because the number zero indicates

that there is no regrouping of strata in terms of the size of the expected values. The

chi2gof function in MATLAB regroups only the strata at the extreme end of either

tail, but it does not combine the interior bins.

b. SSJ 3.2.0 Stochastic Simulation written in Java. This tool allows regrouping

but not in a single step. To use this facility, one must first construct an Outcome-

CategoriesChi2 object by entering the expected number of observations for each

original category into the constructor. By calling up the method regroupCate-

gories the program will then regroup categories in such a way that the expected

number of observations in each category reaches a given threshold minExp. The

procedure starts by analysing the size of the expected value in the first category. If

it finds a category that does not reach the minimum size required, minExp, then it

will be added to the next category. It follows the same regrouping criterion down

to the end, where if the last category does not have the minimum size it will be

added to the nearest one where the condition holds. The method then counts the

number of elements in each category and calls up chi2 to compute the chi-square

test statistic value.

Therefore, there is consistent evidence to suggest that there are very few computer

tools and statistical packages that have the possibility of automatic regrouping, not only

at the extreme end of either tail but also in the interior bins. Hence, it is worth develop-

ing an automatic regrouping method that could be easily adapted to different software

environments without having to perform the regrouping exogenously to the procedure

each time the minimum size for the expected values is not met.
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3. Automatic regrouping of strata: the procedure

The automatic regrouping of categories or strata is a sequential procedure that starts with

an individual analysis of the size of each stratum. Before the procedure is applied, one

must know the observed and expected values to be compared in the test. The expected

values can either come from a fully specified population distribution or from a theo-

retical distribution with unknown parameters to be estimated from the observed sample

values. The second step is to regroup the categories that do not meet the minimum size

requirement, if necessary, together with the adjacent ones, such that the resultants reach

the desired minimum value. It might be of interest to regroup not only the strata at

the extreme ends of the tails but also those in intermediate categories. Prime examples

are, for example, geographical grouping to follow economic variables, the population

at risk from certain diseases, the distribution of passengers on a track between impor-

tant cities (for hours or cities with shutdown), visitor flows to shopping centres, and

online submissions of tax return forms within the deadline. In particular, the automatic

strata regrouping procedure proposed analyses their size in increasing order from the

first strata to the last. The ordering is determined by the variable that is at the origin of

the stratification procedure. The regrouping starts from the first category and goes down

to the last one. If a category does not reach the minimum size it is added to the smallest

adjacent category. If there are adjacent categories of the same size the proposed pro-

cedure will add it to the next one, the one with a larger numbering index. A flowchart

of the algorithm is given in Figure 1. Three enlargements of parts of this flowchart

are given in Figures 2, 3 and 4, showing the steps involved in the regrouping process

on which the subsequent computation procedure is based. The main elements and the

dynamics of the chart displayed in the aforementioned figures are as follows:

1. The observed and expected values needed to calculate the goodness-of-fit test,

together with the required minimum size value for the strata, min, are introduced.

2. Check whether the number of observed values in the strata, k, is equal to the

number of expected values, m. If not, the data entry stage must be revised. If

the two dimensions coincide, continue.

3. The variable i, representing the index of a specific observed and expected value, is

given an initial value of 1 within the corresponding vector of values. The variable

last is given an initial value of 0, and represents the indicator for the last group

with a regrouped size equal to or greater than the minimum.

4. Check whether the expected value for the first category reaches the minimum size,

min.

5. If the expected value for the first category does not reach the minimum value and

given that it does not have a previous category, its elements will be added to the

second category.



120 Automatic regrouping of strata in the goodness-of-fit chi-square test

Figure 1: Flowchart. Automatic regrouping of strata.
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Figure 2: Flowchart: Steps 1 to 9. Automatic regrouping of strata.

6. If the expected value for the first category reaches the minimum size, min, it will

be stored in the variable last, to be, initially, the last category to reach this mini-

mum.

7. If the expected values for the first category have been added to the second one,

then the values of the first category will be initialized to zero.

8. The index i will increase to proceed with the analysis of the subsequent categories.

9. Check whether the last stratum or category has been reached by comparing the

stratum index, i, with the total number of strata, k. If the last stratum has not yet
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been reached, continue with the next step. If the last stratum is reached, i = k, go

to step 21 (see Figure 3).
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Figure 3: Flowchart: Steps 9 to 24. Automatic regrouping of strata.

10. The expected value in stratum i, n
exp
i , is compared with the minimum size es-

tablished at the beginning, min. It is worth mentioning that, except for the first

category or stratum, the size of the expected value in a category to be compared

with the minimum is that obtained after the loop 9-8-4-9 is performed, where step

4 is only performed for i = 1. In other words, it might be the result of the sum of

the original value for this category and previous ones which have failed to reach

the required minimum size.

11. If the expected value of a category reaches the minimum size, min, it is stored in

the variable last, to be the last category to reach this minimum. Then proceed to

check the next one (i.e. steps 8-9).

12. If the size of the expected value in a category does not reach the minimum, check

whether the previous one is empty (i.e. it takes a value of zero).
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13. If the value of a category i does not reach the minimum and the immediately

previous category i− 1 is empty, check whether there is a previous non-empty

category, that has a size greater than the minimum, last> 0.

14. If the value of a category i does not reach the minimum, the previous one, i− 1,

is empty and there is a previous category that is not empty, last> 0, then compare

the expected value of the next adjacent category, i+1 with the one of the previous

non-empty category that reaches the minimum value; that is, the category with the

index of last.

15. If the value of a category i does not reach the minimum, the previous one, i− 1,

is empty, there is a previous category that is not empty, last> 0, and the expected

value of the next adjacent category is greater than the previous non-empty one that

reaches the minimum value, then the values of the category analysed, i, are added

to the nearest previous non-empty category, last.

n
exp

last = n
exp

last +n
exp
i

nobs
last = nobs

last +nobs
i

After that, the values of the category analysed are reset (i.e. step 20), and the next

one is then analysed (i.e. steps 8-9).

16. From the second category, the values of the category analysed are added to the

following one, n
exp
i+1 = n

exp
i+1+n

exp
i , nobs

i+1 = nobs
i+1 +nobs

i when the expected value does

not reach the minimum, min, and some of the following conditions are met:

• The immediately previous category, already analysed, is not empty because

it reached the minimum size required, but its expected value is greater than

or equal to the value of the next category, n
exp
i−1 ≥ n

exp
i+1;

• There is no previous category already analysed that meets the minimum size

requirement (i.e. all are empty), so that last = 0;

• The immediately previous category, already analysed, is empty. That is, there

is a one previous category that reached an expected value equal to or greater

than the minimum, but at the same time is not minor than the next category

to be analysed, n
exp
i+1 ≤ n

exp

last .

17. If the expected value of the category analysed does not reach the minimum, min,

and the previous category is not empty, compare the size of the previous category

with that of the subsequent one, n
exp
i−1 ≥ n

exp
i+1.

18. If the expected value of the category analysed does not reach the minimum, min,

and the previous category is smaller than the subsequent one, n
exp
i−1 < n

exp
i+1 but not
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empty, the values of the category analysed are added to the previous category

because it is the smallest size adjacent category.

n
exp
i−1 = n

exp
i−1 +n

exp
i

nobs
i−1 = nobs

i−1 +nobs
i

19. Once the values of the category analysed have been added to the previous one (in

step 18) the index of that category is stored in the variable last= i−1 because it is

the last one to reach the minimum value.

20. Once the values of the category analysed have been added to the previous one (in

step 18), the subsequent one (in step 16) or to the one with the index last (in step

15), the category analysed is initialized, n
exp
i = 0, nobs

i = 0, and the next category

is then analysed.

21. Once the last category of expected values is finally reached, its accumulated ex-

pected value, n
exp
k , is compared with the minimum, min.

22. If the accumulated expected value for the last category, n
exp

k , does not reach the

minimum, min, the relevant value is added to the last one which did reach the

minimum size, n
exp
last = n

exp
last +n

exp
i , and the same is done with the observed value of

the original last one, nobs
last = nobs

last +nobs
i . If the accumulated expected value for the

last group reaches the minimum, then it remains unchanged.

23. After the expected and observed values of the last category, k, are added to the

category last (in step 22), reset them all to zero.

24. The indexes for the categories (original and regrouped) are initialized, i= 1, j = 1.

25. Start a new loop (steps 25-29) to put together the vector of regrouped expected and

observed values obtained in the previous steps. This loop is performed for all the

expected values of the different strata, from the first to the last, k, i.e. for all i ≤ k.

26. Check whether the accumulated expected value is greater than 0, n
exp
i > 0, which

means, given what is mentioned in step 20, that it will be greater than the mini-

mum.

27. If after regrouping the accumulated expected value of the i-th category is greater

than 0 and, therefore, greater than the minimum, that value is assigned as the j-th

component of a new vector of regrouped expected values, n
exp

j = n
exp
i , and the i-th

updated observed value is assigned to the j-th component of the new vector of

regrouped observed values n
obs

j = nobs
i .

28. Count the number of regrouped strata put together up to this point, adding 1 to the

index variable of regrouped strata in the new vectors (i.e., j = j+1).
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29. Increment the index i for the original categories of the expected values: i = i+1,

up to the maximum, k.

30. Once the loop in steps 25-29 ends, the final number of regrouped categories in the

new vector of expected values, catreg = j, is obtained.

31. The information that enables Pearson’s chi-square goodness-of-fit test (χ2, df, p-

value) to be carried out after the regrouping of strata is now available: {n
exp

1 ,n
exp

2 ,

. . . ,n
exp

catreg
}= {n

obs

1 ,n
obs

2 , . . . ,n
obs

catreg
}: total strata regrouped.
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Figure 4: Flowchart: Steps 25 to 31. Automatic regrouping of strata.

The procedure for the regrouping of strata or categories given a minimum size is

written in Excel VBA. As reported by McCullough (2008), it is well known that there

are quite a few shortcomings in this statistical package; however he also pointed out,

as Wilkinson (1994) and Ripley (2002) claimed, that it is the most commonly used

software in basic statistical calculations. This is one of the main reasons for analysing

its precision (Keeling and Pavur 2011), and to provide functions that can be incorpo-

rated into the Microsoft Excel Function Library to help other users, as other authors

have already done (e.g., Okeniyi and Okeniyi 2012) or, for example, to improve Excel

as a useful tool for teaching (Quintela-del-Rı́o and Francisco-Fernández 2017). In the

specialized literature there is an example of using Visual Basic (Khan 2003) and its

relation to Fisher’s exact test (FET). This test calculates the probability value for the

relationship between two dichotomous variables in a 2× 2 contingency table. FET is



126 Automatic regrouping of strata in the goodness-of-fit chi-square test

used when a chi-square test is to be conducted but at least one of the cells has an ex-

pected frequency of five or less. FET can be used regardless of how small the expected

frequency is. Khan (2003) emphasizes the potential utility of Visual Basic because of

the user friendliness of the program, its object-oriented feature and the fact that most

users are familiar with a Microsoft Windows environment, especially in biomedical ap-

plications. Furthermore, the procedure is written in Mathematica to illustrate that the

proposed functions can be generalized to other software. As for example McCullough

(2000) pointed out, Mathematica cannot be really categorized as a statistical package,

but it has complements for carrying out statistical analysis with more precision than

other statistical packages. The functions are inspired by the work of Ross (2015) and

Pérez-Salamero González (2015), the latter being written in VBA. More specifically,

the programming adopts functions defined by the user which yield the values for the

elements needed to calculate the χ2 test. In other words, the programming relies on the

functions already available which are related to the test.

Listing 1 and Listing 2 (the latter for Mathematica) in the supplementary material

in Appendix C include the code of the functions that yield the value of the χ2 statistic

after automatic regrouping starting from a minimum value set by the user. The length

of the code can be attributed more to explanatory purposes than to an effort to keep it

short. There is a difference between the functions that yield the observed and expected

values in VBA and Mathematica. In the former we choose to define a matrix function

such that the result appears in many cells because the user does not know exactly when

the function will need to be used or how many regrouped categories will result. The

function is written in such a way that it selects two columns and as many rows as there

were original categories, so that the user can see the regrouped categories as well as

those with zero values. In the case of Mathematica, the function that returns the vec-

tors of observed and expected values is designed to put together the categories, showing

only those regrouped with values above the minimum (i.e. those with non-zero values

are eliminated) as indicated in the flowchart loop (steps 25-29). Listing 3 in the sup-

plementary material in Appendix C includes the code for the functions written in VBA.

These functions give the number of regrouped strata in order to determine the degrees of

freedom for the test. Likewise, Listing 4 shows the code for a matrix function in Excel

which yields the output of the observed and expected values of the regrouped categories.

Finally, for the case of Mathematica we incorporate the number of categories (see List-

ing 5 in the supplementary material in Appendix C), the p-value for the test (Listing 6).

Finally, Listing 7 shows the relevant information resulting from the regrouping proce-

dure, such as the value of the χ2 statistic, the p-value, and the regrouped strata (observed

and expected).
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4. Simulation study

The purpose of this simulation study is to illustrate the performance of the proposed

regrouping procedure on the goodness-of-fit chi-square test. The simulation study will

focus on showing whether or not the proposed regrouping procedure attains the nominal

significant level. We consider two different settings:

S1. The null hypothesis includes a fully specified model, so there are no parameters to

be estimated.

S2. The null hypothesis includes a partially specified model in which parameters need

to be estimated to compute the theoretical expected frequencies under the null

hypothesis before the value of the goodness-of-fit chi-square test statistic is com-

puted.

4.1. Fully Specified Population Distribution

Simulation 1. The complete simulation steps are described below:

1. Six different combinations of the number of observations available, N, and the

number of categories, k, are considered: A (N = 50, k = 10) , B (N = 75, k = 15),

C (N = 100, k = 20), D (N = 1000, k = 20), E (N = 500, k = 20) and F (N = 250,

k = 20).

2. For each combination, 5000 samples are generated from 100 different, fully spec-

ified multinomial populations under the null hypothesis, covering a wide range of

possible multinomial probabilities distributions.

3. Once the 5000 samples have been generated for each combination and under each

different multinomial population, we use the goodness-of-fit chi-square test statis-

tic to test whether the data fits the theoretical distribution without regrouping. Un-

der the null hypothesis, the chi-square statistic follows a chi-square distribution

with (k−1) degrees of freedom. We use three different nominal significance lev-

els, (α=0.10, 0.05 and 0.01). Hence, the significance levels attained are computed,

corresponding to the number of times that the null hypothesis is rejected for each

of the 5000 samples.

4. To assess the behaviour of the procedure proposed the same thing is done, but

in this case, the categories are regrouped in those samples where the procedure

proposed suggests that regrouping of some of the adjacent categories is necessary.

In this case, the chi-square statistic follows a chi-square distribution with (k− 1)

degrees of freedom under the null if it is not necessary to regroup, and with (k∗−1)
degrees of freedom if it is, where k∗ is the number of classes remaining after

regrouping. Three different nominal significance levels are used, (α=0.10, 0.05

and 0.01), and the significance levels attained are computed as before.
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5. Finally, the significance levels attained for the three nominal significance levels

under study are compared, without no regrouping procedure and with the regroup-

ing procedure proposed here.

Table 2 summarizes the results of the simulation study described above. Because it is

realized that the different settings mean that these results cannot really be combined, the

table includes the mean and standard deviation of the significance levels attained for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different

multinomial populations in the null hypothesis. The results shown in the table lead us

to conclude that the regrouping procedure proposed provides mean attained significance

levels closer to the nominal ones than those obtained by not regrouping. Moreover,

standard deviations for the attained nominal significance levels are smaller when the

regrouping procedure proposed is used.

