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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of 
Joseph Waksberg, who has made many important contributions to survey methodology. Each year a 
prominent survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The 
paper reviews the development and current state of a significant topic within the field of survey 
methodology, and reflects the mixture of theory and practice that characterized Waksberg’s work.  

 
Please see the announcements at the end of the Journal for information about the nomination and 

selection process of the 2016 Waksberg Award. 
 
This issue of Survey Methodology opens with the fourteenth paper of the Waksberg Invited Paper Series. 

The editorial board would like to thank the members of the selection committee Steve Heeringa (Chair), 
Cynthia Clark, Louis-Paul Rivest and J.N.K. Rao for having selected Constance Citro as the author of this 
year’s Waksberg Award paper. 
 
 
 
 
 
 
 
 
 
 
 
 

2014 Waksberg Invited Paper 
 

Author: Constance F. Citro 
 
Constance F. Citro is director of the Committee on National Statistics (CNSTAT), a position she has held 
since May 2004. She previously served as acting chief of staff (December 2003-April 2004) and as senior 
study director (1986-2003). She began her career with CNSTAT in 1984 as study director for the panel that 
produced The Bicentennial Census: New Directions for Methodology in 1990. Dr. Citro received her B.A. in 
political science from the University of Rochester, and her M.A. and Ph.D. in political science from Yale 
University. Prior to joining CNSTAT, she held positions as vice president of Mathematica Policy Research, 
Inc., and Data Use and Access Laboratories, Inc. She was an American Statistical Association 
(ASA)/National Science Foundation (NSF)/Census research fellow in 1985-1986, and is a fellow of the ASA 
and an elected member of the International Statistical Institute. For CNSTAT, she directed evaluations of the 
2000 census, the Survey of Income and Program Participation, microsimulation models for social welfare 
programs, and the NSF science and engineering personnel data system, in addition to studies on institutional 
review boards and social science research, estimates of poverty for small geographic areas, data and methods 
for retirement income modeling, and a new approach for measuring poverty. She coedited the 2nd-5th 
editions of Principles and Practices for a Federal Statistical Agency, and contributed to studies on 
measuring racial discrimination, expanding access to research data, the usability of estimates from the 
American Community Survey, the National Children’s Study research plan, and the Census Bureau’s 2010 
census program of experiments and evaluations. 
 



 
 
 
 
 
 
 
 
 



Survey Methodology, December 2014 137 
Vol. 40, No. 2, pp. 137-161 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Constance F. Citro, Director, Committee on National Statistics, U.S. National Academy of Sciences/National Research Council. E-mail: 

ccitro@nas.edu. 
 

 
 

From multiple modes for surveys to multiple data sources 
for estimates 

 

Constance F. Citro1 

Abstract 

Users, funders and providers of official statistics want estimates that are “wider, deeper, quicker, better, 
cheaper” (channeling Tim Holt, former head of the UK Office for National Statistics), to which I would add 
“more relevant” and “less burdensome”. Since World War II, we have relied heavily on the probability sample 
survey as the best we could do - and that best being very good - to meet these goals for estimates of household 
income and unemployment, self-reported health status, time use, crime victimization, business activity, 
commodity flows, consumer and business expenditures, et al. Faced with secularly declining unit and item 
response rates and evidence of reporting error, we have responded in many ways, including the use of multiple 
survey modes, more sophisticated weighting and imputation methods, adaptive design, cognitive testing of 
survey items, and other means to maintain data quality. For statistics on the business sector, in order to reduce 
burden and costs, we long ago moved away from relying solely on surveys to produce needed estimates, but, to 
date, we have not done that for household surveys, at least not in the United States. I argue that we can and 
must move from a paradigm of producing the best estimates possible from a survey to that of producing the 
best possible estimates to meet user needs from multiple data sources. Such sources include administrative 
records and, increasingly, transaction and Internet-based data. I provide two examples - household income and 
plumbing facilities - to illustrate my thesis. I suggest ways to inculcate a culture of official statistics that 
focuses on the end result of relevant, timely, accurate and cost-effective statistics and treats surveys, along with 
other data sources, as means to that end. 
 
Key Words: Surveys; Administrative records; Total error; Big data; Income; Housing. 

 
 

1  Introduction 
 

Tim Holt, former head of the United Kingdom Office for National Statistics and former president of 
the Royal Statistical Society, once ticked off five formidable challenges for official statistics - namely, to 
be “wider, deeper, quicker, better, cheaper” (Holt 2007) - to which I would add “less burdensome” and 
“more relevant”. In my view, to respond adequately to one or more, let alone all seven, of these 
challenges, official statistical offices need to move from the probability sample survey paradigm of the 
past 75 years to a mixed data source paradigm for the future. Some offices have made that move for most 
of their statistical programs (see, e.g., Nelson and West (2014) about the extensive use of register-based 
statistics in Denmark), and almost all offices have made that move for some of their programs, but there 
are programs not very far along this path. In the case of U.S. household statistical programs, there is a 
ways to go. 

Such a move should not simply elevate another data source as the be all and end all of official statistics 
in place of the probability sample survey. The 2011 German Republic census - the first census taken in 
that country since 1983 - provides a useful reminder of the dangers in such an approach. The census 
results indicated that the administrative records on which Germany based official population statistics for 
a period of several decades overestimated the population because of failing to adequately record foreign-
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born emigrants (see http://www.nytimes.com/2013/06/01/world/europe/census-shows-new-drop-in-
germanys-population.html?_r=0 [November 2014]). 

My thesis is that official statistical programs must start with user needs for information for policy 
development, program evaluation, and understanding societal trends, and work backwards from concepts 
to appropriate data sources. Such sources may very likely include probability surveys but may also include 
one or more alternative kinds of data. My thesis is a truism in one sense, but people whose lives are 
devoted to perfecting a particular tool for data collection may too often see everything as in need of that 
tool, rather than considering the most cost-effective way to obtain statistics that policy makers, 
researchers, and other data users want.  

I little doubt that Joe Waksberg, whom I was honored to know through his service on a Committee on 
National Statistics (CNSTAT) Panel on Decennial Census Methodology in the mid-1980s, would approve 
of my topic. Joe was not only an uncommonly gracious and charming human being, but also a problem-
solver and innovator of the first order. Joe stressed “the importance of examining not only what you are 
asked, but also what you think the analyst has in mind” (Morganstein and Marker 2000). Joe invariably 
thought outside the box to identify data sources and models that addressed the underlying information 
need rather than worked from an a priori concept of what tools were appropriate. 

In the following text, I briefly review the rise and benefits of probability sampling for official statistics 
in the United States in Section 2 and the growing threats to the relevance, accuracy, timeliness, cost-
effectiveness and public acceptability of survey-based estimates in Section 3. In Section 4 and Section 5, I 
consider the strengths and weaknesses of administrative records and other non-probability-survey data 
sources that may be valuable, singly and in combination, for official statistics. In Section 6, I offer 
examples of ripe opportunities in the United States to transform ongoing household survey programs to 
use multiple data sources to provide information of greater value. I conclude in Section 7 by enumerating 
barriers to moving to a multiple data sources paradigm and suggest ways to lower those barriers. 

I focus on what I know best - namely, U.S. official statistics and household statistics programs in 
particular. I hope that readers from other countries, other statistical programs and other agencies will find 
analogies in their own work. I critique the survey paradigm from a goal of improving official statistics, 
remaining deeply appreciative of the value of probability surveys, alone and combined with other data 
sources, and deeply admiring of the important work of statistical agencies in service to the public good 
(see National Research Council 2013c).  

 
2  The rise of probability sampling in official U.S. statistics 
 

It is not an exaggeration to say that large-scale probability surveys were the 20th-century answer to the 
need for wider, deeper, quicker, better, cheaper, more relevant and less burdensome official statistics. 
Such surveys provided information with known precision in contrast to non-probability surveys; and they 
provided detailed information at greatly reduced cost and increased timeliness compared with censuses. 
Duncan and Shelton (1978) and Harris-Kojetin (2012) review the rise of probability sampling in U.S. 
official statistics. 

It was not clear at the time when the theory and practice of modern probability sampling was being 
developed in the 1930s in the United States that probability surveys would gain such widespread 
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acceptance. The arrival of Jerzy Neyman in the mid-1930s gave a boost to the work of W. Edwards 
Deming, Calvin Dedrick, Morris Hansen and colleagues at the Census Bureau who were developing the 
needed theory for sampling of finite populations. Small-scale sample surveys in the 1930s at universities 
and federal agencies on such topics as consumer purchases, unemployment, urban housing and health 
provided proofs of concept and practical tips.  
 
Table 2.1 
Selected ongoing U.S. statistical agency probability surveys, by year begun 
 

Decade 
and 

Year/Type 
of Survey 

Repeated Cross-Sectional Household 
Survey 

Repeated Cross-Sectional 
Business Establishment Survey Panel Person Survey 

1940 1940 - Current Population Survey (CPS) 

1947 - CPS Annual Social and Economic 
Supplement (CPS/ASEC) 

1946 - Monthly Wholesale Trade 
Survey 

 

 

1950 1950 - Consumer Expenditure Survey 
(CE) 

1955 - National Survey of Fishing, 
Hunting, and Wildlife-Associated 
Recreation 

1957 - National Health Interview Survey 
(NHIS) 

1953 - Advance Monthly Retail 
Sales Survey 

1953 - Business R&D and 
Innovation Survey 
(BRDIS) 

1959 - Building Permits Survey 

 

1960 1960 - Decennial Census Long-Form 
Sample (became American 
Community Survey in 2005) 

1965 - National Hospital Care 
Survey 

1966-1990 - National 
Longitudinal Survey 
of Older Men 

1970 1972 - National Crime Victimization 
Survey (NCVS) 

1973 - American Housing Survey (AHS); 

1973 - National Survey of College 
Graduates (NSCG) 

1979 - Residential Energy Consumption 
Survey (RECS) 

1975 - Farm Costs and Returns 
Survey and Cropping 
Practices and Chemical 
Use Surveys (combined in 
Agricultural Resource 
Management Survey in 
1996) 

1979 - Commercial Buildings 
Energy Consumption 
Survey (CBECS) 

1972-1986 - National 
Longitudinal Survey 
of High School Class 
of 72 

1973-present - Survey of 
Doctorate Recipients 
(SDR) 

1979-present - National 
Longitudinal Survey 
of Youth (NLSY79) 

1980 1983 - Survey of Consumer Finances 
(SCF) 

1985 - Manufacturing Energy 
Consumption Survey 
(MECS) 

1984-present - Survey of 
Income and Program 
Participation (SIPP)  

1990 1991 - Medicare Current Beneficiary 
Survey (MCBS) 

1996 - Agricultural Resource 
Management Survey 
(ARMS) 

1997-present - National 
Longitudinal Survey 
of Youth (NLSY97) 

2000 2005 - American Community Survey 
(ACS) 

 2001-2008 - Early Childhood 
Longitudinal Study 
(Birth Cohort) 

Notes: Current survey name is used; periodicity of interviewing for repeated cross-sectional and panel surveys varies; some 
repeated cross-sectional surveys have panel component (rotation groups); length of panel surveys (how many years respondents 
are in sample) varies. 
Source: Compiled by author. 
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The federal government’s young statistical Turks still had to surmount hurdles in the bureaucracy up to 
the White House before they could move sampling into the mainstream of federal statistics. Thus, “old 
timers” at the Census Bureau were skeptical about the possibility of using survey methods to get 
information on unemployment and politicians were divided about whether they wanted the estimates 
(Anderson 1988). In 1937, a major breakthrough occurred when a two percent sample of households on 
nonbusiness postal routes, designed by Dedrick, Hansen and others, estimated a much higher - and more 
credible - number of unemployed than a “complete” census of all residential addresses that was conducted 
on a voluntary basis. Picking up on that effort, from 1940-1942, the Works Progress Administration 
fielded the sample-based Monthly Report on the Labor Force, the forerunner to the Current Population 
Survey (CPS). The CPS continues to this day as the source of official monthly estimates of U.S. 
unemployment conducted by the Census Bureau and published by the Bureau of Labor Statistics (BLS).  

Another breakthrough occurred when the Census Bureau, which struggled for decades to respond to 
demands for added questions on the decennial census without turning the instrument into a nightmare for 
respondents and interviewers, asked six questions on a five percent sample basis in the 1940 census. The 
success of sampling led to a decision to administer two-fifths of the questions in the 1950 census to a 
sample, and subsequent censuses followed suit. Table 2.1 lists selected ongoing U.S. household surveys, 
business surveys and panel surveys and when they began. The variety of subjects covered and the 
longevity of these surveys attest to the dominance and value of the sample survey paradigm in U.S. 
official statistics. 

 
3  Chinks in the armor: Rising threats to the survey paradigm 
 

Probability surveys are indispensable tools for official statistical agencies and others for many kinds of 
measures - for example, to track such phenomena as public approval of the U.S. president or expressed 
feelings of well-being. Moreover, probability surveys with a primary purpose to measure constructs, like 
household income, that could be obtained from other sources, have two major advantages: (1) they can 
obtain a wide variety of covariates for use in analysis of the primary variable(s) of interest, and (2) they 
are under the control of the survey designer. Yet threats to the probability survey paradigm are 
snowballing in ways that bode ill for the future. Manski (2014) goes so far as to accuse statistical agencies 
of sweeping major problems with their data under the rug and markedly understating the uncertainty in 
their estimates. He labels survey nonresponse as an example of “permanent uncertainty”. 

 
3.1  Characterizing survey quality 
 

A typology of errors and other problems that can compromise the quality of survey estimates is 
essential for understanding and improving official statistics. A seminal paper in developing data quality 
frameworks was Brackstone (1999). Most recently, Biemer, Trewin, Bergdahl and Lilli (2014) reviewed 
the literature on systematic quality frameworks, noting, in particular, the six dimensions proposed by 
Eurostat (2000): relevance, accuracy, timeliness and punctuality, accessibility and clarity, comparability 
(across time and geography), and coherence (consistent standards). Iwig, Berning, Marck and Prell (2013) 
reviewed quality frameworks from Eurostat, the Australian Bureau of Statistics, the UK Office for 
National Statistics, Statistics Canada, and other organizations and developed questions based on six 
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quality dimensions of their devising - relevance, accessibility, coherence, interpretability, accuracy, and 
institutional environment - for U.S. statistical agencies to use to assess the utility of administrative 
records. Daas, Ossen, Tennekes and Nordholt (2012) constructed a framework for evaluating the use of 
administrative records to produce census data for the Netherlands.  

Biemer et al. (2014) went further by using the Eurostat framework (combining comparability and 
coherence into a single dimension) as the basis for designing, testing and implementing a system of 
numerical assessments for evaluating and continually improving data product quality at Statistics Sweden. 
For a full assessment, it would also be necessary to evaluate quality dimensions against cost and 
respondent burden. Usefully for my purposes, Biemer et al. decomposed the dimension of “accuracy”, 
conceived of as total survey error (or total product error for non-survey-based statistical programs such as 
national accounts), into sampling error and seven types of nonsampling error: (1) frame error, including 
undercoverage and overcoverage and missing or erroneous auxiliary variables on the frame; (2) 
nonresponse error (unit and item); (3) measurement error (overreporting, underreporting, other); (4) data 
processing error; (5) modeling/estimation error, such as from fitting models for imputation or adjusting 
data values to conform to benchmarks; (6) revision error (the difference between preliminary and final 
published estimates); and (7) specification error (the difference between the true, unobservable variable 
and the observed indicator). For ongoing surveys, I would add outmoded construct error, which is related 
to but different from specification error. For example, the Census Bureau’s regular money income concept 
for official household income and poverty estimates from the CPS Annual Social and Economic 
Supplement (ASEC) has become progressively outdated due to changing U.S. tax and transfer programs 
(see, e.g., Czajka and Denmead 2012; National Research Council 1995).  

 
3.2  Four sources of error in U.S. household statistics 
 
3.2.1  Frame deficiencies 
 

Obtaining a comprehensive, accurate frame for surveys can be as difficult as obtaining responses from 
sample cases drawn from the frame and, in many instances, the difficulties have persisted and even grown 
over time. Joe Waksberg would resonate to the problem of frame deficiencies: not only did he, with 
Warren Mitofsky, develop the random digit dialing (RDD) method for generating frames and samples for 
high-quality residential telephone surveys in the 1970s (see Waksberg 1978; Tourangeau 2004), but he 
also saw the beginnings of the method’s decline in popularity because of such phenomena as cell-phone-
only households. 

A commonly used frame for U.S. household surveys is the Census Bureau’s Master Address File 
(MAF) developed for the decennial census. The past few censuses have obtained increasingly good net 
coverage of residential addresses on the MAF, particularly for occupied units (Mule and Konicki 2012). 
The persistent problem for household surveys is undercoverage of individual members within sampled 
units. Coverage ratios (i.e., estimates before ratio adjustment to population controls) in the March 2013 
CPS, for example, are only 85 percent for the total population, and there are marked differences among 
men and women, older and younger people, and whites and minorities, with coverage ratios as low as 61 
percent for black men and women ages 20-24 (see http://www.census.gov/prod/techdoc/cps/cpsmar13.pdf 
[November 2014]). No systematic study of the time series of coverage ratios for U.S. household surveys 
has been conducted, but there is evidence that ratios have been getting worse.  
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While useful to correct coverage errors for age, gender, race and ethnicity groups, the current 
household survey ratio adjustments undoubtedly fail to correct for other consequential coverage 
differences. (The ratio-adjustment controls, in one of the least controversial and most long-standing uses 
of administrative records in U.S. household surveys, derive from population estimates developed from the 
previous census updated with administrative records and survey data.) Thus, everything that is known 
about undercount in the U.S. decennial census indicates that, holding race and ethnicity constant, 
socioeconomically disadvantaged populations are less well counted than others (see, e.g., National 
Research Council 2004, App. D). It is unlikely that household surveys perform any better - for example, 
Czajka, Jacobson and Cody (2004) find that the Survey of Income and Program Participation [SIPP] 
substantially underrepresents high-income families compared with the Survey of Consumer Finances 
[SCF], which includes a list sample of high-income households drawn from tax records. Factoring in 
differential socioeconomic coverage, Shapiro and Kostanich (1988) estimate from simulations that 
poverty is significantly biased downward for black males in the CPS/ASEC. On the other hand, by 
comparison with the 2000 census long-form sample, Heckman and LaFontaine (2010) find that survey 
undercoverage in the 2000 CPS October educational supplement contributes little to underestimates of 
high school completion rates; other factors are more important.  

 
3.2.2  Unit response in secular decline 
 

A study panel of the (U.S.) National Research Council (2013b) recently completed a comprehensive 
review of causes and consequences of household survey unit nonresponse, documenting the well-known 
phenomenon that the public is becoming less available and willing to respond to surveys, even from well-
trusted official statistical agencies. In the United States, there was evidence as early as the 1980s that 
response rates had been declining from almost the beginning of the widespread use of probability sample 
surveys (see, e.g., Steeh 1981; Bradburn 1992). De Leeuw and De Heer (2002) estimated a secular rate of 
decline in survey cooperation of 3 percentage points per year from examining ongoing surveys in 16 
Western countries from the mid-1980s through the late 1990s. The cooperation rate measures the response 
of eligible sample cases actually contacted; response rates (there are several accepted variations) have 
broader denominators, including eligible cases that were not reached (National Research Council 2013c, 
pp. 9-12). National Research Council (2013b: Tables 1-2, 104) provides initial or screener response rates 
to a range of U.S. official surveys for 1990/91 (after response rates had already fallen significantly for 
many surveys) and 2007/2009, which make clear that the problem is not going away. 

It was long assumed that lower response rates even with nonresponse weighting adjustments inevitably 
entailed bias in survey estimates. Recent research (see, e.g., Groves and Peytcheva 2008) finds that the 
relationship between nonresponse and bias is complex and extraordinary efforts to increase response can 
inadvertently increase bias by obtaining greater response from only some groups and not others (see, e.g., 
Fricker and Tourangeau 2010). It would be foolhardy, however, for official statistical agencies to assume 
that increasing nonresponse has no or little effect on the accuracy of estimates, particularly when unit 
nonresponse is coupled with item nonresponse. For example, nonrespondents to health surveys are 
estimated to have poorer health on average than respondents and nonrespondents to volunteering surveys 
are estimated to be less likely to volunteer than respondents (National Research Council 2013b, pp. 44-
45). Moreover, there has been little research on the effects of nonresponse on bivariate or multivariate 
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associations or on variance, except for the obvious - and not unimportant - effect that unit nonresponse 
reduces effective sample size. 

 
3.2.3  Item response often low and declining 
 

Neither sample surveys nor censuses can be expected to obtain answers from unit respondents to every 
item on a questionnaire. U.S. census practice has long been to edit some items for consistency, but until 
mid-twentieth century, there were no adjustments for item nonresponse - tables included rows labeled “no 
response” or similar wording. The first use of imputation occurred in 1940 when Deming developed a 
“cold deck” procedure to impute age by randomly selecting a value for age from an appropriate deck of 
cards selected according to what other information was known about the person for whom age was 
missing. Beginning in 1960, with the advent of high-speed computers, “hot deck” imputation methods 
were used to impute missing values for many census items (Citro 2012). The hot deck procedure uses the 
latest value for the previously processed person or household stored in a matrix and, consequently, does 
not have to assume that data are missing completely at random (MCAR), although it does have to assume 
that data are missing at random (MAR) within the categories defined by variables in the hot deck matrix. 
Model-based methods of imputation have been developed that do not require such strong assumptions as 
MAR or MCAR (see National Research Council 2010b), but they are not widely used in U.S. household 
surveys. Two exceptions are in the Survey of Consumer Finances (SCF) (Kennickell 2011) and the 
Consumer Expenditure (CE) Interview Survey (Passero 2009).  

Whatever the method, imputation has the advantage of creating a full data record for every respondent, 
which facilitates multivariate analysis and forestalls the likelihood that researchers will use different 
methods for treating missing data that give different results. Yet imputation may introduce bias into 
estimates, and the significance of any bias will likely be magnified by the extent of missing data. So it is 
troubling that nonresponse has been increasing for important items on household surveys, such as income, 
assets, taxes and consumer expenditures, which require respondents to supply dollar amounts - for 
example, Czajka (2009:Table A-8) compares item imputation rates for total income and several sources of 
income for the CPS/ASEC and SIPP for 1993, 1997 and 2002 - a full one-third of income is currently 
imputed on the CPS/ASEC, up from about one-quarter in 1993 - and SIPP is not much better. Clearly, 
with such high imputation rates, careful evaluation of the effects of imputation procedures is imperative to 
carry out. Hoyakem, Bollinger and Ziliak (2014), for example, estimate that the hot deck imputation 
procedure for earnings in the CPS/ASEC has consistently underestimated poverty by an average of one 
percentage point, based on evaluating missing earnings in both the CPS/ASEC and Social Security 
earnings records. 

 
3.2.4  Measurement error problematic and not well studied 
 

Even with complete reporting, or, more commonly, adjustments for unit and item nonresponse, there 
will still be error in survey estimates from inaccurate reporting by respondents due to guessing at the 
answer, deliberately failing to provide a correct answer, or not understanding the intent of the question. 
While acknowledged by statistical agencies, the extent of measurement error is typically less well studied 
than is sampling error or the extent of missing data. Many measurement error studies compare aggregate 
estimates from a survey with similar estimates from another survey or an appropriate set of administrative 
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records, adjusted as far as possible to be comparable. It is not possible to sort out from these studies the 
part played by measurement error in comparison with other factors, but the results indicate the magnitude 
of problems. Some studies are able to match individual records and thereby examine components of 
measurement error.  

Significant measurement error is known to affect key socioeconomic estimates produced from U.S. 
household surveys. Thus, a legion of studies have documented net underestimation of U.S. household 
income in survey after survey and, even more troubling, a decline in completeness of reporting, even after 
imputation and weighting. Fixler and Johnson (2012, Table 2), for example, estimated that between 1999 
and 2010, mean and median estimates from the CPS/ASEC fell progressively below the National Income 
and Product Account (NIPA) estimates due to such factors as: (1) underrepresentation of very high-
income households in the CPS/ASEC sample; (2) nonreporting and underreporting by those high-income 
households that are included; and (3) nonreporting and underreporting by middle and lower income 
households. Studies of individual income sources find even worse error. Meyer and Goerge (2011), for 
example, by matching Supplemental Nutrition Assistance Program (SNAP) records in two states find that 
almost 35 percent and 50 percent, respectively, of true recipients do not report receiving benefits in the 
American Community Survey (ACS) and the CPS/ASEC. Similarly, Meyer, Mok and Sullivan (2009) 
document large and often increasing discrepancies between survey estimates and appropriately adjusted 
administrative records estimates of income recipients and total amounts for many sources.  

Wealth is notoriously difficult to measure in household surveys, and many do not attempt to do so. 
Czajka (2009, pp. 143-145) summarizes research on the quality of SIPP estimates of wealth by 
comparison with the SCF and the Panel Study of Income Dynamics (PSID). Greatly simplifying the 
findings, SIPP historically has been fairly effective in measuring liabilities, such as mortgage debt, and the 
value of such assets as owned homes, vehicles, and savings bonds. SIPP has done poorly in measuring the 
value of assets held mostly by higher income households, such as stocks, mutual funds, and IRA and 
KEOGH accounts, whereas the PSID has done somewhat better. On net, SIPP significantly underestimates 
net worth. 

A National Research Council (2013a) study of the BLS CE Interview and Diary Surveys found 
differential quality of reporting of various expenditure types compared with appropriately adjusted 
personal consumption expenditure (PCE) estimates from the NIPA. Bee, Meyer and Sullivan (2012, Table 
2) also find declines in reporting for some expenditures - for example, gasoline reporting in the CE 
household estimate declined from over 100 percent of the comparable PCE estimate in 1986 to just under 
80 percent in 2010, while reporting on furniture and furnishings declined from 77 percent to 44 percent 
over a comparable period. 

 
4  What can be done? 
 

Survey researchers have not been idle in the face of multiple and increasing threats to the survey 
paradigm. For at least the last 15 years, they have actively worked on ways to reduce or compensate for 
coverage error, unit and item nonresponse, measurement error, and, more recently, burden on respondents. 
Strategies have included: (1) spending more on case completion (although budget constraints limit the 
viability of this strategy); (2) using paradata and auxiliary information for more effective unit nonresponse 
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bias identification and adjustment; (3) employing more sophisticated missing data adjustments that do not 
assume MAR; (4) using adaptive design methods to optimize the cost and quality of response; (5) using 
multiple frames to reduce coverage error (e.g. cell-phone and land-line frames for telephone surveys); (6) 
using multiple modes to facilitate more cost-effective response as in the ACS, which recently added an 
Internet response option to its mail, CATI and CAPI options; (7) reducing burden by optimizing follow-up 
calls and visits; and (8) describing the needs for the survey data. In the United States, data users are often 
recruited to make the case to Congress and other stakeholders. For example, the Association of Public 
Data Users, the Council of Professional Associations on Federal Statistics and the Population Association 
of America frequently mobilize data users on behalf of statistical agency programs. 

My thesis is that these steps, while laudable and necessary, are not sufficient to restore the probability 
survey-based paradigm for official statistics on households or other types of respondents. I propose, 
instead, that statistical agencies consistently begin by determining policymakers’ and public needs and 
work backwards to identify appropriate data sources to serve those needs in the most cost-effective and 
least burdensome manner possible. This multiple sources paradigm should apply to all statistical 
programs, whether traditionally based on a survey, administrative records, or another source.  

Some important statistical programs, such as the NIPAs and the Consumer Price Index (see Horrigan 
2013) in the United States and other countries, have for decades used multiple data sources. One reason is 
that these programs are built around a widely accepted conceptual framework that determines required 
elements to constitute an acceptable set of estimates. It is not acceptable to omit one or more components 
of income from the NIPAs simply because data are not available from a single source. Moreover, because 
key NIPA estimates are periodically revised to add data, improve methodology and refine concepts, there 
is a built-in positive bias to search for new and improved data sources to fill gaps and improve accuracy. 
The U.S. economic censuses also use multiple sources, specifically, income tax records for sole 
proprietors and very small employers together with surveys for larger companies. U.S. household statistics 
programs, in contrast, have most closely adhered to the probability sample survey paradigm. Moreover, 
because long intervals typically occur between revisions to household survey concepts and design, the 
surveys too often fall behind in their ability to serve policymakers and the public, when the use of 
additional data sources could make possible significant improvements.  

 
5  Which data sources to bolster surveys? 
 

For decades after the introduction of probability sampling in official statistics, the only alternative 
source was administrative records - from various levels of government, depending on a country’s 
governmental structure (federal, state and local in the United States), and from nongovernmental entities 
(e. g., employer payroll records or hospital admission records). And a number of national statistical 
agencies around the world began to incorporate administrative records into their programs - from using 
them in an ancillary way to moving census and survey programs lock, stock and barrel to an 
administrative records-based paradigm.  

Technological innovations in the 1970s and 1980s led to some additional data sources - such as records 
of expenditures at checkouts (made possible by the development of bar codes and scanners) and aerial and 
satellite images for categorizing land use - becoming at least potentially available for official statistics. 
But the landscape of data sources was still relatively contained. Beginning in the 1990s, the advent of the 
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Internet and high-speed distributed computing technology unleashed a mind-boggling array of new data 
sources, such as data from traffic camera feeds, tracking of cell phone locations, search terms used on the 
Web and postings on social media sites. The challenge for statistical agencies is to classify and evaluate 
all of these data sources in ways that help agencies determine their usefulness. 
 
5.1  Is “Big Data” a useful concept? 
 

Many new types of data that have become available in the past 15 or so years are often very large in 
size, leading to the use of the term “big data”. I argue that this buzz phrase does little, if anything, to assist 
statistical agencies to determine appropriate combinations of data for their programs. In computer science, 
“big data is high volume, high velocity and/or high variety information assets that require new forms of 
processing to enable enhanced decision making, insight discovery, and process optimization” (Laney 
2001). These properties are not inherent in any particular type of data or in any particular platform, such 
as the Internet. Instead, what qualifies as “big data” is a changing target, as advances are made in high-
speed computing and data analysis techniques. In today’s computing environment, census, survey, and 
administrative records data rarely qualify as “big”, although they may have done so in an earlier era. 
People today tend to classify as “big” the data streams from cameras, sensors, and largely free-form 
interactions with the Internet, such as social media postings. In the future, many of these kinds of data may 
no longer fit under this rubric. In regard to the Internet, moreover, it not only generates a great deal of 
today’s “big data”, but also provides ordinary-size data in a more accessible way - for example, access to 
public opinion polls or to local property records.  

I would argue that statistical agencies will most often want to be and should be “close followers” rather 
than leaders in using big data. It seems to me most appropriate for academia and the private sector to be 
out front in tackling the uses of data that are so voluminous and of such high velocity and variety that they 
require big leaps forward to develop new forms of processing and analysis. Statistical agencies should be 
alert to developments in the field of big data that promise benefits for their programs down the road and 
may be well advised to support research in this area to help ensure that applications that are relevant to 
their programs emerge. Principally, however, I believe that statistical agency resources are best used 
primarily for working with data sources that offer more immediately useful benefits.  

Groves (2011) has attempted to move toward a more relevant classification for statistical agencies than 
that between “big data” and all other data, by distinguishing between what he terms “designed data” that 
are “produced to discover the unmeasured” and “organic data” that are “produced auxiliary to processes, 
to record the process”. Keller, Koonin and Shipp (2012) list examples of data sources under Groves’ two 
headings. Their list of designed data includes: administrative data (e.g., tax records); federal surveys; 
censuses of population; and “other data collected to answer specific policy questions”. Their list of 
organic data includes: location data (cell phone “externals”, E-ZPass transponders, surveillance cameras); 
political preferences (voter registration records, voting in primaries, political party contributions); 
commercial information (credit card transactions, property sales, online searches, radio-frequency 
identification); health information (electronic medical records, hospital admittances, devices to monitor 
vital signs, pharmacy sales); and other organic data (optical, infrared and spectral imagery, meteorological 
measurements, seismic and acoustic measurements, biological and chemical ionizing radiation). Not 
mentioned under either category are such data as Facebook or Twitter postings, although they might fall 
under the broad rubric of “online searches”. 
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Whether the two-part classification in Keller et al. (2012) is all that more useful than “big data” for 
statistical agency purposes is a question. For example, classifying voter registration records or electronic 
health records as organic data and not as designed administrative data seems to miss ways in which they 
differ from such sources as online searches and ways in which they are similar to federal and state 
government administrative records. Moreover, even organic data are “designed”, if only minimally, in the 
sense that the provider has specified some parameters, such as 140 characters for a Twitter post or a 
particular angle of vision for a traffic camera. Nonetheless, the designed versus organic distinction does 
point to a useful dimension, which is the degree to which statistical agencies have ready access to, control 
changes to, and are able readily to understand the properties of a data source. 
 
5.2  Dimensions of data sources: Illustrations for four major categories 
 

Coming up with satisfactory nomenclature and evaluation criteria that can help statistical agencies 
assess the potential usefulness of alternative data sources for their programs, with the goal of becoming as 
familiar with the error properties of alternative sources as they are with total error for surveys, is not going 
to happen without considerable effort by statistical agencies around the world (Iwig et al. 2013 and Daas 
et al. 2012 are examples of such efforts). I do not pretend that I can come close to that goal in this paper. 
My goal is more modest - namely, to provide some illustrations so that those who are wedded to a 
probability survey paradigm (or an administrative records paradigm) can see that the task of understanding 
alternative data sources is both feasible and desirable. I provide illustrations for four data sources ranging 
from traditional to cutting-edge:  

(1) Surveys and censuses, or a collection of data obtained from responses of individuals, who are 
queried on one or more topics as designed by the data collector (statistical agency, other 
government agency, and academic or commercial survey organization) according to principles of 
survey research with the goal of producing generalizable information for a defined population.  

(2) Administrative records or a collection of data obtained from forms designed by an administrative 
body according to law, regulation, or policy for operating a program, such as paying benefits to 
eligible recipients or meeting payroll. Administrative records are usually ongoing and may be 
operated by government agencies, or non-governmental organizations. 

(3) Commercial transaction records, or a collection of data obtained from electronic capture of 
purchases (e.g., groceries, real estate) initiated by a buyer but in a form determined by a seller 
(e.g., bar-coded product information and prices recorded by check-out scanners or records of 
product and price information for Web sales, such as through Amazon).  

(4) Interactions of individuals with the WorldWide Web by using commercially provided tools, such 
as a Web browser or social media site. This category covers a wide and ever-changing array of 
potential data sources for which there are no straightforward classifications. One defining 
characteristic is that individuals providing information, such as a Twitter post, act as autonomous 
agents: they are not asked to respond to a questionnaire or required to supply administrative 
information but, instead, are choosing to initiate an interaction.  

I first rank each source on the following two dimensions, which relate to the framework in Biemer et 
al. (2014). The rank I assign assumes there have been as yet no proactive steps by a statistical agency to 
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boost the ranking (e.g., by embedding staff in an administrative agency to become deeply familiar with the 
agency’s records). The two dimensions are: 

(1) Degree of accessibility to and control by national statistical agency: high (statistical agency 
designs the data source and controls changes to it); medium (statistical agency has authority to use 
the data source and influence on changes to it); low (statistical agency must arrange to obtain the 
data source on the terms of the provider and has little or no influence on changes to it). Gradations 
can be added to each of these categories depending, for example, on how strong an agency’s 
authority is to acquire a set of administrative records.  

(2) Degree to which components of error can be identified and measured: high, as in designed surveys 
and censuses; medium, as in public and private sector administrative records; and low, as in 
streams of data from autonomous choices of individuals.  

I further identify aspects of data quality for each source, following Biemer et al. (2014). I also indicate 
variations for most of the dimensions depending on the provider, such as national statistical agency, other 
unit of national government, other level of government, academic institution, or commercial entity. Table 
5.1 provides all of this information as best I can. 

An ideal source for statistical agency use, other things equal, is one that is provided, designed, and 
controlled by the agency, and for which errors can be identified and measured and are generally under 
control, such as a high-quality probability survey mounted by the agency. At the other extreme is a data 
source that is controlled by one or more private companies (e.g., scanner data) or, perhaps, by hundreds or 
thousands of local governments (e.g., traffic cameras), where the data result from autonomous choices or 
uncontrolled movements, and where it is difficult to conceptualize, much less measure, errors in the data 
source. Yet when considering a statistical agency’s responsibility to provide relevant, timely, accurate 
statistics for policymakers and the public for which costs and respondent burden are minimized, there may 
well be non-survey data sources that warrant the effort to make them usable for statistical purposes. I 
argue that the threats to the survey paradigm reviewed above make it imperative to consider alternative 
data sources because surveys are no longer always and everywhere demonstrably the superior choice to 
other sources - they are not always “high” on the dimensions in Table 5.1.  

I further argue that government administrative records, which, as Table 5.1 indicates, more often have 
desirable properties for official statistics compared with other non-survey data sources, should be a prime 
candidate for statistical agencies to incorporate as extensively as possible into their survey programs if 
they have not already done so. Administrative records are generated according to rules - rules about the 
eligible population, who must file what information, what action by the pertinent administrative body is 
taken on the basis of the information (e.g., tax refund, benefit payment), and so on. This fact should make 
it possible, with requisite effort, for a statistical agency to become as familiar with administrative records 
error structures as they are with total survey error. Couper (2013) provides a useful discussion somewhat 
like mine. He pokes holes in the ability of organic data sources to be as useful as they are often touted to 
be, much less to be suitable to replace probability surveys, but he warns survey researchers that they 
ignore organic data sources at their peril. Ironically, his conclusion to make some use of organic sources is 
strengthened because of his error in classifying administrative records as organic data. They are properly 
classified as designed data, even though not designed by a statistical agency.  
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Table 5.1  
Ranking (HIGH, MEDIUM, LOW, VERY LOW, or VARIES) of four data sources on dimensions for use in 
official statistics 
 

Dimension/ 
Data Source 

Census/Probability 
Survey (e.g., CPS/ASEC, 
ACS, NHIS - see Table 
2.1) 

Administrative Records 
(e.g., income taxes, 
Social Security, 
unemployment, payroll) 

Commercial 
Transaction Records 
(e.g., scanner data, 
credit card data) 

Individual 
Interactions with the 
Internet (e.g., Twitter 
postings; Google 
search term volumes) 

Degree of 
Control by/ 
Accessibility to 
Statistical 
Agency 

HIGH (survey conducted 
for statistical agency); 
MEDIUM to LOW (survey 
conducted for private 
organization) 

HIGH to MEDIUM 
(national agency records);  
MEDIUM to LOW (state 
or local records); 
MEDIUM to LOW 
(commercial records) 

MEDIUM to LOW VERY LOW  

Degree of 
Ability of 
Statistical 
Agency to 
Identify/Assess 
Properties/ 
Errors 

HIGH (survey conducted 
for statistical agency); 
VARIES (survey 
conducted for private org., 
depends on documentation 
and transparency) 

HIGH to MEDIUM 
(national agency records);  
MEDIUM to LOW (state 
or local records);  
MEDIUM to LOW 
(commercial records) 

MEDIUM (to the 
extent that records 
follow accepted 
standards, e.g., for bar 
coding and pricing 
information) 

VERY LOW 

Data Quality Attributes (Biemer et al. 2014) 
Relevance for 
Policy and 
Public - 
Concepts and 
Measures 

HIGH for survey 
conducted for statistical 
agency, assuming well 
designed and up to date in 
concepts and measures;  
VARIES for surveys for 
private organizations 

VARIES across and 
within records systems 
(e.g., records of benefit 
payment may be highly 
relevant, while family 
composition information 
may use a different 
concept) 

VARIES  VARIES, but VERY 
LOW at the present 
state of the art of 
acquiring, evaluating, 
and analyzing these 
kinds of data 

Relevance - 
Useful 
Covariates 

HIGH for most surveys VARIES, but rarely as 
high as for most surveys 

VARIES, but rarely 
as high as for most 
surveys 

VARIES, but typically 
LOW  

Frequency of 
Data 
Collection 

Weekly to every few years 
(every decade for the U.S. 
population census); Some 
private surveys, such as 
election polls, may run 
daily 

Generally records are 
updated frequently (e.g., 
daily) and continually 

Generally records are 
updated frequently 
(e.g., at moment of 
transaction or daily) 
and continually  

Interactions are 
captured 
instantaneously 

Timeliness of 
Release 

VARIES, depending on 
effort of statistical agency 
or private organization, but 
some lag from the 
reference period for 
responses is inevitable 

VARIES, but some lag 
from the reference date to 
when records are acquired 
by statistical agency 
likely 

VARIES, but likely to 
be long lags in 
acquiring proprietary 
data by statistical 
agency 

VARIES, but likely to 
be long lags (although 
MIT Billion Prices 
Project has worked out 
very timely access for 
prices on the Internet; 
see bpp.mit.edu) 

Comparability 
and Coherence 

HIGH across time and 
geography within survey 
(except when deliberately 
changed or if societal 
change that affects 
measurement is not taken 
into account);  
VARIES among surveys 

HIGH within records 
system (changes to 
government records 
generally heralded by 
legal/ regulation/policy 
change, changes to 
commercial records likely 
opaque);  
VARIES among records 
systems 

HIGH within records 
system (changes 
generally opaque to 
statistical agency); 
VARIES among 
records systems 

VERY LOW, in that 
vendors (e.g.,Twitter) 
may add/subtract 
features or drop an 
entire product; 
Changes generally 
opaque to statistical 
agency; Initiators of 
interactions may have 
very different frames 
of reference 
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Accuracy (Components of Error)* 

Dimension/ 
Data Source 

Census/Probability 
Survey (e.g., 
CPS/ASEC, ACS, 
NHIS - see Table 2.1) 

Administrative Records 
(e.g., income taxes, 
Social Security, 
unemployment, payroll) 

Commercial 
Transaction Records 
(e.g., scanner data, 
credit card data) 

Individual Interactions 
with the Internet (e.g., 
Twitter postings; 
Google search term 
volumes) 

Frame Error VARIES, can be 
significant 
undercoverage and 
overcoverage 

Frame is usually well 
defined by law, 
regulation, or policy; 
Problem for statistical 
agency use is that frame 
may not be 
comprehensive  

Frame is ill-defined for 
statistical agency 
purposes, in that 
represents whoever had 
a purchase scanned by a 
specified vendor or used 
a specific credit card for 
a purchase during a 
specified time; Poses 
significant challenge to 
statistical agency to 
determine appropriate 
use 

Frame is ill-defined for 
statistical agency 
purposes, in that 
represents whoever, 
decided to, for example, 
set up Twitter account or 
conduct Google search 
during a specified time; 
Poses significant 
challenge to statistical 
agency to determine 
appropriate use 

Nonresponse 
(unit and item) 

VARIES, can be 
significant 

VARIES (e.g., Social 
Security records likely to 
include almost all eligible 
people, but income tax 
records likely to reflect 
evasion, in terms of 
failure to file a return or 
concealing some income) 

NOT APPLICABLE, in 
that “respondents” are 
self selected; Statistical 
agency challenge is to 
determine appropriate 
use that does not need 
to assume a probability 
mechanism 

NOT APPLICABLE, in 
that “respondents” are 
self selected; Statistical 
agency challenge is to 
determine appropriate 
use that does not need to 
assume a probability 
mechanism 

Measurement 
Error 

VARIES within 
surveys by item and 
among surveys for 
comparable items; 
Often not well 
assessed, even for 
statistical agency 
surveys 

VARIES among record 
systems and within record 
systems by item 
depending on centrality of 
the item to program 
operation  (e.g., benefit 
payment item likely more 
accurate than items 
obtained from 
beneficiaries, such as 
employment status) 

NOT APPLICABLE to 
data source as such, 
although any 
characteristics added by 
the vendor from another 
source may/may not be 
valid; Statistical agency 
challenge is to not 
introduce measurement 
error by inappropriate 
use of the data 

NOT APPLICABLE to 
data source as such, 
although any 
characteristics added by 
the vendor from another 
source may/may not be 
valid; Statistical agency 
challenge is to not 
introduce measurement 
error by inappropriate 
use of the data 

Data 
Processing 
Error 

VARIES (e.g., may be 
data capture or 
recoding errors), but is 
usually under good 
statistical control, 
although harder to 
assess for private 
organization surveys 

VARIES (e.g., may be 
keying or coding errors), 
likely to be under better 
control for key variables 
(e.g., benefit payments) 
than for other variables, 
but hard for statistical 
agency to assess 

VARIES (e.g., may be 
errors in assigning bar 
codes or prices), likely 
to be under good 
control, but hard for 
statistical agency to 
assess 

NOT APPLICABLE, in 
that error is not defined, 
although there may be 
occasional problems of 
the sort that, say, a day’s 
worth of Twitter posts is 
overwritten and lost 

Modeling/ 
Estimation 
Error 

Bias from such 
processes as weighting 
and imputation 
VARIES; Often 
intense effort by 
statistical agency to 
design well initially 
but not to revisit to 
ascertain continued 
validity of procedures 

NOT APPLICABLE 
(usually), in that records 
are “raw” data, except 
perhaps for some recoded 
variables, but bias may be 
introduced by statistical 
agency reprocessing 

NOT APPLICABLE 
(usually), in that records 
are “raw” data, except 
perhaps for some 
recoded or summarized 
variables, but bias may 
be introduced by 
statistical agency 
reprocessing 

NOT APPLICABLE 
(usually), in that records 
are “raw” data,  but 
statistical agency 
reprocessing may 
introduce significant bias 
(e.g., by using the word 
“fired” as always 
indicating 
unemployment in 
analyzing Twitter posts) 
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Accuracy (Components of Error)* (CON’T) 

Dimension/ 
Data Source 

Census/Probability 
Survey (e.g., 
CPS/ASEC, ACS, 
NHIS - see Table 2.1) 

Administrative Records 
(e.g., income taxes, 
Social Security, 
unemployment, payroll) 

Commercial 
Transaction Records 
(e.g., scanner data, 
credit card data) 

Individual Interactions 
with the Internet (e.g., 
Twitter postings; 
Google search term 
volumes) 

Specification 
Error 

VARIES (e.g., self-
reported health status 
may validly indicate 
respondent’s 
perception but not 
necessarily diagnosed 
physical or mental 
health); May change 
over time (e.g., as 
word usage changes 
among the public) 

VARIES; can be 
significant when 
administrative records 
concept differs from what 
statistical agency needs 
(e.g., rules for reporting 
earnings on tax forms 
may leave out such 
components as cafeteria 
benefits) 

VARIES; can be low or 
high depending on how 
well the data correspond 
to statistical agency 
needs 

VARIES, but likely 
significant at the present 
state of the art of 
acquiring, evaluating, 
and analyzing these 
kinds of data that arise 
from relatively free-form 
choices of autonomous 
individuals 

Burden* VARIES, can be high NO ADDITIONAL 
BURDEN from statistical 
agency on relevant 
population (e.g., 
beneficiaries), but burden 
on administrative agency 

NO ADDITIONAL 
BURDEN from 
statistical agency on 
relevant population 
(e.g., shoppers), but 
burden on vendor 

NO ADDITIONAL 
BURDEN from 
statistical agency on 
relevant population (e.g., 
Twitter posters), but 
burden on vendor 

Cost* VARIES, can be high; 
Statistical agency bears 
full costs of design, 
collection, processing, 
estimation 

VARIES, but could be 
lower than comparable 
survey because 
administrative agency 
bears data collection 
costs, but statistical 
agency likely incurs costs 
of special processing/ 
handling 

VARIES as for 
administrative records, 
but vendor likely to 
want payment; 
Statistical agency likely 
incurs costs of special 
processing/ handling/ 
analyzing  

VARIES as for 
administrative records, 
but vendor likely to want 
payment; Additional 
statistical agency costs 
for processing/analyzing 
unstructured data may be 
high 

*Direction of scale changes; that is “high” is undesirable and “low” is desirable. 
Note: Excludes revision error from the Biemer et al. (2014) classification. 
Source: Author’s rough assessment. 

 
5.3  Uses of administrative records for household survey-based programs 
 

Household survey respondents have demonstrated time and time again that their responses to many 
important questions on income, wealth, expenditures, and other topics are not very accurate. Use of 
administrative records has the potential in many instances to remedy this situation. An alternative strategy 
of many U.S. household survey programs has been to encourage the respondents themselves to consult 
their own records, such as tax returns, when answering questions on income and similar topics. Certainly, 
answers are likely to be more accurate when records are consulted, as Johnson and Moore (no date) find in 
a comparison of income tax records with SCF responses for the 2000 tax year. However, the strategy itself 
appears to be largely an exercise in futility. The same study of the SCF by Johnson and Moore reports that 
only ten percent of households with an adjusted gross income of less than $50,000 consulted records and 
that only 22 percent of higher income households did so. See National Research Council (2013a, pp. 89-
91) and Moore, Marquis and Bogen (1996) for similar findings about the difficulties of getting 
respondents to consult records. 



152 Citro: From multiple modes for surveys to multiple data sources for estimates 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Turning to strategies for statistical agencies to work with administrative data directly, I identify eight 
ways in which administrative records can contribute to household survey data quality: (1) assist in 
evaluation of survey data quality, by comparison with aggregate estimates, appropriately adjusted for 
differences in population universes and concepts, and by exact matches of survey and administrative 
records; (2) provide control totals for adjusting survey weights for coverage errors; (3) provide 
supplemental sampling frames for use in a multiple frame design; (4) provide additional information to 
append to matched survey records to enhance the relevance and usefulness of the data; (5) provide 
covariates for model-based estimates for smaller geographic areas than the survey can support directly; (6) 
improve models for imputations for missing data in survey records; (7) replace “no” for survey 
respondents who should have reported an item, replace “yes” for survey respondents who should not have 
reported an item, and replace reported values for survey respondents who misreport an item; and (8) 
replace survey questions and use administrative records values directly. In a longer unpublished version of 
this article, I provide some current and potential examples of each type of use and identify benefits, 
confidentiality and public perception concerns, and limitations and feasibility issues for each use 
generically and specifically for U.S. household surveys on such topics as income, assets and expenditures. 
My bottom line is that the benefits should outweigh the drawbacks, given a sustained program to integrate 
administrative records systems with statistical programs.  

 
 
5.4  Potential uses of non-traditional data sources 
 

Having previously indicated that data from sources other than surveys and administrative records are 
problematic in a number of ways for official statistics, I would be remiss not to discuss briefly why such 
data appear to be so attractive. Private companies have very different loss functions from statistical 
agencies - they are seeking an edge over competitors. Data that are more timely and that identify ways to 
increase sales and profits are likely useful to a private company, even if they do not cover a population 
completely or have other drawbacks for official statistics. From this perspective, the kinds of experiments 
that a Google does, using its own “big data”, on ways to increase ad views are good investments (see, e.g., 
McGuire, Manyika and Chui 2012). Similarly, program agencies at all levels of government, often 
working with academic centers, are putting together and analyzing their own and other data in innovative 
ways to identify patterns, “hot spots”, and the like, not only for improving their programs and planning 
new services, but also for prioritizing resources and improving response in real time (see, e.g., the Center 
for Urban Science and Progress at New York University (http://cusp.nyu.edu/); and the Urban Center for 
Computation and Data at the University of Chicago (https://urbanccd.org))  

Statistical agencies need, above all, sources of data that cover a known population with error properties 
that are reasonably well understood and that are not likely to change under their feet - characteristics that 
are not inherent in such data sources as autonomous interactions with websites on the Internet. There are, 
however, at least two ways in which household survey-based statistical agency programs could obtain an 
“edge” from non-traditional sources: one is to improve timeliness for preliminary estimates of key 
statistics; and the other is to provide leading indicators of social change (e.g., the emergence of new 
occupations and fields of training) that alert statistical agencies to needed changes in their concepts and 
measures.  



Survey Methodology, December 2014 153 
 

 
Statistics Canada, Catalogue No. 12-001-X 

6  From data needs to data sources: Two U.S. examples 
 

For concreteness, I offer two U.S. examples - household income and housing unit characteristics - 
where I believe it is possible and incumbent on statistical agencies to turn survey programs into multiple 
sources programs to best meet user needs. The U.S. Office of Management and Budget (2014) has taken a 
positive step in this direction in a recent memorandum asserting that statistical uses of federal agency 
administrative records are a positive good and outlining step to institutionalize their use.  

 
6.1  Household income 
 

Official statistics on the distribution of household income are among the most important indicators of 
economic well-being that are regularly produced by national statistical offices, and they are even more 
important in light of today’s debates about rising inequality and related topics. Yet it is abundantly clear 
that the quality of household income measures obtained from responses to U.S. surveys is significantly 
impaired by coverage error, unit nonresponse, item nonresponse and misreporting. Moreover, the concept 
of regular money income for U.S. surveys is out of date with respect to the complex and continually 
evolving ways in which households obtain resources for everyday consumption and savings. It seems 
imperative for the U.S. statistical system to improve its flagship income estimates from CPS/ASEC, SIPP, 
and, to the extent feasible, the ACS by moving from relying largely on survey responses to an approach 
that integrates survey and administrative records data. The Census Bureau is implementing new and 
modified questions to better measure retirement income and other sources in the CPS/ASEC, consequent 
to a major review of income measurement in that survey by Czajka and Denmead (2012) and a report on 
cognitive testing of changes to the ASEC questionnaire (Hicks and Kerwin 2011). The Census Bureau 
also recently implemented a major redesign of SIPP, using event history calendar methods and annual 
interviews in place of interviews every four months to reduce burden and costs, with effects on quality to 
be evaluated (see https://www.census.gov/programs-surveys/sipp/about/re-engineered-sipp.html 
[November 2014]). There is a process in place for review of questions on the ACS, although as yet 
questions on income have not been tackled. The flagship surveys would be markedly improved if, in 
addition to continued standard questionnaire research to identify ways to reduce burden, clarify question 
meaning, and facilitate response to the income questions to the extent possible, the following four steps 
were taken: 

(1) The U.S. Census Bureau and Bureau of Economic Analysis (BEA) were to agree on - and 
periodically revisit and update as appropriate - a contemporary concept of regular household 
income on which to base estimates from the CPS/ASEC, SIPP and ACS, and the personal income 
series in the NIPAs, which are developed largely from administrative records. The surveys and 
NIPAs currently have conceptual differences, such as in the treatment of retirement benefits, 
which should be reconciled. Using an integrated concept of household income would make both 
the personal income accounts and household surveys more useful for analyzing trends from macro 
and micro perspectives. 

(2) The Census Bureau was to conduct research on the likely benefits from implementing 
socioeconomic survey weight adjustments in addition to demographic weight adjustments. 



154 Citro: From multiple modes for surveys to multiple data sources for estimates 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Assuming a benefit, the Census Bureau would next identify appropriate sources, which could be 
income tax records or the SCF, to adjust weights in the CPS, SIPP and the ACS to capture 
coverage differences by broad socioeconomic class.  

(3) The Census Bureau was to move strategically, source by source, to improve imputations of 
income receipt and amounts in the CPS/ASEC and SIPP by using administrative records values. 
The Census Bureau already has access to many records and is working to obtain additional 
records (e.g., SNAP records from states) as part of 2020 census planning. 

(4) The Census Bureau was to move - carefully, in consideration of the added hurdles for use of 
administrative records in the United States - toward the Statistics Canada model, whereby 
respondents can skip entire blocks of income questions by permitting access to their income tax 
and other administrative records (see http://www.statcan.gc.ca/eng/survey/household/5200 
[November 2014]). 

I do not mean to underestimate the difficulties of the steps outlined above for U.S. income statistics. 
These difficulties, in no particular order, include: (1) legal and bureaucratic impediments to obtaining 
ready access to administrative records, which are orders of magnitude greater for records held by state 
agencies because of differences in state laws, policies and data standards and systems; (2) respondent 
consent considerations, particularly if values from records are substituted for questions; (3) perceptions of 
“big brother” and threats to privacy, which may limit the accessibility of microdata for research and policy 
analysis; (4) lack of resources for statistical agencies to initiate such activities as redesign of imputation 
systems; (5) adverse effects on timeliness to the extent that records lag in their availability to statistical 
agencies, which could be addressed by issuing preliminary estimates followed by final estimates when 
sufficient administrative data become available; (6) insufficient knowledge of the error structures of 
records, which could lead to nasty surprises; (7) differences in concepts between records and survey 
measures that are not readily addressed (e.g., earnings reported to the IRS are not gross earnings but 
earnings subject to tax); (8) additional burdens on already-stretched-thin statistical agency headquarters 
staff; (9) the need to rewrite processing systems to link multiple streams of data and conduct all needed 
matching, reconciling and estimation on a timely basis; (10) the distrust of many U.S. microdata users, 
who seem to prefer a single-source data set, such as a survey, regardless of inaccuracies in the data, to a 
multiple-source data set, which may include model-based values for some variables; and (11) the 
hesitation of statistical agency staff, who often seem to believe that it is improper to use, say, 
administrative records to impute income receipt to a respondent who did not indicate receipt or to use 
administrative records to substitute for some questions or improve some imputations, unless this can be 
done for all items. In planning for the 2020 census, the Census Bureau is considering limited use of 
administrative records for nonresponse follow-up, which could be a model for selected use of records in 
household surveys. Although formidable, none of these difficulties are insurmountable. A well-articulated, 
staged, strategic plan for taking a multiple sources approach could empower statistical agencies to work 
toward quality gains for income estimates and achieve at the same time a reduction in respondent burden 
and potentially a reduction in costs for key survey programs.  
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6.2  Housing characteristics, including plumbing facilities 
 

Originating in the New Deal’s concern with poor housing quality for much of the nation, the 1940 U.S. 
decennial census included a few questions on the characteristics of housing units. That concern was well 
founded - the 1940 census found, for example, that 45 percent of housing units lacked complete plumbing 
facilities (hot and cold piped water, flush toilet, shower or bathtub). See 
https://www.census.gov/hhes/www/housing/census/historic/plumbing.html [November 2014]. Housing 
questions grew in number and were included on censuses through 2000. When the American Community 
Survey came on-line, it included the housing questions previously on the long-form sample. A much 
smaller biannual American Housing Survey (AHS) collects an even wider range of information about 
housing and neighborhoods. 

The major reason to investigate ways to move the ACS housing questions from a survey-based 
program to a survey-plus-alternative-data-sources-based program is respondent burden, both actual and 
perceived, which in the current political climate in the United States threatens the viability of the ACS. 
Because the ACS is in the field with a large sample of about 280,000 households every month, instead of 
once every ten years as for the census long-form sample that it replaced, the survey generates a small but 
continuous stream of complaints to members of Congress, which have led to congressional hearings. The 
Census Bureau has identified four items on the ACS that give rise to the most complaints - income, 
disability, time of leaving for work and plumbing facilities (see http://www.census.gov/acs/www/ 
Downloads/operations_admin/2014_content_review/ACSContentReviewSummit.pdf[November 2014]). 
The questions on plumbing facilities in the census long-form sample were also regularly the butt of jokes 
and complaints. In fact, people answer these questions quite completely (see 
http://www.census.gov/acs/www/methodology/item_allocation_rates_data/ [October 2014]), yet the 
questions continue to be resented and sometimes not well understood (see Woodward, Wilson and 
Chestnut 2007). Moreover, an examination of the full ACS questionnaire suggests that many households 
experience a substantial burden from the total set of about 30 housing questions, particularly homeowners 
with a mortgage. 

The Census Bureau responded to the concerns about ACS burden by cutting back the number of 
follow-up calls and visits (see Zelenak and Davis 2013), establishing a “respondent advocate”, and giving 
the public information about the rationale for the questions. Yet the U.S. House of Representatives passed 
an appropriations bill May 30, 2014, that, if enacted, would turn the ACS into a voluntary instead of 
mandatory survey. While good quality data could likely be collected given enough follow-up, the costs of 
the ACS would increase substantially (see Griffin 2011). The Census Bureau recently asked federal 
agencies about legislative or regulatory justification for each and every question, with the real possibility 
that some questions will be dropped (see http://www.census.gov/acs/www/about_the_survey/ 
acs_content_review/[November 2014]). Plumbing facilities might seem to be a good candidate for 
deletion from the ACS, given that only 0.4 percent of U.S. housing units lacked complete plumbing 
facilities in 2012 (From http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml? 
pid=ACS_12_1YR_DP04&prodType=table [November 2014]). However, that small percentage is 
concentrated in particular areas, such as Native American reservations and rural areas. Moreover, deleting 
any question on the ACS seems a drastic step to take without first exploring whether alternative sources 
might provide the data.  

http://www.census.gov/acs/www/
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml
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In fact, there are housing items on the ACS questionnaire that could very likely be obtained from a 
variety of other sources, attached to the Census Bureau’s Master Address File (MAF), and be available for 
inclusion in the ACS and other surveys that use the MAF as a sampling frame. Alternative sources include 
local government administrative records of taxes assessed, year built, and other characteristics of 
properties, which are increasingly being compiled by commercial vendors, thereby reducing the need to 
interact with the thousands of individual governments in the United States. They also include sources like 
Google Street View for exterior property characteristics, realtor websites for housing value and interior 
characteristics (e.g., number of rooms), smart meters for utility costs (in use in some areas and likely to 
spread in the future), and mortgage databases held by federal agencies and commercial vendors. Housing 
characteristics that rarely change can also be drawn from the previous census long-form samples. 
Plumbing facilities is a prime example - once a house is plumbed, it is almost never unplumbed (even 
though at times the plumbing may not be functional).  

