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1. Harm Jan Boonstra, Statistics Netherlands, Department of Statistical Methods. E-mail: hjh.boonstra@cbs.nl; Jan A. van den Brakel, Statistics 

Netherlands, Department of Statistical Methods and Maastricht University, Department of Quantitative Economics. 

 

Estimation of level and change for unemployment using 
structural time series models 

Harm Jan Boonstra and Jan A. van den Brakel1 

Abstract 

Monthly estimates of provincial unemployment based on the Dutch Labour Force Survey (LFS) are obtained 
using time series models. The models account for rotation group bias and serial correlation due to the rotating 
panel design of the LFS. This paper compares two approaches of estimating structural time series models (STM). 
In the first approach STMs are expressed as state space models, fitted using a Kalman filter and smoother in a 
frequentist framework. As an alternative, these STMs are expressed as time series multilevel models in an 
hierarchical Bayesian framework, and estimated using a Gibbs sampler. Monthly unemployment estimates and 
standard errors based on these models are compared for the twelve provinces of the Netherlands. Pros and cons 
of the multilevel approach and state space approach are discussed. 

 

Multivariate STMs are appropriate to borrow strength over time and space. Modeling the full correlation matrix 
between time series components rapidly increases the numbers of hyperparameters to be estimated. Modeling 
common factors is one possibility to obtain more parsimonious models that still account for cross-sectional 
correlation. In this paper an even more parsimonious approach is proposed, where domains share one overall 
trend, and have their own independent trends for the domain-specific deviations from this overall trend. The time 
series modeling approach is particularly appropriate to estimate month-to-month change of unemployment. 

 
Key Words: Small area estimation; Structural time series models; Time series multilevel models; Unemployment 

estimation. 

 
 

1  Introduction 
 

Statistics Netherlands uses data from the Dutch Labour Force Survey (LFS) to estimate labour status at 

various aggregation levels. National estimates are produced monthly, provincial estimates quarterly, and 

municipal estimates annually. Traditionally monthly publications about the labour force were based on 

rolling quarterly figures compiled by means of direct generalized regression estimation (GREG), see e.g., 

Särndal, Swensson and Wretman (1992). The continuous nature of the LFS allows to borrow strength not 

only from other areas, but also over time. A structural time series model (STM) to estimate national monthly 

labour status for 6 gender by age classes is in use since 2010 (van den Brakel and Krieg, 2009, 2015). 

Until now, provincial estimates are produced quarterly using the GREG. In order to produce figures on 

a monthly basis, a model-based estimation strategy is necessary to overcome the problem of too small 

monthly provincial sample sizes. In this paper a model is proposed that combines a time series modeling 

approach to borrow strength over time with cross-sectional small area models to borrow strength over space 

with the purpose to produce reliable monthly estimates of provincial unemployment. As a consequence of 

the LFS panel design, the monthly GREG estimates are autocorrelated and estimates based on follow-up 

waves are biased relative to the first wave estimates. The latter phenomena is often referred to as rotation 

group bias (Bailar, 1975). Both features need to be accounted for in the model (Pfeffermann, 1991). Previous 

accounts of regional small area estimation of unemployment, where strength is borrowed over both time 
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and space, include Rao and Yu (1994); Datta, Lahiri, Maiti and Lu (1999); You, Rao and Gambino (2003); 

You (2008); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006); van den Brakel and Krieg 

(2016), see also Rao and Molina (2015), Section 4.4 for an overview. 

In this paper, multivariate STMs for provincial monthly labour force data are developed as a form of 

small area estimation to borrow strength over time and space, to account for rotation group bias and serial 

correlation induced by the rotating panel design. In a STM, an observed series is decomposed in several 

unobserved components like a trend, a seasonal component, regression components, other cyclic 

components and a white noise term for remaining unexplained variation. These components are based on 

stochastic models, to allow them to vary over time. The classical way to fit STMs is to express them as a 

state space model and apply a Kalman filter and smoother to obtain optimal estimates for state variables and 

signals. The unknown hyperparameters of the models for the state variables are estimated by means of 

maximum likelihood (ML) (Harvey, Chapter 3). Alternatively, state space models can be fitted in a Bayesian 

framework using a particle filter (Andrieu, Poucet and Holenstein (2010); Durbin and Koopman (2012), 

Chapter 9). STMs can also be expressed as time series multilevel models and can be seen as an extension 

of the classical Fay-Herriot model (Fay and Herriot, 1979). Connections between structural time series 

models and multilevel models have been explored before from several points of view in Knorr-Held and 

Rue (2002); Chan and Jeliazkov (2009); McCausland, Miller and Pelletier (2011); Ruiz-Cárdenas, Krainski 

and Rue (2012); Piepho and Ogutu (2014); Bollineni-Balabay, van den Brakel, Palm and Boonstra (2016). 

In these papers the equivalence between state space model components and multilevel components is made 

more explicit. Multilevel models can both be fitted in a frequentist and hierarchical Bayesian framework, 

see Rao and Molina (2015), Section 8.3 and 10.9, respectively. 

This paper contributes to the small area estimation literature by comparing differences between STMs 

for rotating panel designs that are expressed as state space models and as time series multilevel models. 

State space models are fitted using a Kalman filter and smoother in a frequentist framework where 

hyperparameters are estimated with ML. In this case models are compared using AIC and BIC. Time series 

multilevel models are fitted in an hierarchical Bayesian framework, using a Gibbs sampler. Models with 

different combinations of fixed and random effects are compared based on the Deviance Information 

Criterion (DIC). The estimates based on multilevel and state space models and their standard errors are 

compared graphically and contrasted with the initial survey regression estimates. Modeling cross-sectional 

correlation in multivariate time series models rapidly increases the number of hyperparameters to be 

estimated. One way to obtain more parsimonious models is to use common factor models. In this paper an 

alternative approach to model correlations between time series components indirectly is proposed, based on 

a global common trend and local trends for the domain-specific deviations. 

The paper is structured as follows. In Section 2 the LFS data used in this study are described. Section 3 

describes how the survey regression estimator (Battese, Harter and Fuller, 1988) is used to compute initial 

estimates. These initial estimates are the input for the STM models, which are discussed in Section 4. In 

Section 5 the results based on several state space and multilevel models are compared, including estimates 
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for period-to-period change for monthly data. Section 6 contains a discussion of the results as well as some 

ideas on further work. Throughout the paper we refer to the technical report by Boonstra and van den Brakel 

(2016) for additional details and results. 

 
2  The Dutch Labour Force Survey 
 

The Dutch LFS is a household survey conducted according to a rotating panel design in which the 

respondents are interviewed five times at quarterly intervals. Each month a stratified two-stage sample of 

addresses is selected. All households residing on an address are included in the sample. In this study 72 

months of LFS data from 2003 to 2008 are used. During this period the sample design was self-weighted. 

The first wave of the panel consists of data collected by means of computer assisted personal interviewing 

(CAPI), whereas the four follow-up waves contain data collected by means of computer assisted telephone 

interviewing (CATI). 

The Netherlands is divided into twelve provinces which serve as the domains for which monthly 

unemployment figures are to be estimated. Monthly national sample sizes vary between 5 and 7 thousand 

persons in the first wave and between 3 and 5 thousand in the fifth wave. Provincial sample sizes are diverse, 

ranging from 31 to 1,949 persons for single wave monthly samples. 

LFS data are available at the level of units, i.e., persons. A wealth of auxiliary data from several 

registrations is also available at the unit level. Among these auxiliary variables is registered unemployment, 

a strong predictor for the unemployment variable of interest. These predictors are used to compute initial 

estimates, which are input to the time series models. 

The target variable considered in this study is the fraction of unemployed in a domain, and is defined as 

= ,it ijt itj i
Y y N

  with ijty  equal to one if person j  from province i  in period t  is unemployed and 

zero otherwise and itN  the population size in province i  and period .t  

 
3  Initial estimates 
 

Let ˆ
itpY  denote the initial estimate for itY  based on data from wave .p  The initial estimates used as input 

for the time series small area models are survey regression estimates (Woodruff, 1966; Battese et al., 1988; 

Särndal et al., 1992) 

  ˆ ˆ= ,itp itp tp it itpY y X x    (3.1) 

where ,itpy itpx  denote sample means, itX  is the vector of population means of the covariates ,x  and ˆ
tp  

are estimated regression coefficients. The coefficients are estimated separately for each period and each 

wave, but they are based on the national samples combining data from all areas. The survey regression 

estimator is an approximately design-unbiased estimator for the population parameters that, like the GREG 

estimator, uses auxiliary information to reduce nonresponse bias. See Boonstra and van den Brakel (2016) 

for more details on the model selected to compute the survey regression estimates. Even though the 
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regression coefficient estimates in (3.1) are not area-specific, the survey regression estimator is a direct 

domain estimator in the sense that it is primarily based on the data obtained in that particular domain and 

month, and therefore it has uncacceptably large standard errors due to the small monthly domain sample 

sizes. 

The initial estimates for the different waves give rise to systematic differences in unemployment 

estimates, generally termed rotation group bias (RGB) (Bailar, 1975). The initial estimates for 

unemployement for waves 2 to 5 are systematically smaller compared to the first wave. This RGB has many 

possible causes, including selection, mode and panel effects (van den Brakel and Krieg, 2009). See Boonstra 

and van den Brakel (2016) for details and graphical illustrations. 

The time series models also require variance estimates corresponding to the initial estimates. We use the 

following cross-sectionally smoothed estimates of the design variances of the survey regression estimates,  

       2 2

=1

1 1ˆ ˆ ˆ= 1 ,
Am

itp itp itp tp itp
iitp tp A

v Y n n
n n m

  
    with  

 
2 2

=1

1
ˆ ˆ= .

1

itpn

itp ijtp
jitp

e
n


   (3.2) 

Here Am  denotes the number of areas, itpn  is the number of respondents in area ,i  period t  and wave ,p  

=1
= ,Am

tp itpi
n n  and ˆijtpe  are residuals of the survey regression estimator. The within-area variances 2ˆ itp  

are pooled over the domains to obtain more stable variance approximations. The use of (3.2) can be further 

motivated as follows. Recall that the sample design is self-weighted. Calculating within-area variances 2ˆ itp  

therefore approximately accounts for the stratification, which is a slightly more detailed regional variable 

than province. The variance approximation also accounts for calibration and nonresponse correction, since 

the within-area variances are calculated over the residuals of the survey regression estimator. The variance 

approximation does not explicitly account for the clustering of persons within households. However, the 

intra-cluster correlation for unemployment is small. In addition, registered unemployment is used as a 

covariate in the survey regression estimator. Since this covariate explains a large part of the variation of 

unemployment, the intra-cluster correlation between the residuals is further reduced. 

The panel design induces several non-zero correlations among initial estimates for the same province 

and different time periods and waves. These correlations are due to partial overlap of the sets of sample 

units on which the estimates are based. Such correlations exist between estimates for the same province in 

months 1 2,t t  and based on waves 1 2,p p  whenever  2 1 2 1= 3 12.t t p p    The covariances between 

1 1

ˆ
it pY  and 

2 2

ˆ
it pY  are estimated as (see e.g., Kish (1965))  

      1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2

ˆ ˆ ˆ ˆˆ, = ,it p t p
it p it p t p t p it p it p

it p it p

n
v Y Y v Y v Y

n n
  (3.3) 

with  

  
 

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2
=1 =1

1
ˆ ˆ ˆ= ,

it p t pA
nm

t p t p ijt p ijt p
i jt p t p A

e e
n m
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where 
1 1 2 2it p t pn  is the number of units in the overlap, i.e., the number of observations on the same units in 

area i  between period and wave combinations  1 1,t p  and  2 2, ,t p  and 
1 1 2 2 1 1 2 2=1

= .Am

t p t p it p t pi
n n  The 

estimated (auto)correlation coefficient 
1 1 2 2

ˆ t p t p  is computed as the correlation between the residuals of the 

linear regression models underlying the survey regression estimators at  1 1,t p  and  2 2, ,t p  based on the 

overlap of both samples over all areas. This way they are pooled over areas in the same way as are the 

variances 2ˆ .tp  Together, (3.2) and (3.3) estimate (an approximation of) the design-based covariance matrix 

for the initial survey regression estimates. See Boonstra and van den Brakel (2016) for more details. 

Time series model estimates for monthly provincial unemployment figures will be compared with direct 

estimates. The procedure for calculating monthly direct estimates is based on the approach that was used 

before 2010 to calculate official rolling quarterly figures for the labour force. Let .
ˆ

itY  denote the monthly 

direct estimate for provinces, which is calculated as the weighted mean over the five panel survey regression 

estimates where the weights are based on the variance estimates. To correct for RGB, these direct estimates 

are multiplied by a ratio, say ,itf  where the numerator is the mean of the survey regression estimates (3.1) 

for the first wave over the last three years and the denominator is the mean of monthly direct estimates .
ˆ

itY  

also over the last three years, i.e., . .
ˆ= .it it itY f Y  See Boonstra and van den Brakel (2016) for details on 

calculating .
ˆ

itY  and .itY  including a variance approximation. 

 
4  Time series small area estimation 
 

The initial monthly domain estimates for the separate waves, accompanied by variance and covariance 

estimates, are the input for the time series models. In the next step STM models are applied to smooth the 

initial estimates and correct for RGB. The estimated models are used to make predictions for provincial 

unemployment fractions, provincial unemployment trends, and month-to-month changes in the trends. In 

Subsection 4.1 the STMs are defined and subsequently expressed as state space models fitted in a frequentist 

framework. Subsection 4.2 explains how these STMs can be expressed as time series multilevel models 

fitted in an hierarchical Bayesian framework. 

 

4.1  State space model 
 

This section develops a structural time series model for the monthly data at provincial level for twelve 

provinces simultaneously to take advantage of temporal and cross-sectional sample information. Let 

 1 5
ˆ ˆ ˆ= , ,

t

it it itY Y Y  denote the five-dimensional vector containing the survey regression estimates ˆ
itpY  

defined by (3.1) in period t  and domain .i  This vector can be modeled with the folowing structural time 

series model (Pfeffermann, 1991; van den Brakel and Krieg, 2009, 2015): 

 5
ˆ = ,it it it itY e     (4.1) 

where  5 = 1, 1, 1, 1, 1 ,t it  a scalar denoting the true population parameter for period t  in domain ,i  

it  a five-dimensional vector that models the RGB and ite  a five-dimensional vector with sampling errors. 

The population parameter it  in (4.1) is modeled as  
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 = ,it it it itL S     (4.2) 

where itL  denotes a stochastic trend model to capture low frequency variation (trend plus business cycle), 

itS  a stochastic seasonal component to model monthly fluctuations and it  a white noise for the unexplained 

variation in .it  For the stochastic trend component, the so-called smooth trend model is used, which is 

defined by the following set of equations:  

  ind 2
1 1 1 , ,= , = , 0, .it it it it it R it R it RiL L R R R        N  (4.3) 

For the stochastic seasonal component the trigonometric form is used, see Boonstra and van den Brakel 

(2016) for details. The white noise in (4.2) is defined as  ind 20, .
iit    N  

The RGB between the series of the survey regression estimates, is modeled in (4.1) with 

 1 2 3 4 5= , , , , .t
it it it it it it       The model is identified by taking 1 = 0.it  This implies that the relative 

bias in the follow-up waves with respect to the first wave is estimated and it assumes that the survey 

regression estimates of the first wave are the most reliable approximations for ,it  see van den Brakel and 

Krieg (2009) for a motivation. The remaining components model the systematic difference between wave 

p  with respect to the first wave and are modeled as random walks to allow for time dependent patterns in 

the RGB,  

  ind 2
1; , ,= , 0, , = 2, 3, 4, 5.

iitp it p itp itp p         N  (4.4) 

Finally, a time series model for the survey errors is developed. Let  1 2 3 4 5= , , , , t
it it it it it ite e e e e e  denote 

the five-dimensional vector containing the survey errors of the five waves. The variance estimates of the 

survey regression estimates are used as prior information in the time series model to account for 

heteroscedasticity due to varying sample sizes over time using the following survey error model:  

  ˆ= ,itp itp itpe v Y e  (4.5) 

and  ˆ
itpv Y  defined by (3.2). Since the first wave is observed for the first time there is no autocorrelation 

with samples observed in the past. To model the autocorrelation between survey errors of the follow-up 

waves, appropriate AR models for ,itpe  are derived by applying the Yule-Walker equations to the correlation 

coefficients  

 1 1 2 2

1 1 2 2

1 1 2 2

ˆ ,it p t p

t p t p

it p it p

n

n n
  (4.6) 

which are derived from the micro data as described in Section 3. Based on this analysis an AR(1) model is 

assumed for wave 2 through 5 where the autocorrelation coefficients depend on wave and month. These 

considerations result in the following model for the survey errors:  

 
 

      
1

ind 2
1 1 1

ind 2
1 3 1

, 0, ,

, 0, , = 2, , 5,

i

ip

it it it

itp itp itpit p p i t p

e

e e p





  

    



 



 





N

N
 

(4.7)
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with  1it p p  the time-dependent partial autocorrelation coefficients between wave p  and 1p   derived 

from (4.6). As a result,     1

2
1 1

ˆVar = ,
iit ite v Y   and       2 2

1
ˆVar = 1

ipitp itp it p pe v Y     for =p  

2, , 5.  The variances 2
ip  are scaling parameters with values close to one for the first wave and close to 

  21
1=1

1
T

it p pT t    for the other waves, where T  denotes the length of the observed series. 

Model (4.1) uses sample information observed in preceding periods within each domain to improve the 

precision of the survey regression estimator and accounts for RGB and serial correlation induced by the 

rotating panel design. To take advantage of sample information across domains, model (4.1) for the separate 

domains can be combined in one multivariate model:  

 
1 5 1 1 1

5

ˆ

= ,

ˆ
A A A

A

t t t t

m t m t m t
m t

Y e

eY

  

  

                
             

     (4.8) 

where Am  denotes the number of domains, which is equal to twelve in this application. This multivariate 

setting allows to use sample information across domains by modeling the correlation between the 

disturbance terms of the different structural time series components (trend, seasonal, RGB) or by defining 

the hyperparameters or the state variables of these components equal over the domains. In this paper models 

with cross-sectional correlation between the slope disturbance terms of the trend (4.3) are considered, i.e.,  

  
2

,
,

if =   and  =

Cov , = if   and  = .

0 if

Ri

R it
R i t Rii

i i t t

i i t t

t t



  
  

  
  


 

 (4.9) 

The most parsimonious covariance structure is a diagonal matrix where all the domains share the same 

variance component, i.e., 2 2=Ri R   for all i  and = 0
Rii




 for all i  and .i   These are so-called seemingly 

unrelated structural time series models and are a synthetic approach to use sample information across 

domains. A slightly more complex and realistic covariance structure is a diagonal matrix where each domain 

has a separate variance component, i.e., = 0
Rii




 for all i  and .i   In this case the model only borrows 

strength over time and does not take advantage of cross-sectional information. The most complex covariance 

structure allows for a full covariance matrix. Strong correlation between the slope disturbances across the 

domains can result in cointegrated trends. This implies that < Aq m  common trends are required to model 

the dynamics of the trends for the Am  domains and allows the specification of so-called common trend 

models (Koopman, Harvey, Doornik and Shephard, 1999; Krieg and van den Brakel, 2012). Initial STM 

analyses showed that the seasonal and RGB component turned out to be time independent. It is therefore 

not sensible to model correlations between seasonal and RGB disturbance terms. Since the hyperparameters 

of the white noise population domain parameters tend to zero, it turned out to be better to remove this 

component completely from the model implying that modeling correlations between population noise is not 

considered. Correlations between survey errors for different domains is also not considered, since the 

domains are geographical regions from which samples are drawn independently. 
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As an alternative to a model with a full covariance matrix for the slope disturbances, a trend model is 

considered that has one common smooth trend model for all provinces plus 1Am   trend components that 

describe the deviation of each domain from this overall trend. In this case (4.2) is given by  

 
1 1 1

*

= ,

= , = 2, , .

t t t t

it t it it it A

L S

L L S i m





 

   




 

(4.10)
 

Here tL  is the overal smooth trend component, defined by (4.3), and *
itL  the deviation from the overall 

trend for the separate domains, defined as local levels  

  ind* * 2
1 , ,= , 0, ,it it L it L it LiL L      N  (4.11) 

or as smooth trends as in (4.3). These trend models implicitly allow for (positive) correlations between the 

trends of the different domains. 

The parameters to be estimated with the time series modeling approach are the trend and the signal. The 

latter is defined as the trend plus the seasonal component. The time series approach is particularly suitable 

for estimating month-to-month changes. Seasonal patterns hamper a straightforward interpretation of 

month-to-month changes of direct estimates and smoothed signals. Therefore month-to-month changes are 

calculated for the trends only. Due to the strong positive correlation between the levels of consecutive 

periods, the standard errors of month-to-month changes in the level of the trends are much smaller than 

those of e.g., month-to-month changes of the direct estimates. The month-to-month change of the trend is 

defined as   11 =it it itL L    for models with separate trends for the domains or  1 =it tL   
* *

1 1t it itL L L    for models with an overall trend and 1Am   trends for the deviation from the overall trend 

for the separate domains. This modeling approach is also useful to estimate year-to-year developments for 

trend defined as   1212 =it it itL L    or   * *
12 1212 = .it t t it itL L L L      Year-to-year differences are 

also sensible for signals, since the main part of the seasonal component cancels out. These developments 

are defined equivalently to the year-to-year developments of the trend. 

The aforementioned structural time series models are analyzed by putting them in the so-called state 

space form. Subsequently the Kalman filter is used to fit the models, where the unknown hyperparameters 

are replaced by their ML estimates. The analysis is conducted with software developed in OxMetrics in 

combination with the subroutines of SsfPack 3.0, (Doornik, 2009; Koopman, Shephard and Doornik, 1999, 

2008). ML estimates for the hyperparameters are obtained using the numerical optimization procedure 

maxBFGS in OxMetrics. More details about the state space representation, initialization of the Kalman filter 

and software used to fit these models is included in Boonstra and van den Brakel (2016). 

 
4.2  Time series multilevel model 
 

For the description of the multilevel time series representation of the STMs, the initial estimates ˆ
itpY  are 

combined into a vector  111 112 115 121
ˆ ˆ ˆ ˆ ˆ= , , , , , ,Y Y Y Y Y

   i.e., wave index runs faster than time index 
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which runs faster than area index. The numbers of areas, periods and waves are denoted by ,Am Tm  and 

,Pm  respectively. The total length of Ŷ  is therefore = =A T Pm m m m 12(areas) * 72(months) * 5(waves) = 

4,320. Similarly, the variance estimates  ˆ
itpv Y  are put in the same order along the diagonal of a m m  

covariance matrix .  

The covariance matrix   is not diagonal because of the correlations induced by the panel design. It is a 

sparse band matrix, and the ordering of the vector Ŷ  is such that it achieves minimum possible bandwidth, 

which is advantageous from a computational point of view. 

The multilevel models considered for modeling the vector of direct estimates ˆ ,Y  take the general linear 

additive form  

    ˆ ,Y X Z v e 


    (4.12) 

where X  is a m p  design matrix for the fixed effects ,  and the  Z   are  m q   design matrices for 

random effect vectors   .v   Here the sum over   runs over several possible random effect terms at different 

levels, such as a national level smooth trend, provincial local level trends, white noise, etc. This is explained 

in more detail below. The sampling errors  111 112 115 121= , , , , ,e e e e e    are taken to be normally 

distributed as 

  0,e N  (4.13) 

where =1= mA
i i i    with i  the covariance matrix for the initial estimates for province ,i  and i  a 

province-specific variance scale parameter to be estimated. As described in Section 3 the design variances 

in = i i    are pooled over provinces and because of the discrete nature of the unemployment data they 

thereby lose some of their dependence on the unemployment level. It was found that incorporating the 

variance scale factors i  allows the model to rescale the estimated design variances to a level that better fits 

the data. 

To describe the general model for each vector  v   of random effects, we suppress the superscript .  

Each vector v  has =q dl  components corresponding to d  effects allowed to vary over l  levels of a factor 

variable. In particular,  

  0, ,v A VN  (4.14) 

where V  and A  are d d  and l l  covariance matrices, respectively. As in Section 4.1 the covariance 

matrix V  is allowed to be parameterised in three different ways. Most generally, it is an unstructured, i.e., 

fully parameterised covariance matrix. More parsimonious forms are  2 2
;1 ;= diag , ,v v dV    or 

2= .v dV I  If = 1d  the three parameterisations are equivalent. The covariance matrix A  describes the 

covariance structure between the levels of the factor variable, and is assumed to be known. It is typically 

more convenient to use the precision matrix 1=AQ A  as it is sparse for many common temporal and spatial 

correlation structures (Rue and Held, 2005). 
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4.2.1  Relations between state space and time series multilevel representations 
 

A single smooth trend can be represented as a random intercept  = 1d  varying over time  = ,Tl m  

with temporal correlation determined by a T Tm m  band sparse precision matrix AQ  associated with a 

second order random walk (Rue and Held, 2005). In this case 2= vV   and the design matrix Z  is the 

Tm m  indicator matrix for month, i.e., the matrix with a single 1 in each row for the corresponding month 

and 0s elsewhere. The sparsity of both AQ  and Z  can be exploited in computations. The precision matrix 

for the smooth trend component has two singular vectors,  = 1, 1, , 1
Tm   and  1, 2, , .Tm   This 

means that the corresponding specification (4.14) is completely uninformative about the overall level and 

linear trend. In order to prevent unidentifiability among various terms in the model, the overall level and 

trend can be removed from v  by imposing the constraints = 0,Rv  where R  is the 2 Tm  matrix with the 

two singular vectors as its rows. The overall level and trend are then included in the vector   of fixed 

effects. In the state space representation, this model is obtained by defining one trend model (4.3) for all 

domains, i.e., =it tL L  and =it tR R  for all .i  Defining the state variables for the trend equal over the 

domains is a very synthetic approach to use sample information from other domains and is based on 

assumptions that are not met in most cases. 

A smooth trend for each province is obtained with = ,Ad m = ,Tl m  and V  a A Am m  covariance 

matrix, either diagonal with a single variance parameter, diagonal with Am  variance parameters, or 

unstructured, i.e., fully parametrised in terms of Am  variance parameters and  1 2A Am m   correlation 

parameters. The design matrix is 
A T Pm m mI I    in this case. In the state space representation, these 

models are obtained with trend model (4.3) and covariance structure (4.9). 

An alternative trend model consists of a single global smooth trend (second order random walk) 

supplemented by a local level trend, i.e., an ordinary (first order) random walk, for each province. The latter 

can be modeled as discussed in the previous paragraph, but with precision matrix associated with a first 

order random walk. This trend model corresponds to the models (4.10) and (4.11) in the state space context. 

In contrast to the state space approach, it is not necessary to remove one of the provincial random walk 

trends from the model for identifiability. The reason is that in the multilevel approach constraints are 

imposed to ensure that the smooth overall trend as well as all provincial random walk trends sum to zero 

over time. The constrained components correspond to global and provincial intercepts, which are separately 

included in the model as fixed effects with one provincial fixed effect excluded. 

Seasonal effects can be expressed in terms of correlated random effects (4.14) as well. The trigonometric 

seasonal is equivalent to the balanced dummy variable seasonal model (Proietti, 2000; Harvey, 2006), 

corresponding to first order random walks over time for each month, subject to a sum-to-zero constraint 

over the months. In this case = 12d  (seasons), 2
12= ,vV I  and = Tl m  with AQ  the precision matrix of a 

first order random walk. The sum-to-zero constraints over seasons at each time, together with the sum-to-

zero constraints over time of each random walk can be imposed as = 0Rv  with R  the  12 12T Tm m   

matrix 



Survey Methodology, December 2019 405 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 
12

12

.
T

T

m

m

I
R

I

  

  

i

i
 (4.15) 

Together with fixed effects for each season (again with a sum-to-zero constraint imposed) this random effect 

term is equivalent to the trigonometric seasonal. It can be extended to a seasonal for each province, with a 

separate variance parameter for each province. 

To account for the RGB, the multilevel model includes fixed effects for waves 2 to 5. These effects can 

optionally be modeled dynamically by adding random walks over time for each wave. Another choice to be 

made is whether the fixed and random effects are crossed with province. 

Further fixed effects can be included in the model, for example those associated with the auxiliary 

variables used in the survey regression estimates. Some fixed effect interactions, for example season   

province or wave   province might alternatively be modeled as random effects to reduce the risk of 

overfitting. 

Finally, a white noise term can be added to the model, to account for unexplained variation by area and 

time in the signal. 

Model (4.12) can be regarded as a generalization of the Fay-Herriot area-level model. The Fay-Herriot 

model only includes a single vector of uncorrelated random effects over the levels of a single factor variable 

(typically areas). The models used in this paper contain various combinations of uncorrelated and correlated 

random effects over areas and months. Earlier accounts of multilevel time series models extending the Fay-

Herriot model are Rao and Yu (1994); Datta et al. (1999); You (2008). In Datta et al. (1999) and You (2008) 

time series models are used with independent area effects and first-order random walks over time for each 

area. In Rao and Yu (1994) a model is used with independent random area effects and a stationary 

autoregressive AR(1) instead of a random walk model over time. In You et al. (2003) the random walk 

model was found to fit the Canadian unemployment data slightly better than AR(1) models with 

autocorrelation parameter fixed at 0.5 or 0.75. We do not consider AR(1) models in this paper, and refer to 

Diallo (2014) for an approach that allows both stationary and non-stationary trends. Compared to the 

aforementioned references a novel feature of our model is that smooth trends are considered instead of or 

in addition to first-order random walks or autoregressive components. We also include independent area-

by-time random effects as a white noise term accounting for unexplained variation at the aggregation level 

of interest. 

 
4.2.2  Estimating time series multilevel models 
 

A Bayesian approach is used to fit model (4.12)-(4.14). This means we need prior distributions for all 

(hyper)parameters in the model. The following priors are used: 
 

•  The data-level variance parameters i  for = 1, , Ai m  are assigned inverse chi-squared priors 

with degrees of freedom and scale parameters equal to 1.  
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•  The fixed effects are assigned a normal prior with zero mean and fixed diagonal variance matrix 

with very large values (1e10).  

•  For a fully parameterized covariance matrix V  in (4.14) we use the scaled-inverse Wishart prior 

as proposed in O’Malley and Zaslavsky (2008) and recommended by Gelman and Hill (2007). 

Conditionally on a d -dimensional vector parameter ,  

                     Inv Wishart , diag diagV V v   Y  (4.16) 

where = 1d   is chosen, and = .dIY  The vector   is assigned a normal distribution 

 0, .dIN  

•  All other variance parameters appearing in a diagonal matrix V  in (4.14) are assigned, 

conditionally on an auxiliary parameter ,  inverse chi-squared priors with 1 degree of freedom 

and scale parameter 2 .  Each parameter   is assigned a  0, 1N  prior. Marginally, the 

standard deviation parameters have half-Cauchy priors. Gelman (2006) demonstrates that these 

priors are better default priors than the more common inverse chi-squared priors.  

 
The model is fit using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs sampler 

(Geman and Geman, 1984; Gelfand and Smith, 1990). The multilevel models considered belong to the class 

of additive latent Gaussian models with random effect terms being Gaussian Markov Random Fields 

(GMRFs), and we make use of the sparse matrix and block sampling techniques described in Rue and Held 

(2005) for efficiently fitting such models to the data. Moreover, the parametrization in terms of the 

aforementioned auxiliary parameters   (Gelman, Van Dyk, Huang and Boscardin, 2008), greatly improves 

the convergence of the Gibbs sampler used. See Boonstra and van den Brakel (2016) for more details on the 

Gibbs sampler used, including specifications of the full conditional distributions. The methods are 

implemented in R using the mcmcsae R-package (Boonstra, 2016). 

For each model considered, the Gibbs sampler is run in three independent chains with randomly 

generated starting values. Each chain is run for 2,500 iterations. The first 500 draws are discarded as a “burn-

in sample”. From the remaining 2,000 draws from each chain, we keep every fifth draw to save memory 

while reducing the effect of autocorrelation between successive draws. This leaves 3 * 400 = 1,200 draws 

to compute estimates and standard errors. It was found that the effective number of independent draws was 

near 1,200 for most model parameters, meaning that most autocorrelation was indeed removed by the 

thinning. The convergence of the MCMC simulation is assessed using trace and autocorrelation plots as 

well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the 

mixing of the chains. The diagnostics suggest that all chains converge well within the burnin stage, and that 

the chains mix well, since all Gelman-Rubin factors are close to one. Also, the estimated Monte Carlo 

simulation errors (accounting for any remaining autocorrelation in the chains) are small compared to the 

posterior standard errors for all parameters, so that the number of retained draws is sufficient for our 

purposes. 
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The estimands of interest can be expressed as functions of the parameters, and applying these functions 

to the MCMC output for the parameters results in draws from the posteriors for these estimands. In this 

paper we summarize those draws in terms of their mean and standard deviation, serving as estimates and 

standard errors, respectively. All estimands considered can be expressed as linear predictors, i.e., as linear 

combinations of the model parameters. Estimates and standard errors for the following estimands are 

computed: 
 

•  Signal: the vector it  including all fixed and random effects, except those associated with waves 

2 to 5. These correspond to the fitted values    X Z v 


    associated with each fifth row 

1, 6, 11,  of Ŷ  and the design matrices.  

•  Trend: prediction of the long-term trend. This is computed by only incorporating the trend 

components of each model in the linear predictor. For most models considered the trend 

corresponds to seasonally adjusted figures, i.e., predictions of the signal with all seasonal effects 

removed.  

•  Growth of trend: the differences between trends at two consecutive months.  

 

5  Results 
 

The results obtained with the state space and multilevel time series representations of the STMs are 

described in Subsections 5.1 and 5.2, respectively. First, two discrepancy measures are defined to evaluate 

and compare the different models. The first measure is the Mean Relative Bias (MRB), which summarizes 

the differences between model estimates and direct estimates averaged over time, as percentage of the latter. 

For a given model ,M  the MRB i  is defined as  

 
 .

.

ˆ
MRB 100%,

M
it itt

i

itt

Y

Y

 
 





  (5.1) 

where .itY  are the direct estimates by province and month incorporating the ratio RGB adjustment 

mentioned at the end of Section 3. This benchmark measure shows for each province how much the model-

based estimates deviate from the direct estimates. The discrepancies should not be too large as one may 

expect that the direct estimates averaged over time are close to the true average level of unemployment. The 

second discrepancy measure is the Relative Reduction of the Standard Errors (RRSE) and measures the 

percentages of reduction in estimated standard errors between model-based and direct estimates, i.e.,  

       . .

1 ˆRRSE 100% se se se ,M
i it it it

tT

Y Y
m

      (5.2) 

for a given model .M  Here the estimated standard errors for the direct estimates follow from a variance 

approximation for . ,itY  whereas the model-based standard errors are posterior standard deviations or follow 

from the Kalman filter/smoother. Posterior standard deviations, standard errors obtained via the Kalman 

filter and standard errors of the direct estimators come from different frameworks and are formally spoken 
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not comparable. They are used in (5.2) to quantify the reduction with respect to the direct estimator only but 

not intended as model selection criteria. 

 

5.1  Results state space models 
 

Ten different state space models are compared. Four different trend models are distinguished. The first 

trend component is a smooth trend model without correlations between the domains (4.3), abbreviated as 

T1. The second trend model, T2, is a smooth trend model (4.3) with a full correlation matrix for the slope 

disturbances (4.9). The third trend component, T3, is a common smooth trend model for all provinces with 

eleven local level trend models for the deviation of the domains from this overall trend ((4.10) in 

combination with (4.11)). The fourth trend model, T4, is a common smooth trend model for all provinces 

with eleven smooth trend models for the deviation of the domains from this overall trend ((4.10) in 

combination with (4.3)). In T3 and T4 the province Groningen is taken equal to the overall trend. The 

component for the RGB (4.4) can be domain specific (indicated by letter “R” in the model’s name) or chosen 

equal for all domains (no “R” in the model’s name). An alternative simplicfication is to assume that RGB 

for waves 2, 3, 4 and 5 are equal but domain specific (indicated by “R2”). In a similar way the seasonal 

component can be chosen domain specific (indicated by “S”) or taken equal for all domains. All models 

share the same component for the survey error, i.e., an AR(1) model with time varying autocorrelation 

coefficients for wave 2 through 5 to model the autocorrelation in the survey errors. The following state space 

models are compared: 
 

T1SR:  Smooth trend model and no correlation between slope disturbances; seasonal and RGB 

domain specific.  

T2SR:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal and 

RGB domain specific.  

T2S:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal 

domain specific, RGB equal over all domains.  

T2R:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal equal 

over all domains, RGB domain specific.  

T3SR:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal and RGB domain specific.  

T3R:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal equal over all domains, RGB domain specific.  

T3R2:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal equal over all domains, RGB is domain specific but assumed to 

be equal for the four follow-up waves.  

T3:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal and RGB equal over all domains.  

T4SR:  One common smooth trend model for all domains plus eleven smooth trend models for 

deviations from the overall trend; seasonal and RGB domain specific.  
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T4R:  One common smooth trend model for all domains plus eleven smooth trend models for 

deviations from the overall trend; seasonal equal over all domains, RGB domain specific.  
 

For all models, the ML estimates for the hyperparameters of the RGB and the seasonals tend to zero, 

which implies that these components are time invariant. Also the ML estimates for the variance components 

of the white noise of the population domain parameters tend to zero. This component is therefore removed 

from model (4.2). The ML estimates for the variance components of the survey errors in the first wave vary 

between 0.93 and 1.90. For the follow-up waves, the ML estimates vary between 0.86 and 1.80. The 

variances of the direct estimates are pooled over the domains (3.2), which might introduce some bias, e.g., 

underestimation of the variance in domains with high unemployment rates. Scaling the variances of the 

survey errors with the ML estimates for 2
ip  is neccessary to correct for this bias. The ML estimates for the 

hyperparameters for the trend components can be found in Boonstra and van den Brakel (2016). 

Models are compared using the log likelihoods. To account for differences in model complexity, Akaike 

Information Criteria (AIC) and Bayes Information Criteria (BIC) are used, see Durbin and Koopman (2012), 

Section 7.4. Results are summarized in Table 5.1. Parsimonious models where the seasonals or RGB are 

equal over the domains are preferred by the AIC or BIC criteria. Note, however, that the likelihoods are not 

completely comparable between models. To obtain comparable likelihoods, the first 24 months of the series 

are ignored in the computation of the likelihood for all models. Some of the likelihoods are nevertheless 

odd. For example the likelihood of T2SR is smaller than the likelihood of T2S, although T2SR contains 

more model parameters. This is probably the result of large and complex time series models in combination 

with relatively short time series, which gives rise to flat likelihood functions. Also from this point of view, 

sparse models that avoid over-fitting are still favorable, which is in line with the results of the AIC and BIC 

values in Table 5.1. 

 

Table 5.1 
AIC and BIC for the state space models 
 

Model   log likelihood   states   hyperparameters  AIC   BIC  
T1SR   9,813.82   204   24   -399.41   -390.52  
T2SR   9,862.86   204   35   -400.99   -391.68  
T2S   9,879.03   160   35   -403.50   -395.90  
T2R   9,859.97   83   35   -405.92   -401.32  
T3SR   9,855.35   193   24   -401.60  -393.14 
T3R   9,851.62   72   24   -406.48   -402.74  
T3R2   9,871.65 36 24 -408.82 -406.48 
T3   9,881.16   28   24  –409.55  -407.52  
T4SR   9,857.47   204   24  -401.23  -392.34  
T4R   9,853.65   83   24  -406.11  -401.94  

 
Modeling correlations between slope disturbances of the trend results in a significant model 

improvement. Model T1SR, e.g., is nested within T2SR and a likelihood ratio test clearly favours the latter. 

For model T2SR it follows that the dynamics of the trends for these 12 domains can be modeled with only 

2 underlying common trends, since the rank of the 12 12  covariance matrix equals two. As a result the 

full covariance matrix for the slope disturbances of the 12 domains is actually modeled with 23 instead of 
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78 hyperparameters. This shows that the correlations between the slope disturbances are very strong. 

Correlations indeed vary between 1.00 and 0.98. See Boonstra and van den Brakel (2016) for the ML 

estimates of the full covariance matrix. 

Table 5.2 shows the MRB, defined by (5.1). Models that assume that the RGB is equal over the domains, 

i.e., T2S and T3, have large relative biases for some of the domains. Large biases occur in the domains 

where unemployment is large (e.g., Groningen) or small (e.g., Utrecht) compared to the national average. 

A possible compromise between parsimony and bias is to assume that the RGB is equal for the four follow-

up waves but still domain specific (T3R2). For this model the bias is small, with the exception of Gelderland. 

 

Table 5.2 
Mean Relative Bias averaged (5.1) over time (%), per province for state space models 
 

  Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb 
T1SR  1.1 0.5 2.0 -0.2 0.1 3.4 0.1 0.6 1.7 -2.1 0.5 2.1 
T2SR  1.2 0.7 2.2 -0.1 0.2 3.5 0.2 0.6 1.7 -2.1 0.5 2.1 
T2S  -3.1 3.1 0.7 0.9 -4.4 2.8 2.4 0.8 0.5 1.7 1.8 1.5 
T2R  0.9 0.8 1.8 -0.2 -0.4 3.4 0.1 0.6 1.7 -1.6 0.6 2.2 
T3SR  0.8 0.6 2.0 -0.2 -0.3 3.5 0.3 0.5 1.7 -2.0 0.6 2.0 
T3R2  -0.1 1.3 2.1 -0.6 -0.8 3.6 0.9 0.6 1.5 -1.1 1.0 1.2 
T3R  0.5 0.7 1.8 -0.2 -0.8 3.5 0.3 0.5 1.6 -1.5 0.7 2.1 
T3  -4.0 2.5 0.1 0.9 -5.0 2.8 2.3 0.7 0.6 2.5 2.0 1.3 
T4SR  0.8 0.7 2.1 -0.2 -0.0 3.5 0.2 0.6 1.7 -1.9 0.5 2.1 
T4R  0.6 0.7 1.8 -0.2 -0.6 3.4 0.1 0.6 1.7 -1.3 0.7 2.1 

 
In Figure 5.1 the smoothed trends and standard errors of models T1SR, T2SR and T2S are compared. 

The month-to-month development of the trend and the standard errors for these three models are compared 

in Figure 5.2. The smoothed trends obtained with the common trend model are slightly more flexible 

compared to a model without correlation between the slope disturbances. This is clearly visible in the month-

to-month change of the trends. Modeling the correlation between slope disturbances clearly reduces the 

standard error of the trend and the month-to-month change of the trend. Assuming that the RGB is equal for 

all domains (model T2S) affects the level of the trend and further reduces the standard error, mainly since 

the number of state variables are reduced. The difference between the trend under T2SR and T2S is a level 

shift. This follows from the month-to-month changes of the trend under model T2SR and T2S, which are 

exactly equal. According to AIC and BIC the reduction of the number of state variables by assuming equal 

RGB for all domains is an improvement of the model. In this application, however, interest is focused on 

the model fit for the separate domains. Assuming that the RGB is equal over all domains is on average 

efficient for overall goodness of fit measures, like AIC and BIC, but not necessarily for all separate domains. 

The bias introduced in the trends of some of the domains by taking the RGB equal over the domains is 

undesirable. 

In Figure 5.3 the smoothed trends and standard errors of models T2SR, T3SR and T4SR are compared. 

The month-to-month developments of the trend and the standard errors can be found in Boonstra and 

van den Brakel (2016). The trends obtained with one overall smooth trend plus eleven trends for the domain 
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deviations of the overall trend resemble trends obtained with the common trend model. In this application 

the dynamics based on the two common trends of model T2SR are reasonably well approximated by the 

alternative trends of models T3SR and T4SR. This is an empirical finding that may not generalize to other 

situations, particularly when more common factors are required. The common trend model, however, has 

the smallest standard errors for the trend. Furthermore, the trends under the model with a local level for the 

domain deviations from the overall trend are in some domains more volatile compared to the other two 

models. This is most obvious in the month-to-month changes of the trend. It is a general feature for trend 

models with random levels to have more volatile trends, see Durbin and Koopman (2012), Chapter 3. The 

more flexible trend model of T3 also results in a higher standard error of the month-to-month changes. 

Assuming that the seasonals are equal for all domains is another way of reducing the number of state 

variables and avoid over-fitting of the data. This assumption does not affect the level of the trend since the 

MRB is small (see Table 5.2) and results in a significant improvement of the model according to AIC and 

BIC. Particularly if interest is focused on trend estimates, some bias in the seasonal patterns is acceptable 

and a model with a trend based on T2, or T4, with the seasonal component assumed equal over the domains, 

might be a good compromise between a model that accounts sufficiently for differences between domains 

and model parsimony to avoid over-fitting of the data. 

Model T3 is the most parsimonious model that is the best model according to AIC and BIC. Particularly 

the assumption of equal RGB results in biased trend estimates in some of the domains (see Table 5.2). See 

Boonstra and van den Brakel (2016) for a comparison of the trend and the month-to-month development of 

the trend of models T2R, T3 and T4R. Assuming that the seasonals are equal over the domains, results in a 

less pronounced seasonal pattern. See Boonstra and van den Brakel (2016) for a comparison of the signals 

for models T2SR and T2R. 

In Boonstra and van den Brakel (2016) results for year-to-year change of the trends under models T2R 

and T3R2 are included. Time series estimates for year-to-year change are very stable and precise and greatly 

improve the direct estimates for year-to-year change. 

Table 5.3 shows the RRSE, defined by (5.2), for the ten state space models. Recall that the RRSE 

quantifies the reduction with respect to the direct estimator and is not intended as a model selection criterion. 

Table 5.4 contains the averages of standard errors for signal, trend, and growth (month-to-month differences 

of trend). The average is taken over all months and provinces. Modeling the correlation between the trends 

explicitly (T2) or implicitly (T3 or T4) reduces the standard errors for the trend and signal significantly. The 

time series modeling approach is particularly appropriate to estimate month-to-month changes through the 

trend component. The precision of the month-to-month changes, however, strongly depends on the choice 

of the trend model. A local level trend model (T3) results in more volatile trends and has a clearly larger 

standard error for the month-to-month change. Parsimonious models where RGB or the seasonal 

components are assumed equal over the domains result in further strong standard error reductions at the cost 

of introducing bias in the trend or the seasonal patterns. 
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Figure 5.1 Comparison of direct estimates and smoothed trend estimates for three models (left) and their 
estimated standard errors (right). 
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Figure 5.2 Comparison of smoothed month-to-month developments (left) and their standard errors (right). 
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Figure 5.3 Comparison of direct estimates and smoothed trend estimates for three models (left) and their 
estimated standard errors (right). 
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Table 5.3 
Relative reductions in standard errors (5.2) of the signal estimates based on the state space models compared to 
those of the direct estimates (%), per province 
 

  Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb 
T1SR  36 36 38 42 43 44 47 47 45 50 47 43 
T2SR  43 42 43 48 49 49 53 53 50 54 53 48 
T2S  49 48 51 53 55 54 58 56 54 58 56 54 
T2R  64 63 62 65 66 63 68 68 63 73 67 64 
T3SR  45 41 45 48 42 51 49 50 48 53 49 50 
T3R  67 62 63 66 56 61 62 64 65 70 60 66 
T3R2  68 63 64 67 57 62 62 65 65 70 60 67 
T3  79 74 76 75 65 69 69 69 69 76 63 76 
T4SR  43 41 45 48 45 50 49 53 50 54 51 49 
T4R  65 63 64 65 62 62 63 68 63 73 63 65 

 
Table 5.4 
Means of standard errors over all months and provinces relative to the mean of the direct estimator’s standard 
errors (%) for the state space models 
 

  se(signal) se(trend) se(growth) 
direct  100   
T1SR  57 41 6 
T2SR  51 33 4 
T2S  46 23 4 
T2R  34 33 4 
T3SR  53 35 9 
T3R  36 35 9 
T3R2  36 34 9 
T3  28 26 9 
T4SR  52 34 4 
T4R  35 34 4 

 
5.2  Results multilevel models 
 

The ten models T1SR to T4R on pages 408-409 fitted as a state space model with the Kalman filter have 

also been fitted using the Bayesian multilevel approach using a Gibbs sampler. See Boonstra and 

van den Brakel (2016) for a detailed description of the fixed effect design matrices and random effect design 

and precision matrices corresponding to these models. The Bayesian approach accounts for uncertainty in 

the hyperparameters by considering their posterior distributions, implying that variance parameters do not 

actually become zero, as frequently happens for the ML estimates in the state space approach. For 

comparison purposes, however, effects absent from the state space model due to zero ML estimates have 

also been suppressed in the corresponding multilevel models. In addition to these ten models we consider 

one more model with extra terms including a dynamic RGB component as well as a white noise term. 

