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Tests for evaluating nonresponse bias in surveys 

Sharon L. Lohr, Minsun K. Riddles and David Morganstein1 

Abstract 

How do we tell whether weighting adjustments reduce nonresponse bias? If a variable is measured for everyone 
in the selected sample, then the design weights can be used to calculate an approximately unbiased estimate of 
the population mean or total for that variable. A second estimate of the population mean or total can be calculated 
using the survey respondents only, with weights that have been adjusted for nonresponse. If the two estimates 
disagree, then there is evidence that the weight adjustments may not have removed the nonresponse bias for that 
variable. In this paper we develop the theoretical properties of linearization and jackknife variance estimators for 
evaluating the bias of an estimated population mean or total by comparing estimates calculated from overlapping 
subsets of the same data with different sets of weights, when poststratification or inverse propensity weighting is 
used for the nonresponse adjustments to the weights. We provide sufficient conditions on the population, sample, 
and response mechanism for the variance estimators to be consistent, and demonstrate their small-sample 
properties through a simulation study. 

 
Key Words: Inverse propensity weighting; Poststratification; Replication variance estimation; Responsive design. 

 
 

1  Introduction 
 

Nonresponse rates in probability samples are increasing worldwide. The U.S. Office of Management and 

Budget requires a nonresponse bias analysis when response rates are low or there are other indications that 

bias may be a problem (United States Office of Management and Budget 2006). Groves (2006) 

recommended using multiple approaches to assess potential nonresponse bias on key survey estimates. 

Assessing potential nonresponse bias typically requires an external “gold standard” data source or rich 

sampling frame information. Common approaches for assessing nonresponse bias include: (1) comparing 

frame variables for respondents and nonrespondents, (2) comparing early and late respondents on frame 

variables and key survey variables, and (3) comparing estimates from the survey respondents (using 

nonresponse-adjusted weights) with estimates from an independent gold standard source. Differences in (1) 

and (2), however, do not necessarily imply that nonresponse bias remains after the weights are adjusted 

through calibration or propensity methods. If weight adjustments such as those described in Brick (2013) 

are successful in adjusting for nonresponse bias, the estimates from the survey using the nonresponse-

adjusted weights may be approximately unbiased even if assessments (1) and (2) show differences. 

In this paper we compare an estimate calculated using base weights from the selected sample with an 

estimate of the same quantity calculated using nonresponse-adjusted weights from the respondents only. An 

example might be comparing the estimated proportion of persons living in census tracts with more than 50% 

of housing units being owner occupied from (1) the selected sample, using the base weights, (2) the 

respondents, using the base weights, and (3) the respondents, using nonresponse-adjusted and/or 

poststratified weights. All three estimates of the proportion use the same characteristic, ,y  which is assumed 

to be known for everyone in the selected sample. 
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The requirement that y  be known for the selected sample restricts the set of variables that can be used 

to test for nonresponse bias. Typically, many of the key variables of interest are available only for the 

respondents, not for the entire selected sample. Other variables that are available for the entire selected 

sample may be used for poststratification or other nonresponse weighting adjustments. Poststratification 

forces the estimates of population totals for poststratification variables to equal the independent population 

counts for these variables, so these variables would not be expected to exhibit nonresponse bias after weight 

adjustments are performed. Variables that are available for the entire selected sample but are not used in the 

nonresponse weighting adjustments, and variables that are correlated with key survey variables, are the best 

choices for testing nonresponse bias. Examples of such variables include sample frame variables that are 

not used in poststratification (for example, an e-mail survey of university students may have information on 

academic performance that is not used in the nonresponse weighting), characteristics from a census (such 

as percent poverty in the block containing the sampled address), or information gathered by the interviewer 

(such as indications of children in the household that are visible from the street). 

Eltinge (2002) and Harris-Kojetin (2012) recommended comparing estimates using different sets of 

weights to assess nonresponse bias and to choose among competing sets of nonresponse-adjusted weights. 

Such comparisons are common in nonresponse bias analyses: for example, Hamrick (2012) compared 

respondents with the full sample in the Eating and Health Module of the American Time Use Survey. To 

date, however, there has been no comprehensive examination of the statistical properties underlying these 

comparisons. In this paper, we derive the theoretical properties of variance estimators and hypothesis tests 

for the differences among estimated means that are calculated using the same outcome variable but with 

different weights and subsets of the data, and give conditions that will ensure consistency of the variance 

estimators. 

Poststratification or inverse propensity weighting are commonly used to compensate for nonresponse 

bias. Yung and Rao (2000) derived linearization and jackknife estimators for the variance of a population 

mean estimated using poststratification, with and without nonresponse. They considered a uniform response 

mechanism in which each poststratum has the same response propensity, and considered the response 

indicator to be a fixed characteristic of the finite population. Kim and Kim (2007) studied asymptotic 

properties for inverse propensity weight adjustments, assuming that the response indicators of different units 

are independent. The previous work studied the variance of the poststratified or inverse-propensity-weighted 

statistic of interest. The problem we consider differs from the previous work because the estimated 

population total from the selected sample is often highly correlated with the estimate calculated using the 

respondents only, particularly when the response rate approaches one. The linearization and replication 

variance estimators in this paper account for that high correlation between the two sets of estimates, and 

thus can be used for testing the hypothesis that the poststratification or inverse propensity weighting 

removes the bias for the variables studied. We also extend previous research by allowing the response 

indicators to be correlated within primary sampling units, reflecting possible within-cluster homogeneity 

for responding to the survey. 

Section 2 defines the parameter to be tested in the poststratification setting, derives the linearization and 

jackknife variance estimators, and gives sufficient conditions for the variance estimators to be consistent. 

In some circumstances the linearized variance of the test statistic may be zero under the null hypothesis, in 
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which case higher-order terms of the variance are needed. The higher-order terms are derived for the special 

case of simple random sampling in Theorem 3. Section 3 provides the linearization and jackknife variance 

estimators for testing the hypothesis that the propensity weights remove the nonresponse bias. Section 4 

presents simulation studies and Section 5 contains concluding remarks and discusses future work. 

 
2  Poststratification 
 
2.1  Parameter and linearization variance 
 

Suppose the finite population U  has H  strata, with hN  primary sampling units (PSUs) in stratum ,h  

hiM  units in PSU i  of stratum ,h  and = hihi
M M  units in total. Let hiky  denote the quantity of interest 

for unit k  in PSU   .hi  A probability sample S  is taken from the population, with hn  PSUs selected from 

stratum h  and 
=1

= .
H

hh
n n  The sample of PSUs from stratum h  is denoted by ,hS  and the sample of 

units from PSU  hi  is denoted by .hiS  Each unit has a design weight  = 1 unit ,hikw P hik S  and the 

PSU-level design weight is  = 1 PSU .hi hw P hi S  

Two frameworks are commonly used for the nonresponse mechanism. In a two-phase “forward” 

framework, the sample is selected at phase 1 and the nonresponse mechanism is a second phase of selection 

(Oh and Scheuren 1987; Särndal and Lundström 2005). Fay (1991) proposed a “reverse framework” which 

was studied further by Shao and Steel (1999) and Haziza, Thompson, and Yung (2010). In this framework, 

the nonresponse mechanism is applied to the finite population first, and then the sample is selected. The 

reverse framework, which we follow in this paper, specifies a nonresponse mechanism for nonsampled as 

well as sampled units. We assume that every unit in the population has a value of the response indicator 

.hikr  Let  =hik hikR E r  under the response mechanism in the finite population, so that hikR  is the value of 

the true response propensity for unit  hik  in the population. 

Suppose the characteristic y  is known for all units in the selected sample. We compare the estimated 

population total using everyone in the sample with the estimated total using the poststratification-weighted 

respondents. There are C  poststrata and poststratum c  has cM  population units with 
=1

= .
C

cc
M M  The 

poststratum counts cM  may be obtained from the sampling frame if the poststratification variables are 

known for every unit in the frame. Often, however, the poststratum counts come from an external source 

such as a census. Let = 1chik  if unit  hik  is in poststratum c  and 0 otherwise. The population response 

rate in poststratum c  is = .c hik chik chik U
p R M

  Yung and Rao (2000) assumed that the response rate 

cp  was the same for each poststratum. In many applications, however, the poststrata are formed so that 

response propensities within each poststratum are homogeneous, but the poststrata themselves have 

different mean response propensities. We therefore allow cp  to differ among the poststrata. 

If y  is known for all members of the selected sample, then the estimator of the population total using 

the sample is  

 ˆ = = ,SS hik hik hik hik hik
hik S hik U

Y w y Z w y
 
   (2.1) 
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where hikw  is the design weight for unit k  of PSU i  in stratum h  and hikZ  is the indicator variable for 

sample inclusion. Using the respondents only, the poststratified estimator of the population total is  

 
=1 =1

ˆ
ˆ = = .

ˆ

hik hik chik hikC C R
chik S

PS c c R
c chik hik chik c

hik S

w r y
Y

Y M M
w r M









 

 (2.2) 

We define the finite population parameter of interest to be the difference between the expected value of 
ˆ
PSY  and the expected value of ˆ ,SSY  which will be 0 if there is no nonresponse bias after poststratification. 

Define  

                                            

= ,

,

R
c chik hik c c

hik U

R
c chik hik hik

hik U

M R p M

Y R y















  

and 

                                                  
=1 =1

= = .
C CR R

c c
c R

c cc c

Y Y
M Y Y

M p
     (2.3) 

Using the relation   = 0,chik hik chik U
R p


  

                                                
=1

=1

= 1

= 1 .

C
hik

hik chik
c hik U c

C R
hik c

chik hik R
c hik U c c

R
y

p

R Y
y

p M

 








 

 

  
   

  

 

 
  

We are interested in testing the hypothesis 0 : = 0H   vs. : 0,AH    or alternatively in obtaining a 

confidence interval for .  If the response propensity in each poststratum c  is uniform with =hik cR p  for 

all units having = 1,chik  then   will be zero. Alternatively, = 0  if there is no variability in the response 

variable hiky  within each poststratum. If either of these conditions holds, poststratification corrects for bias 

from nonresponse. Note that if each of the poststrata has uniform response propensity – that is, the 

poststratification variables completely explain the variability in underlying response propensities – then the 

poststratification will in fact remove bias for every possible y  variable. If the variance of hiky  is 0 within 

each poststratum, poststratification removes bias for y  but it does not necessarily remove bias for other 

variables. 

We estimate   by ˆ ˆ ˆ= ,PS SSY Y   which may be rewritten as  

                                                    
=1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ= = ,
C

R R R R
PS SS c c c c c SS

c c

Y Y Y Y M M T Y
p

       (2.4) 

where = ,R R R
c c cY Y M  ˆ ˆ= ,R R R

c c cy Y M  and  
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    ˆ ˆ= .R R R R
c c c c cT y Y M M    (2.5) 

Theorem 1 gives the variance of ˆ.  Define  

          
=1

= .
C

hik R
Rhik chik hik c hik

c c

R
e y Y y

p


 
  

 
   

We assume the following regularity conditions.   

(A1) The number of poststrata, ,C  is fixed and  0,1 .c cM M    

(A2) There exists a constant K  such that <hiky K  for all   .hik  

(A3)  max =hik hikw O M n  and maxhik hik hiw w  is bounded.  

(A4) >hikR   for all   ,hik  for a fixed > 0.  This guarantees that every unit has a positive response 

propensity that is bounded away from 0.  

(A5) The vector of response indicators  = hikrr  is independent of the vector of sample inclusion 

indicators  = .hikZZ  In addition, hikr  and ljpr  are independent when     ,hi lj  so that the 

response indicators in different PSUs are uncorrelated.  
 

Assumptions (A1) and (A4) ensure that the denominator in (2.3) is nonzero almost surely. Assumption 

(A2) could be replaced by weaker Liapunov-type conditions such as those in Theorem 1.3.2 of Fuller (2009) 

or Yung and Rao (2000) if more restrictive assumptions are placed on the covariance structure of the 

response indicators ;hikr  however, in practice it can be assumed that almost any characteristic measured in 

a finite population is bounded. Assumption (A5) is weaker than the assumption used in Kim and Kim (2007) 

that the response indicators are independent across units. With assumption (A5), individuals in the same 

PSU (for example, persons in the same household or same city) may exhibit dependence when choosing 

whether to respond to a survey, but the response indicators of individuals in different PSUs are independent. 
 

Theorem 1. Under conditions (A1) – (A5), the variance of ̂  is  

                                          1 2
ˆ ˆ ˆ= ,V V V     

where 

                               1
=1

ˆ =
C

hik R
hik hik Rhik hik hik chik hik c

hik U hik U c c

r
V V Z w e E V Z w y Y

p
 

 

            
   Z  (2.6) 

and 

                         
 2

2
=1 =1 =1

ˆ ˆ ˆ
ˆ ˆ= 2 Cov , = .

C C C R R R
c c c c c

SS
c c cc c c

T T y Y M
V V Y o M n

p p p


   
    

   
     

The proof is given in the appendix. Usually, only  1
ˆV   would be considered because for most 

applications it has higher order than  2
ˆ .V   Unlike situations typically studied in survey sampling, however, 

the first-order term of the linearization variance can be zero for some situations, and in those cases 



200 Lohr, Riddles and Morganstein: Tests for evaluating nonresponse bias in surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

   2
ˆ ˆ= .V V   If the first-order term is not exactly zero but has order  2 ,o M n  both terms of the variance 

are needed. 

The second term in (2.6) equals 0 if = 1cp  for all poststrata c  (that is, there is full response), or if there 

is no variability among the y  values within poststratum c  for each poststratum with < 1.cp  If the response 

indicators hikr  are all independent, then  

    2

=1 =1

1
= .

C C
hik cR R

hik hik chik hik c hik chik hik c
hik U c hik U cc c

r p
E V Z w y Y w y Y

p p
 

 

  
  

  
   Z   

Under the hypothesized uniform response propensity mechanism that =hik cR p  for all population units in 

poststratum ,c  the first term in (2.6) is  

  
=1 =1

ˆ= = .
C C

R R
hik hik Rhik hik hik chik c c c

hik U hik U c c

V Z w e V Z w Y V M Y
 

            
      

If response propensities are uniform, this term equals zero if the population mean of R
cY  is the same for all 

poststrata and the estimated poststratum sizes sum to .M  

If    2
1

ˆn M V   converges to a positive constant, a linearization variance estimator for  ˆV   is  

                                                      2

=1

ˆˆ =
1

h

H
h

L hi h
h i Sh

n
V b b

n





   (2.7) 

where  

                       
=1

=
ˆ

hi

C
c R

hi hik hik chik hik c hikR
k S c c

M
b w r y y y

M




 
  

 
    

and  

                                                         
1

= .
h

h hi
i Sh

b b
n 
   

 

Theorem 2. Suppose conditions (A1) – (A5) hold and that    2
1

ˆn M V   converges to a positive constant. 

Then      2
1

ˆ ˆˆ 0Ln M V V      in probability.  

 

Theorem 2 is proven in the Appendix. 

 
2.2  Higher-order terms of the variance 
 

When    2
1

ˆ = ,V o M n  the higher-order terms of the variance are needed. Theorem 3 gives these 

higher-order terms for the special case of simple random sampling. For simple random sampling, each unit 

is denoted by the subscript i  instead of .hik  
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Theorem 3. Suppose conditions (A1) – (A5) are met, and that a simple random sample of n  units is selected 

from the population of M  units, where 0.n M   Let  ˆ = 1NR
c i ci i ii S

Y w y r


  be the estimated total 

for the nonrespondents in poststratum .c  Assume that R
cy  is independent of ˆ R

cM  and ˆ ,NR
cY  and that all ir  

are independent and are independent of .iZ  Then  

      2 2
2 2

=1

2 1ˆ ˆ= .
C

c R R R R
c c c c

c c

p
V V y Y V M M o M n

p



       

 

We can estimate  2
ˆV   in a simple random sample by  

 
 2

2
=1

ˆ ˆ ˆ2 1
,

ˆ

C
c c c c c c

R
c c c

p s M p M M p

p n n

 
   

where ˆ cp  is the empirical response rate in poststratum ,c  R
cn  is the number of respondents in poststratum 

,c  and 2
cs  is the sample variance of y  for the respondents in poststratum .c  

In practice, the estimated first-order term of the variance using (2.7) will in general be nonzero even 

when  1
ˆ = 0.V   Thus, the estimated first-order term cannot be used to diagnose whether the higher-order 

terms are needed. However, the variance expression in (2.6) implies that  1
ˆV   is sufficiently large for the 

first-order approximation to be valid when all poststrata have response rates bounded away from one and 

non-negligible within-poststratum variance. 

 
2.3  Jackknife 
 

The jackknife estimator of the variance is defined as follows:  

     2

=1

1
ˆ ˆ ˆˆ = ,

g

H
g gj

J
g j Sg

n
V

n
  




   (2.8) 

where  

     

     

 

 

 

   

=1

ˆ ˆ ˆ= ,

ˆ = ,

ˆ = ,

gj gjgj
PS SS

gj
hik hik chik hikC

gj hik S
PS c gj

c hik hik chik
hik S

gj gj
SS hik hik

hik S

Y Y

w r y
Y M

w r

Y w y















 



  

and the jackknife weights are:  

           

   0 if =

= if = , .
1

if

gj h
hik hik

h

hik

hi gj

n
w w h g i j

n

w h g



 


 

 (2.9) 
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If    2
1

ˆn M V   converges to a positive constant and assumptions (A1) – (A5) hold, then    1
ˆ ˆˆ

JV V   

converges to 1 in probability. This follows by standard jackknife arguments (Theorem 6.1 of Shao and Tu 

1995) because the population parameter is a continuously differentiable function of population totals. Under 

the conditions of Theorem 2, either  ˆ ˆˆ
LV   or  ˆ ˆˆ

JV   may be used as a test statistic. Each 

approximately follows a standard normal distribution when the null hypothesis 0 : = 0H   is true. 
 

2.4  Remarks and extensions 
 

In this section we derived the linearization variance estimator for comparing the estimated population 

total of a quantity known for everyone in the selected sample with the poststratified estimate calculated 

using the respondents only. Theorems 1 and 2 also give the variance and variance estimator for comparing 

the estimator calculated using the selected sample with that from the base-weighted respondents. In that 

case, ˆ
PSY  reduces to an estimator with one poststratum,  ˆ ˆ ˆ= ,R R

PSY M M Y  where 
 

ˆ = .R
hik hikhik S

M w r
  

What happens if y  is one of the poststratification variables? In the framework used in this section, the 

population counts for the poststratification variables are obtained from the sampling frame or an external 

source. If y  is a linear combination of poststratification class indicators, then ˆ
PSY  is the same for all possible 

samples and thus has zero variance. Then    ˆ ˆ= ,SSV V Y  which is the first-order term of the variance in 

Theorem 1. If y  is also a stratification variable in the design, then  ˆV   will be zero. If y  is not a 

stratification variable, then typically ŜSY  will vary from sample to sample and will have variance of order 

 2O M n  so that the test of nonresponse bias can be performed. We would expect the rejection rate for the 

test to be the significance level   in this case. 

The parameter   in (2.3) was defined as the difference between the poststratified population total, 

calculated using the population response propensities under the poststratification scheme adopted, and the 

unadjusted population total. In (2.4), the unadjusted population total Y  was estimated by the Horvitz-

Thompson estimator. The parameter   could alternatively be estimated by  

 2
=1

ˆ
ˆ ˆ= ,

ˆ

C
c

PS c
c c

Y
Y M

M
    

in which a poststratified estimator is used instead of ˆ .SSY  The variance of 2̂  is expected to be less than the 

variance of ̂  under the poststratification assumptions, resulting in a more powerful test. However, when 

y  is a linear combination of the poststratum indicators, the statistic 2̂  cannot be used to test 0 : = 0H   

because  2
ˆ = 0.V   A similar problem can occur when y  is highly correlated with the poststratification 

variables. The estimator ˆ,  by contrast, typically has positive variance even when y  is one of the 

poststratification variables. 

Sometimes poststratification is performed using less-than-perfect poststratification totals – for example, 

the totals may come from a large survey such as the American Community Survey which has its own 

sampling and nonsampling errors, or they may be from a census of a slightly different population. In some 

cases, poststratification variables such as race or ethnicity may be measured differently in the survey than 

in the source of the external population totals. Using ̂  rather than 2̂  may detect differences that might be 

caused by a flawed poststratification. 
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If desired, the tests may be performed using means rather than totals. In this case, the population 

parameter is  

                                                                  
=1

=
C R

c c
M R

c c

M Y
Y

M M
    

where = ,Y Y M  and may be estimated by  

                                                                  
=1

ˆ ˆ
ˆ = .

ˆ

C R
c c SS

M R
c hikc

hik S

M Y Y

M wM




 
 (2.10) 

 
3  Propensity weighting 
 

An alternative to poststratification is to use inverse propensity weighting of the respondents (see, for 

example, Folsom 1991; Kim and Kim 2007). 

In this framework, the true response propensity of unit  hik  is hikR  and a model is used to predict the 

propensity from characteristics known for everyone in the selected sample. Logistic regression is often used 

to estimate propensities. Suppose that the -p vector hikx  is known for each unit in .S  The modeled response 

propensity, if hikx  and hikR  were known for each unit in the population, is  

   1

= 1 exp ,M
hik hikR


   x β   

where β  is the solution to the expected population score equations  

   = 0.M
hik hik hik

hik U

R R


 x   

The model removes the bias for the estimated population total of y  if  

 = hik
hik hikM

hik U hik

y
R y

R




 
 

 
  (3.1) 

equals 0. If = ,M
hik hikR R  that is, the response propensity model is correctly specified, then the weighting 

adjustments remove the bias for every possible response variable .y  The population parameter   is 

estimated by  

  ˆ ˆ= 1 exp ,hik hik hik hik hik
hik S

w r y y


         x β   

where β̂  is the solution to the pseudolikelihood score equations  

   1
ˆ1 exp = 0.hik hik hik hik

hik S

w r




        x β x   

Unlike the poststratification situation, the population parameter   in (3.1) is not an explicit function of 

population totals. Similarly to Kim and Kim (2007), we can obtain the linearization variance and a 

linearization variance estimator of ̂  by using the estimating equation for  , ,β  as derived in Binder 

(1983):  ˆˆ ,β  is the solution to  
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                                         ˆ , , = , , , 0,0, ,0, = 0,hik hik hik hik
hik S

w y r 


A β r u x β   (3.2) 

where  

                        
 
 

 
 

1

1

2

1 exp, , ,
, , , = = .

, , ,
1 exp

hik hik hik
hik hik hik

hik hik hik

hik hik hik
hik hik hik hik

ry r
y r

u y r
r y y

           
   
         

x β xu x β
u x β

x β
x β

  

The population parameter   solves the population estimating equation  

      , , = , , , 0,0, ,0, = 0.hik hik hik
hik U

y R 


A β R u x β    

 

Theorem 4. Let        1 2
ˆ ˆ ˆ, = , , , = , .hik hik hik hikhik S

w y r U


  
 U β u x β U β β  Suppose conditions (A2) – 

(A5) are met and there exists a value B  such that , <hik j Bx  for all units  hik  and components .j  Then 

     2ˆ ˆ= ,LV V o M n    where  

          1 1 2 2
ˆ ˆ ˆ ˆ ˆ= 2 , ,LV V Cov U V U              T QXC U β CX QT T QXC U β β β  (3.3) 

X  is the M p  matrix with rows ,hik
x  T  is the -M vector with elements ,hik hikR y Q  is the M M  

diagonal matrix with entries  exp ,hik
x β  and    12= .

 C X I Q QX  
 

A linearization variance estimator for ̂  may be obtained by substituting estimators for the population 

quantities in (3.3) to obtain  

 
   

      
1

1 2 2

ˆˆ ˆ ˆ ˆˆ ˆ ˆ, =

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 Cov , ,

L S S S S S S S S

S S S S

V V

U V U

    

        

β t W Q X C U β CX Q W t

t W Q X C U β β β
  

where SX  is the m p  matrix with rows hik
x  for the sampled units with m  the size of the selected sample, 

SW  is the m m  diagonal matrix of weights hikw  for sampled units, St  is the -m vector with elements 

hik hikr y  for sampled units, SQ  is the m m  diagonal matrix with entries  ˆexp hik
x β  for values of hikx  in 

the sample, and    1
2ˆ = .S S S S S

 C X W I Q Q X  

The jackknife variance estimator for inverse propensity weighting is defined using the formula in (2.8) 

with jackknife weights in (2.9). For the propensity setting,  

       ˆ ˆ= 1 exp ,gjgj gj
hik hik hik hik hik

hik S

w r y y


         x β   

where  ˆ gjβ  solves  

     1

1 exp = 0.gj
hik hik hik hik

hik S

w r




        x β x   

 

Theorem 5. Assume that the conditions of Theorem 4 hold. If    2 ˆ
Ln M V   converges to a positive 

constant, then      2 ˆ ˆˆ
L Ln M V V     and      2 ˆ ˆˆ

J Ln M V V     both converge in probability to 0.   
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The proof of Theorem 5 follows by standard arguments in Fuller (2009) and Shao and Tu (1995) and is 

hence omitted. 

The parameter   for examining bias with inverse propensity weighting was defined for population totals. 

As with poststratification, it may be desired to compare means instead of totals, particularly if weight 

trimming is used to truncate large and influential values of the propensity weight  ˆ1 exp .hik
   x β  In this 

case, the parameter to be evaluated is  

 
=

M
hik hik hik hik

hik U hik U
M M

hik hik
hik U

R y R y

R R M
  




 


  

with estimator  

     
 

 
ˆ1 exp

ˆ = .
ˆ1 exp

hik hik hik hik hik hik
hik S hik S

M
hikhik hik hik

hik Shik S

r w y w y

wr w
  



   


   

 


x β

x β
  

Special adjustments are needed to account for weight trimming with the linearization variance estimator; in 

general, we recommend using the jackknife or another replication method for finding the variance of ̂  

or ˆ .M  
 

4  Simulation results 
  

We examine the performance of the variance estimators in two simulation studies. The first study 

generates finite populations with response indicators hikr  and then draws simple random samples from the 

population. The second simulation uses data from the 2009-2013 5-year American Community Survey 

Public Use Microdata Samples (ACS PUMS) as a population and then draws repeated cluster samples from 

this population under different nonresponse mechanisms. 

For the simulation involving simple random sampling, we generated finite populations of 1,000,000 

units. To study the poststratification estimator we used = 6C  poststrata to generate nonresponse. The 

experimental factors were:   

 sample size, :n  300 or 1,000.  

 population proportion  cM M  in each poststratum: (P1) (1/6, 1/6, 1/6, 1/6, 1/6, 1/6), (P2) (1/21, 

2/21, 3/21, 4/21, 5/21, 6/21), and (P3) (6/21, 5/21, 4/21, 3/21, 2/21, 1/21).  

 response rates in poststrata: (R1) (0.2, 0.3, 0.5, 0.6, 0.8, 0.9), (R2) (0.3, 0.7, 0.3, 0.7, 0.3, 0.7), 

and (R3) (1, 1, 1, 1, 1, 1). Level (R3), with full response, is included to explore the accuracy of 

the higher-order approximation to the variance when  1
ˆ = 0.V   

 poststratum means: (M1) (0, 0, 0, 0, 0, 0), (M2) (-2, -1, 0, 1, 2, 3) and (M3) (0, 1, 0, 1, 0, 1).  

 number of poststrata used in nonresponse adjustment: 1, 3 (collapse adjacent pairs of poststrata), 

or 6. Only the settings with 6 poststrata are guaranteed to correct for the nonresponse bias.  
 

Within each poststratum, population values iy  were generated from a normal distribution with the 

specified poststratum mean and variance 1. The response indicators ir  were generated as independent 
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Bernoulli random variables with mean .iR  The simple random sampling simulations were done in version 

3.2.2 of R (R Core Team 2015), and 2,000 iterations were performed for each of the 162 simulation settings, 

which results in a standard error less than 0.005 for the Monte Carlo estimate of the rejection proportion 

when the null hypothesis of = 0  is true. Some of the generated samples had fewer than two respondents 

in one or more poststrata, which would result in some jackknife resamples having no respondents in those 

poststrata. For such samples, the two poststrata with the smallest number of respondents were combined 

iteratively until all poststrata had at least two respondents. 

For each simulation setting, the Monte Carlo (MC) variance of ˆ,  ˆˆ ,MCV   was calculated as the sample 

variance of b̂  for = 1, , 2,000.b   The linearization and jackknife variance estimates were calculated for 

each simulated sample, and the means of those estimates over the 2,000 samples are denoted as  ˆˆ
LV   and 

 ˆˆ ,JV   respectively. 

Figures 4.1 and 4.2 display results for the simulation settings in which  1
ˆ > 0.V   Figure 4.1 displays 

histograms of the ratios of the mean linearization and jackknife variance estimates to  ˆˆ .MCV   The 

scatterplot in Figure 4.2 displays the percentage of the 2,000 iterations in which the null hypothesis 

0 : = 0H   is rejected at the 5% significance level. Most of the variance estimates are close to the MC 

variance and the rejection rate for 0 : = 0H   is approximately 5% when = 0,  with higher power for 

larger values of .  Four of the simulation runs with = 0,  however, have linearization and jackknife 

variances that are approximately twice the MC variance, and rejection rates that are between 0 and 1%. 

These results are from the simulations with poststratum means (M3), response rates (R3), population 

proportions (P2) or (P3), and three collapsed poststrata. Although the population means for the collapsed 

poststrata differ, they do not differ greatly and a sample size of 1,000 is too small for the first-order 

asymptotic approximation to be accurate. For these settings, a sample size of approximately 15,000 was 

needed to reduce the variance ratios    ˆ ˆˆ ˆ
L MCV V   and    ˆ ˆˆ ˆ

J MCV V   to 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Ratios of (a)  ˆˆ
LV   and (b)  ˆˆ

JV   to  ˆˆ ,MCV   for the simple random sample poststratification 

simulation settings in which  
1

ˆ > 0.V   The blue circles represent simulations with = 1,000n  and 

the red Xs represent simulations with = 300.n  
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Figure 4.2  Empirical power for tests using linearization and jackknife variance, for the simple random sample 

poststratification simulation settings in which  
1

ˆ > 0.V   The blue circles represent simulations 

with = 1,000n  and the red Xs represent simulations with = 300.n  
 

Figure 4.3 shows the behavior of  ˆˆ ,LV    ˆˆ ,JV   and  2
ˆV̂   when the first-order term of the variance 

is  1
ˆ = 0V   but  2

ˆ > 0.V   For all of those simulations, the true value of   was 0 and the second-order 

term  2
ˆV̂   was calculated using the SRS approximation in Theorem 3. Even though the true first-order 

variance  1
ˆV   is zero for these settings, the estimated first-order variances from linearization and jackknife 

are nonzero. For the simulations with poststratum means (M1) and response rates (R3), for example, all 

poststrata have the same population mean. The sample means for the poststrata differ, however, and this 

causes the linearization and jackknife variance estimators to be positive and, on average, about twice as 

large as the MC variance. The same thing happens with poststratum means (M3), population proportions 

(P1), and response rates (R3) when three poststrata are used: the three collapsed poststrata each have 

population mean 1/2 but the sample means vary. 

