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Objective stepwise Bayes weights in survey sampling 

Jeremy Strief and Glen Meeden1 

Abstract 

Although weights are widely used in survey sampling their ultimate justification from the design 

perspective is often problematical. Here we will argue for a stepwise Bayes justification for weights 

that does not depend explicitly on the sampling design. This approach will make use of the standard 

kind of information present in auxiliary variables however it will not assume a model relating the 

auxiliary variables to the characteristic of interest. The resulting weight for a unit in the sample can 

be given the usual interpretation as the number of units in the population which it represents. 
 

Key Words: Sample survey; Weights; Bayesian inference. 
 
 

1  Introduction 
 

Weights play an important role in the design based approach to survey sampling. In theory the 

weight assigned to an observed unit in a sample is the reciprocal of its selection probability and is 

interpreted as the number of units in the population which it represents. In practice, after a sample 

has been observed, the weights are often adjusted to make the sample better represent the 

population. These adjustments can be made to take into account population information not 

included in the design and for observations missing from the sample. Although such 

modifications of the design based weights are undoubtedly useful in some cases their ultimate 

theoretical justification is not so clear. Part of the confusion, we believe, comes from arguing 

unconditionally before the sample is taken, e.g., the Horvitz-Thompson estimator is unbiased 

averaged over all possible samples, and then conditionally after the sample is in hand, by 

adjusting the designed based weights of the observed units in the sample. In particular, an 

overemphasis on the sampling design at the second or conditional stage can needlessly 

complicated matters. After the sample has been observed, we believe a better approach is to 

formally ignore the sampling design but use all the available information, including that 
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embedded in the design, to find a sensible set of weights. In this way of thinking a weight 

assigned to a unit can still be interpreted as the number of units in the population that it represents 

but it is no longer derived as an adjustment of its selection probability. How can this be done? 

In the Bayesian approach information about the population is incorporated into a prior 

distribution. In theory, the prior can then be used to purposely select an optimal sample; however 

this is almost never done. After the sample is observed inferences are based on the posterior 

distribution of the unobserved units in the population given the values of the observed units in the 

sample. In most situations the posterior does not depend on how the sample was selected and 

hence the design plays no role at the inference stage. Bayes methods have been little used in 

practice because it is difficult to find prior distributions which reflect the common kinds of 

available prior information. 

Many of the standard estimators can be given a stepwise Bayesian interpretation (Ghosh and 

Meeden 1997). In this approach, given any sample, inference is still based on a posterior 

distribution but the collection (for all possible samples) of the posteriors does not arise from a 

single prior but from a whole family of prior distributions. In the situation where one believes 

that the observed units are roughly exchangeable with the unobserved units the appropriate 

stepwise Bayes posterior distribution is the Polya posterior. 

When prior information about population means and quantiles of auxiliary variables is 

available Lazar, Meeden and Nelson (2008) argued that the constrained Polya posterior, a 

generalization of the Polya posterior, is a sensible way to incorporate such prior information. 

Here we will show how the constrained Polya posterior can be used to define weights for the 

units in the sample. Although the resulting weights depend on the auxiliary variables they do not 

make explicit use of the sampling design. 

In Section 2 we review the Polya posterior and in Section 3, the constrained Polya posterior. 

The two main ideas of the paper are given in the next two sections. In Section 4 we show how the 

constrained Polya posterior can be used to attached a weight to each unit in the sample and in 
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such a way that these weights do not depend directly on the sampling design. In Section 5 we 

introduce the weighted Dirichlet posterior as a companion to the constrained Polya posterior. It 

allows one to use the weights defined by the constrained Polya posterior to make inferences 

about population parameters through straight forward simulation. In Section 6 we compare the 

constrained Polya posterior weights to those used in the Horvitz-Thompson estimator. In 

Section 7 we consider several examples to see how the resulting weights preform in practice and 

show how the weighted Dirichlet posterior can be use to get an estimate of variance for an 

estimator without extensive computing. Section 8 contains some concluding remarks. 

At first reading it will seem to some that the methods proposed here are very Bayesian 

because all of our inferences are based on “posterior” distributions. But as mentioned above, 

technically, our “posterior” distributions are not Bayes but stepwise Bayes. This means that 

operationally one can think of our posterior as being constructed after the sample has been 

observed. These constructed “posteriors” do not depend on subjective prior information or the 

sampling design but just use the observed sample values and objective and public information 

about the auxiliary variables. As we shall see this allows one to construct estimators of 

population parameters which are approximately unbiased under a variety of designs and have 

good frequentist properties. There are two important limitations of our work however. The first is 

that it only is applicable to single stage designs and the second is that it cannot correct for 

selection bias. 

 
2  The Polya posterior 
 

Let s  be the set of labels of a sample of size n  from a population of size .N  For convenience 

we assume the members of s  are 1, 2, , n  and we also suppose that /n N  is very small. Let 

1 2= ( , , , )Ny y y y  be the characteristic of interest and sy  be the observed sample values. 

The Polya posterior is based upon Polya sampling from an urn. Polya sampling works as 

follows: suppose that the values from n  observed or seen units are marked on n  balls and placed 
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in urn 1. The remaining unseen N n  units of the population are represented by N n  

unmarked balls placed in urn 2. One ball from each urn is drawn with equal probability, and the 

ball from urn 2 is assigned the value of the ball from urn 1. Both balls are then returned to urn 1. 

Thus at the second stage of Polya sampling, urn 1 has 1n   balls and urn 2 has 1N n   balls. 

This procedure is repeated until urn 2 is empty, at which point the N  balls in urn 1 constitute one 

complete simulated copy of the population. Any finite population quantity – means, totals, 

quantiles, regression coefficients – may now be calculated from the complete copy. For the 

population quantity of interest we may simulate K  such complete copies and in each case 

calculate its value. The mean of these simulated values is the point estimate and an approximate 

95% Bayesian credible interval is given by the 2.5% and 97.5% quantiles of the values. 

One can check that under the Polya posterior the posterior expectation of the population mean 

is just the sample mean and the posterior variance is just ( 1) / ( 1)n n   times the usual design 

based variance of the sample mean under simple random sampling without replacement. The 

Polya posterior has a decision theoretic justification based on its stepwise Bayes nature. Using 

this fact many standard estimators can be shown to be admissible. Details can be found in Ghosh 

and Meeden (1997). The Polya posterior is the Bayesian bootstrap of Rubin (1981) applied to 

finite population sampling. Lo (1988) also discusses the Bayesian bootstrap in finite population 

sampling. Some early related work can be found in Hartley and Rao (1968) and Binder (1982). 

For the sample unit i  let ip  denote the proportion of units in a full, simulated copy of the 

population which have the value .iy  Ghosh and Meeden (1997) showed that under the Polya 

posterior ( ) = 1 / .iE p n  If we let  

= ( ) = /i iw NE p N n  

then iw  can be interpreted as the weight attached to unit i  since it equals the average number of 

units in the population represented by unit ,i  under the Polya posterior. Recall that under simple 

random sampling without replacement /n N  is the inclusion probability for each unit. Hence in 
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this case the usual frequentist weight, which is the reciprocal of the inclusion probability, and 

Polya posterior weight defined above agree. 

So in situations of limited prior information the Polya posterior yields weights identical to 

frequentist weights derived from the design of simple random sampling without replacement. The 

Polya posterior justification for these weights does not depend explicitly on the design and would 

be appropriate anytime the sampler believes the observed and unobserved units in the population 

are roughly exchangeable. 

We next address the issue of the relationship of the Polya posterior with usual bootstrap 

methods in finite population sampling. Both approaches are based on an assumption of 

exchangeability. Gross (1980) introduced the basic idea for the bootstrap. Assume simple random 

sampling without replacement and suppose it is the case that / =N n m  is an integer. Given a 

sample we create a good guess for the population by combining m  replicates of the sample. By 

taking repeated random samples of size n  from this created population we can study the behavior 

of an estimator of interest. Booth, Bulter and Hall (1994) studied the asymptotic properties of 

such estimators. Hu, Zhang, Cohen and Salvucci (1997) is an example where the sample was 

used to construct an artificial population and then repeated samples were drawn from the 

constructed population to construct an estimate of the variance of their estimator and to construct 

confidence intervals. 

Note this is in contrast to the Polya posterior which considers the sample fixed and repeatedly 

generates complete versions of the population. 

 
3  The constrained Polya posterior 
 

We begin by recalling a well known approximation to the Polya posterior. If /n N  is small 

then under the Polya posterior, 1= ( , , )np p p  has approximately a Dirichlet distribution with 

a parameter vector of all ones, i.e., it is uniform on the 1n   dimensional simplex, where 
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=1
= 1.

n

jj
p  It is usually more efficient to generate complete copies of the population using this 

approximation than the urn model described in the previous section. In addition this 

approximation will be useful when we consider the constrained Polya posterior, a generalization 

of the Polya posterior which arises when prior information about auxiliary variables are available 

to the sampler. 

In many problems, in addition to the variable of interest, ,y  the sampler has in hand auxiliary 

variables for which prior information is available. A very common case is when the population 

mean of an auxiliary variable is known. More generally, we will assume that prior information 

about the population can be expressed by a set of linear equality and inequality constraints on a 

collection of auxiliary variables. 

We assume that in addition to the characteristic of interest y  there is a set of auxiliary 

variables 1 2, , , .mx x x  For unit i  let  
1 2( , ) = ( , , , , )m

i i i i i iy x y x x x  

be the vector of values for y  and the auxiliary variables. We suppose that for any unit in the 

sample this vector of values is observed. We assume the prior information about the population 

can be expressed through a set of linear equality and inequality constraints on the population 

values of the auxiliary variables. For the set of possible values for a given auxiliary variable the 

coefficients defining a constraint will correspond to the proportions of units in the population 

taking on these values. We now illustrate this more precisely by explaining how we translate this 

prior information about the population to the observed sample values. Given a sample this will 

allow us to construct simulated copies of the population consistent with the prior information. 

Given a sample ,s  for = 1, 2, , ,i n  let ( , )i iy x  be the observed values which, for 

simplicity, we assume are distinct. Let ip  be the proportion of units which are assigned the value 

( , )i iy x  in a simulated complete copy of the population. Any linear constraint on the population 

value of an auxiliary variable translates in an obvious way to a linear constraint on these observed 

values. For example, if the population mean of 1x  is known to be less than or equal to some 
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value, say 1 ,b  then for the simulated population this translates to the constraint  

1
1

=1

.
n

i i
i

p x b  

If the population median of 2x  is known to be equal to 2b  then for the simulated population this 

becomes the constraint  

=1

= 0.5
n

i i
i

p u  

where = 1iu  if 2
2ix b  and it is zero otherwise. Hence, given a collection of population 

constraints based on prior information and a sample we will be able to represent the 

corresponding constraints on a simulated value of p  by two systems of equations  

                                                                      1, 1=sA p b  (3.1) 

                                                                      2, 2sA p b  (3.2) 

where 1, sA  and 2, sA  are 1m n  and 2m n  matrices and 1b  and 2b  are vectors of the 

appropriate dimensions. 

Let P  denote the subset of the n  dimensional simplex which is defined by equations (3.1) 

and (3.2). We assume the sample is such that P  is non-empty and hence it is a non-full 

dimensional polytope. In this case the appropriate approximate version of the Polya posterior 

should just be the uniform distribution over .P  We call this distribution the constrained Polya 

posterior (CPP). If one could generate independent observations from the CPP then one could 

find approximately the posterior expectation of population parameters of interest and find 

approximate 0.95 stepwise Bayes credible intervals. Unfortunately we do not know how to do 

this. Instead, one can use Markov chain Monte Carlo (MCMC) methods to find such estimates 

approximately. This can done in R (R Development Core Team 2005) and using the R package 

polypost which is available in CRAN. More details on the CPP and simulating from it are 

available in Lazar et al. (2008). 
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4  Constrained Polya posterior weights 
 

A possible criticism of the Polya posterior and the CPP is that any simulated full copy of the 

population will only contain values of the characteristic that appeared in the sample. But it is 

exactly this property that will allow us to attach weights to the members of the sample. 

We assume that we have a fixed sample for which the subset of the simplex defined by 

equations (3.1) and (3.2) is nonempty. For = 1, ,j n  let  

                                                           = ( ) =j j jw NE p N  (4.1) 

where the expectation is taken with respect to the CPP. Note that the sum of the elements of 

1= ( , , )nw w w  is the population size N  and jw  can be thought of as the weight associated 

with the thj  member of the sample. These weights depend only on the observed values of the 

auxiliary variables and the known population constraints. Hence this is a stepwise Bayes method 

of attaching weights to the units in the sample which incorporates the prior information present in 

the auxiliary variables and does not depend explicitly on the sampling design. 

We are assuming here that the population size N  is know which may not always be the case. 

In such situations one could replace N  in the above equation by an estimate. If the estimate is a 

good one then the resulting inferences for a population total should be satisfactory. When 

estimating a population mean the results would be much less sensitive to how close the estimate 

is to the true population size. 

Much survey data which are used by social science researchers comes with weights attached 

to individual units. In such cases the CPP weights could be attached in the same way and the user 

would not need to use MCMC methods to calculate the weights. We will use the weights to 

define the Weighted Dirichlet posterior that can be used to find point and interval estimates of 

population quantities of interest at a relative modest computational cost. In the rest of the paper 

we will give examples to show that these weights can be used to generate inferential procedures 

with good frequentist properties. 
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But before proceeding we make a simple observation. Suppose we have in hand the sample 

along with a set of weights. If N  is large, then we can construct a population where the 

proportion of units in the population of type ( , )i iy x  is /iw N  for = 1, , .i n  Given the 

sample and the set of weights, we can think of this constructed population as the best guess for 

the unknown population. Then  

                                         
=1

=
n

i
bw i

i

w
y y

N
  and 2 2

=1

= ( )
n

i
bw i bw

i

w
y y

N
   (4.2) 

are the mean and variance of this constructed population. 

 
5  The weighted Dirichlet posterior 
 

It is often the case that weights are attached to data in public use files. These weights are then 

used by researchers to make point and interval estimates of population parameters. We shall see 

that the stepwise Bayes weights introduced here can often be used in standard frequentist 

formulas to estimate parameters of interest just as the usual weights are. We will use our weights 

to define the Weighted Dirichlet posterior (WDP) and show that it gives an alternative way to 

compute point and interval estimates for a variety of population quantities. 

Let the ’sjw  be a set of weights defined by equation (4.1) with = / .j jw N  Consider the 

Dirichlet distribution over the simplex defined by the vector 1= ( , , )nn n n    as an 

alternative posterior distribution for 1= ( , , )np p p  when using the observed sample to 

generate complete simulated copies of the population. We will call this posterior the weighted 

Dirichlet posterior (WDP). Note the WDP is a looser version of the CPP. Under the CPP every 

complete copy of the population will satisfy the constraints; however, under the WDP, only the 

average of all the simulated populations will satisfy the constraints. It is easy to see that under the 

WDP  

                                                    
=1 =1

= =
n n

i i i i bw
i i

E p y y y
 

 
 
   (5.1) 

and  
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2

=1 =1 <

2

2 2
=1 <

2

=1 <

2

=1 =1 =1

2

= ( ) Cov( , )

( )
= 2

( 1) ( 1)

1
= (1 ) 2

1

1
=

1

1
=

1

n n

i i i i i j i j
i i i j

n
i j i ji i i

i i j

n

i i i i j i j
i i j

n n n

i i i j i j
i i i

bw

V p y y V p y y p p

n n y yn n n y

n n n n

y n y y
n

y y y
n

n

 
 

 
   


 

 
        

 
      




  

 

 

 

 (5.2) 

where bwy  and 2
bw  were defined in equation (4.2). 

From this we see that when estimating the population mean, simulating from the WDP is 

equivalent to using the sample and their weights to construct the best guess for the population. In 

particular, when the weights are all equal the WDP is just the Polya posterior. 

There are two main reasons for introducing the WDP. The first is that as the number of 

constraints used increases the approximate 0.95 credible intervals based on the CPP become too 

short and contain the true parameter value less than 95% of the time. This happens because with a 

large number of constraints the CPP does not allow enough variability in the simulated complete 

copies of the population which it generates. The second reason is that simulating from the WDP 

is much easier that simulating from the CPP. Now it would be possible to simulated from the 

constrained WDP in such a way that all the constraints would be satisfied but this involves as 

much effort as simulating from the CPP. Moreover, we believe that this would yield approximate 

0.95 credible intervals which have poor frequentist coverage properties because they are too 

short. 

Now suppose our set of weights is the reciprocals of the inclusion probabilities from the 

sampling design. Let 
=1

= .
n

ii
W w  For most samples this value will not be equal to N  but 

often is is quite close. Again we can construct our best guess for the population based on the 

weights. The mean and variance of this population will be  
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=1

=
n

i
dw i

i

w
y y

W
  and 2 2

=1

= ( ) .
n

i
dw i dw

i

w
y y

W
   (5.3) 

If we use dwy  as an estimate of the unknown population mean then an unbiased estimate of its 

variance depends on the joint inclusion probabilities of the units in the sample. Since these are 

often difficult to obtain, what has been recommended in practice (Särndal, Swensson and 

Wretman 1992) is to assume the sampling was done with replacement even when that is not the 

case. Then the resulting approximate estimate of variance for dwy  is  

                                          

2

=1

2

1ˆ ( ) =
( 1)

=
1

n
i

d dw i dw
i

dw dw

w
V y n y y

n n W

n

 
   

  



 (5.4) 

where the second line follows from some simple algebra and where  

                                                    2

=1

= 1 .
n

i i
dw i

i

w w
y n

W W

 
  

 
  (5.5) 

Note that when the design is simple random sampling with or without replacement and 

=N nk  then = 0.dw  In this case, the estimate of variance in (5.4) is essentially equivalent to 

the variance in equation (5.2). 

In situations where the Horvitz-Thompson estimator makes sense, calculations have shown 

that dw  tends to be negative. This suggests that in such situations intervals based on the WDP 

will tend to be conservative. However calculations also show that dw  term tends to be positive 

in situations where the Horvitz-Thompson estimator is not appropriate. We will see in such cases 

that the usual approximation can work poorly and intervals based on the WDP can have better 

frequentist properties. 

 
6  Weights and Horvitz-Thompson 
 

The usual definition of the weight assigned to a unit in the sample is the inverse of its 

inclusion probability. One is encouraged to think of a unit’s weight as being the number of units 
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in the population which it represents. The resulting estimator of the population total is the 

Horvitz-Thompson (HT) estimator and is design unbiased. As we have already noted the 

unbiased estimate of its variance depends on the joint selection probabilities of the all the pairs of 

units appearing in the sample. Since in practice this can be impossible to compute the 

approximation in equation (5.4) is often used. 

The HT estimator works best when iy  is approximately proportional to its selection 

probability. To compare its behavior to the WDP method we conducted a small simulation 

experiment. We constructed the variable x  by drawing a random sample of 2,000 from a gamma 

distribution with shape parameter 5 and scale parameter 1 and adding 20 to each value. To 

generate y  we let the conditional distribution of iy  given ix  be a normal distribution with mean 

5 ix  and standard deviation 20. The correlation of the resulting population was 0.49. We denoted 

this population by A. We created a second population, B, by using the same vector of x  values 

but adding 400 to each iy  value. Our sampling plan used x  to do sampling proportional to size, 

i.e., pps( ).x  We used the R package sampling so that the inclusion probabilities were exact. 

Under this design we expect that the HT estimator would work well for population A but perform 

less well for population B. We also considered a third estimator, NHT, which is just the weights 

of the HT estimator rescaled so that they sum to the population size. We generated 500 samples 

of size 50. The results are giving in Table 6.1. 
 
 
Table 6.1 
Results for populations A and B based on 500 samples of size 50. The NHT estimator is the HT 
estimator renormalized so that the weights sum to the population size, N  2,000. The nominal 
coverage for each method is 0.95. 
 

Population Method Ave.
abs err 

Ave. 
len 

Freq of
coverage 

A  HT 4,628 21,898 0.940 
B  HT 8,965 43,914 0.960 

A & B  WDP 4,706 24,381 0.960 
A  NHT 5,051 21,897 0.896 
B  NHT 5,051 43,919 0.998 
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Although not shown in the table both the HT and WDP estimators are unbiased for both 

populations. As expected the HT estimator is the best for population A although its performance 

falls off dramatically for population B. On the other hand the WDP performance for both 

populations is exactly the same. As a point estimator the NHT does much better than the HT 

estimator for population B but not as well for population A. Overall the WDP is clearly performs 

the best. What is an explanation for these differences? 

In population A, i iy x  and calculations show that dw  is almost always negative and its 

absolute value is small compared to dw . In other words, when the HT estimator is appropriate it 

is essentially using the variance of the constructed population based on its weights to get its 

estimate of variance. 

The only difference between populations A and B is that a constant has been added to the y  

value of each unit. Now if the sample weights allow us to make a good guess for the population 

in the first case what goes wrong in the in the second case to cause the HT estimator to preform 

so poorly? To see the problem consider the following. 

In the HT estimate the sum of the weights in the sample almost never equal ,N  the population 

size. Given a sample in population B the HT estimate is  
50 50 50

=1 =1 =1

= 400i i i i i
i i i

w y w y w     

where iy  denotes the unit’s corresponding value in population A and iy  its value in population 

B. Note the second term in the above equation is adding additional variablity to the HT estimator. 

In population B calculations show that the term dw  in equation (5.5) is positive and can be quite 

large. It is accounting for the extra variablity in the HT estimator in population B which results 

from that fact that here 400i iy x   and not .ix  

We note that Zheng and Little (2003) argued that when estimating a finite population total and 

when using a probability-proportional to size sampling design that a penalized spline, 

nonparametric, model based estimator generally outperformed the Horvitz-Thompson estimator. 
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Zheng and Little (2005) developed methods to estimate the variance of their estimator. Some 

related work can be found in Zheng and Little (2004). 

The WDP weights only use the constraint that simulated complete copies of the population 

should have the correct population mean for .x  This is a more robust assumption than the one 

which underlies the HT estimator. But to be fair to the HT estimator it should be remembered (as 

was pointed out by a referee) that it was developed with the limited goal of obtaining linear 

unbiased estimators of the population total. Today however its simplicity no longer seems so 

important when more complicated and efficient estimators are much easier to compute. The 

superior performance of the stepwise Bayes method here suggests that if one believes that they 

have a set of weights for the sampled units which sums to the population size and which yields a 

good guess for the population, then they should use the variance of their good guess for the 

population to construct an estimate of the variance of their estimate of the population mean rather 

than equation (5.4). This is particularly true for large surveys containing several y  characteristics 

of interest. It would be very surprising if all of them satisfied the assumptions necessary to make 

equation (5.4) a good estimate of variance of a sample mean. Analogous to the observation in 

Royall and Cumberland (1981) and Royall and Cumberland (1985) that good balanced samples 

(the sample mean is close to the population mean) can lead to improved performance one should 

base their inference on simulated complete copies of the population which incorporate the 

available prior information contained in the auxiliary variables. 

 
7  Examples 
 

We believe that standard design based theory over emphasizes the role that the selection 

probabilities should play in making inferences after the sample has been observed. In this section 

we consider examples that show how the WDP can make use of objective prior information after 

the sample has been selected. 
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7.1  A simulation study 
 

To further understand how using the stepwise Bayes weights in the WDP can work we did a 

simulation study. We constructed a population with 2,000 units and a single auxiliary variable, 

.x  This variable was a random sample from a gamma distribution with shape parameter 5 and 

scale parameter 1. The conditional distribution of iy  given ix  was normal with mean 

2100 ( 8)ix   and standard deviation 20. The correlation for the resulting population was 

-0.38. We denote this population by quad. Clearly this is a toy example and the particular form of 

the relationship between x  and y  is not important to the WDP methods beyond the fact that x  

does contain some information about .y  In what follows we will compare WDP estimators to 

two standard methods under four different sampling plans. 

To construct the CPP we assumed that the x  values for the population are known and we use 

them to construct three strata after the sample has been observed. These strata will not be 

constructed in the usual way. We did this to underplay the usual role of the design and to 

emphasize the robustness of our approach against the choice of design. We will have a sample 

size of = 60n  and we will construct three post-strata. Let [1] [2] [60]< < <x x x  be the order 

statistic of the x  values in the sample. Let 20q  and 40q  be the population quantiles of [20]x  and 

[40]x  respectively. Then the CPP assumes that the total probability assigned to the units in the 

sample with the 20 smallest x  values must be 20q  and the total probability assigned to the next 

20 smallest must be 40 20 .q q  In other words we break the sample into three equal groups and 

use the information in the x  values to get the appropriate population size of the corresponding 

strata. In addition the CPP assumes that the probabilities assigned to the sample must satisfy the 

population mean constraint for .x  

The resulting WDP will be compared to two standard frequentist methods. The first is the 

post-stratified estimator which makes use of the same strata information as the CPP. The second 

is the usual regression estimator which assumes that the population mean of x  is known. 

Although the regression estimator is not really appropriate for population quad it is included as a 
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comparison. When computing 95% confidence intervals for the population total both frequentist 

methods will assume simple random sampling even when different sampling designs were used. 

We will denote these two estimators by STR and REG respectively. 

The first sampling design was simple random sampling without replacement. For the second 

we generated a set of sampling weights by taking a random sample of 2,000 from a gamma 

distribution with shape parameter 5 and scale parameter 1. We then added 5 to each value to get 

the vector, v  say. Note the values of v  and y  are completely independent. We then used 

approximate pps( )v  where at each step the probability that a unit is selected is proportional to its 

v  value and depends only the unselected units remaining in the population. We call this the 

Random Weights design. For the third design we used approximated pps( ).x  For the fourth we 

found the linear function, say ,l  which maps the range of y  onto the the interval [1, 2].  We then 

used approximate pps( ( ))l y  as the sampling design. We call this the y  Dependent design. In 

this design the selection probabilities depend weakly on the y  values and units with large y  

values are more likely to be selected than those with small values of .y  In particular the unit with 

the largest y  value is twice as likely to be selected as the unit with the smallest y  value. Clearly 

the Random Weights design and the y  Dependent design are not standard designs and would 

never be used in practice. They were included to emphasize our belief that in many cases given a 

sample a good estimate does not depend on how the sample was selected. 

For each design we took 500 samples of size 60 and computed the point estimate, its absolute 

error, the length of its interval estimate and whether or not it contained the true parameter value. 

The results are given in Table 7.1. 

Remember that in this example the WDP is using information from both the post-stratification 

and knowing the population mean of x  while STR just uses the first and REG just uses the 

second. Under SRS and the Random Weights design all four methods preform about the same. 

For the other two designs WDP does the best. Over all four designs its frequency of coverage is 

closest to the nominal level of 0.95. Using the constraint involving the population mean of x  
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allows it to correct for some of the bias introduced by the sampling plans that STR cannot do. 

However this constraint can only do so much. If in the y  dependent design the range of l  was 

[1, 4]  then WDP’s average absolute error is 4.5% better then that of STR and the frequency of 

coverage on the 0.95 nominal intervals were 0.86 and 0.80 respectively. There is just not enough 

information in x  to correct for this much selection bias. 
 
 
 
 
Table 7.1 
Simulation results for population quad discussed in Section 7.1 for 500 random samples of size 60 
for four different sampling plans. The true population total was 227,923.0. The nominal coverage 
for each method is 0.95. 
 

Method  Ave.  
value 

Ave.
err 

Ave.
len 

Freq of
coverage 

SRS 
STR  227,856.1 4,165.0 21,332.1 0.950 
REG  227,602.1 4,302.7 21,300.3 0.944 
WDP  227,546.9 4,190.6 23,029.7 0.958 

Ave. min and max of WDP parameters were 0.658 and 1.580. 

Random Weights 
STR  227,976.5 4,371.2 21,254.1 0.938 
REG  227,715.5 4,462.2 21,305.9 0.934 
WDP  227,721.2 4,420.6 22,901.4 0.950 

Ave. min and max of WDP parameters were 0.651 and 1.583. 
pps( )x

STR  225,295.8 5,228.9 23,008.4 0.916 
REG  224,207.2 5,611.2 21,780.3 0.878 
WDP  227,471.1 4,919.2 22,706.6 0.936 

Ave. min and max of WDP parameters were 0.374 and 3.024. 

y  Dependent 

STR  231,590.0 5,229.0 21,170.8 0.892 
REG  231,424.4 5,143.4 21,127.9 0.902 
WDP  231,139.1 4,967.6 22,867.0 0.938 

Ave. min and max of WDP parameters were 0.660 and 1.643. 

 
 
 
 

For each design we have included the average of the smallest and largest values of the 

parameter values defining the WDP which in this case must sum to 60. We see the range is 

largest for pps( ).x  
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In the simulations we also used the WDP to construct 0.95 credible intervals for the 

population median of .y  For the four designs its respective frequency of coverage was 0.956, 

0.950, 0.952 and 0.930. 

We did another simulation study where x  was generated in the same way but now the 

conditional distribution of iy  given ix  was normal with 60 ix  and standard deviation 2 .ix  

The correlation between x  and y  was 0.46. Under all four designs the performances of the point 

estimators were very similar. The WDP intervals tended to be a bit longer than the rest but over 

the four designs its average frequency of coverage for the population total was 0.949. Under the 

y  Dependent design its frequency of coverage for the population total was 0.934 while for STR 

and REG the corresponding coverages were 0.896 and 0.886. Its average frequency of coverage 

for the population median of y  was 0.942. 

A frequentist could argue that this is an unfair example since the regression estimator does not 

make much sense for this population and of course they would be right. If for this problem you 

assumed a quadratic relationship between y  and x  and if you assumed that the first two 

population moments of x  were known then the resulting regression estimator would out perform 

the WDP. In Lazar et al. (2008) there is such an example. Moreover, they show that including a 

constraint for the second moment of the CPP will hardly change the behavior of the resulting 

estimates. Hence, when there is good prior information about the model relating x  and y  this 

should be used in the analysis. When such prior information is not available we believe the WDP 

does have certain advantages even though it may not yield dramatic improvements over standard 

methods. It uses only objective prior information and makes no model assumptions about how 

the characteristics of interest and the auxiliary variables are related. It can correct for a slight 

dependency of the selection probabilities on the characteristic of interest. Although the sampling 

design plays no explicit role in its calculation, information which is often incorporated in the 

design can be reformulated as a constraint and be used when defining the CPP. Given a sample, 

inferences based on the WDP use many simulated complete copies of the population which on 
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the average are consistent with the prior information. This makes makes it straightforward to 

estimate parameters other than a population mean or total. 

 
7.2  Stratification and estimating the median 
 

In many applications only a few observations, sometimes only two, are taken from each 

stratum. For such problems finding a good confidence interval when estimating the population 

median can be difficult. Next we will compare the standard method, see for example Section 5.11 

of Särndal et al. (1992), with the WDP. We will assume simple random sampling without 

replacement within strata. 

For definiteness, assume we have L  strata and stratum j  contains jN  units. Let 

=1
=

L

jj
N N  be the total size of the population. Assume that two observations are taken from 

each stratum. Then the weight assigned to each sampled unit is one-half of the stratum size from 

which it was selected. The standard method uses these weights to find its confidence interval. 

For this scenario the usual Polya posterior is applied within each stratum, independently 

across strata. Alternatively, this can be thought of as a CPP where the amount of probability 

assigned to the two sampled units in stratum j  must sum to / .jN N  If ,1 ,2= ( , )j j jp p p  

represents the probability assigned to the two sampled units from stratum j  then under the CPP 

( ) = ( / (2 ), / (2 ))j j jE p N N N N . Recalling the notation from Section 5 we see that under the 

WDP the weight assigned to each of the two sampled units in stratum j  is ( ) / .jLN N  Recall 

that simulating complete copies of the population using the WDP means that individual simulated 

copies will almost certainly not satisfy the constraints however the constraints will be satisfied 

when we average over all simulated copies. At first glance this might seem like a bad idea but we 

will see that when estimating the population median interval estimates based on the WDP behave 

better than the standard intervals which are too short. We shall see that the extra variability 

present in the WDP yields longer intervals with better frequentist properties. 



20 Strief and Meeden: Objective stepwise Bayes weights in survey sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The stratified populations we considered were constructed as follows. The strata sizes were a 

random sample from a Poisson distribution with parameter = 100.  The strata means were a 

random sample from a normal population with the mean = 150  and with either a standard 

deviation of = 10  or = 20.  The strata standard deviations were a random sample from a 

gamma distribution with scale parameter one and shape parameter   with either = 0.10  or 

= 0.25.  We constructed two versions of each of the four types, one with 20 strata and the 

other with 40 strata. For each of the eight populations we took 500 samples where each sample 

consisted of two observations selected at random without replacement from each stratum. For 

each sample we compared the standard approach with estimates based on the WDP. The results 

can be found in Table 7.2. We only present the results for the 20 strata populations because the 

results for the 40 strata population are similar. Both methods are approximately unbiased and the 

point estimate based on the WDP seems to do just a bit better. But the confidence intervals 

produced by WDP are clearly superior. Even though in one case the WDP intervals are clearly 

too long its overall performance is much better than the standard intervals. 
 
 
Table 7.2 
Simulation results from 500 stratified random samples of size two within each strata from 
populations with 20 strata. The nominal coverage for each method is 0.95. 
 

Method  Ave.  
value 

Ave.
err 

Ave.
len 

Freq of
coverage 

= 10  and = 0.10  
Stand  148.40 2.37 8.30 0.808 
WDD  148.39 2.22 12.20 0.95 

= 10  and = 0.25  
Stand  144.28 5.70 20.59 0.834 
WDD  144.18 5.41 28.38 0.950 

= 20  and = 0.10  
Stand  152.75 3.02 10.52 0.828 
WDD  152.61 2.78 22.88 0.996 

= 20  and = 0.25  
Stand  155.94 6.72 23.17 0.826 
WDD  155.89 6.35 34.96 0.962 
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What causes the poor performance of the WDP intervals in the one case? Additional 

simulations indicate that when the strata means vary widely and the strata variances tend to be 

relatively small then the WDP intervals will tend to be too long. In our simulations the case with 

= 20  and = 0.10  leads to a population with such strata. When the sample size was 

increased to four units per stratum the difference between the two methods is not so dramatic but 

the story remains much the same. The standard intervals tend to be to short and under cover while 

the WDP intervals are longer and tend to over cover. 

Clearly the choice of a good method for constructing a confidence interval depends not only 

on the size of the intervals it produces and but on the probability with which those intervals fail to 

include the true but unknown parameter value. Cohen and Strawderman (1973) and Meeden and 

Vardeman (1985), among others, have explored the question of admissibility for confidence 

intervals. Although the results given there are not directly applicable to our case the second paper 

shows that in some situations certain Bayes procedures can yield almost admissible procedures. 

These type of arguments along with the fact that the standard interval is way too short gives some 

circumstantial evidence, we believe, that the WDP intervals in this example are not outrageously 

too long. To sum up, we believe that in the important special case when the sample sizes are two 

and the strata are not dramatically different the WDP intervals seem to be a serious competitor 

for the standard intervals. 

 
7.3  Integrated public use microdata series 
 

The Minnesota Population Center (MPC) is an interdepartmental demography research group 

at the University of Minnesota. A major goal of the MPC is to create databases and statistical 

tools which can be utilized in the study of economic and social behavior. One database of interest 

is the Integrated Public Use Microdata Series (IPUMS), which is a consolidation of U.S. censuses 

and other national surveys from 1850-present (Ruggles, Sobek, Alexander, Fitch, Goeken, Hall, 

King and Ronnander 2004). The word microdata is applied in this context because each row of 
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an IPUMS dataset corresponds to one individual or one household; such low-level of detail may 

be contrasted with a typical Census Bureau publication or online summary table, in which a 

preset geographic specific tabulation (geography can be the entire country, states, counties, 

census tracts etc.) of the microdata is given to the data user. 

One dataset which offers a rich array of numerical variables is the 2005 American Community 

Survey (ACS). This Census Bureau product is a large sample survey, and the Census Bureau 

does not know the true population means for the variables. To conduct simulations with the 2005 

ACS, the sample played the role of the population. More specifically, the full population was 

assumed to be a set of 3,579 Minneapolis residents who are of working age (between 25 and 75), 

and who earn a yearly wage between $20,000 and $120,000. For our purposes the two variables 

of interest were: 
 

 .inctot  Total pre-tax income from 2004. 

 .sei  The Duncan Socioeconomic Index. Created in the 1950’s, this is a numerical 

variable which attempts to rate the prestige associated with an individual’s occupation. 

The range of this variable is [1,100]. 
 

For our simulations we set = log( )y inctot  and = .x sei  The correlation between y  and x  

is 0.398 and we assume that the mean of x  is known. For estimating the population mean of y  

we considered the estimator based on the WDP and the regression estimator. We used two 

different designs: simple random sampling and approximate pps( ).x  In each case we took 300 

samples of size 30. The results are given in Table 7.3. We see that although the two methods are 

comparable the WDP clearly gives the better intervals. 
 
 

Table 7.3 
Simulation results from 300 random samples of size 30 from the IPUMS population. The nominal 
coverage for each method is 0.95. 
 

Design Method Ave.
err 

Ave.
len/2 

Freq of
coverage 

SRS  Reg  0.052 0.128 0.943 
 WDP  0.052 0.138 0.947 

pps( )x   Reg  0.062 0.132 0.897 
 WDP  0.066 0.133 0.937 
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8  Final remarks 
 

The construction of weights in survey sampling is often more of an art than a science. This is 

one possible conclusion that can be drawn from the recent paper of Gelman (2007) and the 

accompanying discussion. He argues for a Bayesian approach to constructing weights using 

regression models which relate the characteristic of interest to auxiliary variables. Here we 

argued for a stepwise Bayes approach which will make use of the information present in the 

auxiliary variables without assuming a model relating the characteristic of interest to the auxiliary 

variables. The resulting weight for a unit in the sample can be given the usual interpretation as 

the number of units in the population which it represents. 

A frequentist weight, say ,iw  is the inverse of an inclusion probability, and this number 

represents the number of units in the population represented by a particular unit in the sample. So 

1iw   for all i  and .ii s
w N


  In Section 6 we saw that for the Horvitz-Thompson 

estimator the sum of the weights of the units usually fails to equal the population size which can 

result in a poor estimator except in very special circumstances. Another problem with frequentist 

weights is that they are often adjusted – after the sample is collected – to ensure that the 

frequentist estimates are in agreement with prior information about the population (Kostanich and 

Dippo 2002). After making adjustments, the weights may be rescaled so that they sum to a 

population total. However, the adjusted frequentist weights no longer depend just on the 

sampling design and they no longer represent inverses of inclusion probabilities. The intuition 

behind frequentist weights is therefore somewhat confusing. Before adjustments, frequentist 

weights are functions of the design; but after adjustments, they are now functions of the design 

and other prior information, which may or may not be related to the design. 

Bayesians think of estimation in survey sampling as a prediction problem. Their predictions 

are based on an assumed model which can lead to weights being assigned to the units in the 

sample. See for example the aforementioned Gelman (2007) and Little (2004). As noted by a 

number of authors (Pfeffermann 1993) performing a weighted analysis for a model using inverses 
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of the inclusion probabilities can protect the sampler from model misspecification. Moreover in 

certain situations the two approaches may lead to similar results. 

Recently, Rao and Wu (2010) have developed methods which use a pseudo empirical 

likelihood approach and base their inferences on Dirichlet posterior distributions. The resulting 

procedures, although formally somewhat similar to some discussed here, use prior information in 

a different way. For them much of the prior information must be filtered through the design while 

we believe that prior information which is often included in the design can be used directly to 

generate good posteriors. For better or worse we are closer to the classical Bayesian scenario 

where the posterior distribution does not depend on the sampling design. 

Here we have focused on using the CPP to generated a set weights based on the sample and 

prior information and then making our inferences using the WDP based on these weights. Strief 

(2007) considered examples where the weights generated by the CPP were instead used in the 

appropriated frequentist formulas to get an estimate of variance and noted that their performance 

was similar to standard methods. Alternately one could imagine basing their inferences on the 

WDP but using frequentist weights, say generated by calibration methods (Särndal and 

Lundström 2005), instead. Although this deserves further study it is our expectation that such 

approaches should lead to inferential procedures with good frequentist properties. 

In the design based approach consistency is an important property for an estimator to possess. 

For an important special case when the design is SRS the CPP estimators are consistent. This is 

demonstrated in Geyer and Meeden (2013). 

Just as the CPP does, the WDP also has a stepwise Bayes justification. (For more details see 

Strief (2007).) The weights used in the WDP have a consistent formulation and interpretation. 

They are always a posterior expectation and always sum to the population size. They represent 

the average number of times that each unit in the sample appears in a simulated, completed copy 

of the population under the CPP. This average is with respect to the uniform distribution over all 

possible copies of the population which just contain the units in the sample and which satisfy the 
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given constraints. These weights depend only on the same kinds of objective prior information 

about the population which are often used to define and adjust frequentist weights. This allows 

them to incorporate prior information without explictly specifying a prior distribution. 

In most cases the weight assigned to a unit in the sample will depend on the other units in the 

sample. We have argued that after the sample has been selected one should argue conditionally. 

That is, given the sample the weights should depend on all the available prior information about 

the population but not on how it was selected. (We are assuming that the person selecting the 

sample and the analyst are one in the same.) Any procedure constructed in this manner should 

preform well for a variety of sampling designs. For any procedure, be it either frequentist, 

Bayesian or stepwise Bayes this is the litmus test: it should be evaluated by how it behaves under 

repeated sampling from the design of interest. 

To implement the methods discussed here one first needs to use the CPP to computed the 

weights for the observed sample. Then one needs to use the weights in the WDP to simulate 

complete copies of the population. The first step is the more difficult although the software 

package polyapost makes it relatively straightforward for anyone familiar with R. Once the 

weights are known it is easy to simulate from the WDP in many computer packages. This makes 

our approach more practical for survey datasets (like IPUMS) which are presented with the 

weights attached and are used by multiple researchers. A more serious limitation is that we have 

only considered simple single stage sampling designs. More work needs to be done to extend 

these methods to more complicated multi-stage designs. If the underlying constraints are selected 

wisely the resulting procedures can have good frequentist properties for a variety of sampling 

designs. These stepwise Bayes weights can be thought as our best guess for the unknown 

population given the sampled units and our prior information. 
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Optimizing quality of response through adaptive survey 
designs 
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Abstract 

In most surveys all sample units receive the same treatment and the same design features apply to all 

selected people and households. In this paper, it is explained how survey designs may be tailored to 

optimize quality given constraints on costs. Such designs are called adaptive survey designs. The 

basic ingredients of such designs are introduced, discussed and illustrated with various examples. 
 

Key Words: Survey costs; Survey errors; Nonresponse; Responsive survey design. 
 
 

1  Introduction 
 

In most surveys, all sample units receive the same treatment and the same design features 

apply to all selected people and households. When auxiliary information is available from 

registry data or interviewer observations, then survey designs may be tailored to optimize 

response rates, to reduce nonresponse selectivity or more, generally, to improve quality. 

Although a general terminology is lacking in the literature, such designs are usually referred to as 

adaptive survey designs. 

With this paper, we aim to describe the basic ingredients of adaptive survey designs, to 

systematize these designs by providing a mathematical framework, to illustrate their potential to 

improve efficiency of survey data collection, and to propagate their use in survey practice.  

Adaptive survey designs assume that different people or households may receive different 

treatments. These treatments are defined before the survey starts, but may also be updated via 

data that are observed during data collection. In other words, allocation of treatments is based on 

data that are linked to the survey sample and on paradata. Paradata are data about the survey data 

collection process, e.g., observations of interviewers about the neighborhood, the dwelling or the 
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respondents, or the performance of interviewers themselves. In this paper, paradata are used in 

the widest sense as data that are observed during data collection and that are informative about 

the response behavior of sampled people and households.  

A general introduction to adaptive survey designs is given by Wagner (2008). Adaptive survey 

designs find their origin in the literature on medical statistics where treatments are varied 

beforehand over patient groups but also depend on the responses of patients, i.e., depend on 

measurements during data collection. See for example Heyd and Carlin (1999), Murphy (2003) 

and Zajonc (2012).  

A special case of an adaptive survey design is the responsive survey design. Responsive 

survey designs were introduced by Groves and Heeringa (2006). Like general adaptive survey 

designs, responsive survey designs may apply differential design features to sample units. 

However, the main distinction is that responsive survey designs identify promising and effective 

treatments or design features during data collection. In order to do so, the data collection is 

divided into multiple design phases. A new phase employs the outcomes of randomized contrasts 

between sample units in previous phases to distinguish effective from ineffective treatments and 

to identify costs associated with the treatments. Randomized contrasts are differences in response 

rates between subpopulations for randomly assigned design features. See for example Mohl and 

Laflamme (2007), Laflamme and Karaganis (2010), Phillips and Tabuchi (2009) and Peytchev, 

Riley, Rosen, Murphy and Lindblad (2010). The allocation of design features must be done in 

such a way that each phase reaches its phase capacity, which is the optimal trade-off between 

quality and costs. Responsive designs are motivated by survey settings where little is known 

about the sample beforehand and/or little information about the effectiveness of treatments is 

available from historic data. In these settings multiple phases are needed and responsive designs 

are practical. If the second and higher design phases of responsive designs are considered, 

however, then the starting point is similar to survey settings where substantial prior information 

about sample units is available or where a survey is repeated many times. The only distinction is 
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that in previous design phases part of the sample has already responded. In this paper, it is 

assumed that historic data are available, that effective treatments are identified beforehand and 

that it is specified what linked data and paradata are going to be used to adapt the design. 

What is new in this paper? We make three contributions. First, we set up a general 

mathematical framework for optimizing response quality given cost constraints. Second, we 

explicitly allocate different design features to different sample units within this framework. 

Third, we propose to optimize quality indicators for nonresponse error. The last two contributions 

are by themselves not completely new. Simple adaptive survey designs are already applied, e.g., 

in the Dutch Labour Force Survey larger households are not interviewed by web or telephone and 

proxy reporting is only allowed by a member of the household core. Attempts to optimize survey 

design accounting for nonresponse error go at least as far back as Hartley and Monroe (1979). 

And there is a vast literature on optimizing timing and number of contact calls in interviewer 

surveys, e.g., Kulka and Weeks (1988), Greenberg and Stokes (1990) and Kalsbeek, Botman, 

Massey and Liu (1994). What is new is the ensemble of all the pieces into a general mathematical 

framework that abstracts from single design features and that allows to apply general quality 

indicators. The main motivations for the advance of such a framework are the strong pressure on 

survey costs and the rise of web as a survey mode. Web has a strong quality-cost differential; it is 

cheap but has low response rates and has different measurement properties than interviewer 

modes. As such, web challenges the trade off between quality and costs. Although survey 

literature has devoted considerable attention to trade-offs in survey designs between the various 

surveys errors, e.g., Lyberg, Biemer, Collins, de Leeuw, Dippo, Schwarz and Trewin (1997) and 

Dillman (2007), in survey practice there are still surprisingly few cases where differential design 

features are investigated and implemented. With this paper, we hope to provide a steppingstone 

for future research and discussion into adaptive survey designs. 
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In Section 2, we describe theory and concepts behind adaptive survey designs. In Section 3, 

we present an example based on virtual survey data, and, in Section 4 we discuss a simulation 

study based on real survey data. Finally, in Section 5 we end with a summary and discussion. 

 
2  What are adaptive survey designs? 
 

2.1  Adaptive survey designs in general 
 

In this section, a mathematical framework is set out for adaptive survey designs. In subsequent 

sections, components of this framework are highlighted and elaborated. 