Differences between state space and multilevel estimates based on the ten models considered can arise 

because of 
 

• the different estimation methods, ML versus MCMC, 

ethicel
Barrer 
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• the different modeling of survey errors. In the multilevel models the survey errors’ covariance 

matrix is taken to be =1= Am
i i i    with i  the covariance matrix of estimated design variances 

for the initial estimates for province ,i  and i  scaling factors, one for each province. In the state 

space models the survey errors are allowed to depend on more parameters though eventually an 

AR(1) model is used to approximate these dependencies, 

• the slightly different parameterizations of the trend components. For the trend in model T3, for 

example, the province of Groningen is singled out by the state space model used, because no local 

level component is added for that province.  

 
The estimates and, to a lesser extent, the standard errors based on the multilevel models are quite similar 

to the results obtained with the state space models. We show this only for the smoothed signals of model 

T2R in Figure 5.4, as the qualitative differences between state space and multilevel results are quite 

consistent over all models. More comparisons for signals, trends and month-to-month developments for 

models T2R and T3R2 can be found in Boonstra and van den Brakel (2016). 

The small differences between the state space and multilevel signal estimates are due to slightly more 

flexible trends in the estimated multilevel models. Larger differences can be seen in the standard errors of 

the signal: the multilevel models yield almost always larger standard errors for provinces with high 

unemployment levels (Flevoland and Zuid-Holland in the figure), whereas for provinces with smaller 

unemployment levels (e.g., Zeeland) the differences are somewhat less pronounced. 

The larger flexibility of the multilevel model trends is most likely due to the relatively large uncertainty 

about the variance parameters for the trend, which is accounted for in the Bayesian multilevel approach but 

ignored in the ML approach for the state space models. The posterior distributions for the trend variance 

parameters are also somewhat right-skewed. The posterior means for the standard deviations are always 

larger than the ML estimates for the corresponding hyperparameters of the state space models (compare 

Table 2 and Table 8 in Boonstra and van den Brakel (2016)). For the models with trend T2, i.e., with a fully 

parametrized covariance matrix over provinces, the multilevel models show positive correlations among the 

provinces, as do the state space ML estimates, but the latter are much more concentrated near 1, whereas 

the posterior means for correlations in the corresponding multilevel model T2SR are all between 0.45 

and 0.8. 

Table 5.5 contains values of the DIC model selection criterion (Spiegelhalter, Best, Carlin and 

van der Linde, 2002), the associated effective number of model parameters eff ,p  and the posterior mean of 

the log-likelihood. The parsimonious model T3 is selected as the most favourable model by the DIC 

criterion. So in this case the DIC criterion selects the same model as the AIC and BIC criteria do for the 

state space models. An advantage of DIC is that it uses an effective number of model parameters depending 

on the size of random effects, instead of just the number of model parameters used in AIC/BIC. That said, 

the numbers effp  are in line with the totals of the numbers of states and hyperparameters in Table 5.1 for 

the state space models. 
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Figure 5.4 Comparison between smoothed signals (left) and their standard errors (right) obtained using state 
space (STS) model T2R and the corresponding multilevel model. 
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Table 5.5 
DIC, effective number of model parameters and posterior mean of log likelihood 
 

  DIC effp  mean llh 

T1SR  -29,054 255 14,655 
T2SR  -29,076 235 14,656 
T2S  -29,129 196 14,662 
T2R  -29,164 118 14,641 
T3SR  -29,081 242 14,662 
T3R  -29,174 126 14,650 
T3R2  -29,217 94 14,655 
T3  -29,230 82 14,656 
T4SR  -29,084 228 14,656 
T4R  -29,170 109 14,640 

 
As was the case for the state space models, the parsimonious model T3 comes with larger average bias 

over time for the provinces Groningen and Flevoland, which have the highest rates of unemployment. Model 

T3R2 has much smaller average biases for Groningen and Flevoland and since its DIC value is not that 

much higher than for model T3, model T3R2 seems to be a good compromise between models T3 and T3R, 

being more parsimonious than T3R and respecting provincial differences better than model T3. 

Table 5.6 contains the average standard errors for signal, trend and month-to-month differences in the 

trend, in comparison to the average for the direct estimates. The average is taken over all months and 

provinces. The results are again similar to the results obtained with the state space models, see Table 5.4, 

although especially the standard errors of month-to-month changes are larger under the multilevel models. 

 
Table 5.6 
Means of standard errors over all months and provinces relative to the mean of the direct estimator’s standard 
errors (%) for the multilevel time series models 
 

  se(signal) se(trend) se(growth) 
direct  100   
T1SR  55 41 8 
T2SR  52 37 6 
T2S  49 33 7 
T2R  39 38 6 
T3SR  53 38 15 
T3R  39 38 15 
T3R2  39 38 15 
T3  34 32 15 
T4SR  51 36 6 
T4R  37 36 6 

 
Finally, a multilevel model based on model T3R2 but with additional random effects has been fitted to 

the data. This extended model includes a white noise term, the balanced dummy seasonal (equivalent to the 

trigonometric seasonal), and a dynamic RGB component. These components were seen to be absent or time 

independent in the state space approach due to zero ML hyperparameter estimates, and therefore were also 
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not included in the multilevel models considered so far. In addition, the extended multilevel model includes 

season by province random effects, as a compromise between fixed provincial seasonal effects and no such 

interaction effects at all. More details and figures comparing the estimation results from this extended model 

to those from multilevel models T3R2 and T3SR can be found in Boonstra and van den Brakel (2016). It 

was found that most additional random effects were small so that the estimates based on the extended model 

are quite close to the estimates based on model T3R2, and the estimated standard errors are only slightly 

larger than those for model T3R2. A DIC value of -29,260 was found, well below the DIC value for model 

T3R2. This improvement in DIC was seen to be almost entirely due to the dynamic RGB component. 

Apparently, modeling the RGB as time-dependent results in a better fit. This seems to be in line with the 

temporal variations in differences between first wave and follow-up wave survey regression estimates, 

visible from Figure 3 in Boonstra and van den Brakel (2016). 

 
6  Discussion 
 

A time series small area estimation model has been applied to a large amount of survey data, comprising 

6 years of Dutch LFS data, to estimate monthly unemployment fractions for 12 provinces over this period. 

Two different estimation approaches for structural time series models (STM) are applied and compared. 

The first one is a state space approach using a Kalman filter, where the unknown hyperparameters are 

replaced by their ML estimates. The second one is a Bayesian multilevel time series approach, using a Gibbs 

sampler. 

The time series models that do not account for cross-sectional correlations and borrow strength over time 

only, already show a major reduction of the standard errors compared to the direct estimates. A further small 

decrease of the standard errors is obtained by borrowing strength over space through cross-sectional 

correlations in the time series models. Another great advantage of the time series model approach concerns 

the estimation of change. Under the multilevel model estimates of change and their standard errors can be 

easily computed, especially when the model fit is in the form of an MCMC simulation. Under the state space 

approach, estimates of change follow directly from the Kalman filter recursion by keeping the required state 

variables from the past in the state vector. The desired estimate for change, including its standard error, 

follows from the contrast of the specific state variables. Month-to-month and year-to-year change of 

monthly data are very stable and precise, which is a consequence of the strong positive correlation between 

level estimates. However, the stability of the estimates of change strongly depends on the choice of the trend 

model. Local level models result in more volatile trend estimates and thus also more volatile estimates of 

change and naturally have a higher standard error compared to smooth trend models. 

In this paper different trend models are considered that model correlation between domains with the 

purpose to borrow strength over time and space. The most complex approach is to specify a full covariance 

matrix for the disturbance terms of the trend component. One way to construct parsimonious models is to 

take advantage of cointegration. In the case of strong correlation between domains the covariance matrix 
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will be of reduced rank, which means that the trends of the Am  domains are driven by less than Am  common 

trends. In this application two common trends are sufficient to model the dynamics of the twelve provinces, 

resulting in a strong reduction of the number of hyperparameters required to model the cross-sectional 

correlations between the domains. In order to further reduce the number of state and hyperparameters, 

alternative trend models are considered that implicitly account for cross-sectional correlations. Under this 

approach all domains share an overall trend. Each domain has a domain-specific trend to account for the 

deviation from the overall trend. This can be seen as a simplified form of a common trend model. In this 

application the alternative trend model results in comparable estimates for the trends and standard errors. 

So this approach might be a practical attractive alternative for common trend models. For example if the 

number of domains is large or the number of common factors is larger, then the proposed trend models are 

less complex compared to general common trend models. More research into the statistical properties of 

these alternative trend models is necessary for better understanding the implied covariance structures. 

Several differences between the time series multilevel models fitted in an hierarchical Bayesian 

framework and state space models fitted with the Kalman filter with a frequentist approach can be observed. 

Within the multilevel Bayesian framework different STMs are compared using DIC as a formal model 

selection criterion. Since the state space models are fitted in a frequentist framework, STMs are compared 

with AIC or BIC. An advantage of the DIC criterion used in the Bayesian multilevel approach is that it uses 

the effective number of degrees of freedom as a penalty for model complexity. This implies that the penalty 

for a random effect increases with the size of the variance components of this random factor and varies 

between zero if the variance component equals zero and the number of levels of this factor if the variance 

component tends to infinity. The penalty in AIC or BIC for a random component always equals one, 

regardless the size of its variance component and therefore does not account properly for model complexity. 

Note that for multilevel models fitted in a frequentist framework the so-called conditional AIC is proposed 

(Vaida and Blanchard, 2005) where the penalty for model complexity is also based on the effective degrees 

of freedom. In this case the penalty for a random effect increases as the size of its variance component 

increases in a similar way as with the DIC. For state space models fitted in a frequentist framework such 

model selection criteria seem less readily available. 

A difference between the multilevel models and state space models is that under the former model 

components are more often found to be time varying while under the state space approach most components, 

with the exception of the trend, are estimated as time invariant. This is a result of the method of model 

fitting. Under the frequentist approach applied to the state space models, ML estimates for many 

hyperparameters are on the border of the parameter space, i.e., zero for variance components and one for 

correlations between slope disturbance terms. Under the hierarchical Bayesian approach the entire 

distribution of the (co)variance parameters is simulated resulting in mean values for these hyperparameters 

that are never exactly on the border of the parameter space, e.g., always positive in the case of variance 

components. A consequence of this feature is that the variances of the trend hyperparameters are higher and 

that the covariances between the trend disturbances are smaller than one under the hierarchical Bayesian 
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approach. Another remarkable observation is that the DIC prefers models with time varying RGB and time 

varying seasonal components as well as a white noise term for the population parameter. This results in this 

application in models with a higher degree of complexity under the hierarchical Bayesian multilevel models 

compared to the state space models fitted in a frequentist approach. Differences in estimates for the trend 

and the signals are, however, small. 

An advantage of the hierarchical Bayesian approach is that the standard errors of the domain predictions 

account for the uncertainty about the hyperparameters. As a result the standard errors obtained under the 

hierarchical Bayesian approach of comparable models are slightly higher and less biased compared to the 

state space approach. For the state space approach several bootstrap methods are available to account for 

hyperparameter uncertainty (Pfeffermann and Tiller, 2005) but these methods significantly increase the 

computational cost. 

From a computational point of view there are some differences between the methods too. The Kalman 

filter approach applied to state space models can be used online, producing new filtered estimates by 

updating previous predictions when data for a new month arrives and is from that point of view 

computationally very efficient. The numerical optimization procedure for ML estimation of the 

hyperparameters, on the other hand, can be cumbersome for large multivariate models if the number of 

hyperparameters is large. The Gibbs sampler multilevel approach used here produces estimates for the 

whole time series at once. It must be re-estimated completely when data for a new month arrives. However, 

due to the use of sparse matrices and redundant parameterization the multilevel approach is quite 

competitive computationally, see also Knorr-Held and Rue (2002). An advantage of the simultaneous 

multilevel estimation is that constraints over time can easily be imposed. For example, imposing sum-to-

zero constraints over time allows to include local level provincial trends for all provinces in addition to a 

global smooth trend with no resulting identification issues. 

In this application there is a preference for the time series multilevel models in the hierarchical Bayesian 

framework. One reason is the relatively simple way the DIC criterion can be computed, which better 

accounts for model complexity than AIC or BIC. Also, the Gibbs sampler under the Bayesian approach is 

better suited to fit complex multivariate STMs with large numbers of hyperparameters. In addition, the 

standard errors for the domain predictions obtained under the multilevel models account for the uncertainty 

about the hyperparameters, also in a straightforward way. 

The time series estimates are quite smooth, and a more thorough model evaluation is necessary to find 

out whether that is appropriate or whether the time series model underfits the unemployment data or is open 

to improvement in other ways. There are many ways in which the time series SAE model may be extended 

to further improve the estimates and standard errors. For example, it may be an improvement to use a 

logarithmic link function in the model formulation as in You (2008). Effects would then be multiplicative 

instead of additive. Another possible improvement would come from a more extensive modeling of the 

sampling variances (You and Chapman, 2006; You, 2008; Gómez-Rubio, Best, Richardson, Li and Clarke, 

2010). The models can also be improved by including additional auxiliary information at the province by 
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month level, for instance registered unemployment. In Datta et al. (1999) similar effects associated with 

unemployment insurance are modeled as varying over areas, although not over time. 
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Robust variance estimators for generalized regression 
estimators in cluster samples 

Timothy L. Kennel and Richard Valliant1 

Abstract 

Standard linearization estimators of the variance of the general regression estimator are often too small, leading 
to confidence intervals that do not cover at the desired rate. Hat matrix adjustments can be used in two-stage 
sampling that help remedy this problem. We present theory for several new variance estimators and compare 
them to standard estimators in a series of simulations. The proposed estimators correct negative biases and 
improve confidence interval coverage rates in a variety of situations that mirror ones that are met in practice. 

 
Key Words: Jackknife variance estimator; Hat matrix adjustment; Leverage adjustment; Superpopulation model; Two-

stage sample; Sandwich variance estimator. 

 
 

1  Introduction 
 

Generalized regression (GREG) estimation is a common technique used to calibrate estimates, reduce 

sampling errors, and correct for nonsampling errors. Official surveys of households often use generalized 

regression to calibrate sample-based estimates to population controls, assure consistent estimates of 

demographic characteristics across surveys, and reduce nonresponse and undercoverage errors. GREG 

estimation is also frequently used because it draws strength from auxiliary data, resulting in smaller 

sampling errors than other design-based estimators. 

Popular techniques used to estimate the sampling errors of calibrated estimators from complex samples 

either require extensive computational resources or tend to underestimate the true sampling errors, 

especially with small to moderate sample sizes. Two popular techniques used to estimate the sampling 

variance of GREG estimators are linearization and replication. Linearization estimators (Särndal, Swensson 

and Wretman, 1989) may not converge to the true sampling error fast enough to produce accurate results in 

small to moderate samples. Särndal, Swensson and Wretman (1992, page 176) remark that “For complex 

statistics such as an estimator of a population variance, covariance, or correlation coefficient, fairly large 

samples may be required before the bias is negligible.” On the other hand, alternative replication techniques 

such as the jackknife and the bootstrap that generally produce larger variance estimates can be 

computationally demanding. 

Leverage-adjusted sandwich estimators provide an alternative approach to estimating design-based 

sampling errors that also have model-based justifications. Royall and Cumberland (1978) applied this 

approach to develop estimators of the prediction variance of estimators of finite population totals. From a 

model-based framework, Long and Ervin (2000) and MacKinnon and White (1985) demonstrated how the 

sandwich estimator could be used for variance estimation for estimators of regression parameters even when 
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the variance component of the working model was misspecified. Valliant (2002) took this approach to 

estimate the design-based variance of GREG estimators under one stage of sampling. This paper extends 

Valliant’s work to clustered sample designs. 

In Section 2, we introduce the GREG estimator and present several alternative variance estimators for 

it. All derivations are contained in the Appendix. In Section 3, we show how the new variance estimators 

perform in several simulations. In Section 4, we summarize our findings with a conclusion. 

 
2  Theoretical results 
 

Suppose that the population has = 1, 2, ,i M  clusters. In cluster i  there are iN  elements so that 

there are 
=1

=
M

ii
N N  elements in the population. The universe of clusters is denoted as U  and the 

universe of elements in cluster i  is .iU  An analysis variable iky  is associated with element k  in cluster .i  

The population total of y  is 
=1 =1

= .iM N

Uy iki k
t y   Each population element also has a p -vector of auxiliary 

variables, ,x ik  that can be used in estimation. A two-stage sample is selected without replacement at the 

first and second stages. The selection probability of cluster i  is ,i  and k i  is the conditional selection 

probability of element k  in cluster .i  The overall selection probability of element ik  is = .ik i k i    

Denote the set of sample clusters by s  and the set of sample elements within cluster i  by .is  The number 

of sample clusters is m  while the number of sample elements selected from sample cluster i  is .in  The 

total sample size of elements is = .ii s
n n

  

As a working model, suppose that ,YU  the N -vector of analysis variables, follows the following linear 

model:  

 
 

 

=

cov =

Y Xβ

Y Ψ

U

U

E



 
(2.1)

 

where the subscript   denotes expectation with respect to a model;  1 2= , , ,X X X X M     is the N p  

matrix of auxiliaries with X i  being the iN p  matrix of auxiliaries for the iN  elements in cluster ;i  and 

β  is a parameter vector of length .p  Elements within clusters are assumed to be correlated while elements 

in different clusters are independent under the model. Thus, the covariance matrix Ψ  is an N N  block 

diagonal matrix with diagonal matrices  = .Ψ
i ii ik N N   A key feature of the variance estimators we 

propose is that the particular form of ik  does not have to be known to construct variance estimators. The 

proposed variance estimators will be consistent regardless of the form of .Ψ  

Särndal et al. (1992, Chapter 8) discuss three different GREG estimators that can be used in clustered 

samples. These three estimators depend on the available data. We consider their case B which occurs when 

unit-level data are available for the complete sample and control totals are available for the population. In 

this case, the GREG estimator is  

 
 

1

ˆ ˆˆ ˆ=

=

B t t

g Π y

gr
y y Ux x

s

t t  



 


 

(2.2)
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where y s  is the n -vector of ’sy  for the sample elements, ˆ
yt   is the  -estimator of the total of the ’s,y  

tUx  is the p -vector of population totals of the ’s,x t̂ x  is the  -estimator of ,tUx  and (if Ψ  is known) 
1 1 1ˆ =B A X Ψ Π ys s s

    with 1 1= ,A X Ψ Π Xs s s
  X s  the matrix of sample auxiliaries, and  = diagΠ ik  

 , ;ii s k s  Ψ s  is the part of Ψ  associated with the sample elements; and =g 1n    

  1 1ˆt t A X ΨUx x s s
 


  where 1n  is a vector of n  1’s. 

The component of the g -weight for sample cluster i  is   1 1ˆ=g 1 t t A X Ψ
ii n Ux x si si

  
   with 

1= , ,X x x
isi i in    being the ip n  matrix of auxiliaries for sample elements in sample cluster ,i Ψ si  

is the i in n  part of Ψ i  for sample elements in sample cluster ,i  and 1
in  is a vector of in  1’s. Since Ψ  

is generally unknown, a surrogate value Q  may be used for 1;Ψ s
 Q I  is a common choice. Below, we 

assume that a general Q  is used in the GREG rather than 1.Ψ s
  

 

2.1  Current variance estimators 
 

Särndal et al. (1992, Result 8.9.1) present an estimator of the design variance of ˆ ,gr
yt  which involves 

joint selection probabilities of clusters and elements within clusters. In the case of Poisson sampling at both 

stages, their estimator is  

 
     2

2 2
, 22

11 1
ˆ=

i

k ii g
g e i ik ik

i s i s k si i k i

t g e



    


    (2.3) 

where ,
ˆ = ,

i

g
e i ik ik k is

t g e  ikg  is the thk  component of the g i  vector, and ˆ= .x Bik ik ike y    This 

estimator is computationally simpler than the general form that uses joint selection probabilities and may 

perform reasonably well for ps  designs where the variance of estimators can be approximated by formulas 

that assume independence between selections. 

An estimator that is appropriate if the first-stage sample is selected with replacement is  

   2
1 1=

1wr i
i s

m
e e

m





   (2.4) 

with 1 =
i

i ik ikk s
e e 

  and 1
1 1= .ii s

e m e
  The jackknife linearization estimator is (Yung and Rao, 

1996) 

    2
2 2

1
=JL i

i s

m
e e

m





  (2.5) 

where 2 =
i

i ik ik ikk s
e g e 

  and 1
2 2= ii s

e m e
  with ikg  being the thk  component of the g i  vector. 

The jackknife is another popular variance estimation technique. Krewski and Rao (1981) present several 

asymptotically equivalent ways of writing the jackknife. The following form of the jackknife estimator is a 

convenient starting point for the calculations that follow:  

        2

Jack

1
ˆ ˆ= gr gr

y i y
i s

m
t t

m
 




  (2.6) 

where  ˆ gr
y it  is the value of the GREG estimator after removing cluster i  and  ˆ gr

yt   is the average of all  ˆ gr
y it  

estimates. Using (2.6) can be computationally demanding because m  different estimates of  
ˆ gr

y it  must be 
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computed. The estimators, Jack , ,wr  and JL  are all design-consistent under the conditions in Krewski and 

Rao (1981) and Yung and Rao (1996). One of their key conditions is that clusters be selected with 

replacement. This assumption simplifies theoretical calculations but is only a convenience since the 

theoretical results have been shown in many empirical studies to be good predictors of estimator 

performance in without-replacement designs as long as the first-stage sampling fraction is small. 
 

2.2  New variance estimators 
 

We use the model-based framework to construct new variance estimators. First, we derive the model-

based variance of ˆ .gr
yt  Assume that model (2.1) holds and that sampling is ignorable in the sense that the 

probability of a unit’s being in the sample given YU  and X  depends only on X  (e.g., see discussion in 

Valliant, Dorfman and Royall, 2000, Section 2.6.2 and the additional references therein). Then, we construct 

estimators of the model variance, using hat-matrix adjustments to account for heterogeneity in the data. We 

evaluate the design-based properties of the new variance estimators in a simulation. 

To calculate the model variance of ˆ ,gr
yt  define y i  as the population vector of analysis variables for 

cluster ,i  and y si  as the vector for sample elements. As shown in Appendix A.2, under model (2.1) the 

model-based variance of ˆ gr
yt  is  

 
   1 1 1

1 2 3

ˆvar = 2 cov ,

= 2

g Π Ψ Π g g Π y y 1 1 Ψ1
i

gr
y Uy i i si i i i i si i N N N

i s i s

t t

L L L

 
  

 
    

 

   

  

where  var = ,y Ψsi si  the part of Ψ  associated with elements in ,is  and 1
iN  and 1N  are vectors of iN  

and N  1’s. 

The model-based error variance of ˆ gr
yt  requires knowledge of Ψ  for the full population. Without some 

strong assumptions that link the sample and nonsample covariance structures, components of Ψ  associated 

with the nonsample cannot be estimated from the sample. However, as shown in Appendix A.2, under some 

reasonable conditions the orders of the terms are  2
1 =L O M m  and  2 3= =L L O M  so that 1L  

dominates the variance as the number of sample and population clusters increase. Thus,  

   1 1ˆav = g Π Ψ Π ggr
y Uy i i si i i

i s

t t
 


    (2.7) 

where av   denotes asymptotic model variance under the assumptions in Appendix A.1. A robust estimator 

of the right-hand side of (2.7) can be formed even when Ψ si  is unknown. On the other hand, if the number 

of population clusters increases at the same rate as sample clusters, (i.e., =f m M  converges to a non-

zero constant), then 1,L 2 ,L  and 3L  may all contribute importantly to the asymptotic variance. In this paper, 

we will only consider estimation of 1.L  

Unless the true variance matrix of y s  is known, Ψ i  must be estimated. In Appendix A.3 we show that 

in large samples  var e Ψi i   where ˆ=e y yi si si  with ˆˆ =y X Bsi si  and X si  being the in p  matrix 

of auxiliaries for sample elements in sample cluster .i  Substituting e ei i
  for Ψ si  in (2.7) yields the 

sandwich estimator  
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 1 1= .g Π e e Π gR i i i i i i
i s

  


    (2.8) 

Based on results in Appendix A.3, R  is approximately unbiased for  ˆav gr
y Uyt t   in large samples. This 

sandwich estimator is also closely related to the design-based, ultimate cluster estimator for a sample design 

in which clusters are selected with replacement, which is, in turn, similar to both g  and JL  in with 

replacement sampling. Consequently, R  has both desirable design-based and model-based properties. 

In small to moderate-sized samples, R  will be model-biased and will often underestimate the true 

variance. A hat-matrix adjustment can be made as a correction. As shown in Appendix A.3,  

                    
; ,

E = var =e e e I H Ψ I H H Ψ H
i ii i i n ii si n ii ij sj ij

j i i j s
 

 
   

   (2.9) 

where 1 1=H X A X Q Πij si sj j j
   , = 1, ,i j m  with Q j  and Π j  being the j jn n  parts of Q  and Π  

associated with sample cluster .j  As in (Li and Valliant, 2009; Valliant, 2002), the H ij  can be collected into a 

survey weighted hat matrix:  

 

1 1

11 1 1
1 1 1 1 1

11 1 1
1 1 1

=

= .

H X A X QΠ

X A X Q Π X A X Q Π

X A X Q Π X A X Q Π

s s

s s s sm m m

sm s sm sm m m

 

  

  

 
 
 
 
 
  



  





 

 

 
(2.10)

 

Based on the assumptions in Appendix A.1,  1= ,H O m  from which we conclude that  var .e Ψi si   

The diagonal submatrices H ii  are matrix analogs to leverages in single-stage sampling. In ordinary least 

squares regression, the vector of predicted values can be written as OLSˆ =y H y  with OLS =H  

  1 .X X X XT T  Leverages are diagonals of the hat matrix, OLS ,H  and can be used to correct for a small 

sample bias in   22 ˆ=i i ie y y  as an estimator of  var .iy  We use the H ii  in an analogous way below. 

To adjust for the fact that e ei i
  is model-biased for small to moderate samples, we make leverage-like 

adjustments to .e ei i
  If Q I  and the sample is self-weighting (i.e., =Π Ic  for some 0 < < 1),c  then 

   var =e I H Ψ
ii n ii si   (see Appendix A.3). Solving for Ψ si  and substituting into (2.8) gives the 

variance estimator:  

                                              1
1 1= g Π I H e e Π g

iD i i n ii i i i i
i s




 



    (2.11) 

which, in this special case, is also approximately unbiased since  1= .H ii O m  One undesirable feature 

of D  is that it can be negative or can have negative contributions from some clusters if =Di  

  1
1 1 < 0.g Π I H e e Π g

ii i n ii i i i i


    For such clusters, replacing Di  with 1 1= g Π e e Π gRi i i i i i i     will 

assure a positive variance estimator. This adjustment is used in the simulation in Section 3. 

In Appendices A.4 and A.5, we show that the jackknife variance estimator can be written exactly as  
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where  
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This form of Jack  results in a significant reduction in computations since only one GREG estimate is 

needed, rather than m  estimates. (Of course, recomputing the GREG for every jackknife replicate may still 

be advantageous if an elaborate nonresponse adjustment affects the size of the true variance.) 

In large samples Jack  can be approximated by  

                                             2

1

1
=J i

i s

m
D D

m





  (2.13) 

or by  

                
   

2
2

1 1
1 1

1
=

1
= .g Π I H e e I H Π g

i i

J i
i s

i i n ii i i n ii i i
i s

m
D

m

m

m




 
 






 



  

 

(2.14)

 

The estimators, 1J  and 2J  are clustered versions of the single-stage approximations to the jackknife in 

Valliant (2002, equations (3.5), (3.6)). 

As sketched in Appendix A.6, Jack , ,JL 1 ,J 2 ,J ,D  and R  are all asymptotically equivalent as 

.m    Since Jack  and JL  are design-consistent, the alternative estimators above can be expected to 

perform well over repeated samples when the size of the first-stage sample is large, and when model (2.1) 

is approximately correct. One caveat is that the sampling fraction of clusters must be small so that estimators 

made from a without-replacement, first-stage sample will perform as if the sample had been selected with-

replacement. 

None of these sandwich-like estimators includes finite population correction factors. Thus, they may 

tend to overestimate the sampling variance when a large proportion of the sample clusters is selected. To 

account for this, we can further adjust all of the variance estimators in an ad hoc fashion by multiplying the 

variance estimators by a finite population correction factor, denoted ,pcf  as developed by Kott (1988). This 

results in the following adjusted estimators:  
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When a simple random sample is selected in the first stage, = 1 .pcf m M  According to Kott (1988), an 

appropriate correction when the first stage is selected with varying probabilities is 2
=1

= 1
M

pc ii
f m p   

where ip  is the single draw probability for cluster ,i  i.e., the probability that cluster i  would be selected 

in a sample of size 1. 
 

3  Simulation 
 

We performed a series of simulation studies to test the performance of the new variance estimators in 

different populations. In each simulated sample, we computed the quantities listed in Table 3.1. To evaluate 

the variance estimators, we calculated the average of the variance estimates, compared those averages to the 

empirical mean square error, and computed coverage probabilities of confidence intervals based on the 

different variance estimates. Table 3.2 summarizes the sample designs for the 18 simulation studies. The 

column called Label gives the headings used in later tables. The sample designs are used in three populations 

described below. 
 

Table 3.1 
Statistics of interest for clustered GREG variance simulation 
 

Statistic Description 
ˆ

yt   Estimated total from the Horvitz-Thompson Estimator 
ˆ gr

yt  Estimated total from the GREG 

E  Empirical variance 

g  Design-based variance estimator that assumes Poisson sampling at both stages from Särndal et al. (1992) in (2.3) 

wr  With-replacement variance estimator in (2.4) 

JL  Jackknife linearization variance estimator from Yung and Rao (1996) in (2.5) 

R  Sandwich estimator in (2.8) 

D  First hat-matrix adjusted sandwich estimator in (2.11) 

Jack  Jackknife variance estimator in (2.6) 

1J  First approximation to the jackknife variance estimator in (2.13) 

2J  Second approximation to the jackknife variance estimator in (2.14) 
*
R  Sandwich estimator with a finite population adjustment 
*
D  First hat-matrix adjusted sandwich estimator with a finite population correction 

*
Jack  Jackknife variance estimator with a finite population correction 
*

1J  First approximation to jackknife with a finite population correction 
*

2J  Second approximation to jackknife with a finite population adjustment 
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3.1  Data 
 

We conducted simulations on three populations to assess the design-based performance of the variance 

estimators under a variety of situations. In the first population, we investigated the performance of the 

variance estimators when the first-stage sampling fraction was large and the sample size was moderate. The 

focus of the second simulation study was on the performance of the variance estimators under a relatively 

messy dataset and a small first-stage sample size. The final simulation study shows the performance of the 

variance estimators in large samples. 
 

Table 3.2 
Simulation designs for three populations 
 

 Label Population First stage sample m Second stage sample No. of samples

1 srs fixed Third Grade srswor 25 = 5in  1,000

2 srs fixed Third Grade srswor 50 = 5in  1,000

3 srs epsem Third Grade srswor 25 675
2,427=if  1,000

4 srs epsem Third Grade srswor 50 675
2,427=if  1,000

5 pps epsem Third Grade ppswor 25 = 5in  1,000

6 pps epsem Third Grade ppswor 50 = 5in  1,000

7 srs fixed ACS srswor 3 = 9in  5,000

8 srs fixed ACS srswor 15 = 9in  5,000

9 srs epsem ACS srswor 3 30,430
194,329=if  5,000

10 srs epsem ACS srswor 15 30,430
194,329=if  5,000

11 pps epsem ACS ppswor 3 = 9in  5,000

12 pps epsem ACS ppswor 15 = 9in  5,000

13 srs fixed Simulated srswor 300 = 2in  1,000

14 srs fixed Simulated srswor 1,500 = 2in  100

15 srs epsem Simulated srswor 300 60,000
195,164=if  1,000

16 srs epsem Simulated srswor 1,500 60,000
195,164=if  100

17 pps epsem Simulated ppswor 300 = 3in  1,000

18 pps epsem Simulated ppswor 1,500 = 3in  100

 
3.1.1  Third grade population 
 

The first simulation study used the Third Grade population from Appendix B.6 of Valliant et al. (2000). 

This dataset contained the mathematics achievement scores for 2,427 third graders in 135 schools. The 

relatively small number of schools in this population and the fairly constant number of students in each 

school made it ideal for studying samples with large sampling fractions. 

We used GREG to estimate the average mathematics achievement score for third graders. Altogether, 

we selected 1,000 samples in each of six sample designs listed in Table 3.2. In the first sample design, we 

selected 1,000 simple random samples without replacement (srswor) of 25 schools. Within each sampled 

school, we selected exactly five students via srswor. Because the number of students in each school varied 
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from school to school, this sample design resulted in different unconditional probabilities of selection, but 

a fixed sample size of 125 students. The second sample design was similar to the first, except we selected 

50 schools. Selecting 50 of the 135 schools resulted in a large first-stage sampling fraction of 0.37, 

necessitating a finite population correction factor. Both the samples of =m 25 and 50 might be considered 

to be of “moderate” size. 

In the third sample design, we selected 1,000 simple random samples of 25 schools without replacement. 

Within each sampled school, we selected students at a constant rate of 675
2,427 ,  yielding 1,000 samples with 

random sizes centered around 125 students. The result of this design was that each student had the same 

unconditional probability of selection. The fourth sample design was similar to the third, except we selected 

50 schools. The sample sizes were also random under this design, with an average of 250 students. Since 

the third and fourth sample designs resulted in every unit getting the same chance of selection, these sample 

designs are labeled srs epsem (equal probability selection mechanism) in subsequent tables. 

In the fifth design, we selected 1,000 samples of 25 schools with probabilities proportional to the number 

of students in each school. Within each sampled school, we selected exactly five students, yielding 1,000 

samples with exactly 125 students each. The sixth sample design was similar to the fifth, except we selected 

50 schools. We selected 1,000 samples of size 250 students using this design. The fifth and sixth designs 

are epsem. Like the second and fourth sample designs, this sample design also had a large sampling fraction 

and warranted the need for a finite population correction factor to adjust the variance estimators. 

From each sample, we estimated the average achievement scores for the finite population using a GREG 

estimator and assuming that the number of students in the population was known. The assisting model was 

meant to replicate the clustered linear regression model in Section 9.6 of Valliant et al. (2000). The eleven 

explanatory variables used to model each student’s math achievement score were: an intercept, sex (male 

or female), ethnicity (White/Asian, Black, Native American/Other, or Hispanic), language spoken at home 

is the same as the test (Always, Sometimes/Never), type of community (Outskirts of a town or city, 

Village/City), and school enrollment. The total mathematics achievement estimated with the GREG 

estimator was divided by the number of students in the population, 2,427, to get the average achievement 

score. The average achievement score for the population was 477.7. For the full population, the R-squared 

for the student-level linear model was 0.9735, indicating a very strong linear relationship. 

 
3.1.2  American Community Survey population 
 

The second simulation study used Census 2000 Summary File 3 data and American Community Survey 

(ACS) 2005 - 2009 Summary File data. The goal was to estimate the total number of housing units in the 

U.S. state of Alabama as reported in the ACS Summary File. Block group counts from Census 2000 were 

used as covariates in the assisting model. 

To create the population, first all block group data were extracted from the ACS Summary File and the 

Census 2000 Summary File 3. Then, the two files were merged at the block group level. Block groups with 

1,000 or more housing units in Census 2000 were removed because such large block groups had different 

characteristics than the majority of blocks. In many sampling designs such large units would be placed in a 

separate, certainty stratum and not contribute to the variance of estimates. Also, block groups with extreme 
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growth in the total number of housing units were also removed. Specifically block groups that had gained 

more than 10 units over twice the 2000 census count were removed. 

Clusters were defined as counties and block groups were treated as units. Treating block group as a unit 

is motivated by the common task of selecting a sample of blocks, listing them, and then using the listings to 

estimate the total number of housing units in the finite population. 

Clusters with fewer than 10 block groups or more than 120 block groups in them were removed from 

the frame of clusters. Overall, there were 61 clusters (counties) containing a total of 2,051 block groups and 

1,109,499 housing units in the edited dataset. Altogether, six counties and 1,278 block groups containing 

1,030,471 housing units were removed from the Alabama file. 

Figure 3.1 shows two scatterplots. The first plot shows the total number of housing units in the block 

group as reported on the ACS summary file as a function of the 2000 Census housing unit count. Each point 

represents one of the 2,051 block groups in the finite population. The diagonal line is a nonparametric 

smoother, indicating a strong relationship between the two variables. The plot also shows some evidence of 

heteroscedasticity because the points appear to fan out as the 2000 census count increases. The second plot 

shows the residuals obtained by regressing the 2000 census housing unit count on the ACS housing unit 

count using ordinary least squares (OLS) plotted versus the ACS housing unit count. As the number of 

housing units reported on the ACS file increases, the model predictions appear to seriously underestimate 

the true number of housing units. This suggests some degree of nonlinearity in the mean function. In 

addition, there is noticeable heteroscedasticity in variance. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1  Scatter plot and residual plot for ACS population. Gray lines are nonparametric smoothers. 
 

As in the first simulation study, we tested six different sample designs. We selected 5,000 samples in 

each of six different selection mechanisms listed in Table 3.2. In the first sample design, we selected 5,000 

simple random samples of 3 clusters without replacement. In large national surveys, it is not uncommon to 
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select a small number of primary sampling units in each stratum. In this case, we treat Alabama as if it were 

a single design stratum and its 61 counties as clusters. Three counties within that stratum were sampled. 

Within each cluster, we selected nine block groups using srswor. The second design was similar with 15 

clusters and 9 block groups per cluster. The first two sample designs resulted in highly variable weights. 

The other designs (rows 9-12) were parallel to those in rows 3-6 for the Third Grade population. The sample 

sizes of =m 3 and 15 are small so that theoretical, large sample properties are less likely to hold. 

From each sample, we estimated the total number of housing units in the finite population using a GREG 

estimator. The assisting model included an intercept and the Census 2000 count of housing units; the 

heteroscedasticity noted above was not accounted for in the GREG. For the full population, the R-squared 

was 0.819, again indicating a strong linear relationship. 
 

3.1.3  Simulated population 
 

A population was created with a large number of clusters to assess the asymptotic characteristics of the 

variance estimators. Generated using a classic linear model, a total of 30,000 clusters were created, each 

with a random number of units. The number of units in each cluster was determined by adding three to a 

uniform random integer between 0 and 7. This created clusters ranging in size from 3 to 10 units. Altogether, 

the population contained 195,164 units within 30,000 clusters. For each unit, a positive covariate was 

created as  1,000 exp 0, 1kx N  where  0, 1N  is a normal random variate with mean of 0 and standard 

deviation of 1. A random response was created such that  21,000 2 , kx
k ky N x . Figure 3.2 shows 

scatter plots of the relationship between kx  and ky  for the finite population.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Scatter plot and residual for simulated population. Gray lines are nonparametric smoothers. 

 
We selected samples using the six different probability selection mechanisms listed in rows 13-18 of 

Table 3.2. The types of sample designs are parallel to those used for the Third Grade and ACS populations. 
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In designs 14, 16, and 18, we selected 100 simple random samples of 1,500 clusters without replacement. 

We only selected 100 samples due to the excessive amount of computer time it took to select and process 

each sample. The sample sizes of =m 300 and 1,500 are large so that theoretical, large sample properties 

should hold. 

From each sample, we estimated the total of the response using a GREG estimator. The true finite 

population total was 839,149,969. The assisting model included an intercept and x  with .Q I  For the 

full population, the R-squared was 0.953, indicating a very strong linear relationship. Figure 3.2 shows a 

scatter plot of the population as well as a residual plot based on an OLS regression of kx  on ky  for the full 

population. There is clear evidence of heteroscedasticity of errors. 

 
3.2  Results 
 

We explored the bias, variability, and confidence interval coverage of the new and existing variance 

estimators. We only show tables for some of the simulations to conserve space. Table 3.3 shows the means 

of the  -estimator and the GREG estimator as well as the ratios of the average values of the variance 

estimators to the empirical mse’s for all populations and sample size combinations across all simulations. 

Both the  -estimator and the GREG estimator are approximately unbiased; however, the GREG estimator 

is much more efficient. 

 
Table 3.3 
Simulation Results for estimates for means and variance estimators for three populations and six sample designs 
in each population. Values in rows for variance estimators are ratios of mean estimated variance to empirical 
mse of the GREG. See Table 3.1 for descriptions of the variance estimators 
 

Estimator                srs fixed                srs epsem                pps epsem 

                                             Third Grade Population 

 m  25 m  50 m  25 m  50 m  25 m  50

Average ˆ
yt N  477.23 477.11 476.29 476.85 477.31 477.75

mse ˆ
yt N  663.12 264.75 2,013.90 981.54 142.93 53.17

Average ˆ g
yt N  474.27 476.37 476.95 477.24 477.50 477.85

mse ˆ g
yt N  218.96 66.66 114.08 50.10 121.57 41.32

 ˆmse g
g yt  0.76 0.87 0.73 0.82 0.66 0.91

 ˆmse g
wr yt  0.75 1.11 0.79 1.06 0.73 1.19

 ˆmse g
JL yt  0.88 1.16 0.85 1.10 0.78 1.24

 ˆmse g
R yt  0.87 1.15 0.82 1.08 0.74 1.22

 ˆmse g
D yt  1.26 1.32 1.09 1.25 0.95 1.36

 2
ˆmse g

J yt  2.22 1.54 1.50 1.46 1.23 1.54

 Jack
ˆmse g

yt  2.03 1.49 1.44 1.43 1.19 1.51

 1
ˆmse g

J yt  2.22 1.55 1.56 1.49 1.28 1.57

 * ˆmse g
R yt  0.71 0.73 0.67 0.68 0.60 0.74

 * ˆmse g
D yt  1.02 0.83 0.88 0.79 0.76 0.83

 *
2

ˆmse g
J yt  1.81 0.97 1.22 0.92 0.99 0.93

 *
Jack

ˆmse g
yt  1.66 0.94 1.17 0.90 0.95 0.92

 *
1

ˆmse g
J yt  1.81 0.98 1.27 0.94 1.03 0.95
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Table 3.3 (continued) 
Simulation Results for estimates for means and variance estimators for three populations and six sample designs 
in each population. Values in rows for variance estimators are ratios of mean estimated variance to empirical 
mse of the GREG. See Table 3.1 for descriptions of the variance estimators 
 

Estimator                srs fixed                srs epsem                pps epsem 

                                             ACS Population (numbers in thousands) 

 m  3 m  15 m  3 m  15 m  3 m  15

Average ˆ
yt N  1,119.13 1,108.23 1,112.89 1,113.89 1,111.48 1,109.02

mse ˆ
yt N  181,329.24 27,650.01 201,618.77 32,926.98 15,991.69 2,619.32

Average ˆ g
yt N  1,081.68 1,103.34 1,104.45 1,108.45 1,106.36 1,108.46

mse ˆ g
yt N  11,220.86 921.82 2,111.84 408.19 1,874.39 352.65

 ˆmse g
g yt  2.70 0.90 0.44 0.83 0.53 0.92

 ˆmse g
wr yt  1.17 0.98 0.68 1.03 0.87 1.14

 ˆmse g
JL yt  2.18 0.91 0.65 0.99 0.79 1.11

 ˆmse g
R yt  2.80 1.00 0.43 0.92 0.53 1.03

 ˆmse g
D yt  6.09 1.32 0.84 1.08 0.89 1.15

 2
ˆmse g

J yt  17,191.52 1.85 2.36 1.27 1.64 1.29

 Jack
ˆmse g

yt  4,678.25 1.47 1.37 1.19 1.05 1.21

 1
ˆmse g

J yt  17,190.86 1.72 3.07 1.36 2.35 1.38

 * ˆmse g
R yt  2.66 0.76 0.41 0.70 0.49 0.68

 * ˆmse g
D yt  5.79 0.99 0.80 0.82 0.83 0.76

 *
2

ˆmse g
J yt  16,346.03 1.40 2.25 0.96 1.52 0.85

 *
Jack

ˆmse g
yt  4,448.17 1.11 1.30 0.90 0.97 0.80

 *
1

ˆmse g
J yt  16,345.41 1.30 2.92 1.03 2.19 0.91

                                  Simulated Population (numbers in millions) 

 m  300 m  1,500 m  300 m  1,500 m  300 m  1,500

Average ˆ
yt N  838.91 838.71 838.13 843.13 838.74 839.06

mse ˆ
yt N  1,588.43 250.20 2,303.19 563.77 1,218.73 253.13

Average ˆ g
yt N  838.57 839.10 838.81 840.01 839.39 839.08

mse ˆ g
yt N  156.29 23.07 117.18 19.63 105.64 25.24

 ˆmse g
g yt  0.91 1.11 0.91 1.13 1.01 0.89

 ˆmse g
wr yt  0.94 1.13 0.91 1.17 1.01 0.90

 ˆmse g
JL yt  0.91 1.13 0.92 1.15 1.02 0.90

 ˆmse g
R yt  0.91 1.13 0.92 1.14 1.02 0.90

 ˆmse g
D yt  1.03 1.15 0.96 1.16 1.07 0.91

 2
ˆmse g

J yt  1.50 1.17 1.03 1.18 1.13 0.93

 Jack
ˆmse g

yt  1.48 1.17 1.03 1.18 1.12 0.93

 1
ˆmse g

J yt  1.50 1.17 1.03 1.18 1.13 0.93

 * ˆmse g
R yt  0.90 1.07 0.91 1.09 1.01 0.85

 * ˆmse g
D yt  1.02 1.09 0.96 1.11 1.05 0.86

 *
2

ˆmse g
J yt  1.48 1.11 1.02 1.12 1.12 0.88

 *
Jack

ˆmse g
yt  1.47 1.11 1.01 1.12 1.11 0.88

 *
1

ˆmse g
J yt  1.48 1.11 1.02 1.13 1.12 0.88
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The performance of the variance estimators depends on the sample design and the population. Some of 

the estimates in Table 3.3 from the ACS population with the simple random sample of 3 clusters and 9 units 

in each cluster stand out as being extremely poor. The inverses of the probabilities of selection vary quite a 

bit for this sample design. The variability of these weights, coupled with some extreme observations in the 

population, causes instability for some of the variance estimators. Namely, 2 ,J Jack , 1 ,J *
2 ,J *

Jack , *
1J  

are extreme overestimates on average. All six of these estimators contain explicit or implicit hat matrix 

adjustments which can be quite large and seriously inflate the variance estimators when coupled with large 

sampling weights. On the other hand, ,D  which also has a hat matrix adjustment, performs reasonably well 

for all populations and sample sizes. Noteworthy is the result that D  is much less of an overestimate for 

the mse in the combination (ACS, srs fixed, =m 3, =in 9) whereas other hat-matrix adjusted estimators 

were extreme overestimates. The estimators, ,g ,wr  and to a lesser extent, R  and ,JL  tend to be 

underestimates at the smaller sample sizes in the Third Grade and ACS populations and for all sample 

designs in those populations, but the problem diminishes for the larger sample sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Boxplots of ratios of standard error estimates to the empirical standard errors for 1,000 SRS 
samples from Third Grade population. Vertical reference lines at 1. 

 
The boxplots in Figure 3.3 show the variability of the estimators more clearly for srs’s of size =m 25 

and 50 from the Third Grade population. The boxplots depict the estimated standard errors (SEs) as a 

fraction of the empirical SE for the samples in each simulation. A ratio of 1 means that the estimated variance 

was equal to the empirical variance. Some samples yield large SE estimates, even though the majority of 

samples are much closer to the empirical variance. The degree of overestimation and the incidence of 

extreme values decreases substantially with the larger sample size as is evident by comparing the figures. 

The hat-matrix adjusted estimators also tend to somewhat overestimate the true variance, as evinced by the 
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boxes that are shifted above the reference lines drawn at 1. This can be an advantage for confidence interval 

coverage. 

Table 3.4 shows the six-number summaries of the ratios of the SE estimates, ,v  to the square root of 

the empirical variance, ,Ev  for the Third Grade population for four of the sample designs. As indicated 

by the median value of the ratios for 2 ,J Jack , 1 ,J *
2 ,J *

Jack ,  and *
1 ,J  they are generally centered near 

the empirical SEs, but can have extremely large values in some samples that affect their averages. (The 

problem of outlying values is even more severe in the ACS population; details are not shown here.) The 

estimators that are least affected by extremes are ,g ,wr ,JL ,R ,D * ,R  and * .D  However, the 

estimators that incorporate fpc’s often are underestimates except in the case of srs and =m 25. 