Table 2: Simulation 1. Mean attained and standard deviations from nominal significance levels for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different multinomial popu-

lations in the null hypothesis of a fully specified population distribution for the chi-square goodness-of-fit

test.

nominal significance level

populations
α = 10% α = 5% α = 1%

do not reg reg do not reg reg do not reg reg

A
mean 0.1019 0.0974 0.0558 0.0484 0.0168 0.0099

st. dev. 0.0097 0.0037 0.0103 0.0031 0.0105 0.0013

B
mean 0.1049 0.0980 0.0585 0.0489 0.0175 0.0101

st. dev. 0.0092 0.0045 0.0097 0.0031 0.0077 0.0013

C
mean 0.1073 0.0985 0.0613 0.0491 0.0200 0.0101

st. dev. 0.0093 0.0042 0.0088 0.003 0.0079 0.0014

D
mean 0.1021 0.1011 0.0527 0.0508 0.0119 0.0104

st. dev. 0.0968 0.0044 0.0041 0.0035 0.0024 0.0015

E
mean 0.1020 0.0998 0.0532 0.0506 0.0127 0.0106

st. dev. 0.1048 0.0036 0.0044 0.0029 0.0028 0.0016

F
mean 0.1027 0.0996 0.0540 0.0501 0.0137 0.0103

st. dev. 0.1018 0.0043 0.0052 0.0031 0.0040 0.0015

ALL mean 0.1036 0.0989 0.0562 0.0495 0.0157 0.0102

For the sake of brevity, Tables A2 to A7 in the supplementary material show results

for only 10 selected different multinomial populations out of the 100 considered in this

simulation study, where the theoretical probabilities under the null hypothesis are de-

scribed at the top of the tables for the different sample sizes N and numbers of categories
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k considered in the simulation study. As indicated above, 5000 simulations from each

of these populations were simulated for different N and k, and three different nominal

significance levels were considered. Significance levels attained by using the procedure

without regrouping and those obtained using the regrouping procedure proposed here

are reported at the bottom of the tables for each setting. From the results reported in

Tables A2 to A7 in the supplementary material, and given that the significance levels

attained are very close to the nominal significance levels considered here for all the dif-

ferent combinations of sample sizes, population distributions, and nominal significance

levels considered in the study, it can be concluded that the regrouping procedure pro-

posed performs reasonably well compared to the results obtained without regrouping in

the case of a chi-square goodness-of-fit test to a fully specified distribution.

4.2. Partially Specified Population Distribution

Simulation 2. The complete simulation steps are described below:

1. 5000 samples are generated from a known distribution, with no loss of generality:

a N(0,1) distribution, for 6 different combinations of the number of observations

available, N, and the number of categories, k: A (N = 50, k = 10) , B (N = 75,

k = 15), C (N = 100, k = 20), D (N = 1000, k = 20), E (N = 500, k = 20) and F

(N = 250, k = 20).

2. For each sample and each setting, the mean µ and the standard deviation σ of the

normal distribution are estimated using the maximum likelihood method.

3. For the 6 different combinations of N and k, each of the 100 different multinomial

probability combinations is assigned to each of the k categories.

4. The different k categories (i.e. the interval limits for each class or category) in

the estimated distribution N(µ̂, σ̂2) are built up so that these intervals match the

probability of belonging to this class in the estimated distribution N(µ̂, σ̂2) with

that in the corresponding multinomial population considered.

5. Once the 5000 samples have been generated for each combination and under

each different multinomial populations, we use the goodness-of-fit chi-square test

statistic to test wether the data fits the theoretical distribution without regrouping.

Under the null hypothesis, the chi-square statistic follows a chi-square distribution

with (k− r−1) = (k−2−1) = (k−3) degrees of freedom. Three different nom-

inal significance levels are used: (α=0.10, 0.05 and 0.01). Hence, the significance

levels attained are computed, corresponding to the number of times that the null

hypothesis is rejected for each of the 5000 samples.

6. To assess the behaviour of the proposed procedure, the same is done, but in this

case, the categories are regrouped in those samples where the procedure proposed
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suggests that regrouping of some of the adjacent categories is necessary. In this

case, the chi-square statistic follows a chi-square distribution with (k−3) degrees

of freedom under the null if it is not necessary to regroup, and with (k∗−3) degrees

of freedom if it is, where k∗ is the number of remaining classes after regrouping.

Three different nominal significance levels are used: (α=0.10, 0.05 and 0.01), and

the significance levels attained are computed as before.

7. Finally, the significance levels attained are compared for the three nominal signifi-

cance levels under study without and then with the regrouping procedure proposed.

Table 3 summarizes the results obtained of the simulation study described above.

Because it is realized that the different settings mean that these results cannot really be

combined, the table includes the mean and standard deviation of the significance levels

attained for the 5000 simulations in each of the six (N,k) combinations considered for

the 100 different multinomial population distributions for a partially specified goodness-

of-fit test of the null hypothesis of a normal distribution. The results shown in the table

lead us to conclude that the regrouping procedure proposed provides mean nominal

significance levels closer to the nominal ones than those obtained by not regrouping,

with the exceptions of the combinations A, for α = 10% and 5%, and B, for α = 10%.

Moreover, standard deviations for the attained nominal significance levels are smaller

when the regrouping procedure proposed is used.

For the sake of brevity, Tables A8 to A13 in the supplementary material show re-

sults for only 10 selected different multinomial probability distributions out of the 100

considered in this simulation study for the null hypothesis of a normal population distri-

bution, where the theoretical probabilities assigned to each of the classes under the null

hypothesis are described in the top part of the tables for the different sample sizes N and

numbers of categories k considered in the simulation study. As indicated above, 5000

simulations from a standard normal population were simulated for different N and k,

and three different nominal significance levels were considered. Significance levels at-

tained by using the procedure without and then with the regrouping procedure proposed

here are reported at the bottom of the tables for each setting. From the results reported

in Tables A8 to A13 in the supplementary material, and given that the significance lev-

els attained are very close to the nominal significance levels considered here for all of

the different combinations of sample sizes, population distributions, and nominal sig-

nificance levels considered in the study, it can concluded that the regrouping procedure

proposed performs reasonably well compared to the results obtained without regrouping

in the case of a chi-square goodness-of-fit test to a partially specified distribution where

parameters needed to be estimated.
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Table 3: Simulation 2. Mean attained and standard deviations from nominal significance levels for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different multinomial pop-

ulations in the null hypothesis of a partially specified normal population distribution for the chi-square

goodness-of-fit test.

nominal significance level

populations
α = 10% α = 5% α = 1%

do not reg reg do not reg reg do not reg reg

A
mean 0.1134 0.1378 0.0617 0.0689 0.0180 0.0135

st. dev. 0.0097 0.0183 0.0107 0.0101 0.0114 0.0020

B
mean 0.1375 0.1422 0.0890 0.0862 0.0461 0.0404

st. dev. 0.0099 0.0049 0.0110 0.0032 0.0084 0.0013

C
mean 0.1107 0.1087 0.0624 0.0539 0.0202 0.0106

st. dev. 0.0087 0.0047 0.0092 0.0030 0.0087 0.0013

D
mean 0.1063 0.1056 0.0554 0.0536 0.0129 0.0113

st. dev. 0.1128 0.0041 0.0053 0.0032 0.0032 0.0014

E
mean 0.1080 0.1063 0.0566 0.0545 0.0137 0.0116

st. dev. 0.1080 0.0035 0.0045 0.0028 0.0031 0.0015

F
mean 0.1059 0.1036 0.0563 0.0526 0.0142 0.0110

st. dev. 0.1150 0.0036 0.0054 0.0025 0.0042 0.0013

ALL mean 0.1143 0.1185 0.0643 0.0624 0.0216 0.0169

5. Further illustrative examples

We use three additional examples and datasets to illustrate the use of the customized

functions defined in Excel and Mathematica, where the regrouping of strata or cate-

gories could arise. In the first, the functions proposed in this paper are compared with

some of the software tools described in Appendix A in the supplementary material.

Some of them do not automatically regroup and others, e.g. MATLAB, do so but only at

the extreme ends of the tails. The second example illustrates the use of the regrouping

functions when it is necessary to estimate parameters in the theoretical distribution. The

third shows the iterative use of the regrouping functions with application to analyse the

Continuous Sample of Working Lives (CSWL) survey from Spain.

5.1. Case 1. Pearson’s Illustration V

The data labeled “Illustration V” comes from the paper by Pearson (1900). Table 4

shows that 6 of the 17 categories considered in the example have positive expected val-

ues lower than 5, with 4 of them being values smaller than 1. Those strata are all located
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in the bins at the extreme ends. The null hypothesis is the fully specified population

distribution with probabilities described in Pearson (1900).

Table 4: Case 1. Illustration V example. Observed and expected values are reported, as well as results for

the goodness-of-fit chi-square test for fully specified distributions with no regrouping of categories and with

the regrouping procedure proposed here.

Category Original Regrouped

Observed Expected Observed Expected

1 0 0.18

2 3 0.68

3 7 13.48 10 14.34

4 35 45.19 35 45.19

5 101 79.36 101 79.36

6 89 96.10 89 96.10

7 94 90.90 94 90.90

8 70 71.41 70 71.41

9 46 48.25 46 48.25

10 30 28.53 30 28.53

11 15 14.94 15 14.94

12 4 6.96 10 11.34

13 5 2.88

14 1 1.06

15 0 0.34

16 0 0.10

17 0 0.00

Total 500 500.36 500 500.36

χ2 11.75 10.51

df 16 9

p-value 0.101 0.31083538

Source: Own work based on Pearson (1900)

Pearson (1900) considered there to be 17 categories, though the expected value of the

last one is zero. Taking into account all the strata and with no regrouping, the value of the

χ2 test statistic compared to a chi-square distribution with 16 degrees of freedom results

in a p-value of 0.101. Moreover, the functions defined in Excel and Mathematica,

presented in the supplementary material included in Appendix 2, regroup them into 10

categories. The last two columns of Table 4 show how the proposed functions regroup
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the original categories. Considering the 10 categories resulting after regrouping, the

value of the χ2 test statistic, when compared to a chi-square distribution with 9 degrees

of freedom results in a p-value of 0.311. The problems a potential user would have when

using the different software tools available for the analysis of this dataset are outlined in

Appendix A in the supplementary material.

5.2. Case 2. Example of a partially specified population distribution

This example illustrates the use of the regrouping functions once the parameters of a

partially specified theoretical distribution have been estimated by the maximum likeli-

hood method using the sample data provided in Table A14 in the supplementary ma-

terial. The example is based on the second simulation study described in Section 4.

The null hypothesis states that the population follows a partially specified normal dis-

tribution and its parameters, its mean and standard deviation, are unknown and must

therefore be estimated from the values reported in Table A14 in the supplementary ma-

terial. Parameters are estimated by maximum likelihood, using the fitdistrib function

in the MASS library in R. Therefore, the null hypothesis states that the data follows a

N(µ̂, σ̂) = N(0.056497994,0.842599379) distribution. To test this hypothesis and ob-

tain the goodness-of-fit chi-square test statistic for partially specified distributions, there

are originally k = 10 categories and (k − 3) degrees of freedom for test statistic chi-

square distribution in the case of not regrouping. In the case of regrouping, the degrees

of freedom are (k∗− 3), where k∗ is the number of remaining categories after the re-

grouping procedure proposed is applied. In order to force the necessity for regrouping,

different probabilities are randomly assigned to the k = 10 categories used for this test.

Given the estimated parameters and the probabilities assigned to each category, we ob-

tain the interval limits for these categories by using the procedure previously described

in the Simulation 2 settings. Table 5 reports the information required to perform the test

and the resulting p-values obtained with and without regrouping. Under the regrouping

procedure proposed the null hypothesis is not rejected, but it is clearly rejected if there

is no regrouping, at least at the 10% and 5% significance levels.

5.3. Case 3. Example with the Continuous Sample of Working

Lives dataset

This example illustrates the iterative use of the proposed regrouping functions. The χ2

test statistic value is included as a constraint that requires that the null hypothesis not

be rejected in an optimization problem written in Excel. This example is taken from

Pérez-Salamero González et al. (2017). The sample data used is the Continuous Sample

of Working Lives (CSWL) survey from Spain for calendar year 2013 (DGOSS 2014).

A comprehensive overview of this dataset can be found in Pérez-Salamero González,

Regúlez-Castillo and Vidal-Meliá (2016, 2017) and MESS (2017). The Continuous
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Sample of Working Lives (CSWL) is a simple random sample of around 4% of the

reference population defined as individuals who have had some connection (through

contributions, pensions or unemployment benefits) with the Social Security System at

some time during the year of reference. It contains administrative data on working lives,

which provide the basis for this sample taken from Spanish Social Security records,

and comprises anonymized microdata with detailed information on individuals. Us-

ing a post-stratification process, Pérez-Salamero González et al. (2017) obtain from the

CSWL for the calendar year 2013, the data corresponding to the number of male pen-

sioners classified as permanently disabled, organized by age in 18 categories or strata.

The population distribution is known as of December 31st (INSS 2014), which means

that the relative expected frequencies are also known, and hence so are the expected

values (i.e. this is a fully specified population distribution test setting). Table 6 reports

the observed values from the CSWL and the expected values from the theoretical popu-

lation under the null hypothesis, along with the corresponding fully specified chi-square

goodness-of-fit test results with and without regrouping. From the results reported in

Table 6, we conclude that the null hypothesis is clearly rejected whether regrouping is

performed or not. That is, the null hypothesis is clearly rejected in the case of automatic

regrouping and also in the case of no regrouping of strata. The chisq.test function writ-

ten in Excel is used for the regrouping procedure proposed. Moreover, the fit of the

sample to the population could be improved, since the null hypothesis is rejected, and

given that the p-value is very small. If a subsample from the CSWL is selected such

that its distribution does not reject the null hypothesis for a given significance level, this

would provide a more representative subsample of the permanently disabled male pen-

sioner population by age than the original sample, which is one of the main objectives

for practitioners in the area.

To further show the utility of the customized functions used iteratively which enable

the χ2 test to be conducted with automatic regrouping of strata that violate the minimum

size requirement, we propose an optimization problem with constraints. The aim is

to find the largest subsample contained in the CSWL subject to the non rejection of the

null hypothesis of the assumed theoretical distribution for the population. The search for

the largest subsample is justified by an attempt to ensure that as few pension records as

possible are missed out, so as not to overlook diversity in pensioners’ working lives. The

mathematical development of the problem is shown in Appendix B in the supplementary

material. It is implemented in Excel by using the functions defined in the supplementary

material in Appendix C, which allows for an automatic regrouping procedure. The

problem is solved by using the Solver by Frontline Systems. Given its non-linearity,

the method for solving the problem is GRG Nonlinear. Moreover, we omit the integer

constraint (6) on the variables (see Appendix B).
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Table 6: CSWL 2013. Permanent Disability: Males. Observed and expected values are reported, as well

as results for the goodness-of-fit chi-square test for completely specified distributions without regrouping

categories and with the regrouping procedure proposed here.