Let the population consist of units 1, 2, , .k N   The population of interest may consist of 

all units in a population but also of all recruited members of a panel. Each unit will be assigned a 

strategy s  from the set of candidate strategies 1 2{ , , , , }.MS s s s    In the survey strategy set 

S  the empty strategy   is explicitly included. The empty strategy means that no action is 

undertaken, i.e., the population unit is not sampled. This is the most general framework. In 

practice, one will often separate the sampling design from the strategy allocation and view the 

sample as given and fixed. However, one may include the decision to sample a unit explicitly in 

the overall allocation of resources.  

In general a strategy s  is a specified set of design features and may involve a sequence of 

treatments where treatments are only followed when all previous treatments failed. Some of those 

features may be sequential such as the type of contact mode and the type of survey mode, but the 

features may also describe different aspects of a survey design. Examples of strategies are  

1s  (advance letter 1, web questionnaire, one reminder); 

2s  (advance letter 1, web questionnaire, no reminder); 

3s  (advance letter 2, CATI administered, maximum of six call attempts); 

4s  (advance letter 2, CATI administered, maximum of 15 call attempts). 

In the literature many design features are suggested and evaluated, e.g., Groves and Couper 

(1998) and Groves, Dillman, Eltinge and Little (2002). We refer to De Leeuw (2008) for a 

discussion of survey modes, to Dillman (2007) and De Leeuw, Callegaro, Hox, Korendijk and 
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Lensvelt-Mulders (2007) for an elaboration of advance letters and reminders, to Wagner (2008) 

for a discussion of contact protocol, to Barón, Breunig, Cobb-Clark, Gørgens and Sartbayeva 

(2009) for a review of incentives, to Kersten and Bethlehem (1984), Cobben (2009) and Lynn 

(2003) for research into condensed questionnaires, to Moore (1988) for a discussion of proxy 

reporting, and to Cobben (2009) for an example of interviewer assignment. 

It is assumed in this paper that the set of strategies S  is known and fixed when strategy 

allocation is started. The set of strategies may be identified based on historical survey data, 

experience and pilot studies. We refer to Schouten, Luiten, Loosveldt, Beullens and Kleven 

(2010) and Schouten, Shlomo and Skinner (2011) for guidelines and examples on how to 

construct strategy sets.  

With each population unit k  a vector of covariates 1 2( , , , )T
k k k kpX X X X   is associated. 

kX  contains characteristics that are known before data collection starts and before strategies are 

allocated. The covariates must, therefore, be available in registrations or administrative data that 

can be linked to the sampling frame or in the sampling frame itself. Next to these general 

characteristics a second vector of covariates 1 2( , , , )T
k k k kqX X X X     may exist for unit k  

that reflects characteristics observed during data collection for sampled population units. These 

characteristics are termed paradata or process data because they are collected during the process 

of data collection by interviewers and data collection staff. However, other than the more 

traditional view on paradata as information about the process, in the adaptive survey design 

context kX  contains observations about the sampled person or household. Examples of kX  are 

gender, age, type of household or educational level. Examples of kX  are the interviewer 

assessment of the propensity to respond or the propensity to be contacted, the state of the 

dwelling or the neighborhood, and the presence of an intercom. kX  is deliberately restricted to 

observations about the sample that allow for differentiation of survey design features. It does not 

contain the values of the design features themselves such as the interviewer that was assigned to 

the address.  
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The important distinction between kX  and kX  is the level of availability. kX  is known only 

for those units that are sampled and cannot be used in distinguishing subpopulations a priori. Let 

( )q x  represent the distribution of kX  in the population and ( , )q x x  the joint distribution of kX  

and kX  in the sample. Furthermore, ( | )q x x  denotes the conditional sample distribution. It is 

assumed that ( )q x  and ( , )q x x  are known in advance. In settings where no or little data can be 

linked, strategy allocation must be based fully on observations made during data collection.  

Adaptive survey designs that allocate strategies based on population characteristics available 

in registry and frame data are termed static, while adaptive survey designs that allocate strategies 

that depend (also) on paradata are termed dynamic. It is important to remark that both static and 

dynamic designs have a strategy set that is fixed before data collection starts. However, for 

dynamic designs it is not known beforehand which strategies are going to be assigned to 

individual units because the choice of strategy depends on data that are observed during data 

collection.  

Let ( , )x s  be the response propensity of a unit carrying characteristic X x  and that is 

assigned strategy .s  It is assumed that ( , )x s  is available from historic data, i.e., from previous 

versions of the same survey, from surveys with similar topics and designs or from initial design 

phases. Obviously, the anticipated response propensity must be a close estimate of the true 

propensity. Section 2.4 returns to this essential component of adaptive survey designs. 

The expected costs of the assignment of strategy s  to a unit with X x  is denoted as 

( , ).c x s  It is an individual cost component. Literature tells us that survey costs consist of many 

components of which some are overhead and others are individual, e.g., Groves (1989). 

Section 2.3 discusses cost functions. 

Let ( | )p s x  be the allocation probability of a population unit with characteristics x  for 

strategy ,s  and let ( | , )p s x x  be the allocation probability to that strategy given that also 

paradata x  are observed. The following must hold 
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                                              0 ( | ) 1, 0 ( | , ) 1p s x p s x x     (2.1) 

                                              ( | ) 1, ( | , ) 1,
s s

p s x p s x x     (2.2) 

i.e., all units are assigned a strategy. In general, allocation probabilities may have values between 

0 and 1. In other words subpopulations with the same scores on x  and x  may be (randomly) 

assigned to different strategies. For instance, only part of the non-respondents may be re-

approached in a follow-up. Allowing for allocation probabilities between 0 and 1 increases the 

flexibility in meeting quality levels or cost constraints. In the following, p  denotes the matrix of 

allocation probabilities, i.e., 1 , ,{ ( | , )}j j M x xp p s x x     and contains the decision variables in 

the optimization. 

The response propensities X  can be derived from the strategy response propensities and the 

allocation probabilities by  

                                        ( ) ( | ) ( | , ) ( , , ).X s S x
x q x x p s x x s x x


    

    (2.3) 

The strategies, covariates, response propensities, cost functions and allocation probabilities 

form the ingredients to adaptive survey designs. With these building blocks the adaptive survey 

design optimization problem can be formulated. Two ingredients are still missing, however, a 

quality function and an overall cost function. Let ( )Q p  be some indicator of quality and ( )C p  

be an evaluation of total costs. The dependence on the allocation probabilities in both functions is 

stressed as the probabilities are the decision variables in the optimization. 

The optimization problem can now be formulated as 

                                                 max ( )p Q p  given that max( )C p C  (2.4) 

or as 

                                                 min ( )p C p  given that min( ) ,Q p Q  (2.5) 
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where maxC  represents the budget for a survey and minQ  minimum quality constraints. Problems 

(2.4) and (2.5) are called dual optimization problems, although the solutions to both problems 

may be different depending on the quality and cost constraints.  

It is important to stress that the optimization of quality or costs is done only once, before 

survey data collection starts, and is not repeated during data collection. Hence, it is the strategy 

that is adapted to the population unit, and in case of a dynamic design to paradata about that unit, 

but it is not the optimization itself that is adapted. The optimization is based on historic survey 

data that includes the paradata that has become available in a survey. The joint density function 

( , ),q x x  the response probabilities ( , , )x x s   and the cost function ( , , )c x x s  are all estimated 

from historic survey data and are assumed to be given. Since in practice paradata becomes 

available only during data collection, the candidate strategies for units in the same stratum x  are 

the same up to the moment the paradata x  becomes available. For instance, there may be the 

following four strategies: 1) two telephone call attempts and no follow-up, 2) two telephone call 

attempts and a follow-up with incentives, 3) three telephone call attempts and no follow-up, and 

4) three telephone call attempts and a follow-up with incentives. The decision to make two or 

three call attempts is based on ,x  while the follow up is decided upon using a telephone paradata 

observation .x  Thus, beforehand, it is estimated how many units will fall in stratum ( , )x x  and 

how many will receive a follow up, but only when x  is measured, the full strategy is known for 

individual units. 

 
2.2  Quality objective functions 
 

Adaptive survey designs, as discussed by the literature, typically focus on nonresponse error. 

In this section, we start with a general classification of quality functions, and then move to 

quality functions for nonresponse error. In general, a focus on nonresponse error is too narrow a 

view, especially, when the survey mode is one of the candidate design features in the adaptive 

survey design. Here, we do, however, not explicitly discuss other survey errors, but we return to 
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this issue in the discussion. We refer to Calinescu, Schouten and Bhulai (2012) for an extension 

of adaptive survey designs to measurement error and Beaumont and Haziza (2011) for a 

discussion on adaptive survey designs and nonresponse variance. 

 
2.2.1  Covariate-based and item-based quality functions 
 

When quality is optimized according to (2.4), then quality functions map the survey sample 

with linked data, paradata and answers to survey items to a single value which can be interpreted 

and optimized. When costs are minimized subject to constraints on quality as in (2.5), then 

quality may be multi-dimensional (but cost functions should be one-dimensional).  

In general, two types of quality functions can be distinguished; quality functions that employ 

covariates from linked data and paradata only, and quality functions that also employ the answers 

to the survey target variables. We refer to them as covariate-based and item-based, respectively. 

An item-based quality function is a function of the response distribution of a survey item and the 

anticipated, estimated full population distribution given the available linked data and paradata. 

The main distinction between covariate-based and item-based quality functions is that item-based 

quality requires assumptions. Evidently, the answers of nonrespondents are missing. Hence, 

quality evaluation must be based on relations between target variables and covariates as observed 

in the response. As a consequence, there is a risk attached to item-based quality functions that 

originates directly from the phenomenon it attempts to measure. Relations between target 

variables and covariates may be different for nonrespondents and item-based quality may pose an 

incomplete image. Furthermore, in surveys with many survey target variables, different target 

variables may lead to different decisions and optimal survey designs. However, contrary to 

covariate-based quality functions, item-based quality functions tailor survey designs specifically 

to the topics of the survey. Covariate-based quality functions can only be related to the 

nonresponse bias of the covariates that are included. 
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2.2.2  Optimizing quality of response 
 

We, first, describe briefly a number of quality functions that have appeared in recent literature. 

Next, we discuss the choice of a quality function. 

The most well-known covariate-based quality function for nonresponse is the response rate. It 

is not a true covariate-based quality function in the sense that it depends on linked data or 

paradata. However, since the 0-1 response indicator may be viewed as the simplest form of 

paradata, it is termed a covariate-based quality function. The response rate is represented as the 

mean response propensity 

Response rate:                  
, ,

( ) ( , ) ( | , ) ( , , )
x x s

Q p q x x p s x x x x s    
    (2.6) 

Schouten, Cobben and Bethlehem (2009) propose two covariate-based quality functions, the R-

indicator and a measure they call the maximal or worst-case nonresponse bias. The label of the 

second indicator is misleading as it is only an estimator of the maximal bias of the unadjusted 

mean of respondents, not the true maximal bias. A better label is the coefficient of variation of 

response propensities, which we will use here. The measures can be written as 

R-indicator:                                   ( ) ( ) 1 2 ( )Z ZQ p R S      (2.7) 

Coefficient of variation:                
( )

( ) ( ) ,Z
Z

S
Q p CV


  


 (2.8) 

where the representativeness may be evaluated with respect to linked data only, ,Z X  or with 

respect to a vector containing both linked data and paradata, ( , ) .TZ X X   The standard 

deviations of the response propensities, ( )XS   and ,( ),X XS    can be written in terms of the 

strategy allocation probabilities as 

                               2

,
ˆ( ) ( ) ( ) ( , ) ( , , )X x x s

S q x q x x p s x x x x s      
    (2.9a) 

                            2

, ,
ˆ( ) ( , ) ( , ) ( , , ) .X X x x s

S q x x p s x x x x s      
    (2.9b) 
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Särndal and Lundström (2010) and Särndal (2011a and b) propose indicators that are very 

similar in definition and nature to (2.7) and (2.8). These indicators were derived from the 

perspective of calibration and so-called balanced response, and may be used as alternatives to 

(2.7) or (2.8). 

An example of an item-based quality function for nonresponse is presented by Groves and 

Heeringa (2006). For a specific target variable ,Y  Groves and Heeringa (2006) suggest the 

nonresponse bias of the unadjusted mean of respondents 

Estimated nonresponse bias:              
cov( , )

( ) ,XY
Q p





 (2.10) 

with cov( , )XY   the response covariance between the target variable and the response 

propensities given covariates .X  It can be written as 

                                
( ) ( )( ( ) )( ( ) )

cov( , ) ,X X X Rx
X

q x x x y x y
Y

    
 




 (2.11) 

with ( )X x  as in (2.3), ( )y x  the mean value of Y  for X x  and Ry  the expected mean of 

respondents. Again, (2.11) can be extended to include paradata .X  

All quality functions in this section are defined as population parameters. In practice, they 

need to be estimated from survey data. The true ( )X x  need to be replaced by estimators ˆ ( ),X x  

based on some form of regression, and the summations over the population will be replaced by 

design weighted summations over the sample. We return to the estimation of propensities in 

Section 2.4. 

Now, how to choose a quality function? All quality functions mentioned here attempt to 

measure the impact of nonresponse beyond that of a mere reduction in sample size. They do this 

based on covariates from linked data and paradata. The rationale behind optimizing these quality 

functions is that stronger traces of nonresponse error on these covariates may imply larger 

nonresponse error on other variables as well; the quality functions are viewed as process quality 

indicators rather than product quality indicators. Although appealing, this conjecture clearly 
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needs empirical support. The choice of a quality function for nonresponse should be based on the 

set of key survey variables, the population parameters of interest and the estimators that are going 

to be employed. The response rate and R-indicator do not aim at a specific population parameter 

or estimator. The coefficient of variation focuses on population means, but it is not specific to 

any survey variable or nonresponse adjustment, while the estimated nonresponse bias originates 

from the same perspective, but it is applied to a single survey variable. If a survey carries 

multiple key survey variables, then an item-based quality function for nonresponse is to be 

avoided, as it may lead to conflicting optimization problems. If a survey has a single key variable, 

then it is effective to either use an item-based quality function or to restrict to the most relevant 

covariates only in covariate-based quality functions. If a survey has multiple uses, then, in our 

view, it is too restrictive to focus on a specific population parameter and estimator, and we favor 

the R-indicator to any other quality function. If it can be expected that users will focus on 

population means or totals, then the coefficient of variation is to be preferred, in our opinion, as it 

does not assume a specific adjustment method.  

However, even more important than the choice of the indicator is the set of linked data and 

paradata that are input to the indicator. If a survey has one or only a few key variables, then the 

selected linked data and paradata can and should relate to those variables. If, however, a survey 

has a wide range of survey variables, then one must restrict necessarily to auxiliary variables that 

generally distinguish persons or households. 

So far, we have ignored the impact of nonresponse on precision, while requirements for the 

precision of the survey estimates may be given explicitly. There are two options to include 

precision in the optimization. First, one may add an additional constraint. The straightforward 

choice would be a constraint on the minimum number of respondents, possibly for a number of 

population subgroups; thereby avoiding to specify the population parameters and estimators. 

Second, the nonresponse variance may be included in the quality function itself, i.e., one would 

consider indicators for the mean square error. This option is proposed and elaborated by 
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Beaumont and Haziza (2011). Under the second option, one again has to consider the set of key 

survey variables, the population parameter and the estimation strategy, as precision is specific to 

an estimator for some population parameter for a single survey variable.  

 
2.3  Cost functions 
 

Cost functions are the counterpart of the quality functions. There are several components to 

cost functions. It is important to restrict specification of costs relative to the design features that 

are varied in the adaptive survey design. For example, when it is the incentive that is 

differentiated with respect to different subpopulations, then costs need not be specified and 

detailed for interviewer traveling times. When it is the contact timing protocol that is the design 

feature that may be tailored, then, obviously, traveling times and traveling costs play a dominant 

role. 

If a large number of design features is optional, then the cost functions have complex forms 

with many overhead and variable cost components. Generally, variable costs depend on the 

sample size while overhead costs do not. Overhead cost components may come from data 

collection staff, sampling and processing of samples. Variable costs arise for example from 

training and instruction of interviewers, mail and print of questionnaires and reminders, 

processing of paper questionnaires, interviewer hour rates and travel expenses, incentives and 

telephone number linkage, telephone usage and computer servers.  

In the optimization two cost components may be identified: a fixed and a variable component. 

The variable component depends on the allocation of population units to strategies while the 

fixed component consists of all remaining costs. It must be stressed that the fixed component is 

different for adaptive survey designs that focus on different design features. The cost function 

( )C p  is the sum of two components 

                                                             ( ) ( ),F VC p C C p   (2.12) 

of which only the second, the variable component, depends on the allocation probabilities. 
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In general, with a survey strategy ,s  costs ( , , )c x x s  are associated with population units from 

group ( , ).x x  The individual cost function may be a function of response propensities, or even 

more specifically of contact and participation propensities. For instance, the interviewer costs in 

different contact timing protocols depend on the contact rates of the selected subpopulations. The 

cost function ( , , )c x x s  is a relative cost function as it describes only the contribution of the 

strategy to the variable cost component ( )VC p  

                                           
, ,

( ) ( , ) ( | , ) ( , , ).V x x s
C p q x x p s x x c x x s  

    (2.13) 

Three remarks are in order. First, the derivation of fixed and variable cost components is 

complicated when a survey organization runs many surveys in parallel. On the one hand, the 

interaction between surveys makes it hard to separate costs per survey, especially when strategies 

are tailored. On the other hand, when multiple surveys are conducted some of the variable costs 

components may be labeled as fixed. For example, when only a relatively small number of 

population units are assigned to the face-to-face survey mode, then traveling costs may be 

assumed to remain unchanged as the addresses are clustered with addresses from other surveys. 

The second remark concerns the multidimensional aspect of costs. Apart from the overall budget 

it may be requested that interviewer occupation rates are close to one throughout time or that 

none of the interviewers has to work overtime more than a fixed amount of time. As a 

consequence, the cost function becomes a vector and the constraint a vector of constraints. The 

third remark concerns the validity of the cost functions. Since cost functions are hard to construct 

in practice, it may turn out that the optimization was too optimistic. It is important to monitor 

data collection closely and to build in indicators for strategies.  

 
2.4  Estimating response probabilities 
 

Next to cost parameters and quality functions, the other important ingredient of adaptive 

survey designs is the set of response propensities for the various strategies. Such propensities 

need to be known from past surveys, preferably the same survey or otherwise a similar survey. 
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Alternatively, as Groves and Heeringa (2006) propose, one may use earlier phases of the data 

collection to learn and derive propensities. This will be at the expense of efficiency since part of 

the survey is already conducted. Nonetheless, the gathered information directly feeds back to the 

current survey.  

Literature on household surveys gives an extensive list of models for response that include 

design features. The common denominator in all models is that response propensities are 

estimated based on a number of assumptions about the true nature of the nonresponse missing-

data mechanism. In general such models are simplifications. Consequently, anticipated response 

propensities ( , )x s  have a standard error, and may even be biased themselves when they are 

based on similar, but different surveys. In the optimization, this uncertainty can be accounted for 

by allowing response propensities to be random variables rather than fixed quantities. The 

randomness demands for sensitivity analyses and evaluations of the robustness of the 

optimization that provide insight into the variation of quality and costs when the survey is 

conducted multiple times (under the same circumstances). 

 
2.5  The optimization problem 
 

One may take two approaches to the optimization of (2.3) and (2.4): a trial-and-error approach 

or a mathematical optimization. In this paper, we concentrate on a mathematical framework and 

optimization, but one may be more modest and introduce adaptive survey designs gradually 

through pilot studies and field tests. 

Quality functions (2.6), (2.7), (2.8) and (2.10) all are functions of the strategy allocation 

probabilities .p  The response rate is a linear function of the allocation probabilities, which makes 

it relatively easy to optimize using standard optimization software (e.g., the linprog package in R 

or any other software that can address linear programming problems). Still, as far as we know, 

due to the high dimensionality of p  there is no closed form solution to (2.4) even for linear 

problems. In general, however, the quality functions are nonlinear, nonconvex functions with 
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respect to the allocation probabilities, and cannot be optimized without numerical or Monte Carlo 

methods. The complexity of the problem grows quickly as a function of the number of candidate 

strategies and the number of subgroups based on linked data and paradata. 

Current statistical softwares contain procedures or packages that can handle nonlinear 

optimization problems, like nlm or nlminb in R or proc optmodel in SAS. However, nonlinear 

nonconvex problems may require long computational times or may converge to local optima. For 

this reason, specialized optimization softwares such as Xpress, Baron or AMPL are 

recommended. 

In the examples of Section 3 and 4, we perform a number of optimizations. The optimization 

problem of Section 3 is relatively simple; the quality objective function is the R-indicator which 

is evaluated against two population subgroups. For two subgroups the optimization can be 

rewritten as a linear programming problem. For the example of Section 4, we were able to 

construct an algorithm that converges to the optimal solution in a small number of steps. All 

optimizations were programmed in R and the code is available upon request.  

 
3  A dynamic adaptive survey design: Re-assigning interviewers in a 

follow-up survey 
 

In this section, we provide an example of a dynamic adaptive design: the re-assignment of 

interviewers based on observations of the propensity to cooperate. The example is based on 

hypothetical response propensities and cost functions. Interviewers are assigned to sample cases 

that have refused once, based on an assessment of the propensity to respond made during a first 

phase of the survey. The assessment is made for respondents and refusers, but it is not available 

for sample units who were not contacted during the first phase. It provides a judgement on the 

propensity that the sample unit participates in the survey when contacted again. The assessment 

is made on a three point scale: easy, medium, difficult. Easy means that there is a high probability 

that if contacted again the sample unit would respond.  
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After a first phase of data collection, the intermediate survey results are evaluated and sample 

units are divided into respondents, refusers and noncontacts. Refusers receive a different 

treatment. Interviewers are rated based on their historic performance and grouped in good and 

less good interviewers. Refusers are re-assigned to one of the two groups of interviewers. Since 

there is no assessment available for non-contacts, the treatment for this group is not altered. 

We use the R-indicator given by (2.7) as the quality objective function. We split the sample 

using (age)X   into two groups, labelled as young and old. The goal in the second phase is to 

assign refusers to the two interviewer groups such that the R-indicator with respect to age is 

maximized.  

Let n  be the sample size of the survey. The population proportions of the two subpopulations, 

young and old, are denoted by (1)q  and (2).q  We let ( )q x x  be the conditional probability that 

a sample unit from age subpopulation x  is of type ,x  where {easy, medium, difficult}.x   

Furthermore, let ( , )x x   be the probability that a sample unit of type x  from age subpopulation 

x  is a refusal. If a person is not a refuser, then ( , )x x   is the probability that the person either 

was a respondent after the first phase or becomes a respondent when he/she was a noncontact 

after the first phase.  

The total number of interviewers is M  and sp M  represents the number of interviewers with 

skill {good, less good},s S   0 1sp   and good less good 1p p  . The set S  forms the set 

of strategies, i.e., we want to assign each refuser to either a good or a less good interviewer. We 

assume that each interviewer can handle at most c  refusal cases in the second phase of the 

survey. The probability that a refusal of type x  from subpopulation x  will respond if contacted 

by an interviewer of skill s  is denoted by ( , , )s x x   and it is again assumed to be known from 

previous surveys.  

Let ,{ ( , )}x xp s x x   be the set of decision variables, where ( , )p s x x  represents the probability 

that a sample unit of type x  will be assigned to an interviewer of skill s  given that he/she 
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belongs to subpopulation .x  In other words, we allow for a random assignment of sample units to 

the two interviewer groups. 

In this example, we express costs in terms of the overall interviewer occupation rates. Since 

interviewers can handle at most c  cases, there are two constraints 

,

( ) ( ) ( , ) ( , ) ,    .s
x x

n q x q x x p s x x x x Mp c s S   


    

In other words, the total number of refusers that can be assigned to interviewers of skill s  is 

restrained to the maximum possible workload for that skill group.  

The response propensity for a unit from subpopulation x  can now be derived as 

( ) (1 ( , )) ( , ) ( , ) ( , ) ( , , ) ,
s

x

q x x x x x x x x p s x x s x x        


       

and form the input to the R-indicator. 

Now, consider the following input data for the example: a sample size of n  2,000, a total of 

80 interviewers, M  80, a maximal workload of 30 cases per interviewer, c  30, an age 

distribution equal to (1) (2)q q  0.5, conditional distributions of refusal type 

( 1) (0.2, 0.3, 0.5)q x   and ( 2) (1 3 ,1 3 ,1 3)q x   and 25% of the interviewers are 

classified as good, 1 20.25 1 .p p    

Tables 3.1 and 3.2 give the hypothetical response probabilities ( , , )s x x   for the two 

subgroups when refusal conversion is applied, as well as the cooperation probabilities ( , )x x   

and refusal probabilities ( , ).x x   

We optimize the R-indicator with respect to the two age groups. For two strata, it can be 

shown that the R-indicator is maximal when the absolute distance between the two strata 

response propensities is minimal. The optimal value of the R-indicator turns out to be 0.827. 

Table 3.3 shows the optimal values of the decision variables; all but one of the decision variables 

( , )p s x x  are either 0 or 1, i.e., the re-assignments are mostly non-probabilistic. The exception is 

the subpopulation of young persons with medium response propensity assessment.  
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Table 3.1 
Response probabilities when refusal conversion is applied to young and old refusers given the 
assessment of propensity to respond. 
 

 Young refuser 

 Good interviewer Less good interviewer 

 Easy Medium Difficult Easy Medium Difficult 

( , 1, )s x   0.8 0.6 0.4 0.7 0.5 0.3 

 Old refuser 

 Good interviewer Less good interviewer 

 Easy Medium Difficult Easy Medium Difficult 

( , 2, )s x   0.9 0.7 0.5 0.8 0.6 0.4 

 
 
 
 
Table 3.2 
Refusal and cooperation probabilities in the first phase of data collection 
 

 Young Old 

 Easy Medium Difficult Easy Medium Difficult 

( , )x x   0.5 0.6 0.7 0.2 0.3 0.4 

( , )x x   0.85 0.8 0.76 0.95 0.93 0.91 

 
 
 
 
Table 3.3 
Optimal assignment of cases to interviewers 
 

 Young Old 

 Easy Medium Difficult Easy Medium Difficult 

Good 1 0.83 1 0 0 0 

Less good 0 0.17 0 1 1 1 

 
 
 
 

It is useful to compare the optimal allocation to a random allocation of interviewers in order to 

see how much is gained. If we would randomly assign the refusals to the interviewers, then the 

value of the R-indicator equals 0.749. The optimal assignment, thus, leads to a considerable 
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increase in the R-indicator. The response rates are, respectively, 72.0% and 70.1% for the optimal 

and the random assignment. 

If we increase the number of interviewers, while fixing the maximal number of cases per 

interviewer as well as the other parameters, then for any interviewer number higher than 

84M   the R-indicator does not improve. Both interviewer groups are sufficiently big to 

handle the entire sample and the cost constraint is no real constraint anymore. The R-indicator for 

84M   is equal to 0.830 and the response rate is 72.1%. If we would maximize the response 

rate rather than the R-indicator, then the allocation of interviewers will converge towards 

assigning only good interviewers to all cases. 

 
4  A static adaptive survey design: Assigning telephone interviewers 
 

In this section, a simulation study is presented where telephone interviewer assignment is the 

design feature of interest. The response probabilities used in the example are estimated from real 

telephone survey data. 

The Dutch Survey of Consumer Satisfaction (SCS) is a monthly telephone survey about the 

sentiments of households about their economic situation and expenditure. The survey provides 

insight into short-term economic development, and early indicators of differences in consumer 

trends. Each month 1,500 households are sampled. The two most influential causes of 

nonresponse in the SCS are non-contact and refusal. Of the sample 95% is contacted, and of the 

contacted 71% of the households participate. The response rate is 67%. 

One of the most important factors that affect participation is the interviewer. Interviewer’s 

performance may vary greatly when it comes to obtaining response. In total 60 interviewers 

worked on the SCS during 2005. That means an interviewer had contact with 280 households on 

average. Interviewer participation rates ranged from 50% to 79%. The lowest rate of 50% was, 

however, exceptional as the one but lowest participation rate was 61%. The mean interviewer 
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participation rate was 67%. Households were randomly assigned to interviewers in the CATI 

management system. Hence, with respect to the interviewer the data are randomized (or 

interpenetrated). In the following, the interviewer will be the design feature of interest. The 

survey strategy set S  consists of sixty strategies, 1 2 60{ , , , }.S s s s   

From the available auxiliary variables a vector X  was selected containing ethnicity, gender 

composition of the household core (male, female or mix), average age of the household core in 5-

year classes, type of household, degree of urbanization of the neigborhood of residence and 

average value of houses in the neighborhood. Especially age, average house value and type of 

household relate to key statistics deduced from the SCS. No paradata were available in this study. 

Therefore, the adaptive survey design is static. In the optimization the allocation probabilities 

( | )kp s x  need to be chosen, i.e., it needs to be decided to which interviewers subpopulations 

based on X  are assigned  such that ( | ) 1 .kk
p s x   

The coefficient of variation of the response propensities X  defined by (2.8) is selected as the 

target quality function. To estimate the response propensities ( , )ks x  for interviewers, a 

multilevel model is used with the identity link function, i.e., a linear regression with two levels. 

The interviewers form the first level of the model and the households the second level. The 

multilevel model is used to separate individual response propensities and interviewer response 

propensities. The rationale is that by separating interviewer and individual, the interviewer effect 

can be isolated and interviewer assignment can be optimized. We chose a linear model as it 

allows for easy optimization. Since the propensities are never close to 0 or 1, the linear model 

produces almost the same estimates as a logit or probit model. 

For the interviewer effect it was first investigated whether it was sufficient to use a fixed slope 

multilevel model, i.e., the interviewer is added as a main effect only and there are no interactions 

with auxiliary variables. All pre-selected covariates gave significant contributions to the 

multilevel model, but none of the interactions with the interviewer were significant at the 5% 

level. For this reason, we restrained ourselves to the following main effect model 
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                                                        0( , )k i X i ks x x        (4.1) 

where ix  is the covariate vector of household ,1 ,i i n n   the sample size, k  is the (fixed) 

interviewer effect for interviewer 0,k   is the constant term or intercept and X  is the slope 

parameter. We let ( ) ( ) ( , )i k i k ik
x p s x s x    denote the response propensity of sample 

unit .i  

Model (4.1) was fitted to the SCS data set. Next, the estimated interviewer effect k  was used 

to optimize the coefficient of variation, subject to two cost constraints: both the total interview 

time and the individual number of calls for each interviewer must be the same as in the original 

design. Since the telephone management system handles the calls, the interview time is the 

dominant component in the costs. If we fix the total interview time, then we constrain costs to be 

the same as for the regular SCS. Since interviewers can handle only a certain amount of calls, we 

must also fix the number of calls they are allocated to. The first constraint implies that we fix the 

response rate, as the total interview time is the multiple of the average individual interview time 

and the number of respondents. The SCS questionnaire is simple and does not contain any nested 

sets of survey items. As a result the individual interview time shows hardly any variation over 

population subgroups. The second constraint is equal to 

                                                             ( ) ,k i ki
p s x n  (4.2) 

where kn  is the pre-specified number of calls for interviewer k  and .kk
n n  

We optimize the coefficient of variation by distributing the ’sk  to the households. Due to the 

additive nature of the model, it is easy to show that any permutation of the interviewers to the 

cases leads to the same average response propensity and, hence, to the same interview time and 

costs. The average response propensity is 

0 0,

1 1 1 1
( ) ( ) ( ) ,i k i X i k X i k ki i k i k
x p s x x x n

n n n n
                   
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which does not depend on the set of allocation probabilities ( | ).kp s x  As a consequence, 

optimizing the coefficient of variation amounts to optimizing the variance of the response 

propensities 2 ( ).XS   

If we restrict ourselves to 0-1 decision variables, i.e., ( | ) {0,1}, , ,kp s x x k   then it is 

relatively easy to show that the optimal allocation corresponds to linking the best interviewers to 

the most difficult sample units and vice versa. In other words, the sample units are sorted by 

putting the individual response propensities without the interviewer effect, 0 ,X ix    in an 

increasing order, and the interviewers are sorted in a decreasing order based on their interviewer 

effect, .k  If two sample units i  and j  are allocated to two different interviewers, say k  and ,l  

and ,X i X j k lx x       and ( | ) ( | ) 1,k i l jp s x p s x   then it is optimal to switch the 

two interviewers, i.e., ( | ) ( | ) 1.l i k jp s x p s x   This can be shown as follows. The 

difference in variance 2 ( )XS   is proportional to 

  

2 2
0

2 2 2
0 0 0

0 0

( ) ( )

( ) ( ) ( )

2( )( ) 2( )( )

2( )( ) 0.

X X i k

X j l X i l X j l

l k X j l k X i

l k X j X i

S x

x x x

x x

x x

         

                       

                 

       

 (4.3) 

From (4.3), we can conclude that there is a decrease in variance, and, hence, in the coefficient 

of variation, if we swap the two interviewers for cases i  and .j  From this argument, it follows 

easily that the optimal solution is as suggested. In a similar fashion, but requiring more algebra, it 

can be shown that the optimal solution for probabilistic allocations, ( | ) [0,1],kp s x   is the 

same. 

The first two rows of table 4.1 contain the average response propensity and the coefficient of 

variation before and after re-assignment of interviewers. The coefficient of variation dropped 

from 0.117 to 0.035. In order to get an idea of the significance of the change in the quality 

function, we computed bootstrap standard errors. For each bootstrap, the re-assignment of 

interviewers was performed. The errors are given in table 4.1. 
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Table 4.1 
The average response propensity and coefficient of variation of the regular SCS, the SCS after re-
assignment of interviewers without and with adjustment for interview time. Bootstrap standard 
errors are given within brackets. 
 

SCS Adjustment for 
interview time? 

  ( )Q p

Regular - 70.8% 0.117 (0.005) 

Re-assignment  No 70.8% 0.035 (0.003) 

Re-assignment  Yes 70.8% 0.034 (0.003) 

 
 

The reader may have noticed that fixed numbers of interviewer cases do not imply fixed 

numbers of interviews per interviewer. In fact, by rearranging the interviewers, the good 

interviewers will do fewer interviews as they get the harder cases, while the less good 

interviewers do more interviews. As a result, the good interviewers will work smaller numbers of 

hours than they would do in the regular SCS and the less good interviewers will work more. This 

would be an undesirable side effect, which can, however, be adjusted relatively easy. Starting 

from the optimal solution, and sorting again the sample units based on their individual response 

propensities without the interviewer effect, we can shift neighbouring cases from less good 

interviewers to better interviewers. This is done in such a way that the total interview time per 

interviewer does not exceed that of the regular SCS. One can again prove that this procedure 

leads to a new optimal solution where the constraint on the fixed number of cases in (4.2) is 

replaced by the constraint on the fixed number of interviews 

                                                        ( ) ( , ) ,k i k i ki
p s x s x r   (4.4) 

where kr  is the pre-specified number of interviews. Table 4.1 presents the coefficient of variation 

for the optimal solution given (4.4). The response rate remains fixed, and the coefficient of 

variation is marginally smaller.  

In 2009, the SCS survey has been used as an instrument to test a static adaptive survey design. 

We refer to Luiten and Wetzels (2009) and Luiten and Schouten (2013) for details. Interviewer 
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assignment was one of the main design features that were adapted. Other design features were the 

survey mode and the contact protocol. Apart from telephone, also web was selected as a potential 

survey mode. Sample units with low estimated contact probabilities were assigned to more 

intensive contact protocols and were prioritized. Based on historical SCS data, contact and 

response probabilities were estimated. The pilot succeeded in significantly improving the 

coefficient of variation, while fixing the response rate and budget. 

In this section, we presented a simulation study where good telephone interviewers get more 

difficult cases. This may in practice lead to annoyance among these interviewers. When 

implementing such a design, one should carefully instruct interviewers beforehand. In the 2009 

SCS pilot, this did not lead to any negative comments from interviewers. In face-to-face surveys, 

a re-assignment of interviewers cannot be done so easily as travel costs may change drastically. 

Still, within densely populated inteviewer regions, re-assignment may be an option. 

 
5  Discussion 
 

This paper describes survey designs in which different population units receive different 

treatments or survey strategies. Differences between population units are reflected by covariates 

from either linked data from registrations or paradata. Survey strategies are defined as different 

specifications of survey design features. Such designs are termed adaptive survey designs as they 

adapt or tailor data collection to the population of interest. Basic ingredients of adaptive survey 

designs are survey strategies, population covariates, response propensities, cost and quality 

functions and strategy allocation probabilities. Adaptive survey designs attempt to optimize 

response quality by assigning different strategies to different population units. The strategy 

allocation probabilities represent the decision variables in the optimization. 

We believe this paper contributes to the literature in three ways: it presents a general 

framework, it explicitly opts to choose from a set of strategies in making a quality-cost trade off, 
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and it focuses on indicators for nonresponse error. The last two components can be found in the 

survey literature; it is the generalization to multiple design features and nonresponse error that is 

new. In its most modest form, adaptive survey designs are a stratified allocation of survey 

strategies over different population subgroups. In its most ambitious form, adaptive survey 

designs are extensions of sampling designs to multiple strategies and with a focus on nonresponse 

error. However, even in its most modest form, adaptive survey designs may include survey 

modes, incentives, reminders, length of fieldwork in face-to-face surveys, interviewer assignment 

and type of reporting. 

Adaptive survey designs lend themselves best to settings where surveys are run repeatedly for 

a longer time period. In such settings, the historic information is strongest. The designs also lend 

themselves to survey institutes that conduct many surveys that are relatively similar in topics and 

budget. New and one-time only surveys ask for modesty and caution. However, this would also 

be true for single strategy designs. Adaptive survey designs may account for the lack of strong 

historic data by allowing for uncertainty in response propensities and other parameters, and by 

introducing a learning period or initial design phase. 

In our view, the focus on nonresponse error is an important part of the framework. In this 

paper, we aim at representativeness of response. This aim comes from our conviction that 

nonresponse is always not-missing-at-random. We see larger deviations from missing-

completely-at-random mechanisms for relevant auxiliary variables as indications of stronger not-

missing-at-random nonresponse on survey variables given these auxiliary variables. 

Theoretically, this does not have to be true. Consider a simple binary yes-no survey question and 

50% nonresponse. The extreme cases arise when all nonrespondents would say either yes or no. 

They can do so regardless of the choice of auxiliary variables and, hence, the maximal 

nonresponse bias on this question is the same for whatever choice of auxiliary variables. Hence, 

research should provide empirical support for the focus on indirect measures for nonresponse 

error. 
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Future research into adaptive and responsive designs is also needed for other questions. 

Research should extend designs to multiple survey errors and should investigate the robustness of 

designs for misspecification of models for response propensities. Until now, adaptive and 

responsive survey designs have focused on the nonresponse error and ignored the response or 

measurement error. It is well known, however, that some survey design features, e.g., survey 

mode or interviewers, may have a strong impact on the response error and, consequently, on the 

total survey error. Adaptive survey designs should, therefore, account for measurement error as 

well, when it can be expected that design features have a strong differential impact on response 

error. Optimization accounting for multiple errors represents an important area of future research.  

Adaptive survey designs should in all cases be modest in the number of strategies employed in 

order to avoid an overly complex survey process and optimization on propensities and cost 

functions that are subject to uncertainty. Nevertheless, a structured way of looking is always to be 

preferred; adaptive designs provide such a framework and accommodate a structured search for 

enhanced survey designs. 
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Automatic editing with hard and soft edits 

Sander Scholtus1 

Abstract 

A considerable limitation of current methods for automatic data editing is that they treat all edits as hard 

constraints. That is to say, an edit failure is always attributed to an error in the data. In manual editing, 

however, subject-matter specialists also make extensive use of soft edits, i.e., constraints that identify 

(combinations of) values that are suspicious but not necessarily incorrect. The inability of automatic editing 

methods to handle soft edits partly explains why in practice many differences are found between manually 

edited and automatically edited data. The object of this article is to present a new formulation of the error 

localisation problem which can distinguish between hard and soft edits. Moreover, it is shown how this 

problem may be solved by an extension of the error localisation algorithm of De Waal and Quere (2003). 
 

Key Words: Automatic error localisation; Fellegi-Holt paradigm; Branch-and-bound algorithm; 
Numerical data; Categorical data; Mixed data. 

 
 

1  Introduction 
 

An important part of every statistical process is data editing, i.e., detecting and correcting 

errors as well as missing values in the collected data. National statistical institutes have 

traditionally relied on manual editing, where the data is checked and, if necessary, adjusted by 

subject-matter experts. Unfortunately, this approach can be very time-consuming and expensive. 

Alternative methods have therefore been developed to increase the efficiency of the editing 

process, such as selective editing and automatic editing. This article focuses on the latter 

approach. We refer to De Waal, Pannekoek and Scholtus (2011) and their references for a 

discussion of selective editing and other forms of statistical data editing. 

The goal of automatic editing is to accurately detect and correct errors as well as missing 

values in a data file in a fully automated manner, i.e., without human intervention. Provided that 

automatic editing leads to data of sufficient quality, it can be used as a partial alternative to 

manual editing. In practice, automatic editing implies that the data is made consistent with 

respect to a set of constraints: the so-called edits. Examples of edits include: 
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                                           Profit = Total Turnover – Total Costs; (1.1) 

and 

                                                  Profit ≤ 0.6 × Total Turnover. (1.2) 

Most automatic editing methods proceed by solving two separate problems: first the error 

localisation problem, i.e., determining which variables are erroneous or missing, and 

subsequently the consistent imputation problem, i.e., determining new values for these variables 

that satisfy all edits. The present article focuses on the error localisation problem. 

With respect to the two examples of edits given above, it is interesting to note the conceptual 

difference that exists between them. Edit (1.1) is an example of an edit that has to hold by 

definition, so that every combination of values that fails this edit necessarily contains an error. 

Edits of this type are known as hard edits, fatal edits, or logical edits. Edit (1.2), on the other 

hand, is an example of an edit that identifies combinations of values that are implausible but not 

necessarily incorrect. In this example, records for which Profit is larger than 60% of Total 

Turnover are considered suspicious. However, it is conceivable that such a combination of values 

is occasionally correct. Edits of this type, which do not identify errors with certainty, are known 

as soft edits or query edits. 

An important limitation of existing algorithms for automatic editing is that they treat all edits 

as hard edits. That is to say, a failed edit is always attributed to an error in the data. In manual 

editing, however, subject-matter specialists also make extensive use of soft edits. During 

automatic editing, these soft edits are either not used at all, or else interpreted as hard edits. Both 

solutions are unsatisfactory: in the first case some errors may be missed during automatic editing, 

and in the second case some correct values may be wrongfully identified as erroneous. In fact, the 

inability of automatic editing methods to handle soft edits partly explains why in practice many 

differences are found between manually edited and automatically edited data. 

The object of this article is to present a new formulation of the automatic error localisation 

problem which can distinguish between hard edits and soft edits. In addition, the article shows 
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how the error localisation algorithm of SLICE – the software package for automatic editing 

developed at Statistics Netherlands – can be adapted to solve this new error localisation problem. 

The remainder of this article is organised as follows. Section 2 provides a brief summary of 

existing methods for solving the error localisation problem. A distinction between hard and soft 

edits is introduced in the error localisation problem in Section 3. Section 4 extends the theory 

behind the algorithm of SLICE to the case that not all edits have to be satisfied. Based on these 

theoretical results, an algorithm that solves the error localisation problem for hard and soft edits 

is outlined in Section 5. In Section 6, the new algorithm is illustrated by means of a small 

example. Section 7 mentions the first experiences with a practical implementation of the new 

algorithm. Finally, some concluding remarks follow in Section 8. 

 
2  Background 
 

2.1  Edits 
 

The problem to be discussed in this article entails, in its most general form, the detection of 

erroneous and missing values in a record containing both categorical variables 1( , , )mv v  and 

numerical variables 1( , , ).px x  These variables are supposed to satisfy a set of restrictions 

(edits), each of which can be written in one of the following forms: 

                                   1 1

1 1 1

: IF ( , , )

THEN ( , , ) { 0}

k k k
m m

p k kp p k

v v F F

x x a x a x b

   
    

 
 

 (2.1) 

or 

                                   1 1

1 1 1

: IF ( , , )

THEN ( , , ) { 0}.

k k k
m m

p k kp p k

v v F F

x x a x a x b

   
    

 
 

 (2.2) 

In these expressions, k
jF  is a subset of ,jD  the domain of observed values for the categorical 

variable ,jv  and kja  and kb  are known numerical constants. The index k  is used to number the 

edits. Note that jD  is assumed to contain all values of jv  that may be encountered in practice; 

this includes erroneous values. To simplify matters, we restrict the problem to edits having linear 
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numerical conditions. This class of edits turns out to be sufficiently powerful for most practical 

applications (cf. De Waal 2005). 

A record 0 0 0 0
1 1( , , , , , )m pv v x x   is said to fail an edit if the categorical IF-condition is true 

(i.e., 0 k
j jv F  for all 1, , ),j m   but the numerical THEN-condition is false (i.e., either 

1 1 0k kp p ka x a x b     or 1 1 0,k kp p ka x a x b     depending on the form of the 

edit). Otherwise, we say that the edit is satisfied by that record. It should be noted that an edit is 

always satisfied by any record for which the categorical IF-condition is false, regardless of the 

status of the numerical THEN-condition. A record is called consistent if it satisfies every edit. 

A categorical variable jv  is said to be involved in an edit if and only if ,k
j jF D  since any 

edit with k
j jF D  is failed or satisfied regardless of the value of .jv  Similarly, a numerical 

variable jx  is said to be involved in an edit if and only if 0.kja   We may assume that 

,k
jF    where   denotes the empty set. Clearly, a degenerate edit with k

jF    can be 

discarded with no loss of information, since it is never failed. The same holds for any edit with a 

numerical THEN-condition that is always true. 

Two important special cases of (2.1) and (2.2) are edits that involve only categorical or only 

numerical variables. A purely categorical edit has the following form: 

                                       1 1: IF ( , , )  THEN .k k k
m mv v F F       (2.3) 

Edit (2.3) is failed by each record for which the categorical condition is true. A purely numerical 

edit can be written as: 

                                     1 1 1: ( , , ) { 0}k
p k kp p kx x a x a x b        (2.4) 

or 

                                    1 1 1: ( , , ) { 0}.k
p k kp p kx x a x a x b        (2.5) 

Edits (2.4) and (2.5) are failed by each record for which the numerical conditions are false. 
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Edits (1.1) and (1.2) above are examples of purely numerical edits. A simple example of a 

purely categorical edit is: 

IF (Age, Marital Status)   {“<16”}  {“Married”} THEN .  

This edit states that persons aged less than 16 years cannot be married. Finally, an example of a 

mixed edit is: 

IF Age   {“<12”} THEN Income = 0. 

According to this edit, persons aged less than 12 years do not have a positive income. 

 
2.2  The error localisation problem 
 

For a given record 0 0 0 0
1 1( , , , , , )m pv v x x   and a collection of edits, it is straightforward to 

verify which values in the record are missing and whether any of the edits are failed. However, 

given that some of the edits are failed, solving the error localisation problem is much less 

straightforward. On the one hand, most edits involve more than one variable, and on the other 

hand, most variables are involved in more than one edit. 

In order to solve the error localisation problem automatically, one has to adopt a formal 

strategy for finding erroneous values. The most commonly-used strategy is based on the 

paradigm of Fellegi and Holt (1976): make the record consistent by changing the smallest 

possible number of original values. Other strategies have also been proposed; for instance, Little 

and Smith (1987) suggested a criterion based on outlier detection (without edits) and Casado 

Valero, Del Castillo Cuervo-Arango, Mateo Ayerra and De Santos Ballesteros (1996) formulated 

error localisation as a quadratic minimisation problem. We shall restrict attention to the 

Fellegi-Holt paradigm here, because of its frequent use in official statistics. 