 
Table 3.4 
Six-number summaries for alternative standard error estimators for Third Grade population in four sample 
designs. Ev  is empirical variance across simulated samples. See Table 3.1 for descriptions of the variance 
estimators 
 

 v  Distribution of Ev    

  Min  1st Qu.  Median  Mean  3rd Qu.  Max 

srs m  25  g    0.46  0.71  0.82  0.86  0.96  3.59 

wr    0.48  0.73  0.84  0.87  0.97  1.71 

JL    0.48  0.75  0.88  0.92  1.03  3.75 

R    0.47  0.74  0.87  0.92  1.02  3.85 

D    0.53  0.84  1.00  1.08  1.20  6.84 

2J    0.59  0.96  1.16  1.31  1.43 14.47 

Jack    0.57  0.93  1.13  1.26  1.38 13.69 

1J    0.59  0.97  1.17  1.32  1.44 14.48 
*
R    0.42  0.67  0.79  0.83  0.92  3.48 
*
D    0.48  0.76  0.90  0.97  1.08  6.17 
*

2J    0.53  0.87  1.05  1.18  1.29 13.06 
*
Jack   0.52  0.84  1.02  1.14  1.25 12.35 
*

1J    0.54  0.88  1.06  1.19  1.30 13.07 

srs m  50  g    0.62  0.84  0.92  0.94  1.01  1.64 

wr    0.67  0.95  1.04  1.06  1.15  1.73 

JL    0.68  0.96  1.06  1.08  1.18  1.94 

R    0.68  0.96  1.06  1.07  1.17  1.95 

D    0.71  1.01  1.13  1.15  1.26  2.20 

2J    0.75  1.08  1.20  1.24  1.35  2.88 

Jack    0.74  1.06  1.18  1.22  1.33  2.79 

1J    0.75  1.09  1.21  1.24  1.36  2.86 
*
R    0.54  0.76  0.84  0.85  0.93  1.55 
*
D    0.56  0.80  0.89  0.91  1.00  1.75 
*

2J    0.59  0.86  0.95  0.98  1.07  2.29 
*
Jack   0.58  0.84  0.94  0.97  1.06  2.22 
*

1J    0.60  0.86  0.96  0.99  1.08  2.27 
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Table 3.4 (continued) 
Six-number summaries for alternative standard error estimators for Third Grade population in four sample 
designs. Ev  is empirical variance across simulated samples. See Table 3.1 for descriptions of the variance 
estimators 
 

 v  Distribution of Ev    

  Min  1st Qu.  Median  Mean  3rd Qu.  Max 

pps m  25  g    0.48  0.71  0.79  0.80  0.88  1.33 

wr    0.51  0.76  0.84  0.84  0.92  1.30 

JL    0.50  0.76  0.86  0.87  0.96  1.46 

R    0.49  0.75  0.84  0.85  0.94  1.43 

D    0.53  0.83  0.94  0.96  1.06  1.66 

2J    0.59  0.94  1.06  1.09  1.21  2.15 

Jack    0.57  0.92  1.04  1.07  1.18  2.10 

1J    0.60  0.96  1.08  1.11  1.23  2.19 
*
R    0.43  0.67  0.76  0.76  0.84  1.30 
*
D    0.47  0.75  0.84  0.86  0.95  1.51 
*

2J    0.52  0.84  0.95  0.98  1.08  1.90 
*
Jack   0.51  0.82  0.93  0.96  1.06  1.86 
*

1J    0.53  0.86  0.97  1.00  1.10  1.93 

pps m  50  g    0.72  0.88  0.95  0.95  1.01  1.28 

wr    0.78  1.00  1.09  1.09  1.16  1.47 

JL    0.81  1.01  1.11  1.11  1.19  1.52 

R    0.80  1.00  1.09  1.09  1.18  1.50 

D    0.84  1.06  1.15  1.16  1.25  1.64 

2J    0.88  1.11  1.22  1.23  1.33  1.83 

Jack    0.88  1.10  1.21  1.22  1.31  1.81 

1J    0.89  1.13  1.23  1.24  1.34  1.85 
*
R    0.62  0.78  0.85  0.85  0.92  1.16 
*
D    0.65  0.82  0.90  0.90  0.97  1.28 
*

2J    0.68  0.87  0.95  0.96  1.03  1.43 
*
Jack   0.67  0.86  0.94  0.95  1.02  1.42 
*

1J    0.69  0.88  0.96  0.97  1.04  1.44 

 
Lastly, Table 3.5 shows the 95% confidence interval coverage for all of the estimators based on t -

distributions. That is, we computed, 0.975, 1 0.975, 1
ˆ ˆ,gr gr

y m y mt t t t       where 0.975, 1mt   is the 97.5th 

percentile from a t -distribution with 1m   degrees of freedom. We then noted how often the true value 

fell below, above, and inside this range. In addition to the new and old estimators, Table 3.5 also shows the 

confidence interval coverage attained when the empirical variance, ,E  was used to form the confidence 

intervals. Ideally, the population total should be within the estimated 95% confidence interval for 95% of 

the samples. The true total should be below the 95% confidence bounds for 2.5% of the samples and above 

the confidence bounds for the same percentage of samples. 
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The jackknife-based estimators, * ,D *
Jack ,  and 2 ,J  cover at higher rates than the other variance 

estimators because they are larger. In small samples, jackknife-based estimators cover above the nominal 

level. The traditional variance estimators, ,g ,wr  and JL  under-covered in a number of cases, although 

their coverage was almost always higher than 90%. Note that g  is generally an improvement over R  due 

to the hat-matrix adjustment that makes D  larger. 

The variance estimators that incorporate hat matrix adjustments ( ,D 2 ,J Jack ,  and * )R  generally 

increase CI coverage rates compared to the other choices. This advantage was especially noticeable for the 

ACS population where, for example, wr  covers in less than 90% of samples in the combinations, *
Jack( ,

=m 3), (srs epsem, =m 3), and (srs epsem, =m 15). Although, in principal, an fpc would seem useful in 

some of the population and sample size combinations, CIs based on the variance estimators with fpc’s cover 

at lower rates than their counterparts without the fpc’s. For example, in ACS (srs epsem, =m 15) the 

coverage rates for * ,R * ,D *
2 ,J *

Jack ,  and *
1J  range from 86.1 to 90.6% while the rates for the versions 

without fpc’s range from 90.2 to 93.4%. 
 

Table 3.5 
Coverage of 95% confidence intervals for population totals based on t-distributions and alternative variance 
estimators. See Table 3.1 for descriptions of the variance estimators 
 

Variance  
est.  

Third Grade  ACS  Simulation  Third Grade  ACS  Simulation  
Lower Middle Upper Lower Middle Upper Lower MiddleUpper LowerMiddleUpper LowerMiddle Upper LowerMiddle Upper

srs m  25 srs m  3  srs m  300 srs m  50  srs m  15 srs 1,500m   

E     2.9    95.6    1.5    0.7    99.3    0    2.7   95.0   2.3   3.4   95.1   1.5   3.3   95.8    1.0    1.0    96.0   3.0 

g     7.4    90.7    1.9    2.4    97.3    0.4   4.3   93.5   2.2   5.9   92.8   1.3   6.6   92.3    1.0    1.0    95.0   4.0 

wr     7.0    90.5    2.5    9.2    88.8    2.0   3.9   92.8   3.3   4.1   95.0   0.9   7.5   91.0    1.5    1.0    96.0   3.0 

JL     5.5    93.2    1.3    6.5    92.1    1.4   4.4   93.4   2.2   3.3   96.1   0.6   7.2   91.4    1.4    1.0    95.0   4.0 

R     5.9    92.7    1.4    3.1    96.3    0.6   4.3   93.5   2.2   3.4   96.0   0.6   6.5   92.5    1.0    1.0    95.0   4.0 

D     3.8    95.4    0.8    1.6    98.0    0.4   3.7   94.2   2.1   2.4   97.1   0.5   5.1   94.3    0.6    1.0    95.0   4.0 

2J     1.7    98.0    0.3    0.6    99.3    0.1   3.6   94.4   2.0   2.0   97.7   0.3   3.9   95.7    0.4    1.0    95.0   4.0 

Jack     2.1    97.6    0.3    3.2    95.9    0.8   3.6   94.4   2.0   2.0   97.7   0.3   5.6   93.7    0.7    1.0    95.0   4.0 

1J     1.6    98.1    0.3    1.6    98.0    0.3   3.6   94.4   2.0   2.0   97.7   0.3   4.5   95.0    0.5    1.0    95.0   4.0 
*
R     8.6    89.4    2.0    3.4    96.0    0.7   4.4   93.4   2.2   7.8   89.8   2.4   9.5   88.5    2.0    1.0    95.0   4.0 
*
D     5.5    93.3    1.2    1.6    98.0    0.4   3.8   94.1   2.1   6.4   92.2   1.4   7.5   91.1    1.4    1.0    95.0   4.0 
*

2J     2.9    96.6    0.5    0.6    99.3    0.1   3.6   94.4   2.0   5.2   93.8   1    5.8   93.3    0.8    1.0    95.0   4.0 
*
Jack    3.7    95.7    0.6    3.4    95.7    0.9   3.6   94.4   2.0   5.5   93.4   1.1   7.9   90.6    1.6    1.0    95.0   4.0 
*

1J     2.7    96.9    0.4    1.7    97.9    0.4   3.6   94.4   2.0   5.0   93.9   1.1   6.6   92.3    1.1    1.0    95.0   4.0 

 srs epsem m  25 srs epsem m  3 srs epsem m  300 srs epsem m  50 srs epsem m  15  srs epsem 1,500m 

E     1.7    96.2    2.1    0.0    99.9    0.1   2.4   94.7   2.9   2.3   95.5   2.2   1.1   97.1    1.8    3.0    94.0   3.0 

g     5.6    91.2    3.2    6.5    91.5    2.0   2.6   94.1   3.3   5.1   92.2   2.7   8.3   90.4    1.3    3.0    96.0   1.0 

wr     5.8    91.2    3.0    9.6    87.2    3.2   3.1   93.3   3.6   3.4   95.1   1.5   9.3   89.7    1.1    3.0    95.0   2.0 

JL     5.1    92.4    2.5    6.5    91.2    2.3   2.6   94.1   3.3   2.8   96.0   1.2   8.2   90.9    0.9    3.0    96.0   1.0 

R     5.2    92.3    2.5    8.4    88.3    3.3   2.6   94.1   3.3   2.9   95.7   1.4   8.8   90.2    1.0    3.0    96.0   1.0 

D     3.7    94.3    2.0    5.5    92.8    1.7   2.5   94.3   3.2   2.3   96.9   0.8   7.8   91.6    0.7    3.0    96.0   1.0 

2J     1.9    97.3    0.8    2.6    96.7    0.7   2.3   94.9   2.8   2.0   97.9   0.1   6.9   92.6    0.5    3.0    96.0   1.0 

Jack     2.2    96.8    1.0    4.7    94.0    1.3   2.3   94.9   2.8   2.1   97.8   0.1   7.3   92.1    0.6    3.0    96.0   1.0 

1J     1.8    97.5    0.7    2.5    96.9    0.6   2.3   94.9   2.8   2.0   97.9   0.1   6.2   93.4    0.4    3.0    96.0   1.0 
*
R     6.6    89.5    3.9    8.9    87.8    3.4   2.7   93.9   3.4   7.7   88.7   3.6   11.7   86.1    2.2    3.0    96.0   1.0 
*
D     5.1    92.5    2.4    5.7    92.4    1.9   2.5   94.3   3.2   6.0   91.6   2.4   10.6   88.0    1.5    3.0    96.0   1.0 
*

2J     3.4    94.9    1.7    2.8    96.5    0.7   2.3   94.9   2.8   4.6   93.7   1.7   9.2   89.7    1.1    3.0    96.0   1.0 
*
Jack    3.5    94.8    1.7    4.9    93.7    1.4   2.3   94.9   2.8   4.7   93.3   2    9.9   89.0    1.2    3.0    96.0   1.0 
*

1J     3.0    95.4    1.6    2.6    96.8    0.6   2.3   94.9   2.8   4.6   93.7   1.7   8.6   90.6    0.8    3.0    96.0   1.0 
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Table 3.5 (continued) 
Coverage of 95% confidence intervals for population totals based on t-distributions and alternative variance 
estimators. See Table 3.1 for descriptions of the variance estimators 
 

Variance  
est.  

Third Grade  ACS  Simulation  Third Grade  ACS  Simulation  
Lower Middle Upper Lower Middle Upper Lower MiddleUpper LowerMiddleUpper LowerMiddle Upper LowerMiddleUpper

pps m  25 pps m  3 pps m  300 pps m  50 pps m  9 pps m  1,500 

E     1.7    95.9    2.4    0    100.0   0.0   2.9   94.2   2.9   2.3   95.3   2.4   0.7   98.0    1.3    2.0    95.0   3.0 

g     6.2    90.0    3.8    4.7    94.3    1.0   2.9   93.9   3.2   3.1   94.1   2.8   5.1   94.4    0.5    2.0    92.0   6.0 

wr     5.1    91.1    3.8    5.6    92.8    1.5   3.1   93.6   3.3   2.0   97.0   1.0   5.3   94.3    0.4    3.0    92.0   5.0 

JL     4.9    92.0    3.1    4.9    93.5    1.5   2.9   94.0   3.1   1.9   96.9   1.2   4.9   94.7    0.3    2.0    92.0   6.0 

R     5.3    91.5    3.2    7.2    90.5    2.3   2.9   93.9   3.2   2.0   96.8   1.2   5.6   94.1    0.4    2.0    92.0   6.0 

D     3.8    94.1    2.1    4.4    94.4    1.1   2.7   94.7   2.6   1.7   97.4   0.9   4.8   94.9    0.3    2.0    92.0   6.0 

2J     2.7    96.1    1.2    2.6    97.0    0.4   2.6   95.0   2.4   1.6   97.9   0.5   4.3   95.5    0.2    2.0    92.0   6.0 

Jack     2.8    95.8    1.4    4.2    94.9    0.9   2.6   95.0   2.4   1.6   97.9   0.5   4.7   95.1    0.2    2.0    92.0   6.0 

1J     2.2    96.7    1.1    2.1    97.5    0.4   2.6   95.0   2.4   1.5   98.0   0.5   3.9   96.0    0.1    2.0    92.0   6.0 
*
R     7.4    87.8    4.8    7.6    90.0    2.4   2.9   93.9   3.2   5.0   90.6   4.4   8.9   89.8    1.3    2.0    92.0   6.0 
*
D     5.3    91.6    3.1    4.7    94.0    1.3   2.7   94.5   2.8   4.1   92.2   3.7   8.1   90.9    1.0    2.0    92.0   6.0 
*

2J     3.6    94.3    2.1    2.8    96.8    0.4   2.6   95.0   2.4   3.0   94.1   2.9   7.2   92.0    0.7    2.0    92.0   6.0 
*
Jack    4.0    93.7    2.3    4.5    94.5    1.0   2.6   95.0   2.4   3.1   94.0   2.9   7.9   91.1    1.0    2.0    92.0   6.0 
*

1J     3.5    94.6    1.9    2.2    97.4    0.4   2.6   95.0   2.4   2.9   94.4   2.7   6.8   92.6    0.6    2.0    92.0   6.0 

 
One feature of D  and *

D  is that both the cluster-specific contributions, ,D i  and *
, ,D i  as well as the 

overall variance estimates can be negative. In the simulations, the adjustment described after (2.11) was 

used to avoid negative contributions. Negative estimates were more common when the second stage sample 

sizes were small and the weights were quite variable. For example, for the ACS population, almost 28% of 

the simple random samples of 3 clusters and =im 9 resulted in at least one negative variance contribution 

for a cluster. More commonly, about 10% of the samples contained at least one negative variance estimate 

for a cluster. In the Third Grade population, 16% to 27% of the samples had at least one negative value of 

.Di  In the simulated population with large sample sizes, Di  was negative in less than 5% of the samples. 

With the ad hoc correction of setting i iiI H  to ,iI D  is one of the most attractive variance estimators 

because it tends to slightly overestimate the empirical variance, has some of the best confidence interval 

coverage, and has reasonable variability compared to other variance estimators. 

 
4  Conclusion 
 

Leverage adjustments to standard variance estimators have been shown to reduce bias and improve 

confidence interval coverage based on general regression estimators in single-stage samples. This paper 

extends those results to two-stage samples by presenting new adjustments based on hat matrices. Our theory 

provides the justification for the adjustments and illustrates that some of the proposed estimators are related 

to the delete-a-cluster jackknife that is a common procedure in survey estimation. 

To test the theory, we conducted a series of simulation studies on three populations designed to assess 

performance in a variety of situations. In a school population a large sampling fraction of first-stage units 

was used. In a second population, based on American Community Survey data, the effects of small sample 
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sizes were tested. In a third simulated population, we examined large sample performance. Both simple 

random sampling and probability proportional to size sampling of clusters were used. 

The relationships of the variance estimators were similar across all sample designs. The with-

replacement variance estimator, ,wr  which is the default choice in survey software packages, the jackknife 

linearization estimator, ,JL  and the design-based variance estimator, ,g  that assumes Poisson sampling 

at each stage as a computational convenience, are often negatively biased leading to confidence intervals 

that cover at less than the desired rate. Some of the jackknife-related estimators ‒ Jack , 1 ,J  and 2J ‒ which 

explicitly or implicitly include hat-matrix adjustments, are prone to producing large, outlying values when 

the first-stage sample is small. This is especially true when the first-stage is selected by srs but is less so in 

pps sampling when an efficient measure of size is used. 

The variance estimators proposed here, particularly ,D  provide alternatives to estimating the variance 

of GREG estimators in complex samples. At the expense of somewhat inflating the variability of the 

variance estimator, the hat-matrix adjusted sandwich estimators, denoted here by ,Dv 1 ,Jv  and 2 ,Jv  give 

confidence interval coverage that is closer to the nominal value in small to moderate samples. Depending 

on the sample design and population characteristics, hat-matrix adjusted estimators can produce less biased 

variance estimates and better inferences when compared to the standard methods. 
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Appendix  
 

Theoretical results 
 

A.1  Assumptions 
 

The assumptions used to obtain asymptotic results are listed below. The number of population and 

sample clusters approach infinity; however, the number of population clusters increases at a faster rate than 

the number of sample clusters. Certain population quantities are assumed to be bounded. 

 

A.1.1 0m M   as m    and .M    
 

A.1.2 All iN  and in  are bounded. 
 

A.1.3  =ik O m M  for all .ik  
 

A.1.4 All elements of ,X ,Ψ  and Q  are bounded.   
 

A.1.5 The sample design is such that    ˆ 0, ,t t V
d

m
x UxM N    where V  is a p p  positive 

definite matrix, i.e.,    ˆ = .t tx Ux pO M m   
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Since  =Π m
MO  elementwise and 1 1=A X Q Π Xs s

   can be written as the sum of n  terms and in  is 

bounded while ,m    = .A O M  By definition   1ˆ= .g 1 t t A X Q
ii n Ux x i i

 


   The second term 

in ig  is  1 2 ;pO m  consequently g i  converges to a vector of 1’s. Using  =A O M  along with 

assumptions A.1.3 and A.1.4, H ij  is  1O m  elementwise. 
 

A.2  Model variance of GREG 
 

Let y si  be the vector of all sample elements in cluster i  and y i  be the vector of all elements in cluster 

.i  The variance of the GREG, with respect to the working model (2.1) is:  

      

  1

1 1 1

ˆvar = var

= 2cov , .

g Π y 1 y

g Π Ψ Π g g Π y 1 y 1 Ψ1

i

i

gr
y y i i si N i

i s i U

i i si i i i i si N i N N
i s i s i U

t t 





 

  

  

  
 

  
 

 

  



  

  

Since 
 

=1 y 1 y 1 yi i i i i ii U i s i U s   
      and elements in different clusters are uncorrelated, 

we have,  

   
   1 1 1

1 2 3

ˆvar = 2 cov ,

= 2 .

g Π Ψ Π g g Π y y 1 1 Ψ1
i

gr
y y i i si i i i i si i N N N

i s i s

t t

L L L

 
  

 
    

 

   

  

Since  1 1=A O M   and g i  and Ψ si  are bounded, we have  2
1 = .L O M m  Because Ψ si  is bounded, 

   cov , = 1y ysi i O  and  2 = .L O M 3L  is the sum of N  terms. Since the iN  are bounded, 

 3 = .L O M  Thus, 1L  is the dominant term of the prediction variance. 
 

A.3  Proof that  var e Ψi si   
 

In this section in order to simplify the notation, we omit the subscript s  on ,y si ˆ ,y si  and .Ψ si  The 

residual can be written in terms of a hat matrix as follows.   

                                          
; ,

ˆ=

=

e y y

I H y H y
i

i i i

n ii i ij j
j i i j s 



     

where I
in  is the i in n  identity matrix. The model variance of e i  is then  

 

   

       

   

var = var

= var var

= .

e I H y H y

I H y I H H y H

I H Ψ I H H Ψ H

i

i i

i i

i n ii i ij j
j i

n ii i n ii ij j ij
j i

n ii i n ii ij j ij
j i

 

 







    

  

  













 

(A.1)

 

As noted above,  1= .H ii O m  Thus,    1var = .e Ψi i O m
  

To justify ,D  note that the second term of (A.1) can be written as 

 = .H Ψ H H Ψ H H Ψ Hij j ij ij j ij ii i ii
j i j s 
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The sum over the full cluster sample is  

                                 1 1 1 1= .H Ψ H X A X Q Π Ψ Π Q X A Xij j ij i j j j j j j j i
j s j s

   

 


 
 

      

In the special case of 1=Q Ψj j
  and =Π I

ii nc  for some constant  0, 1c   (i.e., the sample is self-

weighting), we have   

                                 2 1 1 1= ,H Ψ H X A X Ψ X A Xij j ij i j j j i
j s j s

c    

 


 
 

      

along with 1 1=H X A X Ψii i i ic    and 1 1= .A XΨ Xc    Using these simplifications, =H Ψ Hij j ijj s   

.H Ψii i  Substituting this result in (A.1) and simplifying gives  

                                        
     

 

var =

= .

e I H Ψ I H H Ψ H

I H Ψ

i i

i

i n ii i n ii ij j ij
j i

n ii i




  






 
(A.2)

 

This is the basis for the adjustment of R  to obtain .D  
 

A.4  Proof that  
ˆ ˆB = B R ii   for cluster samples 

 

In this section, we omit the subscript s  on ,X s ,y s ,X si ,y si   ,X s i  and  y s i  to simplify the notation. 

The subscript  i  denotes removal of the thi  cluster from the full sample matrix or vector. For example, 

 B̂ i  is an estimate of B  based on all sample clusters except cluster i  and is  

                                                   
1ˆ =B X W X X W yi i i i i i i

    

where      
1= .W Q Πi i i

  Using Lemma 9.5.1 in Valliant et al. (2000), we have  

                                               
1

1 1 1ˆ = .B A A X W I H X A X W y
ii i n ii ii i i i


       

Since       =X W y X Wy X W yi i ii i i     and 1ˆ = ,B A X Wy   we have  

                                

   

   

     
 

 

1

1
1 1

1 1
1 1

1
1

1
1

ˆ =

ˆ ˆ=

ˆ= .

B A X Wy X W y

A X W I H X A X Wy X W y

B A X W I H I H y A X W I H y

A X W I H H y

B A X W I H e

i

i i i

i

i

i i ii

i i n ii i i i i

i i n ii n ii i i i n ii i

i i n ii ii i

i i n ii i




 

 
 









  

    

 

 

 

 

 





  

That is,  
ˆ ˆ= .B B R ii   

 

A.5  Jackknife variance estimator of clustered GREG in terms of leverages 
 

We now simplify the delete-a-cluster Jackknife variance estimator of the clustered GREG. As in 

Sections A.3 and A.4, we omit the subscript s  on various terms to simplify the notation. The estimated total 

after removing the thi  cluster is defined as  
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Adding and subtracting   1
1

1 1 Π I H e
i i

m
n i n ii im




   and doing a substantial amount of simplification leads 

to  

            1
1

1
ˆ ˆ= .

1 1 1 1
g Π I H e

i

gr gr
y i i n ii i i iy i

m m m
t t G K

m m m m


   

   
   

Taking the difference between the delete-one estimates and the average of those estimates gives  

                    
         

     

1
ˆ ˆ =

1 1 1

1
= .

1 1

gr gr
i i iy i y

i i i

m m
t t D D G G K K

m m m

m m
D D G G K K

m m m

      
  

          

  

Letting    1=i i iF G G m K K    leads to the formula for Jack  in equation (2.12). Next, since 

 1=H ii O m  and ˆˆ = ,y X Bi i  

                                

   

1 1 1 1

1
=

1 1 ˆ ˆˆ ˆ

= .

1 Π y 1 Π y 1 Π X B 1 Π X B

0

i i i i

i i i

n i i n i i n i i n i i
i s i s

F G G K K
m

m
m m

   

 

  

             
       

Thus,  = 1 ,iF o  and Jack  in (2.6) and (2.12) is asymptotically equivalent to 1J  in (2.13). 

Finally, to justify 2J  in (2.14), we write 1J  in the computational form  

                                                 
2

2
1

1
=

1
g e g eJ i i i i i i

i s i s

m
U U

m m


 

       
    (A.3) 

where   1
1= .Π I H

ii i n iiU


   Note that the model variance of iD  is  

                                      
   

 

var = var

= var .

g e

g e g

i i i i

i i i i i

D U

U U

 





 
  

Because  =iU O M m  and the sum in  var ii s
D  contains =n mn  terms, the variance of 

g ei i ii s
U

   is  2 .O M m  Next, scaling 1J  to be appropriate for a mean, the first term in the brackets 
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in (A.3) is  2 2 1= .ii s
N D O m 

  Since the second term in brackets has model expectation 0 and variance 

that is  1 ,O m  it converges in probability to 0, and 2J  is asymptotically equivalent to 1.J  
 

A.6 Asymptotic equivalence of variance estimators 
 

In this appendix we sketch arguments for why several variance estimators are asymptotically equivalent. 

Using design-based arguments, Yung and Rao (1996, Appendix) showed that the jackknife linearization 

estimator, JL , for the GREG is asymptotically equivalent to the design-consistent estimator, Jack ,  in 

stratified multistage designs with a large number of strata and a bounded number of sample clusters selected 

from each stratum. Using regularity conditions in Rao and Shao (1985), that result can be extended to cover 

designs in which either (i) the number of strata is large and the number of clusters per stratum is bounded 

or (ii) the number of strata is limited and the number of sample clusters per stratum is large, as is the case 

in this article. 

The jackknife linearization estimator in Section 2 can be expanded as  

 
2

2 2 1 1 2 1 1= .g Π e e Π g g Π eJL i i i i i i i i i
i s i s

N N N m m      

 

  
      (A.4) 

The first term in (A.4) equals .Rv  Because, under some reasonable assumptions, g i  and e i  are bounded, 

and  1 =Π i O M m  by assumptions A.1.2 and A.1.3, the first term in (A.4) is  1 .O m  The second term 

is also  1 ,O m  but the model expectation of 1 1
2 =e g Π ei i ii s

m 
   is zero as long as (2.1) holds. Since 

2e  is a mean, its model-variance will approach 0 as .m    Thus, the second term in (A.4) will converge 

in probability to 0 and .JL R   

In Section A.5 it was shown that Jack  and 1J  are asymptotically equivalent. Under A.1.1-A.1.4, 

 1= .H ii O m  Consequently, 2J  and D  are approximately the same as R  as .m    Thus, 

Jack JL   by extension of Yung and Rao (1996), both of which are design-consistent. Further, JL  is 

asymptotically equivalent to 1 ,J 2 ,J ,D  and .R  As a result, the alternative variance estimators 

considered here all have both model-based and design-based justifications. 
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A note on propensity score weighting method using paradata 
in survey sampling 

Seho Park, Jae Kwang Kim and Kimin Kim1 

Abstract 

Paradata is often collected during the survey process to monitor the quality of the survey response. One such 
paradata is a respondent behavior, which can be used to construct response models. The propensity score weight 
using the respondent behavior information can be applied to the final analysis to reduce the nonresponse bias. 
However, including the surrogate variable in the propensity score weighting does not always guarantee the 
efficiency gain. We show that the surrogate variable is useful only when it is correlated with the study variable. 
Results from a limited simulation study confirm the finding. A real data application using the Korean Workplace 
Panel Survey data is also presented. 

 
Key Words: Unit Nonresponse; Smoothed weight; Surrogate variable. 

 
 

1  Introduction 
 

Paradata provides additional information on the quality of the collected survey data. The term paradata 

was coined by Couper (1998) to refer to the process data automatically generated from the data collection. 

It has been expanded to include various types of data about the data collection process in sample surveys 

(Kreuter, 2013). 

One possibly useful paradata is the respondent behavior during the survey interview. Response time to 

survey can be one of the respondent behaviors. Knowles and Condon (1999) and Bassili (2003) found that 

response time has a negative correlation with the tendency of positive answer. It is called acquiescence bias 

(Couper and Kreuter, 2013). Longer response times were found to be an indicator of uncertainty and 

response error (Draisma and Dijkstra, 2004). Such paradata is helpful when we want to build a model for 

non-responses. Increasing non-response may cause non-response biases and has become a serious problem 

in recent years. Using the paradata that may be related to response model, non-response adjustment can be 

used to handle unit nonresponse effectively (Kott, 2006). 

In addition to the auxiliary variables, Data Collection Process (DCP) variables are considered for 

estimation of non-response propensity (Beaumont, 2005). The DCP variable is treated as fixed in Holt and 

Elliot (1991) and the DCP variable, sometimes refer to the paradata, is used for non-response adjustment. 

On the other hand, Beaumont (2005) suggests to use DCP variable as a random variable and to be included 

in the non-response model. They show that using the paradata does not introduce additional bias and 

variance. Moreover, if the paradata variable is related to the study variable and the non-response, it reduces 

the non-response bias when the study variable is related to the non-response mechanism directly. 

In our study, we show that using the paradata when it is conditionally independent with study variable 

given auxiliary variables inflates the variance as it brings unnecessary noise. While such phenomenon has 
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been recognized in the literature (Little and Vartivarian, 2005), up to the knowledge of authors, it is not 

fully investigated theoretically. We investigate the effect of including the paradata into the nonresponse 

model using a rigorous theory. 

This paper is motivated by a real survey data from Korean Workplace Panel Survey (KWPS). In the 

KWPS data, the reaction of the interviewee at the first contact was recorded during the data collection 

process. We investigate possible use of such paradata to enhance the quality of the data analysis. 

The paper is organized as follows. In Section 2, basic setup is introduced and the main theoretical results 

are presented in Section 3. In Section 4, results of simulation studies are presented and a real data application 

is presented in Section 5. Concluding remarks are made in Section 6. 

 
2  Basic setup 
 

Consider a finite population of size ,N  where N  is known. The finite population =N  

 1 2, , , ,u u u N  = ,u i i ix y  is assumed to be a random sample from a superpopulation distribution 

 , .F x y  In addition, we assume that x  is always observed and y  is subject to missingness. Let   be the 

response indicator function that takes the value one if y  is observed and takes the value zero otherwise. 

Note that ,x y  and   are all considered as random. 

Suppose a sample of size n  is drawn from the finite population using a probability sampling design, 

where inclusion in the sample is represented by the indicator variables ,iI  with = 1iI  if unit i  is included 

in the sample and = 0iI  otherwise. Let A  be the index set of the sample and 1=i iw    be the design 

weight, where i  is the first-order inclusion probability. 

We are interested in estimating parameter   that is implicitly defined through an estimating equation 

  ; , = 0.E U X Y  Under complete response, an estimator of   is obtained by solving  

  ; , = 0.i i i
i A

w U x y

   

In the presence of missing data, assuming that the response probabilities are known, the propensity-score 

adjusted estimator is obtained by solving  

  ; , = 0,i
i i i

i A i

w U x y
p





  (2.1) 

where ip  is the response probability of unit .i  Unfortunately, (2.1) is not applicable in practice because ip  

are generally unknown. 

Now suppose that there exists additional variable z  obtained from paradata, which is always observed 

and satisfies  

    = 1 , , = = 1 , .i i i i i i iP x y z P x z   (2.2) 

As ,x ,y   and z  are considered as random, we can use z  to make inference about   under nonresponse. 

Such variable z  is sometimes called surrogate variable (Chen, Leung and Qin, 2008). By including a 
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suitable surrogate variable, we can make the response mechanism missing at random (MAR) in the sense 

of Rubin (1976). We call assumption (2.2) as the Augmented MAR (AMAR) since MAR holds only under 

the augmented model that includes surrogate variable .z  

Under (2.2), we can build a parametric model for the response mechanism and construct a propensity score 

weighted (PSW) estimator that is obtained from  

 
 

 ; , = 0,
ˆ ,

i
i i i

i A i i

w U x y
x z





   

where  ˆ ,i ix z  is a consistent estimator of    , = = 1 , .i i i i ix z P x z   Such PSW approach 

incorporating z  variable has been discussed in Peress (2010) and Kreuter and Olson (2013). 

In survey sampling, the surrogate variable z  can be obtained from paradata which is not of direct interest. 

The information on ,z  however, can be helpful in making model assumptions for the response mechanism. 

In some cases, the surrogate variable z  can satisfy  

    , = .f y x z f y x  (2.3) 

Condition (2.3) means that the surrogate variable z  is not related to the study variable y  that is subject to 

missingness. The model satisfying (2.3) can be called the reduced outcome model. If condition (2.3) does 

not hold, we call  ,f y x z  the full outcome model. 

If condition (2.3) holds in addition to condition (2.2), we can use this information to obtain a more 

efficient PSW estimator. Note that, by (2.2) and (2.3), we can establish  

 

     

   

     

   

     

   

 

= 1 , = = 1 , , ,

= = 1 , ,

= 1 , ,
=

,

= 1 ,
=

= = 1 ,

P x y P x y z f z x y dz

P x z f z x y dz

P x z f y x z f z x dz

f y x z f z x dz

P x z f y x f z x dz

f y x f z x dz

P x

 


















  

where the second equality follows from assumption (2.2) and the fourth equality follows from assumption 

(2.3). Thus, assumption (2.2) and (2.3) imply  

    , = 1 = .f y x f y x  (2.4) 

Under the reduced model assumption (2.3), then we can use another type of PSW estimator of the form  

 
 

 
1

; , = 0,
ˆ

i
i i i

i A i

w U x y
x





  (2.5) 
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where      1
ˆˆ ˆ= ,i i i i i ix x z f z x dz   and  f̂ z x  is an estimated conditional density of z  given .x  

The estimator obtained from (2.5) can be called the smoothed PSW estimator (Beaumont, 2008). Note that 

 1ˆ x  is the smoothed version of  ˆ ,x z  averaged over the conditional distribution   .f z x  

The smoothed PSW estimator obtained by solving the equation (2.5) is justified under MAR condition 

in (2.4). In this case, use of paradata for nonresponse adjustment is not necessarily useful, which will be 

justified in Section 3. 

 
3  Main result 
 

We now establish the main result of the paper. We assume that the response indictor functions i  are 

independent of each other. To avoid unnecessary details, we assume that    = 1 , = ,i i i i iP x z x z   is 

a known function of  , .i ix z  Let PSŴ  be the PSW estimator of   obtained from  

       
 

 1 ; , = 0.
,
i

i i i
i A i i

U w U x y
x z


 


   (3.1) 

Also, let PSW2̂  be the smoothed PSW estimator of   obtained from  

  
 

 2
1

; , = 0,i
i i i

i A i

U w U x y
x


 


   (3.2) 

where    1 = = 1 .i i ix P x   
 

Theorem 1 Under the assumptions (2.2) and (2.3), the smoothed PSW estimator 2
ˆ

PSW  from (3.2) is 

asymptotically unbiased and has asymptotic variance smaller than that of ˆ
PSW  from (3.1). That is,  

    PSW PSW 2
ˆ ˆ .N NV V    (3.3) 

 

Proof. First note that  

                                      
 

 2
=1 1

, = ; , ,δ
N

i
N N i i

i i

E U U x y
x




   

where  1= , , .δ N N   Thus, asymptotic unbiasedness of PSW2̂  can be easily established by  

 

    

 
 

 
 

 

 
 

 

 

2 2
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=1 1

1

=1 1

=1
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δN N N N

N
i
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N
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For (3.3), it is enough to show that  

    1 2 .N NV U V U   (3.4) 

Note that  

       

 
 

 
       

1 1 1

=1

=1 =1

1 2

= , ,

= ; ,
,

Cov , ; , ; ,
, ,

:= .

δ δN N N N N N

N
i

i i N
i i i

N N
ji

i j i j i i j j N
i j i i j j

V U V E U E V U

V U x y
x z

E w w I I U x y U x y
x z x z

V V







 

 



 
 
 

   
 







   





  

Now, since the i  are independent,  
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1

=1

1
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,
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where 2 = .B BB   Also, writing  = Cov , ,ij i jI I  
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Thus, combining the two results, we obtain  

 

 
 

 

   

2
1

=1

=1 =1

1
= 1 ; ,

,

; , ; , .

N

i i i N
i i i

N N

i j ij i i j j N
i j

V U E w U x y
x z

E w w U x y U x y




 

   
  

   

    









 

(3.5)

 

Similarly, we can establish that  

  

 
 

 

   

2
2

=1

=1 =1

1
= 1 ; ,

; , ; , .

N

i i i N
i i

N N

i j ij i i j j N
i j

V U E w U x y
x

E w w U x y U x y




 

   
  

   

    









 

(3.6)

 

Comparing (3.5) with (3.6), in order to show (3.4), we have only to show that  
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1 1
, ,

, , ,
E x y

x z E x z x y 
 

 
 

 (3.7) 

where     1, , = .E x z x y x   To show (3.7), note that   = 1f x x  is a convex function of  0, 1x   

and     take values on (0, 1). We can apply Jensen’s inequality to get  

          ,E f f E   (3.8) 

which justifies (3.7). Here, the expectation in (3.8) is with respect to the conditional distribution of z  given 

x  and .y  

By Theorem 1, under assumption (2.2) and (2.3), the smoothed PSW estimator PSW 2̂  leads to more 

efficient data analysis. Beaumont (2008) proposed the smoothed weighting for efficient estimation with 

survey data in a slightly different context, but the weight smoothing method of Beaumont (2008) matches 

with our finding when z  is the design variable and   is the sample indicator function. In this case, 

 = 1 ,P x z  is the first order inclusion probability while  = 1P x  is a smoothed version of the first 

order inclusion probability. Thus, if the sampling design is non-informative in the sense that 

   , = ,f y x z f y x  then it is better to use the smoothed weight    1= = 1 ,iw P x   which is 

consistent with the claims of Beaumont (2008) and Kim and Skinner (2013). 

Under the reduced model (2.3), adding the surrogate variable z  into the response propensity model can 

be regarded as including unnecessary noise and thus it generates inefficient estimation. For the case when 

the condition (2.3) is not satisfied, we can still use the smoothed PSW estimator using the weight obtained 

by weight smoothing conditioning on ,ix ,iy  and = 1,i  but the correct specification of the outcome model 

 ,f y x z  can be challenging. 

 
4  Simulation study 
 

To test our theory, we perform a limited simulation study. In the simulation, we consider a situation 

when the augmented MAR assumption holds and check if including the surrogate variable in data analysis 

improves the efficiency of the final estimation. 

We generate B  2,000 Monte Carlo samples of size =n 200 from the outcome model  

 0 1= ,i i iy x e    (4.1) 

where  0, 1 ,ie N  0 1, =  (1.2, 2.6), and  2, 1iX N  for = 1, , .i n  

In addition, we generate a surrogate variable Z  from  

                                                                     = 1i i iz x u    

with  20, 2 .iu N  Thus, the surrogacy assumption (2.3) holds under this setup. 

For the response probability, we consider the response model  

  Bernoulli ,i i    
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where  

 
 
 
0 1 2

0 1 2

exp
=

1 exp
i i

i
i i

x z

x z

  


  
 

  
 (4.2) 

and  0 1 2, , =   (-1.2, 0.8, 0.4). Thus, the response mechanism satisfies the AMAR condition in (2.2). 

The overall response rate is 48% under this setup. 

The parameters of interest are the regression coefficients in the outcome model (4.1) and the population 

mean of ,Y  = .E Y  We compare four methods for estimation of the parameters using Monte Carlo root 

mean squared error for the estimates. The four methods considered are as follows: 

1. Complete case method (CC): Use the complete observations of  ,i ix y  and estimate the 

parameters by the ordinary least squares method. That is, solve  

                 
=1

; , = 0.
n

i i i
i

U x y    

2. Propensity score weighting model method (PSW1): Use the estimated response rates as weights 

in estimating equation and solve the equation to estimate the parameters.   

(a) Fit a logistic regression model (4.2) for the response probability  = , ;i i i ix z    and 

estimate  0 1 2= , ,     by using the maximum likelihood method.  

(b) Parameter estimates are obtained by solving the estimating equation:  

                 
=1

; , = 0,
ˆ

n
i

i i
i i

U x y



   

where  ˆˆ ˆ= , ;i i ix z    and ̂  is computed from Step (a).  

3. Smoothed propensity score weighting model method (PSW2): Use the same procedure of PSW1, 

but the response probability is a function of explanatory variable  x  only. A response probability 

 ix  is estimated as  

                     1
ˆˆ ˆ= , ,i i i i i ix x z f z x dz    

where  ˆ ,i ix z  is the estimated response probability in the PSW1 method. Since the estimated 

conditional density of z  given ,x  ˆ ,f z x  is unknown, we use a nonparametric regression 

method for estimating  ˆ .f z x  Let  hK   be the kernel function satisfying certain regularity 

conditions and h  be the bandwidth. Then,  1ˆ ix  is obtained by  

                 
   

 
=1

1

=1

ˆ , ,
ˆ = .

,

n

j j h i jj
i n

h i jj

x z K x x
x

K x x







  

We used the Gaussian Kernel for hK  with bandwidth =h 1.06 1/5ˆn   chosen by the rule-of-

thumb method of Silverman (1986). 
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4. Smoothed propensity score weighting estimator (PSW3) using logistic regression for estimating 

 1ˆ :ix  Use the same procedure of PSW1, but the response probability is estimated by a logistic 

regression model using only .ix  

(a) Fit a logistic regression model for the response probability  * *= ;i i ix    as a function of 

explanatory variable  ix  only and estimate  * * *
0 1= ,    by using the maximum likelihood 

method.  

(b) Parameter estimates are obtained by solving the estimating equation:  

                 
*

=1

; , = 0,
ˆ

n
i

i i
i i

U x y



   

where  * *ˆˆ ˆ= ;i ix    and *̂  is computed from Step (a).  

 
Table 4.1 presents the Monte Carlo biases, Monte Carlo standard errors and Monte Carlo root mean 

squared error of the four estimators of the three parameters, where the surrogate variable is uncorrelated 

with the study variable. Monte Carlo bias can be obtained by the difference between Monte Carlo mean and 

the true mean. Monte Carlo root squared mean squared error is the squared value of Monte Carlo mean 

squared error, which is a sum of squared Monte Carlo bias and Monte Carlo variance. As discussed in 

Section 3, the Monte Carlo root mean squared errors obtained using the smoothed propensity score 

weighting method (PSW2) are smaller than those of the propensity score weighting method (PSW1) as 

condition (2.3) is satisfied. The result confirms our theory that including the surrogate variable that is 

uncorrelated with the study variable may cause unnecessary noise for estimating parameters and decrease 

the efficiency. Also, PSW3 has larger variances due to model misspecification. Note that estimates of the 

regression coefficients under CC estimator are unbiased, whereas the estimator of the population mean of 

Y  is biased. 

 
Table 4.1 
Monte Carlo biases (Bias), Monte Carlo standard errors (SE) and Monte Carlo root mean squared errors 
(RMSE) of point estimators 
 

Parameter Method Bias SE RMSE 

0  CC 0.005 0.213 0.213 
PSW1 0.001 0.247 0.247 
PSW2 0.003 0.232 0.232 
PSW3 0.005 0.239 0.240 

1  CC -0.001 0.088 0.088 
PSW1 0.000 0.102 0.101 
PSW2 0.001 0.096 0.096 
PSW3 -0.001 0.100 0.100 

  CC -0.555 0.206 0.592 
PSW1 -0.003 0.265 0.265 
PSW2 -0.049 0.219 0.225 
PSW3 0.007 0.233 0.233 
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5  Application 
 
5.1  Data description 
 

The research is motivated by real data analysis in Korean Workplace Panel Survey (KWPS) data, which 

is a biennial panel survey of the workplaces in Korea, sponsored by Korean Labor Institute. We used the 

KWPS data collected in 2007, 2009, and 2011 for our analysis. 

The target population of the survey is all the companies located in South Korea with the size (= number 

of employees) greater than 30, except for agriculture, forestry, fishing and hunting industry. Of all the 

companies in the target population, which is of size 37,644 companies, 1,400 companies were selected using 

a stratified random sampling design. 

The sampling design used for the survey is stratified sampling using the company as a sampling unit. 

The stratification variable is formed using 3 variables: the size of the company, the type of the company and 

the area where it is located. A combination of the three variables resulted in 200 strata since there are 5 

levels of area, 4 levels of size of company, and 10 levels of type of company location. 

From the KWPS data, we are interested in fitting a regression model for the regression of the log-scaled 

sales per person (Y  log(Sales)/Person) on two covariates of the company: size of company  1X  and 

type of company  2 .X  In the dataset, variable Y  is not completely observed for all targets of the survey; 

they contain some missing values. However, the explanatory variables are completely observed as the size 

and the type of company are the characteristics that do not change easily in every two years. 

The response variable   ,Y  the log-scaled sales per person, is a continuous variable. The two explanatory 

variables are categorical. The size of company variable  1X  has four categories; 30-99 people, 100-299 

people, 300-499 people, and more than 500 people. The type of company variable  2X  contains ten 

categories: Light industry, chemical industry, electric/electronic industry, etc. 

In the KWPS data, the variable regarding the reaction of interviewees at the first contact has been 

collected during the survey process and is considered as a surrogate variable in our analysis. The reaction 

at the first contact is categorical with three categories:   

1. Friendly response  = 1 :Z  the interviewee accepts the survey or answers the pre-questionnaire 

on the visit date.  

2. Moderate response  = 2 :Z  the interviewee cannot complete the survey immediately, but allows 

for a follow-up survey.  

3. Negative response  = 3 :Z  the interviewee who completes the survey uncooperatively or 

responds negatively.  

 

Table 5.1 shows the response rates for each category of the first contact reaction. In friendly and 

moderate responses, response rates are 0.71 and 0.67, respectively, but the response rate for negative 

response is 0.45. This suggests that the surrogate variable is an important predictor for the response model. 
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Table 5.1 
Response rate corresponding each level of reaction of interviewees 
 

 Friendly Response Moderate Response Negative Response 

Response Rate 0.71 0.67 0.45 

 
From the dataset, we are interested in estimating the parameters in the regression model  

   0 1 1 2 2= = .X xE Y x x      

 
5.2  Analysis 
 

We first check whether condition (2.3) is satisfied. Using the idea of Fuller (1984), we test the hypothesis 

0: = 0H   in the following model  

 = ,X ZY e    (5.1) 

where  1 2= 1, ,X x x  is a vector of explanatory variables, Z  is a vector of surrogate variables, and e  is a 

random error following  20, .N   Under 0 ,H  we can roughly say that surrogate condition (2.3) is 

satisfied. Table 5.2 presents the result of the hypothesis testing. The F-statistic of the test is 0.3508 and its 

p-value is 0.7041, suggesting strong evidence in favor of the null hypothesis that the surrogate variables are 

not significant in the augmented regression model (5.1). Since the main stratification variable are included 

in ,X  the sampling design becomes noninformative (Pfeffermann, 1993). Thus, we can safely assume that 

the vector of surrogate variables Z  can be treated as conditionally independent with the response variable 

Y  given the explanatory variable X  and condition (2.3) is satisfied. 

 
Table 5.2 
Test of the significance of the surrogate variable in the model (5.1) 
 

  F statistic p-value 

0 : 0H      0.3508   0.7041  

 
Figure 5.1 also confirms the surrogacy condition (2.3). The median of three boxes seems to be almost 

the same around 0 and supports the result of the test that the surrogate variable is uncorrelated with response 

variable given explanatory variables. Hence, all of these results imply that assumption (2.3) holds for the 

data. 

We now compare the three methods for estimating the parameters of the outcome model in (5.1), which 

are CC method, PSW1 method and PSW2 method. Estimated coefficients and their standard errors are 

presented in Table 5.3. The standard errors are calculated using bootstrap method for the stratified sampling 

(Rao and Wu, 1988) using =B 1,000 bootstrap replicates. 
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Figure 5.1  Boxplots of residuals of the regression of Y  given X  across each category of .Z  

 
Table 5.3 
Estimated coefficient (the standard error) from the real data analysis. (CC, complete case; PSW1, propensity 
score weighting method 1; PSW2, smoothed propensity score weighting method 2) 
 

  CC PSW1 PSW2 
Intercept  5.404 (0.040) 5.408 (0.041) 5.405 (0.041) 
100-299 people  0.170 (0.038) 0.165 (0.043) 0.170 (0.038) 
300-499 people  0.401 (0.041) 0.342 (0.045) 0.401 (0.041) 
> 500 people  0.587 (0.048) 0.528 (0.049) 0.587 (0.047) 
Chemical  0.379 (0.051) 0.372 (0.053) 0.379 (0.052) 
Metal/Auto  0.259 (0.045) 0.260 (0.047) 0.258 (0.046) 
Elec/Electronic  -0.026 (0.051) -0.024 (0.052) -0.026 (0.052) 
Construction  0.196 (0.075) 0.183 (0.078) 0.196 (0.077) 
Personal Services  0.337 (0.055) 0.382 (0.057) 0.337 (0.054) 
Transportation  -0.965 (0.064) -0.917 (0.068) -0.966 (0.063) 
Financial Insur  -0.623 (0.073) -0.577 (0.074) -0.624 (0.071) 
Social Services  -0.869 (0.061) -0.839 (0.062) -0.869 (0.060) 
Elec/Gas  2.099 (0.061) 2.087 (0.059) 2.099 (0.061) 
Chemical, Chemical Industry; Metal/Auto, Metal and Automobile Industry; Elec/Electronic, Electrical and Electronical Industry; 
Financial Insur, Finance and Insurance Services; Elec/Gas, Electric and Gas Services. 

