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A statistical approach to detect interviewer falsification of survey data 

Sebastian Bredl, Peter Winker and Kerstin Kötschau 1 

Abstract 
Survey data are potentially affected by interviewer falsifications with data fabrication being the most blatant form. Even a 
small number of fabricated interviews might seriously impair the results of further empirical analysis. Besides reinterviews, 
some statistical approaches have been proposed for identifying this type of fraudulent behaviour. With the help of a small 
dataset, this paper demonstrates how cluster analysis, which is not commonly employed in this context, might be used to 
identify interviewers who falsify their work assignments. Several indicators are combined to classify ‘at risk’ interviewers 
based solely on the data collected. This multivariate classification seems superior to the application of a single indicator 
such as Benford’s law. 
 
Key Words: Data fabrication; Falsifier; Benford’s law; Cluster analysis. 
 
 

1. Introduction  
Whenever data collection is based on interviews, one has 

to be concerned about data quality. Data quality can be 
affected by false or imprecise answers of the respondent or 
by a poorly designed questionnaire, as well as by the inter-
viewer when he or she deviates from the prescribed inter-
viewing procedure. If the interviewer does so consciously, 
this is referred to as ‘interviewer falsification’ (Schreiner, 
Pennie and Newbrough 1988) or ‘cheating’ (Schräpler and 
Wagner 2003). 

Interviewer falsification can occur in many ways (cf. 
Guterbock 2008). Rather subtle forms consist of surveying a 
wrong household member or of conducting the survey by 
telephone when face-to-face interviews are required. The 
most severe form of falsifying is the fabrication of entire 
interviews without ever contacting the respective household. 
In our analysis, we deal with the latter case. 

Fabricated interviews can have serious consequences for 
statistics based on the survey data. Schnell (1991) and 
Schräpler and Wagner (2003) provide evidence that the 
effect on univariate statistics might be less severe, provided 
the share of falsifiers remains sufficiently small and the 
‘quality’ of the fabricated data is high. But even a small 
proportion of fabricated interviews can be sufficient to 
cause heavy biases in multivariate statistics. Schräpler 
and Wagner (2003) find that the inclusion of fabricated 
data from the German Socio Economic Panel (GSOEP) 
in a multivariate regression reduces the effect of training 
on log gross wages by approximately 80 percent, 
although the share of fabricated interviews was less than 
2.5 percent. This indicates the importance of identifying 
these interviews. 

The most common way to identify falsifying inter-
viewers is the reinterview (Biemer and Stokes 1989). In this 
case, a supervisor contacts some of the households that 
should have been surveyed to check whether they were 
actually visited by the interviewer. However, for reasons of 
expense, it is impossible to reinterview all households 
participating in a survey (cf. Forsman and Schreiner 1991). 
Therefore, the question arises of how the reinterview sample 
can be optimized to best detect falsifiers. Generally, it seems 
useful to select households for reinterview if the interviews 
were done by an interviewer - identified by characteristics 
linked to the answers in his interviews - who is more likely 
than others to be fabricating data. In this context, Hood and 
Bushery (1997) uses the term ‘at risk’ interviewer. If reinter-
view participants are sampled in a two-stage setting, where-
by interviewers are selected in the first stage and partici-
pants surveyed by those interviewers in the second stage (as 
recommended by Forsman and Schreiner (1991)) one might 
oversample the at risk interviewers in the first stage. 

In this paper, we demonstrate a purley statistical ap-
proach that relies on the data contained in the questionnaries 
to define a group of at risk interviewers. This is not a new 
idea; literature provides several examples for this kind of 
approach (Hood and Bushery 1997; Diekmann 2002; 
Turner, Gribbe, Al-Tayyip and Chromy 2002; Schräpler and 
Wagner 2003; Swanson, Cho and Eltinge 2003; Murphy, 
Baxter, Eyerman, Cunningham and Kennet 2004; Porras 
and English 2004; Schäfer, Schräpler, Müller and Wagner 
2005; Li, Brick, Tran and Singer 2009). However, with the 
exception of the work of Li et al. (2009), the tests conducted 
in these studies rely on the examination of single indicators 
derived from the interviewer’s data to detect falsifiers. Some 
studies calculate several indicators but consider them all 
separately. We combine multiple indicators in cluster 
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analyses, allowing for a better classification of the potential 
falsifiers compared to previous approaches. To the best of 
our knowledge, this procedure is an innovation in the 
context of identifying interviewers who fabricate data, but 
has already been employed in other fields in order to detect 
fraudulent behaviour. The basic idea is that characteristics of 
fraudulent ‘cases’ (what a case is depends on the context) 
feature striking patterns compared to honest cases that can 
be revealed if those characteristics are jointly considered in 
a cluster analysis. Murad and Pinkas (1999) try to detect 
fraud in the telecommunication industry by means of 
clustering call profiles of clients. A call is characterized by 
several indicators like calling time or destination of the call. 
Thiprungsri (2010) clusters group life claims submitted 
from clients to life insurance companies based on several 
characteristics of the claims. Claims that form very small 
clusters are considered to be suspicious. Donoho (2004) 
uses cluster analysis, among others, to trace patterns in 
option markets that might indicate insider trading. 

We have a small survey dataset available (see subsection 
3.1 for a further description of our dataset), which partially 
consists of falsified data. With a total of 13 interviewers and 
250 questionnaires, the size of the dataset is quite limited 
and it is not clear to what extent our findings can be 
generalized to larger datasets. However the dataset enables 
us to demonstrate our approach. The fact that we know 
which data was collected honestly and which data was 
fabricated allows for a first evaluation of our approach. It 
must be stated that this a priori knowledge is no prerequisite 
to employ the method. 

The problem of identifying at risk interviewers was 
addressed in the 1980s, however, literature on this issue is 
still scarce. In 1982, the U.S. Census Bureau implemented 
the Interviewer Falsification Study. Based on the informa-
tion collected in the context of this study, Schreiner et al. 
(1988) find that interviewers with a shorter length of service 
are more likely to fabricate data. Hood and Bushery (1997) 
use several indicators to find at risk interviewers in the 
National Health Interview Survey (NHIS). For example, 
they calculate the rate of households that have been labelled 
ineligible or the rate of households without telephone 
number per interviewer and compare the rates to census data 
from the respective area. When large differences occur, the 
interviewer is flagged and a reinterview is conducted. De-
tection rates among the flagged interviewers turn out to be 
higher than those in random reinterview samples. Turner 
et al. (2002) also find interviewers committing data fabri-
cation to indicate telephone numbers less frequently than 
honest interviewers when examining the Baltimore STD 
and Behaviour Survey. For the case of computer assisted 
interviewing, Bushery, Reichert, Albright and Rossiter 
(1999) and Murphy et al. (2004) propose the use of date and 

time stamps – the recording of the time and the duration of 
the interview by the computer – to find suspect interviewers. 
Those who need a remarkably long or short time to com-
plete the entire questionnaire or certain modules or complete 
remarkably many questionnaires within a given time period 
might be flagged as at risk interviewers. Schäfer et al. 
(2005) assume that falsifiers avoid extreme answers when 
fabricating data. Using data of the GSOEP, the authors 
calculate the variance of the answers for every question on 
all questionnaires of an interviewer and sum up all vari-
ances. Thanks to other control mechanisms in the GSOEP, 
falsifiers are known and it turns out that they could be found 
among the interviewers with the lowest overall variances. 
Porras and English (2004) use a similar approach and also 
find falsifiers to produce variances that are smaller to those 
found in honestly filled questionnaires. Li et al. (2009) 
combine several predictive indicators in a logistic regression 
model in which the known falsification status of an inter-
view serves as a binary dependent variable. The authors find 
that reinterview samples that overweight cases with a high 
probability of being fraudulent according to the logistic 
regression model identify more cases of actual data fabrica-
tion than purely randomly drawn samples. However, it is 
evident that past reinterview data with known falsification 
status must be available to conduct the logistic regression. 

Further indicators discussed in literature are the number 
of rare or unlikely response combinations in an inter-
viewer’s questionnaires (Murphy et al. 2004; Porras and 
English 2004) and the comparison of household composi-
tions or descriptive statistics in interviewer’s questionnaires 
with the entire sample (Turner et al. 2002; Murphy et al. 
2004). 

Another means of detecting fabricated data that has 
gained a lot of popularity in recent years is Benford’s law 
(Schräpler and Wagner 2003; Swanson et al. 2003; Porras 
and English 2004; Schäfer et al. 2005), which will be 
discussed in section 2, along with its success in detecting 
fabricated interviews in previous studies. Furthermore, 
section 2 describes our statistical approach to identify 
falsifiers. Section 3 presents the data our analysis is based 
upon as well as our results. The paper concludes with a 
discussion of our findings. 

 
2. Methods  

2.1 Benford’s law  
When the physicist Frank Benford noticed that the pages 

in logarithmic tables containing the logarithms of low 
numbers (1 and 2) were more used than pages containing 
logarithms of higher numbers (8 and 9), he started to 
investigate the distribution of leading digits in a wide range 
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of different types of numbers like numbers on the first page 
of a newspaper, street addresses or molecular weights 
(Benford 1938). Benford found that the distribution of the 
leading non-zero digits could be described by the following 
formula which has become known as ‘Benford’s law:’  

              
10

1
Prob(leading digit = ) = 1 .logd

d
  
 

 (1) 

However, not all series of numbers Benford (1938) 
investigated seemed to conform to his law. Consequently, 
the question arose what kind of data can be supposed to 
produce first digits in line with the law. Discussions of this 
issue are provided by Hill (1995), Nigrini (1996), Hill 
(1999) and Scott and Fasli (2001). The detection of financial 
fraud is a field in which the application of Benford’s law has 
gained much popularity during the recent decade (Nigrini 
1996; 1999; Saville 2006). The results of those studies are 
not relevant in our context. However, it is interesting to note 
that there seems to be a consensus in literature that monetary 
values can be supposed to follow Benford’s law. Swanson 
et al. (2003) show that the distribution of first digits in the 
American Consumer Expenditure Survey is close to 
Benford’s distribution. 

The basic idea of using Benford’s law to detect fabricated 
data is that falsifiers are unlikely to know the law or to be 
able to fabricate data in line with it. Therefore a strong 
deviation of the leading digits from Benford’s distribution in 
a dataset indicates that the data might be faked. Of course, 
one has to be concerned if the nature of the data is such that 
it can be supposed to follow Benford’s law if it is authentic. 
Benford’s law cannot be applied if the questionnaires do not 
contain any or contain only very few metric variables. 

Schräpler and Wagner (2003) and Schäfer et al. (2005) 
use Benford’s law to detect data fabrication in the GSOEP. 
In both studies, all questionnaires delivered by every single 
interviewer are combined and checked for whether the 
distribution of the first digits in the respective questionnaires 
deviates significantly from Benford’s law. This can be done 
by calculating the 2 -statistic:  

                              
9 2

2

=1

( )
= id bd

i i
d bd

h h
n

h


   (2) 

where in  is the number of leading digits in all question-
naires from interviewer ,i idh  is the observed proportion of 
leading digit d  in all leading digits in interviewer i ’s 
questionnaires and bdh  is the proportion of leading digit d  
in all leading digits under Benford’s distribution. High 2 -
values indicate a deviation from Benford’s distribution and 
indicate at risk interviewers. Schräpler and Wagner (2003) 
use different kinds of continuous variables in their analysis, 
whereas Schäfer et al. (2005) restrict theirs to monetary 
values. In both studies, the critical 2 -values are assumed to 

be dependent on the sample size n  and are consequently 
adjusted for this parameter. The results obtained look 
promising. The fit of the leading distribution of first digits to 
Benford’s distribution in the questionnaires of falsifiers 
(which were already known in advance) is, in general, much 
worse than for honest interviewers. Thus it seems appro-
priate to use Benford’s law as a means to identify at risk 
interviewers. 

However, when we compared the data of the honest 
interviewers in our dataset to Benford’s distribution, we 
observed a large deviation for the digit 5. This might be due 
to rounding of numbers by the respondents. The same 
problem is mentioned by Swanson et al. (2003) and Porras 
and English (2004) who opt for applying an alternative 
approach “in the spirit of Benford” (Porras and English 
2004, page 4224). We adopt this approach which consists of 
comparing the distribution of leading digits in the question-
naires of an interviewer to the distribution of first digits in 
all questionnaires except their own. The 2 -value on the 
interviewer level is calculated as described above but the 
expected proportion of a digit according to Benford’s law 

bdh  is replaced by the proportion of the digit in all other 
questionnaires. We then use the resulting 2 -value as one 
indicator in the cluster analysis. 

With regard to the selection of variables whose first 
digits are examined, we stick to the approach of Schäfer 
et al. (2005) and include only the first digits of monetary 
values in the analysis. The survey we are using for demon-
stration purposes contains monetary values expressed in 
local currency referring to household expenditures for dif-
ferent items like leasing or buying land, seeds, fertilizer, 
taxes, and to household income from different sources like 
agricultural or non agricultural self employment and public 
or private transfers. Overall we include first digits of 26 
different monetary values per interview, ignoring values that 
were reported to be zero. We then pool first digits of all 
questionnaires delivered by one interviewer and compare 
the distribution of first digits to the one for all other 
interviews according to the method described above. The 
restriction to monetary values constitutes a clear criterion 
during the process of selecting data. Furthermore, as men-
tioned above, financial data is broadly agreed upon to be apt 
for the analysis with Benford’s law. This is important, al-
though we do not ground our analysis on Benford’s distri-
bution but on an approach based on it.  
2.2 Multivariate analyses  

Our idea is to combine several indicators, which we 
derive directly from the questionnaires of each interviewer 
and which we suppose to be different for falsifiers and 
honest interviewers. We do this by means of cluster and 
discriminant analysis. All indicators are derived on the 
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interviewer level. This implies that we pool all question-
naires of one interviewer for the analysis, which increases 
the amount of data on which every single indicator value is 
based. This should make the indicator values more reliable 
and less sensitive to outliers. On the other hand, it is obvious 
that the discriminatory power of interviewer-level indicators 
decreases as soon as interviewers only fake parts of their 
assignments. Looking at indicators on the questionnaire 
level, therefore, seems to be preferable if the amount of data 
per questionnaire is sufficiently high. 

The cluster analysis constitutes the real method of iden-
tifying at risk interviewers. The interviewers are clustered in 
two groups with the intention of obtaining one that contains 
a high share of falsifiers and another one that contains a high 
share of honest interviewers. Clustering does not require a 
priori information on who is fabricating data and who is not. 
In fact, this is what it is supposed to reveal. Since we know 
from the outset which interviewer belongs to which group, 
we can discover whether the cluster analysis identifies the 
‘true falsifiers’ to be at risk. Clearly, the assumption that our 
approach is able to separate both groups perfectly is not 
realistic. The idea is rather that we obtain an at risk inter-
viewer cluster exhibiting a higher share of falsifiers com-
pared to the other cluster. If a reinterview is feasible, sub-
sequent reinterview efforts might be focused on interviewers 
in the at risk cluster. 

To judge the performance of the cluster analysis, we 
consider the number of undetected falsifiers as well as the 
number of ‘false alarms.’ Both types of ‘errors’ inccur costs: 
data of undetected falsifiers is likely to impair the results of 
further statistical analysis. False alarms inccur costs in the 
sense that an unnecessary effort to reinterview the respective 
households might be taken or data is unnecessarily removed 
from the sample. Furthermore, it might be demoralizing for 
honest interviewers if they see their work being subject to a 
reinterview, particuliarly if they are aware of the fact that 
predominantly the work of at-risk interviewers is picked. 
How to weight an undetected falsifier compared to a false 
alarm in a loss function is a highly subjective issue. Gener-
ally, it seems reasonable to assign more weight to the former 
than to the latter. 

The discriminant analysis requires knowledge on the 
falsifiers versus non-falsifiers status of each interviewer 
before it can be conducted. Therefore, it is not an instrument 
to detect falsifiers. We use the discriminant analysis to 
verify our hypotheses on the behaviour of falsifiers, which 
will be discussed below, and to evaluate how well the 
employed indicators can separate the two groups. 

One of the indicators we use is the 2 -value, calculated 
by comparing the distribution of first digits in the ques-
tionnaires of each interviewer with the respective dis-
tribution in all other questionnaires as described in the 

previous subsection. Furthermore, we derive three other 
indicators from hypotheses concerning the behaviour of 
falsifiers fabricating data. Schäfer et al. (2005) assume that 
falsifiers have a tendency to answer every question, thus 
producing less missing values. Furthermore, in line with 
Porras and English (2004), they expect falsifiers to choose 
less extreme answers to ordinal questions. Hood and 
Bushery (1997) hypothesize that falsifiers will “try to keep it 
simple and fabricate a minimum of falsified data” (Hood 
and Bushery 1997, page 820). 

Based on these assumptions, we calculate three propor-
tions, which serve as indicator variables in the multivariate 
analyses along with the 2 -value. The three indicator vari-
ables are calculated as follows: 
 

 The ‘item-non-response-ratio’ is the proportion of ques-
tions which remain unanswered in all questions. We 
expect this ratio to be lower for falsifiers than for honest 
interviewers.  

 The ‘extreme-answers-ratio’ refers to answers which 
are measured in ordinal scales. The ratio indicates the 
share of extreme answers (the lowest or highest 
category on the scale) in all ordinal answers. According 
to the above-mentioned assumptions, this ratio should 
also be lower for falsifiers.  

 The ‘others-ratio’ refers to questions which, besides 
several framed responses offer the item ‘others’ as a 
possible answer. The choice of this item requires the 
explicit declaration of an alternative. If falsifiers tend to 
keep it simple, we can expect them to prefer the framed 
responses to the declaration of an alternative. Thus, this 
ratio too (calculated as the proportion of ‘others’ 
answers in all answers where the others item is 
selectable) should be lower for falsifiers.  

 
Of course, the list of indicator variables, which might be 

included in the cluster analysis, can be extended. Generally, 
it is possible to derive many more of those variables from 
hypotheses on the behaviour of interviewers who fabricate 
data or to use those which have already been proposed in the 
literature, albeit not in the context of cluster analysis. For 
example, based on the assumption that falsifiers try to 
fabricate a minimum of falsified data, Hood and Bushery 
(1997) expect them to disproportionately often select the 
answer ‘No’ to questions, which either lead to a set of new 
questions or avoid it (assuming that ‘No’ is generally the 
answer that avoids further questions). So one could calculate 
the ratio of ‘No’ answers to such questions and use this ratio 
as a variable in the cluster analysis. We do not use this ratio, 
as two slightly different versions of the questionnaire were 
used in our empirical sample. There are only a small 
number of questions that lead to new questions or avoid 
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them depending on the answers, which are identical in both 
versions of the questionnaire. 

Furthermore, when computer assisted interviewing al-
lows the use of date and time stamps as discussed by 
Bushery et al. (1999), the average time needed to conduct 
an interview or the number of interviews conducted in one 
day might serve as indicators. Panel surveys offer some 
additional information to construct indicators. Stokes and 
Jones (1989) propose to compare the actual rate of non-
matched household members in an interviewer’s question-
naires to expected nonmatch rates that are calculated condi-
tional on several household characteristics. The authors 
employ this procedure in the post-enumeration survey that is 
conducted as follow-up survey for the U.S. Census. If the 
actual rate of nonmatches strongly exceeds the expected 
rate, the authors consider this to be an indicator for fabri-
cated data. Generally, this approach is applicable as soon as 
one has two or more waves of a panel survey available. 

It becomes obvious that the first steps of our approach 
consist of examining the structure of the questionnaire and 
other types of data like date or time stamps collected during 
the survey process. Then one might consider which indica-
tors could be derived from those sources that are likely to 
differ between falsifiers and honest interviewers. Another 
approach is the use of data mining techniques to identify 
patterns that are common in fabricated data or patterns in 
which fabricated data differs from honestly collected data 
(Murphy, Eyerman, McCue, Hottinger and Kennet 2005). If 
those patterns are detected, they might be used as indicators 
instead of deriving indicators from hypothesis on falsifier 
behaviour. However, this approach requires a huge dataset 
with known cases of falsification in order to conduct the 
data mining process. Such a dataset is not always available. 