Age Category Original Regrouped

Observed Expected Observed Expected

15-19 0 0.04

20-24 29 30.04 29 30.08

25-29 198 195.33 198 195.33

30-34 606 581.48 606 581.48

35-39 1,201 1,203.73 1,201 1,203.73

40-44 2,014 1,982.02 2,014 1,982.02

45-49 3,106 3,050.46 3,106 3,050.46

50-54 4,281 4,230.30 4,281 4,230.30

55-59 5,710 5,706.36 5,710 5,706.36

60-64 7,151 7,269.83 7,151 7,269.83

65-69 3 58.48 3 58.48

70-74 6 3.28

75-79 7 4.28 13 7.56

80-84 14 10.88 14 10.88

≥ 85 17 16.48 17 16.48

Total 24,343 24,343 24,343 24,343

χ2 62.76 62.66

df 14 12

p-value p-value<0.0001 p-value<0.0001

Source: Own work based on Pérez-Salamero González et al. (2017)

Accuracy in compliance with constraints is set to 0.0000001. We select the option

“Multistart” to use the multistart method for global optimization with a population size

of 100,000 and a random seed value of 100,000, using “Central” to estimate deriva-

tives through central differencing. After 100,000 subproblems are solved, a non-integer

solution is reached (“Solver found a probability of reaching a global solution”). The

solution is then rounded and it is finally checked that the one obtained is contained in

the original sample. Constraint [2.] in Appendix B, related to the improvement of the

goodness-of-fit, is not satisfied by a small error of 0.000000722, the difference between

the sample value of the test and the critical value at the 5% significance level, with a

reported p-value of 0.0499993. The emergence of this solution, with no attention paid

to the minimum size requirement for the strata, is due to the functions defined in the sup-
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plementary material in Appendix C. These functions regroup the original 15 strata into

12, with the regrouping being carried out at different times during the iterative process.

This highlights the need for an automatic regrouping process because it is completely

impossible to regroup exogenously in the procedure within each iteration.

Table 7: Subsample from the CSWL 2013. Permanent disability: Males. Observed and expected values

are reported, as well as results for the goodness-of-fit chi-square test for completely specified distributions

without regrouping categories and with the regrouping procedure proposed here. In addition, results for the

subsample obtained with the proposed algorithm are also reported.

Age Category
Original sample CSWL Subsample (before rounding)

Observed Observed Observed Expected Observed Expected
(regrouped) (regrouped) (regrouped)

15-19 0 0 0.02

20-24 29 29 13.03 12.98 13.03 13.00

25-29 198 198 84.59 84.41 84.59 84.41

30-34 606 606 251.80 251.27 251.80 251.27

35-39 1,201 1,201 521.25 520.15 521.25 520.15

40-44 2,014 2,014 858.27 856.46 858.27 856.46

45-49 3,106 3,106 1,320.94 1,318.14 1,320.94 1,318.14

50-54 4,281 4,281 1,831.85 1,827.97 1,831.85 1,827.97

55-59 5,710 5,710 2,471.03 2,465.80 2,471.03 2,465.80

60-64 7,151 7,151 3,148.06 3,141.39 3,148.06 3,141.39

65-69 3 3 3 25.27 3 25.27

70-74 6 2.25 1.42

75-79 7 13 0.25 1.85

80-84 14 14 5.48 4.70 7.99 7.97

≥ 85 17 17 7.14 7.12 7.14 7.12

Total 24,343 24,343 10,518.94 10,518.94 10,518.94 10,518.94

χ2 62.76 62.66 21.69 19.68

df 14 12 14 11

p-value p <0.0001 p <0.0001 0.0851783 0.0499993

Source: Own work based on Pérez-Salamero González et al. (2017)

The results of the optimization process and the size of the strata associated with the

solution obtained are presented in Table 7. The first two columns in Table 7 correspond

to the first and third columns of Table 6, and we report them back in order to improve

the comparison between the original sample and the subsample obtained. The last four

columns in Table 7 have the same structure as the ones shown in Tables 1, 4, 5 and 6.
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Table 7 shows that the p-value of 0.085 obtained for the χ2 goodness-of-fit test in the

subsample with no regrouping of strata results in no rejection of the null hypothesis,

whereas the p-value of 0.04999928 obtained after regrouping is at the limit of rejection

of the null hypothesis, both at the 5% significance level.

In relation to this example, Pérez-Salamero González et al. (2017) conduct a similar

analysis for the CSWL for 2010. They simultaneously consider five types of pension and

both genders and obtain the largest representative subsample contained in the original

sample with 146 strata, reaching the last iteration and regrouping them into 115 cate-

gories to carry out the corresponding goodness-of-fit test. This illustrates the importance

of having automatic regrouping when a large-scale iterative procedure is used.

6. Summary, conclusions and further research

In empirical studies where Pearson’s goodness-of-fit χ2 test is conducted, it is a common

practice to regroup strata to attain a minimum size of expected frequencies for the test

to be valid and its conclusions reliable. In general, after a comprehensive review of the

software that can carry out this test, we conclude that there is no automatic regrouping

of strata to meet this requirement, although it would be very useful if such a feature were

available. Having such automatic regrouping available in other packages would be of

great help to researchers in many areas, such as social sciences, biomedical and health

sciences, and others where this test is usually required in empirical research. This paper

proposes some functions that enable automatic regrouping to take place. This process is

not only applied at the extreme ends of the tail strata, as in the case of MATLAB, but also

when intermediate categories do not meet the minimum size requirement, as in SSJ (a

Java library for stochastic simulation).

A simulation study shows that the regrouping functions proposed in this paper work

reasonably well compared to the test without regrouping. We find that the nominal

significance levels attained with regrouping are suitable and slightly better than those

obtained without regrouping. They guarantee that the hypotheses of the minimum size

are satisfied, reducing the risk of a wrong conclusion on the goodness-of-fit chi-square

test. The customized functions developed here have the advantage of being easier to im-

plement than SSJ in an iterative process, where the test statistic must be calculated and

the regrouping carried out in each iteration. Moreover, they offer an alternative way of

regrouping that solves the asymmetry problem in the test results. This type of process is

illustrated with a real case example in the resolution of mathematical optimization prob-

lems. MATLAB also has this advantage, but it does not allow regrouping in intermediate

categories. Therefore, those functions enable Pearson’s goodness-of-fit chi-square test

to be carried out with the possibility of regrouping categories, which we believe is quite

a major improvement on the current software available for basic statistical analysis, both

in the case of the most widely used program, Excel, and other more precise packages
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such as Mathematica. We also believe that these proposals could be very useful to

make the automatic regrouping of categories or strata available in the iterative use of the

test statistics used in Big Data and Data Mining (Larose and Larose, 2014), for example,

at the instance selection and association analysis stages, among others.

Finally, based on the proposals included and results reported in this paper, one pos-

sible direction for future research would be to adapt the code of the proposed functions

to other languages and optimization environments such as AMPL, GAMS, LINGO, R,

etc, in order to be able to integrate them into the numerical resolution of problems of

this type. It would also be interesting to make the regrouping process automatic, but

based on other, more general criteria, such as, for example, sample size or number of

categories, and to explore alternative ways of regrouping. This would require analysing

the effect of the different regrouping proposals on the goodness-of-fit chi-square test re-

sults for different sample sizes, number of categories and theoretical distributions under

study. This is out of the current scope of this paper, but could be the objective of future

research.
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Abstract

When the same data are used to fit a model and estimate its predictive performance, this estimate

may be optimistic, and its correction is required. The aim of this work is to compare the behaviour

of different methods proposed in the literature when correcting for the optimism of the estimated

area under the receiver operating characteristic curve in logistic regression models. A simulation

study (where the theoretical model is known) is conducted considering different number of covari-

ates, sample size, prevalence and correlation among covariates. The results suggest the use of

k-fold cross-validation with replication and bootstrap.
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1. Introduction

Prediction models play an important role in daily clinical practice. They provide clin-

icians with a tool to identify individuals at higher risk, and thus help in the decision

making process. The development of risk prediction models for patients with diseases

such as breast cancer (Wishart et al., 2012), chronic obstructive pulmonary disease

(Quintana et al., 2014), or heart failure (Garcia-Gutierrez et al., 2017), among others,

has increased during the last years. Once a model is developed, the aim is generally

to apply it on new patients. Thus, a good but accurate predictive (or generalisation)
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model performance is required. This work focuses on logistic regression models. In

this setting, there are different ways to evaluate the performance, including calibration

and discrimination measures (Steyerberg, 2009). Calibration refers to the agreement

between observed outcomes or responses and predictions, while discrimination is con-

cerned with the ability of the model to discriminate between individuals with and with-

out the characteristic of interest. The area under the receiver operating characteristic

(ROC) curve (Bamber, 1975; Hanley and McNeil, 1982; Swets, 1988), on which this

work is focused, is a measure of discrimination.

It is well known that if in the development process of a prediction model, the same

data is used to, first, fit the model and, then, evaluate its performance, this estimate,

usually referred to as apparent or re-substituted performance, could be optimistic (see,

e.g., Efron, 1986; Copas and Corbett, 2002). This is a consequence of the fact that

most model fitting strategies rely on optimality criteria for the data used. Thus, in or-

der to guarantee the model’s usefulness when applied to new patients, the validation

or correction of this optimism is required. Arguably, the best strategy to estimate the

generalisation model performance is to apply it to new data. That is to say, the per-

formance of the model is estimated based on individuals (observations) that have not

been used in the model derivation/development process. This strategy is called external

validation. Unfortunately, in practice this is usually not feasible. Most of the times it

is not possible to obtain new data for that purpose due to difficulty or expense in their

collection. To overcome the problem, different approaches have been proposed in the

literature with the aim of estimating the performance of a model internally, i.e., re-using

the data where the model has been derived/fitted. Split-sample validation (Picard and

Berk, 1990; Snee, 1977) is possibly the most commonly used method in medical re-

search. However, especially for small sample sizes, it has shown to provide pessimistic

(over-corrected) estimates of the performance with a large variance (see, e.g., Steyerberg

et al., 2001; Austin and Steyerberg, 2017). Therefore, alternative approaches to split-

sample validation, such as k-fold cross-validation or bootstrap techniques, have been

suggested (Stone, 1974; Efron, 1983; Harrell, Lee and Mark, 1996).

For the specific case of binary outcomes (as is the case of this paper), the literature

contains several papers comparing different methods for correcting the optimism of the

apparent area under the ROC curve (AUC). Important references are Harrell (2001);

Steyerberg et al. (2001, 2003); Airola et al. (2011); Smith et al. (2014); Austin and

Steyerberg (2017). For instance, Airola et al. (2011) compare different cross-validation

techniques for estimating the AUC and propose the leave-pair-out cross-validation as

the preferred method for optimism correction. To a similar conclusion comes Smith

et al. (2014), who focus on small data sets. Yet, other authors recommend the use of

bootstrapping (e.g., Smith et al., 2014; Steyerberg et al., 2001; Austin and Steyerberg,

2017). The papers by Steyerberg et al. (2001, 2003); Smith et al. (2014) and Austin and

Steyerberg (2017) all focus on logistic regression models. In particular, all these papers

study the impact of different values of events per variable (EPV) on the performance

of several correction methods by means of simulations based on a large real data set.
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EPV is defined by the ratio of the number of events (i.e., the number of observations

in the smaller of the two groups of the binary outcome), relative to the number of re-

gression coefficients in the model (see e.g., van Smeden et al., 2018). In most of the

above-mentioned papers, simulations are done with a fixed number of covariates. Nev-

ertheless, in practice other factors beyond the EPV may impact the performance of the

methods, such as a) the number of covariates in the model, b) the available sample size,

c) the prevalence; and/or d) the correlation among covariates. The number of covari-

ates, sample size and prevalence are all together related to the EPV, but the last two are

imposed by the available data. It has been reported that the bias of the apparent model

performance estimate increases as the number of covariates increases (Hastie, Tibshirani

and Friedman, 2001; Copas and Corbett, 2002). However, to the best of our knowledge

there is a lack of studies comparing different correction methods in terms of the number

of covariates. Hence, the primary aim of this study is to empirically evaluate the effect

that the increase of the number of covariates may have on the performance of different

methods (including split-sample, cross-validation and bootstrap) for the correction of

the apparent AUC. In addition, we study the impact of the correlation among covari-

ates as well as the prevalence of the disease and the sample size. Finally, in contrast

to the above-mentioned studies, we conduct a simulation study in a situation where the

theoretical logistic regression model is known.

The rest of the paper is organised as follows. Section 2 outlines the optimism cor-

rection methods that have been considered in this work. In Section 3 the simulation

study conducted to analyse the performance of the optimism correction methods is de-

scribed. Additionally, the results obtained are reported. Finally, the paper closes with a

discussion in Section 4.

2. Methods

This section introduces the needed notation and background and describes the different

methods that have been considered throughout this study to correct for the optimism of

the apparent AUC. Recall that we denote as apparent AUC that which is obtained when

all the available data are used to, first, fit the model and then, estimate the AUC.

2.1. Notation and preliminaries

Consider a collection of p covariates denoted by the vector XXX = (1,X1,X2, . . . ,Xp)
T
, and

let D be the random variable denoting the presence (D = 1) or absence (D = 0) of the

characteristic of interest (e.g., a certain disease). Let p(xxx) = P(D = 1|XXX = xxx) denote the

conditional probability of being diseased for a patient with a vector of covariate values

xxx = (1,x1,x2, . . . ,xp)
T in the domain of XXX . It is assumed that D|XXX = xxx ∼ Bernoulli(p(xxx)).
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The specific form of the logistic regression model is:

p(xxx) =
eβ0+β1x1+...+βpxp

1+ eβ0+β1x1+...+βpxp
=

eβββ
Txxx

1+ eβββ
Txxx
∈ (0,1), (1)

where βββ = (β0, . . . ,βp)
T

is the vector of (unknown) regression coefficients. Let us as-

sume that we have a sample of independent and identically distributed (i.i.d.) observa-

tions {(xxxi,di)}
n
i=1 from population (XXX ,D), and denote as β̂̂β̂β= (β̂0, . . . , β̂p)

T the maximum

likelihood estimator of βββ (Hosmer and Lemeshow, 2000; McCullagh and Nelder, 1989).

The estimated probabilities of being diseased for each individual in the sample can be

thus calculated as follows (see (1)):

p̂(xxxi) =
eβ̂ββ

T
xxxi

1+ eβ̂ββ
T
xxxi

(i = 1, . . . ,n). (2)

2.2. Discriminative ability

As said in the Introduction, this paper focuses on the AUC. The AUC ranges from 0.5

(in the case of an uninformative model) to 1 (a perfect model), and it is frequently

estimated by the Mann-Whitney U-statistic (Bamber, 1975; Hanley and McNeil, 1982;

Pepe, 2003). More precisely, for the specific case of the logistic regression model, we

have

̂AUC =
1

n0 ·n1

∑

j∈D0

∑

k∈D1

[I (p̂(xxx j)< p̂(xxxk))+0.5I (p̂(xxx j) = p̂(xxxk))] , (3)

where D0 and D1 are the index sets for D = 0 and D = 1, respectively and n0 and n1 their

respective sizes. Note that expression (3) corresponds to the so-called apparent AUC,

since all data are used for its calculation.

2.3. Optimism correction methods

2.3.1. Split-sample validation

In split-sample validation, the available sample {(xxxi,di)}
n
i=1 is randomly divided into

two subsamples, a derivation sample
({

xxxder
l ,dder

l

}nder

l=1

)

and a validation sample
({

xxxval
m ,

dval
m

}nval

m=1

)

, with n = nder + nval . Typically, the sample is split into two subsamples of

the same size (1/2 : 1/2) (Snee, 1977). Split-sample validation proceeds as follows. A

logistic regression model is fitted to the derivation sample and the regression coefficients

are estimated. These regression coefficients are used to estimate the predicted probabil-

ities for the individuals in the validation sample following expression (2), which then

are further used to calculate the corrected AUC by means of equation (3).
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2.3.2. K-fold cross-validation

This method consists in splitting the available sample into k subsamples of (approxi-

mately) the same size. In pretty much the same way as split-sample validation, k− 1

subsamples are considered as the derivation sample, and the remainder is used as vali-

dation sample to estimate the AUC. In contrast, however, to split-sample, the process is

repeated k times, leaving-out one different subsample every time as validation sample.