 
Since two explanatory variables are categorical with 4 and 10 levels, respectively, there are 13 coefficient 

parameters to be estimated. Table 5.3 presents the parameter estimates and their standard errors. We can see 

that the estimates obtained by using three methods are similar, but the standard errors obtained by using 

PSW2 are smaller than those of PSW1 across all levels of variables, although the efficiency gain by using 

PSW2 rather than PSW1 is not large. As indicated before, including the surrogate variable in calculating 

the propensity score weight generated unnecessary noise in estimation as the surrogate variable is 

uncorrelated with the study variable.  
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Although PSW2 shows better efficiency than PSW1, there is no real gain using PSW2 compared with 

CC method. Under MAR, the CC analysis provides the best estimator for the regression coefficient, although 

it leads to a biased estimation for the population mean or totals. 

 
6  Conclusion 
 

Motivated by the real survey project, we have investigated the propensity score approach incorporating 

the information from paradata into the response propensity model. Use of paradata in the propensity model 

has been advocated in the literature. However, it is not always the case. We find that using more information 

can decrease the efficiency of analysis, which is justified in Theorem 1. The claim is confirmed in the 

simulation study and the real data analysis using the KWPS data. When the surrogate variable in the paradata 

is conditionally independent with the study variable, conditional on the explanatory variable, it is better not 

to include the surrogate variable because the smoothed propensity score weight can provide more efficient 

estimation. In other words, it is useful to include the information from paradata only when the surrogate is 

correlated with the variable of interest. 
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Suggestion of confidence interval methods for the Cronbach 
alpha in application to complex survey data 

Jihnhee Yu, Ziqiang Chen, Kan Wang and Mine Tezal1 

Abstract 

We discuss a relevant inference for the alpha coefficient (Cronbach, 1951) - a popular ratio-type statistic for the 
covariances and variances in survey sampling including complex survey sampling with unequal selection 
probabilities. This study can help investigators who wish to evaluate various psychological or social instruments 
used in large surveys. For the survey data, we investigate workable confidence intervals by using two approaches: 
(1) the linearization method using the influence function and (2) the coverage-corrected bootstrap method. The 
linearization method provides adequate coverage rates with correlated ordinal values that many instruments 
consist of; however, this method may not be as good with some non-normal underlying distributions, e.g., a 
multi-lognormal distribution. We suggest that the coverage-corrected bootstrap method can be used as a 
complement to the linearization method, because the coverage-corrected bootstrap method is computer-intensive. 
Using the developed methods, we provide the confidence intervals for the alpha coefficient to assess various 
mental health instruments (Kessler 10, Kessler 6 and Sheehan Disability Scale) for different demographics using 
data from the National Comorbidity Survey Replication (NCS-R). 

 
Key Words: Clustered data; Complex survey; Coverage-correction method; Influence function; Linearization. 

 
 

1  Introduction 
 

In this paper, we propose methods to incorporate the survey designs in confidence intervals for the alpha 

coefficient (Cronbach, 1951) based on the large sample approximation (linearization) and the “double” 

bootstrap approach. These methods have not been investigated in the related literature, even though the 

alpha coefficient is widely used in psychology and other relevant research areas. For a practical application 

of these methods, we analyze mental health instruments data from the National Comorbidity Survey 

Replication (NCS-R), a survey conducted between 2001 and 2003 intended to measure the prevalence of 

mental disorders (Kessler, Berglund, Chiu, Demler, Heeringa, Hiripi, Jin, Pennell, Walters, Zaslavsky and 

Zheng, 2004). In the analysis, we show the feasibility of the confidence interval method for the alpha 

coefficient on a survey data set. 

A great deal of psychological and sociological research uses assessment instruments (i.e., questionnaires) 

to obtain quantitative information for a population of interest. Ideally, the different items in one instrument 

measure the same concepts to achieve a high internal consistency. The alpha coefficient, also known as 

Cronbach’s alpha (henceforth referred to as )  is a popular statistic (e.g., a quick search of PubMed with 

the keywords “Cronbach alpha” and “scale” from the years of 2012-2016 brings up more than 700 

publications) that is widely used to measure the internal consistency reliability of various instruments.  

Let x  denote the p -variate column vector of the observations indicating p  items from an instrument, 

and let   indicate the corresponding covariance matrix. The value   is defined as  
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    1 1 tr ,1 1Tp p        

where 1  is the conforming column vector consisting of 1, and tr  indicates the trace of a matrix. The value 

  shows the ratio between the sum of the covariances and the sum of variances and covariances, thus a 

high value for   suggests that the items are highly correlated within the instrument. The theoretical values 

of   range from 0 to 1, where a higher value is considered to be more desirable. The estimator of   

(denoted by ˆ )  is defined as  

    ˆ ˆˆ 1 1 tr ,1 1Tp p        

where ̂  is a consistent estimator of .  The estimator ̂  can take any value less than or equal to 1, including 

negative values. 

In the literature, many confidence interval strategies for   can be found (e.g., van Zyl, Neudecker and 

Nel, 2000; Yuan, Guarnaccia and Hayslip, 2003; Kistner and Muller, 2004; Bonett and Wright, 2015), but 

discussions regarding the applications for complex survey data where observations in the data can have 

unequal weights due to stratifications and multistage cluster sampling (Lohr, 1999) are largely lacking. 

This paper is structured as follows: In Section 2, we propose strategies for obtaining the confidence 

intervals of   using the linearization method and the coverage-corrected bootstrap method. In Section 3, 

simulation results are presented based on scenarios of stratified multi-stage cluster sampling and unequal 

probability sampling scenarios. In Section 4, the developed methods are applied to analyze the NCS-R data 

sets, and the results comparing different demographics are reported. The Section 5 is devoted to the 

concluding remarks. 

 
2  Design-based confidence intervals for    
 

In this section, we discuss two methods to obtain the confidence interval for ,  the confidence interval 

based on the linearization method using the influence function (Deville, 1999; Demnati and Rao, 2004) and 

the coverage-corrected bootstrap method (Hall, Martin and Schucany, 1989). In this discussion, we consider 

strategies to deal with stratification, since stratification is a common feature in surveys and may decrease 

the magnitude of the variances for the statistics of interest (Lohr, 1999). We note that the sampling design 

for the NCS-R used stratification (more details in Section 4). Later, in Section 3, we show that the 

linearization will be sufficient for most practical cases (e.g., scales with ordinal responses); however, the 

coverage rate may not be satisfactory with some non-normal distributions. The coverage-corrected bootstrap 

method when applied to survey data is proposed as a possible alternative to the linearization method in those 

cases (Section 2.2). 

 
2.1  Linearization 
 

A symmetric confidence interval can be obtained based on the normal approximation of an estimator for 

a finite population (Hájek, 1981; Sen, 1995). The linearization method is applied for the variance estimation 
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of complex statistics. In a survey sampling setting, we consider a population index set  1, ,U N   with 

population size .N  A random sample S  of size n  is selected from U  by a sampling design 

   Prp s S s   for all .s U  The value kw  denotes the sampling weight associated with the index 

.k s  For probability sampling, the sampling weight for index k  is the inverse of the first order inclusion 

probability, i.e.,    1Pr .kw k s    For each unit k  of the population ,U  there is a point (or observation) 

kx  of ,R p  a p -dimensional real space. In a similar manner to Deville (1999), let us consider the population 

U  that is represented by the measure M  as having a mass of 1 N  in each of the points .kx  In this way, 

we have 1 1dM   and 1
kk U

ydM N y


   for any vector value   ,k ky y x  where we define the 

integral of a vector as the integral of each component of the vector. The measure M̂  is the estimator of M  

allocating a weight kw N  to any point ,kx k s  and 0 to any other points. Following some conventional 

notation (e.g., Cochran, 1977), let .ydM Y  Also let ˆˆ .ydM Y  The influence function of a 

“functional” T  is defined as  

  
   

0
; lim ,x

t

T M t T M
IT M x

t




 
   

where x  denotes the added unit mass at point x  (Deville, 1999), and the functional T  (Krätschmer, Schied 

and Zähle, 2012) maps a measure to a set (e.g., the real line). The examples of the functional include Y  and 
ˆ .Y  Note that this classical definition of the influence function (Hampel, Ronchetti, Rousseeuw and Stahel, 

1986; Davison and Hinkley, 1997) is slightly different from that of Deville (1999) where he defines a 

measure M  to satisfy .kk U
ydM y


   Let us define the linearized value  ; .k kz IT M x  Let  ˆT M  

indicate the substitution estimator of  T M  by replacing M  by ˆ .M  Assume that the postulate of Deville 

(1999), i.e.,  1 2 1 ˆn N X X    has a zero-mean multi-normal distribution as a limit, where X  and X̂  are 

the population total and the total estimator for general observation ,kx  and N  and n  tend toward infinity. 

This fact leads to  1 2ˆ .pxdM xdM O n     Assuming that T  can be derived for any direction of an 

increase, a similar argument to Deville (1999) gives rise to the result 

 
   

   1 2
1

ˆ 1
1 ,k kc c

k U

T M T M
z w o n

N N






    (2.1) 

for some positive value .c  Equation (2.1) results in the asymptotic variance of  ˆT M   

     ˆˆAvar = var .T M Z  (2.2) 

If   ,T xdM x   then the influence function at kx   k U  is  

  
0

; lim .
i k ii U i U

k kt

x N tx x N
IT M x x

t
 



 
  

 (2.3) 

For a complex statistic as the functions of simple statistics, we have the influence function  

      ,I f T D f IT  (2.4) 
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where f  is a differentiable function on the space of values for T  and  D f  is the matrix of the partial 

derivatives of f  (Deville, 1999). In many cases, the linearized value kz  includes parameters to be 

estimated. Let ˆkz  indicate the approximation of kz  using some statistics estimated by the sample. Deville 

(1999) notes that with a fixed and finite number of estimated parameters, the variance estimators based on 

ˆkz  and kz  are equivalent by an asymptotically negligible quantity. 

Now, we obtain the linearized value for   as follows. Consider a data set  

  1 , , ,X T
nx x    

where kx  is a p -variate observation indicating p  items in an instrument and n  is the sample size. Let ij  

and ˆ ij  , 1, ,i j p   denote the   th,i j  elements of   and ̂  as defined in Section 1, respectively. 

Specifically, we define      
1

1
N

ij i k i k j k j kk
x X x X N


     (Lohr, 1999), where i kx  and i kX  

are thi  element of kx  and its population mean, respectively. For simple random sampling without 

replacement (SRSWOR), we define      ˆ ˆˆ 1 ,ij i k i k j k j kk s
x X x X n


     where n  is the size of 

the sample s  and ˆ
i kX  is the sample mean of i kx  (Lohr, 1999). For obtaining ˆ ij  for more complicated 

sampling methods including unequal probability sampling, we refer to Swain and Mishra (1994) and Patel 

and Bhatt (2016). In survey sampling, the sampling weights are used for correcting the disproportionality 

of the sample regarding the target population of interest (Pfeffermann, 1993). With the complex sampling 

designs often used in practice, failure to consider the sampling designs may provide biased inferences. For 

more of a discussion of the role of sampling weights, we refer to Pfeffermann (1993). For the variance 

estimation of survey data, the linearization method can be applied as in formula (2.2) incorporating the 

sampling weights. Following conventional notations of the vectorization of a matrix, let  vech A  be the 

column vector of nonduplicated elements of the matrix ,A  vec A  be the column vector composed of the 

columns of .A  Let t̂  indicate the collection of statistics as the components of  ˆvechT   and t  indicate the 

collection of corresponding parameters. Specifically, we let     vech , .
TT T

k k kk U k U
t x x N x N

 
    

Also, let the matrix pK  indicate a transition matrix that satisfies the relationship    vech vec ,A AT
pK  

which borrows the transition matrix expression from van Zyl et al. (2000). We propose a linearized value for 

 ˆVar   as  

 
 

         2

1 ˆ ˆ ˆvec tr 2vec vec , 1, , ,
1 ˆ

1 1 I 11 I J
1 1

T T T T T
k p p p k

T

p
z K u k n

p
     

 
 (2.5) 

where a Jacobean matrix  vech ,J T t       ˆ ˆ,
ˆ vech ,J T

t t
t        vech ,

TT T T
k k k ku x x x  and 

I p  is the p p  identity matrix. We can now obtain the linearized value (2.5).  

Derivation of (2.5): We consider the variance of    ˆ ˆ1 tr 1 1Tp p     since its variance is the same as 

 ˆVar .  Let    * 1 tr .1 1Tp p      Also, let    11 1 12 2 13vec , , , , , , , ,T
p p pp           

and    11 1 22 2 33vech , , , , , , , , ,T
p p pp           a 2p -vector and a  1 2p p  -vector, 

respectively. Then, we have  
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 * * tr
.

vech 1 vech
J J

1 1T T T

p

t p

        
       

 (2.6) 

Now, in (2.6), we can show 

   
 

   
 

 
   

 
         

2

2

tr 1 tr tr

vech vech vech

1
vec tr 2vec vec .

1 1

1 1 1 1 1 1

1 1 I 11 I
1 1

T
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(2.7)

 

Using (2.6) and (2.7), we can obtain 

                              
 

         
*

2

1
vec tr 2vec vec .

1
1 1 I 11 I J

1 1
T T T T T

p p pT

p
K

t p


    

  
 (2.8) 

Note that the expression (2.8) is a vector that consists of the derivatives of *  with respect to the 

components of .t  Each element in (2.8) is multiplied by the influence function corresponding to the statistics 

in t  as in (2.4). This is accomplished by multiplying (2.8) by   vech , , 1, , ,
TT T T

k k k ku x x x k n    

which is obtained by using (2.3). Now substituting   by ̂  leads to the linearized value (2.5). 

The formula for the new value (2.5) is easily implemented in the computer code using commonly 

available computer software. The relevant R code is available in the Supplementary Material.  

We note that, in application to survey sampling, the estimate ̂  should be obtained properly by 

incorporating the survey design. The variance is estimated by   ˆVar ,Z  where Var  indicates an operation 

to obtain the variance incorporating the weights and survey design properly, e.g., the Sen-Yates-Grundy 

variance estimator (Sen, 1953; Yates and Grundy, 1953), an unbiased variance estimator for the Horvitz-

Thompson estimator (Horvitz and Thompson, 1952) under designs with fixed sample sizes (e.g., Särndal, 

Swensson and Wretman, 1992) or the variance estimator for sampling with the replacement as a 

conservative approximation (Wolter, 1985). Specifically, in this paper, the variance for the NCS-R data is 

estimated as 

      
1

ˆ ˆVar Var ,
H

h
h

Z Z


   (2.9) 

where   ˆVarh Z  indicates the design-specific variance estimator for stratum  1, , .h h H   Once kz  

values are obtained, standard statistical software for survey sampling such as R package “survey” (Lumley, 

2004) can be used for the calculation of (2.9).  

Now, consider a case that x  is a random variable following a distribution and that an observation is a 

realization of the random variable; in addition, a sample of size n  is obtained according to the random 

variable. In this specific case, we do not consider the finite population, where the design-based variance 

estimation is suitable as shown in the previous discussion. In a random variable setting, let Ẑ  indicate the 

estimator with the measure M̂  as the empirical distribution function (Fernholz, 1991). Employing the 

concept of a robust statistical inference based on the influence function (Davison and Hinkley, 1997), the 

sample variance for the population can be calculated by  
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  1 2

1

ˆVar ( ) ( ) ( 1) ,
n

k
k

Z n z z n



    (2.10) 

where kz  is the linearized value (2.5) obtained from the statistic ̂  based on the sample (size n) and z  is 

the sample mean of ( 1, , ).kz k n   We also note that the formula (2.10) is not constructed for infinite 

populations in survey methodology, where the finite population is seen as a realization from an infinite 

population. In that case, the outcomes of a statistical model give rise to the values of the characteristics of 

interest in the finite population, thus the model-based variance estimation is appropriate (Binder and 

Roberts, 2009). The formula (2.10) can be used for a general data analytical setting, where observations are 

considered as realizations of a random variable. 

 

2.2  The coverage-corrected bootstrap method 
 

The linearization provides reasonable estimates for the confidence intervals; however, in some cases, the 

coverage rate may not be satisfactory when the underlying distributions are non-normal (see Section 3). In 

these cases, some computer-intensive approaches such as the double bootstrap method, which is also called 

the coverage-corrected bootstrap may be implemented (Hall et al., 1989). We primarily discuss the double 

bootstrap method instead of the typical “single” bootstrap method (DiCiccio and Romano, 1988) since we 

observe that the single bootstrap method may not be satisfactory with non-normal underlying distributions 

(e.g., lognormal distribution) in terms of the coverage rate (Table 3.3).  

For adjusting the bootstrap weight, the rescaling method referred to as the Rao-Wu bootstrap (Rao and 

Wu, 1988) is a popular approach for analyzing a lot of survey data, e.g., from Statistics Canada surveys 

(Mach, Saïdi and Pettapiece, 2007). The Rao-Wu bootstrap method is based on the assumption of sampling 

with a replacement, but is often employed for sampling without a replacement as well, when the first-stage 

sampling fraction is negligible (Mach et al., 2007). Herein, we propose implementing the coverage-

corrected bootstrap method using the weight adjustment from Rao and Wu (1988). Among the various 

bootstrap confidence interval techniques (e.g., for these varieties, see Hwang, 1995), we consider the 

percentile bootstrap interval, which is a strictly nonparametric bootstrap approach (Hall, Martin and 

Schucany, 1989).  

The coverage rates of the bootstrap confidence intervals can be corrected by incorporating additional 

bootstrap procedures. Because of bootstrapping the bootstrap sample, this kind of a procedure is referred to 

as the double bootstrap method (Martin, 1992). It is known that this method reduces the coverage error of 

two-sided confidence intervals by a factor of the order 1n   compared to the single bootstrap or normal-

theory confidence intervals (Martin, 1992). Suppose l̂  and û  are the lower and upper bounds of the 

percentile bootstrap confidence interval using the original data. As proposed by Hall et al. (1989), the 

 100 1 %q  coverage-corrected bootstrap confidence interval can be defined as  ˆ ˆ, ,l u    where a 

positive value of   satisfies 

   * *ˆˆ ˆ1 Pr , .q l u        (2.11) 
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The values *l̂  and *û  indicate the lower and upper bounds, respectively, of the confidence interval obtained 

by bootstrapping a resampled data set. The probability in the right-hand side of equation (2.11) is 

empirically evaluated as shown in the following steps.  

Step 1: For each bootstrap sample  1, , ,i i B   we obtain the intervals based on second-time 

resamples,  * *ˆ ˆ, .i il u  

Step 2: We search t  satisfying     * *ˆˆ ˆmin : 1 Pr , 0t q l u         where Pr  indicates 

the empirical probability.  

Step 3: The confidence interval is obtained by     ˆ ˆmax , 0 , min , 1 .l u    

 

We use     ˆ ˆmax , 0 , min , 1l u    since the true   is assumed to be between 0 and 1.  

In the analysis, we have to resample the data without disrupting the survey design structure. The 

bootstrap is carried out within each stratum, and all observations in the same cluster should be kept together 

in a resampled data set (Lohr, 1999). For each resampled data set, new weights need to be obtained (Rao, 

Wu and Yue, 1992). Specifically, let hn  indicate the sample size of the primary sampling unit (PSU) in 

stratum  1, , .h h H   Suppose we resample *
hn  clusters for each stratum. Then, the rescaled weight for 

observation k  in the resample is 

  
* *

*
1 ,

1 1
h h hb

k k k
h h h

n n n
w w m

n n n

         
 (2.12) 

where km  is the number of repetitions of the PSU that observation k  belongs to and kw  is the original 

weight of observation k  (Rao et al., 1992; Mach, Dumais and Robinson, 2005; Mach et al., 2007). When 
* 1,h hn n   the bootstrap weight becomes    1 ,h

h

nb
k k knw w m  which is a conventional bootstrap weight 

(Lohr, 1999). This procedure is repeated to obtain a total of B  bootstrap samples. For the actual data 

analysis, we use 500B   following the common practice of Statistics Canada surveys (Canadian 

Community Health Survey - Annual Component, 2007). To obtain the estimates, the stratification or cluster 

structure is no longer considered since the bootstrap weights take into account the survey design structure 

(Lohr, 1999). The percentile interval will be obtained based on the B  values of the estimates of .  For each 

resample,   is estimated based on the sample variance and covariance matrix incorporating the weights. 

To obtain the coverage-corrected confidence interval, we carry out the additional bootstrap with each 

bootstrap sample in a similar manner to what was explained above. In the simulation and data analysis we 

use 200 bootstrap samples for the second round of bootstrapping. The relevant R code is provided in the 

Supplementary Material. 

 
3  Simulation 
 

We investigate the performance of the proposed methods in two scenarios; stratified two-stage cluster 

sampling and single-stage unequal probability sampling.  
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For stratified two-stage cluster sampling, the finite population is generated using three strata where each 

stratum includes 200 PSUs and 50 secondary sampling units (SSUs) totaling 30,000 SSUs. The underlying 

distributions that are used include the multi-normal distribution, multi-lognormal distribution and correlated 

ordinal data categorized from multi-lognormal distribution variables. The cases of 5p   and 10p   are 

considered. Different means are used for the different strata. The observations are correlated within a PSU. 

See the footnote of Table 3.1 for the detailed parameter information. Simple random sampling is carried out 

at the first-stage and second-stage, respectively, within each stratum. Thus, the appropriate weights are 

calculated per stratum as    h h h hN M n m  for each individual (SSU), where ,hN ,hM hn  and hm  are the 

number of PSUs per stratum, the number of SSUs per PSU, first-stage sample size per stratum, and second-

stage sample size, respectively. Since the population is finite, the true value of   is known from the 

generated population.  

For unequal probability sampling (Table 3.2), we generate a population of 30,000, where the underlying 

distributions of the data are the multi-normal distribution, multi-lognormal distribution and correlated 

ordinal data categorized from the multi-lognormal distribution variables similar to the cases found in 

Table 3.1. See the footnote of Table 3.2 for the detailed parameter information. Each individual i  is 

assigned a random number ix  from the Binomial (20, 0.5) distribution, achieving the semblance of SSU 

sizes per PSUs. For sampling, the first-order inclusion probability is proportional to size ix  (probability 

proportional to size sampling). Thus, the weight for an individual i  is obtained as 1 ,k ik
n x x   where 

n  is the sample size. The sample selection procedure uses the systematic sampling technique that considers 

first-order inclusion probabilities. For the linearization method, the variance is estimated using the usual 

estimator for with-replacement sampling (Mach et al., 2007) as a conservative approximation of the methods 

for without-replacement sampling (Wolter, 1985). Since the sampling fraction is negligible in the 

simulation, the finite population correction is not incorporated. The 95% confidence interval is obtained 

based on the normal approximation. 

Table 3.1 (stratified two-stage cluster sampling) and Table 3.2 (single-stage unequal probability 

sampling) show the coverage rates and average widths of the confidence intervals based on the proposed 

linearization method and the coverage-corrected bootstrap method (1,000 simulations per scenario). The 

linearization method and the coverage-corrected methods are evaluated using same simulated data sets. For 

the coverage-corrected method, we use 200B   for the first bootstrap, 200B   for the second bootstrap. 

The linearized method shows the coverage rates as being close to the target confidence level for the multi-

normal distributions and correlated ordinal data in most scenarios. We note that, in the random variable 

settings, the confidence intervals based on a normal approximation work well with various ordinal data once 

the variance is correctly obtained (Maydeu-Olivares, Coffman and Hartmann, 2007). Our simulation results 

show that the normal approximation works well with the ordinal data in finite population settings as well. 

When the underlying distribution is the multi-lognormal distribution, the coverage rates of the confidence 

intervals based on the normal approximation may be somewhat lower than the target coverage rate, but they 

improve with increasing sample sizes. For the multi-lognormal distribution, the coverage-corrected 



Survey Methodology, December 2019 473 
 

 
Statistics Canada, Catalogue No. 12-001-X 

bootstrap method using the weight adjustment by Rao and Wu (1988) shows substantially improved 

coverage rates comparing to the linearized method. In comparison to the linearization method, the coverage-

corrected bootstrap method has slightly increased widths, and the coverage rates are reasonably close to the 

target confidence level for most cases in Tables 3.1 and 3.2.  

We also note that for the stratified sampling cases with relatively low   values, we can identify cases 

that the coverage-corrected method provides less-than-desirable coverage rates, with the multi-normal or 

ordinal data indicating that the coverage-corrected method is not a panacea for interval estimation. Here, 

the linearization method is a reasonable choice over the coverage-corrected method if the underlying 

distribution is ordinal or normal. 

 
 
Table 3.1 
(Stratified two-stage cluster sampling). The coverage rates (CR) and average widths (Width) of 95% confidence 
intervals based on the linearization method and coverage-corrected method (Double Bt). The values of npsu 
and nssu are the sample sizes for PSUs and SSUs within a PSU, respectively. Two   values indicate   for 

5p   and 10,p   respectively 
 

Method Distribution (npsu, nssu)   
5p   10p   

CR Width CR Width 
Linearization Multi-normal (10, 20) 0.91, 0.91 0.941 0.024 0.946 0.023 

(20, 20) 0.90, 0.91 0.934 0.017 0.962 0.016 
(10, 20) 0.56, 0.67 0.941 0.121 0.944 0.095 
(20, 20) 0.56, 0.67 0.953 0.084 0.961 0.064 

Multi-lognormal (10, 20) 0.85, 0.85 0.904 0.067 0.902 0.059 
(20, 20) 0.86, 0.85 0.908 0.054 0.935 0.049 
(10, 20) 0.51, 0.53 0.913 0.163 0.924 0.154 
(20, 20) 0.51, 0.55 0.933 0.118 0.928 0.108 

Correlated ordinal (10, 20) 0.85, 0.87 0.939 0.043 0.938 0.035 
(20, 20) 0.85, 0.87 0.939 0.030 0.954 0.025 
(10, 20) 0.48, 0.53 0.934 0.147 0.928 0.130 
(20, 20) 0.48, 0.60 0.955 0.103 0.955 0.077 

Double 
Bootstrap 

Multi-normal (10, 20) 0.91, 0.91 0.959 0.026 0.960 0.025 
(20, 20) 0.90, 0.91 0.954 0.019 0.964 0.017 
(10, 20) 0.56, 0.67 0.939 0.120 0.909 0.084 
(20, 20) 0.56, 0.67 0.955 0.084 0.942 0.059 

Multi-lognormal (10, 20) 0.85, 0.85 0.945 0.080 0.959 0.071 
(20, 20) 0.86, 0.85 0.948 0.063 0.963 0.057 
(10, 20) 0.51, 0.53 0.947 0.186 0.942 0.163 
(20, 20) 0.51, 0.55 0.955 0.125 0.942 0.109 

Correlated ordinal (10, 20) 0.85, 0.87 0.964 0.047 0.955 0.038 
(20, 20) 0.85, 0.87 0.950 0.033 0.960 0.026 
(10, 20) 0.48, 0.53 0.937 0.148 0.919 0.121 
(20, 20) 0.48, 0.60 0.957 0.104 0.942 0.073 

 

The values of   are based on the generated finite populations in all scenarios. For multi-normal data, the mean vectors consist 
of values of 1, 1.05 and 1.1 for strata 1, 2, and 3, respectively, and the common covariance within PSUs in addition to the 
covariance within multivariate data is 0.05. The covariance matrix has diagonal elements of 1 and the common off-diagonal 
elements to produce relevant   values. Multi-lognormal data are exponential of multi-normal data with the same mean and 
covariate structures. In the covariance matrix, common off-diagonal values are selected to produce relevant   values. For the 
correlated ordinal data, we first generate the multi-lognormal data with the same structures described above, then categorize them 
to 0, 1, 2 and 3 for values  2, 2  values  10, 10  values  15, and values  10, respectively. 
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Table 3.2 
(Single-stage unequal probability sampling). The coverage rates (CR) and average widths (width) of 95% 
confidence intervals based on the linearization method and coverage-corrected method (Double Bt). The values 
of n  indicate the sample sizes for PSUs. Two   values indicate   for 5p   and 10,p   respectively 
 

Method Distribution n     
5p   10p   

CR Width CR Width 
Linearization Multi-normal 100 0.90, 0.90 0.942 0.063 0.936 0.058 

200 0.90, 0.90 0.921 0.044 0.956 0.042 
100 0.50, 0.51 0.942 0.317 0.936 0.291 
200 0.50, 0.50 0.921 0.219 0.956 0.210 

Multi-lognormal 100 0.85, 0.84 0.816 0.116 0.853 0.104 
200 0.85, 0.85 0.870 0.103 0.901 0.083 
100 0.47, 0.47 0.851 0.346 0.887 0.312 
200 0.48, 0.47 0.911 0.264 0.935 0.253 

Correlated ordinal 100 0.84, 0.86 0.926 0.110 0.923 0.086 
200 0.84, 0.86 0.930 0.078 0.947 0.063 
100 0.43, 0.43 0.938 0.368 0.945 0.335 
200 0.43, 0.42 0.942 0.260 0.948 0.245 

Double Bt Multi-normal 100 0.90, 0.90 0.961 0.073 0.950 0.068 
200 0.90, 0.90 0.953 0.049 0.965 0.047 
100 0.50, 0.51 0.958 0.361 0.951 0.241 
200 0.50, 0.50 0.948 0.335 0.962 0.232 

Multi-lognormal 100 0.85, 0.84 0.912 0.166 0.943 0.138 
200 0.85, 0.85 0.940 0.136 0.948 0.107 
100 0.47, 0.47 0.954 0.436 0.946 0.382 
200 0.48, 0.47 0.946 0.318 0.965 0.295 

Correlated ordinal 100 0.84, 0.86 0.940 0.134 0.937 0.103 
200 0.84, 0.86 0.937 0.090 0.956 0.066 
100 0.43, 0.43 0.954 0.428 0.946 0.388 
200 0.43, 0.42 0.949 0.287 0.957 0.271 

  

The values of   are based on the generated finite populations in all scenarios. For multi-normal data, the mean vectors consist 
of values of 1. The covariance matrix has diagonal elements of 1 and the common off-diagonal elements to produce relevant   
values. Multi-lognormal data are exponential of multi-normal data with the same mean and covariate structures. Common off-
diagonal values are selected to produce relevant   values. For the correlated ordinal data, we first generated the multi-lognormal 
data with the same structures described above, then categorize them to 0, 1, 2 and 3 for values  2, 2  values  10, 10  values 
15, and values  10, respectively. 

 
Thus, we conclude that, for general ordinal data, which are typical responses for most assessment 

instruments, the linearization method will be satisfactory to obtain the confidence intervals. When the 

instruments consist of continuous data and some skewed distributions are observed, the coverage-corrected 

bootstrap method will generally provide more accurate confidence intervals than the normal approximation. 

It may be of interest to compare the performance of the proposed confidence interval methods to other 

existing confidence interval methods in a random variable setting since the proposed methods can be applied 

to these settings, as shown in (2.10). Table 3.3 presents the comparisons of the coverage rates and widths of 

various confidence interval methods based on the data generated from a random variable. The existing 

confidence interval methods can be categorized to either using an analytical distribution based on the multi-

normal distribution, or using a large sample approximation for the normal distribution of ̂  or a 

transformation of ˆ.  For the existing methods, we consider three normal-based confidence intervals and a 

bootstrap method, i.e., confidence intervals based on the exact F distribution using the normal data (van Zyl, 
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Neudecker and Nel, 2000; Kistner and Muller, 2004), a large sample approximation of  ˆlog 1 2  

(van Zyl et al., 2000), a large sample approximation of ̂  based on the “distribution-free” standard error 

estimate (Yuan et al., 2003; Maydeu-Olivares et al., 2007), and the percentile bootstrap confidence interval 

with a single bootstrap (DiCiccio and Romano, 1988). These techniques are compared to the confidence 

intervals based on the linearization method and the coverage-corrected bootstrap method. The data are 

generated from the multi-normal distribution, multi-lognormal distribution, and the correlated ordinal data 

similar to the simulations in the previous tables. The values of   in Table 3.3 are for the random variables. 

In general, the results seem similar to those of finite population cases. The existing confidence interval 

methods, as well as the linearization method, perform unsatisfactorily with the lognormal data, yet their 

coverage rates are close to the target confidence levels using the ordinal data and normal distributions when 

the sample sizes increase. The coverage-corrected bootstrap method shows a coverage rate close to the 

confidence level with a lognormal distribution while providing wider confidence interval widths than the 

other methods. In the case of the multi-normal distribution, the coverage-corrected bootstrap method seems 

to have higher coverage rates than the target confidence level. In comparison with the single bootstrap 

method, the coverage-corrected method increases the coverage rates by 1 to 3% overall for the multi-

lognormal distribution cases. 

 
Table 3.3 
The coverage rates and widths of 95% confidence intervals based on F distribution (F dist), the asymptotic 
distribution of the transformed ̂  (Asymp1), the asymptotic distribution by Yuan et al. (Asymp2), the 
linearization method (Linearization), the percentile bootstrap method with single bootstrap (Single Bt) and the 
coverage corrected method (Double Bt). In the first column, ,p  low ,  and high   values are shown in the 
parentheses 
 

Distribution Approach n  
5p   10p   

Low   High   Low   High   
CR Width CR Width CR Width CR Width 

Multi-normal 
(5, 0.5, 0.9) 
(10, 0.5, 0.9) 

F dist 50 0.955 0.461 0.955 0.092 0.960 0.429 0.960 0.086 
100 0.954 0.319 0.954 0.064 0.943 0.298 0.943 0.060 
200 0.948 0.222 0.948 0.044 0.954 0.208 0.042 0.954 

Asymp1 50 0.954 0.471 0.954 0.094 0.956 0.440 0.956 0.088 
100 0.947 0.322 0.947 0.064 0.939 0.302 0.939 0.060 
200 0.947 0.223 0.947 0.045 0.959 0.209 0.959 0.042 

Asymp2 50 0.937 0.432 0.937 0.086 0.931 0.407 0.931 0.081 
100 0.948 0.311 0.948 0.062 0.943 0.293 0.943 0.059 
200 0.945 0.218 0.945 0.044 0.953 0.205 0.953 0.041 

Linearization 50 0.937 0.441 0.937 0.088 0.937 0.415 0.937 0.083 
100 0.948 0.315 0.948 0.062 0.944 0.296 0.944 0.059 
200 0.946 0.219 0.946 0.044 0.953 0.206 0.953 0.041 

Single Bt 50 0.936 0.490 0.936 0.098 0.935 0.465 0.935 0.093 
100 0.944 0.334 0.944 0.067 0.939 0.314 0.939 0.063 
200 0.944 0.227 0.944 0.045 0.944 0.227 0.965 0.043 

Double Bt 50 0.959 0.498 0.960 0.107 0.959 0.484 0.960 0.103 
100 0.958 0.355 0.960 0.072 0.954 0.336 0.954 0.068 
200 0.954 0.238 0.954 0.048 0.954 0.238 0.974 0.045 

 

The values of   are theoretical values except cases of correlated ordinal data. The   values for the correlated ordinal data are 
obtained based on 60,000 simulations. Structures of the mean vector and covariance matrix follow those explained in Table 3.2. 
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Table 3.3 (continued) 
The coverage rates and widths of 95% confidence intervals based on F distribution (F dist), the asymptotic 
distribution of the transformed ̂  (Asymp1), the asymptotic distribution by Yuan et al. (Asymp2), the 
linearization method (Linearization), the percentile bootstrap method with single bootstrap (Single Bt) and the 
coverage corrected method (Double Bt). In the first column, ,p  low ,  and high   values are shown in the 
parentheses 
 

Distribution Approach n  
5p   10p   

Low   High   Low   High   
CR Width CR Width CR Width CR Width 

Multi-lognormal 
(5, 0.47, 0.85) 
(10, 0.47, 0.84) 

F dist 50 0.919 0.487 0.829 0.151 0.928 0.457 0.860 0.140 
100 0.888 0.337 0.763 0.101 0.884 0.317 0.813 0.095 
200 0.862 0.235 0.727 0.070 0.906 0.221 0.782 0.066 

Asymp1 50 0.921 0.497 0.827 0.155 0.923 0.469 0.859 0.143 
100 0.884 0.341 0.759 0.103 0.888 0.321 0.809 0.097 
200 0.858 0.237 0.720 0.070 0.909 0.223 0.787 0.066 

Asymp2 50 0.837 0.410 0.805 0.146 0.870 0.406 0.844 0.132 
100 0.874 0.338 0.825 0.119 0.883 0.318 0.854 0.108 
200 0.903 0.267 0.853 0.097 0.927 0.244 0.876 0.086 

Linearization 50 0.842 0.419 0.814 0.149 0.878 0.415 0.850 0.135 
100 0.877 0.342 0.828 0.120 0.885 0.321 0.862 0.109 
200 0.903 0.269 0.858 0.098 0.928 0.245 0.879 0.086 

Single Bt 50 0.929 0.472 0.887 0.174 0.930 0.464 0.889 0.158 
100 0.928 0.362 0.883 0.133 0.929 0.337 0.887 0.119 
200 0.932 0.274 0.900 0.102 0.941 0.251 0.917 0.090 

Double Bt 50 0.943 0.524 0.944 0.221 0.950 0.504 0.930 0.199 
100 0.950 0.422 0.935 0.170 0.951 0.385 0.938 0.150 
200 0.955 0.318 0.943 0.126 0.954 0.283 0.948 0.109 

Correlated ordinal 
(5, 0.84, 0.54) 
(10, 0.91, 0.70) 

F dist 50 0.941 0.424 0.926 0.149 0.950 0.256 0.931 0.075 
100 0.931 0.292 0.929 0.102 0.939 0.177 0.904 0.052 
200 0.938 0.203 0.917 0.071 0.956 0.123 0.933 0.036 

Asymp1 50 0.945 0.432 0.919 0.152 0.947 0.262 0.927 0.077 
100 0.930 0.295 0.922 0.103 0.938 0.179 0.907 0.053 
200 0.934 0.204 0.914 0.071 0.954 0.124 0.936 0.036 

Asymp2 50 0.922 0.432 0.911 0.144 0.928 0.242 0.920 0.074 
100 0.928 0.289 0.933 0.108 0.931 0.177 0.918 0.055 
200 0.940 0.205 0.931 0.077 0.950 0.125 0.947 0.039 

Linearization 50 0.928 0.402 0.916 0.147 0.932 0.247 0.923 0.075 
100 0.929 0.292 0.936 0.109 0.936 0.178 0.925 0.056 
200 0.940 0.206 0.931 0.078 0.950 0.126 0.950 0.039 

Single Bt 50 0.927 0.447 0.901 0.163 0.921 0.275 0.898 0.084 
100 0.928 0.308 0.929 0.116 0.935 0.189 0.908 0.059 
200 0.938 0.213 0.935 0.080 0.949 0.131 0.942 0.041 

Double Bt 50 0.950 0.476 0.927 0.189 0.945 0.310 0.934 0.101 
100 0.943 0.334 0.945 0.131 0.951 0.208 0.937 0.069 
200 0.955 0.227 0.948 0.087 0.956 0.140 0.959 0.045 

 

The values of   are theoretical values except cases of correlated ordinal data. The   values for the correlated ordinal data are 
obtained based on 60,000 simulations. Structures of the mean vector and covariance matrix follow those explained in Table 3.2. 

 
4  Application  
 

In this section, we provide detailed information regarding the NCS-R survey and subgroup analysis using 

the data sets. The relevance of the instruments may vary based on the different demographic groups studied, 

and thus a relatively low reliability in a certain group would be an indication that the instrument items may 
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need some adjustments for that group. Using the data from the NCS-R, we investigate the changes of   

using the Kessler 10 (K10, Kessler, Andrews, Colpe, Hiripi, Mroczek, Normand, Walters and Zaslavsky, 

2002), the Kessler 6 (K6, Kessler et al., 2002) and the Sheehan Disability Scale (SDS, Sheehan, Harnett-

Sheehan and Raj, 1996). More details about these scales are explained in Section 4.1. 

 
4.1  The data 
 

The NCS-R is a mental health survey for a nationally representative sample of English-speaking 

noninstitutionalized household residents in the United States (Kessler et al., 2004) and it uses the fully 

structured World Health Organization’s (WHO) World Mental Health Survey version of the Composite 

International Diagnostic Interview (WMH-CIDI) (Byers, Yaffe, Covinsky, Friedman and Bruce, 2010). 

Using computer-assisted personal interviews, the NCS-R was carried out to obtain further information not 

fully covered in the previous baseline National Comorbidity Survey (NCS). A total of 9,282 participants 18 

years and older completed the Part I interview, and a subsample of 5,692 participants completed the Part II 

instruments. The data sets are publicly accessible and downloadable on the ICPSR (Inter-university 

Consortium for Political and Social Research) website (https://www.icpsr.umich.edu/icpsrweb). The NCS-

R is based on a stratified multi-stage probability sample design (42 strata where each stratum has two PSUs, 

totaling 84 PSUs), and the sample weights are provided in the data to reflect the survey design. Each PSU 

consists of metropolitan statistical areas or counties (Kessler et al., 2004). The final weights in the NCS-R 

data are adjusted for nonresponses to the survey instruments. Weights accounting for the designs of the 

different parts of the surveys (i.e., Parts I and II) are provided, respectively, in the NCS-R data. The weights 

are normalized to have a sum equal to 9,282 for Part I and 5,692 for Part II (mean weight = 1), respectively. 

In this case, the weights do not represent the inverse of the selection probabilities. Due to this and the fact 

that the sample size is quite small compared to the total population of interest, the finite population 

correction is not considered in the data analysis. Incorporating these weights corrects the overrepresentation 

of “racial minorities, females, residents of the Midwest, people with 13+ years of education, and residents 

of metropolitan areas” (Kessler et al., 2004).  

The 10-item Kessler psychological distress scale or the K10 is an instrument used to assess the distress 

level of people (Kessler et al., 2002), and the K6 is an abbreviated set of six items from the K10. Both the 

K10 and K6 are considered effective scales for screening mental disorders (Brouwer, Cornelius, 

van der Klink and Groothoff, 2013). The K10 for 30-day symptoms is included in the Part II instruments. It 

is composed of 10 questions of a self-reported assessment of psychological distresses in the worst month of 

the past year for each interviewee. The questions ask feelings such as tiredness, nervousness, hopelessness, 

and so forth. All 10 questions produce an ordinal data scoring of 1 (all of the time) to 5 (none of the time). 

The final total score ranges from 10 to 50 with the higher scores showing more distress. The K10 values in 

the NCS-R have missing data, and the weights given by the NCS-R adjust for survey nonresponses, but they 
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do not adjust for items with missing data. Although these missing data may compromise the unbiasedness 

of the weighted estimation (Alegria, Jackson, Kessler and Takeuchi, 2007), we use only completed data and 

remedial approaches such as weighting class adjustment or imputation of the data are not considered in our 

analysis.  

The SDS assesses functional impairment associated with mental disorders (Sheehan et al., 1996). The 

SDS in the NCS-R assesses disorder-specific role impairments (Sheehan et al., 1996; Druss, Hwang, 

Petukhova, Sampson, Wang and Kessler, 2009). It consists of four questions evaluating the disruption of 

activities associated with home, work, social and close relationship using 0 to 10 scales, with higher scores 

showing more severe impairment. In this paper, among the SDS scales of various mental disorders, we use 

the SDS for the participants with chronic conditions as a Part II instrument. Since the SDS is disorder-

specific, it has missing data. For the data analysis, we use only complete data.  

 

4.2  Subsample analysis 
 

For the subgroups, a domain analysis may be applied. Suppose that a domain indicator function d
kI  

 1, ,d D   has a value of 1 if the unit k  is in a domain d  (i.e., )dk s  and 0 otherwise. Then, the 

statistics of the domain are estimated by modifying the weight as   .d d
k k kw w I  The procedures used to 

obtain the estimates and the corresponding variance or covariance are carried out with the modified weights. 

Since the sample size is not fixed but is rather treated as an estimate, an estimator such as the sample mean 

and sample variance can be considered as the ratio estimator, i.e., both the numerator and the denominator 

are estimated, and the variance of the estimator is obtained accordingly. However, when the sample size is 

large, thus the ratio between the domain sample size and the whole sample size is close to the true population 

ratio, it is known that the variance of the ratio estimator is approximately the same as that of the estimator 

with the fixed sample size using only the subgroup of interest, making “little difference in practice” 

regarding those estimators (Lohr, 1999, page 79). The negligible difference between the domain estimator 

and the estimator using only the subsample can be easily shown using the variance estimator in an unequal 

probability sampling with replacement setting. Let ˆ
dY  indicate the domain estimator of the mean (Lohr, 1999) 

for single-stage sampling, i.e., 
1 1

ˆ ,
d d

n nd d
d k k k k k k k kk k k s k s

Y w I y w I w y w
   

      where the last 

term uses only the subsample. Now, for the variance estimator of ˆ
dY  (Paben, 1999; SAS/STAT user’s guide, 

2010), we can show 

      2 2

1
1

ˆ ˆ
ˆˆ ,

ˆ1 1
d

n k d k d k k d d
d n

k k s ddl dl

w I y Y w y Yn n
V Y

n nNw I 


           
       

 


  (4.1) 

where dn  is the sample size of .ds  Here, the right-hand side of equation (4.1) uses the observation only in 

domain .ds  Based on this fact, the variance for a subgroup is obtained based only on the data from the 

subgroup of interest in this paper. 
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When implementing the bootstrap method, we use * 2,hn   which produces all the positive weights in 

(2.12). In the subsample analysis, the bootstrap sample may contain only one PSU per stratum. In this case, 

the variance cannot be estimated. If we have multiple strata with one PSU, we combine those strata. If we 

have only one stratum with one PSU, we merge that stratum with another stratum arbitrarily. The rationale 

of this practice is that the variance incorporating strata is usually smaller than that without strata, thus such 

a practice may produce a wider (more conservative) confidence interval. 

 
4.3  Results 
 

The estimates of   and their confidence intervals for the whole participants are shown in Table 4.1. The 

table presents the confidence intervals using the coverage-corrected percentile method and the confidence 

interval using the linearization method for each instrument. Between the K10 and K6, it appears that the 

K10 has a higher   estimate. This may be explained by the fact that the removed items from the K10 are 

highly correlated with the remaining items in the K6, thus removing these items results in a reduced ̂  

value. The coverage-corrected percentile method shows confidence intervals that are close to the 

linearization method, while slightly wider. Considering the ease of calculation, when an analysis deals with 

instruments with ordinal data, the results of the similar confidence intervals in Table 4.1 may indicate that 

a normal approximation using the proper variance estimation may be satisfactory for the investigated 

instruments, which do not include the skewed continuous data that we examined in Tables 3.1 and 3.2. 

The subgroup analysis is shown in Table 4.2, where ̂  and the confidence intervals are presented for 

different groups by age, gender and marriage status. The age groups are defined as young (34 years and 

under), middle aged (35-64 years), and old aged (65 years and over) per the available literature (e.g., 

Sunderland, Hobbs, Anderson and Andrews, 2012), where the cut-off points for the age groups are decided 

by epidemiological studies and the traditional definition of old age. The marriage status is defined by 

grouping married and unmarried (including divorced, separated, widowed and never married). Both the 

coverage-corrected bootstrap method and the linearization method provide comparable confidence intervals 

while the coverage-corrected bootstrap produces a slightly wider confidence interval. Considering that the 

coverage-corrected method is computationally intensive, the linearization method may be preferred when 

the instruments consist of ordinal scales.  