The original Fellegi-Holt paradigm is easily generalised to allow a distinction between a priori 

suspicious and less suspicious variables. To this end, one associates a confidence weight to each 

variable. According to the generalised Fellegi-Holt paradigm, one should search for a subset of 
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the variables which (i) can be imputed in such a way that the imputed record satisfies all edits, 

and (ii) minimises the following target function: 

                                                         FH
1 1

.
m p

C C N N
j j j j

j j

D w y w y
 

    (2.6) 

Here, C
jw  and N

jw  denote the confidence weights of the categorical and numerical variables, 

respectively. The binary target variables C
jy  and N

jy  describe the structure of the solution: 

1C
jy   if jv  is to be imputed and 0C

jy   otherwise, and similarly 1N
jy   if jx  is to be 

imputed and 0N
jy   otherwise. Since variables with missing values have to be imputed with 

certainty, we set 1C
jy   or 1N

jy   when 0
jv  or 0

jx  is missing. 

Fellegi and Holt (1976) also presented a method for solving the error localisation problem 

under this paradigm. This method first derives a well-defined set of logically implied edits from 

the original set of edits, to obtain a so-called complete set of edits. Next, the error localisation 

problem may be formulated as a straightforward set-covering problem for any record (Fellegi and 

Holt 1976; Boskovitz, Goré and Wong 2005). Unfortunately, especially for numerical data the 

complete set of edits can be extremely large in practice, so the method of Fellegi and Holt is not 

always computationally feasible. 

Many alternative algorithms have been developed for error localisation according to the 

Fellegi-Holt paradigm. Besides improvements on Fellegi and Holt’s original method (Garfinkel, 

Kunnathur and Liepins 1986; Winkler 1995), the list includes formulations based on vertex 

generation (Sande 1978; Kovar and Whitridge 1990; Todaro 1999; De Waal 2003a), cutting 

planes (Garfinkel et al. 1986; Garfinkel, Kunnathur and Liepins 1988; Ragsdale and McKeown 

1996), and mixed integer (Schaffer 1987; Riera-Ledesma and Salazar-González 2003) and 

integer programming (Bruni 2004 and 2005); see also De Waal et al. (2011) for an overview. 

Here, we shall focus on a branch-and-bound algorithm due to De Waal and Quere (2003) which, 

in contrast to some of the above approaches, can handle a mix of categorical and numerical data. 
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This algorithm has been implemented in the software package SLICE at Statistics Netherlands 

and has been found to be computationally feasible in practice. 

 
2.3  The branch-and-bound algorithm of SLICE 
 

A detailed description of the error localisation algorithm implemented in SLICE can be found 

in De Waal and Quere (2003), De Waal (2003b), and De Waal et al. (2011). Here, we only 

mention those aspects of the algorithm that we shall need later. For a general introduction to 

branch-and-bound algorithms, see e.g., Nemhauser and Wolsey (1988). 

For each record, the SLICE algorithm sets up a binary tree, as illustrated in Figure 2.1. In the 

root node of the tree, we start with the original set of edits and we select one of the variables. 

From the root node, two branches are added to the tree. In the first branch, the original value of 

the selected variable in the record is assumed to be correct, and in the second branch this value is 

assumed to be erroneous. Both assumptions correspond with a transformation of the set of edits, 

to be outlined below, after which the selected variable is no longer involved in the edits: the 

selected variable has been treated. Next, one of the remaining variables is selected and the 

operation is repeated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1  Illustration of the branch-and-bound algorithm as a binary tree 
 

 
                                                                  1x  
 

                                   fix 1x                                             eliminate 1x  

 
                            2x                                                                         2x  

 
       fix 2x                           eliminate 2x                     fix 2x                           eliminate 2x  

 
 
         3x                                   3x                                   3x                                   3x  
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Once all variables have been treated, the algorithm reaches an end node of the tree. It is seen 

that, together, the end nodes of the binary tree enumerate all possible choices of erroneous 

subsets of variables. The transformed set of edits corresponding to an end node does not involve 

any variables, so it must either be empty or consist of elementary relations such as “1 ≥ 0” (a 

tautology) and “–1 ≥ 0” (a self-contradicting statement). As will be discussed below, it is possible 

to satisfy the original edits by only imputing the variables that have been considered erroneous in 

the branch leading to an end node, if and only if the transformed set of edits for that end node 

contains no self-contradicting statements. Using this property, all feasible solutions to the error 

localisation problem may be identified. Moreover, since we are only interested in feasible 

solutions that minimise target function (2.6), a branch of the tree may be pruned as soon as we 

find that it only leads to end nodes corresponding with infeasible or suboptimal solutions. 

We will now outline the transformations of the set of edits that occur, depending on whether a 

variable is assumed to be correct or erroneous. A variable that is assumed to be correct is 

removed from the edits by simply substituting the original value from the record in the edits. This 

is called fixing a variable to its original value. A variable that is assumed to be erroneous is 

removed from the edits by a more complex operation, called eliminating a variable from the edits. 

Numerical variables and categorical variables are eliminated by two different but equivalent 

methods. 

To eliminate a numerical variable, say ,gx  from a set of edits having the general forms (2.1) 

and (2.2), we generate logically implied edits by considering all pairs of edits s  and t  that 

involve .gx  We first check whether s t
j jF F    for all 1, , ;j m   if any of these 

intersections yields the empty set, then the pair s  and t  does not generate an implied edit. If 

the numerical THEN-condition of one of the edits, say ,s  is an equality, then this equality may 

be solved for .gx  By substituting the resulting expression for gx  in the THEN-condition of ,t  

we obtain the numerical THEN-condition of the implied edit. The categorical IF-condition of the 

implied edit is found by taking the non-empty intersections s t
j j jF F F    for 1, , .j m   
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If the numerical THEN-conditions of s  and t  are both inequalities, the algorithm uses a 

technique called Fourier-Motzkin elimination (see e.g., Williams 1986) to generate an implied 

edit. A pair of edits is relevant for this elimination method only if the coefficients of gx  have 

opposite signs, so we may assume without loss of generality that 0sga   and 0.tga   The 

implied edit generated from s  and t  may then be written as (cf. De Waal and Quere 2003): 

                                 
1 1

*
1 1 1

: IF ( , , )

THEN ( , , ) { 0}

m m

p p p

v v F F

x x a x a x b

  

 

   

    

 
 

 (2.7) 

with *, ,j tg sj sg tj tg s sg ta a a a a b a b a b      and s t
j j jF F F    as above. This edit does not 

involve ,gx  since 0.ga    In this manner, implied edits are generated by considering all pairs of 

edits that involve .gx  These edits are added to the set of original edits that do not involve ,gx  to 

find the transformed set of edits obtained by eliminating .gx  

For the elimination of categorical variables, De Waal and Quere (2003) make the simplifying 

assumption that these variables are only selected when all numerical variables have been treated. 

This assumption implies that categorical variables are always eliminated from purely categorical 

edits of the form (2.3). To eliminate a categorical variable, say ,gv  from a set of edits of the form 

(2.3), a technique is used that was first described by Fellegi and Holt (1976). 

Consider all minimal sets of edits T  with the following properties: 

                                                            ( ) k
g g g

k T

F T F D



   (2.8) 

and 

                                     ( ) ,k
j j

k T

F T F



    for 1, , 1, 1, , .j g g m     (2.9) 

Here, by “minimal” we mean that property (2.8) does not hold for any set .T T   Each of these 

minimal sets T  generates an implied edit: 

                                     1 1: IF ( , , ) ( ) ( )m mv v F T F T        THEN ,  (2.10) 
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which does not involve gv  because of property (2.8). These implied edits are added to the set of 

original edits that do not involve ,gv  to find the transformed set of edits obtained by 

eliminating .gv  

It should be clear that the computational work of the algorithm lies mainly in the elimination 

steps. In particular, it is known that the number of implied edits under Fourier-Motzkin 

elimination may be exponential in the number of eliminated variables (Schrijver 1986). 

A fundamental property of both elimination techniques, for numerical and categorical 

variables, is exhibited by the following result. Consider a system of implied edits 1  obtained by 

eliminating gx  or gv  from a system of edits 0 .  Then the original values of the untreated 

variables satisfy all edits in 1 ,  if and only if there exists a value for gx  or gv  that, together 

with these original values, satisfies all edits in 0 .  For a proof, see Theorem 8.1 in De Waal 

(2003b) or Theorem 4.3 in De Waal et al. (2011). The above-mentioned correspondence between 

end nodes without self-contradicting elementary relations and feasible solutions to the error 

localisation problem follows from a repeated application of this fundamental property. 

 
3  An error localisation problem with hard and soft edits 
 

In the formulation of the error localisation problem given in Section 2.2, which is based on the 

Fellegi-Holt paradigm, it is tacitly assumed that all edits are hard edits. Consequently, the only 

subsets of the variables that are considered feasible solutions to this problem are those which can 

be imputed to make the record consistent with respect to all edits. As mentioned in the 

introduction, this interpretation of all edits as hard edits can lead to systematic differences 

between automatic editing and manual editing, because it precludes a meaningful use of soft 

edits. In this section, we suggest a new formulation of the error localisation problem which 

distinguishes between hard and soft edits. 

Let   denote the set of edits to be used in the error localisation problem. We assume that this 

set can be partitioned into two disjoint subsets: .H S      The edits in H  are hard edits; 
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the edits in S  are soft edits. From now on, a subset of the variables is considered a feasible 

solution to the error localisation problem if it can be imputed to satisfy all edits in .H  

Moreover, we want to use the status of the imputed record with respect to the edits in S  as 

auxiliary information in the choice of an optimal solution. This may be done by adding another 

term to (2.6). 

More precisely, the objective of the new error localisation problem is to find a subset of the 

variables which (i) can be imputed so that the imputed record satisfies all edits in ,H  and (ii) 

minimises the following target function: 

                                                          FH soft(1 ) ,D D D      (3.1) 

where softD  represents the costs associated with failed edits in .S  The parameter [0,1]   

determines the relative contribution of both terms in (3.1). The original Fellegi-Holt paradigm is 

recovered as a special case by choosing 1.   Thus, the new error localisation problem can be 

seen as a generalisation of the old one. 

In order to use (3.1) in practice, one has to choose an expression for soft .D  Probably the 

easiest way to assign costs to failed soft edits is to associate a fixed failure weight ks  to each edit 

in ,S  and to define softD  as the sum of the failure weights of the soft edits that remain failed: 

                                                               soft
1

,
SK

k k
k

D s z


   (3.2) 

with SK  the number of edits in S  and kz  a binary variable such that 1kz   if the thk  soft edit 

is failed and 0kz   otherwise. The failure weights may be chosen by subject-matter experts, 

analogously to the confidence weights, to express the importance that is attached to different soft 

edits from a subject-matter related point of view. Alternatively, the failure weights may be based 

on the proportion of records that fail each soft edit in a historical data set which has been edited 

manually. 

A drawback of using fixed failure weights is that they do not take the size of the edit failures 

into account: every record that fails a particular soft edit receives the same contribution to soft ,D  
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namely .ks  By contrast, a human editor sees a soft edit failure as an indication that an observed 

combination of values is suspicious, and the degree of suspicion depends on the size of the edit 

failure: a small failure is ignored more easily than a large failure. Hence, it seems interesting to 

take the size of the edit failures into account in soft .D  This point will be taken up in Section 8, 

since it introduces certain additional difficulties. For now, we assume that expression (3.2) is 

used. 

We should mention that taking soft restrictions into account by adding an appropriate term to 

a target function is a well-known technique in mathematical optimisation. The idea is related to 

other optimisation techniques, such as Lagrangian relaxation (see e.g., Nemhauser and Wolsey 

1988). One example of a practical application with soft constraints is that of the so-called 

benchmarking problem for national accounts (Magnus, Van Tongeren and De Vos 2000). To our 

best knowledge, the application in the context of the error localisation problem is new. 

We should also note that expression (3.1) is in some respects similar to the minimisation 

criterion of the Nearest-neighbour Imputation Methodology (NIM) developed by Statistics 

Canada for editing demographic census data (Bankier, Lachance and Poirier 2000; Bankier and 

Crowe 2009). In particular, the NIM also departs from the Fellegi-Holt paradigm by minimising a 

convex combination of two terms, the first measuring the amount of imputation and the second 

measuring the plausibility of the imputed record. 

 
4  A short theory of edit failures 
 

4.1  Numerical data 
 

Having formulated a new error localisation problem, we will now show how this problem may 

be solved by an adapted version of the branch-and-bound algorithm of De Waal and Quere 

(2003). To do this, we first need to extend the fundamental property mentioned at the end of 

Section 2.3 to the case that some of the edits may be failed. For convenience, we shall first 
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examine the case of purely numerical data. The next subsection examines the case of purely 

categorical and mixed data. 

In the case of purely numerical data, all edits take the form (2.4) or (2.5). Moreover, the 

implied edit (2.7) is reduced to its numerical part. The fundamental property given at the end of 

Section 2.3 implies in particular the following: if a given set of values for 

1 1 1, , , , ,g g px x x x    does not satisfy the implied edit (2.7), then it is impossible to find a 

value for gx  that satisfies s  and t  simultaneously. However, it is still possible in this case to 

find a value for gx  that satisfies one of the edits s  or .t  This observation, which is more or 

less trivial, forms the basis for the proof of Theorem 1 below. 

Suppose that, at some point during an execution of the branch-and-bound algorithm of 

De Waal and Quere (2003), q  numerical variables have been treated (i.e., either eliminated or 

fixed). We denote the current set of edits by ,q  and the edits in this set by .k
q  By definition, 

0 ,    the original set of edits. It is possible to associate with each current edit k
q  an index 

set ,k
qB  which contains the indices of all the original edits that have been used, directly or 

indirectly, to derive this edit. In fact, k
qB  can be defined recursively as follows: 

 

 For an original edit 0 ,k  we define 0 : { }.kB k  

 For an edit k
q  which is derived from one other edit 1 ,l

q  either by fixing a variable to 

its original value or by simply copying the edit, we define 1: .k l
q qB B   

 For an edit k
q  which is derived by eliminating a variable from a set of edits 1

t
q

( ),t T  we define 1: .k t
q qt T

B B 
   

 
Note that, for numerical data, the set T  in the last item always contains exactly two edits. 

Larger edit sets may be encountered in the categorical case considered below. 

A set B  is called a representing set of a collection of sets 1 , , rk k
q qB B  if it contains at least 

one element from each of 1 , , ;rk k
q qB B  see, for instance, Mirsky (1971, page 25). It should be 

noted that, in our case, a representing set B  identifies a subset of 0 ,  the set of original edits. 

We can now formulate the following theorem. 
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Theorem 1. Suppose that q  numerical variables have been treated and that the current set of 

numerical edits can be partitioned as (1) ( 2 ) ,q q q      where the edits in (1)
q  are satisfied by 

the original values of the p q  remaining variables, and the edits in ( 2)
q  are failed. Let B  be a 

representing set of the index sets k
qB  for all ( 2) .k

q q    Then there exist values for the 

eliminated variables that, together with the original values of the other variables, satisfy all 

original edits except those in .B  
 

Proof. The proof of this theorem is given in Appendix A.1. 
 

Example: Suppose that there are three numerical variables 1 2 3( , , )x x x  that should satisfy the 

following eight edits: 
1
0 1 2 3
2
0 1 2
3
0 1 2
4
0 1 3
5
0 1 3
6
0 1
7
0 2
8
0 3

: 20

: 3

: 6

: 5

: 10

: 0

: 0

: 0.

x x x

x x

x x

x x

x x

x

x

x

   
  
    
   
   
 
 
 

 

The record 0 0 0
1 2 3( , , ) (10,1, 3)x x x    is inconsistent with respect to these edits. Upon eliminating 

1x  from the original set of edits, we find the following updated set of edits: 
1 1
1 2 3 1
2 2
1 2 3 1
3 3
1 2 3 1
4 4
1 2 3 1
5 5
1 2 3 1
6 6
1 2 1
7 7
1 3 1
8 8
1 1
9 9
1 2 3 1

: 2 17 ( {1, 2})

: 2 14 ( {1, 3})

: 2 25 ( {1, 4})

: 2 30 ( {1, 5})

: 20 ( {1, 6})

: 0 ( {7})

: 0 ( {8})

: 0 3 ( {2, 3})

: 8 ( {2, 4}

x x B

x x B

x x B

x x B

x x B

x B

x B

B

x x B

     
   
   
     
     
  
  
   
    

10 10
1 2 3 1
11 11
1 1
12 12
1 2 1
13 13
1 3 1

)

: 16 ( {3, 5})

: 0 5 ( {4, 5})

: 6 ( {3, 6})

: 5 ( {4, 6}).

x x B

B

x B

x B

    
   
   
  
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The index set 1
kB  is displayed in brackets next to each edit. 

By substituting the original values of 2x  and 3x  in the current set of edits, we see that 

2 3 7 9
1 1 1 1, , , ,     and 13

1  are failed. The set {1, 4, 8}B   is a representing set for the associated 

index sets 1 .kB  According to Theorem 1, there exists a value for 1x  which, together with the 

original values of 2x  and 3 ,x  satisfies the original edits apart from 1 4
0 0, ,   and 8

0 .  That this 

assertion is correct can be seen by substituting 0
2 1x   and 0

3 3x    into the original set of edits; 

in fact, any value 1 [4, 7]x   will do. 

The importance of Theorem 1 is that it enables one to evaluate, at each node of the 

branch-and-bound algorithm, which combinations of the original edits could be satisfied by 

imputing the variables that have been eliminated so far, and also which edits would remain failed. 

In particular, if we distinguish between hard and soft original edits, then this result makes it 

possible to use the branch-and-bound algorithm to find all feasible solutions to the new error 

localisation problem from Section 3, and also to evaluate, for each feasible solution, which of the 

soft edits remain failed, and hence to evaluate the value of soft .D  This idea will be elaborated in 

Section 5. 

 
4.2  Categorical and mixed data 
 

We shall now derive a similar result to Theorem 1 for the case of purely categorical data. At 

the end of this section, we shall combine the two results so that they may also be applied to 

mixed data. 

In the case of purely categorical data, all edits take the form (2.3). Let us consider the 

elimination method for categorical variables described in Section 2.3. If a given set of values for 

1 1 1, , , , ,g g mv v v v    does not satisfy the implied edit (2.10), then it is not possible to find a 

value for gv  that, together with the other values, satisfy all edits k  with k T  simultaneously. 

This is true because, by property (2.9), ( ) k
j jF T F   for all j g  and all .k T  Hence, if 

(2.10) is failed by 1 1 1, , , , , ,g g mv v v v    then plugging these values into an original edit with 
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k T  produces a non-degenerate univariate edit for .gv  Moreover, every possible value of gv  

fails at least one of these univariate edits, because of property (2.8). Interestingly, it is still always 

possible in this case to find a value for gv  that satisfies all edits in T  but one. This follows from 

property (2.8) and the fact that T  is a minimal set having this property: for each , k
gk T F  must 

contain at least one value from gD  that is not covered by any other l
gF  with .l T  

We now present the analogue of Theorem 1 for categorical data, using the same notation as 

for numerical data. In particular, the recursive definition of k
qB  is exactly the same as in 

Section 4.1. 
 

Theorem 2. Suppose that q  categorical variables have been treated and that the current set of 

categorical edits can be partitioned as (1) ( 2 ) ,q q q      where the edits in (1)
q  are satisfied 

by the original values of the m q  remaining variables, and the edits in ( 2)
q  are failed. Let B  

be a representing set of the index sets k
qB  for all ( 2) .k

q q    Then there exist values for the 

eliminated variables that, together with the original values of the other variables, satisfy all 

original edits except those in .B  
 

Proof. The proof of this theorem is given in Appendix A.2. 
 

For an example that illustrates the use of this theorem, see Scholtus (2011). 

Finally, we remark that Theorem 1 and Theorem 2 can be used together when the data is a mix 

of categorical and numerical variables. This follows from the structure of the branch-and-bound 

algorithm of De Waal and Quere (2003), where categorical variables are only treated once all 

numerical variables have been eliminated or fixed. Hence, the two results may be applied 

consecutively. There is a slight difference in the procedure for eliminating numerical variables, 

namely that implied edits are only generated from pairs of edits having an overlapping 

IF-condition; see Section 2.3. However, this does not affect the correctness of Theorem 1. 
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5  Solving the error localisation problem with hard and soft edits 
 

We shall now describe an adapted version of the branch-and-bound algorithm of De Waal and 

Quere, which may be used to solve the error localisation problem defined in Section 3. The basic 

setup of the algorithm is the same as in Section 2.3. In particular, the procedures for eliminating 

and fixing variables are carried out the same way as in the original algorithm. 

The main difference is that now in each node, the current set of edits q  is partitioned into a 

current set of hard edits qH  and a current set of soft edits .qS  For the root node, the partition 

simply follows that of the original set of edits, i.e., 0H H    and 0 .S S    For all other 

nodes, the partition can be summarised as follows: if an edit is generated only from hard edits, 

then it is a hard edit; if any soft edits are involved in its generation, then it is a soft edit. 

Furthermore, for each soft edit ,k
qS qS    we construct an index set k

qSB  – analogous to k
qB  in 

Section 4 – which contains the indices of all the original soft edits 0
k

S  that were involved, 

directly or indirectly, in its generation. 

Having generated qH  and qS  for a particular node, we can fill in the original values of the 

variables that have not been treated yet, to check which of these edits are failed. In the old 

algorithm, this check could have two possible outcomes: either more variables need to be 

eliminated (at least one of the edits is failed), or a feasible solution has been found (none of the 

edits are failed). In the new algorithm, three different situations may arise. 

First of all, if at least one edit in qH  is failed, then the variables that have been eliminated so 

far cannot be imputed to satisfy the original hard edits. Hence, more variables need to be 

eliminated. In this case, we continue the generation of branches from the current node. 

A second possibility is that none of the edits in qH  or qS  are failed. This means that the 

variables that have been eliminated so far can be imputed to satisfy all the original edits, both 

hard and soft. Thus a feasible solution has been found, for which the value of target function (3.1) 

equals FH .D D   If this value is smaller than or equal to the value of (3.1) for the best solution 

found so far, say min ,D  then the new solution is stored. Otherwise, it is discarded. Either way, it 
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is not useful to continue the algorithm from the current node, because if more variables are 

eliminated, the value of D  can only increase. Hence, we return to the last previous branch that 

has not been completely searched yet and continue the algorithm from there. 

The last possibility is that the edits in qH  are satisfied, but that at least one edit in qS  is 

failed. In this case, the variables that have been eliminated so far can be imputed to satisfy the 

original hard edits, but not all the original soft edits. Hence, a feasible solution to the error 

localisation problem has been found, but the contribution of softD  to D  is non-zero. According to 

Theorem 1 or Theorem 2, it is possible to satisfy all original soft edits, except those in a 

representing set B  of the index sets k
qSB  for all failed edits in .qS  Since this property is shared 

by all representing sets, we are free to choose B  in such a way that softD  is minimised, given the 

selection of variables to impute. If expression (3.2) is used for soft ,D  then the optimal choice of 

B  can be found by solving the following minimisation problem: 

                                               
1

min , under the conditions that:

1,  for all failed ,

{0,1}, 1, , .

S

l
qS

K

k k
k

l
k qS qS

k B

k S

s z

z

z k K





   

 






 (5.1) 

This is a standard binary linear optimisation problem for which algorithms are available (see e.g., 

Nemhauser and Wolsey 1988). The solution consists of a vector 1( , , )
SKz z   of zeros and ones. 

The associated optimal representing set is * { : 1}kB k z    and the associated contribution of 

softD  to D  is precisely the minimal value of problem (5.1), say 

*
soft

1

.
SK

k k k
k k B

D s z s 

 

    

As in the previous case, the value FH soft(1 )D D D       is compared to min .D  If min ,D D  

then the current solution is stored, otherwise it is discarded. Either way, it is meaningful in this 

case to continue the algorithm from the current node, because eliminating more variables may 

lead to a lower value of the target function. This can happen because a solution that imputes more 
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variables typically fails fewer soft edits. Therefore, we continue the generation of branches from 

the current node. 

The correctness of this algorithm follows from the correctness of the original algorithm of 

De Waal and Quere (2003) and the theory presented in Section 4. The index sets k
qB  only have to 

be computed for the soft edits, because a subset of the variables is never considered a feasible 

solution to the error localisation problem when at least one of the hard edits remains failed. This 

means that, in every application of Theorem 1 or Theorem 2, all implied edits in qH  must be 

contained in (1) .q  Finally, we note that the new algorithm reduces to the original algorithm of 

De Waal and Quere (2003) in the special case that no soft edits have been specified. 

 
6  Example 
 

To illustrate the algorithm of Section 5, we will apply it to a small example with numerical 

data. This is essentially an example from De Waal (2003b) to which we have added a distinction 

between hard and soft edits. For a somewhat larger example involving a mix of categorical and 

numerical variables, see Scholtus (2011). 

In a fictitious business survey, there are four numerical variables: total turnover ( ),T  

profit ( ),P  total costs ( ),C  and number of employees ( ).N  The following hard edits and soft 

edits have been identified: 
1
0
2
0
3
0
4
0
5
0
1 1
0 0
2 2
0 0

: 0

: 0

: 0

: 0

: 550 0

: 0.5 0 ( {1})

: 0.1 0 ( {2}).

H

H

H

H

H

S S

S S

T C P

T

C

N

N T

T P B

P T B

   
 
 
 
  
   
   

 

Consider the following unedited record: 0 0 0 0( , , , )T P C N  (100; 40,000; 60,000; 5). This 

record fails the first hard edit and the first soft edit. The confidence weights of the variables are 
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( , , , )T P C Nw w w w  (2, 1, 1, 3). We choose the failure weights of the two soft edits to be 

1 2 2.s s   Finally, we choose 1 / 2   in expression (3.1). 

Suppose that the variable P  is selected first. In the branch where P  is eliminated from the 

original edits, we obtain the following new set of edits: 
1 2
1 0
2 3
1 0
3 4
1 0
4 5
1 0
1 1 1 1
1 1 0 0
2 2 1 2
1 1 0 0
3 3 1 2
1 1 0 0

: 0 ( )

: 0 ( )

: 0 ( )

: 550 0 ( )

: 0.5 0 ( {1}) ( , )

: 1.1 0 ( {2}) ( , )

: 0.6 0 ( {1, 2}) ( , ).

H H

H H

H H

H H

S S H S

S S H S

S S S S

T

C

N

N T

T C B

T C B

T B

  
  
  
   
      
     
    

 

We have indicated in brackets from which of the previous edits each new edit is derived. The 

third soft edit 3
1S  is in fact equivalent to the first hard edit 1

1 ,H  which means that it can be 

discarded. 

Upon substituting the original values 0 0 0( , , )T C N  (100; 60,000; 5) into the current edits, it 

is seen that all edits are satisfied except for 2
1 .S  Since all hard edits are satisfied, identifying 

only the original value of P  as erroneous is a feasible solution to the error localisation problem. 

Moreover, since {2}B   is (trivially) a minimal representing set of 2
1 ,SB  it is possible to impute 

a value for P  which satisfies all the original edits except for 2
0 .S  Hence, the value of target 

function (3.1) for this solution is 2( ) / 2 3 / 2.Pw s   

Possibly, the current solution may be improved by eliminating another variable, say ,C  from 

the current set of edits. This yields: 
1 1
2 1
2 3
2 1
3 4
2 1
1 1 2 2
2 2 1 1
2 2 1 2
2 2 1 1

: 0 ( )

: 0 ( )

: 550 0 ( )

: 1.1 0 ( {2}) ( , )

: 0.6 0 ( {1, 2}) ( , ).

H H

H H

H H

S S H S

S S S S

T

N

N T

T B

T B

  
  
   
    
      

Each of the two new soft edits is redundant, because both are equivalent to hard edit 1
2 .H  In 

fact, the remaining original values 0 0( , ) (100, 5)T N   satisfy all the current edits. This means 
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that P  and C  can be imputed to satisfy all the original edits, both hard and soft. The value of 

target function (3.1) for this solution equals ( ) / 2 1.P Cw w   Thus, the new solution 

improves on the previous one. Moreover, this solution cannot be improved further by eliminating 

more variables in the current branch of the binary tree. 

If the rest of the binary tree is explored, it eventually turns out that the best solution found so 

far (impute P  and )C  is also the optimal solution. A possible consistent record obtained by 

imputing P  and C  is: ( , , , )T P C N  (100, 40, 60, 5). This solution has the nice interpretation 

that the original values of profit and total costs were overstated by a factor of 1,000. It is of 

interest to note that, if only the hard edits are used in this example, then the first solution found 

above (impute only )P  is the optimal solution. In that case, there is only one way to obtain a 

consistent record: ( , , , )T P C N  (100; -59,900; 60,000; 5). This illustrates that, in this example 

at least, soft edits are important for finding imputations that are not only consistent with the hard 

edits, but also plausible. 

 
7  Application 
 

To test the new error localisation algorithm in practice, a prototype implementation was 

written using the R programming language. This prototype draws heavily on the existing error 

localisation functionality in R that was made available in the editrules package (De Jonge 

and Van der Loo 2011; Van der Loo and De Jonge 2011). 

To test the prototype, an artificial data set was constructed by selecting twelve numerical 

variables 1 12( , , )x x  from the Dutch structural business statistics of 2007 for the wholesale 

sector. We selected all records pertaining to medium-sized businesses (with 10 to 100 employees) 

that had been edited manually during regular production, and divided these into two data sets of 

728 records each. Both of the original data sets were considered error-free. We introduced a 

substantial number of random errors into one of the data sets by applying the following 

procedure: 
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 in 4% of the original non-zero values, two digits were interchanged; 

 in 4% of the original non-zero values, a random digit was added; 

 in 4% of the original non-zero values, a random digit was omitted; 

 in 4% of the original non-zero values, a random digit was replaced by another digit; 

 4% of the original non-zero values were multiplied by 25; 

 4% of the original non-zero values were divided by 25 and rounded to the nearest 

integer; 

 6% of the original non-zero values were replaced by zero; 

 5% of the original zero values were replaced by random integers from {1; …; 1,000}; 

 10% of the original values of 11x  and 12x  were multiplied by –1. 
 

This procedure was carried out in such a way that at most one change could occur in each 

value. The second data set was left error-free and was used as reference data. 

Table 7.1 shows the hard and soft edits that were applied to the test data. The hard edits were 

copied from the regular production system. The soft edits were identified by examining a number 

of univariate and bivariate distributions in the reference data. 

 
 
Table 7.1 
The edits that were used in the test application 
 

hard edits: 

                                           

1 2 3

2 4

5 6 7 8

3 8 9

9 10 11

0   ( 1, ,10 and 12)j

x x x

x x

x x x x

x x x

x x x

x j j

 

  
 
 
  

 

soft edits: 

                                           

2 3

3 9

5 6 7

9 12

9 12

11 9

11 9

12

12

12

0.5

0.9

50

5, 000

0.4

0.1

1

5

100

x x

x x

x x x

x x

x x

x x

x x

x

x

x



 



 



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The error localisation algorithm was applied to the data set with artificial errors using several 

different setups. Throughout, all confidence weights N
jw  were chosen equal to 1, and the 

parameter   in (3.1) was chosen equal to 1 / 2.  We considered the following approaches: 
 

A. The first test used only the hard edits from Table 7.1. 

B. The second test used all edits from Table 7.1, with all edits interpreted as hard edits. 

C. The third test used all edits from Table 7.1, with a distinction between hard and soft 

edits. Each soft edit received the same fixed failure weight 1.ks   

D. The fourth test was similar to the third test, but with fixed failure weights that differed 

between soft edits. For each soft edit, ks  was calculated as the fraction of records in the 

reference data set that satisfied the edit. Thus, a soft edit received a lower failure weight 

if it was failed more often in the reference data set, and vice versa. The rationale behind 

this is that all soft edit failures occurring in the reference data were caused by unusual 

but correct combinations of values. By associating low weights to soft edits that are 

often failed in the reference data, we ensure that these edits may also be failed more 

easily when editing the test data. 
 

Since the distribution of errors in our test data set was known, we could directly evaluate the 

performance of each automatic error localisation approach. To this end, we used several quality 

indicators. Consider the following 2×2 contingency table: 
 

true: error
no error

TP FN
FP TN

detected :
error no error

 

 

The first quality indicator measures the proportion of true errors that were missed by the 

algorithm (proportion of false negatives): 

.
FN

TP FN
 


 

The second quality indicator measures the proportion of correct values that were mistaken for 

errors by the algorithm (proportion of false positives): 
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.
FP

FP TN
 


 

The third quality indicator measures the overall proportion of wrong decisions made by the 

algorithm: 

.
FN FP

TP FN FP TN


 

  
 

These three indicators evaluate the performance of the algorithm with respect to identifying 

individual values as correct or erroneous. They have been used in previous evaluation studies; 

see, for instance, Pannekoek and De Waal (2005). 

To evaluate the performance of the algorithm from a slightly different angle, we also 

calculated the percentage of records for which the algorithm found exactly the right solution – 

that is, the solution that identifies as erroneous all erroneous values and only these. This indicator 

is denoted by .  A good editing approach should have low scores on , ,   and ,  but a high 

score on .  

Table 7.2 shows the values of the quality indicators for editing approaches A, B, C, and D. It 

can be seen that approach B is outperformed by the other approaches on all measures, except for 

the proportion of missed errors. Thus, using the soft edits as if they were hard edits does not work 

well for this data set; in fact, better results are achieved by approach A, which does not use the 

soft edits at all. It can also be seen that approaches C and D, which use the new algorithm to take 

the soft edits into account, yield better results than approaches A and B, which use the old 

algorithm. Overall, approach D appears to achieve the best results in this experiment. Compared 

with approach A, approach D in fact correctly identifies more errors and more correct values. 

It should be noted that, under the old definition of the error localisation problem, approaches 

A and B represent the two extreme options available for using soft edits: either not using them, or 

using them all as hard edits. As a compromise between these options, one could also decide to 

use only a subset of the soft edits as hard edits and discard the others. We did not test this 
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approach during the experiment. One might expect that it would lead to scores on the , , ,    and 

  measures in between those of approaches A and B. 
 
 
Table 7.2 
Results of automatic error localisation for the artificial data 
 

 quality indicators 
approach     

A 0.364 0.047 0.115 40%

B 0.232 0.131 0.153 37%

C 0.227 0.060 0.096 47%

D 0.253 0.037 0.083 52%

 
 

 
8  Conclusion 
 

In this article, we proposed a new formulation of the error localisation problem which can take 

the distinction between hard and soft edits into account. In addition, we showed that a modified 

version of the branch-and-bound algorithm of De Waal and Quere (2003) can be used to solve 

this new error localisation problem. It was suggested that this new algorithm can be used to 

increase the quality of automatic editing. This suggestion was confirmed by the empirical results 

reported in Section 7, although it should be stressed that these results were obtained with data 

containing synthetic errors. An application is currently being investigated of the new error 

localisation algorithm to realistic data. 

It remains an open problem how the costs of soft edit failures may best be modelled, i.e., how 

the term softD  in (3.1) should be defined. The different results with approaches C and D in 

Section 7 demonstrate that the quality of automatic error localisation may be improved by a 

suitable choice of failure weights. It will be interesting to see to what extent the quality of 

automatic editing may be improved further by experimenting with different combinations of 

failure weights ,ks  confidence weights ,jw  and the balancing parameter   in (3.1). 
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Other forms of softD  than (3.2) could also be considered, including forms that depend on the 

sizes of the soft edit failures. As mentioned in Section 3, it is intuitively appealing to take the 

amounts by which soft edits are failed into account in the error localisation problem, so that 

larger soft edit failures yield higher values of soft .D  One interesting choice for softD  could be the 

Mahalanobis distance of soft edit failures, as suggested by Hedlin (2003) in a different context. It 

should be noted that the algorithm from Section 6 may be used to solve the error localisation 

problem for all choices of softD  that can be expressed as (reasonably well-behaved) functions of 

1 , , .
SKz z  One simply uses the appropriate expression for softD  as the target function in 

problem (5.1). On the other hand, if softD  depends explicitly on the sizes of the soft edit failures, 

then we have to resort to a more complex approach. In particular, the information provided by 

Theorems 1 and 2 is no longer sufficient, because we now need to know not only which soft edits 

will be failed after imputation but also the amounts by which they will be failed. An approach for 

solving the error localisation problem in this more complicated situation can be found in Scholtus 

(2011). 

In summary, it remains to be seen how the theoretical results outlined in this article should be 

applied to obtain the best results in practice. Nevertheless, given that subject-matter experts use 

the conceptual difference between hard and soft edits during manual editing, it seems evident that 

the new error localisation algorithm has the potential to increase the quality of automatic editing. 
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Appendix A Proofs 
 

A.1  Proof of Theorem 1 
 

In order to prove Theorem 1, it is convenient to prove first an auxiliary lemma. Suppose that 

q  is obtained from 1q  by eliminating .gx  We define, for each edit ,k
q  the index set k

qA  of 

the edit(s) in 1q  from which it has been derived. That is to say, we define : { }k
qA l  if k

q  is 

obtained by copying the edit 1 ,l
q  and we define : { , }k

qA s t  if k
q  is obtained by eliminating a 

variable from the pair of edits 1 1( , ).s t
q q    

 

Lemma 1. Consider the situation of Theorem 1 for 1,q   and suppose that gx  has been 

eliminated to obtain q  from 1.q  Let A  be a representing set of the index sets k
qA  belonging 

to all ( 2) .k
q q    Then there exists a value for gx  that, together with the original values of the 

variables that are involved in ,q  satisfies all edits in 1q  except those in .A  
 

Proof (of Lemma 1). By construction, A  contains all indices of failed edits from 1q  which do 

not involve .gx  Hence, the only way for the lemma to be false would be if there existed two edits 

that involve ,gx  say 1
s
q  and 1 ,t

q  with s A  and ,t A  so that it is not possible to find a 

value for gx  that satisfies both edits simultaneously. In this case, an implied edit in q  is 

generated by eliminating gx  from 1
s
q  and 1.t

q  Moreover, by the fundamental property given 

at the end of Section 2.3, this implied edit must be failed by the original values of the other 

variables, i.e., the implied edit must be an element of (2) .q  But this would contradict the 

assumption that A  is a representing set of k
qA  for all ( 2) .k

q q    Hence, it is impossible to find 

such a pair of edits, and the lemma follows. 

The proof of Theorem 1 now proceeds by induction on the number of treated variables .q  For 

0,q   the statement is trivial. For 1,q   the theorem follows as a special case of Lemma 1; 

note that 1 1 .k kB A  We suppose therefore that the statement has been proved for all 

{0,1, , 1},q Q   and we consider the case ,q Q  with 2.Q   
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If Q  is obtained from 1Q  by fixing a variable to its original value, and B  is a 

representing set of the sets k
QB  for the failed edits from ,Q  then by construction B  is also a 

representing set of the sets 1
k
QB   for the failed edits from 1.Q  Thus, in this case, the statement 

for q Q  follows immediately from the induction hypothesis. 

Hence, we are left with the case that Q  is obtained from 1Q  by eliminating a variable, say 

.gx  We define, for each ( 2) ,k
Q Q    the index set k

QA  of the edit(s) from 1Q  from which k
Q  

is derived, as above. Next, we use B  to construct a set ,A  by applying the following procedure 

to each ( 2) :k
Q Q    

 

 If k
Q  is obtained by copying 1

l
Q  (so { }k

QA l  and 1 ),k l
Q QB B   then we add l  to 

.A  

 If k
Q  is obtained by eliminating gx  from 1

s
Q  and 1

t
Q  (so { , }k

QA s t  and 

1 1 ),k s t
Q Q QB B B    then we add s  to A  if B  contains an element of 1 ,s

QB   and we 

add t  to A  otherwise. 
 

It is easy to see that this procedure produces a representing set A  of the index sets k
QA  for all 

( 2 ) .k
Q Q    

According to Lemma 1, there exists a value for gx  which, together with the original values of 

the p q  variables that have not been treated, satisfies the edits in 1Q  except those in .A  

That is to say, 1Q  can be partitioned similarly to Q  as (1) ( 2)
1 1 1 ,Q Q Q        where ( 2)

1Q  

contains the edits with indices in .A  Moreover, it is not difficult to see that the above procedure 

implies that B  is a representing set of the index sets 1
k
QB   for all ( 2 )

1 1.k
Q Q     Hence, the 

induction hypothesis establishes that, given the original values of the variables that have not been 

eliminated and given the chosen value for ,gx  there exist values for the other eliminated 

variables that satisfy all the original edits except those in .B  This shows that the statement holds 

for q Q  and completes the proof of Theorem 1. 
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A.2  Proof of Theorem 2 
 

To prove Theorem 2, we start again with an auxiliary lemma. Analogous to the numerical 

case, when q  is obtained from 1q  by eliminating ,gv  we define the index set k
qA  of edits in 

1q  from which the edit k
q q    is derived. To be precise, we define : { }k

qA l  if k
q  is 

obtained by copying the edit 1 ,l
q  and we define :k

qA T  if k
q  is obtained by eliminating a 

variable from the set of edits 1 ( ).t
q t T   

 

Lemma 2. Consider the situation of Theorem 2 for 1,q   and suppose that gv  has been 

eliminated to obtain q  from 1.q  Let A  be a representing set of the index sets k
qA  belonging 

to all ( 2) .k
q q    Then there exists a value for gv  that, together with the original values of the 

variables that are involved in ,q  satisfies all edits in 1q  except those in .A  
 

Proof (of Lemma 2). By construction, A  contains all indices of failed edits from 1q  which do 

not involve .gv  Hence, the only way for the lemma to be false would be if there existed edits that 

involve ,gv  say 1
1 1, , ,rt t

q q    with 1{ , , } ,rA t t    so that it is not possible to find a 

value for gv  that satisfies these edits simultaneously, given the values of the other variables. 

Clearly, this could only happen if 1 ,rt t
g g gF F D    since otherwise any value for gv  

outside 1 rt t
g gF F   would work. We may assume without loss of generality that 

1{ , , }rT t t    is a minimal set having this property. Furthermore, it must hold in this case that 

for all variables involved in ,q  the original value of jv  is contained in all sets 1 , , .rt t
j jF F  In 

other words, T   must satisfy properties (2.8) and (2.9). This means that T   would generate an 

implied edit in q  which, by the fundamental property given at the end of Section 2.3, must be 

failed by the original values of the remaining variables. However, this would contradict the 

assumption that A  is a representing set of k
qA  for all ( 2) .k

q q    This completes the proof of 

Lemma 2. 

The proof of Theorem 2 is now completely analogous to that of Theorem 1, with Lemma 2 

taking the role of Lemma 1. 
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Sparse and efficient replication variance estimation for 
complex surveys 

Jae Kwang Kim and Changbao Wu1 

Abstract 

It is routine practice for survey organizations to provide replication weights as part of survey data 

files. These replication weights are meant to produce valid and efficient variance estimates for a 

variety of estimators in a simple and systematic manner. Most existing methods for constructing 

replication weights, however, are only valid for specific sampling designs and typically require a 

very large number of replicates. In this paper we first show how to produce replication weights 

based on the method outlined in Fay (1984) such that the resulting replication variance estimator is 

algebraically equivalent to the fully efficient linearization variance estimator for any given sampling 

design. We then propose a novel weight-calibration method to simultaneously achieve efficiency 

and sparsity in the sense that a small number of sets of replication weights can produce valid and 

efficient replication variance estimators for key population parameters. Our proposed method can be 

used in conjunction with existing resampling techniques for large-scale complex surveys. Validity 

of the proposed methods and extensions to some balanced sampling designs are also discussed. 

Simulation results showed that our proposed variance estimators perform very well in tracking 

coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on 

how public-use survey data files are produced and how these data sets are analyzed. 
 

Key Words: Bootstrap; Calibration; Jackknife; Linearization method; Replication weights; 
Sampling design; Spectral decomposition. 

 
 

1  Introduction 
 

Variance estimation is an important practical problem in sample surveys. In addition to 

analytic use of variances such as testing statistical hypotheses and constructing confidence 

intervals, variance estimation can also be used to provide descriptive measures on the accuracy of 

survey estimates and the efficiency of the given sampling design. There are two types of 

commonly used techniques for variance estimation under the design-based framework. The first 

is called the linearization method, which uses the standard variance formula applied either 

directly to the estimator if the parameter is a population total or to the linearized one-step Taylor 
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series expansion of the estimator if the parameter is a nonlinear function of one or several 

population totals. The second is called the replication method, which constructs variance 

estimators in a simple systematic way using multiple sets of replication weights along with the 

original survey data set. 

Replication variance estimation techniques have become very popular for design-based 

inferences using complex survey data. Some early practices using replication weights go back to 

1970s at the U.S. Bureau of the Census, Bureau of Labor Statistics and Westat (Dippo, Fay and 

Morganstein 1984). It is now a routine practice for survey organizations to provide replication 

weights together with survey data. The most attractive feature of this approach is that it works the 

same way regardless of the complexity of the parameter. For parameters that are smooth 

functions of population means or totals, the “linearization” step has been automatically built into 

the estimation process and computation of partial derivatives involved in the Taylor series 

expansion is not required. It is extremely user-friendly for multi-purpose data analyses once the 

survey data set is released together with replication weights. Furthermore, the use of replication 

methods reduces concerns on confidentiality issues since detailed design information such as 

stratum or cluster identifier is not released (Lu and Sitter 2008). 

Replication weights are typically constructed by the bootstrap, the jackknife or the balanced 

repeated replication (BRR) methods. Rust and Rao (1996), Shao (1996, 2003) and Wolter (2007) 

provided excellent overviews on the topic. There are three major issues in the construction of 

replication weights: validity, efficiency and sparsity. Validity refers to the asymptotic 

unbiasedness of replication variance estimators under the given sampling design. The asymptotic 

unbiasedness of an estimator is generally a weaker concept than the estimator being consistent. If 

the coefficient of variation of the variance estimator goes to zero, then the asymptotically 

unbiased variance estimator is also consistent. Efficiency is measured by the relative performance 

of the replication variance estimator to the standard linearization variance estimator which is 
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viewed as fully efficient. Sparsity refers to the number of sets of replication weights required to 

achieve fully efficient variance estimation. 

Validity of replication variance estimators was discussed by Krewski and Rao (1981), Shao 

and Tu (1995) and Fuller (2009a), among others. Efficiency and stability of replication variance 

estimators were discussed by Rust and Kalton (1987) and Jang and Eltinge (2009). For sparsity, 

Kott (2001) considered using delete-a-group jackknife to achieve sparsity under certain designs, 

and Lu, Brick and Sitter (2006) also discussed combining strata for sparse replication variance 

estimation. 

Most replication methods discussed in the literature are only valid for certain sampling 

designs. For example, the jackknife method is commonly used for stratified random sampling 

(Krewski and Rao 1981). The bootstrap method has several popular procedures, including the 

without-replacement bootstrap method (Gross 1980; McCarthy and Snowden 1985), the 

re-scaling bootstrap method (Rao and Wu 1988; Preston 2009) and the mirror-match bootstrap 

method (Sitter 1992). These procedures, however, are only applicable for certain types of 

sampling designs. 

The sparsity of a replication method depends on how the replication weights are constructed. 

The number of sets of the jackknife replication weights is related to the number of units in the 

sample and can be very large if the sample size is large. Bootstrap methods typically require at 

least 1,000 sets of replication weights in order to achieve the desired level of efficiency. As a 

compromise, most survey organizations provide 500 sets of bootstrap weights alongside the main 

survey variables. The resulting data sets are still too big for data users to have visual checks and 

can be very cumbersome to manipulate in practice. 