These alternative sources will vary in how easily they are acquired and evaluated, the actual or 
perceived lack of threat to privacy and confidentiality they pose, and the extent to which they cover all or 
most of the country. Development of an augmented Master Address and Housing Unit File (MAHUF) that 
can serve the ACS and other Census Bureau statistical programs will take time, and, for some items (e.g., 
plumbing facilities), it may be necessary to use a separate (longer) version of the questionnaire in selected 
geographic areas that appends the relevant items. All of this will be messy, but the long-term potential 
payoffs are substantial. To move toward an augmented MAHUF, the Census Bureau can benefit from 
work of the Office of Policy Development & Research in the U.S. Department of Housing and Urban 
Development to streamline the lengthy AHS questionnaire by using other sources of data for many 
housing and neighborhood characteristics in place of survey questions; see 
http://www.huduser.org/portal/datasets/ahs.html#planning [November 2014]. 

 
7  Challenges and strategies for effecting paradigm change 
 

I have argued for a paradigm change in which statistical agencies design and update their flagship 
programs by determining the best combination of data sources and methods to serve user needs in a topic 
area of ongoing importance. I use U.S. household surveys as an example, where the evidence is strong that 
relying on survey responses alone will not suffice to serve critical needs for high-quality information on 
income, expenditures, and related subjects. I expect it is also true that the use of administrative records 
alone, as in some countries with detailed population registers, may not provide sufficiently complete and 
high-quality information in the absence of regular efforts to review the quality of the register data and 
augment and correct them with information from other sources, such as surveys. As a case in point, 
Axelson, Homberg, Jansson, Werner and Westling (2012) describe the utility of surveys for evaluating the 
quality of housing and household data from a new dwelling register that was constructed for the 2011 
census in Sweden.  

I close by listing factors that make paradigm change difficult, countered by ways to effect the change I 
recommend and ingrain it in statistical agency culture. The U.S. and other statistical systems have 
admirable records of innovation in many aspects of their programs, but changing paradigms is always 
difficult, as was evident in the battle to introduce probability sampling to official U.S. statistics in the 
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1930s. It is particularly hard to rethink long-lived, ongoing, statistical programs with which both the 
producer agency and the user base are comfortable. 

Factors that can impede change include: (1) inertia, particularly when a program was originally 
innovative and very well designed, so it can coast on its earlier success; (2) becoming out of touch with 
stakeholders’ changing needs, which can be exacerbated when an agency views itself as the only source of 
needed data and not in competition; (3) fear of undercutting existing programs combined with fear of 
“not-invented here”; (4) inadequate ongoing evaluation of data quality in all of its dimensions; and (5) 
constrained staff and budget resources, coupled with an understandable reluctance of agency staff or their 
established user base to cut back on one or another long-standing statistical series in order to make 
important advances in other series.  

Yet there are many outstanding examples of important innovation in U.S. and other nation’s statistical 
agencies, so clearly there are ways to overcome the constraints listed above to effect paradigm change. 
The essential ingredient for paradigm change, I believe, is leadership buy-in and continued support at the 
top of a statistical agency, proactively deployed to garner buy-in at all levels of the agency. For an 
outstanding example of such leadership, see the discussion in National Research Council (2010a) of the 
role of Morris Hansen and his colleagues in reengineering what had been an enumerator-based census into 
a mailout/mailback census. The reengineering effort was initiated and sustained on the basis of evidence 
of substantial interviewer bias and variance for important data items. There was also concern that it could 
become more difficult to recruit enumerators as women moved into the work force. 

Specific steps for agency leadership to get behind for the specific purpose of inculcating the use of 
multiple data sources for ongoing official statistical programs include (see Prell, Bradsher-Fredrick, 
Comisarow, Cornman, Cox, Denbaly, Martinez, Sabol and Vile (2009), who conducted case studies of 
successful statistical uses of administrative records in the United States, for similar conclusions): (1) 
setting clear expectations and goals for staff, such as the expectation that statistical programs will, as a 
matter of course, combine such sources as surveys and administrative records in the interests of relevant, 
accurate and timely data produced cost-effectively and with minimal respondent burden; (2) according a 
prominent role to subject-matter specialists - to interface with outside users and inside data producers; (3) 
staffing operational programs with expertise in all relevant data sources, which includes putting specialists 
in survey design and specialists in administrative records or other data sources on an equal footing; (4) 
providing for rotation of assignments, including internal rotations, rotations among statistical agencies, 
rotations with data user organizations and rotations with sources of alternative data sources; (5) carving 
out resources for continued evaluation; and (6) treating organizations with alternative data sources that 
play important roles in statistical programs as partners. On this last point, see, e.g., Hendriks (2012, p. 
1473), who, in discussing the experiences of Statistics Norway with their first register-based census in 
2011, stresses that “The three C’s of register based statistics (in order to achieve data quality) are Co-
operation, Communication and Coordination.” 

Statistical agencies have shown the ability to make far-reaching changes in response to threats to 
established ways of doing business. The second half of the 20th century gave us the probability survey 
paradigm in response to the increasing costs and burden of conducting full enumerations and the flaws of 
non-probability designs. The 21st century can surely give us the paradigm of using the best source(s), 
including surveys, administrative records and other sources, to respond to policy and public needs for 
relevant, accurate, timely and cost-effective official statistics.  
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interviewer variance components in two groups of survey 
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Abstract 

Survey methodologists have long studied the effects of interviewers on the variance of survey estimates. 
Statistical models including random interviewer effects are often fitted in such investigations, and research 
interest lies in the magnitude of the interviewer variance component. One question that might arise in a 
methodological investigation is whether or not different groups of interviewers (e.g., those with prior 
experience on a given survey vs. new hires, or CAPI interviewers vs. CATI interviewers) have significantly 
different variance components in these models. Significant differences may indicate a need for additional 
training in particular subgroups, or sub-optimal properties of different modes or interviewing styles for 
particular survey items (in terms of the overall mean squared error of survey estimates). Survey researchers 
seeking answers to these types of questions have different statistical tools available to them. This paper aims to 
provide an overview of alternative frequentist and Bayesian approaches to the comparison of variance 
components in different groups of survey interviewers, using a hierarchical generalized linear modeling 
framework that accommodates a variety of different types of survey variables. We first consider the benefits 
and limitations of each approach, contrasting the methods used for estimation and inference. We next present a 
simulation study, empirically evaluating the ability of each approach to efficiently estimate differences in 
variance components. We then apply the two approaches to an analysis of real survey data collected in the U.S. 
National Survey of Family Growth (NSFG). We conclude that the two approaches tend to result in very similar 
inferences, and we provide suggestions for practice given some of the subtle differences observed. 

 
Key Words: Interviewer variance; Bayesian analysis; Hierarchical generalized linear models; Likelihood ratio testing. 

 
 

1  Introduction 
 

Between-interviewer variance in survey methodology (e.g., West, Kreuter and Jaenichen 2013; West 
and Olson 2010; Gabler and Lahiri 2009; O’Muircheartaigh and Campanelli 1998; Biemer and Trewin 
1997; Kish 1962) occurs when survey responses nested within interviewers are more similar than 
responses collected from different interviewers. Between-interviewer variance can increase the variance of 
survey estimates of means, and may arise due to correlated response deviations introduced by an 
interviewer (e.g., Biemer and Trewin 1997), given the complexity of survey questions (e.g., Collins and 
Butcher 1982) or interactions between the interviewer and the respondent (e.g., Mangione, Fowler and 
Louis 1992), or nonresponse error variance among interviewers (West et al. 2013; Lynn, Kaminska and 
Goldstein 2011; West and Olson 2010).  

Survey research organizations train interviewers to eliminate this component of variance in survey 
estimates, as it is sometimes larger than the component of variance due to cluster sampling (Schnell and 
Kreuter 2005). In reality, an interviewer variance component can never be equal to 0 (which would imply 
that means on the variable of interest are identical across interviewers), but survey managers aim to 
minimize this component via specialized interviewer training. For example, interviewers may practice the 
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administration of selected questions under the direct supervision of training staff, and then receive 
feedback on any variance in administration that is noted by the staff (in an effort to standardize the 
administration; see Fowler and Mangione 1990). In some non-interpenetrated designs, where interviewers 
are generally assigned to work exclusively in a single primary sampling area (e.g., the U.S. National 
Survey of Family Growth; see Lepkowski, Mosher, Davis, Groves and Van Hoewyk 2010), interviewer 
effects and area effects are confounded, preventing estimation of the variance in survey estimates that is 
uniquely attributable to the interviewers. Elegant interpenetrated sample designs (Mahalanobis 1946) 
enable interviewers to work in multiple sampling areas, and in these cases, cross-classified multilevel 
models can be used to estimate the components of variance due to interviewers and areas (e.g., Durrant, 
Groves, Staetsky and Steele 2010; Gabler and Lahiri 2009; Schnell and Kreuter 2005; O’Muircheartaigh 
and Campanelli 1999; O’Muircheartaigh and Campanelli 1998).  

In general, estimating the overall magnitude of interviewer variance in the measures of a given survey 
variable or data collection process outcome is a useful exercise for survey practitioners. If random 
subsamples of sample units are assigned to interviewers following an interpenetrated design, one can 
estimate the component of variance due to interviewers and subsequently the unique effects of 
interviewers on the variance of an estimated survey mean (e.g., Groves 2004, p. 364). Large estimates can 
indicate potential measurement difficulties that certain interviewers are experiencing, or possible 
differential success in recruiting particular types of sampled units. Given a relatively large estimate of an 
interviewer variance component and an appropriate statistical test indicating that the component is 
significantly larger than zero (or “non-negligible”, given that variance components technically cannot be 
exactly equal to zero; see Zhang and Lin 2010), survey managers can use various methods to compute 
predictions of the random effects associated with individual interviewers, and identify interviewers who 
may be struggling with particular aspects of the data collection process. 

While the estimation of interviewer variance components and subsequent adjustments to interviewer 
training and data collection protocols have a long history in the survey methodology literature (see 
Schaeffer, Dykema and Maynard 2010 for a recent review), no studies in survey methodology to date have 
examined the alternative approaches that are available to survey researchers for comparing variance 
components in two independent groups of survey interviewers. In general, alternative statistical 
approaches are available for estimating interviewer variance components, and estimates (and 
corresponding inferences about the variance components) may be sensitive to the estimation methods that 
a survey researcher employs. The same is true for survey researchers who may desire to compare the 
variance components associated with different groups of interviewers, for various reasons (e.g., 
identifying groups that need more training or more optimal modes for certain types of questions): different 
statistical approaches to performing these kinds of comparisons exist, and inferences about the differences 
may be sensitive to the approach used. With this paper, we aim to evaluate alternative frequentist and 
Bayesian approaches to making inference about the differences in variance components between two 
independent groups of survey interviewers, and provide practical guidance to survey researchers interested 
in this type of analysis.  

The paper is structured as follows. In Section 2, we introduce the general modeling framework that 
enables these comparisons of interviewer variance components for both normal and non-normal (e.g., 
binary, count) survey variables, and review existing literature comparing the frequentist and Bayesian 
approaches to estimation and inference, highlighting the advantages and disadvantages of each approach. 
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We then present a simulation study in Section 3, evaluating the ability of the two approaches to efficiently 
estimate differences in variance components between two hypothetical groups of interviewers. Section 4 
applies the two approaches to real survey data collected in the U.S. National Survey of Family Growth 
(NSFG) (Lepkowski et al. 2010; Groves, Mosher, Lepkowski and Kirgis 2009). Finally, Section 5 offers 
concluding thoughts, suggestions for practitioners, and directions for future research. We include SAS, R, 
and WinBUGS code that readers can use to implement the two approaches in the Appendix. 

 
2  Alternative approaches for comparing variance components in 
Hierarchical Generalized Linear Models 
 

We first consider a general class of models that survey researchers can employ to compare variance 
components in different groups of interviewers. Hierarchical Generalized Linear Models (HGLMs) are 
flexible analytic tools that can be used to model observations on both normal and non-normal (e.g., binary, 
count) survey variables of interest, where observations nested within the same interviewer cannot be 
considered independent (Raudenbush and Bryk 2002; Goldstein 1995). We consider alternative 
approaches to making inferences about interviewer variance components in a specific class of HGLMs, 
where the interviewer variance components for two independent groups of interviewers defined by a 
known interviewer characteristic need not be equal. This type of HGLM can be written as  

 
( ) ( ) ( ) ( )

( ) ( )
0 1 (1) (2)

2 2
(1) 1 (2) 2

| 1 1 2

~ 0, ,  ~ 0, ,

β β

τ τ

  = + = + = + = ij i i ii i i

i i

g E y u I Group u I Group u I Group

u N u N
 (2.1) 

where ( )g x  is the link function relating a transformation of the expected value of the dependent variable, 

,ijy  to the linear combination of the fixed and random effects (e.g., ( ) ( )  1  = −g x log x x  for an 

assumed Bernoulli distribution [binary outcome], ( ) ( )  =g x log x  for an assumed Poisson distribution 
[count outcome]), i  is an index for the interviewer, j  is an index for the respondent nested within an 
interviewer, and ( )I  represents an indicator variable, equal to 1 if the condition inside the parentheses is 
true and 0 otherwise. The random interviewer effects from Group 1, (1) ,iu  are assumed to follow a normal 

distribution with mean 0 and variance 2
1 ,τ  while the random interviewer effects from Group 2, (2) ,iu  are 

assumed to follow a normal distribution with mean 0 and variance 2
2 .τ  Other distributions may be posited 

for the random effects, and the general model in (2.1) can accommodate over-dispersion in the observed 
dependent variable relative to the posited distribution for that variable. The key aspect of the specification 
in (2.1) is that random effects for different groups of interviewers have different variances. The fixed 
effect parameter 1β  in (2.1) represents a fixed effect of Group 1 on the outcome relative to Group 2 in the 
HGLM, and fixed effects of other covariates can easily be included. Similarly, additional subgroups of 
interviewers can be considered by including additional random effects (k) ,iu  for 2.>k  Analytic interest 

lies in the magnitude of the difference in the variance components.  
Models of the form in (2.1) can be applied when methodological studies are designed to compare two 

different groups of interviewers in terms of their variance components. For example, there exists a debate 
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in the survey methodology literature regarding whether interviewers should use standardized or 
conversational interviewing. Proponents of standardized interviewing argue that all interviewers should 
administer surveys in the exact same way, allowing respondents to interpret questions as they see fit (e.g., 
Fowler and Mangione 1990). Other research has shown that more flexible interviewing using a 
conversational style may increase respondent understanding of survey questions and reduce measurement 
error (e.g., Schober and Conrad 1997). To test a hypothesis that one interviewing style results in lower 
between-interviewer variance, a researcher might randomize interviewers to two groups trained in the two 
different styles, collect survey data on a variety of variables, and then fit model (2.1), including indicator 
variables for the two groups of interviewers. This same approach could be used to compare the interviewer 
variance components in two groups of interviewers randomly assigned to different data collection modes 
(e.g., CAPI vs. CATI). To date, no published studies have attempted these kinds of comparisons, but they 
are important for understanding the overall impacts of these design decisions on the mean squared error 
(MSE) of survey estimates.  

Frequentist approaches to the estimation of parameters in HGLMs rely on various numerical or 
theoretical approaches to approximating complicated likelihood functions, especially for models such as 
(2.1) that involve complex random effects structures (e.g., Faraway 2006, Chapter 10; Molenberghs and 
Verbeke 2005). In general, inferences are based on these approximate likelihood-based approaches, which 
include residual pseudo-likelihood (which is different from the pseudo-maximum likelihood estimation 
approach developed by Binder (1983) for design-based analyses of data from complex sample surveys), 
penalized quasi-likelihood, and maximum likelihood based on a Laplace approximation. Previous work 
has found favorable simulation results for the residual pseudo-likelihood approach, which indicate nearly 
unbiased estimation of the variance components in an HGLM as compared to maximum likelihood using 
Laplace approximation or adaptive quadrature (Pinheiro and Chao 2006). These findings are similar to the 
case of restricted maximum likelihood (REML) estimation in a model for a normally distributed outcome 
variable. For binary outcome variables, marginal or penalized quasi-likelihood techniques can lead to 
downward bias in parameter estimates and convergence problems, and fully Bayesian approaches may 
have favorable properties in this case (Browne and Draper 2006; Rodriguez and Goldman 2001). We 
therefore consider the residual pseudo-likelihood approach in the simulations and applications presented 
in this study, and contrast this approach with a fully Bayesian approach.   

There are two approaches available for making inference about differences in variance components in 
the frequentist setting. The first approach involves testing the null hypothesis that 2 2

1 2 ,τ τ=  versus the 
alternative hypothesis that 2 2

1 2 .τ τ≠  Conceptually, this is a simple hypothesis test to perform using 
frequentist methods, as the null hypothesis defines an equality constraint rather than setting a parameter to 
a value on the boundary of a parameter space. The model under the null hypothesis is nested within the 
model under the alternative hypothesis, where 2 2

2 1 .τ τ= + k  The null hypothesis can thus be rewritten as 
0,=k  versus the alternative that 0.≠k  A test statistic is computed by fitting a constrained version of the 

model in (2.1), with the random effect variance components in the two groups specified as equal, and then 
fitting the model with the more general form in (2.1). The positive difference in the approximate -2 log-
likelihood values of these two models is then computed, and referred to a chi-square distribution with one 
degree of freedom.   
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The second approach involves computing the difference of the pseudo-ML estimates, 1 2ˆ ˆ ,τ τ−  and an 
associated 95% Wald-type confidence interval for the difference, given by 

( ) ( ) ( )1 2 1 2 1 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1.96 var var 2cov , .τ τ τ τ τ τ− ± + −  This interval requires asymptotic estimates of the 

variances and covariances of the two estimated variance components, which are computed based on the 
Hessian (second derivative) matrix of the objective function used for the maximum likelihood estimation 
procedure. If the resulting Wald interval includes zero, one would conclude that there is not enough 
evidence against the null hypothesis. Confidence intervals for differences in variance components can also 
be computed using inversions of profile likelihood tests (e.g., Viechtbauer 2007), although standard 
software does not include options for implementing this procedure (to our knowledge).   

These two frequentist approaches to making inference about differences in interviewer variance 
components do have limitations. When the number of interviewers in each group is small (say, less than 
30; see Hox (1998) for discussion), asymptotic results for the likelihood ratio test (Zhang and Lin 2010) 
may no longer hold. Frequentist (maximum likelihood) methods also tend to overstate the precision of 
estimates, given that they ignore the uncertainty in estimates of the variance components (Carlin and 
Louis 2009, p. 335-336), which is especially problematic for small samples (Goldstein 1995, p. 23). 
Bayesian approaches allow analysts to place prior distributions on variance components to reflect this 
uncertainty, unlike frequentist approaches. Furthermore, Molenberghs and Verbeke (2005, p. 277) argue 
that likelihood ratio tests should not be used to test hypotheses when models are fitted using pseudo-
likelihood methods. Approximate maximum likelihood estimation methods can also lead to invalid (i.e., 
negative) estimates of variance components in these models when variance components are very small. 
Software that does not use estimation procedures constraining these variance components to be greater 
than zero generally responds to this problem by setting negative estimates of variance components equal 
to zero (with no accompanying standard error), which prevents computation of the Wald-type confidence 
interval described above.  

A Bayesian approach to fitting the HGLMs described in (2.1) uses the MCMC-based Gibbs sampler 
and the adaptive rejection sampling methodology (Gilks and Wild 1992) to simulate draws from the 
posterior distribution for the parameters in the model defined in (2.1). In general, the posterior 
distributions for the parameters in an HGLM are not of known distributional forms and need to be 
simulated (Gelman, Carlin, Stern and Rubin 2004, Section 16.4). Diffuse, non-informative priors for the 
fixed effects and the variance components in (2.1) can be specified for the simulations, to let the data 
provide the most information about the posterior distributions of the parameters (Gelman and Hill 2007; 
Gelman 2006, Section 7). This approach enables inferences based on simulated draws from the marginal 
posterior distributions of the two fixed effect parameters, the two variance parameters, the random 
interviewer effects, and any functions of these parameters. This study focuses on the marginal posterior 
distribution of the difference in the random effect variances for two groups of interviewers defined by a 
known interviewer-level characteristic, computed using the simulated draws of the two variance 
components.  

Given that traditional hypothesis tests are not meaningful in the Bayesian setting, Bayesian inference 
will focus on the difference in the interviewer variance components. Inference for the difference is based 
on several thousand draws of the two variance components from the joint posterior distribution estimated 
using the Gibbs sampler. For each draw d  of the two variance components, the difference in the variance 
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components, defined as 2( ) 2( )
1 2 ,τ τ−d d  can be computed. Inferences will then be based on the marginal 

distribution of these differences, ignoring the draws of the random interviewer effects and the other 
nuisance parameters. The median and the 0.025 and 0.975 quantiles (for a 95% credible set) of the 
simulated differences of the two variance components will be computed based on the effective number of 
simulation draws of the two variance components from the estimated joint posterior distribution. In a 
given analysis, several thousand draws from the posterior distribution can be generated using the Gibbs 
sampler, with a large number of initial draws discarded as burn-in draws, and the effective number of 
simulation draws will be computed based on the number of burn-in draws (Gelman and Hill 2007, Chapter 
16). If the resulting 95% credible set includes 0, there will be evidence in favor of the two groups having 
equal variance components. If the 95% credible set does not include 0, there will be evidence in favor of 
the two groups having different variances, with a positive median suggesting that group 1 has the higher 
variance component. Inference for the two fixed effects can follow a similar approach.  

Focusing on draws of the two variance components from the full joint posterior distribution (and their 
differences) and ignoring draws of the random interviewer effects and the fixed effects has the effect of 
integrating these other parameters out of the joint posterior distribution. This Bayesian approach therefore 
provides a convenient methodology for simulating draws from the marginal distribution of a complicated 
parameter (the difference between the two variance components) and computing a 95% credible set for 
that parameter. While such estimates can also be obtained in the frequentist approach, as noted previously, 
the Bayesian approach does not require asymptotic assumptions and incorporates the variability in the 
estimated variance components into the computation of the 95% credible sets via the simulated draws.  

Multiple (typically three) Markov chains can be run in parallel in the iterative Gibbs sampling 
algorithm to simulate random walks through the space of the joint posterior distribution. The Gelman-
Rubin R̂  statistic, representing (approximately) the square root of the variance of the mixture of the 
chains divided by the average within-chain variance (Gelman and Rubin 1992), can be used to assess 
convergence (or mixing) of the chains for each parameter. Values less than 1.1 on this statistic can be 
considered as evident of convergence of the chains for a given parameter. Posterior draws of the 
parameters can be pooled from the three chains to generate the final effective sample size of draws used 
for inferences. 

The Bayesian approach outlined above is also not without limitations. The selection of the prior 
distributions used to compute the posterior distribution for the parameters in (2.1) is essentially arbitrary, 
and depends on the choices of a given analyst and the amount of prior information available. Furthermore, 
the choice of the prior distribution can become crucial when there is a small number of interviewers (say, 
less than 20), where different priors can lead to very different inferences regarding the variance 
components (Lambert, Sutton, Burton, Abrams and Jones 2005); the use of prior information about the 
variance components can increase efficiency relative to the use of non-informative priors in these cases. 
Model misspecification is also a distinct possibility depending on the survey variable being modeled, 
which is also a limitation of the frequentist approach. Computational demand may also be an issue with 
the Bayesian (Gibbs sampling) approach (Browne and Draper 2006), especially if one desires comparisons 
of interviewer variance components for a large number of survey variables (with potentially different 
distributions) and there are a relatively large number of interviewers; this may not be as problematic with 
recent advances in hardware speed and algorithm efficiency. Finally, analysts may not be comfortable 
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with the available software for Bayesian approaches, so there may be a learning curve associated with 
implementation of this approach.  

Several previous articles have compared these alternative frequentist and Bayesian approaches using 
simulation studies. Chaloner (1987) considered one-way ANOVA models with random effects for 
unbalanced data (similar to the case in this study, where interviewers have different workloads), and found 
lower empirical MSE values for posterior modes of the variance components when following the Bayesian 
approach and using non-informative priors than for the frequentist (maximum likelihood) approach. Van 
Tassell and Van Vleck (1996) reported that the Gibbs sampler (using either informative or non-
informative prior distributions) and REML both produce empirically unbiased estimates of variance 
components that tend to be extremely similar. Browne and Draper (2006) also found that both approaches 
can lead to unbiased estimates, with the more “automatic” nature of frequentist approaches being an 
attractive feature. In the context of predicting means for small areas using models with random area 
effects, Singh, Stukel and Pfeffermann (1998) reported that Bayesian MSE approximations for the 
predictions have good frequentist properties, but that the Bayesian method tends to produce larger 
frequentist biases and prediction MSEs than frequentist methods. Farrell (2000) found that the Bayesian 
approach resulted in slightly more accurate predictions of small area proportions, with little differences in 
coverage rates or bias between the two approaches. Ugarte, Goicoa and Militino (2009) also found that the 
two approaches performed quite similarly in an application involving the detection of high-risk areas for 
disease. These authors point out that the relative computational simplicity of the frequentist approach is 
attractive in light of these findings. In general, based on the literature in this area, we anticipate similar 
performance of the two methods in the case of comparing interviewer variance components, and we 
evaluate this expectation using a simulation study (Section 3). 

While there exist many software procedures for fitting multilevel models and estimating variance 
components using both frequentist and Bayesian methods (see West and Galecki 2011 for a review), the 
frequentist approach to the specific comparison of variance components discussed in this paper is only 
readily implemented in the GLIMMIX procedure of SAS/STAT (SAS 2010), through the COVTEST 
statement with the HOMOGENEITY option (which assumes that a GROUP variable has been specified in 
the RANDOM statement, indicating different groups of clusters with random effects arising from different 
distributions). We are not aware of any other procedures that readily implement the frequentist 
comparison approach at the time of this writing. Example code that can be used for fitting these models 
using the GLIMMIX procedure is available in the Appendix. The Bayesian approach to comparing the 
variance components can be implemented in the BUGS (Bayesian Inference using Gibbs Sampling) 
software (see References Section for more details). We also include example code that implements this 
approach by calling WinBUGS from R in the Appendix. 

 
3  Simulation Study 
 

We conducted a small simulation study to examine the empirical properties of these two alternative 
approaches. Data on two hypothetical survey variables of interest (one normally distributed, one Bernoulli 
distributed) were simulated according to the following two super-population models: 
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(1) (2)
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u I Group u I Group
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  (3.2) 

The notation used here is consistent with that used in (2.1). Values on the second Bernoulli variable 
were generated for hypothetical cases according to the logistic regression model specified in (3.2). To 
obtain the observed Bernoulli variable, a random draw was obtained from a UNIFORM(0,1) distribution, 
and the variable was set to 1 if the random draw was less than or equal to the predicted probability, and 0 
otherwise. For one hypothetical group of interviewers at a time, random interviewer effects were drawn, 
and values for cases within each interviewer were then generated according to the specified model. 

We generated 200 samples of hypothetical cases and simulated data for each variable, with 50 
hypothetical interviewers in one group collecting data from 50 hypothetical cases each ( 2,500=n  for 
each group of interviewers). We then generated an additional 200 samples in a small-sample scenario, 
with 20 interviewers in each group collecting data from ten hypothetical cases each ( 200=n  for each 
group of interviewers). The choices of the variance components in (3.1) correspond to intra-interviewer 
correlations of 0.015 and 0.030 for the two hypothetical groups of interviewers, while the choices of the 
variance components in (3.2) correspond to intra-interviewer correlations of 0.009 and 0.038. All of these 
values would be considered plausible in a face-to-face or telephone survey setting (West and Olson 2010). 
The known differences in variance components between the groups are therefore 1 for the normal 
variable, and 0.1 for the Bernoulli variable.  

Given these known values for the interviewer variance components in the hypothetical population, we 
applied each method described in Section 2 [using diffuse, non-informative, uniform priors for the 
variance components, per recommendations of Gelman (2006, Section 7)] to each hypothetical sample. 
We computed the following empirical measures for comparison purposes: 1) the empirical and relative 
bias of the estimator; 2) the empirical MSE of the estimator; 3) the “frequentist” coverage of the 95% 
Wald-type intervals (when using the frequentist approach) and the 95% credible sets (when using the 
Bayesian approach); and 4) the average widths of the 95% Wald-type intervals and the credible sets. The 
number of Wald-type intervals that could not be computed due to estimated variance components of 0 
(with no accompanying standard errors) was also recorded in each case. All simulations were performed 
using SAS, R, and BUGS, and simulation code is available upon request. 

Table 3.1 presents the results of the simulation study. The results suggest that for moderate-to-large 
samples of interviewers and respondents, both approaches yield estimators of the difference in variance 
components that have fairly small bias, as anticipated. The frequentist approach was found to yield 
estimators with smaller empirical MSE values; this is not entirely surprising, given the additional 
variability in the Bayesian estimates introduced by accounting for uncertainty in the prior distributions of 
the parameters with non-informative priors. The use of more informative priors may improve the 
efficiency of the Bayesian estimates. In the large sample setting, the 95% confidence intervals and 
credible sets computed for the difference in variance components appear to have acceptable coverage 
properties, with the Bayesian approach having slight under-coverage.  
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Table 3.1 
Results of simulation study comparing the empirical properties of the frequentist and Bayesian approaches to 
making inference about the differences in interviewer variance components. 
 

Sample Sizes  Frequentist Approach Bayesian Approach 

 Normal Y   

    50 interviewers / group 

    50 cases / interviewer 

    ( 2,500=n / group) 

Empirical Bias -0.0498 -0.0189 

Relative Bias -4.98% -1.89% 

Empirical MSE 0.6546 0.8134 

95% CI/CS Coverage 0.960 0.920 

Mean 95% CI/CS Width 3.1689 3.6283 

% of Wald CIs Invalid 0.0% -- 

Bernoulli Y   

Empirical Bias -0.0020 -0.0046 

Relative Bias -2.0% -4.6% 

Empirical MSE 0.0029 0.0033 

95% CI/CS Coverage 0.938 0.940 

Mean 95% CI/CS Width 0.2142 0.2372 

% of Wald CIs Invalid 11.5% -- 

    20 interviewers / group 

    10 cases / interviewer 

    ( 200=n / group) 

Normal Y   

Empirical Bias -0.2341 -0.3508 

Relative Bias -23.41% -35.08% 

Empirical MSE 6.9873 6.2869 

95% CI/CS Coverage 1.000 0.995 

Mean 95% CI/CS Width 16.6313 18.3574 

% of Wald CIs Invalid 54.0% -- 

Bernoulli Y   

Empirical Bias -0.0348 -0.0196 

Relative Bias -34.8% -19.6% 

Empirical MSE 0.0345 0.0861 

95% CI/CS Coverage 1.000 0.980 

Mean 95% CI/CS Width 1.2604 1.7970 

% of Wald CIs Invalid 65.5% -- 

   
Notably, 11.5% of the 95% Wald-type confidence intervals could not be computed when analyzing the 

binary outcome for the larger samples, due to one of the estimated variance components being equal to 
zero (with no standard error). This “failure” rate for the Wald intervals became much worse for both 
variables in the smaller samples, where both methods also produced inefficient estimates with a negative 
bias. The frequentist approach can therefore provide an estimate of the difference and associated 
confidence intervals that work well in larger samples with normally distributed variables, but in small 
samples or even moderate-to-large samples with non-normal variables, the simple Wald-type intervals that 
can be computed using standard software may fail a fairly substantial fraction of the time. This is due to 
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the fact that the Hessian matrix is not invertible when an estimated variance component is set to zero (i.e., 
the likelihood can't be approximated by a quadratic). Collectively, these simulation results therefore 
suggest that: 1) both approaches will perform similarly well when applied to real survey data with 
moderate-to-large samples of interviewers and respondents; 2) the Bayesian approach may be the better 
option if intervals (or credible sets) for the difference are desired; and 3) caution is advised when applying 
either method to relatively small samples of interviewers and respondents. 

 
4  Application: The U.S. National Survey of Family Growth (NSFG) 
 

We now apply the frequentist and Bayesian approaches to real survey data collected in the seventh 
cycle of the NSFG (June 2006 – June 2010). The original design of this cycle of the NSFG (Groves et al. 
2009) called for 16 quarters of data collection from a continuous sample that was nationally representative 
when it was completed in June 2010. The data analyzed in this paper were collected from a national 
sample of 11,609 females between the ages of 15 and 44, by 87 female interviewers (with varying sample 
sizes for each interviewer). For more details on the design and operation of the seventh cycle of the 
NSFG, see Lepkowski et al. (2010) or Groves et al. (2009). 

Each of the 87 interviewers has information available on her age (47.1% are age 55 or greater), years 
of experience (43.7% have five or more years of experience), number of children (33.3% have two or 
more children), marital status (19.5% have never been married), other employment (46.0% have other 
jobs), college education (57.5% completed a four-year college degree), previous experience working on 
NSFG (82.8% have worked on previous cycles), and ethnicity (81.6% are white). These observable 
interviewer-level characteristics will be used to divide the interviewers into two groups (in the absence of 
an ideal randomized experiment, like that described in Section 2).  

Each of the 11,609 female respondents has their parity (or count of live births) and an indicator of 
current sexual activity (indicated by at least one current male partner or at least one male partner in the 
past 12 months) measured and available for analysis. While these measures seem fairly simple, the 
concepts being measured may be communicated differently by different interviewers (resulting in 
interviewer variance). The primary analytic question is whether these different groups of female 
interviewers have significantly different variance components for these particular survey variables. 

We first consider an HGLM for the parity variable. Let Y  be a Poisson random variable with 
parameter .λ  We allow for overdispersion (or extra-Poisson dispersion) in ,Y  which is quite common in 
count variables (for example, the mean parity for the sample of 11,609 females is 1.19, and the variance of 
the measured parity values is 1.99). Following Hilbe (2007) and Durham, Pardoe and Vega (2004), we let 

,λ µ= r  where r  is a ( )1 1,GAMMA α α− −  random variable. It then follows that Y  has a negative 

binomial distribution with mean µ  and scale parameter :α   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2var var ( ) var( ) var( ) 1

λ µ µ µ

λ λ µ µ µ µ µ αµ

= = = =

= + = + = + = +

E Y E E r E r

Y E E r r E r r
 

We specify an HGLM for the observed value of parity on female respondent j  interviewed by 
interviewer ,  ,iji y  as follows:    
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µ β β
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− −

=

= + = + = + =
  (4.1) 

In this multilevel negative binomial regression model, ( )0exp β  represents the expected parity for Group 

2, ( )1exp β  represents the expected multiplicative change in parity for Group 1 relative to Group 2, (1)iu  is 

a random effect associated with interviewer i  in Group 1, and (2)iu  is a random effect associated with 

interviewer i  in Group 2.  
Next, we consider an HGLM for the binary indicator of current sexual activity. Let 1=ijz  if a female 

respondent j  indicates current sexual activity to interviewer ,i  and 0 otherwise. We specify the following 
model for this binary indicator: 

 

( )
( ) ( ) ( ) ( )
( ) ( )

0 1 (1) (2)

2 2
(1) 1 (2) 2

~

ln 1 1 1 2

~ 0, ,        ~ 0, .

ij i

i i i ii i i

i i

z Bernoulli p

p p I Group u I Group u I Group

u N u N

β β

τ τ

 −  = + = + = + =    (4.2) 

In this model, ( )0exp β  represents the expected odds of current sexual activity for Group 2, ( )1exp β  

represents the expected multiplicative change in the odds of current sexual activity for Group 1 relative to 
Group 2, (1)iu  is a random effect associated with interviewer i  in Group 1, and (2)iu  is a random effect 

associated with interviewer i  in Group 2.  

We fit models (4.1) and (4.2) using the two approaches described in Section 2. For the frequentist 
approach, based on recommendations from the literature discussed in Section 2, we estimated the 
parameters in these models using residual pseudo-likelihood (RPL) estimation, as implemented in the 
GLIMMIX procedure in the SAS/STAT software. All frequentist analyses presented in this section were 
repeated using adaptive quadrature to approximate the likelihood functions, and the primary results did not 
change; in addition, the use of adaptive quadrature led to longer estimation times.  

For the Bayesian approach, the following non-informative prior distributions for these parameters were 
used. These prior distributions were selected based on a combination of estimates from initial naïve model 
fitting, and recommendations from Gelman and Hill (2007) and Gelman (2006, Section 7) for proper but 
non-informative prior distributions for variance parameters in hierarchical models with a reasonably large 
number (i.e., more than five) of groups (or interviewers, in the present context): 

( ) ( )
( ) ( )

( )

0 1

2 2
1 2

~ 0,100                ~ 0,100

~ 0,10       ~ 0,10

ln( ) ~ 0,100 .

N N

Uniform Uniform

N

β β

τ τ

α

 

The non-informative priors for the fixed effects and the (natural log transformed) scale parameter for 
the negative binomial count variable (parity) indicate an expectation that these parameters will be 
somewhere in the range (-10, 10), while the non-informative priors for the variance components are 
uniform distributions on the range (0, 10). Given initial naive estimates of the fixed effects ranging 
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between -1 and 1 and initial estimates of the (untransformed) scale parameter and variance components 
ranging between 0 and 5, these priors are all fairly diffuse, expressing little prior knowledge about these 
parameters and letting the available NSFG data provide the most information. Prior studies comparing 
interviewer variance components for similar count variables could also be used in general applications of 
this technique to specify more informative prior distributions. It is also important to note that the BUGS 
software uses inverse-variances for the normal distribution, meaning that 0.01 and inverses of the variance 
components will be specified in the normal distribution functions (example WinBUGS code used for the 
analyses is available in the Appendix). 

Table 4.1 presents descriptive statistics for the interviewers in each of the groups defined by the eight 
interviewer-level characteristics. These descriptive statistics include the number of interviewers in each 
group (out of 87 total), and the mean, standard deviation (SD) and range for the number of cases (sample 
sizes) assigned to each interviewer. 

 
Table 4.1 
Descriptive statistics for the NSFG interviewers in each group defined by the eight interviewer-level 
characteristics 
 

 Number of 

Interviewers 

Total Sample 

Size 

Mean Sample 

Size 

SD of Sample 

Sizes 

Range of Sample 

Sizes 

Age (Years)      

< 54 46 5,888 128.00 113.29 (18, 554) 
55+ 41 5,721 139.54 132.67 (12, 532) 

Experience      

< 5 Years 49 6,062 123.71 126.65 (12, 554) 
5+ Years 38 5,547 145.97 116.71 (18, 507) 

No. of Children      

< 2 58 7,756 133.72 113.28 (18, 532) 
2+ 29 3,853 132.86 140.53 (12, 554) 

Ever Married      

Yes 70 9,923 141.76 129.00 (17, 554) 
No 17 1,686 99.18 83.49 (12, 377) 

Other Job      

No 47 5,406 115.02 95.49 (12, 532) 
Yes 40 6,203 155.08 145.92 (17, 554) 

College Degree      

No 37 4,528 122.38 87.97 (18, 409) 
Yes 50 7,081 141.62 142.71 (12, 554) 

NSFG Before      

No 15 1,155 77.00 39.17 (20, 166) 
Yes 72 10,454 145.19 130.29 (12, 554) 

Ethnicity      

Other 16 1,781 111.31 75.53 (20, 297) 
White 71 9,828 138.42 130.35 (12, 554) 
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The descriptive statistics in Table 4.1 indicate substantial variance in the sizes of the samples assigned 
to the interviewers. A modeling approach treating interviewer effects as fixed would probably not make 
sense for these data, given the small sample sizes for some of the interviewers (which could lead to 
unstable estimates for particular interviewers). Instead, a modeling approach that borrows information 
across interviewers (treating interviewer effects as random) would lead to more stable estimates of means 
for each interviewer. We also note that for three of the observable interviewer features (Ever Married, 
NSFG Before, and Ethnicity), one of the two groups has less than 20 interviewers, which is not ideal for 
reliable estimation of variance components (Hox 1998). In light of the simulation results for smaller 
sample sizes (Section 3), we consider the impacts of these small sample sizes in our analyses.  

Simple examinations of the distributions of the means of observed parity measures for the interviewers 
in each group are presented in Figure 4.1 below, to obtain an initial sense of the magnitude of interviewer 
variance in each of the groups. Figure 4.1 presents side-by-side box plots of the interviewer means on the 
parity variable for each group, with the means weighted by assigned sample sizes, along with the overall 
distribution of the 11,609 parity measures in the complete data set. 

 

 
Figure 4.1 Distributions of observed means on parity for interviewers in each group, with interviewer means weighted by 
assigned sample size, along with the overall distribution of the reported parity measures. 

 

The distributions of the means of measured parity values for the interviewers in Figure 4.1 provide an 
initial sense of groups that tend to differ in terms of the interviewer variance components. The group of 
interviewers that has never been married appears to have reduced variance, as does the group that has no 
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prior experience working on the NSFG. The box plots also suggest that the groups do not vary 
substantially in terms of parity means, which is reassuring (i.e., different groups of interviewers do not 
produce different marginal means for the estimate of interest). Finally, the distribution of observed parity 
values for all 11,609 respondents has the expected appearance for a variable measuring a count of 
relatively rare events (live births), with mean 1.19 and variance 1.99. 

We next consider the distributions of the proportions of females indicating current sexual activity 
among the interviewers in each group (Figure 4.2).  

 

 
Figure 4.2 Distributions of observed proportions of female respondents indicating current sexual activity for interviewers 
in each group, with interviewer means weighted by assigned sample size, along with the overall distribution of the sexual 
activity indicator. 

 
We see less evidence of differences in interviewer variance between the groups in general for this 

proportion, relative to average parity. Approximately 80% of the female respondents indicated that they 
were currently in a sexually active relationship.  

Table 4.2 presents estimates of the parameters in each of the negative binomial models for the 
measured parity variable based on the two alternative analytic approaches. This table also presents results 
of the likelihood ratio tests comparing the two interviewer variance components (for each pair of groups) 
when following the frequentist approach, and 95% credible sets for the difference in the two variance 
components when following the Bayesian approach. 
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Table 4.2 
Parameter estimates in the negative binomial regression models for parity and comparisons of the interviewer 
variance components following the alternative frequentist and Bayesian analytic approaches. 
 

 Frequentist Approach (SAS PROC GLIMMIX) Bayesian Approach (WinBUGS) 

Interviewer 

Group Variable 

0β̂ (SE)/ 

1̂β (SE) 

α̂  

(SE) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

Likelihood 

Ratio Test: 
2 2
1 2τ τ=  

0β̂ (SD)/ 

1̂β (SD) 

α̂   

(SD) 

2
1̂τ (SD)/ 
2
2τ̂ (SD) 

95% 

CS: 
2 2
1 2τ τ−  

Age 

(1 = <54 years, 

2 = 55+ years) 

0.185(0.031)/ 

-0.007(0.043) 

0.538 

(0.018) 

0.026(0.009)/ 

0.024(0.008) 

2
1χ =0.03, 

p= 0.873 

0.183(0.033)/ 

-0.003(0.046) 

0.685 

(0.024) 

0.025(0.010)/ 

0.024(0.009) 

(-0.026, 

0.028) 

Experience 

(1 = <5 years, 

2 = 5+ years) 

0.201(0.033)/ 

-0.036(0.044) 

0.537 

(0.018) 

0.024(0.008)/ 

0.027(0.010) 

2
1χ =0.04, 

p= 0.835 

0.197(0.034)/ 

-0.031(0.045) 

0.694 

(0.027) 

0.024(0.009)/ 

0.027(0.011) 

(-0.032, 

0.024) 

Number of Kids 

(1 = <2,  

2 = 2+) 

0.254(0.036)/ 

-0.109(0.044) 

0.537 

(0.018) 

0.023(0.007)/ 

0.022(0.009) 

2
1χ =0.01, 

p= 0.926 

0.253(0.038)/ 

-0.109(0.045) 

0.692 

(0.025) 

0.023(0.007)/ 

0.023(0.012) 

(-0.032, 

0.024) 

Ever Married 

(1 = Yes,  

2 = No) 

0.184(0.029)/ 

-0.001(0.039) 

0.537 

(0.018) 

0.030(0.008)/ 

0.000(N/A)* 

2
1χ =5.41, 

p= 0.020 

0.181(0.037)/ 

0.004(0.045) 

0.694 

(0.025) 

0.030(0.008)/ 

0.003 (0.007) 

(0.002, 

0.048) 

Other Job 

(1 = Yes,  

2 = No) 

0.186(0.031)/ 

-0.009(0.043) 

0.538 

(0.018) 

0.022(0.009)/ 

0.027(0.008) 

2
1χ =0.15, 

p= 0.699 

0.188(0.032)/ 

-0.010(0.044) 

0.688 

(0.025) 

0.020(0.010)/ 

0.028(0.010) 

(-0.036, 

0.021) 

College Degree 

(1 = Yes,  

2 = No) 

0.242(0.031)/ 

-0.108(0.042) 

0.538 

(0.018) 

0.023(0.008)/ 

0.022(0.008) 

2
1χ < 0.01, 

p= 0.963 

0.240(0.032)/ 

-0.106(0.044) 

0.693 

(0.024) 

0.024(0.009)/ 

0.021(0.010) 

(-0.025, 

0.030) 

NSFG Before 

(1 = Yes, 

2 = No) 

0.174(0.035)/ 

0.010(0.043) 

0.537 

(0.018) 

0.031(0.008)/ 

0.000(N/A)* 

2
1χ = 8.26, 

p= 0.004 

0.169(0.036)/ 

0.013(0.045) 

0.692 

(0.026) 

0.030(0.008)/ 

0.001(0.005) 

(0.006, 

0.050) 

Ethnicity 

(1 = White,  

2 = Other) 

0.217(0.046)/ 

-0.044(0.052) 

0.537 

(0.018) 

0.027(0.007)/ 

0.018(0.011) 

2
1χ =0.38, 

p= 0.536 

0.220(0.051)/ 

-0.050(0.058) 

0.690 

(0.025) 

0.026(0.008)/ 

0.020(0.017) 

(-0.045, 

0.027) 

* PROC GLIMMIX indicated that the estimated variance-covariance matrix of the random effects was not positive definite, and 
the estimate was set to zero because the RPL estimate of the variance component was negative. The same result occurred when 
using adaptive quadrature instead of RPL. 
 
Notes: Estimates following Bayesian approach are medians of draws from posterior distributions. SE = Asymptotic SE. SD = SD 
of draws from posterior distribution. CS = Credible Set. 
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Consistent with our simulation study in Section 3, the results in Table 4.2 show that it is not 
uncommon for the frequentist approach to yield negative estimates of interviewer variance components 
(which causes SAS PROC GLIMMIX to set the estimates equal to zero, and not report estimated standard 
errors for the estimates), especially for groups with smaller samples of interviewers. In two cases, this 
results in a significant likelihood ratio test statistic, which would suggest that the two variance 
components are different. In contrast, the Bayesian approach produces very small estimates of the 
variance components, and a 95% credible set for the difference in the variance components. For example, 
in the cases of marital status and prior NSFG experience, we see estimates that are consistent with Figure 
4.1, suggesting that there is significantly lower variance in the parity measures among the never-married 
group of interviewers and the inexperienced group of interviewers. The credible sets for the differences in 
these two cases agree with the frequentist tests, but the lower limits of these sets are very close to zero, 
suggesting that the differences, while significant, may not be very strong. We view this as an advantage of 
the Bayesian approach. 

The Bayesian approach yields only slightly larger standard errors (or posterior standard deviations) for 
the parameter estimates in nearly all cases, reflecting the uncertainty in the parameter estimates that is 
accounted for by the prior distributions. The use of non-informative priors in this case, which would result 
in a posterior distribution that is dominated by the likelihood function, is the likely reason for the 
similarity in these measures of uncertainty, and more informative priors may increase the efficiency of the 
Bayesian estimates. Estimates of the individual parameters and corresponding inferences about them are 
generally quite similar when following the two approaches, as suggested by the literature in Section 2, and 
the estimated fixed effects suggest that the different groups of interviewers do not have a tendency to 
collect different measures on the parity variable. Interestingly, both approaches agree that interviewers 
with fewer children and/or a four-year college degree have a tendency to collect lower measures on the 
parity variable, but these differences could certainly be due to other covariates not accounted for in these 
analyses. Finally, we see slightly different estimates of the negative binomial scale parameter when 
following the two approaches. This is to be expected, as the Bayesian approach uses the medians of 
posterior distributions while the frequentist approach uses the modes of likelihood functions. In addition, 
the posterior distributions are not exactly equal to the likelihood functions when proper priors are utilized. 
The frequentist estimates of the scale parameter were much closer to the Bayesian estimates when using 
adaptive quadrature with five quadrature points to approximate the negative binomial likelihoods (results 
not shown); frequentist inferences for the other parameters did not change when using this alternative 
estimation method. 

We repeated these analyses for the binary indicator of current sexual activity. Table 4.3 presents the 
estimated parameters in the multilevel logistic regression models following each of the two approaches. 
Consistent with Figure 4.2, these analyses reveal no evidence of differences between the various groups of 
interviewers in the variance components or the expected values of this outcome. Inferences were once 
again quite similar when following the two approaches, and the variances of the estimated variance 
components were once again slightly larger when following the Bayesian approach. 
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Table 4.3 
Parameter estimates in the logistic regression models for current sexual activity and comparisons of the 
interviewer variance components following the alternative frequentist and Bayesian analytic approaches. 
 

 Frequentist Approach (SAS PROC GLIMMIX) Bayesian Approach (WinBUGS) 

Interviewer 

Group Variable 

0β̂ (SE)/ 

1̂β (SE) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

Likelihood 

Ratio Test: 
2 2
1 2τ τ=  

0β̂ (SD)/ 

1̂β (SD) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

95% CS: 
2 2
1 2τ τ−  

Age 
(1 = <54 years, 
2 = 55+ years) 

1.333 (0.066) / 
0.032 (0.076) 

0.008 (0.013) / 
0.045 (0.024) 

2
1χ  = 2.05, 

p = 0.153 
1.344 (0.055) / 
0.024 (0.066) 

0.009 (0.013) / 
0.046 (0.028) 

(-0.107, 
0.016) 

Experience 
(1 = <5 years, 
2 = 5+ years) 

1.378 (0.064) / 
-0.050 (0.073) 

0.004 (0.017) / 
0.037 (0.020) 

2
1χ  = 1.52, 

p = 0.217 
1.384 (0.051) / 
-0.061 (0.064) 

0.005 (0.017) / 
0.039 (0.023) 

(-0.087, 
0.024) 

Number of Kids 
(1 = <2,  
2 = 2+) 

1.362 (0.080) / 
-0.015 (0.088) 

0.022 (0.015) / 
0.033 (0.024) 

2
1χ  = 0.16, 

p = 0.689 
1.363 (0.059) / 
-0.012 (0.070) 

0.024 (0.016) / 
0.037 (0.030) 

(-0.094, 
0.037) 

Ever Married 
(1 = Yes,  
2 = No) 

1.387 (0.130) / 
-0.045 (0.134) 

0.020 (0.012) / 
0.048 (0.041) 

2
1χ  = 0.58, 

p = 0.447 
1.398 (0.090) / 
-0.053 (0.097) 

0.021 (0.013) / 
0.051 (0.055) 

(-0.180, 
0.035) 

Other Job 
(1 = Yes,  
2 = No) 

1.374 (0.043) / 
-0.046 (0.072) 

0.026 (0.016) / 
0.024 (0.020) 

2
1χ  = 0.01, 

p = 0.927 
1.381 (0.045) / 
-0.051 (0.065) 

0.029 (0.019) / 
0.022 (0.022) 

(-0.055, 
0.063) 

College Degree 
(1 = Yes,  
2 = No) 

1.388 (0.051) / 
-0.063 (0.071) 

0.016 (0.014) / 
0.035 (0.022) 

2
1χ = 0.60, 

p = 0.439 
1.394 (0.052) / 
-0.072 (0.064) 

0.014 (0.016) / 
0.038 (0.024) 

(-0.079, 
0.033) 

NSFG Before 
(1 = Yes, 
2 = No) 

1.363 (0.103) / 
-0.012 (0.111) 

0.020 (0.012) / 
0.069 (0.055) 

2
1χ = 1.20, 

p = 0.273 
1.381 (0.113) / 
-0.024 (0.118) 

0.021 (0.013) / 
0.083 (0.084) 

(-0.301, 
0.019) 

Ethnicity 
(1 = White,  
2 = Other) 

1.354 (0.077) / 
-0.004 (0.088) 

0.024 (0.014) / 
0.032 (0.031) 

2
1χ  = 0.05, 

p = 0.816 
1.365 (0.080) / 
-0.013 (0.088) 

0.025 (0.015) / 
0.032 (0.044) 

(-0.131, 
0.044) 

Notes: Estimates following Bayesian approach are medians of draws from posterior distributions. SE = Asymptotic SE. SD = SD 
of draws from posterior distribution. CS = Credible Set. 

 
5  Concluding Remarks  
 

This paper has considered frequentist and Bayesian methods for comparing the interviewer variance 
components for non-normally distributed survey items between two independent groups of survey 
interviewers. The methods are based on a flexible class of hierarchical generalized linear models 
(HGLMs) that allow the variance components for two mutually exclusive groups of interviewers to vary, 
and alternative inferential approaches based on those models. Results from a simulation study suggest that 
the two approaches have little empirical bias, comparable empirical MSE values and good coverage for 
moderate-to-large samples of interviewers and respondents. Analyses of real data from the U.S. National 
Survey of Family Growth (NSFG) suggest that inferences based on the two approaches tend to be quite 
similar. We find the similar performance of these two approaches to be good news for survey researchers, 
in that frequentists and Bayesians alike have tools available to them for analyzing this problem that will 
lead to similar conclusions. 

There are some subtle distinctions between the two approaches that emerged in the analyses, mainly 
related to sample sizes and estimates of variance components that are extremely small or equal to zero. 
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These issues warrant further discussion, given their implications for survey practice. The Bayesian 
approach illustrated here is capable of accommodating uncertainty in the estimation of variance 
components when forming credible sets and does not rely on asymptotic theory, but we found that 
inferences about differences in variance components between a number of different subgroups of NSFG 
interviewers (each of moderate size) did not vary from those that would be made using frequentist 
approaches. Whether or not we would see the same results for even smaller groups of interviewers 
requires future investigation; the simulation study presented in Section 3 suggested that neither method 
performs well in a context where two groups of 20 interviewers collect data from 10 respondents each. An 
initial application of these two methods to data from the first quarter of data collection in this cycle of the 
NSFG (with about 20 interviewers in each of two groups interviewing about 20 respondents each on 
average) yielded findings similar to those reported here for larger samples, with some evidence of the 
Bayesian approach being more conservative (West 2011).  

In general, the Bayesian approach provides a more natural form of inference for this problem, 
indicating a range of values for the difference in which approximately 95% of differences will fall. This 
may appeal to certain consumers of a given survey’s products, as opposed to the simple -p value for a 
likelihood ratio test, which does not give users a sense of the range of possible differences. In the 
frequentist setting, the likelihood ratio test may be the only method of inference available if the pseudo 
maximum likelihood point estimate for one or more of the variance components is zero, with no 
corresponding standard error (preventing computation of Wald-type intervals). This situation was 
observed in both the simulations and the NSFG analyses, especially for groups with smaller samples of 
interviewers; given the reliance of likelihood ratio tests on asymptotic theory, the Bayesian approach may 
be better a better choice for smaller samples. The performance of the Bayesian approach is not ideal, 
however, for very small samples, as illustrated in the simulation study in Section 3. 

We noted two significant differences between subgroups of interviewers in the NSFG data, and in each 
of these cases, the group with the smaller variance had an estimated variance component set to zero (with 
no standard error computed) when using the frequentist approach. The resulting inferences based on these 
estimates (where likelihood values were computed using the estimates of zero for the subgroups in 
question when performing the likelihood ratio tests) agreed with the Bayesian approach. We remind 
readers using frequentist methods that small samples of interviewers or extremely small amounts of 
variance among interviewers for particular variables may lead to negative maximum likelihood estimates 
of variance components, which can be problematic for the interpretation of interviewer variance for 
individual groups. Some software procedures capable of fitting multilevel models (e.g., the gllamm 
procedure in Stata, or the lmer() function in R) constrain variance components to be greater than zero 
during estimation to prevent this problem, which can increase estimation times. Other software procedures 
(like GLIMMIX in SAS) will simply fix these negative estimates to be zero, and fail to compute an 
estimated standard error. While these variance components technically cannot be equal to zero, we suggest 
interpreting these findings as evidence that there in negligible variance among the interviewers in a 
particular group. Bates (2009) argues against the use of standard errors for making inferences about 
variance components in the frequentist setting, especially when variance components are close to zero, 
instead suggesting that the profiled deviance function should be used to visualize the precision of the 
estimates. Both this approach and the Wald approach to computing confidence intervals will still be 
limited by smaller samples. 
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We do not see an empirical problem with using these zero estimates to perform the likelihood ratio 
tests demonstrated here for comparing groups of interviewers, given that Bayesian draws of the variance 
components in these groups would also be very small. However, in the case of estimating interviewer 
variance for single groups, examination of the sensitivity of Bayesian inferences to choices of different 
prior distributions for the variance components should be performed when variance components close to 
zero are expected, or the number of interviewers is relatively small (Browne and Draper 2006; Lambert et 
al. 2005). Furthermore, if survey researchers are interested in predicting random interviewer effects in the 
case where interviewer variance components are expected to be close to zero, both frequentist and 
Bayesian methods perform very poorly, and prediction is not recommended in this case (Singh et al. 1998, 
p. 390). See Savalei and Kolenikov (2008) for more discussion of the zero variance issue.     

This study was certainly not without limitations. We acknowledge that the design of the NSFG, where 
interviewers are typically assigned to work in a single primary sampling area, did not allow for 
interpenetrated assignment of sampled cases to interviewers. As a result, disentangling interviewer effects 
from effects of the primary sampling areas is difficult. The methodologies illustrated in this paper can 
easily incorporate additional interviewer- or area-level covariates in an effort to “explain” variance among 
interviewers or areas due to observable covariates. The question of how to estimate interviewer variance 
in the presence of a strictly non-interpenetrated sample design needs more research in general, and we did 
not address this open question in this paper. As mentioned in Section 1, interpenetrated sample designs 
have been used in recent studies to disentangle interviewer and area effects. Future studies should examine 
the ability of the two approaches reviewed in this paper to detect differences in interviewer variance 
components when using cross-classified multilevel models that also include the effects of areas in an 
interpenetrated sample design. 

On a similar note, we did not account for any of the complex sampling features of the NSFG (i.e., 
weighting or stratified cluster sampling) in the analyses. The theory that underlies the estimation of 
parameters in multilevel models in the presence of survey weights calls for weights for both the 
respondents and the higher-level clusters, which in this case would be interviewers (Rabe-Hesketh and 
Skrondal 2006; Pfefferman, Skinner, Holmes, Goldstein and Rasbash 1998). The analyses presented here 
effectively assume that we have a sample of interviewers from some larger population that was selected 
with equal probability, and that all respondents within each interviewer had equal weight. Methods 
outlined by Gabler and Lahiri (2009) might prove useful for addressing this limitation, and analysts could 
also include fixed effects of survey weights or stratification codes in the models proposed here. We leave 
these extensions for future research. 

Finally, this paper also did not consider another rich aspect of the Bayesian approach, in that posterior 
draws of the 87 random interviewer effects in the models were also generated by the BUGS Gibbs 
sampling algorithm. These draws would enable survey managers to make inferences about the effects 
specific interviewers are having on particular survey measures. Consistent and regular updating of these 
posterior distributions as data collection progresses would enable survey managers to intervene when the 
posterior distributions for particular interviewers suggest that these interviewers are having non-zero 
effects on the survey measures. 



182 West and Elliott: Frequentist and bayesian approaches for comparing interviewer variance 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Acknowledgements 
 

The authors are grateful for support from a contract with the National Center for Health Statistics that 
enabled the seventh cycle of the National Survey of Family Growth (contract 200-2000-07001).  

 
Appendix  
 

A.1 Example Code 
 

We provide example code for fitting the types of models discussed in the paper using SAS PROC 
GLIMMIX below. In this code, PARITY and SEXMAIN are the count and binary variables, respectively, 
measured on NSFG respondents, FINAL_INT_ID is a final interviewer ID code, and INT_NVMARRIED 
is an indicator variable for whether or not an interviewer has never been married. The ASYCOV option 
will print asymptotic estimates of the variances and covariances of the estimated variance components.  
 