 
3. Results  

3.1 Data sources  
The data used in this study are derived from household 

surveys conducted in November 2007 and February 2008 in 
a Commonwealth of Independent States (CIS) (i.e., former 
Soviet Union) country. The survey was part of an inter-
national research project on land reforms and rural poverty. 
We intended to interview 200 households in four villages in 
2007. After identifying that all interviews had been 
fabricated in the first surveyed village we broke the survey 
off and started a new round with new interviewers in other 
villages in February 2008. All villages had been selected by 
qualitative criteria like the agricultural production structure 
and the implementation of land reforms. The households 
within one village had been selected by random sample 
based on household lists, which were provided by the 

mayors of the villages. This procedure not only assured that 
all households had been selected at random, but also 
provided the basis for reinterviews as all households were 
exactly defined. However, these reinterviews were not 
planned in the very beginning. Because the households 
rarely owned telephones, check-calls were not possible and 
reinterviews in these households were associated with high 
costs and expenditure of time for traveling to the village for 
a face-to-face reinterview. Five interviewers were engaged 
in the first 2007 survey. Two of them had been the local 
partners of the research project. They had been involved in 
the development of the questionnaire and were responsible 
for the coordination of the surveys in their country. The 
other three interviewers were students hired by the partners. 
The questionnaire was composed of different sections with 
regard to household characteristics, resource endowment as 
well as income and expenditures. Most of the questions 
were closed questions. Only a few questions included a 
scale. Metric variables were collected for household expen-
ditures like leasing or buying land, seeds, fertilizer or taxes 
and household income from different sources like agricul-
tural or non-agricultural self employment and public or 
private transfers. 

When the interviews of the 2007 survey were conducted, 
none of the German researchers were present in the villages. 
The questionnaires were collected right after the survey of 
the first village. In a first review of the questionnaires, we 
became suspicious because the paper of the questionnaires 
looked very clean and white. There was no dirt or dog-ears 
on the paper. Comparing the answers of different question-
naires of one interviewer we found two questionnaires with 
identical answers. Considering the fact that we asked for the 
amount of income from different sources in metric numbers 
it was very unlikely that the answers of two questionnaires 
would have been identical. Not getting any explanations 
from the project partners, we reinterviewed a sub-sample of 
10% of the original sample face-to-face. None of the 
reinterviewed households reported having been surveyed. 
After detecting the fabrication of the interviews, the partners 
acknowledged that all interviews had been fabricated. As a 
matter of course, we stopped working with all interviewers 
and partners and implemented a new local research group. 

In February 2008, the survey was repeated in the same 
country. As mentioned before, we selected new villages and 
households according to the above-mentioned criteria. We 
hired nine students for the interviews and arranged the 
survey with on-site supervision. In most cases, the 
interviews took place in a school or the city hall so that we 
could monitor all interviewers. When the interviews took 
place in the houses of the surveyed families we attended 
some of them. Due to this procedure, we presume that the 
questionnaires from the 2008 survey are not fabricated. 
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In this paper, we use a total of 250 household interviews 
by 13 interviewers, of which four were falsifiers from the 
2007 survey (the interviews submitted by one falsifier were 
excluded as he filled in only three questionnaires) who 
definitely faked the results, referred to as F1-F4, and nine 
interviewers who are supposed to be honest, labelled H1-
H9. Table 1 provides an overview of the number of ques-
tionnaires per interviewer, which were included in the 
analysis. 

 
Table 1 
Number of questionnaires per interviewer 
 

Interviewer  F1  F2  F3  F4  H1  H2  H3  H4  H5  H6 H7 H8 H9 
Number of 
questionnaires 10 12 10 10 22 23 23 24 23 23 23 23 24

 
3.2 Cluster analysis  

In this subsection, we present the results of the cluster 
analysis. Based on the results, we evaluate the success of 
our procedure in identifying interviewers who fabricate 
data. As already mentioned, we use four indicator variables 
in the cluster analysis: the item-non-response ratio, the 
proportion of extreme ordinally scaled answers in all ordi-
nally scaled answers referred to as extreme ratio, the 
proportion of answers where the others item including an 
alternative was selected in all answers which offered this 
item (referred to as others ratio) and the 2 -value stemming 
from the comparison of the leading digit distribution in the 
questionnaires of an interviewer with the respective 
distribution in all other questionnaires. 

Table 2 provides the values of the four indicator variables 
included in the cluster analysis for all 13 interviewers. It 
shows that the item-non-response ratio and the others ratio 
are clearly lower for the four falsifiers than for the honest 
interviewers. F1 and F4 have not chosen the others item at 
all. For the extreme ratio, things seem to be less clear. All 
the values range between 40% and 70% except the value of 
interviewer F1, which is clearly lower. The 2 -values are 
quite high for falsifiers F2 and F4. The values of the other 
two falsifiers do not differ much from the ones observed for 
honest interviewers. 

The general idea of cluster analysis is to identify 
subgroups of elements in a space of elements that are all 
characterized by multivariate measurements (see Härdle and 
Simar (2007) for an introduction to cluster analysis). In the 
first step, a measure to determine either distance or 
similarity between elements has to be chosen. In the second 
step, elements are assigned to different subgroups or 
clusters. Elements within one cluster should be similar 
according to the selected measure whereas elements in 
different clusters should be distant. There is a large variety 
of methods according to which elements can be assigned to 

clusters whereby the number of clusters might either be 
fixed or determined by the cluster method.  
Table 2 
Values of the variables included in the cluster analysis for each 
interviewer (all values except 2 -value in percent) 
 

Interviewer Item-Non-Response Others Extreme 2 -value 

F1 1.36  0.00   28.33   19.63 
F2 0.71  0.65   40.85   29.70 
F3 0.68  2.33   56.90   11.34 
F4 0.51  0.00   58.62   27.33 
H1 3.85  18.01    65.12   14.48 
H2 1.99  2.40   59.42    6.91 
H3 3.10  9.47   70.07   15.49 
H4 4.52  13.04    56.43   16.61 
H5 1.18  4.48   70.07   12.16 
H6 3.46  1.37   50.75   15.42 
H7 2.51  12.72    45.65    9.11 
H8 1.77  10.95    69.85    3.63 
H9 0.14  1.61   69.44   19.14  

We measured distance as squared Euclidian distance and 
employed several cluster procedures in order to check the 
robustness of the results. In all cases, the interviewers have 
been clustered in two groups with the intention to obtain one 
‘falsifier group’ and one ‘honest interviewer group.’ The 
advantage of this approach is that a clear classification is 
obtained. In contrast, when one of the indicator variables is 
examined separately, it is not clear where to draw the line 
separating falsifiers and honest interviewers. Before con-
ducting the cluster analysis, we standardized all variables on 
a mean of zero and on a variance of unity. This eliminates 
the scale effect as distances are measured in standard 
deviations and not in different units. 

The first clustering method we use is hierarchical 
clustering. This is a standard procedure that can also be 
applied to larger datasets and is implemented in standard 
statistical software packages. Hierarchical clustering merges 
clusters step by step, combining the two closest clusters. At 
the beginning, every element is considered as a separate 
cluster. We measure distance between two clusters as the 
average squared Euclidian distance between all possible 
pairs of elements with the first element of the pair coming 
from one cluster and the second element from the other 
cluster. We used the software package STATA with the 
option ‘average linkage’ to conduct the hierarchical cluster 
analysis. 

In hierarchical cluster analysis, two elements will stay in 
the same cluster once they are merged together. Thus, the 
procedure does not necessarily lead to a global optimum 
with regard to a given distance measure. In our case the 
relatively low number of interviewers allows us to conduct 
an alternative analysis by simply examining all possible 
cluster compositions and select the best one with regard to a 
certain target function. (The analysis was carried out in 
MATLAB, the programm code is available upon request.) 
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This procedure is clearly superior to hierarchical clustering 
as it ensures that the globally optimal cluster composition is 
identified. However, we also provide the results of hierar-
chical clustering as it is rather feasible compared to the 
computationally intensive approach of trying all possible 
compositions when the number of interviewers rises. 
Alternatively, one might resort to heuristic optimization 
techniques. 

When examining all possible cluster compositions we 
use two target functions. The first one combines the ideas 
that a large distance between the two cluster centers is 
eligible as well as a small distance between the elements of 
a cluster and the cluster center. We look for the cluster 
composition, which maximizes the following expression:  
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The index i  represents the four different indicator variables, 

aid  with =a 1, 2 is the mean of variable i  in cluster ,a j  
symbolizes the different elements (interviewers) in cluster 1 
and cluster 2, ijd  is the value of variable i  for element ,j  
and 1n  is the number of elements in cluster 1. Thus the 
numerator measures the distance between the two clusters, 
the denominator the distance within clusters and distance is 
measured in squared Euclidian form. 

Alternatively, it could be interesting to see what optimal 
cluster composition results if instead of maximizing Equa-
tion (3) the average squared Euclidian distance between all 
possible pairs of elements within one cluster is minimized. 
In fact, this idea is very similar to the relevant target func-
tion in the hierarchical cluster procedures we presented 
before. Our second distance measure, which this time is to 
be minimized, is calculated as follows:  

          

1 1

1

1 13 1 13 1

=1 = 1 = 1 = 1

1 1 1 1

SED SED

( ( 1)) / 2 ((13 ) (13 1)) / 2

n n

jk jk
j k j j n k j

n n n n

  

  



    

   
 (4) 

SED jk  is the squared Euclidian distance between elements 
j  and ,k  calculated as 24

=1SED = ( ) .ijk ij ikd d   The 
numerator is the sum of distances between all possible pairs 
of elements in the same cluster. By dividing this sum by the 
number of possible pairs, one obtains the average within 
cluster distance. 

Table 3 reveals the results of the three cluster procedures. 
In the hierarchical analysis with linkage between groups, the 
three falsifiers F1, F2 and F4 form cluster 1, falsifier F3 and 
all honest interviewers form cluster 2. Thus, we are able 
to separate both groups of interviewers, except one falsi-
fier. However, without knowing from the outset which 

interviewers fabricated data and which were honest, one 
would have to decide which of the two clusters contains the 
at risk interviewers. This can be done by comparing the 
means of the indicator variables for each cluster displayed in 
Table 4. For the hierarchical procedure, means of the item-
non-response ratio and the others ratio are clearly lower in 
cluster 1. The same is true for the mean of the extreme ratio, 
albeit the difference between the two clusters is less striking. 
Finally, a higher mean of the 2 -value can be observed for 
cluster 1. Given these results, one would – according to the 
above mentioned hypotheses on the behaviour of falsifiers – 
correctly identify cluster 1 to be the cluster containing the at 
risk interviewers. We also tried to improve the results of the 
hierarchical clustering procedure using the cluster means 
displayed in Table 4 as starting point for the K-means 
analysis. However, the application of K-means clustering 
did not lead to any changes in the cluster composition.  
Table 3 
Results of the three employed clustering procedures 
 

Hierarchical clustering 

Interviewer F1 F2 F3 F4 H1 H2 H3 H4 H5 H6 H7 H8 H9
Cluster  1 1 2 1 2 2 2 2 2 2 2 2 2 

Distance between clusters divided by distance within clusters 

Interviewer F1 F2 F3 F4 H1 H2 H3 H4 H5 H6 H7 H8 H9
Cluster  1 1 2 1 2 2 2 2 2 2 2 2 2 

Distance between elements in one cluster 

Interviewer F1 F2 F3 F4 H1 H2 H3 H4 H5 H6 H7 H8 H9
Cluster  1 1 1 1 2 2 2 2 2 2 2 2 1  
Table 4 
Indicator variable means by cluster for the three cluster 
compositions 
 

               Item-Non-Response     Others         Extreme     
2 -value

Hierarchical clustering 

Cluster  1 2 1 2 1 2 1 2
Mean  0.86 2.32 0.22 7.64 42.60 61.37 25.55 12.43

Distance between clusters divided by distance within clusters 

Cluster  1 2 1 2 1 2 1 2
Mean 0.86 2.32 0.22 7.64 42.60 61.37 25.55 12.43

Distance between elements in one cluster 

Cluster  1 2 1 2 1 2 1 2
Mean  0.68 2.80 0.92 9.06 50.83 60.92 21.43 11.73 

The cluster composition that maximizes Equation (3) is 
identical to the one obtained using hierarchical clustering. 
Consequently, as can be seen from Table 4, the indicator 
means within the two clusters are identical as well. 

The cluster composition minimizing Equation (4) is 
slightly different. Cluster 1 now contains all falsifiers and 
one honest interviewer. The means of the indicator variables 
again clearly indicate cluster 1 to be the cluster containing 
the at risk interviewers. This is a very satisfying result. All 
falsifiers are identified and only one false alarm is produced. 
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However, it should be kept in mind that this does not mean 
that this particular cluster method works best when applied 
to another dataset. 

To evaluate to what extent a higher number of indicators 
leads to better results, we repeated our cluster approach 
based on Equations 3 and 4 with all possible combinations 
of indicators, including cases that only rely on one indicator. 
The results (see Table 7 in the appendix) generally indicate 
that an increasing number of indicators improves the results. 
However, there are also combinations with a smaller 
number of indicators that lead to similar results compared to 
those based on all four indicators. Determining which 
indicator composition is the best would require the highly 
subjective fixation of the relative cost caused by non-
identified falsifiers compared to the cost caused by a false 
alarm. But one can determine which indicator compositions 
are not Pareto dominated in the sense that there is no other 
composition that exhibits less non-identified falsifiers (false 
alarms) and at the same time not more false alarms (non-
identified falsifiers). The indicator composition including all 
four indicators is the only one that is not Pareto dominated 
no matter which equation is used. In contrast, compositions 
including only one indicator are Pareto dominated in six out 
of eight cases.  
3.3 Discriminant analysis  

Finally, we turn to the discriminant analysis to check 
whether the hypotheses on falsifiers’ behaviour our cluster 
analysis is based upon are valid. Discriminant analysis can 
be used if the clusters are known in order to assess how well 
the indicators in the analysis can separate the different 
groups and whether group membership can be predicted 
correctly (see Härdle and Simar (2007) for an introduction 
to discriminant analysis). In a linear discriminant analysis, 
the coefficients 0b  and ib  of the discriminant function 

=10= n
i i iD b b x  are determined in such a way that they 

maximize a function that increases with the difference of the 
mean D -values of the two different groups and at the same 
time decreases with the differences of the D -values of 
elements within the groups. In our case, the ix  are our four 
indicator variables and we obtain two groups by separating 
falsifiers and honest interviewers. 

We use prior probabilities corresponding to the relative 
group size (4/13 and 9/13) in order to predict group mem-
bership. Table 5 shows the results. Obviously the four vari-
ables allow a good separation of the falsifiers and the honest 
interviewers, as the group membership is correctly predicted 
in all cases but one. 

As can be seen from Table 5 negative values of the 
discriminant function are associated with the falsifier group. 
Consequently, Table 6 indicates that three of the four 
coefficients’ signs are in line with the expected falsifier 

behaviour. Higher item-non-response and extreme ratios 
lead to a higher probability to observe an honest interviewer 
as does a lower 2 -value. The estimated coefficient for the 
others ratio is negative. Thus an increase in the others ratio 
ceteris paribus raises the probability that an interviewer has 
fabricated data. This might appear as a contradiction to our 
above-mentioned hypotheses. One possible explanation 
might be that the effect of the others ratio is already cap-
tured by the item-non-response ratio. In fact, the correlation 
coefficient between the two variables is quite high with a 
value of 0.71. The Wilks’ lambda of the discriminant analy-
sis is statistically significant on the 5%-level. 

 
Table 5 
Results of the discriminant analysis by interviewer 
 

Interviewer Predicted  
group 

Actual  
group 

Discriminant  
function 

F1 1 1 -2.878  
F2 1 1 -3.376  
F3 2 1 -0.541  
F4 1 1 -1.955  
H1 2 2 1.828  
H2 2 2 1.060  
H3 2 2 1.747  
H4 2 2 1.616  
H5 2 2 0.706  
H6 2 2 0.777  
H7 2 2 -0.041  
H8 2 2 1.765  
H9 2 2 -0.710  

 
Table 6 
Standardized and non-standardized estimated coefficients 
(discriminant analysis) 
 

Variable  Coefficient  
(non-standardized) 

Coefficient 
(standardized) 

Item-Non-Response   0.767    0.917  
Others   -0.025  -0.129  
Extreme   0.075   0.821  

2 -value   -0.092    -0.562  
Constant   -4.250   – 
Wilks’ lambda (Prob > F) 0.0254  

4. Conclusion  
Survey data are potentially affected by interviewers who 

fabricate data. Data fabrication is a non-negligible problem 
as it can cause severe biases. Even a small amount of 
fraudulent data might seriously impair the results of further 
empirical analysis. We extend previous approaches to 
identify at risk interviewers by combining several indicators 
derived directly from the survey data by means of cluster 
analysis. To demonstrate our approach, we apply it to a 
small dataset which was partialy fabricated by falsifiers. The 
fact that we know the falsifiers from the outset allows us to 
evaluate the results of the cluster analysis and to furthermore 
conduct a discriminant analysis to reveal how well the two 
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groups of interviewers can be separated by the indicator 
variables. Different types of cluster analyses are conducted. 
All of them lead to the identification of an at risk inter-
viewer cluster, with the item-non-response ratio and the 
others ratio being the clearest indicators. We are not able to 
identify falsifiers perfectly. However, in all cases the at risk 
interviewer contains a much higher share of falsifiers than 
the second cluster. The advantage of clustering is that one 
obtains a clear classification of interviewers who are at risk 
and the other interviewers, something that is not the case 
when indicators like the 2 -value are examined separately. 
Furthermore, it allows us to combine the information of 
several indicators. By investigating the performance of all 
possible subsets of indicators we find that generally a larger 
number of indicators is more apt to identify falsifiers. The 
fact that different clustering methods lead to different results 
should not necessarily be considered a shortcoming of our 
approach. Depending on how one weights the costs of an 
undetected falsifier relative to a false alarm, one might 
finally assign only those interviewers to the potential 
falsifier group that always fall into the at risk cluster, no 
matter what clustering method is applied (which would 
imply high costs of false alarms), one might assign all 
interviewers to the potential falsifier group that fall into the 
at risk cluster at least once (which would imply high costs of 
undetected falsifiers) or choose a solution in between. 

The application to a small dataset demonstrates another 
merit of our approach: it was tested and worked well in a 
situation in which the number of questionnaires per inter-
viewer was quite limited (three of the falsifiers only sub-
mitted 10 questionnaires). If a small number of question-
naires per interviewer is sufficient to perform the analysis, 
one might also think about implementing it during the main 
field period when interviewers have only submitted a certain 

percentage of their questionnaires. Falsifiers could then be 
replaced by other interviewers who survey the units that 
should have been surveyed by the falsifiers. 

Of course, when examining our results one has to keep in 
mind that we applied our method to a dataset in which a 
very severe form of data fabrication occurred: on the one 
hand we have falsifiers that faked all of their questionnaires 
(nearly) completely, on the other hand we have interviewers 
that (presumably) did all of their work honestly, which eases 
the discrimination between honest interviewers dishonest 
interviewers. Furthermore, with 13 interviewers, the size of 
our sample is quite limited. It would be interesting to 
explore the usefulness of our approach applied to larger 
datasets, given that the share of falsified interviews in large 
surveys has been found to be smaller than in our case. 
Additionally, larger datasets might allow the construction of 
additional indicators for the cluster analysis. If the survey 
has a reinterview program it would be possible to evaluate 
the usefulness of our approach by comparing the ‘success’ 
of a random reinterview with the success of a reinterview 
focusing on interviewers that were labeled as being at risk. 
We also intend to pursue the analysis in an experimental 
setting. An appropriate setting can ensure that one obtains a 
dataset which was partly collected by conducting real inter-
views and partly fabricated by telling some participants in 
the experiment to fill their questionnaires themselves.  
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Appendix 
Table 7 
Results of the cluster analyses based on Equations 3 and 4 for all possible cluster combinations 
 

Indicators Equation 3 Equation 4

Item-Non-Response Others Extreme 2 -value Undetected falsifiers  False Alarms  Undetected falsifiers  False Alarms 

   X 2 0 1 1 
  X  2 1 2 2 
  X X 2 0 11 0 
 X   01 4 0 4 
 X  X 2 0 0 2 
 X X  3 0 0 3 
 X X X 11 0 1 1 

X    01 4 0 4 
X   X 2 1 0 2 
X  X  3 0 -2 - 
X  X X 11 0 1 1 
X X   01 4 0 4 
X X  X 1 1 0 2 
X X X  01 4 0 4 
X X X X 11 0 01 1  

1 Indicator composition not Pareto dominated. 
2
 Mean cluster values did not allow for an identification of the ‘at risk’ cluster. 
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The application of graph theory to the  
development and testing of survey instruments 

Steven Elliott 1 

Abstract 
This paper focuses on the application of graph theory to the development and testing of survey research instruments. A 
graph-theoretic approach offers several advantages over conventional approaches in the structure and features of a 
specifications system for research instruments, especially for large, computer-assisted instruments. One advantage is to 
verify the connectedness of all components and a second advantage is the ability to simulate an instrument. This approach 
also allows for the generation of measures to describe an instrument such as the number of routes and paths. The concept of 
a ‘basis’ is discussed in the context of software testing. A basis is the smallest set of paths within an instrument which 
covers all link-and-node pairings. These paths may be used as an economic and comprehensive set of test cases for 
instrument testing. 
 