 

 

 

 

 

 

 

 

 

Figure 4.3  Ratios of  ˆˆ
LV   (squares),  ˆˆ

JV   (plus signs), and  
2

ˆV̂   (triangles) to  ˆˆ ,MCV   plotted against 
 ˆˆln ,MCV   for the simple random sample poststratification simulation settings in which 

 
1

ˆ = 0.V   For all of these settings, = 0.  The blue symbols (with log MC variance   16) represent 

simulations with = 1,000n  and the red symbols (with log MC variance   16) represent simulations 

with = 300.n  
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Only simulation settings with response rates (R3) required the use of higher-order terms or large sample 

sizes for the linearization and jackknife variance estimators to be accurate. It would be easy to identify these 

situations in practice from the absence of nonresponse. 

To study the properties of the estimators in Section 3, we used a subset of the populations generated for 

the poststratification simulation as well as populations generated with continuous covariate ,x  giving 

factors:   

 Sample size, :n  300 or 1,000.  

 Population values and nonresponse generation.   

1. Nonresponse is generated in 6 poststrata with population proportions (P1) or (P2), and 

response rates (R1) or (R2). The variable of interest y  is generated with poststratum means 

(M1) and (M2) plus a  0,1N  error term.  

2. Covariate x  is generated from a  0,1N  distribution. Then y  is generated as (Y1) 

 0 0,1N  (independent of ),x  (Y2)  0,1 ,x N  or (Y3)  2 0,1 .x N  The response 

propensities are generated as (R1P) = 0.8R  for all units, (R2P) logit     = 1 1 exp ,R x   

and (R3P) logit     2= 1 1 exp 3 .R x   
 

 Response propensity model used.   

1. For poststratified populations, treat x  as a continuous variable with values 1–6.  

2. For populations with generated covariate ,x  use linear logistic regression with covariate .x  

This model is correctly specified for response-generating mechanisms (R1P) and (R2P) but 

incorrectly specified for mechanism (R3P).  

 
To reduce the instability of the estimators, estimated response propensities less than 0.05 were replaced 

by 0.05, corresponding to trimming weight adjustments larger than 20. Figures 4.4 and 4.5 display the 

variance ratios and empirical power for the propensity model simulations. All settings in this simulation had 

 1
ˆ > 0.V   As in the poststratification simulation, the linearization and jackknife variance estimators both 

perform well in general. There are a few settings, however, in which the linearization variance is 

substantially larger than the jackknife. This occurs because of the weight trimming: the jackknife 

automatically accounts for the effect of weight trimming on the variance because the jackknife replicates 

also trim the weights. The linearization variance used in this simulation was from Theorem 5, and the 

formula would need to be modified to include the effects of trimming. We also ran simulations using the 

jackknife in which the mean was estimated instead of the population total, and the jackknife performed well 

for that parameter as well. 

The second simulation study used a population of 6,019,599 household-level records from the ACS 

PUMS studied in Lohr, Hsu and Montaquila (2015). There are 3,344 PSUs in the population defined by the 

public use microdata areas. Eight poststrata were formed based on the cross-classification of households by 

tenure (rent or own), presence of children in the household (yes or no), and number of income earners (0-1 

or 2+). The primary outcome variable y  was household income. Additionally, a less skewed outcome 

variable  log y  was studied, where  log y  was set to 0 if < 1.y  
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A 2 2 3   factorial design was used for this study with factors   

 overall response rate: 50% or 80%.  

 number of PSUs for each sample: 25 or 100.  

 nonresponse generating mechanism: (N1) missing completely at random (MCAR), with response 

propensity for all records equal to the response rate for all households; (N2) missing at random 

(MAR), where a linear logistic model with main effect terms for tenure, presence of children, and 

number of income earners generates the response propensities; and (N3) missing not at random 

(MNAR), where a linear logistic model with main effect terms for tenure, presence of children, 

and household income generates the response propensities.  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Ratios of (a)  ˆˆ
LV   and (b)  ˆˆ

JV   to  ˆˆ ,MCV   for the propensity model simulation. The blue circles 

represent simulations with = 1,000n  and the red Xs represent simulations with = 300.n  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Empirical power for tests in the propensity model simulation using linearization and jackknife 

variance. The blue circles represent simulations with = 1,000n  and the red Xs represent 

simulations with = 300.n  
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For the first two nonresponse generating mechanisms, = 0.  For the first mechanism, there is no 

nonresponse bias. Poststratification corrects for the bias in the second mechanism because =hik cR p  for 

units in poststratum .c  Poststratification does not correct for the bias in the third mechanism because the 

nonresponse depends on the y  variable, household income. 

For each simulation setting, response indicators were generated independently for the population units 

using the calculated response propensities. One thousand samples were drawn for each setting, in which 

PSUs were selected with probability proportional to size and a simple random sample of 100 households 

was selected from each sampled PSU. The standard error for the rejection proportion when = 0  is less 

than 0.007. 

Calculations for the ACS simulation were done in SAS® software (SAS Institute, Inc. 2011). We first 

calculated the weights and jackknife weights for the selected sample, and then calculated the poststratified 

and jackknife poststratified weights for the respondents. The two sets of jackknife weights used the same 

replication structure, so that replicate weight k  for the respondents deleted the same PSU as replicate weight 

k  for the selected sample. To simplify computation of ˆ
M  in (2.10), we concatenated the selected sample 

and respondents, with their respective weights, into one data set and set = 1iu  for records in the respondent 

data set and = 0iu  for records in the selected sample data set. The linear model 0 1=i iy u   was fit to 

the concatenated data using the SURVEYREG procedure, and 1
ˆ ˆ=M   from the regression model. 

Table 4.1 gives the results from the simulation. For all but one of the simulation settings, the mean of 

the jackknife variance estimates is larger than the Monte Carlo variance of ˆ ,M  but the bias of the jackknife 

variance is reduced when more PSUs are sampled or the response rate is higher. The outcome variable ,y  

household income, is highly skewed, and the rejection rate when = 0M  is closer to the nominal   of 0.05 

when the log-transformed variable is used. 

 
Table 4.1 
Simulation results from ACS population   
 

Nonresponse 
Mechanism 

Response 
Rate (%) 

Number  
of PSUs  

Outcome variable y  Outcome variable  log y  

M  % Reject 
 
 
ˆˆ

ˆˆ
J M

MC M

V

V




 M  % Reject 

 
 
ˆˆ

ˆˆ
J M

MC M

V

V




 

MCAR 50  25   0   3.3   1.21   0   4.5   1.20  
MCAR 50  100   0   3.0   1.09   0   4.4   1.08  
MCAR 80  25   0   3.8   1.14   0   4.0   1.19  
MCAR 80  100   0   3.9   1.07   0   5.2   1.05  
MAR 50  25   0   4.5   1.16   0   4.2   1.11  
MAR 50  100   0   4.9   1.04   0   4.4   1.05  
MAR 80  25   0   3.5   1.16   0   4.7   1.20  
MAR 80  100   0   3.5   1.12   0   4.6   1.11  

NMAR 50  25   8,882   70.8   1.41   0.118   6.3   1.60  
NMAR 50  100   8,882   99.5   1.11   0.118   37.7   1.11  
NMAR 80  25   3,706   45.6   1.18   0.047   14.5   1.20  
NMAR 80  100   3,706   99.4   1.09   0.047   61.0   0.99  
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5  Discussion 
 

In this paper, we considered tests for nonresponse bias after poststratification or inverse propensity 

weighting has been used. The arguments in the theorems could be extended to similar methods that are used 

to adjust for nonresponse bias such as raking, which iteratively poststratifies to marginal population totals, 

or calibration, which adjusts the weights so that estimated population totals agree with control totals for a 

set of auxiliary variables. Haziza and Lesage (2016) argued that using a two-step procedure of propensity 

weighting followed by calibration provides more protection against nonresponse bias than using calibration 

alone in a single step, because single-step calibration implies a model relating the response propensities and 

the calibration variables and that model may be misspecified. The tests proposed in this paper could be 

extended to situations in which both propensity weighting and poststratification are used, or could be used 

separately to assess the bias removed in each step of a two-step process. 

We employed the jackknife for the replication variance estimation. However, all of the estimators are 

smooth functions of population totals, so other replication variance estimators such as balanced repeated 

replication or bootstrap could be used as well. 

A challenge for evaluating nonresponse bias is the limited amount of information available for the 

selected sample. For some surveys all available auxiliary information is used or considered for forming 

poststrata, raking classes, or inverse propensity weights. The poststratified estimator for characteristics used 

in the poststratification has no variance or bias, so testing these or closely related characteristics will not 

uncover nonresponse bias in other survey variables. Auxiliary variables that are not used for nonresponse 

adjustments are often omitted only because they were not selected in model selection method used to form 

the poststrata or select variables for the logistic regression, and that typically occurs because they have low 

explanatory power for predicting the response indicator after the other variables are included in the model. 

For surveys with less frame information, it may be possible to obtain auxiliary information from other 

sources, such as administrative records associated with the respondents’ addresses or paradata. It is 

important to make sure that the variables used to test nonresponse bias are recorded consistently for 

respondents and nonrespondents. If, for example, y  is the interviewer’s curbside assessment about whether 

children are present in the household, that initial assessment should be used for both respondents and 

nonrespondents: the assessment used in the nonresponse bias analysis should not be updated after the 

interviewer ascertains the actual number of children in a responding household. 

After testing available variables for nonresponse bias, we still do not know whether the adjustments have 

removed the bias for outcome variables that are available only for the respondents. Abraham, Helms and 

Presser (2009) and Kohut, Keeter, Doherty, Dimock and Christian (2012) found that estimates of 

volunteering and civic participation are higher from surveys with low response rates than from the Current 

Population Survey, indicating that weighting adjustments do not remove bias for civic engagement variables 

although they appear to remove bias for demographic variables and home ownership. But testing a wide 

range of auxiliary variables for residual bias may give more confidence in the results of a survey on the 

untested variables, or may indicate concerns about inferences from the survey for variables of interest. We 

recommend that survey designers plan the survey with nonresponse bias assessment in mind, and collect 
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additional information for the selected sample whenever possible. In general, the more information that can 

be collected about the selected sample, the better. 

The comparison of estimates using different sets of weights may be of special interest when studying 

responsive or adaptive design strategies such as those described in Groves and Heeringa (2006) and 

summarized in Tourangeau, Brick, Lohr and Li (2016). In these, later phases of the design are modified 

using information gleaned in the early returns. One responsive design strategy may be to estimate response 

rates after the first phase of the survey, and then to allocate resources in the second phase to equalize rates 

across subgroups of interest. In an experimental comparison of different responsive design strategies, it may 

be of interest to evaluate the estimated nonresponse bias from the strategies. Riddles, Marker, Rizzo, Wiley 

and Zukerberg (2015) compared nonresponse-weighted estimates from different data cutoff points in the 

U.S. Schools and Staffing Survey, to see if estimates changed with earlier truncation of data collection. 

The results in Theorems 1 through 5 are expressed for probability samples. There is increased interest in 

using nonprobability samples to study populations (Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and 

Tourangeau 2013). Proponents of nonprobability samples argue that with response rates sometimes below 

10%, an inexpensive large nonprobability sample can have smaller mean squared error than a small 

probability sample. The same methods of poststratification and inverse propensity weighting are typically 

used with nonprobability samples. The tests proposed in this paper can be adapted for use with 

nonprobability samples, provided that auxiliary information is known for a collection of individuals that can 

serve as a stand-in for a sampling frame. For a web survey, it might be possible to compare characteristics 

of persons visiting the web page with those of persons completing the survey. Further research is needed in 

this area. 
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Appendix 
 

The following lemma shows that the additional variability due to the stochastic response mechanism is 

 2 .O M n  
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Proof. By assumption (A5),  
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The last line is implied by (A3). 
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Lemma 1 and Assumption (A4), which guarantees that 1 cp  is bounded, imply that the second term is 

 2 .O M n  

To show that    2
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Assumption (A2) implies (Fuller 2009, Theorem 1.3.2) that 
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so that  ˆˆ
LV   is an approximately unbiased estimator of  1

ˆ .V   The consistency follows by (A2), which 

implies asymptotic normality, and the law of large numbers. 
 

Proof of Theorem 3. For ,c d  
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Combining the terms,  
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Proof of Theorem 4. Condition (A4) guarantees that, asymptotically, complete separation will not occur 

and M
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Using successive conditioning and the independence of r  and ,Z  the expected value of  ˆ , ,D r β  is  
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The first term is  2O M n  by standard arguments and the second term is  2O M n  by Lemma 1, noting 
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Reducing the response imbalance: Is the accuracy of the 
survey estimates improved? 
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Abstract 

We present theoretical evidence that efforts during data collection to balance the survey response with respect to 
selected auxiliary variables will improve the chances for low nonresponse bias in the estimates that are ultimately 
produced by calibrated weighting. One of our results shows that the variance of the bias – measured here as the 
deviation of the calibration estimator from the (unrealized) full-sample unbiased estimator – decreases linearly 
as a function of the response imbalance that we assume measured and controlled continuously over the data 
collection period. An attractive prospect is thus a lower risk of bias if one can manage the data collection to get 
low imbalance. The theoretical results are validated in a simulation study with real data from an Estonian 
household survey. 
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1  Introduction 
 

The problem of accurate estimation despite considerable nonresponse needs to be examined from two 

time dependent angles: First, ways to handle the data collection, then ways to handle the estimation with the 

data that were finally collected. The first activity may require substantial resources. In a telephone survey, 

the daily scheduling of contact attempts, the interaction with the interviewers, and consideration for their 

workloads, can be expensive efforts. The estimation stage is administratively simpler; there is a search for 

the best auxiliary variables for a calibrated nonresponse adjustment weighting, whereupon the computation 

of estimates is usually carried out with existing software. 

The data collection is in focus in the literature on Responsive Design; Groves (2006), Groves and 

Heeringa (2006) are early references. Adaptive survey designs are discussed in Wagner (2008). One idea in 

this research tradition is that a data collection that extends over a period of time might be inspected at 

suitable decision points, where action may be taken to realize in the end a well-balanced set of respondents. 

Schouten, Calinescu and Luiten (2013) explain how adaptive survey designs may be tailored to optimize 

response rates and reduce nonresponse selectivity, with cost aspects taken into account. Much exploratory 

work has been carried out on responsive (or adaptive) design. Seeking well balanced or representative 

response can be pursued as a goal in itself. Different avenues have been explored: Case prioritization, 

(Peytchev, Riley, Rosen, Murphy and Lindblad 2010); stopping rules to halt data collection attempts for 

specific sample units, (Rao, Glickman and Glynn 2008; Wagner and Raghunathan 2010); uses of paradata 

more generally to manage the survey response, (Couper and Wagner 2011). 

Measuring and controlling the imbalance belongs in the data collection phase. The imbalance statistic 

(see Section 3) has a central role in this article; it was used for example in Särndal (2011), Lundquist and 

Särndal (2013), Särndal and Lundquist (2014a, 2014b). It is related to the -R indicator (R for 
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representativity); see Schouten, Cobben and Bethlehem (2009) and Bethlehem, Cobben and Schouten 

(2011). 

The second time slice relies on estimation theory to resolve the challenge of nonresponse, primarily how 

to achieve low bias in the estimates. Viewed strictly as an estimation problem, it is an activity in itself, after 

a completed data collection. The set of responding units is fixed; the data on those units is a “frozen” supply. 

The choice of auxiliary variables plays a crucial role. The “best ones” should be selected. This aspect has 

been dealt with extensively, as in Särndal and Lundström (2005). Two factors are traditionally cited as 

important for the accuracy of the estimates: The degree to which the chosen auxiliary variables can explain 

the study variable and the degree to which these variables can explain the 0/1 response indicator showing 

presence or not in the set of respondents. Each of the two degrees of explanation is partial at best, not perfect. 

The two roles of the auxiliary variables interact, as recognized for example in Little and Vartivarian (2005). 

An extensive review of weighting adjustment procedures for nonresponse is given in Brick (2013). 

The supply of auxiliary variables depends on the survey environment. In Scandinavia, surveys on 

individuals and households can draw on extensive sources – administrative registers – of auxiliary variables. 

This is increasingly so in other countries also. 

One view holds that the estimation is the all-important step: Whatever may be accomplished at the data 

collection stage – balancing, improved representativeness – is perhaps superfluous; achieving best possible 

accuracy in the estimates can be dealt with effectively at the estimation stage, by clever use of the auxiliary 

variables in a nonresponse adjustment weighting or in other ways. This point of view is supported for 

example in Beaumont, Bocci and Haziza (2014). 

Nevertheless, it is clear that measurable aspects of the data collection will influence the accuracy of the 

estimates that are ultimately produced. One such measure is the imbalance statistic defined in Section 3. In 

this article, the two time dependent activities are taken into account: Balancing the response should be 

combined with efficient estimation methods, to get in the end the best possible (most accurate) estimates. 

Such a view underlies, for example, Schouten, Cobben, Lundquist and Wagner (2014). 

The motivation for this paper is as follows: Methods exist for different courses of action – stopping rules, 

case prioritization, and others – during data collection, so as to get in the end a favourable response set .r  

Särndal and Lundquist (2014a, 2014b) used the imbalance statistic IMB  given in Section 3 as a tool to 

achieve low imbalance in the final response set. Considering that auxiliary variables will also be used in the 

estimation, to what extent, if any, will better accuracy in the estimates follow from low imbalance in the 

preceding data collection? There are encouraging signs, as in Särndal and Lundquist (2014a), that lower 

imbalance creates some accuracy improvement, although modest. That work was empirical; in this article 

we give mathematical/analytical support for a similar conclusion. 

The contents are arranged as follows: The survey background (Section 2) and the imbalance statistic 

(Section 3) are presented. The regression relationship – that of the study variable on the auxiliary vector – 

is important (Section 4), notably for the estimator (called CAL) obtained by calibrated nonresponse weight 

adjustment (Section 5). The deviation of the calibration (CAL) estimator from the (unbiased) estimator 

requiring full response is analyzed (Sections 6, Section 7, Section 8), showing how deviation depends on 

imbalance. Two results are presented on statistical properties (mean and variance) of the CAL deviation. In 
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particular, the variance of that deviation is shown to be, approximately, a linear function of the imbalance 

statistic. Hence the deviation is likely to be smaller, and estimates more accurate, if the imbalance can be 

reduced during data collection. The theoretical results are empirically validated (Section 9) using data from 

an Estonian household survey. The statistical software R is used; R Core Team (2014). A discussion 

(Section 10) concludes the article. Three appendices provide the necessary proofs and derivations. 

 
2  Background and notation 
 

A probability sample s  is drawn from the finite population  1, 2, , , , .U k N    Unit k  has the 

known inclusion probability  Prk k s    and the known design weight 1 .k kd   Nonresponse occurs. 

The response set, denoted ,r  is that subset of s  for which the study variable is observed. We do not know 

how r  was generated from ;s  the response probabilities are unknown (if assumed to “exist”, they are not 

needed in this article). The (design weighted) response rate is 

 .k kr s
P d d    (2.1) 

If A  is a set of units, ,A U  a sum 
k A  will be written as .

A  The survey may have many study 

variables. A typical one, denoted y  (continuous or categorical), has value ky  recorded for k r  but 

missing for .k s r   Our objective is to estimate the population -y total, .kU
Y y   The response 

indicator I  has value 1kI   for ,k r  0kI   for .k s r   A goal for practice is to get a response r  that 

is well balanced, in the sense specified later. We are led to consider the different r  that may arise from a 

given .s  

The auxiliary vector x  of dimension 1J   has value kx  known at least for all units .k s  Auxiliary 

information can be used in the data collection (for monitoring the data inflow to achieve improved balance) 

and/or in the estimation (for calibrated weight computation). The auxiliary vector need not be the same for 

the two purposes, but this article assumes that they agree, and that the -x information used is for .k s  This 

includes the important case of paradata, that is, data about the data collection process. 

An important type of auxiliary vector is a group vector. It identifies membership of every unit k  in one 

of J  mutually exclusive and exhaustive sample groups, so that  0, ,1, 0 ,k
x    where the only “1” 

indicates the unique group (out of J  possible) to which k  belongs.  

A group vector occurs when several categorical auxiliary variables are completely crossed. To illustrate, 

if  sex education age  x  represents a crossing of 2 sexes, 3 exhaustive education categories and 4 

exhaustive age categories, then x  is a group vector with dimension 2 3 4 24J      and equally many 

possible values .kx  When several categorical variables are used although not in completely crossed 

manner – important for practice in statistical agencies – then the dimension J  of kx  can be kept relatively 

modest (say less than 15) while still coding a much larger number (say more than one hundred) of possible 

properties kx  of the units .k  For a study of the Swedish Living Conditions Survey, Särndal and Lundquist 
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(2014a) used an -x vector of dimension 14 with 256 possible values. The group vector case and the non-

group vector case give important differences in the results that follow. 

All auxiliary vectors used here satisfy a requirement that grants mathematical convenience without 

severely restricting the choice of vector: There exists a constant vector μ  such that 

 1 for all .k k μ x  (2.2) 

For example, when 2J   and  1, ,k kx x  then  1,0 μ  satisfies the requirement. In the group 

vector case where  0, ,1, ,0 ,k
x    then  1, ,1, ,1 μ    satisfies the requirement. If x  is not a 

group vector, say, one used to code “education” with three mutually exclusive and exhaustive categories 

and “gender” as a univariate variable equal to 1 or 0, then 3 1 4J     (education and gender not crossed), 

and  1,1,1,0 μ  satisfies the requirement. 

 
3  Imbalance 
 

The concept of balance has been often used in statistical literature with reference to an equality of means 

of specified variables for two sets of units, one a subset of the other. One method to realize a probability 

sample s  from U  that is balanced with respect to a vector x  is the Cube Method, see Deville and Tillé 

(2004). In the context with nonresponse, we want to know how well balanced a response r  is, compared 

with the probability sample s  that would have given unbiased estimates. A given auxiliary vector x  has 

computable means r k k kr r
d d  x x  for the response and s k k ks s

d d  x x  for the sample. If 

they are equal, an unlikely outcome, the response is perfectly balanced with respect to .x  The contrast 

between response r  and sample s  can be measured by the scalar quantities 

        1 1; .s r s s r s r r s r r sQ Q       x x Σ x x x x Σ x x  (3.1) 

They differ only in the J J  weighting matrix, s k k k ks s
d d  Σ x x  as opposed to r Σ  

,k k k kr r
d d x x  both assumed non-singular. In particular, sQ  is important for the statistic called 

imbalance of r  with respect to the specified -x vector: 

      2 1 2, ,r s s r s sIMB r s P P Q   x x x Σ x x  (3.2) 

where P  is the response rate (2.1); see for example Särndal and Lundquist (2014a). The full notation 

 ,IMB r sx  emphasizes that imbalance depends on the realized response r  and on the choice of -x vector. 

Unless required for emphasis, we use the simpler notation .IMB  We have  0 1IMB P P    for any r  

and vector formulation ,x  given .s  IMB  is a descriptive measure of the response .r  It is related to a special 

case of the R- indicator, whose motivation lies instead in the estimation of (the unknown) response 

probabilities for the population units, see for example Bethlehem et al. (2011). 
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The IMB  statistic (3.2) can be continuously computed and monitored in a data collection extending over 

a period of time, say several days or weeks, during which contact attempts continue with a sample unit until 

desired data are obtained, or, if this fails, until the unit is declared a non-respondent. As the response rate 

P  grows, IMB  serves as a tool for monitoring and managing the data collection to achieve in the end a 

response set r  which, if not perfectly balanced to satisfy ,r sx x  will at least have considerably lower 

IMB  than if balancing had not been attempted in data collection. There are methods for balancing based 

on response propensity, such as the Threshold method and the Equal proportions method in Särndal and 

Lundquist (2014a, 2014b). 

We consider later the particular case where s  is a self-weighting sample (as when s  is a simple random 

sample), the response r  has fixed size ,m  and x  is a group vector of dimension J  as defined in Section 2. 

Then both s  and r  are split into J  non-overlapping groups. For the sample group ,js  denote by jn  the 

size and by js jW n n  the relative size; 
1

.
J

jj
n n


  For the response group ,jr  let j jm n  be the size; 

1
.

J

jj
m m


  The imbalance (3.2) is then 

  2

1
,

J

js jj
IMB W p p


   (3.3) 

where the response rates are j j jp m n  in group j  and p m n  overall. (The response rate P  is defined 

in (2.1) with general design weights ;kd  for a self-weighting sample, where kd  is constant, we use small 

p  for the response rate.) If 0,IMB   we have perfect balance; all group response rates 
j

p  are then equal. 

 
4  The regression aspect 
 

The imbalance (IMB) is determined by the auxiliary vector x  with no attention paid to the study variable 

.y  But the relation of x  to y  is also important for the bias of estimated -y totals. Strong regression of y  

on x  is likely to give small bias, intuitively because regression predicted -y values can then give close 

substitutes for those missing. For some survey data, the strength of the regression may be modest but 

nevertheless important in its effect on bias. The ordinary linear regression coefficient vectors for the whole 

sample s  and for the response r  are, respectively,  

    1 1
; .s k k k k k k r k k k k k ks s r r

d d y d d y
 

     b x x x b x x x  (4.1) 

Under nonresponse, rb  is computable but not .sb  The J J  matrices to invert are assumed non-

singular. Normally ,r sb b  perhaps with considerable (but unknown) difference. The regression based on 

the response is inconsistent.  

The imbalance in the -y variable is ,r sy y  where the means are s k k ks s
y d y d    for the sample 

(unknown) and r k k kr r
y d y d    for the response (computable). The decomposition 
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     ,r s r s r r s sy y      x x b b b x  (4.2) 

highlights two undesirable differences, r sx x  (due to imbalance in the -x vector), and r sb b  (due to 

inconsistent regression); to obtain (4.2) note that r r ry x b  and ,s s sy x b  which are consequences of the 

-x vector condition (2.2). 

 
5  Estimating the population total under nonresponse 
 

The equation (4.2), when multiplied by ˆ ,ks
N d   can be expressed in terms of three common 

estimators of the population total .kU
Y y   Two are possible under nonresponse, 

 ˆ ˆ ˆ ˆ, ,k k k k kr r
EXP CAL

k kr r

d y d g y
Y N Y N

d d
  

 
 (5.1) 

with 1 .k s r kg  x Σ x  Of these, ÊXPY  is just a simple expansion of the response mean of y  and often 

considerably biased. The calibration estimator ĈALY  gives ky  the weight .k kd g P  The calibration property 

is   ,k k k k kr s
d g P d x x  where the right hand side is unbiased for the population -x total ,kU x  

which explains why ĈALY  can be considerably less biased than ÊXPY  when x  and y  are well related. If -y

values had been recorded for the full sample ,s  unbiased estimation would be carried out with the Horvitz-

Thompson estimator 

 ˆ .FUL k ks
Y d y    

The three estimator types will be referred to as EXP, CAL and FUL. Now (4.2) multiplied by 
ˆ

ks
N d   reads 

    ˆ ˆ ˆ ˆ ˆ ˆ .EXP FUL EXP CAL CAL FULY Y Y Y Y Y      (5.2) 

In words, Deviation of EXP   Bias adjustment term + Deviation of .CAL  The computable adjustment 

is  ˆ ˆ ˆ .EXP CAL r s rY Y N   x x b  The two deviations from the unbiased estimate, ˆ ˆ
CAL FULY Y   

 ˆ
r s sN b b x  for CAL and  ˆ ˆ ˆ

EXP FUL r sY Y N y y    for EXP, are not computable under nonresponse, 

because they require -y values for the full sample. 

As mentioned, we have methods to reduce the imbalance IMB  during data collection. Low imbalance 

is intuitively attractive, but does it yield better accuracy in estimates? Or is it enough to involve the auxiliary 

variables at the estimation stage, through a calibrated weight adjustment as in the CAL estimator? The 

adjustment term  ˆ ˆ ˆ
EXP CAL r s rY Y N   x x b  can clearly be reduced by constructing r  to have low 

imbalance; it is zero for the perfect balance .r sx x  In practice, the CAL estimator is preferred to the EXP 

estimator, the former being usually more accurate because of the auxiliary information. But is the deviation 

 ˆ ˆ ˆ
CAL FUL r s sY Y N   b b x  smaller if the response r  had been built to have low ?IMB  Asked 
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differently, is it worth the (perhaps costly) effort to manage the data collection to get rx  closer to sx  and 

therefore reduced ?IMB  The question is essentially whether this would also make rb  and sb  move closer. 

 
6  Statistical properties of the CAL estimator deviation 
 

In the decomposition (5.2), the deviation of CAL from the unbiased FUL is ˆ ˆ ˆ
CAL FUL rY Y N    where 

  .r r s s
 Δ b b x  To see if rΔ  is smaller, or likely to be so, by realizing low imbalance in data collection, 

we seek analytic results about statistical properties, such as mean and variance, of rΔ  as a function of the 

IMB  statistic (3.2). Highly general results of this kind are hard to obtain. Several factors complicate the 

analysis, such as the sampling design used to draw ,s  the probability distribution of the response sets r  

given ,s  the make-up of the auxiliary vector ,x  and so on. Results for special situations are obtained in 

Sections 7 and 8. 

Result 1 in Section 7 gives properties – expected value and variance – of  r r s s
 Δ b b x  over 

response outcomes r  with fixed size m  and fixed mean rx  when x  is a group vector, and s  is a simple 

random sample. The mean of rΔ  over such outcomes is zero. The imbalance appears in the variance of ,rΔ  

which is linearly increasing in ,IMB  approximately. A reason for taking x  to be a group vector is that 

conditioning on rx  grants relatively simple derivations. A fixed rx  implies a fixed value .IMB  (But the 

opposite is not true; several rx  can give the same IMB.) Another simplification when x  is a group vector 

is due to diagonal matrices rΣ  and .sΣ  The empirical test in Section 9.1 addresses Result 1. 