/* marital status */ 
 
proc glimmix data = bayes.final_analysis asycov; 
   class final_int_id int_nvmarried; 
   model parity = int_nvmarried / dist = negbin link = log solution cl; 
   random int / subject = final_int_id group = int_nvmarried; 
   covtest homogeneity / cl (type = plr); 
   nloptions tech=nrridg; 
run; 
 
proc glimmix data = bayes.final_analysis asycov; 
   class final_int_id int_nvmarried; 
   model sexmain (event = "1") = int_nvmarried / dist = binary link = logit 
solution cl; 
   random int / subject = final_int_id group = int_nvmarried; 
   covtest homogeneity / cl (type = plr); 
   nloptions tech=nrridg; 
run; 
 

We also provide example WinBUGS code for fitting the models using the Bayesian approaches 
discussed below. We call the WinBUGS code from the R software. In this code, LOWAGE.G is an 
interviewer-level indicator (with 87 values) for being in the younger interviewer age group, and 
HIGHAGE.G is an indicator for being in the older group. The full code, including code creating the 
variables used below, is available from the authors upon request. 
 
# load necessary packages for using BUGS from R 
 
library(arm) 
library(R2WinBUGS) 
 
############# Parity Analyses 
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# BUGS file for Age Group and Parity (age_nb.bug) 
 
model { 
   for (i in 1:n){ 
      parity[i] ~ dpois(lambda[i]) 
      lambda[i] <- rho[i]*mu[i] 
      log(mu[i]) <- b0[intid[i]]  
      rho[i]~dgamma(alpha,alpha) 
   } 
 
   for (j in 1:J){ 
      b0[j] ~ dnorm(b0.hat[j], tau.b0[highage.g[j]+1]) 
      b0.hat[j] <- beta0 + beta1*lowage.g[j] 
   } 
 
   beta0 ~ dnorm(0,0.01) 
   beta1 ~ dnorm(0,0.01) 
   alpha <- exp(logalpha) 
   logalpha ~ dnorm(0,0.01)  
 
   for (k in 1:2){ 
      tau.b0[k] <- pow(sigma.b0[k], -2) 
      sigma.b0[k] ~ dunif(0,10) 
   } 
} 
 
# Simulations for Parity/Age Group model in BUGS 
 
n <- length(parity) 
J <- 87 
age.data <- list("n", "J", "parity", "intid", "highage.g", "lowage.g") 
age.inits <- function(){ 
   list (b0=rnorm(J), beta0=rnorm(1), beta1=rnorm(1), sigma.b0=runif(2), 
logalpha=rnorm(1))} 
age.parameters <- c("b0", "beta0", "beta1", "sigma.b0", "alpha") 
age.1 <- bugs(age.data, age.inits, age.parameters, "age_nb.bug", n.chains = 3, 
n.iter=5000, debug=TRUE, 
bugs.directory="C:/Users/bwest/Desktop/winbugs14/WinBUGS14") 
 
attach.bugs(age.1) 
 
# for tables of results and inference 
 
resultsmat <- cbind(numeric(6),numeric(6),numeric(6),numeric(6)) 
 
resultsmat[1,1] <- quantile(beta0,0.5) 
resultsmat[1,2] <- sd(beta0)  
resultsmat[1,3] <- quantile(beta0,0.025) 
resultsmat[1,4] <- quantile(beta0,0.975) 
 
resultsmat[2,1] <- quantile(beta1,0.5) 
resultsmat[2,2] <- sd(beta1)  
resultsmat[2,3] <- quantile(beta1,0.025) 
resultsmat[2,4] <- quantile(beta1,0.975) 
 
resultsmat[3,1] <- quantile(sigma.b0[,1]^2,0.5) 
resultsmat[3,2] <- sd(sigma.b0[,1]^2)  
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resultsmat[3,3] <- quantile(sigma.b0[,1]^2,0.025) 
resultsmat[3,4] <- quantile(sigma.b0[,1]^2,0.975) 
 
resultsmat[4,1] <- quantile(sigma.b0[,2]^2,0.5) 
resultsmat[4,2] <- sd(sigma.b0[,2]^2)  
resultsmat[4,3] <- quantile(sigma.b0[,2]^2,0.025) 
resultsmat[4,4] <- quantile(sigma.b0[,2]^2,0.975) 
 
resultsmat[5,1] <- quantile(1/alpha,0.5) 
resultsmat[5,2] <- sd(1/alpha)  
resultsmat[5,3] <- quantile(1/alpha,0.025) 
resultsmat[5,4] <- quantile(1/alpha,0.975) 
 
vardiff <- sigma.b0[,1]^2 - sigma.b0[,2]^2 
resultsmat[6,1] <- quantile(vardiff,0.5) 
resultsmat[6,2] <- sd(vardiff)  
resultsmat[6,3] <- quantile(vardiff,0.025) 
resultsmat[6,4] <- quantile(vardiff,0.975) 
 
resultsmat 
  
############# Current Sexual Activity Analyses 
 
# BUGS file for Age Group and Sexual Activity (age_bin.bug) 
 
model { 
   for (i in 1:n){ 
      sexmain[i] ~ dbern(p[i]) 
      logit(p[i]) <- b0[intid[i]]  
   } 
 
   for (j in 1:J){ 
      b0[j] ~ dnorm(b0.hat[j], tau.b0[highage.g[j]+1]) 
      b0.hat[j] <- beta0 + beta1*lowage.g[j] 
   } 
   beta0 ~ dnorm(0,0.01) 
   beta1 ~ dnorm(0,0.01) 
 
   for (k in 1:2){ 
      tau.b0[k] <- pow(sigma.b0[k], -2) 
      sigma.b0[k] ~ dunif(0,10) 
   } 
} 
 
# Simulations for Parity/Age Group model in BUGS 
 
n <- length(sexmain) 
J <- 87 
age.data <- list("n", "J", "sexmain", "intid", "highage.g", "lowage.g") 
age.inits <- function(){ 
   list (b0=rnorm(J), beta0=rnorm(1), beta1=rnorm(1), sigma.b0=runif(2))} 
age.parameters <- c("b0", "beta0", "beta1", "sigma.b0") 
age.1 <- bugs(age.data, age.inits, age.parameters, "age_bin.bug", n.chains = 
3, n.iter=5000, debug=TRUE, 
bugs.directory="C:/Users/bwest/Desktop/winbugs14/WinBUGS14") 
 
attach.bugs(age.1)  
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Bagging non-differentiable estimators in complex surveys 

Jianqiang C. Wang, Jean D. Opsomer and Haonan Wang1 

Abstract 

Bagging is a powerful computational method used to improve the performance of inefficient estimators. This 
article is a first exploration of the use of bagging in survey estimation, and we investigate the effects of bagging 
on non-differentiable survey estimators including sample distribution functions and quantiles, among others. 
The theoretical properties of bagged survey estimators are investigated under both design-based and model-
based regimes. In particular, we show the design consistency of the bagged estimators, and obtain the 
asymptotic normality of the estimators in the model-based context. The article describes how implementation 
of bagging for survey estimators can take advantage of replicates developed for survey variance estimation, 
providing an easy way for practitioners to apply bagging in existing surveys. A major remaining challenge in 
implementing bagging in the survey context is variance estimation for the bagged estimators themselves, and 
we explore two possible variance estimation approaches. Simulation experiments reveal the improvement of 
the proposed bagging estimator relative to the original estimator and compare the two variance estimation 
approaches. 

 
Key Words: Bootstrap; Distribution function; Quantile estimation. 

 
 
1  Introduction 
 

Bagging, short for “bootstrap aggregating”, is a resampling method originally introduced to improve 
“weak” learning algorithms. Bagging was proposed by Breiman (1996), who heuristically demonstrated 
how it improved the performance of tree-based predictors. Since then, bagging has been applied to a wide 
range of settings and analyzed by many authors. Bühlmann and Yu (2002) showed the smoothing effect of 
bagging and its variations on hard-decision classification algorithms, and formalized the notion of 
“unstable predictors”. Chen and Hall (2003) derived theoretical results on bagging estimators defined by 
estimating equations. Buja and Stuetzle (2006) considered bagging U-statistics, and claimed that bagging 
“often but not always decreases variance, whereas it always increases bias”. Friedman and Hall (2007) 
examined the impact of bagging on nonlinear estimators. More recently, Hall and Robinson (2009) 
discussed the effects of bagging on cross-validation choice of smoothing parameters, and presented 
intriguing results on improving the order of the cross-validation selected kernel bandwidth by bagging. 

The aforementioned literature studied the effects of bagging on various estimators, especially 
nonlinear, non-differentiable estimators, under the iid  (independent and identically distributed) sampling 
assumption. For dependent data, Lee and Yang (2006); Inoue and Kilian (2008) studied the effects of 
bagging on economic time series. The former authors studied the bagging effect on non-differentiable 
predictors like sign functions and quantiles, and the latter focused on bagging pretest predictors with 
application to U.S. consumer price inflation forecasting. 

As this brief literature review shows, bagging is a promising method used to improve the efficiency of 
estimators. To date, however, bagging for survey estimators has not been considered. This article is a first 
exploration of the use of bagging in the survey context, including an evaluation of the potential efficiency 
gain, a number of theoretical results, and a discussion of implementation and variance estimation issues. 

mailto:jopsomer@stat.colostate.edu
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Corresponding with general survey practice, we will only consider estimators that can be written as 
functions of Horvitz-Thompson (HT) estimators. More specifically, we will consider the following three 
types of estimators. Firstly, many commonly used survey estimators can be written as differentiable 
functions of HT estimators. For instance, the Hajek estimator, ratio estimator, generalized regression 
estimator can all be regarded as differentiable functions of HT estimators. Secondly, there are other survey 
estimators that are non-differentiable, including the Dunstan and Chambers estimator (Dunstan and 
Chambers 1986), the Rao-Kovar-Mantel estimator (Rao, Kovar, and Mantel 1990), the endogenous post-
stratification estimator (Breidt and Opsomer 2008), and estimators of low-income proportion (Berger and 
Skinner 2003), among others. Thirdly, other estimators are only defined as solutions to weighted 
estimating equations. For more information on estimating equations in the survey context, see Godambe 
and Thompson (2009); Fuller (2009), and references therein. 

While bagging can be considered a type of replication method, it is quite different from bootstrapping 
and other replication methods that are designed for variance estimation. Unlike these other methods, 
bagging is introduced to improve the actual estimator itself. The bagging method can be naturally 
embedded in large-scale complex surveys, since we can take advantage of replication weights that are 
readily available in many practical surveys. In this paper, we will show how replicates created for 
bootstrap variance estimation can be modified and used in bagging the original estimator. Unfortunately, 
one difficulty in implementing bagging in surveys is the lack of a design-based variance estimator. We 
will discuss a number of proposals on how to estimate the variance of bagged survey estimators, but 
further work is still required in this area. 

The remainder of this paper is organized as follows. We define our target survey estimators and 
introduce the bagged version of each estimator in Section 2. We then present the theoretical properties of 
the bagged estimators in Section 3. Section 4 shows how to use survey replicates to implement bagged 
versions of estimators, and addresses variance estimation for the resulting bagged estimators. We report 
on simulation results in Section 5, and conclude the paper with some final remarks in Section 6. 

 
2  Bagging survey estimators 
 

2.1  General approach 
 

In this section, we discuss the implementation of bagging in the context of survey estimation. We first 
introduce necessary notation. Let U  represent a finite population of size ,N  in which each element i U∈  
is associated with a vector of measurements, iy , in the q -dimensional Euclidean space .q  The sampling 
design ( )p  is used to draw a random sample A U⊆  of sample size .n  We denote by { }= |i i A∈y  the 

collection of sample observations. Here, the sampling design could be simple random sampling without 
replacement (SRSWOR), Poisson sampling or a complex design with stratification and/or multiple stages. 
Under each design, the probability of an element i  being included in the sample is denoted by .iπ  

The population mean of the measurement vector y  is denoted by .μ  It can be estimated by the 
Horvitz-Thompson (HT) estimator defined as  

 
=1

1 1ˆ = = ,
N

i i
i

i ii A i

I
N Nπ π∈
∑ ∑y yμ   (2.1) 
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where iI  is the sample membership indicator for the -thi  element. More generally, let θ  denote a 
population quantity of interest, and ( )θ̂   is the estimator of θ  based on the sample observations . The 

estimator ( )θ̂   will be abbreviated as θ̂  when there is no confusion. As noted in the previous section, we 

assume that θ̂  can be written as a function of simpler estimators of the form (2.1). 

In its most general form, the bagging algorithm for survey estimation is as follows: 
 
1. For = 1,2, , :b B  

a. Draw resample bA  from the random sample ,A  and denote the observations in the 
resample as { }* = | .b i bi A∈y   

b. Calculate the parameter estimate based on the resample ,bA  denoted by ( )*ˆ .bθ    

 

2. Average over the replicated estimates ( ) ( ) ( )* * *
1 2

ˆ ˆ ˆ,  ,  ,  Bθ θ θ    to obtain the bagged survey 

estimator,  

 ( )*

=1

1ˆ ˆ= .
B

bag b
bB

θ θ∑    (2.2) 

In the bagging literature, the resamples bA  are often referred to as bootstrap samples (Breiman 1996), 
and we will do the same here despite the fact that we will not use them for variance estimation. 

In the algorithm, the bootstrap samples could be drawn according to the sampling design rather than 
the empirical distribution of the sample observations, which is more commonly used in the ordinary 
bagging literature (Breiman 1996) and equivalent to simple random sampling (with or without 
replacement). For example, if the sample A  is drawn using stratified or cluster sampling, such design 
scheme could be taken into consideration when selecting the resamples. More generally in the survey 
context, step 1 of the proposed bagging algorithm can be treated in the framework of two-phase sampling: 
the first phase corresponds to the original sample A  and the second phase to the resample .bA  Thus the 
classical expansion estimator for two-phase designs Särndal, Swensson and Wretman (1997) is 
implemented in calculating the replicated estimator ( )*ˆ .bθ   In the resample ,bA  the pseudo inclusion 

probability for the -thi  element is *
|=i i i Aπ π π  where ( )| = Pr |i A bi A i Aπ ∈ ∈  is the inclusion probability of 

the -thi  element in resample bA  given that it is included in sample .A  Hence, the bagged estimator is an 
approximation to the expectation of the two-phase estimator with respect to the second sampling phase, 
which is also referred to as bootstrap expectation in ordinary bagging methods (Bühlmann and Yu 
2002). Although a general design for the bootstrap samples is possible, in the theoretical portions of this 
article we will restrict ourselves to SRSWOR. To broaden the scope of our discussion, in the variance 
estimation and numerical section, we introduce the case in which the bootstrap samples are drawn by 
stratified SRSWOR with the same strata as the original sample ,A  which is a useful and realistic 
extension. 

As an example, we consider the HT estimator as defined in (2.1). The bootstrap resampling from the 
realized sample A  is drawn under SRSWOR of size .k  Under this resampling scheme, the replicated 
sample estimator is defined as  
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 ( )* 1ˆ = ,
b

i
b

i A iN π ∗
∈
∑ yμ    (2.3) 

where the pseudo inclusion probability |= = .i i i A ik nπ π π π∗  Then the bagged version of the classical 

-estimatorπ ∗  can be calculated using (2.2). Straightforward calculation shows that the bagged estimator is 
identical to the original HT estimator if all SRSWOR samples of size k  are enumerated in calculating 
(2.2). The same result holds for any other linear survey estimator. In general, the calculation of the bagged 
estimator b̂agθ  is not as easy. In the rest of this section, we will focus on such calculations for the three 

types of nonlinear survey estimators discussed in Section 1. 

 
2.2  Bagging differentiable survey estimators 
 

For the survey estimators that are differentiable functions of HT estimators, the population quantity of 
interest can also be written as a differentiable function of population means; that is, ( )= ,d mθ μ  where 

( )m ⋅  is a known differentiable function. The subscript “ ”d  stands for differentiable in contrast to non-
differentiable ( )ndθ  and estimating equation ( )eeθ  coming later. A direct plug-in estimator of ,dθ  
based on sample observations  , can be written as  

 ( )ˆ ˆ= ,d mθ μ   (2.4) 

where μ̂  is defined in (2.1). Thus, the replicated sample version of d̂θ  can be expressed as  

( ) ( )( )* *ˆ ˆ= ,d b bmθ μ   

where ( )*ˆ bμ   is defined by (2.3). Then the bagged estimator of ,dθ  denoted by ,
ˆ ,d bagθ  is defined using 

(2.2). 

 
2.3  Bagging explicitly defined non-differentiable estimators 
 

As an example of this type of estimators, consider the estimation of the proportion of households with 
income below the poverty line for a population. Such quantity can be written as ( ) ( )=1

1 ,
N

i Ni
N I y λ≤∑  

where iy  is the income value for the -thi  household in the population, and Nλ  is the population poverty 
line. It can be seen that this quantity of interest is the mean of indicator kernel functions, and the kernel 
function is non-differentiable with respect to .Nλ  Here, we consider a more general class in which the 
kernel is an arbitrary non-differentiable but bounded function. This type of population quantity can be 
expressed as  

( )
=1

1= ,
N

nd i N
i

h
N

θ −∑ y λ  

where Nλ  is an unknown population parameter, for example, the mean, a quantile or other population 
quantity, and ( ) : ph − →y λ    is a non-differentiable function of .λ  The population quantity ndθ  

generalizes the notion of the proportion below an estimated level and resembles the general form of a U-
statistic. 
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Wang and Opsomer (2011) studied a class of U-statistics-like estimators, namely, non-differentiable 
survey estimators,  

 ( )1 1ˆ ˆ= ,nd i
ii A

h
N

θ
π∈

−∑ y λ   (2.5) 

where λ̂  is a design-based estimator of .Nλ  In the non-survey context, estimators of this type are 
regarded as “non-differentiable functions of the empirical distribution” (Bickel, Götze and van Zwet 
1997). The study of appropriate bootstrap procedures for such estimators was carried out by Beran and 
Srivastava (1985) and Dümbgen (1993), among others. We define the replicated version of n̂dθ  based on 
resample bA  as  

( ) ( )( )* *1 1ˆ ˆ= ,
b

nd b i b
i A i

h
N

θ
π ∗

∈

−∑ y λ   

where ( )*ˆ
bλ   solely depends on the bootstrap resample ,bA  and the bagged estimator is then defined by 

averaging replicated estimators. Suppose that the resampling process is SRSWOR of size ,k  and every 
subsample is selected in calculating the bagging estimator, then the bagging estimator takes the following 
form after manipulation, 

 ( )( )*
,

1 1ˆ ˆ= ,
1
1

b

nd bag i b
i A A i

i

h
nN
k

θ
π∈ ∋

−
− 

 − 

∑ ∑ y λ    (2.6) 

which replaces ( )ˆ
ih −y λ  in (2.5) by a “smoothed” quantity ( )( )* 1ˆ ,

1
b

i b
A i

n
h

k∋

− 
−  − 

∑ y λ   by averaging the 

“jumps” in the estimator. Very often, variance reduction can be achieved by this replacement. The 

summand ( )( )* 1ˆ
1

b

i b
A i

n
h

k∋

− 
−  − 

∑ y λ   is the bootstrap expectation of ( )ih − ⋅y  and can be approximated 

using the convolution of ( )ih − ⋅y  with the sampling distribution of ( )*ˆ .bλ   Study of the theoretical 

aspects of ,n̂d bagθ  is deferred until Section 3.  

 
2.4  Bagging estimators defined by non-differentiable estimating equations 
 

Finally, we explain how to bag estimators defined by non-differentiable estimating equations. For ease 
of presentation, we consider a one-dimensional parameter of interest. The population parameter eeθ  of 
interest is defined as  

( ){ }= inf : 0 ,ee Sθ γ γ ≥  

where  

( ) ( )
=1

1= ,
N

i
i

S y
N

γ ψ γ−∑  

and ( )ψ ⋅  is a non-differentiable real function. We can estimate the population parameter eeθ  by ˆ ,eeθ  
where  
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 ( ){ }ˆ = inf : 0ee Sθ γ γ ≥  

with  

 ( ) ( )1 1= .i
ii A

S y
N

γ ψ γ
π∈

−∑  

A frequently encountered estimator of this type is the sample quantile defined by inverting the sample 
cumulative distribution function (Francisco and Fuller 1991), where ( ) ( )=i yi

y I
γ

ψ γ α
≤

− −  for the 

-quantile.α  

Conceptually, there are two versions of bagging ˆ ,eeθ  one is to solve the “bagged estimating equation” 
defined by bagging the score function, and another is to average over resampled estimates of ˆ .eeθ  
Similarly to the discussion in Section 2.1, the first version results in an estimator equivalent to the original 
estimator, because the bootstrap expectation of bootstrap samples of ( )Ŝ γ  is equal to ( )Ŝ γ  for fixed .γ  

We therefore only consider the latter version. To define the bagged estimating equation estimator, we first 
define the replicated score function ( )ˆ

bS γ  based on resample bA  as  

( ) ( )1 1ˆ = .
b

b i
i A i

S y
N

γ ψ γ
π ∗

∈

−∑  

Then the replicated estimator based on bA  is defined as ( ) ( ){ }*ˆ ˆ= inf : 0 .ee b bSθ γ γ ≥  Thus the overall 

bagging estimator is defined as  

 ( )*
,

1ˆ ˆ= ,ee bag ee bn
k

θ θ
 
 
 

∑    (2.7) 

where the average is over all possible without-replacement samples of size k  selected from .A  Chen and 
Hall (2003) discussed bagging estimators defined by nonlinear estimating equations under the iid  setup, 
and they stated that bagging does not always improve the precision of estimators under study. 

 
3  Theoretical results 
 

We begin by briefly describing the asymptotic analysis of the bagging estimators under general 
sampling design from a finite population, i.e. the design-based setting. We do this under the usual 
increasing-population framework, where we consider an increasing sequence of nested populations, say 

,  = 1,2, ,NU N   with finite population means .Nμ  Associated with the sequence of populations is a 
sequence of sampling designs used to draw random sample N NA U⊆  of sample size ,Nn  with associated 
inclusion probabilities .iNπ  As commonly done in the survey literature, we suppress the N  subscript in 
the sample ,A  the sample size n  and the inclusion probabilities .iπ  For the sake of brevity, only design-
based asymptotic results for bagging differentiable estimator d̂θ  and non-differentiable n̂dθ  are provided. 
The formal assumptions under which the results are obtained and the theorems for differentiable and non-
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differentiable estimators are in Appendix A.1. The main result we are able to obtain in this design-based 
setting is that, if we are starting from a design-consistent estimator and we let the number of bootstrap 
samples k  grow with ,n  the bagged versions of the estimators are also design consistent. This is clearly a 
key property of these estimators, since there would be no reason to consider them unless they satisfied this 
design consistency. 

Unfortunately, the above design-based results are quite limited and in particular, do not provide an 
asymptotic distribution with which one might be able to perform inference, another highly desirable 
property of survey estimators. We therefore also consider a model-based setting, under which we are able 
to obtain an asymptotic variance approximation. In presenting model-based results, we assume the 
sampling design selecting the original sample A  is an equal probability design, and the population 
characteristics can be regarded as an iid  sample from a superpopulation distribution. Under this 
framework, the bagging estimator can be treated as a U-statistic. Thus we can apply the theory on U-
statistics to obtain asymptotic expansion of bagging estimators. The analysis parallels that of Bühlmann 
and Yu (2002) and Buja and Stuetzle (2006). For the current paper, we restrict ourselves to bootstrap 
samples of size k  where k  is bounded and fixed. Under this asumption, the bagging estimators can be 
regarded as fixed-degree U-statistics, for which asymptotic theory has been well developed. A more 
interesting case is when the resample size k  grows with sample size ,n  and this leads to infinite-degree 
U-statistics. Infinite-degree U-statistics have applications in studying the Kaplan-Meier estimator and 

-out-of-m n  bootstrap estimators, and the readers are referred to Frees (1989); Heilig (1997); Heilig and 
Nolan (2001), and the references therein on their statistical properties. Schick and Wefelmeyer (2004) 
studied the statistical properties of infinite-degree U-statistics constructed from moving averages of 
innovations in time series. The study of bagging estimators by viewing them as infinite-degree U-statistics 
is out of the scope of the current paper, and hence we limit ourselves to the case of fixed and bounded 
bootstrap sample size in the model-based case. 

We first consider bagged estimator (2.5). Under SRSWOR, estimator (2.5) can be simplified to  

( )1ˆ ˆ=nd i
i A

h
n

θ
∈

−∑ y λ  

and the bagged version of n̂dθ  is defined as  

 ( )( )*
,

=1

1 1ˆ ˆ=
1
1

b

n

nd bag i b
i A i

h
nn
k

θ
∋

−
− 

 − 

∑ ∑ y λ    (3.1) 

where ( )*ˆ
bλ   only depends on resample .bA  For ease of presentation, we take ( )*ˆ

bλ   as the sample 

mean. In this case, straightforward algebra reveals that  

,
1 1 1 1ˆ = ,

b b

nd bag i j
A i A j i

kh
n k k k
k

θ
∈ ∈ ≠

  − −         
 

∑ ∑ ∑y y


 

where   is the collection of subsets of size k  from set { }1,2, , .n  The estimator ,n̂d bagθ  is a degree-k  

U-statistic with kernel  
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( )1
=11

1 1 1, , =
k k

k i j
ji
j i

kg y y h
k k k=

≠

 
− − 

 
 

∑ ∑y y  

provided that k  remains finite. 

One can see that the bagging estimator ,n̂d bagθ  is a symmetric statistic of ,iy  and standard theory on 

symmetric statistics (Lee 1990) applies. The results are stated in Theorem 1, with assumptions and proofs 
in Appendix A.2. 

 

Theorem 1 Under Assumptions M.1-M.4 on the superpopulation distribution, sampling and resampling 
designs,   

 ( ) ( ) ( )
1/2

, , ,
ˆ ˆAV 0,1 ,

p

nd bag nd bag nd Nθ θ θ
−

∞− →   (3.2) 

where the limiting value ( ),
ˆ= lim E ,nd in

hθ ∞ →∞
 − y λ  the asymptotic variance  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

,
1 2 11ˆAV = Var Var Cov , ,nd bag i i i i

k k
u v u v

n n n
θ

− −
     + +     y y y y   (3.3) 

and  

( ) ( )( )
( ) ( )( )

1 2 1

1 1 2 1

ˆ= E , , , , ,

ˆ= E , , , , .

k

k

u h

v h

−

−

 − 
 − 

y y λ y y y y

y y λ y y y y





 

As indicated by (3.3), the asymptotic variance of the bagging estimator depends on unknown functions 
( )u y  and ( ) ,v y  which are expectations of ( )h ⋅  with respect to the superpopulation distribution. In ( )u y  

and ( ) ,v y  ( )1 2 1
ˆ , , , ,k−λ y y y y  is calculated from 1 2 1, , , k−y y y  together with an arbitrary vector .y  The 

expectation is with respect to the distribution of iid  random vectors 1 2 1, , , .k−y y y  This high-dimensional 
expectation is difficult to calculate and may not have an explicit expression in general. The exact form of 

( )u ⋅  and ( )v ⋅  can not be obtained but can be approximated via a resampling-based approach. The 
unknown functions ( )u ⋅  and ( )v ⋅  are defined as expectations of respective quantities with respect to the 
superpopulation distribution, which can be approximated by the expectation with respect to the empirical 
distribution.  

The model-based asymptotic variance can be estimated along with the process of bagging. We can 
calculate integrands ( )( )1 2 1

ˆ , , , ,kh ∗ ∗ ∗
−−y λ y y y y  and ( )( )1 1 2 1

ˆ , , , ,kh ∗ ∗ ∗
−−y λ y y y y  based on each bootstrap 

sample, with y  denoting where we want to evaluate ( )u ⋅  and ( ),v ⋅  and 1 2 1, , , k
∗ ∗ ∗

−y y y  denoting resampled 
values. Then we can average each quantity to approximate the expectation. Finally, the variance can be 
estimated by computing the sample variance of the expectations evaluated at each of the sample points. 
For nonsmooth estimators like the ones we are dealing with, it is often recommended to use smoothed 
bootstrap in variance approximation (Efron 1979; Davison and Hinkley 1997). We apply the smoothed 
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bootstrap and add a small amount of noise to each resampled value to smooth the underlying function. The 
detailed algorithm will be explained in Section 5 through an example. 

We now study the model-based result of bagging estimators defined by estimating equations (2.7). A 
special case in this framework is bagging sample quantiles, which was studied by Knight and Bassett 
(2002). Knight and Bassett (2002) considered both bootstrap and SRSWOR for resampling, and studied 
the effects of bagging on the remainder term in the Bahadur representation of quantiles (Bahadur 1966). 
We take a slightly different perspective and treat the bagging estimator as a U-statistic. Assumptions and 
proof are again in Appendix A.2. Note that Assumption M.5 requires that the non-differentiable estimating 
function have a smooth limit. In the next theorem, we provide linearization of the bagging estimating 
equation estimator and give an expression for the asymptotic variance. 

 

Theorem 2 Under Assumptions M.1-M.3 and M.5, the following asymptotic result holds for the bagged 
estimating equation estimator (2.7),  

 ( ) ( ) ( )
1/2

, , ,
ˆ ˆAV 0,1 ,

p

ee bag ee bag ee Nθ θ θ
−

∞− →   (3.4) 

where ,eeθ ∞  denotes the asymptotic limit of population quantity ,eeθ  the asymptotic variance of ,êe bagθ  is  

 ( ) ( )
2

,
ˆAV = Var ,ee bag i

k u y
n

θ      (3.5) 

and  

 ( ) ( ) ( )
1

=1

1 1= E inf : 0 .
k

i
i

u y y y
k k

γ ψ γ ψ γ
− 

− + − ≥ 
 

∑   (3.6) 

As we saw for the bagged estimator (3.1), the asymptotic results in Theorem 2 involve an unknown 
function. This function can again be computed using resampling that takes advantage of the available 
replicate samples.  

 
4  Variance Estimation 
 

While the model-based approach makes it possible to obtain asymptotic distributions and hence 
perform inference that is asymptotically correct, we are most interested here in the design-based 
applications of bagging. In the design-based context, the construction of the bagging estimator can be 
naturally combined with the variance estimation of the original statistic, by taking advantage of the 
replication samples released by the statistical agencies. In this article, we take stratified simple random 
sampling as a specific example, with a bootstrap sampling design of stratified SRSWOR. 

We begin by applying a version of the Rao and Wu (1988) bootstrap procedure to estimate the variance 
of the survey estimators prior to bagging. Let ,  h hN n  and hk  denote the population size, sample size and 
sub-sample size in the -thh  stratum, = 1,2, , .h H  Here, B  bootstrap samples are drawn by stratified 
simple random sample without replacement of size hk  for computing the bootstrap variance of the 
original statistic and the bagging estimator. For each bootstrap sample, we assign a weight of  
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( ) ( )
1/2 1/2

1/2 1/21/2 1/21 11 1 1 1 1h h h h
h h h h

h h h h

N n N nk n k n
N N n N N k

− −
     − − − + − −        

 

to each sampled element in the -thh  stratum, and  

( )
1/2

1/21 2 11 1 1h h
h h

h h

N nk n
N N n

−
   − − −    

 

to the nonsampled elements. We then use the ordinary variance of the replicated sample estimators as 
variance estimator. The aforementioned weighting scheme is algebraically identical to equation 4.1 of Rao 
and Wu (1988), in which the finite population correction is incorporated into replication weights. The 
resampling variance estimator derived from the weighting method reduces to ordinary variance estimator 
under stratified SRSWOR and guarantees design unbiasedness. In order to combine bagging with 
bootstrap variance estimator, we use the same bootstrap samples to construct the bagging estimators for 
the population quantities of interest. 

Under the design-based framework, no analytic variance estimator is available for the bagged estimator 
in general. For now, we would suggest the following two variance estimation approaches in practice: 

 
(Var. 1) Use the estimated variance of the original estimator even though the bagged estimator may have a 

smaller variance. This method provides confidence intervals of the same width but outperforms 
the original confidence interval in having larger coverage rate.  

 
(Var. 2) Multiply the estimated variance of the original estimator by an adjustment factor accounting for 

the likely improvement in efficiency. One possible choice for such a factor is the efficiency gain 
assuming the sample is an iid  sample from an infinite superpopulation. The factor can be 
determined by using the results of Theorems 1 and 2, or by a nonparametric bootstrap 
experiment. One such possible bootstrap procedure is double bootstrap, which is implemented by 
drawing ordinary bootstrap resamples to estimate the variance of the original estimator, and 
another level of SRSWOR resamples to determine the variance of the bagging estimator. One can 
estimate the ratio of the variance of bagging estimator to original estimator using these nested 
bootstrap samples, and multiply the design variance of the original estimator by this ratio.  

 
We will explore both approaches in the simulations in Section 5, but this is clearly an area in which 

further research is warranted. 

 
5  Simulations 
 

To evaluate the practical behavior of bagging in the survey context, we generate a finite population of 
size = 2,000N  with three strata. The size of each stratum is denoted as hN  with = 1,2,3,h  and the 
stratum proportions are fixed at ( ) ( )1 2 3, , = 0.5,0.3,0.2 .N N N N  The distribution of the target variable iy  
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within each stratum is ( ) ( )1 21,1 ,  1,1i iy N y− Γ   and ( )3 3,2 .iy N  An auxiliary variable ix  is 

generated via ( )0 1 2=i i ix A A y A G α β+ + −  where 0 1 2= = 2,  = 1,  = 2,  = 1A A A α β  and ( )2,1 .
iid

iG Γ  

We repeatedly draw samples of size n  using stratified simple random sampling from the population of 
interest and the sample size allocation is ( ) ( )1 2 3, , = 0.3,0.3,0.4 .n n n n  In this set-up, the design is clearly 
informative, because the observations are not iid  in the overall population and are correlated with the 
inclusion probabilities. 

We are interested in three population quantities: a population -quantile,α  a population proportion 
below a given fraction of a population quantile (see Berger and Skinner 2003, for an example) and the 
Rao-Kovar-Mantel (RKM) estimator of the distribution function (Rao et al. 1990). The former is an 
example of a non-differentiable estimating equation-based estimator, while the latter two are explicitly 
defined non-differentiable estimators. The sample estimator of the quantile is found by inverting the 
estimated cumulative distribution function. The sample estimator of the proportion below a given fraction 
of a population quantile is the HT estimator of the proportion of observations below the sample median of 
a variable of interest times a constant ,c   

( )med
ˆ  

1 1ˆ = I ,
i

pr y c
ii AN θ

θ
π ≤

∈
∑  

where medθ̂  denotes the sample median of the .iy  The design-based RKM difference estimator based on a 
ratio model is  

 

( ) ( ) ( )RKM
=1

1 1 1= I I I ,
i i i

N

y t Rx t Rx t
i ii A i i AN

θ
π π≤ ≤ ≤

∈ ∈

 
+ − 

 
∑ ∑ ∑   (5.1) 

where R̂  denotes the estimated ratio between y  and .x  

The design variance of these non-differentiable estimators is somewhat cumbersome to estimate. For 
variance and interval calculations for sample quantiles, the readers are referred to Francisco and Fuller 
(1991), Sitter and Wu (2001), and references therein. For proportion below an estimated level, see Shao 
and Rao (1993) and Berger and Skinner (2003). 

The design variances of the original estimators ˆ ˆ,  qr prθ θ  and RKM
ˆ ,θ  are estimated via the without-

replacement bootstrap procedure described in the previous section. We employ a bootstrap sample size of 
= 2.h hk n  The so-constructed bagging estimators are often referred to as subagging estimators 

(Bühlmann and Yu 2002). It was established that without-replacement samples of size 2n  produces 
similar results to with replacement samples of size n  in bagging (Buja and Stuetzle 2006; Friedman and 
Hall 2007). We apply the two variance approaches for bagging estimators proposed in the previous 
section, i.e. one identical to that of unbagged estimator (Var. 1) and another one that multiplies the 
original variance estimate by a model-based adjustment factor (Var. 2). The factor is determined by 
double bootstrap on one particular sample. In principle, one should repeat the exercise for each sample, 
but this is precluded by the heavy computational burden. The confidence intervals of all three estimators 
are constructed by normal approximation. The confidence intervals for the proportion and the RKM 
estimator are constructed by normal approximation on logit  transformed scale, ( )ˆ ˆlog 1θ θ −   or 

( )ˆ ˆlog 1 ,bag bagθ θ −   and then back transformation (Agresti 2002; Korn and Graubard 1998). 
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Table 5.1 summarizes the bias, standard deviation and MSE ratio of the original and bagged sample 
quantiles and Table 5.2 examines the variance estimators and confidence intervals. The sample sizes are 
chosen to be = 100n  and 200.  From Table 5.1, we can see that the bagged quantile estimator is more 
efficient than the original estimator since the MSE ratio is less than one in this simulation experiment. The 
smoothing effects of bagging generally become more prominent as we decrease the sample size. In 
Table 5.2, we compare the two confidence intervals with bagging point estimator to that of original 
confidence intervals. As expected, the confidence interval constructed via method 1 has the same length 
and higher coverage than the original. In this example, the confidence intervals via method 2 are narrower 
but maintain coverage level close to nominal. 

 
Table 5.1 
Bias, standard deviation and MSE ratios of sample quantiles and bagged sample quantiles; population size 

= 2,000,N  number of bootstraps = 2,000,B  and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
α  0.2 0.3 0.5 0.7 0.8  0.2 0.3 0.5 0.7 0.8 

( )ˆbias qtθ  0.002 0.008 0.000 -0.005 -0.035  -0.008 0.005 0.006 0.007 -0.005 

( ),
ˆbias qt bagθ  0.018 0.019 -0.001 -0.007 -0.043  -0.006 0.009 0.005 0.006 -0.022 

( )ˆsd qtθ  0.093 0.124 0.149 0.181 0.212  0.070 0.076 0.103 0.136 0.148 

( ),
ˆsd qt bagθ  0.089 0.112 0.138 0.167 0.197  0.065 0.073 0.099 0.127 0.139 

( )
( )

,
ˆ

ˆ
p qt bag

p qt

MSE

MSE

θ

θ

 

0.946 0.844 0.859 0.854 0.875 
 

0.866 0.924 0.919 0.862 0.912 

 
Table 5.2 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for sample 
quantiles and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagged sample quantiles; 
simulation setting is the same as in Table 5.1 
 

   = 100,  = 50n k   = 200,  = 100n k  
α  0.2 0.3 0.5 0.7 0.8  0.2 0.3 0.5 0.7 0.8 

( )
( )

ˆˆE

ˆ
boot qt

qt

V

V

θ

θ

 
   1.208 1.091 1.099 1.135 1.205  1.067 1.117 1.093 1.098 1.180 

( )
( )
1 ,

,

ˆˆE

ˆ
qt bag

qt bag

V

V

θ

θ

 
   1.327 1.325 1.279 1.331 1.402  1.224 1.217 1.188 1.273 1.326 

( )
( )
2 ,

,

ˆˆE

ˆ
qt bag

qt bag

V

V

θ

θ

 
   1.307 1.217 1.196 1.184 1.383  1.245 1.249 1.392 1.107 1.104 

C.P.(C.I.)  0.944 0.934 0.924 0.928 0.922  0.938 0.951 0.942 0.935 0.950 

( )C.P. C.I.1.bag  0.950 0.946 0.938 0.938 0.939  0.942 0.950 0.946 0.943 0.954 

( )C.P. C.I.2.bag  0.949 0.934 0.932 0.929 0.938  0.944 0.952 0.958 0.927 0.936 

Width(C.I.)             

( )Width C.I.1.bag

 

0.386 0.492 0.597 0.729 0.880  0.277 0.309 0.414 0.544 0.612 

( )Width C.I.2.bag

 

0.383 0.472 0.577 0.688 0.874  0.279 0.313 0.448 0.508 0.559 
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Tables 5.3 and 5.4 summarize design-based results on the low-income proportion estimator. Based on 
the MSE ratio, we can see that the bagging estimator is uniformly more efficient than the original 
estimator, and the MSE of bagging estimator is less than 50%  of that of original estimator in a few cases 
(see = 1.2c ). The likely reason for this is that the estimator involves two “levels” of non-differentiability: 
the sample median being a non-differentiable estimator, whose efficiency gain was shown in Table 5.1, 
and the low-income proportion being a non-differentiable function of the sample median. The “jumps” in 
the estimators are smoothed out by bagging, resulting in a more stable estimator. The confidence interval 
comparison in Table 5.4 leads to results similar to the quantile case. 

 
Table 5.3 
Bias, standard deviation and MSE ratio of estimated proportion below a constant c  multiplied by estimated 
median and the bagged proportion estimator; population size = 2,000,N  number of bootstraps = 2,000,B  
and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
c  0.2 0.4 0.6 1.2 1.5  0.2 0.4 0.6 1.2 1.5 

( )ˆbias prθ  -0.002 -0.002 -0.003 0.011 0.006  0.000 -0.002 -0.005 -0.004 -0.004 

( ),
ˆbias pr bagθ  -0.004 -0.004 -0.007 0.017 0.009  -0.001 -0.005 -0.009 -0.001 -0.004 

( )ˆsd prθ  0.034 0.039 0.038 0.034 0.046  0.023 0.027 0.026 0.026 0.036 

( ),
ˆsd pr bagθ  0.031 0.035 0.031 0.020 0.034  0.022 0.025 0.022 0.017 0.029 

( )
( )

,
ˆ

ˆ
p pr bag

p pr

MSE

MSE

θ

θ

 

0.861 0.821 0.709 0.538 0.581  0.883 0.860 0.783 0.434 0.671 

 
Table 5.4 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for sample 
proportions and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagged sample proportions; 
simulation setting is the same as in Table 5.3. We use “C.I.T.” to denote confidence intervals obtained with 
logit transformation 
 

   = 100,  = 50n k   = 200,  = 100n k  
c  0.2 0.4 0.6 1.2 1.5  0.2 0.4 0.6 1.2 1.5 

( )
( )

ˆˆE

ˆ
boot pr

pr

V

V

θ

θ

 
   1.122 1.191 1.325 1.472 1.281  1.140 1.191 1.251 1.350 1.217 

( )
( )
1 ,

,

ˆˆE

ˆ
pr bag

pr bag

V

V

θ

θ

 
   1.323 1.471 1.959 4.095 2.307  1.293 1.428 1.766 3.064 1.821 

( )
( )
2 ,

,

ˆˆE

ˆ
pr bag

pr bag

V

V

θ

θ

 
   1.240 0.963 1.190 1.174 1.149  1.145 1.262 1.319 2.039 1.524 

C.P.(C.I.T.)  0.969 0.970 0.984 0.991 0.980  0.964 0.974 0.977 0.983 0.946 

( )C.P. C.I.T.1.bag  0.979 0.983 0.995 0.998 0.995  0.974 0.980 0.988 0.998 0.976 

( )C.P. C.I.T.2.bag  0.976 0.944 0.973 0.922 0.942  0.962 0.969 0.968 0.993 0.957 

Width(C.I.T)             

( )Width C.I.T.1.bag

 

0.144 0.166 0.168 0.157 0.197  0.098 0.115 0.114 0.113 0.149 

( )Width C.I.T.2.bag

 

0.139 0.134 0.131 0.085 0.140  0.093 0.108 0.099 0.092 0.136 
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Tables 5.5 and 5.6 summarize the design-based results on the RKM estimator. Again, we observe the 
efficiency gain by applying the bagging method, and the gain is between 2% and 12%. Both variance 
estimators of the bagging quantity perform quite well. Both versions of confidence intervals for bagging 
estimators have actual coverage rates close to 95%, and the confidence intervals using the adjustment 
factor approach (Var. 2) are slightly shorter than method 1. 

 
Table 5.5 
Bias, standard deviation and MSE ratios of RKM estimator and bagging RKM estimator (5.1); population 
size = 2,000,N  number of bootstraps = 2,000,B  and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
t  0.5 1.5 2.5 3.5 4.5  0.5 1.5 2.5 3.5 4.5 

( )RKM
ˆbias θ  0.000 0.000 0.000 0.000 0.000  -0.001 0.001 0.000 0.000 0.001 

( )RKM,
ˆbias bagθ  -0.001 0.000 -0.001 0.000 0.000  -0.001 0.001 0.000 0.001 0.001 

( )RKM
ˆsd θ  0.043 0.044 0.030 0.015 0.012  0.030 0.030 0.020 0.011 0.009 

( )RKM,
ˆsd bagθ  0.042 0.042 0.028 0.014 0.012  0.030 0.029 0.019 0.011 0.009 

( )
( )
RKM,

RKM

ˆ

ˆ
p bag

p

MSE

MSE

θ

θ
 0.965 0.911 0.877 0.914 0.917  0.976 0.928 0.917 0.918 0.981 

 
Table 5.6 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for the 
RKM estimator (5.1) and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagging RKM 
estimators; simulation setting is the same as in Table 5.5 
 

   = 100,  = 50n k   = 200,  = 100n k  
t  0.5 1.5 2.5 3.5 4.5  0.5 1.5 2.5 3.5 4.5 

( )
( )

RKM

RKM

ˆˆE

ˆ
bootV

V

θ

θ

 
   1.081 1.192 1.078 1.082 1.078  1.016 1.045 1.138 1.121 1.016 

( )
( )
1 RKM,

RKM,

ˆˆE

ˆ
bag

bag

V

V

θ

θ

 
   1.115 1.324 1.183 1.198 1.156  1.038 1.138 1.223 1.210 1.062 

( )
( )
2 RKM,

RKM,

ˆˆE

ˆ
bag

bag

V

V

θ

θ

 
   1.087 1.117 0.962 1.042 1.019  1.009 1.083 1.106 1.118 1.002 

C.P.(C.I.)  0.958 0.963 0.955 0.956 0.959  0.954 0.956 0.966 0.964 0.948 

( )C.P. C.I.1.bag  0.958 0.968 0.958 0.967 0.964  0.958 0.964 0.970 0.970 0.956 

( )C.P. C.I.2.bag  0.957 0.954 0.937 0.951 0.950  0.955 0.958 0.959 0.960 0.948 

Width(C.I.)             

( )Width C.I.1.bag  0.171 0.183 0.116 0.074 0.052  0.122 0.122 0.083 0.049 0.034 

( )Width C.I.2.bag  0.169 0.168 0.105 0.069 0.049  0.120 0.120 0.079 0.047 0.033 
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In the context of nonsmooth estimators such as those considered here, it is often recommended that one 
uses a smoothed bootstrap instead of the simple bootstrap in variance estimation. We considered 
perturbing each resampled observation *

hiy  in the -thh  stratum to obtain,  

 ( ) ( )1/2* 2 * *= 1 ,hi h Z hi h hy y y y s Zσ
−

+ + − +   (5.2) 

where ,  h hy s  denote the sample mean and standard deviation of the original sample stratum, hiy∗  denotes 

the originally resampled value and Z ∗  denotes random noise with ( )20, .
iid

ZZ N σ∗
  The variance of Z ∗  

controls the amount of smoothing. We applied this method to quantile estimation and the proportion 
below an estimated level, but it did not appear to improve the performance of the estimation procedure. 
One possible explanation is that noise contamination “jitters” duplicated observations arising from with-
replacement sample and stabilizes subsequent variance estimator to some extent. Since we used without-
replacement sampling, this problem was already mostly avoided. More careful study is necessary to 
understand the effect of smoothing in the context. 

 
6  Conclusions 
 

In this article, we have explored the use of bagging procedures for nonlinear and non-differentiable 
survey estimators. We presented theoretical results on bagging estimator both under design-based and 
model-based framework. The bagging estimator can be treated as the expectation of a two-phase estimator 
conditioning on the first phase, and this expectation smoothes out “jumps” in the non-differentiable 
estimator. The empirical study has revealed the potential of bagging non-differentiable survey estimators, 
and while the relative performance of bagging varies from one scenario to another, the results are certainly 
promising. 

How to estimate the variance of bagged survey estimators remains an open question when the 
sampling design is a general complex design. We have proposed two ideas for variance estimation for 
practical use, but further theoretical study of variance estimation under design-based framework is 
certainly warranted. 

 
Appendix 
 

A.1  Design-based theory 
 

Assumptions D.1-D.6 are used to show the design-based results given below (Theorems 3 and 4). 
Assumption D.1 specifies moment conditions on the study variable ,iy  and Assumption D.2 specifies 

conditions on the second order inclusion probability of the sampling design. Assumption D.3 guarantees 
that the size of each resample converges to infinity in the limit. Assumption D.4 specifies smoothness 
conditions on ( )m ⋅  in the differentiable estimator. Assumptions D.5-D.6 are used to show the design 

consistency of bagging non-differentiable survey estimators. 
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(D.1) The study variable iy  has finite 2 δ+  population moment for arbitrarily small > 0,δ  

2

=1

1  <  ,lim
N

i
N iN

δ+

→∞
∞∑ y 

 

where each element of 2
i

δ+y  is the original element raised to the power of 2 δ+  and ⋅   denotes 
Euclidean norm. 

 
(D.2) For all ,N  min > 0,

Ni U i Nπ π ∗
∈ ≥  where ,NNπ ∗ →∞  and  

  max < ,lim sup ij i j
N

n π π π
→∞

⋅ − ∞  

where ijπ  denotes the joint inclusion probability of elements ,  .i j  

 
(D.3) The resampling process generating bA  is SRSWOR of size ,k  with ( )= ,  (0,1].k O nκ κ ∈  Further, 

every bootstrap resample of size k  is used in calculating the bagged estimator. 

 
(D.4) The function ( )m ⋅  is differentiable and has nontrivial continuous second derivative in a compact 

neighborhood of .Nμ  

 
(D.5) The estimator λ̂  is n -consistent for the population target ,Nλ  lim =N N→∞ ∞λ λ  and the 

estimator λ̂  is a symmetric statistic.  

 
(D.6) The function ( )h ⋅  is bounded and the population quantity is “compactly differentiable in a weak 

sense” (Dümbgen 1993). There exists a function ( )g ⋅  such that,  

( ) ( ) ( )
1 1

1 1 0,sup
N N

i i
C i i

h N h g N
N N

α α− −
∞ ∞ ∞

∈ = =

− − − − − →∑ ∑
ss

y λ s y λ λ s  

where Cs  is a large enough compact set in ,  0 < 1 2p α ≤  and ( )g ∞λ  is bounded. 

 
The following theorem gives several asymptotic approximations for the bagged estimator, depending 

on the rate of convergence of k  relative to .n  In all three cases, the bagged estimator is design consistent. 
Intuitively speaking, the bagging estimator behaves like the original estimator when the resample size k  
is large (approaches infinity no slower than 1/2n ), but converges at a different speed when the resample 
size is small. 

 

Theorem 3 Under Assumptions D.1-D.4, the bagged differentiable estimator ,d̂ bagθ  admits the following 

second-order expansion,  
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T
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n
k
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n
k

κ

κ
θ θ

κ

−

−

−

 ′ − +

 ′ − +

 ′′− − +  − 

   
 ′′− − +    
  

∑

∑

μ μ μ

μ μ μ

μ μ μ μ μ

μ μ μ μ μ

 

 

 

where > 0κ  is such that the resample size ( )= .k O nκ  

 
Proof of Theorem 3:  

The proof easily follows from a Taylor expansion of the individual resample-based estimator ( )( )ˆ bm ∗μ   

around .Nμ  The linear expansion term reduces to ( ){ } ( )ˆT
N Nm′ −μ μ μ  based on an earlier argument. 

Under D.1 and D.3, the quadratic term has the same order as the SRSWOR variance of ( )ˆ b
∗μ   and hence 

is ( )1 .po k   

 
Next, Theorem 4 gives the design consistency of the non-differentiable bagged estimator. 

 
Theorem 4 Under Assumptions D.1-D.3 and D.5-D.6, the bagged non-differentiable estimator ,n̂d bagθ  is 

design consistent for its population target ,ndθ  i.e., ( ),
ˆ = 1 .nd bag nd poθ θ−   

 
Proof of Theorem 4:  

We can establish that ( ) ( ) ( )1 1 i i Ni A
N hπ

∈
−∑ y λ  is design consistent for ndθ  as a result of D.2 and the 

fact that ( )h ⋅  is bounded (D.6). Then it suffices to show that 

( ) ( ) ( ) ( ),
ˆ 1 1 = 1 ,nd bag i i N pi A

N h oθ π
∈

− −∑ y λ  or  

( )( ) ( ) ( )*1 1 1 ˆ = 1
1
1

b

i b i N p
ii A A i

h h o
nN
k

π∈ ∋

 
 
 − − − −    −  

∑ ∑ y λ y λ  

following (2.6). We can establish that the collection of resample-based estimators ( )ˆ
b
∗λ   are uniformly 

contained in a neighborhood of ,Nλ  or, ( ) ( )ˆsup =
bA b N O N α∗ −−λ λ s  for some > 0.α  Then we can 

apply D.6 to conclude the design consistency of the bagging estimator.  
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A.2  Model-based theory 
 

Assumptions M.1-M.4 are used to show the model-based results (Theorems 1 and 2). Assumption M.1 
specifies superpopulation distribution of population characteristics .iy  Assumptions M.2 and M.3 assume 
simple random without replacement sampling for both the design and the resampling process. Assumption 
M.5 is needed for showing the model-based asymptotic results for the bagging estimator defined by 
estimating equations. 

 
(M.1) The sequence of population characteristics iy  constitute an iid  sample from a probability 

distribution with density ( ).Yf y  

 
(M.2) The sampling design is ignorable, or equivalently, the sampled and unsampled observations are 

subject to the same distribution.  

 
(M.3) The resampling process generating bA  is SRSWOR of size ,k  where the bootstrap sample size k  

is bounded. Further, every bootstrap resample of size k  is used in calculating the bagged 
estimator. 

 
(M.4) The function ( )h ⋅  is bounded. 

 
(M.5) Let ( ) ( )= E iS yγ ψ γ∞ −  be a continuous function of ,γ  and ,eeθ ∞  be the smallest root of 

( ) = 0;S γ∞  for an arbitrary y  in the support of the random variable ,iy  the quantity  

( ) ( )
1

=1

1 1inf : 0
k

i
i

y y
k k

γ ψ γ ψ γ
− 

− + − ≥ 
 

∑  

belongs to a compact set with probability 1. 

 
Proof of Theorem 1: 

The bagging estimator ,n̂d bagθ  is a symmetric statistic, provided that λ̂  is symmetric (Lee 1990). We can 
project it onto a single dimension, say, 1.y  But projections onto other observations are equivalent due to 
symmetry,  

{ }

( )( ) ( )( )

( ) ( )

, 1

* *
1 1 1 1

1 { ,1}, 1

ˆE =

1 1 1 1ˆ ˆ       =E = E =
1 1
1 1

1 1       = .

b b

nd bag

b b
A A i i

nh h
n nn n
k k

ku v
n n

θ

∋ ∋ ≠

   
   

−   − + −   − −            − −      
−

+

∑ ∑

y y

y λ y y y λ y y

y y

   
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Then we can derive the following linearization of bagging estimator using the theory of symmetric 
statistics,  

( ){ } ( ){ } ( )1/2
, , , ,

=1 =1

1 1ˆ = ,
n n

nd bag nd i nd i nd p
i i

ku v o n
n n

θ θ θ θ −
∞ ∞ ∞

−
− − + − +∑ ∑y y  

where ( ),  ( )u v⋅ ⋅  and ,ndθ ∞  are defined in Theorem 1. The asymptotic variance (3.3) can be easily derived 

given the iid  sampling assumption.  

 

Proof of Theorem 2:  
The bagged estimator defined in (2.7) can be treated as a one-sample -thk  order U-statistic, with kernel 
function  

( ) ( )1 2
=1

1, , , = inf : 0 .
k

k i
i

h y y y y
k

γ ψ γ
 

− ≥ 
 

∑  

We can directly apply a well-known formula for linearizing U-statistic (Serfling 1980 and van der Vaart 
1998, p. 161) to obtain the linearization 

 

( ){ } ( )1/2
, , ,

=1

ˆ = ,
n

ee bag ee i ee p
i

k u y o n
n

θ θ θ −
∞ ∞− − +∑  

where  

( ) ( )

( ) ( )

1 2 1

1

=1

= E , , , ,

1 1= E inf : 0 .

k

k

i
i

u y h y y y y

y y
k k

γ ψ γ ψ γ

−

− 
− + − ≥ 

 
∑



 

The bagged estimating equation estimator (2.7) can be linearized as  

 ( ){ } ( )1/2
, , ,

=1

ˆ = .
n

ee bag ee i ee p
i

k u y o n
n

θ θ θ −
∞ ∞− − +∑   (A.1) 

The asymptotic variance of ,êe bagθ  can be directly obtained from linearization (A.1). 
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Fractional hot deck imputation for robust inference under 
item nonresponse in survey sampling 

Jae Kwang Kim and Shu Yang1 

Abstract 

Parametric fractional imputation (PFI), proposed by Kim (2011), is a tool for general purpose parameter 
estimation under missing data. We propose a fractional hot deck imputation (FHDI) which is more robust than 
PFI or multiple imputation. In the proposed method, the imputed values are chosen from the set of respondents 
and assigned proper fractional weights. The weights are then adjusted to meet certain calibration conditions, 
which makes the resulting FHDI estimator efficient. Two simulation studies are presented to compare the 
proposed method with existing methods. 

 
Key Words: EM algorithm; Kullback-Leibler information; Missing at random (MAR); Multiple imputation. 

 
 
 
1  Introduction 
 

Imputation is a popular method of compensating for item non-response in sample surveys. Let y  be 
the study variable subject to non-response and x  be the vector of auxiliary variables fully observed. A 
model on the conditional distribution ( )|f y x  is often used to generate imputed values for missing .iy  

Such model-based imputation method is well developed in the literature. Multiple imputation of Rubin 
(1987) is a Bayesian approach of model-based imputation. Monte Carlo EM of Wei and Tanner (1990) 
can be treated as a frequentist's approach of model-based imputation. Kim (2011) proposed parametric 
fractional imputation to handle multivariate missing data. 

However, the model-based imputation method that generates imputed values from ( )|f y x  is not a 

hot deck imputation in the sense that artificial values are constructed after the imputation. A desirable 
property of hot deck imputation is that all imputed values are observed values. For example, imputed 
values for categorical variables will also be categorical with the same number of categories as observed 
for the respondents. For this reason, hot deck imputation is the most popular imputation method, 
especially in household surveys. Nearest neighbor imputation method is also a hot deck imputation. Chen 
and Shao (2001), Beaumont and Bocci (2009), Kim, Fuller and Bell (2011) investigated nearest neighbor 
imputation in the context of survey sampling. Durrant (2009), Haziza (2009) and Andridge and Little 
(2010) provided comprehensive overviews of the hot-deck imputation methods in survey sampling. 

Fractional hot deck imputation was proposed by Kalton and Kish (1984) to achieve efficiency in hot 
deck imputation. Kim and Fuller (2004) and Fuller and Kim (2005) provided a rigorous treatment of 
fractional hot deck imputation and discussed variance estimation. However, their approach is only 
applicable when x  is categorical. For continuous covariate case, predictive mean matching can be treated 
as a nearest neighbor imputation method using the predicted value obtained from ( )|f y x  but its 

statistical properties are not fully addressed in the literature. 

mailto:jkim@iastate.edu
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In this paper, we propose a new fractional hot deck imputation (FHDI) method based on a parametric 
model of ( )|f y x  that allows continuous covariates. The proposed method has several advantages over 

the existing methods. First, it is a hot deck imputation preserving the correlation structure between the 
items. Second, it is robust in that the resulting estimator is less sensitive against the failure of the assumed 
model ( )| .f y x  Third, it provides consistent variance estimators for various parameters without requiring 

the congeniality condition of Meng (1994). Multiple imputation, however, requires the congeniality 
condition for the validity of variance estimation. When the congeniality condition does not hold, multiple 
imputation often leads to conservative inference, which in turn reduces test powers. See Section 5.2 for 
more details. 

The paper is organized as follows. Section 2 describes the basic setup. The proposed method is 
presented in Section 3. The robustness of FHDI is discussed in Section 4. Results from two simulation 
studies are presented in Section 5 before some concluding remarks are made in Section 6. 

 
2  Basic setup  
 

Consider a finite population of N  elements identified by a set of indices { }= 1,2, ,U N  with N  
known. Associated with each unit i  in the population are study variables, ix  and iy , with ix  always 
observed and iy  subject to non-response. Let A  denote the set of indices for the elements in a sample 
selected by a probability sampling mechanism. We are interested in estimating ,η  defined as a (unique) 

solution to the population estimating equation ( )=1
; , = 0.N

i ii
U yη∑ x  For example, a population mean can 

be obtained by letting ( ); , = .i i iU y yη η −x  Under complete response, a consistent estimator of η  is 

obtained by solving   
 ( ); , = 0,i i i

i A
wU yη

∈
∑ x   (2.1) 

where ( ){ } 1
=iw Pr i A

−
∈  is the inverse of the first-order inclusion probability of unit i . Binder and Patak 

(1994) and Rao, Yung and Hidiroglou (2002) considered the asymptotic properties of the estimator 
obtained from (2.1). Under the existence of missing data, we define  

1 if  is observed
=

0 otherwise.
i

i

y
δ





 

A consistent estimator of η  is then obtained by taking the conditional expectation and solving  

 ( ) ( ) ( ){ }; , 1 ; , | , = 0 = 0i i i i i i i i
i A

w U y E U Yδ η δ η δ
∈

 + − ∑ x x x   (2.2) 

for .η  Estimating equation (2.2) is sometimes referred to as expected estimating equation (Wang and Pepe 
2000). 