This paper presents methods for constructing efficient and sparse replication weights for 

variance estimation under the design-based framework. By maintaining full efficiency of the 

resulting variance estimator for key variables with a smaller number of sets of replication 

weights, our methods address one of the major tasks at the data file preparation stage and can 
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easily be applied by survey runners to reduce the burden of data users in dealing with excessively 

large data files. A major limitation of our proposed method is that it does not directly handle 

situations where design weights are adjusted for nonresponse or calibrated to known auxiliary 

population information. 

In Section 2, we present a general procedure for constructing replication weights based on the 

method of Fay (1984) and Fay and Dippo (1989), which provides fully efficient replication 

weights for arbitrary sampling designs. In Section 3, we discuss two strategies, random sampling 

and calibration weighting, for constructing sparse replication weights. By using a novel 

application of the calibration technique, our proposed methods allow the use of a small number of 

sets of replication weights while the resulting replication variance estimators remain efficient. In 

Section 4, some asymptotic theory for the validity of the replication variance estimator is 

presented. In Section 5, extensions to some balanced sampling designs are discussed. In 

Section 6, we report results from a simulation study, using real data from Statistics Canada’s 

Family Expenditure Survey, to evaluate the effectiveness of the proposed strategies for 

replication variance estimation. Some concluding remarks are given in Section 7. 

 
2  A general procedure for constructing fully efficient replication 

weights 
 

In principle, we can construct replication weights for any measurable sampling design, using 

the method outlined in Fay (1984) and Fay and Dippo (1989), such that the resulting replication 

variance estimators are algebraically equivalent to the standard linearization variance estimators. 

Let {1, 2, , }N   be the set of N  units in the finite population and {1, 2, , }n   be 

the set of n  units in the sample, selected according to a probability sampling design. Let 

1 /i iw    be the basic design weight, where ( )i P i     is the first order inclusion 

probability for unit .i  
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Let iy  be the value of the study variable y  for unit i  and 
1

N

y ii
t y


   be the population 

total of interest. The Horvitz-Thompson estimator of yt  is given by  

                                                                   ˆ .y i i
i

t w y


 


 (2.1) 

The estimator ˆ
yt  given in (2.1) is also called the expansion estimator, with the basic design 

weight iw  denoting the number of units in the population represented by unit i  in the sample. 

The standard variance estimator of ˆ
yt  can be written as 

                                                              ,ij i j
i j

v y y
 

 
 

 (2.2) 

where ( ) / ( )ij ij i j ij i j          and ( , )ij P i j     is the second order joint inclusion 

probability for ( ).ij  It is assumed that 0ij   for all ( ).ij  Note that .ii i    The standard 

variance estimator v  is often viewed as fully efficient since it is the Horvitz-Thompson estimator of 

the design-based variance ˆ( ).yV t  

Let ( )ij   be an n n  matrix. We can re-write (2.2) as ,v  y y  where 

1 2( , , , )ny y y  y  is the vector of sampled ’s.iy  The matrix   is nonnegative definite and 

can be decomposed as  

                                                                 
1

p

k k k
k 

     (2.3) 

for some 0k   and some n- dimensional vectors , 1, 2, , .k k p   The most well-known 

decomposition (2.3) is given by the spectral decomposition where k  is the eigenvector 

associated with the eigenvalue .k  In practice, very small eigenvalues are often ignored for 

computational reasons. For stratified sampling, the matrix   is block-diagonal so the 

computational burden may be alleviated. However, we do not restrict (2.3) to the spectral 

decomposition. Any decomposition satisfying (2.3) can be used. 
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Suppose that we want to express the fully efficient variance estimator v  given by (2.2) as a 

replication variance estimator in the form of  

                                                           ( ) 2

1

ˆ ˆ( ) ,
L

k
R k y y

k

v c t t


   (2.4) 

where ( ) ( ) ( ) ( ) ( )
1

ˆ , ( , , )k k k k k
y i i ni

t w y w w


  


w  is the thk  set of replication weights, 0kc   

is the factor associated with the thk  set of replication weights and L  is the total number of 

replications; see Kim, Navarro and Fuller (2006) for further discussion. 

The form given by (2.4) does not include all replication variance estimators. For instance, 

Campbell (1980) provided a jackknife variance estimator where the pseudovalues are derived 

based on the von Mises approximation to the parameter of interest. Nevertheless, most replication 

variance estimators can be put in this form. 

We have the following result on the construction of ( )kw  for Rv  based on the 

decomposition (2.3). 
 

Theorem 1. The fully efficient variance estimator v  and the replication variance estimator Rv  

are algebraically identical if we let L p  and ( ) 1/2( / ) ,k
k k kc   w w  where 

1( , , )nw w  w  is the set of original basic design weights. 
 

Proof. The proof follows directly from the fact that 2

1
( )

p

k kk
v


    y y y  and that 

( ) ( ) 1/2ˆ ˆ ( ) ( / ) .k k
y y k k kt t c      w w y y  

 

The choices of ’skc  can be arbitrary and bear no impact on the validity and efficiency of the 

replication variance estimators. However, certain choices of kc  will result in replication weights 

with negative values, which is undesirable as it may produce negative replicates for the 

parameters that are always positive. In practical situations one can always choose relatively large 

kc  to avoid negative values for replication weights. In our simulation study (Case I) reported in 

Section 5, the problem of negative replication weights can be eliminated with the choice 

of 1.kc   
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The replication variance estimator ( ) 2

1
ˆ ˆ( )

L k
R k y yk

v c t t


   with L p  and replication 

weights ( ) 1/2( / )k
k k kc   w w  is fully efficient for an arbitrary variable .y  It also provides 

fully efficient variance estimator for ̂  when   is a smooth function of population means or 

totals. Practical implementation of the method depends crucially on two related issues: (i) the 

feasibility of the decomposition of the n n  matrix   specified in (2.3); and (ii) the number of 

sets of replication weights required to achieve the full efficiency determined by rank( ).p    

As for the first issue, modern advances in computational power and improved performances of 

available software packages make it possible to do the spectral decomposition with relatively 

large .n  For instance, on a 12-CPU unix machine with 96 gigabytes of memory, the R function 

eigen() can handle matrices of sizes at least as large as n  4,000. Note that the computational 

task involved here is for survey runners at the data preparation stage and is not for users of the 

data files. As for the second issue, the value of p  is related to the given sampling design. For 

simple random sampling without replacement, we have 

2 1(1 / )( ( 1)) ( / ),n n nN n N n n n     1 1 I  

where nI  is the n n  identity matrix and (1,1, ,1)n
1   is the 1n   vector of 1’s.  It follows 

that rank( ) trace( / ) 1.n n np n n     1 1I  This is typically the case for single stage 

unequal probability sampling designs. For stratified simple random sampling, we have 

,p n H   where H  is the total number of strata. 

It should be noted that p n  for any sampling design and the exact value of p  is not 

required for the proposed procedure to be implemented. However, since the values of p  and n  

have the same order of magnitude, the proposed method requires a large number of replicates 

whenever n  is large. Under the current practices in sample surveys, the fully efficient replication 

weights described above become immediately implementable if p  500 and the second order 

inclusion probabilities ij  are available. When p  is large, a two-stage procedure to be described 
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in Section 3 can be used to produce a small number 0L  sets of replication weights for public-use 

data files. 

In some cases, the spectral decomposition (2.3) can be avoided. For example, Deville (1999) 

argued that the variance estimator of ˆ
yt  under unequal probability sampling designs with fixed 

sample size can be approximated by  

                                                     

2

(1 ) i
i y

i i

y
v c t



 
    

 


 (2.5) 

where   1
21 , (1 ) (1 )i i i ki k

c b b


 
        

 and ( / ).y i i ii
t b y


 


 More 

generally, we consider the following form of matrix   in ,v  y y  where 

                                                   1
0 0 0 0( )       X X X X  (2.6) 

where 0 1diag{ , , }, 0n i      for all 11, 2, , , ( , , )ni n   X x x  and ix  is a vector 

of design and auxiliary variables. Many elementary single-stage sampling designs take the form 

(2.6) for variance estimation. In particular, Deville’s formula in (2.5) can be expressed as 

v  y y  with   given by (2.6), where 2 (1 )i i ic       in 0  and .i i x  The 

conditional Poisson sampling design to be discussed in Section 5 also takes the form (2.6) where 

ix  are the design variables in the design constraint 1

1
.

N

i i ii i


 
  

x x  

For the matrix given by (2.6), it can be shown that 

0
ˆ ˆ( ) ( ),   y y y X y X     

where 1
0 0

ˆ ( ) .   X X X y  Thus, we have 

                                                        2

1

ˆ( ) ,
n

k k k
k

y


    y y x  (2.7) 

which is useful in deriving an expression for replication variance estimator in the form given by 

(2.4). The fully efficient variance estimator v  in (2.7) and the replication variance estimator Rv  
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in (2.4) are algebraically identical if we let L n  and ( ) 1/2( / ) ,k
k k kc   w w  where 

1( , , )nw w  w  is the set of original basic design weights and 1( , , )k k nk
    with 

1
0

1
0

1 ( ) if 

( ) otherwise.

k i i

ik

k i i

i k



     
  
   

x X X x

x X X x




 

The proof follows directly from the fact that 2

1
ˆ , ( )

n

k k k k kk
y


          y x y y y  and that 

( ) ( ) 1/2ˆ ˆ ( ) ( / ) .k k
y y k k kt t c      w w y y  

 
3  Sparse and efficient replication weights 
 

Large-scale complex surveys usually have a relatively large sample size ranging from a few 

hundreds to many thousands. The fully efficient replication weights described in Section 2 or 

replication weights constructed by some existing methods such as the jackknife or the bootstrap 

methods would involve a very large number of sets of weights. Although valid replication 

weights provide enormous convenience to the users of survey data, who are not necessarily the 

survey runners, the burden of manipulating a data set with hundreds or even thousands of 

replicate weights can be enormous. As a result, how to achieve efficient replication variance 

estimation with a relatively small number of replicate weights is a question with both theoretical 

and practical value. 

We propose two strategies to construct sparse and efficient replication weights. We start with 

a large number L  sets of replication weights. These initial weights may be produced using the 

general method described in Section 2 or by existing methods. Suppose they can be viewed as 

fully efficient. The first strategy is to select a small number 0L  sets of weights from the initial 

large number L  sets of weights using a probability sampling method. The small number 0L  

satisfies the desired sparsity and the random selection procedure guarantees validity of the 

resulting variance estimators. The second strategy is to achieve efficiency through a novel 
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weight-calibration procedure. The 0L  sets of calibrated replication weights provide fully efficient 

variance estimators for variables used in the calibration and also highly efficient variance 

estimators for variables related to calibration variables. 

 
3.1  Achieve sparsity and efficiency through random sampling 
 

Suppose that the fully efficient replication variance estimator is given by Rv   

( ) 2

1
ˆ ˆ( ) ,

L k
k y yk

c t t


  with replication weights constructed by using Theorem 1. Observe that Rv  

can be viewed as a finite population total. If we want to use 0 ( )L L  sets of replication weights 

to provide valid inference for variance estimation, the following simple strategy can be used. 

First, select 0L  sets of weights from the original L  sets of weights by simple random sampling 

without replacement. For notational simplicity and without loss of generality, we denote the 

selected sets of weights by ( )
0, 1, 2, , .j j L w  Then, calculate the replication variance 

estimator of ˆ
yt  based on the 0L  sets of weights as  

                                                       
0

(1) ( ) 2

10

ˆ ˆ( ) .
L

j
R j y y

j

L
v c t t

L 

   (3.1) 

The variance estimator (1)
Rv  is still unbiased for an arbitrary variable ,y  since * (1)( )RE v   

( ) 2

1
ˆ ˆ( ) ,

L k
k y y Rk

c t t v


   where * ( )E   denotes the expectation under the random selection of 

0L  sets of weights. 

An alternative form of the replication variance estimator based on the 0L  sets of weights can 

be derived as follows. Noting that ( ) 1/2ˆ ˆ ( / ) ,k
y y k k kt t c     y  we can re-write the fully 

efficient variance estimator as 

2

1 1

( ) ,
L L

R k k k
k k

v m
 

     
  
 y  

where 
1

.
L

kk
m


   The ’sk  are orthogonal eigenvectors satisfying k    under spectral 

decomposition and k
 y  are projections of y  onto the n- dimensional unit-sphere. It is very 



Survey Methodology, June 2013 101 
 

 
Statistics Canada, Catalogue No. 12-001-X 

natural to use the following weighted version for the variance estimator of ˆ
yt  based on the 0L  

randomly selected sets of weights: 

                              
0 0 0

(2) 2 ( ) 2

1 1 10

ˆ ˆ( ) ( ) ,
L L L

j
R j j j j y y

j j j

m
v m c t t

m  

       
  
   y  (3.2) 

where 0

0 1
.

L

jj
m


   Noting that (2)

Rv  is a ratio estimator of ,Rv  it is usually more efficient 

than (1).Rv  

A third version of the replication variance estimator can be constructed by first selecting 0L  

sets of weights with unequal probabilities and then using a Horvitz-Thompson estimator of .Rv  

Note that we can view 2

1
( )

L

R k kk
v


   y  as a population total and k  as a size variable. We 

select 0L  sets of weights from the original L  sets of weights with inclusion probabilities k  

proportional to .k  The resulting variance estimator of ˆ
yt  is given by 

                                                         
0

(3) ( ) 2

1

ˆ ˆ( ) ,
L

j j
R y y

j j

c
v t t



 
  (3.3) 

where 0 1
.

L

j j kk
L


     It turns out that the eigenvalues k  differ substantially in 

magnitude and using k  as size measure leads to a large portion of the L  sets of weights being 

selected with probability one. In the simulation study described in Section 5, we also included a 

fourth version of the replication variance estimator, denoted as ( 4) ,Rv  with 1/2
k  as the size 

measure and 1/2 1/2
0 1

.
L

j j kk
L


     

Another possible version of the replication variance estimator is to simply select 0L  sets of 

weights corresponding to the 0L  largest values of k  and then use (2) .Rv  Simulation results, not 

reported here, showed that the resulting variance estimator is severely biased and shouldn’t be 

used in practice. 

 
3.2  Achieve sparsity and efficiency through weight-calibration 
 

We now discuss a novel approach of achieving sparsity without losing the efficiency of the 

variance estimators for some key variables. Suppose 0L  is the desired replication size, which is 
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much smaller than the sample size .n  For example, the Natural Resources Inventory Survey 

(sponsored by the US department of Agriculture) used 0L   29 while the PSU sample size can 

be as large as n   300,000. We present a weight-calibration technique that not only allows the 

use of a small 0 ,L  but also provides fully efficient variance estimators for key population 

parameters. Our proposed strategy for constructing the smaller number 0L  sets of replication 

weights consists of the following four steps: 
 

Step 1. Choose a set of key variables for which full efficiency of the variance estimator is 

desired. Let 1( , , )i i imz z  z  be the vector of key variables for the thi  unit included in the 

survey data file, where 0 .m L  Among them can be important auxiliary variables and study 

variables as well as design variables. Let ˆ .i ii
t w


  z z  Let 1

ˆ( )v t z  be an m m  estimated 

variance-covariance matrix for t̂ z  computed by the standard linearization method or by a 

replication method that is fully efficient. 
 

Step 2. Construct an initial 0L  sets of replication weights that produce an asymptotically 

unbiased variance estimator. These initial replicates can be obtained by a bootstrap method with 

0L  replicates, or by the delete-a-group jackknife method of Kott (2001), or by the sampling 

method described in Section 3.1. Let ( ) ( ) ( )
0 10 0 0( , , ) , 1, ,k k k

nw w k L  w  be the initial sets of 

weights. Denote ( ) ( )
0 0

ˆ k k
y i ii

t w y


  
 and let  

                                                           
0

( ) 2
0 0 0

1

ˆ ˆ( )
L

k
k y y

k

v c t t


   (3.4) 

be the replication variance estimator based on the 0L  sets of weights.  

We can apply the variance formula (3.4) to the vector of key variables z  to get 

0 ( ) ( )
0 0 0 01

ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ,
L k k

kk
v t c t t t t


  z z z z z  where ( ) ( )

0 0
ˆ .k k

i ii
t w


  z z  Note that 0

ˆ( )v t z  is not as 

efficient as 1
ˆ( )v t z  obtained in Step 1. 

 

Step 3. Decompose the nonnegative definite variance-covariance matrix 1
ˆ( )v t z  as 
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                                                              1
1

ˆ( )
m

k k k
k

v t


 z q q  (3.5) 

using the spectral decomposition or any other suitable methods. Let 0k   for 

01, ,k m L    and define 

( ) 1/2
0 0

ˆ ˆ ( / ) , 1, 2, , .k
k k kt t c k L    z z q  

It follows that the 0L  pseudo-replicates ( )ˆ kt z  defined above satisfy 

                                                 
0

( ) ( )
0 1

1

ˆ ˆ ˆ ˆ ˆ( )( ) ( ),
L

k k
k

k

c t t t t v t


   z z z z z  (3.6) 

due to the decomposition to 1
ˆ( )v t z  given in (3.5). It should be noted that (3.5) bears no relation 

to the decomposition to   described in Section 2 and the condition 0m L  is required to make 

(3.6) possible. 
 

Step 4. Improve the efficiency of 0v  computed from (3.4) for an arbitrary y  variable through a 

weight-calibration procedure. For the thk  set of initial weights ( ) ( ) ( )
0 10 0( , , ) ,k k k

nw w  w  the 

calibrated weights ( ) ( ) ( )
1( , , )k k k

c c ncw w  w  minimize the chi-square distance measure 

                                          ( ) ( ) ( ) ( ) 2 ( )
0 0 0( , ) ( ) /

k

k k k k k
c i ic i i

i

w w w


   


w w  (3.7) 

subject to the constraint 

                                                                ( ) ( )ˆ ,k k
ic i

i

w t





zz  (3.8) 

where  ( )
0; 0 ,k

k ii i w     the ’si  are known constants, and ( )ˆ kt z  is the thk  pseudo 

replicate of t̂ z  defined in Step 3. 

The calibrated weights ( ) ( ) ( )
1 0( , , ) , 1, 2, ,k k k

c c ncw w k L  w  are used in (3.4) to compute 

the final replication variance estimator 0 ( ) 2
01

ˆ ˆ ˆ( ) ( ) ,
L k

C y k yc yk
v t c t t


   where ( )ˆ k

yct   

( ) .k
ic ii

w y
 
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The proposed weight-calibration procedure ensures that the replication estimator ˆ( )Cv t z  based 

on the 0L  sets of calibrated weights matches exactly the fully efficient estimator 1
ˆ( ),v t z  due to 

the calibration constraints (3.8) and the equation (3.6). Furthermore, the calibrated replication 

weights provide more efficient variance estimators for an arbitrary y  that is related to .z  To see 

this, we re-write ( ) ( )
0 0

ˆ k k
y i ii

t w y


  
 as 

                                                            ( ) ( ) ( )
0 0 0

ˆˆ ˆ ˆ( ) ,k k k
y et t t   z  (3.9) 

where ( ) ( )
0 0

ˆˆ ,ˆ ˆk k
e i i i i ii

t w e e y


   
z  and   1ˆ .i i i i i i i ii i

w w y


 
    

 z z z  Let 

ˆ .ˆe i ii
t w e


  

 The variance estimator of ˆ
yt  based on the initial 0L  sets of weights can be 

expressed as 

0

0 0 0

( ) 2
0 0 0

1

( ) 2 ( ) 2 ( ) ( )
0 0 0 0 0 0 0

1 1 1

0 0 0

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (( ) ( ) ) 2 ( )(( ) ( ) )

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) 2 cov ( , ),

L
k

y k y y
k

L L L
k k k k

k e e k k e e
k k k

e e

v t c t t

c t t c t t c t t t t

v t v t t t



  

 

         

   



  z z z z

z z

   

  

 

where 0
ˆ ˆcov ( , )et t z  is the estimated covariance between êt and t̂ z  based on the initial 0L  sets of 

replication weights. In many designs, we can choose a suitable i  such that ˆ ˆCov( , ) .et t 0z  

This is the case, for instance, with the choice of 1( 1)i iw     or 1
i iw   under Poisson 

sampling. Fuller (1998) discussed the required conditions in the context of two-phase sampling. 

It follows that 

                                                       0 0 0
ˆ ˆˆ ˆ ˆ( ) ( ) ( )y ev t v t v t   z  (3.10) 

Using similar argument, it can be shown that the variance estimator based on the 0L  sets of 

calibrated weights satisfies 

                                                       0 1
ˆ ˆˆ ˆ ˆ( ) ( ) ( )C y ev t v t v t   z  (3.11) 

The variance estimator ˆ( )C yv t  given by (3.11) is generally more efficient than 0
ˆ( )yv t  given 

by (3.10), due to the use of 1
ˆ( )v t z  instead of 0

ˆ( ).v t z  The gain of efficiency depends on the 
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relative magnitude of 1
ˆ ˆˆ( )v t z  over 0

ˆ( ).ev t  If y  is highly correlated with ˆ ,ŷ  z  the 

variance of the residual term 0
ˆ( )ev t  will be relatively small. In this case ˆ( )C yv t  will be highly 

efficient. On the other hand, if there is no correlation between y  and ,ŷ  then no improvement 

will be achieved by using the calibrated weights ( ) ;k
cw  see also Theorem 3 in Section 4. 

One of the drawbacks of the chi-square distance ( ) ( )
0( , )k k

c w w  in Step 4 is that some of the 

resulting calibrated weights could take negative values. To avoid negative weights, we propose 

replacing the chi-square distance in (3.7) by the following minimum entropy distance 

                             
( )

( ) ( ) 1 ( ) ( ) ( )
0 0 0( )

0

( , ) log
k

k
ick k k k k

c i i ic ik
i i

w
D w w w

w




             



w w  (3.12) 

for two reasons. First, the calibrated weights ( )k
icw  are guaranteed to be positive. Second, there 

exists a well-behaved computational algorithm for this constrained minimization problem. It can 

be shown that ( )k
cw  minimizing ( ) ( )

0( , )k k
cD w w  subject to (3.8) are given by  

                                                               
( )
0( ) /

,
1

k
i ik

ic
i

w
w




  z
 (3.13) 

where the Lagrange multiplier   is the solution to 

                                                   
( )
0 ( )/

ˆ( ) .
1

k
i i i k

i i

w
g t




  

 0



 z

z

z
 (3.14) 

An efficient computational algorithm for finding the solution   to (3.14) can be found in Wu 

(2004) and a related R function can be obtained by a minor modification of the R function 

presented in Wu (2005). 

 
4  Validity 
 

In this section we provide some general discussion on the validity of the replication variance 

estimator. Let ( )yf t   be a finite population parameter, which is a smooth function of the 

population total 
1

.
N

y ii
t y


   We assume that ˆ ˆ( )yf t   is used to estimate ,  where ˆ

yt  is the 



106 Kim and Wu: Sparse and efficient replication variance estimation for complex surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Horvitz-Thompson estimator of yt  defined in (2.1). The replication variance estimator of ̂  is 

constructed by 

                                                         ( ) 2

1

ˆ ˆ ˆ( ) ( ) ,
L

k
R k

k

v c


      (4.1) 

where ( ) ( )ˆ ˆ( )k k
yf t   and ( )ˆ k

yt  is the thk  replicate of ˆ .yt  

To explore the asymptotic properties of the replication variance estimator (4.1), we assume a 

sequence of the finite populations and the survey samples, as described in Isaki and Fuller 

(1982). The finite populations and the sampling designs satisfy following regularity conditions. 
 

C1. For any population characteristics iu  with bounded second moments, 

1/2

1

( ).
N

i i i i i p
i i

w O n N

 

   u u u u


 

C2. The design weights are uniformly bounded. That is, 1
1 2iK N nw K   for all i  and 

any ,n  where 1K  and 2K  are fixed constants. 

C3. 1ˆ( )ynV N t  is bounded. 

C4. For any y  with bounded fourth moments, the replication variance estimator 
( ) 2

1
ˆ ˆ ˆ( ) ( )

L k
R y k y yk

v t c t t


   satisfies 

                                                 ( ) 2 2 2 2ˆ ˆ ˆ[{ ( ) } ] { ( )}k
k y y yE c t t KL V t   (4.2) 

for some ,K  uniformly in 1, , ,k L   

                                                                1max ( ),k
k

c O L   (4.3) 

and 

                                                      

2
ˆ( )

1 (1).
ˆ( )

R y

y

v t
E o

V t

          
 (4.4) 

Condition (4.2) ensures that no single replicate dominate the others. Condition (4.3) controls the 

order of the factor .kc  Condition (4.4) implies that ˆ( )R yv t  is a consistent estimator of ˆ( ).yV t  

Conditions (4.2) - (4.4) were also used in Kim, Navarro and Fuller (2006). 

Using the above regularity conditions, the following theorem proves the consistency of the 

replication variance estimator in the form of (4.1). 
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Theorem 2. Let ( )yf t   be the parameter of interest and ˆ ˆ( ),yf t   where ( )f   is a smooth 

function with derivative continuous at .yt  Under the regularity conditions described above, the 

variance estimator ˆ( )Rv   in (4.1) satisfies 

                                                              
ˆ( )

1 (1).
ˆ( )

R
p

v
o

V


 


 (4.5) 

Proof. See Appendix A. 
 

We now prove the validity of the improved variance estimator ˆ( )C yv t  proposed in 

Section 3.2. For simplicity, we assume that 1
ˆ( )yv t  is a fully efficient estimator of the variance 

ˆ( )yV t  for ˆ .y i ii
t w y


  

 We also assume that 0
ˆ( ),yv t  defined in (3.4), satisfies 

                                                             *
0 1

ˆ ˆ{ ( )} ( ),y yE v t v t  (4.6) 

where * ( )E   denotes expectation under the random selection of the 0L  replicates from the L  sets 

of fully efficient replication weights, as discussed in Section 3.1. If 1
ˆ( )yv t  is asymptotically 

unbiased, then 0
ˆ( )yv t  is also asymptotically unbiased by (4.6). For the delete-a-group jackknife, 

condition (4.6) can be understood as 0 1
ˆ ˆ{ ( )} { ( )}y yE v t E v t  and 0 1

ˆ ˆ{ ( )} { ( )}.y yV v t V v t  
 

Theorem 3. Assume that the initial variance estimator 0
ˆ( )yv t  defined in (3.4) satisfies (4.6). 

Assume that the improved variance estimator 0 ( ) 2
01

ˆ ˆ ˆ( ) ( )
L k

C y k yc yk
v t c t t


   is computed using 

the calibrated replication weights as described in Section 3.2, with the choice of i  satisfying 

ˆ ˆCov( , ) .et t 0z  By ignoring smaller order terms, we have 

                                                           1
ˆ ˆ{ ( )} { ( )}C y yE v t E v t  (4.7) 

and 

                                                1 0
ˆ ˆ ˆ{ ( )} { ( )} { ( )}.y C y yV v t V v t V v t   (4.8) 

Proof. See Appendix B. 
 

For a general parameter ( ),yf t   we let ( ) ( )ˆ ˆ( )k k
c ycf t   and compute ˆ( )Cv    

0 ( ) 2
01

ˆ ˆ( ) .
L k

k ck
c


    Validity of ˆ( )Cv   can be established by combining results from Theorem 2 

and Theorem 3. 
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5  Extension to some balanced sampling designs 
 

We now consider sampling designs which are balanced in ix  in the sense that t̂ x  

i ii
t


  xx


 holds exactly or nearly exactly, where ix  is a q- dimensional vector and 

ii
t


  x x  is known. We assume that the first element of ix  is equal to ,i  which implicitly 

assumes that the survey design has fixed sample size. Tillé (2006) provides a comprehensive 

account of balanced sampling designs. 

Deville and Tillé (2005) argue that ˆ
y i ii

t y


  
 under balanced sampling has a variance 

that can be approximated by its variance under conditional Poisson sampling. Breidt and Chauvet 

(2011) using the same approximation derived 

                                             

2

ˆ( ) (1 ) ,i i
y i

i i i

n y y
v t

n q 

 
       






 (5.1) 

where ˆ
i i Py  x  and   1

2 2ˆ (1 ) (1 ) .P i i i i i i i ii i
y

 
 

        
 x x x  Roughly 

speaking, the variance formula (5.1) can be interpreted as approximating ˆ
yt  under the balanced 

sampling design by a generalized regression estimator under Poisson sampling. That is, 

ˆ ˆ( ) ( ),y PV t V t  where ˆˆ ˆ ˆ( ) .P y Pt t t t    x x  For a formal justification on this approximation, 

see Fuller (2009b). 

The variance formula (5.1) can be used to derive replication weights. To see this, we 

re-express (5.1) as a jackknife replication variance estimator  

                                                       ( ) 2

1

ˆ ˆ( ) ( ) ,
n

k
J y k y y

k

v t c t t


    (5.2) 

where ( )

( ) ( ) ( ) ( ) ( ) ( ) 1ˆˆ ˆ ˆ ˆ( ) , ( , ) ( , ),k

k k k k k k
y y P y i i ii

t t t t t t y


     
x x x x


 

 ( ) ( )

1( ) 2 2ˆ (1 ) (1 ) ,
k k

k
P i i i i i i i i

i i

y
 

 

       x x x
 
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(1 ) / ( ),k kc n n q     and ( ) { }.k k  \  To show the asymptotic equivalence between 

(5.1) and (5.2), we first note that 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).k k k k k
y y y y P P Pt t t t t t t t        

x x x x    

Under certain regularity conditions, we have ( ) 1ˆ ˆ ( )k
P P pO n     and ( )ˆ kt t x x  

1/ ( ).k k pO n N x  Here we used the condition ˆt tx x  under the balanced sampling design. 

It follows that ( ) 1 2ˆˆ ( ) ( ),k
y y k k k P pt t y O n N      x  and ˆ( )J yv t  in (5.2) is asymptotically 

equivalent to 2 2

1
( ) ,

n

k k k kk
c y y


    which equals ˆ( )yv t  given by (5.1). The variance formula 

(5.2) is quite useful because it makes the construction of the replication weights quite 

straightforward for balanced sampling designs. When n  is large, the number of replicates can be 

reduced by using the weight-calibration method described in Section 3.2. Simulation results 

based on the rejective Poisson sampling of Fuller (2009b), not reported here to save space, 

showed that the proposed replication variance estimator performs very well. 

 
6  Simulation study 
 

In this section we report results from a simulation study. We consider a synthetic finite 

population of size N  2,248 families using a real data set of Statistics Canada’s 2000 Family 

Expenditure Survey for the province of Ontario. For the thi  selected family, the data set contains 

observations on several variables, including 1:ix  the number of persons in the family; 2:ix  the 

number of children (age 315); :ix  the number of youths (age 15 - 24); 4:ix  the total annual 

income after taxes; 1:iy  the total annual expenditure; 2:iy  the annual expenditure on clothing; 

3:iy  the annual expenditure on furnishings and equipment. 

We consider three population parameters for comparing different versions of replication 

variance estimators. The first is the population total of overall annual expenditures, i.e., 

1 1 11
.

N

y ii
t y


     The second is the ratio of population totals of expenditures on clothing and 

on furnishings and equipment, i.e.,    2 2 3 2 31 1
/ .

N N

y y i ii i
t t y y

 
      Note that 

2 2 3/ .y y     The third is the population correlation coefficient 3 1 2( , )y y    between the 
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overall annual expenditure 1( )y  and the annual expenditure on clothing 2( ).y  For each 

parameter, several replication variance estimators were evaluated through simulation. 

We investigate two approaches of replication variance estimation. For the first one, the initial 

L  sets of the replication weights are constructed using the general method described in Section 2. 

For the second one, the L n  sets of standard delete-1 jackknife replication weights are used to 

produce fully efficient variance estimators. 
 

Case I. Unequal probability samples are selected by the Rao-Sampford PPS sampling method 

(Rao 1965; Sampford 1967), with inclusion probabilities i  proportional to the total annual 

income 4 .ix  One of the attractive features of the Rao-Sampford method is that the second order 

inclusion probabilities ij  can be computed exactly. The general procedure described in 

Section 2 is used to create L n  sets of fully efficient replication weights, and the 

corresponding variance estimator is denoted as .Rv  Those weights are used as the basis to 

compute and compare different versions of variance estimators ( ) , 1, 2, 3, 4l
Rv l   described in 

Section 3.1, based on a smaller number 0L  sets of weights. We restrict 0L  to be 25 or 50. 

The calibrated replication variance estimator described in Section 3.2 is denoted as .Cv  The 

initial 0L  sets of weights are selected from the original L  sets of weights by simple random 

sampling, and 1 2 3 4 2 3( , , , , , )i i i i i i ix x x x y y z  is used as calibration variables. Under this setting, 

the first parameter 1  is not directly related to z  but the second parameter 2  is defined as a 

nonlinear but smooth function of .t z  The third parameter 1 2( , )y y  is more complex and 

involves population quantities not included in .t z  
 

Case II. The population of N  2,248 units is first duplicated 10 times, to create a larger 

population with 22,480 units. Simple random samples of n  100, 200 or 400 are selected from 

the population. The sampling fractions are less than 2%. Under such scenarios the standard n  

sets of delete-1 jackknife weights provide fully efficient variance estimator .Jv  Let (1)
Jv  be the 

variance estimator using 0L  sets of weights, randomly selected from the n  sets of jackknife 
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weights. Let ( )C
Jv  be the variance estimator using the 0L  sets of weights plus calibration over the 

z  variables. 
 

For each simulated sample of size n  and a particular population parameter ,  we compute 

design-based estimator ̂  and different versions of variance estimators. The process is repeated 

B  times, independently, with B  5,000 for Case I and B  10,000 for Case II. The true 

variance ˆ( )V V   is approximated by 1 2

1
ˆ( ) ,

B

bb
V B 


    where ˆ

b  is calculated from 

the thb  simulated sample, using another independent B  simulated samples. Simulation results 

show that the bias of ̂  is negligible for all three parameters. Performances of a variance 

estimator v  are measured by the simulated coverage probability of the 95% normal theory 

confidence interval, computed as 1 1/2 1/2

1
ˆ ˆCP [ 1.96( ) 1.96( ) ],

B

b b b bb
B I v v


         

the average length of the interval 1 1/2

1
AL 2 1.96( ) ,

B

bb
B v


   and the Relative Root Mean 

Square Error (RRMSE), computed as 1/2RRMSE {MSE( )} / ,v V  where bv  is the variance 

estimator v  computed from the thb  simulated sample, and 1 2

1
MSE( ) ( ) .

B

bb
v B v V


   

The simulated coverage probabilities are reported in Tables 6.1 and 6.2. The fully efficient 

variance estimator Rv  and Jv  provides good coverage for all scenarios except for 1 2( , )y y  with 

Case I where the coverage is a bit low. The variance estimators ( ) , 1, 2, 3, 4l
Rv l   and (1)

Jv  based 

on 0L  sets of weights seem to work for 1 ,  to certain degree for 2  as well, but none is working 

for 3 1 2( , ).y y    The calibrated estimator Cv  provides satisfactory coverage for all scenarios 

for Case I. As for the calibrated estimator ( )C
Jv  with Case II, it works very well for 1  and 2 ,  

but none are working well for 3 1 2( , ).y y    

It should be noted that the definition of 1 2( , )y y  involves population means over three 

derived variables 2 2
1 2,y y  and 1 2 .y y  When those three variables are also included at the 

calibration stage, in addition to ,z  the resulting variance estimator is denoted as ( )C
Jv   for 

Case II. It turns out that ( )C
Jv   provides much better results for 3  and also improved results for 

1  and 2 .  
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Also included in Tables 6.1 and 6.2 are the average length of the confidence intervals using 

( ), C
C Jv v  and ( ) .C

Jv   The results (AL, in parentheses) are relative to the length of the interval using 

Rv  (Table 6.1) or Jv  (Table 6.2), with a value (say) 1.05 indicating 5% increase in length. It can 

be seen that the calibrated variance estimators produce confidence intervals which are either 

comparable in length to the intervals using ( )R Jv v  or slightly wider, depending on the parameter 

and/or sample sizes. 

The relative root mean square errors (RRMSE) of variance estimators are presented in Tables 

6.3 and 6.4. The results seem to depend not only on the parameter and its estimator but also the 

sampling design and the replication method. For Case I, the variance estimator ,Cv  which is of 

primary interest, is more stable than Rv  for 1 ,  almost the same for 2 ,  and is less stable for 3.  

Because 1iy  is well explained by ,i Cvz  is quite efficient for estimating the variance of 1 1
ˆ ˆ .yt   

For Case II, ( )C
Jv  and ( )C

Jv   are similar to each other but both are less stable than .Jv  
 
 
 
Table 6.1 
Coverage probabilities of 95% confidence intervals (Case I) 
 

  0L  n  Rv  (1)
Rv  ( 2)

Rv  ( 3)
Rv  ( 4 )

Rv  (AL)Cv  

1yt  25 50 93.9 92.9 93.1 92.4 93.1 94.3 (1.03) 

  100 94.4 92.0 92.4 91.9 93.0 93.4 (1.01) 

  150 95.1 91.5 91.9 92.1 93.2 93.7 (0.99) 

 50 100 94.5 93.2 93.2 93.4 93.6 94.1 (1.01) 

  150 95.1 93.0 93.3 93.5 93.8 94.5 (0.99) 

2 3/y y   25 50 92.6 91.0 91.2 90.6 91.0 92.9 (1.02) 

  100 93.7 91.1 91.2 89.6 90.8 93.7 (1.01) 

  150 94.3 91.1 90.7 89.5 90.8 94.3 (1.00) 

 50 100 93.6 92.6 92.5 91.9 92.5 93.8 (1.01) 

  150 94.2 92.7 92.6 91.9 92.9 94.3 (1.00) 

1 2( , )y y  25 50 89.0 85.7 85.6 79.3 81.9 91.3 (1.14) 

  100 90.5 85.4 85.3 78.6 81.5 92.1 (1.17) 

  150 90.7 84.6 84.5 76.9 81.6 91.9 (1.17) 

 50 100 90.4 88.2 88.2 83.2 85.8 92.9 (1.18) 

  150 90.7 87.5 87.6 81.7 84.8 93.4 (1.18) 
 

:Rv  The fully efficient replication variance estimator (Section 2); ( ) ,l
Rv l  1, 2, 3, 4: replication variance estimators based on 0L  

sets of weights (Section 3.1); :Cv  replication variance estimator based on 0L  sets of calibrated weights (Section 3.2); AL:  
average length of the confidence interval relative to the one using .Rv  
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Table 6.2 
Coverage probabilities of 95% confidence intervals (Case II) 
 

  0L  n  Jv  (1)
Jv  ( ) (AL)C

Jv  ( ) (AL)C
Jv  

1yt  25 100 94.4 92.0 94.4 (1.02) 94.9 (1.07) 

  200 95.0 92.4 95.0 (1.01) 95.2 (1.03) 

  400 95.3 92.5 95.1 (0.99) 95.3 (1.01) 

 50 100 94.1 93.1 94.2 (1.02) 94.8 (1.07) 

  200 94.7 93.3 94.8 (1.01) 95.0 (1.04) 

  400 94.7 93.4 94.5 (0.99) 94.8 (1.02) 

2 3/y y   25 100 92.6 87.3 92.6 (1.05) 93.3 (1.11) 

  200 93.6 86.8 93.3 (1.02) 93.7 (1.07) 

  400 94.1 86.8 93.8 (0.99) 94.1 (1.04) 

 50 100 92.8 90.3 92.9 (1.06) 94.2 (1.11) 

  200 93.9 89.8 93.8 (1.03) 94.3 (1.08) 

  400 94.1 89.6 93.8 (1.00) 94.1 (1.05) 

1 2( , )y y  25 100 92.5 78.0 89.4 (1.06) 91.7 (1.09) 

  200 92.7 72.3 86.3 (1.00) 91.4 (1.05) 

  400 93.2 71.2 84.5 (0.95) 92.1 (1.04) 

 50 100 92.2 84.5 92.2 (1.09) 92.5 (1.11) 

  200 92.8 80.5 90.3 (1.05) 92.2 (1.08) 

  400 93.1 77.4 88.1 (1.00) 92.6 (1.06) 
 

:Jv  The delete-1 jackknife variance estimator; (1) :Jv  replication variance estimator based on 0L  sets of jackknife weights; ( ) :C
Jv  

replication variance estimator based on 0L  sets of calibrated jackknife weights; ( ) :C
Jv   replication variance estimator based 

on 0L  sets of calibrated jackknife weights, with added variables for weight-calibration; AL:  average length of the 
confidence interval relative to the one using .Jv  

 
 

Table 6.3 
Relative Root Mean Square Errors (RRMSE, Case I) 
 

  0L  n  Rv  (1)
Rv  ( 2)

Rv  ( 3)
Rv  ( 4 )

Rv  Cv  

1yt  25 50 1.84 2.76 2.24 1.99 1.86 1.43 

  100 1.32 2.34 1.67 1.89 1.40 0.83 

  150 1.19 1.99 1.34 1.37 1.46 0.87 

 50 100 1.32 1.91 1.69 1.63 1.35 0.92 

  150 1.19 1.81 1.50 1.62 1.24 0.73 

2 3/y y   25 50 0.72 0.89 0.88 1.07 0.89 0.74 

  100 0.45 0.78 0.77 0.99 0.72 0.46 

  150 0.41 0.93 0.87 1.01 0.74 0.41 

 50 100 0.46 0.60 0.60 0.77 0.56 0.46 

  150 0.41 0.70 0.68 0.70 0.54 0.41 

1 2( , )y y  25 50 0.65 0.79 0.83 1.45 1.26 0.96 

  100 0.65 1.12 1.16 2.20 1.37 1.24 

  150 0.59 1.29 1.34 2.27 1.43 1.50 

 50 100 0.65 0.84 0.88 1.63 0.95 1.03 

  150 0.59 0.88 0.94 1.48 1.05 1.12 
 

:Rv  The fully efficient replication variance estimator (Section 2); ( ) ,l
Rv l  1, 2, 3, 4: replication variance estimators based on 0L  

sets of weights (Section 3.1); :Cv  replication variance estimator based on 0L  sets of calibrated weights (Section 3.2). 
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Table 6.4 
Relative Root Mean Square Errors (RRMSE, Case II) 
 

  0L  n  Jv  (1)
Jv  ( )C

Jv  ( )C
Jv  

1yt  25 100 0.29 0.56 0.56 0.66 

  200 0.21 0.57 0.47 0.53 

  400 0.15 0.56 0.20 0.41 

 50 100 0.29 0.41 0.50 0.57 

  200 0.21 0.41 0.39 0.44 

  400 0.15 0.41 0.17 0.35 

2 3/y y   25 100 0.78 1.58 1.90 1.98 

  200 0.56 1.44 1.41 1.57 

  400 0.39 1.54 0.87 1.40 

 50 100 0.81 1.12 1.61 1.67 

  200 0.57 1.10 1.22 1.32 

  400 0.38 1.04 0.72 1.00 

1 2( , )y y  25 100 1.02 2.43 2.71 2.72 

  200 0.74 2.44 2.64 2.57 

  400 0.47 2.51 2.52 2.42 

 50 100 1.04 1.64 1.97 2.12 

  200 0.71 1.75 2.01 1.96 

  400 0.48 1.76 1.83 1.73 
 

:Jv  The delete-1 jackknife variance estimator; (1) :Jv  replication variance estimator based on 0L  sets of jackknife weights; ( ) :C
Jv  

replication variance estimator based on 0L  sets of calibrated jackknife weights; ( ) :C
Jv   replication variance estimator based 

on 0L  sets of calibrated jackknife weights, with added variables for weight-calibration. 

 
7  Some concluding remarks 
 

Replication methods offer an asymptotically equivalent alternative to linearization methods 

but are operationally more convenient and flexible. We focused on population parameters that are 

smooth functions of means or totals. Our theoretical results and limited simulation studies 

showed that the proposed strategies for constructing sparse and efficient replication weights work 

well for variance estimation and confidence intervals. Nevertheless, there are a number of issues 

which require further investigation. First, for complex parameters such as population correlation 

coefficients, sparse replication variance estimators are not very stable. Second, further evidences 

on the effectiveness of the proposed strategies for large complex surveys in conjunction to the use 

of general bootstrap or jackknife weights are needed. Third, it is not clear whether the sparse 

replication weights will be efficient for parameters that are not smooth functions of means or 
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totals, such as population quantiles, for which normal theory confidence intervals are known to 

be inefficient (Sitter and Wu 2001). 

Another important issue is the potential application of the proposed methods for parameters 

and estimators defined through estimating equations. Let   be defined as the solution to  

                                                     
1

( ) ( , ; ) .
N

N i i i
i

U u y


  0 x  (7.1) 

Let ̂  be obtained by solving a sample-based version of (7.1) given by 

                                                    ( ) ( , ; ) .n i i i i
i

U w u y


  0


 x  (7.2) 

Regression or logistic regression analyses using complex survey data can both be viewed special 

cases of the general forms given by (7.1) and (7.2). The usual sandwich-type variance of ̂  is 

given by 

                                     
1 1

( ) ( )ˆ( ) { ( )}N N
n

U U
V V U

 
    

       


 
 

 
 (7.3) 

A variance estimator ˆ( )v   can now be obtained if we substitute ( ) /NU    by ( ) /nU    

at ˆ    and estimate { ( )}nV U   by applying replication variance estimation method to 

ˆ
n i ii

U w


  
u  with ˆ( , ; ).i i i iu y u x  For detailed discussions on estimating equations and 

survey sampling, see, for instance, Binder (1983), Skinner (1989), and Godambe and Thompson 

(2009), among others. 