 
 
Table 4.1 
Estimates of   and their 95% confidence intervals (CI) for overall sample 
 

Instrument ̂  Cov-Correct CI Linearization CI n  
K10 0.901 (0.893, 0.911) (0.893, 0.909) 2,378 
K6 0.840 (0.829, 0.857) (0.827, 0.852) 3,442 
SDS 0.867 (0.852, 0.883) (0.853, 0.880) 3,983 
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Table 4.2 
Estimates of   and their 95% confidence intervals (CI) for subgroups 
 

Instrument Subgroups ̂  Cov-Correct CI Linearization CI n  
K10 Female 0.898 (0.880, 0.914) (0.882, 0.914) 869 
 Male 0.902 (0.896, 0.912) (0.895, 0.910) 1,509 

 Young age 0.888 (0.875, 0.900) (0.875, 0.900) 890 
 Middle age 0.913 (0.902, 0.925) (0.902, 0.924) 1,281 
 Old age 0.862 (0.827, 0.894) (0.830, 0.893) 207 

 Married 0.895 (0.882, 0.910) (0.882, 0.907) 1,232 
 Unmarried 0.902 (0.892, 0.913) (0.892, 0.912) 1,146 
K6 Female 0.824 (0.805, 0.849) (0.803, 0.844) 1,288 
 Male 0.848 (0.835, 0.866) (0.835, 0.861) 2,154 

 Young age 0.830 (0.810, 0.855) (0.810, 0.849) 1,268 
 Middle age 0.856 (0.842, 0.875) (0.841, 0.870) 1,847 
 Old age 0.773 (0.728, 0.821) (0.725, 0.820) 327 

 Married 0.823 (0.807, 0.844) (0.806, 0.840) 1,805 
 Unmarried 0.851 (0.833, 0.875) (0.832, 0.869) 1,637 
SDS Female 0.874 (0.854, 0.895) (0.853, 0.896) 1,589 
 Male 0.861 (0.844, 0.880) (0.847, 0.876) 2,394 

 Young age 0.837 (0.805, 0.866) (0.808, 0.866) 1,159 
 Middle age 0.883 (0.870, 0.898) (0.871, 0.896) 2,296 
 Old age 0.849 (0.779, 0.903) (0.796, 0.901) 555 

 Married 0.886 (0.870, 0.903) (0.871, 0.900) 2,286 
 Unmarried 0.841 (0.818, 0.864) (0.820, 0.861) 1,697 

 
To this end, we conclude this section with a discussion of the results of the subgroups. Sizable differences 

in ̂  between the groups are found in the age groups with the K10 and K6 and marital status in the SDS. 

There are no overlaps of the confidence intervals between the middle and old-age groups in the K10 and 

K6. This indicates that the questions in the K10 and K6 may be relatively less consistent among the old-age 

group than the middle-age group. For the SDS, there is also no overlap of the confidence intervals between 

the married and the unmarried groups. That is, the consistency of the questions is substantially lower for the 

unmarried group than for the married group. We speculate that the SDS items include the impairment of a 

certain area that may be more relevant to the married group than the unmarried group (e.g., a disruption of 

activities associated with home, work, social and close relationship). 

 
5  Concluding remarks 
 

We explained how to obtain the confidence intervals of   in survey sampling through the linearization 

and coverage-corrected bootstrap methods. Through the simulation study in the setting of multi-stage cluster 

sampling and unequal probability sampling, the linearization method showed the workable property in terms 

of the coverage rate in the case of the multi-normal distribution or correlated ordinal data. When dealing 

with some problematic continuous data such as the multi-lognormal distribution, the coverage-corrected 

bootstrap method showed better performance than the linearization method in terms of the coverage rates. 

The discussed interval estimation methods were applied to the NCS-R data set. The application 
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demonstrated that both the interval estimation methods provide workable options to carry out an inference 

of   incorporating the survey design. 

We conclude this section by noting the following recommendations. First, in the case of an unknown 

continuous and skewed distribution, the coverage-corrected confidence interval is a safe way to provide a 

confidence interval whose actual confidence level may be close to the nominal confidence level. Second, if 

the data are discrete with a large sample size, the normal approximation using the linearization method may 

provide satisfactory coverage rates and be preferred because of the easiness of computation.  
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Cost optimal sampling for the integrated observation of 
different populations 
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Abstract 

Social or economic studies often need to have a global view of society. For example, in agricultural studies, the 
characteristics of farms can be linked to the social activities of individuals. Hence, studies of a given phenomenon 
should be done by considering variables of interest referring to different target populations that are related to 
each other. In order to get an insight into an underlying phenomenon, the observations must be carried out in an 
integrated way, in which the units of a given population have to be observed jointly with related units of the other 
population. In the agricultural example, this means that a sample of rural households should be selected that have 
some relationship with the farm sample to be used for the study.  
 
There are several ways to select integrated samples. This paper studies the problem of defining an optimal 
sampling strategy for this situation: the solution proposed minimizes the sampling cost, ensuring a predefined 
estimation precision for the variables of interest (of either one or both populations) describing the phenomenon. 
Indirect sampling provides a natural framework for this setting since the units belonging to a population can 
become carriers of information on another population that is the object of a given survey. 
 
The problem is studied for different contexts which characterize the information concerning the links available 
in the sampling design phase, ranging from situations in which the links among the different units are known in 
the design phase to a situation in which the available information on links is very poor. An empirical study of 
agricultural data for a developing country is presented. It shows how controlling the inclusion probabilities at the 
design phase using the available information (namely the links) is effective, can significantly reduce the errors 
of the estimates for the indirectly observed population. The need for good models for predicting the unknown 
variables or the links is also demonstrated. 

 
Key Words: Integrated surveys; Sample allocation; Indirect sampling. 

 
 

1  Introduction 
 

The need to observe together different populations related to each other is often encountered in social or 

economic studies. For example, in agricultural studies, the characteristics and behavior of farms can be 

linked to phenomena not only related to the farms themselves, but also to the social activities of individuals. 

This requires the study of the population of rural households, in addition to the study of the population of 

farms, in some integrated way. That is, to get an insight into an underlying phenomenon, the observations 

must be carried out in an integrated way, implying that the units of a given population have to be observed 

jointly with the related units of the other population. In the agricultural example, this means that a sample 

of rural households should be selected that have some relationship with the farm sample to be used for the 

study. 

The integrated observation of two populations implies that if we observe the variables of the unit j  of 

the first population, ,AU  we need to observe the variables of all the units in the second population, ,BU  

which are linked with the thj  unit of .AU  The links among the units of the two populations are regulated 

by formal rules, contingent dependencies or relationships created for these purposes. Continuing with the 
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agricultural example, these studies often refer to different statistical populations such as farms, rural 

households and land parcels, the units of which are linked to each other. The people of a given household 

may be the workers of a specific farm and those workers represent the links between the household and the 

farm. Furthermore, a given farm comprises specific land parcels which represent the links between that farm 

and the population of land parcels. The integrated observation of such populations allows the measurement 

global phenomena of the agricultural sector. Consider a given farm: the education level of the farm holder 

and the farm size, which are variables related to the population of farms, can affect the productivity of the 

land (a variable related to the statistical population of land parcels) which belongs to the farm. This 

productivity may have an impact on the risk of malnutrition of the households (population of rural 

households) in which the workers of the farm live. Thus, the observation of such different units in an 

integrated way provide insights into the relationships which link the level of education, the land productivity 

and the risk of malnutrition. If only aggregates are examined, then the advantage of integrated sampling is 

that it allows sampling from population BU  without having a frame available for it. 

Another concrete example where the methodology may be of use is for firm-establishment-employee 

studies. For instance, the wellness of the households of people employed in firms which have a well-defined 

policy of social responsibility may be different from that of other types of households and the success in 

their children’s schooling can be higher. In this case, the integrated observation allows the study the behavior 

of different sub-classes of households defined by a variable observable in the population of firms. 

Other examples can be found in socio-demographic studies. For instance, the phenomenon of children 

who spend time in two households can be studied with the integrated observations of the population AU  of 

households and the population BU  of children.  

Generally speaking, integrated observation may be of use for studying phenomena that involve variables 

which are correlated but belong to different statistical populations. Integrated observation allows the study 

of the relationships among all the variables of interest for the given phenomena, even if they belong to 

different populations. The independent observation of such populations would not allow the observation of 

the set of all the related variables of interest and hence it would not be possible to study the relationships 

among all the variables describing the phenomenon.  

Indirect sampling (Lavallée, 2002, 2007) provides a natural framework for the estimation of the 

parameters of two target populations that are related to each other. In the indirect sampling framework, the 

units belonging to a population that are selected for a given survey can enable the collection of information 

on another population, through the relationship between the units in the two populations. Furthermore, 

indirect sampling is suitable for producing statistics of populations for which there is no sampling frame. In 

such a context, the sampling procedure assumes that population AU  is related to the population of interest 

,BU  but only the sampling frame of AU  is available. Then, a sample is selected from ,AU  and using the 

links between the two populations, a sample of units of BU  is observed. 

This paper studies the problem of sampling design for integrated observation of different populations. 

For this, an indirect sampling design is implemented. In particular, the focus is on the determination of the 
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inclusion probabilities. Since the sum of these probabilities define the expected sample size, we roughly 

define the problem as a sampling allocation problem. In fact, the two problems (determination of the 

inclusion probabilities and sampling allocation) coincide in stratified sampling. The allocation problem for 

the usual (direct) sampling setting has been dealt with in several books and papers. When one target 

parameter is to be estimated for the overall population, the optimal allocation in stratified sampling can be 

performed (Cochran, 1977, and Särndal, Swensson and Wretman, 1992). In particular, the optimal sample 

allocation minimizes the variance of the estimated total, subject to a given budget or, reversing the problem, 

a sample allocation that minimizes costs can be performed, subject to a given sampling error constraint. In 

multivariate cases, where more than one characteristic of each sampled unit must be measured, the optimal 

allocation for individual characteristics are of little practical use, unless the characteristics under study are 

highly correlated. This is because an allocation that is optimal for one characteristic can be far from optimal 

for others. The multidimensionality of the problem also leads to a compromise allocation method (Khan, 

Mati and Ahsan, 2010), with a loss of precision compared to the individual optimal allocations. Several 

authors have discussed various criteria for obtaining a feasible compromise allocation: see, for example, 

Kokan and Khan (1967), Chromy (1987), Bethel (1989) and Choudhry, Rao and Hidiroglou (2012). 

Falorsi and Righi (2015) provide a general framework for sample design in multivariate and multi-

domain surveys. This paper offers a further generalization of this framework to the case of integrated 

observation of two populations. Different scenarios related to the level of knowledge of the links are 

examined: the first scenario assumes the links between the populations are known in the design phase; the 

second scenario assumes the links between AU  and BU  are estimated in the design phase; in the third 

scenario, no links between AU  and BU  are available, but auxiliary variables on AU  can provide useful 

information on .BU  

Section 2 introduces the background and symbols. Section 3 and Section 4 illustrate the basic 

optimization problem and how it is applied in the different scenarios. Empirical evidence is shown in 

Section 5. 

 
2  Background 
 

Let AU  and BU  denote two related target populations, where AU  is the population with the available 

sampling frame, and BU  the survey population for which a sampling frame may or may not be available. 

For the agricultural example, AU  is the population of farms and BU  the population of rural households. 

Let As  be a sample selected from AU  without replacement and with fixed sample size  ,Am  where AU  

contains AM  units. Let A
j  represent the inclusion probability of the thj  unit in AU  with 0A

j   and 

A
A A
jj U

m


  with  1 , , , , .π A
A AA A

j M       We denote by ,j vy  the value of the thv  

 1, ,v V   characteristic on unit j  and their total by .A
vY  

We estimate the total A
vY  according to the Horvitz-Thompson (HT) estimator, 

 , ,ˆ
A

A A
v j j v

j s

Y w y


   (2.1) 
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where 1 .A A
j jw   

Many practical sampling designs define planned domains that are sub-populations in which the sample 

sizes are fixed before selecting the sample. Denote by  1, ,A
hU h H   the planned domain of size 

  
A

A
h j hj U

M d


   where   1 j hd   if  A
hj U  and   0 j hd   otherwise. Let us suppose that the  j hd  

values are known and available in the sampling frame for all population units. Fixed size sampling designs 

are those satisfying  

 ,d m
A

A
j

j s

   

where       1 , , , ,d j j j h j Hd d d     and  1 , , , ,m A AA A
h Hm m m     is the vector of integer 

numbers defining the sample sizes fixed at the design stage, with   .
A

AA
j hj hj U

d m


  In our setting, the 

planned domains can overlap; therefore, the unit j  may have more than one value   1j hd   

(for 1, , ).h H   Several customary fixed size sampling designs may be considered as particular cases. 

A well-known example is the Stratified Simple Random Sampling WithOut Replacement (SSRSWOR) 

design where strata are the planned domains and each d j  vector has 1H   elements equal to zero, and one 

element equal to 1, which implies that each unit j  can belong to one and only one planned domain. 

Furthermore, in this design all the units in the stratum A
hU  have a uniform inclusion probability given by 

A
h
A
h

mA
j M

   for .A
hj U  If each d j  vector has 1H   elements equal to zero and one element equal to 1, 

and the A
j  values can be different in the stratum, we have a stratified sampling design, without replacement 

with fixed sample sizes and varying probabilities in each stratum. On the basis of the Winkler’s definition 

(2001), if  1
1,

H

j hh
d


  we have an Incomplete Multi-Way Stratified Sampling design. 

We suppose that the AM H  matrix  1 , , , ,D d d d Aj M
    is non-singular. According to this 

general sampling design framework, Deville and Tillé (2005) proposed an approximated expression of the 

variance for ˆ A
vY  based on the Poisson sampling theory given by 

      2
,

ˆ 1
1 ,m

A

A A A A
v j vA

j U j

V Y M M H 



   

 
  (2.2) 

where ˆ mA A
vY  is the HT estimator based on a general fixed sample size design with m A  units related to 

the vector ,π A  

                                                        , , ,d βA
j v j v j j vy     (2.3) 

and 

 1
,

1
1β Δ d

A

A
v j j j vA

j U j

y







  

 
  (2.4) 

with 
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  1 .Δ d d
A

A A
j j j j

j U

 


    (2.5) 

The variance (2.2) resembles the variance expression of the HT estimator under a Poisson sampling design, 

but it uses the residuals , ,j v  instead of the original value , .j vy  In practice, when 1H   this is the variance 

approximation of the Conditional Poisson Sampling design (CPS, as introduced in Deville and Tillé, 2005). 

CPS selects samples by means of a Poisson sampling design without replacement until a given sample size 

is obtained. 

To clarify the degree of approximation of (2.2), consider the SSRSWOR design. According to expression 

(2.2), we have 

      2
,

1

ˆ 1 ,m
AH
hAA A A A

v v h h A
h h

M
V Y M M H M

m





   

 
   

where 2
,v h  is the design variance of the ,j vy  values in stratum A

hU  (see Appendix 4 of Falorsi and Righi, 

2015). The above approximation works well when the number of domains H  remains small compared to 

the overall population size .AM  

Let  ,BM  ,BN  B
iU  and B

iM  be the number of units in ,BU  the number of clusters in ,BU  the thi  

cluster of BU  with 
1

BN
B B
ii

U U


  and the number of units in the thi  cluster ,B
iU  respectively. We denote 

by ,ik ry  the value of the thr  1, ,r R   characteristic for the thk  unit of the thi  cluster of BU  and the 

population total of all , ’sik ry  by  

 ,
1 1

.
BB iMN

B
r ik r

i k

Y y
 

    

Let ,j ikl  be an indicator variable of link existence: , 1j ikl   indicates that there is a link between thj  

unit in AU  and thk  unit in ,B
iU  while , 0j ikl   indicates otherwise. 

Suppose that we carry out an indirect sampling process: if the unit Aj U  is included in ,As  then all 

the clusters ,B
iU  for which , ,1

0,
B
iM

B
j i j ikk

L l


   are observed ,(i.e., )ik ry  in the indirect sample of 

population .BU  Let Bn  be the size of the sample of clusters in population BU  obtained after the indirect 

sampling process. We estimate B
rY  according to the estimator based on the theory of the Generalized Weight 

Share Method (GWSM) of Lavallée (2002, 2007): 

       ,
1

,ˆ
Bn

B B
r i r i

i

Y y w


   (2.6) 

where 

 , ,
1

B
iM

i r ik r
k

y y


    

and 
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        ,
A

B A B
i j j i

j s

w w L


     

with 

                                                                         ,
,

B
j iB

j i B
i

L
L

L
   

and 

  ,
1

.
AM

B B
i j i

j

L L


    

Theorem in Section 3 of Lavallée (2002, 2007) states that (2.6) provides an unbiased estimator for B
rY  

provided all links ,j ikl  can be correctly identified and 0 B
iL   for all .Bi U  By defining  

       , , ,
1

 ,
BN

B
j r j i i r

i

z L y


    (2.7) 

the estimator (2.6) can be expressed as a usual Horvitz-Thompson (HT) estimator on the z  values referring 

to the AU  population, 

      , . ˆ
A

B A
r j r j

s

Y z w   (2.8) 

Therefore, the variance  ˆ B
rV Y  of ˆ B

rY  may be expressed as the variance of the HT estimator on the AU  

population. The approximate variance of ˆ B
rY  for fixed size sampling designs is given by 

      2
,

ˆ 1
1 ,m

A

B A A A
r j rA

j U j

V Y M M H 



   

 
  (2.9) 

where ˆ mB A
rY  is the HT estimator based on a general fixed sample size design with m A  units and the 

related vector ,π A  

 , , d βA
j r j r j j rz      

with 

                              1
,

1
1  .β Δ d

A

A
r j j j rA

j U j

z







  

 
   

 

Remark 2.1. An interesting extension of the above framework, useful in case of integrated studies, is the 

case of a total derived from a cross tabulation of a variable of the population AU  with a variable of the 

population .BU  In order to illustrate this extension, let vy  be a variable of AU  with C  modalities and let 

 ,j v cy  denote a dichotomous variable where  , 1j v cy   if the unit j  is characterized by the modality 
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 1, ,  c c C   of ,vy  and  , 0j v cy   otherwise. Furthermore, let ry  be a variable of BU  with G  

modalities and let  ,ik r gy  denote a dichotomous variable where  , 1ik r gy   if the unit k  of the cluster i  is 

characterized by the modality  1, ,  g g G   of ,ry  and  , 0ik r gy   otherwise. The total number of 

units of BU  characterized by the modality  1, ,  g g G   of ry  and linked with units of population AU  

characterized by the modality c  of the variable ,vy  can be defined as 

        ,, , , , ,
1 11 1

,
BA B BiMN N N

B
j ikc g j v c ik r g i c g

k ij i

Y l y y y
  

     

where      ,, , , ,1 1
 .

BA
iN M

j iki c g j v c ik r gj k
y l y y

 
    

As an example, let us consider the case, illustrated in the introduction, of an integrated analysis 

examining the productivity of farms and the malnutrition of households, and suppose that  ,
B
c gY  represents 

the total of persons with a malnutrition problem in the households of workers of farms characterized by an 

high productivity. In this case  ,j v cy  has value 1 if the productivity of the farm j  is high and  ,ik r gy  has 

value 1 if the person k  of the household i  has a problem of malnutrition. 

The GWSM estimator of  ,
B
c gY  can be obtained directly from expression (2.8) using the transformed 

variable  , , , ,1
.

BN
B

j r j i i c gi
z L y


    

 
3  Problem 
 

Given the above framework, we are interested in finding the vector  1 , , , ,  π A
A AA A

j M       of 

inclusion probabilities that minimizes the expected survey cost bounding the sampling variances, 

 ˆ mA A
vV Y  1, ,v V   and  ˆ mB A

rV Y  1, ,r R   under given variance constraints: 

  
 

*

*

min   

 1, ,

 1, ,

0 1   1,

ˆ

ˆ

,

m

m

A

A
j j

j U

A A
v v

B A
r r

A A
j

c

V Y V v V

V Y V r R

j M







   





  

  





  







 (3.1) 

where m A  is given by the π A  vector minimizing the cost function, *
vV  1, ,v V   and *

rV

 1, ,r R   are the variance thresholds fixed by the sampling designer and jc  is the variable cost for 

observing the unit j  in the population AU  and the ,1

BN
A B
j j ii

L L


   linked units in the population .BU  In 

other words, we want to obtain the optimal selection probabilities that will minimize the variance of 

estimates obtained for both AU  and .BU  For the agricultural example, this would translate to developing 

optimal selection probabilities that will lead to estimates for the population of farms, as well as the 

population of rural households, with specified precision.  

A reasonable expression of  jc  is 

  , ; ,A A B
j c jc f C L C  (3.2) 
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where  cf  is a known monotone non-decreasing function, AC  is the per unit cost for observing a unit in the 

population AU  and BC  is the cost for observing the elementary unit in the population .BU  Brewer and 

Gregoire (2009) propose an extensive analysis of different forms of costs functions.  

The minimization problem (3.1) is a generalization of the univariate precision constrained optimization 

approach (Cochran, 1977). The problem (3.1) assumes that all the values , ,j vy , ,i ry ,A
jL , ,B

j iL ,B
iL β v  and 

β r  are known. In this case, problem (3.1) becomes a classical Linear Convex Separate Problem (LCSP) 

(Boyd and Vanderberg, 2004) and it can be solved by the algorithm proposed Chromy (1987), originally 

developed for multivariate optimal allocation in an SSRSWOR design and implemented in standard 

software tools. (See for example the Mauss-R software available at: http://www3.istat.it/strumenti/metodi/ 

software/campione/mauss_r/.) Alternatively, the LCSP can be dealt with by the SAS procedure NLP as 

suggested by Choudhry et al. (2012). The vectors β v  and β r  depend on the vector .π A  Falorsi and Righi 

(2015) define a new algorithm which finds the optimal solution taking into account the dependence between 

β v  and β r  with the optimal vector .π A  

 
4  Informative contexts and optimization problem 
 

Optimization problems as presented in (3.1) are quite theoretical since one needs to know the values of 

the variables of interest in both populations AU  and ,BU  and the values of actual links among the units of 

the two populations. We now present three more concrete contexts involving various amount of information. 

We start from two contexts in which the information is very rich, whereas the third context considers a case 

in which the information is very poor. The latter context is the most common, although the growing 

availability of administrative registers and statistical software tools for data integration increases the 

plausibility of the first two contexts. 

 

Context 1. The sampling frames for AU  and BU  are available. All the values ,A
jL ,

B
j iL  and  B

iL  are known 

and the values of , ,j vy ,i ry  are unknown but can be predicted by suitable superpopulation models. 

 

This context may be realistic in countries, such as the Nordic ones, having well established register-

based systems (Wallgren and Wallgren, 2014) in which the units of a given statistical register have unique 

identifiers of good quality, which allows identification of the same unit in the whole systems of registers. 

For the agricultural example, this means that one can link each farm to one or more rural households, and 

each rural household to one or more farms. 

The working models that we study can be expressed under the following forms: 

 
 

   
 

 

   
 

, , , ,, , , ,

2 22 2
, , ,, , ,

,, , ,

;  ;

0, ,   0, ,

,  0,  , 0,

,

Unit level Cluster lev

x φx φ

el

r rv v

rv

i r i r i r r i r i rj v j v j v v j v j v

M i r M i r i rM j v M j v j v

M i rM j v l v i r

y y u f uy y u f u

E u E u iE u E u j

E u u i iE u u j l





       

    

   

 
 
 
     


 

(4.1)
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where, omitting the subscripts for sake of brevity, x  are vectors of predictors (available in the two sampling 

frames), φ  are the vectors of regression coefficients and  ;x φf  are known functions, u  are the error 

terms, y  are the predicted values and  ME   denote the expectations under the models. The predictors x  

in the unit and cluster level models can be different. We assume that the parameters of the models are known, 

although in practice they are usually estimated.  

Even if the model  rf   is not known, the model expectations at cluster level for the population BU  can 

be derived from a model defined at elementary unit level, indicated with   .ref   The elementary unit level 

model can be stated as  , , , , ;;x φik r ik r ik r re ik r ik ry y u f u     , 0;
reM ik rE u   2 2

, ;
reM ik r rE u   

2
, ,

( , )  ;
reM ik r r rik r

E u u k k 


     , ,
, 0 ;

reM ik r i k r
E u u i i

 
     where r  is the intra-cluster 

correlation. 

The model expectations at cluster level on the right-hand side of (4.1) can be easily derived as:  

     2 2
, , , , ,

1

; 1 1 ; , 0
B
i

r

M

B B
i r ik r i r i r i r M i r i r

k

y y M M E u u  



        for  .i i    

Note that the working models (4.1) are variable specific. They are introduced as useful tools for 

developing the sampling design, but they are not necessarily representing exactly the real models generating 

the data. 

According to (4.1), the model predictions and the variances of the z  variables are given by  

  , , , ,
1

B

r

N
B

M j r j r j i i r
i

E z z L y


       and      2
2 2

, , , ,
1

 . 
B

r

N
B

M j r j zr j i i r
i

V z L 


     (4.2) 

Thus, in the optimization problem (3.1), the variance terms,  ˆ mA A
vV Y  and   ,ˆ mB A

rV Y  are replaced by 

the Anticipated Variances. Denoting with  E   the expectation under the sampling design, the anticipated 

variance (AV) of ˆ A
vY  may be reformulated as follows:  

        2ˆ ˆ ˆ ˆAV .
v v v

A A A A A A A
v M v v M v v M v vY E E Y Y E V Y Y V E Y Y       

We have 

   0ˆ ,A A
v vE Y Y    

and 

                                            2
,

ˆ 1 .ˆ 1
m

A

A A A A
v v v j vA

j U j

V Y Y V Y 



    

 
   

The same result may be derived for the estimate ˆ .B
rY  Thus, we obtain the following expressions:  

     2
,

1
A ˆV 1 )ˆ (m

v v
A

A A A
v M v M j vA

j U j

Y E V Y E 



   

 
  (4.3) 
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      2
,

ˆ ˆ 1
AV 1m

r r
A

B B A
r M r M j rA

j U j

Y E V Y E 



   

 
  (4.4) 

where  2
,vM j vE   and  2

,rM j rE   are given by expressions (A.2) and (B.2) of Appendices A and B.  

The problem (3.1) for searching the optimal π A  vector is then reformulated as follows: 

  
 

*

*

min                        

1ˆ , ,

1, ,

0 1

ˆ

.1 , ,

m

m

A

v

r

A
j j

j U

A A
M v v

B A
M r r

A A
j

c

E V Y V v V

E V Y V r R

j M







   

   

 









 







 (4.5) 

Remark 4.1. The anticipated variances in (4.5) have cumbersome formulae. A conservative simplified 

expression of  ˆ m
v

A A
M vE V Y  is given in Remark 4.1 of Falorsi and Righi (2015). More simplified 

conservative approximations of both  ˆ m
v

A A
M vE V Y  and  ˆ m

r

B A
M rE V Y  are obtained by approximating 

the sampling design variance with the Poisson sampling variance. We then have 

        2 2
, ,

1ˆ ˆ 1
,1 1 ,  m m

v v r r
A A

A A B A
M v M j v M r M j rA A

j U j Uj j

E V Y E y E V Y E z
  

  
     

  
    

replacing , j   and , j r  by , jy   and , ,j rz  respectively, where  2 2 2
, , ,vM j v j v j vE y y    and 2

,( )
rM j rE z   

2 2
, ,j r j zrz   (see Appendix B). Conservative approximations are a safe choice in this setting, since they 

eliminate the risk of defining an insufficient sample size for the expected accuracies. 

 

Remark 4.2. Lavallée and Labelle-Blanchet (2013) deal with the problem of indirect sampling applied to 

skewed populations by suggesting eight alternative methods for modifying the links, , ,j ikl  to reduce the 

variance of the estimates in the presence of skewed populations, while keeping estimation unbiased. Using 

the methods 2 and 3 proposed by these authors, the algorithm can run by simply replacing the links ,j ikl  by 

weighted links, , ,j ik  in   .ˆ m
r

B A
M rE V Y  

 

Context 2. The links ,j ikl  are not known with certainty but the probabilities of links existing, 

 , ,Pr 1 ,j ik j ikl    are available. 

 

To include the linkage uncertainty in the optimization, we assume the links follow a Bernoulli model 

,lM  , ,B ,j ik j ikl   where  , , 
lM j ik j ikE l   and    , , , 1 .

lM j ik j ik j ikV l     We assume the 

parameters ,j ik  to be known, although in practice they are usually estimated with probabilistic record 

linkage procedures (Lavallée and Caron, 2001). For the agricultural example, such a situation would occur 

when, for instance, the population of farms is linked to the population of rural households using probabilistic 

record linkage because no common identifier exists. In this framework, the anticipated variance must take 

into account both models lM  and .rM  Since  
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        2ˆ ˆ ˆ ˆ
l r l r l r l r

B B B B B B B B
M M r r M M r r M M r r M M r rE E E Y Y E E V Y Y E V E Y Y V E E Y Y         

and   0ˆ ,B B
r rE Y Y   the problem (4.5) can be reformulated as follows: 

 

 

 
 

*

*

min                     

ˆ

ˆ

  

1, ,   
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M v v
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E V Y V v V

E E V Y V r R
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 (4.6) 

where 

            2
,

ˆ 1
1 ,m

l r l r
A

B A
M M r M M j rA

j U j

E E V Y E E 



  

 
  (4.7) 

     Λ ; ,
l

A B
M j c jE c f C   

with ,1
 

BN
A B
j j ii

    and , ,1
 .

B
iM

B
j i j ikk




    

The main results for the derivation of the expression of  ˆ m
l r

B A
M M rE E V Y  are given in Appendix C. 

These are derived using Taylor series approximation and postulating the independence of the process which 

generates the links ,j ikl  with the one that creates the variables of interest , .i ry  Under these approximations, 

the predicted values ,j rz  are obtained as 

           , , ,
1

BN
B

j r j i i r
i

z y


     (4.8) 

where 

 ,
,

B
j iB

j i B
i


 


   

with 

       ,
1

.
AM

B B
i j i

j
    (4.9) 

The uncertainty on total survey costs, which depends both on the selected sample and the model 

uncertainty on costs, obliges us to consider the expected costs  
lM jE c  in the optimization problem. Steel 

and Clark (2014) show how the uncertainty on the expected costs can affect the accuracy of the sample 

design. 
 

Context 3. Data integration is not possible because the record linkage process does not provide good 

linkages, or simply because the frame of population BU  does not exist.  
 

This is the most common context in developing countries. It may also characterize specific survey 

contexts in developed countries, for instance in the case of hard-to-reach populations. Returning to the 

agricultural example, this would mean that one might have a list of farms, but not a list of rural households. 
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In this case, the problem of optimal integrated sampling can be solved by using all the available information, 

even if of poor quality. In the following, three options for dealing with the optimization problem are 

illustrated starting from the option which requires the minimum of information to those which need more 

information that could be expensive to obtain.  

 

Option 3.1. Building the predictions of the z  variables and decreasing the variance thresholds *
rV  by a 

scale factor. Suppose that from the frame of population ,AU  it is possible to know the values of a size 

variable   related to the total links A
jL  of the units .j  For instance, if the population AU  is a population of 

farms and the population BU  is a population of households, then the number of workers in the farms 

(variable )j  can represent a good approximation of the total number of links, ,A
jL  of the farm. Suppose 

further that the totals or the estimated totals,   ,
B

r qY  are available at certain domain level,  
B
qU  1, , ,q Q   

defined at geographic level, with  1

Q
BB
qq

U U


   and    
B B
q qU U     for .q q   Then the predicted z  

variables can be defined as: 

 

 

 ,
A
q

j B
j r r q

ll U

z Y








   for    ,A
qj U  (4.10) 

where  
A
qU  denotes the geographic domain q  for the population .AU  In practice, the ratio approach in 

(4.10) assumes that unit j  can be given a share of the total  
B

r qY  proportional to the size of the unit itself. 

Other examples of building the predictions of the z  values are illustrated in Section 5.3.2 of Guidelines on 

Integrated Survey Framework (FAO, 2015). 

Having determined the predictions, , ,j rz  it may be reasonable to assume that the following relationship 

holds: 

  2 2 2 2
, , , , ,

zrM j r j r j zr r j rE z z k z     (4.11) 

where 1.rk   Under (4.11), it is straightforward to show that  

                                                  ,ˆˆ m m
zr

B A B A
M r r rE V Y Yk V    

where , .ˆ
A

B A
r j j rj s

w zY


    The sampling variance  ˆ mB A
rV Y  may be computed using expressions (2.2), 

(2.3), (2.4) and (2.5) by substituting the variable ,j vy  the prediction , .j rz  The optimization problem for 

searching for the optimal π A  vector can then be reformulated as: 
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min                      
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0 1 1, ,           

ˆ

.

m

m

A

v

A
M j

j U

A A
M v v
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 (4.12) 
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The sample designer may find the solution by running the optimization problem (4.12) with alternative 

reasonable choices of the rk  value ( 2, 3 or 4),e.g., rk   and studying the sensitivity of the different 

solutions. Note that   2

,V ,1 Cr j rk z      where   2
2 2
, ,CV   .jr j zr j rzz      Therefore (4.11) holds if 

the   2

,CV  j rz    values are approximately constant. 
 

Option 3.2. Extremal case of Context 2, with uniformity of links in specific domains. If the number or 

estimated number of clusters and of elementary units  
B
qN  and  

B
qM  of the domains  

B
qU  1, ,q Q   are 

available, then in the absence of information on the links , ,j ikl  it might be reasonable to assume that these 

are homogeneous over the domains; that is,  , , ,j ik j ikl B   where  , .B
j ik j qM   

Furthermore, suppose that, in this context, the predictions ,i ry  and the sampling variances 2
,i r  could 

be assumed to be homogeneous within the domains   ,
B
qU  i.e.,  ,i r r qy y   and  

22
,i r r q   for   .

B
qi U  

Then, the optimization problem may be dealt with as an extremal case of Context 2, with uniformity of links 

in specific domains.  

 

Remark 4.3. Note that with this option, the predictions ,j rz  are equivalent to those expressed in (4.10). 

Indeed, it is reasonable to consider that, in the absence of information, the size in terms of elementary unit 

of the cluster B
iU  can be set as equal to its mean defined at the domain level:      

B B BB
i q q qM M M N   

for   .
BB

i qU U  Then, the following approximations hold  
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r q r q qY y N   and postulating the independence of the process which generates the 

links ,j ikl  with the one that creates the variables of interest , ,i ry  we can obtain  
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Option 3.3. Modeling the ,j rz  values. Another alternative may be carried out by trying to model directly 

the z -values and the total number of links A
jL  with models of the type: 
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 (4.13) 

where x j  and θ j  are vectors of auxiliary variables. The predictions A
j  need to be positive. A useful model 

is the log-linear one (Xu and Lavallée, 2009):  log .θ φA
j j     The model on the right hand side of (4.13) 

allows the prediction of the total number of links A
j  of the unit ,j  thus defining the expected survey cost 

attached to it. The optimization problem could be carried out using the variances of the predictions of the 

models (4.13). 



498 Falorsi, Righi and Lavallée: Cost optimal sampling for the integrated observation of different populations 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

Remark 4.4. Option 3.1 requires the minimum of information for the construction of the predictions ,j rz
and needs us to define of plausible values for the constants .rk  Option 3.2 involves the same information 

as Option 3.1 for the construction of the predictions ,j rz  (see Remark 4.3) but requires an estimate of the 

parameters  
2 .r q  These estimates can be obtained from either pilot or previous surveys conducted directly 

on the population .BU  Option 3.3 is the most complex and expensive, since it involves carrying out indirect 

pilot surveys on the population  AU  for building plausible predictions of the parameters , ,j rz  ,A
j 2

,j zr  

and 2
, .j   

 

Remark 4.5. A good strategy that should be robust against model failure is to select a balanced sample with 

respect to the auxiliary variables .x j  In this case, the auxiliary variables d j  of the balancing equations are 

replaced by the augmented variables  * , .d d x A
j j j j     For the calculation of the variances, the residuals 

,j v  are substituted by the modified residuals  * *
,

*
, ,d βA

j v j v j j vy     where *β v   

   1 1* *
, 1Δ dAA j

A
j j j vj U

y


  with    * * *  1 .Δ d d

A
A A

j j j jj U
 


   For the modified residuals ,

* ,j r  

similar expressions are used. 

 

Remark 4.6. A proportional-to-population-size allocation may be a reasonable strategy for stratified 

sampling designs in which the total sample size Am  is fixed. In this case the stratum sample size, ,A
hm  may 

be defined as   ,
A A
h

A A
h j jj U j U

m m x x
 

    where jx  is the measure of the size.  

 
5  Empirical results 
 

The results herein illustrated are obtained using real data from Districts 7, 8, 9 of the Gaza Province, 

Mozambique. They summarize the empirical results from an evaluation study illustrated in FAO (2014). 

Other empirical results of the proposed strategies (FAO, 2015) have been conducted on the database of 

agricultural households from Burkina Faso’s General Census of Agriculture and confirm the general results 

illustrated below.  

In the analysis using Mozambique data, the population AU  refers to farms. The database used for the 

experimentation include environmental and economic variables and gathers the information from the 2007 

census of large and medium farms and from a sample survey of small farms (for the same year). The overall 

number of records is about 36,890, of which 890 are large and medium farms.  

The second population, ,BU  is the 2007 household census. The database’s records are the individuals 

involved in agricultural, fishing, or forestry activities. The database contains approximately 54,000 records 

and includes several socio-demographic environmental and economic variables. The databases of the two 

populations were merged, creating a Master Sampling Frame (MSF) with artificial links between individuals 

and farms. The merging procedure exploited the following variables: for individuals, the type of job and the 

district of residence; for farms, the sector, the district and the number of employed persons by type of job. 

Before merging, a cleaning step of BU  was carried out, discarding records that did not feature the job type 

variable (approximately 9,000 records). Subsequently, approximately 36,000 records of BU  declare to be a 
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farmholder without any employed persons. For these cases, a one-to-one farm-individual link was defined. 

The remaining individuals were linked with the 890 farms, according to the following hierarchical rules: 
 

 Each farm was linked to a number of individuals equal to the number of workers, depending upon 

job type;  

 Individuals and farms in the same district were linked;  

 Individuals were linked with private/public governmental farms when the type of employment and 

the farm sector agree.  
 

The links were generated randomly, according to the categories defined by the hierarchical rules. The 

exercise did not seek to predict the links that actually exist in the two populations, but rather to create a 

realistic dataset for the evaluation. 

Although the datasets of the two populations include several variables, in this study we have decided to 

focus on two of these. For ,AU  we consider the number of animals, while for ,BU  we consider the number 

of trees. This is in order to better highlight the impact (in terms of both accuracy and sample size) that the 

different contexts, described in Section 4, have on the sample of the population .BU  Summary statistics on 

these variables are shown in Table 5.1.  

 
Table 5.1 
The variables used in the simulation with data from Mozambique 
 

Population* Number of records* Variable Mean value %CV** 

:AU  Farms 36,890*** Number of animals 11.1 681.6 

:BU  Households 45,000 Number of trees 4.5 107.5 

* Districts 7, 8, 9 of the Gaza Province, Mozambique.
** %CV = (population standard deviation/mean) 100. 
*** From these, 890 are large and medium farms.

 
For both populations, we have considered as domains of interest the districts (3 domains) and the 

province (1 domain). Therefore, in total we consider 8 target totals of interest (2 variables   4 domains).  

 
5.1  Optimal designs for the different contexts  
 

In the following, we address four contexts:  

Context 0. No control on the sample of the population . BU  The sample is planned, controlling only the 

accuracy of the estimates of the variables of the farms. Once the sample for AU  is selected, the units of 

,BU  linked to those selected for the sample of the AU  population are included in the sample via the indirect 

sampling mechanism. The expected percent CVs, %CV, of the estimates obtained from the indirect sample 

of households are then computed as   %CV AV 1ˆ 00.Y Y   

Context 1. Sampling frames exist for both populations. All links are known and an integrated sample design 

is used, finding an optimal solution considering both populations. Therefore, the multivariate allocation is 
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carried out, controlling the accuracy of estimates from both the direct sample of farms and the indirect 

sample of individuals.  

Context 2. Sampling frames exist for both populations, but links are estimated probabilities and an 

integrated sample design is used.  

Context 3. A frame exists only for the population .AU  An integrated sample design is studied considering 

Options 3.1 and 3.2, which represent the most feasible solutions in real contexts. 
 

Contexts 1, 2 and 3 are those defined in Section 4. Context 0 is introduced because it represents a useful 

tool for the evaluation of the integrated strategy. 
 

A stratified sampling mechanism is assumed for the first population ,AU  where the strata A
hU  are 

defined as districts (7, 8 and 9) by size class (1, 2, 3-4, 5-9, 10-19, 20-49, 50-99, 100+) based on the number 

of farm workers, thus obtaining 21 strata. As regards models (4.1), we considered mean stratum models 

with  , ,j v v hy y   and  
22

, ,j v v h   for .A
hj U  These specifications lead to a standard SSRSWOR design 

for the farms where the strata coincide with the planned domains (see Falorsi and Righi, 2015, Remark 4.2). 

For the evaluation we used the exact formula of the variance for a SSRSWOR instead of using the 

approximation of variance for a SSRSWOR given in Section 2; however the two expressions are 

substantially equivalent. For ,BU  we also consider a mean model, defined at district level ,d  with 

 , , ,i r r dy y   and  
22

, , i r r d   for .B
di U  

The evaluation studies use software, developed in the R  language, that implements the optimal sampling 

for the standard SSRSWOR designs as well as for more general sampling designs (e.g., balanced designs 

and incomplete stratification designs). It is available at http://www.istat.it/en/tools/methods-and-it-

tools/design-tools/multiwaysampleallocation). Once installed, the software features a comprehensive user 

guide in English. Another software which considers only the SSRSWOR designs is MAUSS-R available at 

http://www.istat.it/it/strumenti/metodi-e-software/software/mauss-rdownload.  

For each context, the variance constraints are expressed in terms of %CVs. The analyses presented in 

this section are focused on the contexts, and we use a symplified version of the cost functions. The cost jc  

for observing the unit j  in the population AU  with the linked units in the population BU  is fixed as equal 

to 1. More detailed analyses on costs are presented in Section 5.2. 

Some further specifications for each context are herein illustrated (see Table 5.2).  

Context 0. The variance constraints are fixed (only for the farm estimates: number of animals) at 6.5% at 

the province level and at 10% at the district level, resulting in a sample of 2,122 farms. 

Context 1. The constraints for the farm and household estimates have been fixed so as to determine a sample 

roughly of 2,100 farms. In this way, the variance constraints are fixed for the farm estimates, animals at 

10% at the province level and at 15% at the district level. Those for the household estimates are fixed at 

2.5% at the province level and 5% at the district level. Note that this choice of constraints makes it possible 

to carry out the comparison between the two contexts with roughly the same sample size, even if in 

Context 1, the variance constraints on the estimates of the population AU  are larger than those fixed in 

Context 0. 
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Context 2. The CV constraints for the household and farm estimates are equal to those adopted in Context 1. 

The integrated observation is planned in the sample design phase by taking into account the uncertainty in 

the links. This has been carried out by considering a simplified model which assumes that, for each worker 

in a given farm, there is only one strong link (with value )  with an individual in the population of 

households and   weak links (with value )  with other individuals in the same district, where   and   

are probabilities, where .   Let ,j ikl   denote the link between the worker   of the farm j  and the 

individual k  of the household i  and suppose that these links follow a Bernoulli model ,lM  where  

  , ,

for only one worker and one individual  
 ,

for only one worker and individuals  l

A B

M j ik j ik
A B

j U ik U
E l

j U ik U
 

 


  

 
  

 
 (5.1) 

in which 1 .
   

In the simulation we have considerered different combinations of values of the probabilities of strong 

links, ,  of weak links, ,  and of the number of individuals, ,  with a weak link. These combinations are 

illustrated in Table 5.3. 

Context 3. The CV constrains for the households and farms estimates are equal to those adopted in 

Context 1. In Table 5.3, we derived the allocation considering the Option 3.2, proposed for Context 3. The 

results of Option 3.1 are presented at the end of this section.  

Finally, note that for all the three contexts, the optimization problem has been set up in terms of .A
j  

With a SSRSWOR design, this may be seen as a problem of allocation for stratified sampling. 

 
Table 5.2 
Variance constraints in the different contexts 
 

Contexts 
Variance Constraints*

:AU  variable Animals :BU variable Trees 
Province District Province District

Context 0 6.5% 10% No constraints No constraints
Context 1 10% 15% 2.5% 5%
Context 2 10% 15% 2.5% 5%
Context 3 10% 15% 2.5% 5%
* Expressed in terms of %CV. 

 
Table 5.3 
Main results of the evaluation 
 

Contexts Sample size Realized Coefficent of variations (%) 
:AU variable Animals :BU  variable Trees

Province District Province District
7 8 9 7 8 9

Context 0 2,122 6.5 10.0 10.0 10.0 1.5 6.8 12.7 1.4
Context 1 2,106 8.8 7.5 4.1 15.0 1.8 5.0 5.0 2.0
Context 2   0.90,   0.10,   1 2,146 8.8 7.2 4.1 15.0 2.2 5.0 5.0 2.4

  0.50,   0.10,   5 2,573 7.5 6.5 4.0 12.7 2.5 5.0 5.0 2.8
  0.30,   0.08,   9 2,767 7.0 6.4 4.0 11.9 2.5 5.0 5.0 2.8
  0.10,   0.09,   9 2,826 6.9 6.2 4.0 11.6 2.5 5.0 5.0 2.8

Context 3 Option 3.2 2,936 6.6 6.2 3.9 11.2 2.5 5.0 5.0 2.8
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Looking at the main results of the evaluation, highlighted in Table 5.3, the following evidences emerge: 
 

Context 0 vs Context 1. In the two contexts, the farm sample size is of about 2,100 farms. 

 For Context 0, the expected %CVs of the farm estimates at the district level are exactly at the 

constraint level of 10%, defined for this context. 

 In Context 1, we see that all the %CVs of the farm estimates at district level respect the constraints 

of 15% (defined for this context), being however considerably lower than 10% for the districts 7 

and 8, showing that these districts are somewhat oversampled with respect to the target precisions. 

This is because in the second allocation, part of the farm sample is required to achieve the required 

indirect sample of households (FAO, 2014, studies this inefficiency issue in great detail).  

 Considering now the precision of the estimates for the population ,BU  we found that the 

expected sample sizes of households were approximately 5,300 records in both contexts. In 

Context 0, the %CVs are much higher than the desired level of 5%, being even larger than 12% 

in the District 8. With the sampling allocation resulting from Context 1, the desired precision of 

the estimates of population BU  are always respected, as well as those of population ,AU  even 

if the constraints for these estimates have been defined larger than those adopted in Context 0. 

 Thus, the integrated approach to the sampling allocation carried out in Context 1 enables control 

of the precision of the estimates for both populations of interest, however paying some loss in 

precision for the estimates for population .AU  
 

Context 1 vs Context 2. For the comparison between the Contexts 1 and 2, the analysis focuses upon 

the overall sample sizes, since the %CVs are under the constraint levels in both contexts. 
 

 In the presence of strong links for Context 2 ( 0.90, 0.10, 1),      there is only a small 

increase in the sample sizes (40 farms), while the CVs remain under the desired level of precision, 

altough being slightly increased for the household estimates. 

 As the links become weaker, the sample sizes increase significantly. This is due to the 

achievement of the expected %CVs for the household estimates. 

 Conversely in Context 2, the expected CVs for the farm estimates are lower than the targeted 

levels, suggesting that the the farms are somewhat oversampled with respect to the target levels 

of precision. 

 

Context 3 vs other contexts. Having considered the Option 3.2 in Table 5.3, Context 3 may be 

considered as an extremal case of Context 2. Even in this case, the analysis focuses on the overall sample 

sizes, since all the %CVs are under the constraint levels: 
 

 The maximization of the links uncertainty, represented by Option 3.2, causes an increase in the 

sample size of about 30%: from the sample size of 2,106 to that of 2,936. 

 Examining Context 2, we note that we obtain results similar to those of Context 3 when the level, 

,  of the strong link is around 10%. 
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 Even in this case, the farms are somewhat oversampled with respect to the target levels of precision. 

 

More detailed analysis of Context 3. Below, some more detailed analyzes are illustrated, aimed at better 

clarifying some aspects of the problem of sampling allocation for the integrated observation of two related 

populations. We explore Option 3.1 and the proportional allocation proposed in Remark 4.6 because of their 

practical importance. For the proportional allocation, we considered as measure of size (see Remark 4.6) 

the total number of employed people. The ,j rz  are obtained by expression (4.10). In this context, we have 

to define the rk  value. In order to identify a single rk  value, we exploited the data of Context 1 and first 

computed for each stratum the coefficent of variation of , ,j rz  ,CV  .h rz  Then, specific rk  values were 

computed at stratum level, as   2

,1 CV  hr h rk z      and finally the rk  value considered in this evaluation 

was obtained as a weighted mean of the hrk  values: , .r h r hh
k k w   We computed the weights hw  with 

two different alternatives, resulting in the two values: 2.75rk   and 2.16.rk   With the first alternative, 

the hw  were defined proportional to the sum of the weights A
jL  at stratum level; while in the second 

alternative, the hw  were defined proportional to the quantity  , ,CV   B
h r r hz Y ,A

hN  where ,
B

r hY  and A
hN  are 

the mean value of variable ry  and the number of units in the stratum, respectively. For each alternative, we 

ran the problem (4.12), with the constraints defined in Table 5.2 for Context 1, obtaining an overall sample 

size, ,An  equal respectively to 1,639 and 1,517. The main results of the experiment are illustrated in 

Table 5.4, in which for both rk  values we show: (i) the expected %CVs, obtained as solution of problem 

(4.12) under the hypotesis that relation (4.11) holds; (ii) the true expected %CVs, that is, those obtained 

under Context 1 on the basis of the stratum sample sizes defined by the solution of the problem (4.12); and 

(iii) the true %CVs obtained, under Context 1, with the proportional allocation proposed in Remark 4.6.  