Simple derivations for the group vector are at the expense of generality. The -x vectors used in 

production at Statistics Sweden, for example, are often not group vectors. To get transparent mathematical 

results about rΔ  is then more difficult.  

Result 2 in Section 8 is derived under a model of linear regression between y  and .x  The ky  are then 

considered random, with properties stated by the model. A group vector feature for x  is no longer necessary. 

The conclusions are in some respects similar to those in Result 1. The empirical Test situation 2 in 

Section 9.2 refers to both Results 1 and 2. 

 
7  The first result 
 

Result 1 refers to the following survey context: A self-weighting sample s  of size n  is drawn from

 1, , , , ;U k N    kd  is the same for all .k  The auxiliary vector x  is a group vector of dimension ,J  so 

the sample s  and the response set ,r  assumed to be of fixed size ,m n  are split into J  non-overlapping 

groups. The notation for these is given at the end of Section 3. The values ky  are treated as fixed, non-

random, as is usual in the design-based tradition. If ky  were observed for all ,k s  then F̂UL sY N y  with 

s ks
y y n   would be design unbiased for the population -y total .kU

Y y   But ky  is available for 
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k r  only; the CAL estimator (5.1) becomes 
1

ˆ ,
j

J

CAL js rj
Y N W y


   where 

jry  is the mean of respondent 

values ky  in group .j  Statistical properties – expected value and variance – of  ˆ ˆ
CAL FUL rY Y N    with 

 
1 j

J

r r s s js r sj
W y y


    b b x  are given in Result 1 for the following probabilistic setting: All  n

m  

response sets r  of fixed size m  are assumed a priori equally probable. Given ,s  the imbalance IMB  is 

determined by    1
, , , , .1

j Jr m m mm x    Given ,rx  we are left with  1
j

j

J

j

n
mR


   sets ,r  all with 

the same non-zero probability 1 R  and the same ,IMB  given by (3.3). The other sets r  of size m  are no 

longer in scope. Conditioning on rx  allows us to study the properties of CAL as a function of .IMB  Result 1 

involves the variance of the study variable ,y  within-group and combined over groups: 

    
2

2 2 2

1

1 ; .
j jyj js

J

k s y js yj
j

S ny y S W S


     (7.1) 

Result 1. Let s  be a self-weighting sample of size n  and let kx  be a group vector of dimension .J  Assume 

that all  n
m  response sets r  of fixed size m  are a priori equally probable. Then 

                                   E , , 0r r m s   x   (7.2) 

   22 2 2

1

1 1 1
E , , 1

J

r r y js yj
j j

p
S m s S W S

m n m p


              
x  (7.3) 

where js jW n n  and j j jp m n  are relative size and response rate, respectively, for group ,j  

p m n  is the overall response rate, and 2
yS  and 2

yjS  are given in (7.1). If response rates jp  and variances 
2
yjS  vary by little only over the groups, then  

 
2

2
2

1 ySIMB
S p

p m

  
 

  (7.4) 

where IMB  is given by (3.3). 

For full response, when ,r s  the right hand sides of (7.3) and (7.4) are zero; the approximation in (7.4) 

is exact: 2 0.S   To interpret Result 1, note that the first term on the right hand side of (7.3) is a constant, 

given .m  It states the conditional variance for a perfectly balanced response, where jp  is the same for all 

groups. The second is the penalty term, namely the penalty for failing to get perfect balance in data 

collection. Its size depends on how well an adaptive design succeeds in generating group response rates 
j

p  

that vary little only. It is zero if all 
j

p  can be made equal.  

Formula (7.4) states that the variance 2S  is decreasing with IMB  in a roughly linear fashion. Thus low 

imbalance brings improved chances for a small deviation ˆ ˆ ˆ .CAL FUL rY Y N    This is important for practice. 

To illustrate, for a nonresponse of 1 40p   per cent, 2 20.57 yS S m   if 0.06,IMB   but if 0,IMB   

as in perfect balance, that variance is reduced to 2 20.40 .yS S m   The improvement is clear but cannot be 

claimed to be very large. This is because with most data, 2IMB p  is small compared with a nonresponse 

1 p  of the order of 30 to 60 per cent, cases that we are mainly concerned with here. Thus taking action to 

reduce imbalance has a desirable effect, although modest rather than strong.  
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In (7.2) and (7.3), the expectation  E   is taken by averaging over the  1
j

j

J

j

n
m

R


   equi-probable sets 

r  that remain out of  n
m

 after fixing .rx  It should also be noted that more than one rx  can give the same 

value .IMB  Hence there may be more than one value 2S  for the same .IMB  The linearly increasing 

function of IMB  in (7.4) is nevertheless their common approximation. 

 
8  The second result 
 

In Result 1, the survey variable values ky  are treated as fixed, nonrandom. In Result 2, they are random 

with properties as stated in a linear regression model   with residuals kk ky   x β  for some 

unknown :β  

      2 2; , all ; , 0, all .k k k k k k kE y E k s E k s           x β x x xx     (8.1) 

The properties in (8.1) apply also to units k  and   belonging in any subset r  of .s  Result 2 presents 

expected value and approximate variance of  r r s s
 Δ b b x  conditionally on a fixed self-weighting 

sample s  and a fixed response set r  with respective sizes n  and .m  
 

Result 2: Let s  of size n  be a self-weighting sample. Let X  be the J n  -x data matrix with columns 

,kx  .k s  Then, under the model   in (8.1), 

    
2

2
2

, , 0; , , 1 ,r r

IMB
E r s E r s p

p m


 

      
 

X X  (8.2) 

where m  is the size of the fixed response set ,r  p m n  is the response rate and IMB  is given by (3.2). 

Result 2 (for arbitrary -x vector and random )ky  mirrors Result 1 (for group -x vector and non-random 

)ky  in that both give conditional mean zero and the same linearly increasing form for the conditional 

variance approximation.  

The derivation in Appendix 3 of Result 2 relies on a comparison of the two quadratic forms in r sx x  

given in (3.1), sQ  and .rQ  The former is used in the imbalance statistic (3.2), 2 ;sIMB P Q  the latter 

determines the weight factors 
k

g  for the CAL estimator (5.1). The approximation ,r sQ Q  needed for 

Result 2, is justified in Appendix 2. 

 
9  Empirical testing 
 

Results 1 and 2 give the basis for testing empirically in this section how mean and variance of the 

deviation  ˆ ˆ ˆ ˆ
CAL FUL r r s sY Y N N     b b x  depend on the imbalance .IMB  Both results state that the 

variance of rΔ  increases in a roughly linear fashion as IMB  increases, without being small even if IMB  

is near zero.  
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We use real data from an Estonian survey with 17,540 households. The following variables are available 

for every household: Household net income, used here as the study variable ,y  and three categorical 

variables referring to the designated head of household, used here as auxiliary variables: (i) Gender (1 for 

male, 0 for female), (ii) Economic activity (1 for employed, 0 for not employed) and (iii) Education, with 

three exhaustive levels: low, medium, high. 

We compute the mean   of rΔ  and the variance 2S  of rΔ  by averaging over the sets r with fixed mean 

,rx  given .s  

 

9.1  Test situation 1 
 

In line with Result 1, we want to consider the response sets r  with fixed size m  arising from a given 

sample s  of size .n  The computational volume is prohibitive even for rather small .n  We drew s  as a 

simple random sample of size 20n   from 17,540. The kd  are then constant. The sample mean for the -y

variable (household income) was 10,386.65.sy   We define kx  as the group vector of dimension 3J   

that identifies the three exhaustive levels of Education; low, medium, high. For the realized sample ,s  we 

have  5,8,7 .sn x  

We fixed the size of the response sets r  to be 12.m   The response rate is 60 per cent for every one of 

the   520
12

1.26 10   possible response sets .r  From these, we excluded all those for which the response 

count vector rmx  contained a zero, to avoid a singular .rΣ  This left 31 configurations  1 2 3, ,m m m  such 

that 1 2 3 12m m m    and all three counts 1.
j

m   For each of the 31 possibilities, we computed   and 
2S  by averaging over the response sets r  satisfying the fixed configuration. For example,

   1 2 3, , 3, 4,5m m m   is satisfied by 14,700 response sets ,r  so mean and variance of r  are computed 

over those. Other configurations give much fewer response sets, for example, only 70 for the configuration 

(3, 8, 1); a few of those can then be very influential in the computations. For every one of the 31 cases,   

is theoretically zero, by Result 1. The computations confirmed this; a plot of   against IMB  is unnecessary. 

Figure 9.1 shows the 31 point plot of 2S  against .IMB  Because of the non-uniqueness of IMB  noted 

earlier, it happens several times that more than one 2S  occurs at the same IMB  value. Figure 9.1 shows 

that 2S  has a clear upward trend as IMB  increases. Figure 9.1 also shows the approximation 

   2 22 2 1
yapprox S m p pS S IMB      from Result 1. We have 0.6, 12p m   and 2 626.3 10 ,yS    

so the computed approximation, linear in ,IMB  is 2
approxS a b IMB    with 60.879 10a    and 

66.102 10 .b    For points with low ,IMB  2S  agrees closely with the linearly increasing 2 .approxS  A 

contributing reason is that when IMB  is low, the group response rates jp  vary little, and this is one of the 

conditions for close approximation, as the derivation of Result 1 in Appendix 1 explains. For higher IMB  

values, the increasing trend in 2S  is still evident, but the scatter around the theoretical line is more 

pronounced. Five outlying points in Figure 9.1 have very large 2 ;S  three of them occur when one 

component of  1 2 3, ,m m m  is equal to the maximal count (5 or 8 or 7). For those, less accurate linear 

approximation is expected, the jp  being far from equal. 
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Figure 9.1 Conditional variance of Δ r  as a function of imbalance ;IMB  x k  a group vector of dimension 3; 

response sets r  of fixed size 12 from a fixed sample s  of size 20. 

 
9.2  Test situation 2 
 

The setup and the computational steps are similar to those in Test situation 1, but kx  is no longer a group 

vector; some results change considerably, compared with Test situation 1. 

A new simple random sample s  of size 20n   was drawn from the 17,540 households. For this sample, 

9,618.4.sy   We let kx  incorporate all three auxiliary variables (i), (ii) and (iii), but not completely 

crossed: Gender (univariate coded 0 or 1), Economic activity (univariate coded 0 or 1) and Education level 

(three exhaustive categories coded (1,0,0) or (0,1,0) or (0,0,1)). This kx  is not a group vector; it has 

dimension 1 1 3 5    and 2 2 3 12    possible values; rΣ  and sΣ  are not diagonal. We have 

 9,11, 4,7,9 .sn x  For this sample s  we considered the response sets r  of fixed size 12m   excepting 

those where one or more of the five components of the count vector rmx  are zero. This left 658 different 

vectors ,rmx  each composed of five non-zero counts, and satisfied by a certain number of response sets r  

over which we computed, by simple averaging, the mean   and variance 2 .S  These are thus moments 

conditionally on .rx  

Figure 9.2 shows the 658 point plot of   against .IMB  In Test situation 1,   was zero for every point 

because kx  was a group vector. This is not so in Figure 9.2, where the means   fan out when IMB  

increases. They are much more concentrated around zero for low IMB  than for large .IMB  Several points 

(that is several means )rx  can give the same or nearly the same .IMB  Figure 9.2 shows that in a small 

neighborhood of a fixed value 0IMB  on the IMB  axis, the mean of the means   is roughly zero. With 

reference to Result 2, we can expect to see the average of   for fixed IMB  to be near zero: Under model 
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(8.1) for ,ky  Result 2 says that  , , 0.rE r s  X  When X  and r  are fixed, so is .IMB  If the model is 

a reasonably good representation, the average of r  for fixed IMB  should be close to zero, as Figure 9.2 

indicates. 

Figure 9.3 shows the plot of the conditional variance 2S  against .IMB  The pattern with a variance 2S  

that increases linearly in IMB  prevails, even though kx  is not a group vector here. Figure 9.3 shows the 

computed approximating line    2 22 ˆ 1approx p pS m IMB    derived from Result 2, with 2ˆ   

   2

k k ss
y n J  x b  used to estimate 2 .  We have 5, 0.6, 12J p m    and 2 6ˆ 33.6 10 ,    

so the line in Figure 9.3 is 2
approxS a b IMB    with 61.12 10a    and 67.78 10 .b    The linear 

approximation holds particularly well for small ,IMB  say less than 0.1. For large ,IMB  there is much 

scatter; 2S  has some very large values, and some very low values as well. Figure 9.4 shows the joint 

behavior of   and 2S  for the 658 points. The size of a dot is proportional to 2 ;IMB  the reason for squaring 

is to better contrast larger and smaller IMB  values. Response sets r  with small IMB  are found to give 

small   and 2 ,S  a favourable sign because the CAL and FUL estimators are then close. To illustrate, for 

points satisfying 0.1,IMB     is in the interval (-1,390; 1,447) and 2S  in (0.846×106; 4.86×106). These 

are narrow intervals; this is even more pronounced for 0.05.IMB   But when IMB  is large, this 

advantageous situation no longer holds. For example,   can be very small and at the same time 2S  very 

large (points in the middle and right side of the figure). On the other hand, 2S  can be near zero while   is 

very large in absolute value (points in the top and bottom left parts of the figure.) Test situation 2 illustrates 

that a non-group vector kx  can give both a distinctly non-zero mean of r  and a high variance of ,r  and 

that these tendencies are accentuated by large imbalance. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 9.2 Conditional mean of Δ r  as a function of imbalance ;IMB  x k  is a non-group vector of dimension 

5; response sets r  of fixed size 12 from a fixed sample of size 20. 
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Figure 9.3 Conditional variance of Δ r  as a function of imbalance ;IMB  x k  is a non-group vector of dimension 

5; response sets r  of fixed size 12 from a fixed sample of size 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.4 Plot of conditional mean of Δ r  against conditional variance of Δ ;r  x k  is a non-group vector of 

dimension 5; response sets r  of fixed size 12 from a fixed sample of size 20. Dot size proportional 
to imbalance squared. 
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10  Discussion 
 

We comment on several issues arising and indicate limitations of our study. 
 

1. Choice of variables for the auxiliary vector. The auxiliary variables for the vector x  is treated as a 

fixed choice in this article. That choice is important when a perhaps large supply of such variables is 

available. Which ones should be chosen to meet the ultimate objective, which is best possible accuracy in 

the estimates? Result 1 shows that in the group vector case two factors are important for 2S  (which 

determines the conditional variance of CAL): The response imbalance IMB  and the variance 2
yS  of the 

survey variable .y  The fact that 2S  is (approximately) linearly decreasing with IMB  gives incentive to try 

to reduce IMB  in data collection. But allowing more variables in x  increases IMB  (because agreement is 

sought on more -x means). As for the -y variance 2 ,yS  the trend is the opposite. By (7.1), 2
yS  is an averaged 

residual variance around group means; allowing additional variables in x  will, especially if they explain y  

well, reduce 2 .yS  The two factors work in opposite directions: More auxiliary variables give greater IMB  

but lower -y variance. It suggests a possible trade-off, a question not examined in this article. A particularity 

of a group vector x  plays a role: When more categorical variables enter, the vector dimension grows in 

multiplicative bounds. The risk of small or empty cells restricts the expansion. To illustrate, if 

 sex education age  x  of dimension 2 3 4 24J      is expanded to also include occupation with 

4 categories, in completely crossed fashion, the new dimension (equal to the new number of groups) is 

24 4 96.J     In principle, 2
yS  decreases, but risk of small cells is a good reason to abstain from 

completely crossing all the variables and instead involve them in a non-group -x vector. That case is 

addressed in Result 2, which says that if x  explains y  well, then 2
  is small and will give a desired low 

variance for .r  
 

2. Auxiliary information at different levels. In this article, the imbalance IMB  and the calibration 

estimator ĈALY  use the same -x vector, and more particularly one that has auxiliary data for the sample units 

only. It is a realistic case. But in more general formulations, the data collection would use a monitoring 

vector MVx  possibly different from the calibration vector CALx  used later in the estimation. The first is an 

instrument to get low imbalance IMB  in the response, the second serves to get good calibrated weights for 
ˆ .CALY  One reason why MVx  and CALx  may differ in practice is that auxiliary variables for the estimation 

may be updated versions of the same variables available in the data collection. There may be other reasons 

to choose MVx  and CALx  to be different. Also, they can contain information (if available) at the population 

level. Extensions of our approach to such situations are possible. 
 

3. Uncertain benefit from reduced imbalance. Schouten et al. (2014) find evidence that balancing 

response reduces bias. We also find that there is incentive to strive, in data collection, for an ultimate 

response set with low imbalance .IMB  As Results 1 and 2 show theoretically, and as test situations 1 and 2 

confirm empirically, low imbalance gives a deviation ˆ ˆ ˆ
CAL FUL rY Y N    with zero or almost zero expected 

value and a small variance. This is our protection against large bias. If IMB  were to increase, the variance 
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tends to increase. The zero expected value of the deviation ˆ ˆ
CAL FULY Y  is an average property. There is no 

guarantee that the deviation is small for any particular response r  with low .IMB  
 

4. Perfect balance does not eliminate the bias. Zero imbalance, 0,IMB   implies an equality of means 

for response and full sample, .r sx x  If that perfect balance were achieved, the bias adjustment term in 

(5.2) would be zero; the calibration (CAL) estimator and the expansion (EXP) estimator are identically 

equal. One can say that if perfect balance is achieved, the power of the auxiliary vector is exhausted, not in 

its potential for explaining the study variable, but in its potential for distancing itself from the crude EXP 

estimator, which, although it uses no auxiliary information at all, is as good as the otherwise better choice 

CAL. However, CAL EXP  is still not ideal. As Result 1 shows, the variance of the CAL deviation is not 

near zero even if the imbalance IMB  is near zero. Perfect balance does not eliminate the deviation of CAL, 

but small IMB  protects against large deviation. 
 

5. Practical implications. In this article we have primarily in mind surveys with a “substantial and non-

eradicable nonresponse” that cannot realistically (under time and budget constraints for the survey) be 

brought to single-digit per cent levels even if large resources are spent. Surveys with 30 per cent or more 

nonresponse are common today. This is far from an ideal with near 100 per cent response, where imbalance 

and nonresponse would essentially cease to be issues; the EXP, CAL and FUL estimators would be close. 
 

6. Directions for generalization. Results 1 and 2 show properties of the CAL deviation among response 

sets under a given formulation of the auxiliary vector. It would be desirable to generalize the results to other 

situations. Our proofs assume the existence of certain inverse matrices. Extensions to other cases would be 

possible with the aid of Moore-Penrose generalized inverse. 
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Appendix 1 
 

Derivation of Result 1 
 

We derive (7.2) to (7.4) under the conditions and notation in Section 7. The sample s  is self-weighting, 

of size ,n  and x  is a group vector of dimension .J  We assume probability   1
n
m



 for every response set r  

with fixed size .m  We derive the expected value and the variance of  
1

,
j

J

r r s s js r sj
W y y


    b b x  

where ,js jW n n  conditionally on fixed m  and mean    1
, , , , ;1

j Jr m m mmx    
1

.
J

jj
m m
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Under that conditioning,  1
j

j

J

j

n
m

R


   sets r  have the same probability, where 
j

n  is the size of sample 

group ;
j

s  
1

.
J

jj
n n


  This is identical to the probability structure for stratified simple random sampling 

of jm  from jn  in stratum ; 1, , .j j J   Given m  and ,rx  the expected value and variance of 
jry  are, 

respectively,
j j

js ks
ny y   and   21 1j j yjm n S  with 2

y j
S  given in (7.1). Thus 

1 j

J

js sj
W y


    

0,sy   which proves (7.2), and  2 2 2
1

1 1 .
J

js j j yjj
S W m n S 

   Substituting j j jp m n  and p   

,m n  and using 2 2
1

J

y js yjj
S W S


   given in (7.1), we get 

 2 2 2 2

1 1

1 1 1 1 1
1 1 .

J J

js yj y js yj
j jj j

p
S W S S W S

n p m n m p
 

                
   (A.1) 

This proves (7.3). To analyze the penalty term (second term on right hand side) in (A.1), suppose that 

the 
j

p  vary little only around the overall rate .p  Then 1,j jp p   1, , ,j J   are small quantities, and 

     2 31 1 1 1 1 .j j j j jp p p           Keeping terms to second order, 21 .j j jp p       

The penalty term is then approximated as 

 
2

2 2 2

1 1 1

1 1 1
1 1 1 .

J J J
j j

js yj js yj js yj
j j jj

p pp
W S W S W S

m p m p m p  

   
             

    (A.2) 

Let us further assume that the group variances 2 ,yjS  1, , ,j J   vary little only around their weighted 

mean 2 .yS  Approximating 2 2
yj yS S  in (A.2) we get 

                              
22 2 2

1 1 1

1 1 1 .
J J J

y y j y j

js js js
j j jj

S S p S pp
W W W

m p m p m p  

   
             

     

Here the first term on the right hand side is zero. The second term, equal to    2 2
yIMB p S m  with 

IMB  given in (3.3), becomes a second approximation for the penalty term in (A.1). Therefore,

     2 2 2 21 1 .y yS m n S IMB p S m     This gives the desired result (7.4). 

 
Appendix 2 
 

Comparing two quadratic forms 
 

We compare the two quadratic forms in ,r sx x  rQ  and sQ  defined in (3.1), and justify the 

approximation r sQ Q  needed in the proof in Appendix 3 of Result 2. The respective weighting matrices, 

rΣ  and ,sΣ  are positive definite. Therefore rQ  (or )sQ  can be equal to zero only under the perfect balance 

.r sx x  Since r sQ Q  for perfect balance, the continuity argument implies that r sQ Q  for nearly 

balanced response sets. How close are they more generally?  

The CAL estimator (5.1) uses the weight factors 1 ,s r kkg  Σ xx  defined for all .k s  Their link to rQ  

is shown in the second and third expressions in (A.3) below. Consider also the factors 1
r s kkf  Σ xx  for 
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.k s  They are instrumental for ,sQ  and for 2 ,sIMB P Q  as the last two expressions in (A.3) show. The 

following moments of kg  and kf  are verified with the aid of the -x vector condition (2.2): 

    1, var , 1 ; 1, var , 1 .r r r s r s s s r sg g Q g Q f f Q f Q         (A.3) 

For ,kg  the means are defined as ,s k k ks s
g d g d    ,r k k kr r

g d g d    and the variances 

are    2
var ,

s k ks sk sd dg g g      2
var .r k k r kr r

g d g g d    For the corresponding 

moments of ,kf  replace kg  by .kf  The variances  vars g  and  varr f  do not have an equally transparent 

form and will be approximated. Another important property following from (2.2) is k k k ks s
d f g d    

1.k k k kr r
d f g d    Those equations and appropriate expressions in (A.3) give 

           cov , 1 ,s k k s k s k s s rs s
f g d f f g g d f g Q          

           cov , 1 .r k k r k r k r r sr r
f g d f f g g d f g Q          

Now use      2cov , var vars s sf g f g  and the analogous inequality where r  replaces .s  Using also

 vars sf Q  and  varr rg Q  from (A.3), we get bounds for the ratio :r sQ Q  

 
 

 var
.

var
s r s

r s r

Q Q g

f Q Q
   (A.4) 

For more transparent upper and lower bounds, approximate the two variances in (A.4) by assuming that 

the coefficient of variation (standard deviation divided by mean) is approximately the same for the response 

r  as for the sample ,s  and this for both f  and .g  This assumes a certain stability of the coefficient of 

variation. Then          2 2 2
var var 1 ,s s r r r rg g g g Q Q    so the upper bound in (A.4) is 

approximately  2
1 1.rQ   Similarly,          2 2 2

var var 1 ,r r s s s sf f f f Q Q    which gives 

  2
1 1sQ

   as an approximate lower bound in (A.4). The interval approximation for the ratio r sQ Q  is 

therefore  

     2 2
1 , 1 .r s s rQ Q Q Q

     

This is to illustrate that the ratio is not far from 1, because for most data both sQ  and rQ  are small 

compared with 1, rQ  usually the somewhat bigger. Empirical work suggests however that the approximate 

upper bound  2
1 rQ  can often be too low. 

 
Appendix 3 
 

Derivation of Result 2 
 

We derive the expressions in (8.2) under the stated conditions. The sizes of r  and s  are m  and ,n  

respectively; the response rate is .p m n  The deviation of CAL from the unbiased FUL is ˆ ˆ
CAL FULY Y   

ˆ
rN  where  
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  r r s s r k k k r k s k k s kd g y d d y d        b b x   

with rb  and sb  given by (4.1), and 1 .k s r kg  x Σ x  Note that s s sy b x  by (2.2). Now r k k k r kd g d  x  

.s k k s k sd d   x x  Post-multiply that equation by β  and use the result to get r   

    ,r k k k k r k s k k k s kd g y d d y d       x β x β  which expresses r  in terms of the residuals 

kk ky   x β  of the model (8.1): 

 .k kk k k sr
r

k kr s

dd g

d d


   

 
  

Then use the model properties of k  in (8.1). From   0k kE  x  for all k  it follows that 

 , , 0.rE r s  X  To evaluate the variance, use  2 2 ,k kE  x  for all ,k s  and 

 , 0,k kE   x x   all .k s   This gives 

  
       

22 2 2

2 2 2 2
2 2

, , 2 .kk k k ksr r
r

k kr sk kr s

dd g d g
E r s

d dd d
         

  
X   

Here the kd  cancel out, because constant. The first and second expressions in (A.3) hold for any ,kd  in 

particular constant ,kd  so we get 1kr
g m   for the mean and 2 1k rr

g m Q   for variance plus 

squared mean. Therefore, 

    2 2 2
1 1 1 1 1

, , 1 2 .r
r r

Q
E r s Q

m n n m n m               
  

X   

As a final step, use the approximation r sQ Q  justified in Appendix 2, and 2 .sIMB p Q  Then, as 

claimed in Result 2,      2 2 2, , 1 .rE r s p IMB p m    X  
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Statistical inference based on judgment post-stratified 
samples in finite population 
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Abstract 

This paper draws statistical inference for finite population mean based on judgment post stratified (JPS) samples. 
The JPS sample first selects a simple random sample and then stratifies the selected units into H judgment classes 
based on their relative positions (ranks) in a small set of size H. This leads to a sample with random sample sizes 
in judgment classes. Ranking process can be performed either using auxiliary variables or visual inspection to 
identify the ranks of the measured observations. The paper develops unbiased estimator and constructs 
confidence interval for population mean. Since judgment ranks are random variables, by conditioning on the 
measured observations we construct Rao-Blackwellized estimators for the population mean. The paper shows 
that Rao-Blackwellized estimators perform better than usual JPS estimators. The proposed estimators are applied 
to 2012 United States Department of Agriculture Census Data. 

 
Key Words: Post stratified sample; Finite sample correction; Ranked set sample; Stratified sample; Rao-Blackwellized 

estimator. 

 
 

1  Introduction 
 

In many survey sampling studies, in addition to variable of interest, sampling frame has additional 

available auxiliary variables to improve the information content of a sample. These auxiliary variables have 

been successfully used to construct better estimators, such as ratio and regression estimators. These 

estimators usually require strong modeling assumptions between the auxiliary variable(s) and variable of 

interest. MacEachern, Stasny and Wolfe (2004) introduced judgment post-stratified (JPS) sample, and 

constructed estimators that require weaker modeling assumptions than the ratio and regression estimators. 

A JPS sample selects a simple random sample of size n  from a population and measures all selected 

units, ;iX  = 1, , .i n  For each one of the measured unit, researcher selects additional 1H   units to form 

a set of size .H  This set contains the measured unit iX  and the additionally selected 1H   units. Units in 

these sets are ranked from smallest to largest without a measurement and the rank of iX  is determined. The 

pairs  , ; = 1, , ,i iX R i n  are called a JPS sample. Ranking process in these sets can be performed either 

using visual inspection of the units or some available auxiliary variable. If the visual inspection is used, 

rankers should be blinded to actual values of iX  to avoid any bias. If the auxiliary variable is used, a 

monotonic relationship between the variable X  and auxiliary variable is required. These assumptions are 

much weaker than the linearity assumption in regression and ratio estimators. 

Ranking information in a JPS sample is used to induce a structure among measured observations by 

creating H  judgment classes of similar units. The judgment class ,h = 1, , ,h H  contains all measured 

observations with judgment rank .h  Since rank iR  provides information about the relative position of iX  

among H  units in a set, observations in judgment class h  are stochastically larger than the observations in 
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judgment class ,h  for < .h h  This induced structure increases the information content of the sample. One 

may also view a JPS sample as a stratified sample with H  strata. In this case, the improved efficiency can 

be established from standard theory of stratified sampling in survey sampling designs. 

In a JPS sample, ranks are determined after a simple random sample is selected. Thus, the number of 

observations, ,hM  in judgment class h  is a random variable. The joint distribution of  1= , ,M HM M  

is multinomial with parameters n  and success probability vector  1 , ,1 .H H  Since M  is a random 

variable, it is highly possible that = 0hM  for some h  when the sample size n  is small. Statistical inference 

then should account for the impact of empty strata on the procedures. 

In an infinite population setting, JPS sample has generated extensive research interests. For a tiny slice 

of literature, readers are referred to Frey and Feeman (2012, 2013), Frey and Ozturk (2011), Stokes, Wang 

and Chen (2007), Wang, Lim and Stokes (2008), Wang, Stokes, Lim and Chen (2006), Wang, Wang and 

Lim (2012), Ozturk (2013, 2014a, 2014b, 2015) and the references there in. 

One way to avoid having random sample size hM  is to rank the units in each set before selecting a 

simple random sample from the population. In this case sampling design is called ranked set sample (RSS). 

Ranked set sampling is introduced in McIntyre (1952, 2005) to estimate the population mean in agricultural 

research. To construct an RSS sample of size ,n  researcher first determines the design parameters, set size 

H  and the judgment class sample size vector  1= , , ,m Hm m  where hm  is the required number of 

observations to be selected in judgment class .h  Researcher next selects nH  units at random from the 

population and divide them into n  sets, each of size .H  Units in each one of these sets are ranked and the 
thh  judgment order statistics is measured in hm  sets so that 

=1
= .