Finally, the corrected AUC is the average of these k estimated AUCs.

K-fold cross-validation with replication is another variant of this method (see, e.g.,

Smith et al., 2014). The process explained above is repeated r times, with a different

k-split of the sample each time. Finally, the corrected AUC is the average of r × k

estimated AUCs.

We would like to note that the described k-fold cross-validation method is usually

referred in the literature, for obvious reasons, as the averaging strategy in contrast to

the pooling strategy (see, e.g., Bradley, 1997). In the later, predicted probabilities are

calculated in each validation sample, which are then pooled and used to estimate the

corrected AUC. This work focuses on the averaging strategy, as it has shown a better

performance in previous studies (Parker, Günter and Bedo, 2007; Airola et al., 2011). In

particular, the averaging strategy does not suffer from the pessimism that occurs when

pooling, and it is not affected by the so-called stratification bias. These results have

also been corroborated in our setting (results not shown). However, averaging presents

a problem that pooling does not have. If the number of diseased (or healthy) individuals

is low (or the sample size small), it may happen that some folds will have few individuals

(or even none) of the underrepresented group. This will impact the estimate of the AUC

when these folds are used as the validation samples, which in turn can lead to a high

variance in the estimates of the corrected AUC (Airola et al., 2011).

2.3.3. Leave-one-out cross-validation

In leave-one-out cross-validation, a single observation is omitted from the original sam-

ple. The logistic regression model is fitted to the remaining observations (derivation

sample). Then, the fitted model is applied on the omitted observation and its predicted

probability is estimated (see equation (2)). The process is repeated n times (where n is

the size of the original sample), leaving-out one different observation every time. Fi-

nally, the AUC corrected by leave-one-out cross-validation method is calculated based

on the estimated predicted probabilities of all individuals (see, e.g., Airola et al., 2011;

Lachenbruch and Mickey, 1968).

2.3.4. Bootstrap validation

Another possibility to correct for the optimism of the AUC is to use bootstrap techniques

(Efron and Tibshirani, 1993). This method can be summarised as follows:
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Step 1. Fit the logistic regression model to the original sample {(xxxi,di)}
n
i=1 and estimate

the apparent AUC, say ̂AUCapp.

For b = 1,2, . . . ,B (where B is the number of bootstrap resamples):

Step 2. Generate a bootstrap resample
({

xxxb
i ,d

b
i

}n

i=1

)

, of the same size as the original

sample, by resampling with replacement from the original sample.

Step 3. Fit a logistic regression model to the bootstrap resample, and estimate its ap-

parent AUC, say ̂AUC
b

boot .

Step 4. Apply the fitted logistic regression model in Step 3. on the original sample,

calculate the predicted probabilities for each observation and estimate the AUC.

Let ̂AUC
b

o be this estimate.

The optimism is estimated as follows:

̂O =
1

B

B
∑

b=1

( ̂AUC
b

boot − ̂AUC
b

o),

and the corrected AUC is: ̂AUCbootstrap = ̂AUCapp − ̂O.

3. Simulation study

This section describes and presents the results of the simulation study conducted to eval-

uate the behaviour of the correction methods discussed in Section 2.3.. Specifically, the

aim of the study was to compare the AUC estimates provided by the different methods

(including the apparent AUC) against the “true” out-of-sample AUC associated with the

derived logistic regression model. The “true” out-of-sample AUC refers to the true dis-

criminatory capacity of the derived/fitted model when applied to new data or subjects. A

variety of factors that could impact the performance of the methods were considered in

this study, such as, the number of covariates in the model, the available sample size, the

prevalence of the disease (i.e., prev = P(D = 1)) and the correlation among covariates.

The steps of the simulation study are described in detail in next section.

3.1. Scenarios and set-up

For a given number of covariates, say, p, the steps of the simulation study can be sum-

marised as follows:

Step 1. Generate two independent samples
{

xxx
(p)∗
i ,d∗

i

}n

i=1
and

{

xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
of re-

spectively size n and N (the superscript (p) is used to emphasise the covariate

vector length) as follows:



Amaia Iparragirre, Irantzu Barrio and Marı́a Xosé Rodrı́guez-Álvarez 151

Step 1.1 Generate ηi ∼ Bernoulli(prev), and generate the covariate vector value

xxx
(p)∗
i







xxx
(p)∗
i ∼ N

(

µµµ
(p)
D0
,ΣΣΣ(p)

)

if ηi = 0,

xxx
(p)∗
i ∼ N

(

µµµ
(p)
D1
,ΣΣΣ(p)

)

if ηi = 1.
(4)

By simulating the covariates in this way, the logistic regression model holds,

and the true value of the regression coefficient vector βββ(p) is known (see Ap-

pendix A). This vector is used in Step 1.2 below.

Step 1.2 Calculate p(xxx
(p)∗
i ) using equation (1).

Step 1.3 Generate d∗
i ∼ Bernoulli(p(xxx

(p)∗
i )).

(To generate
{

xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
we followed the same steps. We note that this sample

is used in Step 3. to estimate the out-of-sample AUC.)

Step 2. Fit a logistic regression model to the first sample,
{

xxx
(p)∗
i ,d∗

i

}n

i=1
, and estimate

the apparent and corrected AUCs (by means of any method discussed in Section

2.3).

Step 3. Apply the fitted logistic regression model in Step 2. on sample
{

xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
,

calculate the predicted probabilities for each observation and estimate the “true”

out-of-sample AUC ( ̂AUCoos).

Note that to generate the covariate vector in Step 1.1, the parameters of the multi-

variate normal distribution (see equation (4)) need to be specified. In particular, in this

study we considered:

{

µµµ
(10)
D0

= (0, . . . ,0)T
,

µµµ
(10)
D1

= (0.6,0.55,0.5,0.45,0.4,0.3,0.25,0.2,0.15,0.1)T
.

Thus, for example, for two covariates we have µµµ
(2)
D0

= (0,0)T and µµµ
(2)
D1

= (0.6,0.55)T.

Note that the covariates are sorted (and thus included in the simulation) from the most

explicative to the weakest. With respect to the variance-covariance matrix, we assumed

ΣΣΣ(p) = (1−γ) · Ip×p +γ · Jp×p,

where Ip×p is the identity matrix of dimension p× p and Jp×p is the matrix of ones

of the same dimension. Here γ controls the correlation among covariates (when γ = 0

the covariates are independent). For a given number of covariates p (p ∈ {1, . . . ,10}),

different sample sizes (n ∈ {500,1000,2000}), prevalences (prev ∈ {0.1,0.2,0.5}) and

correlations (γ ∈ {0,0.15,0.60}) were considered, yielding a total of 27 different spec-
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ifications per number of covariates. In all results shown below, the out-of-sample AUC

(see Step 3.) was estimated on the basis of a sample of size N = 50000, and a total

of R = 500 replicates were performed. Split-sample validation was used with half of

the sample for derivation and the other half for validation (1/2 : 1/2). For k-fold cross-

validation we considered k = 10 folds (which is the one most commonly used in the

literature), without replicates (the procedure is performed only once) and with r = 20

replicates. Bootstrap validation was performed with B = 100 and B = 500 bootstrap

resamples. Recall that in addition to those methods, we also evaluated the performance

of the apparent AUC, and the leave-one-out cross-validation procedure. We note that for

split-sample validation, the logistic regression model in Step 2. was fitted on half of the

available data, and this fitted model was the one used in Step 3. to calculate the “true”

out-of-sample AUC. Thus, neither the fitted model nor the “true” out-of-sample AUC is

the same as for the other methods. We proceeded in this way since, in our experience,

the reported model is, in general, the one developed in the derivation sample and not us-

ing the whole sample. Finally, the performance of the methods was measured in terms

of bias and mean squared error (MSE), that were calculated over the R = 500 runs

Bias =
1

R

R
∑

r=1

(

̂AUC
r

cor − ̂AUC
r

oos

)

,

MSE =
1

R

R
∑

r=1

(

̂AUC
r

cor − ̂AUC
r

oos

)2

,

where ̂AUCcor denotes the estimated AUC obtained by means of any of the methods

considered in this work (including the apparent), and ̂AUCoos is the estimated out-of-

sample AUC (computed, based on a sample of size N=50000, as explained in Step 3.).

It is important to note that all methods considered in this work (except leave-one-

out cross-validation) are based on either splitting the data or resampling it. One may

argue that, for a particular sample, different splits or resamples can lead to different

corrected AUCs. Thus, in addition to the previous simulation, a smaller study was

performed with the aim of evaluating the variability of the corrected AUC estimates for

a particular sample. For simplicity, in this case we restricted our attention to the most

extreme parameter specification (n = 500, prev = 0.1, γ = 0.60) and an intermediate

one (n = 1000, prev = 0.2, γ= 0.15).

3.2. Results

Given the large number of proposed parameter specifications (a total of 270), we begin

by summarising the main findings. As could have been expected, the bias of the appar-

ent AUC increases as the number and correlation among covariates increase, and as the

prevalence and sample size decrease. With respect to the other methods considered in

the study, except for the leave-one-out cross-validation all seem to correct for the opti-
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mism of the apparent AUC (small bias) and there is not a clear method that performs

the best across all specifications. However, in terms of variability in the estimates, the

10-fold cross-validation without replication and the split-sample validation are the meth-

ods that present the largest variability, and this is especially remarkable for split-sample

validation. For split-sample, the large variability can come from two different sources.

First, the model is fitted to half of the data and therefore there is more uncertainty, and

second, the corrected AUC is estimated with also half of the data. This issue has also

been discussed by Smith et al. (2014). For 10-fold cross-validation without replication a

similar explanation as in split-sample can be given (Smith et al., 2014), but in addition,

an extra problem can arise, especially for small sample sizes and low prevalences. As

noted in Section 2.3.2, the random split of the full sample into 10 folds may yield folds

with very few events, which affects the estimation of the corrected AUC when using

these folds. However, this effect might be mitigated if the 10-fold cross-validation with

replication is used, as the corrected AUC is the average of a large number of values. In

our simulations we ensured that at least there is one event in each fold, but we are aware

that it might not be enough. To finish this part we would like to mention that, in contrast

to other studies (see, e.g., Austin and Steyerberg, 2017), in this work we compared the

corrected AUCs provided by the split-sample method with the out-of-sample AUCs ob-

tained based on the model fitted to the derivation sample. This may explain why we do

not observe a pessimistic behaviour (negative bias) of this method.

We now present some numerical and graphical results. Since the mayor differences

among the methods have been observed for the most extreme specifications, these are

the results shown here.

Table 1 shows the numerical results obtained for a correlation of 0.60 (γ = 0.60),

sample sizes of 500 and 2000 (n ∈ {500,2000}), prevalences of 0.1, 0.2 and 0.5 (prev∈
{0.1,0.2,0.5}) and 2, 5 and 8 number of covariates (p ∈ {2,5,8}). Specifically, the

average and standard deviation of the estimated AUCs are reported jointly with the bias

and MSE. Note that except for a small number of covariates and a large sample size, the

apparent AUC is optimistic (positive bias). Split-sample is the method presenting the

largest variability and therefore MSE. Note also that, the average of the estimated cor-

rected AUCs given by split-sample validation is in general the lowest. This is especially

remarkable for large number of covariates and small sample sizes, and is a consequence

of fitting the model using only half of the data. If we compare cross-validation with and

without replication, we observe that the presence of replicates reduces the variability

and therefore the MSE. Curiously, at least in our simulations, we do not observe a large

difference between B = 100 and B = 500 in the bootstrap method. In all the results

shown in Table 1, the largest MSE is obtained for split-sample (coming from the largest

variability). For the remaining methods, as the sample size increases, all perform al-

most indistinguishably. The largest differences among the methods are observed for a

sample size of n = 500 and a prevalence of 0.1. This can also be observed in Figure 1.

The figure depicts the bias associated to each method across the 500 runs, for 1 to 10

number of covariates (p ∈ {1,2, . . . ,10}), a prevalence of 0.1 (prev = 0.1), a correlation
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Figure 2: Bias associated to each correction method according to the number of covariates included in

the logistic regression model (p ∈ {1,2, . . . ,10}). The results shown are for a sample size of n = 1000 and

different prevalences and correlations: (a) prev = 0.2 and γ= 0, (b) prev = 0.5 and γ= 0, (c) prev = 0.2

and γ = 0.60, and (d) prev = 0.5 and γ= 0.60.

of 0.60 (γ = 0.60) and different sample sizes (n ∈ {500,1000,2000}). Note that for a

sample size of n = 500 the bias of 10-fold cross-validation with and without replication

and the leave-one-out cross-validation is very large, but the bias decreases as the sample

size increases. Thus, with a low prevalence, larger sample sizes are required for those

methods to perform well.
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Figure 2 shows also the bias associated to each method, but for other parameter

specifications. In particular, we present the results for a sample size of n = 1000,

but different prevalences and correlations. Figure 2(a) depicts the bias for n = 1000,

prev = 0.2 and γ = 0, Figure 2(b) for n = 1000, prev = 0.5 and γ = 0, Figure 2(c)

for n = 1000, prev = 0.5 and γ = 0.60, and Figure 2(d) for n = 1000, prev = 0.5 and

γ = 0.60. These results corroborate that the bias of the apparent AUC increases as the

correlation increases and/or the prevalence decreases. In all cases, leave-one-out cross-

validation is the method presenting the most pessimistic behaviour (negative bias), and,

as noted before, in terms of bias, split-sample validation seems to perform similarly

to 10-fold cross-validation (with and without replication) and bootstrap (with B = 100

and B = 500). These results also show that, on average, the corrected AUCs provided

by bootstrap are larger than those provided by 10-fold cross-validation (the difference

between the corrected AUCs and the out-of-sample AUC is larger), and this pattern is

maintained across all specifications.

To finish with the presentation of results we show in Figure 3 the variability of the es-

timated corrected AUCs when the methods were applied to 500 different random splits

or resamples of a particular sample. Recall that for these results we considered the

most extreme parameter specification (n = 500, prev = 0.1, γ = 0.60) and an inter-

mediate one (n = 1000, prev = 0.2, γ = 0.15), both including 5 covariates. For both

situations, it is remarkable the large variability of the split-sample validation and the

10-fold cross-validation without replication, with the other three methods (i.e., 10-fold

cross-validation with replication and, bootstrap with B = 100 and B = 500 resamples),

presenting a rather low variability (note that the scale of the y-axes is different in both

graphics). These results emphasise the above-discussed conclusions.

(a) (b)

Figure 3: Box-plot of the estimated corrected AUCs by means of the different correction methods when

applied to 500 different splits or resamples of the same sample. This figure illustrates the variability of the

different correction methods. (a) Most extreme parameter specification (n = 500, prev = 0.1, γ = 0.60, 5

covariates). (b) Intermediate specification (n = 1000, prev = 0.2, γ = 0.15, 5 covariates). Note that the

scale of the y-axes is different in both graphics.
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4. Discussion

In this work we compared the behaviour of different methods when correcting for the

optimism of the apparent AUC in logistic regression models. A large simulation study

was conducted in which different scenarios were considered regarding the number of

covariates, sample size, prevalence and correlation among covariates. The predictor

variables were simulated following a multivariate normal distribution in such a way

that the theoretical logistic regression model is known. We now summarise the main

conclusions that we have drawn throughout the study.