Key Words: Graph theory; Computer Assisted Interviewing (CAI); Questionnaire development; Software testing; 

Basis testing; Test cases. 
 
 

1. Introduction 
 
Graph theory is a branch of mathematics which deals 

with collections of nodes and links. A visual representation 
of a collection of nodes and links is referred to as a ‘graph’. 
Graphs have been used in many areas of study to model 
real-world phenomena. The earliest examples appear in the 
analysis of transportation logistics (Berge 1976, page VII). 
In such analyses, a graph-theoretic approach is useful for 
determining such things as a maximally efficient set of paths 
to cover a number of locations. The locations are repre-
sented by the nodes of the graph, and the links represent 
routes from one location to another.  

Graph theory has applications also in survey method-
ology. If the questions in a survey questionnaire are repre-
sented as nodes and the routes of flow between questions 
are represented as links, then a graph may be used to model 
a questionnaire. As such, many of the theorems and descrip-
tive measures from graph theory pertain to questionnaires. 
In addition, the processes of documenting and testing survey 
instruments benefit from a graph-theoretic approach. For 
example, a documentation system that contains one table for 
questions and another for response alternatives has the 
ability to verify the connectedness of all instrument compo-
nents as well as perform simulations of a working instru-
ment. A testing procedure in which the set of test cases 
minimally spans the ‘basis’ of an instrument graph guar-
antees that all combinations of consecutive links and nodes 
are tested with the smallest possible number of cases.  

A graph-theoretic representation is not necessary for the 
development, documentation, or testing of most survey 
instruments. In most cases, survey instruments have 
relatively few questions and the routing through an 

instrument does not have many branching points. Examples 
of this are customer satisfaction surveys and short, paper-
and-pencil surveys such as the U.S. Census. For these types 
of instruments, conventional documentation and testing 
procedures are adequate. However, large and complex 
surveys, like many current survey efforts, may benefit from 
a graph-theoretic approach. For example, the Canadian 
Financial Capability Survey (CFCS) is a survey that was 
conducted in 2009 to determine Canadians’ knowledge and 
behavior with respect to financial decision making. It was a 
computer-assisted telephone interview comprised of 12 
sections each of which had approximately 12 questions 
(Statistics Canada 2010). Another example is the Consumer 
Expenditure Surveys Quarterly Interview CAPI Survey 
(2010) conducted by the United States Department of 
Labor, Bureau of Labor Statistics. This survey has 22 
sections most of which have 3 or more subsections, and 
within each subsection there may be as few as six or as 
many as 90 questions (US Bureau of Labor Statistics 
2010). Either of these examples would be a good candidate 
for a graph-theoretic approach to documentation and 
testing. 

This paper addresses the application of mathematical 
graph theory to survey research instruments. The next sec-
tion of the paper which follows immediately below contains 
a description of a questionnaire as a graph and a delineation 
of the special properties that set apart a questionnaire graph 
from other types of graphs. The third section outlines the 
implications of a graph-theoretic representation on the 
structure of databases used for documentation/specifications 
systems for computer-assisted surveys. In Section 4, the 
specific features of graph-theoretic data structures are 
discussed. Sections 5 and 6 pertain to software testing and 
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the implications of graph theory on testing. A rationale is 
presented for the use of a ‘basis’ set of test cases which 
covers all pairs of linked nodes. This set of paths constitutes 
a comprehensive set of test cases for instrument testing.  

2. A questionnaire as a graph  
A graph may be represented as follows: G (V, E),  

where 1 2 3 nV {v , v , v , ..., v }  is a set of nodes or 
vertices and i j 1 kE {(v , v ), (v , v ), ...}  is a set of links or 
relations between pairs of vertices. Links are referred to as 
‘edges’ in the terminology of graph theory, and hence the 
common usage of “E” to represent them (Chartrand 1985, 
page 27). A graph need not have any additional special 
characteristics. However, graphs which are attributed special 
characteristics are useful in modeling many phenomena in 
science and engineering. For example, graphs with un-
directed edges (i.e., where both of the nodes attached to a 
link may be a predecessor or successor) may be used to 
model AC electric circuits, and graphs with directed edges 
may be used to model problems in traffic-pattern design. 
Other graphs with special characteristics are utilized to 
model networks in computer science, communications, 
sociology, and psychology.  

In the case of survey questionnaires, the nodes of the 
graph represent different components or parts of a survey 
instrument. Most frequently, these are the substantive 
questions of a survey or decision points where routing is 
determined. The edges represent the response alternatives or 
outcomes associated with a node. Edges also represent the 
routing from one node to the next, and each edge has a 
unique predecessor and successor node. The graph depicted 
in Figure 1 represents a simple, 12-question survey instru-
ment. The black circles (i.e., nodes) represent the compo-
nents of the instrument, and the lines connecting the black 
circles represent the edges that join one question to another. 
For example, the first node could represent a question with 
two response alternatives such as ‘yes’ and ‘no’. The second 
node could represent a question with five response alter-
natives, where the first three alternatives branch to node 3, 
and the fourth and fifth alternatives branch to node 4. 

When a graph is used to represent a questionnaire, there 
are a number of special properties that are attributed to the 
graph. These properties define the logical nature of a ques-
tionnaire. Bethlehem and Hundepool (2004) pointed out a 
number of these properties. First, a questionnaire has a 
starting node and an ending node. Second, all nodes other 
than the starting and ending nodes are connected. This 
means that for each node in the graph there is at least one 
route to it from the starting node, and one route away from it 
to the ending node. A third property of a questionnaire 
graph is that each of the edges is directed. This means that 

the route of flow from one node to another is always in one 
direction. A fourth characteristic of a questionnaire graph is 
that it may have multiple edges between a single pair of 
nodes. Many types of graphs are restricted such that only 
one edge may join a pair of nodes. This restriction does not 
apply to a questionnaire graph, because questionnaires 
commonly have more than one response alternative leading 
from one question to another. A final characteristic is that 
looping structures are permitted. This means that a node 
may appear multiple times on a single route. Looping struc-
tures are used frequently in questionnaires to modify re-
sponses that are determined to be incorrect. For example, 
financial or time-usage questions may be checked with edits 
that loop back if component questions do not sum to the 
correct total. 

 
 
 
 
 
 
 
 
 
 

Figure 1 Representation of a Survey Instrument as a Graph  
The characteristics of a questionnaire graph may be 

summarized as follows: 
1. a starting node and an ending node, 
2. connectedness (i.e., each node is connected to the 

start and end nodes), 
3. all edges are directed,  
4. pairs of nodes may have multiple or parallel edges 

connecting them, and 
5. nodes may appear more than once on a route. 
 

Given a set of defining properties, it is possible to determine 
a number of descriptors including the number of routes and 
a basis. It is possible also to model a documentation system 
on the structure of the graph as illustrated in the next 
section.   

3. Documentation and specification  
       systems for survey questionnaires  

Questionnaire documentation systems are typically one 
of two types: a text document or a relational database. For 
text-document systems, the information pertaining to a 
substantive question or other type of instrument component 
is most often presented as a section of the document. It 
consists of the question text, response alternatives, routing, 
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and instructions for programmers. The documentation 
system itself has no functionality aside from the search and 
print capabilities available in the word-processing software 
used to create the documentation. Systems using a relational 
database, on the other hand, are typically structured as a 
table where the rows represent the questions of the survey, 
and the columns represent attributes of the questions. Each 
record in the table is an n-tuple of question attributes. For 
example, the attributes of a question might include: name, 
sequence number, text of the question, response alternatives, 
routing information, and technical notes. One such speci-
fications system is the Tool for the Analysis and Documen-
tation of Electronic Questionnaires (TADEQ) (Bethlehem 
and Hundepool 2004). Other examples include systems 
developed at Westat Inc. for the Medicare Current Benefi-
ciary Survey (MCBS) sponsored by the US Centers for 
Medicare and Medicaid Services (Medicare Current Benefi-
ciary Survey: Overview 2010) and the Medical Expenditure 
Panel Survey (MEPS) sponsored by the US Department of 
Health and Human Services (MEPS: Survey Instruments 
and Associated Documentation 2010). These database 
systems have in common a structure of one primary table 
where each record represents a question. 

Despite the advantages afforded by the straightforward 
nature of conventional systems, a specification system 
modeled like a graph has capabilities beyond those possible 
with a conventional structure. Before describing those 
capabilities and the necessary underlying structure, it should 
be noted that there are multiple ways in which a graph-
theoretic data structure may be constructed (the interested 
reader is referred to Gibbons (1985, page 73) who described 
and categorized a number of those structures). The system 
proposed here is a relational list structure with two primary 
tables. One table represents the nodes of the graph, and the 
second table represents the edges. In the table representing 
nodes, each record or row represents an individual instru-
ment component (i.e., survey question, edit, or routing 
decision point). The second table represents edges where 
each record represents an individual edge (i.e., a response 
alternative or a specific condition existing at a decision 
point). Each record from either table contains attributes 
associated with the record. Individual attributes are con-
tained in the columns of the table. In the table of nodes, each 
column represents a specific attribute such as the component 
ID and component type. In the table of edges, each column 
represents an attribute such as the text of a response alter-
native. Two important distinctions between a documentation 
system with this structure versus a more conventional docu-
mentation system are: 1) the information pertaining to edges 
is not contained in the table for instrument components and 
2) the table of edges (i.e., links) contains identifiers for the 
predecessor and successor of an edge. As described in the 

next section, these distinctions allow a documentation 
system to perform in ways not possible with conventional 
systems.  

 
4. Features of a graph-based specifications system  

The use of separate tables for nodes and links as the 
building blocks of a specifications systems has several 
advantages. Most important of these advantages is the 
ability to simulate an interview. A developer or tester can 
move through an instrument selecting response alternatives 
while being routed from one instrument component to 
another just as if they were administering the instrument to a 
respondent. Figure 2 is an example of a screen display for 
simulating an instrument. The component from which 
simulation begins is selected from this screen. Figure 3 is 
the actual simulation screen itself. It shows the current 
component with the question text or conditional in the 
center of the screen. The lower left is a display of all 
components from which one may have come in order to 
arrive at the current component (i.e., predecessors). These 
are referred to as ‘origination points’ in the screen display. 
The lower right is a display of destination points or compo-
nents to which one may go from the current component (i.e., 
successors). Thus, one may move through an instrument one 
component at a time in either direction by selecting either an 
origination point or a destination point. In Figures 2 and 3, 
the questionnaire used as an example is one on general 
knowledge about cancer, and the question depicted in 
Figure 4 has only one predecessor and one successor. This 
will be the case for most survey questions, however if 
multiple predecessors or successors did exist, they would be 
listed in the display. 

The ability to simulate the operation of a survey instru-
ment is made possible because a separate table is utilized for 
links. This table may be queried to find all predecessors and 
successors for any component in the questionnaire. During 
the design phase of development, this feature can be used to 
insure that all sections and questions are properly connected 
and all routing is correct. In the testing phase of devel-
opment, this feature may be used to perform side-by-side 
comparisons of an instrument and the specifications upon 
which it was built. A tester could have the specifications 
system simulating the instrument on one monitor while 
running the actual instrument on a second. Such compari-
sons can be used to check not only the wording and format-
ting of questions and response alternatives, but also to verify 
that the instrument is going to the appropriate question at the 
appropriate time. Reports of errors or problems may then be 
entered directly into the specification system as an attribute 
of an instrument component. 
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Figure 2 Begin simulation screen 

 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Simulation screen 
 

  

CK-3. And which of the four remaining illnesses causes the second greatest number of deaths? [NOTE: Display the four 
response alternatives not selected in the previous question in the same order as presented in the previous question.] 

Highlight an origination point. Then, click ‘Go To’. Highlight a destination point. Then, click ‘Go To’. 

In the box below, please highlight an  
instrument component from which to start the 
simulation. Then, click the ‘Begin Simulation’ 

button below the box. 

CK-1 
CK-2 
CK-3 
CK-4a 
CK-4b 
CK-4c 
CK-4d 
CK-4e 
CK-5 
CK-6 
BoxCK-1 
CK-7

Simulate the Instrument 

 General Cancer Knowledge  Instrument 1 

 General Cancer Knowledge   Instrument 1 Simulate : 
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Another method for evaluating the integrity of a ques-
tionnaire is to identify ‘orphan’ instrument components. 
Sometimes in the course of creating or modifying a ques-
tionnaire, an instrument component may become inac-
cessible. Such components are referred to as ‘orphans’. 
Since a table exists for links (i.e., response alternatives and 
conditions), it is possible to run queries on this table to 
determine if a particular question appears as the successor to 
any link. If the question does not appear as a successor, then 
it is an orphan. Figure 4 contains the screen display for a 
listing of instrument components sorted by the frequency 
with which each appears as a successor. This is called an 
‘Orphan Report’ in the figure. It shows that the first question 
in the survey has no origination points. This is as it should 
be since the first component cannot have predecessors. Any 
other component having zero origination points is an 
orphan. The orphan report is useful also in characterizing 
instrument components. For example, a question or compo-
nent with a large number of originations may be the first 
question of a section devoted to handling premature 
terminations. Such a section is accessible from any other 
section of the interview, and therefore it would have a large 
number of predecessors.  

5. Testing   
Testing a computer-assisted survey instrument is the 

process of verifying that the behavior of the instrument is 
consistent with the design specifications. Several ap-
proaches have been utilized to accomplish this. One is to 
test first the building block components of a system, and 

then move to increasingly larger and more integrated assem-
blages of components (i.e., ‘bottom-up’ testing). Testing the 
building block components is referred to as ‘unit testing’ 
(Beizer 1995, page 5). After each of the building blocks has 
been tested separately, the blocks are assembled, and testing 
is concentrated on how the components interact. This is 
referred to as ‘integration testing’ (Hetzel 1984, page 11). 
The final stage of integration testing is ‘system testing’ 
where the entire system as a whole just as it would be used 
in a true production environment (Myers 1979, page 110).  

Other approaches and terminology have also been ap-
plied to testing procedures. These include ‘black-box’, 
‘white-box’, and ‘regression’ testing. In black-box testing, a 
program is treated as if it were in a black box where the 
inner workings not visible. Inputs and outputs are the only 
observable aspects of program function (Beizer 1995, page 
8). White-box testing utilizes knowledge of the program 
code to decide how to conduct the tests and which cases are 
used in testing (Patton 2006, page 55). For example, a 
programmer might conduct a series of white-box tests such 
that every line of code is ‘exercised’ (i.e., ‘code coverage’) 
or such that every branching point is exercised (i.e., ‘branch 
coverage’). Regression testing is used to insure code integ-
rity after changes or additions have been introduced to an 
operational program (Beizer 1995, page 235). Regression 
tests utilize a set of test cases. This set is selected such that 
each of the major branches of the program is exercised. 
Other types of testing (e.g., alpha, beta, usability) are also 
used in software development, and there are many sources 
for a more comprehensive description of testing procedures 
(see Kaner, Falk and Nguyen 1999, page 277).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Orphan report 

 
 

Orphan Report 

Each instrument component for all instruments in this project is represented below. In the column 
titled ‘count’, there is a value for the number of times a particular component appears as a  

destination from other components. Any components with a zero count are orphans. In other words, there 
is no way to access such components. This is a problem unless it is the very first component 

which should have a count of zero. 

   Sequence  Instrument Component Count 
1   Instrument 1   CK-1                0 

14   Instrument 1   CK-8                1 
12   Instrument 1   CK-7                1 
16   Instrument 1   CK-9                1 
21   Instrument 1   CK-13                1 
23   Instrument 1   CK-14                1 
25   Instrument 1   CK-15a                1 
36   Instrument 1   CK-15k                1 
49   Instrument 1   CK-18                3 
45   Instrument 1   CK-16b                3 
46   Instrument 1   CK-16c                3 

General Cancer Knowledge 

Close
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In any testing procedure, a major concern is testing bias. 
This results when some components or functionality of an 
instrument are excluded from testing. For example, ques-
tions which appear toward the end of a survey or in an 
obscure section may be more likely to be excluded. Testing 
bias is eliminated completely if a set of test cases is selected 
such that all instrument components, links between compo-
nents, and aspects of functionality are included. However, 
given the length and complexity of some surveys, compre-
hensive testing is not a practical option. Consider, for 
example, the questionnaire represented in Figure 1. This 
questionnaire has only 12 questions and 28 response 
alternatives, and yet, there are 672 possible routes through 
the instrument. In large surveys such as those mentioned 
above, the number of routes could be well over 10,000. 
Thus, if comprehensive coverage is not a viable approach 
for large surveys, it is possible to avoid testing bias by 
taking a probability sample of potential test cases. A graph-
theoretic approach can be useful in both the specification of 
the universe of test cases and in the determination of a 
rational approach to sampling test cases. 

 
6. A graph-theoretic approach to testing  

A universe of test elements can be defined in several 
different ways. One could use the elements already dis-
cussed - test cases, where each case is a mock interview. 
Alternatively, a universe of test elements could be survey 
questions, response alternatives, or any of a variety of 
combinations of questions and response alternatives. The 
discussion here is limited to test cases, and therefore, it will 
be helpful to provide precise definitions of a test case and 
two closely related terms, ‘path’ and ‘route’.  

A path is a unique, ordered set of nodes, which traverses 
an instrument from beginning to end. Each node in a given 
path, provided that it is not a starting or ending node, is 
linked to a predecessor and a successor (this definition is 
consistent with Bethlehem and Hundepool 2004). A unique 
path results whenever a component has more than one 
successor component. In Figure 1, multiple successors 
appear for components 2 and 4. These two branching nodes 
result in three paths:   

Path 1 - 1, 2, 3, 5, 7, 9, 11, 12 
Path 2 - 1, 2, 3, 5, 8, 9, 11, 12 
Path 3 - 1, 2, 4, 6, 10, 11, 12  

A ‘route’, on the other hand, is a unique, alternating 
series of nodes and links beginning with the starting node 
and terminating with the ending node. Like a path, a route 
must satisfy the properties of connectedness and direction. 
‘Route’ is the graph-theoretic term which is synonymous 

with what is commonly called a ‘test case’ in software 
testing. Since a route takes into account which link connects 
a pair of nodes, the number of routes in a graph is greater 
than or equal to the number of paths. The number of routes 
contained within a particular a path is equal to the product of 
the number of links between each pair of nodes along the 
path. Thus for the example in Figure 1, the number of routes 
for each path is:  

Path 1 - 2 x 3 x 2 x 2 x 2 x 2 x 3 = 288 
Path 2 - 2 x 3 x 2 x 2 x 2 x 2 x 3 = 288  
Path 3 - 2 x 2 x 2 x 2 x 2 x 3 = 96  

The total number of routes is the sum of routes over all 
paths (i.e., 288 + 288 + 96 = 672). A formula for computing 
the number of routes is: 

Routes linksiNPP
iji j

    

where i  represents the thi  path, P  represents the total 
number of paths, j  represents the thj  set of links on a 
given path, NPi  represents the number of pairs of connected 
nodes on a given path, and links represents the number of 
links connecting a pair of nodes. 

If a testing protocol is based on a sample of routes, then a 
minimum and comprehensive suite or universe of test cases 
is contained in the ‘basis’ of a graph. The term, ‘basis’, in 
this context is analogous to a ‘basis’ in geometry. The basis 
of a geometric space is a set of vectors which is sufficient to 
span the space, or in other words, a basis is a set of vectors 
sufficient to locate any point in the space. Likewise, the 
basis of a graph is a set of paths sufficient to include all 
predecessor-successor pairings of nodes. This implies that 
all nodes and at least one of the links between any 
connected pair of nodes are included. A basis is a subset of 
all possible paths. All questionnaires have a set of paths (P) 
in which each member satisfies the definition of a path as 
stated above (i.e., a unique sequence of nodes). Within this 
set is a subset which has the special characteristic that each 
member path contains at least one pair of connected nodes 
that is not contained in any other path within the subset. 
This subset will be referred to as ‘basis paths’ (BP).  

In order to gain a better understanding of the difference 
between the paths in BP and those in the complement of BP 
(i.e., P – BP), consider the graph presented in Figure 5. The 
set of all paths (P) for the graph in Figure 5 is:  

Path 1 - 1, 2, 4, 5, 7 
Path 2 - 1, 2, 4, 6, 7 
Path 3 - 1, 3, 4, 5, 7 
Path 4 - 1, 3, 4, 6, 7  

Any one of the four paths could be eliminated and the 
remaining three would include each pair of connected 
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nodes, and therefore any three constitutes a set of basis paths 
(BP). For example if Path 1 were eliminated, each of the 
node pairings would still be contained in Paths 2, 3, and 4. 
However, if both Paths 1 and 2 were eliminated, then node 
pairings 1 - 2 and 2 - 4 would be excluded. Thus, the set of 
two paths would be insufficient to span all of the inde-
pendent sequences of nodes in the graph.  