H

hh
m n  The measured observations   ;h jX  

= 1, , ;hj m  = 1, ,h H  are called an unbalanced ranked set sample, where  h jX  is judgment order 

statistics from a set of size .H  If the judgment class sample sizes are all equal ;hm n H  = 1, , ,h H  

the sample is called a balanced ranked set sample. If there is no ranking error, judgment order statistics 

become usual order statistics from a sample of size .H  In this case, usual order statistic notation is used to 

denote the thh  order statistic,   .h jX  

In recent years, there have been increased research activities in JPS and RSS sampling in a finite 

population setting. Patil, Sinha and Taillie (1995) used ranked set sample to estimate population mean for a 

population of size N  when the sample is constructed without replacement. Deshpande, Frey and Ozturk 

(2006) expanded the without replacement policy in Patil et al. (1995) into three different designs, design-0, 

design-1 and design-2, and constructed confidence intervals for population quantiles. The design-0 

constructs the sample by replacing all units back into the population prior to selection of the next set. 

Design-1 constructs the sample by replacing only the unmeasured units back into the population before 

selecting the next set. Design-2 constructs the sample by replacing none of the units back into population 

regardless of whether they were measured or not. Al-Saleh and Samawi (2007), Ozdemir and Gokpinar 

(2007 and 2008), Jafari Jozani and Johnson (2011, 2012), Gokpinar and Ozdemir (2010), Ozturk and Jafari 

Jozani (2013), and Frey (2011) computed inclusion probabilities and constructed Horvitz-Thompson type 

estimators for population mean and total for some variant of design-0, design-1 and design-2 samples based 

on ranked set samples. 
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Ozturk (2014a) combined ranking information from different sources in a ranked set sample, estimated 

the inclusion probabilities of population units and constructed estimator for population mean. For settings 

where population values of auxiliary variables are available, Ozturk (2016) used population ranks (global 

ranking information) of selected sample units to induce stronger structure in data to improve the information 

content of the sample. He showed that samples constructed based on global ranking information provides 

higher efficiencies. A comprehensive up to date literature review both in JPS and RSS can be found in recent 

review paper in Wolfe (2012). 

In this paper, we consider with- and without-replacement sampling designs for JPS sampling in finite 

population setting. Section 2 provides detailed descriptions for the construction of the designs. For each 

design, we obtain the probability mass functions, means, variances and covariances of order statistics. These 

results are used to construct unbiased estimator for the population mean and unbiased estimators for the 

variance of sample means. Section 3 constructs Rao-Blackwellized estimators by conditioning on the 

measured observations ;iX  = 1, , .i n  Section 4 provides empirical evidence for the new estimators. 

Section 5 applies the proposed procedures to 2012 United States Agricultural Census (USDA) data. 

Section 6 provides some concluding remarks. The proofs of the theorems are provided in Appendix. 

 
2  Sampling designs and estimator 

 
We consider a finite population of size ,N   1= , , ,Nu u  where ju  is the thj  unit in the population. 

Let X  be the variable of interest. The values of X  on population units will be denoted with 1 , , .Nx x  

Without loss of generality, we assume that the population values of random variable X  are ordered, 

1 < < ,Nx x  so that the population rank of the unit iu  with respect to variable X  is ,i    = = ,
i iu uR x s i  

where 
ius  is the rank of 

iux  among N  population units. In addition to the variable of interest ,X  we assume 

that there is an additional variable Y  that has monotonic relationship with random variable .X  

We consider two sampling designs, design-0 and design-2. Both designs select a simple random sample 

 
1

= , ,
nS s sU u u  from population .  Without loss of generality, the sample SU  will be identified with 

rank vector  1= , , .nS s s  The design-0 selects the units with replacement, but design-2 selects the units 

without replacement. All selected sample units are measured for the variable .X  Throughout the paper, we 

call  1= , ,X nX X  as a sample of size ,n  where we use the notational convenience = .
ii sX X  It is clear 

that ;iX  = 1, ,i n  are all independent in design-0, but they are negatively correlated in design-2. For each 

measured unit 
isu  in the sample, we randomly select an additional 1H   units without replacement from 

the remaining population units to form n  sets each of size ,H  

  
1 1, = , , , ; , ; = 1, , 1; = 1, , .

i H hi H s t t i h tS u u u s t u h H i n


       

Units in each set ,i HS  are ranked based on auxiliary variable Y  and the rank of the measured unit ,
isu  ,iR  

among H  units is determined. Our judgment post-stratified sample then consists of pairs  , ,i iX R  

= 1, , .i n  In design-0, all unmeasured units in set ,i HS  are replaced in the population before constructing 

the next set. Hence the same unmeasured unit(s) can appear in more than one sets. In design-2, none of the 
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unmeasured unit is returned to the population before constructing the next set. Hence, all sets ,i HS  are 

disjoint. 

One can interpret rank vector  1= , ,R nR R  as a covariate that replaces similar units, units having the 

same ranks, in the same judgment class. A JPS sample provides extra information on the measured unit 
isu  

in addition to the measured value ix  through its relative position (rank )iR  in the set , .i HS  The quality of 

information depends on the strength of the monotonic relationship between the X  and Y  variables. It is 

clear that if the ranks, , = 1, , ,iR i n  are ignored, the sample is reduced to a simple random sample. 

Ranking scheme is called consistent if the same ranking procedure is used in all sets. Under a consistent 

ranking scheme, following equalities hold. 
 
Lemma 1. Let  ,i iX R  be a JPS sample constructed with a consistent ranking scheme and set size H  from 

population .  
i. For design ,r  0, 2,r   we have  

                          
=1 =1

= = = = = = .
H H

h j j h
h h

P X x P X x R h P X x    

ii. For design-2, we have  

   

      

    
=1 =1 =1 =1

=1 =1

= , = = = , = = , =

= = , = , .

H H H H

h j t j th
h h h h

H H

h h
h h

P X x X y P X x X y R h R h

P X x X y x y


 








 


  

 
Part (i) of Lemma 1 is given in Presnell and Bohn (1999) in an infinite population setting. In this paper, we 

use a consistent judgment ranking scheme unless stated otherwise. Conditional mean and variance of iX  

given =jR h  and the conditional covariance of ,j tX X  given that = , =j tR h R h  will be denoted by  

       = = = ,h h i jE X E X R h   

            2 = Var = var =h h i jX X R h   

and  

                                         , = cov , = cov , = , = .h j t j th h hX X X X R h R h      

Under perfect ranking, the square brackets in these expressions will be replaced with round parentheses. 

There is a clear difference between the JPS samples in design-0 and design-2. In design-0, the pairs, 

 , ;i iX R  = 1, , ,i n  are mutually independent. In design-2, any two measured observations iX  and jX  

are negatively correlated even though their ranks iR  and jR  are independent. Ranks are independent 
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because they are determined independently in different sets. We first investigate the distributional properties 

of random variables in a JPS sample from population .  
 

Lemma 2. Let  ,i iX R  be a JPS sample under perfect ranking with set size H  from population .  

(i) Conditional probability mass function of jX  given =jR h  is  

    

1

1
; = = = = ,j i j i

i N i

h H h
i h P X x R h x

N

H



   
  

    



 

   

for both design-0 and design-2 settings.  
(ii) Conditional probability mass functions of rX  and tX  given that =rR h  and = ,tR h  

   , ; , = = , = = , =r i t j r ti j h h P X x X x R h R h    are  

         0 , ; , = ; ; , ,i ji j h h i h j h x x       

for design-0 and  

            

 

 

1

1

=0

, ; ,

1 1 1

1 1
, , ,

j i

i j

i j h h

i j i N j j h N j H h

h H h h H h
i j x x

N N H

H H





 

  

 

                  
                       

  
  

  

 
  

for design-2.  
(iii) Conditional mean and variance of jX  given its rank =jR h  are 

                 
     

       

=1

2 2 2

=1

= = = ,

= Var = = ,

N

j j ih
i

N

j j ih h
i

E X R h x i h

X R h x i h

 

  




  

for both design-0 and design 1. 
(iv) Conditional covariance of ,r tX X  given their ranks are  

    ,cov , = , = = = 0r t r t h hX X R h R h     

for design-0 and  

        1,
=1 =1 =1

= , , , , ,
N N N N

i j i ih h
i i j i i

x x i j h h x i h x i h   


      

for design-2.  
 

The proofs of part (i) and (ii) of the above Lemma are given in Patil et al. (1995). The proofs of the other 

parts are trivial and omitted here. 
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Ranking process in a JPS sample leads to a multinomial random vector  1= , , ,M HM M  where hM  

is the number of observations in judgment class (post strata) ,h  = 1, , .h H  The marginal distribution of 

hM  follows a binomial distribution with parameter n  and 1 .H  For notational convenience we use 

 = > 0h hI I M  to denote the event that the judgment class h  is nonempty and 
=1

=
H

n hh
d I  to define the 

number of non-empty judgment classes in a JPS sample. In the following Lemma, we provide some useful 

preliminary results on the judgment class sample size vector, proof of which can be found in Dastbaravarde, 

Arghami and Sarmad (2016) and Ozturk (2014b). 
 

Lemma 3. Let  , ; = 1, , ,i iX R i n  be a JPS sample constructed under a consistent ranking scheme with 

set size H  from .  The following equalities hold for both design-0 and design-2: 

(i) 1 = 1 .
n

I
E H

d




 
 

(ii) 
12

1

=12 2

1
= .

n
H

k
n

I k
E

d H H

 
  

  
  

(iii) 
1

11

=12

1
= .

n
H

k
n

I k
Var

d H H


 

  
  

  

(iv) 1 2 11
, = .

1n n n

I I I
cov Var

d d H d

  
    

 

(v)  
2 1

1 11

=2 =1 =12 2
1

1 11 1 ( 1)
= .

1 1
h

h

j
H k n k n m

k j mn
n h h

nH kI
E k j

M d H n k m mk j


         

    
       

    

 
We now consider the estimation of the population mean. We use  

      22

=1 =1

1 1
= and =

N N

i i
i i

x x
N N

      

to denote the mean and variance of the population ,  respectively. Let  

  
=1 =1

ˆ = = , = 0, 2
H n

h
r i i

h ih n

I
X I R h r

M d
     

be the estimator for population mean   based on design - ,r  0, 2,r   respectively. In these estimators, ,hI  

hM  and nd  are random variables. They are used to make a correction on the estimator to yield an unbiased 

estimator for   when some judgment classes are empty. If the ranks are ignored in a JPS sample, it becomes 

a simple random sample based on design-0 or design-2. In this case, population mean   is estimated by  

 
=1

1
= , = 0, 2

n

r j
j

X X r
n
   

from design-0 or design-2 data, respectively. 
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Theorem 1. Let  , ; = 1, , ,i iX R i n  be a JPS sample of set size H  constructed under a consistent ranking 

scheme based on either design-0 or design-2 from the finite population .  (i) The estimators ˆ r  are 

unbiased for .  (ii) the variances of estimators ˆ r  are 

                                            0

2
21 12 2

ˆ 2
=1 11

= Var
1

H H

h h
h hn n

H I I
E

H d d M   


  
      

    

for = 0r  and 

                                      

    

   
   

2

2 2
2 212

ˆ 1
=1

2 2
21 12

1 ,2 2
=11 1

1 1
= Var

1 1 1

1

1 1

H

h n
hn

H H

h n h h
h hn n

H I H
E I d

H d H H N

I H I
E E I d E

d M H d M H H




  

 

         

    
            



 
  

for = 2.r  
 

All expected values in 
0

2
̂  and 

2

2
̂  are computed over random sample size vector .M  These expected 

values can easily be computed from Lemma 2 using simple R-functions. Estimators for the population mean 

based on a balanced ranked set sample in design-0 and design-2 settings are given by  

  
*

=1 =1

1
= , = 0, 2,

m H

r h i
i h

X r
mH

    

where =m n H  is the cycle size. Since the observations in design-0 are all independent, the variance of 
*
0  is the same as the variance of RSS sample mean in an infinite population. The variance of *

2  is given 

in equation 4.5 in Patil et al. (1995). In terms of our notation, the variance of *
2  is written as  

 
 
      *

2

2
2 2

,
=1 =1

1 1 1
= .

1

H H

h h h
h h

N n

n N nH nH    
 

  
    (2.1) 

We put the variance of 2̂  in a slightly different format to compare it with *
2

2
  

                

    

   
   

 
   

2

2
2 12

ˆ 1 2
=1 1

2 2 2
1 1

2 2
1

2
2 1

1 ,2
=11

= Var
1

1 1 1
1 1

1
.

1 1

H

h n
h n

n n

H

n h h
hn

H I
I d E

H d M

H I I
N H E HE

N H d M d

H I
E I d E

H d M H H

  





  
    

    
             

  
      





 

(2.2)

 

One can easily see the impact of random sample size vector M  on estimator 2̂  in a JPS sample by 

comparing equations (2.1) and (2.2). Expressions in curly brackets in equation (2.2) make corrections for 

the random sample sizes in JPS sample. For large population and sample sizes, *
2

2 ,  
2

2
̂  and 

0

2
̂  reduce 

to simple forms.  
 

Corollary 1. Assume that n  and N  increases in such a way that the ratio of n N  approaches to a limit 

at ,f    = .limn n N f  
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(i) If > 0,f  the variances 
2

2
ˆ ,  *

2

2
  and 

0

2
̂  converge to two simple forms  

                                    *
2 2

2
2 2 2
ˆ ,

=1 =1

1
= = 1lim lim

H H

h h h
n n h h

n n f
H      

 
       

and 

       
0

22 2 2
ˆ

=1 =1

1 1
= = .lim

H H

h h
n h h

n
H H    


     

(ii) If = 0,f   *
2 02

2 2 2 2
ˆ ˆ =1

1
= = =lim lim lim

H

n n n hh
n n n

H         which is the same as the 

variance of sample mean of a ranked set sample in infinite population setting.  
(iii) If f  is strictly positive, then 

2 0

2 2 2
ˆ ˆ ˆ= < .lim lim lim

RSS
n n nn n n        

 

The part (iii) of the corollary indicates that when sample and population sizes grow at certain rate, the 

variances of sample means of JPS and RSS samples in finite population setting are always smaller than the 

variance of the same estimator in infinite population setting. This efficiency improvement is due to the 

negative correlation between iX  and jX  in without replacement sampling designs. 

We now construct unbiased estimators for 
0

2
ˆ ,  

2

2
̂  and *

2

2 .  We first rewrite the estimators 
2

2
̂  and 

*
2

2
  in slightly different forms  

                   

   

     

2

2 2
1 12 2

ˆ ,2 2
=1 =11

2 2 2
1 1

2

2 2
2

1 , 2
=1 =1

1
=

1 1

1 1
Var

1 1

= , , ,
1

H H

h h h
h hn n

n n

H H

h h h
h h

I H I
E E

H H d M H d

H I I
E

H d N H d

H
C n H C n H N

H

  




 

                    

     
            

     

 

 

 

(2.3)

 

                                           *
2

2
2 2

,
=1 =1

1
= .

1

H H

h h h
h hHn N


       

    

In equation (2.3), it is clear that the coefficients  1 ,C n H  and  2 , ,C n H N  are known quantities for given 

values of sample size n  and set size .H  Let 

                           

     

       

    

      

2

1 2
=1 =1 =11 2

2

*
2

2 *
=1 =1

2
*

1 2 2
=1 =1 =1

2
*

2 2
=1 =1

1
= = = ,

= = = ,
1

1
=

2

1
=

2 1

H H n n
h h

i j i j
h h h i jh nh

n

H n n
h

i j i j
h i j ih n h

H H m m

h i h j
h h h i j

H m m

h i h j
h i j i

I I
T X X I R h I R h

I I M M d
E

d

HI
T X X I R h I R h

M d M

T X X
m H

T X X
m m H
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and  

  22

=1

1
ˆ = ,

1

n

SRS i
i

X X
n

 
    

where  * = > 1 ,h hI I M  * *
=1

=
H

n hh
d I  and m  is the cycle size in a balanced ranked set sample. From 

Lemma 3, one can easily establish that       22
1 2 1= 1 1 .n nE I I d H E I d H   Hence, 1T  is a statistic 

that depends only on the data. Note that 2ˆ SRS  is an unbiased estimator for 2 .  In the next theorem, we 

provide other unbiased estimators  2  for 2  based on JPS and RSS samples in design-0 and design-2.  
 

Theorem 2. Let  , ,i iX R  = 1, , ,i n  and   ;h iX  = 1, , ;h H  = 1, , ,i m  be JPS and RSS samples of set 

size ,H  respectively, both from the population .  Unbiased estimators of 2 ,  
0

2
ˆ ,  

2

2
̂  and *

2

2
  are 

given by, respectively,  

 

   

   

   

2
1 2

1 2

2
2

* *
1 2

* *
1 2

2 -0

1
-2

2
=

1
-2,

-0,

T T H for design

N T T
for design

NH

T T N
for balanced RSS in design

N

T T for balanced RSS in design






 



 





 (2.4) 

                                    
 
 0

2
1 1 1 22

ˆ 1 2
1

ˆ = ,
2 1 2

n

n n

Var I d I I T
T E Var

H d M d
    

         
 (2.5) 

                                       
2

2 2
2
ˆ 1 2 2

ˆ
ˆ = , 2 , , ,

1
SRSH

C n H T C n H N
H


 


 (2.6) 

                                       
   

 2

1 22
ˆ 1 2 2

1
= , 2 , , ,

2 1

N T T
C n H T C n H N

N H
 




 (2.7) 

                                    *
2

* * *
2 1 22ˆ = .

T T T

m N


   

 
Note that both 

2

2
ˆˆ  and 

2

2
̂  are unbiased for 

2

2
ˆ .  The estimator 2  is also unbiased for population variance 

2  in RSS and JPS samples in design-0 and design-2. Theorem 2 indicates that all the variance estimators 

are unbiased for any sample size > 1.n  We note that  2 2 2
1 1 .nE I d H  By using this bound, one can 

show that  1 , 0.C n H   On the other hand the coefficient  2 , ,C n H N  can be negative for some ,n  N  

and .H  This rarely may lead to a negative value for 
2

2
ˆˆ .  For negative 

2

2
ˆˆ ,  we propose a truncated 

estimator  

 
 
2 2

2

2

2 2
ˆ ˆ

2
ˆ 2

ˆ1

ˆ ˆif > 0
=

ˆ, 2 if 0.C n H T

 




 




 

  (2.8) 
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This estimator is always positive and has very little bias. The values of 
2

2
̂  appears to be always positive 

based on our limited simulation study. 

 
3  Rao-Blackwellized estimator 
 

In this section, we construct estimators that improve the performance of the JPS estimators in the 

previous section. For a given simple random sample 
1
, , ,

ns sX X  the sets , ;j HS  = 1, , ,j n  can be 

constructed over all possible matching of  1n H   additional units to n  fully measured units. Each 

construction creates a new set of ranks hence a new estimate. We combine all these estimates by using Rao-

Blackwell theorem. Let  

                     

   

 

1
=1 =1

=1 =1 =1

ˆ= = = , ,

=
= = ; = 0, 2,X

X

X

H n
h

r j j n
h jh n

n H n
h i

i i i
i h ih n

I
E E X I R h X X

M d

I I R h
X E X a r

M d

 
 
 
 

 
 
 

 

  

 

  

where  

    
 

=1

=
= .X X

H
h i

i
h h n

I I R h
a E

M d

 
 
 
   

The expectation in Xia  is taken over the conditional distributions of ;jR  = 1, , ,j n  ;hM  = 1, , ,h N  

and nd  given .X  We note that ranks, ;jR  = 1, , ,j n  are assigned independently in each set , .j HS  Hence 

the joint distributions of ;jR  = 1, , ,j n  given the measured observations ;jX  = 1, , ,j n  are all 

independent  

    
1 1 1, ,

=1

= = , , = = = , 1 .
X

X X
n

n

n n j j jh h
j

P R h R h P R h h H      

Assume that population ranks, ;js  = 1, , ,j n  of sample units are available, To construct the conditional 

distribution of =j jR h  given = ,
jj sX x  we first observe that  

      = , = = , and = = 1 .
j jj j j s j j j sP R h X x s h H P X x N   

Using these joint and marginal probability mass functions, we write  

    
1

1
= = = = = = , 1, , , ,

1

1

X
j jj j

j j

j j

j j j j j s j sh s

s N s

h H h
P R h P R h X x h H x

N

H



   
          
 


 

   (3.1) 

where 
jsx  is the th

js  smallest unit in the population. The evaluation of 
Xjs

a  in r  is computationally 

intensive. Even though the conditional distributions of rank ’sjR  are independent for given ,X  they are not 
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identically distributed. Hence, the conditional distribution of judgment class sample size vector M  given 

X  does not have a multinomial distribution. 

We now introduce an approximation to evaluate .r  We first recognize that the conditional distribution 

of =jR h  given =
jj sX x  is a hypergeometric distribution. Thus we can generate jR  from this 

hypergeometric distributions for given values of .X  
 

Algorithm 1. 

I. Select an integer .B  For = 1, , ,b B  generate  ,* ,* ,*
1= , ,Rb b b

nR R  from 
=j j

j
R X xs

  in 

equation (3.1).  

II. Using ,*Rb  compute  ,* ,*= > 0 ,b b
hI I M   ,* ,*

=1
= = ,

nb b
h jj

M I R h  ,*,*
=1

=
H bb

n hh
d I  and  

       
,*

,* ,*
,* ,*

=1 =1

= = , = 1, , .
H Hb

b b
i ib b

h hh n

I
a I R h i n

M d
     

 
We approximate ia  with * ,*

=1
= ,

B
b

i ib
a a B  = 1, , .i n  From law of large numbers *

ia  approaches to ia  

as B  gets large. Rao-Blackwellized estimator r  is then approximated by * *
=1

= .
n

r i ii
a X   

If the population ranks of sample units are not available, Algorithm 1 may not be usable. In this case, we 

use the collection of all unmeasured units to construct Rao-Blackwellized estimators. Let =Y  

  1 1, , n HY Y   be the auxiliary variables on unmeasured random variables. We use the following algorithm 

to approximate the Rao-Blackwellized estimators. 
 

Algorithm 2. For = 1, , ,b B  repeat the steps I-IV. 

I. Perform a random permutation on the entries of vector Y  to obtain  = .Y Yb permute  

II. Divide the entries of Yb  into n  sets, each of size 1.H   

III. Match these n  sets of size 1H   with n  -Y values of the measured units to form n  sets, each 

of size .H  Obtain the rank of the X  measurement from the rank of corresponding Y  value in 

each set,  * * *
,1 ,= , , .Rb b b nR R  

IV. Using *R b  compute  ,* ,*= > 0 ,b b
hI I M   ,* *

,=1
= = ,

nb
h b jj

M I R h  ,*,*
=1

=
H bb

n hh
d I  and  

        
,*

,* ,*
,* ,*

=1 =1

= = , = 1, , .
H Hb

b b
i ib b

h hh n

I
a I R h i n

M d
     

V. Compute the Rao-Blackwellized estimator *
=1

= ,
n

r i ii
a X   = 0, 2,r  where * =ia  ,*

=1
.

B
b
ib

a B  
 

Even though large values of B  provides better approximation to Rao-Blackwellized estimators, it may 

require additional computational effort and may not be feasible in practice. On the other hand, even small 

values of ,B  such as = 5B  could provide a significant improvement. 

We now consider constructing estimators for the variance of Rao-Blackwellized estimators. Obtaining 

analytic expressions for the variances of r  is a challenge. Difficulty arises from the fact that there is no 

analytic expressions for the computation of ;Xia  = 1, , .i n  We then appeal to a bootstrap procedure to 
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compute the variance of .r  Bootstrap estimators can be constructed from a plug-in method. Let   be a 

statistical functional  = ,T   where   is the finite population. The bootstrap estimate of   can be 

obtained from  ˆ ˆ= ,T   where ̂  is the empirical population. In finite population setting, the construction 

of the empirical population plays an important role to preserve the without replacement policies of bootstrap 

samples. Let K  be the integer part of N n  and = .k N Kn  We construct ̂  with  

   
1

times

ˆ = , , , , , ,X X
kt t

K

X X
 
 
 
    

where ;
jtX  = 1, , ,j k  are selected at random from  

1
= , , .X

ns sX X  With this construction, the 

population size, ,N  is the same in both ̂  and .  We generate bootstrap re-samples *,1 =X   
1

*,1 *,1, ,
ns sX X  

from ̂  with replacement for design-0 and without replacement for design-2. To construct the bootstrap 

distribution of the estimator ,r  we generate re-samples *, , = 1, ,X c c C  and compute  

 *,*, *

=1

= , = 1, ,
i

n
cc

r i s
i

a X c C     

from Algorithm 1 or 2. The bootstrap variance estimate of r  is then obtained from  

  22 *, *

=1

1
ˆ = ,

1r

C
c

r r
cC  

     (3.2) 

where *
r  is the mean of *, , = 1, , .c

r c C   

A bootstrap  1 100%  percentile confidence interval for   is constructed by  2 1 2, ,r rL L   where 
a
rL  is the tha  quantiles of *

r  satisfying  * ˆa
r rP L    for 0 < < 1.a  

 

4  Empirical results 
 

In this section, we look at the finite sample properties of the estimators in a small scale simulation study 

under wide ranges of simulation parameters. Data sets are generated from discrete normal and discrete 

shifted exponential populations for given population size .N  The discrete populations are constructed from 

the quantile function  

        1= ; = 1, , ,
1i

i
x F i N

N
 
  

  (4.1) 

where F  is either normal or exponential cumulative distribution functions (CDF). For discrete normal 

population, we used location parameter 10 and scale parameter 4. For shifted discrete exponential 

population, we use the CDF of standard exponential distribution to generate ix  in equation (4.1) and then 

shift each ix  by adding 10. The population size is taken to be = 150.N  

We used sample  n  and set size  H  to have integer values for n H  so that a balanced ranked set 

sample of size n  can be created. Sample and set size combinations  ,n H  are  10, 2 ,   15, 3 ,   20, 4 ,  

 25, 5 .  To control the quality of ranking information we used auxiliary variable ,Y  where  = cor ,X Y  

with = 1, 0.75.  The value of = 1  yields perfect ranking and the value of = 0.75  creates errors in 
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ranking. Simulation size is taken to be 3,000. Rao-Blackwellized estimators are computed from Algorithm 1 

with = 50B  and bootstrap replication size 200. 

The first part of the simulation investigates the efficiencies of the estimators and coverage probability of 

the confidence intervals of the population mean. All estimators are compared with design-2 Rao-

Blackwellized estimators  2 .  Let  XD  be any one of the estimators introduced in Section 2 and 3. The 

relative efficiency of  .D  with respect to 2  is given by  

  
 
 2

= ,
MSE D

R D
MSE 

 (4.2) 

where  MSE D  is the estimated mean square error of estimator .D  In equation (4.2), the value   > 1R D  

indicates that the estimator 2  is more efficient than the estimator .D  

We consider two types of confidence intervals for the population mean. Percentile confidence interval 

based on bootstrap distribution is given in Section 3. The coverage probabilities of these intervals will be 

labeled with  0
aC   for design-0 and  2

aC   for design-2. A second type of an approximate confidence 

interval can be constructed from standard theory. Note that we have unbiased estimators, ˆ ,r  for the 

variances of ˆ ;r  = 0, 2.r  A  100 1 %  confidence interval for   is then given by  

 1,1 2ˆ ˆ ; = 0, 2,r n rt r     

where 1,1n at    is the tha  upper quantile of the t-distribution with 1n   degrees of freedom. The coverage 

probabilities of these confidence intervals will be labeled as  0ˆbC   for design-0 and  2ˆbC   for design-2. 

Ahn, Lim and Wang (2014) suggested using n H  degrees of freedom for the -t approximation. This 

selection may also work in JPS sampling in finite population setting with some increased variation due to 

unbalanced nature of a JPS sample. This line of work, on the other hand, is not persuaded in this paper 

because of the space limitation. 

Table 4.1 presents the relative efficiencies of the estimators and the coverage probabilities of the 

confidence intervals for discrete normal populations. It is clear that Rao-Blackwellized design-2 estimator 

 r  outperforms all the other estimators including RSS estimators. In general RSS estimators are more 

efficient than JPS estimators due to random judgment class sample size vector .M  This can be seen in 

Table 4.1 by looking at the ratio  

 
 
 

 
 * *

ˆ ˆ
= , = 0, 2.r r

r r

R MSE
r

R MSE

 
 

  

For = 0,r  = 1  and sample-set size combinations  , ,n H         10, 2 , 15, 3 , 20, 4 , 25, 5 ,  these ratios 

are  1.267 1.698 1.340 ,   1.491 2.117 1.419 ,   1.815 2.985 1.644 ,   2.391 3.479 1.455 ,  

respectively. It is obvious that ranked set sample estimator *
0  is more efficient that JPS estimator 0ˆ .  This 

can be explained from the fact that RSS sample uses a constant (nonrandom) sample size vector 

 1= , , .m Hn n  Hence there is not extra variation due to randomness of M  in JPS sample and this yields 

smaller variance for the estimator. 

Table 4.1 (entries in columns *
0( )R   and *

2( ))R   indicates that Rao-Blackwellized JPS estimators are 

better than RSS estimators. In this case, there is a clear difference between Rao-Blackwellized JPS 
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estimators and RSS sample estimators. In RSS sample, even though m  is constant, ranking information (or 

rank iR  that belongs to each )iX  is obtained from a particular construction of n  sets, each of size .H  On 

the other hand, Rao-Blackwellized JPS estimators consider all possible constructions of n  sets, each of size 

.H  Hence, the content of ranking information is richer in a Rao-Blackwellized JPS sample than the content 

of ranking information of an RSS sample. This increased ranking information makes Rao-Blackwellized 

estimators superior to RSS estimators. 

Table 4.1 also presents coverage probabilities of the confidence intervals. The coverage probabilities of 

bootstrap percentile confidence intervals are slightly lower than the nominal value 0.95. The coverage 

probabilities of the confidence intervals based on -t distribution are reasonably close to nominal coverage 

probability 0.95. 
 