 

Table 5.4 
Expected and realized %CVs of the domain estimates of total number of trees with the sampling allocation 
obtained as solution of problem (4.12) and proportional allocation 
 

Estimation 
Domains 

rk  2.75, An  1,639 rk  2.16, An  1,517 

Expected 
%CV, 

obtained as 
solution of 
problem 
(4.12), 

assuming that 
(4.11) holds  

True expected 
%CV, under 

Context 1, with 
allocation 
defined by 

(4.12) 

True expected 
%CV under 

Context 1, with 
proportional 

allocation 

Expected 
%CV, 

obtained as 
solution of 
problem 
(4.12), 

assuming that 
(4.11) holds 

True expected 
%CV, under 

Context 1, with 
allocation 
defined by 

(4.12) 

True expected 
%CV under 
Context 1, 

with 
proportional 

allocation 

Province 2.11 1.94 1.76 2.11 2.04 1.83
District 7 4.95 6.80 6.10 4.95 8.20 6.34
District 8 4.99 6.45 13.23 4.99 6.45 13.79
District 9 2.36 2.0 1.81 2.36 2.0 1.88

 
The main findings of this evaluation are the following: 

 

 The strategy proposed by Option 3.1 seems to be effective, since it allows control of the sampling 

errors, avoiding the situation where these exceed by a large amount the desired accuracy for the 

different estimation domains. 
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 With the use of a unique ,rk  the true expected %CVs (columns 3 and 7 of the Table 5.4) for some 

estimation domains are larger than the defined benchmarks and, in some others, the estimates are 

much more accurate than required. 

 The choice of a larger value of the rk  parameter seems to be a safe choice, if the main objective of 

the sampling allocation is to avoid sampling errors in specific estimation domains that are too large. 

 Even if it seems effective for the accuracy of the overall estimate at province level, the proportional 

allocation (columns 4 and 8 of the Table 5.4) does not allow control of extremal discrepancies from 

the expected accuracy in some estimation domains (see district 8). 

 
5.2  Evaluation on costs  
 

This evaluation considers Context 1 in which the sampling frames for both populations are available, 

and in which it is possible to build an integrated observation of the two populations. We focus on two 

observational strategies: the first considers two independent samples, one for farms and one for individuals. 

Therefore, a truly integrated analysis cannot be performed. The second observational strategy applies an 

integrated sampling design that selects a direct sample of farms and an indirect sample of the households of 

the workers of the sampled farms. 

We adopted the variance constraints established for the Context 1 (see Table 5.5). 

 
Table 5.5 
Variance Constraints in the evaluation on costs 
 

Variance Constraints *

:AU  variable Animals :BU  variable Trees 

Province District Province District 
10% 15% 2.5% 5% 

* Expressed in terms of %CV. 

 
For the direct sampling designs, we adopted a SSRSWOR design, where the population AU  was 

stratified by crossclassfying the districts and the size classes of the farms, and the population BU  was 

stratified by district. The cost for interviewing the farms varies ( 1, 2, 5 and 10),AC   which leads to 

performing four different evaluations. The cost BC  for interviewing an individual is set equal to 1.  

For indirect sampling designs, we define the overall cost of interviewing the farm and the farms workers 

together by two different specifications of equation (3.2): 

 ,A A B
j jc C L C   (5.2) 

     .A A B
j jc C L C   (5.3) 

The increase of the cost function (5.3) is lower than the increase of the cost function (5.2) when A
jL  increases. 
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We perform a precision-constrained optimal allocation for both independent sampling designs. The 

different AC  values (1, 2, 5 and 10) do not affect the farm sample size while the costs increase 

proportionally. Given the variance constraints in Table 5.5 with the independent strategy, the sample sizes 

of farms and individual are respectively 1,010 and 3,388. The total cost is then 4,398 when setting 1.AC   

In the integrated sample strategy, the costs do affect the allocation, essentially because if the farm interview 

costs increases, the number of sampled farms decreases and the allocation increases sample sizes of strata 

with the largest farms. 

Table 5.6 below shows the sample sizes of farms and the expected sample sizes of individuals when cost 

model (5.2) is used to calculate the costs of individual interviews in the integrated allocation. We see that 

the farm sample is more than double the sample size, considering farms alone (1,101). The increase in size 

is due to precision constraints on the household estimates. 

 
Table 5.6 
Sample sizes for the integrated sample allocation, when the overall individual costs are given by (5.2) 
 

Cost per farm interview  AC  1 2 5 10 

Farms  2,388 2,289 2,190 2,137 
Individuals  4,504 4,491 4,862 4,905 

 
Table 5.7 below shows the allocation when equation (5.3) is used for the cost of individual interviews in 

the integrated allocation. 

 
Table 5.7 
Sample sizes for the integrated sample allocation, when the overall individual costs are given by (5.3) 
 

Cost per farm interview  AC  1 2 5 10 

Farms  2,135 2,121 2,111 2,108 
Individuals  4,834 4,874 5,283 5,360 

 
Tables (5.6) and (5.7) show that the integrated sample size of farms is roughly twice that of the 

independent allocation of farms. Thus the expected variance of the estimates will be much lower than the 

desidered variance constraints, suggesting that integrated sample allocation mainly depends on the variance 

constraints related to the individual parameters to be estimated.  

Figures 5.1 and 5.2 show the cost for independent and integrated sampling. The integrated observational 

strategy is generally more expensive, except when the cost per farm interview is equal to 1 and the cost 

function given by (5.3). In this evaluation, the integrated nature of the sample is not needed as no cross 

tabulation of population AU  variables with population BU  variables are examined; then, the independent 

allocation will be more efficient in term of precision. Another cost function could however partially 

rebalance the two observational strategies in term of costs.  
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Figure 5.1  Overall costs integrated vs two independent allocations using (5.2). 
 

 

 

 

 

 

 

 

 

 
 

Figure 5.2  Overall costs – integrated vs two independent allocations using (5.3). 

 
6  Conclusions 
  

In this paper, we studied the problem of the definition of optimal sampling designs for survey strategies 

aiming at observing in an integrated way different statistical populations related to each other. This is 

particularly relevant in the agricultural sector where the integrated observation allows measurement of 

global phenomena that affect different statistical populations such as farms and households. The integrated 

observation is realized by directly sampling the first population and indirectly observing the second 

population, exploiting the links existing among the units of the two populations. We studied the problem 

considering three different contexts concerning information about the links. These range from two contexts 

in which the information is very rich, to the third context considering a case in which the information is very 

poor. The uncertainty on variables of the two populations, on links and on the z  variables (built by the 

indirect sampling mechanism) is treated by introducing suitable superpopulation models for which expected 

values (of first and second order) are considered as known when launching the algorithm for the optimal 

sampling. Empirical studies were performed on real data of a developing country: Mozambique.  
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The main conclusions are summarized as follows. 
 

Integrated vs independent observation. The integrated observation is essential to measure thoroughly global 

phenomena which impact on different populations. The main advantage is that it allows the cross tabulation 

of population AU  variables with population BU  variables. Furthermore, the integrated observation is 

necessary when the frame for the population BU  does not exist and an indirect sampling mechanism is 

needed. This is the case examined in Context 3. However, for Contexts 1 and 2, if only aggregates are 

examined independently from each other in the two populations, the independent allocation will be more 

efficient. 
 

Cost issues. The loss in efficiency of the integrated observation can be reduced if, as assumed with cost 

function (5.3), the average cost of observing the elementary unit of BU  decreases when the size of the 

indirectly observed clusters increase. In this case, the performance of the integrated sample allocation and 

of the two independent allocations could be closer or similar as in the evaluation study. Nevertheless, it is 

complex to establish which relationship between AC  and BC  leads to two strategies with similar costs, 

since the allocations depend on not only on the cost of interview but also on the variability of the target 

parameters in the two populations and on the set of variance constraints. 
 

Controlling the errors in the design phase. The integrated approach to allocation enables the CVs of the 

estimates for integrated populations to be controlled. If this is not done, the CVs of the indirectly observed 

population might be very high.  
 

The impact on the uncertainty on the sample sizes. An increase in the model variances (on the variables or 

on the links) causes a significant increase in the sample sizes. This stresses the need of having good models 

for predicting the unknown variables or the links. 

 

Appendix A 
 

To obtain the model expectation  2
, ,

vM j vE   let  ,η j vv   be the AM  vector of residuals, where 

  1 ,η Y ΠDΔ D I Π Yv v v
     (A.1) 

where  ,Y j vv y  denotes the AM  vector with the values of thv  variable of interest and  diagΠ A
j  

indicates the diagonal matrix with the AM  inclusion probabilities. According to model (4.1), the vector Yv  

may be expressed as ,Y Y uv v v   where  ,Y i vv y   and  ,u i vv u  denotes the AM  vectors of 

predictions and model residuals. Adopting the above matrix notation, the specific residuals ,j vη  can be 

expressed as      1
, , , .d Δ D I Π Y uj v j v j v j j v vη y u         Therefore, the model expected values 

of the squared terms are given by: 
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where  ,σ j vv   is the AM  column vector of model standard errors of the V  variables and 

 2
,0, , , , 00

vj j v      is a vector in which the thj  element is equal to 2
,j v  and all other elements are 

zeroes. Using the above matrix notation and according to Falorsi and Righi (2015), the anticipated variance 

can be approximated by the following expression: 

      1 1
3,

ˆ AAV .m Y Π Y σ Π σ Y Y σ σ
v

A A A A
M v v v v v v v v v vE V Y M M H                      

Letting 1 1( ) , ( )a DΔ D I Π Y b σ DΔ D I Π σv v v v v
        and 1diag ( ) (c σ DΔ D I Π Iv v

    [  
1) ,Π DΔ D σ v

 ]  we then have        3,AAV 2 2 ,a I Π Y Πa 1 I Π b Πcv v v v v v        where the 

scalars defined as (A.1.4), (A.1.7) and (A.1.8) in Falorsi and Righi (2015) are respectively the elements of 

the vectors ,a v b v  and .c v  

 

Appendix B 
 

Adopting the matrix notation, the residuals ,j rη  can be expressed as 

      1
, ,l Y u δ Δ D I Π L Y uj r j r r j j r rη           (B.1) 

where  ,L B
j iL   is the A BM N  matrix of standardized links, and  ,Y i rr y  and  ,u i rr u  denote 

respectively the BN  vectors with the values of the predictions and of the residuals of the thr  variable of 

interest being l j  is the thj  row of the matrix .L  Therefore, the model expected values of the squared terms 

is given by: 
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where  ,σ j rr   is the BN  column vector of model standard errors of the ry  variables. Following the 

above notation, we have: 
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Appendix C 
 

Starting from (B.2), we have: 
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The above expected value can be easily derived based on the following general result. Let  ,A j j
a
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Equation (C.2) is derived from the following result. For i i   and ,j j   we obtain 
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Let  a ja  be a generic AM  vector. The generic element 
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A grouping genetic algorithm for joint stratification and 
sample allocation designs 

Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim1 

Abstract 

Finding the optimal stratification and sample size in univariate and multivariate sample design is hard when the 
population frame is large. There are alternative ways of modelling and solving this problem, and one of the most 
natural uses genetic algorithms (GA) combined with the Bethel-Chromy evaluation algorithm. The GA iteratively 
searches for the minimum sample size necessary to meet precision constraints in partitionings of atomic strata 
created by the Cartesian product of auxiliary variables. We point out a drawback with classical GAs when applied 
to the grouping problem, and propose a new GA approach using “grouping” genetic operators instead of 
traditional operators. Experiments show a significant improvement in solution quality for similar computational 
effort. 

 
Key Words: Grouping genetic algorithm; Optimal stratification; Sample allocation; R software. 

 
 

1  Introduction 
 

In this paper we address the optimization problem of jointly determining stratification and sample 

allocation for univariate and mulitivariate scenarios. To serve this purpose, we refer to (Ballin and Barcaroli, 

2013). In principle the optimal stratification (i.e., that which yields the smallest sample size) can be found 

by testing all possible partitionings of atomic strata, but the number of possible partitionings grows 

exponentially with the number of atomic strata. 

An efficient search algorithm is necessary to avoid evaluating each possible partitioning. Genetic 

algorithms (GAs) often converge quickly to optimal or near optimal solutions, and are particularly good at 

navigating rugged search spaces containing many local minima. The Bethel-Chromy algorithm combines 

similar algorithms from (Bethel, 1985, 1989) and (Chromy, 1987) and is suitable for univariate and 

mulitivariate cases. It uses lagrangian multipliers to find the minimum sample size that meets precision 

constraints for a given stratification. (Ballin and Barcaroli, 2013) combine a GA with this algorithm to 

search for the minimum sample size. It is used to evaluate each partitioning created by the GA. A full 

description of the methodology and problem statement is found in (Ballin and Barcaroli, 2013). However, 

they use a classical GA which is known to be unsuitable for partitioning problems. 

In this paper we propose to apply genetic operators to the GA that are better suited to this application. It 

is an example of the class of evolutionary algorithms called Grouping Genetic Algorithms (GGAs). The GA 

has been updated following this work (Barcaroli, 2019). Section 2 motivates the work and introduces GGAs. 

Section 2.3 describes our GGA for the problem. Section 3 compares the original GA with our GGA on 

publicly-available test data. Section 4 describes a version of our GGA with enhanced performance, using a 

fast C++ implementation of the bethel.r function which we integrated into R using the Rcpp package. 

Section 5 concludes the paper. 
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2  Classical vs grouping genetic algorithms 
 

In this section we discuss “classical” and “grouping” GAs, and explain why the latter are more 

appropriate for our problem. 

 
2.1  Classical genetic algorithms 
 

GAs are a nature-inspired class of optimisation algorithms, modelled on the ability of organisms to solve 

the complex problem of adaptation to life on Earth. The variables of an optimisation problem are called 

genes and their values alleles. A candidate solution is a list of alleles called a chromosome. A set of 

chromosomes is usually called a population, so to avoid confusion with the target population we shall use 

chromosome population when referring to GAs. The objective function (which is maximised by convention) 

is called the chromosome’s fitness. The search for fit chromosomes (solutions with high objective) uses two 

genetic operators: small random changes called mutation, equivalent to small local moves in a hill-climbing 

algorithm; and large changes called crossover in which the genes of two parent chromosomes are 

recombined. One well-known recombination operator is single-point crossover: choose two parent 

chromosomes with alleles  

 1 1, , , , ,N Na a b b    

select a random integer i  (the crossover point) such that 1 < ,i N  and generate two new offspring 

chromosomes  

 1 1 1 1, , , , , , , , , , .i i N i i Na a b b b b a a       

These might be further subjected to random mutation, in which a few alleles are changed, before placing 

them back into the chromosome population. There are a variety of methods for selecting parents and 

replacing existing chromosomes. In generational GAs the entire chromosome population is replaced by 

offspring, and parents are often selected randomly but with a bias toward fitter chromosomes; while in 

steady-state GAs only one offspring is generated in each GA iteration, and usually replaces the least-fit 

chromosome in the chromosome population. GAs often give more robust results than search algorithms 

based on hill-climbing, because of their use of recombination. They have found many applications since 

their introduction in 1975 by John Holland. 

The original GA which is represented in the R  (R Core Team, 2015) package SamplingStrata (Barcaroli, 

2014), is an elitist generational GA in which the atomic strata L  are considered to be elements of a set (or 

genes) for a standard crossover strategy. In each iteration the best solutions (the elite) are carried over to the 

next generation. Each gene represents a variable in the problem. We refer to this as a classical GA because 

a classical problem representation and genetic operators are used, as described below. 

Dividing atomic strata into disjoint groups is an example of a grouping problem, related to cutting, 

packing and partitioning problems. The motivation for our work is that classical GAs are known to perform 
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poorly on grouping problems. The reason is that the chromosomal representation of a grouping contains a 

great deal of symmetry (or redundancy): permuting the group names yields an equivalent grouping, so each 

grouping has multiple representations. Symmetry has a damaging effect on GAs because recombining 

similar parent groupings might yield a very different offspring grouping, violating the basic GA principle 

that parents should tend to produce offspring with similar fitness. In extreme cases, a classical GA might 

perform even worse than a completely random search. We provide two examples to illustrate the problem. 

To illustrate the problem with symmetry in our first example the parents represent the same grouping in 

different ways. Note that to increase readability, letters A - F are used as alleles instead of integers in the 

presentation here. Consider the following two chromosomes:  

 
 groups represented 

chromosome A B C D E F 
ABCDEF  1   2   3   4   5   6  

FEDCBA  6   5   4   3   2   1  

 
which both represent the grouping             1 , 2 , 3 , 4 , 5 , 6 .  Now suppose we apply single-point 

crossover to obtain two new offspring chromosomes from these parents. Arbitrarily choosing the center of 

the chromosomes as the crossover point, we obtain offspring:  

 
 groups represented 

chromosome A B C D E F 
ABCCBA  1, 6   2, 5   3, 4        

FEDDEF        3, 4   2, 5   1, 6  

 
which both represent the completely unrelated grouping       1, 6 , 2, 5 , 3, 4 :  no groups at all are passed 

from the parents to the offspring. Hence the offspring and parent fitnesses can be completely unrelated to 

each other, which reduces the GA to near-random search. As another example, consider the following two 

classical chromosomes:  

 
 groups represented 

chromosome A B C D E F 
AECFEC  1     3, 6     2, 5   4  

DFFDAA  5, 6       1, 4     2, 3  

 
which in turn represent the different groupings         1 , 3, 6 , 2, 5 , 4  and       5, 6 , 1, 4 , 2, 3 .  Using 

the same crossover strategy we obtain offspring:  
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   groups represented 

chromosome A B C D E F 
AECDAA  1, 5, 6     3   4   2    

DFFFEC      6   1   5   2, 3, 4  

 
representing the groupings         1, 5, 6 , 3 , 4 , 2  and         6 , 1 , 5 , 2, 3, 4 .  Note that these offspring 

have very little in common with their parents, as the only preserved groups are  1  and  4 .  

 
2.2  Grouping genetic algorithms 
 

The symmetry problem can be tackled by designing more complex genetic representations and operators 

(Galinier and Hao, 1999) or by clustering techniques (Pelikan and Goldberg, 2000). The risk of clustering 

is that genetic diversity may be lost if the clusters are too tight, leading to search stagnation (Prügel-Bennett, 

2004). Instead we follow the former approach by designing a GGA (Falkenauer, 1998), which have been 

shown to perform far better than classical GAs on grouping problems. 

GGAs are designed specifically to solve grouping problems and have found many applications, including 

WiFi network deployment (Agustín-Blas, Salcedo-Sanz, Vidales, Urueta and Portilla-Figueras, 2011), 

wireless network design (Brown and Vroblefski, 2004), steel plate cutting (Hung, Sumichrast and Brown, 

2003), production plant layout (De Lit, Falkenauer and Delchambre, 2000) and social network analysis 

(James, Brown and Ragsdale, 2010). They may use the same heuristics as other GAs (parent selection, 

offspring replacement, etc) but they use different genetic encoding and operators: that is, how they map a 

problem to chromosomes and how they perform recombination and mutation. We shall illustrate these 

differences on the above examples. 

GGAs represent a grouping as an ordered list of subsets, omitting empty sets. The parents in the second 

example of Section 2.1 might be represented in this way:  

              1 , 3, 6 , 2, 5 , 4 5, 6 , 1, 4 , 2, 3 .   

GGA mutation is simple: an item is moved from one group to another. However, the GGA recombination 

operator is more complicated. Choose a crossing section in each parent, for example    1 , 3, 6  from the 
st1  parent and  1, 4  from the nd2  parent. Then inject the st1  crossing section into the nd2  parent at a 

random point, and vice-versa: 

                    1 , 3, 6 , 1, 4 , 2, 5 , 4 5, 6 , 1, 4 , 1 , 3, 6 , 2, 3 .   

Next remove any repeated objects that were already in the receiving parent:  

                , 3, 6 , 1, 4 , 2, 5 , 5 , 4 , 1 , 3, 6 , 2 .    

Finally remove any empty sets:  

                3, 6 , 1, 4 , 2, 5 5 , 4 , 1 , 3, 6 , 2 .   
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These are the offspring. Clearly, both offspring have much in common with both parents, as 5 of the 7 parent 

groups survive in the offspring:  1 ,  4 ,  1, 4 ,  2, 5  and  3, 6 .  In the first example of Section 2.1 it is 

easily verified that both offspring represent the same grouping as the parents, as one would expect. This 

property of the GGA injection-based recombination makes it much more likely that offspring have similar 

fitness to parents, which in turn helps the GGA to iteratively improve the chromosome population. 

It might be noticed that the GGA problem representation still contains symmetry: any grouping still has 

multiple representations, obtained by permuting the subsets in the ordered list. But the genetic operators are 

almost independent of this ordering so it is almost irrelevant. The only effect of the ordering is to limit the 

set of possible injections: in the second example of Section 2.1 we cannot inject a non-existent crossing 

section for example such as    1 , 4  from parent 1 because those two groups are not adjacent. This limit 

is removed by an additional genetic operator called inversion which selects a section of the chromosome 

and reverses it. For example  

                    1 , 2 , 3, 6 , 4 , 5 1 , 2 , 5 , 4 , 3, 6 .   

This does not change the grouping represented by the chromosome, but reordering the groups in the 

chromosome makes all injections possible. 

Injection, mutation and inversion are the common operators used in GGAs, but there is no canonical 

algorithm. Instead GGAs tend to be tailored for specific applications, and in principle any GA can be adapted 

to grouping problems by using grouping operators. In Section 2.3 we design a GGA for our problem. 

 
2.2.1  Note on implementation 
 

For the sake of clarity the descriptions in Section 2.2 omit implementation details, for example the fact 

that GGA chromosomes are usually implemented in two parts (or sometimes more). The first part uses a 

classical representation as above, while the second part lists the nonempty groups as a permutation. Injection 

occurs on the second parts of parent chromosomes and some renaming of groups is necessary. 

Typically we decide in advance the number of iterations which we wish to run the algorithm for. This 

should be enough to give the GGA a chance to converge on the optimum solution after the mutation and 

inversion probabilities have been applied. If, however, the optimum solution is known beforehand the 

algorithm can be set to stop at this point. 

The number of iterations is usually decided with experience of using the GGA on similar target and 

auxiliary variables for similar datasets, or with the existing dataset and target and auxiliary variables. It may 

require a number of experiments using the GGA (or GA) before the number of iterations needed to reach 

convergence can be estimated. In fact there is a possibility that either the GGA or GA would appear to have 

reached convergence after a set number of iterations, but instead have become trapped in a local minimum. 

It may be useful to increase the number of iterations and try alternative mutation probabilities in order to be 

certain that it has converged on a global minimum. 
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This implies a number of trial runs before finally deciding the parameters under which to run the 

algorithms. Therefore the fact the GGA has been shown to attain convergence quicker than the GA is likely 

to compound the improvement in total processing time. In the experiments described below we keep the 

number of iterations small as we want to demonstrate the ability of the GGA to converge on a solution 

within that number of iterations. 

We use either the mutation settings specified in the examples provided by (Ballin and Barcaroli, 2013) 

or the default mutation settings in (Barcaroli, 2014). We apply grouping genetic operators and inversion to 

the GA designed by (Ballin and Barcaroli, 2013): it is the grouping genetic operators that make it a GGA. 

Thus we compare the performance between the different GA and GGA genetic operators rather than 

experiment with parameters such as varying the number of iterations, chromosome population size, mutation 

probability, or elitism rate. 

The mutation probability can be selected in advance by the user. Typically, the probability of mutation 

should be such that it increases the chance of the GGA leaving a local minimum, but not disrupt the natural 

evolution of chromosomes from one generation to the next. On the other hand we have fixed the inversion 

probability at 0.01, because this is enough to maintain diversity. 

The size of the chromosome population can be decided by trial and error. It is advisable to consider the 

evaluation time of each chromosome when setting the size: if there are too many chromosomes in the set, it 

might take an extra long time to move from one iteration to the next, and we found that the bethel.r algorithm 

(i.e., the Bethel-Chromy evaluation algorithm in (Barcaroli, 2014)) takes several seconds to evaluate even 

one chromosome for the larger datasets we used in this paper (we discuss this further in Section 4). 

For further details on the implementation of GGAs (e.g., elitism rate) we refer the reader to papers such 

as (Falkenauer, 1998). 

 
2.3  Application to the joint stratification and sample allocation problem 
 

As mentioned above our GGA is based on the GA described in (Ballin and Barcaroli, 2013) and 

represented in R  in the SamplingStrata package (Barcaroli, 2014), but with grouping operators and 

chromosomes instead of the classical versions. This change is the only novelty of our algorithm (except for 

the optimisation described in Section 4) but its effect on performance is large. We inserted the GGA into a 

modified version of the function called rbga.r from the genalg R package (Willighagen, 2005). It is designed 

to work with the other functions in SamplingStrata, and is applied to the joint stratification and optimum 

sample size problem. The GGA is summarised in Figure 2.1. 

Following the problem statement in (Ballin and Barcaroli, 2013) we summarise the cost function as 

follows:  

  1 0
=1

, , = ,
H

H h h
h

C n n C C n    
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where 0C  is the fixed cost and hC  is the average cost of interviewing one unit in stratum h  and hn  is the 

number of units, or sample, allocated to stratum .h  In our analysis 0C  is set to 0, and hC  is set to 1. The 

expectation of the estimator of the th“ ”g  population total is:  

    ,
=1

ˆ = = 1, , ,
H

g h h g
h

E T N Y g G    

where ,h gY  is the mean of the G  different target variables Y  in each stratum .h  The variance of the 

estimator is given by:  

    
2
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The upper limit of variance or precision gU  is expressed as a coefficient of variation CV  for each ˆ :gT  
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The problem can be summarised as follows:  
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Grouping Genetic Algorithm (GGA) 
 
  Step 1: Initialization 

  (a) Randomly generate a chromosome population of size  .PN
 

  Step 2: Selection part 1 

  (a) Rank chromosomes based on sample size.

  (b) Save best  E  chromosomes for the next generation.
 

  Step 3: Inversion 

  With probability 0.01 invert groups in the  PN chromosomes.
   
  Step 4: Selection part 2 

  For each of the remaining  PN E  chromosomes in the new generation:

  (a) Draw parents 1 and 2 from the aforementioned  PN chromosomes (higher ranked chromosomes have a 
higher probability of being selected). 

  (b) Perform crossover as explained in Section 2.2.

  (c) Remove empty groups. 

  (d) Renumber groups. 
   
  Step 5: Mutation 

  Mutate integers in  PN E  chromosomes at a selected probability.
   
  Step 6: if #iterations<maximum 

  (optional: and sample size    desired value) go to step 2.
 

Figure 2.1  Pseudocode for our GGA. 
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3  Comparing the genetic algorithms 
 

We now run a number of comparisons between the original GA and our GGA using publicly available 

datasets. Unless otherwise stated, for all the cases presented below, we adopt the following parameter setting 

for both genetic algorithms, where 20,PN  0.05,gU   the elitism rate is 0.2, and the mutation 

probability is 0.05. 
 

3.1  A comparison for the iris dataset 
 

(Ballin and Barcaroli, 2013) use the iris dataset (Anderson, 1935; Fisher, 1936; R Core Team, 2015) to 

demonstrate that the GA they propose can find the optimum stratification i.e., the stratification or grouping 

of atomic strata which supplies the minimum sample size. The iris dataset is small and is widely available. 

It has 150 observations for 5 variables Sepal Length, Sepal Width, Petal Length, Petal Width and Species. 

Species is a categorical variable which has three levels, setosa, versicolor and virginica, each of which 

have 50 observations. The remaining four variables are continuous measurements for length and width in 

centimetres. (Ballin and Barcaroli, 2013) select Petal Length and Petal Width as variables of interest, i.e., 

target variables. They select Sepal Length and Species as two auxiliary variables. 

They convert Sepal Length to a categorical variable using a k-means algorithm (Hartigan and Wong, 

1979) to define three clusters (i.e., 4.3 to less than 5.5, 5.5 to less than 6.5, 6.5 to 7.9). The cross product of 

the categorical version of Sepal Length with Species creates 9 atomic strata. However, one atomic stratum 

is empty because there are no corresponding values in Petal Length and Petal Width. Therefore there are 8 

usable atomic strata for this example. 

 
Table 3.1 
Reproduction of table of atomic strata for estimating the minimum sample size for the target variables of iris 
dataset as found in (Ballin and Barcaroli, 2013), page 379 
 

Stratum N M1 M2 S1 S2 X1 X2 DOMAIN
[4.3; 5.5] (1)*setosa  45 1.466667 0.244444 0.17127 0.106574 [4.3; 5.5] (1) setosa  1  
[4.3; 5.5] (1)*versicolor  6 3.583333 1.166667 0.491313 0.205481 [4.3; 5.5] (1) versicolor  1  
[4.3; 5.5] (1)*virginica  1 4.5 1.7 0 0 [4.3; 5.5] (1) virginica  1  
[5.5; 6.5] (2)*setosa  5 1.42 0.26 0.172047 0.08 [5.5; 6.5] (2) setosa  1  
[5.5; 6.5] (2)*versicolor  35 4.268571 1.32 0.367051 0.189435 [5.5; 6.5] (2) versicolor  1  
[5.5; 6.5] (2)*virginica  23 5.230435 1.947826 0.318194 0.28873 [5.5; 6.5] (2) virginica  1  
[6.5; 7.9] (3)*versicolor  9 4.677778 1.455556 0.193091 0.106574 [6.5; 7.9] (3) versicolor  1  
[6.5; 7.9] (3)*virginica  26 5.876923 2.107692 0.494825 0.228579 [6.5; 7.9] (3) virginica  1  

 
The initial atomic strata are reproduced in Table 3.1 where gM  refers to the means for the corresponding 

gY  values in each atomic stratum ;kl gS  refers to the corresponding stratum population standard deviations. 

There are 4,140 possible partitionings of the 8 atomic strata. Consequently, it is possible to test within a 

reasonable amount of time the sample size for the entire search space using the bethel.r function. This has 

already been done (Ballin and Barcaroli, 2013) and the minimum sample size is known to be 11. 
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This test can be used to determine whether the new GA correctly finds the minimum sample size without 

exploring the entire search space. We use 10pN   in this case. For this test the bethel.r function will search 

for the minimum sample size, in integers rather than real numbers. The chromosomes will then be ranked 

by sample size in ascending order. Accordingly the elite chromosomes are taken into the next iteration and 

the remaining chromosomes are generated using the recombination method for each algorithm. 

We will compare the number of chromosomes generated to find the optimal stratification in the two 

algorithms as well as the number of iterations. Our anticipation is that the GGA should be more efficient, 

and thus typically find the optimal solution in fewer iterations than the GA. 

The maximum number of iterations is set to 200, because using (Ballin and Barcaroli, 2013) as a guide 

we anticipate that both algorithms will find the correct solution in fewer iterations than this. Thus we have 

added a piece of code to both algorithms such that they stop when the optimal sample size, 11,n   has been 

reached and supply the number of iterations taken to reach that point. This approach is different to that of 

(Ballin and Barcaroli, 2013) who report the number of times in 10 experiments the GA finds the correct 

solution for a given number of iterations ranging incrementally from 25 to 200. However, we feel this 

approach would better demonstrate that the GGA can find the correct solution in less iterations even on the 

small iris dataset experiment. 

 
Table 3.2 
Iris dataset experiment results for GA and GGA 
 

 (a) GA (b) GGA 
Number of Experiment Iterations Chromosomes Experiment Iterations Chromosomes

 1 14 228 1 11 180
 2 8 132 2 7 116
 3 17 276 3 6 100
 4 40 644 4 22 356
 5 31 500 5 9 148
 6 13 212 6 11 180
 7 15 244 7 8 132
 8 9 148 8 7 116
 9 15 244 9 9 148
 10 15 244 10 11 180
 11 14 228 11 3 52
 12 8 132 12 9 148
 13 17 276 13 27 436
 14 40 644 14 12 196
 15 31 500 15 16 260
 16 13 212 16 6 100
 17 15 244 17 20 324
 18 9 148 18 6 100
 19 15 244 19 7 116
 20 15 244 20 6 100
 21 16 260 21 11 180
 22 67 1,076 22 7 116
 23 19 308 23 8 132
 24 9 148 24 5 84
 25 11 180 25 7 116
 26 20 324 26 5 84
 27 32 516 27 6 100
 28 10 164 28 6 100
 29 37 596 29 9 148
 30 9 148 30 6 100
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Table 3.2 provides the number of iterations (and chromosomes generated) taken to find 11n   over 30 

experiments for both GAs. 

 
 

 

 

 

 

 

 

 
 

 

Figure 3.1 Boxplot distribution of number of Chromomomes generated to find 11n   for GA and GGA after 
30 experiments. 

 
Figure 3.1 provides the distribution of the number of chromosomes generated to find the optimal solution 

for the GA and the GGA. The boxplots indicate that the GGA typically needs to generate fewer 

chromosomes to find the optimum solution. 

 
Table 3.3 
Example stratifications for the GA and GGA on the iris dataset for 11n   
 

    Y1 Y2 

  Stratum N Mean SD Mean SD Sample Size 

GA  1 50 1.462 0.1685 0.246 0.1026 2 

  2 50 4.26 0.4562 1.326 0.1911 3 

  3 1 4.5 0 1.7 0 1 

  4 23 5.2304 0.3112 1.9478 0.2824 3 

  5 26 5.8769 0.4852 2.1077 0.2241 2 

Total   150     11 

GGA  1 23 5.2304 0.3112 1.9478 0.2824 3 

  2 50 1.462 0.1685 0.246 0.1026 2 

  3 26 5.8769 0.4852 2.1077 0.2241 2 

  4 51 4.2647 0.4529 1.3333 0.1962 4 

Total   150     11 
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Table 3.3 provides example stratifications for the GA and GGA that both provide the optimal sample 

size necessary to meet precision constraints. (Ballin and Barcaroli, 2013) indicate that a number of 

partitionings from the total of 4,140 possible partitionings provide the minimum sample size. These range 

in size from 3 to 5 strata. It is seen that the GGA results in fewer, less fragmented design strata. The same 

tendency can be observed in the latter cases. 

 
3.2  Swiss municipality dataset 
 

The swissminucipalities dataset provided by (Barcaroli, 2014) refers to the Swiss municipalities in 2003. 

Each municipality belongs to one of seven regions which are at the NUTS-2 level, i.e., equivalent to 

provinces. Each region contains a number of cantons, which are administrative subdivisions. There are 26 

cantons in Switzerland. The data, which was sourced from the Swiss Federal Statistical Office and is 

included in the sampling and SamplingStrata packages, contains 2,896 observations (each observation refers 

to a Swiss municipality in 2003). They comprise 22 variables, details of which can be examined in 

(Barcaroli, 2014). 

The target estimates are the totals of the population by age class in each Swiss region. In this case, the 

G  target variables will be: 

Y1: number of men and women aged between 0 and 19,  

Y2: number of men and women aged between 20 and 39,  

Y3: number of men and women aged between 40 and 64,  

Y4: number of men and women aged 65 and over.  

 
We consider 6 auxiliary variables, formed using the same k-means clustering method as the iris dataset 

example: 

X1: classes of total population in the municipality. 18 categories, 

X2: classes of wood area in the municipality. 3 categories, 

X3: classes of area under cultivation in the municipality. 3 categories, 

X4: classes of mountain pasture area in the municipality. 3 categories, 

X5: classes of area with buildings in the municipality. 3 categories, 

X6: classes of industrial area in the municipality. 3 categories. 

 
There are 7 regions, which we treat as population domains of design to distinguish them from the design 

strata, replicating the experiment outlined in (Barcaroli, 2014). The number of non-empty atomic strata is 

641 in the population. We set the minimum population size of stratum to be 2, and the maximum number 

of iterations to be 400. The results for Sample Size and Strata after 30 experiments each with 400 iterations 

are summarised in Figure 3.2 below. 



524 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Scatterplot of Results for Strata v Sample size for GA and GGA after 30 experiments. 

 
Figure 3.2 clearly shows that the GGA returns a smaller sample size to the GA for these settings. The 

median for the GGA, 246, is 25% lower than that for the GA, 328. 

 
3.3  2015 American Community Survey Public Use Microdata 
 

The United States has been conducting a decennial census since 1790. In the th20  century censuses were 

split into long and short form versions. A subset of the population was required to answer the longer version 

of the census, with the remainder answering the shorter version. After the 2000 census the longer 

questionnaire became the annual American Community Survey (ACS) (US Census Bureau, 2013). The 2015 

ACS Public Use Microdata Sample (PUMS) file (US Census Bureau, 2016) is a sample of actual responses 

to the ACS representing 1% of the US population. The PUMS file contains 1,496,678 records each of which 

represents a unique housing unit or group quarters. There are 235 variables. The full data dictionary is 

available in (US Census Bureau, 2016). We selected the following to be target variables: 
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1. household income (past 12 months),  

2. property value,  

3. selected monthly owner costs,  

4. fire/hazard/flood insurance (yearly amount), 
 

and the following auxiliary variables: 

1. units in structure,  

2. tenure,  

3. work experience of householder and spouse,  

4. work status of householder or spouse in family households,  

5. house heating fuel,  

6. when structure first built.  
 

The PUMS data for which all the values are present contains 619,747 records. We use the 51 states 

(based on census definitions) as domains. 

In the convergence plots of Figure 3.3, the black line represents the best or lowest sample size for the 

chromosome population in each iteration, whereas the red line represents the mean sample size for the 

chromosome population in each iteration. 

 
 
 

 

 

 

 

 

 

 
 

Figure 3.3 Convergence plots for Sample Size after the 1st experiment for GA and GGA. Note the different 
scales on the vertical axes. 

 
The GA appears to be reducing the sample size steadily but does not appear to have reached a local 

minimum after 400 iterations. The GGA appears to have reached a local or global minimum very quickly. 
 

3.4  Kaggle Data Science for Good challenge Kiva Loans data 
 

The online crowdfunding platform kiva.org provided a dataset of loans issued to people living in poor 

and financially excluded circumstances around the world over a two year period for a Kaggle Data Science 

for Good challenge. The dataset has 671,205 unique records. We selected these target variables: 
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1. term in months,  

2. lender count,  

3. loan amount,  
 

and the following auxiliary variables: 

1. sector,  

2. currency,  

3. activity,  

4. region,  

5. partner id, 
 

to create atomic strata. For these variables we removed any records with missing values. We then proceeded 

to remove any countries with less than 10 records from the sampling frame. This resulted in a sampling 

frame with 614,361 records. The variable country-code defines the 73 design domains in this experiment. 

 
Table 3.4 
Sample size and strata for the Kiva Loans data from the GA and the GGA after 100 iterations 
 

GA GGA Reduction 
Sample size Strata Sample size Strata Sample size strata

78,018 43,030 11,963 1,793 84.67% 95.83% 

 
Table 3.4 shows an 84.67% reduction in sample size and a 95.83% reduction in the number of strata after 

100 iterations. Figure 3.4 shows that for the same starting chromosome population size for Domain 1 of the 

Kiva Loans dataset, the GGA attained a good sample size in less than 100 iterations, but after 10,000 

iterations the GA had not converged and the sample size was still much higher than the GGA.  

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Convergence plots for Sample Size for the 1st Domain for GA (10,000 iterations) and GGA (100 

iterations) in the Kiva Loans dataset experiment. Note the different scales on the vertical and 
horizontal axes. 
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3.5  UN Commodity Trade Statistics data 
 

Kaggle also hosts a copy of the UN Statistical Division Commodity Trade Statistics data. Trade records 

are available from 1962. We took a subset of data for the year 2011 and removed records with missing 

observations. This resulted in a data set with 351,057 records. We selected the following target variable: 

1. trade_usd  
 

which refers to the value of trade in USD (US dollars), and the following auxiliary variables: 

1. commodity,  

2. flow,  

3. category.  

 

The variable commodity is a categorical description of the type of commodity, e.g., Horses, live except 

pure-bred breeding. The variable flow describes whether the commodity was an import, export, re-import 

or re-export. The variable category describes the category of commodity, e.g., silk or fertilisers. The 171 

categories of country or area were selected as domains. 

 
Table 3.5 
Sample size and strata for the UN Commodity Trade Statistics data from the GA and the GGA after 100 
iterations 
 

GA GGA Reduction 
Sample size Strata Sample size Strata Sample size strata

288,638 191,000 84,181 16,555 70.84% 91.33% 

 
3.6  2000 US census data 
 

The Integrated Public Use Microdata Series extract is a 5% sample of the 2000 US census data (Ruggles, 

Genadek, Goeken, Grover and Sobek, 2017). The file contains 6,184,483 records. The US Census Data will 

be very similar to the ACS data as the latter is an annual version of the former. But for this experiment we 

selected different target and auxiliary variable combinations. The single target variable in this test is usually 

a key focus of household surveys: 

1. total household income.  
 

We used the following information as auxiliary variables (note these are variables which are likely 

available in administrative data): 

1. annual property insurance cost,  

2. annual home heating fuel cost,  

3. annual electricity cost,  

4. house value.  
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The house value variable (VALUEH) reports the midpoint of house value intervals (e.g., 5,000 is the 

midpoint of the interval of less than 10,000), so we have treated it as a categorical variable. As with the 

2015 ACS PUMS dataset we have taken a subset for which all values are present. This has resulted in a 

subset with 627,611 records. The domain for this experiment was Census region and division.  

 
Table 3.6 
Sample size and strata for the 2000 US census data by Census region and division from the GA and the GGA 
after 100 iterations 
 

 Sampling frame GA solution GGA solution 

Division Sampling Units Atomic Strata Sample sizes Strata Sample sizes Strata 

New England  116,045 87,084 81,012 52,628 376 58 

Middle Atlantic  183,543 138,470 130,862 86,002 416 75 

East North Central  65,480 58,055 53,075 35,794 327 42 

West North Central  31,408 29,413 26,525 18,248 324 38 

South Atlantic  97,189 83,357 76,716 51,457 440 49 

East South Central  21,631 20,429 18,256 12,500 451 62 

West South Central  22,582 20,919 18,750 12,730 407 39 

Mountain  26,765 25,041 22,161 14,791 351 30 

Pacific  62,968 54,864 50,136 33,653 358 49 

Total  627,611 517,632 477,493 317,803 3,446 442 

 
The results show a sample size of 3,446 for the GGA and a sample size of 477,493 for the GA after 100 

iterations. 

 
4  An improved Bethel implementation 
 

Our GGA was proposed and developed so that it would work with the rest of the functions in 

SamplingStrata. Therefore the rest of the functions in the package remained unchanged. This includes the 

bethel.r function which evaluates the fitness of chromosomes in every iteration and is computationally 

expensive. For instance, for the PUMS dataset the experiment took approximately 30 days for either GA or 

GGA with 100 iterations. 

We searched for performance bottlenecks in bethel.r using the R lineprof package. Our analysis of results 

suggested that the function within bethel.r called chromy appears to take the bulk of computational time. A 

further examination reveals that chromy contains a while loop with a default setting of 200 iterations. 

Furthermore bethel.r itself can be run on each chromosome in any chromosome population on a dataset of 

any functional size (which we have the computation power to process) for any number of iterations. Bigger 

datasets will take longer to process. We expected that performance would be improved by converting the 

bethel.r algorithm into C++ then integrating that into R using the Rcpp package (Eddelbuettel, 2013). 
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Table 4.1 
Performance comparison for the above datasets using the R and Rcpp versions of the Bethel-Chromy algorithm 
 

Dataset  Records Domains Atomic Strata Bethel s BethelRcpp s  Speed-up Factor

iris  150 1 8 2,684.77 143.13 18.76

swissmunicipalities  2,896 7 641 99,916 10,749.51 9.29

American Community Survey 2015  619,747 51 123,007 565,278,500 47,858,200 11.81

Kiva Loans Data  614,361 73 84,897 826,297,710 82,894,480 9.97

UN Commodity Trade Data 2011  351,057 171 350,895 139,749,810 87,555,870 1.6

US Census Data 2000  627,611 9 517,632 2,686,771 1,303,667 2.06

 
Table 4.1 shows the median time taken to run the Bethel algorithm one hundred times for the datasets 

we used to conduct our analysis. Our results confirm that the C++ version of Bethel is faster than the R 

version. The speed up could make a practical difference in the number of iterations that can be run in 

SamplingStrata due to the processing times required for bethel.r. However, performance will vary according 

to the size and complexity of the problem. The speed up is achieved because C++ enables communication 

at a lower level with the computer than R. However, it is also due to the complexity of the analysis conducted 

in each for loop as well as the fact that larger data will restrict the available memory. It should also be noted 

that the C++ version of Bethel was compared with the R version as two stand alone functions. The 

performance of the C++ version of Bethel within the GGA is not compared with that of the R version in the 

GA. This would be part of a larger project to create a C++ version of the SamplingStrata package and 

integrating it into R. 

 
5  Conclusion and further work 
 

We created a GGA as an alternative to the existing SamplingStrata GA in R. We then compared the two 

algorithms using a number of datasets. The GGA compares favourably with the GA at finding the correct 

solution and meeting constraints on smaller datasets, but significantly outperforms the GA on larger datasets 

where the number of iterations was restricted. This is useful for datasets where the number of iterations has 

to be constrained owing to computational burden. We have also reported faster processing times by 

integrating the bethel.r function with C++ using the Rcpp package. 

This work can be developed in several ways. Alternative evaluation techniques to speed up the algorithm 

could be considered. Further research could also be undertaken into other machine learning techniques for 

solving this problem. 

The GGA could be applied to other problems which tackle more general sampling designs with 

modifications required only for the algorithm evaluating the fitness of chromosomes (i.e., the 

Bethel-Chromy algorithm). For example instead of searching for a stratified simple random sample to meet 

precision constraints based on population totals or means, the GGA could consider stratified probability 

proportional to size sampling with an evaluation algorithm that uses more general estimators (e.g., 

regression or ratio estimators) or more general parameters (e.g., a correlation coefficient). 
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The evaluation algorithm might also be modified to look at scenarios in which the population variances 

are not known. In these cases, data from previous censuses, administrative records, or proxy surveys can be 

used to estimate the population variance. However, estimation of the population variance in a large number 

of atomic strata requires more careful research. 

Finally, the groupings of atomic strata by the GGA can be difficult to interpret. For instance, an ordinal 

auxiliary variable taking values 1 to 4 may be unnaturally separated, where the atomic strata corresponding 

to values 1 and 3 are grouped in one design stratum and those with values 2 and 4 are grouped in another 

design stratum. It might be interesting to explore less-than-optimal sample sizes for stratifications that are 

easier to interpret. For instance, one may impose constraints on the admissible groupings. This would require 

research into the formulation of appropriate admissibility constraints and their effective implementation in 

the GGA. 
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“Optimal” calibration weights under unit  
nonresponse in survey sampling 

Per Gösta Andersson1 

Abstract 

High nonresponse is a very common problem in sample surveys today. In statistical terms we are worried about 
increased bias and variance of estimators for population quantities such as totals or means. Different methods 
have been suggested in order to compensate for this phenomenon. We can roughly divide them into imputation 
and calibration and it is the latter approach we will focus on here. A wide spectrum of possibilities is included in 
the class of calibration estimators. We explore linear calibration, where we suggest using a nonresponse version 
of the design-based optimal regression estimator. Comparisons are made between this estimator and a GREG 
type estimator. Distance measures play a very important part in the construction of calibration estimators. We 
show that an estimator of the average response propensity (probability) can be included in the “optimal” distance 
measure under nonresponse, which will help to reduce the bias of the resulting estimator. To illustrate empirically 
the theoretically derived results for the suggested estimators, a simulation study has been carried out. The 
population is called KYBOK and consists of clerical municipalities in Sweden, where the variables include 
financial as well as size measurements. The results are encouraging for the “optimal” estimator in combination 
with the estimated average response propensity, where the bias was reduced for most of the Poisson sampling 
cases in the study. 

 
Key Words: Unit nonresponse; Calibration weights; Poisson sampling. 

 
 

1  Introduction 
 

In a survey the response (nonresponse) mechanism for units is in reality unknown. To avoid defining a 

proper probability measure which might not be meaningful or realistic, one usually discusses the 

nonresponse situation in terms of a propensity for a unit to participate. To be able to take into account the 

possible nonresponse effect on estimators, it is however the practice to treat the propensities as probabilities 

to be estimated (e.g., propensity scores). This can be done for individual units, for groups of units or as an 

“average” over the whole response set. 

For example, in Haziza and Lesage (2016) two main approaches are discussed: calibration weighting 

with and without foregoing propensity score weighting, the former case involving model-based estimation. 

The authors warn against potential negative effects on the bias and variance for the resulting estimators 

when not taking into account the propensities. (These two options of weighting are referred to by the authors 

as two-step and one-step procedures, respectively not to be mistaken for the two- and single-step calibrations 

as defined by Särndal and Lundström (2005).) However, in the simulation study by Haziza and Lesage 

(2016) the sampling design plays no role, since there =n N  and the focus is solely on how the auxiliary 

information relates to the study variable and the nonresponse mechanism. 