 
 
 
 
 
 
 
 
 
 

Figure 5 Representation of paths and basis paths  
As illustrated above in Figure 1, many questionnaires 

encountered in practice have so many routes that testing all 
routes is not practical. Further, a typical route within an 
instrument has one or more similar routes which involve the 
same set of nodes, and these routes may be so similar that 
they differ by only a single, parallel link. Therefore, testing 
all routes would be not only impractical due to the large 
number of routes, but also redundant due to the similarity of 
many routes. The task for a test designer is to select a subset 
of routes that maximizes coverage and minimizes redun-
dancy. This may be accomplished by using BP as a first step 
in sampling from the universe of routes. The utilization of 
BP in this manner is equivalent to beginning the sampling 
process with a purposive sample (Cochran 1977, page 10). 
Another way to think of this first step is as a redefinition of 
the universe of elements for the purpose of eliminating 
redundancy. This universe is comprehensive in its coverage, 
and it contains the smallest set of cases necessary to include 
all connected node pairs. A second stage of sampling could 
then be to select one or more routes from each of the paths 
contained in BP. This could be accomplished in several 
ways. One way would be to consider each path as a cluster 
of test cases and then take a probability sample from each 
cluster. Another way would be to select one route from each 
cluster by randomly selecting one parallel link at each node.  

If one accepts the notion of basis testing, then it must be 
determined how much of the basis should be tested. If all 
paths in BP are tested, then the only elements of an instru-
ment excluded from testing are redundant links. While 
redundant links may contain spelling or formatting errors, 
they are unlikely to contain routing errors. This stems from 
the nature of the programming task involved in creating 

CAI instruments. Response alternatives are typically ‘bun-
dled’ in the sense that alternatives which lead to the same 
next question are likely to be either all misdirected or none 
misdirected. For this reason, comprehensive testing of a 
basis is an effective method for minimizing errors of a type 
most likely to lead to loss of data. 

On the other hand, non-comprehensive testing may be 
the only reasonable strategy if constraints due to time or 
level of effort exist and the number of paths in a basis is 
large. Despite the fact that any part of an instrument not 
tested may contain an error, any fraction of the paths in a 
basis may constitute an unbiased test. Thus, the percentage 
of paths to be included in a test should probably depend on 
factors specific to a particular development situation. For 
example, an instrument may contain modules which have 
been used previously or modules that have had only minor 
modification since previous use. These modules need not be 
tested as thoroughly as newer ones. As a general rule, a 
minimum sample of test cases should include each distinct 
section of an instrument in one or more paths, and paths 
should be included to cover all inter-sectional connections.  

 
7. Discussion and conclusions 

 
A graph-theoretic approach to software development has 

two major advantages over conventional approaches. First, 
it allows for a documentation system that can simulate the 
behavior of a computer-assisted interview. This is useful in 
verification of routing and as an aid to testers in side-by-side 
comparisons of instrument behavior versus design specifi-
cations. The second major advantage is in selecting cases 
for testing. The use of the basis of a questionnaire allows for 
the specification of a universe of test cases which covers all 
node pairings with a minimum number of paths. Probability 
sampling from this universe insures that no bias is incorpo-
rated into the testing procedures.  

In practice, the first advantage can be achieved by 
structuring the database behind a specifications system 
such that it contains a table for nodes and a table for links. 
If the links table specifies a predecessor and a successor 
node, then queries of the tables will provide the func-
tionality for verification of routing and simulation. The 
second advantage can be achieved with an algorithm for 
the identification of a basis. As pointed out by Poole 
(1995), one of the most important things to do when 
setting out to test software is to determine which test cases 
to use. He presented an algorithm for doing this that is 
based on the flowgraph of a program. Using a flowgraph 
for this purpose is useful as long as the program is not too 
large. With large and complicated programs, flow diagrams 

1 7 4 

3 

2 5 

6 
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become unwieldy. The same is true of large and compli-
cated questionnaires (Bethlehem and Hundepool 2004). 
The appendix contains output from an algorithm which 
generates a basis, counts routes, and specifies basis paths 
for an example questionnaire graph (the algorithm used to 
generate the output appearing in the appendix is available 
from the author (sdelliott2@verizon.net). This algorithm 
does not handle looping structures as would be inherent in 
edits or ‘go back’ features. These structures may be tested as 
separate from the questionnaire graph. An algorithm which 
handles looping is under development).  

A graph-theoretic approach is valuable also in that it 
allows for the use of a number descriptive measures of 
questionnaires such as the number of routes, the number of 
paths, cyclomatic complexity (cyclomatic complexity is a 
measure of complexity in software code (see Hetzel 1984; 
McCabe 1976; and Watson and McCabe 1996). It is equal 
also to the number of paths in the basis of a graph. For 
directed graphs where parallel links are not permitted, 
cyclomatic complexity ( ) 2,  CC L N  where L  is 
the number of links and N  is the number of nodes), and 
several types of descriptive matrices (see appendix). Future 
enhancements to a graph-theoretic approach will likely 
involve such things as: 1) taxonomies for components, links, 
and errors; 2) secondary tables in the specification database 
containing attributes specific to different types of nodes and 
links; 3) sophisticated sampling plans for selecting test 
cases; and 4) purposive route sampling.  

Taxonomies will promote the specification of special 
types of instrument components and the incorporation of 
secondary tables in the documentation system. An example 
of a special type of instrument component is one with a 
randomization feature. Such a component would be used in 
multi-phase respondent selection where a respondent re-
porting a particular disease, for example, has an increased 
probability of being routed to a follow-up section pertaining 
to that disease. In this case, the initial question pertaining to 
the disease may be a special type called ‘respondent 
selection’. A secondary table in the documentation system 
for ‘respondent selection’ questions may have attributes 
pertaining to a random number generator such as generator 
seed and selection threshold.  

Enhancements to sampling may include stratified sam-
pling (Cochran 1977, page 89) and sampling with probabi-
lity proportional to size (i.e., PPS). Stratified sampling could 
be used to insure that all sections within a questionnaire are 
included with certainty. Paths would be stratified according 
to the sections they traverse. With PPS sampling, size might 
be a measure of path length, and the probability of selection 

for a particular path would be dependent on the number of 
nodes included in the path. Thus, longer paths could be 
included with greater frequency. Purposive route sampling 
may be utilized for testing instrument characteristics other 
than programming errors. For example, later phases of 
questionnaire development might target specific sequences 
of questions for tests of the cognitive characteristics of an 
instrument. 

Other researchers in this area likely will provide further 
enhancements to the application of graph theory to question-
naire development. It does seem clear that graph theory 
lends itself well to the description, development, and testing 
of complex CAI instruments. The current trends in CAI 
usage seem to be in the direction of more sophisticated and 
larger instruments. For this reason, tools which help to 
document instrument components and identify errors are 
valuable to development efforts.  
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Appendix  

Example of Basis Generation   

  
Links (i.e., excluding redundant links) = 23 
Nodes = 16 
 

Figure 6 Questionnaire graph 
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Table 1 
Branches count for each node  
 

Node Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Branches 1 3 1 2 2 1 2 4 1 1 1 1 1 1 1 0

 
Table 2 
Link matrix  
 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1  2      
2   2 2 4   
3      3   
4      4 2   
5      3 2   
6      4   
7      5 4   
8      4 2 2 2
9        2
10        3
11        3
12        2
13        4
14        4
15        4
16        

 

Each cell contains a value for the number of links between the row and column nodes.  
Table 3 
Path matrix  
 

 1st node 2nd node 3rd node 4th node 5th node 6th node 7th node 8th node 9th node 10th node 
Path 1 1 2 3 6 9 16     
Path 2 1 2 4 6 9 16     
Path 3 1 2 5 7 10 16     
Path 4 1 2 4 7 10 16     
Path 5 1 2 5 8 12 16     
Path 6 1 2 5 7 11 16     
Path 7 1 2 4 7 11 16     
Path 8 1 2 5 8 13 16     
Path 9 1 2 5 8 14 16     
Path 10 1 2 5 8 15 16     
 

Cell values represent nodes. Each row represents a path.  
[Note: The paths in this example all have 6 nodes. However in general, all paths will not have the same number of nodes.]  
Table 4 
Link counts and number of routes for each path  
 

 Node Pairings Routes 
1st to 2nd 2nd to 3rd 3rd to 4th 4th to 5th 5th to 6th      

Path 1 2 2 3 4 2      96 
Path 2 2 2 4 4 2      128 
Path 3 2 4 3 5 3      360 
Path 4 2 2 2 5 3      120 
Path 5 2 4 2 4 2      128 
Path 6 2 4 3 4 3      288 
Path 7 2 2 2 4 3      96 
Path 8 2 4 2 2 4      128 
Path 9 2 4 2 2 4      128 
Path 10 2 4 2 2 4      128 
 

Paths = 10 Total Routes = 1,600 
Cells represent the number of links between successive nodes in a path. 
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Table 5 
Basis path matrix  
 

 1st node 2nd node 3rd node 4th node 5th node 6th node 7th node 8th node 9th node 10th node 
Basis Path 1 1 2 3 6 9 16     
Basis Path 2 1 2 4 6 9 16     
Basis Path 3 1 2 5 7 10 16     
Basis Path 4 1 2 4 7 10 16     
Basis Path 5 1 2 5 8 12 16     
Basis Path 6 1 2 5 7 11 16     
Basis Path 7 1 2 5 8 13 16     
Basis Path 8 1 2 5 8 14 16     
Basis Path 9 1 2 5 8 15 16     
 

Cell values represent nodes. Each row represents a basis path. 

 
Table 6 
Link counts and number of routes for each basis path  
 

 Node Pairings Routes 
1st to 2nd 2nd to 3rd 3rd to 4th 4th to 5th 5th to 6th     

Basis Path 1 2 2 3 4 2     96 
Basis Path 2 2 2 4 4 2     128 
Basis Path 3 2 4 3 5 3     360 
Basis Path 4 2 2 2 5 3     120 
Basis Path 5 2 4 2 4 2     128 
Basis Path 6 2 4 3 4 3     288 
Basis Path 7 2 4 2 2 4     128 
Basis Path 8 2 4 2 2 4     128 
Basis Path 9 2 4 2 2 4     128 
 

Basis Paths = 9 Total Routes in Basis = 1,504 
Cells represent the number of links between successive nodes from the Basis Paths Matrix above. 
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On sample allocation for efficient domain estimation 

G. Hussain Choudhry, J.N.K. Rao and Michael A. Hidiroglou 1 

Abstract 
Sample allocation issues are studied in the context of estimating sub-population (stratum or domain) means as well as the 
aggregate population mean under stratified simple random sampling. A non-linear programming method is used to obtain 
“optimal” sample allocation to strata that minimizes the total sample size subject to specified tolerances on the coefficient of 
variation of the estimators of strata means and the population mean. The resulting total sample size is then used to determine 
sample allocations for the methods of Costa, Satorra and Ventura (2004) based on compromise allocation and Longford 
(2006) based on specified “inferential priorities”. In addition, we study sample allocation to strata when reliability 
requirements for domains, cutting across strata, are also specified. Performance of the three methods is studied using data 
from Statistics Canada’s Monthly Retail Trade Survey (MRTS) of single establishments. 
 
Key Words: Composite estimators; Compromise allocation; Direct estimators; Domain means; Non-linear 

programming. 
 
 

1. Introduction  
Stratified simple random sampling is widely used in 

business surveys and other establishment surveys em-
ploying list frames. The population mean h h hY W Y  is 
estimated by the weighted sample mean ,hst h hy W y  
where /h hW N N  is the relative size of stratum ( 1,...,h   

)L  and hY  and hy  are the stratum population mean and 
sample mean respectively. The well-known Neyman sample 
allocation to strata is optimal for estimating the population 
mean in the sense of minimizing the variance of sty  subject 
to h hn n   where n  is fixed or minimizing h hn  
subject to fixed variance of ,sty  where hn  is the stratum 
sample size. But the Neyman allocation may cause some 
strata to have large coefficients of variation (CV) of the 
means .hy  On the other hand, equal sample allocation,

/ ,hn n L  is efficient for estimating strata means, but it 
may lead to a much larger CV of the estimator sty  com-
pared to that of Neyman allocation. 

Bankier (1988) proposed a “power allocation” as a com-
promise between Neyman allocation and equal allocation. 
Letting /h h hC S Y  be the stratum CV, the power alloca-
tion is  

                       ,  1, ...,
q

B h h
h q

h hh

C X
n n h L

C X
 


 (1.1) 

where hX  is some measure of size or importance of stratum 
h  and q  is a tuning constant. Power allocation (1.1) is 
obtained by minimizing 2{ CV( )}q

h h hX y  subject to 
,h hn n   where CV( )hy  is the CV of the stratum 

sample mean .hy  The choice 1q   and h h hX N Y  in 
(1.1) leads to Neyman allocation  

                      

, 1, ...,N h h
h

h hh

N S
n n h L

N S
 


 (1.2) 

and 0q   gives equal allocation if hC C  for all ,h  
where 2

hS  is the stratum variance. Bankier (1988) viewed 
values of q  between 0 and 1 as providing compromise 
allocations. He gave a numerical example to illustrate how 
q  may be chosen in practice. The choice h hX N  and 

1/ 2q   in (1.1) gives “square root allocation” hn   
/ hh hn N N  if .hC C  Power allocation (1.1) and 

some other allocations generally depend on the variable of 
interest y and hence in practice a proxy variable with known 
population values is used in place of  y.  

Costa et al. (2004) proposed a compromise allocation 
based on a convex combination of proportional allocation, 

,h hn nW  and equal allocation / ,hn n L  see section 2.1. 
Longford (2006) made a systematic study of allocation in 
stratified simple random sampling by introducing “infer-
ential priorities” hP  for the strata h  and G  for the 
population. In particular, he assumed that q

h hP N  for a 
specified (0 2),q q   see section 2.4. He also studied 
the case of small strata sample sizes hn  in which case 
composite estimators of strata means hY  may be used. 

The main purpose of our paper is to propose an “opti-
mal” allocation method, based on non-linear programming 
(NLP), see section 2.3. It minimizes the total sample size 

h hn  subject to specified tolerances on the CVs of the 
strata sample means hy  and the estimated population mean 

.sty  The case of indirect (composite) estimators of strata 
means is studied in Section 3. In Section 4, we study 
optimal sample allocation to strata when reliability require-
ments for domains, cutting across strata, are also specified. 



24 Choudhry, Rao and Hidiroglou: On sample allocation for efficient domain estimation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The proposed method readily extends to multiple variables, 
but for simplicity we omit details. Using the optimal total 
sample size obtained from NLP, we make a numerical study 
of the performances of Costa et al. and Longford methods in 
terms of satisfying reliability requirements, Section 5. 

 
2. Allocation for direct estimators  

In this section, we consider direct estimators, ,hy  of 
strata population means, assuming stratified simple random 
sampling. The case of indirect estimators of strata means is 
studied in Section 3. Indirect strata estimators are used in the 
case of strata with small sample sizes .hn   
2.1 Costa et al. allocation  

The sample allocation of Costa et al. (2004) is  

                         ( ) (1 )( / )C
h hn k nW k n L    (2.1) 

for a specified constant (0 1).k k   This allocation 
reduces to equal allocation when 0k   and to proportional 
allocation when 1.k   Formula (2.1) needs to be modified 
when / hn L N  for some h  in a set of strata .A  The 
modified allocation is  

                           0( ) (1 ) ,C
h h hn k nW k n    (2.2) 

where 0
h hn N  if h A  and 0 ( ) / (h Ah hn n N L    

)m  otherwise, where m  is the number of strata in the set 
.A  Note that when 0,k   (2.2) gives modified equal 

allocation. We study different choices of the constant k  in 
the numerical study of Section 5, based on data from 
Statistics Canada’s Monthly Retail Trade Survey (MRTS).   
2.2 Longford allocation  

Longford’s (2006) method attempts to simultaneously 
control the reliability of the strata means hy  and the 
estimated population mean sty  by minimizing the objective 
function  

                          1

( ) ( ) ( )
L

h h st
h

P V y GP V y


  (2.3) 

with respect to the strata sample sizes hn  subject to 
,h hn n   where .h hP P   The first component in (2.3) 

specifies relative importance, ,hP  of each stratum h  while 
the second component attaches relative importance to sty  
through the weight .G  Longford (2006) assumed that 

q
h hP N  for some constant (0 2).q q   The term P  

in (2.3) offsets the effect of the sizes hP  and the number of 
strata on the weight .G  

Under stratified simple random sampling, the sample 
allocation minimizing (2.3) is  

                     , 1, ...,h hL
h

h hh

S P
n n h L

S P


 


 (2.4) 

where 2.h h hP P GP W    If 2,q   then (2.4) does not 
depend on the value of G  and it reduces to Neyman 
allocation, ,N

hn  given by (1.2)  
2.3 Nonlinear programming (NLP) allocation  

We now turn to the NLP method of determining the 
strata sample sizes hn  subject to specified reliability re-
quirements on both the strata sample means and the esti-
mated population mean. Letting 1( , ..., )f T

Lf f  with hf   
/ ,h hn N  we minimize the total sample size 

                                 1

( )f
L

h h
h

g f N


   (2.5) 

with respect to f  subject to  

                     0CV( ) CV , 1, ...,h hy h L   (2.6)  

                     
CV( ) CVst oy   (2.7) 

                     
0 1, 1, ...,hf h L    (2.8) 

where 0CV h  and 0CV  are specified tolerances on the CV of 
the stratum sample mean hy  and the estimated population 
mean ,sty  respectively. Inequality signs are used in (2.6) 
and (2.7) because the resulting CVs for some strata h  
and/or for the aggregate may be smaller than the specified 
tolerances (Cochran 1977, page 122).  

Letting 1,h hk f   (2.5) becomes a separable convex 
function of the variables ,hk  

                               1

1

( ) .k
L

h h
h

g N k 



   (2.9) 

We re-specify the constraints (2.6) and (2.7) in terms of 
relative variances so that the constraints are linear in the 
variables .hk  The relative variance (RV) of hy  is the square 
of its CV,  

                            

21
RV( ) .h

h h
h

k
y C

N


  (2.10) 

Similarly, the relative variance of sty  is the square of its 
CV, 

                   

2 2 2

1

1
RV( ) .

L
h

st h h
h h

k
y Y W S

N





   (2.11) 

We used the SAS procedure NLP with the Newton-
Raphson option to find the optimal hk  that would minimize 
(2.9) subject to  

                    
RV( ) RV , 1, ..., ,h ohy h L   (2.12) 
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                                0RV( ) RV ,sty   (2.13) 

                                
1, 1, ..., .hk h L   (2.14) 

RV( )hy
 
and RV( )sty  are given by (2.10) and (2.11) where 

2
0 0RV CVh h  and 2

0 0RV CV .  By expressing the con-
straints as linear constraints and the objective function as a 
separable convex function, we achieve faster convergence 
of the re-formulated NLP. Denoting the solution to NLP as

0 0 0
1( , ..., ) ,k T

Lk k  the corresponding vector of optimal 
strata sample sizes is given by 0 0 0

1( , ..., ) ,n T
Ln n  where

0 0/ .h h hn N k  We can modify (2.14) to ensure that 0 2hn 
for all h which permits unbiased variance estimation. 

The NLP method can be readily extended to multiple 
variables 1, ..., Py y  by specifying tolerances on the CVs of 
strata means and the estimated population mean for each 
variable  ( 1, ..., ).p P  If the number of variables P  is not 
small, then the resulting optimal total sample size 0n   

0
h hn  may increase significantly relative to 0n  for a single 

variable. Huddleston, Claypool and Hocking (1970), Bethel 
(1989) and others studied NLP for optimal sample alloca-
tion in the case of estimating population means of multiple 
variables under stratified random sampling. 

 
3. Allocation for composite estimators  

Longford (2006) studied composite estimators of strata 
means of the form 

                            ˆ (1 )S
h h h h hy y       (3.1) 

where S
hy  is a synthetic estimator; here we take .S

h sty y  
The MSE of ˆ

h  is 

        

2

2 2
2 2 2 2

1

2
2 2

ˆ ˆ ˆMSE( ) ( ) [ ( )]

(1 )

2 (1 ) ( )

 terms not depending on the .

h h h

L
h h

h h h h
h h h

h
h h h h h

h

h

V B

S S
W W

n n

S
W Y Y

n

n



    

    

      




 

(3.2)

 

Longford (2006) showed that the optimal coefficient h  
in (3.1) minimizing (3.2) is approximately equal to *

h   
2 2 2 1( ) ,h h h hS S n    where .h hY Y    He then replaced 
2
h  in *

h  by its average over the strata, denoted by 2
B   

1 2( ) ,h hL Y Y    leading to * 2(1 ) ,h h hn     where 2
h   

2 2/ .B hS  The resulting MSE of ˆ
h  is approximated as  

                              

2
ˆMSE( ) .