Table 4.1 
Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. 
Data sets are generated from discrete normal population with mean = 10  and scale = 4  
 

 Relative Efficiencies,      0 0 2= Var VarR X X   Coverage probabilities 

n  H     0R X   2R X   0
ˆR   2

ˆR   *
0R   *

2R   0R   0
aC    2

aC    0
ˆbC   2

ˆbC 

10 2 1.00 2.182 2.050 1.698 1.571 1.340 1.470 1.147 0.880 0.885 0.943 0.947 
15 3 1.00 3.393 3.074 2.117 1.809 1.419 1.732 1.049 0.902 0.896 0.940 0.929 
20 4 1.00 5.739 5.008 2.985 2.277 1.644 2.363 1.238 0.907 0.916 0.944 0.924 
25 5 1.00 7.791 6.536 3.479 2.262 1.455 2.689 1.283 0.908 0.924 0.937 0.903 
10 2 0.75 2.322 2.057 2.236 1.941 1.945 1.761 1.137 0.886 0.890 0.942 0.941 
15 3 0.75 3.726 3.282 3.338 2.829 2.641 2.351 1.129 0.901 0.908 0.946 0.937 
20 4 0.75 5.383 4.562 4.458 3.922 3.451 2.881 1.139 0.910 0.903 0.946 0.930 
25 5 0.75 7.339 6.413 6.054 4.805 4.493 3.527 1.197 0.905 0.904 0.944 0.924 

:a  Coverage probabilities are computed from bootstrap percentile confidence interval.  
:b  Coverage probabilities are computed from ˆ1, 0.975

ˆ ˆ ,
rr nt    = 0, 2.r  

 

Table 4.2 provides variance estimates of the mean estimators from simulation and the estimators in 

equations (2.5), (2.6), (2.8), and (3.2) in Sections 2 and 3. We already proved that the estimators 2
ˆˆ ,

r
  

= 0, 2,r  are unbiased. Entries for these variance estimators are very close to the corresponding values 

based on simulated variance estimates. The truncated variance estimator is almost identical to the un-

truncated unbiased estimator. This shows that negative values happen rarely and there is not much difference 

between the truncated and un-truncated variance estimators. The bootstrap variance estimates of Rao-

Blackwellized estimators are also very close to simulated variance estimates. Patterns similar to the ones 

we observed in Tables 4.1 and 4.2 also hold in Tables 4.3 and 4.4 for shifted exponential population. 
 

Table 4.2 
Variance estimate of the estimators. Data sets are generated from discrete normal population with mean = 10  
and scale = 4  
 

 Estimates from equations (2.5), (2.6), (2.8), (3.2) Estimates from simulation 

n  H    
0

2
ˆ

ˆ
  

2

2
ˆ

ˆ
  

2

2
̂  

0

2ˆ
   

2

2ˆ
    0

ˆaV    2
ˆaV    0

aV    2
aV   

10 2 1.00 1.177 1.078 1.078 0.694 0.646 1.175 1.087 0.794 0.692 
15 3 1.00 0.632 0.534 0.534 0.305 0.275 0.628 0.537 0.311 0.297 
20 4 1.00 0.392 0.300 0.300 0.169 0.146 0.393 0.299 0.163 0.132 
25 5 1.00 0.268 0.175 0.175 0.106 0.087 0.270 0.175 0.099 0.078 
10 2 0.75 1.431 1.335 1.335 0.692 0.645 1.463 1.270 0.744 0.654 
15 3 0.75 0.896 0.802 0.802 0.306 0.276 0.901 0.763 0.305 0.270 
20 4 0.75 0.631 0.531 0.531 0.169 0.145 0.627 0.552 0.160 0.141 
25 5 0.75 0.485 0.386 0.386 0.106 0.089 0.506 0.401 0.100 0.083 

:a  These variance estimates are obtained from simulation. 
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Table 4.3 
Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. 
Data sets are generated from discrete shifted exponential population with scale = 1  and shift parameter 10 
 

 Relative Efficiencies,      0 0 2= Var VarR X X   Coverage probabilities 

n  H     0R X   2R X   0
ˆR   2

ˆR   *
0R   *

2R   0R   0
aC    2

aC    0
ˆbC   2

ˆbC 

10 2 1.00 1.770 1.663 1.495 1.394 1.193 1.297 1.103 0.838 0.833 0.894 0.950 
15 3 1.00 2.472 2.239 1.757 1.538 1.222 1.446 1.027 0.855 0.842 0.905 0.931 
20 4 1.00 3.839 3.349 2.353 1.889 1.406 1.879 1.212 0.871 0.884 0.915 0.931 
25 5 1.00 4.639 3.892 2.503 1.792 1.235 1.958 1.182 0.865 0.881 0.916 0.915 
10 2 0.75 1.900 1.690 1.941 1.690 1.667 1.520 1.128 0.839 0.857 0.898 0.949 
15 3 0.75 2.708 2.440 2.626 2.233 2.132 1.815 1.117 0.859 0.870 0.914 0.947 
20 4 0.75 3.484 2.996 3.059 2.704 2.430 2.103 1.104 0.869 0.871 0.922 0.938 
25 5 0.75 4.758 4.127 4.156 3.298 3.106 2.402 1.245 0.866 0.877 0.913 0.932 

:a  Coverage probabilities are computed from bootstrap percentile confidence interval.  
:b  Coverage probabilities are computed from ˆ1, 0.975

ˆ ˆ ,r n r
t    = 0, 1.r  

 
Table 4.4 
Variance estimate of the estimators. Data sets are generated from discrete shifted exponential population with 
scale = 1  and shift parameter 10 
 

 Estimates from equations (2.5), (2.6), (2.8), (3.2) Estimates from simulation 

n  H    
0

2
ˆ

ˆ
  

2

2
ˆ

ˆ
  

2

2
̂  

0

2ˆ
   

2

2ˆ
    0

ˆaV    2
ˆaV    0

aV    2
aV   

10 2 1.00 0.077 0.069 0.069 0.046 0.042 0.075 0.070 0.055 0.050 
15 3 1.00 0.042 0.036 0.036 0.022 0.020 0.042 0.037 0.025 0.024 
20 4 1.00 0.027 0.022 0.022 0.013 0.012 0.027 0.022 0.014 0.012 
25 5 1.00 0.019 0.014 0.014 0.009 0.007 0.019 0.014 0.009 0.008 
10 2 0.75 0.089 0.083 0.083 0.046 0.043 0.090 0.078 0.052 0.046 
15 3 0.75 0.055 0.051 0.051 0.022 0.020 0.057 0.048 0.024 0.022 
20 4 0.75 0.039 0.033 0.033 0.013 0.011 0.039 0.034 0.014 0.013 
25 5 0.75 0.031 0.025 0.025 0.009 0.008 0.032 0.025 0.009 0.008 

:a  These variance estimates are obtained from simulation. 
 
 
 

5  Example 
 

In this section we apply the proposed estimators to estimate corn production in Ohio based on 2012 

United States Department of Agriculture (USDA) census. The population consists of = 87N  counties in 

Ohio (One of the county is excluded from the population since census data did not have any entry for it). 

Variable of interest is the total corn production  X  in bushels. We use 2007 USDA census corn production 

 Y  as an auxiliary variable. Mean and standard deviation of corn production in 2012 are = 5,021,061X  

and = 3,983,560X  bushels, respectively. The correlation coefficient between X  and Y  is 0.963. Using 

this population, we performed another simulation study to estimate the corn production and constructed 

confidence intervals for the population mean. Samples are generated for sample and set size combinations 

       , = 10, 2 , 15,3 , 20, 4 .n H  Simulation and bootstrap replications sizes are taken to be 3,000 and 200, 

respectively. Rao-Blackwellized estimators are computed based on 50 replications. 

Relative efficiencies of the estimators with respect to 2  and coverage probabilities of the confidence 

intervals are given in Table 5.1. Table 5.1 indicates that Rao-Blackwellized design-2 estimators outperforms 

all the other estimators we considered. Coverage probabilities appear to be slightly smaller than the nominal 

level 0.95. 
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Table 5.1 
Relative efficiencies of estimators and coverage probabilities of a 95% confidence interval of population mean. 
The population is 87 Ohio counties. Variable of interest is corn production (X) in 2012. Auxiliary variable is 
corn production (Y) in 2007, = 5,021,061,X  = 3,983,560,X   cor , = 0.963X Y  and = 87N  
 

 Relative Efficiencies,      0 0 2= Var VarR X X   Coverage probabilities 

n  H   0R X   2R X   0
ˆR    2

ˆR    *
0R    *

2R    0R    0
aC    2

aC    0
ˆbC   2

ˆbC 

10 2 2.301 1.981 1.829 1.448 1.468 1.280 1.181 0.883 0.896 0.924 0.925 
15 3 3.745 3.188 2.353 1.612 1.994 1.454 1.200 0.907 0.919 0.940 0.907 
20 4 5.707 4.402 2.901 1.624 2.476 1.143 1.341 0.920 0.920 0.946 0.873 

:a  Coverage probabilities are computed from bootstrap percentile confidence interval.  
:b  Coverage probabilities are computed from ˆ1, 0.975

ˆ ˆ ,r n r
t    = 0, 2.r  

 
Table 5.2 presents the estimates of the standard deviation of the estimators of population mean from 

simulations and from analytic expression in equation (2.5), (2.6), (2.8), (3.2). It is again clear that estimates 

of the standard errors are reasonably close to the estimates from simulations. The standard deviation 

estimates of the estimators of the population total are obtained by multiplying the entries in Table 5.2 with 

the population size = 87.N  

 
Table 5.2 
Estimates of the standard deviation of the estimators from 2012 USDA census. The population is 87 Ohio 
counties. Variable of interest is corn production (X) in 2012. Auxiliary variable is corn production (Y) in 2007, 

= 5,021,061,X  = 3,983,560,X   cor , = 0.963X Y  and = 87N  
 

 Estimates from equations (2.5), (2.6), (2.8), (3.2) Estimates from simulation 

n  H  
0ˆ

ˆ
  

2ˆ
ˆ
  

2̂
  

0
ˆ
   

2
ˆ
    0

ˆaV   2
ˆaV   0

aV   2
aV 

10 2 1,108,818.7 1,027,289.0 1,027,717.4 883,847.8 833,711.4 1,156,300.5 1,028,629.9 929,090.9 854,940.3
15 3 815,371.3 687,605.0 689,118.9 602,682.4 545,000.2 810,156.1 670,521.9 578,608.4 528,146.5
20 4 652,734.4 472,231.5 477,888.6 454,368.3 392,990.3 638,755.1 478,007.6 434,365.0 375,040.7

:a  These variance estimates are obtained from simulation.  
 
6  Concluding remark 
 

We have developed two sampling designs for judgment post stratified samples in a finite population 

setting. The designs are constructed with two levels of without-replacement policies, design-0 and design-2. 

Design-0 is constructed by replacing all measured and unmeasured units in a set back in population before 

selecting the next units. Design-2 is constructed by using without-replacement policy on all units regardless 

of the measurement status. Hence, random variables in design-0 are independent, but random variables in 

design-2 are negatively correlated. In these designs, measured observations are ranked and stratified into 

H  judgment classes after a simple random sample is collected. Using this ranking information, we construct 

unbiased estimators for the population mean and the variance of these unbiased estimators of population 

mean. We showed that the new estimators based on level-2 design outperform simple random sample mean, 

design-0 JPS sample mean and ranked set sample mean estimators. Main focus of this paper was on the 

estimation of populations mean, but the results also apply to estimation of population total with a minor 

adjustment in notation. 

Post stratification creates random ranks and random number of observations in judgment classes. By 

conditioning on the measured values in the sample, we construct Rao-Blackwellized estimators by 
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computing the conditional expected value of the estimators over all possible values of random ranks. Rao-

Blackwellized estimators are unbiased and more efficient than unconditional estimators. We construct finite 

sample bootstrap inference for the population mean based on all proposed estimators. The new sampling 

designs and estimator are applied to 2012 USDA census data to show that they are viable sampling designs 

and estimators in survey sampling studies. 

In one of our current projects, we extend these design-0 and design-2 to two-stage sampling where 

primary and secondary sampling units constitute two finite populations. In this case, we expect that some 

interesting optimization problem will arise related the selection of sample sizes and design-0 and design-2 

in stage I and II sampling. 

 
Appendix 
 

Proof of Lemma 1: The proof of part (i) is given in Presnell and Bohn (1999) in an infinite population 

setting. The proof is essentially the same in finite population setting. 

For the proof of part (ii), we consider the joint probability mass function of jX  and tX  given their 

judgment ranks =jR h  and =tR h   

         = , = = , = = = , = ; , , .j t j t h hP X x X y R h R h P X x X y x y x y    

For = 1, , ,h H  let =hJ i  be the event that thi  order statistic in a set of size H  is judged to be the thh  

judgment order statistics. Using this notation, we write  

            
=1 =1

= , = = = , = , = , = ; , , .
H H

h hh i k h
i k

P X x X y P X x X y J i J k x y x y      (A.1) 

For each ,i  the events  = ; = 1, , ,hJ i h H  partition the sample space of random variable jR  because 

the thi  order statistic is assigned to one and only one judgment rank. Since rank tR  is obtained independently 

from another disjoint set using the same ranking procedure, the events  = ; = 1, , ,hJ k h H    also 

partition the sample space. Hence, we write  

            
=1 =1

= , = , = , = = = , = ; , , .
H H

hi k h i k
h h

P X x X y J i J k P X x X y x y x y


    (A.2) 

Combining equations (A.1) and (A.2), we obtain  

 
         

      

=1 =1 =1 =1 =1 =1

=1 =1

= , = = = , = ; = , =

= = , = ; , , .

H H H H H H

h hh i k h
h h h h i k

H H

i k
i k

P X x X y P X x X y J i J k

P X x X y x y x y

 
 

 

 

 

  

This completes the proof. 
 
Proof of Theorem 1: 
 

(i) We use the conditional expectation to write  
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=1 =1 =1

ˆ = = = = .
H n H

h h h
r i i i h

h i hn h n h

I I M
E E E X I R h R h E EX

d M d M


  
  

  
     

Random variables ;h nI d  = 1, , ,h H  are identically distributed. By using part (i) in Lemma 3, the above 

expectation can be written  

                      
1

=1 =1 =1

1 1
ˆ = = = = , = 0, 2

n H H

r h h h
h h hn

I
E E EX r

d H H
   




 
     

which completes the proof. The last two equalities in the above equation follows from part (i) of Lemma 1. 
 

(ii) For the the proof of  0ˆVar ,  we use conditional variance  

                                             0 0 0ˆ ˆ ˆVar = Var Var .R RE E     

Since jX  are selected with replacement, they are all independent. Hence, the first term in the above equation 

yields  

                                 

2 2
12 2

0 2 2 2
=1 =11

ˆVar = = .R
H H

h h
h h

h hn h n

I M I
E E E

d M d M
  

  
  

  
    

We now consider  

                         

        

     

  

2
0

=1 =1

1 1 22

=1 =1

21

=1

ˆVar = Var Cov ,

= Var Cov ,

= Var
1

R
H H H

h h h
h h h

h h h hn n n

H H H

h h h
h h h hn n n

H

h
hn

I I I
E

d d d

I I I

d d d

H I

H d

   

  

 









  
  

  

  
  

  


  

 

 



  

which completes the proof of  0ˆVar .  The last equality is obtained by using part (iv) of Lemma 3. 

For the proof of  2ˆVar ,  we again consider the conditional variance of 2̂  given the ranks  

                                          2 2 2ˆ ˆ ˆVar = Var( ) Var ( ) .R RE E     

The second term in the right hand side of the above equation can be written  

                         

    

     

     

2
=1

2

=1 =1

1 1 22

=1 =1

ˆVar = Var

= Var Cov ,

= Var Cov , .

R
h

h h

h n

H H H
h h h

h h h
h h h hn n n

H H H

h h h
h h h hn n n

I
E

d

I I I

d d d

I I I

d d d




  

  












 

  
  

  

  
  

  



 

 

  

Note that      1 2 1Cov , = Var 1n n nI d I d I d H   in part (iv) of Lemma 3. Using this equality in the 

above equation, we obtain  

      21
2

=1

ˆVar = Var .
1

R
H

h
hn

H I
E

H d
  


  

  (A.3) 
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We now consider  2ˆVar R  

                           

   

        

 
 

   

2
=1 =1

2
2

, ,2 2 2
=1

2 2
2

, ,2 2 2
=1 =1

ˆVar = Var =

= 1

1
= .

R R
H n

h
j j

h jn h

H H H
h h h

h h h h h h h h h h
h h h hn h n h h

H H H H
h h h h h

h h h h h
h h h h hn h n h n

I
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M M M M M

d M d M M

I I M I I

d M d M d



  

  


 

 






 
 
 

  


 

 

 

  

  

It is clear that  h n hI d M  and 2 ,h nhI I d  = 1, , ,h H  are identically distributed. Using the equalities 

below  

                      

  2 2 2
1 1 1 1

2 2 2
1 1

2
1 2 1

2 2

1
=

1 1
=

1

n n n

n n

M I I I
E E E

d M d d M
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E E

d H H d

     
    

    

   
      

  

we write  

                       

        

 

   

2 2 2
1 1 12
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1
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=
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(A.4)

 

We now show that    2 2
,=1 =1

= 1 .
H H

h hh h
H N 

   Using part (ii) of Lemma 1, we first observe that  
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In the last sum of the above equation, we let = 1.y h   After some simplification, we write  

                

    
1

=1 =1 =1 < =1 =0

=1 =1

1 1

1
= 2

1 1

1
= .

j iH H H

h i jh
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H
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H
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x x

NN H
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Let = 1.z h   The above expression reduces to  
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Using the above equation, we conclude that  
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(A.5)

 

By inserting the above expression in equation (A.4), we write  
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(A.6)

 

We complete the proof by combining equations (A.3) and (A.6)  
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Proof of Corollary 1: Proofs of  i  and  ii  are trivial. For the proof of (iii), we rewrite 
2

2
ˆlimn n   as  
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Using the equality (A.5), we write  

                     

 

 
 

 

   
 

 
 

2
, , ,2 2

=1 =1 =1 =1

, ,2 2
=1 =1

,2
=1

1 1

1
=

1
0,

H H H H

h h h h h h
h h h h

H H H

h h h h
h h h h

H H

h h
h h h

NH n N
f

H NH NH

N n H n n N

NH NH

n N

NH

   

 













    

  



 

  

 



  

where   is used to indicate approximate equality since we replace limit f  with its finite value for some 

.n  This inequality yields that  
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which completes the proof. 

 
Proof of Theorem 2: We first look at the expected value of 1T  and 2T  under design-0 and design-2. Using 

conditional expectation, the expected value of 1T  reduces to  
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In a similar fashion, one can show that  
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Since * * ,h nI d  = 1, , ,h H  are identically distributed, we have  * *
1 = 1 .nE I d H  It follows that 
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For the proof of 2  we first observe that     2 2
1 2 = 2E T E T H   for design-0 and  1E T   

   2 2
2 = 2 1E T NH N   for design-2. The proofs then follows from these equalities. 

We complete the proof of the unbiasedness of 
0

2
ˆˆ  and 

2

2
ˆˆ  and 

2

2
̂  by inserting  1E T  and  2E T  in 

equations (2.5), (2.6) and (2.7). 

The proofs for RSS estimators are similar. Hence, they are omitted. 
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Adaptive rectangular sampling: An easy, incomplete, 
neighbourhood-free adaptive cluster sampling design 

Bardia Panahbehagh1 

Abstract 

This paper introduces an incomplete adaptive cluster sampling design that is easy to implement, controls the 
sample size well, and does not need to follow the neighbourhood. In this design, an initial sample is first selected, 
using one of the conventional designs. If a cell satisfies a prespecified condition, a specified radius around the 
cell is sampled completely. The population mean is estimated using the - estimator. If all the inclusion 
probabilities are known, then an unbiased - estimator is available; if, depending on the situation, the inclusion 
probabilities are not known for some of the final sample units, then they are estimated. To estimate the inclusion 
probabilities, a biased estimator is constructed. However, the simulations show that if the sample size is large 
enough, the error of the inclusion probabilities is negligible, and the relative - estimator is almost unbiased. 
This design rivals adaptive cluster sampling because it controls the final sample size and is easy to manage. It 
rivals adaptive two-stage sequential sampling because it considers the cluster form of the population and reduces 
the cost of moving across the area. Using real data on a bird population and simulations, the paper compares the 
design with adaptive two-stage sequential sampling. The simulations show that the design has significant 
efficiency in comparison with its rival. 

 
Key Words: Adaptive cluster sampling; Adaptive two-stage sequential sampling; Primary and secondary sampling units; 

Inclusion probability. 

 
 

1  Introduction 
 

Adaptive cluster sampling (ACS) is an efficient design for rare and clustered populations (Thompson 

1990; Thompson and Seber 1996). ACS was introduced for quadrat-based sampling, where the study area 

is usually partitioned into non-overlapping quadrats for sample selection. Depending on the situation, these 

are called “cells” or “secondary sampling units” (SSUs). In the first phase of the design, an initial sample is 

selected using one of the conventional designs, usually simple random sampling without replacement 

(SRSWOR). The term “conventional designs” (Thompson and Seber 1996) refers to designs in which the 

procedure for selecting the sample does not depend on any observation of the main variable, such as 

SRSWOR, stratified sampling and systematic sampling. If a rare event (a cell whose value is at least as large 

as the prespecified condition )C  is found after the initial sample is obtained, then sampling continues in the 

neighbourhood of that location with the hope of observing more rare events. The process of searching the 

neighbourhood is continued until no more rare events are found. This design has been shown to be useful 

for estimating the parameters of highly clustered and rare populations (Smith, Brown and Lo 2004). 

However, ACS has some disadvantages, including the following two: 
 

 The final sample size is random and uncontrollable.  

 Neighbourhoods must be defined and followed. Following neighbourhoods in ACS means 
searching unit by unit and level by level around the initial rare events to find all the rare events 
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that are around them in different directions. The shape of the environment and the cluster may 
lead to confusion for the sampler.  

 
To overcome the first problem, many designs, such as two-stage ACS and incomplete or restricted ACS 

(IACS), have been introduced.  

Thompson (1991) introduced stratified ACS, and Salehi and Seber (1997) developed two-stage ACS. 

Two-stage ACS is designed to select a fixed number of primary sampling units (PSUs) by SRSWOR in the 

first stage, and then to select a fixed number of SSUs in each selected PSU, also by SRSWOR, in the second 

stage. The condition that is to be adapted and the neighbourhood are defined in terms of secondary units 

(rather than primary units). Salehi and Seber considered two schemes, depending on whether the clusters 

are allowed to overlap primary-unit boundaries or not, that would later be more desirable for controlling the 

final sample size. Some other related designs have also been introduced; as they are not related to the 

discussion in this paper, they are not mentioned. 

Salehi and Smith (2005) made an essential change to two-stage ACS, known as two-stage sequential 

sampling, and Brown et al. (2008) introduced an adaptive version of two-stage sequential sampling (ATS). 

In ATS, the allocation of second-stage efforts among PSUs is based on preliminary information from the 

sampled PSUs. Additional survey efforts are directed to PSUs where the SSUs in the initial sample meet a 

prespecified criterion, or condition C  (e.g., an individual from the rare population is present). More 

precisely, d  times the number of units that satisfy condition C  in the initial sample in a PSU is dedicated 

to the respective PSU as an additional sample using SRSWOR. Therefore, ATS could almost overcome the 

two problems, since, in this design, the final sample size is limited, and there is no need to define and follow 

the neighbourhood. But, ATS does not directly employ clustering of the population. This means that in ATS, 

the additional sample is a random sample of the whole respective PSU–ATS depends on the size, shape and 

location of the PSUs. Other developments in ATS are not essential (in other words, they have not changed 

the special aspects of ATS), so there is no need to mention them here. 

IACS, Brown and Manly (1998) suggested a restricted version of ACS to control final sample size. They 

put a limit on the final sample size prior to sampling by selecting the initial sample sequentially. Chao and 

Thompson (1999) and Su and Quinn (2003) imposed a restriction on the number of neighbourhood levels 

beyond each unit that satisfies the condition in the initial fixed-size sample. All the neighbours of the units 

that satisfy the condition in the initial sample are in the first neighbourhood level. In turn, all the neighbours 

that are to be added based on the units in the first neighbourhood level are considered to be in the second 

neighbourhood level, and so on. In brief, a cluster, as defined in conventional ACS, is allowed in IACS to 

be truncated at a predetermined distance from the unit in the initial sample that intersects it. These authors 

introduced a biased estimator for the population mean. 

Interestingly, Yang (2011) and Yang et al. (2011) introduced an adaptive plot design to overcome 

disadvantages of ACS in practice, and to use and define the neighbourhood, especially in tree-sampling 

surveys. They aimed to improve the practicability of ACS while maintaining some of its major 

characteristics. According to Yang et al. (2011), “the plot design is based on a conditional plot expansion: 

a larger plot (by a pre-defined plot size factor) is installed at a sample point instead of the smaller initial plot 
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if a pre-defined condition is fulfilled.” Their target population was a tree population, and their aim was to 

estimate its density (the number of objects per hectare). Their design was not planned for quadrat-based 

sampling. In addition, they assumed that they could survey an additional area (after they finished sampling) 

to calculate the inclusion probability of the required tree, but this would be impossible or costly in other 

surveys. 

Chao and Thompson (1999) introduced IACS for the first time. This design enables ACS to function 

without measuring all members of a cluster. They introduced the design in graph-theory form. Because it 

uses neighbourhoods like ACS, the design is complicated to manage, and the calculation of inclusion 

probabilities is also complicated. 

In this paper, a manageable version of ACS, which has positive aspects of the designs discussed above, 

is proposed. Adaptive rectangular sampling (ARS) is a practical, efficient and easy-to-calculate adaptive 

design that is able to find rare events, does not need to follow the neighbourhood and controls the final 

sample size well. 

ARS is introduced in Section 2 of the paper. Section 3 contains a real case study and some simulations, 

and Section 4 concludes the paper and provides a complete discussion of the advantages and disadvantages 

of the design. 

 
2  Adaptive rectangular sampling 
 

Suppose a total population of N  units partitioned into M  primary sampling units (PSUs), each 

containing hN  secondary sampling units (SSUs). Let   , , = 1, 2, , ; = 1, 2, , hh j h M j N   denote the 
thj  unit in the thh  primary unit, with the associated measurement or count .hjy  Then, 

1
= hN

h hjj
y

  is the 

total of the y  values for the thh  PSU, and 
=1

= 1
M

hh
N   is the population mean. 

Adaptive rectangular sampling (ARS) can be performed in a two-stage procedure. The first stage of the 

ARS design consists of selecting a conventional random sample, 0 ,s  of size ,m  with M  PSUs. 

The first phase of the second stage consists of selecting an initial conventional sample, 1 ,hs  of size 1hn  

in the thh  PSU, where 0 .h s  

In the second phase, all the SSUs around those in 1hs  that satisfy condition C  with the radius R  are 

adaptively added, where  1, 2, , dR M   and dM  is the maximum diameter of each PSU. Here, the 

definition of radius is different from the conventional definition. “Radius,” for a cell, is defined based on all 

cells around it. For example, = 1R  refers to the first-level nearest neighbourhood, which consists of the 

eight SSUs around the cell, and = 2R  refers to the nearest and the second-nearest neighbourhoods, which 

consist of all 24 SSUs around the cell (8 SSUs for = 1,R  plus 16 SSUs added for = 2).R  If the cell is in a 

corner or close to a border of the PSU, these numbers are reduced (see Figure 2.1). Therefore, in the thh  

PSU, there is an additional sample, 2 ,hs  of random size 2 .hn  Now, the final sample is 1 2= ,h h hs s s  of 

random size 1 2= ,h h hn n n  inside the thh  PSU. This procedure can be performed under either an 

overlapping scheme and a non-overlapping scheme. 
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An estimator for the population mean 
 

The - estimator (the Horvitz–Thompson estimator) is an estimator for the population mean that requires 

inclusion probabilities for all sampled units. If all the inclusion probabilities are available, the following are 

used to estimate the population mean:  

 
0

ˆ1
ˆ = ,h

h s hN





   

where h  is the inclusion probability of the thh  PSU, and  

                                                                        ˆ = ,
h

hj

h
j s hj

y



   

where hj  is the inclusion probability of the SSU  , .h j  To use the - estimator, hj  must be calculated 

for all   0, ; , .hh j h s j s    

In addition, the variance of the estimator is  

  
 

2
=1 1 =1

ˆ1 Var
ˆVar = ,

M M M
h hhh h

h h
h h hh hhN

   
  

  
 

 

     
  
    

where hh   is the joint inclusion probability of the thh  and thh   PSUs. An unbiased estimator for the above 

is  

     
  

0 0 0

2

ˆ ˆ ˆ1 Var
ˆVar = ,h h h h hhh

h s h s h s hhhh h
N

     


  


  

    
  

    
    

where   ˆVar h  is  

                                        
1 1

ˆVar = ,
h h

hj hjhjj hj hj

h
j s j s hj hj hjj

y y  


  
  

   

 
 

 
    

where hjj   is the joint inclusion probability of  ,h j  and  ,h j  in the thh  PSU. 

It is easy to calculate the inclusion probabilities for the first stage, especially when simple random 

sampling without replacement (SRSWOR) is used. In this situation, it is easy to see that  

      
 
 

1
= , = ; , = .

1h hh hhh

m m m
h h

M M M
   





  

To calculate ,hj  it is necessary to know how many of the cells around cell  ,h j  within radius R  satisfy 

condition ,C  because selecting them as the initial sample leads to selecting the cells around them as the 

final sample. It is necessary to introduce some new notations. In ARS, with the radius ,R  hjB  represents 

the event of unit  ,h j  being selected as the final sample, and hjA  represents the event of unit  ,h j  

satisfying condition C  and being selected as the initial sample. In addition, hjs  represents all the units that 

satisfy condition C  and that would be adaptively added to the sample if hjA  occurs, including unit  , ,h j  
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with the size .hjf  The size hjf  is partitioned as 1 2= ,hj hj hjf f f  where the former indicates the number of 

cells in hjs  that are available in the final sample  hs  and the latter is defined as 2 1= .hj hj hjf f f  However, 

no information about its units is available. F  is defined like ,f   but for all units (those satisfying condition 

C  and those not satisfying condition ).C  

In addition, let hjjf   be the size of = ,hjhjj hjs s s   and 1 ,hjjf   2 ,hjjf   and F  be defined the same. 

The sample ,hjs  with the size ,hjf  contains all the cells that lead to the selection of unit  , ,h j  and ,hjjs   

with the size ,hjjf   contains all the cells that lead to the selection of at least one of  ,h j  and  ,h j  as the 

final sample.  

 

Theorem 1: In ARS, with the radius ,R  for the thh  PSU and using SRSWOR to select the initial sample 
of size 1 ,hn  

                                           1

1

= 1

h hj

h
hj

h

h

N f

n
N

n



 
 

 

 

 

  (2.1) 

                                          1 1 1

1 1 1

= 1 .

h hj h hhj hjj

h h h
hjj

h h h

h h h

N f N f N f

n n n
N N N

n n n



 



      
         

      
    
         

    

 (2.2) 

For the proof of the theorem, see the Appendix. 