To compute the conditional expectation in (2.2), we assume that the finite population at hand is a 
realization from an infinite population, called superpopulation. In the superpopulation model, we often 
postulate a parametric conditional distribution of y  given ( ),   ; ,f y θx x  which is known up to the 

parameter θ  with parameter space .Ω  Under the specified model, we can compute a consistent estimator 



Survey Methodology, December 2014 213 
 

 
Statistics Canada, Catalogue No. 12-001-X 

θ̂  of θ  and then use a Monte Carlo method to evaluate the conditional expectation in (2.2) given the 
estimate ˆ.θ  If the response mechanism is missing at random (MAR) or ignorable in the sense of Rubin 
(1976), we can approximate the expected estimating equation in (2.2) by  

 ( ) ( ) ( )*( )

=1

1; , 1 ; , = 0,
m

j
i i i i i i i

i A j
w U y U y

m
δ η δ η

∈

 
+ − 

 
∑ ∑x x   (2.3) 

where  

( ). . .
*(1) *( ) ˆ, , | ; .

i i d
m

i i i iy y f y θx   

Often, we use the maximum likelihood estimator ˆ,θ  which solves  

 ( ) ( )= ; , = 0,i i i i
i A

S w S yθ δ θ
∈
∑ x   (2.4) 

where ( ) ( ); , = log | ; .S y f yθ θ θ∂ ∂x x  Note that we use the sampling weights iw  in the score equation 

(2.4). Thus, we are implicitly assuming that the imputation model, the model for generating the imputed 
values, is the model about the finite population values ( )| ,i if y x  not the model about the sample values. 

Thus, we allow that the sampling mechanism can be informative in the sense of Pfeffermann (2011). 
Multiple imputation, on the other hand, uses the sample model, ( ) ( )| | ,s i i i if y f y i A≡ ∈x x , to generate 

the imputed values and often assumes that the sampling mechanism is non-informative. Thus, in multiple 
imputation, MAR is assumed for the sample at hand, while, in fractional imputation, MAR is assumed for 
the population. Under informative sampling design, generating imputed values from the sample model 

( )|s if y x  does not necessarily lead to valid inference even when sample MAR condition holds. See 

Section 8.4 of Kim and Shao (2013) for further discussion of MAR under informative sampling. 
To compute the conditional expectation in (2.2) efficiently, the parametric fractional imputation (PFI) 

of Kim (2011) can be used. In PFI, the imputed values are generated from a suitable proposal distribution 
( )| ih y x  and then the imputed estimating equation (2.3) is changed to  

 ( ) ( ) ( )* *( )

=1
; , 1 ; , = 0,

m
j

i i i i i ij i i
i A j

w U y w U yδ η δ η
∈

 
+ − 

 
∑ ∑x x   (2.5) 

where  

 
( ) ( )
( ) ( ){ }
*( ) *( )

*

*( ) *( )
1

ˆ| ; |
= .

ˆ| ; |

j j
i i i i

ij m k k
i i i ik

f y h y
w

f y h y

θ

θ
=∑

x x

x x
  (2.6) 

The choice of the proposal distribution ( )h ⋅  is somewhat arbitrary. We will discuss a particular choice 

that may lead to a robust estimation. 
The consistency of the resulting estimator η̂  from (2.3) or (2.5) can be established under the 

assumption that the conditional distribution ( )| ;f y θx  is correctly specified (by similar argument in the 

proof of Corollary II.2 of Andersen and Gill (1982) and its proof is skipped here). In this paper, we 
consider an alternative approach of fractional imputation that is more robust against the failure of the 
assumption on the imputation model. 
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3  Proposed method 
 

We first consider a particular fractional hot deck imputation method, called full fractional 
imputation, where the imputed values are taken from the set of respondents denoted as 

{ }= ; = 1R iA i A δ∈ . That is, the -thj  imputed value of missing ,iy  denoted by *( ) ,j
iy  is equal to the -thj  

value of y  among the set in .RA  We propose a fractional hot deck imputation approach that makes use of 
the parametric model assumption ( )| ;f y θx . If all of the elements in RA  are selected as the imputed 

values for missing ,iy  we can treat { };j Ry j A∈  as a realization from ( )| = 1j jf y δ  and fractional weight 

assigned to donor jy  for the missing item iy  is, by choosing ( ) ( )| = | = 1j i j jh y f y δx  in (2.6), 

 
( ) ( )
( ) ( )

*

;

ˆ| , = 0; | = 1

ˆ    | | = 1 ,

ij j i i j j

j i j j

w f y f y

f y f y

δ θ δ

θ δ

∝

∝

x

x
  (3.1) 

with *
; =1

= 1
j

ijj
w

δ∑ , and θ̂  being the MLE obtained from (2.4). The second line follows from the MAR 

assumption. Furthermore, we can write   

 

( ) ( ) ( )
( ) ( )

( )
=1

| = 1 = | , = 1 | = 1

                     = | | = 1

1                     | ,

j j j j j

j j

N

k j k
kR

f y f y f d

f y f d

f y
N

δ δ δ

δ

δ≅

∫
∫

∑

x x x

x x x

x

  (3.2) 

where the second equality follows from the MAR assumption, and the last (approximate) equality follows 
by approximating the integral by the population empirical distribution, and RN  is the number of 
respondents in the population. Using the survey weights, we can approximate  

( ) ( )|
| = 1 R

R

k j kk A
j j

kk A

w f y
f y

w
δ ∈

∈

≅
∑

∑
x

 

and the fractional weights in (3.1) are computed from  

 
( )

( )
*

ˆ| ;
ˆ| ;

R

j i

ij

k j kk A

f y
w

w f y

θ

θ
∈

∝
∑

x

x
  (3.3) 

with * = 1
R

ijj A
w

∈∑ . In (3.3), the point mass *
ijw  assigned to donor jy  for missing unit i  is expressed by the 

ratio of the density ( )| .f y x  Thus, for each missing unit ,  =R Ri n A  observations are used as donors for 
the hot deck imputation using *

ijw  as the fractional weights. Such fractional imputation can be called full 

fractional imputation (FFI) because there is no randomness due to the imputation mechanism. The FFI 
estimator of ,η  defined by ( )=1

; , = 0N
i ii

U yη∑ x , is then computed by solving  

 ( ) ( ) ( )*; , 1 ; , = 0,
R

i i i i i ij i j
i A j A

w U y w U yδ η δ η
∈ ∈

  + − 
  

∑ ∑x x   (3.4) 
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where *
ijw  is defined in (3.3). Note that the imputed estimating equation (3.4) is a good approximation to 

the expected estimating equation in (2.2). 
In survey sampling, an imputed data set with a large imputation size may not be desirable. Thus, 

instead of taking all the observations in RA  as donors for each missing item, a subset of RA  can be 
selected to reduce the size of the donor set of missing .iy  Thus, the selection of the donors is viewed as a 
sampling problem and we use an efficient sampling design and weighting techniques to obtain efficient 
imputation estimators. For the donor selection mechanism, efficient sampling designs, such as a stratified 
sampling design or systematic Proportional-to-Size (PPS) sampling, can be used to select donors of size 

.m  A systematic PPS sampling for fractional hot deck imputation can be described as follows:  
 

1. Within each i  with = 0,iδ  sort the donors in the full respondent set { }; = 1j jy δ  in ascending 

order as (1) ( )ry y≤ ≤  and use *
( )i jw  to denote the fractional weight associated with ( ) .jy  That 

is, * *
( ) =i j ikw w  for ( ) = .j ky y   

 
2. Partition [ ]0,1  by ){ }1* *

( ) ( )=0 =0
, ,  = 1, , 1 ,j j

j i j i jk k
I w w j r+≡ −∑ ∑   where *

(0) = 0.iw  

  
3. Generate ( )uniform 0,1u m  and let = ,ku u k m+  = 0, , 1.k m −  For = 0, , 1,k m −  if 

k ju I∈  for some 0 1,j r≤ ≤ −  include j  in the sample .iD   

 
After we select iD  from the complete set of respondents, the selected donors in iD  are assigned with 

the initial fractional weights *
0 = 1ijw m . The fractional weights are further adjusted to satisfy  

 ( ) ( ) ( ) ( )* *
,1 , = 1 , ,

i R

i i ij c i j i i ij i j
i A j D i A j A

w w y w w yδ δ
∈ ∈ ∈ ∈

      − −   
     

∑ ∑ ∑ ∑q x q x   (3.5) 

for some ( ),i jyq x , and *
, = 1

i
ij cj D

w
∈∑  for all i  with = 0,iδ  where *

ijw  is the fractional weights for FFI 

method, as defined in (3.3). Regarding the choice of the control function ( ), yq x  in (3.5), we can use 

( ) ( )2, = ,y y y ′q x , which keeps the empirical distributions of y  for iD  and RA  as close as possible in the 

sense that the first and second moment of y  are the same. Other choices can also be considered. See 
Fuller and Kim (2005). 

The problem of adjusting the initial weights to satisfy certain constraints is often called calibration and 
the resulting fractional weights can be called calibrated fractional weights. Using the idea of regression 
weighting, the final calibration fractional weights that satisfy (3.5) and *

, = 1ij cj
w∑  can be computed by  

 ( )* * * * *
, 0 0= ,ij c ij ij ij iw w w ⋅+ ∆ −q q   (3.6) 

where ( )* * * *
0= , ,  = ,

R
ij i j i ij ijj A

y w⋅ ∈∑q q x q q   

( ){ } ( ) ( ){ } 12* * * * *
0 0= 1 1

R R

T

q i i ij ij i i ij ij ii A j A i A j A
C w w w wδ δ

−⊗

⋅∈ ∈ ∈ ∈
∆ − − − −∑ ∑ ∑ ∑q q q  
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and ( ) ( ){ }*= 1 ,
R

q i i ij i ji A j A
C w w yδ

∈ ∈
−∑ ∑ q x . Here, 2B⊗  denotes .TBB  Some of the fractional weights 

computed by (3.6) can take negative values. If that happens, algorithms alternative to regression weighting 
should be used. For example, consider entropy weighting, where the fractional weights of the form  

 
( )

( )
* *

*
, * *

exp
=

exp
R

ij ij
ij c

ik ikk A

w
w

w
∈

∆

∆∑
q

q
  (3.7) 

are approximately equal to the regression fractional weights in (3.6) and are always positive. Once the 
calibration fractional weights are obtained, the FHDI estimator of η  is then computed by solving  

 ( ) ( ) ( )*
,; , 1 ; , = 0.

i

i i i i i ij c i j
i A j D

w U y w U yδ η δ η
∈ ∈

  + − 
  

∑ ∑x x   (3.8) 

For variance estimation, a replication method can be used. See Appendix A.1 for a brief discussion of 
the replication variance estimator for the proposed method. 

Furthermore, the proposed method can handle non-ignorable non-response under the correct 
specification of the response model. See Appendix A.3 for the extension to non-ignorable non-response 
case. 

 
4  Robustness 
 

We now discuss the robustness of the proposed method against a small departure from the assumed 
parametric model. The robustness feature in our proposed estimator is defined to be robust against 
imputation model misspecification, a small exponential tilting of the true model. For simplicity of the 
presentation, assume that the sampling design is simple random sampling and the realized sample is a 
random sample from the superpopulation model. 

We assume that the true model ( )|g y x  does not belong to ( ){ }| ; ; .f y x θ θ ∈Ω  However, we can still 

specify a working model ( )| ;f y x θ  and compute the MLE of .θ  It is well known (White 1982) that the 
MLE converges to *,θ  the minimizer of the Kullback-Leibler information  

( ) ( )
( )

|
= log

| ;g

g Y x
K E

f Y x
θ

θ

   
  

    
 

for .θ ∈Ω  Sung and Geyer (2007) discussed the asymptotic properties of the Monte Carlo MLE of θ  
under missing data. 

To formally discuss robustness, suppose that the true distribution ( )|g y x  belongs to the 

neighborhood  

 ( ) 21= ; , <
2

g D g fε ε 
 
 

   (4.1) 

for some radius > 0,ε  where  

 ( ), =  ,gD g f log g dy
f

 
 
 

∫   (4.2) 
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is the Kullback-Leibler distance measure. The neighborhood (4.1) can be characterized in the following 
way. Let ( ), ,z x y θ  be a function of ,  x y  and ,θ  standardized to satisfy ( )| = 0Y xE z  and ( )| = 1,Y xVar z  

and define  

 ( ) ( ) ( ) ( ){ }| = | ; exp , , , ,g y x f y x z x y xθ ε θ κ θ−   (4.3) 

where  

( ){ }( )|= log exp , , .Y xE z x Yκ ε θ    

For small > 0ε  it can be shown that  

 ( ) 21, .
2

D g fκ ε≅ ≅   (4.4) 

Equation (4.3) represents an extensive set of distributions close to ( )| ;f y x θ  created by varying 

( ), ,z x y θ  over different standardized functions, where z  and ε  contain some geometric interpretation 
which represent the direction and magnitude of the misspecification respectively. For -p dimension 
parameter ,θ  we can specify the directions of the misspecification as  

( ) ( )1/2
1 2, , , = , , ,

T

pz z z I s x yθ θ−
  

where ( ) ( ), , = log | ;s x y f y xθ θ θ∂ ∂  and Iθ  is the information matrix for .θ  Represent ( ), ,z x y θ  as  

( ) ( )1/2, , = , , ,Tz x y I s x yθθ λ θ−  

where 2
=1

= 1,p
ii
λ∑  then ( ), ,z x y θ  satisfies the standardization criterion of ( )| = 0Y xE z  and ( )| = 1.Y xVar z  

See Copas and Eguchi (2001) for further discussion of this expression. 
Let *

,ij gw  be the fractional weight of the form (3.3) using the true density g  and *
,ij fw  be the 

corresponding fractional weight using the "working density" .f  By the special construction of the 
weights, we can establish  

 ( )* * 1/2 *
, , , .T

ij g ij f ij fw w I wθελ
θ

− ∂
≅ +

∂
  (4.5) 

Proof of (4.5) is given in Appendix A.2. Thus  

 

( ) ( )

( ) ( )

* *
, ,

1/2 *
,

; , ; ,

  ; , .

i ij g i j i ij f i j
i j i j

T
i ij f i j

i j

w w U x y w w U x y

I w w U x yθ

η η

ελ η
θ

−

≅

∂
+

∂

∑ ∑ ∑ ∑

∑ ∑
  (4.6) 

For small ,ε  we have  

( ) ( )* *
, ,; , ; , ,i ij g i j i ij f i j

i j i j
w w U x y w w U x yη η≅∑ ∑ ∑ ∑  

and so the resulting estimator of η  from ( )*
, ; , = 0i ij f i ji j

w w U x yη∑ ∑  will be close to the true value 0.η  



218 Kim and Yang: Fractional hot deck imputation for robust inference under item nonresponse in survey sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

5  Simulation study 
 

We performed two simulation studies. In Section 5.1, we compared the performance of the proposed 
method with some other imputation methods in a correctly specified model and a misspecified model, 
respectively, with ignorable missing data. In Section 5.2, we compared the statistical power of a test based 
on FHDI versus MI. 

 
5.1  Simulation one 
 

The first simulation study tested the performance of the proposed method under the setup of ignorable 
missing data. We used two sets of models to generate the observations. In model A, = 0.5 ,i i iy x e+  where 

( ) ( )exp 1 ,  0,1 ,i ix e N   with ix  and ie  being independent. In model B, = 0.5 ,i i iy x e+  where 

( ) { }2exp 1 ,  (2) 2 2,i ix e χ −   with ix  and ie  being independent. Random samples of size = 200n  

were separately generated from the two models. In addition to ( ), ,i ix y  we also generated iδ  from 

( )Bernoulli ,iπ  where ( ){ } 1
= 1 exp 0.2 .i ixπ

−
+ − −  Variable ix  was always observed but variable iy  was 

observed if and only if = 1.iδ  The overall response rates were about 65%  in both cases. We used 
= 2,000B  Monte Carlo samples in the simulation. 

From each of the Monte Carlo samples, one generated from model A and the other generated from 
model B, we computed the following eight estimators:  

 

1. Full sample estimator (Full) that is computed using the full sample.  

2. Predictive Mean Matching (PMM) is a semi-parametric imputation method, which fills in a 
value randomly from observations that are closest to the predicted value obtained from 
( )| .f y x  The PMM was implemented using "mice.impute.pmm" function in R.  

3. Multiple imputation (MI) estimator with imputation size = 10,m  where the imputed values are 
generated from the normal-theory regression model, as considered in Schenker and Welsh 
(1988).  

4. Parametric fractional imputation (PFI) estimator without calibration with imputation size 
= 10.m  

5. Parametric fractional imputation (PFI_cal) estimator with calibration with imputation size 
= 10.m  The fractional weights are computed using the calibration method in (3.6) with 
( )2= , .y yq  

6. Full fractional imputation (FFI) estimator using the full set of respondents as imputation 
values, i.e. the imputation size = ,Rm n  where Rn  is the size of .RA  

7. Fractional hot deck imputation (FHDI) estimator without calibration using a small subset of 
respondents of size = 10m  as imputation values.  
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8. Fractional hot deck imputation (FHDI_cal) estimator with calibration using a small subset of 
respondents of size = 10m  as imputation values. The fractional weights are computed using 
the calibration method in (3.6) with ( )2= , .y yq   

 
Multiple imputation is an approach of generating imputed values with simplified variance estimation. 

In this procedure, Bayesian methods of generating imputed values are considered, where > 1m  imputed 
values are generated from the posterior predictive distribution. Using the imputed values *(1) *( ), , ,my y  
the multiple imputation estimator of ,η  denoted by ˆMIη  is  

( )

=1

1ˆ ˆ=
m

k
MI

km
η η∑  

where ( )ˆ kη  is the complete response estimator applied to the -thk  imputed data set. Rubin's formula can 
be used for variance estimation in MI,  

 ( ) 1ˆ ˆ = 1 ,MI MI m mV W B
m

η  + + 
 

  (5.1) 

where 1 ( )
=1

ˆ= ,m k
m k

W m V− ∑  ( ) ( )21 ( )
=1

ˆ ˆ= 1 ,m k
m MIk

B m η η−− −∑  and ( )ˆ kV  is the variance estimator of ( )ˆ kη  

under complete response applied to the -thk  imputed data set. 
In both models, we used the normal density with mean 0 1xβ β+  and variance 2σ  as the working 

model for imputation. Thus, the working model is the true model in model A but not true in model B. 
We considered three parameters: ( )1 = ,E Yθ  the population mean of ( )2,  = < 1 ,y Pr Yθ  the 

proportion of Y  less than one, and 3 ,θ  the 0.5  quantile of .Y  In estimating 2θ  under full sample, we used 

( )1
2, =1

ˆ = < 1 .n
n ii

n I yθ − ∑  In estimating 3θ  under full sample, we used ( ) ( ){ }1
3,
ˆ ˆ ˆ= = inf : > ,n F p y F y pθ −  

where ( ) ( )1
=1

ˆ = <n
ii

F y n I y y− ∑  and = 0.5.p  

Table 5.1 and Table 5.2 show Monte Carlo means, standardized variance (Std Var) and standardized 
mean squared errors (Std MSE) of the eight estimators under model A and under model B, respectively. 
The standardized variance (mean squared error) is calculated as the ratio of variance (mean squared error) 
and the variance (mean squared error) of the full sample estimator multiplied by 100, which measures the 
increased variance (mean squared error) due to imputation relative to the full sample estimator. As for the 
Monte Carlo means (4th column), the imputation estimators are all unbiased for estimating 1 2,  ,θ θ  and 3θ  
under model A. Under model B, PMM, MI, PFI, PFI_cal for estimating 3θ  have much larger biases in 
absolute values than FFI, FHDI, and FHDI_cal under model misspecification in this simulation. 
Regarding the standardized variance and standardized mean squared error (5th and 6th column), PFI is 
more efficient than FHDI. The reason is that in PFI, the imputed values are generated according to the 
conditional distribution ( )|f y x  directly; whereas in FHDI, the imputed values can be taken from 

respondents with dominantly large fractional weights. The effective imputation data size is determined by 
the imputed observations with large fractional weights, which also contribute to the loss of efficiency. 
FHDI loses efficiency in order to gain robustness. Lastly, FHDI with = 10m  has slightly larger 
standardized variance for 2θ  than FFI, because of the additional variability due to the sampling procedure. 
Comparing PFI with PFI_cal and FHDI with FHDI_cal, the calibration step improves the efficiency a little 
bit. The PMM shows the largest variance in all scenarios. 
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Table 5.1 
Monte Carlo mean, standardized variance and standardized mean squared error of point estimators in Model 
A of Simulation one. 
 

Model Parameter Method  Mean Std Var Std MSE 

A 

yµ  Full  0.50 100 100 
PMM  0.50 175 175 
MI ( = 10m )  0.50 135 135 
PFI ( = 10m )  0.50 130 130 
PFI cal ( = 10m )  0.50 130 130 
FFI ( = Rm n )  0.50 130 130 
FHDI ( = 10m )  0.50 156 156 
FHDI cal ( = 10m )  0.50 130 130 

( )< 1Pr Y  Full  0.68 100 100 
PMM  0.68 168 167 
MI ( = 10m )  0.68 112 112 
PFI ( = 10m )  0.68 110 110 
PFI cal ( = 10m )  0.68 109 109 
FFI ( = Rm n )  0.68 130 130 
FHDI ( = 10m )  0.68 137 136 
FHDI cal ( = 10m )  0.68 132 132 

Quantile Full  0.47 100 100 
 PMM  0.47 184 184 
 MI ( = 10m )  0.47 111 111 
 PFI ( = 10m )  0.47 111 111 
 PFI cal ( = 10m )  0.47 111 111 
 FFI ( = Rm n )  0.47 135 135 
 FHDI ( = 10m )  0.47 142 142 
 FHDI cal ( = 10m )  0.47 141 141 

 
 
 
 
Table 5.2 
Monte Carlo mean, standardized variance and standardized mean squared error of point estimators in Model 
B of Simulation one. 
 

Model Parameter Method  Mean Std Var Std MSE 

B 

yµ  Full  0.50 100 100 
PMM  0.50 172 172 
MI ( = 10m )  0.50 131 131 
PFI ( = 10m )  0.50 131 131 
PFI cal ( = 10m )  0.50 128 128 
FFI ( = Rm n )  0.50 127 127 
FHDI ( = 10m )  0.50 147 147 
FHDI cal ( = 10m )  0.50 127 127 

( )< 1Pr Y  Full  0.75 100 100 
PMM  0.75 166 166 
MI ( = 10m )  0.73 140 170 
PFI ( = 10m )  0.73 138 168 
PFI cal ( = 10m )  0.73 137 169 
FFI ( = Rm n )  0.75 137 137 
FHDI ( = 10m )  0.75 145 145 
FHDI cal ( = 10m )  0.75 140 141 

Quantile Full  0.26 100 100 
 PMM  0.24 191 198 
 MI ( = 10m )  0.31 122 159 
 PFI ( = 10m )  0.31 123 160 
 PFI cal ( = 10m )  0.31 122 159 
 FFI ( = Rm n )  0.26 135 135 
 FHDI ( = 10m )  0.26 144 144 
 FHDI cal ( = 10m )  0.26 139 139 
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For variance estimation, we considered replication variance estimation for FFI and FHDI, particularly 
the delete-1 Jackknife variance estimation, which is described in Appendix A.1. We also considered 
variance estimation in MI, which uses Rubin's formula (5.1). 

Table 5.3 shows the Monte Carlo relative biases of the variance estimators, which is calculated as 

{ } { } { }ˆ ˆˆ ,MC MC MCE V V Vθ θ −   where { }ˆMCE V  is the Monte Carlo mean of variance estimates ˆ,V  and 

{ }ˆMCV θ  is the Monte Carlo variance of the point estimates ˆ.θ  The relative bias of the variance estimator 

in FFI and FHDI is reasonably small for all parameters considered in both models, suggesting that the 
replication variance estimator is valid. The relative bias and t − statistics of variance estimator in MI are 
small for 1θ  but quite large for 2θ  even when the working model is true (model A). Rubin's formula is 

based on the following decomposition,  

 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ= ,MI n MI nV V Vθ θ θ θ+ −   (5.2) 

 

where n̂θ  is the full sample estimator of .η  Basically, the mW  term in (5.1) estimates ( )n̂V θ  and the 

( )11 mm B−+  term in (5.1) estimates ( )ˆ ˆ .MI nV θ θ−  The decomposition (5.2) holds when n̂θ  is the MLE of 

,θ  which is the congeniality condition of n̂θ  (Meng 1994). For general case, we have  

 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ= 2 ,MI n MI n MI n nV V V Covθ θ θ θ θ θ θ+ − + −   (5.3) 

 

and Rubin's variance estimator can be biased if ( )ˆ ˆ ˆ, 0.MI n nCov θ θ θ− ≠  The congeniality condition holds 

true for estimating the population mean; however, it does not hold for the method of moments estimator of 
( )< 1 .Pr Y  Note that the imputed estimator of ( )2 = < 1Pr Yθ  can be expressed as  

 

 ( ) ( ) ( ){ }1
2,

=1

ˆ ˆ ˆ= < 1 1 < 1 | ; , .
n

I i i i i i
i

n I y E I y xθ δ δ µ σ−  + − ∑   (5.4) 

 
Thus, the imputed estimators of 2θ  "borrows strength" by making use of extra information associated 

with ( )| .f y x  That is, the normality of ( )|f y x  is used in computing the conditional expectation in 
(5.4), which improves the efficiency of the imputed estimator for 2.θ  The same phenomenon also holds 
for 3.θ  In Table 5.1, the increase of variance due to imputation for MI with = 10m  is about 35 % for 1θ  
but only 12% and 11% for 2θ  and 3 ,θ  respectively, which shows the phenomenon of "borrowing 
strength" for estimating 2θ  and 3θ  thanks to the use of extra information in the imputation stage. Thus, 

when the congeniality conditions do not hold, the imputed estimator improves the efficiency but Rubin's 
variance estimator does not recognize this improvement. 
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Table 5.3 
Monte Carlo relative bias of the replication variance estimator in Simulation one. 
 

Model Parameter Method  R.B. (%) 

*A 

( )1̂V θ  MI ( = 10m )  -2.33 
FFI ( = Rm n )  -0.80 
FHDI_cal ( = 10m )  -0.80 

   
( )2̂V θ  MI ( = 10m )  8.20 

FFI ( = Rm n )  -5.01 
FHDI_cal ( = 10m )  -5.12 

   
( )3̂V θ  MI ( = 10m )  19.84 

FFI ( = Rm n )  4.50 
FHDI_cal ( = 10m )  3.78 

*B 

( )1̂V θ  MI ( = 10m )  2.60 
FFI ( = Rm n )  -0.56 
FHDI_cal ( = 10m )  -0.56 

   
( )2̂V θ  MI ( = 10m )  -3.33 

FFI ( = Rm n )  -1.89 
FHDI_cal ( = 10m )  -3.25 

   
( )3̂V θ  MI ( = 10m )  -8.99 

FFI ( = Rm n )  3.50 
FHDI_cal ( = 10m )  3.80 

 
 
5.2  Simulation two 
 

Simulation two tested the power of the proposed method in a hypothesis test using the null model as 
the imputation model. Samples of bivariate data ( ),i ix y  of size = 100n  were generated from  

 ( )2
0 1 2= 1i i i iy x x eβ β β+ + − +   (5.5) 

where ( ) ( )0 1 2, , = 0,0.9,0.06 ,β β β  ( )0,1 ,ix N  ( )0,0.16 ,ie N  with ix  and ie  being independent. The 
variable ix  is always observed but the probability that iy  responds is 0.5.  Monte Carlo samples were 
generated independently for = 10,000B  times. We are interested in testing 0 2:  = 0H β  from the 
respondents. We compared FHDI with MI using the same imputation size = 30.m  The imputation model 
is the null model,  

0 1= .i i iy x eβ β+ +  

That is, the imputation model uses extra information of 2 = 0.β  From the imputed data, we fit model (5.5) 
and computed the power of a test 0 2:  = 0H β  at the significant level of 0.05.  In addition, we also 
considered the complete case (CC) method that only uses the respondents for regression. 

Table 5.4 shows the Monte Carlo mean and variance of the point estimators, relative bias of the 
variance estimator and the Monte Carlo power of testing 0 2:  = 0.H β  In each Monte Carlo sample, we 

constructed a 95%  Wald confidence interval of 2β  as ( )1/2 1/2
2 2

ˆ ˆˆ ˆ1.96 , 1.96V Vβ β− +  and reject the null 

hypothesis if 2 = 0β  does not fall in the Wald confidence interval. The Monte Carlo power is calculated as 
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the relative frequency of rejecting the null hypothesis among the Monte Carlo samples. From the second 
column, FHDI and MI estimators are biased for 2 ,β  as expected since in imputation the imputation model 
is the null model and it is slightly different from the true model that generated sample. The bias of FHDI is 
smaller than that of MI because of the robustness of FHDI discussed in Section 4. In MI, 50%  of the 
imputed MI data comes from the null model and the other 50%  from the true model, so the slope 2β  is 
attenuated to zero by half of the true slope. In FHDI, though we used the null model to calculate the 
fractional weights, the imputed data come from the true model which reduces the bias. Moreover, MI 
provides more efficient point estimators than the CC method but variance estimation is very conservative 
(about 180%  overestimation). Because of the serious positive bias of MI variance estimator, the statistical 
power of the test based on MI is actually lower than the CC method. On the other hand, FHDI also 
provides more efficient point estimators than the CC method and variance estimation is essentially 
unbiased, the statistical power of the test based on FHDI is higher than the CC method. 

 
Table 5.4 
Simulation results based on 10,000 Monte Carlo samples in Simulation two. 
 

Method ( )2
ˆE β  ( )2

ˆV β  ( )ˆR.B. V  Power 

FHDI 0.046 0.00146 0.02 0.314 
MI 0.028 0.00056 1.81 0.044 
CC 0.060 0.00234 -0.01 0.285 

 

 
6  Concluding remarks 
 

We have proposed a fractional hot deck imputation method that uses a parametric model for ( )|f y x  

when x  contains continuous components. The proposed method provides robust estimation for the 
parameters in the sense that the imputation model is not necessarily equal to the data-generating model. 
The price we pay in the FHDI is the loss of efficiency in point estimation. Under our first simulation, the 
FHDI estimator for ( )< 1P Y  has the second largest variance but the smallest mean squared error when 

the working model is not true, as compared with other estimators. 
The loss of efficiency mainly comes from the fact that the fractional weights are more variable than 

those under the PFI method because some of jx  are not useful in imputing .iy  That is, the value of 

( )ˆ| ;i jf y θx  can be very small. The fractional hot deck imputation under a small imputation size (e.g. 

= 10m ) does not increase the variance significantly, as can be seen in Table 5.1 under model A. 

The proposed fractional imputation method can actually be used to develop a single imputation method 
by applying FHDI with = 1,m  which selects an imputed value with probability proportional to the 
fractional weight for each missing unit. In this case, the FHDI can be used to develop a single imputation 
that is still robust against model misspecification. However, weighting calibration cannot co-exist with 
single imputation. Calibration constraints can still be achieved by employing the balanced imputation 
method as discussed in Chauvet, Deville and Haziza (2011) or the rejective Poisson sampling of Fuller 
(2009). Further investigation along this direction will be a topic of future research. 
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Appendix  
 

A.1  Replication variance estimation 
 

For variance estimation, replication methods can be used. Let [ ]k
iw  be the -thk  replication weights 

such that  

( )2[ ]

=1

ˆ ˆ ˆ=
L

k
rep k

k
V c Y Y−∑  

is consistent for the variance of ˆ = ,i ii A
Y w y

∈∑  where L  is the replication size, kc  is the -thk  replication 

factor that depends on the replication method and the sampling mechanism, and [ ] [ ]ˆ =k k
i ii A

Y w y
∈∑  is the 

-thk  replicate of ˆ.Y  In delete-1 jackknife variance estimation, =L n  and ( )= 1 .kc n n−  

To apply the replication method in FFI, we first apply the replication weights [ ]k
iw  in (2.4) to compute 

[ ]ˆ .kθ  Once [ ]ˆ kθ  is obtained, we use the same imputed values to compute the initial replication fractional 
weights  

 ( ) ( )*[ ] [ ] 1 [ ] [ ] [ ]ˆ ˆ| ; | ; ,
R

k k k k k
ij j j j i l j l

l A
w w w f y x w f y xθ θ−

∈

  ∝  
  
∑   (A.1) 

with *[ ] = 1.
R

k
ijj A

w
∈∑  The variance of ˆ ,FFIη  computed from (3.4), is then computed by  

( )2[ ]

=1

ˆ ˆ ˆ= ,
L

k
rep k FFI FFI

k
V c η η−∑  

where [ ]ˆ k
FFIη  comes from solving  

( ) ( ) ( )[ ] *[ ]; , 1 ; , = 0,
R

k k
i i i i i ij i j

i A j A
w U y w U yδ η δ η

∈ ∈

  + − 
  

∑ ∑x x  

and *[ ]k
ijw  is defined in (A.1). 

We now discuss replication variance estimation of the FHDI estimator ˆFHDIη  computed from (3.8). 
Define = 1ijd  if ij D∈  and = 0ijd  otherwise. Note that ˆFHDIη  is computed via two steps: in the first step, 

a systematic PPS sampling is used with the selection probability proportional to the fractional weights 
from the FFI method. In the second step, the calibration weighting method using the constraint (3.5) with 
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*
, = 1

R
ij ij cj A

d w
∈∑  is used. Thus, the replicate fractional weights are also computed in two steps. Firstly, the 

initial replication fractional weight for *
0 = 1ijw m  is then given by  

 
( )

( )
*[ ] *

*[ ]
0 *[ ] *

= ,
R

k
ij ij ijk

ij k
il il ill A

d w w
w

d w w
∈∑

  (A.2) 

where *
ijw  is the fractional weight for FFI defined in (2.6) and *[ ]k

ijw  is the -thk  replication fractional 

weight for FFI defined in (A.1). Secondly, the replication fractional weights are adjusted to satisfy the 
calibration constraints. The calibration equation for replication fractional weights corresponding to (3.5) is 
then  

 ( ) ( ) ( ) ( )[ ] *[ ] [ ] *[ ]
,1 , = 1 ,

R

k k k k
i i ij c i j i i ij i j

i A j D i A j Ai

w w y w w yδ δ
∈ ∈ ∈ ∈

      − −   
     

∑ ∑ ∑ ∑q x q x   (A.3) 

and *[ ]
, = 1.k

ij cj Di
w

∈∑  Either regression weighting or entropy weighting can be used to obtain the replication 

fractional weights satisfying the constraints. Once the replicate fractional weights are obtained, the 
replicate estimate [ ]ˆ kη  is computed by solving  

( ) ( ) ( )[ ] *[ ]; , 1 ; , = 0.
R

k k
i i i i i ijc i j

i A j A
w U x y w U x yδ η δ η

∈ ∈

  + − 
  

∑ ∑  

The replication variance estimator of ˆ,η  computed from (3.8), is given by  

( ) ( )2[ ]

=1

ˆ ˆ ˆ ˆ= .
L

k
rep k

k
V cη η η−∑  

Because η̂  is a smooth function of ˆ,θ  the consistency of ˆ ˆ( )repV η  follows directly from the standard 

argument of the replication variance estimation (Shao and Tu 1995). 

 

A.2  Proof of Equation (4.5) 
 

Using  

( )
( )

( )
( ) ( ) ( )( )|

| |
= exp

| |
j i j i

ik j i k
j k j k

g y x f y x
x x

g y x f y x
ε κ κ∆ − +  

where ( ) ( )| = , ; , ; .ik j i j k jz x y z x yθ θ∆ −  Based on Taylor linearization and the fact of (4.4), we have  

( )
( )

( )
( ){ }|

| |
1 .

| |
j i j i

ik j
j k j k

g y x f y x

g y x f y x
ε≅ + ∆  

If we know the true density, the correct fractional weights in (3.3) can be expressed by 
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which proves (4.5). 

 

A.3  Extension to a non-ignorable missing case 
 

We consider an extension of the proposed method to a non-ignorable missing case. Under the non-
ignorable missing assumption, both the conditional model ( )|f y x  and the response probability model 

( )= 1| ,P yδ x  are needed to evaluate the expected estimating function in (4.6). Let the response 

probability model be given by ( ) ( )= 1| , = , ;i i i i iPr y yδ π φx x , for some φ  with a known ( )π ⋅  function. 

We assume that the parameters are identifiable as discussed in Wang, Shao and Kim (2013). 

In PFI, according to Kim and Kim (2012), the MLE ( )ˆ ˆ,θ φ  can be obtained by solving  

 ( ) ( ) ( )* *( )

=1
; , 1 ; , = 0,

m
j

i i i i i ij i i
i A j

w S y w S yδ θ δ θ
∈

 
+ − 

 
∑ ∑x x   (A.4) 

and  
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=1
; , 1 ; , = 0,

m
j

i i i i i ij i i
i A j

w S y w S yδ φ δ φ
∈

 
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 
∑ ∑x x   (A.5) 

where ( ) ( ); , = log | ; ,S y f yθ θ θ∂ ∂x x  ( ) ( ); , = log , ; ,S y yφ π φ φ∂ ∂x x  and the fractional weights are 

given by  
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The solution to (A.4) and (A.5) can be obtained via the EM algorithm. In the EM algorithm, the E-step 
computes the fractional weights in (A.6) using the current parameter values and the M-step updates the 
parameter value ( 1)ˆ tθ +  and ( 1)ˆ tφ + by solving  

( ) ( ) ( ) ( )* ( ) ( ) *( )

=1

ˆ ˆ; , 1 , ; , = 0,
m

t t j
i i i i i ij i i

i A j
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∈

 
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 
∑ ∑x x  

and  

( ) ( ) ( ) ( )* ( ) ( ) *( )
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ˆ ˆ; , 1 , ; , = 0.
m
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i i i i i ij i i

i A j
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∈

 
+ − 

 
∑ ∑x x  

In the proposed FFI method, the fractional weights are given by  
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δ∑  Because  

 
( ) ( ) ( )

( ) ( )
| = 1 = , | ( )

                     , | .

j j j j

k k j j k
k A

f y y f y f d

w y f y

δ π

π
∈

≅

∫
∑

x x x x

x x
  (A.7) 

The fractional weights can be computed from  
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with * = 1.
R

ijj A
w

∈∑  

 
Thus, we can use the following EM algorithm to obtain the desired parameter estimates.  
 

(I-step)  For each missing unit { }= ; = 0 ,M ii A i A δ∈ ∈  take m  imputed values as (1) ( ), , m
i iy y  from ,RA  

where = .m r   

 
(E-step)  The fractional weights are given by  

( ) ( ){ }
( ) ( )

( ) ( )

*( )

( ) ( )

ˆ ˆ| , 1 , ;

ˆ ˆ, ; | ;

t t
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π φ θ
∈

−
∝
∑

x x

x x
 

and *( )
=1

= 1.m t
ijj

w∑   

 

(M-step)  Update the parameter ( 1)ˆ tθ +  and ( 1)ˆ tφ +  by solving the following imputed score equations,  



Survey Methodology, December 2014 229 
 

 
Statistics Canada, Catalogue No. 12-001-X 

( ) ( ) ( )*( ); , 1 ; , = 0,
R

t
i i i i i ij i j

i A j A
w S y w S yδ θ δ θ

∈ ∈

  + − 
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and  

( ) ( ) ( )*( ); , 1 ; , = 0.
R

t
i i i i i ij i j

i A j A
w S y w S yδ φ δ φ

∈ ∈

  + − 
  

∑ ∑x x  

Note that the I-step does not have to be repeated in the EM algorithm. Once the final parameter 
estimates are computed, the fractional weights are computed by (A.8), which serve as the selection 
probabilities for FHDI with a small imputation size .m  The same systematic PPS sampling method as 
discussed in Section 3 can be used to obtain FHDI. 
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Potential gains from using unit level cost information in a 
model-assisted framework 

 

David G. Steel and Robert Graham Clark1 

Abstract 

In developing the sample design for a survey we attempt to produce a good design for the funds available. 
Information on costs can be used to develop sample designs that minimise the sampling variance of an 
estimator of total for fixed cost. Improvements in survey management systems mean that it is now sometimes 
possible to estimate the cost of including each unit in the sample. This paper develops relatively simple 
approaches to determine whether the potential gains arising from using this unit level cost information are 
likely to be of practical use. It is shown that the key factor is the coefficient of variation of the costs relative to 
the coefficient of variation of the relative error on the estimated cost coefficients. 

 
Key Words: Optimal allocation; Optimal design; Sample design; Sampling variance; Survey costs. 
 

 
 
1  Introduction 
 

Unequal unit costs have been reflected in sample designs by using simple linear cost models. In 
stratified sampling, a per-unit cost coefficient can sometimes be estimated for each stratum. The resulting 
allocation of sample to strata is proportional to the inverse of the square root of the stratum cost 
coefficients (Cochran 1977). In a multistage design the costs of including the units at the different stages 
of selection can be used to decide the number of units to select at each stage (Hansen, Hurwitz and 
Madow 1953). 

While this theory is well established, unequal costs have not been used extensively in practice (Brewer 
and Gregoire 2009), perhaps because of a lack of good information on costs, and because of a focus on 
sample size rather than cost of enumeration. Groves (1989) argued that linear cost models are unrealistic, 
and that mathematical cost modelling can distract from more important decisions such as the mode of 
collection, the number of callbacks and how the survey interacts with other surveys conducted by the same 
organisation. Nevertheless, given the pressures on survey budgets, the final design should reflect costs and 
variance in a rational way, without being fixated on formal optimality. 

Increasing use of computers in data collection is leading to more extensive and useful cost-related 
information on units on survey frames. In a programme of business surveys conducted by a national 
statistics institute, most medium and large enterprises will be selected in some surveys at least every year 
or two. This may provide information on costs for those businesses, for example some businesses may 
have required extensive follow-up or editing in a previous survey. Direct experience is less likely to be 
available for any given small business, but datasets of costs could be modelled to give predictions of likely 
costs. 

mailto:dsteel@uow.edu.au
mailto:rclark@uow.edu.au
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Adaptive and responsive survey designs make use of paradata (process data) collected during a 
survey's operation, and auxiliary data known for the sampling frame (typically from administrative 
sources), to guide ongoing decisions. These may include the number of callbacks, which respondents to 
follow up, targeting of incentives, and choice of mode of collection for followup attempts (Groves and 
Heeringa 2006). In one example discussed by Groves and Heeringa (2006), interviewers designated non-
respondents as having either low or high propensity to respond. The latter are less costly to convert to 
respondents, and a higher sampling fraction was assigned to them in a second phase of the survey. More 
recently, Schouten, Bethlehem, Beullens, Kleven, Loosveldt, Luiten, Rutar, Shlomo and Skinner (2012, 
Section 6) suggested that followup in the second phase of a survey should be designed to improve the R-
indicator of non-response bias (defined in Schouten, Cobben and Bethlehem 2009; and in Schouten 
Shlomo and Skinner 2011). Peytchev, Riley, Rosen, Murphy and Lindblad (2010) argued that likely non-
responders should be targeted with a different protocol from the very outset of a survey. 

Thus, unequal unit costs can arise in practice, either for all units in advance of sampling, or for non-
respondents who are to be targeted for followup. In either case, the collection and use of cost information 
incurs some expense and additional complexity. Moreover, effectively trading off cost and variance is 
only part of the picture, and response bias must also be considered. It is therefore important to understand 
whether the potential gains from using this information are worthwhile, particularly as any cost data is 
likely to be imperfect. 

This paper develops relatively simple approximations to the gains arising from using unit level cost 
information in a model-assisted framework. Section 2 contains notation and some key expressions. 
Section 3 is concerned with the optimal design when cost parameters are known. Section 4 analyses the 
use of estimated unit costs, and Section 5 presents examples. Section 6 offers a discussion. 

 
2  Notation and objective criterion  
 

Consider a finite population, U  containing N  units, consisting of values iY  for .i U∈  A sample 
s U∈  is to be selected using an unequal probability sampling scheme with positive probability of 
selection [ ]=i P i sπ ∈  for all units .i U∈  A vector of auxiliary variables ix  is assumed to be available 
either for the whole population, or for all units i s∈  with the population total, =

i U∈∑x it x , also known. 

The auxiliary variables could consist of, for example, industry, region and size in a business survey, or 
age, sex and region in a household survey. 

In the model-assisted approach (see for example Särndal, Swensson and Wretman 1992), the 
relationship between a variable of interest and the auxiliary variables is captured in a model, typically of 
the following form in single-stage surveys:   

 
[ ]
[ ] 2

=
=

  independent of   for all  

M i

M i i

i j

E Y
var Y z
Y Y i j

β
σ




≠ 

T
ix

  (2.1) 

where ME  and Mvar  denote expectation and variance under the model, β  is a vector of unknown 
regression parameters, 2σ  is an unknown variance parameter, and ix  and iz  are assumed to be known for 
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all .i U∈  Let pE  and pvar  denote expectation and variance under repeated probability sampling with all 

population values held fixed. 
The generalized regression estimator is a widely used model-assisted estimator of :yt   

 ( )1 ˆ ˆˆ =y i i
i s

t yπ β β−

∈

− +∑ T T
i xx t   (2.2) 

where β̂  may be a weighted or unweighted least squares estimate of the regression coefficients of iy  on 

ix  using sample data. Estimators can also be constructed for nonlinear extensions to model (2.1), but in 
practice the linear model is almost always used. 

The anticipated variance of ŷt  is defined by ˆ ,M p y yE var t t −   and is approximated by  

 ( )2 1ˆ 1M p y i i
i U

E var t zσ π −

∈

  ≈ −  ∑   (2.3) 

for large samples (Särndal et al. 1992, formula 12.2.12, p. 451) under model (2.1). Model-assisted designs 
and estimators should minimise ˆ

M p yE var t    subject to approximate design unbiasedness, ˆ = .p y yE t t    

Even if the model is incorrect, (2.2) remains approximately design-unbiased, although it will no longer 
have the lowest possible large sample anticipated variance. The anticipated variance has been used to 
motivate model-assisted sample designs in one stage (Särndal et al. 1992) and two stage sampling (Clark 
and Steel 2007; Clark 2009). One advantage of using the anticipated variance for this purpose is that it 
depends only on the selection probabilities and a small number of model parameters, which can be 
roughly estimated when designing the sample. In contrast, ˆ

p yvar t    typically depends on the population 

values of iy  and on joint probabilities of selection, both of which are difficult to quantify in advance. 

The cost of enumerating a sample is assumed to be = ii s
C c

∈∑  where ic  is the cost of surveying a 
particular unit .i  The values of ic  are usually assumed to be known. Typically ic  are also assumed to be 
constant for all units in the population, or constant within strata. With the generalization that ic  may be 
different for every unit ,i  the cost C  depends on the particular sample s  selected. The expected cost is 

[ ] = .p i ii U
E C cπ

∈∑  The aim is to minimise the anticipated variance (2.3) subject to a constraint on the 

expected enumeration cost,  

 = .i i f
i U

c Cπ
∈
∑   (2.4) 

There will also be fixed costs that are not affected by the sample design and so do not have to be included 
here. 

Some notation for population variances and covariances is needed. Consider the pairs ( ), ,i iu v  and let 

( )( )1=uv i ii U
S N u u v v−

∈
− −∑  denote their population covariance, and ( )22 1=u ii U

S N u u−
∈

−∑  denote the 
population variance of iu  ( = 1, , ).i N  Let u  and v  be the population means of iu  and .iv  The 
population coefficient of variation of iu  is = .u uC S u  The population relative covariance of ( ),i iu v  is 

 , = .u v uvC S u v  A useful result is  

 ( ) ,= 1 .i i u v
i U

u v Nu v C
∈

+∑   (2.5) 
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3  Optimal design with known cost and variance parameters 
 

3.1  Optimal Model-Assisted Design 
 

The values of ( ):i i Uπ ∈  which minimise (2.3) subject to (2.4) are  

 
1/2 1/2

1/2 1/2
1/2 1/2=  i i

i f i i
j jj U

z cC z c
z c

π
−

−

∈

∝
∑

  (3.1) 

and the resulting anticipated variance is  

 
2

2 1 1/2 1/2 2ˆ= = .opt M p y f i i i
i U i U

AV E var t C c z zσ σ−

∈ ∈

   −    
∑ ∑   (3.2) 

This can be easily derived using Lagrange multipliers or the Cauchy-Schwarz Inequality, and generalizes 
Särndal et al. (1992, Result 12.2.1, p. 452) to allow for unequal costs. Higher probability of selection is 
given to units which have higher unit variance or lower cost. However the square roots of iz  and ic  in 
(3.1) means that probabilities of selection do not vary dramatically in many surveys. 

For the special case of stratified sampling where =i hc c  and =i hz z  for units i  in stratum ,h  (3.1) 
becomes the usual optimal stratified allocation with ,i h hz cπ ∝  so that .h h h hn N z c∝  

It is assumed that the last term of (3.2), which represents the finite population correction, is negligible. 
Applying (2.5) gives:  

 
( )

( )( )
 

22 1 2
,

2 2

1

1 1
f c z

opt

c z

C N c z C
AV

C C

σ − +
≈

+ +
  (3.3) 

where 
cC  and 

zC  refer to the population coefficients of variation of ic  and ,iz  respectively. To 
make our results interpretable, we will assume that unit costs ic  and variances izσ  are unrelated, so that 

, = 0.c zC  This assumption may not always be satisfied in practice, but any relationship between ic  and 

iz  will be specific to the particular example, and could be either positive or negative. To identify general 
principles, it makes sense to ignore any such relationship. In practice, it is often reasonable to also assume 
that 

cC  and 
zC  are small. A Taylor Series expansion then shows that 2 24c cC C≈  and 2 24 .z zC C≈  

Putting these approximations together, (3.3) becomes  

 
 

2 1 2

2 2
= .

1 11 1
4 4

f
opt

c z

C N c z
AV

C C

σ −

  + +  
  

  (3.4) 

See the Appendix for details of these derivations. 
 

Ignoring Costs  
If the costs are ignored, then (3.1) suggests that 1/2 .i izπ ∝  To make comparisons for the same expected 

cost, ,fC   
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1/2

1/2= i
i f

j jj U

zC
z c

π
∈∑

  (3.5) 

with resulting anticipated variance  

 2 1 1/2 1/2 2= .nocosts f i i i i
i U i U i U

AV C z c z zσ σ−

∈ ∈ ∈

  
−  

  
∑ ∑ ∑   (3.6) 

Applying derivations similar to those used in Section 3.1,  

 
 

2 1 2

2
.

11
4

f
nocosts

z

C N c z
AV

C

σ −

≈
 + 
 

  (3.7) 

See Appendix for details. Comparing (3.7) and (3.4), we see that taking costs into account in the design 
results in dividing the anticipated variance by ( )( )21 1 4 .cC+  

 
4  The effect of using estimated cost parameters 
 

In practice, ic  are not known precisely. Suppose that estimates ˆ =i i ic b c  are used instead. Using the 
auxiliary variable and the estimated costs in the optimal probabilities implies 1/2 1/2ˆ .i i iz cπ −∝  To make 
comparisons for the same expected costs,  

1/2 1/2

1/2 1/2

ˆ
= .

ˆ
i i

i f
j j jj U

z cC
z c c

π
−

−
∈∑

 

The resulting anticipated variance is  

 2 1 1/2 1/2 1/2 1/2 2ˆ ˆ= .ests f i i j j j i
i U j U i U

AV C c z z c c zσ σ− −

∈ ∈ ∈

  
−  

  
∑ ∑ ∑   (4.1) 

If we assume that the values of ib  are unrelated to the values of ic  and ,iz  then  

 
2

2 1 1/2 1/2 2 1/2 1/2 2= ,ests f i i i i i
i U i U i U i U

AV C c z N b b zσ σ− − −

∈ ∈ ∈ ∈

    
−    

    
∑ ∑ ∑ ∑   (4.2) 

see Appendix for details. If the coefficient of variation of ib  is small, then a Taylor Series approximation 
gives ( )2 1/2 1/2 21 1 4 .i i bN b b C− − ≈ +∑ ∑  Applying this, and the same approximations as in Subsection 3.1, 

(4.2) becomes  

 
 

2 1 2 2

2 2

11
4= .

1 11 1
4 4

f b

ests

c z

C N c z C
AV

C C

σ −  + 
 

  + +  
  

  (4.3) 

See Appendix for details. 
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Comparing (4.3) and (3.7), the effect of using estimated cost parameters rather than no costs at all is to 
multiply the anticipated variance by ( ) ( )2 21 1 4 1 1 4 .b cC C   + +     Therefore cost information is worth 

using provided < .b cC C  The coefficient of variation of the error factors has to be less than that of the true 

unit costs over the population. 

 
5  Examples of cost models 
 

The key quantities determining the usefulness of the unit cost data are bC  and .cC  Optimal designs 

using unequal cost information are not very common, so there is relatively little literature on the typical 
values of these measures. Unequal costs may be driven by a variety of factors, including mode effects, 
geography and willingness to respond, and literature on these issues is helpful to give a rough idea of cost 
models that may apply in practice. 

One reason why unequal per-unit costs may arise is the use of mixed mode interviewing. Different 
respondents may respond using different modes of collection, for example computer-assisted personal or 
telephone interviewing, mail or web questionnaires, or face to face interviewer (Dillman, Smyth and 
Christian 2009). This may be done to reduce cost or to improve response rate, however care must be taken 
that the approach does not introduce bias due to mode effects. Mode effects may consist of selection 
effects (which are generally not a problem) and measurement effects (which typically lead to bias), and 
the two are often hard to disentangle (Vannieuwenhuyze, Loosveldt and Molenbergs 2012). Cost savings 
from the use of mixed modes could potentially be magnified by incorporating mode costs into the sample 
design as described in this paper. Groves (1989, p. 538) compares per-respondent costs of telephone 
interviewing ($38.00) and personal interviewing ($84.90) of the general population. If the preference of all 
units on a frame was known, and half preferred each mode, this would imply = 0.38.cC  Greenlaw and 

Brown-Welty (2009) compared paper and web surveys, and found per-respondent costs of $4.78 and 
$0.64, respectively, in a survey of members of a professional association. In a mixed mode option, two 
thirds of respondents opted for the web option. If preferences are known in advance, then = 0.76.cC  

Another reason for varying costs is that some respondents are more difficult to recruit than others, 
requiring more visits or reminders. Groves and Heeringa (2006, Section 2.2) trialled a survey where 
interviewers classified non-respondents from the first approach as either likely or unlikely to respond. In 
subsequent follow-up, the first group had a response rate of 73.7% compared to 38.5% for the second 
group. This suggests that the per-respondent cost for the second group would be at least 1.9 times higher 
than the first group. (In fact, the ratio would be higher, because more follow-up attempts would be made 
for the difficult group.) If 50% of respondents are in both groups, then = 0.31.cC  

Geography is another source of differential costs in interviewer surveys. In the Australian Labour 
Force Survey, costs have been modelled as having a per-block component and a per-dwelling component 
(Hicks 2001, Table 4.2.1 in Section 4.2) depending on the type of area (15 types were defined). Assuming 
a constant 10 dwellings sampled per block, the net per-dwelling costs range from $4.98 in Inner City 
Sydney and Melbourne to $6.71 in Sparse and Indigenous areas. While this is a significant difference in 
costs across area types, the great majority of the population are in three area types (settled area, outer 
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growth and large town) where per-dwelling costs vary only between $5.71 and $6.07. As a result, cC  is 

estimated at a very small 0.054. 

Table 5.1 shows the approximate percentage improvement in the anticipated variance from using 
estimated cost information for different values of cC  and ,bC  some suggested by these examples. 

Negative values indicate that the design is less efficient than ignoring costs altogether. The table suggests 
that cost information is only worthwhile provided there is a fair variation in the unit costs, otherwise the 
benefit is very small, and can be erased when there is even small imprecision in the estimated costs. 
Mixed mode surveys have the most potential for exploiting varying unit costs in sample design, but the 
possibility of measurement bias would need to be carefully assessed in any such approach, using methods 
such as those in Vannieuwenhuyze, Loosveldt and Molenberghs (2010), Vannieuwenhuyze et al. (2012), 
Vannieuwenhuyze and Loosveldt (2013) and Schouten, Brakel, Buelens, Laan and Klaus (2013). It might 
even be possible to incorporate mode effects (or uncertainty about mode effects) into the optimal design 
via the variance model, and this may be the topic of future research. The findings made in this paper 
suggest that such an approach is worth considering. 

 
Table 5.1 
Percentage improvement in anticipated variance from using estimated cost information compared to no cost 
information. 
 

Coefficient of Variation 
of Unit Costs ( )cC  (%) Possible scenario 

Coefficient of Variation of Error Factor ( )bC  (%) 

  0   10   25   50  

5    0.1  -0.2  -1.5  -6.2 
10 Interviewer travel due to remoteness   0.2   0.0  -1.3  -6.0 
20    1.0   0.7  -0.6  -5.2 
30 Response propensity   2.2   2.0   0.7  -3.9 
40 Mixed mode (phone/personal int.)   3.8  3.6   2.3  -2.2 
50    5.9   5.6   4.4   0.0 
75 Mixed mode (paper/web self-complete)  12.3  12.1  11.0   6.8 

 

 
6  Discussion  

Incorporating unequal unit costs can improve the efficiency of sample designs. For the gains to be 
appreciable, the unit costs need to vary considerably. Even with no estimation error, a coefficient of 
variation of 50% may lead to a gain of only 6% in the anticipated variance. When this coefficient of 
variation is 75%, as can happen in a mixed mode survey, the reduction in the anticipated variance (or in 
the sample size for fixed precision) can be over 12%. Costs will be estimated with some error and this 
reduces the gain by a factor determined by the relative variation of the relative errors in estimating the 
costs at the individual level. 
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Appendix 
 

A.1  Detailed derivations 
 

Lemma 1: Let iu  be defined for .i U∈  Let = ,i iu u eθ+  where = 0ii U
e

∈∑  and θ  is small. Then:  

a. ( )2 3/2 2 21= .
8 eu u u S oθ θ−− +  

b. ( ) ( )2 2 1 2 2 1 2 21 1= = .
4 4e uuS u S o u S oθ θ θ− −+ +  

c. ( )( ) ( ) ( )2 1/2 1/2 2 2 2 2 2 21 1= 1 = 1 .
4 4i i e ui U i U

N u u u S o C oθ θ θ− − −
∈ ∈

+ + + +∑ ∑  

d. ( ) ( )2 2 2 2 2 2 21 1= = .
4 4e uuC u S o C oθ θ θ− + +   

The notation ( )2
uo C  can be used in place of ( )2 ,o θ  since 2 2 2= .u eC Cθ  This will be done in the remainder 

of the Appendix. 
 

Proof:  

We start by writing u  as a function of :θ   
1 1= = .i i

i U i U
u N u N u eθ− −

∈ ∈

+∑ ∑  

Call this ( ) ,g θ  then differentiating about = 0θ  gives (0) = ,g u  (0) = 0g′  and  

1 3/2 2 3/2 21 1(0) = = .
4 4i e

i U
g N u e u S− − −

∈

′′ − −∑
 

Hence  

( ) ( ) ( )2 2 2 3/2 2 21 1= = (0) (0) (0) =
2 8 eu g g g g o u u S o−′ ′′+ + + − +θ θ θ θ θ θ

 
which is result a. 

 
Result b is proven using result a:  

( )

( )
( )

( )

( ) ( )

2
22 1 1

2

2
2 3/2 2 2

4 3 4 2 1 2 2

2 1 2 2 1 2 2

=

=

1=
8

1 1=
64 4

1 1= = .
4 4

i iu
i U i U

e

e e

e u

S N u N u

u u

u u u S o

u u u S u S o

u S o u S o

θ θ

θ θ θ

θ θ θ

− −

∈ ∈

−

− −

− −

 
−  
 

−

 − − + 
 
 − + − + 
 

+ +

∑ ∑
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To derive c, we firstly write 1 1/2
ii U

N u− −
∈∑  as a function ()g  of θ  and take a Taylor Series expansion:  

 

( )

( ) ( )

( )

( )

1/21 1/2 1

2 2

1/2 5/2 1 2 2 2

1/2 5/2 2 2 2

=

1= = (0) (0) (0)
2

1 3= 0
2 4

3=
8

i i
i U i U

i
i U

e

N u N u e

g g g g o

u u N e o

u u S o

θ

θ θ θ θ

θ θ θ

θ θ

−− − −

∈ ∈

− − −

∈

− −

+

′ ′′+ + +

+ + +

+ +

∑ ∑

∑
  (A.1) 

Note that 1 1/2 = .ii U
N u u−

∈∑  Multiplying the expression for u  in result a and (A.1) gives  

( ) ( )

( )

( )

2 1/2 1/2 2 3/2 2 2 1/2 5/2 2 2 2

2 2 2 2

2 2

1 3=
8 8

1= 1
4
1= 1
4

i i e e
i U i U

e

u

N u u u u S o u u S o

u S o

C o

θ θ θ θ

θ θ

θ

− − − − −

∈ ∈

−

     − + + +         

+ +

+ +

∑ ∑

 

which is result c. 
 