1
B

h
h hn


 

 
  (3.3) 

Longford’s allocation is obtained by minimizing the 
objective function  

                      
1

ˆMSE( ) (GP ) ( )
L

h h h
h

P V y


   (3.4) 

with respect to the .hn  The resulting solution satisfies  

 
2 2

2
2

(GP ) const., 1, ..., .
(1 )

h B h h
h

hh h

P S
W h L

nn 
 

  
 

 (3.5) 

Longford used an iterative method to obtain the solution to 
(3.5) since it does not have a closed-form solution.  

Our NLP procedure minimizes ( )fg  given by (2.5) 
subject to  

0
ˆRMSE( ) RMSE , 1, ..., ; RV( ) RVh h st oh L y     (3.6) 

and (2.8), where 2ˆ ˆRMSE( ) MSE( ) /h h hY    and 0RMSE h  
is a specified tolerance. The approximation (3) to ˆMSE( )h  
is used in (3.6). 

 
4. Allocation for domain estimation  

Suppose that the population U  is partitioned into do-
mains dU ( 1, ..., )d D  that cut across the strata. Also, 
suppose that the estimators of domain means need to satisfy 
specified relative variance tolerances, 0RV ,d 1, ..., .d D  
We find the optimal additional strata sample sizes that are 
needed to satisfy the domain tolerances, using the NLP 
method.  

An estimator of domain mean 1
dk Ud d kY N y

  is 
the ratio estimator 

                            

1

1

1

1

ˆ ,h

h

L

h h d k k
h k s

d L

h h d k
h k s

N n y

Y

N n



 



 






 

 
 (4.1) 

where 1d k   if dk U  and 0d k   otherwise, hs  is 
the sample from stratum h  and d N  is the size of domain 

.d  The relative variance of the ratio estimator (4.1) is 
2ˆ ˆRV( ) ( ) / ,d d dY V Y Y  where the variance ˆ( )dV Y  is ob-

tained by the usual linearization formula for a ratio 
estimator.  

Let hn  denote the revised total sample size from stratum 
h  so that the sample increase from stratum h  is 0.h hn n  
Let /h h hf n N   be the corresponding sampling fraction. 
We obtain the optimal 1( , ..., )n T

Ln n    by minimizing the 
sample increase 

                    0 0

1 1

( ) ( )f
L L

h h h h h
h h

g n N f f N
 

       (4.2) 

with respect to 1( , ..., )f T
Lf f    subject to  
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                       0 1, 1, ...,h hf f h L    (4.3) 

                   0
ˆRV( ) RV , 1, ..., .d dY d D   (4.4) 

As before, we reformulate the problem by expressing 
(4.2), (4.3) and (4.4) in terms of 1( , ..., ) ,k T

Lk k    where 
1.h hk f    This leads to minimization of the separable 

convex function  

                               * 1

1

( )k
L

h h
h

g N k 



    (4.5) 

with respect to k  subject to the linear constraints  

                        01 , 1, ...,h hk k h L    (4.6) 

and 

2

2 2
0

1

ˆRV( )

1
RV , 1, ...,

d

L
h h

d d eh d
h d h

Y

N k
Y S d D

N N






  
  

 


  
(4.7)

 

where 0RVd  is the specified tolerance, 2
d ehS  denotes the 

stratum variance of the residuals ( )d k d k k de y Y    for 

hk U  and hU  denotes the stratum population. Denote the 
resulting optimal hk  and hn  as 0

hk  and 0
hn  respectively, so 

that the optimal sample increase in stratum h  is 0 0.h hn n  
It can be shown that the minimization of total sample size 

subject to all the constraints 0RV( ) RV , 1, ..., ,h hy h L 
0

ˆRV( )  RV , 1, ..., ,d dY d D  0RV( ) RV ,sty   and 
0 1,hf  1, ...,h L  will lead to the same optimal 
solution, 0 0 0

1( , ..., ) .T
Ln n n    However, domain reliability 

requirements may often be specified after determining 0.n  

 
5. Empirical results  

In this section, we study the relative performance of 
different sample allocation methods, using data from the 
MRTS. Section 5.1 and 5.2 report our results for direct 
estimators and composite estimators of strata means, 
respectively. Results for the domain means are given in 
section 5.3.  
5.1 Strata means: Direct estimators  

For the empirical study, we used a subset of the MRTS 
population values restricted to single establishments. Strata 
sizes, ,hN  strata population means, ,hY  strata standard 
deviations, ,hS  and strata CVs, / ,h h hC S Y  are given in 
Table 1 for the ten provinces in Canada (treated as strata). 
For the NLP allocation, we have taken the CV tolerances as 

0CV h  15% for the strata means hy  and 0CV  6% for the 
weighted sample mean ,sty  denoted Canada (CA).  

The NLP allocation satisfying the specified CV toler-
ances resulted in a minimum overall sample size 0n 
3,446. Table 2 reports the sample allocation 0

hn  and the 

associated CV( )hy  and CV( )sty  for the NLP allocation. It 
shows that the NLP allocation respects the specified 
tolerance 0CV  6%, gives CVs smaller than the specified 
tolerance 0CV h  15% for two of the larger provinces (QC: 
11.4% and ON: 11.0%) and attains a 15% CV for the 
remaining provinces. 

 
Table 1 
Population values for the MRTS 
 

Provinces hN  hY  hS  hC  

Newfoundland (NL ) 909 963 1,943 2.02 
Price-Edward-Island (PE) 280 712 1,375 1.93 
New-Brunswick (NB) 1,333 1,368 3,200 2.34 
Nova-Scotia (NS) 1,153 1,568 4,302 2.74 
Quebec (QC) 11,135 2,006 4,729 2.36 
Ontario (ON) 21,531 1,722 6,297 3.66 
Manitoba (MN ) 1,700 1,295 2,973 2.30 
Saskatchewan (SK) 1,743 1,212 3,019 2.49 
Alberta (AL) 5,292 1,698 5,358 3.16 
British Columbia (BC) 7,803 1,291 4,013 3.11 
Canada (CA) 52,879 1,654 - - 

 
Table 2  
Equal, proportional, square root and NLP allocations and 
associated CVs (%) 
 

Province Equal Proportional Square-Root NLP 

hn  CVh hn  CVh  hn  CVh  hn  CVh

NL 352 8.4 59 25.4 169 14.0 151 15.0 
PE 280 0.0 18 44.1 94 16.2 104 15.0 
NB 352 10.7 87 24.2 205 15.0 206 15.0 
NS 352 12.2 75 30.6 191 18.1 259 15.0 
QC 352 12.4 726 8.5 593 9.4 410 11.4 
ON 352 19.3 1,403 9.4 824 12.5 1,056 11.0 
MN 352 10.9 111 21.1 232 14.0 206 15.0 
SK 352 11.9 114 22.6 234 15.2 238 15.0 
AL 352 16.3 345 16.4 408 15.0 409 15.0 
BC 352 16.2 508 13.3 496 13.5 407 15.0 
CA 3,446 9.1 3,446 5.2 3,446 6.3 3,446 6.0  

Using the optimal overall sample size 3,446, we calcu-
lated the sample allocations hn  and the associated CV( )hy  
and CV( )sty  for the modified equal allocation, 
proportional allocation and square-root allocation, reported 
in Table 2. It is clear from Table 2 that the modified equal 
allocation is not suitable in terms of satisfying specified CV 
tolerances because it leads to CV( )sty  9.1% which is 
significantly larger than the specified 0CV  6%. Also, 
under the modified equal allocation, CV( )hy  equals 19.3%, 
16.3% and 16.2% for the larger provinces ON, AL and BC 
respecttively. Note that for the smallest province PE Table 2 
gives CV( )hy  0% for the modified equal allocation 
because for PE it gives .h hn N  
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Turning to proportional allocation, Table 2 reports 
CV( )sty  5.2% but it leads to considerably larger strata 
CVs relative to the specified 15% for seven of the prov-
inces, ranging from 16.4% to 44.1%. On the other hand, 
Table 2 shows that square-root allocation offers a reason-
able compromise in terms of desired CV tolerances. We 
have CV( )sty  6.3% and CV( )hy  15% for seven of 
the provinces and the three provinces with CVs greater 
than 15% are SK with 15.2%, PE with 16.2% and NS 
with 18.1%. 

Table 3 reports the results for the Costa et al. allocation 
(2.1) with k  0.25, 0.50 and 0.75, using n  3,446 ob-
tained from NLP. We observe from Table 2 that the choice 
k  0.25, which assigns more weight to equal allocation, is 
not satisfactory for the estimation of the population 
(Canada) mean: CV( )sty  7.2%, but performs well for 
strata means, except AL with CV( )hy  16.3%. On the 
other hand, the choice k  0.75, which assigns more weight 
to proportional allocation, performs poorly in estimating 
provincial means, with CV( )hy  ranging from 16.2% to 
21.4% for seven of the provinces, although CV( )sty  is 
smaller than the desired tolerance, 6%. The compromise 
choice k = 0.50 performs quite well, leading to CV( )sty 
6.4% and CV( )hy  around 15% or less except for two 
provinces (NS and AL) with CVs of 17.0% and 16.5% 
respectively. Performance of the Costa et al. method with 
k  0.50 and square-root allocation are somewhat similar, 
and both allocations do not depend on the variable of 
interest, ,y  unlike the Longford and NLP allocations.  

We next turn to Longford’s allocation (2.4) which 
depends on q  and .G  Table 4 provides results for q  0, 
0.5, 1.0, 1.5 and G  0, 10, 100, using n  3,446 obtained 
from NLP. For q  2.0, Longford’s allocation does not 
depend on G  and in fact it reduces to the Neyman 
allocation (1.2) which minimizes CV( )sty  for fixed n  but 
leads to highly inflated CV( ),hy  ranging from 16% to 85% 
for seven provinces. We see from this table that CV( ),hy  

for a given ,q  increases with G  rapidly while CV( )sty  
decreases slowly as G  increases and in fact is virtually a 
constant (5.1%) for 100G   (values not reported here). 
Also, CV( )hy  for a given ,G  increases rapidly as q  
increases while CV( )sty  decreases. Langford’s allocation, 
for q  0.5 and/or 10,G   leads to significantly larger 
CV( )hy  than the specified tolerance 0CV h  15% for 
several provinces, even though CV( )sty  respects the 
specified tolerance of 6%. On the other hand, for 0q   and 

0,G  CV( )hy  is below the specified tolerance except for 
BC with 15.7%, but CV( )sty  7.3% significantly exceeds 
the specified tolerance. For q  1.0 and q  1.5, CV( )sty  
stays below 6% when 0,G   but CV( )hy  exceeds 15% for 
six provinces, ranging from 17.7% to 34.0% for q  1.0 and 
22.0% to 54.6% for q  1.5. On the whole, Table 4 suggests 
that no suitable combination of q  and G  can be found that 
ensures that all the specified reliability requirements are 
satisfied even approximately. 

 
Table 3  
Costa et al.’s allocation and associated CVs (%) for k = 0.25, 
0.50 and 0.75 
 

Province
 

k = 0.25 k = 0.50 k = 0.75 

dn  CVd  dn  CVd  dn  CVd  

NL 278 10.1 205 12.4 132 16.2 

PE 214 6.4 149 10.8 83 17.8 

NB 286 12.3 219 14.5 153 17.8 

NS 282 14.2 213 17.0 144 21.4 

QC 446 10.9 539 9.9 633 9.1 

ON 615 14.5 878 12.1 1,140 10.5 

MN 292 12.2 231 14.0 171 16.6 

SK 292 13.3 733 15.2 174 17.9 

AL 350 16.3 349 16.3 347 16.4 

BC 391 15.3 430 14.6 469 13.9 
CA 3,446 7.2 3,446 6.2 3,446 5.6 

 

 
Table 4 
CVs (%) for Longford’s allocation with q = 0, 0.5, 1.0, and 1.5 
 

Province q = 0  q = 0.5  q = 1.0  q = 1.5 

G = 0 G = 10 G = 100  G = 0 G = 10 G = 100  G = 0 G = 10 G = 100  G = 0 G = 10 G = 100

NL 13.5 19.3 29.7  17.2 23.0 33.4  22.7 29.0 38.3  30.4 36.2 40.6 
PE 12.7 20.4 34.6  21.4 29.6 48.5  34.0 45.4 67.3  54.6 67.3 85.6 
NB 12.0 17.1 25.0  14.5 19.4 26.8  18.3 23.1 29.0  23.5 27.6 30.3 
NS 11.1 16.7 25.5  14.2 19.5 27.9  18.7 24.1 30.9  24.9 29.4 32.8 
QC 11.0 9.8 9.1  9.9 9.4 9.0  9.2 9.0 8.9  8.9 8.9 8.8 
ON 14.9 9.8 8.7  12.3 9.5 8.6  10.5 9.1 8.5  9.3 8.7 8.5 
MN 12.7 17.6 24.3  14.7 19.1 25.2  17.7 21.9 26.5  22.0 25.4 27.5 
SK 13.6 18.9 25.9  15.7 20.5 26.9  19.0 23.5 28.3  23.5 27.0 29.4 
AL 13.5 15.7 16.1  13.3 15.2 15.9  13.6 15.2 15.9  14.6 15.5 15.9 
BC 15.7 16.1 15.4  14.7 15.4 15.3  14.3 15.0 15.1  14.5 15.0 15.1 
CA 7.3 5.5 5.1  6.2 5.3 5.1  5.5 5.2 5.1  5.2 5.1 5.1          
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5.2 Strata means: Composite estimators  
We now report some results for the composite estimators, 

ˆ ,h  of strata means. We obtained the optimal total sample 
size as n  3,368 using NLP and the reliability requirements 
(3.6). This value is slightly smaller than the optimal 0n 
3,446 for the direct estimators. For the Longford allocation, 
we used n  3,368 and calculated the sample allocation and 
associated CVs of the composite estimators ˆ

h  and the 
weighted mean sty  for specified q  and ,G  constraining hn  
to be at least two. For the MRTS data we have used, the first 
term of (3.5) is small relative to the second term. As a result, 
the sample allocation is flat across G - values for a given q  
which means that the CVs for the Longford allocation did 
not vary significantly with .G  

Therefore, we have reported results in Table 5 only for 
0G   and q  0, 0.5, 1.0 and 1.5. We note from Table 5 

that ˆCV( )h  decreases with q  for the two largest provinces 
(QC and ON) because the sample shifts from the smaller 
provinces to these two provinces as q  increases. Also, 

ˆCV( )h  initially decreases for AL and BC but it starts 
increasing when q  is large because the sample starts 
shifting to QC and ON from these provinces as well. 
Further, ˆCV( )h  increases for all other provinces with q  
except for NS for which it starts decreasing for large q  
because of larger synthetic component and very negligible 
bias. In particular, ˆCV( )h  increases rapidly for NL and PE 
because of very large bias.   
Table 5 
CVs (%) for the composite estimators using Longford’s 
allocation: G = 0 and q = 0, 0.5, 1.0 and 1.5 
 

Province q = 0 q = 0.5 q = 1.0 q = 1.5 

NL 12.7 17.0 24.2 37.3 

PE 12.4 23.8 46.0 112.2 

NB 10.4 12.8 16.1 20.4 

NS 9.4 11.9 14.5 11.7 

QC 10.3 9.0 8.3 8.0 

ON 13.9 11.1 9.3 8.2 

MN 11.2 13.1 16.0 20.3 

SK 12.4 14.6 17.9 23.2 

AL 11.4 11.2 11.5 12.2 

BC 14.4 13.3 12.9 13.1 

CA 8.0 6.3 5.4 5.6  
On the other hand, CV( )sty  decreases initially with q  

but starts increasing when q  is large because most of the 
sample gets allocated to QC and ON and very little sample 
is assigned to the smaller provinces. It appears from Table 5 
that the Longford allocation performs reasonably well only 
for 0q   and 0,G   giving ˆCV( )h  less than 15% for all 
provinces at the expense of CV( )sty  8.0%.  

5.3 Domain means  
Establishments on the Canadian Business Register are 

classified by industry using the North American Industry 
Classification System (NAICS). NAICS is principally a 
classification system for establishments and for the compi-
lation of production statistics. The industry associated with 
each establishment on the Canadian Business Register is 
coded to six digits using the North American Industry Clas-
sification System. There are 67 six digit codes associated 
with the Retail sector. These six digit codes are regrouped 
into 19 trade groups (TG) for publication purposes. 

We took the trade groups as domains that cut across 
provinces (strata). The trade group with the smallest number 
of establishments is TG 110 (beer, wine and liquor stores) 
with 307 establishments and the TG with the largest number 
of establishments is TG 100 (convenience and specialty 
food stores) with 7,752 establishments. Establishments were 
coded to all the 19 trade groups in all but one province: in 
PE, establishments were coded to only 16 trade groups.  

We applied NLP based on (4.5), (4.6) and (4.7), and 
obtained the optimal total sample size increase to meet 
specified reliability requirements on the domain estimators

ˆ.dY  We found that no increase in the total sample size is 
needed if the tolerance on ˆCV( )dY  is less than or equal to 
30% for each domain. If the tolerance is reduced to 25%, 
then the optimal total sample size increase is 622 and the 
total sample size after the increase is 4,068. If the tolerance 
is further reduced to 20%, then the optimal total sample size 
increase is 2,100 and the total sample size after the increase 
is 5,546, which is considerably larger than the original 
3,446. Note that as the total sample size is increased, CVs 
of strata means hy  and the weighted sample mean sty
decrease.  

 
6. Summary and concluding remarks  

We have proposed a non-linear programming (NLP) 
method of sample allocation to strata under stratified 
random sampling. It minimizes the total sample size subject 
to specified tolerances on the coefficient of variation of 
estimators of strata means and the population mean. We 
considered both direct estimators of strata means and 
composite estimators of strata means. The case of domains 
cutting across strata is also studied. Difficulties with 
alternative methods in satisfying specified reliability re-
quirements are demonstrated using data from the Statistics 
Canada Monthly Retail Trade Survey of single establish-
ments. We also noted that NLP can be readily extended to 
handle reliability requirements for multiple variables. Com-
promise allocations that perform reasonably well in terms of 
reliability requirements are also noted. 
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Calibration alternatives to poststratification for doubly classified data 

Ted Chang 1 

Abstract 
We consider alternatives to poststratification for doubly classified data in which at least one of the two-way cells is too small to 
allow the poststratification based upon this double classification. In our study data set, the expected count in the smallest cell is 
0.36. One approach is simply to collapse cells. This is likely, however, to destroy the double classification structure. Our 
alternative approaches allows one to maintain the original double classification of the data. The approaches are based upon the 
calibration study by Chang and Kott (2008). We choose weight adjustments dependent upon the marginal classifications (but 
not full cross classification) to minimize an objective function of the differences between the population counts of the two way 
cells and their sample estimates. In the terminology of Chang and Kott (2008), if the row and column classifications have I and 
J cells respectively, this results in IJ benchmark variables and I + J - 1 model variables. We study the performance of these 
estimators by constructing simulation simple random samples from the 2005 Quarterly Census of Employment and Wages 
which is maintained by the Bureau of Labor Statistics. We use the double classification of state and industry group. In our 
study, the calibration approaches introduced an asymptotically trivial bias, but reduced the MSE, compared to the unbiased 
estimator, by as much as 20% for a small sample. 
 
Key Words: Calibration; Poststratification; Prediction model. 
 
 

1. Introduction  
Suppose we have a population   which is doubly 

stratified by two categorical variables whose indices are 
denoted ( , ), = 1, , , = 1, ,i j i I j J   and write ij  for the 
( , )i j -stratum. If a simple random sample   of size n  is 
taken and if y  denotes the variable of interest a natural 
estimator for the total = ky kT y   is the poststratified 
estimator  

                                      
PS

,

ˆ =y ij ij
i j

t N y  (1) 

where ijN  is the size of ij  and ijy  is the sample mean of 
y  over .ij   This estimator is widely used as long as 

all the sample sizes ijn  of ij   are reasonably large. 
What to do if some of the ijn  are small, or even zero? 
The standard approach would be to collapse some of the 

cells until all the ijn  are big enough. However such a 
collapsing might not be possible in a way that maintains the 
double classification scheme: that is the indices j  might 
depend upon .i  

The poststratified estimator PS
ˆ
yt  is a special case of a 

calibration estimator. Define for each k    the I J  
vector variable 11= ( , , )x T

k k IJkx x  where = 1ijkx  if 

ijk    and = 0ijkx  otherwise. The population total xT  of 
x  is 11( , , )T

IJN N  and letting = /kd N n  be the sam-
pling weight and 1 1 1 1

11 11= ( , , )T
IJ IJN n N n N n N n      
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ˆ = ( )

= ( ) .