Here, only one problem arises: hjf  is known only in the initial sample that satisfies the condition. 

However, other samples (those that are adaptively added) have partial information about hjf  (i.e., 1 ).hjf  

Let  Bin ,n p  stand for a binomial distribution based on the independent Bernoulli variable n  with 

parameter .p  To estimate ,hjf  2hjf  represents the number of successes (the number of units that satisfy 

condition )C  in 2hjF  trials (by searching 2hjF  units); the independency and identicality (iid) of the trials 

are assumed. The latter assumption (iid) is for simplifying the calculations. This, of course, leads to bias in 

estimating some of the inclusion probabilities and, so, to bias for the respective - estimator. With all the 

above assumptions, 2hjF  would be considered a random variable with a binomial distribution, as follows:  

                                                          2 2Bin , ,hj hj hjf F p   

where hjp  is the probability of satisfying condition C  for all cells in the thh  PSU around the thj  cell with 

the radius .R  Then,  

    1 2 1 2= = .hj hj hj hj hj hjE f f E f f p F    
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Calculating hj  leads to two situations: 
 

 If the cell satisfies condition C  and belongs to the initial sample, or is adaptively added and is 

located in a place in the final sample that contains complete information about the area around it, 

then it is possible to calculate the inclusion probability precisely from the information in the final 

sample.  

 If the final sample does not contain enough information to calculate the inclusion probability, two 

strategies are proposed: 

o There is partial information about ,hjf  this means that everything is known about 

1 ,hjF  and only 2hjF  needs to be investigated. For 2 ,hjF  only knowledge about how 

many of the cells satisfy the condition is required; there is no need for exact 

knowledge about .y  For example, if condition C  is defined as > 0,y  it is necessary 

to know only how many cells of 2hjF  are nonempty. If this is easy to investigate, the 

exact inclusion probabilities for all of the units in the sample can be calculated.  

o It is not possible to calculate the inclusion probabilities, hj  can be estimated as (see 

equation 2.1) 

                               

   1 2

1 1

1 1

ˆ = 1 = 1 .

h hj h hj hj hj

h h
hj

h h

h h

N E f N f p F

n n
N N

n n



    
  

   
   

  
     

  

 (2.3) 

 

Using ,hjp  or, in other words, assuming different probabilities for different cells, leads to tedious 

calculations. Estimating hjp  can be done based on the spatial pattern of the population. For example, in the 

case of clustered populations, it may be reasonable to assume two kinds of ,hjp  one for units in the sample 

satisfying condition C  and one for units not satisfying condition ,C  so that greater probability is provided 

for the units satisfying condition .C  A wide class of spatial patterns can be assumed in estimating ,hjp  but, 

here, to have a simple and understandable strategy, =hj hp p  is assumed for all units in the thh  PSU. 

Therefore, hp  is the probability of satisfying condition C  for units in the thh  PSU. It may be possible to 

guess hp  from previous information or to estimate it without bias from the initial sample as the portion of 

the units in the initial sample in the thh  PSU that satisfy condition .C  

Estimating hp  based on the initial sample is a common procedure in adaptive designs (for example, see 

Brown et al. [2008]). For rare populations, such estimations might be imprecise. Practically, however, this 

is not a serious problem in ARS, because, for initial-sample units that satisfy the condition, it is possible to 

calculate inclusion probabilities without error ( hp  is not required). Furthermore, hp  is not required in 

adaptively added units with = 0.y  For some adaptively added units with > 0,y  hp  has an insignificant 

role in calculating inclusion probabilities. The example in the next subsection and the simulation results in 

Section 3 confirm such assertions. 

For hjj   (as for ),hj  if, depending on the final sample, there is enough information to calculate ,hjf  

hjf   and ,hjjf   then it is enough to use equation 2.2. If there is partial information about ,hjjf   then  
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  2 2Bin , ,hhjj hjjf F p    

and then  

    1 2 1 2= = .hhjj hjj hjj hjj hjjE f f E f f p F        

And, it is enough to replace the respective “ ”sf   with  “ ”sE f   in equation 2.2. Without the assumption 

of = ,hj hp p  hjjp   should perhaps be used instead of hp  for estimating .hjjf   This would make the 

calculations more difficult. A reduction in precision (assuming constant hp  for all the units in the thh  PSU) 

allows such a simple sampling strategy to be presented. 

Discussing an example can help clarify all of the above formulas and calculations.  

 
Discussion of an example 
 

For this example, see the top-left PSU in the right plot in Figure 2.1, where = 112,N  = 28,hN  = 1h  

and 11 = 2.n  Assume that it is necessary to calculate hj  for two units in Figure 2.1, with = 1.R  First, for 

the initial sample with = 6,y  it is easy to see that = 6,hjF  that it has five cells around it plus itself, and 

that five of them satisfy the condition  = 5 .hjf  This information is available at the end of the sampling in 

the final sample. Therefore,  

 =6

28 5

2
= 1 0.33.

28

2

y

 
 

 

 

 

   

For an adaptively added sample, like = 248,y  as discussed earlier, there is partial information (see 

Figure 2.2). Here, = 9hjF  (the blue cells in part B) and 1 = 6hjF  (the orange cells in part C). From the final 

sample, 1 = 5hjf  is also known (the positive response in the orange cells in part C). In addition, 2 = 3hjF  

(the blue cells in part C), but 2hjf  is not known. To estimate it, 1p  would be estimated from the initial 

sample as 1 = 1 2 = 0.5p  (see the green cells in the first PSU in Figure 2.1), then  

 =248

28 (5 0.5 3)

2
ˆ = 1 0.42.

28

2

y

   
 

 

 

 

   

But, according to the population, the following can be calculated:  

 =248

28 7

2
= 1 0.44,

28

2

y

 
 

 

 

 

   

which is very close to the estimation. 
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Figure 2.1 = 112,N  = 28,hN  4,M   4m   and 1 = 2.hn  The green SSUs are the initial sample, and the 

yellow cells are the adaptively added sample. The right plot indicates non-overlapping ARS with 
1,R   and the left plot indicates 2,R   where condition C  is defined as > 0.y  Numbers show 

respective y  values for the cells. 
 
 
 
 
 

 

 

 

 

 

 

 
 
Figure 2.2 Inclusion probability for 248.y   Part A indicates a part of the final sample. Part B (the blue cells) 

indicates the cells that must be known for the inclusion probability of 248.y   In part C,  the 
orange cells are those that must be known and for which information is available, and the blue cells 
are those that must be known but for which no information is available. 

 
Now, assume that the goal is to calculate a joint probability, =6, =5y y   (see Figure 2.3). Here, according 

to equation 2.2, = 5hjf  (part B), 2= 3 ,hj hjf f   2 = 5hjF   (the blue cells in part C), 2= 5hjj hjjf f   and 

2 = 5hjjF   (part D), and  2 = 5 0.5 = 2.5.hjjE f    From the information in the sample,  

Part A                                                    Part B                                                    Part C 
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= 6, =5

28 5 28 3 0.5 5 28 5 0.5 5

2 2 2
ˆ = 1 0.22.

28 28 28

2 2 2

y y 

         
        

      
    
         

    

   

With complete information about the population,  

                             = 6, =5

28 5 28 6 28 8

2 2 2
= 1 0.22,

28 28 28

2 2 2

y y 

      
         

      
    
         

    

   

which shows no error to two decimal places. By writing a code for “ ”sf   and “ ”s,F  the - estimator can 

be calculated easily. 

 

 

 
 

 

 

 

 
 

Figure 2.3 Joint inclusion probability for = 6y  and = 5.y  Coloured cells indicate the information that is 
required; orange cells indicate available information and blue cells indicate the information that 
needs to be estimated from the final sample. 

 
 
3  A real case study and simulations 
 

In this section, adaptive rectangular sampling (ARS) is evaluated and compared with adaptive two-stage 

sequential sampling (ATS) and two-stage simple random sampling without replacement (TSS). Here, ARS 

is not compared with adaptive cluster sampling (ACS) for two reasons: first, Salehi and Smith (2005) 

compared ATS with two-stage ACS, and, second, it is not fair to compare ARS with ACS or even incomplete 

ACS because ACS needs to define, use and follow the neighbourhood, while ARS does not.  

If ATS is a design free of neighbourhood, then ARS satisfies this condition too, because, if a sampler 

can recognize the border of the cells, or, in other words, can distinguish secondary sampling units (SSUs), 

the sampler can also recognize an SSU with its radius area. In addition, the area to be surveyed may be 

specified before samples are taken. Based on a map of the area, it is possible to use SRSWOR for the SSUs 

Part A                                    Part B                                    Part C                                    Part D 
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and the area around them if the SSUs satisfy the condition. Because the sampler need not return to the area 

to take the second phase of the sample (according to the ATS process), ARS seems to be easier and less 

costly than ATS. For a better comparison, the cost factor should be taken into consideration.  

The comparison is done using two kinds of data: a real case study and simulation cases. 

Here, efficiency is defined as  

  
 
 

tssMSE
eff . = ,

MSE .

y
  

where tssy  is the conventional mean estimator in TSS, MSE stands for mean square error and “.” stands for 

one of the following: 
 

 ATSˆ :  Murthy’s estimator in ATS, which is unbiased, and which will be referred to as “ATS”. 

This estimator, for the mean of the thh  primary sampling unit (PSU), would be presented as  

  ATS 1 1ˆ ˆ ˆ= 1 ,hc hcq y q y    (3.1) 

where 1q̂  is the proportion of the units that satisfy condition C  in the initial sample, and hcy  and 

hcy   are the means of the final-sample units satisfying condition C  and not satisfying condition 

,C  respectively, in the thh  PSU. In this estimator, the first portion of the unit satisfying condition 

C  is estimated from the initial sample, and the respective value is adapted to the mean of the 

sample satisfying condition C  to construct the estimator. 

 ARSˆ :  the - estimator in ARS, which is unbiased.  

 ˆARS.ˆ :  the - estimator in ARS, with   estimated from the final sample using equation 2.3. It 

is not unbiased, and its relative bias is defined as  ˆ ˆARS. ARS.
ˆ ˆRbias. = .y y      

 

From now on, the acronym “ARS”  refers to both ARŜ  and ˆARS.ˆ .  

Furthermore, two formulas are used for the error in estimating inclusion probabilities in ˆARS.ˆ :  
 

 .ˆ :D Inclu  this shows the mean of the difference between real inclusion probabilities and the 

respective estimation (i.e., the mean of ˆ=hj hj hje    for all the sample units)  

 .ˆ :AD Inclu  this shows the mean of the absolute difference between real inclusion probabilities and 

the respective estimation (i.e., the mean of ˆ=hj hj hje    for all the sample units).  

A non-overlapping scheme is used in this section.  

 
A real case study on a blue-winged teal population 
 

Smith, Conroy and Brakhage (1995) used a population of blue-winged teal to evaluate ACS. The 

population comes from comprehensive counts, which were made from helicopters from December 13 to 15, 

1992, in central Florida. The blue-winged teal population is extremely clustered, with a total of = 200N  
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units (Figure 3.1). A simulation study found ACS to be efficient for this population, in the sense that the 

variance of the estimator is smaller than in simple random sampling (Smith, Conroy and Brakhage 1995). 

The population was partitioned into = 8, 4, 2M  PSUs. ARS, ATS and TSS were performed in the 

population with different values for ,m  1 ,hn  R  and d  (a multiple in ATS that indicates the size of the 

additional sample in the second phase for units satisfying condition ),C  with 25,000 simulations for each 

combination of values. For a fair comparison, d  was chosen in such a way that the expected final sample 

sizes for ATS and ARS were almost the same. For TSS, the sample size in each simulation was the same as 

that for ARS. The expected sample sizes were calculated using Monte Carlo simulations. It is notable that 

in ARS, if two or more adaptively added samples overlapped, the overlap was measured once. Practically, 

if there is overlap in the sample, the relevant cells must be sampled and measured only once. 

Results are presented in Tables 3.1 and 3.2. For information about the MSEs of the estimators, 

 tssMSE y  is presented in the results. With this MSE and the efficiency of the estimators, the MSEs of the 

other estimators are easy to calculate. The results are noteworthy: ARS was better than ATS in all situations. 

ARS, unlike ATS, was also always more efficient than TSS. The efficiency of ARS was sometimes seven 

or eight times that of TSS, whereas this number was at most around two and a half for ATS. For more than 

55% of the cases, the efficiency of ARS was greater than 2, whereas this was true of less than 5% of the 

cases for ATS. 

The relative bias of ˆARS.ˆ   is acceptable for most of the cases; it may be unacceptable for a few cases 

with a little sample size. For around 61% of the cases, the relative bias was less than 0.03, and, for around 

92% of them, the relative bias was less than 0.07. 

Efficiency improved by increasing the radius ,R  and a larger radius R  was proper for larger PSUs. In 

this population, there are two important clusters at the top of the population plot. With = 2,R  selecting one 

of the cells in a large PSU as the initial sample led to the selection of all of them. That is why = 2,R  with 

a large enough initial sample size, showed such significant efficiency. 

In addition, the number of PSUs in the first stage was important, and the results indicate that more PSUs 

lead to efficiency improvements. As discussed before, the efficiency of ATS depends on the size, shape and 

location of the PSUs. When the population could not be partitioned into some empty and full PSUs, ATS 

was not as efficient (see populations 2 and 4). But as ARS uses the cluster form of the population, it is not 

as dependent on PSUs and could even perform in a population with one PSU, which would be meaningless 

for ATS. 

In addition, for Population 1, .ˆ = 0.025AD Inclu  and .ˆ 0.002;D Inclu   for Population 2, .ˆ =AD Inclu  

0.023  and .ˆ 0.005;D Inclu   for Population 3, .ˆ = 0.024AD Inclu  and .ˆ = 0.004;D Inclu   and, for Population 

4, .ˆ = 0.025AD Inclu  and .ˆ = 0.008.D Inclu   The mean of the inclusion probabilities for these simulations 

was around 0.22. According to .ˆD Inclu  and .ˆ ,AD Inclu  the errors in estimating the inclusion probabilities 

seem to be almost negligible. This is why ˆARS.ˆ   was almost unbiased. The relative bias of ˆARS.ˆ   showed 

acceptable precision for ˆ“ ”s.j  

 



274 Panahbehagh: Adaptive rectangular sampling: An easy, incomplete, neighbourhood-free adaptive cluster sampling design 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 3.1 
Efficiency of the estimators, with = 200,N  = 0,C  = 8, 4M  
 

Population 1  R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 4 1 6 7 1.32 2.05 1.62 0.13 81,076
3 6 19 1.32 1.84 1.64  0.06  22,657 
5 5 30 1.25 1.79 1.69  0.03  12,865 
7 4 40 1.18 1.76 1.71  0.03  8,729 

8 1 6 13 1.22 1.92 1.51  0.14  35,171 
3 6 38 1.33 1.99 1.80  0.06  10,324 
5 5 59 1.35 2.13 2.04  0.04  5,502 
7 4 79 1.34 2.46 2.43  0.03  3,502 

2 4 1 15 10 2.43 3.02 3.04  0.02  71,670 
3 12 27 1.61 2.17 2.24  0.02  16,835 
5 9 40 1.33 1.99 2.05  0.00  9,219 
7 7 51 1.23 1.94 1.97  0.00  6,463 

8 1 15 20 2.37 3.00 3.01  0.02  32,290 
3 12 54 1.69 2.53 2.61  0.02  7,030 
5 9 80 1.52 2.98 3.05  0.02  3,570 
7 7 101 1.45 3.81 3.85  0.01  2,270 

Population 2  R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 2 4 6 13 1.06 1.90 1.58  0.11  36,208 
8 5 25 0.94 1.81 1.61  0.07  15,775 

10 5 30 1.03 1.82 1.66  0.05  12,434 
15 5 42 1.10 1.81 1.72  0.03  7,852 

4 4 6 26 1.00 1.92 1.60  0.11  16,911 
8 5 49 0.98 2.00 1.79  0.07  7,339 

10 5 60 1.00 2.05 1.89  0.06  5,475 
15 4 84 1.03 2.39 2.31  0.03  3,180 

2 2 4 12 20 1.29 2.51 2.52  0.00  28,341 
8 11 36 1.04 2.07 2.08  0.00  11,024 

10 10 42 1.03 2.02 2.02  0.01  8,521 
15 8 55 1.03 1.96 1.96  0.01  5,352 

4 4 12 40 1.04 2.32 2.32  0.02  11,725 
8 11 71 0.99 2.34 2.35  0.00  4,507 

10 10 84 1.01 2.59 2.60  0.00  3,338 
15 8 111 1.04 3.41 3.42  0.00  1,891 

 
Table 3.2 
Efficiency of the estimators, with = 200,N  = 0,C  = 4, 2M  
 

Population 3  R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 2 4 6 14 1.11 1.73 1.40  0.18  34,451 
8 5 25 1.05 1.71 1.51  0.10  16,795 

10 5 31 1.09 1.69 1.56  0.08  13,671 
15 5 43 1.16 1.61 1.56  0.03  9,819 

4 4 6 27 1.26 2.18 1.73  0.18  15,357 
8 5 51 1.26 2.78 2.48  0.10  6,759 

10 5 62 1.34 3.18 2.94  0.08  5,078 
15 4 86 1.39 4.80 4.72  0.03  2,964 

2 2 4 12 21 1.30 1.90 1.95  0.05  26,117 
8 11 36 1.13 1.64 1.69  0.03  12,047 

10 10 43 1.11 1.56 1.60  0.02  9,872 
15 8 55 1.12 1.48 1.49  0.01  7,686 

4 4 12 42 1.43 2.55 2.64  0.05  10,818 
8 11 72 1.51 3.43 3.66  0.02  4,275 

10 10 85 1.55 4.29 4.57  0.01  3,183 
15 8 110 1.83 9.44 9.87  0.00  1,856 

Population 4 R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 1 10 6 17 0.93 1.68 1.32  0.13  27,053 
15 5 24 0.90 1.69 1.43  0.09  17,860 
20 5 31 0.91 1.63 1.45  0.08  13,802 
30 4 44 0.92 1.58 1.50  0.02  9,952 

2 10 6 34 0.98 2.16 1.69  0.12  11,851 
15 5 49 0.95 2.52 2.11  0.10  7,409 
20 5 62 0.97 2.91 2.58  0.06  5,153 
30 4 87 1.01 4.56 4.41  0.03  2,940 

2 1 10 14 27 1.01 1.70 1.69  0.02  18,908 
15 13 37 0.93 1.50 1.51  0.02  12,092 
20 10 45 0.84 1.42 1.43  0.01  9,338 
30 8 58 0.88 1.35 1.35  0.00  7,329 

2 10 14 53 1.08 2.38 2.41  0.02  7,512 
15 13 73 1.06 2.80 2.92  0.01  4,317 
20 11 90 1.03 3.59 3.79  0.00  2,933 
30 8 116 1.03 7.60 8.00  0.00  1,672 
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Artificial populations 
 

The spatial pattern was generated with an R code following the Poisson cluster process (Brown 2003). 

The number of clusters was selected from a Poisson distribution, and cluster centres were randomly located 

throughout the site. Individuals within the cluster were located around the cluster centre at a random 

distance, following an exponential distribution, and in a random direction, following a uniform distribution. 

The parameters of the code were changed to generate three different populations. With the addition of the 

population in the example subsection of the paper, this subsection uses four artificial populations to evaluate 

ARS (see Figure 3.2): 
 

 Population 5: rare and not clustered,  
 Population 6: not rare, but clustered,  
 Population 7: not rare and not clustered,  
 Population 8: rare and clustered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1 Bird populations. Numbers show the respective y  values for the cells, with a mean of 70.61 and a 
variance of 453,709.52. Red lines indicate the borders of the PSUs. 
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Figure 3.2 Artificial populations. Numbers show the respective y  values for the cells, with 0.74, 1.76, 1.68 and 

6.10 as the means, and 25.74, 35.34, 29.08 and 1,025.10 as the variances of the four populations, 
respectively. Red lines indicate the borders of the PSUs. 

 
Results are presented in Tables 3.3 and 3.4. The relative bias of ˆARS.ˆ   was acceptable for all cases. 

 
Table 3.3 
Efficiency of the estimators, with = 200,N  = 0,C  = 4M  
 

Population 5 R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.    tssMSE y

1 2 4 6 12 0.94 1.53 1.59  0.01  2.29 
8 5 23 0.88 1.48 1.55  0.01  1.01 

10 5 28 0.88 1.45 1.52  0.00  0.77 
15 4 40 0.86 1.50 1.55  0.01  0.48 

4 4 6 24 0.88 1.44 1.50  0.01  1.01 
8 5 46 0.82 1.45 1.52  0.00  0.44 

10 5 57 0.80 1.48 1.54  0.01  0.34 
15 4 81 0.83 1.66 1.72  0.01  0.19 

2 2 4 14 18 1.01 1.30 1.38  0.04  1.93 
8 13 33 0.90 1.11 1.18  0.04  0.76 

10 11 39 0.82 1.07 1.14  0.02  0.56 
15 8 52 0.77 1.12 1.17  0.02  0.34 

4 4 14 37 0.80 1.01 1.08  0.03  0.74 
8 13 66 0.78 1.04 1.06  0.04  0.29 

10 10 78 0.67 1.02 1.03  0.03  0.22 
15 8 104 0.66 1.07 1.12  0.02  0.12 
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Table 3.3 (continued) 
Efficiency of the estimators, with = 200,N  = 0,C  = 4M  
 

Population 6 R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.    tssMSE y

1 2 10 5 18 0.98 1.09 1.09  0.02  1.53 
15 4 31 0.96 1.08 1.12  0.01  1.35 
20 4 37 1.00 1.12 1.16  0.01  1.25 
30 3 49 1.02 1.13 1.16  0.01  1.14 

4 10 5 35 1.05 1.28 1.34  0.02  0.28 
15 4 62 1.09 1.56 1.73  0.00  0.17 
20 4 74 1.19 1.76 1.95  0.01  0.12 
30 2 97 1.25 2.48 2.68  0.01  0.06 

2 2 10 10 28 0.87 1.07 1.11  0.01  1.34 
15 7 42 0.90 1.15 1.18  0.01  1.24 
20 6 48 0.93 1.16 1.19  0.01  1.18 
30 5 57 0.99 1.15 1.16  0.00  1.12 

4 10 10 56 0.80 1.30 1.40  0.01  0.46 
15 7 85 0.91 2.76 2.97  0.01  0.23 
20 6 95 1.01 4.19 4.43  0.01  0.18 
30 4 114 1.18 12.19 12.43  0.00  0.12 

 
Table 3.4 
Efficiency of the estimators, with = 200,128,N  = 0,C  = 4M  
 

Population 7 R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 2 4 6 19 0.74 0.69 0.68  0.00  1.72 
8 6 34 0.84 0.76 0.75  0.02  0.84 

10 5 41 0.79 0.77 0.76  0.01  0.69 
15 3 56 0.73 0.85 0.84  0.01  0.50 

4 4 6 38 0.72 0.70 0.70  0.02  0.68 
8 5 69 0.66 0.57 0.57  0.01  0.28 

10 5 83 0.72 0.68 0.69  0.00  0.21 
15 4 112 0.69 0.76 0.75  0.02  0.11 

2 2 4 15 33 0.76 0.68 0.70  0.02  1.13 
8 10 55 0.57 0.62 0.64  0.00  0.54 

10 9 63 0.61 0.70 0.72  0.01  0.45 
15 8 79 0.63 0.81 0.82  0.02  0.36 

4 4 13 66 0.54 0.51 0.51  0.01  0.36 
8 10 110 0.40 0.45 0.48  0.02  0.13 

10 9 126 0.38 0.47 0.49  0.01  0.09 
15 8 156 0.31 0.51 0.53  0.01  0.04 

Population 8 R m 1n d  E n ATŜ ARŜ ˆARS.
ˆ

 ˆARS.
ˆRbias.   tssMSE y

1 2 3 6 11 0.99 1.97 1.85  0.05  95.39 
5 5 17 0.93 1.88 1.84  0.01  55.29 

10 4 30 0.96 1.72 1.73  0.00  27.73 
13 3 36 0.96 1.60 1.61  0.00  22.02 

4 3 6 22 0.92 2.21 2.10  0.04  39.74 
5 5 35 0.86 2.49 2.49  0.02  21.13 

10 3 59 0.85 4.28 4.36  0.00  8.12 
13 3 71 1.00 6.22 6.27  0.00  5.24 

2 2 3 13 17 1.11 1.68 1.74  0.02  78.55 
5 10 25 0.88 1.50 1.53  0.01  40.42 

10 7 37 0.87 1.41 1.41  0.01  21.05 
13 5 42 0.90 1.34 1.34  0.00  17.92 

4 3 13 34 0.97 1.70 1.75  0.03  27.92 
5 10 49 0.80 1.82 1.87  0.01  13.18 

10 7 74 0.80 3.35 3.39  0.00  4.86 
13 5 83 0.80 5.03 5.06  0.00  3.24 

 
In Population 5, ATS was not efficient at all (except in one situation), but ARS performed well and was 

always more efficient than both ATS and TSS. ARS was better with = 1,R  relative to = 2,R  because the 

population was not clustered and a large radius could have wasted the sample. However, because of a large 

cluster in the lower-right PSU, ARS was efficient for = 2.R  

In Population 6, which was highly clustered but not rare, ATS was not as efficient as TSS in almost half 

of the cases, especially when the sample size was not very large. The performance of ARS was very good. 

Because of the large size of the clusters, ARS was better with = 2R  than = 1,R  and, in one case, it was 
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12 times as efficient as TSS, while this number was 1.18 for ATS. With = 2,R  if a nonempty cell was 

selected as the initial sample, many of the other nonempty cells would also be selected. With a large enough 

initial sample size, almost all of them would be selected, providing almost complete information on the 

population and higher efficiency in comparison with other designs. 

In Population 7, which was an almost-ordinary population, ARS and ATS were not efficient. In this case, 

the population was not clustered, and ARS wasted the sample searching around cells with a response 

satisfying condition C  that were almost all empty. In such situations, ATS is more efficient than ARS (this 

happened in some cases), since ATS spreads the additional sample size equally across all the PSUs. 

Finally, in Population 8, which was rare and completely clustered, ATS was almost not efficient at all. 

Again, ARS performed very well; it was sometimes six times as efficient as TSS and ATS. 

In addition, for Population 5, .ˆ = 0.025AD Inclu  and .ˆ 0.004;D Inclu    for Population 6, .ˆ =AD Inclu  

0.020  and .ˆ 0.010;D Inclu    for Population 7, .ˆ = 0.027AD Inclu  and .ˆ = 0.006;D Inclu  and, for Population 

8, .ˆ = 0.016AD Inclu  and .ˆ = 0.004.D Inclu  The means of the inclusion probabilities for the four populations 

were, respectively, 0.21, 0.31, 0.24 and 0.34. Again, the errors in estimating the inclusion probabilities were 

almost negligible. 

Lastly, ˆARS.ˆ   showed significant efficiency, even higher than ARŜ  (sometimes for a larger sample 

size). Since ARŜ  is unbiased, ARŜ  is preferred when there is enough information to calculate it. When 

information for calculating “ ”sj  is lacking, ˆARS.ˆ   is a very good alternative for estimating the population 

mean with almost no bias. 

Costs are not discussed, because this factor favours ARS, which is a cheaper design in comparison with 

ATS and TSS. Since ARS is more efficient than the other designs without considering costs, it is obvious 

that with costs factored in, the efficiency of ARS would be higher again. On the other hand, if the costs of 

much travelling under ATS and TSS are almost the same as the cost of searching more cells to find whether 

they satisfy condition C  (not measuring them exactly) to calculate the unbiased - estimator, then the 

comparison is fair. 

 
4  Discussion 
 

The adaptive rectangular sampling (ARS) design is an adaptive design that is easy to manage, saves on 

travel, is easy to calculate, is neighbourhood-free, and controls the final sample size. 

The design is adaptive because the final sample size depends on observed values, and the design is able 

to find rare clustered events. 

It is easy to manage because it is straightforward in determining the places that should be investigated 

for the additional sample. The design uses the intuitive behaviour of field biologists – once they find a rare 

event, they want to search in the immediate neighbourhood. It is even easier than adaptive cluster sampling 

(ACS). In addition, ARS can perform in both a two-stage form and a one-stage form. With this design, 

unlike with adaptive two-stage sequential sampling (ATS), there is no need to worry about the size, location 

and shape of primary sampling units. Unlike ACS, incomplete ACS (IACS) and ATS, it is possible for ARS 

to indicate the entire potential sample that the samplers need to select before they start sampling. 
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As for the travel-saving feature of ARS, there is no difference between adaptive designs such as ACS, 

ARS and ATS in the first phase of the second stage, for selecting the initial sample. But, in the second phase, 

ARS travels between cells generally less than ACS and IACS (with its edge units) and, especially, much 

less than ATS and two-stage sampling, with equal sample sizes. Because of this feature, ARS would be 

appropriate for costly travelling surveys of clustered populations, regardless of its efficiency. 

ARS is easy to calculate, because the inclusion probabilities for the final sample size are easy to calculate, 

and this means that the - estimator can be used instead of Murthy’s estimator. Murthy’s estimator, 

equation 3.1, is strongly dependent on the size of the initial sample (and on estimating );q  as initial samples 

could be small in some situations, this is a weakness of Murthy’s estimator. Therefore, one of the advantages 

of ARS as a sequential design is its avoidance of Murthy’s estimator and its use of the - estimator instead. 

In addition, calculating the - estimator in IACS is not very easy, because it is a little complicated to 

estimate “ ”sj  (see Chao and Thompson 1999). As discussed in Section 2.1, it is easy to calculate or 

estimate “ ”sj  in ARS, compared with the method used by Chao and Thompson (1999). 

The design is neighbourhood-free, in the sense that it does not follow the neighbourhood as in ACS and 

IACS; this would be complicated for the sampler after certain steps. ARS is an easy design for samplers, 

especially for difficult environments. ACS has not yet been used on a routine basis in field surveys for forest 

inventory and biodiversity monitoring, as there are also practical difficulties in field implementation (Yang 

et al. 2011). A design like ARS may be more appropriate in such environments. 

The design controls the final sample size well with the choice of radius .R  This paper presents an easy 

version of ARS. ARS can be performed in different ways (e.g., someone could plan a design to sample 

around a cell instead of investigating all the cells around it). This is a suggestion for future work on ARS. 