For result d, firstly note that ( )=u u o θ+  from result a, and so, from a first order Taylor Series,  

( ) ( ) ( ) ( )
2 2 1= = .u u o u o
− −

−+ +θ θ
 

Combining this with result b, we obtain  

( )
( ) ( ){ }

( )

( )

2
2 2

2 1 2 2 1

2 2 2 2

2 2

=

1=
4

1=
4
1=
4

u u

e

e

u

C S u

u S o u o

u S o

C o

θ θ θ

θ θ

θ

−

− −

−

 + + 
 

+

+

 

giving result d. 
 

Derivation of (3.3) 
For the special case where = ,i iu v  (2.5) becomes  

 ( )2 2 2= 1 .i u
i U

u Nu C
∈

+∑  (A.2) 

Applying (2.5),  

 ( )1/2 1/2
,=  1i i c z

i U
c z N c z C

∈

+∑  (A.3) 
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where 1= ii U
c N c−

∈∑  and 1= .ii U
z N z−

∈∑  Using (A.2), we can express c  in terms of :c   

 ( ) ( ) ( )
221 1 2= = = 1 .i i c

i U i U
c N c N c c C− −

∈ ∈

+∑ ∑  (A.4) 

Similarly,  

 ( ) ( )
2

2= 1 .zz z C+  (A.5) 

Assuming the last term of (3.2) is negligible, applying (A.3), (A.4) and (A.5) gives (3.3). 
 

Derivation of (3.4) 
Lemma 1d implies that ( ) ( ) ( )2 2 2 2= 1 4 1 4c c ccC C o C C+ ≈  and ( ) ( ) ( )2 2 2 2= 1 4 1 4 .z z zzC C o C C+ ≈  

Result (3.4) follows from (3.3) by using these approximations, as well as assuming that 
, = 0.c zC  

 

Derivation of (3.7) 

Firstly, ( )1/2
,= 1 ,i i c zi U

c z Nc z C
∈

+∑  from (2.5), where 
,c zC  is the population relative covariance 

between the values of 1/2
iz  and .ic  It is assumed that the values of ic  and iz  are unrelated, so that 

, = 0.c zC  It is also assumed that the second term of (3.6) is negligible, corresponding to small sampling 

fraction. Hence (3.6) becomes:  

 ( )2
2 2 1= .nocosts fAV N C c zσ −  (A.6) 

From (A.5), and Lemma 1d, we have  

( ) ( )
2

2 2= .
1 1 1 4 zz

z zz
C C

≈
+ +

 

Substituting into (A.6) gives (3.7). 
 

Derivation of (4.2) 
Two terms in (4.1) will be simplified using (2.5). Firstly,  

 

1/2 1/2 1/2 1/2 1/2

1 1/2 1 1/2 1/2
,

ˆ =

=

i i i i i
i U i U

i i i b cz
i U i U

c z b c z

N N b N c z C

∈ ∈

− −

∈ ∈

  
+  

  

∑ ∑

∑ ∑
  (A.7) 

where 
,b czC  is the covariance between the population values of 1/2

ib  and 1/2 1/2 .i ic z  Secondly,  

 

1/2 1/2 1/2 1/2 1/2

1 1/2 1 1/2 1/2
1 ,

ˆ =

=

i i i i i i
i U i U

i i i b cz
i U i U

z c c b c z

N N b N c z C

− −

∈ ∈

− − −

∈ ∈

  
+  

  

∑ ∑

∑ ∑
  (A.8) 
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where 
1 ,b czC  is the covariance between the population values of 1/2

ib−  and 1/2 1/2 .i ic z  

If we assume that the population values of ib  are unrelated to the values of ic  and ,iz  so that 

, 1 ,= = 0,b cz b czC C  and subsitute (A.7) and (A.8) into (4.1), then we obtain (4.2). 

 
Derivation of (4.3) 

We can express (4.2) in terms of optAV  which is defined in (3.2), assuming the last term of (3.2) is 

negligible, corresponding to small sampling fraction:  

 2 1/2 1/2
ests opt i i

i U i U
AV AV N b b− −

∈ ∈

≈ ∑ ∑   (A.9) 

Lemma 1c implies that  

( )2 1/2 1/2 2 2 21 1= 1 1 .
4 4i i b b b

i U
N b b C o C C− −

∈

+ + ≈ +∑ ∑
 

Substituting this, and (3.3), into (A.9) gives (4.3). 
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Optimal solutions in controlled selection problems with two-
way stratification 

 
 

Sun Woong Kim, Steven G. Heeringa and Peter W. Solenberger1 
 

Abstract 

When considering sample stratification by several variables, we often face the case where the expected number 
of sample units to be selected in each stratum is very small and the total number of units to be selected is 
smaller than the total number of strata. These stratified sample designs are specifically represented by the 
tabular arrays with real numbers, called controlled selection problems, and are beyond the reach of 
conventional methods of allocation. Many algorithms for solving these problems have been studied over about 
60 years beginning with Goodman and Kish (1950). Those developed more recently are especially computer 
intensive and always find the solutions. However, there still remains the unanswered question: In what sense 
are the solutions to a controlled selection problem obtained from those algorithms optimal? We introduce the 
general concept of optimal solutions, and propose a new controlled selection algorithm based on typical 
distance functions to achieve solutions. This algorithm can be easily performed by a new SAS-based software. 
This study focuses on two-way stratification designs. The controlled selection solutions from the new algorithm 
are compared with those from existing algorithms using several examples. The new algorithm successfully 
obtains robust solutions to two-way controlled selection problems that meet the optimality criteria. 

 
Key Words: Cell expectation; Probability sampling; Distance function; Optimum array; Linear programming problem; 

Simplex method. 
 
 
 

1  Introduction 
 

In the term, “Controlled Selection (or Controlled Sampling)”, “control” has a broad meaning. The 
pioneering paper of Goodman and Kish (1950, page 351) defined controlled selection as “...any process of 
selection in which, while maintaining the assigned probability for each unit, the probabilities of selection for 
some or all preferred combinations of n  out of N  units are larger than in stratified random sampling”. 

The focus in this paper is upon controls required in deciding the number of units (e.g., primary sampling 
units (PSUs)) allocated to each stratum cell in a two-way stratification design, where the total number of 
units to be selected is smaller than the number of strata cells or the expected number of units to be selected 
from each stratum cell is very small. This assumes that given precision and cost constraints, simply reducing 
the number of strata cells or increasing the number of the sampled units is not appropriate for the design. 

Here controlled selection refers to the following two-stage procedure. First, the controlled selection 
problem represented by a tabular array with real numbers formed by the two-way stratification design is 
solved according to a specified algorithm (or technique). The solution to the problem is a set of feasible arrays 
with nonnegative integer sample allocation to the cells of each array and probabilities of selection 
corresponding to each array. Second, a random selection of one of the solution arrays is made using the 
assigned probabilities. The integer number appearing in each cell of the selected solution array then serves as 

mailto:sunwk@dongguk.edu
mailto:sheering@isr.umich.edu
mailto:pws@isr.umich.edu
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the number of sample units to be allocated to that cell of the two-way stratification. The key to the controlled 
selection is the algorithm that defines a set of solution arrays that achieve the controls to solve the problem. 

Many controlled selection techniques have been developed since Goodman and Kish (1950) first 
described the application of controlled selection to a specific problem of choosing 17 PSU’s to represent the 
North Central States of the United States. Bryant, Hartley and Jessen (1960) proposed a simple method which 
was applicable in a limited number of sample situations. Raghunandanan and Bryant (1971) generalized their 
method and Chernick and Wright (1983) suggested an alternative. Jessen (1970) proposed two methods 
called “method 2” and “method 3”, both quite complicated to implement and sometimes failing to provide a 
solution. Jessen (1978, chapter 11) introduced a simpler algorithm for solving controlled selection problems. 

Hess, Riedel and Fitzpatrick (1975) gave a detailed explanation of how to use controlled selection in order 
to select a representative sample of Michigan’s hospitals. Groves and Hess (1975) first suggested a formal 
computer algorithm for obtaining solutions to controlled selection problems with two-and three-way 
stratification. Heeringa and Hess (1983) reported the response to Roe Goodman’s question: How does a 
computer solution of highly controlled selection compare with a manual solution? The answer was “For 
the same sample design, computer generated controlled selection often leads to slightly higher 
variances than does manual controlled selection; but since the differences in precision are small and 
manual controlled selection is laborious, computer generated controlled selection is preferred.” Lin 
(1992) improved the algorithm of Groves and Hess (1975) and the software called “PCCONSEL” for their 
algorithm was presented by Heeringa (1998). Huang and Lin (1998) proposed a more efficient algorithm, 
which imposes additional constraints in the controlled selection problem with two-way stratification and uses 
any standard network flow computer package. Hess and Heeringa (2002) summarized investigations on 
controlled selection over 40 years that have been made at the Survey Research Center, University of 
Michigan.  

Taking a different approach, Causey, Cox and Ernst (1985) proposed an algorithm that applied a 
transportation model to controlled selection problems with two-way stratification, based on the theory 
originally suggested in a previous paper of Cox and Ernst (1982). Winkler (2001) developed an integer 
programming algorithm quite similar to that of Causey et al. (1985). Deville and Tillé (2004) suggested an 
algorithm called the Cube method.  

Following Rao and Nigam (1990, 1992), Sitter and Skinner (1994) applied a linear programming (LP) 
approach to solve controlled selection problems. Later, Tiwari and Nigam (1998) proposed an LP method 
that reduces the probabilities of selecting non-preferred samples.  

In summary, many different algorithms for controlled selection have been investigated and described in 
the literature. Those most recently developed are especially computer-intensive, since they are highly 
dependent on available software and high speed computers. However, in spite of this evolution in the 
algorithms over about 60 years, a question still remains: In what sense are the solutions to a controlled 
selection problem obtained from those algorithms optimal?  

In this paper, we define in Section 2 the two-way controlled selection problem and revisit several 
problems of this type that have appeared in the historical literature. In Section 3, we present the desirable 
constraints. In Section 4, we introduce our concept of optimal solutions to controlled selection problems. In 
Section 5, we describe the weaknesses in the previous algorithms. In Section 6, we suggest a new algorithm 
using the LP approach for achieving optimal solutions and a new publicly available software for 
implementing the new controlled selection algorithm is presented in Section 7. In Section 8, to show the 
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robustness of the new algorithm, it is applied to several example controlled selection problems and the 
results are compared to those obtained using existing algorithms. We conclude in Section 9. 

 
2  Controlled selection problems  
 

In order to select a sample of n  units, consider a two-way stratification design classifying a population of 
N  units by two criteria with R  and C  categories, respectively. The controlled selection problem under two-
way stratification is defined by the R C×  tabular array A , which consists of RC  cells that have nonnegative 
real numbers ija , called the cell expectations, representing the expected number of units to be drawn in each 
cell ij . The standard two-way controlled selection problem is described as in Table 2.1. 

 
Table 2.1 
R C×  Controlled selection problem 

 

11a  12a  ⋅ ⋅ ⋅ ⋅ ⋅  1Ca  1.a  

21a  22a  ⋅ ⋅ ⋅ ⋅ ⋅  2Ca  2.a  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅ ⋅
ija ⋅ ⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

⋅  

.ia  

⋅  

⋅  

1Ra  2Ra  ⋅ ⋅ ⋅ ⋅ ⋅  RCa  .Ra  

.1a  .2a  ⋅ ⋅ . ja ⋅ ⋅  .Ca  .. ( )a n=  
 

The marginal expectations .ia  and . ja  denote the sum of cell expectations in each row category i  and 
each column category j . Hence ..a  denotes the sum of all cell expectations and equals the total sample size 

.n  
Although Table 2.1 takes a simple two-way tabular form, it should be noted that typically n RC< , and 

furthermore ija  can be very small (e.g., often less than 1). In this case deciding how to allocate n  units to 
cells, that is, how to obtain an R C×  array with cells rounded to a nonnegative integer for each ija , requires 

an algorithm to solve the problem. 
A variety of controlled selection problems are used as examples in the literature. The first example of a 

controlled selection problem was the 17 4×  array, described by Goodman and Kish (1950, page 356), for 
allocating 17 PSU’s to 68 cells given by 17 strata and 4 groups of North Central States in the United States. 
The array may be formed as follows. Let ijN  denote the number of population elements in each cell ij  and 
let .iN  denote the total number of population elements in each stratum. Then .ij ij ia N N= , where some ijN  
are zero and 0 1ija≤ < . All .ia  equal the integer 1, whereas . ja  are nonintegers sums of the ija  in column j . 

The problem is therefore one of selecting one PSU per sample stratum ( i  dimension) and simultaneously 
controlling the distribution to state groups ( j  dimension). A total of 17n =  PSUs will be selected.  
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The following paragraphs describe four additional problems found in the literature that will be used in the 
discussion and comparative evaluations presented in this paper. 

 
Problem 2.1: Jessen (1970) 
 

A 3 3×  problem involving two stratifying variables is given by Jessen (1970, page 779). Each cell ij  
corresponds to one PSU and 9N = . A sample of size 6n =  is drawn. ij ija nX X= , where ijX  is a 

“measure of size” for the PSU in cell ij  and 
1 1

R C
iji j

X X
= =

=∑ ∑ . Note that in this problem, 0 1ija< < , and 

both .ia  and . ja  are equal to 2 . 

 
Problem 2.2: Jessen (1978) 
 

An extended 4 4×  version of Problem 2.1 comes from Jessen (1978, page 375). In this problem, 16N =  
and 8n = . As in Problem 2.1, both .ia  and . ja  are equal to 2 , but 0 1ija≤ ≤ . 

 
Problem 2.3: Causey et al. (1985) 
 

Causey et al. (1985, page 906) describe an 8 3×  two-way stratification problem designed to select 10 
PSU’s, that is, 10n = . Let 

ijijqX ( )1, ,ij ijq r=   be some measure of size for the PSU ijq  in cell ij . Here 

ij ijq qa n X X= , where 
1

ij

ijij

r
ijq ijqq

X X
=

=∑  and 
1 1 1

ij

ijij

R C r
q ijqi j q

X X
= = =

=∑ ∑ ∑ . Note that in this problem, 

0 2ija≤ ≤ , and most .ia  and . ja  are noninteger values.  

 
Problem 2.4: Winkler (2001) 
 

Winkler (2001) provides the 5 5×  controlled selection problem with two stratifying variables shown in 
Table 2.2.  

 
The objective in solving this problem is to select 37n =  sample units from the population of 1,251.N =  

The problem definition begins with a 5 5×  array with cell population sizes ijN , where some ijN  are quite 
small. The marginal row and column expectations, .ia  and . ja , are integer-valued and are predetermined 

using the prior information on precision (e.g., coefficients of variation). 
 

Table 2.2 
5 5×  Controlled selection problem 

 

2.000 2.483 1.052 0.103 0.362 6 

2.182 1.061 1.101 1.046 0.610 6 

0.000 1.614 1.914 2.200 1.272 7 

0.860 0.377 0.930 2.840 2.993 8 

0.958 0.465 2.003 1.811 4.763 10 

6 6 7 8 10 37 
Source: Table 4, Appendix, Winkler (2001). Reproduced with permission. 
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The cell expectations, ija , are obtained by applying the generalized iterative fitting procedure (GIFP) of 
Dykstra (1985a, 1985b) and Winkler (1990) to the initial array. The GIFP is used to ensure that ij ija N<  for 
the cells with small ijN , when .ia  and . ja  are given. Note that in the Table 2.2, the ija  are given to 3 decimal 
places, and 0 5ija≤ < . 

The common characteristic shared by these controlled selection problems is that, as mentioned above, the 
total number of selected units is smaller than the number of cells (except for Problem 2.4, where 

37 25n RC= > = ) and many ija  are less than 1. The algorithms used to solve these problems must enforce 

some strict constraints described in next section. As described in Section 4, the solution to a controlled 
selection problem obtained by any algorithm is a set of some R C×  arrays and probabilities of selection 
corresponding to each array. 

 
3  Desirable constraints 
 

Each controlled selection problem of the form illustrated in Table 2.1 has many possible integer solutions. 
Let kB  denote one such solution, whose internal entries ijkb  are the replacement of the real numbers ija  in the 

controlled selection problem A  by the adjacent nonnegative integers. The entry, ijkb , equals either ija    or 

1ija +   , where [ ]  is the greatest integer function. If ija  is a nonnegative integer, ijk ijab =  for all k . The 

same rule is applied to the marginal expectations. As noted by Jessen (1970) and Causey et al. (1985), we 
primarily pay attention to kB  that simultaneously satisfy the following constraints for all i  and j : 

    0ijkb ≥  (3.1) 

 1      ijk ijb a− <  (3.2) 

 . . 1i k ib a− <  and (3.3) 

 . . 1,      jk jb a− <  (3.4) 

where . 1

C
i k ijkj

b b
=

=∑  equals either [ ].ia  or [ ]. 1ia + , . 1

R
jk ijki

b b
=

=∑  equals either . ja    or . 1ja +   , 

. .. . ..1 1
 and .R C

i k jki j
b a b a

= =
= =∑ ∑  

Consider the set of all possible arrays, { }, 1, ,kB k L= = B , satisfying (3.1) - (3.4). Since ija  is the 

expectation of the sample allocation to each cell in A , the following constraints (3.5) and (3.6) on ijkb  in 
( )kB ∈B  are especially important. 

 ( ) ( ), ,   1, , ,  and   1, ,
k

ijk ijk k ij
B

E b i j b p B a i R j C
∈

= = = =∑  
B

  (3.5) 

and 

 ( ) 1,
k

k
B

p B
∈

=∑
B

  (3.6) 

where ( )kp B , which depends on a specified algorithm for solving the controlled selection problem, is the 

selection probability of the array kB  and ( ) 0kp B ≥ . 
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Note that (3.5) and (3.6) will define a rigorous probability sampling method when randomly selecting 
any array inB . Also, note that since ( ) ( ).. ..1 1

,
k

R C
ijk ki j B

E b i j a p B a
= = ∈

= =∑ ∑ ∑ B
, (3.5) implies (3.6) for any 

controlled selection problem such as those described in Problems 2.1 through 2.4. In addition, as an 
illustration, when applied to Problem 2.3, where ij ijq qa n X X= , (3.5) yields  

 ( ), ,ijk ijq ij ijq qE b X i j a X n X= =   (3.7) 

which indicates the equal allocation for each cell. 

 
4  Optimal solutions 
 

Given the set of L  possible arrays in B , consider the subset ' ( )⊆B B  where 

( ) 0.kp B >  

A solution set to a controlled selection problem A  denoted as 

( )( ){ }', ,kk kB p BB ∈B  

is the set of the arrays that have the required positive selection probabilities ( )( )0kp B > . This solution set, or 

simply a “solution” to the controlled selection problem, is usually obtained by an algorithm to control the 
constraints in (3.1) through (3.6). As described in the introduction, since Goodman and Kish (1950), many 
algorithms for obtaining solutions to controlled selection problems have been developed.  

Until Groves and Hess (1975) suggested a computer algorithm, most solutions were manually obtained in 
a process that resembled solving a mathematical puzzle. Furthermore, for most problems it is possible that 
there is more than one solution set that meets the constraints. Since the 1980s, the computer-intensive 
controlled selection algorithms using transportation theory, network flow, integer programming, and LP have 
been developed. These algorithms may depend on highly specialized software or may be programmed to run 
in major software systems. 

However, previous solutions ranging from manual to computer-intensive algorithms have rarely been 
compared empirically using a standard set of performance criteria. Therefore, we begin with the description 
of a concept called optimal solution sets, or more simply, optimal solutions.  

The controlled selection problem A  is only one array, but there may be many possible arrays in B . Also, 
only one array kB  from any solution to A  is randomly chosen by ( )kp B  as the basis for choosing the 

stratified sample. In general then, we might define an optimal solution as that satisfying the following 
requirements (R1 and R2): 

 
R1. The solution is obtained based on appropriate and objective measurements of the closeness between A  
and every single array kB  in B . 

 
R2. The solution, as much as possible, maximizes the probabilities of selection over the arrays nearest to A  
under such measurements as referenced in R1.  
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The remainder of this section will address how to specify R1 and R2 for optimal solutions. First, in order 
to define closeness in R1, a real number ( : )kd B A  representing the distance between A  and kB , can be 
considered, where d  is a distance function that satisfies the following axioms:  

 
(i) ( ) ( ), 0  if  ;  , 0;k kd B A B A d A A> ≠ =   

 
(ii) ( ) ( ), ,k kd B A d A B= ; 

 

(iii) ( ) ( ) ( )' ' ', , ,  for any k k k k kd B A d B B d B A B≤ + ∈B.   

 
Axiom (iii) is termed the triangle inequality axiom. Distance functions satisfying (i), (ii), and (iii) can be 

defined by using the two-ordered -tuplesRC  ( )11 12, , , RCa a a⋅ ⋅ ⋅  and ( )11 12, , ,k k RCkb b b⋅ ⋅ ⋅  for A  and kB . We 

first define the ordinary or Euclidean distance (2-norm distance):  

 ( ) ( )
1
22

2
1 1

, ,    1, , .
R C

k ijk ij
i j

d B A b a k L
= =

 
= − = 
 
∑∑    (4.1) 

This function is probably the most familiar measure to define the distance between kB  and A . 

Also, we can define the function called the Chebyshev distance (infinite norm distance): 

 ( ) { }, max : 1, , ,  1, , ,    1, , .k ijk ijd B A b a i R j C k L∞ = − = = =     (4.2) 

These distance functions give rise to distinct distance spaces. Owing to (3.2), for any kB , the following 
holds. 
 ( ) ( )1/2

20 ,kd B A RC≤ <   (4.3) 

and  
 ( )0 , 1.kd B A∞≤ <   (4.4) 

For instance, for the 3 3×  array in Problem 2.1 and the 8 3×  array in Problem 2.3, ( )20 , 3kd B A< <  and 

( )20 , 4.9kd B A< < , respectively. 

Second, as mentioned in R2, regarding the arrays nearest to A  under such measurements described in 
R1, consider the set of arrays in B  having the minimum 2d  or d∞  value from A . Let 2 ( )′⊆B B  be the set 
of the arrays having the minimum 2d  value from A  and ( )∞ ′⊆B B  be the set of the arrays having the 
minimum d∞  value from A . 

Assuming that all possible arrays in B  are known, we define optimum arrays as follows.  
 
Definition. The arrays in 2 ∞B B  are called the optimum arrays. 
 

Note that in the new algorithm for controlled selection to be described in Section 6, 2d  or d∞  are chosen 
based on preference. We avoid defining the intersection of 2B  and ∞B  as the optimum arrays because this 
may exclude the other arrays not in 2 ∞B B  with the same minimum 2d  ( d∞ ) value. We illustrate below 
that there may exist a very small number of optimum arrays relative to the number of all possible arrays in B  
for any A . The details of how to find all possible arrays will be described in Section 6 and Section 7.  
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Illustrations. 
For Problem 2.1 through Problem 2.4, it is noted that 2 ∞⊆B B . Thus, it is possible to use d∞  only in 

illustrating the optimum arrays.  
 

1. For Problem 2.1, there are six possible arrays satisfying (3.1), (3.2), (3.3), and (3.4). That is, 

{ }, 1, ,6k kB= = B , as given in Table 4.1. There exists only one optimum array, 2B , with the 

minimum value of 0.5d∞ = . 
 

Table 4.1 
3 3×  Controlled selection problem, optimum array with 0.5d∞ = and the other arrays 

 

A   1B   2B   3B   4B   5B   6B  

0.8 0.5 0.7  0 1 1  1 0 1  1 1 0  0 1 1  1 0 1  1 1 0 

0.7 0.8 0.5  1 0 1  1 1 0  0 1 1  1 1 0  0 1 1  1 0 1 

0.5 0.7 0.8  1 1 0  0 1 1  1 0 1  1 0 1  1 1 0  0 1 1 

d∞   0.8  0.5  0.7  0.8  0.8  0.8 

 
2. Problem 2.2 has 30 possible arrays, and there are three optimum arrays, shown in Table 4.2 

 
Table 4.2 
4 4×  Optimum arrays with 0.6d∞ =  

 

0 0 1 1  0 1 1 0  0 1 1 0 

1 1 0 0  1 0 0 1  1 0 1 0 

 0 0 1 1  0 0 1 1  1 0 0 1 

1 1 0 0  1 1 0 0  0 1 0 1 

 
3. Problem 2.3 has 141 possible arrays. There are six optimum arrays, where each array has the same 

0.6d∞ = . One of them is given in Table 4.3. 
 

Table 4.3 
One of six optimum arrays with 0.6d∞ =  
 

1 2 0 
1 0 1 
0 0 0 
1 1 0 
1 1 0 
0 0 1 
0 0 0 
0 0 0 
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4. There are 159 possible arrays for Problem 2.4, and there is only one optimum array given in Table 4.4. 
 

Table 4.4 
5 5× Optimum array with 0.517d∞ =  

 

2 3 1 0 0 
2 1 1 1 1 
0 2 2 2 1 
1 0 1 3 3 
1 0 2 2 5 

 

Accordingly, based on the definition of optimum arrays as well as 2d  and d∞  satisfying the axioms (i), 

(ii), and (iii), we suggest the following specifications (S1 and S2) of R1 and R2 of optimal solutions: 
 

S1. The solution is based on the values of the distance ( )2d d∞  between A  and every single array kB  in B . 

 
S2. The solution maximizes the probabilities of selection of optimum arrays.  

 
S1 and S2 will be the rudiments of a new algorithm presented in Section 6, and in the next section we turn 

into the discussion on the previous algorithms from the viewpoint of optimal solutions. 

 
5  Non-optimal properties of existing methods 
 

As described in Section 4, the algorithms for controlled selection may be divided into two parts, manual 
algorithms before 1980s and computer-intensive algorithms since then. For large controlled selection 
problems with many cells, the latter class of algorithms may be preferred. But when the problem is small, the 
former can be easily used without the complexity of the latter. Therefore we would not say that the former is 
always inferior to the latter. More objective criteria for comparing them would be necessary, and the optimal 
solution may be adopted as one of the better criteria to compare their strengths or weaknesses.  

As discussed by Jessen (1978, pages 375-376), the algorithms of Jessen (1970) aim to minimize the 
number of arrays in a solution set ′B , and the algorithm of Jessen (1978) quite easily achieves that purpose 
relative to those of Jessen (1970). Thus his algorithms pursue “simplicity” in formulating a solution rather 
than an optimal solution. 

The algorithm of Causey et al. (1985) may give a “partially” optimal solution. Other than the original 
problem, A , it sequentially creates a small number of new controlled selection problems, and then as a 
solution it finds only one array ( )kB ∈B to be nearest to each problem, starting with A . Each problem is 
regarded as the transportation problem of Cox and Ernst (1982), which is formed by the objective function 
mimicking the behavior of  

 
1 1

,  1, , ,  1 .
R C p

ijk ij
i j

b a k L p
= =

− = ≤ < ∞∑∑   (5.1) 
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Note that since function (5.1) violates the triangle inequality axiom (iii), it is not a distance function. It 
needs the inclusion of the -thp  root to be a distance function. Also, each ( )kp B  is calculated by a simple 

formula. In view of the optimality requirements given by R1 and R2 the Causey et al. algorithm has the 
following weaknesses: 1) Since other controlled selection problems in addition to the original problem A  
are involved, it is difficult to obtain the solution consistently based on the closeness between the unique A  
and every individual kB  in B ; 2) The maximization of the probabilities of selection for the arrays nearest 
to A  is not guaranteed.  

Winkler (2001) presented a modification of the method of Causey et al. (1985). Instead of using the 
transportation problem, he proposed integer linear programming, resulting in slight changes of the ( ).kp B  

Nevertheless, the Winkler (2001) algorithm is not free from the weaknesses of the Causey et al. (1985) 
method.  

Adopting a network flow problem approach, the Huang and Lin (1998) algorithm imposes the additional 
subgroup constraints in A , raised by Goodman and Kish (1950). However, it does not attain objectives R1 
and R2, just as in Causey et al. (1985) and Winkler (2001), since a new network, instead of a new controlled 
selection problem, is generated at every iteration, an arbitrary ( )kB ∈B  is obtained as a solution to the 
network, and ( )kp B  is calculated by a simple formula. 

In contrast, the LP algorithms proposed by Sitter and Skinner (1994) and Tiwari and Nigam (1998) use all 
possible arrays in B . Note that finding all those arrays is an important issue, and that ( )kp B  for all possible 

arrays are simultaneously obtained by running the software for LP only once. The key idea underlying the 
algorithm of Sitter and Skinner (1994) is to use a “loss function” defined by  

 ( ) ( )22
. . . .

1 1
.

R C

i k i jk j
i j

b a b a
= =

− + −∑ ∑  (5.2) 

In terms of R1 and R2, their algorithm has the following disadvantages: 1) The closeness between A  and 
kB  is not well captured by loss function (5.2). This is because it is not a distance function that satisfies axiom 

(iii), as the marginal totals are used, instead of the cell entries; 2) Loss function (5.2) is irrelevant to the 
maximization of the probabilities of selection over the arrays nearest to A  in Problems 2.1, 2.2, and 2.4, 
since it is always zero.  

The LP method of Tiwari and Nigam (1998) can be used to reduce the selection probabilities of non-
preferred arrays (e.g., arrays not containing the PSU corresponding to the cell 23ij =  in Problem 2.1), which 
are initially determined by the samplers. For controlled selection problems with integer margins and without 
considering the non-preferred arrays, their method will give the same solutions as that of Sitter and Skinner 
(1994).  

The solutions from these previous methods will be compared with those from the proposed method in 
Section 6, on several examples in Section 8. 

 
6  Suggested method 
 

In this section, we present the details on an algorithm for achieving S1 and S2 of optimal solutions 
described in Section 4.  
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6.1  The algorithm 
 

The algorithm has the following characteristics: 1) it finds a solution directly based on the values of the 
distance 2d  ( )d∞  between the controlled selection problem A  and each individual array kB  in B ; 2) it is 

computer-intensive, but easily implemented by LP; 3) it is applicable to any type of controlled selection 
problem with two-way stratification. 

The algorithm has five steps. They are as follows: 
 

Step 1. Find the set of all possible arrays, B , satisfying (3.1) - (3.4) for a given controlled selection problem 
A . Specifically, if there are any noninteger marginal expectations in A , find all possible roundings of these 
marginal expectations by adjacent integers, which satisfy (3.3) and (3.4). Those rounded marginal integers 
will be .[ ]ia  or .[ ] 1ia +  ( ). .[ ] or [ ] 1 ,j ja a +  while the integer marginal expectations will remain, since 

. .[ ]i ia a=  ( ). .[ ] .j ja a=  Next, find all possible arrays satisfying (3.1) and (3.2) under the rounded marginal 

integers and the other marginal integers. 

 
Step 2. Choose either ( )*

2 ,kd B A  or ( )* ,kd B A∞  (based on preference) and compute the chosen distance 
function for each ( ) ,kB ∈B  where: 

 ( ) ( ) ( )
1
22

2 2
1 1

, ,
R C

k k ijk ij
i j

d B A d B A b a∗ ∗ ∗ ∗ ∗

= =

 
= = − 

 
∑∑   (6.1) 

 ( ) ( ) { }* * * * *, , max : 1, , ,   1, , .k k ijk ijd B A d B A b a i R j C∞ ∞= = − = =    (6.2) 

Note that since each of the ij  cells in the problem array, A , will receive a minimum allocation equal to [ ]ija  
with certainty the distance functions need only consider the non-integer part of ija : 

 * ,ij ij ija a a = −     (6.3) 

and the integer difference (either 0 or 1) between the allocated sample size, ijkb , for solution 1, ,k L= …  and 
the certainty count for the -thij  cell of A : 

 * .ijk ijk ijb b a= −     (6.4) 

Step 3. According to the distance function chosen in Step 2, construct the following LP problem consisting of 
the minimization of the objective function (6.5) or (6.6), which is a linear form, with the linear constraints 
(6.7) and (6.8): 
 

Minimize 

 ( ) ( )*
1 2 ,

k

k k
B

OF d B A p B
∈

= ∑
B

 (6.5) 

or 
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 ( ) ( )*
2 ,

k

k k
B

OF d B A p B∞
∈

= ∑
B

 (6.6) 

subject to  

 ( )* * ,  1, , ,   1, , ,
k

ijk k ij
B

b p B a i R j C
∈

= = =∑  
B

 (6.7) 

and 
 ( ) 0,  1, , .kp B k L≥ =    (6.8) 

Step 4. By using an algorithm for LP, solve the LP problem established in Step 3 with respect to L  unknown 
variables  

 ( ){ }, .k kp B B ∈B   (6.9) 

Step 5. Obtain the solution set ( )( ){ }, ,k k kB p B B ′∈B  to A  consisting of arrays such that ( ) 0kp B >  in the 

solution set to the LP problem obtained in Step 4. 

 
Some remarks to be useful in implementing the algorithm are in order. 
 

Remark 6.1. In Step 2, note that ija    in (6.3) or (6.4) indicates the number of units to be selected with 

certainty in each cell. Also, note that   

 ( ) ( )*
2 2, ,k kd B A d B A=   (6.10) 

and 

 ( ) ( )* , , ,k kd B A d B A∞ ∞=   (6.11) 

since * *
ijk ij ijk ijb a b a− = −  due to (6.3) and (6.4). 

 
Remark 6.2. In addition to the fact that *

2d  is the natural concept of distance and *d∞  is the simplest and 
easiest to compute under the norm, there is sensible advice on the choice of *

2d  or *d∞  in Step 2. Let 2D  and 

D∞  be the sets of the distance values for all possible arrays calculated by *
2d  and *d∞ , respectively. Let those 

arrays with the same distance value in 2D  ( D∞ ) be in the same group. Then logically, *
2d  would cluster 

possible arrays into many different groups, where the number of groups is larger than in *d∞ , due to (4.3) and 
(4.4). Accordingly, when using *

2d  in LP problem, the number of arrays in B  such that ( ) 0kp B >  would be 
larger than in using *d∞ . 

 
Remark 6.3. It is clear from (6.5) and (6.6) involving the distance values *

2d  or *d∞  that the solution in Step 

5 results in the safe achievement of S1. Furthermore, S2 is achieved efficiently using linear constraints (6.7) 
and (6.8). 
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Remark 6.4. In constructing the LP problem in Step 3, the constraints for the cells with * 0ija =  can be 

omitted in (6.7). For example, for the 5 5×  controlled selection problem of Problem 2.4, the number of 
necessary constraints is 23, since two cells have * 0ija = . Also, the linear constraint (3.6) is not essential, 

because it is implied in (6.7).  

 
6.2  Using the simplex method 
 

The LP problem constructed in Step 3 with the system of constraints of RC  equations in (6.7) for L  
nonnegative unknowns in (6.8) is in the “standard form” and no transformation is required.  

Supposing that RC L< , the number of equations is smaller than the number of unknowns. Consequently 
it is an LP problem with a standard form, and it can always be solved by the simplex method by 
transforming with the system of RC  constraints in canonical form. To change the system into canonical 
form, one could arbitrarily choose RC  variables among L  variables as basic variables and then, using a 
pivot operation, attempt to put the system into canonical form, where each basic variable has coefficient one 
in one equation and zero in the others, and each equation has exactly one basic variable with coefficient one.  

Letting the other L RC−  variables except RC  variables chosen as basic variables be 0 in the system in 
canonical form, the initial basic feasible solution is obtained. Next, by replacing exactly one basic variable, 
another basic feasible solution is obtained, and these steps are continued until the minimal value of the 
objective function is attained by any basic feasible solution. The set of these basic feasible solutions to the LP 
problem is convex. Many software packages for the simplex method are available for solving the LP 
problem. See Dantzig (1963) and Thie and Keough (2008, chapter 3) for the details on the simplex method. 

 
6.3  The computational demands of the LP problem  
 

It may be claimed that our algorithm is computationally expensive due to the following burdens:  
 

a. Before solving the LP problem, all possible arrays to the controlled selection problem should be known.  
 

b. The number of unknowns in the LP problem, L , is equal to the number of all possible arrays, which 
becomes large as RC , the number of cells in the controlled selection problem, increases. Hence, it is not 
unreasonable that L  may be as large as the binomial coefficient 

 *
.. ..* 1 1..

, where .
R C

ij
i j

RC
a a a

a = =

 
  = −    
 

∑∑   (6.12) 

c. If RC  is large, it also yields a large number of constraints in (6.7). 
 

Sitter and Skinner (1994), and Tiwari and Nigam (1998) also referred to these potential disadvantages in 
describing their LP algorithms. However, due to the following reasons, these computational burdens stated in 
a, b, and c may not be prohibitive in actual operations. 
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First, finding all possible arrays manually might be difficult for any controlled selection problem with a 
large number of cells, but this task is greatly simplified using an efficient algorithm and the power of modern 
computers. Using the software described in the next section, they can be easily obtained in seconds even in 
comparatively large problems such as Problems 2.3 and 2.4.  

Second, applying (6.12) to Problems 2.1 through 2.4, respectively yields 84; 11,440; 10,626; and 
4,457,400 arrays. However, the actual numbers for L  are only 6, 30, 141 and 159, respectively. This is 
because marginal expectations of both rows and columns are simultaneously matched and some cell 
expectations are zero. The actual numbers can also be obtained from the software described in the next 
section.  

Third, although the greater RC , the greater the number of constraints in the LP problem, the 
computational demands may depend on L  as well as RC , and more specifically, on the number of basic 
feasible solutions, possibly denoted by  

 .
L

S
RC

 
=  
 

 (6.13) 

For example, if L = 1,000 and RC = 100, (6.13) gives 6.4E+139, which is an extremely large number. In 
this case, it is almost impossible to solve the LP problem, since each basic feasible solution should be 
investigated. But such cases would not happen in practice. According to Ross (2007, pages 221-224), when 
RC L< , the number of necessary transitions, say ,T  moving along the basic feasible solutions in solving 
the LP problem with standard form is approximately normally distributed with mean ( ) logeE T S=  and 
variance ( ) logeVar T S= , where 

 ( ){ }log 1 log 1 .e eS RC L RC ≈ + −    (6.14) 

When applying this theory to the case of L = 1,000 and RC = 100, approximating both the mean and 
variance of T  by (6.14) becomes 320, and the 95% confidence interval (CI) of T  is (285, 355), which is 
smaller than the expected lower and upper limits.  

 
Table 6.1 
Comparison between S  and T  
 

 Problem 2.1 Problem 2.2 Problem 2.3 Problem 2.4 
L  6 30 141 159 
*RC  9 14 13 23 
S  NA 1.5E+8 7.9E+17 3.1E+27 

( )E T  NA 16 43 64 
95% CI of T  NA (8, 24) (30, 56) (48, 80) 

Note: NA - not available 

 
Table 6.1 shows the results of the comparison between S  and T  for the four problems considered above. 

Note that due to Remark 6.4, RC  in (6.13) and (6.14) is replaced by *RC , that is, the number that results 
from subtracting the number of cells with * 0ija =  from RC . The theory on T  is not applied to Problem 2.1 

because *RC L> . 



Survey Methodology, December 2014 257 
 

 
Statistics Canada, Catalogue No. 12-001-X 

As shown in the table, the mean or confidence interval bounds of T  are considerably smaller than S  in 
each problem. In Section 8, T  in Table 6.1 will be compared with the actual number of transitions, say t . 

 
7  Software 
 

To take the advantages of the power of modern computing, we have developed a public use SAS-based 
software called the SOCSLP (Software for Optimal Controlled Selection Linear Programming) for our 
algorithm to solve controlled selection problems with two-way stratification. The recent version may be 
downloaded from the URL: http://www.isr.umich.edu/src/smp/socslp.  

In using the software, there are no restrictions on the number of all possible arrays that can be considered 
for the solution. The number of those arrays and the number of constraints that can be solved depend on the 
memory capacity and the available disk space of the computer.  

The two-phase revised simplex method, implemented using SAS/OR LP Procedure, simply “PROC LP”, 
is employed to solve the LP problem. A unique optimal solution to the LP problem is obtained when the 
objective function is minimized under the given constraints (6.7) through phase 1 and 2 of PROC LP, with 
the assumption that all unknown variables are nonnegative (6.8). 
The software produces much information including the solution set to the controlled selection problem. Also, 
by choosing a simple option in the software, one array can be randomly selected from the solution set, 
completing the controlled selection. The SOCSLP is currently available for personal computers, and the 
details are provided through the User Guide on the website. 

 
8  Comparisons of algorithms 
 

Using the four controlled selection problems given in Section 2, we present some results from the two 
methods using *

2d  and *d∞  in the new algorithm, and compare the solutions for these two methods to 

solutions generated under the algorithms previously described by Jessen (1970), Jessen (1978), Causey et al. 
(1985), Huang and Lin (1998), and Winkler (2001). The solutions from the two methods using *

2d  and *d∞  

were obtained by implementing the SOCSLP, running on the version 9.2 of SAS/OR (2008). Solutions for 
the algorithm of Sitter and Skinner (1994) using LP were also obtained using PROC LP of the version 9.2 of 
SAS/OR (2008). Solutions for the other methods are the results as they appeared in the original papers.  

The answers to two questions help us compare the algorithms: 1) Are the solutions from the new methods 
different from those of the previous algorithms described in Section 5? 2) Do the solutions from the new 
methods give higher probabilities of selection for optimum arrays compared to those generated using the 
previous methods? 

Prior to the comparison of the algorithms, we need to take a look at the results in Table 8.1 obtained from 
the two methods. In the table, the method using *

2d  and the one using *d∞  are denoted by 2N  and N∞ , 
respectively. Since when calculated by *

2d  ( *d∞ ), the arrays with the same distance value are in the same 
group, there would be different groups for all possible arrays (see Remark 6.2). Let G  denote the number of 
the different groups. Also, let OF  be the actual value of the objective function (6.5) or (6.6) and t  the actual 
number of T , the number of transitions, introduced in Section 6.3. They are all obtained from the SOCSLP, 
and t  especially indicates the number of iterations in phase 1 and 2 of the PROC LP in the software.  
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Table 8.1  
Results with the new methods 
 

 
Problem 2.1 Problem 2.2 Problem 2.3 Problem 2.4 

2N  N∞  2N  N∞  2N  N∞  2N  N∞  
G  4 3 9 2 6 2 157 14 

OF  1.336 0.620 1.689 0.640 1.582 0.720 1.661 0.701 
t  2 2 8 6 18 15 43 41 

 
As seen in the table, most values of G  are much smaller than L , the number of all possible arrays given 

in Table 6.1, except for the case of the large value of “157” for Problem 2.4, which arises simply due to the 
fact that the ija  are given to three decimal places. When using *

2d , the values of OF  range between 1 and 2, 

while they are always less than 1, when using *d∞ . Most values of t  do not reach the 95% CI of T  shown at 

the bottom of Table 6.1. Thus, the actual computational demands are less than those expected in the theory. 
The solutions from different algorithms for the first three problems are presented in order in Table 8.2 

through Table 8.4. Results for Problem 2.4 are simply described below. (The table of solutions to this 
problem is available on request.) In Table 8.2, the method of Sitter and Skinner (1994), Jessen’s (1970) 
method 2 and method 3 are denoted by SS , 2J  and 3J , respectively. The solutions for 2J  and 3J  in the 
table are from Jessen (1970, page 782). The table shows that all methods except Jessen’s (1970) method 3 
yield the same solution for the 3 x 3 array Problem 2.1. In the common solutions, the probability of selection 
for the optimum arrays, denoted by ( )

k
kB

p B
∞∈∑ B

, is 0.5.  

 
Table 8.2 
Comparison of solutions to Problem 2.1 
 

kB  
( )kp B  

2N  N∞  SS  2J  3J  
0  1  1 
1  0  1 
1  1  0 

0.2 0.2 0.2 0.2 0.1 

       1  0  1 * 
       1  1  0   
       0  1  1   

0.5 0.5 0.5 0.5 0.4 

1  1  0 
0  1  1 
1  0  1 

0.3 0.3 0.3 0.3 0.2 

0  1  1 
1  1  0 
1  0  1 

    0.1 

1  0  1   
0  1  1   
1  1  0   

    0.1 

1  1  0   
1  0  1   
0  1  1   

    0.1 

Total 1.0 1.0 1.0 1.0 1.0 

   Total † 0.5 0.5 0.5 0.5 0.4 

Note: * – Optimum array  
          † – The sum of probabilities of selection for optimum arrays 
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In Table 8.3, Jessen’s (1978) method is denoted by JS . The solution for JS  in the table is from Jessen 
(1978, pages 375-376). As shown in the table, the new methods using *

2d  and *d∞  have the same solution for 

the Problem 2.2 4 4×  array; however only one-half of the arrays in those solutions overlap with the arrays in 
the solutions from the methods of Sitter and Skinner (1994) and Jessen (1978). Also, the Sitter and Skinner 
and Jessen methods provide a lower probability of 0.6 to optimum arrays, whereas the new methods allocate 
the higher probability of 0.8 to the arrays. 

 
Table 8.3 
Comparison of solutions to Problem 2.2 
 

kB  
( )kp B  

2N  N∞  SS  JS  

0  0  1  1 
0  1  0  1 
1  1  0  0 
1  0  1  0 

0.2 0.2   

     0  0  1  1  * 
     1  1  0  0 
     0  0  1  1 
     1  1  0  0 

0.2 0.2 0.4 0.2 

     0  1  1  0  * 
     1  0  0  1 
     0  0  1  1 
     1  1  0  0 

0.2 0.2   

     0  1  1  0  * 
     1  0  1  0 
     1  0  0  1 
     0  1  0  1 

0.4 0.4 0.2 0.4 

0  1  1  0 
0  0  1  1 
1  1  0  0 
1  0  0  1 

  0.2  

0  1  1  0 
1  0  0  1 
1  0  0  1 
0  1  1  0 

  0.2  

0  1  1  0 
1  0  0  1 
0  1  0  1 
1  0  1  0 

   0.2 

0  0  1  1 
0  1  0  1 
1  0  1  0 
1  1  0  0 

   0.2 

        Total 1.0 1.0 1.0 1.0 
   Total † 0.8 0.8 0.6 0.6 

See note for Table 8.2. 
 
 
 

Problem 2.3, with 141 possible arrays, is considerably larger than the above two problems. The solutions 
to this problem under the five methods are compared in Table 8.4. In the table, the methods of Causey et al. 
(1985) and Huang and Lin (1998) are denoted by CA  and HU , respectively. The solutions for CA  and HU  
in the table are from Causey et al. (1985, page 906) and Huang and Lin (1998, Figure 3), respectively.  
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Table 8.4 
Comparison of solutions to Problem 2.3 
 

kB  

( )kp B  
kB  

( )kp B  
kB  

( )kp B  

2N  N∞  SS  CA  HU  2N  N∞  SS  
CA

 
HU  2N  

N∞

 
SS  

CA
 

HU  
0  2  0 
1  0  1 
0  0  0 
2  0  0 
1  1  0 
0  1  0 
0  0  1 
0  0  0 

0.2 0.2 0.2   

0  2  0 
1  0  1 
1  0  0 
1  0  0 
1  0  0 
0  1  0 
0  1  0 
0  0  1 

  0.11   

0  2  0 
1  0  1 
0  0  0 
2  0  0 
1  0  0 
0  1  0 
0  0  1 
0  0  1 

   0.2  

 
    

 
    

 
     0  2  0 

1  0  1 
1  0  0 
1  0  1 
1  0  1 
0  0  0 
0  1  0 
0  0  0 

0.1 0.2 0.03   

0  2  0 
1  0  1 
1  0  0 
1  0  1 
1  0  0 
0  1  0 
0  0  1 
0  0  0 

  0.03   

0  2  0 
1  0  1 
1  0  0 
1  0  0 
1  0  1 
0  1  0 
0  0  1 
0  0  0 

   0.2 0.2 

 
     

 
    

 
     0  2  0 

1  0  1 
1  0  0 
1  1  0 
1  0  0 
0  1  0 
0  0  1 
0  0  0 

0.1     

0  2  0 
1  0  1 
1  0  0  
1  0  1 
1  1  0 
0  0  0 
0  0  0 
0  0  1 

  0.03   

0  2  0 
2  0  1 
0  0  0 
1  0  1 
1  1  0 
0  0  0 
0  1  0 
0  0  0 

   0.2  

 
     

 
    

 
     0  2  0 

2  0  1 
0  0  0 
1  0  0 
1  0  1 
0  0  0 
0  1  0 
0  0  1 

0.1     

0  2  0 
2  0  1 
0  0  0 
1  1  0 
1  0  1 
0  0  0 
0  0  1 
0  0  0 

  0.09   

0  2  0 
1  0  1 
0  0  0 
2  0  0 
1  1  0 
0  0  0 
0  1  0 
0  0  1 

    0.2 

 
     

 
    

 
     0  2  0 

2  0  1 
0  0  0 
1  0  1 
1  0  0 
0  1  0 
0  0  0 
0  0  1 

0.1     

0  2  0 
2  0  1 
0  0  0 
1  1  0 
1  0  1 
0  0  1 
0  0  0 
0  0  0 

  0.08   

0  2  0 
2  0  1 
0  0  0 
1  0  1 
1  0  0 
0  1  0 
0  0  1 
0  0  0 

    0.2 

 
    

  
          1  2  0* 

1  0  1 
0  0  0 
1  0  0 
1  1  0 
0  0  1 
0  0  1 
0  0  0 

0.1  0.08   

0  2  0 
2  0  1 
0  0  0 
1  1  0 
1  1  0 
0  0  1 
0  0  0 
0  0  0 

  0.03        

 
     

 
            1  2  0* 

1  0  1 
0  0  0 
1  1  0 
1  1  0 
0  0  1 
0  0  0 
0  0  0 

0.3 0.4 0.2 0.4 0.4 

1  2  0 
1  0  1 
0  0  0 
1  0  1 
1  0  0 
0  0  0 
0  1  0 
0  0  1 

  0.06         

 
     

 
          0  2  0 

2  0  1 
0  0  0 
1  0  0 
1  0  0 
0  1  0 
0  0  1 
0  0  1 

 0.2    

1  2  0 
1  0  1 
0  0  0 
1  0  1 
1  1  0 
0  1  0 
0  0  0 
0  0  0 

  0.06   

 

Total 

Total † 

 

1.0 

0.4 

 

1.0 

0.4 

 

1.0     1.0 

0.28    0.4 

 

1.0 

0.4 

See note for Table 8.2. 
 

We note that all these methods provide different solutions, and about half of the arrays overlap between 
the new methods and the method of Sitter and Skinner (1994). Moreover, the solutions from the methods of 
Causey et al. (1985) and Huang and Lin (1998) are quite unlike the solution from the method using *d∞ . The 
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method using *
2d  and Sitter and Skinner’s method distribute the probabilities of selection to two optimum 

arrays, whereas the other three methods just allocate the probability to only one optimum array. Sitter and 
Skinner’s method appears to be less effective in selecting optimum arrays since their method gives the 
probability of 0.28 to those, while the others give the higher probability of 0.4. 

The solutions to Problem 2.4, which is the largest of the given problems, are compared under the four 
methods ( 2N , N∞ , SS , and Winkler’s (2001) method). Only two arrays, including one optimum, overlap in 
the solutions, and the two new methods give the same probabilities (0.127 and 0.483) to those arrays. Even 
when comparing the method using *d∞  with the methods of Sitter and Skinner (1994) and Winkler (2001), 

their solutions are very different. Also, the new methods give the same probability of selection of 0.483 to the 
optimum array, whereas the other previous methods give the lower probabilities of 0.385 and 0.104, 
respectively.  

In summary, it seems that the new methods successfully achieve S1 and S2 of optimal solutions. Note that 
the new methods consistently give higher probabilities of selection for optimum arrays and that the totals of 
those probabilities are always the same. The solutions from the new methods are very different from those 
obtained using previous methods, when the controlled selection problems are not small. This implies that the 
solutions from the previous methods may be far from optimal under criteria S1 and S2 (R1 and R2). 

 
9  Concluding remarks 
 

In this paper, we introduced the concept of optimal solutions to a controlled selection problem with two-
way stratification, and proposed a new algorithm for finding such solutions. The algorithm has been easily 
and successfully implemented in the new SAS-based software (SOCSLP). 

Since an optimal solution is a general idea, it may be adopted as one of the useful criteria for comparing 
the different algorithms. As shown in the above comparisons, the new algorithm results in solutions to large 
controlled selection problems that are very different from those derived using previously published methods. 
It is also likely to yield greater probabilities of selection for optimum arrays as compared to those obtained 
by the previous methods. 

Based on the results for the two-way controlled selection problems, we expect that the suggested method 
would also contribute to improvements in the properties of solutions to controlled selection problems with 
three-way or more stratification dimensions. 
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On aligned composite estimates from overlapping samples 
for growth rates and totals 

Paul Knottnerus1 

Abstract 

When monthly business surveys are not completely overlapping, there are two different estimators for the 
monthly growth rate of the turnover: (i) one that is based on the monthly estimated population totals and (ii) 
one that is purely based on enterprises observed on both occasions in the overlap of the corresponding surveys. 
The resulting estimates and variances might be quite different. This paper proposes an optimal composite 
estimator for the growth rate as well as the population totals. 

 
Key Words: Business surveys; Coefficient of variation; General restriction estimator; Kalman equations; Panels; 

Variances. 
 
 
 
1  Introduction 
 

In many countries a monthly business survey is held for the major Standard Industrial Classification 
(SIC) codes to estimate the level of the monthly turnover and the change in that level compared to a month 
or a year ago. When repeatedly sampling a population, a complicating factor is that there are various 
methods for estimating the (relative) change from a panel with different outcomes especially when the 
samples on different occasions are not completely overlapping.  

Kish (1965), Tam (1984), Laniel (1987), Hidiroglou, Särndal and Binder (1995), Nordberg (2000), 
Berger (2004), Qualité and Tillé (2008), Wood (2008) and Knottnerus and Van Delden (2012) examined 
various estimators for the parameter of change in different situations. The main aim of this paper is to 
derive estimators for a relative change as well as the corresponding population totals that are in line with 
each other and that have minimum variance property. The derivation of the aligned composite estimators 
is based on the general restriction (GR) estimator of Knottnerus (2003). Composite estimators for totals 
and (absolute) changes are also proposed by Särndal, Swensson and Wretman (1992, pages 370-378) but 
in separate steps. Moreover, this paper focuses on estimators for growth rates because: (i) users of figures 
from business surveys for a specific SIC code often are more interested in growth rates than in absolute 
changes, (ii) in practice there might be model-assisted reasons to look at growth rates (auxiliary variables 
in regression models often explain the different growth rates of the units rather than their different levels), 
and (iii) growth rates are needed for making an overall index for the (monthly) turnover for each of the 
major SIC codes. For instance, Smith, Pont and Jones (2003) describe the method of matched pairs to 
measure a change from month to month, using responses that are common to both periods. The authors 
use this method for deriving the monthly retail sales index (RSI). 

The outline of the paper is as follows. Section 2 briefly describes two methods for estimating a growth 
rate of the total turnover for enterprises with a certain SIC code. Two examples illustrate the possibly 
substantial differences between the two approaches. Section 3 discusses the question of which estimation 

mailto:pkts@cbs.nl
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method is to be preferred and explains as to why the difference between the variances of both estimators 
might be so large. For various situations Section 4 and Section 5 propose an optimal composite estimator. 
Section 6 discusses some extensions of the aligned composite (AC) estimator for growth rates and totals. 
Section 7 summarizes the main conclusions and issues to be further investigated. 

 
2  Two estimators for the growth rate of the total turnover  
 

Consider a population of N  enterprises {1,  ..., },U N=  and suppose there are no births and deaths in 
the population. Let iY  denote the value of the turnover for the -thi  enterprise in a given month (say t ) 
and iX  the value of the turnover of that enterprise in month 12.t −  Hence, the variables y  and x  concern 
the same variable on two different occasions. Denote their population totals by Y  and ,X  and their 
population means by Y  and ,X  respectively. That is, ,ii U

Y Y
∈

=∑  ,ii U
X X

∈
=∑  Y Y N=  and 

.X X N=  Let 1 2,s s  and 3s  denote three mutually disjoint simple random samples from U  without 
replacement (SRS). Define 12s  and 23s  by 12 1 2s s s= ∪  and 23 2 3,s s s= ∪  respectively. Denote the size of 

ks  by ( 1, 2, 3,12, 23)kn k =  and the corresponding sample means by ky  and .kx  Let the variable x  be 
observed in 12s  on the first occasion and the variable y  in 23s  on the second occasion. Denote the overlap 
ratios by λ  2 12( )n n=  and µ  2 23( ).n n=  The SRS estimators for the population totals Y  and X  are 
defined by 23ŜRSY Ny=  and 12

ˆ ,SRSX Nx=  respectively. 

Define the growth rate g  of the total turnover between the two occasions by 1g G= −  with .G Y X=  
For estimating G  there are two options. One of the standard (STN) options is based on the estimated 
totals on both occasions, that is 

 23

12

ˆˆ ;ˆ
SRS

STN
SRS

Y yG
xX

= =   (2.1) 

see Nordberg (2000), Qualité and Tillé (2008) and Knottnerus and Van Delden (2012). Note that the 
estimator ˆˆ 1STN STNg G= −  for g  has the same variance as ˆ .STNG  For sufficiently large n  this variance can 
be approximated by using a first-order Taylor series expansion of ˆ .STNG  That is,  

( ) ( )

( ) ( ) ( ){ }

23 122

2
23 12 23 122

1ˆvar var

1              var var 2 cov ,                         

STNG y Gx
X

y G x G y x
X

≈ −

= + −
 

 2 2 2
2

23 12 2

1 1 1 1 1 1              2 , y x xyS G S G S
n N n N n NX

λµ       = − + − − −      
      

  (2.2) 

where ( ) ( )22 1y iU
S Y Y N= − −∑  is the adjusted population variance of the iY  and 2

xS  that of the iX  

while ( )( ) ( )1xy i iU
S X X Y Y N= − − −∑  is their adjusted population covariance. Cochran (1977, page 

153) suggests as working rule to use the large-sample result if the sample size exceeds 30 and the 
coefficients of variation of the numerator and denominator are less than 10%. For (different) derivations 
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of the expression for ( )23 12cov ,y x  used in (2.2), see Tam (1984) and Knottnerus and Van Delden (2012). 

The adjusted population (co)variances can be estimated unbiasedly by the sample (co)variances; recall 
sample (co)variances 2

yks  and yxks  from sample ks  ( 1, 2, 3,12, 23)k =  are defined by 

( )

( )( )

22 1         
1

1 . 
1

k

k

yk i k
k i s

yxk i k i k
k i s

s Y y
n

s Y y X x
n

∈

∈

= −
−

= − −
−

∑

∑
 

An alternative option for estimating G  and g  is based on enterprises observed on both occasions in 
overlap 2s  (OLP). That is, 

 2

2

ˆ
OLP

yG
x

=   (2.3) 

For sufficiently large 2 ,n  the well-known approximation for the variance of this estimator is  

 
( ) ( )2 22

2
2

2

1ˆvar var

1 1 1                ,

OLP

y Gx

G y Gx
X

S
n NX −

≈ −

 
= − 

 

  (2.4) 

where 2
y GxS −  stands for 2 2 2 2 ;y x xyS G S GS+ −  see Cochran (1977, page 31). In order to get some more 

insight into the merits of both ˆSTNg  and ˆ ,OLPg  consider the following examples.  