In this paper we propose to use a nonresponse version of what in the full response case is called the 

(design-based) optimal regression estimator. The underlying distance measure is a quadratic form with a 

more complex structure (see Andersson and Thorburn (2015)) than the one leading to the GREG estimator 
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(see Deville and Särndal (1992)). As it turns out there is also room for refinement in terms of the average 

response propensity (probability) when constructing the distance measure under nonresponse, which leads 

to a modified “optimal” estimator. 

 
1.1  Outline of the paper 
 

Section 2 starts with an introduction to the calibration idea under full response before dealing with the 

nonresponse situation. Three estimators of a population total are mainly considered: the GREG related 

estimator and two versions of the “optimal” estimator. Some theoretical results for the resulting bias follows. 

Section 3 contains a simulation study where simple random sampling and Poisson sampling are used for 

illustration. The Poisson design enables us to construct and investigate a situation where the auxiliary 

information is involved in the design as well as in the nonresponse mechanism. We also illustrate the risks 

of using an incorrect model when estimating individual propensities. We end with concluding remarks in 

Section 4. 

 
1.2  Notation and setup 
 

We will start with a population U  of size N  from which we take a probability sample s  of size sn  

with inclusion probabilities 1 , , .N   Nonresponse means that we only observe the response set r  of 

size .rn  Our aim is to estimate the study variable total = .y kU
t y  We assume access to an auxiliary 

variable vector x  of dimension ,J  where either *=x x  and  *x k k U
 are known (the population level) or 

=x x o  and  x o
k k s

 are known (the sample level) or possibly a mixture of these cases:  *= , .x x x o    

 

2  Calibration estimation 
 
2.1  Calibration estimators under full response 
 

Starting with the full response situation  =r s  and following the procedure as established by Deville 

and Särndal (1992), the calibration estimator is defined as  

 cal
ˆ = ,y ks k

s

t w y   

where the sample dependent weights ksw  are chosen so that  

 = , (the calibration equation)x tks k x
s

w  (2.1) 

while also minimizing the quadratic distance measure  

    0 0 ,w w R w ws s s s
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where  = ,w s ks k sw     0 = 1 =w s k kk s k sd    and R  is diagonal. (Alternative distance measures are 

considered in both Deville and Särndal (1992) and Haziza and Lesage (2016).) 

In other words, given the constraint (2.1) the ksw  should be “as close as possible” to the design weights 

,kd  which is desirable since k ks
d y  is an unbiased estimator of .yt  

The resulting weights are  

    
1

1 1
0

ˆ= .x xw w R x XR X t ts s


      

It turns out that the model assisted homoskedastic GREG estimator ˆ
yrt  (Särndal, Swensson and Wretman 

(1992)) is a calibration estimator for which  

   1

0= ,R w I
ss n


  

where 
snI  is the unit diagonal matrix of size .sn  

Another calibration estimator is the optimal regression estimator opt
ˆ

yt  (see e.g., Rao (1994) and 

Montanari (1998)), for which  

 
1

,

= ,R kl k l

kl k l k l s

  
  





 


 
  

as shown by Andersson and Thorburn (2005). 

Asymptotically, this estimator has (in a design-based sense) minimum variance among linear regression 

type estimators. 

 
2.2  Calibration estimators under nonresponse 
 

In the nonresponse case, a possible calibration estimator is  

 ,kr k
r

w y   

where it should hold that  

 = ,x Xkr k
r

w  (2.2) 

where *= ,X x kU  if the auxiliary information is known up to the population level. Otherwise, 

= ,X x o
k ks

d  the unbiased estimator of .xt  (We can also combine the two types of information in the 

constraint .)X  

For a variety of cases weights fulfilling the requirement (2.2) are presented by e.g., Särndal and 

Lundström (2005). Using the direct approach, where all information is used in one single calibration, we 

get  
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1

= 1 .x x x X xkr k k k k k k k
r r

w d d d
             

   (2.3) 

The resulting estimator will henceforth be denoted cal
ˆ .yt  (Other approaches, including two-step procedures, 

are presented and investigated by e.g., Andersson and Särndal (2016).) 

An evident question to ask is: What is the underlying distance measure generating these weights? Särndal 

and Lundström (2005) do not comment on this particular issue, but according to Lundström and Särndal 

(1999), we should choose “ kw  ‘as close as possible’ to the ”,kd  which does not seem quite adequate under 

nonresponse. Going back to Lundström (1997) we will find that the corresponding distance measure is 

actually  

      1

0 0 0 ,w w w I w w
rr r r n r r

    

where  =w r kr k rw   and  0 = .w r k k rd   

If we have a random mechanism generating the response set r  from the sample s  with probabilities k  

of inclusion, we can view the nonresponse situation as a two-phase design and this is the assumption we 

will make in the following. Then we should minimize the distance between krw  and  1 .k kd   Using 

some modelling k  can be estimated by ˆ ,k  to be put to use for the distance minimization. But in this paper 

we will not go in the direction of model-based inference. In order to reduce the bias effect under nonresponse 

one could instead in the distance measure think of comparing krw  not with ,kd  but with , alt = ,k kd d c  

where c  is a constant larger than 1, aiming to compensate for the “average” nonresponse effect. 

However, Lundström (1997) shows that in many important cases, namely when one can find a vector μ  

for which = 1,μ x k
  for all ,k  the multiplicative increase in , altkd  implies the same resulting calibration 

weights .krw  This follows from the result that if = 1,μ x k
  for all ,k U  we can simplify the expression 

(2.3) of krw  as  

 
1

= .x x x Xkr k k k k k
r

w d d

  

    

Thus, we have an invariance property for the weights. The result holds also when the population is 

partitioned into groups and the initial weights are inflated with a constant within each group. Note that if 

we include a constant, e.g., “1”, as a first component of the auxiliary vector ,x k  we can simply let 

 = 1, 0, , 0μ    to achieve = 1.μ x k
  

With this as a background we propose to use alternative “optimal” weights resulting from the distance 

measure  

    
1

0 0

,

,w w w wkl k l
r r r r

kl k l k l r

  
  





  
 

  

leading to opt
ˆ .yt  ( kl  denotes the inclusion probability for the pair ( , )).k l  
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It is to be observed that as for the full response situation, there are cases for which the “optimal” weights 

are identical to (2.3), as e.g., under simple random sampling. 

Using quotation marks around optimal is deliberate, but under full response optimal has a very clear 

meaning. As mentioned earlier, the optimal regression estimator has asymptotically minimum variance 

among linear regression estimators. Adding nonresponse where the nonresponse mechanism is at least 

partially unknown, makes it difficult to define optimality criteria in a proper way. 

For this “optimal” measure it might be fruitful to replace kd  with , alt ,kd  where we include in , altkd  the 

reciprocal of an estimate of the average response probability = .U kU
N   One simple candidate is  

                                                                     ˆ = ,U r sn n   

thus yielding  , alt = .k k s rd d n n  Another natural choice is  

 ˆ = ,U k k
r s

d d    (2.4) 

since   =ks
E d N  and   = = ,k kr U

E d N    which lead to   .k k Ur s
E d d    The 

resulting modified estimator is denoted by optm
ˆ .yt  (Also observe that ( / ) ( / ) (1/ ) .r s k k kU U

E n n d d   

In the following simulation study we will focus on a sampling design where generally cal opt
ˆ ˆ ,y yt t  

namely Poisson sampling. The independence of drawings simplifies the “optimal” distance measure:  

  
 

 

22
2 =

1 1
k kr k

kr k
r rk k k

w d
w d

d d







     

and minimization yields  

    
1

= 1 1 1 .x x x X xkr k k k k k k k k k
r r

w d d d d d
               

    

For the modified “optimal” estimator kd  is replaced by  alt
ˆ= 1 ,k k Ud d   with ˆ

U  as in (2.4). 

 
2.2.1  Bias for calibration estimators under nonresponse 
 

We can write cal
ˆ

yt  as  

                                          cal ;
ˆˆ = ,B X xy k k U k k

r r

t d y d
  

    (2.5) 

where     1

;
ˆ = .B x x xU k k k k k kr r

d y d


    In order to arrive at an approximate expression for the bias 

of cal
ˆ

yt  and subsequently opt
ˆ

yt  and optm
ˆ ,yt  we follow the derivation in Särndal and Lundström (2005) and 

first note that cal
ˆ

yt  can be rewritten as  

                                           cal ; ; ;
ˆˆ = ,B X x B B X xy k k U k k U U k k

r r r

t d y d d  
         

       

where     1

; = .B x x xU k k k k k kU U
y  
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If we let cal 1 2
ˆ = ,y yt t A A   where  1 ;= B X xk k y U k kr r

A d y t d     and 2 =A  

   ; ;
ˆ ,B B X xU U k kr

d     it can further be shown that  

 1 ;= ,B x xo o o
k k k U k k k

r U s U

A d e e d  
   

       

where ;= B xk k U ke y   and   1

; = .B x x xo o o o
U k k k k k kU U

y  


   

Then  

      cal 1
ˆ = = 1 ,y y k k k k k

U U U

E t t E A e e e            

since it can be argued that ;B̂U   is a consistent estimator of ;BU   and therefore  2 0.E A   

The approximation for the bias of cal
ˆ

yt  is called the nearbias:  

    cal
ˆnearbias = 1 .y k k

U

t e    

The nearbias of cal
ˆ

yt  is zero if = 1,k  for all k U  and/or ;= ,B xk U ky   for all .k U  

Then, if we consider opt
ˆ ,yt  we have that  

                                         opt ;
ˆˆ = ,X x Cy k k k k U

r r

t d y d 
  

    (2.6) 

where  

                  

1

;
ˆ = .

x x x
C kl k l k l kl k l k l

U
k r l r k r l rkl k l kl k l

y


     
     



   

     
     

  
    

Since opt
ˆ

yt  can be written as (2.6), which is of the same form as for cal
ˆ

yt  in (2.5), we will again arrive at 

the nearbias expression  

    opt
ˆnearbias = 1 ,y k k

U

t e   (2.7) 

where ;= C xk k U ke y   and with kl  denoting the response probability for the pair  , :k l  

    
1

; = .
x x x

C k l k l
U kl kl k l kl kl k l

k U l U k U l Uk l k l

y
        

   



   

    
      

  
    

If we use the alternative weighting    , alt
ˆ= 1 = ,k k k k ks r

d d d d d     we get that  

 nearbias  optm , alt
ˆ = = 1 ,k k

y k k k k k k
r U U U UU U

t E d e e e e e    

 
 

          
       

where   1 = 0,k UU
   to be compared with (2.7), where    1 = 1 .k UU

N    

Unless = 1,μ x k
  for all ,k U  an equivalent expression can be obtained for cal

ˆ .yt  On the other hand, 

if the restriction = 1,μ x k
  for all k U  does hold, it can be shown (Särndal and Lundström (2005)) that  
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  cal
ˆnearbias = ,y k

U

t e   

which holds independently of the sampling design and which is a result completely in line with the 

aforementioned invariance property of the calibration weights. 

 
3  A simulation study 
 

Properties of the estimators were studied by means of a Monte Carlo simulation. We used an authentic 

population called KYBOK, which consists of = 832N  clerical municipalities in Sweden in 1992. (This 

population was also used for simulation purposes in Särndal and Lundström (2005) and Andersson and 

Särndal (2016).) 

The study variable ky  is “Expenditure on administration and maintenance” ( = 1,023,983).yt  The 

population is divided into four groups with respect to size, from the smallest to the largest. The group sizes 

are 1 = 218,N 2 = 272,N 3 = 290N  and 4 = 52.N  The moon vector is  1 4= , , ,x o o o
k k kx x   where 

= 1o
ikx  if the unit k  belongs to population group i  and otherwise 0, = 1, , 4.i   The quantitative star 

variable *
kx  is the square root of “Revenue advances”, which is highly positively correlated with .ky  

The sample size/expected sample size was 300 and we used the exponential response probability  

  *= 1 exp , ,k kc x k U      (3.1) 

where c  is chosen according to the desired average response probability; in this study varying between 0.60 

and 0.86 (the latter value being the chosen response probability in e.g., Särndal and Lundström (2005)). 

Two sampling designs have been considered separately: simple random sampling and Poisson sampling. In 

the latter case * .k kx   For each combination of design, sample size/expected sample size and average 

response probability, 10,000 samples were generated. For each such sample ,s  a response set r  was created 

by performing independent Bernoulli trials with probability k  of success, .k s  

The estimators of main interest are cal
ˆ ,yt opt

ˆ
yt  and optm

ˆ ,yt  but in this simulation study we will also include 

an example of parametric propensity modelling based on cal
ˆ .yt  A simple choice is the logistic (logit) model  

 
 
 

exp
= ,

1 exp

x B

x B
k




 (3.2) 

where we let  *= 1 .x x  For each sample with its observed nonresponse maximum likelihood estimation 

was used to obtain ˆ ,B  yielding estimates  ˆ .
k r




 To obtain cal logit
ˆ

yt  the design weights kd  are then replaced 

by  ˆ1k kd   before calibration. The logit model (3.2) is misspecified since the true response probability is 

determined by (3.1). 

An arbitrary estimator ˆ
yt  is assessed by the empirical (simulation estimated) bias  ˆ ,B  variance  V̂  

and mean squared error  MSE :  
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=1

1ˆ ˆ ˆ ˆ= =
K

y y yj y
j

B E t t t t
K

    

                                                              2

=1

1ˆ ˆˆ ˆ=
K

yj y
j

V t E t
K

   

                                                      2ˆ ˆMSE = ,B V   

where = 10,000.K  

Observe that expressions such as “the bias has increased” should be interpreted in the following as an 

increase of the bias in absolute value. 
 

3.1  Results 
 

As a benchmark for the study where auxiliary information is not used at the design stage, let us first 

consider the results for simple random sampling in Table 3.1. This is a case where cal opt
ˆ ˆ= .y yt t  (Actually, 

to get equality the “star” information is  * *= 1,x k kx
  for cal

ˆ .)yt  As will hold throughout this study the bias 

of cal logit
ˆ
yt  is considerably larger than the bias of cal

ˆ ,yt  which is a natural effect from the construction of 

cal logit
ˆ
yt  based on a misspecified nonresponse model. Furthermore, of these two estimators cal logit

ˆ
yt  has 

always the largest variance. 

Looking instead at the results in Table 3.2 for Poisson sampling, we can first observe that for cal
ˆ
yt  both 

the bias and the variance are larger than under simple random sampling. opt
ˆ ,yt  on the other hand, has highly 

reduced bias under Poisson sampling compared with simple random sampling, whereas there is a slight 

increase in the variance. Then, turning to the proposed modified estimator optm
ˆ
yt  we observe a further 

reduction in bias, except for = 0.86.U  Actually, the bias has a monotonic behaviour and changes sign 

from positive to negative for 0.64.U   However, compared with opt
ˆ
yt  the variance of optm

ˆ
yt  is increased 

due to the inclusion of ˆ
U  in (2.4), thus leading to a trade-off between the bias and the variance. We also 

note that of these two estimators optm
ˆ
yt  displays the largest MSE values, since the dominating part of the 

MSE is the variance for these low levels of bias. 
 

Table 3.1 
Empirical bias ˆ( ),B  variance ˆ( )V  and mean squared error (MSE)  for cal

ˆ
yt  (Cal), cal logit

ˆ
yt  (Cal logit) and opt

ˆ
yt  

(Opt) under simple random sampling ( = 300)n  with average response probabilities 0.86, 0.70, 0.65 and 0.60 
 

                                                       Simple random sampling (Cal = Opt) 

 4ˆ *10B   U  0.86 0.70 0.65 0.60 

Cal -2.44 -4.00 -4.47 -4.89 

Cal logit 4.81 19.4 26.4 35.5 

 8ˆ *10V   U  0.86 0.70 0.65 0.60 

Cal 8.40 9.59 10.2 11.3 

Cal logit 10.7 10.9 13.2 16.1 
  9MSE *10  U  0.86 0.70 0.65 0.60 

Cal 1.44 2.57 3.01 3.52 

Cal logit 3.38 38.9 71.9 127 
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Table 3.2 
Empirical bias ˆ( ),B  variance ˆ( )V  and mean squared error (MSE)  for cal

ˆ
yt  (Cal), cal logit

ˆ
yt  (Cal logit), opt

ˆ
yt  

(Opt) and optm
ˆ

yt  (Optm) under Poisson sampling ( ( ) = 300)E n  with average response probabilities 0.86, 0.70, 
0.65 and 0.60 
 

                                 Poisson sampling 

 4ˆ *10B   U    0.86   0.70   0.65   0.60  

Cal   -2.88   -4.71   -5.17   -5.69  

Cal logit   -12.1   -27.5   -32.9   -38.8  

Opt   -0.0732   -0.329   -0.516   -0.810  

Optm   0.690   0.274   0.0536   -0.277  

 9ˆ *10V   U    0.86   0.70   0.65   0.60  

Cal   4.46   5.25   5.56   5.81  

Cal logit   5.17   6.60   7.17   7.57 

Opt   1.39   1.63   1.75   1.84  

Optm   2.05   2.89   3.22   3.51  
  9MSE *10  U    0.86   0.70   0.65   0.60  

Cal   5.29   7.47   8.23   9.05 

Cal logit   19.8   82.2   115   127  

Opt   1.39   1.64   1.78   1.91  

Optm   2.10   2.90   3.22   3.52 

 

4  Concluding remarks 
 

The family of linear calibration techniques in survey sampling contains a variety of alternative 

weightings under full response, including GREG estimators and the optimal regression estimator. The 

nonresponse situation offers still more options and challenges and we have studied the “optimal” estimator 

while also taking into account average response propensities (probabilities). The approach has been design-

based since the modified “optimal” estimator can be motivated by asymptotic argumentation and we have 

furthermore not used any modelling for the response propensities. The results are encouraging, especially 

concerning reduction of the bias for the suggested estimator. Further work will include the construction of 

a variance estimator, which should be valid conditionally on the size of the response set. 
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A method to correct for frame membership error in dual 
frame estimators 

Dong Lin, Zhaoce Liu and Lynne Stokes1 

Abstract 

Dual frame surveys are useful when no single frame with adequate coverage exists. However estimators from 
dual frame designs require knowledge of the frame memberships of each sampled unit. When this information is 
not available from the frame itself, it is often collected from the respondent. When respondents provide incorrect 
membership information, the resulting estimators of means or totals can be biased. A method for reducing this 
bias, using accurate membership information obtained about a subsample of respondents, is proposed. The 
properties of the new estimator are examined and compared to alternative estimators. The proposed estimator is 
applied to the data from the motivating example, which was a recreational angler survey, using an address frame 
and an incomplete fishing license frame. 

 
Key Words: Hartley estimator; Bias-adjustment; Misclassification. 

 
 

1  Introduction 
 

In single frame surveys, all sample units are selected from the same frame. This is the preferred method 

when the frame covers the population of interest. But no single frame with adequate coverage exists for 

some applications, or it may be too expensive to sample from a complete frame that also includes units that 

are not part of the target population. In such cases, a multiple frame design can be an attractive alternative. 

The dual frame design, in which two overlapping frames are used for sampling, was introduced by 

Hartley (1962). The frames, labeled A  and ,B  collectively cover the population of interest ,U  which is 

made up of three mutually exclusive subsets known as domains. Domain a  contains units in frame A  but 

not in ;B  domain b  contains units in frame B  but not in ;A  and domain ab  contains the units in the 

intersection of A  and .B  In dual frame surveys, samples are selected independently from frames A  and .B  

The sampler typically does not know in advance which frame units are in which domains, but will ascertain 

this for the units that are sampled as part of the data collection process. 

Several estimators are available for combining the information from the two samples to estimate 

parameters of .U  All require adjusting the weights of the sampled units based on domain membership. 

Thus, knowing the domain of sampled units is critical for estimation from dual frame sample designs. When 

domain membership can be determined accurately, unbiased estimators of means and totals can be 

constructed. However, when estimators are based on inaccurate domain information, they can be biased. 

Hartley (1962) developed a family of dual frame estimators. In this paper we propose a bias correction 

method for Hartley’s estimator that is available if either the misclassification probabilities are known, or 

more realistically, can be estimated from a random subsample of respondents. This estimator is compared 
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to one proposed by Lohr (2011) for the same purpose, and the different assumptions under which each is 

justified are clarified. 

The motivating application for this work was the Marine Recreational Information Program (MRIP), a 

data collection system carried out by the National Oceanic and Atmospheric Administration (NOAA), to 

provide bi-monthly estimates of fish catch by species in U.S. marine waters. One part of the program was 

the Coastal Household Telephone Survey (CHTS), which provided an estimate of the number of fishing 

trips made by recreational anglers in each coastal state in each time period. A National Research Council 

report (NRC, 2006) identified deficiencies of the original survey design, and pilot surveys tested 

improvements. Several of these pilots had a dual frame sample design, which supplemented a residential 

frame (either a telephone or address frame of all households in the state) with the state’s angler license 

registry. The telephone frame is inefficient; for example, only about 5% of CHTS sample contacts in urban 

areas reached an angler (NRC, 2006). The license frame is efficient but incomplete, due to omission of 

anglers for a variety of exemptions from licensing, as well as to illegal angling. Domain membership 

information for each angler sampled from the residential frame was requested from the survey respondent 

by asking if he or she was licensed. Andrews, Brick, Mathiowetz and Stokes (2010) demonstrated that the 

domain membership data obtained in this way is unreliable, as respondents both overreport and underreport 

license ownership. The goal of this research was to determine the effect of this error on estimation of number 

of trips and find a method to mitigate the damage.  

The pilot study we used for this research was conducted by mail. The two frames were an address frame 

for all residents of the state, which was provided by US Postal Service, and the license frame listing all 

anglers licensed by the state, provided by the state natural resource agency. The address frame obviously 

did not contain information about whether the household members had fishing licenses, so that question 

was asked of all respondents sampled from the address frame in this study. The license frame did of course 

have the addresses so that it could be determined whether or not the anglers sampled from this frame resided 

in the state. Because we had address information, it was possible to link the households on the address frame 

with the addresses on the license frame fairly easily. However, determining whether the persons responding 

to the address frame survey were the licensed individuals in the household was laborious, since no names 

were requested. For this reason, it was difficult to determine whether a household was on both frames or 

not. 

In Section 2, we review estimation for dual frame designs. In Section 3, we present examples to show 

how domain misclassication error affects estimation. In Section 4, we derive a bias correction method for 

Hartley’s dual frame estimator and compare it to an alternative (Lohr, 2011). In Section 5, we present results 

of a simulation designed to examine the accuracy of inference using the bias-corrected estimators. The 

method is illustrated in Section 6 by an application to data from one of NOAA’s pilot angler surveys. A 

discussion follows in Section 7. 
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2  Dual frame estimation 
 

Since the introduction of dual frame sample designs by Hartley (1962), many estimators have been 

proposed (Fuller and Burmeister, 1972; Kalton and Anderson, 1986; Bankier, 1986; Skinner and Rao, 1996). 

In this section, we focus on Hartley’s estimator, since it was used in our MRIP pilot study application. Using 

Hartley’s original notation, we denote by , , , ,A B a bN N N N N  and abN  the number of elements in 

, , , ,U A B a b  and ,ab  respectively. Then the following relationships hold: = ,a ab bN N N N   

= ,A a abN N N  and = .B ab bN N N  Denote the samples from frames A  and B  as As  and ,Bs  and 

unit ’si  inclusion probability in the two samples as A
i  and .B

i  

The population total Y  can be written as the sum of totals of the three mutually exclusive domains.  

                                                           = ,a ab bY Y Y Y   (2.1) 

where = ,a ii a
Y y

 =b ii b
Y y

  and = .ab ii ab
Y y

  Estimators of the total can be written as the sum 

of total estimators in the three different domains, which is  

                                                           ˆ ˆ ˆ ˆ= .a ab bY Y Y Y   (2.2) 

Hartley’s estimator (1962) is  

                                                          ˆ ˆ ˆ ˆ ˆ= 1 ,A B
H a ab ab bY Y Y Y Y      (2.3) 

where ˆ = A
ab

A A
ab i ii s

Y w y
  denotes the estimator of abY  using information from frame ,A  and 

ˆ = B
ab

B B
ab i ii s

Y w y
  is the corresponding estimator from frame .B A

abs  B
abs  is the subset of As  Bs  

consisting of items that fall in domain ab  and = 1A A
i iw   and = 1B B

i iw   are the sampling weights based 

on the inclusion probabilities in frames A  and .B  In practice, those weights are typically adjusted for non-

response and possibly undercoverage as well. aY  and bY  are estimated similarly as ˆ =
a

A
a i ii s

Y w y
  and 

ˆ = .
b

B
b i ii s

Y w y
   is a number between 0 and 1 that adjusts the weights of items from frames A  and .B  

When   denotes a constant, theory provides an optimal value for it that will minimize the estimator’s 

variance. However it will depend on unknown parameters, and thus must be estimated. Another approach 

that may be used is to select a value of   that is proportional to the reciprocal of the sample sizes from the 

two frames. This will be a constant, and will be near optimal if the sample designs have similar design 

effects and a small overlap domain. 

If   is a constant, ˆ
HY  is linear in the data, and its properties are easy to calculate. If = 0  or 1, the 

estimator for the overlap domain depends on data from only one of the two frames. The optimal value of   

for minimizing the variance of ˆ
HY  (Hartley, 1962) is  

 
     

   
ˆ ˆ ˆ ˆ ˆCov , Cov ,

= .
ˆ ˆ

B B B A A
ab b ab a ab

H A B
ab ab

V Y Y Y Y Y

V Y V Y


 


 (2.4) 
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The variances and covariances in (2.4) are unknown and must be estimated from the sample if the optimal 

form for   is to be used in (2.3). In that case, the resulting weights are random and contribute to the 

variability of the estimator. Another disadvantage of using the optimal value of   in ˆ
HY  is that H  is 

different for different response variables, which results in inconsistency among estimators of related 

quantities. For example, the optimal estimators of the number of shore and boat fishing trips made by anglers 

do not necessarily sum to the optimal estimator of total number of fishing trips. For that reason, in practice, 

a constant value of   is frequently used; for example, a value of = 1 2  is sometimes recommended when 

sample sizes are similar in the two frames (Lohr, 2011). 

 
3  Misclassification in dual frame surveys 
 

The domain of every sampled unit must be known to calculate any dual frame estimator. For example, 

(2.3) shows that in ˆ ,HY  the weight of a unit sampled from the residential frame should be adjusted by   or 

1   if the respondent is a license holder, but not otherwise. When this information is unavailable from 

the frames themselves, it must be collected from the respondent. In our application, we found that some 

respondents could not provide accurate information about whether they owned a fishing license or not. 

Inaccurate information about domain membership causes domain misclassfication error, which affects the 

properties of estimators of means and totals. In this section, we examine the effect of misclassification error 

on the bias and variance of the Hartley estimator.  

Frame A  domain misclassification error can occur in two ways. The first is that a respondent sampled 

from frame A  who is in domain ab  identifies himself or herself as being in domain .a  It also can occur in 

the other direction; i.e., a respondent sampled from frame A  who is in domain a  reports that he or she is 

in .ab  We refer to the domain reported by the respondent as being the perceived or reported domain to 

distinguish it from their true domain. Thus each respondent belongs to one of four subgroups based on 

membership in the intersection of true and perceived domain identities. In this paper, we use a superscripted 

asterisk  *  on the domain name to indicate the perceived domain, so the four subgroups are denoted as 
* * *, , ,a a ab ab a ab    and * .ab a  These labels are also used as subscripts for parameters to 

indicate the subset of the population to which it applies. For example, let frame A  and frame B  denote the 

CHTS and angler registry frames, respectively. Then a person living in a household on the CHTS frame and 

who has no fishing license, but reports that he does, belongs to subgroup * .a ab  The universe of all such 

persons on frame A  would be denoted as * ,
a ab

U


 and the size of the population subgroup, and the total 

and mean number of fishing trips for this subgroup would be denoted as * ,
a ab

N
 * ,

a ab
Y


 and * ,

a ab
Y


 

respectively. If such a person actually did have a fishing license, then he would be in subgroup * .ab ab  

In our study, the analyst would not be able to distinguish between the domains of these two respondents, and 

would place them both in the perceived overlap domain * .ab  The sampling weight appropriate to the actual 

but unobserved overlap domain  ab  would be applied to units belonging to * * *=
ab a ab ab ab

U U U
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instead of to * *= ,ab ab a ab ab
U U U

 
  and estimated totals for units in *ab

U would replace those from abU  

in (2.2), causing the bias we investigate in this paper. 

The domain misclassification error just described for frame A  can occur in either frame in some studies. 

In our study this was not a problem because the license frame included addresses, so we knew whether or 

not the registered angler would appear on the state residential frame. However, we allow for the more 

general case, so the notation defined for frame A  is extended to frame .B  A complication this causes is that 

we must distinguish the cases in the perceived overlap domain  *ab  according to the frame from which 

the unit originates. This is because the units in the perceived overlap may differ depending on the originating 

frame. For example, in our study, a person sampled from the CHTS can report that they do not have a license 

when they actually do, so would not be in * .ab  However, if the same person were to be sampled from the 

license frame, they would be correctly perceived to be in the overlap * .ab  Therefore, when confusion can 

occur, we extend the notation of the perceived overlap domain to indicate the frame from which the unit 

originates, as  *ab A  and  * .ab B  For example, in our study,  *ab A
Y  is the mean number of trips for all 

those in the state (frame )A  who would report that they have a license when asked, which includes some 

who do not. However  *ab B
Y  would be the mean number of trips for only those in the true domain ,ab  

because our frame B  did not suffer from domain misclassification errors. 

Now we rewrite ˆ
HY  in new notation to make it easier to derive its properties when misclassification 

occurs. First we consider the case when no misclassificaton error occurs. For this we define the true domain 

indicator  A
i a  which take a value of 1 when unit i  from frame A  is in domain a  and 0 otherwise. Since 

every unit is in one true domain or the other, the indicator that unit i  is in domain ab  is  1 .A
i a  B

i b  

is similarly defined for frame .B  When there is no misclassification error, ˆ
HY  can be written as: 

                                

    

      

=1 =1

=1 =1

=1 =1

ˆ = 1

1 1

= ,

A A

B B

A B

N N
A A A A A A

H i i i i i i i i
i i

N N
B B B B B B
i i i i i i i i

i i

N N
A A B B
i i Ai i i Bi

i i

Y I w a y I w a y

I w b y I w b y

I w x I w x

  

  

 

   



 

 

 

 

(3.1)

 

where A
iI  and B

iI  are indicators that unit i  from frame A  or B  belongs to sample As  or ,Bs  

    = 1A A
Ai i i i ix a y a y     and       = 1 1 .B B

Bi i i i ix b y b y      

For comparing the effect of domain misclassification on estimator properties, we restrict attention to the 

special case of a simple random sample design in each frame, with sample sizes An  and .Bn ˆ
HY  is unbiased 

when there is no misclassification error. When the fpc is negligible, the variance of ˆ
HY  in this case is  

                                               2 2 2 2ˆ = ,
A BH A X A B X BV Y N S n N S n  (3.2) 

where  
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2

2 2 2 2 2 2

2
22 2 2 2 2

= ,

= 1 1 ,

A

B

a ab a ab
X a a ab ab a ab

A A A A

b ab b ab
X b b ab ab b ab

B B B B

N N N N
S S Y S Y Y Y

N N N N

N N N N
S S Y S Y Y Y

N N N N

 

 

     
 

         

  

are the population variances of Aix  and .Bix  Here and subsequently 2
dS  and dY  denote the population 

variance and mean of y  for domain ,d  whether d  denotes the true domain ( = , ,d a b  or )ab  or the 

perceived one  * * *( = , , ,d a b ab A  or  * ).ab B  

When domain misclassification occurs, we require notation for perceived domain membership indicators. 

For these, we define  A
i a  to be 1 when unit i  from frame A  is in domain *a  and 0 otherwise. Because each 

unit is in one perceived domain or the other, the indicator that unit i  is in *ab  is  1 .A
i a  B

i b  is similarly 

defined for frame .B  Then Hartley’s estimator becomes 

 

 

    

      

* * * *
*

=1 =1

=1 =1

* *

=1 =1

ˆ ˆ ˆ ˆ ˆ= 1

= 1

1 1

= ,

A

B B

A B

A B
H a ab ab b

N NA
A A A A A A
i i i i i i i i

i i

N N
B B B B B B
i i i i i i i i

i i

N N
A A B B
i i Ai i i Bi

i i

Y Y Y Y Y

I w a y I w a y

I w b y I w b y

I w x I w x

 

  

  

   

 

   



 

 

 

 

(3.3)

 

where     * = 1A A
Ai i i i ix a y a y     and       * = 1 1 .B B

Bi i i i ix b y b y      The bias of *ˆ
HY  

is then  

      

 

           

     * * * *

*

=1 =1

ˆBias =

= 1

= 1 .

A B

H

N N
A A B B
i i i i i i

i i

a a b ba a b b

E Y Y

a a y b b y

N Y N Y N Y N Y

     

 



   

   

   

(3.4)

 

Note that     * * * * * * *= =a a aa a a a a ab a a a a ab A
N Y N Y Y Y Y Y Y Y

   
     * * ( )

= .
ab a a ab A

Y Y
 

  So 

the first term in the bias expression can be positive or negative and large or small, depending on the relative 

number in the population who wrongly perceive that they are or are not in the frame overlap, and their 

response means. The same is true of the second term. In theory the two could cancel each other out even if 

errors occurred in both directions, but of course that is unlikely.  

The variance expression for *ˆ
HY  is similar to that of  ˆ :HV Y  

   * *
* 2 2 2 2ˆ = ,

A B
H A A B Bx x

V Y N S n N S n  (3.5) 

where 
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**

* * * * *

**

* *

2 2 2 2 2 2

2

=

,

A

ab Aa
x a a ab A ab A

A A

ab Aa
a ab A

A A

NN
S S Y S Y

N N

NN
Y Y

N N





  


  
 

  

and  

 

     
    

   
 

**

* * * * *

**

* *

22 2 2 2 2

2

= 1

1

B

ab Bb
x b b ab B ab B

B B

ab Bb
b ab B

B B

NN
S S Y S Y

N N

NN
Y Y

N N





   


   
 

  

denote the variances of *
Aix  and * .Bix  The perceived overlap domain *ab  is further denoted by  A  or   ,B  

because the same unit in ab  may be perceived to belong to different domains if reached from different 

frames. The impact of misclassification on the mean square error (MSE) of Hartley’s estimator will be 

discussed further in Section 3.3. Obiously, the bias of *ˆ
HY  is 0 and    *ˆ ˆ=H HV Y V Y  if the actual and 

perceived domains are identical. 

 
4  Bias correction for misclassification error 
 

Lohr (2011, Section 6) addressed the same problem we are considering; i.e., how to adjust for domain 

misclassification in dual frame survey designs. She proposed an adjustment to Hartley’s estimator to 

mitigate the bias induced from misclassification. We review Lohr’s method and then compare it to our 

proposed alternative. We observe that in order for Lohr’s method to produce an unbiased estimator of mean 

or total for ,Y  the units in the same domain must have equal means, regardless of their perceived domain 

membership. This assumption was not valid in our angler survey; rather, we found that fishing avidity was 

related to the angler’s perceived, rather than actual, license status. Our bias correction method was 

developed for this different perspective of accounting for the misclassification error. It assumes that the 

items in the same perceived domain must have equal means, regardless of their true domain membership. 

We show that the proposed method has smaller MSE than Lohr’s method when both assumptions are true. 

When they are not, the choice should be made based on the appropriate assumption.  

 
4.1  Lohr’s misclassification bias correction method 
 

Lohr’s multinomial misclassification model assumes that units from each of the domains ,a ab  and b  

have their own known probabilities of being perceived to be in one of the three domains. These probabilities 

are used to adjust the estimators to remove the bias arising from misclassification. In practice, these 

probabilities are usually unknown and must be estimated from a phase 2 sample, on which an expensive 

(and accurate) method is used to obtain domain membership. This approach will be discussed in 

Section 4.3.1. For now, these probabilities are assumed known. 
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We describe Lohr’s method for a dual frame design, though she described her approach for multiple 

frames. We define random vectors composed of random variables for the three domains: =Y

 , , ,a ab bY Y Y        = , ,δ A A A A
i i i ia ab b     and       = , , .δ B B B B

i i i ia ab b     If there is no 

misclassification error, ˆ =Y δ
A

A A A
i i ii s

w y
  and ˆ =Y δ

B

B B B
i i ii s

w y
  are vectors of unbiased 

estimators of domain totals from frames A  and .B  Then Hartley’s estimator with fixed   can be written 

as    ˆ ˆ ˆ= m Y m YA A B B
HY    where  = 1, , 0m A    and  = 0, 1 , 1 .mB    

Now suppose misclassification error occurs. Let       = , ,η A A A A
i i i ia ab b     denote the vector of 

perceived domain membership indicators for unit i  from frame .A  This vector can be written as 

 = ,η M δA A A
i i i

  where M A
i  is a 3 3  matrix containing a 1 in position  2 1,d d  if unit i  in domain 2d  

was perceived to be in domain 1 ,d  and 0 elsewhere. When the perceived rather than actual domain 

membership information is used, ˆ AY  becomes  

  *ˆ = = .Y η M δ
A A

A A A A A A
i i i i i i i

i s i s

w y w y
 

    

Define the misclassification probability matrix for frame A  as: 

                                                   

 

 

* *

* *

0

= 0 ,

0 0 0

Φ

a a ab A a

A
a ab ab A ab

p p

p p






 
 

 (4.1) 

where *
1 2d d

p  is the probability that a unit in domain 2d  is perceived to be in domain 1.d
*ˆ AY  will typically 

be biased for the domain totals of frame A  when the off-diagonal elements are non-zero since 

     *ˆ ˆ= .Y Φ YA A AE E Y   

To correct the bias, Lohr (2011) proposed the weight adjustment vector,  =m Φ mA A A  where  Φ A 
 

is the Moore-Penrose inverse of .Φ A  Although not explicitly stated, this method requires for unbiasedness 

the assumption that the true domain membership determines the mean; i.e., that 

                                             * * * *= , =
a ab a a ab ab A ab a

Y Y Y Y
   

 (4.2) 

Then          *ˆ = = .m Y Φ m Φ Y m YA A A A A AE
     After implementing a similar equal means 

assumption, misclassification matrix and adjustment for frame ,B  we have Lohr’s bias-adjusted estimator: 

                            

   

    
      

* *

* * * *

* * * *

11 21 12 22

32 22 33 23

ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ1 ,

m Y m YA A B B
L

A A A A
a ab A a ab A

B B B B
b ab B b ab B

Y

Y Y Y Y

Y Y Y Y

    

    

   

   

 

  

    

 

 

(4.3)

 

where A
ij   is the  ,i j  element of   ,Φ A 

 and B
ij   is similarly defined. In the special case of dual frame 

designs that we are considering, the components of the pseudoinverse matrices can easily be written 

explicitly if  * * 1
ab A a a ab

p p   and  * * 1
ab B b b ab

p p   as: 
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* * *

* * *

* *

11 21 12

22 33 23

32 22

= , = , = ,

= , = , = ,

= , = ,

ab A ab a ab ab A aA A A

A A A

a a ab B ab b abA B B

A B B

ab B b b bB B

B B

p p p

D D D

p p p

D D D

p p

D D

  

  

 

  

  

 

 





 

(4.4)

 

where   * *= 1A ab A a a ab
D p p   and   * *= 1 .B ab B b b ab

D p p   If the misclassification 

probabilities were known, this estimator could be computed and would be unbiased, as long as (4.2) and 

similar assumptions for frame B  means hold. Its variance can be derived by the same technique used to 

obtain equation (3.2). See Lin (2014), pages 28-29 for the variance expression.  

 
4.2  An alternative misclassification bias correction procedure 
 

Lohr’s estimator eliminates the bias of Hartley’s estimator under the assumption that the true domain 

membership determines the mean of the variable of interest. Because this assumption appeared not to hold 

for our angler survey data, we developed an alternative bias correction method requiring a more suitable set 

of assumptions for our application. 

Recall that    * * * *, , ,
a ab A ab B b

Y Y Y Y  denote the population totals of the perceived domains, where the 

notation reflects that perceived domain membership in the frame overlap may depend on the frame from 

which the unit was sampled. The perceived domain totals and sizes can be decomposed by actual domain 

labels: e.g., * * *=
a a a ab a

Y Y Y
 

  and * * *= .
a a a ab a

N N N
 

  We parameterize our model by defining the 

misclassification probabilities in the reverse form from Lohr’s. That is, let *
1 2d d

p  denote the probability that 

an observation perceived to be in domain 2d  is actually in domain 1d  and define the matrix of 

misclassification probabilities from frame A  as 

    

* *

* *

0

= 0 .

0 0 0

Λ

a a ab a

A
a ab A ab ab A

p p

p p






 

  

In our development, the equal means assumptions (4.2) are replaced by assumptions that the means are 

determined by perceived domain membership;  

                            * * * * * * * *= , = , = , =
a a ab a a ab A ab ab A b b ab b b ab B ab ab B

Y Y Y Y Y Y Y Y
       

 (4.5) 

When these assumptions hold, we have  

                    * * * * * * * *= , = 1 1 ,a aba a a ab A a ab A a a a ab A a ab A
Y Y p Y p Y Y p Y p     (4.6) 

with similar expressions for domain totals for frame .B  Then a bias-corrected estimator is  
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* *

* * * * * * * *

* * * * * * * *

BC

.

ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ= 1 1

ˆ ˆ ˆ ˆ1 1 1

Λ m Λ mA A A B B B

a a a ab A a ab A a a a ab A a ab A

b b b ab B b ab B b b b ab B b ab B

Y Y Y

Y p Y p Y p Y p

Y p Y p Y p Y p





 

    

      

 

(4.7)

 

BCŶ  is unbiased when the equal means assumptions (4.5) hold. Its variance can be calculated using the same 

technique as that used to obtain equation (3.2). See Lin (2014), pages 33-34 for the variance expression.  

 
4.3  Comparison of bias correction methods 
 

In this section, we examine the performance of ˆ ,LY BCŶ  and their uncorrected counterpart ˆ .HY  We also 

examine bias-corrected estimators that can be used when the misclassification probabilities are not known. 

These can be constructed by replacing the known values of the probabilities in (4.3) and (4.7) with estimators 

of misclassification probabilities made from phase 2 subsamples. The subsample is selected from the 

original sample, using an accurate (and typically expensive) data collection method to ascertain true domain 

membership. Let  2A
iI  denote the phase 2 sample indicator for frame ,A     2 2= = 1 = 1A A A

i i iP I I  its 

conditional selection probability, and    2 2= 1A A
i iw   its phase 2 weight. Then ratio estimators of 

misclassification probabilities can be constructed; for example, *a a
p  can be estimated by 

  
     

     
 

* * *

2 2 *
2 2 (2)=1

2 2 *

=1

ˆ ˆˆ = = .
A

A

N A AA A
i i i i ii

Na a a a aA AA A
i i i i ii

I I w w a a
p N N

I I w w a



 




 (4.8) 

Lohr’s estimator requires that the reverse conditional probabilities be estimated from the phase 2 sample; 

i.e.,    
* *

2 2ˆ ˆˆ = .aa a a a
p N N


 Similar estimators can be constructed for the components of all four 

misclassification matrices. When these estimators are substituted for parameters in (4.3) and (4.7), the 

resulting bias-adjusted estimators are denoted by BC
ˆ̂Y  and ˆ̂ .LY  

In this section, we present several comparisons among the five estimators. The first restricts the 

comparison of variances to only ˆ ,HY ˆ ,LY  and BCŶ  for a simple scenario in which all domain means are 

equal, so that required assumptions about the means hold for both estimators. Its purpose is to illustrate the 

variance inflation that can occur in ˆ .LY  The second example partially replicates a simulation presented in 

Lohr (2011), but with the addition of BCŶ  and BC
ˆ̂ .Y  It compares the mean squared error (MSE) of the 

estimators when both sets of equal mean assumptions are satisfied. We also examine the effect of a change 

of the phase 2 sample design from a simple random sample to one stratified by perceived domain. In 

example 3, we examine the robustness of both estimators to these assumptions by examining the simulated 

bias and MSE of the estimators when neither (4.2) nor (4.5) holds. In all cases,   is fixed at 0.5. 

 
4.3.1  Example 1: Variance inflation 
 

We compared the variances of BCŶ  and ˆ
LY  with the MSE of ˆ

HY  when misclassification errors occur, 

but their rates are known. The populations are taken to be homogeneous with all domain means and 

variances constant: = = = 2a ab bY Y Y  so that both equal mean assumptions hold and BCŶ  and ˆ
LY  are 



Survey Methodology, December 2019 553 
 

 
Statistics Canada, Catalogue No. 12-001-X 

unbiased. We set 2 2 2= = = 1.a ab bS S S  For this example, the frames were taken to be small with substantial 

overlap: =aN 3,000, =abN 2,000, =bN 3,000. Simple random samples of sizes =An 100 and 

= 50Bn  were assumed. The MSE of the Hartley estimator was calculated from (3.4) and (3.5), while the 

variances of the bias-corrected estimators were computed using the expressions in Lin (2014, page 28 and 

33). The following two cases were considered: 

1. The misclassification probability for units in domain a  varies from 0 to 1; no other 

misclassification errors exist. 

2. The misclassification probability for units in domain ab  (when sampled from frame )A  varies 

from 0 to 1; no other misclassification errors exist. 
 

The two panels of Figure 4.1 display the MSE’s of the three estimators as functions of the two 

misclassification probabilities. For each condition, BCŶ  has smaller MSE than that of ˆ
LY  over the range of 

misclassification probabilities, though the two estimators have very similar performance when the 

probabilities are small. The MSE of BCŶ  varies little across the range, but the MSE of ˆ
LY  increases without 

bound as the probability approaches 1. This occurs because the components of the pseudoinverse (4.4) 

become large as the (single) misclassification approaches 1, which inflates the coefficients of subdomain 

estimates in (4.3). 

In practice, if misclassification probabilities were known and exceeded 1 2 ,  the domain identification 

process would simply be reversed, so this scenario is not of practical importance. However, we will see in 

the next example that when misclassification probabilities are not known and must be estimated, the 

performance of ˆ
LY  is sensitive to the quality of their phase 2 probability estimators. This is because even if 

misclassification probabilities are small, their estimates can be large, especially when the phase 2 design is 

inefficient, and the same variance inflation can occur. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.1 Comparison of MSE of ˆ
HY , ˆ

LY , and BCŶ  over range of a single misclassification probability. 
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4.3.2  Example 2: Simulated relative efficiency of the five estimators 
 

The second example uses simulation to compare the performance of BC
ˆˆ ˆ ˆ ˆ, , ,H L LY Y Y Y  and BC

ˆ̂Y  for a 

variety of misclassification patterns, first when both domain mean assumptions hold, and then when neither 

holds. The domain sizes chosen for this example were =aN 48,000, =abN 2,000, and =bN 3,000, which 

were meant to mimic the motivating angler survey, in which one frame (the address frame) was much larger 

than the other (the registration frame). The population was generated using the model 1i iy x  , for 

= 1, , ,i N  with ix  Poisson(1), regardless of the domain. Thus the means and variances for the 

population were approximately the same as those in the first example. We simulated selection of simple 

random samples from each frame, with sample sizes of =An 100 and =Bn 50. For the phase 2 samples, 

we chose a simple random sample (SRS), with four sample sizes that varied from 20% to 80% of the phase 1 

sample, resulting in frame A  subsample sizes  Am  between 20 and 80 and frame B  subsample sizes  Bm  

between 10 and 40. If any replicate had a phase 2 sample with fewer than 2 units from one of the 

subdomains, we assumed no misclassification for that domain; i.e., the estimators were constructed as if 

there was no misclassification error for that subdomain. 16 misclassification patterns were simulated, which 

were all pairs of the following four patterns for each frame: 

1. Misclassification patterns for frame A  (MPA) 

a) * =
a a

p 1,  * =
ab A ab

p 1 

b) * =
a a

p 0.9,  * =
ab A a

p 0.1,  * =
ab A ab

p 1 

c) * =
a a

p 0.9,  * =
ab A a

p 0.1,  * =
ab A ab

p 0.9, * =
a ab

p 0.1 

d) * =
a a

p 1,  * =
ab A ab

p 0.9, * =
a ab

p 0.1 

2. Misclassification patterns for frame B  (MPB) 

a) * =
b b

p 1,  * =
ab B ab

p 1 

b) * =
b b

p 0.8,  * =
ab B b

p 0.2,  * =
ab B ab

p 1 

c) * =
b b

p 0.8,  * =
ab B b

p 0.2,  * =
ab B ab

p 0.8, * =
b ab

p 0.2 

d) * =
b b

p 1,  * =
ab B ab

p 0.8, * =
b ab

p 0.2 

 

Thus the simulation examined 64 settings (16 misclassification patterns   4 phase 2 sample sizes),with 

10,000 phase 1 samples generated under each setting and the appropriate estimates computed. The empirical 

MSE was calculated as the average squared deviation of each estimate from the true Y  over the 10,000 

replicates. The results are summarized in Table 4.1, Figure 4.2 and 4.3. 