To use ARS, it is important to know that the population units are separated in a cluster form; otherwise, 

the design would waste the sample units. This is one of the disadvantages of ARS. An advantage of this 

design is its expansion of the definition of clusters. Because the designer can change the radius ,R  a cluster 

in ARS consists of units that are around each other even at a distance, and there is no need for them to be 

adjacent. 

Compared with other designs, ARS has some of the same advantages. Like ACS, it takes advantage of 

clustering to find rare events; like ATS, it does not need to follow the neighbourhood. And, like IACS, it 

controls the final sample size well. 

ARS is a new design, and it should be evaluated on real populations to enable researchers to find out its 

abilities, advantages and disadvantages.  

 

Appendix 
 

For ,hj  it is easy to see that  
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and, for ,hjj   using the fundamental probability principle,  
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Unequal probability inverse sampling 

Yves Tillé1 

Abstract 

In an economic survey of a sample of enterprises, occupations are randomly selected from a list until a number r 
of occupations in a local unit has been identified. This is an inverse sampling problem for which we are proposing 
a few solutions. Simple designs with and without replacement are processed using negative binomial distributions 
and negative hypergeometric distributions. We also propose estimators for when the units are selected with 
unequal probabilities, with or without replacement. 

 
Key Words: Location; Horvitz-Thompson estimator; Negative binomial; Negative hypergeometric; Inverse design; 

Inclusion probability; Wage. 

 
 

1  Problem 
 

The problem arose as part of a question on Statistics Canada’s new Job Vacancy and Wage Survey 

(JVWS). The JVWS comprises a wage component and a job vacancy component. The wage component 

looks at average wages, minimum wages, maximum wages and starting wages for various occupations. 

The objective is to provide wage statistics by economic regions (economic regions are subdivisions of 

provinces). In the first stage, a sample of 100,000 business locations (also known as local units of 

enterprises) are selected using a Poisson design stratified by industry and economic region. 

For simplicity, the term “enterprise” will be used in the rest of the document instead of “location,” 

keeping in mind that Statistics Canada defines a location as “a production unit located at a single 

geographical location at or from which economic activity is conducted and for which a minimum of 

employment data are available.” 

For purposes of managing response burden, it is not possible to identify every occupation in each 
enterprise. Therefore, proposing a list of occupations and asking whether the listed occupations exist in an 
enterprise has been considered. Occupations can then be randomly drawn from the list and proposed 
successively to the head of the enterprise until r  occupations have been reached. Since the most common 
occupations are of specific interest, it is useful to consider cases in which occupations are selected with 
unequal probabilities from the list in proportion to their prevalence in the total population. Note that this 
method was not implemented for Statistics Canada’s Job Vacancy and Wage Survey. The survey decided 
to present a list, of fixed length, of occupations to the surveyed enterprises. Nevertheless, the theoretical 
properties of the proposed method remain of interest.  

“Inverse sampling” refers to a scheme in which units are selected successively until a predetermined 

number of units with a certain characteristic is obtained. Inverse sampling must not be confused with 

rejective sampling. In rejective sampling, a sample is selected according to a design, and the sample is 

rejected if it does not have the desired characteristic (e.g., a specific sample size or an average equal to that 

of the population). The selection of samples is repeated until a sample with the desired property is obtained. 
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Inverse sampling raises a certain number of theoretical questions. How can such a design be implemented 

with equal or unequal inclusion probabilities? What is the probability of inclusion of an occupation within 

each enterprise? How can a variable of interest be estimated using a sample consisting of a few enterprises 

and a few occupations within them? How can the number of occupations in the enterprise be estimated? 

More generally, how can this survey be implemented and how can estimation be done? 

The key issue is the way in which the occupations are selected. They may be selected using a simple 

design with or without replacement, or with unequal probabilities. One option would be to select the units 

with unequal probabilities using the sequential Poisson sampling method proposed by Ohlsson (1998) or 

the Pareto sampling method proposed by Rosén (1997). The inverse sampling problem has already been 

discussed by Murthy (1957), Sampford (1962), Pathak (1964), Chikkagoudar (1966, 1969), and Salehi and 

Seber (2001). However, the parameter to be estimated here is unique, since estimates of average revenue 

among all enterprises having a specific occupation are desired. We also propose a new unequal-probability 

inverse design without replacement. 

This article is organized as follows: In Section 2, the problem is stated and the notation is defined. The 

equal probability case with replacement is discussed in Section 3, and the equal probability case without 

replacement is discussed in Section 4. The unequal probability case with replacement is developed in 

Section 5. A new selection method for the unequal probability case without replacement is presented in 

Section 6. Finally, Section 7 contains a short discussion. 

 
2  Formalization of the problem 
 

The following notation is used: 

 :U  a population of N  enterprises, i.e.,  = 1, , , ,U i N   (U  may denote the population of 

enterprises in an economic region), 

 :L  the list of occupations, 

 :M  the number of occupations in the list, i.e., the size of ,L  

 :iF  the list of occupations in enterprise ,i  with ,iF L  

 :iD  the list of occupations absent from enterprise ,i  with ,iD L  =i iF D L  and 

= ,i iD F   

 :iMp  the number of occupations in enterprise ,i  i.e., the size of ,iF  

 :r  the number of distinct occupations to be obtained in each enterprise, 

 :iX  the number of failures before the r  occupations in enterprise i  are obtained by selecting 

the occupations using a given design. 
 

The main objective is to estimate the average wage for an occupation in the total population. Let iky  be 

the average wage for occupation k  in enterprise ,i  and let ikz  be the number of employees with occupation 

k  in enterprise .i  The objective is to estimate the average wage for occupation k  given by 
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Assume that a sample of enterprises 1S  is selected from U  using some given design with inclusion 

probabilities 1 .i  In enterprise ,i  a sample of occupations iS  is selected using one of the designs described 

above with inclusion probability .k i  If the design is with replacement, k i  represents the expected number 

of times that occupation k  is selected in enterprise .i  

kY  can be estimated using a “ratio” type estimator (Hájek 1971): 
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Therefore, the probability that an occupation will be selected in an enterprise must be known. However, 

with an inverse type design, the probability is unknown and must therefore be estimated in order to estimate 

.kY  Since the inclusion probabilities appear in the denominator, it is preferable to estimate the inverses of 

.k i  In an enterprise, an occupation’s probability of being selected decreases as the number of occupations 

increases. In addition, the probability depends on the inverse sampling design used in each enterprise. 

 
3  Simple random sampling with replacement 
 

Assume that enterprise i  has proportion ip  of the occupations in the list in the enterprise. If the sample 

of occupations is drawn with replacement in enterprise i  until r  occupations in the enterprise have been 

identified, then iX  has a negative binomial distribution denoted by  , .i iX NB r p  In that case, 
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Let , ,ikA k L  be the number of times that unit k  is selected in the sample taken from enterprise .i  In a 

simple design with replacement of size ,n  the values of ikA  have a multinomial distribution. Therefore, 
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where = 0, , ,ikA n  and 
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If this multinomial vector is conditioned on a fixed size in a given part of the population, then 
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with 
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i

ik
k F

a r

   

This shows that, if the sum of ikA  is conditioned on one part of the population, the distribution remains 

multinomial and conditionally there is still a simple design with replacement. 

With the procedure in which we draw with replacement until we obtain r  occupations in enterprise ,i  

we have 

  

if
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In fact, conditionally on ,iX  in iF  of size ,iMp  r  occupations are selected and, in iD  of size  1 ,iM p  

iX  occupations are selected. 

In the case with replacement, what is calculated is not really an inclusion probability, but rather the 

expected value of ikA  which is denoted as ,k i  

          = EE = ,k i ik i
i

r
A X

Mp
   

.k L  The problem is that we know ,M r  and ,iX  but not .ip  We can estimate ip  using the method of 

moments by solving  E = ,i iX X  which yields 
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and therefore 

 1ˆ = .i
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X r
  

The maximum likelihood method provides the same estimator as the method of moments, but this estimator 

is biased (Mikulski and Smith 1976; Johnson, Kemp and Kotz 2005, page 222). If 2,r   the unbiased 

minimum variance estimator of ip  is 
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However, 1ˆ1 ip  is unbiased for 1 .ip  

Since we are using weights that are inverses of ,k i  the inverses of k i  are thus estimated as follows: 
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However, the case with replacement is not very satisfactory, because selecting r  occupations with 

replacement does not necessarily result in r  distinct occupations, since the same occupation may be selected 

more than once. Furthermore, sampling may be especially long if iMp  is small. Therefore, sampling without 

replacement is preferred. 

 
4  Simple random sampling without replacement 
 

For the case without replacement, the notation used is the same as for the draw with replacement. The 

number of failures iX  therefore has a negative hypergeometric distribution. This probability distribution is 

little known, to the point that it has been presented as a “forgotten” distribution by Miller and Fridell (2007). 

This distribution is the counterpart to the negative binomial for the draw without replacement. The general 

framework is as follows: We consider a population of size M  in which there are iMp  favourable units, 

namely the occupations in the list that exist in the enterprise. If the draws are equal probability without 

replacement until r  favorable units appear, then the negative hypergeometric variable, ( , ,iX NH M r  

),iMp  counts the number of failures before r  favourable events occur. 

The probability distribution is 
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where   0, , 1 ,ix M p    1, 2, ,M     1, 2, , ,iMp M   and  1, 2, , .ir Mp   
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Again, ikA  denotes the number of times that unit k  is selected in the sample. Now, the value of ikA  can 

be only 0 or 1. If n  units are selected using a simple design without replacement in ,L  the sample design 

is defined as 
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If the vector of ikA  is conditioned on a fixed size in one part of the population, we have 
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with 
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This shows that, if the sum of ikA  is conditioned on one part of the population, we still have a simple 

design without replacement. In the procedure in which we draw without replacement until we obtain r  

occupations in enterprise ,i  we therefore have 
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The inclusion probability is therefore 
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for all .k L  Again, the problem is that we know ,M r  and ,iX  but not .ip  We can estimate ip  using the 

maximum likelihood method, through a numerical method. 

Using the method of moments, an estimate can be obtained by solving for ip  in the equation 

 = E ,i iX X  that is, 
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is unbiased for .ip  

Again, since we are using weights that are inverses of .k i  The inverses of the inclusion probabilities 

are thus estimated as follows: 
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These weights are also used in the estimator by Murthy (1957), which is unbiased (see also Salehi and Seber 

2001). If < ,iMp r  all occupations will be selected in enterprise i  and the estimated inclusion probabilities 

are then equal to 1. 
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5  Unequal probability sampling with replacement 
 

Unequal probability sampling is not really more difficult to process when the draw is with replacement. 

Now let ikp  denote the probability of an occupation being drawn in each draw with 

 = 1.ik
k L

p

   

Let iP  be the sum of ikp  limited to the occupations in enterprise :i  

                = .
i

i ik
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In this case, iX  has a negative binomial distribution with parameters r  and .iP  Therefore, 
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Let ,ikA k L  be the number of times that unit k  is selected in the sample. In an unequal probability 

design with replacement of size ,n  the values of ikA  have a multinomial distribution. Therefore, 
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This shows that, if the sum of ikA  is conditioned on one part of the population, the distribution remains 

multinomial and conditionally there is still an unequal probability design with replacement. 

With the procedure in which we draw with replacement until we obtain r  occupations in enterprise ,i  

we have 
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The expected value of ikA  is 
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.k L  The problem is that we know ,ikp r  and ,iX  but not .iP  We can estimate iP  using the method of 

moments by solving  E = ,i iX X  which gives 
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The maximum likelihood method provides the same estimator as the method of moments, but this estimator 

is biased (Mikulski and Smith 1976; Johnson et al. 2005, page 222). In fact, the unbiased minimum variance 

estimator is 
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However, 1
ˆ1 iP  is unbiased for .iP  

Again, since we are using weights that are inverses of .k i  The inverses of k i  are thus estimated as 

follows: 
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6  Unequal probability sampling without replacement 
 
6.1  Sequential sampling without replacement 
 

For the draw without replacement, the first problem is determining the design. One option is to use the 

method by Ohlsson (1995) called sequential Poisson sampling. This method involves generating M  

uniform random variables in the interval  0,1 ,  denoted .iku  Next, we select the n  units corresponding to 

the smallest values of | .ik k iu   This method has the advantage of being usable for any sample size and 

providing a sequence of samples that are included in each other. Unfortunately, it only satisfies 

approximately the fixed inclusion probabilities. However, the approximations are very accurate according 

to the simulations given in Ohlsson (1995). 

Methods have also been proposed by Sampford (1962) and Pathak (1964). We propose an exact solution 

to the problem in the sense that the inclusion probabilities are exactly satisfied. We begin by calculating the 

inclusion probabilities for a design of fixed size n  with inclusion probabilities proportional to a strictly 

positive auxiliary variable , .kb k L  The probabilities are determined by 
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A simple algorithm for calculating these probabilities is described in Tillé (2006, page 19), among others. 

The probabilities can be calculated simply using the function inclusionprobabilities in the R 

sampling package. 

A sequential selection method must therefore select a sample of size n  with inclusion probabilities 

  .k i n  It must then make it possible to go from size n  to size 1n   by simply selecting an additional unit 

such that the completed sample has an inclusion probability of  1 .k i n   It appears that the only method 

that allows that to be achieved is the elimination method (Tillé 1996). This method starts with the entire 

population (the list of occupations) and eliminates one unit in each step. In step = 1, , ,j N  the unit is 

eliminated from among the remaining units with the probability 

 
 

 
1 .

1
k i

k i

N j

N j








 
  

This method can thus be used to create a sequence of samples included in each other that verify the inclusion 

probabilities in relation to their size. 

Therefore, we can simply apply the elimination method for sample size = 1n  so that the algorithm 

successively eliminates all the units. Taking them in the reverse order of elimination, we obtain a sequence 

of units. The first n  units of the sequence are selected with inclusion probability   .k i n  The appendix 
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contains a function written in R that can be used to generate this sequence. The code is executed in a 

simulation that shows that the probabilities obtained through simulations by applying this function are equal 

to the fixed inclusion probabilities for all sample sizes. 

 
6.2  Inverse or negative design with unequal probabilities 
 

Now that the design is defined, the inverse design can be defined. The units in the list of occupations are 

taken using the elimination method until r  occupations in the enterprise are selected. In this case, the 

probability distribution of the number of failures iX  seems impossible to calculate. Calculating the 

conditional inclusion probability  E ik iA X  is also problematic. 

However, we can proceed by analogy and estimate the inclusion probabilities on the basis of expression 

(5.1) developed for the case with replacement, where ikp  can simply be replaced by 
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Therefore, we obtain 
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7  Discussion 
 

The selection problem can therefore be resolved for all cases, with or without replacement and with equal 

or unequal probabilities. The proposed solution based on the elimination method respects the inclusion 

probabilities exactly, which is not true for Ohlsson’s sequential sampling. The implementation is especially 

simple, since the program provides an ordered sequence of occupations to propose until the objective has 

been met. 

The estimation issue is slightly more difficult. For the unequal probability sampling without replacement, 

we must make do with a heuristic solution. As well, it can be seen that, in the second stage, there tends to 

be lower inclusion probabilities in enterprises that have many occupations. This should lead us to select 

with greater probabilities the enterprises that may have a larger number of occupations, to avoid selecting 

occupations with probabilities that are too unequal. 
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Appendix 
 
# 
# Load sampling package, which contains the function inclusionprobabilities(). 
# 
library(sampling) 
# 
# The function returns a vector with the sequence numbers of the eliminations. 
# The last (resp. first) unit eliminated is the first (resp. last) 
# component of the vector. 
# The function therefore provides the numbers of the units to be presented 
# successively for the inverse selection. 
# The argument x is the vector of values of the auxiliary variable used to calculate 
# the inclusion probabilities. 
# 
elimination<-function(x) 

{ 
pikb=x/sum(x) 
M = length(pikb) 
n = sum(pikb) 
sb = rep(1, M) 
b = rep(1, M) 
res=rep(0, M) 
for (i in 1:(M)) { 

a = inclusionprobabilities(pikb, M - i) 
v = 1 - a/b 
b = a 
p = v * sb 
p = cumsum(p) 
u = runif(1) 
for (j in 1:length(p)) if (u < p[j]) 

break 
sb[j] = 0 
res[i]=j 
} 

res[M:1] 
} 

# 
# 500,000 simulations with a size in a list of size M=20. 
# By taking the first m components of vector v, we obtain a sample 
# of size m. 
# 
M=20 
x=runif(M) 
Pik=array(0,c(M,M)) 
# 
# Calculate the inclusion probabilities for all sample sizes from 1 to 20. 
# 
for(i in 1:M) Pik[i,]=inclusionprobabilities(x, i) 
rowSums(Pik) 
 
SIM=50000 
SS=array(0,c(M,M)) 
for(i in 1:SIM) 
{ 
S=array(0,c(M,M)) 
v=elimination(x) 
for(i in 1:M) S[i,v[1:i]]=1 
SS=SS+S 
} 
SS=SS/SIM 
# 
# Compare actual and empirical inclusion probabilities. 
# 
Pik 
SS 
SS-Pik 
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A cautionary note on Clark Winsorization 

Mary H. Mulry, Broderick E. Oliver, Stephen J. Kaputa and Katherine J. Thompson1 

Abstract 

Winsorization procedures replace extreme values with less extreme values, effectively moving the original 
extreme values toward the center of the distribution. Winsorization therefore both detects and treats influential 
values. Mulry, Oliver and Kaputa (2014) compare the performance of the one-sided Winsorization method 
developed by Clark (1995) and described by Chambers, Kokic, Smith and Cruddas (2000) to the performance of 
M-estimation (Beaumont and Alavi 2004) in highly skewed business population data. One aspect of particular 
interest for methods that detect and treat influential values is the range of values designated as influential, called 
the detection region. The Clark Winsorization algorithm is easy to implement and can be extremely effective. 
However, the resultant detection region is highly dependent on the number of influential values in the sample, 
especially when the survey totals are expected to vary greatly by collection period. In this note, we examine the 
effect of the number and magnitude of influential values on the detection regions from Clark Winsorization using 
data simulated to realistically reflect the properties of the population for the Monthly Retail Trade Survey 
(MRTS) conducted by the U.S. Census Bureau. Estimates from the MRTS and other economic surveys are used 
in economic indicators, such as the Gross Domestic Product (GDP). 

 
Key Words: Outlier; Masking; Monthly retail trade survey. 

 
 

1  Introduction 
 

Recently we studied methods of detecting and treating verified influential values with the goal of finding 

an objective method for identification and treatment of influential values in a highly skewed business 

population (Mulry et al. 2014). An observation is considered influential if its value is correct but its weighted 

contribution has an excessive effect on the estimated total or period-to-period change. Although influential 

values occur infrequently in economic surveys, if one appears and is not “treated,” it may introduce 

substantial over- or under-estimation of survey totals or period-to-period change. In turn, this can impact 

other measures of the economy. For example, monthly estimates of sales and inventories from the U.S. 

Census Bureau’s Monthly Retail Trade Survey (MRTS) are inputs to the Gross Domestic Product (GDP). 

With any outlier detection and treatment method, one aspect of particular interest is the range of values that 

methods designate as influential, called the detection region. The size of the region and its boundary directly 

impact the number of identified values and the minimum amount by which the value(s) will be adjusted. 

Consequently, it is important to understand how to “manipulate” the method used, to ensure that (1) true 

influential values are always identified and receive the minimum treatment needed to ameliorate their impact 

on totals without overly perturbing the sample’s distribution and (2) values that are not influential are rarely 

identified and are consistently associated with trivial adjustments. 

One approach for detecting and treating influential values is called Winsorization. These procedures 

replace extreme values with other, less extreme values, effectively moving the original extreme values 

toward the center of the distribution. Winsorization procedures may be one-sided by treating only extreme 

values that are too high, or they may be two-sided by simultaneously treating high and low values. Values 
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designated as influential are modified (“treated”) by replacing them with values chosen to minimize the 

mean squared error (MSE) of the estimate of the total. For further discussion, see Chambers (1986), 

Chambers et al. (2000), and Martinoz, Haziza and Beaumont (2015). 

In this note, we focus on the Clark Winsorization, a one-sided method developed by Clark (1995) and 

described by Chambers et al. (2000). The Clark Winsorization method assumes a data model and then uses 

an algorithm to detect and treat influential values. The detected and treated values form the detection region. 

Our studies found the Clark Winsorization algorithm can be effective, but the resultant detection region is 

highly dependent on the number of influential values in the sample. If the sample contains no influential 

values, the procedure is anti-conservative, meaning it makes very small changes to several values not 

considered influential thus reducing the variance and mean square error but essentially leaving the estimated 

total unchanged (trimming). On the other hand, the procedure can become very conservative if the sample 

contains a single influential value, depending on the distance of the value from the remainder of the 

distribution. When the sample contains two or more influential values, Clark Winsorization detects and 

adjusts only the influential values and does not trim any values that are not influential. However, the 

procedure can be prone to masking (Barnett and Lewis 1994). Trimming observations when no influential 

value is present does not appeal to subject matter analysts in a production setting where time is limited. The 

cost of examining a “false positive” can be prohibitive and treated values might be categorized as imputed 

in response rate computations. However, the algorithm has the advantage of being straightforward to 

implement and not requiring prior knowledge of the population. Certainly there are situations where these 

advantages of Clark Winsorization may outweigh the disadvantages. 

We examine the influential value detection regions from Clark Winsorization using a simulated dataset 

that realistically reflects the population of the MRTS and was first used in (Mulry et al. 2014). We illustrate 

how the presence of one versus two high influential values can affect the detection region under several 

scenarios. Our objective is not to advocate for or against this method; the purpose of this note is to make 

potential users aware of aspects of this procedure that can affect its outcome. 

Section 2 contains background on monthly business surveys including an overview of the sample design 

and weighting. A description of the Clark Winsorization methodology and its implementation using MRTS 

data appears in Section 3. The discussion in Section 4 concentrates on the detection region for influential 

values with Section 4.1 addressing the scenario of one influential value in a sample and Section 4.2 focusing 

on the scenario when two influential values are present. Section 5 contains a summary. 

 
2  Business survey setting 
 

As is typical of many business surveys, the MRTS is sampled from a highly skewed population of 

companies. The MRTS selects a sample every five years using a stratified simple-random sample design. 

Primary strata are determined by major industry as reported by the company, whose units are further sub-

stratified by estimated annual sales (U.S. Census Bureau 2014). When the sample is introduced, small 

businesses are generally sampled at a low rate and have large sampling weights, whereas the larger 

businesses are sampled at a higher rate and have small sampling weights, again typical of many business 
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survey designs (Smith 2013). Originally, all businesses in the same sampling strata have the same sampling 

weight. However, weights for individual businesses may be adjusted as the sample matures due to persistent 

increases in sales for some businesses and decreases for others. For this reason, simulating a realistic 

weighting structure for a matured sample is challenging. When influential values do appear, it is the 

combination of the weight and the reported sales that produces the unusually large weighted value. 

Sampling weights for small units can be very large, so examining the unweighted values to identify 

influential values would be quite misleading. We illustrate the combined effect of weight and sales with a 

single sample (replicate) throughout this note. Figure 2.1 presents plots of sampling weights against 

unweighted and weighted values of sales, respectively from this sample. Certainty businesses – those 

sampled with probability equal to 1 – are marked by hollow circles. The graph on the left shows that the 

units that have the smallest values of sales tend to have the highest sampling weights. By design, as the 

observed (unweighted) value of sales increases, the sampling weight likewise decreases. However, as shown 

in the graph on the right, the weighted value from both the small and large businesses contribute similarly 

to the estimated total. Indeed, a small value of sales multiplied by a large sampling weight can easily affect 

the estimated total. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1  On the left, sampling weight versus unweighted value of sales. On the right, sampling weight versus 

weighted value of sales for unit. Units selected with certainty are shown as hollow circles.  

 
Economic surveys publish totals and period-to-period change estimates. Influential values are examined 

with respect to their weighted impact on the total. If the estimates of total sales vary greatly by period, the 
change estimates are affected accordingly. Currently, when an influential value is detected, the mitigation 
strategy depends on whether the subject matter experts believe the observation is a one-time phenomenon 
or a persistent shift. If the influential value appears to be an atypical occurrence for the business, then the 
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influential observation is replaced with an “imputed” value that is more consistent with the remainder of the 
distribution whether or not it fails an edit [Note: if the replacement value were obtained via Clark-
Winsorization, then it would technically be an “adjusted” value]. If the influential value persists, indicating 
a permanent change, then its sampling weight is adjusted. 

 
3  Method 
 

We first introduce notation needed to describe the Clark Winsorization, which follows Mulry et al. 

(2014). For the thi  business in a survey sample of size n  for the month of observation , tit Y  is the collected 

characteristic (e.g., sales), tiw  is its survey weight (which may or may not be equivalent to the inverse 

probability of selection), and tiX  is a variable highly correlated with ,tiY  such as previous month’s revenue. 

The monthly total tY  is estimated by tŶ  defined by 
1

ˆ .
n

t ti tii
Y w Y


   

For ease of notation, we suppress the index for the month of observation t  in the remainder of this 

section. In MRTS, the survey weight iw  is the (possibly modified) sampling weight since the missing data 

treatment is imputation. 

The general form of the one-sided Winsorized estimator of the total is designed for large values and is 

written as *
1

ˆ n

i ii
Y w Z


   where   min , .i i i i i iZ Y K Y K w    

Detection of observation i  as an influential value by Clark Winsorization occurs when .i iZ Y  More 

than one observation may be identified. Note that using  min ,i i iZ Y K  would ensure bounded 

influence and a robust estimator. However, this may lead to a large bias in *ˆ .Y  

To implement the method, Clark assumes a general model where the iY  are characterized as independent 

realizations of random variables with  i iE Y   and   2var .i iY   Then the approach approximates the 

iK  that minimizes the MSE under the model by setting   1
1 ,i i iK L w     which requires estimating 

i  and .L  Clark’s approach builds on a method developed by Kokic and Bell (1994) that derived a K  for 

each stratum rather than for each individual unit. 

For an estimate of ,i  Chambers et al. (2000) suggest using the results of a robust regression. In our 

application, we used the SAS Procedure ROBUSTREG (SAS 2014) to implement the weighted least median 

of squares (LMS) robust regression method. The LMS robust regression uses weights to compensate for the 

heteroscedasticity visible in Figure 2.1. Other considered methods appeared too sensitive with our data, 

designating some observations as influential when they were not large enough to have an excessive effect 

on the estimated total in our empirical data sets. In different applications, different robust regression methods 

could exhibit superior performance and should be considered. Our prediction model estimates i  with ibX  

where b  is the regression coefficient and iX  is the previous month’s observation, chosen because iX  and 

iY  tend to be highly correlated and no administrative data are available on a monthly basis. To estimate ,L  

the Clark Winsorization procedure uses the estimate of i  to estimate weighted residuals 

    1i i i iY wD    by    1 .ˆ
i i i iY bX wD     



Survey Methodology, December 2016 301 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Certainty units have weighted residual values of zero, assuming that no other weight adjustments are 

performed (e.g., for unit nonresponse, for post-stratification). Next, the method sorts the estimates of the 

residuals in decreasing order      1 2
ˆ ˆ ˆ, , ., nD D D  Then the Clark method finds the largest value of ,k  called 

* ,k  such that      1
ˆ ˆ1

k

k jj
k D D


   is positive, then estimates L  by    

*1*
1

ˆ ˆ1 .
k

jj
L k D


    Finally, the 

estimate of iK  is formed by   1ˆ ˆ 1 ,i i iK bX L w
    which is used to determine the values of iZ  for the 

estimate of the total *ˆ .Y  Chambers et al. (2000) recommend forming the estimate of L  for the procedure 

by using an average of estimates of L  from several previous months of data. However, our examples in 

Section 4 use only the previous month because we use data from a simulated stationary series constructed 

to reflect the different means and variances in the sampling strata for an industry in the MRTS. The 

stationary series was created by constructing a simulated population from MRTS data and applying an 

ARMA model to generate the time series. Thus, additions and deletions to the MRTS sample over time (i.e., 

births and deaths) are not incorporated in the simulation design. Consequently, averaging over several 

previous months offers no advantage over the point estimate from the previous month. In addition, we used 

the Winzorized values as auxiliary values  iX  in the application of the procedure to the subsequent month 

in order to study the propagation of the effects of the adjustment in the production setting. Although 

influential values were induced by adding a large amount to an observation selected at random from a 

stratum with one of the largest weights, the calculation of the value of L  used all the sample observations 

with weights greater than one. More details on the construction of the series may be found in Mulry et al. 

(2014). We have not explored using an average of estimates of L  from several previous months with 

simulated MRTS data that incorporated seasonality, volatility, and changes in economic conditions or with 

empirical MRTS data. Such an average of estimates of L  may be useful in other designs and surveys that 

exhibit more stable behavior, such as annual rather than monthly implementations. 

 
4  Detection regions 
 

We examine the range of influential values that Clark Winsorization designates as influential, called the 

detection region, under three scenarios. One scenario has a single high influential value present in the 

sample. In the other two scenarios, the sample contains two high influential values. 

Figures 4.1 and 4.2 use grids of unweighted data to illustrate the detection regions for the application of 

the Clark Winsorization algorithm on a single sample from a simulated MRTS industry with low volatility, 

a monthly revenue of $2.5 billion and a sample size of 147. In these figures, each  ,x y  point on the grid 

represents a possible influential value where x  represents the unweighted value for the previous month and 

y  represents the current month’s unweighted value. Since the weights for the same business rarely change 

from month-to-month, the scatterplots of weighted values are similar and therefore are not shown. We use 

sampling weights for the points on the grid and do not modify the weights in our simulation. All the points 

on a vertical line have the same weight with the sample weights lower for units that have higher values of 

sales. The detection regions are constructed by inserting each pair of  ,x y  coordinates from the grid into 

the sample and then running the Clark Winsorization algorithm with the parameter settings described in 

Section 3 to see if the weighted y  value in the inserted pair is designated as influential.  
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4.1  Results for one influential value 
 

In this section, we illustrate the effect on the detection region of a sample containing a single influential 

value, hereafter referred to as Scenario 1. In Figure 4.1, the unweighted sample observations used to form 

the detection regions are shown in black with the -x axis representing the previous month’s value and the 

-y axis representing the current month. The robust least median of squares regression line used in the 

prediction model has been included for reference. For the given sample, a single observation that falls in the 

light gray hashed region (detection region) is flagged as influential and adjusted by the Clark Winsorization 

method. The broken vertical line marks the largest sampled observation with a weight greater than one; that 

is, all observations to the right of this asymptote are guaranteed to have a weight of one. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1  Detection region for Clark Winsorization for a single influential value. All sample points are in 

black. 