 
Example 2.1. The data used in this example are panel observations on the turnover of Dutch supermarkets 
in February 2011 and 2012 from stratum 3 (size class 3). The stratum size is 386.N =  Furthermore, 

1 215, 57n n= =  and 3 17.n =  For the different samples we have (in thousand euros) 

2 2
23 12 23 1297.2, 89.8, 3,781, and 2,232.y xy x s s= = = =  

The population correlation coefficient ( )xy xy x yS S Sρ =  between the iY  and the iX  is estimated from 

overlap 2s  by 2 2 2 2ˆ 0.876.xy xy y xs s sρ = =  To avoid negative variance estimates, Knottnerus and Van 

Delden (2012) propose estimating xyS  in (2.2) by 2 12 23
ˆ ˆ 2,545.xy xy x yS s sρ= =  Substituting the above 

outcomes into (2.1) and (2.2), we obtain ( )ˆ 0.082 8.2%STNg = =  and ( )ˆ ˆvar 0.00324.STNg =  Assuming 

normality and using 0.975 1.96,u =  the 95%-confidence interval is approximately ( )95 3.0%,19.4% .STNI ≈ −  
In contrast, from overlap 2s  we get the estimates 

2 2 ˆ102.2, 97.3  and  0.050  ( 5.0%).OLPy x g= = = =  
Substituting the same estimates as before for X  and the (co)variances of the iX  and iY  into (2.4) yields 

( )ˆ ˆvar 0.00166.OLPg =  Under the normality assumption this yields a smaller 95%-confidence interval 

( )95 3.0%,13.0% . OLPI ≈ −  

 
Example 2.2. Among the data of Example 2.1 there were three enterprises with extreme -g values of        
-50%, 133% and -91%. It is beyond the scope of this paper to further analyse or correct these outliers. But 
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to illustrate the difference between the estimators ˆSTNg  and ˆOLPg  once more, we simply omit these 
enterprises so that 2 54n =  instead of 2 57.n =  A first result is that estimate 2ˆxyρ  increases from 0.876 to 

0.970. The latter is fairly high in spite of the fact that the coefficient of variation of the growth rates 
( )1i i ig Y X= −  is 2 2 2 4.1g gcv s g= =  which still indicates a rather high volatility among the growth 

rates in this example. Furthermore, in analogy with the previous example, we get ( )ˆ 0.074 7.4%STNg ==  
with ( )ˆvar 0.00251STNg =  and ( )ˆ 0.039 3.9%OLPg ==  with ( )ˆvar 0.00039.OLPg =  The corresponding 

95%-confidence intervals in this slightly modified example are approximately ( )95 -2.4%,17.2%  STNI ≈ and 

( )95 0.1%,7.7% . OLPI ≈ Compared to Example 2.1 the interval 95
OLPI  decreased relatively stronger than 95 .STNI  

In addition, Example 2.2 may serve as a warning to be cautious when using sample means as 23y  and 

12x  for estimating growth rates because these estimates may lead to unnecessarily large confidence 
interval around a suboptimal estimate. In the next section we look more closely at the question of what 
kind of circumstances may lead to a large interval 95 .STNI  

 
3  Reasons for a large interval 95

STNI   
 

In order to get more insight into the difference between ( )ˆvar OLPg  and ( )ˆvar ,STNg  we assume 

12 23n n n= =  and ,  0;xyG S >  hence, 2 / .n nλ µ= =  Then subtracting (2.4) from (2.2) yields  

( ) ( ) ( )

( ) ( )( ){ }

2 2 2
2

2 2

2 2 2 2
2

1 1 1 1ˆ ˆvar var 2

1 2 1 1

STN OLP xy y x

xy y x

g g G S S G S
n n n nX

G S S G S
nX

λ

λ λ
λ

     − ≈ − − − +    
     

= − − − +

 

 ( )2
2

1 2 .xy y GxG S S
nX
λ λ

λ −
−

= −  (3.1) 

In other words, ( )ˆvar OLPg  is smaller than ( )ˆvar STNg  when 2 2y Gx xyS GSλ −>  provided 0.xyS >  

Assuming 2 2 ,y xS S=  Qualité and Tillé (2008) derive a similar result for the parameter of absolute change 

when ( )1 .xy xyλ ρ ρ> −  An anonymous referee pointed out that ( )1 xy xyλ ρ ρ< −  is a sufficient 

condition for ( ) ( )ˆ ˆvar varOLP STNg g>  because (3.1) can be rewritten as  

( ) ( ) ( )
2 2 2

2 2

1 1
2 2 2 2 2 0,  x y y x x y

xy xy xy xy
x y

GS S S G S GS S
GS SnX nX

λ λ
λρ ρ λρ ρ

λ λ

 − + −
+ − ≤ + − <  

 
 

provided that ( )1 .xy xyλ ρ ρ< −   

If N  is sufficiently large, a weaker condition can be derived under some standard model assumptions. 
Suppose that the data satisfy the model i i iY BX u= +  with ( ) 0,iE u =  2 2( )i iE u X δσ=  and ( ) 0i jE u u =  
( );i j≠  recall iX  is not random in this context. Under this model, we make the (weak) assumptions (i) 

2
yx xG S S=  and (ii) ( )2 2 21 .y Gx y xyS S ρ− = −  To justify these assumptions, recall from regression theory that 
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2ˆ
yx xB S S=  can be seen as the unbiased, consistent estimator for B  from an ordinary least squares (OLS) 

regression of iY  on iX  and a constant ( 1,..., ).i N=  Furthermore, the corresponding OLS estimator 

( )ˆY BX−  for the constant has zero expectation under the above model while its variance is of order 1 .N  

Hence, ( ) ( ){ }ˆ ˆ0 plim plimY BX X G B= − = −  as N →∞  and provided 0X c> >  for all ,N  we get the 

somewhat counterintuitive result ( )ˆplim 0.G B− =  In fact, it can be shown that  

( ) ( ) ( )2ˆ 1 1 1 1p yx x pG Y X B O N S S O N   = = + = +     

as .N →∞  This justifies assumption (i); for further details, see the end of this section. Furthermore, 

( )2 21y xyS ρ−  can be seen as the (unexplained) variance of the residuals from the OLS regression. However, 

under the above model assumptions, these residuals are asymptotically equal to i iY GX−  from which the 
approximate validity of (ii) follows. In addition, noting that 2 2

y xyS ρ  is the so-called explained variance of 

the above OLS regression, it follows from assumption (i) that 2 2 2 2 2 2ˆ .y xy x xS B S G Sρ = ≈  Combining this with 

assumptions (i) and (ii), we can rewrite (3.1) as  

 

( ) ( ) ( ){ }
( ) ( )
( ) ( ){ }

2 2 2 2
2

2
2 2

2

2
2

2

1ˆ ˆvar var 2 1

1
2 1

1
1 2 1 .                         

STN OLP x xy y

y
xy xy

y
xy

g g G S S
nX

S
nX

S
nX

λ λ ρ
λ

λ
λρ ρ

λ
λ

ρ λ
λ

−
− ≈ − −

−
≈ − +

−
= + −

  (3.2) 

Hence, ( )ˆvar OLPg  is larger than ( )ˆvar STNg  when  

 ( ) ( )2 21 2   1 .xy xy xy xyλ ρ ρ ρ ρ < − > −    (3.3) 

Thus for say 0.9,xyρ =  ( )ˆvar OLPg  is under the above model for sufficiently large N  larger than 

( )ˆvar STNg  when 0.117,λ <  and for say 0.75xyρ =  when 0.389.λ <  In addition, applying (3.2) to the 
data in Example 2.1 with 57 73 0.78λ ≈ =  and 0.876xyρ =  yields as approximation for the difference 

between both variances 0.0017 which is not very different from the actual difference of 0.0016 (=0.00324-
0.00166) in the example. For Example 2.2, taking 54 70 0.77λ = =  and 0.970,xyρ =  applying (3.2) 

yields 0.00226 instead of 0.00212 (=0.00251-0.00039) in the example. 
Under the above assumptions, it can also be shown that the ratio, say ,Q  of ( )ˆvar OLPg  and ( )ˆvar STNg  

can be approximated by  

 
( )
( ) ( ) ( )

12
1

2

ˆvar
1 2 1 ,

ˆvar 1
xyOLP

STN xy

g
Q f f

g
ρ

λ λ
ρ

−

−
 

= ≈ − − + −  − 
  (3.4) 

irrespective of the values of 2
yS  and 2;xS  f  stands for .n N  For a proof of (3.4), see Appendix A.1. From 

(3.4) it can be seen that Q  and ( )ˆvar OLPg  tend to zero as 2
xyρ  tends to unity, provided N  is sufficiently 

large and 1.λ <   
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It should be noted that in practice the correlations xyρ  often are rather high by the very nature of the 

data ( , ).i iY X  That is, a large (small) enterprise in period ( )12t −  is in most cases still large (small) after 

12 months; Knottnerus and Van Delden (2012, page 47) found for various strata an overall mean 
correlation of 0.90 and a variance of 0.0074. So it appears that ( )ˆvar STNg  is more affected by a decrease 
of λ  than ( )ˆvar OLPg  unless λ  is extremely low because (i) ( ) ( )ˆ ˆvar varOLP STNg g=  when 1λ =  and (ii) 

Q  is large when 2
xyρ  is large. For example, when 0.9xyρ =  and   0.1f =  a decrease of λ  from 0.9 to 0.5 

leads to a decrease of Q  from 0.58 to 0.37; recall 1Q =  when 1.λ =  This emphasizes once more the 
importance of avoiding panel attrition when using estimator ˆSTNg  while N  is large.  

A natural question that remains to be answered is when is N  sufficiently large. To answer this 
question, consider the difference B̂ G∆ ≡ −  and its variance, say 2 .σ∆  The difference ∆  can be written as  

2 2

2

2

1 1
1

1 1  

1 1    .  

xy i i
i

i U i Ux x

i
i

i U x

i
i i i

i U x

S X X YY Y
X N N XS S

X X Y
N XS

X XM U M
N XS

∈ ∈

∈

∈

−
∆ = − = −

−

 −
≈ − 

 
 −

= = − 
 

∑ ∑

∑

∑

 

In the second line we assumed 1N >>  and in the last line we used the model assumption .i i iY BX U= +  

Next, assuming ( ) 2var ,i iU X δσ=  we get  

( )
2

2 2
2

ˆvar .               i i
i U

B G M X
N

δσσ∆
∈

≡ − = ∑  

This variance can be estimated by  

2

2
ˆ2 2

2

ˆˆ ˆ , i i
i s

m X
Nn

δσσ∆
∈

= ∑
 

where 

2

2
ˆ22 2

2
22 22

1 1ˆ ˆ,                    
1

i
i i i i

i sx

X x ym Y X X
xx ns

δσ
∈

 −
= − = − −  

∑  

and δ̂  is an estimate from the OLS regression 

( )
2

2
2

2
ln ln      1,..., ;i i i i

yY X X w i n
x

α δ
 

− = + + = 
 

 

units with 2 2i iY y X x=  are omitted. Based on 2ˆ ,σ∆  one may call N  sufficiently large if the outcome of 
(3.1) will not severely be affected by replacing G  by ˆ .G σ∆+  In addition, it should be borne in mind that 
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relationships for very large N  are probably still a reasonably appropriate indication for what may occur 
when N  is not very large. 

 
4  Composite estimator for the growth rate 
 

Examining a composite estimator (COM) of the form 

 ( )ˆ ˆ ˆ1 ,COM STN OLPg kg k g= + −   (4.1) 

it follows from minimizing ( )ˆvar COMg  with respect to k  that  

 ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆvar cov ,
;

ˆ ˆ ˆ ˆvar var 2cov ,
OLP OLP STN

OLP STN OLP STN

g g g
k

g g g g
−

=
+ −

  (4.2) 

see also Särndal et al. (1992, page 372). Note that, by construction, ( )ˆvar COMg  can not exceed 

( ) ( ){ }ˆ ˆmin var ,var .STN OLPg g   

Using the linearized forms of the estimators ˆOLPg  and ˆ ,STNg  we get for their covariance 

( )

( ) ( ) ( ) ( ){ }

23 122 2

2
2 23 2 12 2 23 2 122

ˆ ˆcov , cov ,

1 cov , cov , cov , cov , .

OLP STN
y Gxy Gxg g

X X

y y G y x G x y G x x
X

−− ≈  
 

= − − +

 

Now using some results from Knottnerus (2003, page 377) 

( ) ( )

( ) ( )

2
2 23 23

23

2 23 23 23
23

1 1cov , var  

1 1cov , cov ,  ,

y

xy

y y y  S
n N

x y x y  S
n N

  
= = −  

   
  

= = −  
   

 

we obtain  

 ( ) ( ) ( )2 2 2
2

23 12

1 1 1 1 1ˆ ˆcov ,  .OLP STN y yx x yxg g S GS G S GS
n N n NX

     ≈ − − + − −    
    

  (4.3) 

In practice k  can be estimated by replacing all (co)variances in (4.2) by their sample estimates, yielding  

 ( ) ( )
( ) ( ) ( )

ˆ ˆˆ ˆ ˆvar cov ,ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆvar var 2cov ,

OLP OLP STN

OLP STN OLP STN

g g g
k

g g g g
−

=
+ −

  (4.4) 

To illustrate this approach, consider the following example.  
 
Example 4.1. The data are the same as for Example 2.1. Applying formulas (2.1) - (2.4) and (4.3) to these 
data yields 
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( )
ˆ ˆ0.082 (0.00254),   0.050 (0.00134),   and 
ˆ ˆ ˆcov , 0.00097.
STN OLP

STN OLP

g g
g g
= =

=
 

The variances are mentioned between parentheses. Substituting these estimates into (4.4) yields ˆ 0.191k =  
and subsequently, ˆ 0.056 (0.00127).COMg =  For the ease of exposition, all (co)variances in (4.4) are 
estimated from overlap 2 ,s  including the estimates of G  and X  in (2.2), (2.4) and (4.3). Furthermore, 
using these estimates, we found that ( ) ( )ˆ ˆvar varSTN OLPg g<  and 0.5k >  only if 2 12n ≤  ( )0.167 .λ ≤   

For the sake of completeness, we also give an example for the composite estimator for the parameter of 
absolute change (i.e., D Y X= − ). 

 
Example 4.2. We use the same data as in Example 2.1. As before all estimates for the (co)variances are 
based on 2.s  Define iD  by .i i iD Y X= −  Then we have two estimators for the parameter of absolute 
change 

23 12 2 2 2
ˆ ˆ7.35   and   4.89.STN OLPD y x D d y x= − = = = − =  

For the (co)variances of ˆ
STND  and ˆ

OLPD  we get 

( ) ( ) ( ) ( )

( )

( ) ( )

23 12 23 12

2 2
2 2 2

23 12 2

2
,2

2

23 12 2 2

2
2

23

ˆˆ ˆ ˆ ˆvar var var 2cov ,

1 1 1 1 1       2 23.58

1 1ˆˆvar 13.11

ˆ ˆˆ ˆcov , cov ,

1 1       

STN

y x xy

OLP y x

STN OLP

y

D y x y x

s s s
n N n N n N

D s
n N

D D y x y x

s
n N

λµ

−

= + −

     
= − + − − − =     

    
 

= − = 
 

= − −

 
= − − 
 

( ) ( )2
2 2 2

12

1 1 9.46.xy xy xs s s
n N

 
− − − = 
 

 

In analogy with (4.4) we now obtain  

( ) ( )
( ) ( ) ( )

ˆ ˆ ˆˆ ˆvar cov ,
ˆ 0.206

ˆ ˆ ˆ ˆˆ ˆ ˆvar var 2cov ,

OLP STN OLP

OLP STN STN OLP

D D D
k

D D D D

−
= =

+ −
 

and consequently, ˆ 5.40COMD = (12.37).  

Note that ˆCOMg  can be rewritten as 

( )
( )

ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ          ,
COM OLP STN OLP

OLP STN OLP

g g k g g

g k g g

= + −

≈ + −
 

where we used a first-order Taylor series approximation of ˆ .COMg  Therefore, the random character of 
estimator k̂  can be neglected for estimating ( )ˆvar .COMg  The error thus introduced is of order 21 n  as 
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2n →∞  and ˆCOMg  is asymptotically unbiased. Recall that the standard procedure for estimating the 
variance of the ratio estimator or the regression estimator is based on a first-order Taylor series 
approximation as well. 

In addition, under the same assumptions as (3.4), it can be shown that for sufficiently large ,N   

 
12

2

2
1 ;

1
xy

xy

k
λρ
ρ

−
 

= +  − 
  (4.5) 

for a proof of (4.5), see Appendix A.1. From (4.5) it can be seen that k  is decreasing in .λ  So we have the 
somewhat counterintuitive result that k  is decreasing in λ  whereas according to (3.1), ratio Q  in (3.4) is 
a convex function of ;λ  recall that ( ) ( )ˆ ˆvar varSTN OLPg g=  and, consequently, 1Q =  for 1λ =  and 

2 2 .y Gx xyS GSλ −=  

 
5  Aligned composite estimators for growth rates and totals 
 

So far we only looked at growth rates because in practice the estimate ˆ
SRSX  for the turnover of 12 

months ago can be considered more or less as fixed (i.e., can not be changed anymore). When X  refers to 
the total turnover in month ( 1),t −  it is likely that the figures for the preceding month can still be 
improved and modified. In such a situation the initial estimate ˆ

SRSX  might be revised as well.  

Before examining a multivariate composite estimator for growth rates and totals, we first look at a 
multivariate composite estimator for the parameter of absolute change and the corresponding population 

means or totals; also see Example 4.2. Define the initial vector estimator 0̂θ  by ( )0 23 12
ˆˆ , , .OLPD y xθ

′
=  

Denote the underlying parameter vector to be estimated by ( )1 2 3, , .θ θ θ θ ′=  Let 0V  denote the covariance 

matrix of 0̂ .θ  In terms of θ  the problem is now to find an aligned composite estimator ˆ
ACθ  with elements 

satisfying the prior restriction 1 2 3 0θ θ θ− + =  or, equivalently, 0D Y X− + =  or 0.D Y X− + =  
Although there is one restriction in this situation, we treat in this section the somewhat more general case 
with m  restrictions ( )1 3 .m≤ ≤  When the prior restrictions are of the linear form 0c Rθ− =  where R  is 
a 3m×  matrix of rank m  ( 3),m ≤  the optimal unbiased composite estimator for θ  is equal to the general 
restriction (GR) estimator 

 ( )0 0
ˆ ˆ ˆ    GR K c Rθ θ θ= + −   (5.1) 

( ) 1
0 0K V R RV R −′ ′=  

 ( ) ( )3 0
ˆcov ,GR GRV I KR Vθ≡ = −   (5.2) 

where 3I  stands for the 3 3×  identity matrix. The estimator ĜRθ  is optimal in the sense that when 0̂θ  
follows a multivariate normal distribution ( )0, ,N Vθ  the likelihood of 0̂θ  attains its maximum, under the 

constraint 0,c Rθ− =  for max
ˆ .GRθ θ=  Moreover, given the form ( )0 0

ˆ ˆ ˆ ,K K c Rθ θ θ= + −  it can be shown 
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that minimizing ( ){ }ˆtr cov Kθ  with respect to the 3 m×  matrix K  leads to (5.2). Recall that this means 

that for any other matrix K  the corresponding covariance matrix ( )ˆcov Kθ  exceeds GRV  by a positive 

semidefinite matrix; see Magnus and Neudecker (1988, pages 255-256). For further details on the GR 
estimator, see Knottnerus (2003, pages 328-332). To illustrate how (5.1) and (5.2) can be used for 
obtaining an aligned composite (AC) estimator ˆ ,ACθ  consider the following example dealing with the 
estimation of two population means and their difference.  
 

Example 5.1. We use the same data as in Examples 2.1 and 4.2. The initial vector ( )0 23 12
ˆˆ , ,OLPD y xθ

′
=  is 

given by ( )4.89, 97.19, 89.84 ′ . These estimates do not satisfy the restriction 1 2 3 0;θ θ θ− + =  note that 
(1, 1,1)R = −  and 0.c =  Most elements of 0V  have already been discussed. Similar to Example 4.2, for 

element ( )23
ˆcov ,OLPD y  we get  

 ( ) ( )

( ) ( )
23 2 2 23

23 23 23

ˆcov , cov ,

                      var cov , .

OLPD y y x y

y x y

= −

= −
  (5.3) 

Each term in (5.3) can be estimated from 2s  as described before. The other covariances in 0V  have a 

similar form and can be estimated in the same manner. The variance estimates for 23
ˆ ,OLPD y  and 12x  are 

13.12, 38.79 and 22.92, respectively. Next, applying (5.1) and (5.2) with K  replaced by 

( ) 1

0 0
ˆ ˆ ˆ ,K V R RV R

−
′ ′=  we obtain the following aligned composite AC estimates  

ˆ ˆ ˆ5.40 (12.37), 96.28 (36.32), and 90.88 (19.75).AC AC ACD Y X= = =  

Between parentheses the variances are mentioned.  

Now three remarks are in order. Firstly, ˆ
COMD  discussed in the preceding section can also be derived 

from (5.1) and (5.2) by choosing ( )0
ˆ ˆˆ ,STN OLPD Dθ

′
=  with prior restriction 1 2 0.θ θ− =  Secondly, by 

construction, the estimator ˆ
ACD  is equal to estimator ˆ

COMD  and, consequently, they have the same 
variance. Thirdly, were K  known, then the AC estimator would be unbiased. But because K  is to be 
replaced by ˆ ,K  the AC estimator ˆ

ACθ  is only asymptotically unbiased. The same remark applies to the 

estimator ( )3 0
ˆ ˆI KR V−  of ˆcov( ).ACθ  Similar to ĈOMθ  described in the preceding section, the bias of ˆ

ACθ  is 

of order 2(1 / );O n  for the relationship between ˆ
ACθ  and the regression estimator, see Appendix A.3. 

In case of m  nonlinear restrictions, say ( ) 0,c R θ− =  a first-order Taylor series approximation around 

0̂θ θ=  yields ( ) ( )( )0 0 0
ˆ ˆ ˆ 0Rc R Dθ θ θ θ− − − =  or, equivalently,  

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ0,   where   .R Rc D c c R Dθ θ θ θ θ θ θ− = = − +   (5.4) 
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( )RD θ  stands for the 3m×  matrix of partial derivatives of ( )R θ  ( ) ( )( )i.e., .RD Rθ θ θ ′= ∂ ∂  

Subsequently, an iterative procedure can be carried out by repeatedly applying (5.1) and (5.2) to the 
updated linearized versions of the nonlinear restrictions ( ) 0.c R θ− =  This yields 

 
( )

( )

( )
( ) ( )

0

0
1

0 0

3 0

1

1 1

ˆ ˆ ˆ ;
ˆˆ ;

;
ˆcov( ) ;

ˆ ;

ˆ ˆ            1 2 .

h h h

h h h

h h h h

h h h

h R h

h h h h

K e

e c D

K V D D V D

I K D V

D D

c c R D h , ,...

θ θ

θ

θ

θ

θ θ

−

−

− −

= +


= − 


′ ′= 
= − 
= 


= − + = 

  (5.5) 

For further details, see Appendix A.2 and Knottnerus (2003, pages 351-354). Note that the first equation 
can be seen as an update of 0̂θ  rather than of 1

ˆ .hθ −  This is an important difference with the celebrated 
Kalman equations; see Kalman (1960). In the present context, the vectors 1ĥθ −  are only used in a 
numerical procedure for finding new (better) Taylor series approximations of the nonlinear restrictions 

( ) 0c R θ− =  around 1ĥθ θ −=  ( 1,2,...)h =  until convergence is reached. Furthermore, note that ˆhe  can be 
seen as a m − vector of restriction errors when substituting 0̂θ θ=  into the linearized restrictions around 

1
ˆ .hθ θ −=  To illustrate the use of the Kalman-like equations in (5.5) for deriving aligned composite 

estimators for growth rates and totals, consider the following example. 
 

Example 5.2. We use the same data as in Example 4.1. The initial vector 0̂θ  is now defined by 

( )0 23 12
ˆ ˆ , ,OLPG y xθ ′=  and is given by ( )1.050, 97.191, 89.840 .′  These estimates do not satisfy the 

(nonlinear) prior restriction 2 1 3 0θ θ θ− =  ( 1).m =  All elements of 0V  and their estimation have already 

been discussed. For the ( 1)-thh +  recursion ( )ĥR θ  and the 1 3×  matrix 1hD +  are given by  

( ) ( )
( )

2 1 3

1 3 1

ˆ ˆ ˆ ˆ

ˆ ˆ1 ,

h h h h

h h h

R

D

θ θ θ θ

θ θ+

= −

= − −
 

respectively; ĥkθ  is the -thk  element of vector ĥθ  (1 3).k≤ ≤  Recall 0V  and 0̂V  remain unchanged for all 
recursions. The first recursion from (5.5) yields  

( )1̂ 1.0544, 95.945, 91.000 .θ ′=  

The (nonlinear) restriction is almost satisfied, that is, ( )1̂ 0.005.R θ = −  The second recursion yields the 

following aligned composite (AC) estimates  

ˆ ˆˆ 1.0544 (0.00130), 95.947 (35.55), and 90.998 (19.85).AC AC ACG Y X= = =  
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Between parentheses the variances are mentioned. The (absolute) error of the second restriction further 
decreased, that is, ( )2̂ 0.001R θ = −  and we stopped the recursions. Due to the nonlinearity of the 

restriction, the estimates of ˆ
ACG  and its variance are slightly different from those of ˆ

COMG  and its 
variance in Example 4.1.  

It is noteworthy that in Example 5.2 ˆ
ACG  is not much different of ˆ

OLPG  (=1.050). A related method for 
estimating totals is the so-called matched pair (MP) method; see Smith et al. (2003, page 269-271). The 
original MP method is purely based on ˆ

OLPG  (in our notation) between months t  and 1t −  and used by 
ONS for estimating the monthly retail sales index. In a simulation study the authors found that the MP 
method gives a good performance for the short-term growth rates but for terms of more than 15 months 
the performance was worsening with respect to the bias. The bias could be corrected by benchmarking to 
growth rates on a regular basis. Another drawback of the MP method seems to be that a formula for the 
variance of the MP estimator is (still) lacking. In the next section we describe an extension of the AC 
estimator for incorporating auxiliary information into the AC estimation procedure. 

 
6  Extensions 
 

In this section we briefly discuss a number of extensions of the AC estimator described in the 
preceding section. Firstly, we pay attention to the situation whereby regression estimators, say ,

ˆ
REG kY  and 

,
ˆ ,REG kX  are used instead of SRS estimators ( )2,  12 and 23 .k =  To avoid a notational burden, we look at 

the situation with one explanatory variable, say ;z  a generalization for more auxiliaries is straightforward. 
Furthermore, for simplicity’s sake, we assume that the estimated regression coefficients, denoted by 2yzb  
and 2 ,xzb  stem from 2.s  In order to derive the aligned composite estimators in this situation, we only need 

to evaluate (co)variance terms of the form ( ), ,
ˆ ˆcov ,REG k REG lY X  in the different formulas 

( ),  2,  12 and 23 .k l =  This evaluation can be done as follows. Replace the iY  and iX  in the formulas by 
the corresponding (estimated) residuals from a regression on iZ  and a constant. That is,  

 ( ) ( )* *
, ,

ˆ ˆcov , cov , ,REG k REG l k lY X y x=   (6.1) 

where the (estimated) residual variables *
iY  and *

iX  are defined by  

( )
( )

*
2 2

*
2 2

.

.
i i k yz i k i yz i

i i l xz i l i xz i

Y Y y b Z z Y b Z const

X X x b Z z X b Z const

= − − − = − +

= − − − = − +
 

The term ( )* *cov ,k ly x  on the right-hand side of (6.1) can be calculated in the same manner as 

( )cov , ,k ly x  discussed in preceding sections; see also formula (A.8) in Appendix A.3 and recall 

( ) ( ), , ,
ˆ ˆ ˆvar cov , .REG k REG k REG kY Y Y=  In addition, the same approach can be applied when use is made of ratio 

estimators such as ,
ˆ
R k k kY y Z z=  and ,

ˆ .R l l lX x Z z=  That is, the residual variables *
iY  and *

iX  are now 

to be read as  
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* *2 2

2 2
   and   .i i i i i i

y xY Y Z X X Z
z z

= − = −  

An alternative option for taking an auxiliary variable into account is to extend both the parameter 
vector θ  and the set of prior restrictions. For instance, in Example 5.1 the parameter θ  was implicitly 

defined by ( ), , .D Y Xθ ′=  When the variable z  is observed in samples 12 and 23, the new, extended 0̂θ  

is given by 

( )0 23 12 23 12 2
ˆˆ , , , , ,OLPD y x z z zθ

′
=  

and the extended set of prior restrictions is  
2 1 3

4 5

4 6

4

0;
0;
0;

.Z

θ θ θ
θ θ
θ θ

θ

− − =

− =

− =

=  
Hence, the new c  is ( )0, 0, 0, .c Z ′=  In this way the efficiency of 0̂θ  can be further improved. 

Secondly, another extension regards births and deaths. With respect to deaths, the population in period 
12t −  can be divided into two (post)strata: one consisting of the deaths in period t  and one consisting of 

the enterprises existing in periods 12t −  and .t  Using such a poststratification still leads to an 
asymptotically unbiased estimator for the population mean at period ,t  provided there are no births. In 
order to take births into account, one should draw an appropriate sample from this substratum of births 
especially when the number of births is substantial, and when there are no realistic assumptions with 
respect to the total turnover in this substratum in month .t   

Finally, we examine the situation whereby a combination of quarterly and semesterly data is to be 
analysed. Suppose that in quarters 2, 4 and 6 semesterly samples are drawn which need not be the same as 
the quarterly samples in those quarters. In order to explain the AC estimator in this situation, consider six 
consecutive quarterly SRS estimates for the quarterly means of the turnover, say 1 2 3 4 5 6, , , , , ,y y y y y y  and 
three semesterly SRS estimates for the semesterly means of turnover, say 2 4,  x x  and 6;x  note that the 
subscript refers to the quarter of observation and not to a sample set as before. Furthermore, suppose that 
the following growth ratios are to be estimated: 62 6 2 62 6 2,  G Y Y H X X= =  and 64 6 4H X X=  as well as 
the corresponding quarterly and semesterly totals. In order to obtain a consistent set of estimators for totals 
(means) and growth rates, define in analogy with the approach in Section 5 

( )0 62, 62, 64, 1 2 3 4 5 6 2 4 6
ˆ ˆ ˆ ˆ, , , , , , , , , , , .OLP OLP OLPG H H y y y y y y x x xθ ′=  

The corresponding set of restrictions is 

9 1 5 6 62 2

12 2 10 6 62 2

12 3 11 6 64 4

4 5 10 1 2 2

6 7 11 3 4 4

8 9 12 5 6 6

0
0
0
0
0
0.

Y G Y
X H X
X H X
Y Y X
Y Y X
Y Y X

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

− = − =

− = − =

− = − =

+ − = + − =

+ − = + − =

+ − = + − =
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The matrix 0V  can be estimated in a similar manner as described in Sections 2 and 4. 

 
7  Conclusions and discussion 
 

This section summarizes a number of conclusions and issues for further research. 

When totals of turnover are estimated from a panel in months t  and 12,t −  two estimators ˆSTNg  and 
ˆOLPg  for the growth rate between these months can be distinguished.  

When using ˆ ,STNg  one should be aware that in practice, ( )ˆvar OLPg  might be much smaller than 

( )ˆvar STNg  especially when the turnover in month 12t −  and the turnover in month t  are highly 
correlated and the overlap ratios λ  and µ  are not too small.  

The efficiency of ˆSTNg  and ˆOLPg  can be improved by the composite estimator ˆCOMg  described in 

Section 4.  

Using least squares techniques, an aligned composite vector-estimator ( )ˆ ˆˆ , ,AC AC ACg Y X ′  can be derived 

that obeys the nonlinear restriction for totals and growth rates: ( )ˆ ˆˆ1 .AC AC ACY g X= +  

The AC estimator subject to linear restrictions can be extended in several ways: (i) for nonlinear 
restrictions, (ii) for different data sets such as monthly, quarterly and yearly data, (iii) for births and 
deaths, (iv) for regression and ratio estimators, and (v) for additional auxiliary variables.  

Similar to the regression estimator, the AC estimator is asymptotically unbiased. This remark also 
applies to the covariance-matrix estimator ( ) 0

ˆ ˆ .kI KR V−   

There is not yet an unambiguous answer on the question of to what extent data from the past should be 
included in the vector estimate 0̂θ  each month. The answer depends upon: (i) the NSI’s policy and rules 

with respect to revision of already published figures, (ii) the fact that from a theoretical viewpoint, the 
sequence of T  monthly SRS estimates 1 2, , ..., Ty y y  (included as component in 0̂ )θ  should be so long 

that the difference between the two AC estimators of 1,Y  say 1
ˆ T

ACY  and 1
1
ˆ ,T

ACY +  is not substantial, and (iii) 

the size of the samples. That is, in analogy with the regression estimator or, equivalently, the calibration 
estimator, the sample sizes should be much larger than the number of (calibration) restrictions. For a 
simulation study on the variance of the regression estimator and the number of regressors, see Silva and 
Skinner (1997) and for a relationship between the regression estimator and the GR estimator, see 
Appendix A.3 and Knottnerus (2003). 

In the specific case of estimating mutually aligned totals and changes, additional research is needed for 
finding: (i) the optimal and practical length for the monthly, quarterly, semesterly and yearly series of SRS 
estimates to be included in the initial vector 0̂θ  and (ii) a rule of thumb with respect to the number of 
restrictions compared to the sample sizes in order to find an AC estimator ˆ

ACθ  with an improved 

efficiency.  
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Appendix  
 

A.1  Proofs of (3.4) and (4.5) 
 

The proof of (3.4) is as follows. For 12 23 ,n n n= =  formula (2.2) can be rewritten as  

 ( ) 2
2

1 1 1 1ˆvar 2STN y Gx xyg S GS
n N n nX

λ
−

    ≈ − + −    
    

  (A.1) 

Dividing (2.4) by (A.1) yields  

( )
( )

( )
( ) ( )

( ) ( )

2

2

1 2

2

1

1
2

1 1
ˆvar

1 1 1ˆvar 2

1 2 1

1 2 1

y Gx
OLP

STN
y Gx xy

y Gx

y Gx xy

xy

y Gx

Sg n NQ
g S GS

n N n n

f S

f S GS

GS
f f

S

λ
λ

λ

λ

λ λ

−

−

−
−

−

−

−

−

 − 
 = ≈

   − + −   
   

−
=

− + −

 
= − − + −  

 

 

 ( ) ( )
12

1
2                                1 2 1 . 

1
xy

xy

f f
ρ

λ λ
ρ

−

−
 

≈ − − + −  − 
 (A.2) 

In the last line we used that under the model assumptions mentioned in Section 3, 2 2 2 2ˆ
xy x xy yGS B S Sρ≈ =  

and ( )2 2 21 ,y Gx xy yS Sρ− ≈ −  provided that N  is sufficiently large; see also the derivation of (3.2). 

Next, under the same assumptions, (4.5) can be derived as follows. Since 12 23 ,n n n= =  the covariance 
in (4.3) can be rewritten as  

 ( ) 2
2

1 1 1ˆ ˆcov , .OLP STN y Gxg g S
n NX −

 ≈ − 
 

  (A.3) 

Combining (2.4), (A.1) and (A.3), we can write k  in (4.2) as 

2

2

1 12

2 2

1 1

1 1 12

2 2
1 1 .

1

y Gx

y Gx xy

xy xy

y Gx xy

S
n nk

S GS
n n n n

GS
S

λ
λ

λ

λ λρ
ρ

−

−

− −

−

 − 
 ≈

   − + −   
   

   
= + ≈ +      −   
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Similar to deriving (A.2), we used in the last line ( )2 2 21 .xy y Gx xy xyGS S ρ ρ− ≈ −  

 
A.2  Derivation of (5.5) 
 

In case of m  linear restrictions 0,c Rθ− =  matrix K  can be found by minimizing  

( ){ } ( ){ }0 0 0 0
ˆ ˆ ˆ ˆmin  ;

K
E K c R K c Rθ θ θ θ θ θ
 ′

− − − − − − 
 

 

see Knottnerus (2003, page 330). The solution of this least squares problem is given by  

 
( )( ) ( )
( )

1

0 0 0

1
0 0

ˆ ˆ ˆcov

   .

K E c R c R

V R RV R

θ θ θ θ
−

−

 ′  = − − −   

′ ′=

  (A.4) 

In case of m  nonlinear restrictions, the new minimand is  

( ){ } ( ){ }0 0 0 0
ˆ ˆ ˆ ˆ .E K c R K c Rθ θ θ θ θ θ

 ′   − − − − − −      
 

Similarly to (A.4), it can be shown that this minimand attains its minimum for  

 ( ) ( ) ( ){ } 1

0 0 0
ˆ ˆ ˆcov .K E c R c Rθ θ θ θ

− ′   = − − −      
  (A.5) 

Substituting Taylor’s linearization ( ) ( ) ( )( )0 0
ˆ ˆ

RR R Dθ θ θ θ θ≈ + −  into (A.5), we get the following 

approximation, say 1,K  for K   

 
( ) ( ) ( )

( ) ( ) ( )

1
1 0 0

1

0 0 0 0 0
ˆ ˆ ˆ .

R R R

R R R

K V D D V D

V D D V D

θ θ θ

θ θ θ

−

−

′ ′≈   

 ′ ′≈  

  (A.6) 

Assuming that ( )0 0
ˆ ~ , ,N Vθ θ  the first approximation for the constrained maximum likelihood (ML) 

solution, say (1)ˆ ,MLθ  can be calculated in the standard manner by using the linearized restrictions  

 ( ) ( ){ }(1)
0 1 0 0 0

ˆ ˆ ˆ ˆ ˆ ,ML RK c Dθ θ θ θ θ= + −   (A.7) 

where ( )0̂c θ  is defined by (5.4). If (1)ˆ
MLθ  does not satisfy the nonlinear restrictions ( ) 0,c R θ− =  a better 

approximation of K  might be obtained by replacing 0̂θ  in (A.6) by update (1)ˆ
MLθ  resulting in a new matrix 

2 .K  In turn, in analogy with (A.7) 2K  leads to a better approximation or update of 0̂ ,θ  say (2)ˆ ,MLθ   

( ) ( ){ }(2) (1) (1)
0 2 0

ˆ ˆ ˆ ˆ ˆ ,ML ML R MLK c Dθ θ θ θ θ= + −  

where we used Taylor’s linearization of the nonlinear restrictions around (1)ˆ .MLθ θ=  Repeating this 
procedure, we get the following recursions for ( )ˆ h

MLθ  or, for short, ĥθ   



Survey Methodology, December 2014 281 
 

 
Statistics Canada, Catalogue No. 12-001-X 

{ }
[ ] ( )

0 0

1
0 0

ˆ ˆ ˆ

     1, 2, ... .

h h h h

h h h h

K c D

K V D D V D h

θ θ θ
−

= + −

′ ′= =
 

For definitions of hc  and ,hD  see Section 5; in practice, 0V  should be replaced by its estimate 0̂.V  By 
construction, for each h  we have  

( ) ( )
( ) ( ) ( )

( 1) ( 1) ( )

( 1) ( 1) ( 1) ( 1) ( )

ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ;

h h h
ML R ML ML

h h h h h
ML R ML ML R ML ML

c D

c R D D

θ θ θ

θ θ θ θ θ

− −

− − − −

= −

= − + −
 

see (5.4). Hence, when ( )ˆ h
MLθ  converges to the (constrained) maximum likelihood solution ˆ ,MLθ  

( )( 1)ˆ h
MLc R θ −−  converges to zero. Also, assuming hK  converges to say ˆ ,MLK  the corresponding covariance 

matrix of ˆ ,MLθ  say ,MLV  can be approximated by  

( ){ } 0 ,ML k RV I KD Vθ≈ −  

which for sufficiently large h  can be estimated by ( ) 0
ˆ ˆ ;ML k h hV I K D V= −  see also Cramer (1986, page 38).  

 
A.3  Regression estimator as GR estimator 
 

Suppose that iY  and the auxiliary variable ,iZ  with known population mean ,Z  are observed in 2.s  In 
order to apply the GR estimator to this situation, define  

( )
2

2
0 0 0 2

2 2

   1 1ˆ ˆ,     cov .
  

y yz

yz z

S Sy
V

z n N S S
θ θ

     = = = −        
 

The prior restriction is  

0 (0,  1) .y

z

c R Z
θ

θ
θ
 

= − = −  
   

Applying (5.1) and (5.2) to this case yields the following GR estimator 

( ) ( )

( ) ( )

( )

2
0 0 2

2

1 2
0 0 22

2 0 0

ˆ ˆ ˆ

1             
1

1   
.

0     0

GR

yz yz
yz yz z

zz

yz
GR

y
K c R K Z z

z

S b
K V R RV R b S S

SS

b
V I KR V V

θ θ θ

−

 
= + − = + − 

 
   

′ ′= = = =       
− 

= − =  
 

 

Hence, replacing yzb  by its estimate 2
2 2 2 ,yz yz zb s s=  we can approximate the first element in ĜRθ  by 

( )2 2 2ĜRy yzy b Z zθ ≈ + −  which corresponds to the familiar regression estimator, often denoted by ˆ .REGY  

For sufficiently large 2 ,n  the variance of ˆ
REGY  can be approximated by  
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( ) ( ) [ ] ( )

( ){ }

2
11

2

2

2

22

1 1ˆ ˆvar var

1 1 ;               

1 ;
1

REG GRy GR y yz yz

e

e i yz i
i U

Y V S b S
n N

S
n N

S Y Y b Z Z
N

θ

∈

 
≈ = = − − 

 
 

= − 
 

= − − −
− ∑

  (A.8) 

recall from regression theory that 2 2
yz yz yz zb S b S=  and 2 2 2 2.y yz z eS b S S= +  The variance in (A.8) can be 

estimated by the well-known variance estimator 

( ) ( ){ }
2

22 2
ˆ ˆ2 2 2 2 2

2 2

1 1 1ˆˆvar ,    where    .
1REG e e i yz i

i s

Y s s Y y b Z z
n N n ∈

 
= − = − − −  − 

∑  

Similar results can be derived for more than one auxiliary variable. This illustrates once more that with 
respect to the bias and the variance approximation the AC estimator strongly resembles the regression 
estimator or, equivalently, the calibration estimator. 
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The estimation of gross flows in complex surveys with 
random nonresponse 

Andrés Gutiérrez, Leonardo Trujillo and Pedro Luis do Nascimento Silva1 

Abstract 

Rotating panel surveys are used to calculate estimates of gross flows between two consecutive periods of 
measurement. This paper considers a general procedure for the estimation of gross flows when the rotating 
panel survey has been generated from a complex survey design with random nonresponse. A pseudo maximum 
likelihood approach is considered through a two-stage model of Markov chains for the allocation of individuals 
among the categories in the survey and for modeling for nonresponse. 

 
Key Words: Design-based inference; Rotating panel surveys; Gross flows; Markov chains. 

 
 
1  Introduction 
 

Survey techniques are commonly used in order to estimate some parameters of interest in a finite 
population. The inference for these parameters is based on the probability distribution induced by the 
sampling design used to get the sample of individuals. In most of the cases for official statistics, the 
sample design under consideration is complex in the sense of not providing a simple random sample of the 
population. 

After getting a probabilistic sample, sometimes it is necessary to consider the classification of the 
individuals in the sample through different categories in one or more nominal variables. This classification 
can be incorporated in a contingency table in order to summarize two variables or the temporal variations 
in a single variable at two different periods of time. However, in order to get accurate estimates, it is not 
advisable to ignore the sampling design in the inference for the parameters of interest. 

Another common problem in this type of survey is nonresponse for some sample units, which can 
rarely be considered random or ignorable. Therefore it is necessary to consider some approach that can 
compensate for the potentially nonignorable nonresponse. Chen and Fienberg (1974), Stasny (1987) and 
recently Lu and Lohr (2010) have considered two-stage models in order to classify the individuals in a 
sample for two different times with nonignorable nonresponse. However, this approach ignored the 
sampling design that is complex and also informative for most surveys conducted for producing official 
statistics. 

This article considers a common scenario for longitudinal surveys where the main aim is to estimate 
the number of population individuals belonging to several cells in a contingency table according to the 
categories of a variable measured at two different points in time. We also consider the modeling of the 
nonresponse that can affect the estimates if it is ignored. The inferential processes are tied to the complex 
survey design used to collect the information in the sample. 

For instance, in labour force surveys, it is possible to find complex classifications depending on the 
labour force status of the respondents at two consecutive periods of observation and measurement. The 
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aim is to estimate the number of people that in a past period were working and are still working in the 
current period of observation. Another possible objective is to estimate the number of people who were 
unemployed in the last period of observation and are still unemployed in the current period of the survey 
or the number of people that in the last period of observation were employed and in the current period are 
unemployed or vice versa. For this example, all the entries on Table 1.1 are considered as parameters of 
interest. Note that even under a census, the counts in Table 1.1 may not be observable due to nonresponse. 

 
Table 1.1 
Parameters of interest in a contingency table corresponding to a labour force survey at two consecutive 
periods of observation. 
 

Period 1 Period 2 
 Employed Unemployed Inactive Total 
Employed 11X  12X  13X  1X +  

Unemployed 21X  22X  23X  2X +  

Inactive 31X  32X  33X  3X +  

Total 1X +  2X +  3X +  X ++  

 
Kalton (2009) stated that, in terms of the marginal totals, it is possible to estimate the net flows through 

a direct comparison between the two periods of observation. Then, it is possible to determine if the 
unemployment rate increased or decreased and also in what magnitude. For example, comparing that on 
period 1 there were 1 1=+ ∑ jj

X X  people employed, whereas on period 2 there were 1 1=+ ∑ ii
X X  people 

employed. Nevertheless, a more detailed analysis can be obtained analyzing the gross flows as a 
decomposition of the net flows. In this way, if the unemployment rate increased one percentage point, it is 
possible to conclude if this increase was due to the fact that one percentage point of the employed people 
lost their job or because ten percentage points of the employed people lost their job and nine percentage 
points of the unemployed people found a new job. This is possible comparing the values ijX . 

Also, given that in a complex survey it is possible to have unequal sampling weights and clustering and 
stratification effects, the likelihood function of the sampling data is difficult to find in an analytical way. 
Then, using classical methods of maximum likelihood would no longer be convenient for survey data 
from complex surveys. Then, the standard analyses must be modified to take into account the sampling 
weights and the sampling effects of a complex survey such as weighted estimation of proportions, 
variance estimation based on the sampling design and generalized corrections for the design effects 
(Pessoa and Silva 1998). 

Section 2 surveys the basic statistical concepts used in this paper, such as survey estimators, 
nonresponse and categorical data inference. Section 3 proposes a superpopulation model describing the 
probabilistic behavior of the assignment of the individuals according to the categories of the variable 
considered in the survey. This corresponds to a two-stage Markov chain model. Some basic concepts of 
pseudo-likelihood estimation are also reviewed in Section 3. Then, in Section 4, we propose some 
estimators for the model parameters and the counts in the gross flows contingency table. These estimators 
are design-unbiased and the mathematical expressions to estimate their variance are shown in Section 5. 
Section 6 considers both an empirical application and a Monte Carlo simulation in order to test the 
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proposed methodology when the data in the survey is obtained under a simple and a complex survey 
design. Our simulation shows that other methodological approaches lead to biased estimation. Section 7 
considers a practical application for estimating gross flows for the Pesquisa Mensal de Emprego (PME 
survey) in Brazil. In Section 8, we highlight the strengths and shortcomings of the proposed method. All 
the mathematical proofs are presented in the Appendix. 

 
2  Motivation  
 

2.1  Sampling designs and estimators 
 

Consider a finite population as a set of N  units, where < ∞N , forming the universe of study. N  is 
known as the population size. Each element belonging to the population can be identified with an index .k  
Let U  be the index set given by { }= 1,..., ,..., .U k N  The selection of a sample { }1 2 ( )= , , , n ss k k k  is done 

according to a sampling design defined as the multivariate probability distribution over a support Q  in a 
way that ( ) > 0p s  for every ∈s Q  and  

( ) = 1.
∈
∑
s Q

p s  

Under a sampling design ( )⋅p , an inclusion probability is assigned to every element in the population 
in order to denote the probability that the element belongs to the sample. For the k -th element in the 
population this probability is denoted as π k  and it is known as the first order inclusion probability given 
by   

( ) ( )= = = 1 = ( )k k
s k

Pr k S Pr I p sπ
∋

∈ ∑  

where kI  is a random variable denoting the membership of the element k  to the sample, and the subindex 
∋s k  refers to the sum over all the possible samples containing the k -th element. Analogously, π kl  is 

known as the second order inclusion probability and it denotes the probability that the elements k  and l  
belong to the sample and it is given by 

( ) ( )
k,l

= ; = = 1; = 1 = ( ).π
∋

∈ ∈ ∑kl k l
s

Pr k S l S Pr I I p s  

The aim of the sample survey is to study a characteristic of interest y  associated with every unit in the 
population and to estimate a function of interest ,T  called a parameter.  

1= ( , , , , ). k NT f y y y  

This inferential approach is known as design-based inference. Under this approach, the estimates of the 
parameters and their properties depend directly on the discrete probability measure related to the chosen 
sampling design and do not take into account the properties of the finite population. Also, the values ky  
are taken as the observation for the individual k  for the characteristic of interest y . Also, y  is considered 
as a fixed quantity rather than a random variable. 

Then, the Horvitz-Thompson (HT) estimator can be defined as:   

,
ˆ = =π π∈ ∈

∑ ∑k
y k k

k s k sk

yt d y  
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where = 1 πk kd  is the reciprocal of the first-order inclusion probability and it is known as the expansion 
factor or basic design weight. The HT estimator is unbiased for the total population =∑y kU

t y , (assuming 

all the first order inclusion probabilities are greater than zero) and its variance is given by  

 ( ),
ˆ = .π π π∈ ∈

∆∑∑ k l
y kl

k U l U k l

y yVar t   (2.1) 

where ( )= , = π π π∆ −kl k l kl k lCov I I . If all the second-order inclusion probabilities are greater than zero, 

an unbiased estimator of (2.1) is given by  

 ( ),
ˆ = .π π π π∈ ∈

∆∑∑ kl k l
y

k s l s kl k l

y yVar t  

Gambino and Silva (2009) suggest that in a household survey, the main interest is to focus on 
characteristics for particular household members that could be related to health variables, educational 
variables, income/expenses, employment status, etc. In general, the sampling designs used for this kind of 
survey are complex and use techniques such as stratification, clustering or unequal probabilities of 
selection. Some of the results from repeated surveys consider the estimation of level at a particular point 
of time, estimation of changes between two survey rounds and the estimation of the average level 
parameters over repeated rounds of a survey. Different rotation schemes and the frequency of the survey 
can affect considerably the precision of the estimators. 

 
2.2  Pseudo-likelihood 
 

Some authors such as Fuller (2009), Chambers and Skinner (2003, p. 179), and Pessoa and Silva 
(1998, chapter 5) consider the problem where the maximum likelihood estimation is appropriate for 
simple random samples, as is the case in Stasny (1987), but not for samples resulting from a complex 
survey design. Under this scheme, it is assumed that the density population function is ( ),θf y  where the 
parameter of interest is θ . If there is access to the information for the whole population, through a census, 
the maximum likelihood estimator of θ  can be obtained by maximizing  

( ) ( )= log ,θ θ
∈
∑ k
k U

L f y  

with respect to θ . We will denote θN  as the value maximizing the last expression. The likelihood 
equations for the population are given by  

( ) = 0.θ
∈
∑ k
k U

u  

The ku  are known as scores and they are defined as  

( ) ( )log ,
= .

θ
θ

θ
∂

∂
k

k

f y
u  

The pseudo-likelihood approach considers that θN  is the parameter of interest according to the 
information collected in a complex sample. If ( )θ∈∑ kk U

u  is considered as the parameter of interest, it is 

possible to estimate it using a weighted linear estimator  
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( )θ
∈
∑ k k
k s

d u  

where kd  is a sampling design weight such as the inverse of the inclusion probability of the individual .k  
Then, it is possible to obtain an estimator for θN  solving the resulting equation system. 

 

Definition 2.1 A maximum pseudo-likelihood estimator θ̂s  for θN  corresponds to the solution of the 
pseudo-likelihood equations given by  

( ) = 0.θ
∈
∑ k k
k s

d u  

Using the Taylor linearization method, the asymptotic variance of a maximum pseudo-likelihood 
estimator based on the sampling design is given by  

( ) ( ) ( ) ( )1 1
θ̂ θ θ θ

− −

∈

 
≈        

 
∑p s N p k k N N
k s

V J V d u J  

where ( )θ
∈

  ∑p k k Nk s
V d u  is the variance of the estimator for the population total of the scores based on 

the sampling design and  

( )
( )

=

= .
θ θ

θ
θ

θ
∈

∂

∂
∑ kk U

N

N

u
J  

An estimator for ( )θ̂p sV  is given by  

( ) ( ) ( ) ( )1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ=θ θ θ θ
− −

∈

         
∑p s s p k k s s
k s

V J V d u J  

where ( )ˆˆ θ
∈

 
 ∑p k k sk s

V d u  is a consistent estimator for the variance of the estimator of the population total 

of the scores and  

( ) ( )
ˆ=

ˆˆ = .
θ θ

θ
θ

θ
∈

∂

∂
∑ k kk s

s

s

d u
J  

Then, following Binder (1983), the asymptotic distribution of θ̂s  is normal since  

( ) ( ) ( )
1/2ˆ ˆˆ 0,1 .θ θ θ
−

−p s s NV N
 

These definitions offer a solid background for the correct inference when using large samples as is the 
case in labour force surveys. 

 
2.3  Nonresponse 
 

Särndal and Lundström (2005) state that nonresponse has been a topic of increasing interest in national 
statistical offices during the last decades. Also, in the sampling survey literature, the attention to this topic 
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has increased considerably. Nonresponse is a common non desirable issue in the development of a survey 
that can affect considerably the quality of the estimates. 

Lohr (1999) discusses several types of nonresponse mechanisms:   

• The nonresponse mechanism is ignorable when the probability of an individual responding to 
the survey does not depend on the characteristic of interest. Note that the word "ignorable" 
makes reference to a model explaining the mechanism.  
 

• On the other hand, the nonresponse mechanism is nonignorable when the probability of an 
individual responding to the survey depends on the characteristic of interest. For example, in a 
labour survey, the possibility of response may depend on the labour force classification of the 
individuals in a household.  
 

Lumley (2009, chapter 9) analyses individual nonresponse with partial data for a respondent 
considering a design-based approach adjusting the sampling weights. Fuller (2009, chapter 5) considers 
some imputation techniques for the nonresponse treatment through probabilistic models and sampling 
weights. Särndal (2011) considers a model-based approach through balanced sets in order to achieve 
higher representativeness of the estimates. In the same way, Särndal and Lundström (2010) propose a set 
of indicators in order to judge the effectiveness of auxiliary information in order to control the bias 
generated by nonresponse. Särndal and Lundström (2005) give a large number of references about 
nonresponse. These references examine two main complementary aspects in a survey: prevention of the 
problem of nonresponse (before it happens) and estimation techniques in order to take into account 
nonresponse in the inference process. This second aspect is known as adjustment for nonresponse.  

 
3  Markov models for contingency tables with nonresponse 
 

Consider the problem of estimating gross flows between two consecutive periods of time using 
categorical data obtained from a panel survey and under nonresponse. Also, suppose that the outcome of 
every interview is the classification of the respondent into any of G  possible pairwise disjoint categories, 
and the aim is to estimate the gross flows between these categories using the information from individuals 
who were interviewed at two consecutive periods of time. Individuals who either did not answer in one or 
two periods or were excluded or included for only one of the two periods shall not have a definite 
classification among the categories. Then, there is one group of individuals with classification between the 
two periods, a group of individuals who only have the information for one of the two periods and a group 
of individuals who did not respond in any of the two periods of the survey. 

For those individuals responding on times 1−t  and t , the classification data can be summarized in a 
matrix of dimension ×G G . The available information for those individuals not responding the survey at 
time 1−t  but responding at time t  can be summarized in a column complement; the information for those 
individuals not responding at time t  but responding at time 1−t  can be summarized in a row 
complement. Finally, individuals not responding at any of the two times are included in a single cell 
counting the number of individuals with missing data at both times. 
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The whole matrix is illustrated in Table 3.1, where ijN  ( , = 1, ,i j G ) denotes the number of 
individuals in the population having classification i  at time 1−t  and classification j  at time t , iR  
denotes the number of individuals not responding at time t  and having classification i  at time 1−t , jC  
denotes the number of individuals not responding at time 1−t  and had classification j  at time t , and M  
denotes the number of individuals in the sample not responding in any of the two times. It is important to 
mention that this analysis does not take into account nonresponse due to the rotation in the survey; it only 
takes into account individuals belonging to the matched sample ignoring those individuals not responding 
because they were not selected in the sample. 

 
Table 3.1  
Gross flows at two consecutive periods of time. 
 

 Time 1−t  Time t  
 1 2   G  Row complement 

1 11N  12N  
  1GN  1R  

2 21N  22N  
  2GN  2R  

            

G  1GN  2GN  
  GGN  GR  

Column complement 1C  2C  
  GC  M  

 
This paper considers ideas from Stasny (1987) and Chen and Fienberg (1974) - in the sense of 

considering a maximum likelihood approach in contingency tables for partially classified data - and data 
resulting from a two-stage process as follows: 

  
1. In the first stage (nonobservable), the individuals are located among the cells of a matrix ×G G  

according to the probabilities of a Markov chain process. Let ηi  be the initial probability of an 
individual being at the category i  at the time 1−t  with = 1,η∑ ii

 and ijp  be the transition 

probability from the category i  to category j , where = 1∑ ijj
p  for every i .  

 
2. In the second stage (observable) of the process, every individual in cell ij  can either be 

nonrespondent at time 1,−t  losing the classification by row; nonrespondent at time ,t  losing the 
classification by column; or nonrespondent at both times, losing both classifications.   

• Let ψ  be the initial probability of an individual in cell ij  responding at time 1.−t  

• Let ρRR  be the transition probability of classification of the individual in cell ij  
responding at time 1−t  and responding at time .t  

• Let ρMM  be the transition probability of an individual in cell ij  being a nonrespondent at 
time 1−t  and becoming a nonrespondent at time .t   

These probabilities do not depend on the classification stage of the individual.  
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Data is observed only after the second stage. The aim is to make inferences for the probabilities in the 
Markov chain process generating the data but also in the chain generating the nonresponse mechanism. In 
the context of this two-stage model, the corresponding probabilities are shown in Table 3.2. 

 
Table 3.2 
Gross flow probabilities at two consecutive times. 

 

Time 1−t  Time t  
 1 2   j  

  G  Row complement 
1        

2        

         

i  { }i ij RRpη ψρ  ( ){ }1i ij RRj
pη ψ ρ−∑  

         

G         

Column complement ( )( ){ }1 1i ij MMi
pη ψ ρ− −∑  ( )1i ij MMi j

pη ψ ρ−∑ ∑  

 
In this way, the likelihood function for the observed data under this two-stage model is proportional to   

 
( )

( )( ) ( )

1

       1 1 1 .

ψρ η ψ ρ η

ψ ρ η ψ ρ η

 
  × −  

 

  
× − − × −  

   

∑∏∏ ∏

∑ ∑∑∏

Ri
Nij

RR i ij RR i ij
ji j i

MC j

MM i ij MM i ij
i i jj

p p

p p

  (3.1) 

  
3.1  Parameters of interest 
 

Data are only observed after the second stage and the aim is to make inferences for both the 
probabilities at the Markov chain generating the data and the chain generating nonresponse. Under this 
two-stage model, the probabilities of the matrix of data are shown in Table 3.2 and they constitute some of 
the parameters of interest. 

On the other hand, coming from the non-observable process, it is necessary to consider other 
parameters of interest as follows. Suppose a finite population U  exists, having a classification in two 
periods of time for all its individuals. This is a non-observable process as, even when census data is 
obtained, it would be not possible to have a complete classification since not all the individuals will be 
willing to respond. Considering this non-observable process and assuming that there are G  possible 
classifications at each time, the distribution of the gross flows at the population level are shown in Table 
3.3. 

ijX  is the number of units at the finite population with classification i  at time 1−t  and classification 
j  at time t  ( , = 1, ,i j G ). The population size, N , must satisfy the expression:  

= .∑∑ ij
i j

N X  
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Table 3.3 
Population gross flows (non-observable process) at two consecutive periods of time. 
 

Time 1−t  Time t  
 1 2   j  

  G  

1 11X  12X  
  1 jX  

  1GX  

2 21X  22X  
  2 jX  

  2GX  

              

i  1iX  2iX  
  ijX  

  iGX  

              

G  1GX  2GX  
  GjX  

  GGX  

   
Following the non-observable process from the last section, it is supposed that the vector 

corresponding to the entries at the last contingency table follows a multinomial distribution with a 
probability vector containing the values { }

, =1, ,
η



i ij i j G
p . This assumes a superpopulation model where the 

contingency table counts are considered random. In terms of notation, the probability measure considering 
these counts will be denoted with the subindex .ξ  Then, the probability of classification at cell ,i j  for the 
k -th individual is  

( )
( )
( )

 has got a classification  at -1 and classification  at 

 =  has got a classification  at -1

  has got a classification  at |  has got a classification  at -1
 = .

ξ

ξ

ξ

η

×

i ij

P k i t j t

P k i t

P k j t k i t
p

 

This treats ijX  as a random variable and if the finite population has N  individuals, its expected value 

based on the model is given by  
 ( ) = = .ξ η µij i ij ijE X N p   (3.2) 

Note that this expected value µij  is one of the most important parameters to be estimated on this paper 

as it corresponds to the expected value of the gross flows at the population of interest at the two 
consecutive periods. On the other hand, it is also important to understand that µij  is a parameter for the 

two-stage model. Also, the estimators for ηi  and ijp  are interdependent and determined by the estimations 
of the defined parameters at the second stage. Let η  be the vector containing the parameters ηi ; and p  
be the vector containing the parameters ijp , for every , = 1, ,i j G . The final parameters of interest are: 

• the model parameters, determined by the vector  

( )= , , , ,  ;RR MMψ ρ ρ ′′ ′ ′ ′ ′θ η p  

• the expected value vector of the population counts defined as  

( )11= , , , , .ij GGµ µ µ ′μ    
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4  Estimation of the parameters of interest 
 

Let ijN  be the total number of respondents for the population of interest having a classification i  at 
time 1−t  and j  at time .t  Let iR  be the total number of individuals in the population not responding at 
time t  but responding at time 1−t  with classification .i  Let jC  denote the total number of individuals in 
the population not responding at time 1−t  but responding at time t  with classification j  and finally let 
M  be the total number of individuals at the population not responding at any of the two periods of 
observation. It follows that the total size of the population, N , must satisfy:  

= .+ + +∑∑ ∑ ∑ij j i
i j j i

N N C R M  

Defining the following characteristics of interest, it is possible to define the parameters of interest:  

1

2

1, if the th individual responds at 1 with classification ;
=

0, otherwise.