Table 4.1 shows the results for all 16 misclassification patterns for the 40% phase 2 sampling rate 

( =Am 40 and =Bm 20). The conclusions we draw here were consistent for all sample sizes. We see that 

BCŶ  and BC
ˆ̂Y  are less variable than ˆ

LY  and ˆ̂
LY  for all misclassification patterns except when no error is 

present. Second, if misclassification occurs only in small domains (pattern a  or d  from frame ),A  there is 

little advantage to using bias correction, since ˆ
HY  performs about as well or better than the bias-corrected 

estimators. This suggests that bias correction may not be advantageous unless misclassification affects a 
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large portion of the population. Finally, we observe that ˆ̂
LY  shows worse performance when 

misclassification pattern c  holds in frame .A  Now we examine this effect more closely. 

 
Table 4.1 
MSE  710  for dual frame estimators 
 

  Known Prob. Estimated Prob. 

MPA MPB BCŶ  ˆ
LY  ˆ

HY  BC

ˆ̂
Y  

ˆ̂
LY  

a a 2.53 2.53 2.53 2.53 2.53 
b a 2.45 2.86 4.77 2.66 3.00 
c a 2.44 2.96 4.60 2.66 3.80 
d a 2.52 2.54 2.53 2.55 2.72 

a b 2.53 2.55 2.57 2.54 2.55 
b b 2.45 2.88 5.37 2.66 3.02 
c b 2.44 2.98 5.18 2.67 3.82 
d b 2.52 2.56 2.55 2.56 2.74 

a c 2.53 2.57 2.54 2.55 2.63 
b c 2.45 2.90 4.99 2.67 3.10 
c c 2.44 3.00 4.81 2.67 3.90 
d c 2.52 2.59 2.54 2.56 2.81 

a d 2.53 2.54 2.56 2.54 2.54 
b d 2.45 2.87 4.44 2.66 3.01 
c d 2.44 2.97 4.28 2.66 3.81 
d d 2.52 2.55 2.57 2.55 2.73 

 
Figure 4.2 shows the ratio of the MSE’s of the probability-unknown to the probability-known bias-

corrected estimators, where panel (a) shows BC BC
ˆ̂ ˆMSE( ) MSE( )Y Y  and (b) shows MSE

ˆ̂ ˆMSE( ) MSE( ).L LY Y  The four lines display the ratio for the four phase 2 sample sizes for the 16 

misclassification patterns arrayed on the x-axis. The ratio’s distance above 1 measures the variance penalty 

incurred from estimating the misclassification probabilities. The most significant feature of the figure is the 

large penalty suffered by ˆ̂
LY  under frame A  misclassification patterns c  and d  for small sample sizes, and 

the relative lack of this effect for BC
ˆ̂ .Y  Both patterns have non-zero misclassification error for the small 

overlap domain. Therefore, the phase 1 sample often has few units available from which to estimate * ,
a ab

p  

producing a noisy estimate of the misclassification probability. So even though the actual misclassification 

probability is not close to 1 under patterns c  and d *( =
a ab

p 0.1), the fact that it is not known and must 

be estimated from little data means that some samples produce extreme estimates, inflating its variance, as 

we noted in Figure 4.1. 

We see from panel (a) of Figure 4.2 that this effect is also present to a lesser degree for BC
ˆ̂ .Y  The smallest 

phase 2 sample ( =Am 20, =Bm 10) produces disproportionately worse performance than the next larger 

sample size. The same cause is at play; a SRS from the phase 1 sample can provide too few units in domain 

 * .ab A  However, improving the efficiency of the phase 2 design for estimation of  * ,
a ab A

p  is more 
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straightforward than improving it for * .
a ab

p  This is because the perceived domains are observable for all 

units in the phase 1 sample, while the actual domains are not, so the analyst can control the sample size for 

the former, but not the latter, by stratification. 

To investigate how much advantage this would provide, we conducted an additional simulation to 

examine the performance of BC
ˆ̂Y  when the phase 2 sample has a stratified design. We chose a design with 

equal sample sizes in each of the perceived domain strata. So for example, in the 20% sampling rate setting, 

we selected 2 = 20 2 = 10Am  observations from domains *a  and  *ab A  from the phase 1 sample. If 

fewer than 2Am  (or 2)Bm  but more than 1 unit was available, then all of them were selected and the 

remainder chosen from the other domain. This simulation used the same 64 settings as the previous one, 

with the only difference being a stratified design at phase 2 rather than a SRS. 

Results from this simulation are shown in Figure 4.3, which displays a ratio similar to a design effect 

(but for MSE rather than variance) of the phase 2 design. The graph shows that in some settings, meaningful 

improvement of the MSE of BC
ˆ̂Y  is possible by stratifying the phase 2 sample. The gain is especially 

important for the small sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Ratio of simulated MSE’s for estimators that assume misclassification probabilities are unknown: 

(a) MSE( BC

ˆ̂Y ) / MSE( BCŶ ) and (b) MSE( ˆ̂
LY ) / MSE( ˆ

LY ). 
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Figure 4.3 Ratio of simulated MSE’s for estimators with two phase 2 designs: MSEsrs ( BC

ˆ̂Y ) / MSEstr ( BC

ˆ̂Y ). 

 
4.3.3  Example 3: Robustness to violation of mean assumptions 
 

Both bias-corrected estimators require equal means assumptions to guarantee unbiasedness in the known 

misclassification probabilities case, and those assumptions differ. Lin (2014, pages 43-47) derived 

expressions for the bias of ˆ
LY  and BCŶ  when the assumptions do not hold. In this example, we use 

simulation to investigate the size of the bias for ˆ̂
LY  and BC

ˆ̂Y  as well as ˆ
LY  and BC

ˆ .Y  The simulation settings 

in this example are similar to those of the previous one, except for the means. We also considered only 3 of 

the 16 misclassification patterns, which are those with domain misclassification in only the large (first-

listed) frame: ,ba ,ca  and .da  

We simulated the populations so that one of the four subdomain means was about 3 ( 2,iy x   with 

ix  Poisson(1)) while the others remained at about 2  1 .iy x   Therefore, in each case, the equal 

means assumptions (4.2) and (4.5) were violated for both bias-corrected estimators. The empirical bias, 

variance, and MSE for each of the five estimators was computed from 10,000 replicated samples for each 

of 48 settings (3 misclassification patterns   4 equal-mean violation patterns   4 phase 2 sample sizes). 

We present results for a representative subset of these settings in Figure 4.4. 

Figure 4.4 displays boxplots of the simulated estimates from ˆ ,HY BC
ˆ̂ ,Y  and ˆ̂

LY  for one of the phase 2 

sample sizes ( =Am 40 and =Bm 20). The columns of the plot show results for the four equal mean 

assumption violations, and the rows show the results for three misclassfication patterns. The horizontal line 

in each plot shows the true population total. The figure shows that both BC
ˆ̂Y  and ˆ̂

LY  have smaller bias than 
ˆ

HY  for all settings, so that making the wrong assumption about the means is better for bias than assuming 

that no misclassification error exists. For the settings considered, it appears that BC
ˆ̂Y  in particular is not too 

sensitive to small violations of the equal mean assumptions.   
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Figure 4.4 Estimation of total  510  under different violation of equal mean assumption. 

 
5  Inference for BC

ˆ̂Y  
 

Lohr (2011, Section 4) noted that inference for dual frame estimators with non-random constructed 

weights is straightforward using standard survey software. This is true for both ˆ
LY  and BC

ˆ .Y  For BC
ˆ ,Y  the 

constructed weights for units in the four domains are   * *= 1A A
i i a a a a

w w p p   and =A
iw  

     * *1A
i a ab A a ab A

w p p   for units in domains *a  and *ab  sampled from frame ,A  and =B
iw  

    * *1 1B
i b b b b

w p p    and        * *= 1 1B B
i i b ab B b ab B

w w p p    for units in domains *b  

and *ab  sampled from frame .B  Then BCŶ  and its standard error can be calculated by providing to the 

software files containing data and weights from both frames. When the misclassification probabilities must 
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be estimated, as they are for BC
ˆ̂ ,Y  however, the variances are inflated, as illustrated in Figure 4.2, panel (a). 

In this case, linearization, jackknife, or bootstrap methods could be used to accommodate this increased 

variance. 

Lin (2014, Section 5.2.2) produced an approximate variance expression for BC
ˆ̂Y  for the case of a SRS at 

both phase 1 and phase 2, based on the linearization method. However, implementing the method requires 

special purpose coding, and would have to be adapted for complex designs at the two phases. Thus, we 

chose to investigate the accuracy of an approximate method that ignores the additional variability introduced 

by estimation of the misclassification probabilities and produces confidence intervals using standard survey 

software. The only pre-processing required is that the estimated misclassification probabilities must be 

computed from the phase 2 sample and used to replace the known values in the weight expressions above. 

To test this method, we simulated a population with the characteristics of that of example 2 in the 

previous section. We examined a subset of the misclassification patterns considered there: ,db cb  and .ca  

The sample sizes for the phase 1 samples in this case were set to An  400 and Bn  200, and three phase 2 

sampling rates were chosen, ranging from 5% to 20% (i.e., from =Am 20 and =Bm 10 to =Am 80 and 

=Bm 40), chosen as SRS and stratified designs. 10,000 replicates were generated under each setting. From 

each sample, misclassification probabilities were estimated and substituted in the weight expressions above. 

For comparison purposes, we also produced weights using the known misclassification probabilities to test 

the performance of confidence intervals based on BC
ˆ .Y  All computation was done using R’s survey package. 

The software-produced estimates of standard error and a 95% confidence interval for the population total 

(based on survey’s standard jackknife procedure) were obtained from each replicate. 

The results are summarized in Table 5.1. The columns labeled Sim.Var. displays the variance of each 

estimator as computed from the 10,000 replicates, which is our best assesment of the true variances. The 

columns labeled Est.Var. show the average over the 10,000 replicates of the software-produced variance 

estimates of BCŶ  and BC
ˆ̂ .Y  The columns labeled Suc.Rate shows the proportion of the replicates for which 

the confidence interval includes the true total. Panels (a) and (b) display results for the phase 2 SRS and 

stratified sample designs, respectively. 
 

Table 5.1 
Variance estimation and confidence interval coverage 
 

  Known Prob. Estimated Prob. 

80Am   40Am   20Am   

40Bm   20Bm   10Bm   

pattern Sim.
Var.

Est.
Var.

Suc.
Rate

Sim.
Var.

Est.
Var.

Suc.
Rate

Sim.
Var.

Est. 
Var. 

Suc. 
Rate 

Sim. 
Var. 

Est.
Var.

Suc.
Rate

(a) SRS Method  610  SRS db  6.42  6.45  0.95  6.60  6.45  0.94  7.00  6.45   0.94   7.14   6.46  0.94 
cb  6.36  6.26  0.94  7.42  6.28  0.93  8.46  6.31   0.91   11.6   6.34  0.85 
ca  6.26  6.27  0.95  7.20  6.29  0.93  8.41  6.33   0.91   11.8   6.37  0.85 

(b) Stratification Method  610  STR db  6.35  6.46  0.95  6.59  6.46  0.95  6.91  6.45   0.94   7.54   6.45  0.93 
cb  6.18  6.27  0.95  6.65  6.27  0.94  7.16  6.27   0.93   8.38   6.27  0.91 
ca  6.50  6.28  0.94  6.94  6.28  0.94  7.00  6.28   0.93   7.86   6.29  0.92 
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By comparing the Sim.Var. and Est.Var. columns, we show that the variance of BC
ˆ̂Y  is underestimated, 

on average for all settings. As would be expected, the underestimation is worse for the smallest sample size 

and the inefficient (SRS) design. As a result, the confidence interval coverage is less than its nominal value 

for most settings. However the undercoverage is small (less than 5%) for all cases except the smallest sample 

size for a phase 2 SRS. Since the coverage of the confidence intervals based on BCŶ  held their nominal 

values, we can conclude that the undercoverage was due completely to the estimation of misclassification 

probabilities. We suggest that the additional variation added from estimation of misclassification 

probabilities can be safely ignored in inference if an efficient phase 2 design is used, unless the sample sizes 

are very small. Based on this simulation, if misclassification probabilities are estimated from at least 10 

units in the each perceived domain, the coverage probabilities were no more than a few percent off. This 

can be accomplished with a smaller total sample size when the phase 2 sample is stratified, than when a 

SRS is used, so a stratified phase 2 design is recommended.  

 
6  Example: Angler survey 
 

We illustrate the use of the proposed bias correction procedure with its application to a dual frame mail 

survey of anglers in North Carolina (NC) in 2009. It was a pilot survey testing several changes to an ongoing 

program collecting recreational marine angler effort by NOAA, where effort is defined as the number of 

fishing trips during a specified time period. The two frames were a NC address frame and a license frame, 

which included the names and addresses of anglers who had any of several types of licenses. The target 

population of the pilot survey was recreational anglers who fished in NC saltwater, regardless of where they 

lived. The target time period of fishing was Wave 6 of 2009 (November - December). These two frames 

together had some undercoverage because unlicensed anglers whose home address was outside NC were 

not included in the union of the two frames.   

 
6.1  Sample design 
 

The address frame was obtained from the US Postal Service and covered all households in NC. The 

license frame included all persons listed on the NC database of licensed anglers as of the date of the license 

pull, which was several days before the mailing of the surveys. Independent samples of addresses were 

drawn from the two frames. Estimates were made of the fishing effort in NC during Wave 6, 2009 using the 

Hartley estimator with 1 2 .   The sample from the address frame was a complex sample, and itself 

involved two phases. The sample from the license frame required only one phase. In this application, units 

were at risk of misclassification only if they were chosen from the larger of the two frames, the address 

frame, since it was not known whether the persons in those households owned fishing licenses. The analysts 

did know that all persons selected from the license frame had a valid license during the wave and also knew 

whether or not they had an address in North Carolina, since the their address was available from the frame. 
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The sample design for the address frame was conducted in two phases. A random sample of 1,800 

addresses was selected first, stratified by geography. The strata were defined as addresses in coastal and 

non-coastal counties of NC, with samples of 900 each. A screening questionnaire asked whether any 

household member fished in saltwater in the last 12 months. The second phase sample consisted of one 

randomly chosen angler from every household that reported fishing by any household member in the first 

phase. One additional angler was selected from households reporting more than one active adult angler. The 

reason for this two-phase construction was to avoid sending a lenthy questionnaire to non-angling 

households, in order to decrease cost and increase response rate. 

The license frame was obtained from the NC license database. All individuals who were listed on the 

database on the day the frame was pulled and were licensed to fish during the target period (Wave 6, 2009) 

were included. The license frame was preprocessed to make it suitable for sampling. Multiple records with 

the same core data (name, date of birth and address) were deleted, as were anglers identified as being under 

18. The license frame was divided into three strata: coastal, non-coastal, and out-of-state. The file was sorted 

by address, and a systematic sample of 450 anglers was selected from each stratum. Sampling in the license 

frame was conducted in a single phase, and used a questionnaire identical to the second phase questionnaire 

for the address frame sample. As in the address frame, a supplemental sample was selected from addresses 

with more than one licensed angler present on the frame. 

The common questionnaire used for both frames included an item that asked whether the respondent had 

a NC marine recreational fishing license. This question was included to determine domain membership for 

those chosen from the address frame. However, analysts observed that some respondents from the license 

frame reported they did not have a license, which alerted them to the possible presence of domain 

misclassification error. As a result, an operation was undertaken to determine true domain membership for 

respondents from the address frame. We attempted to match 100% of the sampled addresses to the license 

frame. The last part of this process involved a human matcher trying to identify if a particular angler within 

a matched address appeared to be the licensed angler, based on available data from the license frame and 

survey responses. This was a time-consuming operation, which motivated the search for alternatives. The 

goal was to develop methods for the operational survey that allowed for determinination of true domain 

status for only a subset of the sample. However, since we did have access to the true domain status for the 

entire sample, we were able to examine misclassification probabilities and subdomain means, as well as to 

compare BC
ˆ̂ ’sY  results with an estimate made from “true” data. 

Even though we observed that some on the license frame made errors concerning their license status, 

this did not cause a domain misclassification error for the license frame because the true license status was 

known. For the license frame, domain misclassfication could occur only if the in or out-of-state status of the 

household could not be determined accurately. It is possible such errors could occur. For example, if a 

household with an out-of-state address on the license frame were sampled, but it had a second in-state 

address that appeared on the address frame, then the domain assignment would be incorrect. However, the 
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incidence of such cases was believed to be small enough that it could be ignored, so we treated the 

misclassification probabilities as if they were known to be 0 for the units on the license frame in our analysis.   

 
6.2  Sample analysis 
 

The domain misclassification rates for the sample from the address frame are shown separately by 

stratum in Table 6.1. In this case domain *ab  contains those respondents from the address frame who report 

that they are licensed, while domain *a  contains those reporting they are not licensed. Anglers who reported 

that they are unlicensed have about a 5% error rate in both strata. Those who reported they are licensed have 

extremely high error rates, with those in non-coastal counties more likely to be wrong than right! We point 

out that the address frame respondents from which these estimates were reported are those who were in the 

second phase of the address frame sample. This means that they had screened in because their household 

had at least one person who had fished in the last 12 months. As a result, a very high fraction of these 

respondents were anglers compared to the general population. 

 
Table 6.1 
Misclassification rates calculated from full sample (Address frame, Wave 6, 2009) 
 

  Proportion of those who report not being 

licensed who are  *ˆ
ab a

p  

Proportion of those who report being licensed 

who are not  *ˆ
a ab

p  

Coastal Stratum  0.04 0.46 
Non-coastal Stratum  0.06 0.63 

 
We also examined the equal means assumptions using data from the address frame sample. The estimated 

mean effort in each of the four categories of domain and perceived domain membership are shown in 

Table 6.2. The columns classify respondents into perceived domains, while the rows classify according to 

their true domain. The table shows that respondents’ fishing behavior is consistent with what they report 

their license status to be rather than what their true status is. Thus, we believe that the equal means 

assumption of our proposed method is more reasonable for the angler survey data than Lohr’s equal mean 

assumption. 

 
Table 6.2 
Estimated mean #of fishing trips (SE) by subdomain for Wave 6 2009 NC Address frame 
 

y  for subdomains reported no license  *a  reported license  *ab  

true no license  a  0.34 (0.14) 0.88 (0.41) 

true license  ab  0.35 (0.46) 0.98 (0.24) 
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The sample data contained weights provided by the survey designers that accounted for the complex 

design and nonresponse adjustment. Because the domain misclassification probabilities differed by stratum, 

we adjusted the weights as described in Section 5 separately by stratum, using individual estimates of 

misclassification for each address frame domain. We assumed no domain misclassification for the license 

frame. Six estimates of effort were computed and are shown in Table 6.3: 

1) Uncorrected Hartley estimator (labeled Unadj. in table): The perceived domain membership was 

used to estimate the total, using the Hartley estimator as in (3.3); 

2) 20%, 40%, 100%-subsampled estimator: Units from each stratum of the phase 1 address frame 

sample were subsampled, and their true domains were used to estimate the misclassification 

probabilities. The weight adjustments were calculated based on the estimated misclassification 

probabilities; 

3) Corrected Hartley estimator (True): The true domain membership ascertained from the matching 

operation was used to estimate the total number using the Hartley estimator with the original 

weights, as in (3.1). This is considered the best available estimate since it requires no assumptions 

for unbiasedness. 

 

The first row contains the five estimates, the second row contains an estimate of bias for each, and the 

third row shows the square root of the sum of estimated variance and squared bias. The bias displayed in 

row 2 is the difference between each estimate and the corrected Hartley estimate (True column). We 

acknowledge that the address matching algorithm is undoubtedly not perfect, which means that the “True” 

estimator may still contain bias in addition to its sampling variability. Still, taking this as our best assessment 

of bias, we see that after applying the bias correction method, the estimated bias is reduced by using the 

bias-corrected estimator from 211K  to 40 80 .K K  The difference between ˆ
HY  and BC

ˆ̂Y  with 100% 

subsampling may reflect failure of the required equal mean assumptions. The estimated RMSE is reduced 

by using a bias-adjusted method instead of the unadjusted Hartley estimator by about 70 .K  

 
Table 6.3 
Estimated total fishing trips (Address frame, Wave 6, 2009)  
 

  Unadj. 20% sub. = 36Am  40% sub. = 71Am  100% sub. True 

Estimate  731,430  889,860   863,488   905,947   942,360 
Bias  210,930  52,500   78,872   36,413   0 
RMSE  244,531  181,809   180,311   176,954   213,966 

 
7  Discussion  
 

An important observation from this application was that respondents may have difficulties providing 

accurate information about domain membership, even when it is defined by a straightforward concept, like 

having a fishing license. This poses a particular problem for dual frame estimation. When domain 
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membership is available from other sources with minimal cost, there is a simple solution. But when the cost 

is high, it may be beneficial to use a bias-correction method. Another observation that was important to our 

application was that the only previously available method that we were aware of required an unstated 

assumption that units are homogeneous within true domains. This would seem to be a natural and benign 

assumption for many applications, but appeared not to hold for the key item in our questionnaire.  

In this study, the reason for the domain misclassification error was that the respondent was unable or 

unwilling to provide the correct information. In other cases, it could be that the frame itself contains errors. 

In either case, identifying the mechanism causing the error could help to determine which assumption about 

means is most plausible. In our application, it seems obvious in retrospect that a person who admits to 

frequent fishing might be reluctant to admit to a government agency conducting the survey that they are not 

licensed. 

Many applications of dual frame estimation are for the purpose of improving efficiency rather than 

coverage, as in our application, where the license frame was included to reduce the cost of contacting 

anglers. In that case, membership in one of the frames is likely to be predictive of key response variables in 

the survey and so means of the responses for the subgroups of the population may vary widely. However, 

this is not always the case. If neither frame is directly related to the topic of the survey itself, it may be more 

likely that the true domain determines the mean response, or even that all four subgroups of the population 

have the same mean. (In the latter case, neither bias-correction method would be incorrect.) For example, 

suppose the two frames for this survey were land-line and cell-phone frames, and a respondent sampled 

from the cell frame, for example, is asked if they have a land-line phone in order to determine if they are in 

the overlap domain. Responses to this question are likely to have some measurement error. However, it 

seems unlikely that whether a respondent says he or she has a land-line is more predictive of angling avidity 

than whether he or she actually has a land-line. (In fact the latter will probably be related to fishing avidity 

because both are correlated with age.) Predicting which mean assumption will hold will benefit from the 

advice of experts on the topic of the survey. However, in the end, examining the data from the survey itself 

before a decision is made about bias-correction will be necessary. 

The cost of bias-correction is increased variance. This penalty is significant, especially if little 

information is available about the misclassification rates. Therefore, if it can be determined that there are 

few errors, either because the domains subject to errors are a small fraction of the population or the error 

rate is very small, then bias-correction may not be worthwhile. Calculating the bias-corrected estimators is 

straightforward with survey software, once misclassification estimates are available. Their variance 

estimates, along with the difference in bias-corrected and not bias-corrected estimates themselves can help 

guide the choice. 

Our research was done in the context of Hartley’s dual frame estimator since that was the estimator being 

used in our application. Many different dual-frame estimators are available, and all require knowledge of 

domain membership. Some, such as the Fuller-Burmeister estimator, could be adjusted using methods 

similar to those outlined here. Others, such as the pseudo-maximum likelihood estimators, would require a 

different approach.   
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On a new estimator for the variance of the ratio estimator 
with small sample corrections 

Paul Knottnerus and Sander Scholtus1 

Abstract 

The widely used formulas for the variance of the ratio estimator may lead to serious underestimates when the 
sample size is small; see Sukhatme (1954), Koop (1968), Rao (1969), and Cochran (1977, pages 163-164). In 
order to solve this classical problem, we propose in this paper new estimators for the variance and the mean 
square error of the ratio estimator that do not suffer from such a large negative bias. Similar estimation formulas 
can be derived for alternative ratio estimators as discussed in Tin (1965). We compare three mean square error 
estimators for the ratio estimator in a simulation study. 

 
Key Words: Bias; Product moments; Sample variance; Taylor series expansion. 

 
 

1  Introduction 
 

Consider a population of N  distinct units with values  ,i ix y  1, ,i N   of the variables x  and y  

 0 .ix   Denote the corresponding population means by X  and ,Y  that is 
1

N

ii
X x N


   and 

1
.

N

ii
Y y N


   Define R  by .R Y X  Suppose that a simple random sample of size n  is selected 

from the population. When X  is known, Y  can be estimated by the ratio estimator  

  ˆ ,RY RX  (1.1) 

where ˆ
s sR y x  with 

1

n

s ii
y y n


   and 

1
;

n

s ii
x x n


   see Cochran (1977, page 151). For large 

,n  the well-known approximation for the variance of  RY  is  

   2
1

var ,R e

f
Y S

n


  (1.2) 

where ,f n N  2 2
1

1
N

e ii
S e N


   and i i ie y Rx   1, , ;i N   note that 

1

N

ii
E e N


   

0.  When n  is small, the approximation error of (1.2) can be considerable; see Koop (1968). Moreover, this 

error may increase when, in practice, 2
eS  in (1.2) is replaced by its standard estimator 1ˆ

12 2
1

ˆ
n

e in i
s e 

   

where ˆˆi i ie y Rx   1, , ;i n   see Cochran (1977, page 163). As stated by Koop (1968), the cause of 

the discrepancy relative to the true variance lies in neglecting terms in 21 n  and 31 ,n  and perhaps also 

those of higher orders.  

The three main aims of this paper are: (i) to improve approximation (1.2) for small values of n  by using 

a second-order Taylor series expansion of 1 ;sx  (ii) to derive a new estimator for 2
eS  that is less biased than 

2
ˆ ;es  and (iii) to derive a new variance estimator for the ratio estimator. Although a normal distributional 

approximation might be imprecise at the sample sizes considered in this paper, such a more accurate 
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variance estimator is useful in order to get some more insight into the precision of the ratio estimator in 

comparison with that of other estimators. For instance, in case of small samples from small strata the 

combined ratio estimate for Y  is to be recommended rather than the separate ratio estimate certainly when 

the ratios (say, )hR  are constant from stratum to stratum; see Cochran (1977, page 167).  

The outline of the paper is as follows. Using some results of Nath (1968), we derive in Section 2 an 

alternative approximation formula for the variance of R̂  with an error of order 31 .n  In addition, we derive 

a new approximation formula for the bias of the residual sampling variance 2
ês  of order 1 .n  Furthermore, 

we propose two new estimators for the mean square error (MSE) of  .RY  In Section 3 we carry out a 

simulation study in order to compare the standard variance estimator with the new estimators proposed in 

Section 2. Section 4 summarizes the main conclusions. 

 
2  A new variance estimator 
 

Noting that ˆ ,s sR R e x   where se  is the sample mean of ,ie  and using the second-order Taylor 

series expansion  

     2

2 3 1.5

1 1 1 1 1
,s s p

s

x X x X O
x X X X n

       
 

  

it is seen that the third-order Taylor series expansion of R̂ R  is 

       2

2 3 2

1 1 1
.ˆ s

s s s s p

e
R R x X e x X e O

X X X n
        

 
 (2.1) 

Hence, using  ˆ ,RY XR  we obtain 

     

         

  

2

2

2 3

1 2
var var var cov , 

2 1
cov , .

R s s s s s s

s s s

Y e x X e e x X e
X X

e x X e O
X n

    

    
 

 

(2.2)

 

In (2.2) we omitted one variance and one covariance because the underlying fifth and sixth moments are of 

order 31 ;n  see David and Sukhatme (1974). All (co)variances in (2.2) can be evaluated by using the 

following results on product moments of four arbitrary sample means, say , ,sa sb scx x x  and ,sdx  

                           2 31 1 2sa sb sc abcE x x x f f S n O n      (2.3) 

                           3
sa sb sc sd ab cd ac bd ad bcE x x x x S S S S S S O n      (2.4) 

      3cov ,sa sb sc sd ac bd ad bcx x x x S S S S O n     (2.5) 

                   2 22 32 ,sa sb aa bb abE x x S S S O n     (2.6) 
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where   2 2,1 f n    
1

1
N

ab ia ibi
S x x N


   and  

1
1 .

N

abc ia ib ici
S x x x N


   Without loss of 

generality, it is assumed for expediency that the population means are zero, that is, a b cX X X    

0.dX   Formulas (2.3) and (2.4) follow from Theorems 1 and 2 of Nath (1968) while (2.5) and (2.6) 

follow from (2.4). From (2.2)-(2.6) it follows that 

 

       

   

   
 

2

2 2 2 2
2

2

2 2 2 3

2

2 2 2 3
2 2

1 1 2
var 1 1 2

1
2 2

1 1 1 1 1 2
1 3 5 2 ,

R e x e xe xee

x e xe

e x xe xee

f f
Y S S S S f f S

n nX n X

f
S S S O n

nX

f f f f f
S S S S O n

n nX nX n X





        
 

    
 

                
    

 

(2.7)

 

where 

                

   

   

2
2

1 1

2

1

1 1

1

,
1

.
1

,
1

N N

x i xe i i
i i

N

xee ge i i i i i
i

S x X S x X e
N N

S S e x X g x X e
N

 



   
 

    


 


  

Similar formulas in terms of cumulants are derived by Tin (1965) using some results from Kendall and 

Stuart (1958). Unfortunately, the numerous cumulants in Tin’s formulas give little insight into the structure 

of var ( )RY  and, consequently, small sample corrections for the variance estimator require somewhat 

tedious calculations. In contrast, from (2.7) it is seen that for sufficiently large n  approximation (1.2) leads 

to an underestimate unless ( )xee geS S  is very positive. In addition, Tin also discusses three alternative 

estimators for a ratio but small sample corrections when estimating the various variances are ignored by 

him. 

It follows from (2.1) and (2.3) that  

  
2

1 1
bias ;R xe

f
Y S O

nX n

     
 

 (2.8) 

also see Cochran (1977, page 161). Subsequently, using ,xee geS S  it follows from (2.7) and (2.8) that the 

mean square error of  RY  is 

      
 

2

2 2 2 3
2 2

1 1 1 1 1 2
MSE 1 3 6 2 .R e x xe ge

f f f f f
Y S S S S O n

n nX nX n X


                
    

 (2.9) 

When the variation coefficient  x xC S X  is known, it is useful to write (2.9) as  

           
 

 2 2 2
1 1 1 2
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 (2.10) 
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where ,xe xe x eS S S  ge ge g eS S S   and  
2

12
1 1

.
N

g iN i
S g G 

   In practice, MSE ( )RY  in (2.10) 

can be estimated by  
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However, the estimator in (2.11) does not take into account the bias of 2
ês  defined above.  

In order to examine the bias of  
1ˆ

2 2ˆ 1 ,
n

e ii
s e n
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where sq  and sg  are sample means of iq  and ,ig  respectively. In (2.12) we used  
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From (2.1) and (2.12) it is seen that  
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where we used  2 11xQ S N    and  11 .xeG S N    Note that it follows from (2.13) that for 

sufficiently large ,n  the quantity 2
ês  leads to an overestimate of 2

eS  unless geS  is very positive. To our best 

knowledge, formula (2.13) is not mentioned elsewhere in the literature. 

Based on (2.13), an alternative estimator of MSE ( )RY  that takes the bias of 2
ês  into account is  

                
 

 ˆ ˆ ˆ ˆ ˆ
22 22

1 1 1 2
MSE 1 3 1 2 2 ,ˆ ˆ ˆR e x xe x ge g x e

f f f
Y S C C s s s

n n n
 

        
 

 (2.14) 

where 2ˆ
eS  is adjusted for the relative bias of 2

ês  that follows from (2.13). That is, 

                                      ˆ ˆ ˆ
ˆ

22

ˆ

2 2
ˆ

1 1
1 1 2 2

ˆ
ˆ ˆ .ge g

e e x xe x
x e

sf f
S s C C

n n s s




  
    

 
  

Note that we used here 2 2 2 2 2
xe e xe xS X S C  and 2 .ge e ge g x e xS XS S C S S  Finally, it should be noted 

that the other estimators ˆ
2ˆ xe  and  ˆ ˆ ˆ ˆˆ ge g x es s s  in (2.11) are also biased. However, it is less straightforward 

to derive that kind of bias. It is hoped that by taking all (co)variances from the sample, including 2 ,xs  their 

bias is modest. In addition, in the simulations of Section 3, we found that replacing xC  by x ss x  did not 

improve the results. 

 
3  A simulation study 
 
3.1  Set-up and main results 
 

In this section we apply the above results to eleven populations. Populations 1-5 are taken from Cochran 

(1977, pages 152, 182, 203, 325), populations 6 and 7 from Sukhatme (1954, pages 183-184), population 8 

from Kish (1995, page 42) and populations 9-11 are taken from Koop (1968). The population sizes vary 

between 10 and 49. The correlation coefficients between y  and x  vary between 0.32 and 0.98, while the 

coefficients of variation of x  vary between 0.14 and 1.19. For further details, see Table 3.1. 

We considered simple random samples without replacement of sizes 4, 6, , 14n    from these 

populations (excluding cases where ).n N  For each population, we simulated all  N
n  possible samples 

of size n  provided that this number is not larger than one million. When   60 ,1N
n   we restricted ourselves 

to drawing one million random samples of size n  from the population. From these simulated samples, we 

computed (an accurate estimate of) the true mean square error of  RY  for a given population and a given 

sample size, to be used as a benchmark. 

For each sample, we calculated the standard variance estimator for  ,RY  say  var ( ,)RY  based on (1.2) 

with 2  eS  replaced by 2
ˆ .es  This estimator is also the standard estimator of the mean square error of  ,RY  say 

 
0 (MSE ,)RY  with an error of order 21 .n  Furthermore, we calculated the new estimators  

1MSE ( )RY  and 
 

2MSE ( )RY  for the mean square error of  RY  from (2.11) and (2.14). It is expected that these estimators 

are more accurate than the standard estimator, as they have an error of order 31 .n  
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Table 3.1 
Key features of the eleven populations used in the simulation study 
 

  Source  N   Y  X  R  2
eS  xC   xyρ   xeρ  geρ

1 Cochran, page 152 49 128 103 1.24 621 1.01 0.98 -0.34 0.02

2 Cochran, page 182 34 2.91 8.37 0.35 5.72 1.03 0.72 -0.24 0.56

3 Cochran, page 182 34 2.59 4.92 0.53 4.81 1.02 0.73 -0.14 0.38

4 Cochran, page 203 10 54.3 56.9 0.95 6.71 0.17 0.97 0.38 -0.01

5 Cochran, page 325 10 101 58.8 1.72 150 0.14 0.65 -0.29 -0.29

6 Sukhatme, pages 183-184 34 201 218 0.92 3,304 0.77 0.93 -0.23 0.93

7 Sukhatme, pages 183-184 34 218 765 0.29 8,735 0.62 0.83 0.05 0.44

8 Kish, page 42 20 12.8 21.8 0.59 17.8 1.19 0.97 0.23 0.75

9 Koop, population 1 20 4.40 6.30 0.70 0.41 0.67 0.98 -0.06 0.50

10 Koop, population 2 20 4.50 51.2 0.09 4.87 0.44 0.42 -0.50 -0.85

11 Koop, population 3 20 15.6 30.0 0.52 36.3 0.40 0.32 -0.88 0.11

 
 

To compare the accuracy of these three estimators, we evaluated their relative bias with respect to the 

benchmark value for the true mean square error of  :RY  

 
     

 
 

MSE MSE
RB 100%,     .0, 1, 2

MSE

R Rk

k
R

E Y Y
k

Y


     

The mean square error MSE ( )RY  consists of 2bias ( )RY  and var ( .)RY  For all populations in this study 

we found that, in spite of the small sample sizes, the bias of  RY  as an estimator for Y  was more or less 

negligible. In fact, the largest relative bias of  RY  always occurred for 4n   and varied between -4% and 

+4%. In other words, in this study the true and estimated mean square errors were dominated by their 

variance components. 

Table 3.2 gives the results. Firstly, it is seen that the standard estimator  
0MSE ( )RY  usually 

underestimates the true mean square error. The negative bias of this estimator can be very large (up to more 

than -60% for population 8). Secondly, it is striking that for the three populations in Koop’s paper 

(populations 9-11),  
2MSE ( )RY  always estimates the true MSE of  RY  with a relative bias of less than 5%. 

For the other populations, the relative bias is always less than 7% except for populations 1, 6 and 8 with 

4n   and 6.n   For 10,n   
2MSE ( )RY  is always more accurate than  

0 (MSE ,)RY  and in fact this is 

also true for most cases with 10.n   For 8,n   
2MSE ( )RY  nearly always performs better than 

 
1 (MSE ,)RY  which shows that correcting for the bias in 2

ês  is useful. Furthermore, it can be seen from 

Table 3.2 that, in general,  
2MSE ( )RY  suffers much less from a negative bias than  

0MSE ( )RY  while 
 

1MSE ( )RY  suffers from a positive bias.  
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Table 3.2 
Relative bias RB k  for the three estimators of MSE ( )RY  
 

population estimator  4n   6n   8n   10n   12n    14n 

1 
0MSE  -48.2% -35.6% -27.1% -21.6% -17.2% -14.2%

 
1MSE  27.4% 15.8% 10.9% 7.7% 6.3% 5.1%

 
2MSE  -30.9% -11.7% -5.6% -3.5% -2.1% -1.4%

2 
0MSE  -34.9% -27.7% -22.3% -18.7% -16.1% -13.6%

 
1MSE  32.6% 10.1% 3.3% 0.5% -0.9% -0.9%

 
2MSE  2.8% 3.4% 1.7% 0.4% -0.5% -0.5%

3 
0MSE  -37.2% -28.4% -22.4% -17.9% -14.4% -11.6%

 
1MSE  26.1% 7.7% 2.6% 1.0% 0.6% 0.7%

 
2MSE  -2.8% -0.6% -1.3% -1.3% -1.1% -0.6%

4 
0MSE  -1.0% -0.4% -0.1%   

 
1MSE  1.4% 0.5% 0.2%   

 
2MSE  0.7% 0.3% 0.1%   

5 
0MSE  0.4% 0.7% 0.8%   

 
1MSE  2.0% 1.0% 0.5%   

 
2MSE  0.8% 0.4% 0.2%   

6 
0MSE  -19.2% -17.3% -15.8% -14.7% -14.1% -13.5%

 
1MSE  21.1% 0.8% -5.4% -7.4% -7.9% -7.8%

 
2MSE  20.6% 10.2% 4.9% 2.3% 0.7% -0.3%

7 
0MSE  -17.8% -12.0% -8.7% -6.7% -5.3% -4.3%

 
1MSE  4.9% 0.3% -0.1% 0.0% 0.0% 0.0%

 
2MSE  0.0% -0.6% -0.5% -0.3% -0.3% -0.2%

8 
0MSE  -62.3% -45.8% -34.9% -28.0% -23.4% -20.3%

 
1MSE  -11.1% -8.2% -6.5% -5.7% -5.3% -4.8%

 
2MSE  -34.4% -13.3% -6.4% -4.0% -3.3% -3.2%

9 
0MSE  -20.1% -13.2% -9.7% -7.6% -6.2% -5.2%

 
1MSE  7.4% 1.0% -0.5% -0.8% -0.8% -0.7%

 
2MSE  0.4% 0.1% -0.2% -0.3% -0.4% -0.4%

10 
0MSE  -8.9% -2.0% 0.9% 2.5% 3.5% 4.2%

 
1MSE  21.1% 15.4% 10.9% 7.7% 5.4% 3.7%

 
2MSE  0.9% 2.1% 2.0% 1.7% 1.4% 1.1%

11 
0MSE  -17.5% -10.1% -6.5% -4.4% -3.0% -2.1%

 
1MSE  3.4% 3.0% 2.3% 1.7% 1.2% 0.8%

 
2MSE  -4.3% -1.2% -0.3% 0.0% 0.0% 0.1%

mean 
0MSE  -24.2% -17.4% -13.3% -13.0% -10.7% -8.9%

 
1MSE  12.4% 4.3% 1.7% 0.5% -0.1% -0.4%

 
2MSE  -4.2% -1.0% -0.5% -0.6% -0.6% -0.6%
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3.2  Discussion of two specific results 
 

Referring back to Table 3.1, it may be noted that both populations 1 and 8, where the largest relative 

negative errors occur for  
2 (MSE ,)RY  involve a strong correlation xy  in combination with a relatively 

large value of xC  in comparison to the other populations in our study ( 0.97xy   and 1.01).xC   It is 

therefore interesting to examine the effect of these quantities on the accuracy of the estimated mean square 

error more closely. 

Firstly, suppose that the following transformation is applied to the values of ,x e  and y  in a given 

population: 

 : , : , : ,x x e ae y Rx e         

with 0.a   Under this transformation, the ratio of the two variables does not change ( )R Y X R      

but their correlation coefficient does ( x y xy     unless 1).a   It is obvious that x xC C   and 
2 2 2 .e eS a S   Now using expressions (1.2), (2.8), (2.11) and (2.14), it is not difficult to see that 
   2( ) ( ){MSE } {MSE }Rk kRE Y a E Y

 for all  0, 1, 2 .k   Moreover, it can be seen from (2.1) that the 

error in R̂  is linear in se  and hence it follows that the identity  2MSE ( ) MSE ( )RRY a Y
 holds exactly. 

Thus, it is seen that this transformation has no effect on the relative bias RBk  of any of the mean square 

error estimators in this study. This suggests that this bias is not affected by a change in the correlation xy  

when other features of the population remain constant. In particular, this suggests that the large values of 

xy  in populations 1 and 8 alone do not explain the lack of accuracy of  
2MSE ( )RY  in these populations. 

Secondly, consider the following alternative transformation: 

    : , : , : ,x X b x X e be y Y b y Y           

with 0 1.b   In this case, it can be shown that ,R R  x y xy     and .x x xC bC C    Thus, this 

transformation can be used to reduce the coefficient of variation of x  in a given population, while holding 

the ratio and correlation of y  and x  fixed.  

We have applied this transformation to populations 1 and 8 for 4,n   with 1.0,  0.9,  , 0.2.b    

Table 3.3 shows the resulting relative bias of   )MSE (k RY


 for the transformed populations, obtained by 

simulating all  49 211,8764   and  20 4,8454   possible samples, respectively. It is seen that all three 

estimators for the mean square error tend to become less biased as the coefficient of variation of x  is 

reduced. In particular,  
2 )SE (M RY


 becomes reasonably accurate (considering that 4)n   once the 

coefficient of variation of x  drops below 0.8 for population 1 and below 1 for population 8. 

This suggests that the value of xC   which is known in practice – is an important factor for the (negative) 

bias of our proposed estimator  
2 (MSE .)RY  Assuming that the set of natural populations in this simulation 

study contains sufficient variation to represent most populations that will be encountered in practice, we 

may tentatively conclude that even for 4,n   
2MSE ( )RY  is an accurate estimator of the mean square error 

of the ratio estimator without a large negative bias when 0.8.xC   For 0.8,xC   this need not be the case. 
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Table 3.3 
Relative bias RB k  for transformed versions of populations 1 and 8, with 4n   
 

 Population 1 Population 8 

 b    xC   

relative bias 

 xC 

relative bias 

  0MSE    1MSE   2MSE   0MSE    1MSE    2MSE

1.0 1.01 -48.2% 27.4% -30.9% 1.19 -62.3% -11.1% -34.4%

0.9 0.91 -39.1% 32.0% -16.5% 1.07 -48.4% 7.6% -12.9%

0.8 0.81 -31.0% 31.8% -6.2% 0.95 -38.3% 14.2% -0.7%

0.7 0.71 -24.0% 28.5% 0.3% 0.83 -30.0% 15.0% 5.9%

0.6 0.61 -17.8% 23.4% 3.6% 0.72 -23.1% 12.5% 8.4%

0.5 0.51 -12.5% 17.6% 4.6% 0.60 -17.2% 8.6%  8.0%

0.4 0.40 -8.2% 11.9% 4.1% 0.48 -12.3% 4.2% 6.0%

0.3 0.30 -4.7% 6.8% 2.8% 0.36 -8.1% 0.4% 3.5%

0.2 0.20 -2.1% 3.0% 1.4% 0.24 -4.7% -1.9% 1.2%

 
4  Conclusions 
 

In this paper we have derived a new approximation formula for MSE ( )RY  of order 21 n  and a new 

formula for the bias of 2
ês  of order 1 .n  The new estimator  

2MSE ( )RY  which takes into account the bias 

of 2
ês  appears to be less biased than    

0MSE ( ) Var ( )R RY Y  and  
1MSE ( ).RY  For 8,n   the bias of 

 
2MSE ( )RY  was in all cases of the simulation study less than 7% which is much better than the standard 

variance estimator; in most cases, this result even holds for 4.n   For very small ,n  
2MSE ( )RY  may have 

a large negative bias if the population has a large coefficient of variation .xC  From our simulation study 

this issue appears to be unlikely to occur as long as 0.8.xC   

Finally, recall that for the populations in this simulation study, the bias of the ratio estimator itself was 

consistently small, even for 4.n   In general, for other populations this bias may not be negligible. Cochran 

(1977, pages 174-175) discusses several alternative ratio estimators that are unbiased. 
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ANNOUNCEMENTS 
 

Nominations Sought for the 2021 Waksberg Award 
 
The journal Survey Methodology has established an annual invited paper series in honour of 

Joseph Waksberg to recognize his contributions to survey methodology. Each year a prominent survey 
statistician is chosen to write a paper that reviews the development and current state of an important topic 
in the field of survey methodology. The paper reflects the mixture of theory and practice that 
characterized Joseph Waksberg’s work. 

 
The recipient of the Waksberg Award will receive an honorarium and give the 2021 Waksberg Invited 

Address at the Statistics Canada Symposium. The paper will be published in an upcoming issue of Survey 
Methodology. 

 
The author of the 2021 Waksberg paper will be selected by a four-person committee appointed by 

Survey Methodology and the American Statistical Association. Nomination of individuals to be 
considered as authors or suggestions for topics should be sent before February 28, 2020 to the chair of 
the committee, Bob Fay (bobfay@westat.com). 

 
 
Previous Waksberg Award honorees and their invited papers are: 
 

2001 Gad Nathan, “Telesurvey methodologies for household surveys – A review and some 
thoughts for the future?”. Survey Methodology, vol. 27, 1, 7-31. 

2002 Wayne A. Fuller, “Regression estimation for survey samples”. Survey Methodology, vol. 28, 
1, 5-23. 

2003 David Holt, “Methodological issues in the development and use of statistical indicators for 
international comparisons”. Survey Methodology, vol. 29, 1, 5-17. 

2004 Norman M. Bradburn, “Understanding the question-answer process”. Survey Methodology, 
vol. 30, 1, 5-15. 

2005 J.N.K. Rao, “Interplay between sample survey theory and practice: An appraisal”. Survey 
Methodology, vol. 31, 2, 117-138. 

2006 Alastair Scott, “Population-based case control studies”. Survey Methodology, vol. 32, 2, 
123-132. 

2007 Carl-Erik Särndal, “The calibration approach in survey theory and practice”. Survey 
Methodology, vol. 33, 2, 99-119. 

2008 Mary E. Thompson, “International surveys: Motives and methodologies”. Survey 
Methodology, vol. 34, 2, 131-141. 

2009 Graham Kalton, “Methods for oversampling rare subpopulations in social surveys”. Survey 
Methodology, vol. 35, 2, 125-141. 

2010 Ivan P. Fellegi, “The organisation of statistical methodology and methodological research in 
national statistical offices”. Survey Methodology, vol. 36, 2, 123-130. 

2011 Danny Pfeffermann, “Modelling of complex survey data: Why model? Why is it a problem? 
How can we approach it?”. Survey Methodology, vol. 37, 2, 115-136. 

2012 Lars Lyberg, “Survey Quality”. Survey Methodology, vol. 38, 2, 107-130. 
2013 Ken Brewer, “Three controversies in the history of survey sampling”. Survey Methodology, 

vol. 39, 2, 249-262. 
2014 Constance F. Citro, “From Multiple Modes for Surveys to Multiple Data Sources for 

Estimates”. Survey Methodology, vol. 40, 2, 137-161.  
2015 Robert M. Groves, “Towards a Quality Framework for Blends of Designed and Organic Data”. 

Proceedings: Symposium 2016, Growth in Statistical Information: Challenges and Benefits. 
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2016 Don Dillman, “The promise and challenge of pushing respondents to the Web in mixed-mode 
surveys”. Survey Methodology, vol. 43, 1, 3-30. 

2017 Donald B. Rubin, “Conditional calibration and the sage statistician”. Survey Methodology, 
vol. 45, 2, 187-198. 

2018 Jean-Claude Deville, “De la pratique à la théorie : l’exemple du calage à poids bornés”. 10ème 
Colloque Francophone sur les sondages, Université Lumière Lyon 2. 

2019 Chris Skinner, Manuscript topic under consideration. 
2020 Roger Tourangeau, Manuscript topic under consideration. 

 
 
 

Members of the Waksberg Paper Selection Committee (2019-2020) 
 
Bob Fay, Westat (Chair) 
Jean Opsomer, Westat 
Jack Gambino, Statistics Canada Alumni 
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