Achieving efficient variance estimation using a limited number of sets of replication weights 

is an important research problem with both theoretical and practical significance. The fully 

efficient replication weights constructed using the procedure described in Section 2 can be treated 

as initial sets of weights if the sample size n  is large. In principle, our proposed strategies in 

Section 3 for producing sparse and efficient replication weights can be combined with other 

initial sets of replication weights, including bootstrap weights (Shao 1996) or delete-a-group 
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jackknife (Kott 2001). One should also include as many relevant variables as possible in the 

calibration step, so that the final calibrated replication weights are not only sparse but also 

efficient in providing variance estimators for a large class of estimators. Extensions of the 

proposed methods to handle calibration weights or nonresponse adjustment are currently under 

investigation. 
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Appendix 
 

A  Proof of Theorem 2 
 

By assumption (4.2), we have 

( ) 2 1 1 2

1
ˆ ˆmax ( ) ( ),k

k y y p
k L

c t t O L n N 

 
   

which, combined with (4.3), implies that 

                                                         ( )

1
max( ) (1),ˆ ˆk

y y p
k L

o
 

     (A.1) 

where ( ) 1 ( )ˆˆ k k
y yN t   and 1ˆ .ˆ y yN t   Let ( ) ( ).y yg f N    We can write  

( ) ( ) ( ) ( )ˆ ˆ ( ) ( ) ( )( ) ( ),ˆ ˆ ˆ ˆ ˆ ˆ ˆk k k k
y y y y y nk y yg g g Q                 
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where *( ) ( ) / , ( ) ( ),ˆnk k yg g Q g g            and *
k  is an inner point on the line segment 

between ( )ˆ k  and .̂  By (A.1), we have 

                                                          *

1
max( ) (1).ˆk y p

k L
o

 
     (A.2) 

Define 

 * *max and max ( ) ( ) .k k
k k

D g g               

By construction, we have, for any 0  and 0,   

   * *max ( ) ( ) ( ) max .ˆ ˆ ˆk y y k y
k k

P g g P D P                

By the continuity of ( )g   at y    and the fact that (1),ˆ y y po     we have that, for any 

0,  there exists a ( ) 0     such that ( ) (1).ˆ yP D o    This, together with (A.2), 

implies that 

                                                    *max ( ) ( ) (1).ˆk y p
k

g g o      (A.3) 

Now, we have 

                                                 ( ) 2

1

ˆ ˆ( ) 2 ,
L

k
k n n n

k

c A B C


       (A.4) 

where 

( ) 2

1

( ) 2

1

( ) 2

1

{ ( )( )} ,ˆ ˆ ˆ

{ ( )} ,   andˆ ˆ

( )( ) .ˆ ˆ ˆ

L k
n k y y yk

L k
n k nk y yk

L k
n k y y y nkk

A c g

B c Q

C c g Q







    

   
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







 

Note that (4.4) implies 

                                              ( ) 2

1

( ) / ( ) 1 (1).ˆ ˆ ˆ
L

k
k y y y p

k

c V o


       (A.5) 

By standard linearization arguments, we have ˆ/ ( ) 1nA V    in probability. Furthermore, by 

(A.3) and (A.5), we have ˆ/ ( ) (1)n pB V o   and ˆ/ ( ) (1).n pC V o   This establishes (4.5). 
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B  Proof of Theorem 3 
 

Combining (3.10) and (3.11) and ignoring terms of smaller order, we have 

0 0 1 0 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .y C yv t v t v t v t v t v t      z z z z         

where   is the probability limit of ˆ.  By (4.6), we have 

                                                             *
0 1

ˆ ˆ{ ( )} ( ),E v t v tz z  (B.1) 

where * ( )E   denotes expectation under random selection of the 0L  sets of weights conditional on 

the L  sets of weights. Similarly, by (3.11), we have 

1 1 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).y C y e ev t v t v t v t   

By (4.6) again, we have 

                                                             *
0 1

ˆ ˆ{ ( )} ( ).e eE v t v t  (B.2) 

Let 1 1
ˆ ˆ ˆ( ) ( ),C y yd v t v t   we have 1

ˆ( ) 0E d   by (B.2), which proves (4.7). Furthermore, by 

(B.2) again, we have 1 1
ˆ ˆCov{ , ( )} 0.yd v t   Thus, we have 

                                        1 1 1
ˆˆ ˆ ˆ{ ( )} { ( )} ( ) { ( )}.C y y yV v t V v t V d V v t    (B.3) 

Similarly, we can also prove that 0
ˆ ˆ{ ( )} { ( )}.y C yV v t V v t  
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Estimation of the variance of cross-sectional indicators for 
the SILC survey in Switzerland 

Anne Massiani1 

Abstract 

SILC (Statistics on Income and Living Conditions) is an annual European survey that measures the 

population’s income distribution, poverty and living conditions. It has been conducted in 

Switzerland since 2007, based on a four-panel rotation scheme that yields both cross-sectional and 

longitudinal estimates. This article examines the problem of estimating the variance of the 

cross-sectional poverty and social exclusion indicators selected by Eurostat. Our calculations take 

into account the non-linearity of the estimators, total non-response at different survey stages, 

indirect sampling and calibration. We adapt the method proposed by Lavallée (2002) for estimating 

variance in cases of non-response after weight sharing, and we obtain a variance estimator that is 

asymptotically unbiased and very easy to program. 
 

Key Words: SILC survey; Rotating panel; Inequality indices; Variance estimation; Weight-share 
method. 

 
 

1  Introduction 
 

SILC (Statistics on Income and Living Conditions) is an annual European survey designed to 

obtain indicators that are comparable from one country to another on poverty, social exclusion and 

living conditions within the population. For a detailed description of this survey, see Clemenceau 

and Museux (2006). In accordance with the recommendations of Eurostat (Eurostat 2003), the 

survey is conducted in Switzerland based on a four-panel rotation scheme; the first panel was 

surveyed in 2007. Each panel lasts four years, and every year one panel is replaced. When complete, 

a sample selected for a panel consists of approximately 3,600 households. This article will focus on 

cross-sectional estimation, for the population present in a year ,t  of the indicators selected by 

Eurostat on poverty and living conditions, such as the at-risk-of-poverty rate and the quintile share 

ratio. See Osier (2009) for a description of these indicators and Ardilly and Lavallée (2007) for a 

description of the cross-sectional approach in the context of the SILC survey. Under this 
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cross-sectional approach, the change over time in the composition of the households in the panels 

selected is taken into account using the indirect sampling theory developed by Lavallée (2002). 

In this study, the formulas presented for estimating the variance of indicators take account of the 

great complexity of SILC-Switzerland. The results obtained, while developed specifically for the 

survey conducted in Switzerland, are likely to interest the other participating countries since they use 

similar methods. The main factors taken into account in estimating the variance of the indicators are 

the non-linearity of the estimators, total non-response at different survey stages, indirect sampling 

and calibration. One solution for estimating the variance of non-linear indicators is to use 

linearization techniques (see Deville 1999). Formulas specifically adapted to the indicators selected 

by Eurostat have been developed by Osier (2009). An alternative formula for the quintile share ratio 

is available in Langel and Tillé (2011). Once linearization techniques are applied, there is still the 

problem of estimating the variance of a total in a complex survey design. One difficulty is the 

presence of non-response after weight sharing. Lavallée (2002) proposes an estimator of the variance 

of a total that takes this into account. However, this estimator is generally not unbiased, even when 

the response probabilities are known. In this study, we propose an adaptation that corrects this bias. 

Section 2 briefly describes how the survey is conducted and its sampling design. Section 3 

describes the weighting used. Section 4 describes how linearization techniques are applied to these 

estimators to obtain an approximation of their variance. Section 5 is devoted to the problem of 

estimating the variance of a total where there is non-response after weight sharing. The final formula 

used for variance estimation is given in Section 6. Finally, a numerical application is provided in 

Section 7, followed by the conclusions of this study. 

 
2  Sample design and survey procedure 
 

The survey is conducted in Switzerland using a four-panel rotation scheme. Each year ,t  a new 

sample of households 1 ,A t
ms  is selected to replace an outgoing panel. The subscript m  is used here 
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for samples of households; the subscript p  will be reserved for samples of persons. In accordance 

with the notation of Lavallée (2002), the superscripts iA  refer to samples selected directly, while the 

superscript B  will be used in the rest of the document for samples selected indirectly. The new 

panel selected will be followed for four years according to the following scenario: 
 

 In the first year ,t  we first approach the households of 1 ,A t
ms  to complete a 

preliminary questionnaire called the “grid”. The variables identified in the grid are 

common to the entire household and relate primarily to its composition. The 

subsample of 1 ,A t
ms  that responds to the grid is denoted 2 , .A t

ms  The sample of individuals 

belonging to the households of 2 ,A t
ms  is denoted 2 ,A t

ps  and these individuals are called 

longitudinals. The households of 2 ,A t
ms  reached in the first survey year t  are then 

asked to complete a joint questionnaire for the entire household, called the household 

questionnaire. 

 In the following three years ,t i  for = 1i  to 3, an attempt is made to recontact 

the longitudinals of 2 ,A t
ps  aged 16 and over to survey their households based on the 

household composition in year ,t i  since households may change over time. All 

individuals in these households are integrated into the survey for year t i  and are 

called cross-sectional individuals. Households for year t i  that are reached by 

means of longitudinal – that is, households reached indirectly – are asked to again 

complete the grid and then the household questionnaire. However, it is not possible 

to recontact all the longitudinals, especially because some of them have moved, and 

this is a major cause of non-response and sample attrition. 
 

We now set a given survey year t  and adopt a cross-sectional approach, meaning that we are 

interested in the estimates that can be produced for the population present in year .t  The sample 

surveyed during survey year t  consists of four panels contacted for the first, second, third or fourth 

time respectively. Let ,B
ms   denote the sample of households responding to the household 

questionnaire in the th  wave, for = 1, , 4.   As seen in Figure 2.1, the sample ,B
ms   was 

contacted via the longitudinals selected in year = 1.t t     The shaded parts on the right 

represent the samples participating in the survey in year t  (indirect sampling), while the samples on 

the left contain the initial households of the longitudinals through whom they were contacted (direct 

sampling). 
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              1 ,A t
ms   2 ,A t

ms  =
 ,1B

ms  
              1 , 1A t

ms    2 , 1A t
ms    ,2B

ms  
              1 , 2A t

ms    2 , 2A t
ms    ,3B

ms  
              1 , 3A t

ms    2 , 3A t
ms    ,4B

ms  
Figure 2.1  Panels comprising the sample surveyed in year t  

 
 

Below is a more detailed description of the sampling design for 2 , ,A t
ms   for = 1, , 4.   

Households’ composition may change over time, and therefore in the rest of the document, we will 

use the notation 1k  to designate households in the first survey year t   and the notation k  to 

designate those in survey year t  so as to distinguish them. Each sample 2 ,A t
ms   is obtained from two 

selection stages. 
 

 Stage 1: a sample of households 1 ,A t
ms   is selected according to a design stratified by 

major region, of which there are seven in Switzerland. Within each stratum, draws 

are conducted according to a simple design. Here, 1

1

A
k  denotes the first order of 

probability of inclusion of household 1k  and 1

1 1

A
k k   denotes the second order of 

probability of inclusion of households 1k  and 1.k  

 Stage 2: the second selection stage is based on non-response to the grid in the first 

survey year .t  This non-response is modeled using a Poisson design on 

households, and we note for any household 1:k  

                                                               2 1

1

, ,
1 1P( | ) = .A t A t a

m m kk s k s q    (2.1) 

For all households 1k  and 1,k  we define as follows: 

                                                                  2 2 1

1 1 1

,
1= P( ) =A A t A a

k m k kk s q    (2.2) 

                                              
1

1 122

1 1 1

11 1 1

1 1,
1 1

1 1

if =
= P( , ) =

if .

A a
k kA tA

mk k A a a
kk k k

q k k
k k s

q q k k



 

     
 (2.3) 

Finally, for all longitudinals j  and j  belonging respectively to households 1k  and 

1,k  let 
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                                   222 2 2 2

1 1 1

,,= P( ) =   = P( , ) = .
A tA tA A A A

j p k pjj k kj s j j s 
        (2.4) 

For practical reasons, samples 1 , ,A t
ms   for = 1, , 4   are drawn in such a way as to be disjoint, 

which means that this is also the case with samples 2 , .A t
ms   On the other hand, the four ,B

ms   

samples are theoretically not necessarily disjoint, since there is a possibility that two 

longitudinals selected in two different waves will belong to the same household in the survey 

year. Considering the small sample sizes, this is extremely unlikely and has actually never been 

observed thus far. The fact is that when complete, a panel consists of approximately 3,600 

households drawn with probabilities of selection 1

1

A
k  for which the highest value is 0.0011. 

However, it should be noted that the methodology used would lend itself to processing 

non-disjoint ,B
ms   samples. Let 

4
,

=1

=B B
m ms s 


  

and a weight ,kw  called the household cross-sectional weight, is calculated for each household k  

of .B
ms  The individuals in the households of B

ms  are denoted by B
ps  and each individual j  of a 

household k  of B
ms  receives the weight = .j kw w  

The information used to calculate the poverty and social exclusion indexes is based on the 

income of each household k  of .B
ms  Some components of the household’s income are taken from 

the household questionnaire completed by all households of .B
ms  Other income components, such as 

wages, must again be obtained from questionnaires, this time from the individual questionnaires 

administered to members of the households of .B
ms  In the case of complete or partial non-response to 

individual questionnaires or of partial non-response to the household questionnaire, some 

components of the income of B
ms  households are missing. In some cases, especially where there is a 

lack of information on wages, missing values can be obtained from other sources based on 

administrative data. In the remaining cases, they are imputed. In this article, we do not take the effect 

of imputations into account. Under these conditions, the income of each household k  of B
ms  is 
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known and the non-responses observed in the different stages of the survey are household total 

non-responses: non-response to the successive grids and total non-response to the household 

questionnaire. Since the poverty and social exclusion indexes are calculated for individuals and not 

households, the income of each household is divided by a factor that depends on the number of 

persons in the household and their age. The result of this calculation, called equivalent income, is 

assigned to each individual j  of .B
ps  The poverty and social exclusion indexes are calculated on the 

basis of equivalent income and the weights .jw
 

 
3  Cross-sectional household weighting 
 

The weighting was carried out by Graf (2008). It utilizes non-response and calibration techniques 

(cf. Deville and Särndal 1992 for more information on calibration). It also uses the weight-share 

method (Lavallée 2002) to assign a weight to individuals reached indirectly. This weighting is 

carried out in five major steps. The objective of the four first step is to calculate a weight for the 

households in each panel , ,B
ms   for = 1, , 4.   These weights are calculated separately for each 

panel. The last step then serves to combine these panels. Below, we review the basic elements of 

each step for the situation in which the response probabilities for the different stages of the survey 

are known. Explanations on how these parameters are estimated are provided in the numerical 

application in Section 7. 
 

1. Calculate initial weight 

Let {1, , 4}    be fixed. For any longitudinal 2 , ,A t
pj s   we calculate the weight 

2A
jw  which takes account of non-response to the grid in wave 1: 

                                                                        2

2

1
= .A

j A
j

w


 (3.1) 

2. Adjust for non-response to the grid in the survey year 

Sample attrition is observed between the first wave and the survey year. First, it is not 

possible to recontact all the longitudinals of 2 , .A t
ps   Second, not all the households that 

we manage to recontact via the longitudinals agree to fill out the grid again. We 
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designate as b
kq  the probability of household k  responding to the grid in the survey 

year, conditional on 2 , .A t
ps   For the panel responding in the first wave, the b

kq  values are 

all equal to 1, since there has not yet been any attrition. For any longitudinal j  

belonging to household ,k  let = .b b
j kq q  We then calculate the weight: 

                                                                       2
1

= .Ag
j j b

j

w w
q

 (3.2) 

For reasons that will be explained in Section 7, the estimation of response probabilities 
b
jq  is a delicate problem. Because of variations in the information available, these 

estimates are not all equal for the longitudinals in a given household ,k  and this does 

not accord with the response mechanism. This difficulty, and how it is dealt with in 

estimating the variances of the indicators, will be discussed in Section 7. 

3. Weight sharing 

Following the methodology of Lavallée (2002, Chapter 6), we introduce the concept of 

the initially present cohabitant: this is an individual who was not selected in wave 1, but 

who was included in the target population during the selection of wave 1. Newborns 

and immigrants are called initially absent cohabitants. Let kL  be the number of 

longitudinals and kP  be the number of cohabitants initially present in a household k  in 

the survey year. The weight of a household k  responding to the grid in the survey year 

is calculated using weight sharing as follows: 

                                                                  
=1

1
= .

kL
p g
k j

jk k

w w
L P   (3.3) 

4. Adjust for non-response to the household questionnaire 

The non-response observed between the grid for the survey year and the household 

questionnaire is modeled using a Poisson design on households. Let c
kq  be the 

probability that household k  will respond to the household questionnaire, where we 

know that it responded to the grid for the survey year. For any household , ,B
mk s   the 

weight is then computed as follows: 

                                                                        
1

= .nr p
k k c

k

w w
q

 (3.4) 

5. Combine panels, then calibrate 

 Combine panels 

We want to obtain a weighting suitable for the amalgamation B
ms  of the four 

samples , ,B
ms   for = 1, , 4.   Accordingly, the weight nr

kw  computed in the 
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previous step must be divided, by order of magnitude, by a factor of 4. We have, for 

any household :B
mk s  

                                                                          = ,u nr
k k kw w   (3.5) 

where k
  values are allocation factors close to 1 / 4  that must be optimized. 

Merkouris (2001) used variance minimization criteria to calculate the optimal 

values of .k
  These values depend on the variances, and hence on the design 

effects, associated with each panel. Since these design effects are unknown, we 

assume that within each major region, they are identical for each of the panels. This 

leads us to compute, within each major region, factors k
  that are proportional to 

the size of the sample of households responding in the th  wave. 

 Calibrate 

Weights u
kw  are then calibrated on known margins on the population of households 

for the survey year. Let kw  be the calibrated weight thus obtained for household .k  

 Assign weights to individuals 

For any individual j  belonging to a household k  of ,B
ms  let 

        = .j kw w  

Note 1: The different weighting steps have been presented in the order in which they are actually 

performed. Below we describe another way to obtain exactly the same final weights when the 

response probabilities b
jq  are known. In this case, since =b b

j kq q  for all the longitudinals j  in a 

given household k  for the survey year, it is easy to see that the weight nr
kw  given by formula 

(3.4) can be rewritten as follows: 

                                      2
*

=1

1 1 1 1
= = ,

kL
Anr p

k j kb c b c
jk k j k k k

w w w
L P q q q q

 
    
  (3.6) 

where 

                                                          2*

=1

1
= .

kL
Ap

k j
jk k

w w
L P   (3.7) 

Formula (3.6) shows that one can obtain the same weight nr
kw  as Graf (2008), and therefore the 

same final weights, by proceeding as follows: 
 

 assign to household k  for the survey year the shared weight * ,p
kw  
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 in a single step, adjust for non-response to the grid and to the household 

questionnaire for the survey year by modeling it by a Poisson design on households 

of parameter ,b c
k kq q  and applying the adjustment factor 1 / ( ).b c

k kq q  
 

This finding will be useful for the variance calculations in Section 5. 

 
4  Linearization and approximation of variance 
 

We want to estimate the variance ˆvar( )  of an estimator ̂  calculated on the sample of 

cross-sectional individuals B
ps  with assigned weights .jw  Lavallée (2002, pages 122-123) 

developed an asymptotic framework for a population surveyed indirectly. This framework lends 

itself to the use of linearization techniques (cf. Deville 1999) to obtain an approximation of the 

variance of a complex estimator calculated on a population surveyed indirectly. If ̂  is the estimator 

of one of the inequality indexes selected by Eurostat, linearization techniques are used to make esti-

mation of the variance of ̂  equivalent to estimation of the variance of a total. The macros of Osier 

(2009) can be used for this purpose. Osier’s linearization formulas are reviewed in Appendix A with 

respect to the four indicators considered in the numerical application in Section 7. Let j  denote the 

linearized values of ˆ .  We then have: 

                                                        ˆvar( ) var .
B
p

j j
j s

w


 
 
 
   (4.1) 

By using the residuals of the regression of the variable of interest in relation to the calibration 

variables, we can take account of the calibration effect in the calculations of variance (cf. Deville 

and Särndal 1992). Since the calibration variables kx  are defined at the household level, we first 

calculate the following for any household k  for the survey year: 

= ,
k

k j
j m
   

where km  designates all the members of household ,k  then we define = ,T
k k ke x   with the 

parameter   being calculated here based on all the households present in the population. We then 

have: 
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                       ˆvar( ) var = var var .
B B B
p m m

u
j j k k k k

j s k s k s

w w w e
  

              
      (4.2) 

 

Note 2: The linearized values j  introduce quantities that are calculated for the entire population, 

as may be seen, for example, in formula (A.6) in Appendix A. In accordance with the usual 

practice, the linearized values j  will ultimately be replaced by estimates ˆ .j  Similarly, since 

the quantities ke  are unknown, they will be replaced by estimates 

                                                                 ˆˆ= ,ˆ T
k k ke x   (4.3) 

where 

ˆ ˆ=
k

k j
j m
   

and 

1ˆ ˆ= .
B B
m m

T
k k k k k k

k s k s

w x x w x


 

      
   
    

Finally, since the four samples , ,B
ms   for = 1, , 4,   which comprise B

ms  are reached through 

disjoint samples 1 , ,A t
ms   they are not strictly independent. However, we make the approximation that 

these four samples are independent, since the probabilities of selection 1A
k  are very low. We also 

assume that the allocation factors k
  that appear in formula (3.5) are not random. If we assume, for 

any household :k  

                                                                    =k k ke e    (4.4) 

and go back to (3.5), we can rewrite the amount that appears in the last member of (4.2) in the 

following form: 

                                    
, ,

4 4

=1 =1

= ( ) = .
B B B
m m m

u nr nr
k k k k k k k

k s k s k s

w e w e w e
 



   

   
 

      (4.5) 

This enables us to obtain the following approximation of the variance: 
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4

=1

ˆ ˆvar( ) var( ),T


   (4.6) 

where 

                                                                 
,

ˆ = .
B
m

nr
k k

k s

T w e





  (4.7) 

The four components of variance that appear in formula (4.6) can be computed and estimated in 

the same way. In the next section, we give an estimator of the variance of ˆ ,T  for any .  

 
5  Variance estimation and weight sharing 
 

The calculations presented in this section are adaptations of the techniques developed by Lavallée 

(2002, Chapter 8.5) for the treatment of cluster non-response (CNR) in the context of indirect 

sampling. The results are given in the fictitious case where the probabilities of response at the 

different stages of the survey are known. The quantities ke  as well as the quantities ke  defined by 

(4.4) are also assumed to be known. All these quantities will be replaced by estimates in Section 7. 

Let ,{ }B
mk s 

1  denote the indicator variable that is equal to 1 if household k  present in survey year t  is 

included in sample ,B
ms   responding in the th  wave. Conditional upon the fact that an attempt was 

made to contact it via the longitudinals that it contains, household k  belongs to ,B
ms   if it responded 

to the grid and then to the questionnaire in survey year .t  Therefore, we have: 

                                   2 2
,

, ,,

{ }
( | ) = P( | ) = .B

m

A t A tB b c
p m p k kk s

E s k s s q q 





1  (5.1) 

Using theorem 8.1 of Lavallée (2002, page 151) and Note 1, we can easily verify that the 

estimator (4.7) can be rewritten in the following form: 

                                                 2

2
, ,2 2

1ˆ ˆ ˆ= = ,
A t A t
p p

A
j j jA

j s j s j

T w Z Z
 


     (5.2) 

where we have noted, for any longitudinal 2 ,A t
pj s   belonging to household k  in the survey 

year: 
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                                                     ,{ }

1 1ˆ = .B
m

k
j b c k s

k k k k

e
Z

L P q q





1  (5.3) 

The estimator T̂  is consequently reduced to a sum over individuals selected directly. We now 

decompose the variance of T̂  in a standard way by conditioning on 2 , :A t
ps   

                          2 2
, ,2 2

, ,ˆ ˆ ˆvar( ) = var E( | ) E var( | ) .A t A t
p p

A t A t
p ps s

T T s T s 
           (5.4) 

For any individual j  who is present in the population during the year in which 2 ,A t
ps   is drawn 

and who belongs to household k  during the survey year, let 

                                                                = .k
j

k k

e
Z

L P




 (5.5) 

Using (5.1), we verify that for all longitudinal j  and j  included in 2 ,A t
ps   and belonging to 

households k  and k   respectively during the survey year, we have: 

                                                             2 ,ˆE( | ) =A t
j p jZ s Z  (5.6) 

and 

                2
2,

0 if 

ˆ ˆcov = cov ( , ) | = 1
if = .

A t b c
j pjj j k k k

b c
k k k k

k k

Z Z s e q q
k k

L P q q


 




         

 (5.7) 

Formula (5.4) then becomes: 

             
2 2 2

,22 2 2 2
, ,2 2

2

=1 =1

CNR

1 1ˆvar( ) = E cov ,A t
p A t A t

p p

A A AJ J
jjj j

j j jjA A A As
j j j s j sj jj j

V VA

T Z Z
 


 

 
 

   

 

             
  
 

 (5.8) 

where J   designates the number of persons present in the population during the year in which 

2 ,A t
ps   is drawn. The first term 

2AV   is the portion of the variance due to the mechanism for 

selecting the longitudinals in 2 , ,A t
ps   while the second term CNRV   is the portion due to households’ 

non-response to the grid and then to the household questionnaire in year ,t  which constitutes 

cluster non-response. 
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To obtain an estimator of the variance of ˆ ,T  we adapt the variance estimation formula (8.37) of 

Lavallée (2002, page 154). The following differences should be noted. First, we are ignoring the fact 

that in practice, the response probabilities will have to be estimated, whereas Lavallée (2002) takes 

this into account. Second, the estimation method proposed by Lavallée (2002) provides biased 

estimates, even when it is applied in a situation where the response probabilities are known. 

Consequently, we have adapted his method so as to obtain an unbiased estimator of the variance. To 

justify our approach, we first explain below the bias obtained by applying the method of Lavallée 

(2002) in a case where response probabilities are known. His method consists in estimating CNRV   by 

an unbiased estimator CNRV̂   then estimating 
2AV   by 

21 1 2
ˆ ˆ ˆ= ( , , )AV V Z Z    where: 

                               
2 2 2

2 2 2 2
, ,2 2

1 2

1
( , , ) =

A t A t
p p

A A A
jjj j

A j jA A A
j s j s j j jj

V Z Z Z Z
 

 


   

   

      (5.9) 

is the Horvitz-Thompson estimator of the variance of 

                                                             
2

,2

1
= .

A t
p

jA
j s j

T Z



   (5.10) 

This leads to the variance estimator: 

                                                           1 CNR
ˆ ˆ ˆvar ( ) = .L T V V 
   (5.11) 

The use of 1̂ ,V   which is constructed by replacing the jZ  vales that appear in (5.9) by ˆ ,jZ  is 

motivated by the fact that the jZ  values are not known for all the longitudinals j  in 2 , ,A t
ps   but 

only for the longitudinals who, in the survey year, belong to a household k  that responded to the 

questionnaire, that is, a household k  belonging to , .B
ms   The use of ˆ

jZ  values makes it possible 

to assign more weight to the longitudinals of 2 ,A t
ps   for which the jZ  values are known. The 

problem is that the estimator 1̂V   thus constructed does not provide an unbiased estimate of 
2
.AV   This 

may easily be seen by observing what happens for the diagonal terms: for any longitudinal j  

belonging to household k  during the survey year, the quantity 2
jZ  appearing in (5.9) is replaced 

by ,

2 2 2

{ }
ˆ( ) = / ( ) B

m

b c
j j k k k s

Z Z q q 
1  while a weight increase of only a factor of 1 / ( )b c

k kq q  is probably 
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a better choice. The same type of problem occurs for the product j jZ Z   when longitudinal j  and 

j  belong to the same household during the survey year. More specifically, we have, for all 

longitudinals j  and j  belonging to 2 , :A t
ps   

                                                  2 ,ˆ ˆE( | ) = covA t
j p jj j jjZ Z s Z Z

    (5.12) 

which implies 

                         2
,22 2 2

,
1 1 2

ˆ ˆ ˆE[ ] = E E ( , , ) |A t
p

A t
A A p As

V V V Z Z s V


      
   (5.13) 

                                               
2 2 2

,2
2 2 2

, ,2 2

1
= E cov .A t

p A t A t
p p

A A A
jjj j

jjA A As
j s j s j j jj


 

 


   

    
 

    
   (5.14) 

Since on the other hand CNRV̂   is an unbiased estimator of CNR ,V   we have: 

                                              ˆ ˆB = var ( ) var( )LE T T
 

     (5.15) 

                                                   
2 2 2

,2
2 2 2

, ,2 2

1
= E cov .A t

p A t A t
p p

A A A
jjj j

jjA A As
j s j s j j jj


 

 


   

    
 

    
   (5.16) 

The bias B   depends in particular on the term cov jj  defined by (5.7), and hence on the 

probabilities b
kq  and c

kq  of responding to the grid and the questionnaire in the survey year. 

Consider the simple case of the panel responding in the first wave, = 1,  in which the 

composition of the households has not yet begun to evolve. The quantity cov jj  defined by (5.7) 

is positive if longitudinal j  and j  belong to the same household ,k  and is otherwise nil. Also, 

for all longitudinals j  and j  belonging to the same household ,k  we have, in accordance with 

the relation (2.4): 

                                                        
2 2 2

2

2
= 1 .

A A A
jjj j A

kA
jj

 



   
 


 (5.17) 

Since the latter quantity is also positive, the expression of bias given by formula (5.16) means 

that 1B  is positive. On the other hand, the probabilities of inclusion 2A
k  are very low, and 
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therefore 21 1.A
k    Using (5.16) and (5.17), we are therefore able to make the following 

approximation: 

                                    ,2 1
2 2

, ,2 1 2 1

1 1
CNR

1 1
B E cov = ,A t

p A t A t
p p

jjA As
j s j s j j

V
  

 
 

   
   (5.18) 

where, as noted above, CNRV   is defined by (5.8) and corresponds in the first wave to the portion 

of the variance due to the non-response observed between the grid and the questionnaire. 

Consequently, the estimator  1̂var ( )L T  overestimates the variance of 1̂T  and the error committed 

is of the order of magnitude of 1
CNR .V  The bias may be relatively large if the probabilities of 

response to the questionnaire are low. As regards the other waves, the quantity 

2 2 2 2( ) /A A A A
jjj j jj        that appears in (5.16) depends on the households 1k  and 1k  to which the 

longitudinals j  and j  belonged during the year of their selection, and it is no longer easy to 

obtain an order of magnitude of the bias B .  

We introduce a term correcting the bias B   and we give our variance estimation formula in 

proposition 1, below. Keeping in mind that km  designates all persons who comprise household k  

during survey year t  (cf. page 11), let km  be the set, of cardinal ,kL  consisting of the longitudinals 

j  belonging to .km  
 

Proposition 1: An unbiased estimate of the variance of T̂  is given by 

                                                              1 2
ˆ ˆ ˆvar( ) = ,T V V 
   (5.19) 

where 

2 2 2
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2
,

2

2 2
,

1 1ˆ = .
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km

b c
k k k

A b c
j j mk s k k k kjj

e q q
V

L P q q



 

  
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 


 

The demonstration of proposition 1 is provided in Appendix B. 
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Note 3: The estimator  1 2
ˆ ˆ ˆvar( ) =T V V 
   is the sum of two biased estimators whose biases are 

brought into balance by construction, with the result that  ˆvar( )T  gives an unbiased estimate of 

the variance of ˆ .T  
 

Note 4: Proposition 1 is based on the assumption that the values ke  and the response 

probabilities are known, which enables us to conclude that the estimator  ˆvar( )T  given by 

formula (5.19) is unbiased. In practice, these quantities must be estimated. The consequence of 

this is that the estimator of variance thus obtained is no longer unbiased but only asymptotically 

unbiased, provided that the non-response models can be considered correct and that their 

parameters are estimated by an appropriate method. 

 
6  Final formula 
 

The term 2V̂   that appears in proposition 1 contains a double sum, but the latter does not pose a 

problem for operational purposes. The fact is that the proposition contains very few terms, since it 

applies only to the individuals in a single household. On the other hand, the expression 

21 1 2
ˆ ˆ ˆ= ( , , )AV V Z Z    must be transformed to make it easier to calculate. We therefore begin by 

giving another expression of the term 
2 1 2( , , )AV Z Z   defined by formula (5.9). For this, we 

observe that 

                                                
12 2

, ,2 2
1 1

1 1
= = ,

A t A t
p m

j kA A
j s k sj k

T Z T
 


     (6.1) 

where 

                                                                   
1

1

= .
k

k j
j m

T Z

  (6.2) 

Keep in mind that the selection of 2 ,A t
ms   results from a design stratified by major region followed 

by a non-response stage modelled on a Poisson design on the households of wave 1 (cf. Section 2). 

Giving a simple expression of the Horvitz-Thompson estimator of variance of a total for this very 
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classical design is a problem that has already been widely studied, particularly in connection with the 

POULPE software for computing precision (cf. Caron, Deville and Sautory 1998, page 13). To 

give such an expression, we introduce the following notations. For each of the seven strata ,h  we 

let hN  denote the number of households that it contains and hn  the number of households 

selected. For any household 1 ,
1 ,A t

mk s   we have: 

                                                       
1 2

11

,
1*

if 
=

0 otherwise.

k A t
ma

kk

T
k s

qT









 (6.3) 

Also, let us assume that for any :h  

      1

1
, ,1 2

1 1 1

2

* 2 * * 2 * 2

{ } { }

1 1
( ) = ( ) = ( )

1 1 1A t A t
m m
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where 

1
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1 1 1
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1
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k s h k s hh h k
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T T
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   

According to Caron et al. (1998, page 13), the term 
2 1 2( , , )AV Z Z   can be written here [see also 

formula (11.12) of Särndal and Lundström 2005): 
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 (6.5) 

By grouping the last two terms and using that the sampling design of 1 ,A t
ms   is a stratified design, 

we obtain the following simple expression for 
2 1 2( , , ):AV Z Z   

                        1

2 11
,2

1 1 1

27
* 2 2

1 2 2
=1

1 1
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138 Massiani: Estimation of the variance of cross-sectional indicators for the SILC survey in Switzerland 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Let 
1

ˆ
kT  and *ˆhs  denote the estimators obtained by replacing the variables jZ  by ˆ

jZ  in formulas 

(6.2) and (6.4). Relation (6.6), combined with formula (4.6) and proposition 1, makes it possible 

to obtain the final formula below for the estimate of the variance of complex estimator ˆ :  

                             

1.1 1.2 2

4 4 4 4

1 2 1.1 1.2 2
=1 =1 =1 =1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆvar( ) = ,

V V V

V V V V V    
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        
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where 
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 (6.10) 

 

Note 5: The variance estimation formula (6.7) always provides positive estimates. Also, the three 

terms that comprise it can be programmed very easily. 

 
7  Numerical application and discussion 
 

We will now present a numerical application to illustrate the results developed in the previous 

sections. Up to now, we have assumed that the response probabilities occurring in the different 

phases of the survey are known, but in practice, they must be estimated. As regards non-response to 

the grid in the first wave, the estimation of the response probabilities 
1

a
kq  defined by (2.1) use 

information on non-respondent households collected via a survey of non-response. Sample 1 ,A t
ms   of 

the households contacted during the first wave in year t   is divided into homogeneous response 

groups within which estimates 
1

ˆ a
kq  of response probabilities 

1

a
kq  are calculated. The factors c

kq  

appearing in (3.4), which represent the probabilities of response between the grid and the 

questionnaire in the survey year, are also estimated within homogeneous response groups. This time 

it is households that responded to the grid in the survey year that are allocated to homogeneous 
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response groups. Let ˆ c
kq  denote the estimate of response probability c

kq  thus obtained. It is slightly 

more problematic to estimate the factors b
jq  appearing in (3.2), which represent the probabilities of 

response between the grid of the first wave and that of the survey year. The following two options 

can be considered. The first option is to create homogeneous response groups within the set of 

households that survey personnel attempted to contact in the survey year. We are then faced with the 

problem that there is very little information by which to constitute these groups. The fact is that we 

do not know the current composition of the households that survey personnel did not manage to 

recontact or who refuse to fill out the grid again. The second option is to estimate the b
jq  values 

within the homogeneous response groups defined on the basis of the longitudinals of 2 , .A t
ps   This is 

not entirely consistent with the response mechanism, but it allows us to use all the information 

collected regarding the longitudinals in previous waves. Since the first official processing of the 

survey, the choice has focused on the second option (see Graf 2008). Based on this estimation 

method, the quantities ˆ b
jq  are not all equal within a given household k  for the survey year, which 

poses a problem when it comes to applying the variance estimation formulas developed in previous 

sections. This problem can circumvented based on the following finding. Let p
kw  denote the shared 

weight obtained from (3.3) and from the estimation of response probabilities 
1

a
kq  and :b

jq  

                                                    2

=1

1 1
= ,

ˆ

kL
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k j b
jk k j

w w
L P q

 
    

   (7.1) 

where 2 1

1 1
= 1 / ( )ˆA A a

j k kw q  for any longitudinal j  belonging to household 1k  in the first wave. 

The shared weight p
kw  of household k  can be rewritten as follows: 

                               2 2

=1 =1

1 1 1 1
= =

ˆ

k kL L
A Ap

k j jb b
j jk k j k k j

w w w
L P q L P q

   
          

   


 (7.2) 

where, for all longitudinal j  in household ,k  the quantities b
jq  are equal to a common value b

kq  

defined by 



140 Massiani: Estimation of the variance of cross-sectional indicators for the SILC survey in Switzerland 
 

 
Statistics Canada, Catalogue No. 12-001-X 

                                                            

2

2

=1

=1

= .
1

ˆ

k

k

L
A
j

jb
k L

A
j b

j j

w

q

w
q

 
  
 









 (7.3) 

Consequently, whether we estimate the quantities b
jq  by ˆ b

jq  or by ,b
jq  we obtain exactly the 

same shared weight ,p
kw  and therefore the same final weight and the same estimates of poverty 

indexes. On the basis of this finding, we obtain an approximation of the precision of ̂  by 

replacing, in the variance estimation formulas, the unknown quantities 
1
, ,a b c

k k kq q q  by 

1
, , .ˆ ˆa b c

k k kq q q  The ke  values are also replaced by the ˆke  values given by (4.3). So as not to 

unnecessarily complicate the notation, we use the same notation for the variance estimators 

calculated on the basis of the unknown parameters and those calculated on the basis of estimates 

of them. If the estimators of response probabilities are convergent, the estimator  ˆvar( )  that we 

propose in formula (6.7) is asymptotically unbiased. The asymptotic nature of this property is due 

to the effect of the estimation of response probabilities as well as to the approximations made in 

the course of linearizing, taking calibration into account and obtaining formula (4.6). 

The calculations presented in this section were made on the basis of the 2009 SILC-Switzerland 

survey. SILC did not begin in Switzerland until 2007. Thus, by 2009, the survey was not yet 

complete, as it was composed of only three panels rather than four. However, this has no effect on the 

methodology described in the previous sections. In 2009, 7,372 households, or 17,561 individuals, 

agreed to participate in the survey. Table 7.1 shows the response rates obtained in the different 

stages of the survey for each of the panels.  
 
 
Table 7.1 
Response rate for different stages of the survey 
 

Response rate  Panel 07 Panel 08 Panel 09

In the grid in wave 1   0.688  0.694  0.687

Between the grid in wave 1 and the current wave  0.803  0.834  1.000

Between the grid and the household questionnaire for the current wave  0.966  0.951  0.942
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Based on the 2009 survey, the poverty rates of the different population subgroups were 

calculated, analyzed and commented on by the Swiss Federal Statistical Office (FSO 2010). Table 

7.2 shows the different measures of precision for a few of the most commonly used inequality 

indexes: at-risk-of-poverty index, quintile share ratio, Gini coefficient and relative median at-risk-of-

poverty gap (RMPG). For each indicator ̂  considered, Table 7.2 contains the following measures: 

 1.1
1.1 1.1 1

SD SDˆ ˆSD = var( ) ,   CV = ,   SD = ,   = 1,
ˆ SD

V  


 

where the variances  ˆvar( )  and 1.1V̂  are given by formula (6.7). Let  ˆvar ( )L   denote the variance 

estimator obtained by the method of Lavallée (2002): 

                                                            
3

=1

ˆ ˆvar ( ) = var ( ),L L T


   (7.4) 

where  ˆvar ( )L T  is defined by equation (5.11). The measures, 


2

SD SDˆSD = var ( ) , CV = , = 1,
ˆ SD

L L
LL L  


 

are also shown in Table 7.2. 
 
 
Table 7.2 
Precisions estimated on the basis of 2009 data for different indicators 
 

Indicator  ̂     SD     CV 1.1SD  1  SDL  CVL  2  

At-risk-of-poverty rate             

Total population   14.6%  0.581  4.0%  0.580 -0.61%  0.632   4.3%   8.9% 

0-17 years  18.3%  1.310 7.2% 1.310 -0.60% 1.426   7.9%   8.8% 

18-24 years   11.9%   1.302  10.9%  1.301 -0.61%  1.388   11.6%   6.6% 

25-49 years  10.7%   0.585  5.5% 0.585 -0.62%  0.645   6.1%  10.2% 

50-64 years  9.9%   0.752  7.6%  0.752 -0.63%  0.828   8.4%   10.1% 

65 years and over  26.4%  1.291  4.8% 1.291 -0.62% 1.442  5.4%  11.6% 

Quintile share ratio   4.4  0.109 2.4% 0.109 -0.55% 0.118  2.7%  8.9% 

Gini coefficient ***a  *** 1.7% *** -0.56%  ***  1.8%   8.0% 

RMPG  ***a  *** 5.8%  *** -0.60%  ***  6.4%  9.7% 
a We do not report the value of these indicators, since they have not yet been published by the Swiss Federal Statistical Office. 
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Table 7.2 lends itself to comparisons between the different measures of precision, leading to the 

following observations. First, for the indicators considered, almost the entire estimate of the standard 

deviation SD of indicator ̂  is contained in the term 1.1SD .  The relative difference 1  between SD 

and 1.1SD  varies between -0.55% for the quintile share ratio and -0.63% for the at-risk-of-poverty 

rate for persons aged 50 to 64. Thus, by calculating only the dominant term 1.1SD ,  we generally 

obtain an excellent approximation of the estimate of the standard deviation of ˆ .  This term is 

extremely simple to program. On the other hand, the method of estimating the variance of ̂  proposed 

by Lavallée (2002) − which, as formula (5.14) shows, is not unbiased even when the response 

probabilities are known − leads here to slightly higher estimates of precision than with the estimation 

method that we propose. The relative difference 2  between SD and SDL  ranges between 6.6% for 

the at-risk-of-poverty rate for persons aged 18-24 and 11.6% for the rate for those aged 65 and over. 

From formulas (5.7) and (5.16), it emerges that the estimator SDL  is asymptotically unbiased and 

equal to SD when the probabilities of responding to the grid and the household questionnaire b
kq  and 

c
kq  in the survey year are equal to 1. While the rates of response to the grid and the household 

questionnaire in the survey year are fairly high (cf. Table 7.1), the differences between SD and SDL  

are non-negligible. 

 
Conclusion 
 

We have proposed a variance estimator for poverty and social exclusion indicators, one that takes 

account of the non-linearity of the estimators, total non-response in different stages of the survey, 

indirect sampling and calibration. Ideally, the effects of imputations should also be taken into 

account. However, it should be noted that our approach is compatible with the requirements of 

Eurostat (2010), to whom many European countries provide only an approximation of the variance 

due to sampling and total non-response, along with minimal indications on imputations such as the 

percentage of imputed values. We have modified the method proposed by Lavallée (2002) for 
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estimating variance in the presence of non-response after weight sharing in order to correct the bias 

that this method induces. Our estimator is always positive in the case of the SILC-Switzerland 

survey, and it consists of three terms that are quite simple to program. Also, in calculating only the 

first of these three terms, we obtain an excellent approximation of variance. 
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Appendix A 
 

Linearization formulas 
 

What follows is a review of the linearization formulas of Osier (2009) in the case of the four 

poverty indicators examined in Section 7. Let   be the population of individuals present in the 

survey year. In accordance with the notations used in Section 5, 1J  denotes the size of ,  since   

corresponds to the target population of the panel responding in wave 1. However, to simplify the 

notations in this appendix, the size of   is simply denoted by .J  Let jR  denote the equivalent 

income of individual j    used to calculate the poverty indicators, and the following notation is 

used for any :x    

                                                           { }

1
( ) = ,

jR x
j

F x
J 


 1


 (A.1) 
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where { }jR x1  is an indicator variable that equals 1 if the income jR  of individual j  is less than 

or equal to ,x  and 0 otherwise. Linearization formulas for the poverty indicators are first 

obtained by assuming that F  is derivable and that F   is non-nil. Since this is not the case, we get 

around this problem by approaching F  by the function KF  defined, for any ,x    as: 

                                                        ( ) = ( ) ( , ) ,KF x F z K x z dz  (A.2) 

where 

                                              
2

2

1 ( )
( , ) = exp ,

2 2

x z
K x z

h h

 
    

 (A.3) 

with the parameter h  being a smoothing parameter. 
 

1. At-risk-of-poverty rate 

The at-risk-of-poverty threshold, ARPT, is calculated on the basis of the median 

income MED  of the population :  

                                                                   ARPT = 0.6 MED.  (A.4) 

The at-risk-of-poverty rate, ARPR,  is defined as follows: 

                                                                { ARPT}

1
ARPR = .

jR
jJ 

 1


 (A.5) 

The linearized j  that appears in the approximation of the variance of the 

at-risk-of-poverty rate estimator, given in formula (4.1), is written as follows for each 

individual :j  

                          { ARPT} { MED}

1 0.6 (ARPT)
= ARPR [ 0.5].

(MED)j j

K
j R R

K

F

J J F 


       

1 1  (A.6) 

In Section 7, the poverty rate was also estimated within different sub-populations. 

Formula (A.6) is easily generalized in the case of sub-populations and is not reviewed 

here. 

2. Quintile share ratio 

Let   be the quantile of order 0.8 and let   be the quantile of order 0.2, and then let: 

                                                         { }=  and ( ) = .
jj j R x

j j

R R S x R 
 
  1
 

 (A.7) 
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The quintile share ratio, denoted QSR,  is defined as follows: 

                                                                   
( )

QSR = .
( )

R S

S




 


 (A.8) 

Similar to what was done for the function ,F  we approach the function S  by the 

derivable function KS  defined as: 

                                                                 ( ) = ( ) ( , ) .KS x S z K x z dz  (A.9) 

The linearized j  that appears in the approximation of the variance of the quintile share 

ratio estimator, which was given in formula (4.1), is written as follows for each 

individual :j  

                                           
2

( ) ( ) ( ) ( )
= ,

( )

j j j

j

S R Q R S Q

S

   



          
  

  (A.10) 

where the quantity ( )jQ   is defined, for any quantile   of order ,  as follows: 

                                                    { } { }

( )
( ) = [ ].

( )j j

K
j j R R

K

S
Q R

JF 

 
   


1 1  (A.11) 

3. Gini coefficient 

The Gini coefficient, denoted G,  is defined as: 

                                                                      
2

G = 1,
M R

JR


  (A.12) 

where 

                                                                  { }=
j R j

j R
j j

M R


 
  1
 

 (A.13) 

and R  is defined by (A.7). The linearized j  appearing in the approximation of the 

variance of the Gini coefficient estimator, given in formula (4.1), is written as follows 

for each individual :j  

                                                   2

(2 ) (2 )( )
= ,

( )
j j j

j

JR U R M R R JR

JR

   
  (A.14) 

where the quantity jU  is defined by 

                                                        { } { }= .
j jj jj R R j R Rj

j j

U R R
   

  

 1 1
 

 (A.15) 
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4. Relative median at-risk-of-poverty gap 

Relative median at-risk-of-poverty gap, denoted by RMPG,  is defined by: 

                                                                  
ARPT MED

RMPG = ,
ARPT

p
 (A.16) 

where as previously noted, ARPT designates the poverty threshold and where MED p  is 

the median income calculated for individuals with an income below the poverty 

threshold. The linearized j  appearing in the approximation of the variance of the 

RMPG estimator, given in formula (4.1), is written as follows for each individual :j  

                                                              
2

ARPT MED
= ,

(ARPT)

p
j j

j

Y W  
  (A.17) 

where jW  is defined by 

                                                           { MED}

0.6 1
= [ 0.5]

(MED) jj R
K

W
F J  


1  (A.18) 

and jY  verifies the equation 

                          
{ ARPT}

{ MED }

1 1
(MED ) = (ARPT) (ARPT)

2

1
(MED ) .

1

1

j

p
j

p
K j R K j

p

R

F Y F F W
J

F
J





        

    

 (A.19) 

 
Appendix B 
 

Demonstration of proposition 1 
 

The proof has four parts.  
 