T
y k k k

k

T
k k k

k

t d y

T d











x

x

x x





 

These equations establish that if the benchmark variables x  
are used, then PSŷt  is the resulting calibrated estimator of 

.yT  
Chang and Kott (2008) derived the asymptotic properties 

of a calibrated estimate of the form  

                             
,

ˆˆ = ( )z V zT
y f k k k

k

t d f y





 (2) 

where   minimizes an objective function of the form  

1

( ) =

( ) ( ) .x xz x V z x
T

T T
k k k k k k

k k

Q

T d f T d f

 



   
      

   
 
 

 
(3)

 

In equations (2) and (3), z  is a vector of model variables 
whose length Q  is at most the length P  of the benchmark 
variables ,x f  is a positive real valued function which 
Chang and Kott (2008) calls the back link function, and V  
is some positive definite symmetric P P  matrix. V  is 
allowed to depend upon   as would occur if ( )V   is some 
measurement of the variability of ( ) .z xT

k k k kd f   
In Chang and Kott (2008), the realized sample   is the 

respondents from an original sample with sampling weights 
.kd  The respondent sample   is assumed to be a Poisson 

subsample of the original sample with Poisson probabilities 
1

0( ) ,zT
kf   for some 0.  The asymptotic formulas derived 

there were under an asymptotic framework for this quasi-
randomization (design based) model. We use the term 
quasi-randomization to remind ourselves that the assumed 
Poisson response mechanism is actually model based. 

It should be noted that the use of calibration to correct for 
nonresponse goes back to Fuller, Loughin and Baker 
(1994), at least when =z x  and ( ) = 1 .f     
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We propose to use the Chang and Kott (2008) 
methodology with x  remaining as indicator variables for 
the complete I J  cross classification but letting z  be a 
vector of 1I J   indicator variables for the marginal 
classifications. In other words, we propose to rebalance the 
sample to come as close as possible, in the sense of mini-
mizing (3), to the correct cell proportions in the complete 
cross classification, but requiring the rebalancing weights to 
depend only upon the marginal classifications. 

The Chang and Kott (2008) framework applies in the 
presence of nonresponse (and/or noncoverage) if (zT

kf  
1

0 )  is the response (or combined response and coverage) 
probability. We note that poststratification, a special case of 
calibration, is often used for the purpose of nonresponse/ 
noncoverage correction. In our test example below, there is 
no nonresponse or noncoverage to correct for, and hence, 
the Chang and Kott (2008) framework applies with 0 = 0  
for any f  with (0) = 1.f  In other words, if the calibration 
is used solely for the purposes of sample rebalancing, we 
can use Chang and Kott (2008) with almost any .f  But if 
we are trying to correct for nonresponse and/or non-
coverage, stronger assumptions are required. 

It should be noted that raking is simply the calibrated 
estimate using the 1I J   indicator variables of the 
marginal classifications as both benchmark and model 
variables and using ( ) = .f e  Thus we will also explore 
the use of this back link function. 

Section 2 gives the precise formulas for the estimators 
we will use in this study. Chang and Kott (2008) can be 
applied to derive sample based variance estimators and 
these derivations are given in the Appendix. 

In Section 3, we give the results on an empirical study 
using the 2005 first quarter Quarterly Census of Employ-
ment and Wages, collected by the Bureau of Labor Statistics. 
We will restrict ourselves to the five states which we will 
denote by A, B, C, D, E and to five industry groupings 
denoted by 1, 2, 3, 4, 5. We will not further identify either 
the states or the industry groupings to prevent identification 
of the outlier in the discussion below. This population has 
283,725 firms. From this population we will take Monte 
Carlo simple random samples of size n   200, 1,000, 5,000 
and use the double classification of state and industry group. 

It should be noted that 0.18% of the population has the 
double classification of state E and industry grouping 5. 
Thus when n  200, the expected sample size in this cell is 
0.36 and poststratification using the double classification is 
out of the question. 

Kott and Chang (2010) derives the properties of ,
ˆ

z Vy ft  
using a model based framework. The models considered 
there do not apply with our selection of x  and z  variables. 
However, motivated by their approach, we examine in 
Section 4 the behavior of the estimator ,

ˆ
z Vy ft  defined by 

equation (2), under highly simplified assumptions, including 
that ( ) = 1 .f     This leads in Section 5 to the choice of a 
new weight matrix 1V   for use in (3). We then continue 
with our empirical exploration using this new estimator.  

2. Mathematical formulas  
In this section we list the formulas used in this study. 

They are all special cases of formulas in Chang and Kott 
(2008). We assume that a simple random sample of size n  
is taken from a population of size N  and we use   and r  
to denote the respondents from that sample and the size of 

.  We assume that the calibration weight function has a 0  
such that 1

0( )zTf   is the response probability for an 
element with model variables .z  In particular, and without 
loss of generality, if there is no nonresponse problem, we 
assume (0) = 1.f  

The same formulas work with noncoverage, in which 
case 1

0( )zTf   is the combined response/coverage proba-
bility. 

We denote ,ijN ,ij  and ijr  to be the population size, 
respondent sample, and respondent sample size in classifi-
cation ( , ).i j  Although ijN  is assumed known, our method-
ology does not require the knowledge of the row and 
column classifications of nonrespondents. 

We define = ji ijN N   and analogously define .jN  
We will use estimators for a total yT  of the form  

                             

ˆ =y ij k
i j k ij

N
t w y

n 
 


 (4) 

where the adjustment weights ijw  are defined as below. 
These are all special cases of equations (2) and (3) when we 
use = .V I   

The calibrated margins estimator uses ( ) = 1f     
and defines =x z  to be 1I J   independent indicator 
variables for the marginal categories. In this case xT  is a 
vector of iN   and jN . The adjustment weights ( )zT

kf   
have the form ˆ ˆ= 1ij i jw       when z  is the vector of 
indicator variables for membership in the thi  and thj  row 
and column classifications respectively. Since the number of 
equations (the dimension of )x  equals the number of 
unknowns (the dimension of ˆ),  we expect to be able to 
solve the equations  

                               
= ( )x z xT

k k k
k

T d f





 (5) 

exactly. Thus ˆ ˆ,i j    solve the linear equations of rank 
1I J    

ˆ ˆ= (1 )

ˆ ˆ= (1 ) ,

i i j ij
j

j i j ij
i

N
N r

n
N

N r
n

  

  

   

   




 

which easily follows from (5).  
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The calibrated cell counts estimator uses ( ) = 1f     
and defines x  to be the IJ  indicator variables for the 
complete cross classification and z  to be 1I J   
independent indicator variables for the marginal categories. 
In this case xT  is a vector of ijN  and, since = ,V I  the 
adjustment weights ˆ ˆ= 1ij i jw       minimize the objec-
tive function  

2

ˆ ˆ(1 ) .ij i j ij
i j i j

N
N r

n  

 
     

 
   

The raking estimator uses ( ) =f e  and defines 
=x z  to be 1I J   independent indicator variables for 

the marginal categories. Its adjustment weights are =ijw  
ˆ ˆexp( )i j     where ˆ ˆ,i j    solve the I J  equations  

ˆ ˆ= exp( )

ˆ ˆ= exp( ) .

i i j ij
j

j i j ij
i

N
N r

n
N

N r
n

  

  

  

  




 

Since = = ,i ji jN N N    these I J  equations yield 
only 1I J   constraints. It should be noted, however, that 
if a constant c  is added to each ˆ

i  and subtracted from 
each ˆ ,j  the ijw  are not changed.  

The exponential calibrated cell counts estimator uses 
( ) =f e  and defines x  to be the IJ  indicator variables 

for the complete cross classification and z  to be 1I J   
independent indicator variables for the marginal categories. 
Its adjustment weights ˆ ˆ= exp( )ij i jw      minimize the 
objective function  

2

ˆ ˆexp ( ) .ij i j ij
i j i j

N
N r

n  

 
    

 
   

Chang and Kott (2008) give formulas for sample based 
estimation of the variance of ˆ .yt  In the appendix, we apply 
these formulas to the four estimators above. 

3. Empirical study  
The population we use here is the data from the 2005 

first quarter Quarterly Census of Employment and Wages 
(QCEW), restricted to five states and five industry 
groupings. The QCEW is compiled from mandatory reports 
to state employment offices and hence is virtually a census 
and the data we used is the complete QCEW for these five 
states and five industry groupings. This population has 

=N 283,725 firms, divided as in Table 1. 
The response variables y  are total employment and total 

(quarterly) wages. For these variables =yT 2,981,364 for 
total employment and =yT 2,334,400 (in tens of thousands 
of dollars) for total wages. In this study, we took 10,000 
samples of sizes =n 200, 1,000, 5,000. For each of the 4 
estimators, we report the estimated bias, standard error, and 
root mean square error. We also report square root of the 
mean of the estimated variances using the first term of 
equation (15). For purposes of comparison, we report the 
theoretical and empirical values for the unweighted 
estimator / .k kN n y   These results are reported in Table 
2 for total employment and Table 3 for total wages. 

For sample size =n 5,000, the expected sample size in 
the smallest cell (state E and industry group 5) is 9.07. 
While this might be a little small for poststratification, the 
probability that this cell has a sample size less than 2, the 
minimum size necessary for variance estimation, is 0.0011. 
In our simulations 9 runs had a cell with sample size less 
than 2. For this sample size, we also report the empirical 
behavior of poststratified estimator, excluding the 9 problem 
cases, using the variance estimate (7.6.5) of Särndal, 
Swensson and Wretman (1992) and its theoretical behavior 
using the variance approximation given in (7.6.6) of Särndal 
et al. (1992). 

 
 

Table 1 
Business entities by state and industry group  
 

 industry group  
   1   2   3   4   5   sum  

 A   5,986   5,548   7,712   3,969   1,299   24,514  
   (2.11%)   (1.96%)   (2.72%)   (1.40%)   (0.46%)   (8.64%)  

B   18,782   31,572   22,012   4,982   4,504   81,852  
   (6.62%)   (11.13%)   (7.76%)   (1.76%)   (1.59%)   (28.85%)  

C   13,518   13,099   17,837   5,610   3,001   53,065  
   (4.76%)   (4.62%)   (6.29%)   (1.98%)   (1.06%)   (18.70%)  

D   30,428   36,017   32,541   10,963   5,399   115,348  
   (10.72%)   (12.69%)   (11.47%)   (3.86%)   (1.90%)   (40.65%)  

E   2,225   2,020   3,110   1,076   515   8,946  
   (0.78%)   (0.71%)   (1.10%)   (0.38%)   (0.18%)   (3.15%)  

 sum   70,939   88,256   83,212   26,600   14,718   283,725  
   (25.00%)   (31.11%)   (29.33%)   (9.38%)   (5.19%)    
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Table 2 
Empirical comparison of 4 estimators of total employment  
 

 estimator   bias   st. err.   rt. MSE   rt. est. var.  

n = 200 
unweighted (theoretical)   0   1,113,220      
unweighted (empirical)   -1,280   1,068,944   1,068,945   1,059,463  
cal. margins   -1,394   1,105,201   1,105,201   1,048,873  
cal. cell cts.   -218,751   1,008,436   1,031,889   975,140  
raking   -462   1,103,172   1,103,172   1,041,490  
exp. cal. cell cts.   -227,578   1,000,154   1,025,719   962,153  

n = 1,000 
unweighted (theoretical)   0   497,144      
unweighted (empirical)   -5,435   505,941   505,970   501,144  
cal. margins   -6,212   506,239   506,277   498,946  
cal. cell cts.   -56,118   493,611   496,790   488,222  
raking   -4,854   507,938   507,961   499,237  
exp. cal. cell cts.   -58,891   492,939   496,445   487,281  

n = 5,000 
unweighted (theoretical)   0   220,751      
unweighted (empirical)   1,516   224,088   224,093   222,034  
poststr. (theoretical)   0   220,315      
poststr. (empirical, 9 cases excluded)   1,234   223,225   223,228   221,094  
cal. margins   1,649   223,091   223,098   220,833  
cal. cell cts.   -8,606   222,170   222,337   220,347  
raking   3,632   236,355   236,383   220,606  
exp. cal. cell cts.   -10,643   223,472   223,725   220,207  

 
 

Table 3 
Empirical comparison of 4 estimators of total wages (tens of thousands of dollars)  
 

 estimator   bias   st. err.   rt. MSE   rt. est. var.  

 n = 200  
unweighted (theoretical)   0   1,682,571      
unweighted (empirical)   -11,119   1,551,186   1,551,226   1,543,483  
cal. margins   -11,474   1,582,383   1,582,425   1,510,413  
cal. cell cts.   -214,323   1,451,931   1,467,664   1,413,411  
raking   -11,220   1,579,842  1,579,882   1,501,170  
exp. cal. cell cts.   -221,435   1,438,810   1,455,750   1,393,246  

 n = 1,000  
unweighted (theoretical)   0   751,406      
unweighted (empirical)   -2,911   772,495   772,501   768,878  
cal. margins   -4,372   776,955   776,968   768,869  
cal. cell cts.   -51,649   756,201   757,963   751,384  
raking   -4,684   778,302   778,316   769,428  
exp. cal. cell cts.   -54,305   754,963   756,913   749,832  

 n = 5,000  
unweighted (theoretical)   0   333,654      
unweighted (empirical)   2,678   336,057   336,068   337,239  
poststr. (theoretical)   0   333,765      
poststr. (empirical, 9 cases excluded)   1,802   335,271   335,276   336,192  
cal. margins   2,510   334,910   334,920   336,064  
cal. cell cts.   -7,149   333,560   333,637   335,006  
raking   -4,679   339,074   339,106  335,230  
exp. cal. cell cts.   -9,251   334,365   334,493   334,755  

 
The response variables, total employment and total 

wages, are strongly skewed right. There is one firm (in state 
C and industry group 4) whose total employment is more 
than double the total employment of the next largest firm 
and many hundreds times the mean employment of the 

remaining firms. We repeat this study using a population 
with this firm removed. The results are presented in Tables 
4 and 5. In practice with this population, the sampling 
would normally sample this firm with certainty (a self 
representing unit) and samples constructed from the 
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remaining firms. Thus Tables 4 and 5 are perhaps more 
indicative of the relative performance of these estimators in 
actual practice. 

The samples used for Tables 4 and 5 are identical to 
those used for Tables 2 and 3 except that if the outlier was 

included in the sample, it was replaced by a new obser-
vation from the population. This was done to improve the 
comparability of the results of Tables 4 and 5 with those of 
Tables 2 and 3. 

 
 
 
Table 4 
Empirical comparison of 4 estimators of total employment: population with outlier removed  
 

 estimator   bias   st. err.   rt. MSE   rt. est. var.  

n = 200 
unweighted (theoretical)   0   950,688      
unweighted (empirical)   5,395   975,617   975,632   965,448  
cal. margins   5,777   1,019,583   1,019,599   963,314  
cal. cell cts.   -211,568   909,070   933,365   877,343  
raking   6,688   1,018,383   1,018,405   956,867  
exp. cal. cell cts.   -217,810   902,756   928,660   868,797  

n = 1,000 
unweighted (theoretical)   0   424,552      
unweighted (empirical)   -8,393   422,116   422,199   414,019  
cal. margins   -9,430   418,153   418,259   408,577  
cal. cell cts.   -58,808   408,391   412,603   399,961  
raking   -8,135   419,938   420,016   408,611  
exp. cal. cell cts.   -61,014   407,780   412,320   399,311  

n = 5,000 
unweighted (theoretical)   0   188,517      
unweighted (empirical)   702   191,631   191,632   188,089  
poststr. (theoretical)   0   187,691      
poststr. (empirical, 9 cases excluded)   563  190,854   190,855   187,180  
cal. margins   820   190,662   190,664   186,664  
cal. cell cts.   -9,376   189,884   190,115   186,202  
raking   2,933   205,924   205,944   186,618  
exp. cal. cell cts.   -9,922   189,813   190,072   186,140  

  
Table 5 
Empirical comparison of 4 estimators of total wages: population with outlier removed  
 

 estimator   bias   st. err.   rt. MSE   rt. est. var.  

n = 200 
unweighted (theoretical)   0   1,330,930      
unweighted (empirical)   711   1,341,900   1,341,901   1,334,556  
cal. margins   1,256   1,387,484   1,387,485   1,318,285  
cal. cell cts.   -201,575   1,225,852   1,242,314   1,194,071  
raking   1,473   1,386,978   1,386,979   1,311,353  
exp. cal. cell cts.   -206,956  1,217,881   1,235,340   1,184,166  

n = 1,000 
unweighted (theoretical)   0   594,370      
unweighted (empirical)   -8,169   587,775   587,832   582,524  
cal. margins   -10,093   583,606   583,693   576,251  
cal. cell cts.   -56,429   569,158   571,948   563,022  
raking   -10,529   584,532   584,626   576,282  
exp. cal. cell cts.   -58,435   568,277   571,273   562,061  

n = 5,000 
unweighted (theoretical)   0   263,923      
unweighted (empirical)   1,185   266,779   266,782   264,110  
poststr. (theoretical)   0   263,339      
poststr. (empirical, 9 cases excluded)   566   265,973  265,973   263,210  
cal. margins   991   265,449   265,451   262,556  
cal. cell cts.   -8,565   264,126   264,265   261,483  
raking   -6,008   271,535   271,602   262,021  
exp. cal. cell cts.   -9,070   264,038   264,194   261,394  
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Examining Tables 2 and 3, we see that the >P Q  
methods, that is those that calibrate the cross classified cell 
counts using calibration weights which depend upon the 
marginal classifications, are clearly more biased than the 
other techniques. However the biases of these estimators 
relative to their standard deviations decrease with increasing 
sample sizes. We will show in the next section, that under a 
highly simplified model, the bias has order 1n  and the 
standard deviation has order 1/ 2.n  Consider, for example, 
the results for the “calibrated cell counts” estimator in Table 
2. In this case, the bias divided by the standard error is 
0.217, 0.114, 0.039 for =n 200, 1,000, 5,000 respectively. 
For these values of ,n  the values of 1/ 2n  are 0.0707, 
0.0316, 0.0141 and it appears that the former series of three 
ratios is approximately 3 times the latter series. 

It also appears that the exponential back link function f  
performs slightly better than the linear choice for .f  
Computationally the former is much more expensive than 
the latter. We also notice that as the sample sizes increase, 
the estimators’ performances appear to converge. This is to 
be expected: because there is no nonresponse, as ,n    
ˆ 0,   so that the adjustment weights ˆ= ( ) 1.zTw f    

Comparing the linear calibrated cell counts estimator to 
the empirical values of the unweighted estimator, the former 
is approximately 7.3% more efficient in MSE when =n
200 for total employment and 11.7% more efficient for total 
wages. (This means, for example, that the empirical MSE of 
the unweighted estimator is 1.117 times the empirical MSE 
for the linear calibrated cell counts estimator when 
estimating total wages.) For the exponential calibrated cell 
counts estimator, the improvement in efficiency relative to 
the empirical MSE of the unweighted estimator is 8.6% for 
total employment and 13.5% for total wages. Comparison to 
the theoretical values for the unweighted estimator would be 
more favorable to the calibrated cell counts estimators, but 
we will use the empirical results for the unweighted esti-
mator as the various estimators have all used the same 
Monte Carlo samples. The calibrated cell counts estimator 
and exponential calibrated cell counts estimator still have an 
advantage in MSE over the unbiased estimator at sample 
size =n 1,000. 

When the single extreme outlier is removed, leaving 
283,724 remaining elements of the population, the 
calibrated cell count estimators have somewhat better 
performance relative to the unweighted estimator. For =n
200, the linear calibrated cell count estimator offers a 9.3% 
improvement in efficiency for total employment and a 
16.7% improvement for total wages. The comparable ratios 
for the exponential calibrated cell count estimator are 10.4% 
for total employment and 18.0% for total wages. 

Finally, the variance estimator in equation (15) has a 
slight downward bias. 