If enough data are available, all methods seem to properly correct for the optimism

of the apparent AUC, except for the leave-one-out cross-validation, which gives the

most pessimistic results. Moreover, in terms of bias the behaviour of all remaining

correction methods is similar (there is not a clear method that performs the best) and

the bias is, in general, low. In contrast, the problems appear when the available data is

insufficient and/or imbalanced. For example, when working with a low prevalence and

correlated covariates, larger sample sizes will be needed to ensure a good performance

of the optimism correction methods.

The results of the simulation study suggest the use of either k-fold cross-validation

with replication or bootstrap (we note that, for cross-validation, we only examined the

case of k = 10 number of folds). In particular, in the most extreme cases, the bootstrap

method should be used according to these results. Even though k-fold cross-validation

with replication and bootstrap are the most computationally demanding methods, for the

sample sizes considered in this study, the computing time was affordable (in general, less

than 10 seconds).

The results obtained in this work are in line with those obtained in previous studies

(Austin and Steyerberg, 2017; Airola et al., 2011; Steyerberg et al., 2001; Smith et al.,

2014). Nevertheless, we have also observed some differences.

On the one hand, we should note the differences in the results of the split-sample

validation. In previous studies, split-sample has given pessimistic results. In contrast,

in this study, the bias of the estimated AUC corrected by split-sample is very low. The

reason is the following. Some researchers have claimed that despite using split-sample

for the validation of the model, the final model should be based on the full sample

(see, e.g., Harrell et al., 1996; Steyerberg et al., 2001). For this reason, in previous

studies, the AUC corrected with split-sample was compared to the “true” out-of-sample

AUC of the full model (see, e.g., Austin and Steyerberg, 2017). Nevertheless, at least

in our experience, in practice, the model reported when split-sample validation is used

is, in general, the one developed in the derivation sample and not derived using the

whole sample (see, e.g., Quintana et al., 2014; Wada et al., 2017). Thus, in this study,

we compared the AUC corrected by split-sample validation to the “true” out-of-sample

AUC of the model fitted to the derivation sample. Our results suggest that, in terms

of the bias, split-sample validation properly corrects the apparent AUC of the model

fitted to the derivation sample. However, similarly to the results obtained in the above-
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mentioned studies, the variability of the split-sample validation is very large compared

to the other available methods. Furthermore, as only half of the data is used to derive the

model, model’s performance is in general worse than when the full sample is used, and

the “true” AUC of the model fitted to the derivation sample is also lower, unless enough

data is available. We conclude that we do not recommend the use of the split-sample

validation, because of its large variability and the worse performance of the final model.

On the other hand, for the same EPV values, very different results were obtained in

this study. For instance, for an EPV=10, for some parameter specifications the optimism

of the apparent AUC was successfully corrected, but for other parameter specifications,

the methods presented some bias. Thus, in addition to the EPV, the factors that were

analysed in this study (the number of covariates in the model, the available sample

size, the prevalence of the disease and the correlation among covariates) should also be

regarded when correcting for the optimism of the apparent AUC.

We would like to conclude commenting on the limitations of our study. In the first

place, we only studied the impact from 1 to 10 covariates in the model. In our daily

practice, it is not common to fit models with more than 10 covariates. Nevertheless, in

some cases, it could be interesting to study the impact of a larger number of covariates in

the behaviour of different correction methods (see, e.g., Airola et al., 2011). Secondly,

in our simulation study, we only considered the case of multivariate normally distributed

covariates. However, the results we obtained are in concordance with a similar simula-

tion study we conducted based on categorical covariates (results not shown), as well as

with the results other authors obtained in previous studies (Austin and Steyerberg, 2017;

Steyerberg et al., 2001; Smith et al., 2014). Also, for cross-validation we only examined

the case of k = 10. For small sample sizes and unbalanced data, this value may be too

large as it may yield into folds with very few events, thus affecting the behaviour of the

method. Further research is therefore guaranteed to study the impact of the number of

folds. Another limitation of this study is that we did not focus on important aspects in

the development of a prediction model, such as variable selection and model derivation,

but we went directly to the evaluation of the performance (and its optimism correction)

of a “pre-defined” model. Moreover, as noted in the introduction, we focused on the

discrimination of the model (measured by the AUC) rather than on its calibration (e.g.

goodness-of-fit), which should also be considered when developing prediction models.

An interesting area of research would be the study of the behaviour of the methods con-

sidered in this work when applied to measures of calibration. Finally, we did not study

the behaviour of the leave-pair-out cross-validation, which has shown good behaviour

in previous studies (see, e.g., Airola et al., 2011; Smith et al., 2014). We focused the

simulation study on the most commonly used correction methods in the literature.
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A Appendix

Let us assume that the vector of p covariates XXX is distributed according to a multi-

variate normal distribution in both healthy and diseased populations. That is to say,

XXXD0
≡ XXX |D = 0 ∼ N(µµµD0

,ΣΣΣ) and XXXD1
≡ XXX |D = 1 ∼ N(µµµD1

,ΣΣΣ), where the variance-

covariance matrix ΣΣΣ is assumed to be the same for both distributions. Given that ΣΣΣ

is a symmetric matrix, it can be shown that ΣΣΣ−1 =
1

|ΣΣΣ|
AAA, where |ΣΣΣ| denotes the determi-

nant of ΣΣΣ and AAA is the adjoint matrix of ΣΣΣ. Under these assumptions, it is easy to show

that the logistic regression model (see eqn. (1)) holds and that the true values of the

regression coefficients are















β0 = ln

(

P(D = 1)

P(D = 0)

)

−
1

2 |ΣΣΣ|

∑p

k=1

∑p
j=1 A jk(µD1 j

µD1k
−µD0 j

µD0k
),

βk =
1

|ΣΣΣ|

∑p
j=1 A jk(µD1 j

−µD0 j
), (k = 1, . . . , p).
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Abstract

The problem of finding optimal exact designs is more challenging than that of approximate optimal

designs. In the present paper, we develop two efficient algorithms to numerically construct exact

designs for mixture experiments. The first is a novel approach to the well-known multiplicative

algorithm based on sets of permutation points, while the second uses genetic algorithms. Using

(i) linear and non-linear models, (ii) D- and I-optimality criteria, and (iii) constraints on the ingre-

dients, both approaches are explored through several practical problems arising in the chemical,

pharmaceutical and oil industry.
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1. Introduction

Applications of mixture problems can be found in several areas including the chemical,

pharmaceutical and oil industries. Their main purpose is to identify the composition of

different blends which optimally describe the characteristic-response of their products.

Standard choice designs and models are typically applied in the literature. However, due

to the benefits of the optimal experimental design (OED) theory, more attention is re-

ceiving the development of this theory for mixture experiments nowadays (Coetzer and

Haines, 2017; Garcı́a-Camacha Gutiérrez, 2017; Goos, Jones and Syafitri, 2016; Wong

et al., 2015; Brown, Donev and Bissett, 2015). Many authors have worked on develop-

ing efficient algorithms for designing exact optimal experimental design. The limited

number of theoretical results focuses on approximate optimal designs to precise parame-

ter estimation (Cornell, 2002; Atkinson, Donev and Tobias, 2007). Kiefer (1961) analyt-
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ically determined D-optimal designs for quadratic models. Galil and Kiefer (1977) ex-

tended these results for φp-optimization, while Mikaeili and Lim’s works focused on

cubic polynomials (Mikaeili, 1989; Lim, 1990). Nevertheless, no remarkable result ex-

ists for general-degree polynomials. Chan (1992) and Chan and Guan (1998) computed

optimal designs for other classes of models such as log-contrast ones, with inverse terms

or additive ones and Chan and Guan (2001) gave an extensive review about this topic.

The book Optimal Mixture Experiments is an updated guide about both analytical and

numerical results (Sinha et al., 2014). On the other hand, less attention has been paid in

the statistical literature to seek I-optimal designs. Goos et al. (2016) provided a recent

literature review on I-optimal designs and Coetzer and Haines (2017) introduced a new

approach to the construction of D- and I- optimal designs when the mixture components

are linearly constrained. Thus there is some space for exploiting the problem to develop

more efficient numerical algorithms than the traditional ones.

The aim of this paper is to propose two novel design constructions algorithms for

identifying exact D- and I-optimal designs in mixture experiments. The first one is based

on a multiplicative algorithm (MA). This is a well known algorithm in OED (Torsney,

1977; Silvey, Titterington and Torsney, 1978). It consists of an update rule of probabil-

ity measures and its convergence has been extensively studied for approximate design

theory (Yu (2010)). However, the application of this methodology is not straightforward

in exact mixture problems. In this work, we provide a new approach of the MA using a

special class of designs known as exchangeable designs (Draper and Pukelsheim, 1999).

The idea of these designs is to generate candidate points in the mixture designs using

permutations of a fixed set of component values. In this paper, this class of designs are

called permutation mixture experimental designs (PMEDs), where the use of MA takes

advantage of exploiting the general equivalence theorem. On the other hand, an effi-

cient genetic algorithm (GA) is provided as an heuristic alternative which is also valid

in constrained mixture problems. Borkowski (2003) was a pioneer applying this numer-

ical optimization tool to OED field and motivated its use for irregularly-shaped design

regions. The nature of mixture experiments requires special conditions on the operators

and even more if there are experimental limitations on the proportions. For that reason,

although the basis of our algorithm is standard, adaptations of the operators have been

carried out. GAs have been tested in a wide variety of contexts, in particular, they have

been used as alternatives to exchange algorithms. Several modifications have already

been developed to accelerate the convergence of these algorithms. Most of them are

focused on the operators. Two new improvements are proposed in this paper. The first

one based on the selection of the initial population and the second one is a new strategy

based on a clusterization process around optimal points. Mixing laws for fluid viscosity,

drug delivery systems, drug formulation and improvement of crude quality are some

real examples suitable for computing optimal designs and for checking the goodness of

the proposed algorithms.

The paper is organized as follows. Section 2 recalls the basis of mixture experimental

design. We describe the existing designs for mixture experiments and an introduction
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of the OED theory is presented. The proposed multiplicative and genetic algorithms

for computing exact D- and I-optimal designs in mixture experiments are described in

Section 3. Examples of applications to real problems are shown in Section 4. Finally,

Section 5 provides a brief discussion and some future lines of research.

2. Background

2.1. Models and designs for mixture experiments

Controlled variables in a standard mixture problem are nonnegative, belonging to [0,1]
and dependent through the relationship 1

T

q p = 1 where 1q = (1, . . . ,1)T ∈ R
q and p =

(p1, . . . , pq)
T is the vector of relative proportions in a q-component mixture. These con-

straints define the design region χ as a (q− 1)-dimensional simplex S = {p ∈ [0,1]q :

1
T

q p = 1}. In addition, many real mixture problems are often constrained by lower and

upper bounds on their proportions, 0 ≤ Li ≤ pi ≤Ui ≤ 1, i = 1, . . . ,q. This is mainly due

to experimental limitations or ingredient availability considerations.

A suitable model must be selected a priori describing the composition-response re-

lationship. Let y = ηηηT(p)θθθ+ ε(p) be the observed response, where ηηηT(p) = (η1(p), . . . ,

ηk(p)) is a vector of k linearly independent functions, θθθ = (θ1, . . . ,θk)
T is the unknown

parameter vector and ε(p) is the error term. Additive uncorrelated random errors with

common variance will be assumed. Because of the ordinary polynomials do not allow

estimation of parameters due to collinearity between proportions, canonical polynomi-

als introduced by Scheffé (1958) are the most commonly used for a large of practical

situations. To illustrate, a third-order Scheffé polynomial (the full cubic model) is

E[y] =

q
∑

i=1

θi pi +

q−1
∑

i=1

q
∑

j=i+1

θi j pi p j +

q−1
∑

i=1

q
∑

j=i+1

δi j pi p j(pi − p j)+

q−2
∑

i=1

q−1
∑

j=i+1

q
∑

k= j+1

θi jk pi p j pk,

where δi j are reparametrizations of the parameters of an ordinary full third-order poly-

nomial. In spite of being the most popular, other models have been proposed in the liter-

ature for data from mixture experiments with particular properties. Darroch and Waller’s

additive polynomials (Darroch and Waller, 1985), models with homogeneous functions

(Becker, 1968), models with inverse terms (Draper and John, 1977), log-contrast models

(Aitchison and Bacon-Shone, 1984) or Draper and Pukelsheim’s K-polynomials (Draper

and Pukelsheim, 1997) are some of them.

Although many aspects differ between experiments from different areas, standard

designs are often used by practitioners in mixture problems. In general, standard mixture

designs are adopted in the literature for fitting standard mixture models. If m ≥ 1 is
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an integer, the {q,m}-simplex lattice in S is defined as the collection of points whose

coordinates are integer multiples of 1/m, that is the set of points {p ∈ S, pi =
j

m
,0 ≤

j ≤ m, 1 ≤ i ≤ q} (Scheffé, 1958). Thus a {q,m}-simplex lattice design describes a

design that takes observations at the above set of points, the {q,m}-lattice. On the other

hand, a {q,m}-simplex centroid (1 ≤ m ≤ q) is defined as a collection of points in S

with q− j coordinates equal to zero and j coordinates equal to 1
j
, j = 1, . . . ,m (Scheffé,

1963). However, if interest is focused on exploring within the simplex, another class of

designs named axial designs were suggested by Cornell (2002). Snee and McLean and

Anderson (Snee, 1979; McLean and Anderson, 1966) proposed extreme-vertex designs

for constrained mixture problems.

In summary, the analysis of mixture experiments has been developed using canonical

polynomials models and other alternative linear models under standard designs. How-

ever, there are situations where models that are nonlinear in the parameters would be

preferable and standard designs are not appropiated. The application of mixture ex-

periments to nonlinear models appears to be a very interesing question which has been

little explored (Coetzer and Focke, 2010; Brown et al., 2015). On the other hand, even

considering linear models, if the design region is constrained, standard designs are not

suitable 6 (Piepel, Cooley and Jones, 2005). In this paper we apply the OED theory to

obtain optimal designs using both linear and nonlinear models and considering uncon-

strained and constrained regions. In the next subsection, we introduce the OED basis,

which is used in what follows.

2.2. Optimal experimental design background

Let a linear model y = ηηηT(p)θθθ+ε(p) as defined above. A set of experimental conditions,

p, must be determined in order to observe the outcome in an optimal manner (mainly to

attain precise estimations of the parameters or to obtain accurate response predictions).

An exact design will be a sequence of experimental conditions (mixture settings) ξN =
{p1, p2, . . . , pN} from a compact set (the (q− 1)-dimensional simplex S) which are not

necessarily distinct. Assuming that only J of the points are different the design may

be represented by a probability measure. Thus, if the point p j appears n j times in the

design,ω j = n j/N will be the probability of p j within the sample. Then the exact design

problem can be viewed as one of determining these proportions optimally subject to

them being rational. Using this idea Kiefer (1961) relaxed this condition, defining an

approximate design as any probability measure ξ on χ with a finite support,

ξ =

{

p1 p2 · · · pJ

ω1 ω2 · · · ωJ

}

,

where the ω j values satisfy 0 ≤ ω j ≤ 1 and
∑J

j=1ω j = 1, j = 1, . . . ,J. From the

Carathéodory theorem, an upper bound for the number of support points can be derived

as
k(k+1)

2
+ 1 (Chapter 8, Pukelsheim, 2006). For moderate and large numbers of runs,
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the number of replicates of design points can be determined by integer appr oximation

to the optimal measure.

The most important element for describing the quality of statistical inference that

can be drawn from data collected with a design is the Fisher information matrix.