1. Definition of cov jj  

For all longitudinals j  and j  within 2 ,A t
ps   and belonging to households k  and k   

respectively during the survey year, let 

                                      
,

2
2 2 { }

0 if 

cov = 1 1
( ) if = ,

( ) ( )
B
m

b c
jj k k

k b c k s
k k k k

k k

q q
e k k

L P q q









   
1

 (B.1) 

with the result that 
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                                                                  2 ,E cov | = cov .A t
jj p jjs  

 
   (B.2) 

2. Estimation of 
2AV   

If the jZ  values were known for 2 , ,A t
ps   we could estimate 

2AV   without bias by 

2 1 2( , , ).AV Z Z   Since this is not the case, we estimate 
2AV   without bias by: 

                  
2 2 2

2 2 2 2
, ,2 2

1ˆ ˆ ˆ= cov .
A t A t
p p

A A A
jjj j

jjA j jA A A
j s j s j j jj

V Z Z
 

 


   

           

Indeed, for all longitudinals j  and j  belonging to 2 , ,A t
ps   we have: 

                  2 ,ˆ ˆE cov | = ,A t
jjj p jj jZ Z s Z Z 

    

which implies that 

                     2
, ,2 22 2 2 2

,
1 2

ˆ ˆE( ) = E E | = E ( , , ) = .A t A t
p p

A t
A A p A As s

V V s V Z Z V
 

        
   

3. Estimation of CNRV   

We can estimate CNRV   by: 

                     
2 2

, ,2 2

CNR

1 1ˆ = cov .
A t A t
p p

jjA A
j s j s j j

V
 




       

4. Final formula 

We estimate ˆvar( )T  by: 

                   
2 CNR

ˆ ˆ ˆvar( ) = .AT V V 
   

After a few simplifications, we have: 

                                                 
2 2

, ,2 2

1 2

1ˆ ˆ ˆvar( ) = ( , , ) cov .
A t A t
p p

jjA A
j s j s jj

T V Z Z
 




  


    (B.3) 

Using (B.1), we can simplify the second term of the right member, so as to obtain 

formula (5.19) given in proposition 1. 
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Combining cohorts in longitudinal surveys 

Iván A. Carrillo and Alan F. Karr1 

Abstract 

A question that commonly arises in longitudinal surveys is the issue of how to combine differing 

cohorts of the survey. In this paper we present a novel method for combining different cohorts, and 

using all available data, in a longitudinal survey to estimate parameters of a semiparametric model, 

which relates the response variable to a set of covariates. The procedure builds upon the Weighted 

Generalized Estimation Equation method for handling missing waves in longitudinal studies. Our 

method is set up under a joint-randomization framework for estimation of model parameters, which 

takes into account the superpopulation model as well as the survey design randomization. We also 

propose a design-based, and a joint-randomization, variance estimation method. To illustrate the 

methodology we apply it to the Survey of Doctorate Recipients, conducted by the U.S. National 

Science Foundation. 
 

Key Words: Superpopulation parameters; Joint-randomization inference; Replication variance 
estimation; Rotating panel surveys; Multi-cohort longitudinal surveys; Weighted 
Generalized Estimating Equations. 

 
 

1  Introduction 
 

The Survey of Doctorate Recipients (SDR) is a National Science Foundation (NSF) 

longitudinal survey whose design incorporates features of both repeated panels and rotating 

panels. The purpose of the survey is to study U.S. doctorate recipients in science, engineering, 

and health fields. It is conducted approximately every two years. A detailed description of the 

SDR can be found at NSF (2012). In this paper we restrict our attention to the data collected from 

1995 through 2008 (7 waves). 

At any particular wave a new cohort is selected. The new cohort consists of a sample of recent 

graduates (from the previous two years) selected from the Doctorate Records File, which is a 

database constructed mainly from the Survey of Earned Doctorates (http://www.nsf.gov/ 

statistics/srvydoctorates/). The selected individuals are kept in the sample, i.e., interviewed every 

two years, until the age of 75, while living in the U.S. during the survey reference week, and 
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while not institutionalized. However, not all the sampled graduates satisfying these characteristics 

are retained forever. Some individuals, rather than entire cohorts, are dropped from the sample in 

order to a) include the new graduates in the new cohorts and b) maintain a relatively constant 

sample size across waves. In Section 2.2 we describe how the selection of the individuals who are 

dropped is made. 

Survey weights for cross-sectional analyses of the SDR are already available, but not for 

longitudinal analyses. Rather than requiring a new longitudinal weight for all the data, the 

method proposed in this paper is able to use the existing cross-sectional weights for longitudinal 

analyses without ignoring any data. We concentrate on estimation of parameters of statistical 

models of the effect of covariates on a response of interest, but the method can also be used for 

estimation of finite population quantities (Carrillo and Karr 2012). We focus on analysis of the 

SDR, but our method is applicable to any fixed-panel, fixed-panel-plus-‘births’, repeated-panel, 

rotating-panel, split-panel, or refreshment sample survey, as long as for each wave there is a 

cross-sectional weight to represent the population of interest at that wave. See Smith, Lynn and 

Elliot (2009), Hirano, Imbens, Ridder and Rubin (2001), and Nevo (2003) for definitions of all 

these types of longitudinal sample designs. 

The SDR is a hybrid of repeated-panel and rotating panel designs. It is not purely a 

repeated-panel design because of the removal of some subjects at each wave. It is not purely a 

rotating-panel design because entire panels (or cohorts) are not removed, only individuals; 

additionally, the composition of the finite population of interest changes over time, unlike in a 

rotating panel survey. 

Diggle, Heagerty, Liang and Zeger (2002) and Hedeker and Gibbons (2006) point out that, 

with longitudinal studies, contrary to a cross-sectional study, it is possible to separate age effect 

(actual change within subjects over time) and cohort effect (difference between units at the 

beginning of the study period). 
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Hedeker and Gibbons (2006) also suggest that since longitudinal studies allow for the 

measurement of time-varying explanatory variables (covariates), the statistical inferences about 

dynamic relationship between the outcome on interest (response) and these covariates are much 

stronger than those based on cross-sectional studies. 

When we are interested in the marginal mean of a variable, possibly conditionally on some 

covariates, and not in measuring change, a longitudinal study is not necessary; a cross-sectional 

study suffices. However, even in this case, a longitudinal study tends to be more powerful, 

because each subject serves as his or her own control for any unmeasured characteristics (Diggle, 

et al. 2002). 

Our approach differs from the existing alternatives in the literature, which have some 

limitations for analysis of such data, and in particular for application to the SDR. For example, 

Berger (2004a) and Berger (2004b) go into detail about the estimation of change using rotating 

samples, but they assume that the composition of the finite population does not change over time, 

which is not the case of the SDR. This assumption does not hold in many other large-scale 

surveys. Also, the methodology proposed by Berger is not easily generalizable to more than two 

waves. Similarly, Qualité and Tillé (2008) also assume the finite population is fixed over time. 

Hirano, et al. (2001) and Nevo (2003) present different methods of estimation assuming a 

fixed-panel plus refreshment for attrition design, but also assume the finite population 

composition is fixed over time. 

A time series approach is utilized by McLaren and Steel (2000) and Steel and McLaren (2007) 

to estimate change and trend with survey data. Although their approach allows for the 

incorporation of within-subject association in the point estimates, they do not consider covariates 

in their models (beyond the implicit time covariates). Also, they only discuss the estimation of 

change for continuous variables. 

Another alternative for analyzing longitudinal data is to fix the finite population of interest, 

except perhaps for deaths, which could be allowed. Studies of this kind are those where there are 
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data available only for a single cohort. For example, Vieira and Skinner (2008), Carrillo, Chen 

and Wu (2010), and Carrillo, Chen and Wu (2011) show some alternatives for modeling with 

single-cohort survey data. However, to use these kinds of analyses with multi-cohort surveys, one 

needs to ignore some (or many) available data, for example those data from subjects who are not 

common to all waves. An example of a weighting procedure of this type can be found in Ardilly 

and Lavallée (2007). 

Finally, the approach of Larsen, Qing, Zhou and Foulkes (2011) is appealing, in principle, 

because it is the way survey practitioners generally proceed. An initial weight is adjusted, among 

other things for calibration to known totals, in this case totals by survey wave. Nonetheless, for 

rotating panels this method is still in its infancy; there are some things that are not completely 

clear how to carry out. For example, it is not clear what the initial weight should be: a constant 

weight?, the earliest available weight?, the average of the available weights for each case?, or the 

latest available weight?  Also, in the case of dropouts, as there exist in the SDR, the authors do 

not clarify how to carry out a nonresponse adjustment with this method. Even more, it is not clear 

why a nonresponse adjustment for dropouts at, say, wave 4 should have any influence on the 

observations at wave 3, as this methodology permits since there is a single weight for each 

subject. Additionally, the authors mention that they estimated standard errors, but they do not 

indicate how to take into account all the features of the sampling design, such as changes over 

time in the stratification and weighting adjustment classes of the SDR. Our method, on the other 

hand, utilizes only cross-sectional weights and variance estimation methods, which have been 

studied thoroughly in the literature and are readily available for the SDR. 

The rest of the paper is organized as follows. In the next section we give a description of the 

SDR design. After that, in Section 3, we propose a novel approach for longitudinal analysis of 

marginal mean models with multi-cohort surveys. Then we present the application of the 

methodology to the SDR. Finally we offer a few discussion points in Section 5. 
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2  The SDR design 
 

2.1  Finite population 
 

The SDR finite population of interest can be represented as in Table 2.1. At wave 1, i.e., the 

first time of interest, there is a finite set, 1(1) 1= ,U U  of 1(1) 1=N N  Ph.D. holders, either recent 

or not, who satisfy the requirements of the SDR. 
 
 

Table 2.1 
SDR finite population 
 

:j 1 2 3  1J  J

1(1)U  2(1)U  3(1)U    1(1)JU   (1)JU

1(1)N  2(1)N  3(1)N    1(1)JN   (1)JN

2(2)U  3(2)U    1(2)JU   (2)JU

2(2)N  3(2)N    1(2)JN   (2)JN

  
1( 1)J JU    ( 1)J JU 

1( 1)J JN    ( 1)J JN 

( )J JU

( )J JN

1U 2U 3U  1JU  JU

1N 2N 3N  1JN  JN

 
 

At wave 2 only a subset of the subjects in 1(1)U  still satisfy the SDR requirements; we call this 

subset, of 2(1)N  subjects, 2(1) .U  In addition, there is a set of new, recent Ph.D. recipients, who 

have obtained their degree since wave 1, and also satisfy the other requirements of the survey. 

This set of new graduates in scope is called 2(2)U  and is of size 2(2) .N  Therefore, at wave 2, there 

is a total of 2 2(1) 2(2)=N N N  subjects in the population of interest 2 2(1) 2(2)= .U U U  

At the next wave, wave 3, the same process occurs. Some people in 2(1)U  leave the population 

of interest and there are only 3(1)N  left in 3(1) .U  The same thing happens with the set 2(2) ;U  only 

a subset 3(2)U  of 3(2)N  among them still satisfy the requirements of the SDR. Additionally, there 

are 3(3)N  recent graduates entering the population of interest; this set is called 3(3) .U  In total, the 

finite population of interest at wave 3 is 3 3(1) 3(2) 3(3)= ,U U U U   with 3 3(1)=N N   

3(2) 3(3)N N  subjects. 
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This procedure, of thinning of old cohorts and adding new cohorts, continues until the last 

wave of interest, wave .J  We notice that the finite population of interest changes at every wave 

due to two main reasons. Firstly, some of the subjects in the old cohorts are no longer in scope at 

the current wave, and they are not part of the current target population. Secondly, the recent 

graduates are added to the target population in the current wave. We denote by = 1, 2, ,j J  

the wave of interest (outside the parenthesis) and by = 1, 2, ,j J   the cohort to which a 

subject belongs (inside the parenthesis), and therefore wave(cohort )( ) = .j jU U  

 
2.2  Sampling 
 

The sampling design of the SDR has a similar structure to the finite population and is depicted 

in Table 2.2. At wave 1, a (complex) sample 1(1) 1=s s  of 1(1) 1=n n  subjects is selected from 

within the 1N  elements in 1.U  Each element i  in 1s  is interviewed and its data collected; also, 

there is a design weight 1 1= 1 /i iw   associated with it, which is the inverse of its inclusion 

probability at wave 1. 
 
 
Table 2.2 
SDR Sample 
 

:j  1  2  3     1J    J  

 1(1)s    2(1)s    3(1)s        1(1)Js     (1)Js  

 1(1)n    2(1)n    3(1)n        1(1)Jn      (1)Jn  

   2(2)s    3(2)s        1(2)Js     (2)Js  

   2(2)n    3(2)n        1(2)Jn     (2)Jn  

     3(3)s        1(3)Js     (3)Js  

     3(3)n         1(3)Jn     (3)Jn  

            
         1( 1)J Js      ( 1)J Js   

         1( 1)J Jn      ( 1)J Jn   

           ( )J Js  

           ( )J Jn  

 1s   2s   3s      1Js    Js  

 1n   2n   3n      1Jn    Jn  
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At the second wave, the elements in 1(1)s  who are not in scope anymore are simply dropped 

from the frame (though their observations at wave 1 are kept), and a subsample 2(1) ,s  of size 

2(1) ,n  of those still in scope is selected. Not all the members in 1(1)s  who are still in scope at wave 

2 are retained in the sample; this is in order to be able to make up room for the sample of the new 

Ph.D. recipients and still maintain more or less the same sample size as in wave 1. A sample 2(2)s  

of size 2(2)n  is selected from 2(2) ;U  people in 2(2)s  form the second cohort. The total sample at 

wave 2 is 2 2(1) 2(2)= ,s s s  which is of size 2 2(1) 2(2)= ,n n n  which is approximately equal to 

1.n  All the people in 2s  are interviewed at wave 2. The design weights at wave 2, 2 2= 1 / ,i iw   

are such that the sample 2s  represents the population of interest at wave 2, namely 2 .U  

The same procedure is repeated at each wave, till the last one ( ),J  where a subsample of the 

remaining subjects from each of the previous 1J   cohorts is selected, and a new sample (the 

new cohort) ( )J Js  of recent graduates is selected from ( ) .J JU  At the last wave, all people in 

( )=1
=

J

J J jj
s s   are interviewed and a design weight = 1 /iJ iJw   is created for each person 

interviewed, so that Js  represents the finite population .JU  

With respect to how the selection of the individuals that are dropped is made, for example in 

2008, according to NSF (2012), the subsample 08 08(08)\s s  was selected by stratifying 06s  “into 

150 strata based on three variables: demographic group, degree field, and sex.” They go on to 

explain that: 
 

 the past practice of selecting the sample with probability proportional to size continued, 

where the measure of size was the base weight associated with the previous survey 

cycle. For each stratum, the sampling algorithm started by identifying and removing 

self-representing cases through an iterative procedure. Next, the non-self-representing 

cases within each stratum were sorted by citizenship, disability status, degree field, and 

year of doctoral degree award. Finally, the balance of the sample (i.e., the total 

allocation minus the number of self-representing cases) was selected from each stratum 

systematically with probability proportional to size.  
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It is worth mentioning that up to 1989 the cohort (or more specifically the graduation year) was 

part of the stratifying variables (and weight-adjustment cells), but beginning in 1991 it has not 

been; it was replaced by the disability status. For more details about the subsampling procedure, 

including the description of the sample allocation, see NSF (2012) or Cox, Grigorian, Wang and 

Harter (2010). 

From the preceding description, it is clear that the design of the SDR is not a rotating panel 

design. Beside the fact that the composition of the finite population of interest is changing over 

time, a rotating panel design would select, at time ,j  a new cohort from ,jU  and not from 

1\j jU U   as the SDR does. 

Another peculiarity of the SDR is that, at each wave ,j  a frame of the recent graduates ( )j jU  

exists, from which the new cohort ( )j js  can be selected straightforwardly. However, in other 

applications, the cost of building such a frame, i.e., a frame of new members, may be excessive 

(particularly as it cumulates over waves), and the new cohort may need to be selected from jU  

(as opposed to from ( ) ).j jU  The method proposed in this paper can also be applied in such cases, 

as long as for the total sample at wave , ,jj s  a cross-sectional weight can be created to represent 

.jU  We further discuss this topic in Section 3.2. 

Notice that in the notation ( ) ,j js   the quantity j  represents the wave to which the sample 

refers, and j  denotes the sample’s cohort, i.e., the wave at which the sample was first selected. 

The notation for the weights is ,ijw  where the first subscript identifies the subject, and the second 

refers to the wave of interest, regardless of when the subject was first selected. 

 
3  Methodology 
 

3.1  Motivation 
 

Assume that (in a non-survey context) interest lies in the 1p   vector parameter   in the 

following model:  
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1[ | ] = = ( ), = 1, 2, , , = 1, 2,

Var[ | ] = ( ), = 1, 2, , , = 1, 2,
:

Cov[ | ] = , = 1, 2,

| , , = 1, 2, ;

ij ij ij ij

ij ij ij

i i i

k l k l

E Y X g X j J i

Y X j J i

Y X i

Y Y X X k l

  


  


  

 
 






 (3.1) 

where ijY  is the response variable for subject i  at wave , ijj X  is a 1p   vector of covariates, 

1 2= ( , , , ) ,i i i iJY Y Y Y  1 2= ( , , , )i i i iJX X X X  is a p J  matrix; ( )g   is a monotonic 

one-to-one differentiable “link function”; ( )   is the “variance function” with known form; and 

> 0  is the “dispersion parameter.” Since, in general, the J J  covariance matrix i  is hard 

to specify, we model it as 1/2 1/2Cov[ | ] = = ( ) ,i i i i iY X V A AR  a “working” covariance matrix; 

where 1 2= diag[ ( ), ( ), , ( )]i i i iJA        and ( )R  is a “working” correlation matrix, 

both of dimension ,J J  and   is a vector that fully characterizes ( )R  (see Liang and Zeger 

1986). 

To estimate   we select a (single-cohort) sample of n  elements from model   and we (intend 

to) measure each of them at J  occasions. If all the elements in the sample respond at every single 

occasion ,j  the task can be completed with the usual generalized estimating equation (GEE) 

methodology of Liang and Zeger (1986). However, in any study it is rarely the case that all 

subjects do respond at all waves. It is more common to have some elements in the sample who 

drop out of the study. 

Under this situation, and assuming that the missing responses can be regarded as missing at 

random or MAR (see Rubin 1976), in particular that the dropout at a given wave does not depend 

on the current (unobserved) value, Robins, Rotnitzky and Zhao (1995) proposed to estimate   by 

solving the estimating equations: 1

=1
ˆ( / ) ( ) = ,

n

i i i i ii
V     0  y  where 1 2= ( , , ,i i i    

) ,iJ
 1 1 1

1 1 2 2
ˆ = diag[ , , , ],ˆ ˆ ˆi i i i i iJ iJ ijR q R q R q R     is the response indicator for subject i  at wave 

,j  and ˆ ijq  is an estimate of the probability that subject i  is observed through wave .j  

For survey applications, one would use the estimating equation 1 ˆ[ ( / )i i i ii s
w V 


      

( )] = ,i i 0y   where iw  is the survey weight for subject .i  Another way of writing this 



158 Carrillo and Karr: Combining cohorts in longitudinal surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

equation is 1 ˆ( / ) ( ) = ,i i wi i ii s
V 


    0y    with 1 1

1 1 2 2
ˆ = diag[ , , ,ˆ ˆwi i i i i i iw R q w R q  

1 ].ˆi iJ iJw R q   

We notice that the diagonal elements of ˆ
wi  are simply wave-specific nonresponse-adjusted 

survey weights whenever the subject is observed, and are equal to zero whenever the subject is 

missing. This feature in and of itself suggests a solution to the multi-cohort problem, which will 

be presented in the next section. 

 
3.2  A novel approach to combining cohorts in longitudinal surveys 
 

Based on the discussion in the previous section, if we have a fixed-panel, fixed-panel-plus-

‘births’, repeated-panel, rotating-panel, split-panel, or refreshment sample survey, we propose to 

estimate the superpopulation parameter   in model   by the solution to the estimating equations:  

                                              1( ) = ( ) = ;i
s i i i i

i s

V W




 

 0y


 


 (3.2) 

where the sum is over the sample ,s  i.e., over all the elements selected (for the first time) in any 

of the samples 1(1) 2(2) ( ), , , .J Js s s  The diagonal matrix iW  is 1 1 2 2= diag[ ( ) , ( ) , ,i i i i iW I U w I U w   

( ) ],i J iJI U w  with ijw  being the (nonresponse-adjusted) cross-sectional weight for subject i  at 

wave j  (as long as subject i  is part of sample )js  and ( )i jI U  is the indicator of whether 

subject i  belongs to finite population jU  or not. In Section 3.2.1 we argue why this is a 

reasonable estimation procedure, and in Section 3.2.2 we discuss the missing value issue. 

The cross-sectional weights ,ijw  in ,iW  are such that the sample js  represents ,jU  when 

used in conjunction with said weights. This means that, for each observation i  in sample ,js  

there has to be a survey weight ,ijw  which could be regarded as the number of units that such 

observation represents in .jU  However, remember that the sample js  is composed of different 

sets of subjects, or different subsamples (the different cohorts), and the integration of these 

subsamples into a single cross-sectional weight variable ijw  may not be a straightforward task. 
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For the SDR, the construction of the cross-sectional weight for wave j  is not too complicated 

as the different cohorts are selected independently, from non-overlapping populations. The base 

weight in that case is easy to compute, and all that remains is the adjustment for things like 

attrition and calibration to known totals in the population .jU  

On the other hand, in other situations, for example, when a frame of new members does not 

exist, the new cohort may need to be selected from the overall population at the given wave, or 

from a frame containing new members plus some old members, or from multiple frames. In such 

cases, the building of the cross-sectional weights may not be as straightforward, and the theory of 

multiple frames may need to be used. We refer the reader to the works of Lohr (2007) and Rao 

and Wu (2010), and references therein, for cases like that. 

Expression (3.2) is a generalization of equation (2.25) in Vieira (2009). The latter is applicable 

only when all the subjects have the same number of observations or any missing responses can be 

regarded as missing completely at random or MCAR (see Rubin 1976). As discussed in Robins, 

et al. (1995), using such an equation when the missing responses are not MCAR produces 

inconsistent estimators; therefore, with a rotation scheme like that of the SDR, where not all 

subjects are dropped (or kept) with the same probabilities, its usage would not be appropriate. 

The adequacy of equation (3.2) in that case and when there are missing responses is addressed in 

sections 3.2.1 and 3.2.2, respectively. If all subjects have cross-sectional weights that do not vary 

over time (or have a single longitudinal weight) equation (3.2) reduces to equation (2.25) in 

Vieira (2009). 

 
3.2.1  Unbiasedness 
 

The unbiasedness property of the estimating function is important because, as Song (2007, 

Section 5.4) argues, it is the most crucial assumption in order to obtain a consistent estimator. 

Let us define ,N  the so-called “census estimator,” to be the solution to the following finite 

population estimating equation:  
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                                     1( ) = I (U)( ( )) = ,i
U N i i i i N

i U N

V 




 

 0y


  


 (3.3) 

where the sum is over ,U  i.e., over all the elements who became members of the target 

population in any of 1(1) 2(2) ( ), , , ,J JU U U  and 1 2I (U) = diag[ ( ), ( ), ( )].i i i i JI U I U I U  In 

order to show design-unbiasedness of the estimating function ( ),s   we need to show that its 

design expectation is ( )U   for any .  

The sampling design characteristics of a longitudinal survey can be thought of as those of a 

multiphase sample, as can be seen in Särndal, Swensson and Wretman (1992, Section 9.9). We 

therefore use the methodology of multiphase sampling for the derivations. We assume, without 

loss of generality, that there are only three waves; the derivations with just three waves show the 

patterns for general ,J  with respect to unbiasedness and variance. 

As we mentioned earlier, we assume that ijw  is the cross-sectional weight for subject i  at 

wave ,j  if that subject belongs to ,js  and zero otherwise. From the theory of multiphase 

sampling we have that for 1 1 1
1(1) 1 1 2 1 2| 1(1)

, = , = ,i i i i i si s w w       and 1 1 1
3 1 2| 3|1(1) 2(1)

= ;i i i s i sw       

for 1
2(2) 2 2, =i ii s w    and 1 1

3 2 3| 2(2)
= ;i i i sw     and for 1

3(3) 3 3, = ;i ii s w    where ij  is the 

inclusion probability of subject i  in sample ( )j js  and | 1( )ij s j j
  is the conditional inclusion 

probability of subject i  in sample ( )j js   given 1( ) .j js   

Using ( )pE   to denote the expectation with respect to the sampling design, we have:  

                                 
3

1

=1 ( )

( ) = ;i
p i i i i p i i i

i s j i s j j

E V W E B W

 

  
       

  y e





 (3.4) 

where 1= ( / )i i iB V     and = .i i ie y   For example, for 
2(2)

i i ii s
B W

 e  we obtain:  

                  

*
2(2)

2(2) 2(2) 2(2)

def
**

2(2) 2(2)

= | =

= = I (U) ,

p i i i i i i i i i
i s i U i U

i i i i i i
i U i U

E B W E E B D s E B D

B D B

  

 

      
           

  

 

e e e

e e

 (3.5) 
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where 2 2 2(2) 3 3 3(2) 2(2)= diag[0, ( ) ( ), ( ) ( ) ( )],i i i i i i i iD I U w I s I U w I s I s  *
2 2 2(2)= diag[0, ( ( ) ( )),i i i iD I U w I s  

3 3| 2(2) 2 3|2(2) 2(2)
( ( ) ( )) / ( )],i i s i i i sI U I s    and **

2 2 2= diag[0, ( ( ) ) / ,i i i iD I U    3 2 2( ( ) ) / ];i i iI U    

similarly we can show that 
1(1) 1(1)

= I (U)p i i i i i ii s i U
E B W B

 
 
 
 e e  and 

3(3)
=p i i ii s

E B W


 
 
 e  

3(3)
I (U) .i i ii U

B
 e  From these expressions and equation (3.4) we conclude that [ ( )] =p sE    

( )U   for any ,  which means that the estimating function ( )s   is design-unbiased for the 

finite population estimating function. 

Furthermore, as the target of inference is the superpopulation parameter, we need to guarantee 

that the model for ij  is such that ( ) = 0ij ijE Y    is satisfied, where ( )E   represents the 

expectation with respect to model .  For if this is the case, we have:   

def
1[ ( )] = [ ( )] = [ ( )] = I (U) ( ) = ;i

p s p s U i i i i
i U

E E E E V E
   




   

 0


   


y  

so that the estimating function ( )s   is model-design unbiased. The requirement 

( ) = 0ij ijE Y    means that the mean model needs to be correctly specified; consequently, one 

needs to pay attention to residual diagnostics for the particular model being fitted. 

 
3.2.2  A note on nonresponse 
 

In the SDR, as in any other (longitudinal) survey, there is nonresponse. Some sampled 

individuals choose not to participate at all, whereas some subjects participate in some waves but 

not in others. The SDR remedies this situation by making a nonresponse adjustment to the 

cross-sectional survey weights. 

Assume that the nonresponse adjustment at wave j  is a multiplication by the inverse of the 

estimated wave j  response probability .ˆ rij  For example, the nonresponse-adjusted weight for a 

person who did respond at wave 3 (and was first selected at wave 2), i.e., for 3(2) ,i r  would be 

1 1 1
3 2 3| 32(2)

= .ˆri i i s riw       

We need to redefine the estimating equation, to include only the respondents, as 

1( ) = ( / ) ( ) = ,r i i ri i ii r
V W


    0y     where the sum is over the respondent set ,r  i.e., 
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over all the elements who belonged for the first time in any of the respondent sets 

1(1) 2(2) ( ), , , ,J Jr r r  and the matrix riW  is 1 1 2 2= diag[ ( ) , ( ) , , ( ) ].ri i ri i ri i J riJW I U w I U w I U w  

Also, denote by ( )j jr   the set of cohort j  respondents at wave .j  Obviously, = 0rijw  if 

( )=1
= .

j

j j jj
i r r 
   

If additionally, the response mechanism ( )R  can be assumed to be MAR, we then have, for 

example for 
2(2)

:i ri ii r
B W

 e  

     
def

* **

2(2) 2(2) 2(2) 2(2) 2(2)

= = = = ,R i ri i R i i i i i i i i i i i i
i r i s i s i s i s

E B W E B D B D B D B W
    

   
   
   
    e e e e e  (3.6) 

where 2 2 2(2) 3 3 3(2)= diag[0, ( ) ( ), ( ) ( )],i i ri i i ri iD I U w I r I U w I r  *
2 2 2 = diag[0, ( ( ) ) / (i i ri iD I U     

2 3 3 2 3| 32(2)
), ( ( ) ) / ( )],ˆ ˆri i ri i i s riI U      and **

2 2 3 3= diag[0, ( ) , ( ) ].i i i i iD I U w I U w  The third 

equality in (3.6) requires that the nonresponse model used for ˆ rij  satisfies 
def

( )[ ( )] = = .ˆR i rij rijj jE I r     This means that in the model for ˆ rij  we have to include as much 

available information, thought to influence the nonresponse propensity, as possible, in order for 

this assumption (i.e., the MAR assumption) to be tenable. For example, if the nonresponse is 

thought to be independent across waves, one should include, in the model for ,ˆ rij  as many 

variables from the corresponding wave as possible. If, on the other hand, it is reasonable to 

assume that the response propensity at a given wave depends on previous responses (and possibly 

response history), then those responses should be included in the response model, and so on. 

The design as well as the model-design unbiasedness follow immediately from (3.6) together 

with the previous section. Hereafter we therefore ignore the issue of nonresponse for notational 

simplicity. 

 
3.3  Variance and variance estimation 
 

We now develop a (Taylor Series) linearization for the variance of the proposed estimator. 

The basic technique is due to Binder (1983). For simplicity in the derivations and notation we 

divide through by ;N  we redefine  
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1 1( ) = ( )i
s i i i i

i s

N V W 




 




 


y  and 1 1( ) = I (U)( ),i
U i i i i

i U

N V 




 




 


y  

where 
=1

= .
J

jj
N N  Let ̂  be our estimator, which satisfies ˆ( ) = ,s 0  and let N  be the 

“census estimator,” which satisfies ( ) = .U N 0  Assume = (1 / )N P mO N   and 

ˆ = (1 / ),N P mO n   with 1 2= min{ , , , }m JN N N N  and 1 2= min{ , , , }.m Jn n n n  We 

can write the total error of ̂  as ˆ ˆ= ( ) ( ) =N N         Sampling Error + Model Error. 

After some straightforward calculations, the total variance, or more precisely the total MSE, can 

be decomposed as:  

                           Tot Sam Sam Mod
ˆ ˆ= ( )( ) = 2 (1 / ),p mV E V C o n 

         (3.7) 

where 2 =A A A   for any matrix ,A Sam = pV E V  is the “sampling variance” component, 

Sam Mod2 C   is the cross “sampling-model variance” component, =pV ˆ ˆ[( )(p NE      

) ],N
 Sam Mod = ,pC E C   and ˆ= ( )( ) .NC E 

      Furthermore, by Taylor series 

expansions we can obtain the following approximations: ˆ =  N 1[ ( )] ( )N s NH      

(1 / ),P mo n 1ˆ ˆ= [ ( )] ( ) (1 / ),s P mH o n       and = N  1[ ( )] ( )UH      

(1 / ),P mo N  where we define 1 1( ) = ( / ) I (U)  i i ii U
H N V 


  ( / ) i   and ˆ ( ) =H   

1 1( / ) ( / ).i i i ii s
N V W 


         

We then get, for pV  and C  in (3.7),  

                              1 1= [ ( )] Var [ ( )][ ( )] (1 / ),p N p s N N P mV H H o n      (3.8) 

                              

1 1

1 1 1

ˆ= [ ( )] [ ( ) ( )][ ( )] (1 / )

ˆ ˆ= [ ( )] ( )[ ( )] (1 / ),

s U P m

V P m

C H E H o n

N H H H o n

 
 

  


  



   

  
 (3.9) 

where Var [ ( )] = [ ( ) ( )]p s N p s N s NE       and 1 1ˆ ( ) = [( / )  V i i i ii s
H N V W 

 
     

1 ( / )]; i iV     the derivation of (3.9) can be found in the Appendix. 

In conclusion, so far we have found that:  
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                              
 

Tot

1 1

1 1 1

= 2 (1 / )

= [ ( )] Var [ ( )][ ( )]

ˆ ˆ2 [ ( )] ( )[ ( )] (1 / ).

p p m

N p s N N

p V m

V E V E C o n

E H H

N E H H H o n

 

 


  


  



  

  

  

 (3.10) 

In (3.10) all the terms can be estimated by “plugging in” the estimate ˆ   except for the term 

Var [ ( )];p s N   this is the subject of the next section. 

If the sampling fraction is small, i.e., ,n N  the first term in expression (3.10) is a good 

approximation for the total variance; i.e., the expression for TotV  is simply pE V  (and lower order 

terms). If, on the other hand, the sampling fraction is large, both terms in (3.10) are required. 

 
3.3.1  Design variance of the estimating function 
 

In order to derive an expression for Var [ ( )],p s N   we assume = 3,J  as before. The 

methodology is that of two-phase sampling (more precisely, multiphase sampling), as discussed 

in chapter 9 of Särndal, et al. (1992). After some derivations (see Appendix), and defining 

1
= (1 3) (2 3) 2 3= ( / ) | , = ( ), = , = (0, , ) ,i i i i i i N i i i i iN

B V e e         e y e e e  and (3 3) =i e  

3(0, 0, ) ,ie   we obtain:  

                                          
3 3 3

( ) ( )
=1 =1 =

Var [ ( )] = = ,p s N j j k
j j k j

D D    (3.11) 

where  
def

32
( ) ( )=( )

= Var = ,j p i i i j ki s k jj j
D N B W D

 e  for = 1, 2, 3,j  

def
2

( ) ( 3)

( )

def
2

( 1) ( 3) 1( 1)

( 1)

def
2

(1)3 3 (3 3) 2(1) 1(1) 1(1)

3(1)

= Var I (U) , for = 1, 2, 3,

= Var I (U) | , for = 2, 3,

= Var I (U) | , |

j j ij i i i j
i s j j

j j ij i i i j j j
i s j j

i i i i
i s

N D w B j

N D E w B s j

N D E E w B s s s



  
 



 
  

  
    

  
 
 













e

e

e ,  
  
  

 

and in the Appendix we show that:  
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2
( ) ( 3) , 1 ( 3)

( ) 1( )

= Var I (U) Var I (U) ,j k ik i i i k i k i i i k
i s i sk j k j

N D w B w B
  

   
      
  e e  

for = 1, 2, 3,j  and 3 > .k j  In general, we have proved the following  
 

Property 3.1  The (design) variance of ( )s N   can be decomposed as:  

( ) , 1 ( )2
=1 = ( ) 1( )

Var [ ( )]

1
= Var I ( ) Var I ( )

p s N

J J

p ij i i i j J p i j i i i j J
j j j i s i sj j j j

w B U w B U
N 

    



    
        

  e e 



 
(3.12)

 

( ) , 1 ( )2
=1 1

1
= Var I ( ) Var I ( ) ,

J

p ij i i i j J p i j i i i j J
j i s i sj j

w B U w B U
N 

  

    
        

  e e   (3.13) 

where we let , 1 = 0i jw   whenever 0= , = 0,ij j w  and to get (3.13) we have changed variables 

and used the independence among cohorts.  

In (3.11), (3.12), and (3.13) we have assumed that the cohorts are design-independent. 

However, in some cases this assumption may not be tenable; an example of such a case is the 

multiple frame situation discussed in the first part of Section 3.2. Another instance in which it 

may not be appropriate to assume cohort independence is when weight adjustments cross cohorts, 

which is the case of the SDR; we discuss this issue in Section 5. Calculations for the case of three 

cohorts, in the Appendix, show that (3.13) holds for the variance terms even without 

independence. The Appendix also identifies conditions under which it is a good approximation 

for the covariance terms. 

 
3.3.2  Estimation 
 

The estimation of TotV  in (3.10) can be achieved as follows. ˆ( ), ( ),NH H   and ( )H   can be 

estimated by ˆˆ ( ).H   ˆ ( )VH    can be estimated by ˆˆ ( ),VH    where = Cov[ | ]i i iY X  can be 

estimated by ˆ ˆ .i i
e e  

We use (3.13) in Property 3.1 to estimate Var [ ( )].p s N   As long as there is a method to 

estimate the variance of (cross-sectional) Horvitz-Thompson (H-T) estimators, expression (3.13) 
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can be used. If we define ( )= I (U) ,ij i i i j JZ B e  we notice that each of the terms involved in the 

computation of (3.13), terms like Var ,p ij iji s j
w Z


 
 
  is simply the variance of a wave j-  H-T 

estimator. Obviously, the variance estimation method needs to account for the sampling design as 

well as for any nonresponse and calibration adjustments performed, but this does not present any 

additional complications beyond what is found in any cross-sectional problem, as everything is 

implemented cross-sectionally. The SDR uses replication to estimate variances of cross-sectional 

estimators, but any method of design variance estimation can be used. 

We use the cross-sectional replicate weights that SDR provides, but we do not re-estimate the 

parameter of interest at each replicate. First, note that we require replication only for the 

estimation of the “meat” (Var [ ( )])p s N   of the design variance ( ).pE V  Secondly, although ̂  

does appear in the expression for the H-T estimator whose variance needs to be calculated (and 

re-calculated at each replicate), the work of Roberts, Binder, Kovačević, Pantel and Phillips 

(2003), who apply the “estimating function bootstrap” (Hu and Kalbfleisch 2000) to survey data, 

show that in a setting like ours, it is not necessary to re-compute the estimator at each replicate, 

but that the full-sample estimator suffices. This simplification speeds up the computation of the 

replicate estimates. 

As a way of illustration, say we currently are at wave ,j  i.e., we are estimating the thj  term in 

(3.13). The thr  replicate of the first term is ( )
( )

ˆ ˆ( )I (U) ( ),r
ij i i i j Ji s j

w B
 e   where ( )r

ijw  is the 

thr  replicate weight for subject i  at wave ,j  and the thr  replicate of the second term is 

( )
, 1 ( )

1

ˆ ˆ( )I (U) ( ),r
i j i i i j Ji s j

w B 
 e   where ( )

, 1
r

i jw   is the thr  replicate weight for subject i  at wave 

1.j   

 
4  Application to the SDR 
 

The dataset we use is the restricted SDR data, under a license agreement from NSF. The SDR 

collects information about employment situation, principal employer, principal job, past 

employment, recent education, demographics, and disability, among others that vary from wave 
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to wave. We use only information requested in all the waves of interest: 1995, 1997, 1999, 2001, 

2003, 2006, and 2008. 

To illustrate our methodology, we constructed a model for individuals’ salaries over time. The 

response is the log of salary (in the principal job), with an identity link function, and several 

covariates; modeling log of salary (as opposed to salary) is a standard practice. There are both 

time-independent covariates (such as gender) and time-dependent ones (such as employment 

sector). We have four major classes of covariates. The Degree variables are: degree field, years 

since degree, and age at graduation. The Job variables are: job field or category, sector, postdoc 

indicator, adjunct faculty indicator, hours worked per week in the principal job, weeks per year in 

the principal job, how related is the job to the doctoral degree, part-time for different reasons, 

number of months since started in the principal job, the starting month in the principal job, 

whether the employer/type of job has changed since previous wave, and whether changed 

employer/type of job since previous wave because was laid off or job terminated. The Person’s 

demographics are: gender, citizenship status, race/ethnicity, presence of children in family, 

marital status, and spouse’s working status. Finally, the “Environment” variables are: years since 

1995, state (of employment), and the consumer price index (of the region of employment). The 

full list of variables, interactions, and categories can be found in Carrillo and Karr (2011). For 

categorical variables, the reference category is the one with the largest count. 

The dataset for our model consists of 59,346 subjects and 190,693 observations, distributed as: 

95 =n 30,234, 97 =n 30,652, 99 =n 26,732, 01 =n 26,778, 03 =n 24,956, 06 =n 25,910, and 

08 =n 25,431. Those data correspond to non-missing salaries between $5,000 and $999,995, for 

people with consistent ages across the waves, and with non-missing value for the variable 

indicating whether the (postsecondary educational institution) employer was public or private. 

The average (cross-sectional) survey weight for each of those waves are: 95 =w 15.37, 97 =w

16.28, 99 =w 19.96, 01 =w 20.74, 03 =w 22.71, 06 =w 22.93, and 08 =w 24.88. 
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The survey weights that we use for each wave are the final adjusted weights. These weights 

are the original design weights adjusted for nonresponse and post-stratification. However, the 

theory that we developed in Section 3 assumes that the weights are the inverse of the selection 

probabilities; in other words, the original design weights. This is a mismatch whose effect we 

plan to investigate in the future. On the other hand, the calculations in the last part of the 

Appendix (which do not assume anything about the weights) suggest that the effect of this 

mismatch is small. 

The covariates and interactions that we considered were selected because they were suggested 

either by exploratory analyses or by the subject matter experts at the NSF. Carrillo and Karr 

(2011) present the estimated   coefficients in the model = log(SALARY ) =ij ij ijy X   ,ij  

where ijX  includes the intercept along with the other covariates. This   corresponds to the one 

in model ,  in Formula (3.1), and whose properties are discussed in Section 3. The working 

covariance matrix is estimated to be ˆˆ ˆ= ( ),iV  R  with 2ˆ = =ˆ   

   08 082

=95 =95
= 0.196,ˆij ij iji s j i s j

w e w p
 

     where ˆ=ˆij ij ije y X    and =p 208 is 

the number of covariates in ,ij ijX w  is the cross-sectional weight for subject i  at wave j  as long 

as ji s  and zero otherwise. The estimate ̂  contains the 21 = (7 6) / 2  estimated auto-

correlations    ˆˆ ˆ= = ,ˆ ˆij ij ijjj j j ij ij iji s i s
w w e e w w p     

        for =j j

1995, 1997, 1999, 2001, 2003, 2006, 2008, and ˆ = 1jj  for all .j  These estimated values form 

the auto-correlation matrix:  

95,97 95,99 95,01 95,03 95,06 95,08

97,99 97,01 97,03 97,06 97,08

99,01 99,03 99,06 99,08

01,03 01,06 01,08

03,06 03,08

06,08

ˆ ˆ ˆ ˆ ˆ ˆ1 1 0.38 0.36 0.32 0.3
ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1
ˆ( ) = ˆ ˆ ˆ1

ˆ ˆ1
ˆsym 1

1

      
      

    
    
   

 
 
 

R

0 0.28 0.27
1 0.42 0.36 0.33 0.32 0.31

1 0.46 0.38 0.36 0.34
.1 0.47 0.40 0.38

1 0.49 0.44
sym 1 0.55

1

 
 
 
 
 
 
 
 
 
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We now give some conclusions about salaries in the Ph.D. workforce based on the estimated 

coefficients, which appear in Carrillo and Karr (2011). First of all, a sensible estimate of mean 

salary considers the intercept, the hours worked per week (whose average is 47), and years since 

degree (average of 15); so that an estimate of the overall average is exp(9.4 47   

2 20.038 47 0.0003 15 0.03 15 0.0006) = $52, 067,       for a subject with all other 

continuous covariates equal to zero and in the reference of all categorical covariates. 

All other things being constant, women’s salaries are about 93.4% those of men, whereas race 

does not seem to have an effect on salaries. The gender years since 1995 interaction is not 

significant; therefore this salary differential is not changing over time. Notice that with a single 

year’s data, we would not be able to evaluate the effect of time. Even more important than that, 

using only the data from a single wave, say 2008, we would not be able to assess whether the 

effect of being female is changing over time. 

Doctorate holders with a management job have the highest salaries, followed by those in 

health occupations; on the other hand, those with the lowest salaries are the ones employed in 

“other” occupations, followed by those in political science. 

Among employment sectors, salaries are highest in for-profit industry (20% higher than for 

the reference category of tenured faculty in public 4-year institutions), followed in order by the 

federal government, self-employment, non-profit industry, all of which are higher than the 

reference category. The lowest salaries are those in two-year colleges and in two- and four-year 

institutions for which tenure is not applicable. 

The highest single negative effect on salaries also occurs within the education sector. Those 

with positions as adjunct faculty members have salaries that are approximately 59% of the 

salaries of comparable doctorate holders. Not surprisingly, postdoctoral salaries are only about 

74% of the salaries of comparable people in other types of positions. 

Sector is also a contributing factor to the hard-to-interpret dependence of salary on the starting 

month for the current position: salaries are lower for starting months of August and September. 
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Additional analyses show that the monthly effect is present only in the education sector, where, 

as we have seen, salaries are lower than in industry or government, and in which starting months 

of August and September are common. Therefore, sector is part of the answer, but not the entire 

answer. Finer-grained divisions of the education sector, using Carnegie classifications, further 

reduce, but do not remove, the significance of monthly effects. The SDR does not seem to 

contain sufficient data to remove the monthly effects entirely, so we have retained the SDR 

definition of sector. 

People with degrees in computing and information sciences have the highest salaries (around 

20% higher than in the biological sciences), followed by those in electrical and computer 

engineering and in economics (approximately 16% higher). Doctorate holders in agricultural and 

food sciences, environmental life sciences, earth, atmospheric, and ocean sciences, and in “other” 

social sciences have the lowest salaries. The “other” social sciences are the social sciences 

excluding economics and political science. 

Married people have the highest salaries, followed by those who are in married-like 

relationships, widowed, separated, divorced, and never married. The latter have salaries only 

around 89% as high as the married ones; one could argue that there is some association between 

never married and age. The presence of children older than two is associated with higher salaries, 

but the presence of children younger than two is not. 

Doctorate holders with jobs only somewhat related to their degree field make around 93% of 

what people with closely related jobs (the reference category) do. If the job is not related to the 

doctoral degree as the result of a change in career or professional interests, they make around 

82% of what people with closely related jobs do. On the other hand, those with jobs not related 

for other reasons make only about 76% of what the reference category does. 

There is an increase of around 3% for every additional year since doctorate graduation, 

although there is a diminishing effect for higher number of years. We interpret this as the effect 
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of experience. There is a small penalty for receiving the doctorate later in life; for every 

additional year of age at graduation, the salary reduces by 1%. 

We also found that the regional Consumer Price Index (CPI) is significant. The higher the 

CPI, the higher the salary. We could not use the CPI associated with the labor market of 

employment because the SDR data do not identify geography beyond the state. We included the 

state in the model as a proxy for cost of living; the state effect is highly significant and some state 

coefficients are among the highest overall. The highest salaries are in California, Washington 

D.C. and its suburbs, and New York City and its suburbs. On the other hand, the lowest salaries 

are in Puerto Rico, Vermont, Montana, Maine, Idaho, South Dakota, North Dakota, and in the 

Territories/Abroad. 

Having a part-time job due to being retired or semi-retired is significant and in several 

significant interactions. Because of this, we do not think that the available data present the full 

picture about retirement, for example, for people who are (semi-)retired and yet have full-time 

jobs. 

Finally, we analyzed residuals; Figures 4.1 and 4.2 show a Box and Whisker plot of 

standardized residuals by year and a spaghetti plot of standardized residuals, respectively. 

Figure 4.1 shows that the model fits reasonably well for all the reference years as most of the 

standardized residuals lie between -2 and 2. Also, the distributions of residuals do not seem to 

greatly differ from year to year. 

From Figure 4.2 we also conclude that the model fits reasonably well for most people, as most 

of the lines fluctuate between -2 and 2. Nonetheless, there are a few people for which the model 

seems to greatly over-predict in 2003 and some few people for whom that happens in 2006. We 

included several terms in the model to correct this issue but clearly none seemed to do so 

completely. 

The last thing we tried was to produce exploratory classification trees for these residual blips. 

We found that, in the dataset available, the only thing related to them was the survey mode. The 
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blips in 2003 are disproportionately high for web responses, and the blips in 2006 are 

disproportionately high for CATI responses. We conclude that either there is a mode effect in 

these two years or those respondents have something different, in those years, that is not included 

in the available variables. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1  Box and Whisker plot of standardized residuals by year 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2  Spaghetti plot of standardized residuals 

 

 

Finally, the plot of fitted values versus observed (which can be found in Carrillo and Karr 

2011) also shows a similar story. For most observations the model performs well, apart from 

those few cases in 2003 and 2006 for whom there is large over-estimation. 
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5  Conclusions and future research 
 

We have proposed a novel approach to combining different cohorts of a longitudinal survey. 

The major requirement of our method is that there is a cross-sectional survey weight for each 

wave, or that one can be built from available information. This weight should allow for statistical 

inference to the population of interest at the corresponding wave. In that case, our method should 

perform better than usual estimation procedures (where the auto-correlation is not incorporated) 

in many practical situations, in particular when there is a high auto-correlation among responses 

from the same subject. 