1, if the th individual responds at with classification ;
=

0, otherwise.

ik

jk

k t i
y

k t j
y

− −



−



   

Then, the product of these quantities, defined as 1 2ik jky y , corresponds to a new characteristic of interest 
taking the value one if the individual has responded at both times and is classified in the cell ij , or zero 
otherwise. Also,  

1 2= .
∈
∑ij ik jk
k U

N y y   

Define the following dichotomic characteristics: 

1

2

1,  if the th individual responds at 1;
=

0,  otherwise.

1,  if the th individual responds at ;
=     

0,  otherwise.

k

k

k t
z

k t
z

− −



−



 

It follows that 

( )

( )

( )( )

1 2

2 1

1 2

1

1

1 1 .

i ik k
k U

j jk k
k U

k k
k U

R y z

C y z

M z z

∈

∈

∈

= −

= −

= − −

∑
∑
∑

 

Let kw  denote the weight for the k -th individual corresponding to a specific sampling strategy 
(sampling design and estimator) in both waves. Then the following expressions represent the estimators of 
the parameters of interest:  
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( )

( )

( )( )

 

1 2

1 2

2 1

1 2

ˆ =

ˆ  = 1

ˆ = 1

ˆ  = 1 1

∈

∈

∈

∈

−

−

− −

∑

∑

∑

∑

ij k ik jk
k S

i k ik k
k S

j k jk k
k S

k k k
k S

N w y y

R w y z

C w y z

M w z z

 

for ijN , iR , jC  and ,M  respectively. Note that an unbiased estimation for the population size is given by  

ˆˆ ˆ ˆ ˆ= =ij j i k k
i j j i s

N N C R M w v+ + +∑∑ ∑ ∑ ∑
 

where  

( ) ( ) ( )( )1 2 2 1 1 2 1 2= 1 1 1 1 .+ − + − + − −∑ ∑ ∑ ∑k ik jk jk k ik k k k
i j j i

v y y y z y z z z  

Taking into account the functional form of all the parameters of interest, and noticing that the 
likelihood function of the model is proportional to (3.1), we arrive at the following result. 

 

Result 4.1 The log-likelihood for the observed data at the population can be rewritten as  

 ( )1 2 1 2= , , , , , , , ,ψ ρ ρ
∈
∑U k RR MM
k U

l f η p y y z z   (4.1) 

where  

( )
( )

( ) ( )

( ) ( )( )

( )( ) ( )

1 2 1 2

1 2

1 2

2 1

1 2

, , , , , , , ,

 = ln

 1 ln 1

 1 ln 1 1

 1 1 ln 1

ψ ρ ρ

ψρ η

ψ ρ η

ψ ρ η

ψ ρ η

 
+ − − 

 
 

+ − − − 
 

 
+ − − − 

 

∑∑

∑ ∑

∑ ∑

∑∑

k RR MM

ik jk RR i ij
i j

ik k RR i ij
i j

jk k MM i ij
j i

k k MM i ij
i j

f

y y p

y z p

y z p

z z p

η p y y z z

 

where 1y  is a vector containing the characteristics 1iky , 2y  is a vector containing the characteristics 

2 ,jky  1z  is a vector containing the characteristics 1kz , and 2z  is a vector containing the characteristics 

2kz  (for every = 1, ,k N  and , = 1, ,i j G ). 

Now, in order to obtain estimators of the parameters, it is necessary to maximize this last function. 
Using standard techniques of maximum likelihood, the corresponding likelihood equations are given by  

( ) =θ
∈
∑ k
k U

u 0  

where the vector ku , commonly known as scores, is defined by  
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( ) ( ) 
= .

θ
θ

θ
∂
∂
k

k

f
u  

Also, as it is not usual to survey the whole population, a probability sample is selected and the 
expression ( )θ∈∑ kk U

u  is considered as a population parameter. In this way, considering = 1 πk kw  as the 

corresponding sampling weights, an unbiased estimator for this sum of scores is defined as 
( ).θ

∈∑ k kk S
w u  The next expression is known as the pseudo-likelihood equation and it is an effective way 

to find estimators for the model parameters taking into account the sampling weights:  

( ) = .θ
∈
∑ k k
k S

w u 0  

It is assumed that for the model in this paper, the initial probability of an individual responding at time 
1−t  is the same for all the possible classifications in the survey. Also, the transition probabilities between 

respondents and nonrespondents do not depend on the classification of the individual in the survey, ρMM  
and ρRR . Considering these assumptions, the following results will let the estimation of the Markov model 
probabilities take into account the sampling weights. 

 

Result 4.2 Under the assumptions of the model, the resulting maximum pseudo-likelihood estimators for 
,ψ  ρRR  and ρMM  are given by  

,

,

 
ˆ ˆ

ˆ    = ˆˆ ˆ ˆ

ˆ
ˆ  = ˆ ˆ

ˆ
ˆ = ˆ ˆ

ψ

ρ

ρ

+

+ + +

+

+

∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑

∑ ∑ ∑

∑

ij ii j i
mpv

ij i ji j i j

iji j
RR mpv

ij ii j i

MM mpv
jj

N R

N R C M

N

N R

M
C M

 

respectively.  
 

Result 4.3 Under the assumptions of the model, the resulting maximum pseudo-likelihood estimators for 
ηi  and ijp  are obtained through iteration until convergence of the next expressions  

( )

( )
( )

( ) ( ) ( ) ( )

( 1)
,

( ) ( ) ( ) ( )

( 1)
, ( ) ( ) ( ) ( )

ˆˆ ˆ ˆ ˆˆ ˆ
ˆ ˆˆ ˆ

ˆˆ ˆ ˆˆ ˆ
ˆ

ˆˆ ˆ ˆˆ ˆ

v v v v
ij i j i ij i ijj j iv

i mpv
ij i ji j i j

v v v v
ij j i ij i ijiv

ij mpv v v v v
ij j i ij i ijj j i

N R C p p

N R C

N C p p
p

N C p p

η η
η

η η

η η

+

+

+ +
=

+ +

+
=

+

∑ ∑ ∑
∑ ∑ ∑ ∑

∑
∑ ∑ ∑

 

respectively. The superindex ( )v  denotes the value of the estimation for the parameters of interest at the 
-v th  iteration.  
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The results before provide an exhaustive frame for the implementation of the two-stage Markovian 
model in order to take into account the sampling weights in longitudinal surveys. Another question of 
interest is how to choose the initial values { }(0)η̂i  and { }(0)ˆ ijp . In general, any set of values is valid if they 

follow the initial restrictions. These are  
(0)ˆ = 1i

i
∑η

 

(0)ˆ = 1.∑ ij
j

p  

However, following the guidelines at Chen and Fienberg (1974) and considering the hypothetical case 
where all of the individuals responded in both periods, then = 0, = 0iM R  (for every = 1, ,i G ) and 

= 0jC  (for every = 1, ,j G ) and their sampling estimations are also null. Given this, and considering 

the expressions of the resulting estimators, a sensible choice is given by 

(0)
ˆ

ˆ = ˆη
∑
∑ ∑

ijj
i

iji j

N

N
 

(0)
ˆ

ˆ = .    ˆ∑
ij

ij
ijj

N
p

N
 

Lastly, this iterative approach is commonly implemented for estimation problems by maximum 
likelihood in contingency tables. However, some approaches for the fit of log-linear models in 
contingency tables for complex survey designs can be found at Clogg and Eliason (1987), Rao and 
Thomas (1988), Skinner and Vallet (2010), among others. The next result provides an approach to gross 
flow estimation considering the sampling weights at both periods of interest. 

 
Result 4.4 Under the assumptions of the model, a sampling estimator of µij  is  

, , ,
ˆ ˆˆ ˆ= .µ ηij mpv i mpv ij mpvN p  

 
5  Properties of the estimators 
 

Following Cassel, Särndal and Wretman (1976), the aim of considering a survey sampling approach is 
to gather information from just a subset (sample) of units in the finite population that enable us to obtain 
conclusion for the whole population. During this process, the statistician must face the randomness 
sources defining the complex stochastic behavior of the inferential process. Although this paper considers 
the sampling design as the probability measure determining the inference for the parameters and the 
model, it is necessary to understand that the proposed Markovian model provides another correctly 
defined measure of probability. Now we obtain some properties of the estimators proposed in the last 
section. 
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The aim of this paper is to incorporate the sampling weights in the proposed model and then it is 
important to get approximately unbiased estimators with respect to the probability measure related to the 
sampling design for θ  and μ . The following results show some properties of the proposed estimators 
considered under the complex survey design. In terms of notation, the probability measure induced for the 
sampling design will be denoted with the subindex .p  The following results provide the maximum 
likelihood estimators for the parameters of interest when instead of getting a sample, the measurement is 
obtained through a census or complete enumeration of the individuals in the population. 

 

Result 5.1 Suppose there is complete access to the whole population and the log-likelihood function of the 
model is given by (4.1), then the maximum likelihood estimators, under the model assumptions are  

,

,

     =

  =

=

ij ii j i
U

ij i ji j i j

iji j
RR U

ij ii j i

MM U
jj

N R

N R C M
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C M
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ρ
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i U
ij i ji j i j
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( ) ( ) ( ) ( )

( 1)
, ( ) ( ) ( ) ( )

ˆ ˆ ˆ
=       

ˆ ˆˆ ˆ

η η

η η
+

+

+

∑
∑ ∑ ∑

v v v v
ij j i ij i ijiv

ij U v v v v
ij j i ij i ijj j i

N C p p
p

N C p p
  (5.2) 

where (5.1) and (5.2) must be jointly iterated to convergence.  
 

Result 5.2 Under the model assumptions, a maximum likelihood estimator of µij  is  

, , ,=ij U i U ij UN p× ×µ η  

where N  corresponds to the population size and ,ηi U  and ,ij Up  are defined by the last result, respectively.  

 
Note that both θ  and μ  can be defined as descriptive population quantities. Based on the inference 

approach induced by the maximum likelihood method, there exist estimators 

( ), ,,= , , , ,U U RR U MMMM UU U Uψ ′′ ′ ′ ′ ′θ ρ ρ η p  and ( )11, , ,= , , , ,µ µ µ ′
 U U ij U GG Uμ  defined as the corresponding 

descriptive population quantities making mpvθ  and mpvμ  consistent with regard to the sampling design in 



Survey Methodology, December 2014 299 
 

 
Statistics Canada, Catalogue No. 12-001-X 

the sense of definition 2 in Pfeffermann (1993). Note also that Uθ  and Uμ  can be calculated only if there 
is access to the whole finite population. 

Following Pessoa and Silva (1998, p. 79), it is possible to assess that under some regularity conditions, 
it follows that ( )= 1−U poθ θ  and ( )= 1−U poμ μ . Also, as in many sampling surveys, both the 
population and the sample size are generally large, then an appropriate estimator of Uθ  is also an 
appropriate estimator for ,θ  and an appropriate estimator for Uμ  will be an appropriate estimator for .μ  

In the next section, we explore the properties of the estimators proposed above and we discuss about 
their suitability for our research problem. 

 
5.1  Properties of the count estimators 
 

Result 5.3 The estimators ˆˆ ˆ ˆ,  ,  ,  ij i jN R C M , and N̂  defined in Section 4 are unbiased with regard to the 

sampling design.  
 

The proof is quite immediate. The weighting factor kw  corresponds to the inverse of ,π k  the inclusion 
probability associated to the k -th element. All the estimators are of the Horvitz-Thompson class and 
therefore are unbiased. 

 

Result 5.4 Making = 1 πk kw , the corresponding variances for ˆˆ ˆ ˆ,  ,  ,  ij i jN R C M  and ˆ ,N  are given by  
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Unbiased estimators for these variances, respectively, are given by  
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On the other hand, if the kw  correspond to calibration weights, then all the estimators considered are 
asymptotically unbiased and proofs are given in Deville and Särndal (1992). Their corresponding 
variances are given by Kim and Park (2010). 

 
5.2  Properties of the model probabilities estimators 
 
Result 5.5 The first-order Taylor approximation for the estimator ψ mpv , defined at the result 4.2 above, 

around the point ( ), , ,ij i jN R C M  and , = 1, ,i j G , is given by the expression  
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Result 5.6 The first-order Taylor approximation for the estimator ,ρ̂RR mpv , defined at the result 4.2 above, 

around the point ( ),ij iN R  and , = 1, ,i j G , is given by the expression  

( ) ( )
, ,0

, 3 4

ˆ ˆ

ˆ ˆ           =

ρ ρ

ρ

≅

+ − + −∑∑ ∑
RR mpv RR

RR U ij ij i i
i j i

a N N a R R  

with  

( )

( )

3 2

4 2

=

= .

+

−
+

∑
∑ ∑ ∑

∑ ∑
∑ ∑ ∑

ii

ij ii j i

iji j

ij ii j i

R
a

N R

N
a

N R

 

Result 5.7 The first-order Taylor approximation for the estimator ,ρ̂MM mpv , defined at the result 4.2 above, 

around the point ( ),jC M  and = 1, , ,j G  is given by the expression  
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Result 5.8 The estimators ,ˆ ˆ,  ψ ρmpv MM mpv  and ,ˆ ,ρRR mpv  are approximately unbiased for , ,,  ,  .ψ ρ ρU MM U RR U  

Result 5.9 The estimators ,η̂i mpv  and ,ˆ ij mpvp , are approximately unbiased for ,ηi U  and ,ij Up .  

Result 5.10 The approximate variances for the estimators ,ˆ ˆ,  ψ ρmpv MM mpv  and ,ˆ ,ρRR mpv  are given by  
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Result 5.11 Unbiased estimators for the approximate variances of the estimators ,ˆ ˆ,  ψ ρmpv MM mpv  and 

,ˆ ,ρRR mpv  are given by  
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respectively, where  
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Result 5.12 The approximate variances for the estimators ,η̂i mpv  and ,ˆ ij mpvp  are given by  
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Result 5.13 Unbiased estimators for the approximate variances of the estimators ,η̂i mpv  and ,ˆ ij mpvp  are 

given by  
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5.3  Properties of gross flows estimators 
 

Result 5.14 Under the model assumptions, the first-order Taylor approximation of the gross flows 
estimator given by µ̂ij  and defined in result 4.4, around the point , ,( , , )ηi U ij UN p  and , = 1, ,i j G , is 

given by  
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8 ,= ij ij Ua N p  

9 ,= .ηij i Ua N   

Result 5.15 The gross flows estimator ,µ̂ij mpv  is approximately unbiased for , .µij U   

Result 5.16 The following expression approximate the variance for ,µ̂ij mpv   

 ( ) ( ) ( ) ( )2 2 2
, 7 8 , 9

ˆ ˆˆ ˆ .µ η≅ + +p ij mpv p ij p i mpv p ijAV a Var N a AV a AV p   (5.3) 

Result 5.17 An approximately unbiased estimator for the asymptotic variance in (5.3) is given by  

( ) ( ) ( ) ( )2 2 2
, 7 8 , 9

ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ=µ η+ +p ij mpv p ij p i mpv p ijV a V N a V a V p  
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7 , ,ˆˆ ˆ= i U ij Ua pη  

8 ,
ˆˆ ˆ= ij ij Ua N p   

9 ,
ˆ ˆˆ = .ηij i Ua N   

 
6  Empirical application  
 

We first consider an empirical approach in this section, through simulations that will let us assess some 
statistical properties such as unbiasedness and efficiency of the proposed estimators. Following the 
modeling proposed by Stasny (1987), we considered a two-stage simulation as follows: 
 

• Allocation of all the individuals in the population to the different cells of a contingency table. In 
this first stage, we will define the initial probabilities ,  ηi ijp  and,  

• Nonresponse process at two consecutive periods. In this second stage, we will define the initial 
probabilities ,  ψ ρRR  and ρMM .  
 

In the first stage, it was necessary to assume some conditions (non observable process) where the 
group classification probabilities were established at time 1−t  and the conditional classification 
probabilities at time t . In this way, every individual in the population was assumed to be classified in any 
of three categories: E1, E2 and E3. The state vector at time t  was given by  

( ) ( )1 2 3= , , = 0.9,0.05,0.05 .η η η ′ ′η  

In this way, there is a classification probability in E1 equals to 0.9 for any individual in the population 
and classification probabilities in E2 and E3 equal to 0.05. The transition matrix from time 1−t  to time t  
is given by  
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1 11 12 13

2 21 22 23

3 31 32 33
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p p p
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We assumed that the population size was = 100,000N  and its size would not change at the two 
periods of evaluation. In order to classify the individuals at the periods of time we used the R function 
rmultinom (R Development Core Team 2012). This way, the distribution of gross flows according to 
equation (3.2) would be given by the values in Table 6.1. 

 
Table 6.1 
Expected values under the model ξ  for the population gross flows at two consecutive periods. 
 

Time 1−t  Time t  
 E1 E2 E3 

E1 72,000 13,500 4,500 

E2 1,500 3,000 500 

E3 500 500 4,000 

 
6.1  Methodology 
 

We considered for this empirical exercise, a Monte-Carlo with = 1,000L  simulations. In order to 
classify the individuals between respondents and nonrespondents at the two periods of time, we used the 
function rmultinom from the language R. Dichotomic variables 1 2 1,  ,  ik jk ky y z  and 2kz  were created using 

the function Domains from the library TeachingSampling (Gutiérrez 2009). 
For each run of the simulation, a sample of size = 10,000n  was drawn. We considered a simple 

random sampling design (SI) along with a complex sampling design inducing unequal inclusion 
probabilities (π PS). The behavior of the different proposed estimators will be assessed according to their 
relative bias and relative root mean square error, given by  

( )21
11

=1

ˆˆ
=                and               = .

θ θθ θ
θ θ

−
=−

−− ∑
∑

L
L lll

l

L
RB L RRMSE  

respectively. In those situations where the vector of inclusion probabilities was unequal, function S.piPS 
on the library TeachingSampling was used in order to choose a without replacement sample with inclusion 
probabilities proportional to an auxiliary characteristic assumed known and following a normal 
distribution with different parameters. The proposed methodology is compared with two other estimators: 
an estimator taking into account the functional shape of the model but not taking into account the 
sampling design and a gross flows estimator not taking into account the sampling design but assuming that 
the nonresponse is ignorable. 

The first estimator, that we call the Design-based estimator, corresponds to the expressions at results 
4.2, 4.3 and 4.4. The second estimator, that we shall call as Model-based estimator, correspond to the 
expressions at result 5.1, being maximum likelihood estimators not considering the sampling weights. 
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Finally, the third estimator, that we call the Naive estimator estimator expands the sampling information to 
the population and is given by  

,ˆ = .µ
∑ ∑ij ING ij

iji j

N N
N

 

The response probability at time 1−t  was assumed as = 0.8.ψ  The response probability at time t  for 
those individuals responding at time 1−t  was assumed as = 0.9.ρRR  Finally, the nonresponse probability 
at time t  for those individuals not responding at time 1−t  was assumed as = 0.7.ρMM  

Based on model ,ξ  the expected values of the responses are given in Table 6.2.  

 
Table 6.2 
Expected values under the model ξ  for the response at two consecutive periods. 
 

Time 1−t  Time t  
  Response   Nonresponse 

Response   72,000   8,000 

Nonresponse   6,000   14,000 

 

Taking into account the dynamics of the respondents in both periods and assuming that is possible to 
collect all the population information through a census, we get the classifications given in Table 6.3 
below. 

 
Table 6.3 
Expected values under the model ξ  for the population gross flows (observable process) at two consecutive 
periods. 
 

Time 1−t  Time t  
  E1  E2  E3  Row complement 

E1  51,840   9,720   3,240   7,200 

E2  1,080   2,160   360   400 

E3  360   360   2,880   400 

Column complement   4,440   1,020   540   14,000 

  
6.2  Results 
 
6.2.1  Simple random sampling: design-based and model-based estimator 
 

In a first empirical approach, we considered a simple random sampling without replacement as the 
sampling design. This sampling design induces uniform inclusion probabilities and expansion factors. 
Under this scenario, the design-based and model-based estimators are the same. Under this scenario the 
approach shows some strength according to the values of the relative biases that can be considered as 
negligible. This can be appreciated in Tables 6.4, 6.5 and 6.6.  
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Table 6.4 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
proposed estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  0.24 (0.094)   -0.35 (0.189)  -0.49 (0.474)  

E2  -2.89 (0.158)   -1.89 (0.221)  2.00 (0.980)  

E3  -0.63 (0.790)   4.54 (0.822)  -0.84 (0.569) 

 
Table 6.5 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
transition probabilities ijp . 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  0.13 (0.284)   -0.39 (0.537)   -1.00 (3.225) 

E2  1.70 (1.296)   -2.29 (0.569)   8.64 (0.347) 

E3  -6.6 (3.415)   2.09 (1.992)   0.56 (0.158) 

 
Table 6.6 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
initial classification probabilities ηi . 
 

Time 1−t  
1η  2η  3η  

-0.01 (0.094)   -1.42 (0.980)   1.74 (0.790)  

 
Also, the relative bias in percentage for the response probability ψ  was -0.23 and the relative root 

mean square error in percentage was 0.221; for the response probability ,ρRR  the bias in percentage was 

0.055 and the relative root mean square error in percentage was 0.031; for the nonresponse probability 
,ρMM  the bias in percentage was -0.192 and and the relative root mean square error in percentage was 

0.189. On the other hand, Table 6.7 shows the empirical expected value of the gross flows for the 
proposed estimator and it can be appreciated that the values are very close to those given on Table 6.1. 

 
Table 6.7 
Empirical expected values for the proposed estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  72,085   13,444   4,454 

E2  1,504   2,889   535 

E3  474   519   4,092 
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6.2.2  Simple random sampling: naive estimator 
 

Under this scenario and considering that this estimator does not take into account the nonresponse 
process, the values of the relative biases cannot be considered as negligible. This can be appreciated in 
Table 6.8.  

 
Table 6.8 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
naive estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  -1.21 (4.4)   10.2 (60.7)  8.34 (25.2)  

E2  -0.25 (38.8)   -7.51 (30.9)  1.33 (12.6)  

E3  13.7 (43.3)   -8.54 (46.1)  0.92 (6.9) 

 
Table 6.9 shows the empirical expected values for the naive estimator; compared to the expected 

values for the model given in Table 6.1 these are not even close. 
 

Table 6.9 
Empirical expected values for the naive estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1   54,628   760   4,507 

E2   1,506   2,079   1,175 

E3   1,603   905   32,832 

 
6.2.3  Unequal inclusion probabilities: design-based estimator 
 

In a third scenario, we considered a sampling design that induces unequal inclusion probabilities and 
expansion factors. Under this scenario, the proposed estimators are still unbiased both for the gross flows 
and for the parameters of the model. The relative biases are shown on Tables 6.10, 6.11 and 6.12. 

 
Table 6.10 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
proposed estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  -0.09 (0.8)   0.25 (3.6)   3.17 (7.9) 

E2  0.72 (40.9)   -1.21 (27.2)   -4.62 (71.08) 

E3   1.76 (20.4)   -3.19 (22.6)   -0.73 (7.2) 
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Table 6.11 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
transition probabilities ijp . 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  -0.05 (0.7)  0.115 (3.6)   0.47 (7.1) 

E2   2.39 (36.0)   -0.13 (18.6)   -6.40 (69.1) 

E3   1.15 (24.9)   -5.14 (21.7)   0.49 (3.7) 

 
Table 6.12 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
initial classification probabilities ηi . 
 

Time 1−t  
1η  2η  3η  

-0.02 (1.1)   -0.70 (19.8)   1.13 (6.9) 

 
For the probability of response ψ , the bias in percentage was -0.46 and the relative root mean square 

error in percentage was 0.6; for the probability of response ,ρRR  the bias in percentage was -0.21 and the 
relative root mean square error in percentage was 0.6; for the probability of nonresponse ,ρMM  the bias in 

percentage was 0.99 and the relative root mean square error in percentage was 1.8. On the other hand, 
Table 6.13 shows the empirical expected values of the proposed estimator for the population gross flows 
and these are very close to the values given in Table 6.1.  

 
Table 6.13 
Empirical expected values of the design-based estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1   71,910   13,505   4,518 

E2   1,523   2,972   470 

E3   511  479   4,062 

 
6.2.4  Unequal inclusion probabilities: model-based estimator 
 

A fourth scenario considers a sampling design inducing unequal inclusion probabilities and expansion 
factors in the same way as the last scenario. However, we consider estimators not taking into account the 
sampling design only the model .ξ  Under this scenario, estimations are biased for both the gross flows 

and the model parameters as can be appreciated by the relative biases on Tables 6.14, 6.15 and 6.16. 
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Table 6.14 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
model-based estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1   4.7 (6.1)   4.6 (8.9)   6.3 (10.5)  

E2    -89.0 (126.6)   -89.5 (125.9)   -88.4 (126.9) 

E3   4.1 (23.8)   -3.7 (26.67)   5.3 (10.4)  

 
Table 6.15 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
transition probabilities ijp . 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  0.03 (0.9)   -0.71 (4.1)   1.63 (8.6) 

E2   2.77 (35.5)   -1.50 (19.6)   0.70 (70.6)  

E3   4.00 (20.8)   -14.6 (20.1)   1.33 (3.41) 

 
Table 6.16 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) of the 
initial probabilities of classification ηi . 
 

Time 1−t  
1η  2η  3η  

4.74 (6.48)   -89.3 (126.7)   3.95 (11.9)  

 
In the same way, for the response probability ψ , the relative bias in percentage was -0.77 and the 

relative root mean square error was 1.7; for the response probability ,ρRR  the relative bias in percentage 
was -0.53 and the relative root mean square error was 0.5; for the nonresponse probability ,ρMM  the 
relative bias in percentage was 0.11 and the relative root mean square error was 1.8. On the other hand, 
Table 6.17 shows the empirical expected values for the model-based estimator for the population gross 
flows (not considering the sampling design) and these are quite far from the values in Table 6.1, especially 
for the second category.  

 
Table 6.17 
Empirical expected values for the model-based estimator for the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1   75,438   14,039   4,790 

E2   164   315   53 

E3   540   443   4,213 
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6.2.5  Unequal inclusion probabilities: naive estimator 
 

In a fifth scenario, we consider a sampling design with unequal inclusion probabilities and expansion 
factors. Considering the naive estimator, that does not take into account the sampling design nor the 
respondent model, Table 6.18 shows the relative bias for each cell in the matrix of gross flows. This 
estimator would be only recommendable if the nonresponse was ignorable and the sampling design would 
correspond to a simple random sampling design. 

 
Table 6.18 
Relative biases in percentage and relative root mean square errors in percentage (shown in brackets) for the 
naive estimator of the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1  -28.1 (34.7)  -27.6 (60.0)  -24.5 (41.1) 

E2  497.0 (629.2)  570.2 (610.3)  432.7 (686.2) 

E3  -40.5 (44.2)  -37.0 (47.4)  -33.0 (33.8)  

 
In order to have a more accurate comparison, it would be possible to calculate the expected values of 

the gross flows and compare them with the current scenario. Table 6.19 shows the empirical expected 
values for the naive estimator; compared to the expected values for the model given in Table 6.1 these are 
not very close and are especially poor for the classifications in the second category. 

  
Table 6.19 
Empirical expected values for the naive estimator of the population gross flows. 
 

Time 1−t  Time t  
  E1   E2   E3 

E1   51,755   9,849   3,297 

E2   9,194   19,838   2,823 

E3   279  295   2,665 

 
7  Actual application: estimation of population gross flows for the 
PME survey 
 

The Pesquisa Mensal de Emprego (PME - Brazilian Monthly Labour Survey) is a survey providing 
monthly indicators about the labour market in the main metropolitan areas in Brazil. Its main aim is to 
estimate the monthly work force and to evaluate the fluctuations and tendencies of the metropolitan labour 
market. It is also possible to get indicators regarding the effects of the economic conditions in the labour 
market and to satisfy important needs for policy planning and socio-economic development. This survey 
has been conducted since 1980, with some major methodological changes in 1982, 1988, 1993 and 2001 
(IBGE 2007). 
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This section illustrates the use of the proposed estimators and the final results for the PME are shown. 
We will consider the panel P6 from this survey from November, 2010 to February, 2011 and then from 
November, 2011 to February, 2012. This window of observation administered 21,374 interviews to 
different people. We have chosen the first two measurements of the panel (November and December, 
2010) in order to implement the proposed estimation procedure for the corresponding gross flows. 
Following an algorithm using the library TeachingSampling (Gutiérrez 2009), we obtain the classification 
at panel P6, for the months of November and December, 2010 given in Table 7.1. 

 
Table 7.1 
Labour classification and response for the occupation level in the sample of panel P6 of the PME survey. 
 

November 2010  December 2010 
 Employed Unemployed Inactive Not in the labour force Row complement 

Employed   5,231   62   227   10   386 

Unemployed   51   183   113   0   28 

Inactive   235   93   4,200   12   281 

Not in the labour force   2   0   17   1,426   96 

Column complement   499   27   372   132   7,691  

 
However, since panel P6 corresponds to a probabilistic complex sample of the metropolitan areas in 

Brazil, every individual in the panel represents themselves and other additional people in the population. 
Then, using the proposed estimation procedure in this paper and using the corresponding expansion 
factors from the survey, we notice that the estimated population values for panel P6 correspond to those 
obtained in Table 7.2. 

 
Table 7.2 
Estimated contingency table for the population showing level of occupation and nonresponse at the two 
considered measurements for the panel P6 in the PME survey. 
 

November 2010  December 2010 
 Employed Unemployed Inactive Not in the labour force Row complement 

Employed   2,162,635   20,602   76,303   3,074   160,768  

Unemployed  16,233   80,169   37,786   0   11,504  

Inactive   70,551   31,822   1,707,675   6,018   122,412  

Not in the labour force   958   0   7,035   566,530   38,171  

Column complement   205,033   9,293   136,146   53,640   3,076,388  

 
Using the estimation procedure proposed in this paper, we computed the estimated population gross 

flows given in Table 7.3. The corresponding estimators are unbiased under the complex design of the 
PME survey. According to this, the number of employed people in both periods of measurement is 
estimated as 3,913,274, whereas the number of inactive people for both periods is estimated as 3,035,463. 
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Table 7.3 
Population estimated gross flows for both periods at the PME survey. Estimated coefficients of variation in 
percentage are shown in brackets. 
 

November 2010  December 2010 
 Employed Unemployed Inactive Not in the labour force 

Employed   3,913,274 (0.2)   36,570 (3.1)   136,102 (1.6)   5,573 (7.2)  

Unemployed   29,776 (3.5)   144,253 (1.7)   68,320 (2.1)   0 (-)  

Inactive   127,193 (1.6)   56,296 (2.3)   3,035,463 (0.3)   10,872 (6.5)  

Not in the labour force   1,727 (17.3)   0 (-)   12,496 (5.8)   1,022,836 (0.5)  

 

The estimates in the last table above are the result of the proposed estimation procedure in this paper. 
Next, we show the estimated parameters on the first stage of the model, defined as the transition 
probabilities from one category to another in both observation periods. 

 
Table 7.4 
Estimation of the probabilities ijp . Estimated coefficients of variation in percentage are shown in brackets. 
 

November 2010  December 2010 
 Employed Unemployed Inactive Not in the labour force 

Employed  0.9564 (0.1)   0.0089 (3.1)   0.0332 (1.6)   0.0013 (7.2)  

Unemployed   0.1228 (3.4)   0.5952 (1.1)   0.2819 (2.0)   0 (-)  

Inactive   0.0393 (1.5)   0.0174 (2.3)   0.9398 (0.1)   0.0033 (6.5)  

Not in the labour force   0.0016 (17.6)   0 (-)   0.0120 (5.8)   0.9862 (0.1)  

 

The initial probabilities of classification on the first period of interest are shown in Table 7.5. It can be 
noticed that, for this particular survey, the highest classification probabilities can be found for the 
categories of employed and inactive. 

 
Table 7.5 
Estimation of the probabilities ηi . Estimated coefficients of variation in percentage are shown in brackets. 

 

November 2010 
1η    2η    3η    4η   

0.4757 (0.2)   0.0281 (1.2)   0.3755 (0.3)   0.1205 (0.5)  

 
Finally, the general response probability was estimated as ˆ = 0.595ψ mpv  (with an estimated coefficient 

of variation of 0.1%). That means that the rate of response is around 60%. Also, the transition probability 
that a nonrespondent in the first period is still a nonrespondent the next time was estimated as 

,ˆ = 0.883ρMM mpv  (with an estimated coefficient of variation of 0.1%). The transition probability that a 

respondent in the first period stays on as a respondent the next time was estimated as ,ˆ = 0.934ρRR mpv  

(with an estimated coefficient of variation of 0.1%). In general terms, it is possible to state that a status 
response of an individual in the first period is not changing significatively by the second. 
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8  Conclusions 
 

This paper has considered a common problem in survey sampling applications. Using superpopulation 
Markov chain based models, a new methodology was proposed leading to approximately unbiased 
estimators of gross flows at different times for the particular case of data coming from complex surveys 
with unequal sampling weights. Possible applications of the methodology in this paper are broad in the 
case of, for example, national statistical offices considering complex surveys. Life quality or labour force 
surveys are usually concerned about the estimation of gross flows. However, the possible extensions of 
this methodology could be applied to the public policy sector for impact evaluations having a 
classification of the respondents before and after an intervention. 

Also we present a solution to a general problem such as nonignorable nonresponse. Models where the 
nonresponse is not differentiated at different periods or by classification status were considered. However, 
in some practical applications, it is possible that this is not the case. 

The approach of this paper considers that design weights for units between the two time periods are the 
same. Further work will try to consider different weights between waves by considering either a two-
phase sampling scheme or a calibration approach in two-stages. Indeed, it would be of interest to compare 
the performance of the methodology given in this paper with the calibration methodology. One could 
consider the approach of Ash (2005) and Sikkel, Hox and de Leeuw (2008) to calibrate in two periods 
along with Särndal and Lundström (2005) for handling nonresponse. 

Further work will try to extend this methodology for more complex Markov chain models in order to 
consider different sampling weights. A new definition of parameters in the model will be necessary. Also, 
this methodology could be extended to the case of gross flows in more than two periods of time where 
classification errors are taken into account. 
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Appendix 
 

A.1  Mathematical proofs of the results on the paper 
 

In this section, the mathematical proofs for some of the most important results in this paper are 
included. 

 

Proof of Result 4.1  
Proof. Taking logarithm to the likelihood function, and defining it as l , it follows that  
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Proof of Result 4.2 
Proof. Starting from the definition of pseudo-likelihood and taking into account the model assumptions, it 
follows that 
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Then, for this parameter, the pseudo-likelihood equations are given by  
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Following an analogous process for the remaining parameters, the result is obtained.  
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Proof of Result 4.3 
Proof. First, it is necessary to warn that the estimation for these parameters is subject to the restrictions 
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p . Then, the process must consider the use of Lagrange multipliers. The function to 

be maximized, including these restrictions, can be expressed as  
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The last step takes into account the restrictions, since = = = 1η η η∑∑ ∑ ∑ ∑i ij i ij ii j i j i
p p . Then, for 

this parameter, the pseudo-likelihood equations are given by  
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Then, after some algebra, it follows that  
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Besides, using the restriction = 1η∑ ii
 and adding up over i , it follows that  
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On the other hand, in order to find the maximum pseudo-likelihood estimator of { }ijp , the score for 

ijp  is defined as  
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Hence,  
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η
η

η λ

+

 
− − − − − − 
 

∑ ∑ ∑

∑ ∑ ∑

ij i
ij j

j j i ij
i

k ik k k k k i k
s s s

p
N C

p

w y z w z z w

 

Then, it follows that  

( )
( )

ˆˆ
= .

ˆˆ

η η

η η

+

+

∑
∑ ∑ ∑

ij j i ij i iji
ij

ij j i ij i ijj j i

N C p p
p

N C p p
 

Now, note that it is impossible to solve the last expression for the { }ijp  in such a way that the solution 

is a closed expression. The same happens with the expression for the { }ηi . However, it is possible to use 

an iterative approach, which has proven to have a fast convergence in maximum likelihood estimation 
problems for contingency tables. This approach assumes that the maximum pseudo-likelihood estimator 
can be found after jointly iterating the following expressions at step ( )1+v , for 1≥v , 

( )

( )
( )

( ) ( ) ( ) ( )

( 1)
,

( ) ( ) ( ) ( )

( 1)
, ( ) ( ) ( ) ( )

ˆˆ ˆ ˆ ˆˆ ˆ
ˆˆ ˆˆ

ˆˆ ˆ ˆˆ ˆ
ˆ .

ˆˆ ˆ ˆˆ ˆ

v v v v
ij i j i ij i ijj j i

v
i mpv ij i ji j i j

v v v v
ij j i ij i ijiv

ij mpv v v v v
ij j i ij i ijj j i

N R C p p

N R C

N C p p
p

N C p p

η η

η

η η

η η

+

+

+ +

= + +

+
=

+

∑ ∑ ∑
∑ ∑ ∑ ∑

∑
∑ ∑ ∑

 

This particular iterative procedure was used initially for the formulation of nested likelihood models by 
Hocking and Oxspring (1971). However, it also appears implemented by Blumenthal (1968), Reinfurt 
(1970), Chen and Fienberg (1974), Fienberg and Stasny (1983), Stasny (1987), Stasny (1988), and others.  

 

Proof of Result 5.5 

Proof. The non-linear estimator ψ̂ mpv , can be expressed as a function of the estimated totals ˆˆ ˆ,  ,  ij i jN R C  

and M̂  (with , = 1, ,i j G ). Then,  

( )ˆˆ ˆ ˆˆ = , , , .ψ mpv ij i jf N R C M  

Finally, the first order Taylor approximation at the point ( )ˆˆ ˆ ˆ= , = , = , =ij ij i i j jN N R R C C M M  is given by  
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( ) ( )
( ) ( )

1 1

2 2

ˆ ˆˆ =

ˆ ˆ                         

ψ ψ + − + −

+ − + −

∑∑ ∑

∑

mpv U ij ij i i
i j i

j j
j

a N N a R R

a C C a M M
 

with 

( ) ( )
( )

ˆ ˆ1 2= =
ˆ ˆ= =

ˆ ˆ= =
ˆ ˆ= =

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
= = =ˆ ˆ
∂ ∂ +

∂ ∂ + + +

∑
∑ ∑ ∑ ∑

ij i j ij i j jj
N N N Nij ij ij ij

i ijR R R R ij i ji i i i i j i j
C C C Cj j j j
M M M M

f N R C M f N R C M C M
a

R N N R C M
 

and  

( ) ( )
( )

ˆ ˆ2 2= =
ˆ ˆ= =
ˆ ˆ= =
ˆ ˆ= =

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
= = = .ˆ ˆ
∂ ∂ +

−
∂∂ + + +

∑ ∑ ∑
∑ ∑ ∑ ∑

ij i j ij i j ij ii j i
N N N Nij ij ij ij

j R R R R ij i ji i i i i j i j
C C C Cj j j j
M M M M

f N R C M f N R C M N R
a

MC N R C M
 

 

Proof of Result 5.8 
Proof. Calculating the expected value under the sampling design, it follows that  

( ) ( )

( )( ) ( )( )
( )( ) ( )( )

0

1 1

2 2

ˆ ˆ

ˆ ˆ                  =

ˆ ˆ                                    

                  = .

ψ ψ

ψ

ψ

≅

+ − + −

+ − + −

∑∑ ∑

∑

p mpv p

U p ij ij p i i
i j i

p j j p
j

U

AE E

a E N N a E R R

a E C C a E M M
 

Following a similar process for the remaining estimators, the result is obtained. This proof is a result of 
the application of the pseudo-likelihood method that induces unbiased estimations for the population 
parameters in the model as it is proved on Corollary 1 at Binder (1983, p. 291).  

 

Proof of Result 5.10 

Proof. Considering ψ̂ mpv , replacing the expressions for ˆˆ ˆ ˆ,  ,  ,  ij i jN R C M  and after some algebraic 

simplifications, the approximate variance can be expressed as  

( ) 1 1 2 2
ˆˆ ˆ ˆˆ = = .

ψ

ψ
π∈

   
+ + +   

  
∑∑ ∑ ∑ ∑ k

mpv ij i j
i j i j k S k

EAV Var a N a R a C a M Var  

Initially, we have that  

( ) ( ) ( )( )1 1 2 1 1 2 2 2 1 2 1 2= 1 1 1 1 .ψ + − + − + − −∑∑ ∑ ∑k ik jk ik k jk k k k
i j i j

E a y y a y z a y z a z z  

Then, using that 1 2 1 2= = = 1∑∑ ∑ ∑ik jk ik jki j i j
y y y y  and after some algebra, it follows that  
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( ) ( )( )1 2 2 1 2= 2 1 2 .ψ − + − −k k k kE a z a z z  

After an analogous process for ,ρ̂RR mpv  and ,ρ̂MM mpv , the variance expressions at the heading of this result 

are obtained.  
 

Proof of Result 5.12 
Proof. The proof is obtained following expression (3.3) at Binder (1983), and taking into account that 

( )
=η

η
η

∂

∂
∑ k iU

i
i

u
J  

( )
= .
∂

∂
∑ k ijU

pij
ij

u p
J

p
 

Also,  

( ) ( )
( )

( )
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( )

2
21 1 2

1 22

2
1 2

2 122

2 = 1

= 1 .

jk ijk i ik ik k
k

ji i i iji

k ij ik jk i
jk k

ij ij i iji

y pu y y z z
p

u p y y
y z

p p p

η
η η η

η

η

∂ −
− − −

∂

∂
− − −

∂

∑
∑

∑

 

 

Proof of Result 5.16 
Proof.  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2
, 7 8 , 9

7 8 , 7 9 8 9 ,

2 2 2
7 8 , 9

ˆ ˆˆ ˆ=

ˆ ˆˆ ˆˆ ˆ                          2 , 2 , 2 ,

ˆ ˆ ˆ                    .

µ η

η η

η

+ +

+ +

≅ + +

p ij mpv p ij p i mpv p ij

ij i mpv ij ij i mpv ij

p ij p i mpv p ij

AV a Var N a AV a AV p

a a Cov N a a Cov N p a a Cov p

a Var N a AV a AV p

  

This due to  

( ) ( ) ( ) ( ), , ,

, , , ,

ˆ ˆ ˆˆ ˆ ˆ, =

ˆ ˆ                        = 0.

η η η

η η

−

≅ −

ij i mpv p ij i mpv p ij p i mpv

ij U i U ij U i U

Cov N E N E N E

N N
 

Then, it is possible to get:  

( ), , ,
ˆ ˆˆ ,η η≅p ij i mpv ij U i UE N N  

using Taylor linearization for ( ), ,
ˆ ,ηij U i UN . The other covariances are obtained in a similar way.  
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Chi-squared tests in dual frame surveys 

Yan Lu1 

Abstract 

In order to obtain better coverage of the population of interest and cost less, a number of surveys employ dual 
frame structure, in which independent samples are taken from two overlapping sampling frames. This research 
considers chi-squared tests in dual frame surveys when categorical data is encountered. We extend generalized 
Wald’s test (Wald 1943), Rao-Scott first-order and second-order corrected tests (Rao and Scott 1981) from a 
single survey to a dual frame survey and derive the asymptotic distributions. Simulation studies show that both 
Rao-Scott type corrected tests work well and thus are recommended for use in dual frame surveys. An example 
is given to illustrate the usage of the developed tests. 

 
Key Words: Asymptotic properties; Chi-squared tests; Dual frame surveys; First-order corrected test; Second-order 

corrected test; Simulations. 
 
 
1  Introduction 
 

A general situation of a dual frame survey is depicted in Figure 1.1, where the union of frame A  and 
frame B  is denoted as the union of the three nonoverlapping domains, i.e., = .A B a ab b∪ ∪ ∪  
Probability samples are selected independently from these two frames.  

 

 
Figure 1.1: Frames A  and B  are both incomplete but overlapping 

 
A dual frame survey often gives better coverage of the population, and can achieve considerable cost 

savings. The statistical literature has several methods for cross-sectional analyses of dual-frame survey 
data, see Hartley (1962, 1974), Fuller and Burmeister (1972), Skinner (1991), Skinner and Rao (1996), 
Lohr and Rao (2000, 2006), etc. As Rao and Thomas (1988) noted, the need to perform statistical analyses 
of categorical data is frequently encountered in quantitative sociological research. Pearson’s chi-squared 
test and likelihood ratio test are both well known tests for categorical data. These methods rely on the 
assumption that data are obtained by simple random sampling (SRS) from one or more large population. 
Most current surveys have complex designs with stratification and clustering, where the SRS assumption 
is violated. Wald’s test (Wald 1943) is one of the earliest methods proposed to assess model fit in complex 
designs. Fay (1979, 1985) proposed a jackknifed chi-squared test for use in complex surveys. Both Wald’s 
(1943) and Fay’s (1979) procedures require detailed survey information from which the covariance matrix 
can be estimated. Such detailed information is often not available in practice. Rao and Scott (1981, 1984) 

mailto:luyan@math.unm.edu
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proposed chi-squared tests for goodness of fit and independence in two-way and multi-way tables. Bedrick 
(1983) and Rao and Scott (1987) also studied the use of limited information on cell and marginal design 
effects to provide approximate tests. Thomas, Singh and Roberts (1996) described a Monte Carlo study of 
developed procedures for testing independence in a two-way table. 

The research problem in this article arises from categorical data analysis in dual frame surveys. For 
example, a dual frame may consist of the online membership directories of the American Statistical 
Association (ASA) and the Institute for Mathematical Statistics (IMS). The overlap domain consists of the 
statisticians who are members from both societies. One may be interested in testing if the percentage of 
female in academia is the same across the three domains (domain :a  members of ASA only; domain :ab  
members from both ASA and IMS; domain :b  members of IMS only). The tests in a dual frame survey 
present additional challenges to those from a single frame survey because there are now two samples, each 
with a possibly complex sampling design and may have an unknown degree of overlap. It is possible to 
apply a fixed weighting constant for the overlap domain, say 1/2, and consider the union of sample A  
( )A  and sample B  ( )B  as a single sample. By doing so, the chi-squared tests for a single frame survey 

in literature such as Rao and Scott (1981) could be applied. However, this application is based on the 
assumption that a set of ultimate cell proportions exist for the dual frame structure, which is not necessary 
true. In this paper, we assume that each domain has their own set of cell proportions, under which Rao and 
Scott (1981) type estimator is a special case when the three sets of cell proportions in the three domains 
are all the same. We extend Wald’s (1943) test and Rao-Scott first-order and second-order corrected tests 
(Rao and Scott 1981) from a single survey to a dual frame survey and derive asymptotic distributions. 

This paper is organized as follows. Section 2 gives a background of the research. Section 3 proposes 
several chi-squared tests. Section 4 gives a small simulation study of the proposed chi-squared tests under 
a simple hypothesis. Section 5 gives a real example study. Finally, we give a summary in Section 6. 

 
2  Background 
 

2.1  Chi-squared tests in a single frame survey 
 

Consider a one-way frequency table with k  classes and associated finite population proportions 

1 2, , , kp p p  with =

=1
= 1.

i k
ii

p∑  Let 1, , kn n  denote the observed cell frequencies in a sample falling in 

each of k  categories with 
1

.
k

ii
n n

=
=∑  Under SRS, the Pearson chi-squared statistic for testing simple 

hypothesis ( )0 0: = ,  = 1, ,i iH p p i k  is given by  

 
( )2

02

0=1

= .
k

i i

ii

n np
X

np
−

∑   (2.1) 

For complicated designs, 2X  involve noncentral distributions. It is natural to consider a more general 
statistic  

 
( )2

02

0=1

ˆ
= ,

k
i i

ii

p p
X n

p
−

∑   (2.2) 
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where ˆ ip  is a consistent estimator of ip  under a specified sampling design ( ).p s  

Let ( )1 1ˆ ˆ ˆ= , , kp p −
′p   represent the 1k −  vector of estimated proportions with 

( )1 1ˆ ˆ ˆ= 1 ;k kp p p −− + +  0p  be the corresponding 1k −  vector of hypothesized proportions; V  be the 

( 1) ( 1)k k− × −  covariance matrix of ˆ ,p  and V̂  be the estimate of V  obtained from the survey data. The 
generalized Wald statistic  

 ( ) ( )2 1
0 0

ˆˆ ˆ ˆ ˆ= ,WX −′− −p p V p p   (2.3) 

is distributed asymptotically as 2
1kχ −  under ( )0 0: = ,  = 1, ,i iH p p i k  for sufficiently large .n  

Rao and Scott (1981) showed that under 0 ,H  2X  in (2.2) is distributed asymptotically as a weighted 

sum 1 1 1 1k kW Wδ δ − −+ +  of 1k −  independent 2
1χ  random variables ,  = 1,2, , 1.iW i k −  The iδ s are the 

eigenvalues of a design effect matrix 1 ,−P V  where P  is the covariance matrix corresponding to SRS 
when 0H  is true, i.e. ( )( )1

0 0 0= .n diag− ′−P p p p  The standard result of Pearson test is recovered under 

SRS. Let îδ  be an estimate of iδ  and ( ) ( )1

=1
ˆ ˆ. = 1 ,

k
ii

kδ δ
−

−∑  the Rao-Scott first order corrected test refers 

2 ˆ.X δ  to 2
1.kχ −  When the full estimated covariance matrix V̂  is known, a better approximation to the 

asymptotic distribution of 2X  is to match the first moment and second moment of the test statistic to a 
2χ  distribution. The Rao-Scott (Rao and Scott 1981) second-order corrected test statistic considers 

( )2 2 2ˆ ˆ= . 1 .SX X aδ +   This statistic is approximately a chi-squared random variable on 

( ) ( )2= 1 1v k a− +  degrees of freedom, where â  is an estimate of a  with 

( )12 2 2
=1

ˆ ˆˆ = 1 . 1,
k

ii
a kδ δ

−  − − ∑  and 1 2 2 2
0 0=1 =1 =1

ˆ ˆ= .
k k k

i ij i ji i j
n p pδ

−∑ ∑ ∑ V  If the design effects are all 

similar, the first and second-order corrections will behave similarly. Otherwise, the second order 
correction almost always performs better. 
 
2.2  Framework of chi-squared tests and pseudo maximum likelihood 

estimator in dual frame surveys 
 

The set up in this section follows from Hartley (1962) and Lu and Lohr (2010). Assume there are k  
categories in both surveys and the same quantities are measured. Let idp  be the population proportion of 

category i  in domain d  (domain d  can be domain ,a  domain ab  or domain b ), with 
1

1.
k

idi
p

=
=∑  Let 

,  a abN N  and bN  denote the population sizes of the three domains respectively, with =a ab AN N N+  and 
= .b ab BN N N+  We consider the common case that abN  is unknown, while AN  and BN  are constants. As 

a result, 
1 1

= 1
k k

ia a A iab ab Ai i
p N N p N N

= =
+∑ ∑  and 

1 1
= 1

k k
ib b B iab ab Bi i

p N N p N N
= =

+∑ ∑  (see 

Figure 2.1 for illustration of the proportions). The vector of proportions ( )1 2 1= , , kp p p −
′p   for the union 

of the two frames is a function of the parameters ,  ,    and  .ia iab ib abp p p N  For example, a natural form of 

ip  is  

 = ,       for      = 1,2, , 1,a ab b
i ia iab ib

N N Np p p p i k
N N N

+ + −   (2.4) 
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where = .A B abN N N N+ −  

 
Figure 2.1: Population proportion in domains and frames 

 
In the following, we briefly review the pseudo maximum likelihood estimator that we will use in 

Section 4 and Section 5. Assume independent simple random samples are taken from frames A  and B  
respectively. The likelihood function is  

 ( ), , ,

A B
ia iab ib iabx x x x

a ab b ab
ia iab ib ab ia iab ib iab

A A B Bi i i i

N N N NL p p p N p p p p
N N N N

       
∝ × × ×       

       
∏ ∏ ∏ ∏   (2.5) 

where ,  ia ibx x  represent the units falling in category i  within domain a  and domain b  respectively; A
iabx  

and B
iabx  represent the units falling in category i  within the overlapping domain ab  that are originally 

sampled from frame A  and frame B  respectively. 
For the estimators of complex surveys, the basic idea is to use a working assumption of a multinomial 

distribution from a finite population to give the form of the estimators and use a design effect to adjust the 
cell counts to reflect the complex survey design. The pseudo likelihood function is as follows  

 
( )

ˆ ˆ

ˆ ˆ

, , ,

,

AA A
ia iab

A A

BB B
ib iab

B B

n nX X
N N

a ab
ia iab ib ab ia iab
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  (2.6) 

where design effect is defined as ( ){ } ( ){ }ˆ ˆ from complex survey  from SRS of same size ,v vθ θ  

( )ˆ= design effect of  ,A
A A abn n N  ( )ˆ= design effect of  ,B

B B abn n N  An  and Bn  are the observed sizes of

AS  and ,BS  and ˆ
idX  denote the estimated counts according to the survey design. The pseudo maximum 

likelihood estimators (PMLEs), found by maximizing (2.6) are ˆ ˆˆ = ,ia ia ap X N  ˆ ˆˆ = ,ib ib bp X N  and  

 

ˆ ˆˆ ˆ
ˆ = ,

ˆ ˆ

A A B BA B
ab iab ab iab

A B
iab

A BA B
ab ab

A B

n nN p N p
N Np n nN N

N N

+

+

 

 

  (2.7) 

where ˆ ˆˆ =A A A
iab iab abp X N  and ˆ ˆˆ = ,B B B

iab iab abp X N  and ,
ˆ

ab PMLN  is the smaller root of the quadratic function  

 [ ] 2
, ,

ˆ ˆ ˆ ˆ ˆ ˆ = 0.A B A B
A B ab PML A B B A A ab B ab ab PML A ab B B ab An n N n N n N n N n N N n N N n N N   + − + + + + +             (2.8) 
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The estimators of the population proportions are  

 
( ) ( ), , ,

,
,

ˆ ˆ ˆˆ ˆ ˆ
ˆ = .ˆ

A ab PML ia ab PML iab B ab PML ib
i PML

A B ab PML

N N p N p N N p
p

N N N

− + + −

+ −
  (2.9) 

If SRSs are taken in each frame and = 1,k  these PMLEs reduced to PMLEs in Skinner and Rao 
(1996). 

 
3  Chi-squared tests in dual frame surveys 
 

In this section, we consider the case of chi-squared tests in a dual frame survey. Some hypotheses of 
interest may include: a simple hypothesis 0 0 0:  = = ,  = = ,A A A

ia ia a A ia iab iab ab A iabH q p N N q q p N N q  

0 0= = ,  = =B B
iab iab ab B iab ib ib b B ibq p N N q q p N N p  (note that iaq , etc., are used to simplify the notations); 

0 , 0,:  = ,i PML i PMLH p p  in which we test whether the PMLE of proportions from the union of the two frames 

in (2.9) are some specific values (note that ip  can be estimated by other methods); 0 : = = ,ia iab ibH p p p  
testing whether the proportions are equal in the three domains; or 0 : = ,ij i jH p p p+ +  testing independence 

of the row classification and column classification.  

Let ( )= , , , ,a a A ab ab A b b B ab ab BN N N N N N N N ′′ ′ ′ ′η p p p p  ( )1 2= , , ,a a a kap p p ′p   ( )1 2= , , ,b b b kbp p p ′p   

( )1 2 ( 1)= , , ,ab ab ab k abp p p −
′p   and ih ’s are continuous functions. A more general hypothesis of interest may 

be denoted as the following:  
 0 :  ( ) = 0,   = 1,2, .iH h i rη    (3.1) 

Let jη  be the -thj  element of η  and let ( )1 2( ) = ( ), ( ), ( ) .rh h h h ′η η η η  

Assume that ( )i jh η∂ ∂η  is continuous in a neighborhood of η  and that  

 
( )= i

j

h
η

∂
∇

∂
η

  (3.2) 

has full rank. Also assume   
 

A1. There is a sequence of superpopulations 1 2A A AtU U U⊂ ⊂ ⊂ ⊂   as defined in Isaki and Fuller 
(1982).  

 

A2. Let An  and Bn  as defined in Section 2 and assume that An  and Bn  both increase such that 

A Bn n γ→   for some 0 < < 1.γ   
 

A3. Let ( )= psu  is in sample from Frame ,using population A
it Atp i A Uπ  and 

       ( )= psus  and  are in sample from Frame ,  using population A
ijt Atp i j A Uπ  be the inclusion and 

joint inclusion probabilities for the frame- A  sample from population ,AtU  and define ,B
itπ  B

ijtπ  

and BtU  similarly for frame .B  Assume there are constants 1c  and 2c  such that  
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 2 10 < < < < 1F
itc cπ   (3.3) 

 for all i  and any superpopulation in the sequence, where F  denotes frame A  or frame .B  Also 
assume there exists an tα  with = (1)t oα  such that  

 .F F F F F
it jt ijt t it jtπ π π α π π− ≤   (3.4) 

 

A4. abN N ψ→  for some ψ  between 0 and 1. 

 
Theorem 1. With assumptions 1 4A A−  set out beforehand, we have the following conclusion: ( )1/2 ˆn h η  is 
asymptotically normal with mean 0  and asymptotic variance ',∇Σ∇  where Σ  is a block-diagonal matrix 
with blocks AΣ  and BΣ  and = .A Bn n n+    AΣ  is the asymptotic covariance matrix of 1 2 ˆ An η  with 

( )ˆ ˆˆ ˆ ˆ= , ,A
A a a A ab ab AN N N N

′′′η p p  BΣ  is the asymptotic covariance matrix of 1/2 ˆ Bn η  with 

( )ˆ ˆˆ ˆ ˆ= , B
B b b B ab ab BN N N N

′′′η p p  and ( )ˆ ˆ ˆ= , .A B
′′ ′η η η   

 

Proof. The arguments given in Theorem 1 in Lu and Lohr (2010) show that η̂  is consistent for η  and that 
η̂  obeys the central limit theorem, as An  and Bn  both increase such that .A Bn n γ→   Thus, since the 
samples AS  and BS  are selected independently, we have  

( ) ( )1 2 ˆ 0, .
d

n N− → Ση η  

( )ˆh η  is consistent for ( )h η  because η̂  is consistent for η . Using the delta method, ( )1/2 ˆn h η  is 
asymptotically normal with mean 0  and asymptotic variance '.∇Σ∇  

 

Based on Theorem 1, the following results follow immediately. 
 

Result 1. (Extended Wald Test) If a consistent estimator of the variance Σ  is available, by Theorem 1, the 
generalized Wald statistic can be formed as follows:  

 ( ) ( ) ( )
12 ˆ ˆˆˆ ˆ= .WX n
−′ ′∇Σ∇h η h η   (3.5) 

This test statistic is distributed asymptotically as 2 ( )rχ  under 0H  (refer to equation 3.1), where r  is the 
rank of .∇  

As we have noted previously, the estimate of the variance may be unstable or no closed-form estimate 
of Σ  is available. One way we can modify the statistic in (3.5) is to first act as though the sample is a 
simple random sample, then modify the reference distribution used in the test to get the correct level. 
Equation (3.6) gives the modified statistic. 

 
Result 2. Let  

 ( ) ( ) ( )
12

0 0 0
ˆ ˆ ˆˆ ˆ= ,MWX n

−′ ′∇ ∇h η P h η   (3.6) 

where 0 0 0
ˆ ˆ ˆ ′∇ ∇P  can be any estimate of ∇ ∇P  that is consistent when 0H  is true. Matrix 0P  is a block 

diagonal matrix with diagonal blocks: covariance matrix from frame A  and covariance matrix from frame 
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B  when 0H  is true and when sampling is SRS. Suppose the matrix ∇  has rank r  under the null 

hypothesis 0 : ( ) = 0.H h η  Then 2
01

,
r

MW i iX Wλ≈∑  where the iλ ’s are the eigenvalues of 

( ) ( )1 ,−′ ′∇ ∇ ∇Σ∇P  1, , rW W  are independent 2
1χ  random variables and 0iλ  is the value of iλ  under 0.H  

 

Result 3. (Extended Rao-Scott first order correction) Suppose matrix ∇  has rank .r  Let 2
MWX  be as 

defined in (3.6). Under the null hypothesis 0 : ( ) = 0,H h η  the statistic 2 ˆ.MWX λ  has expectation ,r  where 
ˆ ˆ. = ,i rλ λ∑  îλ  is a consistent estimate of iλ  under 0.H  For example, îλ ’s could be the eigenvalues of 

( ) ( )
1

0 0 0
ˆ ˆ ˆ ˆ ˆˆ .