For an N-point exact design ξN we can assume J = N and ω j = 1/N; so

M(ξN) =
N
∑

j=1

ηηη(p j)ηηηT(p j)ω j =
1

N
VV

T
∝ VV

T,

where the ith column of the matrix V is ηηη(pi) denoted by vi = v(pi). The set of infor-

mation matrices, M, is convex and compact. The inverse of the information matrix is

proportional to the covariance matrix of the least squares estimates. Thus, an experi-

mental designing “optimizing”, in some sense, the information matrix, should be found.

Following convention, the ranking of alternative designs is based on a scalar-valued cri-

terion function, ψ[M(ξN)], so that, the problem becomes one of function optimization.

A function ψ defined on the set of information matrices defines an optimality crite-

rion if it is non decreasing in the Loewner sense (ψ(M1) ≤ ψ(M2) whenever M1 −M2

is non-negative definite). For notational issues, let us define two functions ψ[·] and

φ(·), both relative the criterion function whose use will depend on its argument, in par-

ticular ψ[M(ξN)] = φ(ξN). In this paper, we consider two optimality criteria: D- and

I-optimality. The goal of D-optimality is connected to parameter estimation. This cri-

terion seeks to minimize the volume of the confidence ellipsoid of the parameters and

is formulated as φD(ξN) = det[M(ξN)]
−1/k. On the other hand, due to the importance of

predictive capability of many mixture experiments, I-optimal designs were considered

in this work too. This criterion focuses on precise prediction, and is defined by the fol-

lowing function: φI(ξN) =
∫
S
η(p)TM−1(ξN )η(p)dp

∫
S

dp
= Γ(q) · trace[M−1(ξN)B], where B is the

moment matrix given by B =
∫

S
η(p)ηT(p)d p and

∫

S
d p = 1

Γ(q) when the domain of the

mixture settings is the simplex. Thus, I-optimal designs seek to minimize the average

prediction variance over the design region.

A design optimizing the criterion function in the class ΞN of all exact designs of size

N is referred to as an exact φ-optimal design, ξ∗N . Thus we can compare the quality

of two designs of the same size (N) through the ratio of the criterion values. When

the optimal exact design is known, ξ∗N , the efficiency of a design ξ ∈ ΞN is defined as

Effφ(ξN) = (φ(ξN)/φ(ξ
∗
N)).

However, finding an exact optimal design is not an easy task because it is a discrete

optimization problem and there is no general analytical tool for confirming whether an

exact design is optimal or not. On the contrary, approximate designs are easier to find.

The most important advantage of searching approximate designs is the concavity (con-

vexity) of the criterion functions. Under these conditions, an excellent tool to check

whether a particular approximate design is optimal (especially for differentiable crite-

ria) is the Equivalence Theorem. Even though finding approximate optimal design is
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easier because of the above results, in practical settings, only exact designs can be im-

plemented. So, when an optimal approximate design has been found, then it has to be

rounded to obtain an exact design (Pukelsheim and Rieder, 1992). A weakness of this

approach is that the final exact design obtained by rounding off an approximate design

for implementation is not unique. In addition, a large sample size is needed to obtain a

design close to the optimal exact design.

It is worth mentioning that in many real situations, mixing laws do not linearly re-

spond as composition varies. For the linear case, optimal designs are independent of

the value of θ. In the case where non-linear models are appropriate, the most common

method for analyzing them is based on the use of the linear Taylor series approximation

of the model. Under these conditions, the covariance matrix of the least squares estima-

tor of θθθ is asymptotically approximated by the inverse of the information matrix induced

by the design

M(ξN,θθθ
0) =

1

N

N
∑

j=1

v(p j,θθθ0)vT(p j,θθθ0),

where v(p j,θθθ0)= ( ∂η(p j,θθθ)
∂θ1

, . . . , ∂η(p j ,θθθ)
∂θk

)T

|
θθθ=θθθ0

and θθθ0 is a prior guess of θθθ (Chernoff, 1953).

In this sense, the computed designs are locally optimum.

3. Algorithms for solving mixture exact design problems

As it was defined in the previous section, finding a φ-optimal exact N-point design is a

combinatorial problem, and it has been considered an NP-hard problem (Welch, 1982).

Globally optimal exact designs usually cannot be established and, in most cases, we need

to resort to heuristic algorithms to find good designs. Several algorithms are available

in the literature, most of which can be only used to compute approximate designs. They

can be categorised into two broad groups: greedy algorithms such as those based on

Fedorov-type exchanges, candidate-free coordinate exchange and multiplicative updat-

ing of the weights, and nature inspired algorithms which include simulated annealing,

genetic algorithms and swarm intelligence between others (Dean et al., 2015).

The first algorithms developed for dealing with exact designs are based on exchange

methods and were proposed for the D-optimality criterion (Fedorov, 1972; Wynn, 1970).

Some modifications of these procedures were suggested in order to speed up the origi-

nal algorithms (DETMAX algorithm (Mitchell, 1974); KL-exchange algorithm (Atkin-

son and Donev, 1989); coordinate-exchange algorithm (Meyer and Nachtsheim, 1995).

McLean and Anderson’s method (McLean and Anderson, 1966), XVERT (Snee and

Marquardt, 1974) and CONSIM (Snee, 1979) were specifically developed for obtaining

designs on irregularly shaped experimental regions. The resulting designs are called the

extreme-vertex designs. Most of these algorithms were later directly applied to mixture

settings. Neither of the algorithms are guaranteed to find the globally optimum design
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because the support points are chosen from a pre-specified grid points. This requirement

implies an exhaustive search over all candidate points, which is time-consuming and in-

efficient. During the last few years, algorithms have been improved to avoid this draw-

backs. In particular, for constructing approximate designs, hybrid algorithms have been

developed for improving computational efficiency (Martı́n-Martı́n and Garcı́a-Camacha

Gutiérrez, 2015) for D-optimality, Saleh and Pan (2016) for G-optimality, and Coetzer

and Haines (2017) for D- and I-optimality for mixture experiments with linear con-

straints). They are based on suitably adjusting the strategies followed by the standard

algorithms so that the new proprieties were able to solve the arisen problems using these

methods in an isolated way. Another class of algorithms, inside of the first group of al-

gorithms, which has received much attention for finding optimal approximate designs

is the class of multiplicative algorithms (Torsney, 1977; Silvey et al., 1978). In spite of

the several improvements to this class of algorithms, only Torsney and Martı́n-Martı́n

(2009) adapted the multiplicative algorithm to cope with exact designs. In the present

paper, this numerical method will be adapted to the special nature of mixture design.

The second group of optimization techniques used in OED to compute optimal de-

signs are the meta-heuristic optimization algorithms. Due to their flexibility and po-

tential, they have become a common tool in computational statistics as alternatives

to standard algorithms. One of the most popular ones is the GA. Borkowski (2003)

was a pioneer applying this numerical optimization tool to OED field and motivated its

use for irregularly-shaped design regions. Heredia-Langer et al. (2003) and Limmuun,

Borkowski and Chomtee (2013) gave a substantial discussion about the relative merits

of GAs for design of experiments and some of the potential pitfalls of the implemen-

tation. On the other hand, in a recent paper, Wong et al. (2015) proposed a modified

particle swarm optimization (PSO) technique for computing D-optimal approximate de-

signs for mixture linear models. It is important to highlight that these algorithms take the

mixture proportions to be continuous over the design region. Variable-Neighbourhood

Search (VNS) is also a metaheuristic strategy commonly used to escape from local op-

tima. Several variants of VNS have been proposed in the literature (Vazquez, Goos

and Schoen, 2018). In this work, two new improvements have been incorporated to the

proposed GA. The first one is based on the selection of the initial population and the

second one is a new strategy based on a clustering process around presumed optimal

design points.

3.1. A novel approach of the MA to determining exact optimal design

for mixture experiments

Symmetry and balancedness have always been a prime attribute of good experimental

designs (Draper and Pukelsheim, 1999). Nevertheless, in the case of mixture experi-

ments, symmetry cannot be conducted in the general geometrical sense since the simplex

is not itself a symmetric region. The natural structure of symmetry in the simplex deals

with the invariance under permutation of its coordinates, it means symmetry through
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the centroid of the simplex. Following this idea and since the support points of most

the optimal mixture designs obtained in the literature are permutations of proportions,

we consider the use of permutations of fixed sets of q component values or proportions,

say p = (p1, . . . , pq) where 1
T

q p = 1, to generate candidate points for mixture designs.

In this paper, this class of designs is called Permutation Mixture Experimental Designs

(PMEDs).

Let p = (p1, . . . , pq) be a single mixture point in the (q− 1)-dimensional simplex S

and let

P(p) = {a = (a1, . . . ,aq) = σ(p1, . . . , pq),

q
∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . ,q}

be the set of all possible permutations of its proportions, #P(p) = q! . A PMED of p ∈ S

mixtures is an exact N = q!-design generated by one set of components ξP(p) = {P(p)}.

From this definition, it is worth mentioning that the set of the permutation points of any

point belonging to a linearly-constrained region into the simplex may not be entirely

included in this region. Consequently, this new approach cannot be applied for solving

constrained mixture problems. In this regard, new approaches are being explored for

overcoming this situation.

Let us denote the PMED design ξP(p) ≡
Not

P. The corresponding information matrix

will be written as

M(P) =
1

q!

q!
∑

j=1

v(p j)vT(p j). (1)

We are interested in finding p∗ = (p∗1, . . . , p∗q) optimally to maximize a chosen design

criterion, ψ[M(P∗)] = φ(p∗) = maxp∈Sφ(p). This problem can be considered as special

case of the general class optimization problem discussed by Torsney and Martı́n-Martı́n

(2009). One advantage of this approach is that we can use calculus to determine first-

order conditions of optimality for exact designs.

The first-order conditions for a local maximum (minimum) are:

F∗
i = Fφ(p∗,ei) =

{

= 0, for p∗i > 0

≤ (≥) 0 for p∗i = 0,
i = 1, . . . ,q (2)

where Fi = Fφ(p,ei) is the directional derivative of φ() at p in the direction of the ex-

treme vertex ei ∈ R
q. It is noteworthy that the elements of the information matrix (1) in

the mixture experiment context are not linear functions of p even for simple models such

as higher first-order polynomials. Therefore, the criterion function φ(p) = ψ[M(P)] is

probably a non-concave (non-convex) function, in which case (2) are necessary but not

sufficient conditions for local maxima (minima). For illustrative purposes, directional

derivatives for D-optimality are computed following the above considerations (see sup-

plementary material A). The expression of the directional derivative in the case of non-
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linear arguments is

Fφ(p,ei) = Fψ

[

M(P), M(P)+
∂ M(P)

∂ pi

−

q
∑

l=1

pl

∂ M(P)

∂ pl

]

.

The directional derivatives for the D- and I-optimality criteria derived from these are

FφD
(p,ei) = Tr

[

M−1(P)
∂ M(P)

∂ pi

]

−

q
∑

l=1

plTr

[

M−1(P)
∂ M(P)

∂ pl

]

, (3)

and

FφI
(p,ei) = Tr

[

LM−1(P)
∂ M(P)

∂ pi

M−1(P)LT

]

−

q
∑

l=1

plTr

[

LM−1(P)
∂ M(P)

∂ pl

M−1(P)LT

]

,

(4)

where L is the Cholesky factor of the moment matrix B.

To satisfy the constrains of this problem of maximizing a criterion function of pro-

portions p1, . . . , pq, we will use an iterative multiplicative algorithm. Thus, the n-th

update corresponding to the i-th component of p is

p
(n)
i =

p
(n−1)
i f (x

(n−1)
i ,δ)

q
∑

l=1

p
(n−1)
l f (x

(n−1)
l ,δ)

, i = 1, . . . ,q,

where x
(n−1)
i = Fφ(p(n−1),ei), f (x

(n−1)
i ,δ) is positive, ∂ f (x,δ)/∂x > 0 and, if δ = 0,

f (x,δ) is constant; n = 1,2, . . . is the iteration number and p(0) = (p0
1, . . . , p0

q) a starting

point such that M(P(0)) is not a singular matrix. The choice of f plays an important role

in the convergence of the algorithm. δ is a small positive constant whose choice must

be suitably made for the monotoniciy of the algorithm. Since the criterion function can

have negative derivatives, two appropriate choices of f (x,δ) are f (x,δ) = Φ(δx), where

Φ is the c.d.f. of the standard normal distribution, and f (x,δ) = exp(δx)/(1+exp(δx)),

i.e., the logistic c.d.f. evaluated at δx. An iteration of the algorithm will be completed

when all components have been updated. It is important to note that the application

of the standard version of the MA for computing the optimal approximate design with

q! points, will imply q! · q updates in each iteration, while it will be only q in the case

of considering a permutation design due to only one set of proportions needs to be

computed. The stopping rule will comprise checking if the first-order conditions (4) are

satisfied up to a certain tolerance.

One of the limitations of considering one set of permutations is that, in many mixture

systems, it is not sufficient to estimate all model parameters. This is mainly due to singu-

larity occurring in the information matrix by the repetition of its elements (permutations
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of blends with repeated coordinates) or simply because the number of design-points (q!)

is lower than the number of parameters. In order to solve these problems, we provide

a natural extension of the algorithm presented above. This approach consists of the

simultaneous calculation of more than one set of permutations, say t sets,

p(h) = (ph1, . . . , phq), h = 1, . . . , t,

where
q

∑

i=1

phi = 1 ∀h = 1, . . . , t and phi ≥ 0,∀h = 1, . . . , t, i = 1, . . . ,q.

Thus, a greater variety of designs points can be included in the designs,

P(p(1), . . . p(t)) =

{

a(h) = (ah1, . . . ,ahq) = σ(ph1, . . . , phq) :

q
∑

i=1

phi = 1, phi ≥ 0,h = 1, . . . , t, i = 1, . . . ,q

}

= P(p(1))∪ . . .∪P(p(t)).

A PMED of p(1), . . . , p(t) ∈ S mixtures is an exact N = t ·q! - design,

ξP(p(1),...,p(t))
=

{

P(p(1)), P(p(2)), ..., P(p(t))

}

consisting of all possible points formed by permutation of the coordinates of (p(1), . . . ,
p(t)) ∈ S. Then, according to (1), the information matrix is

M(P(1), . . . ,P(t)) =
t

∑

h=1

M(P(h)) =
1

t ·q!

t
∑

h=1

q!
∑

j=1

v(p
j

(h))v
T(p

j

(h)).

Thus we are facing to the following optimization problem: optimize

φ(p(1), . . . , p(t)) over p(1), . . . , p(t) ∈ S. Then the following (h-sets) simultaneous ap-

proaches are used

p
(n)
hi =

p
(n−1)
hi fh(x

(n−1)
hi ,δh)

∑q

l=1 p
(n−1)
hl fh(x

(n−1)
hl ,δh)

,h = 1, . . . , t, i = 1, . . . ,q

where n is the iteration number, fh(x
(n−1)
hi ,δh) are positive increasing functions and

x
(n−1)
hi = Fφ(p

(n)
(h),ei) ≡

Not
Fhi are the directional derivatives defined as above. There are

necessary optimality conditions equivalent to those in Eq. (2). Therefore, the algorithm

stops when the following conditions
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F∗
hi = Fφ(p∗(h),ei) =

{

= 0, for p∗hi > 0

≤ (≥) 0 for p∗hi = 0,
i = 1, . . . ,q, h = 1, . . . , t (5)

are simultaneously satisfied.

Multiplicative algorithm for φ-optimal mixture design

Step 0. Input q, p
(0)
(1), ξ

(0)
P

= ξ
P(p

(0)
(1)

)
, δδδ1, tol. Set n = 1, t = 1.