4. Model based bias and variance  
      of calibrated estimators  

Kott and Chang (2010) derived the asymptotic properties 
of ,

ˆ
z Vy ft  under a different, model-based, probability 

structure. In that paper   is a sample selected with selection 
probabilities 1

kd   so that nonresponse is not an issue in .  
Rather, if P  the number of benchmark variables x  equals 
Q  the number of model variables ,z  Kott and Chang 
(2010) assume a prediction model  

                              = , .xT
k k ky k     (6) 

Here   is a unknown fixed vector, k  are model 
independent errors subject to  

                             ( | , , ) = 0,zk j jE I j   (7) 

and kI  is a random variable defined by = 1kI  if k    
and = 0kI  otherwise. 

When > ,P Q  the model equation (6) must be replaced 
by  

                         = ( ) ,A x T
k k ky k       (8) 

for some limiting Q P  matrix A  (which is defined in a 
suitable asymptotic framework, see Kott and Chang (2010)). 

Thus when x  represents indicator variables for the 
complete I J  cross classification, we have that ,xT

k  for 
k  in the th( , )i j  classification, is the mean value of the 
response variable over the th( , )i j  classification. Hence, by 
definition, ( | , ) = 0xk jE j    and, since z  is a function 
of ,x  the model (6) and (7) automatically holds when the 
sampling (including nonresponse) is noninformative. 

However, in our application of calibration, 
= > = 1P IJ Q I J   and the model equation (8) has 

no a priori reason to hold. 
Motivated by Kott and Chang (2010) we examine the 

behavior of calibrated estimates under the following 
scenario:  

1. The benchmark variables x  are indicator variables 
for some partition of the population into classes .r  
The model (6) automatically holds where the thr  
component of   is the population mean of .r  Let 

rf  denote the proportion of the population in r  and 
= Var( | ).r k rV k   We shall also use the notation 

Var( )xk  for rV  when .rk    
2. The sample is a simple random sample of size n  

chosen with replacement.  
3. The back link function ( )f   in the estimator ,

ˆ
z Vy ft  

of equation (2) is ( ) = 1 .f      
Although these assumptions are unrealistic in practice, 

the main purpose of this section is to heuristically justify a 
choice, given in the next section, for the matrix .V  At this 
point, we no longer place any requirements on .z  
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We note that in this situation ( | , , ) = 0.xk j jE I j   
Note that (7) will hold if the components of the model 
variables z  are functions of ,x  that is each component of 
z  is constant on each class. However if > ,P Q  (8) will 
generally not hold. In any event, in this section we require 
neither (7) nor (8). 

We let  
1

=

1
=

x

xz

x

x z

j
j

T
j j

j

N

N
















 

and the matrix A  of equation (8) becomes  

1= .xzA V
   

Let 1
, ,

ˆˆ =zV zVy yN t  where ,
ˆ

zVyt  is defined as in (2). 
We have suppressed the f  in the notation ,

ˆ
zVyt  because, in 

this section, ( ) = 1 .f     Letting sy  and xs  denote the 
indicated sample means and using Kott and Chang (2010)  

1

1/2

1 1
,

1 1

1 1 1 1

1 1ˆ = ( )

1
ˆ = ( ) ( ) ( )

= ( ) ( ) ( )

= ( ) ( ) ( ).

zV x

x xz

x xz xz xz xz

z x A z

x A A VA z

x A A VA

x V V

T
j j j j p

j j

T T
y s s j j p

j

T T T
s s p

T T T
s s p

y O n
n n

y y O n
n

y O n

y O n






 

 
  



 
  

   

   
    

   
 

     
 

     

       

 



 



(9)

 

If ,ˆ zVy  is bounded, as would occur if ( ) = 1f     were 
modified for large   to prevent large calibration weight 
adjustments, we would have  

1 1
,

1 1 1
,

1

, , ,

1

ˆE( ) = E( ) ( ) = ( )

ˆE( | ) = ( ) ( )

( )

1
ˆVar[E( | )] = ( ) ( )

( ),

zV

zV x xz xz xz xz

zV V x Vxz xz

x x x V V

x I P I P

y s y

T T T T
y s s s

T T
y s

y O n O n

O n

n
o n

 

  



 



   

        



    



 

where xΣ  is the covariance matrix of x  and  

                    1 1 1
, = ( ) .V xz xz xz xzxz

P V VT T  
      (10) 

Now  
1

,

1
2

1
,

1

ˆVar( | ) = Var( | ) ( )

1
= ( ) ( )

ˆE[Var( | )] = E[Var( | )] ( )

1
= ( ).

zV

zV

x x

x

x x

y s s s

j
j

y s s s

r r
r

y o n

V o n
n

y o n

f V o n
n











 



 







  

It is easily seen that  

1
Var[E( | )] = .xx T

s sy
n
   

Since , , ,ˆ ˆ ˆVar( ) = Var[E( | )] E[Var( | )]zV zV zVx xy y s y s     
and similarly for Var( ),sy ,ˆVar( ) < Var( )zVy sy  to terms 

1( )o n  when  

             , ,( ) ( ) < .V x V xxz xz
I P I P T T T

        (11) 

The derivation also establishes that the square bias has an 
asymptotically trivial contribution to the mean square error 
of ,ˆ .zVy  

 
5. A proposed new weight matrix 1V 

  
In this section we return to our original benchmark x  

and model z  variables. When = ,V I  the identity matrix, 
we see from (10) that , ,=I Ixz xz

P PT
    is the projection 

of   onto the span of the columns of .xz  The left hand 
side of (11) will be zero if   is in this column span. 

For simplicity, we will write xz  as a singular matrix, of 
rank 1,I J   with one row for each possible double 
classification cell ( , )i j  and one column for each row 
classification i  and each column classification .j  Thus, the 

th( , )i j  row of xz  has = /ij ijf N N  in the columns 
corresponding to i  and j  and zero elsewhere. Thus   will 
be in the column span of xz  if and only if for each i  
and j   

                                         =ij
i j

ijf


    (12) 

for some i  and .j  In other words, the /ij ijf  satisfy a 
two way ANOVA model, without interaction, in the column 
and row classifications. 

Recalling that ij  represents the mean value of the 
variable of interest y  in the th( , )i j  cell, (12) does not 
appear to be a very promising approximation to the truth. A 
more likely approximation would be the usual two way 
ANOVA model  

                                         = .ij i j     (13) 

Suppose we change variables =x Cx  for some 
diagonal matrix .C  Note that the rows and columns of C  
are doubly indexed by ( , )i j  and we will let ijc  denote the 
diagonal entry in the th( , )i j  row and column. Let 

1= C    so that model (6) can be rewritten as  

= .xT
k k ky     

Now the matrix xz   has ij ijc f  in the th( , )i j  row and the 
columns corresponding to i  and .j  Now   will be in the 
column span of xz   if and only if  
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1 = = ( ).ij ij ij ij ij i jc c f       

Thus (13) is equivalent to 1/2= .ij ijc f   It is easily checked 
that  

, ,

, ,

( ) ( )

( ) ( )

I x Ixz xz

V x Vxz xz

I P I P

I P I P





T

T T

 

 

    

   

 
 

 

when 2= .V C  We thus propose using the diagonal matrix 
Vo  whose diagonal entries are .ijf  

With this choice of ,Vo  equation (9) suggests the esti-
mator for simple random sampling  

,

1 1 1

ˆ =

1
ˆ ˆ ˆ( ) ( )

zV

x o xz xz xzV V z

y o

T T
s s o k k

k

t

N y T N x y
n

  



 
      

 



 
(14)

 

where 1ˆ = .xz x zT
k k kn
   In our case both xz  and x  

are known from the ,ijN  but in the spirit of ratio estimation 
it is preferable to use ˆ xz  in place of .xz  This heuristic 
observation has been demonstrated using simulations (not 
shown) with the QCEW population. 

We shall call the estimator ,
ˆ

zVy o
t  of equation (14) the 

weighted calibrated cell counts estimator. 
Simulations with artificial response variables ,y  also not 

shown, demonstrate that when the model (13) holds, then 
weighted calibrated cell counts estimator ,

ˆ
zVy o

t  performs 
markedly better than the other estimators considered 
here. Table 6 gives statistics for the estimator ,

ˆ
zVy o

t  for the 
populations and variables studied in Tables 2 - 5. 

Comparing to Tables 2 - 5, we see that in all cases ,
ˆ

zVy o
t  

has the highest bias but the lowest MSE of the estimators 
considered. For =n 200 and the full population, ,

ˆ
zVy o

t  has 
a 14.8% gain in efficiency (as measured by MSE) rela-
tive to the empirical results for the unbiased estimator 
when estimating total employment and a 21.1% efficiency 
gain when estimating total wages. For =n 200 and the 
population with a single extreme outlier deleted, the corre-
sponding gains are 14.2% and 21.7% for total employment 
and total wages respectively. 

The Associate Editor suggested that we compare our 
estimators to a poststratified estimator using collapsed cells 
to avoid the problem of empty cells in the sample. We 
explored this question for sample size =n 200 where it is 
most likely that empty cells will occur. We constructed 14 
poststrata. Nine of these poststrata are the nine largest cells 
in the original data. The other 5 poststrata are A1 and A2; 
A3, A5, and B4; A4, B5, and C4; C5 and D4; and all cells 
from state E together with D5. After these combinations, the 
5 combined poststrata had sizes that ranged between 4.07% 

and 5.06% of the population and the 9 retained original cells 
had sizes in the range of 4.62% to 11.47%. 

 
Table 6 
Empirical statistics for , zVy o

t  of equation (14)  
  

 n    bias  st. err.   rt. MSE  rt. est. var. 

 Full population - total employment  

200   -244,749  967,066   997,556  923,492 

1,000   -64,839  490,758   495,023  483,550 

5,000   -10,767  221,702   221,964  219,408 

 Full population - total wages  

200   -242,528  1,388,489   1,409,511  1,333,793 

1,000   -62,091  752,603   755,160  744,315 

5,000   -9,821  332,682   332,827  333,782 

 Population with outlier deleted - total employment  

200   -236,812  881,844   913,088  842,191 

1,000   -67,468  405,215   410,793  396,105 

5,000   -11,482 189,501   189,848  185,483 

 Population with outlier deleted - total wages  

200   -228,441  1,194,922   1,216,562  1,151,417 

1,000   -66,765  565,008   568,939  557,676 

5,000   -11,138  263,699   263,934  260,768 

 
Unfortunately, the author no longer has access to the 

QCEW data base. Besides the cell counts in Table 1, the 
author has only the means, standard deviations, and 
maximum values by cell. The author constructed a pseudo 
population using the squares of randomly generated gamma 
variables. The square gamma variables were constructed to 
have the same cell means and standard deviations as the cell 
means and standard deviations in the original data. After 
doing this, the square gamma variables were rounded 
upwards to integer values. For these pseudo populations, 

yT 3,149,491 for employment and 2,305,273, in tens of 
thousands of dollars, for wages. 

A square gamma distribution was used because the 
gamma distribution is insufficiently right skewed. Even so, 
in almost all cells the largest value in the original population 
exceeded the largest value in the pseudo population. Of 
course without the original data, we cannot distinguish 
between right skew and a tendency to produce outliers. 

10,000 Monte Carlo samples were constructed were 
taken for each sample size. The results are shown in Table 
7. For the poststratified estimator, 5 of the samples of size 
200 had an empty poststratum and these runs were excluded 
from the results in Table 7. 
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Table 7 
Empirical comparison of 4 estimators  
  

 estimator   bias   st. err.   rt. MSE   bias   st. err.   rt. MSE  
  total employment   total wages  

n = 200 

unweighted   644   1,006,956   1,006,956   -9,970   1,481,450   1,481,483  
poststratified   -5,387   1,026,266   1,026,280   -2,149   1,548,833   1,548,834  
cal. cell cts.   -224,198   942,164   968,472  -203,531   1,377,823   1,392,775  
wtd. cal. cell cts.   -248,937   919,419   952,523   -232,558   1,326,234   1,346,469  

n = 1,000 

unweighted   -3,317   445,676   445,687   1,544   679,148   679,150  
poststratified   -2,967   448,218   448,228   1,672   685,370   685,372  
cal. cell cts.   -54,311   436,821   440,185   -44,942   665,799   667,314  
wtd. cal. cell cts.   -63,327   432,396   437,008   -54,913   660,726   663,004  

n = 5,000 

unweighted   2,466   206,249   206,264   -2,539   304,852   304,863  
poststratified   2,108   205,661   205,672   -2,705   304,751   304,763  
cal. cell cts.   -8,265   204,693   204,859   -12,096   303,231   304,472  
wtd. cal. cell cts.   -10,551   204,080   204,352   -14,697   302,311   302,668  

 
 
 

Evidently the poststratification did not help. Even though 
no poststratum had an expected count below eight, the 
actual poststrata had quite variable sizes. In addition, the cell 
populations are quite skewed so that the poststrata sample 
means are quite variable. 

The other conclusions for the pseudo populations reflect 
the conclusions from the actual populations. In particular, 
when =n 200 and for the employment pseudo population, 
the weighted calibrated cell counts estimator ,

ˆ
zVy o

t  has an 
11.8% gain in efficiency relative to the unbiased estimator. 
For the wages pseudo population and =n 200, the effi-
ciency gain is 21.1%.  

6. Concluding remarks  
The use in (3) of weight matrices 1( )V   which depend 

upon   has not been explored in this paper. Experimen-
tation with the use of such a matrix was not encouraging. 
Computation time increased dramatically, and there were 
significant numbers of cases which failed to numerically 
converge, with no improvement in efficiency over the fixed 
V  estimators considered here. Perhaps the authors did not 
try the right ( ).V   

Besides the exponential back link function, the authors 
tried the logistic back link 1( ) = (1 ) .f e    These runs 
also did not converge. On reflection, the reason is obvious: 
because in the simulations there was no nonresponse or 
noncoverage problems, the calibration weight adjustments 

( ) 1zTf    as .n    But 1 is not in the range of .f  It 
should be noted that in Chang and Kott (2008) a logistic 
back link was used to correct for nonresponse. 

Several obvious issues arise. For example, how would 
the results of this study change if a more complicated 

sampling design than simple random sampling were used, or 
if non response and/or non coverage occur and the 
calibration was used to correct for it. Falk (2010) considers 
these questions both theoretically and with further 
simulations using the QCEW population. Falk (2010) also 
considers non linear link functions. 

There are obvious extensions to 3-way (and beyond) 
cross classified data. If , ,I J K  denote the number of cells 
in each of the 3 classifications, there are IJK  fully 
classified cells whose totals can be used for benchmark x  
variables. There are 1IJ IK JK I J K       one-
way and two-way marginal variables that can be used for 
model z  variables. Clearly, one might not want to use the 
plethora of variables available. 

In the context of linear calibration using the same x  and 
z  variables, several studies have been made on the choice 
of variables. Examples of such studies are Banker, Rathwell 
and Majkowski (1992), Silva and Skinner (1997), and Clark 
and Chambers (2008). The last paper remarks that too many 
variables can deteriorate the MSE of ˆ .yT  

The alternatives to poststratification discussed here can 
be used in the presence of small and even empty cells. For 
example, in our simulations, the expected count in the state 
E, industry group 5, cell is 0.36 when =n 200. One might 
be tempted to collapse cells and use poststratification. 
Generally, however, it is not possible to do so and maintain 
the convenient doubly classified structure of the data. Our 
approaches, like poststratification, introduce weights for the 
purpose of sample balancing but avoid collapsing cells. 
These approaches generally increase bias but can offer 
substantial reductions in MSE. 

Furthermore, in the presence of nonresponse or non-
coverage, the inverse of the weight adjustments can be 
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considered, under a quasi-randomization model for the 
response or coverage, as estimated probabilities of response 
and/or coverage. In our calibration approaches, these proba-
bilities are assumed to be a function of the row and column 
classifications. When cells are collapsed without main-
taining the double classification, these probabilities are 
harder to interpret. 

 
Acknowledgements  

The author would like to thank Phil Kott and John 
Eltinge for several very interesting insights. The author also 
thanks Larry Huff and Ken Robertson of the Bureau of 
Labor Statistics for help in obtaining and understanding the 
data. 

 
Appendix  

Here we derive, using Chang and Kott (2008) equations 
(16) and (17), sample based variance estimators for the 4 
estimators studied in Section 2. 

Let  

,
ˆ

ˆˆ = ( ).z VH y f
y

t



 

Here ,
ˆ

z Vy ft  is defined in (2). Ĥ y  is a row vector with one 
entry for each z  variable. In out case, Ĥ y  has ( 1)I J   
entries, one for each of the 1I J   linearly independent 
indicator variables for the row and column classifications. 

For the calibrated margins and calibrated cell counts 
estimators, ( ) = 1 .f     Define the constants ijs  and ijt  
by  

=

= .

ij ij

ij k
k ij

N
s r

n
N

t y
n 



 

Then a simple calculation shows that if a entry exists in Ĥ y  
for the thi  row classification, we place in that entry .j ijt  
Similarly if a entry exists for the thj  column classification, 
we place in that entry .i ijt  Here we use the convention that 
if the thi  row or thj  column is not one of the chosen 

1I J   linearly independent indicator variables then 
corresponding i   or j  is 0. 

For the raking and exponential calibrated cell counts 
estimators, ( ) =f e  and we can similarly calculate Ĥ y  
using instead  

ˆ ˆ= exp( )

ˆ ˆ= exp( ) .

ij i j ij

ij i j k
k ij

N
s r

n
N

t y
n

 

 


  

  


 

Here we use the convention that if the thi  row or thj  col-
umn is not one of the chosen 1I J   linearly indepen-
dent indicator variables then corresponding i   or j  is 1. 

Analogously to (2), let  

,
ˆˆ = ( ) .x z V zT

f k k k
k

t d f x





 

,x̂ z Vft  is a column vector with one entry for each x  
variable. Define the Ĥ  matrix to be  

,
ˆ

ˆˆ = ( ).x z VH ft



 

Ĥ  is a matrix with one row for each x  variable and one 
column for each z  variable. 

For the calibrated cell counts and exponential calibrated 
cell counts estimators the matrix Ĥ  has dimensions 

( 1).I J I J    Each of the rows of Ĥ  corresponds to a 
pair ( , )i j  of row and column classifications. We place ijs  
in the row corresponding to ( , )i j  and the columns 
corresponding to the thi  row classification and the thj  
column classification (whenever these columns exist). All 
other entries of Ĥ  are set to zero. 

For the calibrated margins and raking estimators the 
matrix Ĥ  has dimensions ( 1) ( 1).I J I J      If a 
row (and hence a column) of Ĥ  exists for the thi  row 
classification we put j ijs  in the corresponding diagonal 
entry of ˆ .H  Similarly, if a row and column exist for the thj  
column classification, we put i ijs  on the diagonal of ˆ .H  
We place ijs  in the entry whose row corresponds to the thi  
row classification and whose column corresponds to thj  
column classification (whenever these exist). We also place 

ijs  in the entry whose column corresponds to the thi  row 
classification and whose row corresponds to thj  column 
classification (again whenever these exist). All other entries 
of Ĥ  are set to zero. 

Let 1ˆ ˆ ˆ ˆ= ( )T T 1 T 1
yB H H V H H V   where currently we 

are using an identity matrix for .V  B  has dimensions 
1 ( 1)I J    for the calibrated margins and raking esti-
mators and 1 I J  for the calibrated cell counts and the 
exponential calibrated cell counts estimators. In the former 
cases, we will denote the entries of B  by ib   or ,jb  and, for 
the single case when a column or row index does not 
correspond to one of the 1I J   independent indicator 
variables, we will set the corresponding b  to zero. In the 
latter cases, we will denote the entries of B  by .ijb  For 

,ijk    let = ( )k ij k i ju w y b b    for the calibrated mar-
gins and raking estimators and = ( )k ij k iju w y b  for the 
calibrated cell counts and exponential calibrated cell counts 
estimators. 

Essentially Chang and Kott (2008) showed that, 
asymptotically, the calibrated estimator has the same form 
as a regression estimator of the form Särndal et al. (1992) 
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equation (6.6.1) where the above B  plays the role of B  in 
(6.6.1) and the sampling weights kd  are replaced by 

ˆ( ).zT
k kd f   For non replacement designs, they propose to 

estimate the variance of ,
ˆ

z Vy ft  using the analogous changes 
to Särndal et al. (1992) equation (6.6.3). 