 
The close proximity of the lower boundary line of the detection region to the regression line reflects the 

trimming done by the method to minimize the MSE by lowering the variance at the cost of introducing a 

small bias. Therefore, several non-influential cases in this detection region will be trimmed slightly 

nonetheless. We observed this phenomenon repeatedly in several other (different) empirical data sets. 

 
4.2  Results for two influential values 
 

Now we turn to investigating the detection region when the sample contains two induced high influential 

values. Our approach holds one induced observation at a fixed value and weight in the sample and allows 

the second induced observation to vary in value with its corresponding weight, permitting the identification 

of the detection region for the second observation, conditional on the first. This approach allows us to assess 

whether the procedure is subject to masking which occurs when a large value prevents the identification of 

other extreme values. We consider two scenarios for the fixed value. In Scenario 2, the contribution of the 
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fixed influential value to the estimate of total sales is 667 million higher than the previous month. In 

Scenario 3, the fixed influential value is less severe since its contribution is 334 million higher, half of the 

increase in Scenario 2. 

The graph on the left in Figure 4.2 presents the detection region (light gray area) under Scenario 2. Here, 

the fixed (unweighted) value is 350,000 in the previous month and 8.2 million in the current month with a 

weight of 85. Regardless of where the second observation was placed throughout the graph, the fixed 

observation was always designated as influential. Notice that the observations that would have been falsely 

designated as influential and slightly trimmed in Scenario 1 (see Figure 4.1) would not have been changed 

in this scenario. Here, the detection region is restricted to identifying only similar severe observations, which 

are supposed to be atypical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2  Detection regions for Clark Winsorization for the second of two influential values. On the left, the 

first one is held fixed and is extreme. On the right, the first one is held fixed but is less extreme. All 
sample points are in black. 

 
The dramatic difference in the relative sizes of the detection regions between Scenario 1 and Scenario 2 

could indicate that this procedure – as applied – is vulnerable to masking. Masking occurs when one 

influential value causes a failure to identify the presence of another (Barnett and Lewis 1994). We explore 

this possibility in Scenario 3, halving the unweighted value of the fixed influential value in the current 

month (now 4.1 million instead of 8.2 million) while allowing the weight to retain the same value of 85. 

The graph on the right in Figure 4.2 shows two different shaded regions: a light grey area where both the 

fixed influential value and the second (variable) value can be detected, and a dark gray region to the left of 

the light gray region where the algorithm detects the variable value as influential but misses the fixed value. 
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Adjustments in the light gray area reduce both the bias and the MSE. In the dark gray area, the adjustment 

reduces the MSE, but may not reduce the bias substantially. The white area to the right of the light gray 

region shows where only the fixed influential value is identified. However, the white area contains large 

observations with small weights so these observations are not representing much more than themselves, and 

consequently adjustments in this range have small impact on the bias.  

This preliminary exploration validates our concern about the potential for masking. One approach that 

may alleviate masking when a stationary series has a high level of noise is to average L  over several 

previous months as suggested in Chambers et al. (2000). The sampling design may be a factor. The graph 

on the left in Figure 2.1 shows that the weights decline rapidly as the unweighted observations increase for 

observations between 0 and 1 million. In this range, the weight of the unit has more impact than its observed 

value on the size of its weighted residual used in calculating the * .k  A relatively small change in the variable 

value may trigger a much larger change in its weighted residual and cause the *k  to change, which affects 

the number of influential values detected. The weights used in this example reflect the weights used in the 

MRTS for the industry and were not constructed artificially to create an illustration for the Clark 

Winsorization methodology. 

 
5  Summary 
 

The usage of Clark Winsorization is very appealing for the simplicity of its implementation and lack of 

parameters as long as one can build a viable robust regression model. However, as with many outlier 

detection procedures, the method has certain vulnerabilities that are not always obvious. This note 

demonstrates how the procedure can be effective at identifying and treating influential values, but is also 

highly sensitive to the number of influential values in the sample and their magnitude with respect to the 

regression line used to determine the detection region bounds. The properties of the detection region vary 

by whether an influential value is present and by the number and severity when one or more appear. If the 

sample contains no influential values, the procedure is anti-conservative in that it trims values not considered 

influential to minimize the MSE (by reducing the variance). In contrast, the procedure can become very 

conservative depending on the degree of difference of the weighted influential value from the others in the 

sample. When the sample contains two or more influential values, Clark Winsorization detects and adjusts 

only the influential values and does not trim any values that are not influential. However, our results 

demonstrate a potential for masking which should be considered when implementing the procedure. 

If the occurrence of an influential value is truly a rare event and large influential values are of interest, 

then the small trimming of a handful of values that are not influential is a disadvantage. However, in 

applications where influential values are common or where historic data are not available for modeling, 

implementing Clark Winsorization definitely requires an assessment of the amount of trimming to determine 

if the aggregated small changes greatly affect the estimated total. If not, then this is an appealing approach. 

If yes, then other methods such as M-estimation – which give more control over the detection region – may 

be advantageous.  
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A few remarks on a small example by Jean-Claude Deville 
regarding non-ignorable non-response 
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Abstract 

An example presented by Jean-Claude Deville in 2005 is subjected to three estimation methods: the method of 
moments, the maximum likelihood method, and generalized calibration. The three methods yield exactly the 
same results for the two non-response models. A discussion follows on how to choose the most appropriate 
model. 
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1  Deville’s example 
 

During a conference at the University of Neuchâtel, Jean-Claude Deville (2005) presented a simple 

example to illustrate the value of generalized calibration for dealing with non-ignorable non-response 

(regarding generalized calibration, see Deville 2000, 2002 and 2004; Kott 2006; Chang and Kott 2008; Kott 

and Chang 2010; and Lesage and Haziza 2015). The example is reproduced below in its entirety. 
 

Adjustments to offset the effects of non-response require very accurate knowledge of the factors 

that cause it. In particular, if what is to be measured directly influences the response 

probability, we must take risks with the data. Here is a small fictional example: A group of 

students is interviewed about their use of drugs. The survey results are as follows: 

 
Table 1.1 
Deville’s example 

 

 YES NO NON-RESPONSE COMBINED 
Boys 40 80 180 300 
Girls 20 160 120 300 
Combined 60 240 300 600 

 
Naively, we would think that the percentage of drug users is estimated at 60/(240 + 60) = 25%. 

This estimate is made under the assumption that non-respondents have the same behaviour as 

respondents. However, we notice that the response rate for girls is greater than the response 

rate for boys. To correct that, we calculate the rate of drug users among girls, or 1/9, and 

among boys, or 3/9, and we conclude that the rate of drug users in observed student population 

is 2/9 = 22.2%. Now, if we think that drug use is causing the non-response, the model has two 
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parameters yesp  and 
nop ,  the response probabilities of users and non-users, respectively. We 

find that these probabilities equal 0.2 and 0.8, respectively. The estimated number of users is 

therefore 200 among boys and 100 among girls, and the estimated overall percentage is 50! 
 

At first glance, the example is simple, and it perfectly explains the usual typology of the three non-

response mechanisms. Each of the three estimates proposed in the example corresponds to one of the three 

categories below: 
 

 Missing completely at random (MCAR): The response probability does not depend on the 

variable of interest (drug use) or on the auxiliary variable (gender). 

 Missing at random (MAR): The response probability does not depend on the variable of interest 

y  after conditioning on the auxiliary variable x  (gender). In this case, the response probability 

would therefore depend on gender only. 

 Not missing at random (NMAR): The response probability depends on the variable of interest 

itself (drug use) even if consideration is given to the auxiliary variable .x  
 

The example shows the value of generalized calibration, which can deal directly with NMAR. Jean-

Claude Deville addresses the problem by considering the probabilities yesp  and 
n op  as parameters to be 

estimated. This example can be dealt with in several ways, depending on one’s point of view on inference. 

In the following, we will show that there are at least three methods to address the problem, namely the 

method of moments, the maximum likelihood method and calibration. The maximum likelihood method 

was not dealt with by Jean-Claude Deville. We develop calculations completely for the first two estimation 

methods by considering the two models. We also calculate the calibration and generalized calibration 

results. 

We show that the three results obtained are identical. The estimated likelihood function could be used to 

choose between the two models. Unfortunately, the function has the same value for both models, which 

does not make it possible to choose the model. However, we propose a way to make a choice. 

In Section 2, we present the notation used. Section 3 is devoted to estimation using the method of 

moments, and Section 4 is devoted to estimation using the maximum likelihood method. In Section 5, we 

apply the calibration and generalized calibration methods. We close with a discussion on the value of each 

method in Section 6. 
 

2  Notation 
 

Table 2.1 shows the notation for Table 1.1. 
 

Table 2.1 
Notation for Table 1.1 
 

  Drug User Non-user Missing Total 

Male  HDr    HSr    Hm    .Hn   

Female  FDr    FSr    Fm    .Fn   

Total  .Dr    .Sr    m    n   
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For simplicity, assume that we are dealing with a census. In other words, the 600 students were not 

randomly selected. Therefore, the only source of randomness is the non-response mechanism. This 

assumption is not that restrictive, since it is equivalent to considering that the sample is random, but that the 

reasoning below is conditional on the random sample. The objective is to estimate the numbers of people in 

Table 2.2. This table is assumed not to be random. It is therefore a matter of distributing the non-respondents 

Hm  and 
Fm  between drug users and non-users. 

 
Table 2.2 
Number of people to be estimated based on Table 1.1 
 

  Drug User Non-user Total 

Male  HDn    HSn    .Hn   

Female  FDn    FSn    .Fn   

Total   .Dn    . Sn    n   

 
As well, it is assumed that the non-response follows a Poisson design, that is, each individual decides 

whether or not to respond with a probability independent of other individuals. The response probability may 

vary among individuals. 

The two vectors  , , ,HD HS Hr r m  and  , ,F D F S Fr r m  each have a multinomial distribution whose 

parameters depend on the model used. MCAR cases, which are completely trivial, will not be studied. In 

Table 2.3, which shows cases of MAR, the response probability depends on gender only ( Hp  for males, 

Fp  for females). In Table 2.4, which shows cases of NMAR, the response probability depends only on 

being or not being a drug user ( ,Dq  
Sq  for the others). 

 
Table 2.3 
Case 1: MAR model, non-response depends on gender 
 

   Drug User   Non-user   Missing  Total  

Male    E =HD HD Hr n p     E =HS HS Hr n p       .E = 1H H Hm n p    .Hn   

Female    E =FD FD Fr n p     E =FS FS Fr n p       .E = 1F F Fm n p    .Fn   

Total    .E Dr     .E Sr    m    n   

 
Table 2.4 
Case 2: NMAR model, non-response depends on being or not being a drug user 
 

   Drug User   Non-user  Missing  Total  

Male    E =HD HD Dr n q     E =HS HS Sr n q         E = 1 1H HD D HS Sm n q n q      .Hn   

Female    E =FD FD Dr n q     E =FS FS Sr n q         E = 1 1F FD D FS Sm n q n q      .Fn   

Total    .E Dr     .E Sr    m    n   
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3  Estimation using the method of moments 
 

3.1  MAR 
 

The method of moments makes it possible to estimate parameters quickly. For MAR, we obtain the third 

column of Table 2.3 using the equations 

   
   

   
.

.

E = 1 ,

E = 1 ,

H H H

F F F

m n p

m n p




  

which yield the estimators 

 
.

.

ˆ = 1 ,

ˆ = 1 ,

H
H

H

F
F

F

m
p

n

m
p

n





  

and therefore, from the first two columns, 

             

. .
.

. .

. .
.

. .

ˆ = = ,
ˆ ˆ

ˆ = = .
ˆ ˆ

HD FD H F
D HD FD

H F H H F F

HS FS H F
S HS FS

H F H H F F

r r n n
n r r

p p n m n m

r r n n
n r r

p p n m n m

 
 

 
 

  

The estimated response probabilities are ˆ = 0 .4Hp  and ˆ = 0.6.Fp  We therefore obtain the estimates shown 

in Table 3.1. 

 
Table 3.1 
Estimates: MAR 
 

   YES   NO   COMBINED  

Boys   100.00   200.00   300  
Girls   33.33   266.66   300  
COMBINED   133.33   466.66   600  

 
3.2  NMAR 
 

For NMAR, we obtain the following equations from Table 2.4: 

 

     

     

1 1
E = E ,

1 1
E = E .

D S
H HD HS

D S

D S
F FD FS

D S

q q
m E r r

q q

q q
m E r r

q q

 


 


  

After a few calculations, we obtain the following response probability estimators: 
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Finally, we obtain 
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As Deville writes, the estimated response probabilities are ˆ = 0.2Dq  and ˆ = 0 .8.Sq  We therefore obtain 

the estimates in Table 3.2. 

 
Table 3.2 
Estimates: NMAR 
 
   YES   NO   COMBINED  

Boys   200   100   300  
Girls   100   200   300  
COMBINED   300   300   600  

 
4  Estimation using the maximum likelihood method 
 

4.1  MAR 
 

The probability distribution is multinomial. For MAR, the following likelihood function applies: 
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By setting to zero the partial derivatives of the log-likelihood with respect to parameters 
Hp  and ,Fp  we 

obtain two equations with two unknowns. The solution yields the estimators 
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ˆ = 1 .
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m
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By setting to zero the derivatives with respect to 
H Dn  and ,FDn  we obtain the estimators 
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Therefore, 

    
.ˆ ˆ ˆ= = .

ˆ ˆ
HD FD

D HD FD
H F

r r
n n n

p p
    

These estimators are exactly the same as those obtained using the method of moments. 

 
4.2  NMAR 
 

For NMAR, the following likelihood function applies: 
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By setting to zero the partial derivatives of the log-likelihood with respect to the four parameters ,Dq  ,Sq  

H Dn  and ,FDn  we obtain a system of four rather complicated second-order equations with four unknowns. 

We used a symbolic computation software program to verify that the solution given by the method of 

moments is a solution to this system of equations. Obviously, since the system is second-order, there is a 

second solution. However, for Deville’s example, the second solution yields negative values, which are not 

valid for estimating probabilities and numbers of people. 

 
5  Estimation using calibration and generalized calibration 
 

5.1  Notation 
 

To define calibration, we will establish the following notation. Let  = 1, , , ,U k N   be the set of 

people interviewed (here, = 600N  and R U  be the set of respondents to the question regarding drug 

use. As well, we define the following: 

   
 

 

1 0 if individual is male
=

0 1 if individual is female.
k

k

k









x   

and 

                                              
 

 

1 0 if individual reported using drugs
=

0 1 if individual reported not using drugs.
k

k

k









z   

Using the notation defined above, 
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5.2  Estimation using simple calibration 
 

Using simple calibration as described in Deville and Särndal (1992), we seek a weight that is expressed 
as 

  = ,k kw F x λ   

where  1 2= , λ  is a parameter vector and  .F  is a calibration function, that is, a strictly increasing 

function such that  0 = 1F  and whose derivative  .F   is such that  0 = 1.F   

Vector λ  is determined by using the Newton method to solve the system of equations 

   = .k k k
k R k U

F 

 
 x λ x x  (5.1) 

Finally, the calibration estimator is given by 
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In our application, equation (5.1) becomes 
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We directly obtain the following: 
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Therefore, the calibrated estimators are 

 

. .
.

. .

. .
.

. .

ˆ =

ˆ = ,

H F
D HD FD

H H F F

H F
S HS FS

H H F F

n n
n r r

n m n m

n n
n r r

n m n m


 


 

  



314 Tillé: A few remarks on a small example by Jean-Claude Deville regarding non-ignorable non-response 
 

 
Statistics Canada, Catalogue No. 12-001-X 

which is exactly the same result as that yielded by the method of moments and the maximum likelihood 

method. In this case, the solution does not depend on the calibration function used. Obviously, the example 

is especially simple. In more complex cases where the category definitions do not overlap, the result depends 

on the calibration function used. 
 

5.3  Generalized calibration 
 

For generalized calibration as defined in (Deville 2000, 2002, 2004; Kott 2006), the weights are 
expressed as 
  = .k kw F z λ   

Vector λ  is determined by solving the system of equations 

   = .k k k
k R k U

F 

 
 z λ x x  (5.2) 

Finally, the generalized calibration estimator is given by 
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In our application, equation (5.2) becomes 
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Which can be written as a matrix 
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We simply solve the linear system 
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The estimators are therefore 
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Again, the solution does not depend on the calibration function used. The solution is identical to the solution 

obtained using the method of moments and the maximum likelihood method. Here, too, this property results 

from the simplicity of the example. In more complex cases, the result depends on the calibration function 

used. 
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6  Discussion 
 

Deville’s example is especially welcome since, for both models, the three estimation methods provide 

exactly the same estimators. Obviously, if the model is more complicated, using the maximum likelihood 

method becomes cumbersome, if not impossible. The calibration and generalized calibration method works 

in all cases as long as the number of calibration variables whose totals are known is sufficient and the matrix 

 k k
k R




x z   

is invertible. In this example, the determinant of this matrix appears in the denominator of the estimators. 

Therefore, a small determinant makes the estimates especially risky. Lesage and Haziza (2015) recommend 

verifying that the correlations between variables 
kx  and 

kz  are great enough to avoid potentially 

amplifying the bias. 

If the variables are quantitative, the solutions will depend on the calibration function used (.).F  The use 

of the calibration function    = 1 expk kF  z λ z λ  is recommended, since it has the advantage of providing 

weights greater than 1. The inverse of the weights can now be interpreted as a response probability estimated 

using a logistic model. 

The main difficulty is obviously choosing between the two proposed models. In Deville’s example, it 

may seem more “logical” to see the non-response depend rather on drug use than on gender. However, we 

are not well equipped to make a choice between the two models. The values of the two likelihood functions 

for the estimated parameters are equal. Is it possible to choose the model based on more than a strong 

conviction? As suggested in Haziza and Lesage (2016), we recommend always calculating both weightings 

and comparing the weights and estimates obtained with each of them. 

One option may be to calculate an indicator of the dispersion of the response probabilities, such as the 

variance. For example, if the variance is great, it means that the model has made it possible to calculate 

response probabilities with greater contrast between individuals and that the model has therefore taken better 

account of the non-response. Validation through a search for contrasting weights is the basis for identifying 

response homogeneity groups (RHGs) for all segmentation methods, for example with the chi-square 

automatic interaction detector (CHAID) algorithm developed by Kass (1980). For example, with CHAID, 

in each step the RHGs are split based on categories that result in response probabilities with the greatest 

contrast. By using the same principle in choosing the model, we can select the model that provides the 

weights with the greatest contrast. For example, if the variance is small, it means that the non-response 

model could not highlight the differences in non-response probabilities between individuals. Incidentally, 

the variance in response probabilities is the square of the R-indicator defined by Schouten, Cobben and 

Bethlehem (2009), used here to choose a non-response model. 

In both cases, the average response probability equals 0.5. Specifically, 

   . .
.
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= = = 0.5
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and 
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For the MAR model, the variance is 
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For the NMAR model, the variance is 
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The greater variance of the NMAR model is an argument in its favour. In fact, the response probabilities 

show much greater contrast. 
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A note on the concept of invariance in two-phase  
sampling designs 

Jean-François Beaumont and David Haziza1 

Abstract 

Two-phase sampling designs are often used in surveys when the sampling frame contains little or no auxiliary 
information. In this note, we shed some light on the concept of invariance, which is often mentioned in the context 
of two-phase sampling designs. We define two types of invariant two-phase designs: strongly invariant and 
weakly invariant two-phase designs. Some examples are given. Finally, we describe the implications of strong 
and weak invariance from an inference point of view. 

 
Key Words: Double expansion estimator; Horvitz–Thompson estimator; Strong invariance; Two-phase sampling; Weak 

invariance. 

 
 

1  Introduction 
 

Two-phase sampling designs are often used in surveys when the sampling frame contains little or no 

auxiliary information. It consists of first selecting a large sample from the population (typically using a 

rudimentary sampling design) in order to collect data on variables that are inexpensive to obtain and that 

are related to the characteristics of interest. The idea behind two-phase sampling is to create a pseudo-

sampling frame richer in auxiliary information than the original sampling frame. Then, using the variables 

observed in the first phase, an efficient sampling procedure can be used to select a (typically small) 

subsample from the first-phase sample in order to collect the characteristics of interest. Two-phase sampling 

may also be helpful in a context of nonresponse as the set of respondents is often viewed as a second-phase 

sample. 

We adopt the following notation: consider a population U  of size .N  A vector 1I  is generated according 

to the sampling design  1 ,F I  where  1 11 1= , , NI I I   denotes a vector of indicators such that 1iI  is either 

equal to 0 or 1. The first-phase sample, denoted by 1,s  is the set of population units for which 1 = 1iI  and 

1 1= ,ii U
n I

  is the size of 1.s  Then, a vector 2I  is generated according to the sampling design  2 1 ,F I I  

where  2 21 2= , , NI I I   denotes the vector of indicators such that 2iI  is either equal to 0 or 1. The second-

phase sample, denoted by 2s  is the set of population units for which both 1 = 1iI  and 2 = 1iI  and 

2 1 2= i ii U
n I I

  is the size of 2 .s  In practice, note that the indicators 2iI  are not generated for the 

population units belonging to the set 1.U s  However, at least conceptually, nothing precludes defining 

these indicators for the units outside the first-phase sample. 

Let  1 1= = 1i iP I  and  1 1 1= = 1, = 1ij i jP I I  be the first-order and second-order selection 

probabilities at the first-phase. Similarly, let    2 1 2 1= = 1i iP I I I  and    2 1 2 2= = 1, = 1ij i jP I I 1I I  

be the first-order and second-order selection probabilities at the second-phase. Note that the (first-order and 

second-order) selection probabilities at the second-phase may depend on the realized sample 1.s  
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The paper is organized as follows. In Section 2, we define the concepts of weak and strong invariance 

and provide some examples. In Section 3, we discuss the implications of weak and strong invariance from 

an inferential point of view. In particular, we discuss the reverse decomposition of the variance in the case 

of a strongly invariant two-phase sampling design. 

 
2  The concept of invariance 
 

We distinguish the concept of strong invariance that may also be called distribution invariance from that 

of weak invariance that may also be called first-two-moment invariance.  
 

Definition 1. A two-phase sampling design is said to be strongly (or distribution) invariant provided that  

    2 1 2=F FI I I  (2.1) 

A consequence of Definition 1 is that      1 2 1 2, =F F FI I I I  and therefore, with a strongly invariant 

two-phase sampling design, the vector 2I  can be generated prior to the vector 1.I  In practice, the concept 

of strong invariance is satisfied for only few two-phase sampling designs. A first example is Poisson 

sampling at the second phase. This covers the case of nonresponse, which is often viewed as a Poisson 

sampling design at the second phase. An other example is two-stage sampling. Both are described in greater 

detail below.  
 

Example 1. At the first phase, a sample 1s  is selected according to an arbitrary sampling design followed 

by Poisson sampling at the second phase, where the units selection probability  2 1i I  are set prior to 

sampling, which means that  2 1 2=i i I  for .i U  Since Poisson sampling is completely characterized 

by its first-order selection probabilities, we have    2 1 2= .F FI I I  As a result, this sampling design is 

strongly invariant. It can be implemented as follows: first, generate the vector 2I  according to the Poisson 

sampling design  2F I  and, independently, generate the vector 1I  according to the design  1 .F I  

Example 2. Two-stage cluster sampling can be described as follows: at the first stage, a sample of clusters 

is selected randomly from the population of clusters. Then, at the second stage, within each cluster selected 

at the first stage, a sample of elements is randomly selected. Note that, even in this case, the vector 1I  is 

still defined at the element level, with its size N  corresponding to the number of elements in the population. 

Under this set-up, the selection indicator for an element j  within cluster ,i  1 ,ijI  is equal to 1 for all elements 

j  within a selected cluster .i  Therefore, two-stage sampling is a special case of two-phase sampling as 

described in Section 1. If the selection within clusters is independent of which clusters have been selected 

in the first phase, then we are in the presence of a strongly invariant two-stage cluster sampling design. 

This is satisfied if the selection of elements within clusters is independent of the selection of elements in any 

other cluster. A strongly invariant two-stage cluster sampling designs can be implemented by reversing the 

actual act of sampling: instead of sampling the clusters first, we begin by selecting the elements in each of 

the population clusters, and then sampling the clusters.  
 

Note that our definition of strong invariance for two-stage designs is slightly different from the one given 

in Särndal, Swensson and Wretman (1992, Chapter 4) because the latter restrict to clusters selected at the 
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first stage. However, for practical purposes, both definitions are essentially equivalent. We used Definition 1 

rather the standard definition of Särndal et al. (1992) because the latter does not extend easily to the case of 

two-phase sampling. 
 

Definition 2. A two-phase sampling design is said to be weakly (or first-two-moment) invariant if  

    2 1 2 2 1 2 1 1= = , .i i ij ijand i s j s     I I   

Clearly, a strongly invariant two-phase sampling design is weakly invariant but the opposite is not true. 

The next example describes a sampling design that is weakly invariant but not strongly invariant. 
 

Example 3. At the first phase, we select a sample, 1 ,s  of size 1 ,n  according to an arbitrary fixed-size 

sampling design. From 1 ,s  we select a simple random sample without replacement, 2 ,s  of size 2 ,n  where 

2n  is fixed prior to sampling. This two-phase sampling design is weakly invariant since 2 2 1= ,i n n  and 

   2 2 2 1 1= 1 1 ,ij n n n n    which remain the same from one realization of 1I  to another. However, it is 

not strongly invariant since it is not possible to generate 2I  prior to 1I  and meet the fixed-size sample size 

constraint for 2 .n  In fact, this would also be true for any fixed-size sampling design at the second phase 

satisfying  2 1 2=i i I  and  2 1 2= .ij ij I  

Finally, we describe a non-invariant two-phase sampling design.  
 

Example 4. At the first phase, we select a simple random sample without replacement, 1 ,s  of size 1 ,n  

according to an arbitrary fixed-size sampling design. For every 1 ,i s  we record an auxiliary variable .x  

From 1 ,s  a second-phase sample, 2 ,s  of fixed size 2 ,n  is selected using an inclusion probability 

proportional-to-size procedure. In this case, we have  

   2
2 1

1

= .i
i

i i
i U

n x

x I





I   

Clearly, the inclusion probability of unit i  in 2s  vary from one realization of 1I  to another. Since  2 1i I  

is a function of 1 ,I  it is known only after the first-phase sample 1s  is actually realized.  

 
3  Implications of the invariance property 
 

3.1  Weak invariance 
 

For an arbitrary two-phase sampling design, the inclusion probability of unit ,i  1, ,i i s   is generally 

unknown and is defined as  

                               

 

  

   
1 1

1 2

1 2

2 1 1
: =1

= E

= E E

= = ,
i

i i i

i i

i
i

I I

I I

P




1

1
i

I

I I i

 (3.1) 
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where 1i  denotes a realisation of the random vector 1.I  Therefore, the ’si  are generally unknown because 

they require the knowledge of  1 1=P I i  for every possible 1I  (in many cases, we do) but also of  2i 1I  

for every .1I  The latter are generally unknown because  2i 1I  may depend on the outcome of phase 1. 

However, if the sampling design is weakly invariant, then  2 2=i i 1I  and (3.1) reduces to  

           
1 1

2 1 1 1 2
: =1

= = = .
i

i i i i
i

P   
i

I i  (3.2) 

Suppose that we are interested in estimating the population total = .y ii U
t y

  Since the ’si  are 

generally unknown, the Horvitz-Thompson estimator of ,yt  

                   
2

1ˆ = ,HT i i
i s

t y 


   

cannot be used, in general. Instead, it is common practice to use the double expansion estimator  

                    
2

11
1 2 1

ˆ = .DE i i i
i s

t y  


 I   

In general, both ˆ
HTt  and ˆ

DEt  differ. However, for weakly invariant two-phase designs, it is clear from (3.2), 

that both are identical. 
 

3.2  Strong invariance 
 

Let   be a finite population parameter and ̂  be an estimator of .  The total variance of ̂  can be 

expressed as  

      ˆ ˆ ˆ= .V VE EV  1 1I I  (3.3) 

Decomposition (3.3) is often called the two-phase decomposition of the variance; e.g., Särndal et al. 

(1992). If the two-phase sampling design is strongly invariant, the total variance of ̂  can alternatively be 

decomposed as  

      ˆ ˆ ˆ= .V EV VE  2 2I I  (3.4) 

The decomposition (3.4) is often called the reverse decomposition of the variance as the order of sampling 

is reversed, which can only be justified provided the two-phase design is strongly invariant. The 

decomposition (3.4) cannot be used in the case of weakly invariant two-phase design as the vector 2I  cannot 

be generated prior to the vector 1.I  The reverse decomposition was studied in the context of nonresponse 

by Fay (1991), Shao and Steel (1999) and Kim and Rao (2009), among others. In a nonresponse context, 

assuming that the units respond independently of one another, the set of respondents can be viewed as a 

second-phase sample selected according to Poisson sampling with unknown inclusion probabilities, called 

response probabilities. If the latter remain the same from one realization of the sample to another, we are 

essentially in the presence of a strongly invariant two-phase sampling design. Decomposition (3.4) can be 
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used to justify simplified variance estimators for two-phase sampling designs; see Beaumont, Béliveau and 

Haziza (2015). 
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CORRIGENDUM 

 
Statistical matching using fractional imputation 

Jae Kwang Kim, Emily Berg and Taesung Park 
Volume 42, number 1, (June 2016), 19-40 

 
 
On page 21 of the original release of Kim, Berg and Park (2016), in remark (2.1), assumption (i) should be 

 
(i)    2 1 2 1 2 12, , = ,f y x x y f y x y  

 
That is, on the right hand side, the subscript of x  should be 2 rather than 1. 
 
Corrected electronic versions of the original paper have been uploaded. 

 
Reference  

Kim, J.K., Berg, E. and Park, T. (2016). Statistical matching using fractional imputation. Survey 
Methodology, 42, 1, 19-40.  
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5.1 References in the text should be cited with authors’ names and the date of publication.  If part of a reference is cited, 

indicate after the reference, e.g., Cochran (1977, page 164). 
5.2 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 

chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year of 
publication. Journal titles should not be abbreviated.  Follow the same format used in recent issues. 

 
6. Short Notes 
 
6.1 Documents submitted for the short notes section must have a maximum of 3,000 words. 
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