Step 1. Update the proportions for each mixture point generator,(p
(0)
(1), . . . , p

(0)
(t) )

For h = 1, . . . , t, do,

• For i = 1, . . . ,q, do p
(n+1)
hi =

p
(n)
hi

fh(x
(n)
hi

,δh)
∑q

l=1
p
(n)
hl

fh(x
(n)
hl

,δh)

with x
(n)
hi = Fφ(p

(n)
(h),ei) calculated as in (3), (4).

Step 2. Construct the design ξ
(n+1)
P

= ξ
P(p

(n+1)
(1)

,...,p
(n+1)
(t)

)
.

Step 3. If |M(P
(n+1)
(1) , . . . ,P

(n+1)
(t) )| ≈ 0, then repeat from step 1 to step 3 adding a new

group of permutation, ξ
(0)
P

= ξ
P(p

(0)
(1)

,...,p
(0)
(t)

,p
(0)
(t+1)

)
, t = t +1. Otherwise, go to step 4.

Step 4. Stopping rule: If

min
h=1,...,t
i=1,...,q

{Fφ(p
(1)
(hi),ei)} ≤ 10−tol

where tol is a number specified by the user, then STOP.

Else update ξ
(n)
P

by ξ
(n+1)
P

, n = n+1, and return to Step 1.

In the next section we explore the potential of this method in a variety of examples

encompassing both linear and non-linear models for D-optimality and I-optimality.

3.2. Genetic algorithm

When the design space is regular and conventional mathematics can be applied the NP-

hard combinatorial optimization problem of finding a φ-optimal exact N-point design

can be solved using traditional optimization techniques. However many difficulties

such as the irregular structure of the design spaces, the non-linear and non-differentiable

objective functions, etc. make that optimization techniques break down in many opti-

mization problems. For this reason, metaheuristic strategies have been developed to

solve these difficulties. The goal is to explore the design space in a smart way to get

near-optimal solutions.



174 Efficient algorithms for constructing D- and I-optimal exact designs...

One of these algorithms is the genetic algorithm (GA). GAs are population based

stochastic search algorithms inspired by Darwin’s Theory of Evolution and the survival-

of the fittest. The weakest individuals will disappear while the best ones will survive and

be able to reproduce themselves for generating the next population. Although there is

no metaheuristic algorithm that will be universally the winner, it should be pointed out

that GAs are robust, flexible and easy to implement. As other metaheuristics strategies,

the two main features of the algorithm are the locally and intensively exploring/search-

ing around the best solutions (intensification) and the generation of diverse solutions to

make sure the algorithm explores the design space globally (diversification).

It is common to find in the literature related to this class of algorithms a specific

terminology based on Genetics. P denotes the population of M initial N-point exact

designs. Potential solutions of the problem (designs) are named chromosomes, whereas

support points (blends) are labelled genes.

GAs start to search from an initial population. The information provided for each ex-

act design is measured in terms of the criterion function value relative to the population.

This value is a probability measure of the design goodness known as the fitness function.

At each iteration a number of operators is applied to the designs of the current popula-

tion to generate the designs of the population of the next generation (iteration). The most

popular genetic operators are (1) selection (certain elitism is used to ensure the mono-

tonicity of the algorithm. Also, designs with higher fitness have higher probabilities of

being selected for successive processes); (2) crossover, also called the recombination

operator (new designs, called offspring, are generated from two designs, called parents

with a crossover probability, PC); (3) mutation (to avoid premature convergence toward

local optimal, with a mutation probability, PM). Applying this process iteratively, new

generations of designs are created until some stopping rule is reached. In this work, the

algorithm stops after performing a prefixed maximum number of consecutive iterations

(Nmax) without improvement of the best fitness function value.

In the first step of a GA an initial population of designs, which are created from a

set of points, is needed. As in Heredia-Langer et al. (2003) we use a population size

of M = 40 exact designs. It is reasonable to believe that if the set contains good points

to create designs, then we will have more possibilities to find the near-optimal design.

Thus, if some information about the optimal solutions is available it will be convenient

to use. On the other hand, if no information about the solution is available, it would be

expected that the more diverse the initial population is, the greater the possibility to find

a solution (Diaz-Gomez and Hougen, 2007). With this in mind, several scenarios were

considered in this work. Basically they are distinguished by the fact that they include

just randomly points or also contain vertices, the overall centroid and the centroid of all

lower dimensional simplices of a (q− 1)-simplex. A detailed explanation of different

frameworks can be found in the supplementary material B. Through numerical examples

we study the effect of the initial populations in the convergence of the algorithm.

The choice of the algorithm operators and parameters is a hard problem that will

determine whether the algorithm will find a near-optimum solution and whether it will
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find such a solution efficiently (Eiben, Hinterding and Michalewicz, 1999). Although

the proposed algorithm is based on the presented one in Limmuun et al. (2013), new

modifications was needed to avoid infeasible solutions. In particular, solutions out of the

feasible region were penalized during the recombination, whereas suitable replacements

were carried out during mutation.

Finally, a new intensification strategy to improve the fitness of designs was applied

when the fitness function was based on D-optimality. Due to exact D-optimal designs

for Scheffé mixture models are {q,m} simplex-lattice designs, {q,m} simplex-centroid

designs, and replications of points of them, that points can be viewed as consisting of

clusters of points. It suggests that if the points of the designs are near of this cluster

points (points in the open balls centred at cluster points with radius tolclu), they will be

reached in some iterations so an appropriate strategy consists of moving nearby points

to them with certain frequency (nclu
it iterations).

The step-by-step implementation of GA is explained as follows:

Genetic algorithm for D- and I-optimal mixture design

Step 0. Input M, Nelite, Pelite, PC, PM, Nmax, tol, nclu
it , tolclu.

Step 1. Initialize counter = 1 and select an scenario to generate

P(1) = {ξ
(1)
1 ,ξ

(1)
2 , . . . ,ξ

(1)
M }:

• Unrestricted mixture experiments: RD, RUD or VD.

• Restricted mixture experiments: RRD, EVD or SEVD.

Step 2. For each j = 1, . . . ,M, calculate the fitness

f itD
j =

ΦD(ξ j)
∑M

i=1 ΦD(ξi)
or f itI

j =
1

√

i j ·
∑M

j=k

( 1
√

ik

)

,

according to the chosen optimality criterion. The subscripts i1, . . . , iM are refereed

to the position of ξ1, . . . ,ξM increasingly sorted according to their criterion function

values.

Step 3. Selection:

(i) Selection with elitism. Select the Nelite = Pelite ·M designs with the highest

fitness values.

(ii) Probabilistic selection. Select the i∗1-th and i∗2-th parent designs, being

i∗1 = min{i :

i
∑

s=1

f itφs ≥ γ1} and i∗2 = min{i :

i
∑

s=1

f itφs ≥ γ2},

where γ1,γ2 ∼U(0,1). The superscript φ is taken to be φD or φI to denote D-

or I-optimality respectively
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Step 4. Crossover:

(i) Arithmetic blending. For each p
i∗1
j ∈ ξi∗1

, j = 1, . . . ,n, generate γ ∼ U(0,1). If

γ < PC, then

poff j
= λp

i∗1
j +(1−λ)p

i∗2
j and poff j

= (1−λ)p
i∗1
j +λp

i∗2
j

where λ ∼ U(0,1). Otherwise, remain unchanged. ξoff1
and ξoff2

denote the

new created offsprings.

(ii) Single-crossover point. Let p j = (p1, . . . , pq) be the j-th gen of ξoff1
from (i).

Thus, p j can be written as

p j = (0.abc
j
1 | de f

j
1, ...,0.abc j

q | de f j
q),

being abc
j

k and de f
j

k are the the decimal figures corresponding to the head

and tail respectively. Let us consider third decimal position to divide for

illustrating. For each j = 1, . . . ,n, if γ < PC, then keep abc
j

k ∀k = 1, . . . ,q

and replace the tails by a random permutation σ(de f
j
1, . . . ,de f j

q). Otherwise,

remain unchanged. Repeat the same operation with ξoff2
genes. If there are

constrains over the ingredients, remain unchanged cross points out of the

feasible region.

Step 5. Mutation: Let ζ be a randomly selected U(0,1). For each p j, j = 1, . . . ,n, of

ξoff1
from (ii), if ζ < PM, then replace p j by other randomly selected gen in the

feasible region. Otherwise, remain unchanged. Repeat the same operation with

ξoff2
genes.

Step 6. Repeat step 3(ii)-5 until having obtained a new generation P(2) of M new

designs.

Step 7. Let ξ
best

1 and ξ
best

2 be the designs with highest (lowest) D- (I-)criterion function

value in P(1) and P(2) respectively. If

ΦD(ξ
(2)
best

)−ΦD(ξ
(1)
best

)

ΦD(ξ
(2)
best )

≤ 10−tol or
ΦI(ξ

(1)
best

)−ΦI(ξ
(2)
best

)

ΦI(ξ
(2)
best )

≤ 10−tol (6)

is satisfied, where tol is a number specified by the user, then counter++. Other-

wise, counter = 1.

Step 8. If φ= φD and counter ≡ 0 (mod nclu
it ), then clusterize:

(i) Construct a distance matrix D, where di j =‖ pi − p j ‖2, p j ∈ ξ
(k+1)
best , j =

1, . . . ,n, pi ∈ C or V , i = 1, . . . ,#(C) or #(V ), depending on whether it is a

unrestricted or restricted mixture problem, respectively.



Raúl Martı́n Martı́n, Irene Garcı́a-Camacha Gutiérrez and Bernard Torsney 177

(ii) Define a new design ξclu to store the clusterized version of ξ
(k+1)
best and initialize

ξclu = ξ
(k+1)
best . Let

i∗j = argmin
1≤i≤#(C) or #(V )

di j

be the position of the i∗j-th point belonging to C or V nearest the j-th point of

ξ
(k+1)
best . For each p j ∈ ξclu, j = 1, ...n, if di∗j j < tolclu, then p j = pi.

iii) Replace ξ
(k+1)
worst by ξclu, where ξ

(k+1)
worst is the design with lowest D-criterion func-

tion value in P(k).

(iv) If ΦD(ξclu)> ΦD(ξ
(k+1)
best ), then counter = 1.

Step 9. Stopping rule: If counter = Nmax, then STOP. Else update P(1) by P(2) and

repeat from step 2.

4. Numerical Examples

Several real problems in the chemical, pharmaceutical and oil industry were used to

demonstrate the effectiveness of the proposed algorithms. The selected models were set

for three or four-ingredient blends since they were the most commonly used in the litera-

ture for data from mixture experiments. For illustrative purposes, D- and I-exact optimal

designs were also computed for more ingredients and different numbers of points.

Both algorithms were developed in R 3.6.0 software (R Core Team, 2018). The

tolerance level considered with GA was 10−10 whereas it was 10−5 with MA since it has

a more stringent stopping rule. It was established Nmax = 200 in the stopping rule of the

GA and the cumulative distribution function (CDF) of the standard normal distribution

or logistic distribution were taken as the f (x,δ) function with δ= 1 in the MA.

In all examples, we compared results from MA and GA with one of the most popular

algorithm in the literature to compute exact designs, the KL-exchange algorithm (KLA),

implemented in the R package OptimalDesign. As usual, it is recommended to verify

the quality of the designs obtained by other heuristic methods. The application of this

method is not direct since it is necessary to provide a set of candidate points. The type

of initial mesh strongly affects the finding of the optimal designs. In this work, we

propose several procedures for generating sets of candidate points (see supplementary

material B) in order to improve its yield. On the other hand, we used the coordinate-

exchange algorithm (CEA) of Piepel et al. (2005), which does not require specification

of a candidate set. Other comparisons were made with other algorithms such as the

cocktail algorithm, but they were not include in this paper for space considerations. A

brief discussion of these algorithms will be provided in the last section.

In order to compute I-optimal exact designs with KLA, we found some compu-

tational problems considering the IV -optimality criterion provided in OptimalDesign

package. Then, the corresponding problem of A-optimality was set such as imple-
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menters suggest. The entries of the moment matrix for calculating I-optimal designs,

B, were obtained directly from the moments of a Dirichlet distribution (DeGroot, 1970,

p. 51) when the experimental region was the (q− 1)-dimensional simplex and linear

models were considered (Goos and Syafitri, 2014). In other cases, that is, when the

experimental region was a constrained space or the model was non-linear, the moment

matrix was obtained by numerical calculations generating a large candidate set o points

uniformly on the region. This was very important because a poor approximation could

lead to suboptimal designs (Goos et al., 2016).

4.1. Real applications of the proposed algorithms

4.1.1. Tramadol matrix tablets formulation

Polynomial models have been widely used in pharmacology, particularly in optimizing

drug delivery systems. The following example is motivated by a real problem in which

the aim was to determine the release-modifying effect of carboxymethyl xyloglucan for

oral drug delivery (Madgulkar et al., 2013). A special cubic polynomial (7) was used to

explain the percentage of drug release after a few hours in terms of the drug formulation.

The mixture comprised three ingredients: p1 =carboxymethyl xyloglucan, p2 =gelling

agent (HPMC K100M) and p3 =dicalcium phosphate (DCP).

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ12 p1 p2 + θ13 p1 p3 + θ23 p2 p3 + θ123 p1 p2 p3. (7)

Various softwares are often employed by practitioners to obtain designs on which

must be carried out by experimenters. Classical designs such as simplex-lattice or sim-

plex centroid are the most common choice suggested by these programs. In this simple

case, there are analytical results about the D-optimal design. Uranisi (1964) showed

that the {3,3}-simplex centroid was the D-optimal exact design of size 7. Indeed, when

the size of the exact design N is proportional to the number of parameters, m, then the

D-optimal exact design is the continuous one replicating N/m times each point. In other

case, the design points should be as equireplicated as possible regardless which points

are replicated most frequently (Goos et al., 2016). Our algorithms produced the same

optimal designs for many common models. So, the validation of both techniques is

especially interesting for our purposes.

We computed D-optimal designs with N = 7,14 and 18 runs for q = 3, and N = 25

and 50 for q= 5 ingredients. MA was used considering three groups of permutations and

GA algorithm was applied under the different scenarios (see supplementary material B).

In order to compare our results with the KLA, the exact optimal designs were calculated

taking into account that the initial candidate set of points were obtained through the

same scenarios than GA. CEA was also run for the same study cases.
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Table 1 (supplementary material C) collects the D-efficiencies of the obtained de-

signs with regard to the optimal designs available in the literature or, otherwise, the

best design achieved from the algorithms used in this work. They will be named as

relative efficiencies. It is noteworthy the robustness of GA under different approaches

we considered to construct the initial population in the case of three ingredients. Al-

though this behaviour did not hold for five-ingredient mixtures, the optimum was always

achieved under VD scenario (supplementary material B). Regarding the performance of

the KLA, it is remarkable to say that this algorithm found difficulties to obtain the op-

timal design when a random grid of initial points was considered. This situation got

worse when a bigger number of ingredients was considered. As it could be expected,

the CEA achieved the optimum in all frameworks since it is not based on a set of candi-

date designs points and it was specially designed to tackle problems with large number

of mixture components. On the other hand, when the optimum was a permutation de-

sign, such was the case of N = 18 runs, the MA quickly achieved the optimum. The

convergence speed of the GA is shown in the Figure 1 (a). Despite the fact that the opti-

mum was obtained in all scenarios, the initial population constructed from VD led to the

solution faster than the others because it started from designs nearer optimum. Owing

to space considerations, these figures are only presented for one case in each example.

(a) (b)

Figure 1: Values of the D- and I-optimality criteria for GA applied to example 4.1.1 with three ingredients

and N = 18 runs under different scenarios (RD, RUD and VD), (a) and (b) respectively.

Regarding I-optimality, exact designs were computed for the second-order Scheffé

model in order to compare our results with the presented ones in Goos et al. (2016).