In general, survey practitioners avoid as much as possible the use of multiple survey weights. 

However, in the case of rotating panels this is an appealing approach for at least two reasons. On 

the one hand, it allows for the use of all the available data in a clear and cohesive way in a single 

analysis procedure. On the other hand, we have shown how readily available cross-sectional 

survey weights can be directly used for longitudinal analysis, without the need to develop, store, 

and distribute an additional longitudinal weight or weights. 

Our method is directly applicable to any kind of longitudinal survey as long as there are cross-

sectional survey weights available (or these can be created) at each wave, and these weights 

represent the population of interest at the particular wave. 

For the theory that we developed about the variance of the estimator proposed, we utilized the 

(cross-sectional) design weights ,ijw  which are the inverse of the inclusion probabilities. Yet for 

the application in our model for salary in the SDR we used the final (cross-sectional) survey 

weights, which are not the original design weights, but adjusted (in the usual way) weights. This 

mismatch requires further exploration. 

Similarly, in our derivations of the variance, we assumed that the cohorts were independent. 

However, the SDR does not totally satisfy this assumption for two reasons. Firstly, at any 

particular wave, the selection of the sample from the old cohorts is not performed independently 

across cohorts. In order to reduce the number of strata, since 1991 the NSF has collapsed strata 
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over year of degree receipt for the old cohorts. Additionally, the post-stratification adjustments 

made to the design weights do not condition over cohort either, and as a result, weights are 

shared across cohorts. This sampling selection scheme and weighting adjustment procedure 

violate the independence across cohorts. Some additional calculations (included in the Appendix) 

have shown that the independence among cohort is not such a crucial requirement for our 

variance estimation method to produce good approximations, as explained in Section 3.3.1. In 

future research we plan to evaluate in more detail the impact of this issue. 
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Appendix - Proofs 
 

 To develop an expression for ,C  we first simplify ( ) ( ).s U
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where    (1)A = ,i i i ii s i s
B W

 
 e F  and let B = I (U) .k s i i i k k ki s

k i
B W B 

   e e  

The two sums in A  are model-independent, ie  and k
e  (in B)  are two model-

independent terms, and A and B both have model-expectation zero; therefore, 
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equation (3.9) follows. 

 We now develop the expression for Var [ ( )],p s N   the design variance of the 

estimating function; we redefine 1
== ( / ) |i i iN

B V       and = ( );i i i Ne y    
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where, for line (A.1), we assume that the (three) cohorts are design-independent. Now, 
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where Diag{ }e  is, for a column vector ,e  a diagonal matrix with diagonal entries being 
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With similar calculations, we obtain the corresponding expressions for 2
(2) ,N D  

2
(2)2 ,N D  2

(2)3 ,N D  and 2 2
(3) (3)3= .N D N D  

 Finally, we sketch the development of an expression for Var [ ( )]p s N   without 

assuming independence among cohorts. First, notice that ( )s N   can be written as:  
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letting (2 3) 2 3= I (U) , = I (U)[0, , ] ,i i i i i i i i iB B e e z e z  and (3 3) 3= I (U)[0, 0, ] ,i i i iB e z  

Var [ ( )]p s N   can be expanded as:  
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(A.4)

 

In this last expression, the first thing we notice is that all the diagonal elements in all the 

covariance terms are exactly equal to zero; this means that whether or not the cohorts 

are independent of one another, expression (3.13) is exact for the variance terms. 

To analyze the importance of the covariance terms, we concentrate on the term in line 

(A.4); the conclusion for the other terms is the same; note that this term can be written 

as:  

                  2
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Property 3.1 states that if the cohorts are design-independent, all the covariance terms 

are exactly equal to zero. In addition to that, from this last expression we conclude, 

trivially, that if the waves are design-independent, all the covariance terms are equal to 

zero too. This formula for the term in line (A.4) also implies that if the individual 

weights do not vary greatly between consecutive waves, and there is a high overlap 

between consecutive waves, the covariance terms are not too large. Finally, if the 

overlap is small, it is reasonable to assume design-independence between the waves, and 

then the covariance terms can be safely approximated by zero. 
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Indirect sampling applied to skewed populations 

Pierre Lavallée and Sébastien Labelle-Blanchet1 

Abstract 

Indirect Sampling is used when the sampling frame is not the same as the target population, but 

related to the latter. The estimation process for Indirect Sampling is carried out using the 

Generalised Weight Share Method (GWSM), which is an unbiased procedure (see Lavallée 2002, 

2007). For business surveys, Indirect Sampling is applied as follows: the sampling frame is one of 

establishments, while the target population is one of enterprises. Enterprises are selected through 

their establishments. This allows stratifying according to the establishment characteristics, rather 

than those associated with enterprises. Because the variables of interest of establishments are 

generally highly skewed (a small portion of the establishments covers the major portion of the 

economy), the GWSM results in unbiased estimates, but their variance can be large. The purpose of 

this paper is to suggest some adjustments to the weights to reduce the variance of the estimates in 

the context of skewed populations, while keeping the method unbiased. After a brief overview of 

Indirect Sampling and the GWSM, we describe the required adjustments to the GWSM. The 

estimates produced with these adjustments are compared to those from the original GWSM, via a 

small numerical example, and using real data originating from the Statistics Canada’s Business 

Register. 
 

Key Words: Generalised weight share method; Weighted links; Weak optimality. 
 
 

1  Introduction 
 

Business surveys differ in a number of ways from social surveys. One is that data associated 

with a business frame are highly skewed, whereas those associated with social surveys are much 

more homogenous. The sampling of businesses takes place by transforming operating structures 

into standardized units known as statistical units. These are represented as a hierarchy, or series 

of levels that allow subsequent integration of the various data items available at different levels 

within the organization. The number of levels within the hierarchy differs between statistical 

agencies. For example, the Canadian Business Register has four levels: enterprise, company, 

establishment and location. The statistical enterprise corresponds to the legal unit in most cases. 

The statistical establishment is, in most cases, equivalent to a profit centre and provides data on 



184 Lavallée and Labelle-Blanchet: Indirect sampling applied to skewed populations 
 

 
Statistics Canada, Catalogue No. 12-001-X 

the value of output, the cost of inputs and labour. These data are sufficient to compute value 

added (profit, salary and wages). In this paper, we will consider only two levels of the hierarchy: 

enterprise and establishment, as defined by the Canadian Business Register. For more 

information, one can consult Statistics Canada (2010). 

For selecting the sample, stratification is often performed at the establishment level. This 

allows to control for geographical (e.g., by stratifying by province), industrial (e.g., by stratifying 

by the industrial activity), and size representativeness (e.g., by stratifying by revenue classes or 

by the number of employees). Controlling for such representativeness is not possible if 

stratification is performed at the enterprise level. However, in addition to establishment-based 

statistics, statistics at the enterprise level are often required. Therefore, to achieve these two 

goals, we perform the sample selection at the establishment level, and once the sample of 

establishments is obtained, we extend the sample to the complete set of establishments belonging 

to the enterprises of the initially selected establishments. Note that selecting enterprises through 

the selection of establishments is like selecting clusters through their components. This procedure 

allows producing estimates at the establishment and the enterprise levels, as well as some 

reduction in collection costs by selecting clusters of establishments.  

One way to consider the production of enterprise-level estimates using a sample of 

establishments is by viewing the sampling frame and the target population separately. The former 

is a set of establishments, while the latter is a set of enterprises corresponding to clusters of 

establishments. When the sampling frame is not the same as the target population, but still related 

to the latter, we are in a situation of Indirect Sampling (see Lavallée 2002 (French version), 2007 

(English version)). More formally, we wish to produce an estimate for a target population ,BU  

using a sampling frame ,AU  which is somehow linked to .BU  We select a sample As  from AU  

to produce an estimate for BU  using the existing links between the two populations. To produce 

unbiased estimates of quantities of interest (e.g., totals or means) for the target population BU  

using ,As  we obtain estimation weights using the Generalised Weight Share Method (GWSM). 
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Although the theory of the GWSM is widely developed (see Lavallée 2002, 2007), its 

application for business surveys presents some difficulties. Indeed, while yielding unbiased 

estimates, the GWSM tends to lead to large variances. This lack of precision is due to the 

skewness of the population, i.e., a small number of establishments cover a major portion of the 

economy. 

The purpose of this paper is to suggest some adjustments to the estimation weights to reduce 

the variance of the estimates in the context of skewed populations, while keeping the method 

unbiased. After a brief overview of Indirect Sampling and the GWSM in Section 2, we present 

the problem with skewed population in Section 3. We describe the proposed adjustments to be 

done to the GWSM in Section 4. In Section 5, the estimates produced with these adjustments are 

compared to those from the original GWSM using a small numerical example, and using real data 

that come from the Statistics Canada’s Business Register. A brief conclusion is presented in 

Section 6. 

 
2  Indirect sampling and the GWSM 
 

In this section, we provide an overview of Indirect Sampling and the GWSM. Although 

Indirect Sampling has been developed for any type of sample design, we will focus on stratified 

Simple Random Sampling Without Replacement (SRSWoR), since this sampling design is the 

most commonly used for business surveys. 

Let the population AU  of AM  establishments be stratified in H  strata, where stratum h  

contains A
hM  establishments. In each stratum ,h  we select a sample A

hs  of A
hm  establishments 

using SRSWoR. Let 
1

HA A
hh

s s


   and 
1

.
HA A

hh
m m


   The target population BU  contains 

BN  enterprises, where enterprise i  contains those B
iM  establishments of .AU  This population 

can also be viewed as a population of BM  establishments, where each establishment k  belongs 

to an enterprise ,i  with 
1

.
BNB B

ii
M M


   
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We wish to produce an estimate for the target population ,BU  using the sampling frame AU  

along with the existing links between the two populations. The links between population AU  and 

population BU  are identified by the indicator variable , ,j il  where , 1j i =l  if there exists a link 

between establishment Aj U  and enterprise ,Bi U  and 0 otherwise. In the present case, 

, 1j i =l  if the establishment j  of AU  belongs to enterprise i  of ,BU  and 0 otherwise. Because 

each establishment can belong to only one enterprise, the links between AU  and BU  are 

many-to-one or one-to-one. Therefore, we have ,1
1,

BNA
j j ii

L = l


  ,1
,

AMB B
i j i ij

L = l M


  for 

all establishments Aj U  and for all enterprise .Bi U  
 

Steps for Indirect Sampling: 
 

1. For each establishment j  selected in ,As  we identify the corresponding enterprise i  

of .BU  

2. For each enterprise i  identified, we assume that we can set up the list B
iU  of all B

iM  

establishments of this enterprise. 

3. For each enterprise i  identified, we survey all B
iM  establishments of the enterprise. 

4. At the end, we obtain a sample Bs  of Bn  enterprises, and this sample contains 

1

BnB B
ii

m M


   establishments.  
 

For all the establishments k  linked to enterprises ,Bi s  we measure a variable of interest 

.iky  We want to estimate the total 
1 1 1

B B B
iN M N

ik ii k i
Y y Y

  
     for the target population .BU  

Note that the collection process of Indirect Sampling results in a number of surveyed 

establishments that is much larger than the number of establishments in the initial sample .As  

We initially sample Am  establishments in ,As  and end up with sampling 
1

BnB B
ii

m M


   

establishments, where .B Am m  

In practice, it can happen that some enterprises only provide their data at the enterprise level. 

That is, we obtain the values 
1

B
iM

i ikk
Y y


   for ,Bi s  but not the values iky  measured at the 

establishment level. As we will see, this does not create problems for global estimates, but it 

might create difficulties for some detailed estimates. When this occurs, a disaggregation (also 
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called allocation) of the enterprise values to the establishment level is performed mainly based on 

subject matter expertise (see for example, Delorme 2000). 

With indirect sampling, nonresponse can be present within the sample As  selected from ,AU  

or within the units (enterprises or establishments) identified to be surveyed within .BU  Since the 

units in population BU  are in fact surveyed by cluster (recall that enterprises are clusters of 

establishments), there are two types of nonresponse from :BU  cluster nonresponse and unit 

nonresponse. Cluster nonresponse refers to the case where the variable of interest y  is not 

measured for any of the establishments of the enterprises selected in the survey. Unit nonresponse 

occurs when one or more establishments of the enterprise, but not all, did not respond. With 

Indirect Sampling, there is also another form of nonresponse that comes from the problem of 

identifying some of the links. This type of nonresponse is associated with the situation where it is 

impossible to determine whether an establishment k  of an enterprise i  of BU  is linked or not to 

an establishment j  of .AU  This is referred to as the problem of links identification. Lavallée 

(2002, 2007) proposed solutions to correct these types of nonresponse based on weight 

adjustments. To restrict the scope of the present paper, we will assume that nonresponse does not 

occur at any level. 

According to the GWSM, to estimate the total ,Y  we use the estimator 

                                                                    
1

ˆ
Bn

i i
i

Y w Y


   (2.1) 

where Bn  is the number of surveyed enterprises. The weights obtained from the GWSM are 

given by 

                                                                 ,

1

A AM
j j i

i A B
j j i

t l
w =

L   (2.2) 

where 1A
jt   if ,Aj s  0 otherwise, and A

j  is the selection probability of establishment .j  In 

the present case, we have /A A A
j h hm M   for .j h  It should be noted that the weights (2.2) do 
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not correspond, in general, to the selection probabilities B
i  of the enterprises .i  Using (2.2), we 

can rewrite estimator (2.1) as 

                                                                   ˆ
AM

j
jA

jj=1

t
Y= Z


  (2.3) 

where 

                                                                  ,
1

.

BN
i

j j iB
i i

Y
Z = l

L
  (2.4) 

Because of the many-to-one correspondence between AU  and ,BU  we have 

                                                                
1

1
.

B
i AM

j
i B A

ji j

t
w =

M    (2.5) 

In addition, the variable jZ  of (2.4) can be written as / ,B
j i i iZ = Y  M Y    for ,j i  which is 

the average of the B
iM  establishments belonging to enterprise .i  We thus have 

                                                               
1 1

ˆ
A
hAH m

h
hjA

h jh

M
Y= Z

m 
   (2.6) 

where / ,B
hj i i iZ = Y  M Y    for .j i  

One can prove that estimator (2.1) (and therefore (2.3) and (2.6)) is unbiased for Y  (see 

Lavallée 2002, 2007). Note that estimator Ŷ  is in fact only a Horvitz-Thompson estimator where 

the variable of interest is the variable .hjZ  In the case of stratified SRSWoR, its variance is given 

by 

                                                2
,

1

ˆVar( )
A AH
h hA

h Z hA
h h

M m
Y M S

m

 
   

 
  (2.7) 

where   22
,

1

( 1)

A
hM

A
Z h hj h h

j

S Z Z M


    and 
1

.

A
hM

A
h hj h

j

Z Z M


   The variance ˆVar( )Y  can 

be estimated using the classical estimator for stratified SRSWoR, or by other variance estimators 



Survey Methodology, June 2013 189 
 

 
Statistics Canada, Catalogue No. 12-001-X 

proposed in the scientific literature, such as Jackknife and Bootstrap estimators. See Wolter 

(2007) or Särndal, Swensson and Wretman (1992). 

The precision of the estimates produced using the GWSM depends solely on the variance 

because the estimator (2.1) (and therefore (2.3) and (2.6)) is unbiased. Looking at equation (2.7), 

we find that the precision depends, as in the classical case, on the sample sizes and sampling 

fractions used to select ,As  but also on the variability of the derived variables .Z  Since 

/ ,B
hj i i iZ = Y  M Y    for ,j i  the value of hjZ  is the same for all establishments j  of a given 

enterprise .i  That is, the enterprise total iY  is shared equally among its establishments. If all the 

establishments of an enterprise belong to the same stratum, the variability of the variables Z  

within a stratum will only depend on the difference between the average values of a limited 

number of enterprises, which might make the variability to be relatively small. On the other hand, 

if the establishments of an enterprise belong to different strata, the variability of the variables Z  

within a stratum will depend on the difference between up to as many enterprises as there are 

establishments, which might result in a quite large variability. Because of the skewness of the 

population of establishments and the stratification applied to ,AU  the latter case is the one that is 

most likely to occur. 

It is interesting to see that the present version of Indirect Sampling (together with the GWSM) 

corresponds mathematically to Adaptive Cluster Sampling presented by Thompson (1990, 1991, 

1992, 2002) and Thompson and Seber (1996). With Adaptive Cluster Sampling, a sample of 

establishments would first be selected, and a collection strategy would then be performed to 

survey all establishments of the enterprises identified by the initial sample of selected 

establishments. Typically, the collection strategy would be to expand the sample of 

establishments by visiting them sequentially, until all establishments of the same enterprises are 

covered. With Indirect Sampling, the collection strategy is not specified, but at the end of the 

collection process, the complete set of establishments of the selected enterprises is assumed to be 

surveyed. The estimator related to Adaptive Cluster Sampling can be proved the same as 
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estimator (2.1) obtained through the GWSM (see Lavallée 2002, 2007). Note that the two 

sampling designs happen to be mathematically equivalent only in some particular cases. This is 

the case in the present paper when estimator (2.1) is used. When the weighted links (see next 

section) are used, the GWSM turns out to produce a different estimator than the one related to 

Adaptive Cluster Sampling. As well, when the links between populations AU  and BU  are many-

to-many, Indirect Sampling and Adaptive Cluster Sampling are no longer equivalent. 

 
2.1  Use of weighted links 
 

The indicator variable ,j il  simply indicates whether there is a link between establishments j  

and enterprise i  from populations AU  and ,BU  respectively. It is however possible to replace 

the indicator variable ,j il  with any quantitative variable ,j i  representing the importance that we 

want to give to the link , .j il  That is, there is no problem with generalising the indicator variable l  

defined on {0,1} with a quantitative variable   defined on [0, [,  the set of non-negative real 

numbers. In this case, a value of , 0j i   amounts to a link , 0.j il   The theory developed 

around the GWSM remains valid. For instance, the resulting estimator is still unbiased. As it will 

be seen later, choosing appropriate values for the weighted links ,j i  will be the basis for 

methods that aim to reduce the variance of the estimates obtained through the GWSM. 

Let , , / B
j i j i i     where ,1

.
AMB

i j ij
    From (2.2), we define  

                                                                ,
1

.

B
i AM

j
i j iA

j j

t
w =




   (2.8) 

Using (2.8), we can modify estimator (2.6) as 

                                                              
1 1

ˆ
A
hAH m

h
hjA

h jh

M
Y Z

m



 

   (2.9) 

where 

                                                                   ,
1

BN

hj j i i
i

Z = Y



   (2.10) 
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for .j h  Because of the many-to-one correspondence between AU  and ,BU  the variable hjZ   

in (2.10) is a weighted portion of the total iY  of the B
iM  establishments belonging to enterprise 

.i  The variance of (2.9) is obtained by replacing jZ  by jZ   in (2.7): 

                                               2

1

ˆVar( )
A AH
h hA

h ZhA
h h

M m
Y M S

m 


 
   

 
  (2.11) 

where   22

1

( 1)

A
hM

A
Zh hj h h

j

S Z Z M 




    and 
1

.

A
hM

A
h hj h

j

Z Z M 



   

 
2.2  Using optimal weighted links 
 

The GWSM offers a simple solution for obtaining an estimation weight iw  for each surveyed 

enterprise .i  However, the resulting estimator Ŷ  given by (2.1) and (2.3) resulting from the 

default use of the GWSM is not always the one that has the smallest variance. It is possible to 

improve it by determining optimal weights for the links , .j i  This problem has been solved by 

Deville and Lavallée (2006). 

We pointed out earlier that the variance (2.7) depends on the variability of the derived 

variables .Z  Without weighted links, i.e., with / ,B
hj i i iZ = Y  M Y    for ,j i  the value of hjZ  

is the same for all establishments j  of a given enterprise .i  Because it is likely that the 

establishments of an enterprise belong to different strata, the variability of the variables Z  within 

a stratum will depend on the difference between up to as many enterprises as there are 

establishments. Moreover, a given enterprise i  will provide the same value of Z  to all its 

establishments j  since .hj iZ Y  Therefore, whether an establishment is part of a stratum of 

“large” or “small” units (with respect to some size measure) or not, this establishment will 

receive the average value of its owning enterprise. This will contribute to increase the variability 

within strata, and thus, to increase the variance (2.7). The idea behind the use of weighted links is 

to share the value of the enterprise total iY  unequally between its establishments. Searching for 

optimal weighted links is to seek for sharing the value of the enterprise total iY  in such a way that 

the variance (2.11) will be minimal. 
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Deville and Lavallée (2006) obtained an estimator that has a variance less than or equal to that 

of the original estimator ˆ.Y  As mentioned earlier, estimator Ŷ  given by (2.9) will still provide 

unbiased estimates. Now, the variance (2.11) of this estimator depends on the weighted links 

, .j i  The problem is then to find at least one set of values ,j i  such that the variance of the 

estimator Ŷ  is minimal. That is, for the ,j i  that are greater than 0, we want to determine the 

values such that we obtain the most precise estimator ˆ .Y  The solution to this problem is 

obtained by minimising the variance (2.11) with respect to the weighted links , ,j i  which is a 

relatively standard and simple problem to solve. However, the solution is not trivial to write, and 

it often depends on the variable of interest .y  

If the optimal weighted links opt
,j i  depend on the variable of interest ,y  then the weights iw  

will also depend on .y  This means that a different set of weights will need to be computed for 

each variable of interest. To overcome this problem, Deville and Lavallée (2006) defined weak 

optimality, which corresponds to minimising the variance (2.11) for a very specific choice of a 

variable of interest: 1iY   for an enterprise i  of BU  and 0iY    for all other enterprises i  of 

( ).BU i i   The resulting weak-optimal weighted links do not involve, per se, the variable y  

and they turn out to be relatively easy to compute, i.e., they can be obtained as a closed-form 

solution, without the need of numerical computations. In addition, if some conditions given by 

Deville and Lavallée (2006) are satisfied, then weak-optimality corresponds to strong optimality 

independent of .y  That is, the weighted links opt
,

w
j i
  obtained through weak optimality 

correspond to the optimal weighted links opt
,j i  obtained by minimising (2.11), and they do not 

depend on the variable of interest .y  Unfortunately, these conditions are rarely satisfied in 

practice, even for simple sampling designs such as SRSWoR. 

Assuming SRSWoR without stratification, it can be shown that the weak-optimal weighted 

links are given by opt opt opt
, , ,1

1
AMw w w B

j i j i j i ij
M  


      for establishment Aj U  belonging 

to enterprise ,Bi U  0 otherwise. This solution agrees with the solution conjectured by Kalton 

and Brick (1995). They obtained this result based on the simplified situation where AM  2 and 
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with As  obtained through equal probability sampling. Their conclusions suggested the use of 

optimal values opt
, 1j i   when , 0,j i   and opt

, 0j i   when , 0.j i   Lavallée (2002) and 

Lavallée and Caron (2001) obtained results along the same lines by the use of simulations. As 

mentioned earlier, unfortunately, the weak-optimal weights opt
, 1w B

j i iM   do not correspond to 

strong-optimal weights that are independent of .y  

 

3  The problem with skewed populations 
 

As mentioned in the introduction, the application of the GWSM to business surveys can 

produce estimates with large variances. This lack of precision is due to the skewness of the 

population. We propose to illustrate the problem with a small example given in Figure 3.1. 

We want to study the revenue y  of the population BU  of Figure 3.1 containing BN  3 

enterprises, where enterprise 1 contains 1
BM  4 establishments, enterprise 2 contains 2

BM  4 

establishments, and enterprise 3 contains 3
BM  3 establishments. As it can be observed from 

Figure 3.1, the revenue y  of the BM  11 establishments can be considered as a skewed 

population. 

For the survey, we build a frame AU  containing the AM  11 establishments, and we decide 

to stratify the establishments according to three size strata: stratum h  1 contains the 

establishments with 750;y   h  2 contains those with 100 750;y   and h  3 those with 

100y   (in practice, such a stratification is not possible since the stratification variable y  is the 

same as the variable of interest, and instead, we would use some size variable x  highly correlated 

with the variable of interest ).y  In stratum h  1, we use a sampling fraction of 1 (i.e., 

1 1 1 1);A Af m M   for h  2, the sample size is 1 (i.e., 2 2 2 1 / 3);A Af m M   and for h 

3, the sample size is 2 (i.e., 3 3 3 2 / 6 1 / 3).A Af m M    

There are 1 3 15 45    possible samples As  that can be selected from ,AU  for estimating 

the true total Y 3,800. For each of these 45 samples, we computed Ŷ  using (2.1). The 

estimates are presented in the left box plot of Figure 3.2. 
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Figure 3.1 Small example 
 
 
 
 

We also computed estimates of Y  assuming the use of stratified SRSWoR without Indirect 

Sampling. That is, in each stratum ,h  we select a sample A
hs  of A

hm  establishments using 

SRSWoR and we measure only the variable of interest iky  for the establishments ik  of BU  

directly linked to the sampled establishments j  of .AU  Thus, we measure the variable of interest 

jy  for the sampled establishments j  of .AU  Unlike Indirect Sampling, we do not measure the 

variables of interest of the other establishments of the enterprises containing the initially sampled 

establishments. This corresponds to the classical sampling theory. Thus, we estimated Y  using 
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                                                           classic
1 1

ˆ .

A
hAH m

h
hjA

h jh

M
Y = y

m 
   (3.1) 

It can be proved that estimator (3.1) is unbiased, and its variance is given by 

                                            2
classic ,

1

ˆVar( )
A AH
h hA

h y hA
h h

M m
Y M S

m

 
   

 
  (3.2) 

where   22
,

1

( 1)

A
hM

A
y h hj h h

j

S y Y M


    and 
1

.

A
hM

A
h hj h

j

Y y M


   The estimates are presented 

in the right box plot of Figure 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2  Summary of the 45 possible estimates 
 
 

As we can see from Figure 3.2, the estimates obtained from Indirect Sampling (and the 

GWSM) are quite variable from one sample to the next. If we do not use Indirect Sampling (i.e., 

we use the classical approach), the variability is much less. This result can be seen directly from 
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the variances of Ŷ  and classic
ˆ .Y  Using formulas (2.7) and (3.2), we obtain the variance 

classic
ˆ( )V Y  80,480, while ˆ( )V Y   1,115,111! 

The next section presents methods designed to reduce the variability of the estimates produced 

using Indirect Sampling.  

 
4  Proposed methods 
 

The methods proposed in this section for reducing the variance of the estimates are mainly 

based on the use of weighted links for the computation of the estimates of Y  under Indirect 

Sampling. We will therefore use estimator (2.9), rather than estimator (2.3). A first set of 

methods is based on the use of weighted links ,j i  that are proportional to some measure of size 

for the establishments. The second set of methods uses the optimal solutions presented in Section 

2.2, under different assumptions. Finally, the last set of methods considers the use of the exact 

selection probabilities, rather than the estimation weights obtained from the GWSM, under two 

sampling scenarios. 

 
4.1  Methods based on the use of weighted links 
 

Method 1: ,j i  proportional to A
j  

 

We first propose to reduce the variance (2.11) by setting ,j i  proportional to .A
j  Formally, 

this can be written as , ,
A

j i j j il   . In business surveys, because stratification is usually done by 

size (according to some size measure), setting ,j i  proportional to A
j  can be viewed as assigning 

large weights to links of large establishments, and small weights to small ones, which is a natural 

approach. 

With this method, we have , , , ,1
.

AMB A A
j i j i i j j i j j ij

l l  


        Because of the many-to-

one correspondence between AU  and ,BU  we obtain , ,
B

j i j i i
      

, 1
.

B
iMA A

j j i jj
l


   

Therefore, from (2.8), we have 
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                                                               1

1

.

B
i

B
i

M A
jj

j M A
jj

t
w = 







 (4.1) 

Using (4.1), we can rewrite estimator (2.9) as 

                                                             
1 1

ˆ
A
hAH m

h
hjA

h jh

M
Y Z

m



 

   (4.2) 

where 

                                                                  

1

B
i

A
j i

hj M A
jj

Y
Z = 






 (4.3) 

for j h  and .j i  It should be noted that if all establishments j  of a given enterprise belong 

to the same stratum ,h  say, we have , 1 / ,B
j i iM   and estimator (4.2) is then equivalent to 

estimator (2.1) (and (2.3)). 

For computing the variance of ˆ ,Y  we use formula (2.11) with the values (4.3). For the 

example of Section 3, we get ˆ( )V Y    439,111, which is a strong reduction compared to 

ˆ( )V Y  1,115,111, but still relatively far from classic
ˆ( )V Y   80,480. 

 
Method 2: ,j i  proportional to some size measure jx  
 

We propose to reduce the variance (2.11) by setting ,j i  proportional to some size measure x  

correlated with the variable of interest .y  We assume that variable jx  is available for all 

establishments .Aj U  This variable could be used, for instance, to stratify the sampling frame 

AU  by size. As for Method 1, setting , ,
x
j i j j ix l   can be viewed as assigning large weights to 

links of large establishments, and small weights to small ones, which again is a natural approach. 

With this method, we have , , , ,1
.

AMx x xB
j i j i i j j i j j ij

x l x l


       

We have , , , ,1

B
iMx x xB

j i j i i j j i j j j i ij
x l x x l X


       because of the many-to-one 

correspondence between AU  and .BU  Therefore, from (2.8), we have 
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1

1
.

B
i AM

j jx
i A

ji j

t x
w =

X    (4.4) 

Using (4.4), we can rewrite (2.9) as 

                                                              
1 1

ˆ
A
hAH m

h x
x hjA

h jh

M
Y = Z

m 
   (4.5) 

where 

                                                                    ix
hj j

i

Y
Z = x  

X
 (4.6) 

for j h  and .j i  

To compute the variance of ˆ ,xY  we use formula (2.11) together with (4.6). For the example of 

Section 3, the variable x  corresponds to the number of employees (see Figure 3.1). The 

correlation between the revenue y  and the number of employees x  is relatively high ( 

92.8%). We obtain ˆ( )xV Y   686,540, which is again a strong reduction compared to ˆ( )V Y 

1,115,111, but still relatively far from classic
ˆ( )V Y   80,480. 

 
Method 3: ,j i  proportional to the variable of interest jy  
 

The third method proposed is to reduce the variance (2.11) by setting ,j i  proportional to the 

variable of interest y  measured for the establishment j  belonging to enterprise .i  Obviously, 

setting , ,
y
j i j j iy l   assigns large weights to links of large establishments, and small weights to 

small ones, which again is a natural approach. Because jy  is unknown at the beginning of the 

survey, this method might not look as being implementable since ,
y
j i  depends on .jy  Now, 

because of the many-to-one correspondence between AU  and ,BU  every quantity entering in 

,
y
j i  are measured through the Indirect Sampling process. 

The proposed method is feasible in this setting and we have , ,
y y yB
j i j i i    

, ,1
.

B
iM

j j i j j j i ij
y l y y l Y


  The weights y

iw  are directly given by (4.4), by replacing x  by .y  

Estimator ˆ
yY  obtained from (2.9) reduces to 
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1 1

ˆ ,

A
hAH m

h
y hjA

h jh

M
Y y

m 

    (4.7) 

which is nothing else than estimator (3.1) obtained from the classical sampling theory. 

Note that in general, this method requires one set of weighted links ,
y
j i  per variable of interest 

.y  One solution would be to restrict the determination of the weighted links to few key variables 

of interest, each associated with a larger set of correlated covariates. However, in the present 

situation, such a restriction is not necessary because estimator (4.7) corresponds simply to 

estimator (3.1). Indeed, at the end, we obtain estimation weights that simply correspond to the 

sampling weights. 

For computing the variance of (4.7), we simply use formula (3.2). For the example of 

Section 3, we obtain classic
ˆ ˆ( ) ( )yV Y V Y   80,480: this is a very large reduction compared to 

ˆ( )V Y  1,115,111. 

 
4.2  Methods using weak-optimal weighted links  
 

Method 4: Using weak-optimal weighted links opt ,SRS
,

w
j i
  under stratified SRSWoR 

 

This method uses the weak-optimal weighted links opt ,SRS
,

w
j i
  of Deville and Lavallée (2006) 

described in Section 2.2. As mentioned earlier, these are obtained by minimising the variance 

(2.11) for a very specific choice of variable of interest: 1iY   for an enterprise i  of BU  and 

0iY    for all other enterprises i  of ( ).BU i i   The resulting weak-optimal weighted links do 

not involve the variable ,y  per se. Writing the values of opt ,SRS
,

w
j i
  involves expressions that can 

be cleverly expressed in matrix notation. Using summations, the expressions become much more 

complicated, because they involve a mixture of the joint selection probabilities ,
A
j j  of 

establishments j  and j  that can belong to the same stratum, or not. 

Let us define the square matrix ,
A A

j j
   Δ  of size AM  where ,

A
j j   

,( ) / .A A A A A
j jj j j j         Let ,

A A
j j

   Γ  be the inverse of matrix ,AΔ  i.e., 1( ) .A A Δ Γ  Let 

,
A
i ij ij

   Γ  be the square submatrix of AΓ  containing all elements (establishments) ( , )j j  
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belonging to enterprise .i  Following Deville and Lavallée (2006), we have opt ,SRS
,

w
j i
   

, , ,1 1 1
.

B B B
i i iM M M

j i ij ij ij ijj j j
l     

     Unfortunately, for the present case, the many-to-one 

correspondence between AU  and BU  does not help further in obtaining a simpler form for 

opt ,SRS
, .w

j i
  

Note that if an enterprise i  contains an establishment 0j  in the take-all stratum h  1, we 

have 
0 00 0, ,( ) / 0A A A A A A

j jj j j j j j             and the matrix AΔ  is singular. In this case, the 

chosen solution is to set opt ,SRS
, 1w

j i
   for the take-all establishment 0j  of enterprise ,i  and 

opt ,SRS
, 0w

j i

   for the other establishments 0j j   of enterprise .i  This means that 

0

opt ,SRSw
hjZ =  

iY   and opt ,SRS 0w
hjZ =
  for 0 :j j   this means that the complete value iY  will be assigned to 

establishment 0j  that contributes 0 to the variance. 

We have 

                                                       opt ,SRS opt ,SRS
,

1

.

B
i AM

jw w
i j iA

j j

t
w = 




   (4.8) 

Using (4.8), we can rewrite estimator (2.9) as 

                                                    opt ,SRS
opt ,SRS

1 1

ˆ
A
hAH m

h w
w hjA

h jh

M
Y Z

m



 

   (4.9) 

where 

                                                          opt ,SRS opt ,SRS
,

1

BN
w w
hj i j i

i

Z = Y 



   (4.10) 

for j h  and .j i  

To compute the variance of opt ,SRS
ˆ ,wY   we use formula (2.11) with the values (4.10). For the 

example of Section 3, we get opt ,SRS
ˆ( )wV Y    23,111, which is a tremendous reduction of 

variance compared to both ˆ( )V Y   1,115,111 and classic
ˆ( )V Y   80,480. 
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Method 5: Using weak-optimal weighted links opt ,PS
,

w
j i
  under Poisson Sampling 

 

In the context of business surveys, Poisson Sampling selects sample As  by going through the 

AM  establishments of population AU  and selecting establishment j  if ,A
j ju    where 

(0,1).ju U  The selection probabilities are simply given by A A A
j h hm M   for j h  and the 

resulting realised stratum sample size A
hm  is random. In this context, this sampling design can 

also be seen as stratified Bernoulli Sampling (see Särndal, Swensson and Wretman 1992). 

Poisson Sampling (or stratified Bernoulli Sampling) is a very simple sample design. As it can 

be noted, the selection of each establishment of As  is done independently from one establishment 

to another. This means that the joint selection probability ,
A
j j  of two different establishments j  

and j  of AU  is simply given by , .A A A
jj j j      By conditioning on ,A

hm  it can be shown that 

stratified Bernoulli Sampling corresponds to stratified SRSWoR. The estimator to be used with 

stratified Bernoulli Sampling is the ratio estimator 

                                                              
1 1

.

A
hAH m

h
hjA

h jh

M
Y Z

m



 

 





 (4.11) 

The variance of estimator (4.11) is approximately given by formula (2.11) (see Brewer and Hanif 

1983). Because of the relative closeness between the two designs, assuming Poisson Sampling 

can be a reasonable approach for computing the weak-optimal weighted links opt ,PS
, .w

j i
  

The weak-optimal weighted links opt ,PS
,

w
j i
  are obtained by computing opt ,SRS

,
w
j i
  as in 

Method 4, but assuming that sample selection is done using Poisson Sampling. This assumption 

significantly simplifies the calculations because the matrix AΔ  then becomes a diagonal matrix, 

which is easy to invert. Because of the many-to-one correspondence between AU  and ,BU  we 

obtain after the minimisation process 

                                                            ,opt ,PS
, (1 )

A
j j iw

j i A
j i

l 
 

  
  (4.12) 
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where 
1

(1 ).
B
iM A A

i j jj
      Therefore, from (2.8), we have 

                                                         opt ,PS

1

1
.

(1 )

B
i AM

jw
i A

ji j

t
w =

    (4.13) 

Using (4.13), we can rewrite (2.9) as 

                                                       opt ,PS
opt ,PS

1 1

ˆ
A
hAH m

h w
w hjA

h jh

M
Y Z

m



 

   (4.14) 

where 

                                                           opt ,PS

(1 )

A
j iw

hj A
j i

Y
Z =   

  
 (4.15) 

for j h  and .j i  Note that the previous results assume that 0 1A
j    for all 

establishments j  of .AU  For the case where 1A
j   for a given establishment 0j  of an 

enterprise ,i  we set 
0

opt ,PS
, 1,w

j i
   and opt ,PS

, 0w
j i

   for 0 .j j   For computing the variance of 

opt ,PS
ˆ ,wY   we use formula (2.11) with the Z - values given by (4.15). 

For the example of Section 3, we get opt ,PS
ˆ( )wV Y     22,857. Again, this is a very large 

reduction of variance compared to both ˆ( )V Y   1,115,111 and classic
ˆ( )V Y   80,480. 

 
Method 6: Using weak-optimal weighted links opt ,grp

,
w
j i
  under Poisson Sampling of 

grouped-establishments 
 

This method consists once more in using the weak-optimal weighted links of Deville and 

Lavallée (2006) described in Section 2.2, but with grouped-establishments. As a first step, we 

build grouped-establishments in the population AU  where a grouped-establishment *j  consists 

in all establishments that are part of the same stratum h  and that are belonging to the same 

enterprise .i  This creates a new population 
*AU  containing 

*AM  grouped-establishments. The 

sample 
*As  of 

*Am  grouped-establishments contains all grouped-establishments formed from the 
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establishments of sample .As  The selection probability of the grouped-establishment *j  is 

given by 

*

* * **

*

( )( 1)...( 1)
1 1

( 1)...( 1)

A
h j

A A A AA
h h h hh j j jA

A A A Aj A
h h h hh

A
h

M M

M M M M M M mm

M M M mM

m

 
             

   
 
 

 (4.16) 

for * ,j h  where *j
M  is the number of establishments within the grouped-establishment *.j  

The rationale behind the use of grouped-establishments is to have only one unit per stratum 

belonging to a given enterprise. Because, by construction, the grouped-establishments *j  of an 

enterprise i  belong to different strata, their selection is done independently from one 

grouped-establishment to another. This implies that the solution to weak optimality is then 

similar to the one obtained in Section 4.5 for Poisson Sampling, but with grouped-establishments. 

Therefore, we have  

                                                           
* *

*

*

,opt ,grp
*, (1 )

A

j j iw
Aj i

ij

l



 

  
  (4.17) 

where 
*

* *

* **

*

1
(1 )

B
iM A A

i j jj 
      and 

*B
iM  is the number of groups-establishments contained in 

enterprise .i  

The use of grouped-establishments can be seen as an intermediate step in the Indirect 

Sampling process going from population AU  to population .BU  That is, the Indirect Sampling 

process goes from population AU  to population 
*

,AU  and then from population 
*AU  to 

population .BU  In the present case, we have *j j i   for all establishments. Following the 

rules of transitivity defined by Deville and Lavallée (2006), we can show that the weak-optimal 

weighted links opt ,grp
,

w
j i
  for *j j  and *j i  (and thus, )j i  are given by 

                                                       
*

* *

,opt ,grp
, *

.
(1 )

A
j ijw

j i A
ij j

l

M



 

  
  (4.18) 
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Therefore, from (2.8), we have 

                                             

**
*

*

*
*

* *

opt ,grp
*

11

1
.

(1 )

B
ji

MA AM
j jw

i AA
jji jj j

t
w =

M






  
   (4.19) 

Using (4.19), we can rewrite (2.9) as 

                                                     opt ,grp
opt ,grp

1 1

ˆ
A
hAH m

h w
w hjA

h jh

M
Y Z

m



 

   (4.20) 

where 

                                                      

*

*

*

* *

opt ,grp
*

(1 )

A

j iw
hj A

ij j

Y
Z =  

M




 
 (4.21) 

for j h  and * .j h  Note that the previous results assume that 
*

*0 1A

j
    for all 

grouped-establishments *j  of 
*

.AU  For the case where 
*

* 1A

j
   for a given 

grouped-establishment *
0j  of an enterprise ,i  we set *

opt ,grp
, , /w

j i j i j
l M   for the all the 

establishments j  of this grouped-establishment *
0 ,j  and opt ,grp

, 0w
j i
   for all other 

establishments not part of the grouped-establishment *
0 .j  We have 

*

* 1A

j
   when at least one 

establishment j  belonging to *j  has 1.A
j   For computing the variance of opt ,grp

ˆ ,wY   we use 

formula (2.11) with the values (4.21). 

For the example of Section 3, we get opt ,grp
ˆ( )wV Y    23,000. Again, this is a very significant 

reduction of variance compared to both ˆ( )V Y   1,115,111 and classic
ˆ( )V Y   80,480. 

 
4.3  Other methods 
 

Method 7: Using a designated establishment 
 

As mentioned before, the rationale behind the use of grouped-establishments in Method 6 is to 

have only one unit per stratum belonging to a given enterprise. Using a similar idea, one can 

decide on a single establishment that will represent the complete enterprise. That is, for each 
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enterprise belonging to ,BU  we identify one establishment of AU  that will be used for the 

selection of its owning enterprise. A natural choice for the designated establishment within the 

enterprise is the one with the largest value for a given variable .x  For example, x  can be the 

establishment’s revenue. 

Choosing a designated establishment yields a new sampling frame AU   that contains the same 

number of units as the target population ,BU  i.e., .A BM N   Since there is a one-to-one 

correspondence between the designated establishment and its owning enterprise, the designated 

establishment of enterprise i  may also be labelled using .i  The new frame AU   can keep the 

same stratification definition as the original frame .AU  That is, if the stratification of AU  was 

done by province and industrial classes based on the establishments’ values, the stratification of 

AU   is done by the same classes based on the designated establishments’ values. 

From the sampling frame ,AU   we select a sample As   of Am   designated establishments 

with stratified SRSWoR by using sampling fractions equal to the original ones, i.e., 

/ / ,A A A A A
i h h h hm M m M      for .i h  The estimation of the total Y  is obtained using the 

following estimator: 

                                                              
1 1

ˆ .

A
hAH m

h
iA

h ih

M
Y  Y

m







 

   (4.22) 

It can be shown that estimator (4.22) is unbiased, and its variance is given by 

                                             2

1

ˆVar( )
A AH
h hA

h YhA
h h

M m
Y M S

m

 



 


 
   

 
  (4.23) 

where   22

1

( 1)

A
hM

A
Yh hi h h

i

S Y Y M







    and 
1

.

A
hM

A
h hi h

i

Y Y M






   

Note that although we only keep one designated establishment per enterprise, we are still able 

to produce estimates per stratum, or for any domain of interest (e.g., different industrial 

activities). For example, let us consider the small example of Section 3. For the first enterprise of 
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BU  (i.e., the one with a total revenue of 2,400), the designated establishment would be the first 

establishment of the take-all stratum of AU  (i.e., the establishment with 25 employees). None of 

the three other establishments of this enterprise would be available for sampling. However, if we 

were interested in producing an estimate for the second stratum, we would simply restrict the 

computation of the values iY  in (4.22) to the establishments belonging to this second stratum. In 

the present case, rather than using iY  2,400 in (4.22), we would then use iY  300. This 

corresponds to domain estimation (Särndal, et al. 1992). 

For the example of Section 3, we obtain ˆ( )V Y   1,820,000! With this method, since an 

establishment inherits all revenues of the enterprise, the use of a designated establishment is 

advantageous when this establishment is in the take-all stratum. However, the designated 

establishment may itself be contained in a take-some stratum, and this results in a stratum that is 

even more skewed. The total revenue of the enterprise, multiplied by the sampling weight, is 

assigned to this take-some stratum, and this increases the variance significantly. 

 
Method 8: Using the selection probabilities of the enterprises 
 

As mentioned in Lavallée (2002, 2007), using the Rao-Blackwell theorem, sufficient statistics 

can improve an existing estimator by producing a new estimator with a mean squared error that is 

smaller than or equal to that of the initial estimator (see Cassel, Särndal and Wretman 1977). 

Note that this form of improvement was used, for instance, by Thompson (1990) in the context of 

Adaptive Cluster Sampling. 

Starting from estimator (2.1) (or (2.3)), the estimator RBŶ  obtained by using the Rao-

Blackwell theorem is given by 

                                                RB ,
1 1

( 1 | )
ˆ

B A A Bn M
ji

j iB A
i ji j

P t sY
Y l

L 




   (4.24) 

where ( 1 | )A B
jP t s  is the probability of having selected establishment j  from ,AU  given that 

the Bn  enterprises of Bs  have been selected from .BU  
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Using the many-to-one correspondence between AU  and ,BU  an approximation to the 

probability ( 1 | )A B
jP t s  can be obtained. That is, for ,j i  we have 

                                       

( 1 | ) ( 1 | )

( 1, ) / ( )

( 1) / ( )

/

A B A B
j j

A B B
j

A B
j

A B
j i

P t s P t i s

P t i s P i s

P t P i s

   

   

  

  

 (4.25) 

where B
i  is the selection probability of enterprise ,Bi U  which corresponds to the probability 

of selecting any of its B
iM  establishments. Note that result (4.25) becomes exact in the context of 

Poisson Sampling. Using (4.25), estimator (4.24) is then approximately equivalent to the 

following Horvitz-Thompson estimator 

                                                                   HT
1

ˆ .

Bn
i

B
i i

Y
Y




  (4.26) 

Since estimator (4.26) is nothing else than a Horvitz-Thompson estimator based on the selection 

of enterprises, its variance is given by 

                                                    ,
HT

1 1

( )ˆ .

B B B B BN N
ii i i

i iB B
i i i i

Y Y Y 


  

   


   (4.27) 

The computation of the selection probability B
i  requires the knowledge of the selection 

probabilities A
j  of all B

iM  establishments of enterprise .i  In general, this can be difficult or 

even impossible to obtain (see Lavallée 2002, 2007). This can be a severe barrier for using 

estimator (4.26) in practice, and actually, this is one of the driving reason why using the GWSM. 

However, in the present case, this reveals to be possible because the complete frame AU  is 

available for the selection of the establishments. The task is also simplified by the use of 

stratified SRSWoR. The selection probabilities B
i  can then be computed by adapting formula 

(4.16). It is also possible to compute the joint selection probabilities , ,B
i i  but this is more 

difficult. 
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For the example of Section 3, we obtain HT
ˆ( )V Y   14,545, and this value corresponds to the 

lowest variance of the proposed methods. 