−
′ ′∇ ∇ ∇Σ∇P  

 

Result 4. (Extended Rao-Scott second order correction) Suppose matrix ∇  has rank .r  Define  

( )
2

2
2

= ˆ ˆ. 1
MW

S
XX

aλ +
 

where ( )12 2 2
1

ˆ ˆˆ = 1 . 1
k

ii
a kλ λ

−

=
 − − ∑  is an estimate of the population value 2.a  Under null hypothesis, 

2
SX  is distributed asymptotically as 2 ,vχ  a chi-square random variable with degrees of freedom 

( ) ( )2= 1 1 .v k a− +  

 
4  Simulations 
 

In this section, a small simulation has been conducted to study the proposed chi-squared tests under a 
simple hypothesis 0 0:  = = ,A

ia ia a A iaH q p N N q  0= = ,A A
iab iab ab A iabq p N N q  0= = ,B B

iab iab ab B iabq p N N q  

0= =ib ib b B ibq p N N p  to investigate the performance of chi-squared tests proposed in Section 3. We 
compare the percentages of samples for which the test statistics exceed the critical value to the nominal 
level ( = 0.05).α  R (www.r-project.org) is used to perform simulation study and other analysis. 

We generated the data following Skinner and Rao (1996), with =a aN Nγ  and = .b bN Nγ  A cluster 
sample from frame A  was generated with pn  psus and m  observations in each psu, and a simple random 

sample of Bn  observations was generated for frame .B  We generated the clustered binary responses for 
the sample from frame A  by generating correlated multivariate normal random vectors and then using the 
probit function to convert the continuous responses to binary responses. After the sample was generated, 
we calculated the PML estimators of id d AN Np  and id d BN Np  (see Section 2.2). These estimated 
proportions were used to compute the chi-squared test statistics. We then compared the percentages of 
samples for which the test statistics exceed the critical value to the nominal level under different settings. 

The simulation study was performed with factors: (1) :  0.4,aγ  (2) :  0.2,bγ  (3) clustering parameter 
:  0.3,ρ  (4) sample sizes: :pn  10, 30 or 50; :m  3, 5, or 10, :Bn  100, 300 or 500. (5) Simulation runs: 

1,000 times for each setting and 100 times when estimating the variance covariance matrix V  using 
bootstrapping. All runs used probability parameters ( ):  .3,.1,.2,.4 ,ap  ( ):  .3,.1,.1,.5 ,abp  and 
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( ):  .4,.1,.1,.4 .bp  Table 4.1 reported the percentages of samples for which the test statistics exceed the 

critical value. 
 

Table 4.1 
Comparison of the actual significance levels (%) among different tests. 2X  is the uncorrected test; 2

FCX  is the 
first order corrected 2X  and 2

SCX  is the second order corrected 2X . 
 

pn  m  Bn  2X  Wald 2
FCX  2

SCX  

10 3 100 12.1 17.3 5.6 4.9 
30 3 300 13.6 8.4 4.8 4.8 
50 3 500 15.5 10.0 6.4 3.6 
10 5 100 25.7 13.5 7.5 4.9 
30 5 300 29.2 9.3 7.9 5.3 
50 5 500 31.5 8.5 8.1 4.9 
10 10 100 46.1 21.2 6.6 5.4 
30 10 300 50.2 11.5 7.5 5.6 
50 10 500 58.7 8.0 9.6 5.1 

 
Table 4.1 indicates that naively using uncorrected 2X  test for complex survey data is dangerous. With 

increased psu size and number of psu’s, the actual significance level even reaches 62.2%. Extended Wald 
test doesn’t perform well since the estimate of the variance may be unstable. Extended first order 
corrected test is acceptable with actual significance level around 7%. Extended second order corrected 
tests almost reach the nominal level 5%, for which is the one we recommend to use in a dual frame survey 
categorical data analysis. 

 
5  Application 
 

In this section, we give a real example to illustrate how to perform the chi-squared tests in a dual frame 
survey. We consider the hypothesis test 0 :  = = ,ia iab ibH p p p  testing whether the proportions are equal in 
the three domains. 

 

5.1  Data description and related PMLEs 
 

Data (Lohr and Rao 2006) were originally collected for a three-frame survey of statisticians, using the 
online membership directories of the American Statistical Association (ASA), the Institute for 
Mathematical Statistics (IMS) and the Statistical Society of Canada. We treat the union of online 
membership directories of ASA and online membership directories of IMS as a dual frame with notation 

=A B a ab b∪ ∪ ∪  ( :A  online membership directories of ASA; :B  online membership directories of 
IMS; domain :a  ASA member but not IMS member; domain :ab  ASA member and also IMS member; 
domain :b  IMS member but not ASA member). Note that the union of these two frames does not cover 
the entire population of statisticians. Many statisticians do not belong to either of the two societies, and 
some statisticians decline to participate in online directories. In the data set, the information of the 
occupation is a categorical variable with three levels: academia, industry and government. We combine 
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industry and government to be one level named nonacademia. Together with sex, we have a 2 2×  table 
with four cells: female in academia, female not in academia, male in academia and male not in academia. 

At the time of data collection, there were 15,500  people in American Statistical Association (Frame 
)A  and 4,000  people in Institute for Mathematical Statistics (Frame B ), so = 15,500AN  and 

= 4,000.BN  A stratified cluster sample of size 500  was taken from frame ,A  of which 378  observations 
had information on both responses (sex and occupation). The design had 26  strata constructed by regions 
or states. Because of the restrictions on access to records, clusters for large states were members whose 
last name began with the same letter of the alphabet. There are 173  psu’s in frame .A  A simple random 
sample of size 140  was taken from frame ,B  in which 102  records have valid information for both 
responses. The weighted total of observations from frame A  is 10,976.  We assume that data are missing 
randomly, so the nonresponse is adjusted by a fraction of 15,500 10,976.  Table 5.1 lists the number of 
statisticians falling in each cell within each domain. 

 
Table 5.1 
Observed data in domain a  and domain ab  from frame A  (adjusted by a fraction of 15,500/10,976) together 
with observed data in domain b  and domain ab  from frame B . 
 

  Domain a  Domain ab A∈  Domain b  Domain ab B∈  
 Female Male Female Male Female Male Female Male 

Academia 2,425 4,969 302 1,488 10 41 10 33 
Nonacademia 1,959 4,091 59 209 0 3 2 3 

 
The estimated design effect of frame A  is 1.801209, so the effective sample size of An  is 
= 378 1.8 = 210.An  The effective sample size of , = = 102.B eff Bn n  The PMLEs of the estimated 

proportions by using (2.6) and (2.9) are listed in Table 5.2. 

 
Table 5.2 
Estimated proportions from domains and union of two frames. 
 

  Domain a  Domain ab  Domain b  Frame A B∪  
 Female Male Female Male Female Male Female Male 

Academia 0.180 0.370 0.186 0.701 0.185 0.759 0.182 0.452 
Nonacademia 0.146 0.304 0.037 0.076 0 0.056 0.116 0.250 

 
5.2  Test the equivalence of proportions across domains 
 

The hypothesis of interest is whether the proportions are equal across the three domains,  

 0 :  =      and     = ,  = 1,2,3.ia iab iab ibH p p p p i   (5.1) 

In this example, ,  = 1,2,3,4iap i  represent the proportion of female in academia, female not in academia, 
male in academia and male not in academia among ASA members respectively. Similarly define iabp  and 

.ibp  η  (see Section 3) reduces to a 14 1×  vector  
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1 2 3 4 1 2 3

1 2 3 4 1 2 3

= ( , , , , , , ,
              , , , , , , ) .

a a A a a A a a A a a A ab ab A ab ab A ab ab A

b b B b b B b b B b b B ab ab B ab ab B ab ab B

p N N p N N p N N p N N p N N p N N p N N
p N N p N N p N N p N N p N N p N N p N N ′

η
 

Since 0H  in (5.1) only involves the simple parameters ,  ,  ia iab ibp p p  and ,abN  we introduce a new vector 

( )1 2 3 1 2 3 1 2 3 1 2 3= ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  .a a a ab ab ab ab A b b b ab ab ab ab Bp p p p p p N N p p p p p p N Nθ ′   

Let ( )( )= /i jh θΩ ∂ ∂η  and ( ) ( )= / .jθ θ∂ ∂D η  ( )θD  is found to be a block diagonal matrix with   

1

2

3

4

1

2

3

1

2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
=

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

a
a

A

a
a

A

a
a

A

a a a
a

A A A

ab
ab

A

ab
ab

A

ab
ab

A
A

b
b

B

b
b

B

N p
N

N p
N

N p
N

N N N p
N N N

N p
N

N p
N

N p
N

N p
N

N p
N

−

−

−

− − − −

−

−

D

3

4

1

2

3

.

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

b
b

B

b b b
b

B B B

ab
ab

B

ab
ab

B

ab
ab

B

N p
N

N N N p
N N N

N p
N

N p
N

N p
N

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 
 

− − − − 
 
 
 
 
 
 
 
 
  
 

 

Notice the relationship between ˆ iabp  and ˆ A
iabp  and ˆ B

iabp  from (2.7), Ω  is found to be  
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1 0 0 0 0 0 0 0 0 (1 ) 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 (1 ) 0 0

= ,
0 0 0 0 0 0 0 1 0 0 (1 ) 0 0
0 0 1 0 0 0 0 0 0 0 0 (1 ) 0
0 0 0 0 0 0 0 0 1 0 0 (1 ) 0

φ φ
φ φ

φ φ
φ φ

φ φ
φ φ

− − − 
 − − 
 − − −

Ω  
− − 

 − − −
  − − 

 

where ( )= .B A B A A BN n N n N nφ +    It is easy to show that ( ) 1= −∇ Ω D  (recall that ( )= i jh η∇ ∂ ∂η ). Σ̂  is 

estimated by using a jackknife method by deleting one psu each time from frame .A  All the results in 

Section 3 can be derived. The eigenvalues of ( ) ( )
1

0 0 0
ˆ ˆ ˆ −

′ ′∇ ∇ ∇Σ∇P  are very close to each other, which 

indicates that first order corrected test perform similarly as second order corrected test. The Wald statistic, 
first order corrected statistic and second order corrected statistic give values of 81.48295, 72.31026 and 
70.28581 respectively. Comparing to the critical value with six degrees of freedom 2 (6) = 12.95,χ  we 
reject the null hypothesis that the cell proportions (female in academia, female not in academia, male in 
academia and male not in academia) are the same across the three domains (ASA member only, ASA and 
IMS member and IMS member only). 

 
6  Conclusions 
 

In this research, we extend Wald’s (1943) test and Rao-Scott first-order and second-order corrected 
tests (Rao and Scott 1981) from a single survey to a dual frame survey and derive the asymptotic 
distributions. A limited simulation study suggests that second order corrected tests almost reach the 
nominal level. Although the results in this paper are for dual frame surveys, the methods are general and 
could be extended to more than two surveys. Our research is done in the context of survey sampling; it 
also applies to other settings in which data could be combined from two independent sources. 
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Estimation methods on multiple sampling frames in two-
stage sampling designs 

Guillaume Chauvet and Guylène Tandeau de Marsac1 

Abstract 

When studying a finite population, it is sometimes necessary to select samples from several sampling frames in 
order to represent all individuals. Here we are interested in the scenario where two samples are selected using a 
two-stage design, with common first-stage selection. We apply the Hartley (1962), Bankier (1986) and Kalton 
and Anderson (1986) methods, and we show that these methods can be applied conditional on first-stage 
selection. We also compare the performance of several estimators as part of a simulation study. Our results 
suggest that the estimator should be chosen carefully when there are multiple sampling frames, and that a 
simple estimator is sometimes preferable, even if it uses only part of the information collected. 

 
Key Words: Expansion survey; Hansen-Hurwitz estimator; Horvitz-Thompson estimator; Two-stage sampling. 

 
 

 
 
1  Introduction 

 
When studying a finite population, sometimes no sampling frame covers that population completely, 

and it is necessary to select samples from two or more sampling frames in order to represent all 
individuals. Many methods of estimation on multiple sampling frames have been proposed to pool these 
samples (Hartley 1962; Bankier 1986; Kalton and Anderson 1986; Mecatti 2007; Rao and Wu 2010); see 
also the review articles by Lohr (2009, 2011) and the referenced articles for a complete picture. Note that 
the Mecatti method (2007) is inspired by the work of Lavallée (2002, 2007) on the Generalized Weight 
Share Method. In Section 2, we present different estimation methods for multiple sampling frames. 

In Section 3, we are interested in the scenario where two samples are selected using a two-stage design, 
with common first-stage selection. This framework corresponds to INSEE expansion surveys: an initial 
sample of dwellings is selected from the communes of the master sample (Bourdalle, Christine and Wilms 
2000), and a second sample is selected and surveyed from the communes of the same master sample to 
target a specific subpopulation. We have two survey measurements from two independent samples at the 
second stage of the design. We apply estimation methods to multiple sampling frames to pool these two 
samples. We show that the estimators examined can in this case be calculated conditional on the first stage 
of selection, which simplifies calculation particularly for Hartley’s optimal estimator (1962). In Section 4, 
we compare the performance of these estimators as part of a simulation study. We present our conclusion 
in Section 5. 

mailto:chauvet@ensai.fr
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2  Estimation for multiple sampling frames 
 

A finite population U  upon which is defined a variable of interest y  of value ky  for individual k  is 
considered. If a sample S  is selected from U  with inclusion probabilities ,kπ  the estimator 

1ˆ = k kk S
Y yπ −

∈∑  proposed by Narain (1951) and Horvitz and Thompson (1952) is unbiased for total 

= kk U
Y y

∈∑  if all probabilities kπ  are strictly positive. 

We are interested in the scenario where the population is fully covered by two overlapping sampling 
frames, AU  and .BU  We used Lohr’s (2011) notation, namely = \A Ba U U  the domain covered by AU  
only; = \B Ab U U  the domain covered by BU  only; = A Bab U U∩  the domain covered both by AU  and 

.BU  A sample AS  is selected in AU  with inclusion probabilities > 0.A
kπ  For any domain ,Ad U⊂  the 

sub-total =d kk d
Y y

∈∑  is unbiasedly estimated by ( )ˆ = 1A A
d k kk SA

Y d y k d
∈

∈∑  with ( ) 1
= .A A

k kd π
−

 A sample 

BU  is selected in BS  with inclusion probabilities > 0.B
kπ  For any domain ,Bd U⊂  the sub-total dY  is 

unbiasedly estimated by ( )ˆ = 1B B
d k kk SB

Y d y k d
∈

∈∑  with ( ) 1
= .B B

k kd π
−

 The objective is to combine the 

samples AS  and BS  to get estimation Y  as accurate as possible. 

 
2.1  Hartley estimator 
 

Hartley (1962) proposes the class of unbiased estimators 

 ( )ˆ ˆ ˆ ˆ ˆ= 1 ,A A B B
a ab ab bY Y Y Y Yθ θ θ+ + − +   (2.1) 

with θ  one parameter to be determined. The choice = 1 2θ  gives samples AS  and BS  the same weight 
for the estimation on the intersection domain .ab  Hartley (1962) proposes choosing the parameter that 
minimizes the variance of ˆ .Yθ  This leads to 

 
( )

( )
ˆ ˆ ˆ ˆ ˆ,

= ,
ˆ ˆ

A B B B A
a ab b ab ab

opt B A
ab ab

Cov Y Y Y Y Y

V Y Y
θ

+ + −

−
  (2.2) 

which can be re-expressed as 

 
( ) ( ) ( )

( ) ( )
ˆ ˆ ˆ ˆ ˆ, ,

=
ˆ ˆ

B B B A A
ab ab b a ab

opt A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y
θ

+ −

+
 (2.3) 

when the samples AS  and BS  are independent. As noted by Lohr (2007), the optimal coefficient optθ  may 

not be between 0 and 1 if a covariance term present in (2.3) is large. To simplify, let us assume that 

( )ˆ ˆ, = 0,B B
ab bCov Y Y  which is the case if b  and ab  are used as strata in the selection of .BS  Then > 1optθ  if 

and only if ( )ˆ ˆ, < 0.A A
abCov Y Y  When AS  is selected by simple random sampling, this will be the case, for 

example, if in AU  the low values of the variable y  are concentrated in the domain .ab  

In practice, the variance and covariance terms are unknown and must be replaced by estimators, which 
introduces additional variability. Another disadvantage is that the optimal parameter depends on the 
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variable of interest considered. If optimal estimators are calculated for different variables of interest, 
estimations may be internally inconsistent (Lohr 2011). 

 
2.2  Kalton and Anderson estimator 
 

A more general class of estimators is obtained by noting that total Y  can be re-expressed as 

( )= 1 ,a k k k k b
k ab k ab

Y Y y y Yθ θ
∈ ∈

+ + − +∑ ∑  

with kθ  a coefficient specific to the individual .k  Kalton and Anderson (1986) propose the choice 

( ) 1
= ,A B B

k k k kd d dθ
−

+  which leads to the estimator 

 ˆ =
A B

A A B B
KA k k k k k k

k S k S

Y d m y d m y
∈ ∈

+∑ ∑   (2.4) 

with on one hand = 1A
km  if k a∈  and =A

k km θ  if ,k ab∈  and on the other hand = 1B
km  if k b∈  and 

= 1B
k km θ−  if .k ab∈  The estimation weights are the same regardless of the variable of interest, which 

guarantees internal consistency of the estimations; on the other hand, the Kalton and Anderson estimator 
is less effective than Hartley’s optimal estimator for a given variable of interest. Note that it is a Hansen-
Hurwitz (1943) type estimator, which can be re-expressed as ( )ˆ =  KA k k kk U

Y W E W y
∈
  ∑  noting 

( ) ( )= 1 1A B
kW k S k S∈ + ∈  the number of times when unit k  is selected in the pooled sample .A BS S∪  

In particular this gives ( ) = .A B
k k kE W π π+  

 
2.3  Bankier estimator 
 

Bankier (1986) proposes using a Horvitz-Thompson type estimator, calculating the inclusion 
probabilities in the pooled sample. 

( ) ( )= .HT A B A B A B
k k kP k S S Pr k S Sπ π π≡ ∈ ∪ + − ∈ ∩  

 If the samples AS  and BS  are independent, we get =HT A B A B
k k k k kπ π π π π+ −  and the estimator 

 
( )

1ˆ = = .
A B A B A B

k k k
HT kHT A B A B A B

k S S k S a k S bk k k k k k kk S S ab

y y yY y
π π π π π π π∈ ∪ ∈ ∩ ∈ ∩ ∈ ∪ ∩

+ +
+ −∑ ∑ ∑ ∑   (2.5) 

 
3  Estimation with common first-stage selection 
 

Here we are interested in the case of two samples selected using a two-stage design, with common 
first-stage selection. Population U  is partitioned to obtain a population { }1= , ,I MU u u  of M  primary 
sampling units. In the first stage, a sample IS  of primary sampling units (PSU) is selected, with a 
selection probability Iiπ  for a PSU .iu  In the second stage, in each primary sampling unit ,i Iu S∈  the 
following is selected: a sample A

iS  in ,A
i i Au u U≡ ∩  with a (conditional) selection probability | > 0A

k iπ  for 
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;A
ik u∈  a sample B

iS  in ,B
i i Bu u U≡ ∩  with a (conditional) selection probability | > 0B

k iπ  for unit .B
ik u∈  

We make the following hypotheses, which are common for two-stage selection: the second stage of 
selection in the primary sampling unit iu  depends only on ;i  between two primary sampling units 

,i j Iu u S≠ ∈  the samples A
iS  and A

jS  (respectively, B
iS  and )B

jS  are conditionally independent to IS  

(property of independence). We also assume that within each primary sampling unit ,i Iu S∈  the sub-
samples A

iS  and B
iS  are conditionally independent to .IS  

For a domain 1 ,Ad U⊂  the sub-total 
1dY  is estimated by 

1 1 ,
ˆ ˆ=

i I

A A
d Ii d iu S

Y d Y
∈∑  with ( ) 1=Ii Iid π −  the 

sampling weight of the primary sampling unit ,iu  ( )
1 , | 1

ˆ = 1A
i

A A
d i k i kk S

Y d y k d
∈

∈∑  the estimator of the sub-

total ( )
1 , 1= 1

i
d i kk u

Y y k d
∈

∈∑  over 1 ,id u∩  and ( ) 1

| |=A A
k i k id π

−
 the sampling weight of k  in .A

iu  For a 

domain 2 ,Bd U⊂  the sub-total 
2dY  is estimated by 

2 2 ,
ˆ ˆ=

i I

B B
d Ii d iu S

Y d Y
∈∑  with ( )

2 , | 2
ˆ = 1B

i

B B
d i k i kk S

Y d y k d
∈

∈∑  

the estimator of the sub-total 
2 ,d iY  and ( ) 1

| |=B B
k i k id π

−
 the sampling weight of k  in .B

iu  This yields in 

particular the estimators  

 ( ), , |
ˆ ˆ ˆ=  where = 1 ,

A
i I i

A A A A
ab Ii ab i ab i k i k

u S k S

Y d Y Y d y k ab
∈ ∈

∈∑ ∑   (3.1) 

 ( ), , |
ˆ ˆ ˆ  =   where   = 1 ,    

A
i I i

A A A A
b Ii b i b i k i k

u S k S

Y d Y Y d y k b
∈ ∈

∈∑ ∑   (3.2) 

 ( ), , |
ˆ ˆ ˆ=  where = 1 .

B
i I i

B B B B
ab Ii ab i ab i k i k

u S k S

Y d Y Y d y k ab
∈ ∈

∈∑ ∑   (3.3) 

 
3.1  Hartley estimator 
 

The Hartley estimator given in (2.1) may be re-expressed as 

 ,
ˆ ˆ=

i I

Ii i
u S

Y d Yθ θ
∈
∑   (3.4) 

with ( ), , , , ,
ˆ ˆ ˆ ˆ ˆ= 1A A B B

i a i ab i ab i b iY Y Y Y Yθ θ θ+ + − +  the Hartley estimator of sub-total iY  over unit primary sampling 

unit .iu  We get ( )ˆ | = ,
I

I Ii ii S
E Y S d Yθ ∈∑  then 

 ( ) ( )ˆ ˆ= | .
I

Ii i I
i S

V Y V d Y EV Y Sθ θ
∈

 
+  

 
∑   (3.5) 

In (3.5), the first term of the right member does not depend on .θ  Hartley’s optimal estimator can, 
therefore, be calculated by minimizing the second term only. This gives: 

 
( ) ( ) ( )

( ) ( )|

ˆ ˆ ˆ ˆ ˆ| , | , |
= ,

ˆ ˆ| |I

B B B A A
ab I ab b I a ab I

opt S A B
ab I ab I

EV Y S ECov Y Y S ECov Y Y S

EV Y S EV Y S
θ

+ −

+
  (3.6) 

which can be estimated by   
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( )  ( )  ( )

( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ, ,ˆ =

ˆ ˆ ˆ ˆ

B B B A A
ab ab b a ab

opt A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y
θ

+ −

+
  (3.7) 

by replacing each variance and covariance term with an unbiased estimator conditional on the first stage. 

 
3.2  Kalton and Anderson estimator 
 

With the sample design considered, we get |=A A
k Ii k id d d  for any unit ,A

ik u∈  and |=B B
k Ii k id d d  for any 

unit .B
ik u∈  Therefore, the Kalton and Anderson estimator given in (2.4) can be re-expressed as 

 ,
ˆ ˆ=

I

KA Ii KA i
i S

Y d Y
∈
∑   (3.8) 

with , | | | |
ˆ = A B

A A B B
KA i k i k i k k i k i kk S k S

Y d m y d m y
∈ ∈

+∑ ∑  the Kalton and Anderson estimator of the sub-total ,iY  where 

| || |

| | | |

1 if , 1 if ,
=    and   =

if , if .

i i
B AA B
k i k ik i k i

i iA B A B
k i k i k i k i

k a u k b u
d dm m

k ab u k ab u
d d d d

∈ ∩ ∈ ∩ 
 
 ∈ ∩ ∈ ∩ + + 

 

 
3.3  Bankier estimator 
 

With the sampling design considered, we get ( )| | | |=HT A B A B
k Ii k i k i k i k iπ π π π π π+ −  for any .ik u∈  Therefore, 

the Bankier estimator given in (2.5) can be re-expressed as 

 ,
ˆ ˆ=

I

HT Ii HT i
i S

Y d Y
∈
∑   (3.9) 

with ( ), |
ˆ = A B

i i

HT
HT i k k ik S S

Y y π
∈ ∪∑  the Bankier estimator for the sub-total ,iY  and | |=HT A

k i k iπ π  if ,k a∈  

| |=HT B
k i k iπ π  if ,k b∈  | | | | |=HT A B A B

k i k i k i k i k iπ π π π π+ −  if .k ab∈  

Each of the three estimators examined is obtained by applying the estimation method PSU by PSU, 
conditional on the first stage. This result is particularly attractive for Hartley’s optimal method, since the 
optimal coefficient estimator given in (3.7) only requires variance estimators conditional on the first stage. 

 
4  Simulation study 
 

We are using artificial populations proposed by Saigo (2010). We generate two populations, each 
containing = 200M  primary sampling units grouped in = 4H  strata IhU  of size = 50.hM  Each primary 
sampling unit hiu  contains = 100hiN  secondary units. In each population, we generate for each primary 
sampling unit :hi Ihu U∈  

 =hi h h hivµ µ σ+   (4.1) 
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where the values hµ  and hσ  are those used by Saigo (2010). The term 2
hσ  makes it possible to control 

dispersion between the primary sampling units. The hiv  are iid, generated according to a standard normal 
distribution (0,1).N  For each unit ,hik u∈  we then generate the value ky  according to the model 

 ( ){ }0.51= 1 ,k hi h ky vµ ρ ρ σ−+ −   (4.2) 

where the kv  are iid, generated according to standard normal distribution. The variance term in the model 
(4.2) can give an intra-cluster correlation coefficient approximately equal to .ρ  In particular, the larger 
the ρ  coefficient, the less the values ky  are dispersed in the primary sampling units. We use = 0.2ρ  for 
population 1 and = 0.5ρ  for population 2, which reflects less dispersion of the variable y  in population 
2. The sampling frame AU  corresponds to all secondary units, and the corresponding part of hiu  is 

= ,A
hi hiu u  of size = .A

hi hiN N  For each secondary unit ,k  a value ku  is generated according to uniform 
distribution over [ ]0,1 .  The sampling frame BU  corresponds to the secondary units k  such that 0.5,ku ≤  

and the corresponding part of hiu  is =B
hi hi Bu u U∩  of size .B

hiN  This gives, therefore, the situation where 
= Bab U  and = .b ∅  The framework selected in the simulations is the one used in the INSEE household 

surveys, with expansion to target a specific sub-population. For these surveys, a sample IS  of communes 
(or groups of communes) is first selected in the first stage. A sub-sample A

iS  of dwellings is then selected 
in each ;i Iu S∈  the pooled sample =

i I

A A
iu S

S S
∈

 represents the entire population of dwellings = .AU U  

A second sub-sample B
iS  of dwellings is then selected from within a sub-population of each ,i Iu S∈  in 

order to target a specific sub-population BU  (for example, dwellings located in a Sensitive Urban Area); 
the pooled sample =

i I

B B
iu S

S S
∈

 represents only the targeted sub-population .BU  

In each of the two populations created, several samplings are taken concurrently; Table 4.1 presents for 
each population the eight possible combinations of sample sizes per stratum in the first and second stage, 
as well as the values hµ  and .hσ  In the first stage, we select independently in each stratum :IhU  either a 
sample IhS  of = 5hm  primary sampling units by simple random sampling; or a sample IhS  of = 25hm  
primary sampling units by simple random sampling. In the second stage, we select in each :hi Ihu S∈  
either a sample A

hiS  of size = 10A
hin  by simple random sampling in ;A

hiu  or a sample A
hiS  of size = 40A

hin  
by simple random sampling in .A

hiu  In the second stage, we also select in each :hi Ihu S∈  either a sample 
B
hiS  of size = 5B

hin  by simple random sampling in ;B
hiu  or a sample B

hiS  of size = 20B
hin  by simple random 

sampling in .B
hiu  Also we note ( ) 1

=A A A
hi hi hif N n

−
 and ( ) 1

=B B B
hi hi hif N n

−
 the sampling rates in A

hiu  and .B
hiu  

 
Table 4.1 
Parameters used in each stratum to generate both populations and select samples 
 

  Sample Sizes   Parameters  
  per Stratum   Stratum 1   Stratum 2   Stratum 3   Stratum 4  
  hm    A

hin    B
hin    hµ    hσ    hµ    hσ    hµ    hσ    hµ    hσ   

Population 1   5 or 25  10 or 40   5 or 20  200  20  150  15   120  12  100  10  

Population 2   5 or 25  10 or 40  5 or 20  200  10  150   7.5   120  6  100   5  

 



Survey Methodology, December 2014 341 
 

 
Statistics Canada, Catalogue No. 12-001-X 

For each sample, Hartley’s estimator given in (3.4) is calculated with either = 1 2θ  (HART1), or for 
value of θ  the optimal coefficient estimator given in (3.7) (HART2), with 

( ) ( ) ( ) ( ){ }
2

22

;
=1

1ˆ ˆ = 1 ,
1

A
hiA

hi Ih hi

AH
A Ah hi

ab hi k ab SA A
h u S k Sh hi hi

M fV Y N y k ab y
m n n∈ ∈

  −
∈ − 

− 
∑ ∑ ∑  

( ) ( ) ( ) ( ){ }
2

22

;
=1

1ˆ ˆ = 1 ,
1  

B
hiB

hi Ih hi

BH
B Bh hi

ab hi k ab SB B
h u S k Sh hi hi

M fV Y N y k ab y
m n n∈ ∈

  −
∈ − 

− 
∑ ∑ ∑  

 ( ) ( ) ( ) ( ){ } ( ){ }
2

2

; ;
=1

1ˆ ˆ, = 1 1 ,
1

A A
hi hiA

hi Ih hi

AH
A A Ah hi

a ab hi k ka S ab SA A
h u S k Sh hi hi

M fCov Y Y N y k a y y k ab y
m n n∈ ∈

  −
∈ − ∈ − 

− 
∑ ∑ ∑  

noting ;d Vy  the average of variable ( )1ky k d∈  on a subset .V U⊂  For each sample, the Kalton and 

Anderson estimator (KALT) given in (3.8) is also calculated, as well as the Bankier estimator (BANK) 
given in (3.9), and the Horvitz-Thompson estimator ˆ AY  based on the single sample AS  (HTA). The 
sampling procedure is repeated 10,000 times. To measure the bias of an estimator ˆ,Y  we calculate its 
relative Monte Carlo bias 

( ) ( )ˆ
ˆ = 100

MC
MC

E Y Y
RB Y

Y

−
×  

with ( ) ( ) 10,000
( )=1

ˆ ˆ= 1 10,000 ,MC bb
E Y Y∑  and ( )

ˆ
bY  the value of estimator Ŷ  for sample .b  To measure the 

variability of ˆ,Y  we calculate its Monte Carlo mean square error 

( ) ( )
10,000 2

( )
=1

1ˆ ˆ= .
10,000MC b

b
MSE Y Y Y−∑  

The results are given in Table 4.2. As emphasized by a referee, the performances of the HTA estimator 
do not depend on the sample size B

hin  chosen. For consistency, Table 4.2 indicates the results obtained in 
the simulations with = 5B

hin  only. For identical sample sizes hm  and identical ,A
hin  the same results are 

reported in the case = 20.B
hin  

All estimators are virtually unbiased. The HART2 estimator gives better results in terms of mean 
squared error, as could be expected. The HTA estimator gives almost equivalent results. This result is 
explained by the fact that the optimal coefficient is near 1 (in the simulations, ôptθ  is between 0.80  and 
1.06),  and that in this case, the formula (2.1) shows that the HART2 and HTA estimators are very close: 

In the appendix we present some general conditions under which this property is approximately checked. 
Of the three estimators, HART1 yields the best results, with a mean square error lower than or equivalent 
to that of KALT and BANK in 11 out of 16 cases. 
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Table 4.2 
Relative bias and mean squared error of five estimators 
 

        HART1   HART2   KALT   BANK   HTA  
Pop.   hm    A

hin    B
hin    RB   MSE   RB   MSE   RB   MSE   RB   MSE   RB   MSE  

        ( % )   910×    ( % )   910×    ( % )   910×    ( % )   910×    ( % )   910×   
1  5   10   5   0.05   7.76   0.01    5.70   0.05    7.79   0.06   8.56   0.04    5.75 
1  5   10   20   0.01   7.57   -0.05    5.57   0.03    11.36   0.04   12.75   0.04    5.75 
1  5   40   5   0.01   5.01   -0.02    4.51    -0.02    4.57  -0.02    4.81  -0.02   4.52 
1  5   40   20   0.00   4.65   -0.01     4.33   0.00    4.66   0.00    5.22   -0.02    4.52 
1  25   10   5   -0.03   1.19   -0.02    0.78     -0.03    1.20  -0.02    1.34  -0.01      0.78 
1  25   10   20   -0.01   1.17   0.00    0.78     -0.03    1.94  -0.03    2.22   -0.01      0.78 
1  25   40   5   0.00    0.62   0.01    0.51   0.00    0.52   0.00    0.57   0.01    0.51 
1  25   40   20   0.02   0.58   0.01    0.51   0.02    0.58   0.02    0.68   0.01    0.51 
              2  5   10   5   0.00    3.59   0.01    1.15   0.00    3.56   0.02    4.38   0.01    1.15 
2  5   10   20   0.00    3.60   -0.02    1.15  0.00    7.38   0.00    8.76   0.01    1.15 
2  5   40   5   0.00    1.48   0.01    1.07   0.00    1.13  0.01     1.35  0.01    1.07 
2  5   40   20   0.00    1.49  -0.01      1.09  0.00    1.49  0.00    2.03   0.01    1.07 
2  25   10   5   0.00    0.63   0.00    0.14   0.00    0.63   0.00    0.78   0.00    0.14 
2  25   10   20   0.00    0.62   0.00    0.13   0.00    1.38  0.00    1.67  0.00    0.14 
2  25   40   5   0.00    0.20   0.00    0.12   0.00    0.13   0.00    0.18   0.00    0.12 
2  25   40   20   0.00     0.20    0.00     0.12   0.00     0.20   0.01   0.31   0.00   0.12 

 

For each estimator, all other things being equal, the mean square error is lower in population 2 than in 
population 1. This result comes from the fact that the variance due to the first-stage selection, which is the 
same for each estimator and is 

 2 2
;

=1

1 1= ,
Ih

I

H

Ii i h Y U
i S h h h

V d Y M S
m M∈

   
−       

∑ ∑   (4.3) 

is larger in population 1: the dispersion term ( ) ( )212
; = 1

Ih Ihi Ih
Y U h i Uu U

S M Y Y−

∈
− −∑  increases with 2

hσ  and, 

to a lesser degree, increases when ρ  decreases. The mean square error decreases for each estimator when 
the number hm  of primary sampling units selected in each stratum increases, since in this case the 

common variance term given in (4.3) decreases. Similarly, the mean square error decreases for each 
estimator when An  increases, since in this case the variance due to the second stage of selection decreases. 
For the HART1 and HART2 estimators, the mean square error is stable when Bn  increases, and more 
surprisingly for the KALT and BANK estimators the mean square error increases when Bn  increases. This 
somewhat counterintuitive result is due to the convergence of two facts. On one hand, the contribution of 
sample BS  to the variance due to the second stage of selection is low: the increase of Bn  may reduce this 
variance, but even in this case, overall reduction of the variance is marginal. On the other hand, with the 
KALT and BANK estimators, the contribution of sample AS  to the variance due to the second stage of 
selection increases when Bn  increases. 

In the case of KALT, the estimator can be re-expressed 

,
=1

ˆ ˆ=
Ih

H
h

KA KA i
h i Sh

MY Y
m ∈

∑ ∑  

 
with 



Survey Methodology, December 2014 343 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 , | |

1 if ,
1 1ˆ =    and   =

if .A B
i i

i
A A A

KA i k i k k k iA A B hi
ik S k Shi hi hi A B

hi hi

k a u
Y m y y m f k ab uf f f

f f∈ ∈

∈ ∩
+  ∈ ∩+  +

∑ ∑   (4.4) 

In (4.4), the dispersion of the variable |
A
k im  (and therefore, that of |  )A

k i km y  increases when the factor 

( )A A B
hi hi hif f f+  moves away from 1.  This factor is near 1 when B

hif  is small compared to A
hif  (and 

therefore, if Bn  is small compared to ),An  but moves away from 1 when Bn  increases. Note that the 
variance (conditional on )IS  of the second term of ,K̂A iY  is equal to   

( ) ( )
( )

2 2
2

1 = B
hiB

i

B B B
hi hi hiA B

k I hi hiA B uB A A B
k Shi hi hi hi hi hi

n N n
V y S N N S

f f N n N n∈

  −
  × ×
 + + 

∑  

with ( ) ( )212 = 1 .B BB
hi hihi

B
hi ku uk u

S N y y
−

∈
− −∑  This variance does not necessarily decrease when B

hin  increases. 

For example, one of the cases considered in the simulations corresponds to = 100,A
hiN  50B

hiN   and 

= 40.A
hin  In this case, the term ( ) ( )2B B B B A A B

hi hi hi hi hi hi hin N n N n N n− +  attains its maximum value for = 11.B
hin  

In the case of BANK, the estimator can be re-expressed 

,
=1

ˆ ˆ=
Ih

H
h

HT HT i
h i Sh

MY Y
m ∈

∑ ∑  

with 

 ( ), |
|

if ,ˆ =    and   =
1 if A B

i i

A
hiHTk

HT i k iHT A B A
k S S k i hi hi hi

f k ayY
f f f k ab.

π
π∈ ∪

 ∈


+ − ∈
∑   (4.5) 

In (4.5), dispersion of the variable |
HT
k iπ  increases when the factor ( )1B A

hi hif f−  increases. This factor is 

close to 0  when B
hin  (and, therefore, )B

hif  is low, but increases when B
hin  increases. 

 
5  Conclusion 
 

We examined the Hartley (1962), Kalton and Anderson (1986) and Bankier (1986) estimators to pool 
the samples resulting from two survey waves. More particularly, we studied the case where the first 
sample represents the entire population (completely representative sample), while the second represents 
only a part (partially representative sample). Within the framework considered in the simulations (also see 
the Appendix for a more general framework), using the partially representative sample did not improve 
accuracy: if its size increases, the accuracy of the estimators in the Hartley class remains stable or 
improves slightly, while the accuracy of the Kalton and Anderson and Bankier estimators is worsened. 
Hartley’s optimal estimator itself, although more complex to calculate, offers accuracy that is only slightly 
improved as compared to the classic Horvitz-Thompson estimator calculated on the fully representative 
sample. Although our simulation study is limited, the results suggest that the estimator should be chosen 
carefully when there are multiple survey frames, and that a simple estimator is sometimes preferable, even 
if it uses only part of the information collected. 
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Appendix 
 

A1.  Comparison of Hartley’s optimal estimator and the Horvitz-Thompson 
estimator 
 

Let us take the framework and notations from Section 4: samples AS  and BS  are selected using a two-
stage frame with common first stage selection. Stratified simple random sampling is used at the first stage, 
and simple random sampling in each primary sampling unit at the second stage. The sampling frame AU  
corresponds to the entire population, while the sampling frame BU  covers only part of the population. 

With Hartley’s optimal estimator, the formula (3.6) gives 

( ) ( )
( ) ( )|

ˆ ˆ ˆ| , |
= .

ˆ ˆ| |I

B A A
ab I a ab I

opt S B A
ab I ab I

EV Y S ECov Y Y S

EV Y S EV Y S
θ

−

+
 

After some calculation, we get  
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1 1
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hi hi

u hi kk u
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=B B

hi hi

B
hi ku k u

y N y
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∈∑  and ( ) ( )212 = 1 .B BB
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B
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S N y y
−

∈
− −∑  

The Horvitz-Thompson estimator based on the single sample AS  and Hartley’s optimal estimator agree 
if the coefficient | Iopt Sθ  is equal to 1,  which is the case if ( ) ( )ˆ ˆ ˆ| = , | .A A A

ab I a ab IEV Y S ECov Y Y S−  This 

condition will be verified in particular if in (A.1) the terms between the brackets agree for each primary 
sampling unit .hiu  We get therefore | 1

Iopt Sθ   if 

 
( )

( )
( )21

   1.
B B
hi hi

BB B hi hihihi hi

BB
hi hihi hi u u

hi I B BB
hi hi u hi uhi u hiu u

S N N yN N
u U

N N y N yy N y N y

−−
∀ ∈ +

−−


  (A.2) 

Let us suppose that the mean value of y  is approximately the same in the frames AU  and BU  for each 
primary sampling unit, i.e. that  hi Iu U∀ ∈  .B hihi

uu
y y  Then, the condition (A.2) will be verified 

approximately if  hi Iu U∀ ∈  2
B
hiu

cv  is close to 0 , with 2= .B B B
hi hi hiu u u

cv S y  
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In summary, the Horvitz-Thompson estimator based on the single sample AS  and Hartley’s optimal 
estimator will be close if within each primary sampling unit :hiu  (a) there is not much difference in the 
mean value of y  between the two bases, and (b) the variable y  has low dispersion within .B

hiu  In the 
simulations, the condition (a) is approximately met since the distribution of individuals between the 
sampling frames AU  and BU  is completely random; the condition (b) is approximately met with values of 

2
B
hiu

cv  varying from 0.02  to 0.10  for population 1, and from 0.001  to 0.005  for population 2. 

 
References 

 
Bankier, M.D. (1986). Estimators based on several stratified samples with applications to multiple frame 

surveys. Journal of the American Statistical Association, 81, p.1074-1079. 
 
Bourdalle, G., Christine, M. and Wilms, L. (2000). Échantillons maître et emploi. Série INSEE Méthodes, 

21, p. 139-173. 
 
Hansen, M.H. and Hurwitz, W.N. (1943). On the theory of sampling from finite populations. Annals of 

Mathematical Statistics, 14, p. 333-362. 
 
Hartley, H.O. (1962). Multiple frame surveys. Proceedings of the Social Statistics Section, American 

Statistical Association, p. 203-206. 
 
Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement from a finite 

universe. Journal of the American Statistical Association, 47, p. 663-685. 
 
Kalton, G. and Anderson, D.W. (1986). Sampling rare populations. Journal of the Royal Statistical 

Society, A, 149, p. 65-82. 
 
Lavallée, P. (2002). Le sondage indirect, ou la méthode généralisée du partage des poids. Éditions de 

l'Université de Bruxelles (Belgium) and Éditions Ellipses (France). 
 
Lavallée, P. (2007). Indirect sampling. New York: Springer. 
 
Lohr, S.L. (2007). Recent developments in multiple frame surveys. Proceedings of the Survey Research 

Methods Section, American Statistical Association, 3257-3264. 
 
Lohr, S.L. (2009). Multiple frame surveys. In Handbook of Statistics, Sample Surveys: Design, Methods 

and Applications, Eds., D. Pfeffermann and C.R. Rao. Amsterdam: North Holland, Vol. 29A, p. 71-88. 
 
Lohr, S.L. (2011). Alternative survey sample designs: Sampling with multiple overlapping frames. Survey 

Methodology, Vol.37 no.2, p. 197-213. 
 
Mecatti, F. (2007). A single frame multiplicity estimator for multiple frame surveys. Survey Methodology, 

Vol.33 no.2, p. 151-157. 
 
Narain, R.D. (1951). On sampling without replacement with varying probabilities. Journal of the Indian 

Society of Agricultural Statistics, 3, p. 169-175. 
 



346 Chauvet and Tandeau de Marsac: Estimation methods on multiple sampling frames in two-stage sampling designs 

 
Statistics Canada, Catalogue No. 12-001-X 

Rao, J.N.K. and Wu, C. (2010). Pseudo-empirical likelihood inference for dual frame surveys. Journal of 
the American Statistical Association, 105, p. 1494-1503. 

 
Saigo, H. (2010). Comparing four bootstrap methods for stratified three-stage sampling. Journal of 

Official Statistics, Vol. 26, No. 1, 2010, p. 193–207. 



Survey Methodology, December 2014 347 
Vol. 40, No. 2, pp. 347-354 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Qi, Dong, Google, Inc., 1R4A, Quad 5, Google Inc, 399 N. Whisman Road, Mountain View, CA 94043. E-mail: qdong@google.com; Michael 

R. Elliott, Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109 and Survey Methodology 
Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48106. E-mail: mrelliot@umich.edu; 
Trivellore E. Raghunathan, Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109 and Survey 
Methodology Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48106. E-mail: 
teraghu@umich.edu. 

 

Combining information from multiple complex surveys 

Qi Dong, Michael R. Elliott and Trivellore E. Raghunathan1 

Abstract 

This manuscript describes the use of multiple imputation to combine information from multiple surveys of the 
same underlying population. We use a newly developed method to generate synthetic populations 
nonparametrically using a finite population Bayesian bootstrap that automatically accounting for complex 
sample designs. We then analyze each synthetic population with standard complete-data software for simple 
random samples and obtain valid inference by combining the point and variance estimates using extensions of 
existing combining rules for synthetic data. We illustrate the approach by combining data from the 2006 
National Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS). 

 
Key Words: Synthetic populations; Posterior predictive distribution; Bayesian bootstrap; Inverse sampling. 

 
 
1  Introduction 
 

Survey agencies often repeatedly draw samples from similar populations and collect similar variables, 
sometimes even using the same frame. For example, the National Health Interview Survey (NHIS) and the 
National Health and Nutrition Examination Survey (NHANES) are both conducted by the U.S. National 
Center for Health Statistics. These two surveys target the U.S. non-institutionalized population and have a 
considerable overlap of questions. By combining information from multiple surveys, we hope to obtain 
more accurate inference for the population than if we use the data from a single survey. 

One of the biggest challenges in such combining is the compatibility of multiple data sources. Surveys 
may use different sampling designs or modes of data collection, which may result in various sampling and 
nonsampling error properties. Instead of directly pooling the data from multiple surveys for a simple 
analysis, we need to adjust for the discrepancies among the data to make them comparable. 

Various methods for combining data collected in two surveys have been proposed in the survey 
methodology literature (Hartley 1974; Skinner and Rao 1996; Lohr and Rao 2000; Elliott and Davis 2005; 
Raghunathan, Xie, Schenker, Parsons, Davis, Dodd and Feuer 2007; Schenker, Gentleman, Rose, Hing 
and Shimizu 2002; Schenker and Raghunathan 2007; Schenker, Raghunathan and Bondarenko 2009). The 
most recent papers by Raghunathan et al. (2007) and Schenker et al. (2009) applied model-based 
approaches. The basic idea for the model-based approach is to fit an imputation model to the data of better 
quality and use the fitted model to impute the values in the other samples of lower quality. As long as the 
imputation model is correctly specified, this approach can take advantage of the strengths of the multiple 
data sources and improve the statistical inference. However, as suggested by Reiter, Raghunathan and 
Kinney (2006), when the sample is collected using complex sampling designs, ignoring those features 
could result in biased estimates from the design-based perspective. However, fully accounting for the 
complex sampling design features in practice is very difficult. For example, both Raghunathan et al. 
(2007) and Schenker et al. (2009) used a simplified method to adjust for stratification and clustering. 

mailto:qdong@google.com
mailto:mrelliot@umich.edu
mailto:teraghu@umich.edu
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Raghunathan et al. (2007) used a rudimentary concept of design effect and Schenker et al. (2009) used 
propensity scores to create adjustment subgroups for modeling.  

Here we propose a new method for combining multiple surveys that adjusts for the complex sampling 
design features in each survey. The unobserved population in each survey will be treated as missing data 
to be multiply imputed. The imputation model will account for complex design features using a recently 
developed nonparametric synthetic population generation method (Dong, Elliott and Raghunathan 2014). 
For each survey, the observed data and the multiply imputed unobserved population produce multiple 
synthetic populations. Once the whole population is generated, the complex sampling design features such 
as stratification, clustering and weighting will be of no use in the analysis and the synthetic populations 
can be treated as equivalent simple random samples. Finally, the estimate for the population quantity of 
interest will be calculated from each synthetic population and then will be combined first within each 
individual survey and then across multiple surveys.  

This paper proceeds as follows: Section 2 summarizes generating synthetic population while 
accounting for complex sampling design features using the nonparametric approach. Section 3 describes 
methodology to produce combined estimates from these multiple synthetic populations. In Section 4, we 
apply the proposed method to combine the 2006 NHIS and the Medical Expenditure Panel Survey 
(MEPS) to estimate the health insurance coverage rates of the US population. Section 5 concludes with 
discussion and directions for future research 

 
2  Generating synthetic populations from single survey data that 

accounts for complex sampling designs  
 

Dong et al. (2014) extended work in the finite population Bayesian bootstrap to develop a non-
parametric approach to the generation of posterior predictive distributions. A summary of the algorithm to 
draw the -thl  of 1,...,=l L  synthetic populations for stratified, clustered sample designs with unequal 
probabilities of selection is as follows: 

1. Use the Bayesian Bootstrap (BB) (Rubin 1981) to adjust for stratification and clustering. Draw 
a simple random sample with replacement (SRSWR) of size hm  from the hc  clusters within 
each stratum 1,...,=h H  and calculate bootstrap replicate weights for each of the hin  

observations in each cluster as { }*( ) *( ) ,   1, ,  ,   1, ,  ,   1, ,  ,= = … = … = …l l
hi h hiw w h H i c k n  where 

( )( ) ( ) ( )( )* *1 1 1  = − − + −hik hik h h h h h h hiw w m c m c c m m  and *
him  denotes the number of 

times that cluster ,  1,  ,   = … hi i c is selected. To ensure all the replicate weights are non-negative, 
( )1 ;≤ −h hm c  here and below we take ( )1 .= −h hm c    

2. Use the finite population Bayesian bootstrap (FPBB) (Lo 1986; Cohen 1997) for unequal 
probabilities of selection to adjust for unequal probabilities of selection. For each cluster i  in 
stratum h  of population size ,hiN  draw a sample of size ,−hi hiN n  denoted by 

( )* *
1 , , ,−…

hi hiN ny y  by drawing *
hiky  from cluster data ( )1, ,…

hiny y  with probability 
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( )
( ) ( )

*
, 11 *

,
1 *

−− + −

− + − −
H H

hik hik j hi hi hi

c c hi hi hi

w l N n n
N n j N n n

 where *
hikw  is the replicate weight of unit k  in cluster i  

in stratum ,h  and , 1−hik jl  is the number of bootstrap selections of hiky  among * *
1 1, , .−… jy y  

Form the FPBB population * *
1 1, , ,  , ., −… …

hi hi hin N ny y y y   

3. Produce F  FPBB samples for each BB sample, denoted by 1,  ,  ,  1, , .… = …l lFS S l L  Pool the F  
FPBB samples to produce one synthetic population, S .l  (Because =∑ ∑ hih i

N N  may be 

unrealistically large, generating a sample of size *k n  for large k  is sufficient.) 

 
3  Combining rule for the synthetic populations from multiple surveys  
 

Assume that ( )=Q Q Y  is the population quantity of interest depending upon the set of variables Y  

that are collected in multiple surveys: for example, a population mean, proportion or total, a vector of 
regression coefficients, etc. For simplicity of exposition we assume Q  to be scalar. Assume that, using 
data from a single survey ,s  we create L  synthetic populations, ( ) ,s

lS  1, , = …l L , using the methods 
summarized in Section 2. Denote ( )s

lQ  as the corresponding estimate of the population quantity Q  
obtained from synthetic population l  generated using data from survey s  (note this estimate can be 
obtained under a simple random sampling assumption). Dong et al. (2014) shows that, under reasonable 
asymptotic assumptions (sufficient sample size for the sample quantity of interest to be normally 
distributed, synthetic populations generated consistent with the survey design), 

 ( )( )( ) ( ) ( ) 1 ( )
1 1| ,..., ~ , 1 −

− +


s s s s
L L L LQ S S t Q L B   (3.1) 

where ( ) 1 ( )
1

−
=

= ∑Ls s
L ll

Q L Q  is the mean of Q  across the L  synthetic populations and 

( )2( ) 1 ( ) ( )
1

( 1)−
=

= − −∑Ls s s
L l Ll

B L Q Q is the between-imputation variance. The result follows immediately 

from Section 4.1 of Raghunathan, Reiter and Rubin (2003), and is based on the standard Rubin (1987) 
multiple imputation combining rules. The average “within” imputation variance is zero, since the entire 
population is being synthesized; hence the posterior variance of Q  is entirely a function of the between-
imputation variance. 

The combining rule obtained in (3.1) may not yield valid inference for the parameters of interest for 
multiple surveys, since the models to generate synthetic populations for the multiple surveys may be 
different. Thus, a new rule for combining estimates across multiple surveys needs to be developed.  
 
3.1  Normal Approximation when L  is large 
 

Let ( )s
LQ  and ( )s

LB  be the combined estimator of the population quantity of interest and its variance for 

survey s  obtained using the combining formulas for synthetic populations ( ) ( ){ }S S ,  1, , , = = …s s
syn l l L  

1, ,= …s S  in a single survey setting. When L  is large, we have 
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 ( ) ( ) ( )1| ,..., ~ ,


syn syn
S

L LS SQ N Q B   (3.2) 

where ( ) ( )(s) (s) (s)
1 1

1
= =

=∑ ∑S S
L L L Ls s

Q Q B B  and ( )(s)
1

1 1 .
=

= ∑S
L Ls

B B  Equation (3.2) follows 

immediately from standard Bayesian results, assuming that 1) the true variance of ( ) ,s
LQ  ,sB  can be 

approximated by ( )s
LB  obtained from the synthetic populations as in Section 3, i.e.,

( ) ( ) ( )( ) ( ) ( ) ( )| , | , ~ ,=s s s s
L s L L LQ Q B Q Q B N Q B , 2) each survey is independent, and 3) Q  has a non-

informative prior ( )( )| 1.π ∝s
LQ B  

 
3.2  T-corrected Distribution for Small/Moderate L  
 

For small to moderate ,L  the posterior distribution of Q  is better approximated by 

 ( )( )(1) ( ) 1| ,..., ~t , 1ν
−+



Lsyn sy L Ln
SQ Q LS BS   (3.3) 

where LQ  and LB  are defined as in 3.1, and degrees of freedom 

( ) ( ) ( )( )( ) (
2

)
1 1

1 1 1 .ϑ
= =

= − ∑ ∑s sS S
L L Ls s

L b b  Details are available in Dong (2012), and follow the 

extensions of Raghuanthan et al. (2003) that were used to derive the large L  results. 

 
4  Combined estimates of health insurance coverage from the NHIS, 

MEPS and BRFSS 
 

The 2006 NHIS and MEPS data are multistage probability samples that incorporate stratification, 
clustering and oversampling of some subpopulations (e.g., Black, Hispanic, and Asian in later years). For 
confidentiality reasons the true strata and PSUs are suppressed. The NHIS is released with 300 pseudo-
strata and two pseudo-PSUs per stratum; MEPS, which is a subsample of the households which participate 
in the NHIS, is released with 203 pseudo-strata and up to three pseudo-PSUs per stratum (Ezzati-Rice, 
Rohde and Greenblatt 2008; National Center for Health Statistics 2007). The NHIS and MEPS ask one 
randomly-sampled adult in each household whether they are covered by any health insurance and, if so, 
whether they are covered by private or government insurance. We consider this trinomial distribution of 
insurance status in the overall adult population, as well as in subpopulations consisting of males, 
Hispanics, non-Hispanic whites, and non-Hispanic whites earning between $25,000 and $35,000 per year. 
We delete the cases with item-missing values and focus on our study on the complete cases. This results in 
20,147 and 20,893 cases in the NHIS and MEPS data respectively. 

The 2006 BRFSS is obtained via random digit dialing (RDD) using list-assisted sampling, stratified by 
state. While such designs avoid clustering, unequal probability of selection is introduced because the 
sample size is roughly equal in each state; in addition only one adult is sampled per household. In contrast 
to the NHIS and MEPS, the BRFSS only asks whether one is insured or not, so we only calculate the 
proportion of respondents who are not covered by any insurance. We delete the cases with item-missing 
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values and focus on our simulation on the complete cases. There are 294,559 complete cases in the 2006 
BRFSS data.  

We generate the synthetic populations for the three surveys from 200 BB samples, each consisting of 
10 FPBB samples of size 5n  ( )200,  10, 5 .= = =B F k  We then produce the combined estimates of 

people’s health insurance coverage rates using the combining survey method described above. Since all 
three surveys have the information about whether people have insurance or not, we can combine the 
NHIS, BRFSS and MEPS to estimate the proportion of uninsured people. However, the BRFSS does not 
ask people what type insurance they have (private vs. public). For these proportions, we can only combine 
the NHIS and MEPS. The results are summarized in Table 4.1. The variance estimates for the combined 
estimator are much smaller than the ones obtained from the actual data. Specifically, the precision of the 
estimates obtained from the NHIS is increased by 43% on average, with the largest increase of 98% 
obtained by combining the NHIS and MEPS. The gains in precision for the MEPS are even more. The 
average increase in precision for the MEPS is 101%, with the largest increase being 202%. The precision 
is further increased when we combine all three surveys. For example, for the proportion of people who 
have no coverage, on average the precision is increased by 5 times for the NHIS, 1.5 times for the BRFSS 
and 4.2 times for the MEPS. This implies gains in precision by making use of the information from 
multiple surveys can be significant, and the more information we combine, the larger the gains are in 
precision.  

 
5  Discussion 
 

In this paper, we propose a new method to combine information from multiple complex surveys. We 
apply the new method to combine information about health insurance status from the 2006 NHIS, MEPS, 
and BRFSS. Results show that the combined estimate is more precise compared to the estimates from 
individual surveys. As previous work has shown (Dong et al. 2014), we have little information loss in the 
sense that the sampling properties of inferences from the synthetic population and the actual sample are 
very similar. Thus when we combine the estimates from three samples, the combined estimate is 
substantially more efficient that the estimates from individual surveys. (We note that this application is 
primarily for illustrative purposes; similar inferences could be made by computing the design-based 
estimates and variances for each of the surveys, then applying the combining rule in (3.2) on the design-
based estimates.) 

This new combining survey method has two major advantages over the existing methods. First, the 
approach used here to generate synthetic populations, discussed in detail in Dong et al. (2014), accounts 
for the complex sample design nonparametrically using extensions of finite population Bayesian bootstrap 
methods. Since the resulting synthetic populations can be analyzed as simple random samples, information 
from other surveys can be used to adjust for the nonsampling errors and/or filling in the missing variables. 
Another advantage of this method is it has no limitation on the number of surveys to be combined as long 
as the surveys have the same underlying population. The proposed method that adjusts for the complex 
sampling design features can be applied to each survey independently. After the missing information is 
imputed, regardless the number of surveys to be combined, we only need to combine the estimates from 
each survey using the combing rule developed in this manuscript. A final advantage of the proposed 
approach is the ability of the synthetic populations generated by the nonparametric method to preserve the 
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item-missing values in the actual data. This potentially fills in a gap in the multiple imputation area that 
existing imputation methods typically ignore the complex sampling design features in the data and impute 
the missing values as if they are simple random samples. We consider this application in future work. 

 
Table 4.1 
Individual and combined estimates for the 2006 NHIS, MEPS and BRFSS. 
 

Domain  Actual Data (Complex Design) Combined Estimates 
Types NHIS BRFSS MEPS NHIS and 

MEPS 
NHIS, BRFSS  

and MEPS 
Whole 
Population 

Proportion 
Private 0.746  0.735 0.741  
Public 0.075  0.133 0.094  
Uninsured 0.179 0.154 0.132 0.152 0.153 
Variance 
Private 2.46E-05  2.78E-05 1.61E-05  
Public 6.29E-06  1.44E-05 5.35E-06  
Uninsured 1.84E-05 3.32E-06 1.41E-05 9.80E-06 2.55E-06 

Male Proportion 
Private 0.740  0.735 0.738  
Public 0.060  0.101 0.074  
Without  0.200 0.167 0.164 0.181 0.172 
Variance 
Private 3.32E-05  3.87E-05 2.06E-05  
Public 6.82E-06  1.53E-05 5.72E-06  
Uninsured 2.94E-05 8.88E-06 2.64E-05 1.51E-05 5.61E-06 

Hispanic Proportion 
Private 0.494  0.506 0.5014  
Public 0.096  0.161 0.1157  
Without  0.410 0.371 0.334 0.3684 0.3689 
Variance 

 Private 1.24E-04  1.73E-04 9.76E-05  
Public 2.57E-05  8.03E-05 2.66E-05  
Uninsured 1.23E-04 7.18E-05 1.19E-04 8.71E-05 3.79E-05 

Non-Hispanic 
White 

Proportion 
Private 0.805  0.788 0.796  
Public 0.062  0.116 0.081  
Without  0.134 0.1059 0.096 0.113 0.107 
Variance 
Private 2.99E-05  3.35E-05 1.97E-05  
Public 8.20E-06  1.81E-05 6.86E-06  
Uninsured 2.02E-05 2.15E-06 1.51E-05 1.02E-05 1.90E-06 

Non-Hispanic 
White & 
Income 
[25,000, 
35,000) 

Proportion 
Private 0.827  0.813 0.821  
Public 0.039  0.079 0.053  
Without  0.134 0.173 0.108 0.122 0.154 
Variance 
Private 1.0E-04  1.39E-04 7.74E-05  
Public 2.82E-05  6.31E-05 2.52E-05  
Uninsured 7.24E-05 2.78E-05 8.92E-05 5.14E-05 1.93E-05 
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