I-optimal designs with N = 6,7,8,18 and 30 runs for q = 3, N = 15,16 and 17 for

q = 4, and N = 15 and 30 runs for q = 5 ingredients were calculated. From Table 2

(supplementary material C) it is deduced that, differently from D-optimality, there is

no a strong dependence of the initial scenario for achieving the optimum regardless

the number of ingredients considered in the problem. Designs achieved with GA are

highly efficient in all study cases. This behaviour is also observed in the Figure 1 (b)

in which it is shown that the optimum is practically obtained in 500 iterations for all

scenarios. Optimal designs were obtained in all samples using the CEA. Again, when

MA could be used, the optimal design was nimbly achieved. As in Goos et al. (2016) for
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q = 3-ingredient mixtures, the {3,2}-simplex-lattice was found for N = 6 runs, whereas

the {3,3}-simplex-centroid was obtained for N = 7. Nevertheless, some interior points

appear in the optimum in many cases for I-optimality (Goos et al., 2016). These points

cannot be obtained with the KLA unless they are included in the initial set of points. The

higher the number of ingredients is, the lower the probability of being contained in the

initial grid is. In spite of providing a thin grid, poorly efficient designs were obtained.

4.1.2. Mixing laws for fluid viscosity

Another usual application of mixture models is found in chemistry and chemical engi-

neering. When the purpose of the study is to analyse the kinematic viscosity of a fluid

blend, optimal design tools are used to achieve the best parameter estimation in mixing

laws. Most fluid viscosities do not linearly change as formulation varies. Therefore,

researchers have developed complex mixture models for their prediction. The selected

model in this example is a popular mixing law (8) provided by Grunberg and Nissan

(1949). It is a particular case of a wide class of models named power-mean-mixture

models (Focke, Sandrock and Kok, 2007). They used (8) to explain the viscosity as a

function of the three components namely p1 =acetone, p2 =methanol and p3 =water.

We assume θi j = θ ji and the nominal values as in Focke et al. (2007),

E[y(p,θθθ)] = ηηη(p,θθθ) = Exp

( 3
∑

i=1

3
∑

j=1

Ln(θi j)pi p j

)

. (8)

Coetzer and Focke (2010) computed a six-point D-optimal design for this model

using a non-linear constrained optimization technique. Variations in the location of

the design points caused a significant increase in the criterion function value. The de-

sign provided in Coetzer and Focke (2010) is 86.69% efficient relative to the six-point

optimal design obtained with the GA and KLA as we can observe from Table 3 (sup-

plementary material D). One set of permutations provided three different support points

(permutations of (1,0,0)) which was not enough to estimate the model parameters with

MA. Therefore, new groups of permutations were considered in the problem, although

this involved adding q! new design points for each group. We will compute the op-

timal designs with N = 6,12, and 18 runs for ternary blends, and N = 15 and 30 for

five-ingredient samples for both D- and I-optimality criteria.

Similar performances of the algorithms were found to those observed in the previous

example (see Table 3, supplementary material D). The I-optimal designs obtained with

GA and KLA for five ingredients and N = 15 runs are shown in Table 4 (supplemen-

tary material D). This table illustrates the GA searchability when optimal design points

are located in the interior of the design region. This situation is frequently found when

response is not linear in the parameters. Figure 2 shows that the speed of convergence

is less dependent on the initial scenario for I-optimality than it is for D-optimality. The

CEA cannot be directly applied on non-linear mixture models so that it is not imple-
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mented in the most popular commercial softwares. Designs cannot be calculated using

this method since a new adaptation is necessary to tackle the non-linearity of the model

at the same time that mixture coordinates cannot be independently exchanged without

violating the constraint that proportions must sum to one.

(a) (b)

Figure 2: Values of the D- and I-optimality criteria for GA applied to example 4.1.2 with three ingredients

and N = 18 runs under different scenarios (RD, RUD and VD), (a) and (b) respectively.

The following examples are constrained mixture problems. As we mentioned in

section 3.1, the extension of the MA proposed in this work does not allow to tackle

such kind of problems. New approaches are being investigated for overcoming this

situation. Nevertheless, if the initial population of designs is randomly generated over

the constrained region, new solutions will remain in this region by construction of the

operators proposed in the GA.

4.1.3. Size control of amphiphilic cyclodextrin nanoparticles

Natural or modified cyclodextrins are important excipients used in the pharmaceutical

industry to reduce toxicity while improving stability, solubility and bioavailability of

hydrophobic drugs (Choisnard et al., 2005). The nanoparticle capacity associated with a

drug is expected to be partially influenced by nanoparticle size. This study was focused

on controlling the size of amphiphilic β-cyclodextrin (βCDa) nanoparticles using a nano-

precipitaciton procedure which strongly depends on solvent formulation. The influence

of p1 =water, p2 =acetone and p3 =ethanol proportions involved in this technique was

investigated through an experimental design methodology using the full second-degree

polynomial to estimate the nanoparticle size. Due to difficulties found in preliminary

studies, the experimental region was limited to 0.4 ≤ p1 ≤ 0.7 and 0 ≤ p2, p3 ≤ 0.6.

These limitations are necessary to control the high solubility of βCDa in organic solvent

and to avoid the low limit of scattering intensity.

The model chosen in Choisnard et al. (2005) is not an appropriate model for this

kind of settings. It is not a canonical polynomial so that the parameters associated with

its terms are not unique. Consequently, the design used by the experimenters with that

model led to a singular determinant of the information matrix. Thus, a reparametrization
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of the full second-degree polynomial was used in this work

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ12 p1 p2 + θ13 p1 p3 + θ23 p2 p3. (9)

It does not only avoid the singularity of the information matrix but also it involves a

reduction in the number of model parameters. Thus, fewer runs are needed to estimate

the parameters.

Table 5 (supplementary material E) collects the D-efficiencies obtained with GA,

KLA and CEA with N = 6 and 12 runs in the case of ternary blends, and N = 15 runs

for five-ingredient mixtures. Both samples in this latter case have different complexity.

In the first case (⋆), fourth and fifth ingredient can be freely allocated into the sim-

plex, whereas all ingredients are constrained in the second case (⋆⋆). D-optimal designs

achieved with GA and CEA were quite robust, while KLA showed difficulty to find the

optimum for RRD and SEVD scenarios for ternary blends and it was unable to achieve

them for five ingredients.

Problems of numerical accuracy were found with KLA in the calculus of the I-op-

timal exact designs despite being recommended in the literature to verify the quality of

the designs obtained by other heuristic methods (Harman, Bachrata and Filová, 2016).

I-optimal designs cannot be calculated by using this algorithm. Table 6 (supplementary

material E) contains the I-efficiencies obtained with GA and CEA in several examples.

The CEA applicable for constrained mixture experiments was designed to D-optimally

select design points without candidate points (Piepel et al., 2005). In view of the results,

this strategy does not seem adequate to achieve I-optimal constrained mixture designs.

On the contrary, GA results seem quite robust. It is noteworthy from Figure 3 that both

D- and I-optimal design are quickly achieved in a few iterations which reveals the good

GA performance in constrained problems.

(a) (b)

Figure 3: Values of the D- and I-optimality criteria for GA applied to example 4.1.3 with three ingredients

and N = 12 runs under different scenarios (RRD, EVD and SEVD), (a) and (b) respectively.
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4.1.4. Aqueous phase composition of a microemulsion

Enhanced oil recovery process is obtained determining the optimal formulation of a mi-

croemulsion system. Water and oil are not miscible substances at ambient temperatures.

The mixture needs to be made under critical conditions due to the existing incompati-

bility between these fluids. However, a small amount of surfactant, co-surfactant, brine

and water may render them compatible to form a structure called microemulsion. This

desirable effect is produced due to the properties of these substances. Jerirani et al.

(2012) modeled this behaviour using the special cubic polynomial (10) for predicting

IFT (interfacial tension) as a measure of energy at the interface of two immiscible flu-

ids. Lower IFT is expected to produce a more effective microemulsion system. Provid-

ing a suitable model is essential to finding the formulation which yields its minimum

value. Four components are involved in this experiment: p1 =isopropyl alcohol (IPA),

p2 =sodium chloride (NaCl), p3 =polysorbate 80 (Tween80) and p4 =water. A rele-

vant issue arises in the construction of valid formulations under which a microemulsion

system is effective. A large amount of water is involved in this process and the rest

of the components are practically negligible in spite of their significant positive effect.

Particularly, the constraints are 0.01 ≤ p1 ≤ 0.04, 0 ≤ p2 ≤ 0.03, 0.002 ≤ p3 ≤ 0.02,

and 0.91 ≤ p4 ≤ 0.98998. This fact implies an extreme difficulty in the search for the

optimum.

E[y(p)] = θ1 p1 + θ2 p2 + θ3 p3 + θ4 p4 + θ12 p1 p2 + θ13 p1 p3 + θ14 p1 p4 + θ23 p2 p3+

+ θ24 p2 p4 + θ34 p3 p4 + θ123 p1 p2 p3 + θ124 p1 p2 p4 + θ134 p1 p3 p4 + θ234 p2 p3 p4

(10)

Table 7 (supplementary material F) shows the GA power to seek a D-optimum over

a severely constrained region, whereas the KLA is even less D-efficient than in the

previous case. Unlike 4.1.3 example, CEA was unable to achieve the D-optimum. Fig-

ure 4 shows that a random or “semi-random” scenario is preferable to any other for

D-optimality. This matter demonstrates that KLA and CEA are inefficient in samples

where the optimum is not allocated on extreme-vertex points.

The same drawback than in the previous example was found considering KLA for

I-optimality, so that we can only compare with the designs provided by the experi-

menters and the CEA for this criterion. A 20-point I-optimal design was selected in

Jerirani et al. (2012) for IFT modelization. In view of the I-efficiencies shown in Table

8 (supplementary material F), we have that the design obtained by the experimenters is

4.51% efficient in comparison with the design obtained with GA. This fact implies the

methodology used by them to carry the optimization out is not adequate. The robustness

of the GA for I-optimality can be observed in Figure 4, whereas the CEA inefficiently

performs again.
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(a) (b)

Figure 4: Values of the D- and I-optimality criteria for GA applied to example 4.1.4 with four ingredients

and N = 20 runs under different scenarios (RRD, EVD and SEVD), (a) and (b) respectively.

5. Discussion

This paper presents two new optimization tools for constructing D- and I-optimal exact

designs, when the variables controlled by the experimenter are proportions, and then

discusses their properties.

The MA is well known in OED and its convergence has been extensively studied

in approximate design theory. However, its application to the solution of exact mixture

problems is not straightforward and a new approach based on a class of permutation

designs is proposed in this paper. Since symmetry and balancedness have always been

a prime attribute of good experimental designs (Draper and Pukelsheim, 1999), and

in view of the results obtained, considering PMED seems to be a suitable strategy to

generate candidate points for mixture design. The new definition of the multiplicative

iteration has a substantial advantage over the other algorithms: first order conditions

can be obtained by exploiting the equivalence theorems, whereas stopping rules in the

other methods are based on the idea of not finding a better exchange or a better solution.

Another advantage the MA offers is that it does not need to anticipate the number of

design points, unlike the other methods. The optimal number of permutation groups

is automatically determined by the algorithm. However, disadvantages include the fact

that it cannot be used when the design space has constraints beyond the natural one

and the fact that the sample size has to be a multiple of q!. While this may not be too

restrictive in a small q, in other cases it can become a difficulty.

GAs are a class of stochastic optimization methods, easy to implement and computa-

tionally powerful. We provided an efficient GA as a heuristic alternative when additional

constraints over the experimental region appeared in real problems. One common fea-

ture of the GAs is that their computational time is relative. This situation has led to

the development of a number of modifications to accelerate their convergence. Most

of them focus mainly on the operators. Nevertheless, another interesting but much less

studied option relates to initial populations. Several scenarios were proposed in this pa-

per and substantial differences were observed in the speed of convergence rather than
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the quality of final solution. A new strategy based on a clustering process around op-

timal points was also incorporated into the algorithm for this purpose. The number of

iterations required to achieve the optimum is much lower than when clustering is not

considered. This approach helps operators to explore and quickly reach potential so-

lutions. Moreover, it prevents suboptimal designs from being obtained, in the sense of

generating near-optimal points. Many algorithms have the disadvantage of achieving

support points close to the vertices, the overall centroid and the centroid of all lower

dimensional simplices of a (q− 1)-dimensional simplex. This intensification strategy

gives further guarantees of reaching the optimum. It is also noteworthy that if the op-

timum does not lie on the extreme vertex points, this new mechanism does not force

their inclusion in the optimal design considering all possible cases. On the other hand,

changes in the operators were made in order to hold the solutions within the feasible

regions.

Genetic algorithms were seen as robust problem solvers that exhibit approximately

the same accuracy over the different scenarios considered for constructing the initial

populations (supplementary material B) in a wide range of problems. This property is

even more evident when I-optimal designs are sought. In this regard, the MA and the

CEA do not depend on an initial set of candidate points. However, the strong depen-

dency of KLA on the initial set of points means it is a good choice when the interest is

in selecting rather than finding solutions. As may be deduced from the examples, a GA

does not offer significant benefits over exchange algorithms when the designs spaces

are regular in the case of D-optimality. Unlike point-exchange algorithms, the CEA

performs successfully when the optimal design points are located in the interior of the

design region (I-optimality) in unrestricted regions. In spite of these advantages, this

algorithm cannot be directly applied to non-linear mixture models. Due to the CEA

efficiency, it could be interesting to explore a new approach to this algorithm in this

kind of situation. On the other hand, when there is no evidence of potential candidate

points as, for instance, in severely constrained design regions, the designs generated by

exchange algorithms are not frequently optimal under any scenario. On the other hand,

the GA and the MA (when possible) converged in all examples and showed excellent

searchability.

Other algorithms were also used in this paper apart from KLA and CEA for com-

parison purposes. In the examples where the cocktail algorithm could be applied, the

efficiencies of the designs obtained were the lowest due to rounding effects. Rounding

methods take neither the model nor the criteria into account. As a consequence, they

are guaranteed to produce efficient results only if the number of trials is high compared

to the dimension of the unknown parameter (Harman and Filová, 2014). Results could

not be obtained for a predetermined number of runs N since the approximation rule will

depend on the weight assigned to each point of the discretized space. These results were

omitted due to their poor performance and for considerations of space.

Particular attention is drawn to the successful performance of the proposed algo-

rithms when non-linear mixture models are considered. We can recommend to practi-
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tioners more efficient designs than those used in their experiments. They provided better

results than general optimization solvers and the algorithms implemented in commercial

software.

Finally, although at this stage the use of the multiplicative method seems to be lim-

ited, this approach offers the advantages previously noted. In regard to limitations, we

are exploring other alternatives as a line of future research. In particular, we are looking

at a partition of the simplex into symmetrical regions to simplify the research as the

number of proportions increases, and we are working on imposing order constraints on

the proportions so the sample size need not be a multiple of q!. In addition, it would

be interesting to use the MA proposed here to construct D- and I-optimal designs for

mixture experiments in which linear constraints are imposed on the components. A new

adaptation of MA for tackling this kind of practical situation is also being explored.

Moreover, we expect that these algorithms can be applied to find optimal designs for a

much broader class of optimality criteria. All these studies will be aimed at solving real

situations in other fields of study where OED with mixtures plays an essential role.
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Garcı́a-Camacha Gutiérrez, I. (2017). Diseño óptimo de experimentos para modelos de mezclas aplicados

en la ingenierı́a y las ciencias experimentales. Ph. D. thesis, Departamento de Matemáticas. Área
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