 
5  Simulations using real data 
 

The simulations reflect a typical business survey at Statistics Canada. Three populations 

commonly surveyed by Statistics Canada were chosen. The populations of establishments of the 

industries of Manufacturing, Retail Trade and Restaurants were extracted from the Business 

Register (BR). These populations are known to have a skewed distribution for economic 

variables such as revenue, especially the first two. Stratified SRSWoR was used for the 

simulations, stratified by the industry, the region and the class of revenue. The algorithm of 

Lavallée-Hidiroglou (1988) was used to create the classes of revenue, determine the sample size 

and perform the allocation. The establishments were divided in three strata based on their size: 

one take-all and two take-some strata. A coefficient of variation of 5% was targeted in each of the 

strata by industry and region. The following table contains some statistics on the population. 
 
 
 
Table 5.1 
Simulation populations, sample counts and statistics 
 

Industry BN  AM  Am  Average 
revenue 

Variance Skewness 

Manufacturing 96,955 100,109 2,223 4,364,808 1.08x1016 164 

Retail Trade 142,020 159,247 3,627 2,034,111 3.29x1014 133 

Restaurants 107,358 113,425 2,439 561,764 4.43x1012 106 

Total 346,333 372,781 8,289  ---  

 
 
 

The revenue variable available on the BR was used as the variable of interest .y  For these 

simulations, since the values of this variable are known for all units, no sample selection was 
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needed for most of the methods. It should be noted that for Method 2 ,( j i  proportional to some 

size measure ),jx  the number of employees was used. 

Except for Methods 7 and 8, the true variances were calculated from the data using formula 

(2.11). For Method 7, we used formula (4.23). For Method 8, we needed to calculate the true 

probabilities of selection B
i  of all enterprises. Although it would have been possible to compute 

these probabilities with exact formulas, we choose to compute them using a two-step 

Monte-Carlo simulation. One reason for this is variance formula (4.27) that uses the joint 

selection probabilities ,
B
i i  which involves too many pairs ( , ).j j  For the first step of the Monte-

Carlo simulation, we selected 20,000 samples of establishments using the stratified SRSWoR 

design described above. For each sample, we identified which enterprise ended up being selected. 

Over those 20,000 samples, we were able to estimate the probability of selection B
i  of each 

enterprise i  under that design of unequal probabilities. Once these probabilities were derived, we 

conducted another Monte-Carlo simulation for computing the variance. We selected R  20,000 

samples As  of establishments using again the stratified SRSWoR design described above. We 

then obtained the corresponding samples Bs  of enterprises. For each replicate , 1, , ,r r R   we 

produced an estimate HT,
ˆ

rY  of Y  using estimator (4.26). The variance was computed using 

                                                   ( ) 2
MC HT HT, HT

1

1 ˆˆ ˆ( ) ( )
R

R
r

r

V Y Y Y
R 

   (5.1) 

where ( )
HT HT,1

ˆ ˆ / .
RR

rr
Y Y R


   Note that because estimator (4.26) is unbiased, we have 

( )
HT

ˆ .RY Y  

For each estimator ˆ ,Y  the coefficient of variation was computed using 

                                                              
ˆ( )ˆCV( ) .

V Y
Y

Y
  (5.2) 
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5.1  Results of the simulation 
 

For the classical GWSM and all the methods presented, the estimates, variances and 

coefficients of variation were computed. The graph below presents the CVs obtained at the 

national level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Except for Method 7, all methods show a decrease in the variance, and often the reduction is 

substantial. As described earlier, Method 7 (using designated establishments) determines a single 

establishment within an enterprise based on the auxiliary variable, and the whole enterprise is 

assigned to that establishment. In other words, a given establishment inherits all the revenue of 

the enterprise. This is beneficial when the designated establishment is in a take-all stratum. 

However, if the designated establishment is in a take-some stratum, the distribution within that 

stratum will become more skewed. One hundred percent of the revenue of the enterprise, times its 

sampling weight is assigned in that stratum, and the resulting variance is increased significantly. 

All the other methods provided reasonable results and we analyze them in detail via the graphs 

that follow. 

                        Graph 5.1  Coefficients of variation by method 
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The following graphs show the CV for each take some strata by industry.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         Graph 5.2  CV for Manufacturing by strata 

 

                    GWSM              Meth 1              Meth 2               Meth 3              Meth 4               Meth 5              Meth 6 

100% 
 

90% 
 

80% 
 

70% 
 

60% 
 

50% 
 

40% 
 

30% 
 

20% 
 

10% 
 

0% 
Atl  

Prov 
02 

Atl  
Prov 
03 

BC  
 02 

BC 
 03 

ON 
02 

ON 
03 

QC 
02 

QC 
03 

West  
Prov 
02 

West  
Prov 
03 

                    Manufacture 

   
C

V
 

                            Graph 5.3  CV for Retail Trade by Strata 
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Note 1  The scale of the CV is different for Manufacturing than for the two other industries. 
Note 2  The CVs per stratum of methods 7 and 8 are not showed here because they are not pertinent for the present comparison. 

The reason is that for these two methods, the notion of stratum is not the same as for the other methods. The stratification 
defined by the original sample design is at the establishment level. For methods 7 and 8, sampling was done at the 
enterprise level, and therefore a typical stratum for methods 1 to 6 became a domain for methods 7 and 8. Of course, the 
variances associated with methods 7 and 8 are much higher, making any comparison with the other methods irrelevant.  

 
 

The CVs are particularly high for the classical GWSM in some strata, especially in the 

industry of Manufacturing. This was expected because the skewness of the distribution of the 

variable of interest was the highest among the three industries. Furthermore, in this industry, we 

have establishments with revenues that can vary a lot within the same enterprise, and these 

establishments can be spread amongst several strata. It is for these reasons that the variance of the 

classical GWSM ends up being very high. 

All graphs show that there is a reduction in the CV, thus in the variance, by using any of the 

suggested methods. The CV are generally lower for the other methods, as compared to the 

classical GWSM (represented by the dark blue line with diamonds). 

 

                               Graph 5.4  CV for restaurants by strata 

 

                    GWSM              Meth 1              Meth 2               Meth 3              Meth 4               Meth 5           Meth 6 

 

20% 
 

18% 
 

16% 
 

14% 
 

12% 
 

10% 
 

8% 
 

6% 
 

4% 
 

2% 
 

0% 
Atl  

Prov 
02 

Atl  
Prov 
03 

BC  
 02 

BC 
 03 

ON 
02 

ON 
03 

QC 
02 

QC 
03 

West  
Prov 
02 

West  
Prov 
03 

                    Restaurant 
   

 C
V

 



Survey Methodology, June 2013 213 
 

 
Statistics Canada, Catalogue No. 12-001-X 

5.2 Comparison of the proposed methods 
 

Method 1 yields very promising results, given its simplicity. This method results in some of 

the lowest CV amongst all methods. It is really targeting the source of the problem of the 

GWSM: the need of an unequal allocation of the weights, somewhat proportional to the size of 

the variable of interest. Since most of business surveys are using stratification by size, this 

method works well. It also has the advantage of not depending directly on the variable of interest. 

Method 2 uses an auxiliary variable (here, the number of employees) to distribute the weights. 

This variable is not that well correlated with the variable of interest, and this explains why it has 

the lowest decrease in variance. In fact, this method is a weaker version of Method 3. 

Method 3 is sharing the weight proportionally to the variable of interest ,y  which is the 

establishment revenue within the enterprise. The method performs very well both at the national 

and provincial level. It is generally slightly higher than method 1, 4, 5 and 6 because of the high 

skewness of the distribution of the revenue. 

Methods 4, 5 and 6 give very similar results, offering a CV between 6% and 10% for Retail 

Trade and Restaurants, and between 10% and 25% for Manufacturing. The similarity in the 

results for all three methods is reasonable because they all aim to produce the lowest possible 

variance. Whenever there is one establishment of an enterprise that is in a take-all stratum, these 

methods concentrate all values on this establishment, and assign links of zero to all other 

establishments of the enterprise. This is a natural choice to minimize the variance since the 

contribution to the variance of that enterprise becomes null. Since an establishment of a large 

enterprise can be part of a take-all stratum, the variance turns out to be lower than for any other 

methods. It is for these reasons that these three methods are the best way to share the weight. 

However, it was not possible to determine which one of the three was the best. 

Method 7 is not providing good results. Recall that for this method, we let a single designated 

establishment represent the whole enterprise. All the establishment values of the variable of 

interest are then summed to the enterprise, and assigned to that designated establishment. The 
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distribution of the variable of interest by stratum becomes even more skewed and this leads to a 

larger variance. From a sampling viewpoint, an enterprise ends up in a single stratum (because it 

is represented by a single establishment), which might not be take-all. In addition, this is not 

efficient for producing estimates at the provincial or industry level. The estimates cannot benefit 

from the stratification of establishments, while this is possible for the other methods. This also 

contributes to a higher variance. 

Method 8 is using the selection probabilities of the enterprises obtained via simulations. This 

method is doing well with a CV of 1.3% at the national level. It matches Method 4, 5 and 6. 

However, this method can reveal to be difficult to apply in practice. We must either calculate 

explicitly the second order selection probabilities , ,B
i i  which can be very difficult to obtain, or 

estimate them by simulation, which is very time consuming.  

 
6  Conclusion 
 

The GWSM can be used in the context of business surveys, but it can result in large variances 

because of the skewness of the data associated with such populations. Eight alternate methods to 

share the weights were proposed to reduce the variance. A simulation was conducted to compare 

those using real data. The simulations replicated a typical business survey using stratified 

SRSWoR. All proposed methods showed a reduction in variance. The simulations showed that 

the best methods were obtained by sharing the weights proportional to the A
j  (Method 1), or 

using weak-optimal weighted links (Methods 4, 5 and 6). The weighted links under Poisson 

sampling (Method 5) is the preferred method. In theory, it is close to the optimal method, and it is 

also the simplest to implement. 
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On the performance of self benchmarked small area 
estimators under the Fay-Herriot area level model 

Yong You, J.N.K. Rao and Mike Hidiroglou1 

Abstract 

We consider two different self-benchmarking methods for the estimation of small area means based 

on the Fay-Herriot (FH) area level model: the method of You and Rao (2002) applied to the FH 

model and the method of Wang, Fuller and Qu (2008) based on augmented models. We derive an 

estimator of the mean squared prediction error (MSPE) of the You-Rao (YR) estimator of a small 

area mean that, under the true model, is correct to second-order terms. We report the results of a 

simulation study on the relative bias of the MSPE estimator of the YR estimator and the MSPE 

estimator of the Wang, Fuller and Qu (WFQ) estimator obtained under an augmented model. We 

also study the MSPE and the estimators of MSPE for the YR and WFQ estimators obtained under a 

misspecified model. 
 

Key Words: Augmented model; Empirical best linear unbiased prediction; Mean squared 
prediction error; Model misspecification. 

 
 

1  Introduction 
 

Subpopulations or domains are called small areas when the domain sample sizes are not large 

enough to provide reliable area-specific direct estimates of domain parameters. In those cases, it 

becomes necessary to use model-based indirect estimators that make use of sample data from 

related areas through linking models to achieve significant gain in efficiency over direct 

estimators. In this paper we focus on a basic area level model, called the Fay-Herriot (FH) model 

(Fay and Herriot 1979), and associated empirical best linear unbiased predictors (EBLUPs) of 

small area means.  

Those EBLUPs do not necessarily agree with direct estimators for aggregates which are 

preferred in practice because they are based on large enough sample sizes to satisfy reliability 

requirements and do not depend on models. As a result, benchmarking is often done to force 

agreement. In this paper, we focus on two methods of self benchmarking, based on modifications 
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to the EBLUPs. The first method (WFQ), due to Wang, Fuller and Qu (Wang et al. 2008), uses 

an augmented FH model and the associated EBLUPs, denoted as WFQ estimators. The second 

method (YR), also proposed by Wang, Fuller and Qu, is based on an approach used by You and 

Rao (2002) in the context of unit level models. The YR estimators are obtained by modifying the 

optimal estimators of the regression parameters used in the EBLUPs to force agreement. Because 

of the modifications to the EBLUPs, benchmarked estimators WFQ and YR will have higher 

mean squared predication errors (MSPEs).  

This paper has two main objectives. The first objective is to compare MSPEs and their 

estimators for the YR and WFQ estimators of small area means. Section 2 reviews the 

expressions for MSPEs and associated estimators for the EBLUP and the WFQ estimators. 

Section 3 develops expressions for MSPE and its estimator for the YR estimator. Section 4 

compares the MSPEs and their estimators in a simulation study. 

The second objective of our paper is to examine the performance of the WFQ and YR 

estimators and their MSPE estimators when the linking model in the FH model is misspecified 

due to an omitted variable. WFQ also studied the effect of misspecification of the linking model 

for a particular example, for which they showed that the YR estimator leads to large bias whereas 

the WFQ estimator did not. However, this result was due to the fact that in their simulation study, 

the augmenting variable was highly correlated with an omitted covariate (correlation coefficient 

  0.983). As a result, the augmented model used was in fact close to the true model, leading to 

the superior performance for the WFQ estimator. In Section 4, we consider a different omitted 

variable that is weakly correlated with the augmenting variable (  -0.116) so that the 

augmented model is also misspecified. We compare the biases, MSPEs and their estimators for 

the EBLUP, YR and WFQ estimators obtained under the misspecified model.  
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2  EBLUPs and WFQ estimators 
 

Suppose that we have m  small areas with design-unbiased direct estimators, ,iy  of the area 

means , 1, , .i i m    The FH model refers to ( , )i iy   and associated area level auxiliary 

variables 1( , , )i i ipx x x    with 1 1.ix   Assuming independent sampling across areas, the 

FH model may be written as a linear mixed model given by  

                                          , 1, , ,i i i i i iy e x v e i m          (2.1) 

where i i ix v     is the linking model, and ie  is the sampling error with mean 0 and known 

variance 2 ,i  which is independent of the area specific random effect .iv  Sampling is 

independent across areas and the ’siv  are assumed to be independent and identically distributed 

with mean 0 and variance 2 .v  

The best linear unbiased predictor (BLUP) of i  under the “true” model (2.1) is given by  

                                                           (1 ) ,i i i i iy x         (2.2) 

where 2 2 2/ ( )i v v i       and   is the optimal weighted least squared (WLS) estimator of   

given by  

                                                  

1

1 1

,
m m

i i i i i i
i i

x x x y



 

   
      

   
   (2.3) 

see Rao (2003, page 116). The estimator i  depends on the unknown model variance 2 ,v  and 

replacing 2
v  in (2.2) by a suitable estimator 2 ,ˆ v  we get the EBLUP:  

                                                      EBLUPˆ ˆˆ ˆ(1 ) ,i i i i iy x        (2.4) 

where 2 2 2ˆ / ( )ˆ ˆi v v i       and ̂  is obtained from (2.3) by replacing i  by ˆ .i  In this paper, 

we use the restricted maximum likelihood (REML) estimator of 2 ,v  assuming normality of iv  

and .ie  The weighted sum EBLUP

1
ˆm

i ii
w


  of the EBLUPs (2.4) does not necessarily agree with 

the corresponding weighted direct estimator 
1

m

i ii
w y

  of the aggregate, where the ’siw  are 
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pre-specified weights such that 
1

m

i ii
w y

  is a design-consistent estimator of the aggregate (total 

or mean). If the gap between EBLUP

1
ˆm

i ii
w


  and 

1

m

i ii
w y

  is large, it may indicate some model 

failure that should be taken care of before proceeding to benchmarking, as noted by the Associate 

Editor.  

An estimator of the mean squared prediction error EBLUP EBLUP 2ˆ ˆMSPE( ) E( )i i i      correct 

to second-order terms, under REML estimation, is given by  

                                                EBLUP
1 2 3

ˆmspe( ) 2 ,i i i ig g g     (2.5) 

where 2
1 ˆi i ig     is the leading term of order (1),O  and 2 ig  and 3ig  are lower order terms of 

order 1( )O m   accounting for the variability of ̂  and 2ˆ v  respectively (Rao 2003, page 128). We 

have  

1

2 2 2
2

1

ˆˆ ˆ ˆ(1 ) ( ) (1 )ˆ
m

i i i i v i i i i i i
i

g x V x x x x x





 
           

 
  

and  

1

2 2 2 2 3 2 2 2
3

1

2( ) ( ) ( ) ,ˆ ˆ
m

i i v i v i
i

g



 



          
  
  

where ˆ ( )V   is the estimator of   1
2

1
V( ) .

m

v i i ii
x x




     The MSPE estimator (2.5) is 

nearly unbiased in the sense that  

EBLUP EBLUP 2ˆ ˆE{mspe( )} MSPE( ) ( ).i i O m      

WFQ obtained an EBLUP estimator, EBLUPˆ ,i  under the following augmented FH model: 

                                              ,i i ei i i i iy x w u e e          (2.6) 

where the random effects iu  are independent with E( )iu  0 and 2Var( ) ,i uu    and is 

independent of .ie  The augmenting auxiliary variable is taken as 2 .ei i iw w   WFQ showed that 
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the EBLUP estimator of i  under the augmented model (2.6), EBLUP WFQˆˆ ,i i    is self-

benchmarking in the sense of satisfying  

WFQ

1 1

ˆ .
m m

i i i i
i i

w w y
 

    

The EBLUP WFQˆ
i  under the augmented model (2.6) is obtained from (2.4) by changing ix  to 

2( , ), ˆi ei vx w   to 2ˆ u  and ˆ   to ˆ ˆ( , ).   The estimator of WFQˆMSPE( )i  is similarly obtained from 

(2.5). Under the true model (2.1), the MSPE of WFQˆ
i  will be larger than the MSPE of EBLUPˆ ,i  but 

its estimator, WFQˆmspe( ),i  will remain nearly unbiased under the true model, as noted by the 

Associate Editor and a referee, because the true model is a special case of the augmented model 

with 0.   

 
3  YR estimator 
 

WFQ applied the You and Rao (2002) method to model (2.1) and obtained an estimator of i  

given by  

                                                      YR YRˆ ˆˆ ˆ(1 ) ,i i i i iy x        (3.1) 

where YR̂  is obtained from  

                                   

1

YR

1 1

(1 ) (1 )
m m

i i i i i i i i
i i

w x x w x y



 

              
      
   (3.2) 

by replacing i  by ˆ .i  Note that the YR estimator (3.1) has the same form as the EBLUP 

EBLUPˆ ,i  but it uses a non-optimal estimator for .  The YR estimators YRˆ
i  are self-

benchmarking, i.e., YR

1 1
ˆ ,

m m

i i i ii i
w w y

 
    since by (3.2)  

YR

1

(1 )( ) 0.
m

i i i i
i

w y x


       
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However, the MSPE of YRˆ
i  will be slightly higher than the MSPE of EBLUPˆ

i  based on ˆ ,  

because ̂  is asymptotically more efficient than YRˆ .  

As in the case of EBLUPˆ ,i  the estimator of YRˆMSPE( )i  has 1 2,i ig g  and 3ig  terms. We need 

to estimate the variance of YR  in order to get the 2 ig  term in the estimator of YRˆMSPE( );i  the 

other terms 1ig  and 3ig  are not affected. It follows from (3.2) that 

1 1

YR 2 2 2 1

1 1 1

V( ) (1 ) (1 ) (1 ) .
m m m

v i i i i i i i i i i i i i
i i i

w x x w x x w x x

 



  

                          
          
    (3.3) 

The estimator YRˆ ( )V   is obtained by substituting 2ˆ v  and ˆ i  for 2
v  and i  in (3.3).  

The estimator of YRˆMSPE( )i  is given by  

                                                   YR YR
1 2 3

ˆmspe( ) 2 ,i i i ig g g     (3.4) 

where  

YR 2 YR
2

ˆˆ(1 ) ( ) .i i i ig x V x     

The MSPE estimator (3.4) is nearly unbiased under the true model (2.1), similar to the MSPE 

estimator (2.5) of EBLUPˆ .i  
 

Remark: Any estimator ˆ iy  of i  may be adjusted as  

 1 1
ˆ ˆ ˆ

m ma
i i i i i i ii i

y y a w y w y
 

     

for specified ia  to satisfy the benchmarking constraint 
1 1

,ˆ
m ma

i i i ii i
w y w y

 
   where 

1
1.

m

i ii
w a


  In particular, we can use EBLUPˆˆ i iy    to obtain the adjusted EBLUP estimator. 

As noted by WFQ, both YRˆ
i  and WFQˆ

i  are estimators of the form ˆ a
iy  because 

1 1
ˆ

m m

i i i ii i
w y w y

 
   is equal to zero when ˆ iy  is set equal to YRˆ

i  or WFQˆ .i  Any set of 

estimators { }ˆ iy  that satisfy 
1 1

ˆ
m m

i i i ii i
w y w y

 
   has the self-benchmarking property.  
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4  Simulation study 
 

We conducted a small simulation study on the bias and MSPE of YR and WFQ estimators and 

on the relative bias and coefficient of variation (CV) of YR and WFQ estimators of MSPE, using 

the simulation setup of WFQ. As in WFQ, we considered m  50 small areas (states) with area 

sample sizes in  ranging from 7 to 58, and known sampling variances 2 16 / .i in   The weights 

iw  used in the benchmarking constraint are taken as   150

1
,i i ii

w P P



   where iP  is the 

population of state i  reported in Table 4.1 of WFQ.  

In WFQ, the true model is given by  

                                                        0 1 ,i i i iy z v e       (4.1) 

with 0 6, 1  3, 2~ N(0, 1)i vv    and ~ N(0, 16 / ).i ie n  WFQ used 

 500.2 0.2

1
50i i ii

z P P


    as the covariate values in the true model, and the chosen ’siz  are 

highly correlated with the associated weighted augmented variable 2 ;ei i iw w   correlation 

coefficient   0.983.  

In WFQ, the mis-specified model is taken as the mean model  

                                                                i i iy v e     (4.2) 

with 2~ N(0, )i vv    and ~ N(0, 16 / ),i ie n  and this choice makes the associated augmented 

model  

                                                       2
0i i i i iy w u e        (4.3) 

almost the same as the true model (4.1).  

To reflect misspecification by the augmented model, we generated 50 values from N(1, 1)  and 

these 50 values 1 50( , , )z z  were held fixed across the simulations. The resulting correlation 

coefficient between the generated iz  and 2
i iw   is -0.116. We then took the corresponding model  

                                                         0 1i i i iy z v e       (4.4) 
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with 0 6, 1  3, ~ N(0, 1)iv  and ~ N(0, 16 / )i ie n  as our true model and the mean 

model (4.2) as the mis-specified model. We considered two scenarios: (i) True model is (4.4) and 

it is correctly modeled and specified. (ii) True model is (4.4) and it is incorrectly modeled and 

specified as the mean model (4.2).  

We generated R  10,000 data sets ( ){( , ), 1, ..., 50; 1, , }r
i iy z i r R    under the true 

model (4.4), where ( ) ( ) ( )
0 1

r r r
i i i iy z v e       with ( )r

iv  generated from N(0, 1)  and ( )r
ie  

from N(0, 16 / ),in  respectively. Let ( ) ( )
0 1

r r
i i iz v       denote the value of the true mean 

i  and ( )ˆ r
i  the associated value of an estimator ˆ

i  (EBLUP, YR or WFQ) for the thr  simulation 

run under scenario (i) or scenario (ii). Then the simulated absolute bias and MSPE of ˆ
i  are 

given by  

1 ( ) ( )

1
ˆ ˆB( ) ( )

R r r
i i ir

R 


      

and 
1 ( ) ( ) 2

1
ˆ ˆMSPE( ) ( ) .

R r r
i i ir

R 


      

The absolute relative bias (ARB) of an MSPE estimator, ˆmspe( ),i  is calculated as 

ˆRB{mspe( )}i   where  

( )

1

1ˆ ˆ ˆ ˆRB{mspe( )} {mspe( ) MSPE( )} MSPE( ) ,
R

r
i i i i

rR 

       

where ( )ˆmspe( )r
i  is the value of ˆmspe( )i  for the thr  simulation run. Similarly, the coefficient 

of variation (CV) of ˆmspe( )i  is calculated as  
1

2
( ) 2

1

1ˆ ˆ ˆ ˆCV{mspe( )} {mspe( ) MSPE( )} MSPE( ) .
R

r
i i i i

rR 

 
      

 
  

We summarize the simulation results by reporting the first quartile, third quartile, median and 

mean of the values of ˆ ˆ ˆB( ) , MSPE( ), RB{mspe( )} %,i i i    and ˆCV{mspe( )}%.i  We also 

grouped the areas by the sampling variances, 2 16 / ,i in   into three groups and then calculated the 
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above measures separately for each group. Results obtained are very similar to those without 

grouping. Therefore, we report results only for the ungrouped case, for simplicity.  

Table 4.1 reports the summary measures for the absolute bias of the estimators EBLUP, YR 

and WFQ, under scenario (i) and scenario (ii). As expected, the values of the absolute bias 

measures are all negligible for the three estimators under scenario (i), confirming their 

unbiasedness under scenario (i). On the other hand, the absolute bias is large relative to standard 

error under scenario (ii) for all the three estimators, leading to much higher MSPE relative to 

scenario (i). It is interesting to note from the values under scenario (ii) in Table 4.1 that the 

absolute bias is virtually the same across the estimators, suggesting that self-benchmarking may 

not reduce the absolute bias under model misspecification. A plausible explanation is that the YR 

estimator attaches the same weight, ˆ ,i  to the direct estimator; similarly, the WFQ estimator 

attaches a weight close to ˆ .i  Our result does not contradict the conclusion of WFQ that the 

WFQ estimator reduces the absolute bias, because their augmented model virtually eliminated the 

model misspecification.  
 
 
 
Table 4.1 
Summary measures for absolute bias of EBLUP, YR and WFQ estimators 
 

Measure EBLUP YR WFQ 

Scenario (i) 

1st quartile 0.002 0.002 0.002 

Median 0.005 0.005 0.005 

Mean 0.007 0.007 0.007 

3rd quartile 0.009 0.010 0.009 

Scenario (ii) 

1st quartile 0.092 0.085 0.083 

Median 0.144 0.153 0.152 

Mean 0.254 0.255 0.251 

3rd quartile 0.316 0.311 0.314 
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It may also be noted that the adjusted EBLUP estimator ˆ a
iy  defined in the Remark using 

EBLUPˆˆ i iy    might perform better than the YR and WFQ estimators in terms of absolute bias 

under Scenario (ii). For example, if the EBLUP estimator is underestimating in most of the areas, 

then the correction term  EBLUP

1 1

m m

i i i i ii i
a w y w

 
    will be positive and hence compensate 

for the underestimation. On the other hand, the correction term is zero for the self-benchmarking 

estimators YR and WFQ.  

Table 4.2 reports the summary measures for MSPE of the estimators EBLUP, YR and WFQ, 

under scenarios (i) and (ii). It shows that, under scenario (i), MSPEs of the three estimators 

EBLUP, YR and WFQ are practically the same, except that EBLUP has slightly smaller MSPE 

as expected. Under scenario (ii), we again observe very little difference in MSPEs of the three 

estimators. However, the MSPE of a given estimator is considerably increased due to model 

misspecification. For example, the third quartile (corresponding to small )in  increased from 

0.621 to 1.100 for EBLUP, 0.626 to 1.094 for YR and 0.634 to 1.117 for WFQ. This inflation in 

MSPE is due to bias induced by model misspecification.  
 
 
 
Table 4.2 
Summary measures for MSPE of EBLUP, YR and WFQ estimators 
 

Measure EBLUP YR WFQ 

Scenario (i) 

1st quartile 0.403 0.406 0.403 

Median 0.471 0.476 0.472 

Mean 0.499 0.505 0.507 

3rd quartile 0.621 0.626 0.634 

Scenario (ii) 

1st quartile 0.562 0.567 0.567 

Median 0.751 0.748 0.752 

Mean 0.885 0.886 0.883 

3rd quartile 1.100 1.094 1.117 
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Table 4.3 reports the summary measures for percentage absolute RB and percentage CV of the 

MSPE estimators associated with EBLUP, YR and WFQ, under scenario (i) corresponding to no 

misspecification of the true model (4.4). Table 4.4 reports the results on the MSPE estimators 

under scenario (ii), corresponding to misspecification of the true model (4.4) as the mean 

model (4.2).  
 
 
Table 4.3 
Summary measures for absolute relative bias (%) and CV (%) of MSPE estimators associated with 
EBLUP, YR and WFQ under scenario (i): Model (4.4) correctly specified 
 

Measure EBLUP YR WFQ 

Absolute Relative Bias (ARB) % 

1st quartile 0.678 0.650 0.627 

Median 1.186 1.216 1.173 

Mean 1.354 1.349 1.372 

3rd quartile 1.674 1.716 1.863 

Coefficient of variation (CV) % 

1st quartile 12.93 12.44 13.19 

Median 15.64 15.40 15.78 

Mean 16.02 15.69 15.78 

3rd quartile 19.39 19.07 19.05 

 
 
Table 4.4 
Summary measures for absolute relative bias (%) and CV (%) of MSPE estimators associated with 
EBLUP, YR and WFQ under scenario (ii): Model (4.4) mis-specified 
 

Measure EBLUP YR WFQ 

Absolute Relative Bias (ARB) % 

1st quartile 4.848 4.850 4.857 

Median 7.653 7.776 7.466 

Mean 10.412 10.469 10.221 

3rd quartile 13.423 13.611 13.776 

Coefficient of variation (CV) % 

1st quartile 5.510 5.579 4.700 

Median 7.894 7.317 7.610 

Mean 10.52 10.55 10.17 

3rd quartile 13.42 13.03 13.11 
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Turning to the summary measures of absolute relative bias (ARB) and CV of MSPE 

estimators, Table 4.3 shows that under scenario (i), ARB% is very small (< 2%) for all the three 

MSPE estimators, confirming that the MSPE estimators are nearly unbiased. Also, CV% is 

practically the same for all the three MSPE estimators. Under scenario (ii), Table 4.4 shows that 

ARB% is significantly increased, but practically the same for all the three MSPE estimators. For 

example, the third quartile increased from 1.674 to 13.423 in the case of EBLUP, 1.716 to 13.611 

in the case of YR and 1.863 to 13.776 in the case of WFQ. Also, CV% is practically the same for 

all the three MSPE estimators. Comparing the CV values in Table 4.4 (Scenario (ii)) with the 

corresponding CV values in Table 4.3 (Scenario (i)), we see that the CV’s are actually much 

lower under Scenario (ii) than under Scenario (i). This is because the MSPE (used in the 

denominator of the CV measure) is much higher under Scenario (ii) than under Scenario (i).  

 
5  Concluding remarks 
 

We have studied the properties of the EBLUP and two self-benchmarking estimators, YR and 

WFQ, under the Fay-Herriot area level model. We presented a nearly unbiased estimator of 

MSPE of the YR estimator in Section 3. Our simulation results indicate that the three methods 

perform very similarly with respect to MSPE of the estimators and RB and CV of the MSPE 

estimators. However, under gross model misspecification due to an omitted variable, MSPE is 

significantly increased for all the three estimators, unless the augmented model of WFQ nearly 

eliminates misspecification. In practice, it is difficult to account for model misspecification due to 

unknown omitted variables. It is also interesting to note that self-benchmarking may not reduce 

bias under model misspecification that is not accounted by the augmented model of WFQ.  
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Conservative variance estimation for sampling designs with 
zero pairwise inclusion probabilities 

Peter M. Aronow and Cyrus Samii1 

Abstract 

We consider conservative variance estimation for the Horvitz-Thompson estimator of a population 

total in sampling designs with zero pairwise inclusion probabilities, known as “non-measurable” 

designs. We decompose the standard Horvitz-Thompson variance estimator under such designs and 

characterize the bias precisely. We develop a bias correction that is guaranteed to be weakly 

conservative (nonnegatively biased) regardless of the nature of the non-measurability. The analysis 

sheds light on conditions under which the standard Horvitz-Thompson variance estimator performs 

well despite non-measurability and where the conservative bias correction may outperform 

commonly-used approximations. 
 

Key Words: Horvitz-Thompson estimation; Non-measurable designs; Variance estimation. 
 
 

1  Introduction 
 

Sampling designs sometimes result in pairs of units having zero probability of being jointly 

included in the sample. Horvitz and Thompson (1952)’s statement of the properties of the finite 

population total makes clear that general, unbiased variance estimation for estimators of 

population totals is impossible for such non-measurable designs (Särndal, Swensson and 

Wretman 1992, page 33). Optimal methods for variance estimation in these cases remains an 

open problem. This paper analyzes the nature of the biases that non-measurability introduces for 

the standard Horvitz-Thompson estimator and studies an approach to correct for this bias in a 

conservative manner. While our results cannot offer a solution to the non-measurability problem 

for all practical applications, we do clarify conditions under which the standard estimator 

performs well and where the conservative bias correction outperforms commonly-used 

approximations. 
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Despite their theoretical drawbacks, sampling designs with zero pairwise inclusion 

probabilities are quite common. A common non-measurable design is one that draws only single 

units or clusters from a set of strata. This may occur if the population or a subpopulation of 

interest is incidentally sparse over stratification cells. Another common non-measurable design is 

a systematic sample in which unit indices are sampled from a list in multiples from a random 

starting value. In these designs, units whose indices are multiples from different starting values 

have zero joint probability of inclusion.  

Approximate methods have been proposed for special cases, as discussed in Hansen, Hurwitz 

and Madow (1953, Section 9.15), Särndal et al. (1992, Chapter 3), and Wolter (2007, Chapters 2 

and 8). In the single-unit per stratum case, a common approach is to collapse strata and assume 

units were drawn via a simple random sample from the larger, collapsed stratum. For systematic 

samples, the standard approach is to use an approximation based on an assumption of simple 

random sampling with replacement. These approximate methods are generally biased to a degree 

that cannot be determined from the data. In some cases, it can be shown that the bias will tend to 

be positive, but such is not the case generally, and especially so when the zero pairwise inclusion 

probabilities occur in a haphazard manner. 

This paper begins in Section 2 by decomposing the bias of the Horvitz-Thompson variance 

estimator under non-measurability. This exposes precisely how conditions on the underlying data 

result in more or less bias. In Section 3, we also show how a simple application of Young’s 

inequality yields a bias correction and a class of estimators guaranteed to have weakly positive 

bias as well as no bias under special conditions. We discuss implications for applied work in 

Section 4. 

 
2  Variance estimation for the Horvitz-Thompson estimator 
 

Consider a population U  indexed by 1, , ,k N   and a sampling design such that the 

probability of inclusion in the sample for unit k  is ,k  and the joint inclusion probability for 
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units k  and l  is .kl  Under a measurable design, there are two conditions: (1) 0k   and k  is 

known for all k U  and (2) 0kl   and kl  is known for all .,k l U  Non-measurable 

designs include those for which either of the two conditions for a measurable design do not hold. 

Failure to meet the former condition precludes unbiased estimation of totals. 

The Horvitz-Thompson estimator of a population total is ,ˆ
k k k k k

k s k U

t y I y
 

      

where {0, 1}kI   is unit ’sk  inclusion indicator, the only stochastic component of the 

expression, with E( ) ,k kI    the inclusion probability, and s  and U  refer to the sample and the 

population, respectively. Define E( ) ,k l klI I    which is the probability that both units k  and l  

from U  are included in the sample. Since , E( )k k k k k kk kI I I I I      by construction. 

When condition 1 holds, as we assume throughout, the Horvitz-Thompson estimator is unbiased. 

 
2.1  Properties of the Horvitz-Thompson variance estimator under 

measurability 
 

By Horvitz and Thompson (1952), the variance of the Horvitz-Thompson estimator for the 

total is  

2

\

( ) (ˆVar( ) Cov( , ) Var Cov , ) .k l k k l
k l k k l

U l U k U U l U kk l kk kk l

y y y
I

y y
It I I I

    

 
     


 

     

We label a sample from a measurable design, ,Ms  and an unbiased estimator for ˆVar( )t  on 

isMs  

 Cov( , ) Cov( , )
ˆVar( ) ,

M M

k l k l k l k l
k l

k U l Uk s l s kl k l kl k l

I I y y I I y y
t I I

  

 
          

where the only stochastic part of the expression is ,k lI I  and unbiasedness is by E( ) .k l klI I    

 
2.2  Properties of the Horvitz-Thompson variance estimator under 

non-measurability 
 

We now examine the case where condition 2 does not hold: 0kl   for some units .,k l U  

Because kI  is a Bernoulli random variable with probability Co, v( , )k k l kl k lI I       for 
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,k l  and Cov( , ) Var( ) (1 ).k k k k kI I I      Then, we can re-express the variance 

above as,  

2

2

{ \ : 0} { \ : 0}

\

ˆVar( ) (1 ) ( )

(1 ) ( ) .
kl kl

k k l
k k kl k l

k U k U l U kk k l

k k l
k k kl k l k l

k U k U l U k k U l U kk k l

A

y y y
t

y y y
y y

  

        

 
            

 
             

  

    


 

For k  and l  such that 0,kl   the sampling design will never permit unbiased estimation of the 

component of the variance labeled as A  above, since we will never observe ky  and ly  together. 

We label a sample from a design where condition 2 fails as 0 .s  When  ˆVar( )t  is applied to 0 ,s  

the result is unbiased for ˆVar( ) .t A  We state this formally as follows: 
 

Proposition 1. When 0s  refers to a sample from a design with some 0,kl   


{ \ : 0}

ˆ ˆ ˆE Var( ) Var( ) Var( ) .
kl

k l
k U l U k

t t y y t A
  

          

 

Proof. The result follows from,  

0 0 { : 0}

2

{ \ : 0}

{ \ : 0}

Cov( , ) Cov( , )
E E

Var( ) Cov( , )

ˆ ˆVar( ) Var( ) .

kl

kl

kl

k l k l k l k l
k l

k U l Uk s l s kl k l kl k l

k k l
k k l

k U k U l U kk k l

k l
k U l U k

I I y y I I y y
I I

y y y
I I I

t y y t A

    

    

  

  
           

 
     

   

   

  

 

 

The standard Horvitz-Thompson variance estimator, if applied to designs with zero pairwise 

inclusion probabilities, can therefore have a positive or a negative bias. If the ,k ly y  values are 

always nonnegative (or always nonpositive), then the bias is always nonnegative. When values 

may be positive or negative, A  is the sum of cross-products of outcomes that never appear 
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together under the design sample. If the jointly exclusive outcomes are centered over zero, then 

no correlation in these outcomes would tend to result in small bias, positive correlation in 

positive bias, and negative correlation in negative bias.  

 
3  Conservative bias correction for the Horvitz-Thompson variance 

estimator under non-measurability 
 

The case where A  may be less than zero for a non-measurable design suggests the need for 

some adjustment that will guarantee a bias that is weakly bounded below by zero. We first 

develop a general bias correction that is guaranteed to be conservative, later providing a special 

simplified case for practical usage. 

 
3.1  General formulation 
 

Consider the following variance estimator:  


{ : 0} { \ : 0}

Cov( , )
ˆVar ( ) ,

kl kl

kl kl

a b

lk l k l
C k l k l

k U l U k U l U kkl k l kl k kl l

ky yI I y y
t I I I I

a b       

 
   
      

     

where ,kl kla b  are positive real numbers such that 1 /1 / 1kl klba    for all pairs ,k l  with 

0.kl   The estimator is guaranteed to produce an expected value greater than or equal to the 

true variance for all designs, and is thus conservative. We state this property formally:  
 

Proposition 2. The expected value of  ˆVar ( ),C t  

 ˆ ˆE Var ( ) Var( ).C t t     

 

Proof. By Young’s inequality,  

,
kl kla b

k
k

kl k

l
l

l

y

a b

y
y y   

if 1 /1 / 1.kl klba    Define *A  such that,  
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*

{ \ : 0} { \ : 0} { \ : 0}

kl kl

kl kl kl

a b

k
k l k l

k U l U k k U l U k k U l U kk

l

l kl

A y y y y A
a b

y y

          

           

and  

*

{ \ : 0} { \ : 0}

.
kl kl

k l k l
k U l U k k U l U k

A y y y y A
     

         

Therefore  

*ˆ ˆVar( ) Var( ).t A A t    

The associated Horvitz-Thompson estimator of *A  would be  

*

{ \ : 0}

ˆ ,
kl kl

kl

a b

l
k l

k U l U k kl k kl l

ky y
A I I

a b   

 
  
   

   

which is unbiased by )( k kE I    and )( .l lE I    

Since * *)ˆ( ,E A A  by Proposition 1,  

0 0

* *Cov( , ) ˆ ˆE Var( )k l k l

k s l s kl k l

I I y y
A t A A

 

 
       

   

 ˆ ˆE Var ( ) Var( ).C t t     

Substituting terms, 

{ : 0} { \ : 0}

Cov( , )
ˆE Var( ).

kl kl

kl kl

k

a b

lk l k l
k l k l

k U l U k U l U kkl k l kl k kl l

y yI I y y
I I I I t

a b       

  
    

        
     

 ˆVar ( )C t  is justified as a conservative estimator for the case when A  is not known to be 

positive. This estimator is unbiased under a special condition: 
 

Corollary 1. If, for all pairs ,k l  such that 0,kl   (i) kl klba

k ly y  and (ii) 

,k l k lyy y y   
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 ˆ ˆE Var ( ) Var( ).C t t     

Proof. By (i), (ii) and Young’s inequality,  

.
kl kla b

lk
k l

l
l k

k kl

y y
y y y y

a b
     

Therefore,  

*

{ \ : 0} { \ : 0} { \ : 0}

.
kl kl

kl kl kl

a b

k
k l k l

k U l U k k U l U k k U l U kkl kl

lA y y y y A
b

y y

a         

             

It follows that *ˆ ˆVar( ) Var( )t A A t    and  ˆ ˆE Var ( ) Var( ).C t t     

If any units ,k l  are in clusters (i.e., Pr( ) 0),k lI I   these units should be totaled into one 

larger unit before estimation. Combining units will tend to reduce the bias of the variance 

estimator because only pairs of cluster-level totals will be included in * ,A  as opposed to all 

constituent pairs. 

 
3.2  Simplified special case 
 

In general, it would be difficult to assign optimal values of kla  and klb  for all pairs ,k l  such 

that 0.kl   Instead, we examine one intuitive case, assigning all 2 :kl kla b   


2 2

2

{ : 0} { \ : 0}

Cov( , )
ˆVar ( ) .

2 2
kl kl

k l k l k l
C k l k l

k U l U k U l U kkl k l k l

I I y y y y
t I I I I

       

 
         
     

As a special case of  
2ˆ ˆVar ( ), Var ( )C Ct t  is also conservative:  

 

Corollary 2. The expected value of  2 ˆVar ( ),C t  


2 ˆ ˆE Var ( ) Var( ).C t t     

 

Proof. For all pairs ,k l  such that 0, 1 / 1 / 1.kl kl kla b     Proposition 1 therefore holds.  
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The choice to set all 2kl kla b   is justified by the fact that it will yield the lowest value of 

the estimator  ˆVar ( )C t  subject to the constraint that kla  and klb  are fixed as constants a  and b  

over all , .k l  
 

Corollary 3. Among the class of estimators  Cab ˆVar ( ),t  defined as the set of estimators  ˆVar ( )C t  

such that all kla a  and all  
2 Cab,

ˆ ˆ, Var ( ) min Var ( ) .Ckl a bb b t t      
 

Proof. By simple algebra,  







Cab

{ : 0} { \ : 0}

{ \ : 0}

Cov( , )
ˆVar ( )

ˆVar( )

1
ˆVar( )

2

kl kl

kl

a b

lk l k l
k l k l

k U l U k U l U kkl k l k l

a b

l
k l

k U l U k k l

a b

l l
k l k l

k l k

k

k

b

l

a

k k

y yI I y y
t I I I I

a b

y y
t I I

a b

y y y y
t I I I I

a b b a

       

   

 
   
      

 
   
   

 
    
     

   

 



{ \ : 0}

{ \ : 0}

1
ˆVar( ) .

2

kl

kl

k U l U k

a b b

k k l

a

k l

k U l

l

U k k l

y y y yI I
t

a b a b

   

   




    
        
         

 

 

 

By Young’s inequality, given 2/1 / 1 / 1 / ,, kk k

a b
a ba b y y y     but equality must 

hold if 2.a b   Similarly, 2/ / ,
b

l l l

a
a by y y   but equality must hold if 2.a b   

Since / 0k kI    and / 0,l lI    any choice a b  can only yield  
Cab 2ˆ ˆVar ( ) Var ( ).Ct t  

Given all values of ky  and ,ly  it is possible to derive an optimal vector of kla  and klb  values 

that varies over , ,k l  but such a derivation may not be of practical value. 

 
4  Applications 
 

Proposition 1 shows that the bias of the Horvitz-Thompson variance estimator under non-

measurability is  
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{ \ : 0}

.
kl

k l
k U l U k

A y y
   

    

This expression, along with the fact that * ,A A  makes it evident that the degree of bias in 

 ˆVar( )t  and  ˆVar ( )C t  depends a great deal on the number of pairs with zero pairwise inclusion 

probabilities. For designs where this number is small,  ˆVar( )t  may provide a reasonable and 

conservative estimator for cases where ky  takes the same sign for all ,k  and  ˆVar ( )C t  may 

provide a reasonable and conservative estimator for cases where ky  may take different signs for 

some .k  An example that arises frequently is stratified sampling where for a relatively small 

proportion of cases, we have small strata from which we draw only one unit. 

For designs that result in many pairs having zero inclusion probabilities,  ˆVar( )t  and  ˆVar ( )C t  

could be wildly over-conservative and other estimators may be preferred in terms of criteria such 

as mean square error. A prominent example is systematic sampling. Indeed, Särndal et al. (1992, 

page 76) propose that under systematic sampling, the Horvitz-Thompson variance estimator, 

 ˆVar( ),t  can give a “non-sensical result.” The expression for A  makes it clear why this would be 

the case. Wolter (2007, Chapter 8) shows that simpler biased estimators, such as the 

with-replacement (Hansen-Hurwitz) variance estimator, can be reliable, if slightly conservative, 

in a broad range of data scenarios under equal probability and probability proportional to size 

(PPS) systematic sampling. Nonetheless, the with-replacement estimator fails to account 

adequately for sampling variance when outcome variance within systematic sample clusters is 

smaller than the between cluster variance. In such cases,  ˆVar( )t  would bound this variance in 

expectation when outcomes are all of the same sign, and  ˆVar ( )C t  would always bound this 

variance in expectation. Of course, it may still be the case that the bias is too large to be of much 

use, and so we would not suggest that  ˆVar( )t  and  ˆVar ( )C t  provides a full solution to the 

variance estimation problem for systematic sampling under high intra-cluster correlation. 

Results from simulation studies are available in a supplement (at https://files.nyu.edu/ 

cds2083/public/docs/smj_suppl.pdf). They illustrate how  ˆVar( )t  and  ˆVar ( )C t  perform relative 
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to commonly-used alternatives in applied scenarios. The simulations demonstrate situations when 

these estimators are preferable to the alternatives. For one-unit-per-stratum sampling, we show 

that these estimators are less biased than the “collapsed stratum” estimator in a range of 

scenarios. For PPS systematic sampling, these estimators perform favorably when the population 

exhibits substantial periodicity, a case when the commonly-used with-replacement estimator may 

be grossly negatively biased.  

 
5  Conclusion 
 

We have characterized precisely the bias of the Horvitz-Thompson variance estimator under 

non-measurability and used this characterization to develop a conservative bias correction. These 

estimators reflect the fundamental uncertainty inherent to non-measurable designs. Compared to 

available approximate methods, these estimators may sometimes perform better and sometimes 

worse from a practical perspective. But available approximate methods may be biased in ways 

that cannot always be evaluated in terms of either magnitude or sign. The estimators developed in 

this paper may therefore provide an informative measure of sampling variability with which 

analysts can agree without invoking additional assumptions or resorting to methods that carry the 

potential for negative bias. The bias term, ,A  has a simple form that suggests the possibility of 

refinements to the estimators developed here, something that we leave open for future research. 
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