For simple random sampling, and in the absence of 
nonresponse or noncoverage, the variance estimator works 
out to  

                                
2

2= (1 / )V u

N
n N s

n
  (15) 

where 2
us  is the sample variance of the .ku  

In the presence of nonresponse, if one assumes that the 
respondents   are a Poisson sample from the original sim-
ple random sample with Poisson probabilities 1

0( ) ,zTf   
the variance estimator becomes  

     
2

2 2ˆ = (1 / ) (1 )V u ij k
i j k ji

N N
n N s w u

n n 

   


 (16) 

where 2
us  is the sample variance of the .ku  The same 

formula works for noncoverage where 1
0( )zTf   repre-

sents the combined coverage and response probability in a 
three stage model in which the covered universe is assumed 
to be a Poisson sample from the desired universe, the 
sample is a simple random sample from the covered 
universe, and the respondents are a Poisson sample from the 
original sample. 
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On variances of changes estimated  
from rotating panels and dynamic strata 

Paul Knottnerus and Arnout van Delden 1 

Abstract 
Many business surveys provide estimates for the monthly turnover for the major Standard Industrial Classification codes. 
This includes estimates for the change in the level of the monthly turnover compared to 12 months ago. Because business 
surveys often use overlapping samples, the turnover estimates in consecutive months are correlated. This makes the variance 
calculations for a change less straightforward. This article describes a general variance estimation procedure. The procedure 
allows for yearly stratum corrections when establishments move into other strata according to their actual sizes. The 
procedure also takes into account sample refreshments, births and deaths. The paper concludes with an example of the 
variance for the estimated yearly growth rate of the monthly turnover of Dutch Supermarkets. 
 
Key Words: Births; Business surveys; Conditional covariances; Deaths; Overlapping samples; Stratum corrections. 
 
 

1. Introduction  
In many surveys a changing population is repeatedly 

sampled so that the level and the change in the level of a 
characteristic between two occasions can be estimated. For 
example, in many countries a monthly business survey is 
held to estimate the level of the monthly turnover and the 
change in that level compared to a month or a year ago; see 
Konschnik, Monsour and Detlefsen (1985). Another exam-
ple is the labour force survey in which the population is 
sampled on a monthly basis to estimate the number of un-
employed persons and the unemployment rate. Variance 
estimation is needed to judge whether the observed changes 
are statistically significant. Variance estimation is also 
needed in the design stage of the survey, to determine the 
optimal sample size and allocation or to determine the 
optimal estimator.  

In repeated surveys, changes are often estimated by 
using a stratification of the population. Businesses are 
extremely heterogeneous in terms of size and type of 
economic activity. Therefore, business surveys are usu-
ally designed as a stratified simple random sample selected 
without replacement (STSRS); see Smith, Pont and Jones 
(2003). In surveys for households or individuals the sample 
is usually not stratified because households are less heter-
ogeneous. Some social surveys, such as labour force sur-
veys, however, use poststratification to reduce the variance 
and bias of the estimator. 

In deriving formulas for the variance of an estimated 
change in a population with dynamic strata, one has to pay 
attention to three complicating factors. Firstly, the change in 
a level is the result of two components. One component is 
due to the change in the population mean of units that 
remain in the same stratum on both occasions. The other 

component is caused by the change in the stratum compo-
sition between two occasions resulting from births and 
deaths in the population and from population units that 
migrate between strata; see Holt and Skinner (1989). Sec-
ondly, due to the migration of population units between 
strata, the estimated mean of stratum h  at occasion t  may 
be correlated with the mean of stratum   at occasion 1.t   
Thirdly, another complicating factor is that the population is 
repeatedly sampled, resulting in partially overlapping sam-
ples between two occasions. Different rotating panel designs 
may be used in business surveys.  

Various authors have derived formulas for design-based 
variance estimators for the estimation of changes. Assuming 
a large population without births and deaths, Kish (1965) 
derived an expression for the variance of an estimated 
change based on overlapping samples. Tam (1984) removed 
the assumption of a large population. Elaborating on Tam’s 
results, Qualité and Tillé (2008) compare several variance 
estimators of an estimated change. Wood (2008) generalizes 
Tam’s results for surveys with unequal probabilities. 
Lowerre (1979) and Laniel (1987) deal with the variance 
estimation of a change in dynamic populations, but they do 
not take stratification into account. Hidiroglou, Särndal and 
Binder (1995) deal with dynamic populations and strati-
fication, but not with changing strata. Nordberg (2000) and 
Berger (2004) derived formulas for the more complicated 
situation of a dynamic population with units that move 
between strata. For the Swedish sampling design Nordberg 
(2000) derives formulas using inclusion indicators which 
requires some algebra. Assuming that the size of the overlap 
of two samples at two different occasions is fixed, Berger 
(2004) derives his formulas based on Poisson sampling 
conditional on the sample size per stratum which requires 
some matrix algebra.  
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In this paper, we derive the expressions for STSRS sam-
pling in a more straightforward manner without assuming 
that sizes of overlaps are fixed. Furthermore, unlike the 
Swedish design, the Dutch one doesn’t require time-
consuming calculations for estimating one of the variance 
components for a change. In addition, we propose an alter-
native estimation method for sampling designs with such a 
non-zero component. In order to clarify the variance esti-
mation procedure, we describe its application to the yearly 
growth rates of the turnover of Dutch Supermarkets of 4-
week periods. 

The outline of the paper is as follows. Section 2 briefly 
describes the Dutch business survey for monthly turnover, 
including the sampling design. The variance formulas for 
the estimator of a change are derived in section 3. Section 4 
illustrates the variance estimation procedure by comparing 
the variances of two different estimators for the yearly 
growth rate of the monthly turnover of Dutch Supermarkets 
in the period 2003-2004. Section 5 summarizes the main 
results and conclusions.  

 
2. The sampling design of the Dutch  

      business surveys  
Every month Statistics Netherlands estimates the month-

ly turnover for some of the major SIC codes. The publica-
tion includes the 12-month growth rates of the monthly 
turnover, i.e., the relative change in the monthly level of 
turnover compared to 12 months ago. Throughout this paper 
we will refer to this growth rate as the yearly growth rate.  

All statistical units or establishments are listed in the 
General Business Register (GBR) that is maintained by 
Statistics Netherlands. The register is updated each month 
for births and deaths from administrative sources, while 
once a year, on December 31, the size category and the type 
of economic activity (SIC code) are updated. Note that the 
registration in the GBR may lag behind the changes in the 
population (births, deaths, size class changes etc.). More-
over, the (unknown) deaths in the frame may lead to a 
biased estimate of the level of the turnover. In order to avoid 
this kind of bias, it is important to quickly detect and 
remove deaths from the frame. Deaths detected in the sam-
ple may play a role here. However, a further analysis and 
correction of these errors are beyond the scope of this paper 
on variance estimation for growth rates. For estimating these 
variances, we assume that the population units and their 
characteristics in the register are correct. Likewise, we 
assume that there is zero non-response among the surveys. 

Every first day of the month an STSRS-like sample from 
the GBR is conducted to estimate the turnover of the current 
month. In fact, a rotating sample is used. The sample is 
stratified by size and by type of economic activity. The 

actual probability of selection depends on size and eco-
nomic activity. The probability of selection increases with 
the size of establishment, with the largest establishments 
being included in the sample with probability 1. For some 
SICs there are not only survey data available but also data 
from administrative sources. The units already present in the 
administrative files are considered as a separate stratum. 
The estimates from this stratum have a zero variance.  

The sample is updated in two ways. Every month the 
sample is updated to correct for births and deaths in the pop-
ulation. Once a year, in January, 10% of the sample units 
are replaced and stratum corrections are carried out. We will 
discuss the monthly and yearly updates in more detail.  
2.1 Monthly update   

Each month ( 1, 2, ...)t t   a fixed proportion hf  of 
the t

hN  units in stratum t
hU  is sampled ( 1, ..., ).h H  

This results in a sample t
hs  of size .t t

h h hn f N  Hence, the 
actual number of units in the sample may change from 
month to month due to births and deaths in the population. 
Note that apart from minor round-off errors the actual 
sampling fraction hf  does not depend on month .t  In fact, 
the update procedure for t

hs  in month t  is as follows. 
Define 1,

0
t t
hU   as the set of births in stratum h  in month 

1t   and denote its size by 1,
0 .t t

hN   The number of sampled 
units from 1,

0
t t
hU   in month t  is 1, 1,

0 0 .t t t t
h h hn f N   In 

addition, denote the further required difference 1,
0

t t t
h hn n   

by 1,
,REQ

t t
hn   and define ,PRE

t
hs  by 1

,PRE ,t t t
h h hs s U   that is 

the set of units in 1t
hs   that still exist in month .t  Let ,PRE

t
hn  

denote the size of ,PRE.t
hs  When 1,

,PRE ,REQ,t t t
h hn n   randomly 

drop the difference, otherwise select the difference from 
1,

0 , PRE\ \ .t t t t
h h hU U s  Note that units dropped from the sample 

in month 1t   or earlier may be re-selected in month .t   
2.2 Yearly update  

Each January, the sample is updated to account for both a 
re-stratification of the units and a sample replacement of 
10%. All sample units of December that still exist in Janu-
ary are stratified according to their actual size, i.e., the 
number of employees and the SIC-code of January. The size 
class boundaries themselves remain unchanged. Conse-
quently, the resulting sample from a stratum according to 
the new January stratification may consist of units with 
different inclusion probabilities because units move between 
strata with different sampling fractions.  

In order to correct for possibly different inclusion proba-
bilities in stratum ,  denote the substratum consisting of 
units that belonged to stratum h  in December and in Janu-
ary to stratum   by dec, jan

hU   and denote its size by dec, jan
hN 

( , 1, ..., ).h H  In analogy with the monthly update 
procedure define jan

,PREhs   by jan dec dec, jan
,PREh h hs s U    and let 

jan
,PREhn   denote the size of jan

,PREhs  . Since the required size of 
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sample dec, jan
,REQhs   from dec, jan

hU   in January is dec, jan
,REQhn   

dec, jan,hf N   the yearly update of sample jan
,PREhs   is carried out 

as follows.  
Firstly, when jan dec, jan

,PRE ,REQ,h hn n   randomly drop the dif-
ference from jan

,PRE.hs   In addition, 10% of the dec, jan
,REQhn   

remaining units in jan
,PREhs   is replaced by units from 

dec, jan jan
,PRE\h hU s   provided that the latter set contains enough 

units. When there are not enough units available, the 
number of replaced units is only dec, jan jan

,PRE.h hN n   Sec-
ondly, when jan dec, jan

,PRE ,REQ,h hn n   select the difference from 
dec, jan jan

,PRE\ .h hU s   Subsequently, an additional replacement of 
jan dec, jan

,PRE ,REQ0.9h hn n   units in dec, jan
,REQhs   takes place when this 

difference is positive and enough new units are available. 
This procedure is done for all substrata ,h  including 

.h    Thirdly, similar to the monthly update procedure the 
number of sampled units in January from substratum 

dec, jan
0U   of new births in stratum   is dec, jan dec, jan

0 0 .n f N    In 
addition, note that this approach can also be followed when 
class size boundaries or sampling fractions are changed in 
January.   

Apart from the stratum corrections in January, the 
resulting sample in month t  can be considered more or less 
as a set of SRS samples from the strata .t

hU  When the 
population and the strata h  are stable over the years, the 
procedure described so far amounts to a standard STSRS 
sampling design for month .t  Therefore, Statistics Nether-
lands uses the familiar variance formulas for the STSRS 
sampling design for estimating the variance of the level of 
the monthly turnover. In the next section we show how the 
variance for a change of the level can be estimated under 
such an STSRS assumption.  

3. Variance of the yearly growth rate  
      of monthly turnover  

3.1 Variance of the yearly growth rate   
Let tO  denote the total turnover of all establishments in 

the population in month t  and ,t sg  the relative change in 
the level of turnover between months t  and ,s  i.e.,  

, 1 ( ).
t

t s
s

O
g t s

O
    

For the corresponding estimates it holds by definition that 

                                    ,
ˆ

ˆ 1,
ˆ

t
t s

s

O
g

O
   (1) 

where a “hat” indicates an estimate; for an estimator we use 
the same notation. Furthermore, define 

, 12 , 12
12

1 .
t

t t t t
t

O
G g

O
 

    

In order to estimate the variance of the yearly growth rate 
of the monthly turnover, we use the first-order Taylor series 
expansion of a ratio of two estimators. That is, 

, 12

12

, 12 12

12 2

, 12 2 12 , 12 12

12 2

ˆvar( )

ˆ
var

ˆ

ˆ ˆvar( )
    

( )
ˆ ˆ ˆ ˆvar( ) ( ) var( ) 2 cov( , )

.
( )

t t

t

t

t t t t

t

t t t t t t t t

t

g

O

O

O G O

O

O G O G O O

O





 



   



 
  

 




 
 (2)

 

The major problem is the estimation of 12ˆ ˆcov( , ).t tO O  In 
the next sections we examine this term and its estimation.  
3.2 The covariance term of the yearly growth rate  

Using the stratified sampling design, we can write 
12ˆ ˆcov( , )t tO O  from (2) as 

         

12 12 12

1 1

12 12

1 1

ˆ ˆcov( , ) cov ,

cov( , ),

H H
t t t t t t

h h
h

H H
t t t t

h h
h

O O N o N o

N N o o

  

 

 

 

 
  

 



 



 


 


 (3)

 

where t m
ho   stands for the sample mean of the turnover in 

stratum h  in month ( 0,12).t m m   Note that the 
stratification of the units in month 12t   may differ from 
that in month t. As we have seen in section 2.2, the standard 
refreshment of the panel takes place in January. Further-
more, each establishment is allocated to the correct stratum 
h  according to its actual number of employees in January 
( 1, ..., ).h H  To take these design features into account, 
define   

12, :t t
hN 
  size of substratum 12, ,t t

hU 
  i.e., the set of units that 

in month 12t   belonged to stratum h  and in 
month t  to stratum ( , 1, ..., );h H   

:t m
hO 
  the substratum population total of the turnover in 

12,t t
hU 
  in month ( 0,12);t m m   

:t m
hO 
  the substratum population mean of the turnover in 

12,t t
hU 
  in month t m  [i.e., t m

hO  
12,/t m t t

h hO N 
   

( 0,12)];m   
:t m

hn 
  size of sample ,t m

hs 
  i.e., the actual sample from 

12,t t
hU 
  in month (0 12);t m m    

:t m
ho 
  the sample total of the turnover in t m

hs 
 ( 0,m   

12);  
:t m

ho 
  the sample mean of the turnover in t m

hs 
  [i.e., 

/t m t m t m
h h ho o n     ( 0,12)];m   

12, :t t
hn 
  number of units in the overlap 12,t t

hs    
12 ;t t

h hs s    
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,OLP:t m
ho 
  the sample mean of the turnover in the overlap 

12,t t
hs 
  in month .t m  [i.e., ,OLP

t m
ho   ,OLP /t m

ho 
  

12,t t
hn 
 ( 0 12)].m ,    

In addition to the notation in section 2, define the auxiliary 
stratum 0 for the births in months 12, ..., 1t t   and 
likewise, stratum 1H   for the deaths in that period. Then 

12t
ho   and to  can be written as   

121
12 12

12
1

0

,

tH
hgt t

h hgt
g h

H t
t tk

kt
k

n
o o

n

n
o o

n


 












 
 



 

respectively (1 , ).h H   Consequently, the covariances 
in (3) can be rewritten as  

 

121
12 12

12
1 0

cov( , ) cov ,
tH H t
hgt t t tk

h hg kt t
g kh

n n
o o o o

n n


 


 

 
   

 
  

 


 (4a) 

                           12 12
12

1
cov( , ) ,t t t t

h h h ht t
h

n o n o
n n

 
    



 (4b) 

where we used 12 12cov( , ) 0t t t t
hg hg k kn o n o    ( )k h  and 

12 12cov( , ) 0t t t t
hg hg h hn o n o    ( ).g    The latter covariance 

is zero because  

12 12

12 12 12

12 12 12 12

12 12

cov( , )

cov( , , )

cov{ ( , ), ( , )}

0 cov( , ) 0.

t t t t
hg hg h h

t t t t t t
hg hg h h hg h

t t t t t t t t
hg hg hg h h h hg h

t t t t
hg h hg h

n o n o

E n o n o n n

E n o n n E n o n n

O O n n

 

  

   

 

 

  

  

 

  

   

 

 

In the last line we also used that for 1 1g H    

                                12cov( , ) 0.t t
hg hn n   (5) 

For a justification and the underlying assumptions of (5), see 
Appendix A. Moreover, in Appendix A we propose an 
alternative estimation method when this covariance is non-
negligible. The covariance in (4b) can be expressed as 

12 12

12 12

12 12

cov( , )

{cov( , )}

 cov{ ( ), ( )}

t t t t
h h h h

t t t t
h h h h h

t t t t
h h h h h h

n o n o

E n o n o

E n o E n o

 

 

 

  

    

   

    

     

 

(6)

 

where 12 12,( , , ).t t t t
h h h hn n n       The first component on the 

right-hand side is   

12 12

12 12

12, 12
12 12,

12,

{cov( , )}

{ cov( , )}

/ 1
.

t t t t
h h h h h

t t t t
h h h h h

t t t
t t t th h
h h ht t t

h h

E n o n o

E n n o o

n n
E n n S

n N

 

 

 
 



 

  

      
   

    

    

 
  

 

 (7)

 

In the last line we used (26) in Appendix B. Furthermore,  

 

12,

12, 12 12
12,

1

1
( )( ).

1

t t
hN

t t t t t t
h h i h h i ht t

ih

S O O O O
N



  



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 



    


 (8) 

The second component on the right-hand side of (6) is equal 
to 12 12cov( , ) 0t t t t

h h h hO O n n       on account of (5). It there-
fore follows from (4) and (6) that  

          

12

12 12,
12,

12 12 12,

cov( , )

1
.

t t
h

t t t t
t th h h
ht t t t t t

h h h h

o o

n n n
E S

n n n n N



 

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

     
   



  


   

 (9) 

 
3.3 Estimation of the covariance term of the yearly 

growth rate  
Expression (9) can be estimated from the overlapping 

sample 12,t t
hs 
  by  

12 12,
12 12,

,OLP12 12 12,

1 ˆˆcov( , ) ,
t t t t

t t t th h h
h ht t t t t t

h h h h

n n n
o o S

n n n n N

 
 

  

 
  

 
  

 
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(10) 

where 
12,

12, 12 12
,OLP ,OLP ,OLP12,

1

1ˆ ( )( ).
1

t t
hn

t t t t t t
h h i h h i ht t

ih

S o o o o
n



  



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 



    


 

Note that (10) is unbiased for estimating (9) because  
12, 12,

,OLP
ˆ( ) .t t t t

h h hE S S       

Although (10) results in reasonable estimates for sufficiently 
large 12, ,t t

hn 
  a disadvantage of the covariance estimator 

12,
,OLP

ˆ t t
hS 
  in (10) is that for small 12,t t

hn 
  it may lead to a 

negative estimate of , 12 12ˆ ˆvar ( )t t t tO G O   in the numera-
tor of (2). Recall that this variance is estimated by  

, 12 12 , 12 2 12

, 12 12

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆvar( ) var( ) ( ) var( )
ˆ ˆ ˆˆ2 cov( , ).

t t t t t t t t

t t t t

O G O O G O

G O O

   

 

  

 (11)
 

Therefore, we propose an alternative estimator to 12,
,OLP

ˆ t t
hS 
  in 

(10). Define the standard deviations 

2

1

1ˆ  ( ) ( 0,12).
1

t m
hn

t m t m t m
h h i ht m

ih

S o o m
n



  




  
 



  


 

We propose the following modified estimator for 12,t t
hS 
   

                              12, 12, 12
,OLP

ˆ ˆ ˆˆ ,t t t t t t
h h h hS S S        (12) 

where 12,t t
h
   is the correlation between the variables to  and 

12to   in 12,t t
hU 
  and 12,

,OLPˆ t t
h
   is its estimate from 12, .t t

hs 
  

According to (10) and (12) covariance (3) can be estimated 
by 

12

12 12
12, 12,

12 12, 12,
1 1

ˆ ˆˆcov( , )

ˆ1 .   

t t

H H t t t t
t t t th h h
h ht t t t t t

h h h h

O O

N N n n
n S

n n n N



 
 

  
 



 
 

 
    

 
   

 
(13)
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For the estimate 12,
,OLPˆ ,t t

h
 

12,
,OLPˆ 1t t

h
   always holds 

whereas using (10) may lead implicitly to an estimated 
correlation larger than 1 and a possibly negative outcome of 
(11). See the next section for an example. In all applications 
met so far, negative outcomes of (11) could be explained by 
the fact that unlike (12) use of (10) leads implicitly to an 
estimated correlation larger than 1. This is in line with the 
findings of Berger (2004, page 462) that an overestimation 
of the correlation between 12ˆ tO   and ˆ tO  may lead to a 
serious underestimation of the variance of a change. Never-
theless, in some extraordinary circumstances, the use of (12) 
might lead to a negative outcome of (11) as well. Sufficient 
conditions that the use of (12) leads to a nonnegative 
variance estimator with probability 1 are available from the 
authors upon request. For a general review of variance 
estimation methods in business surveys, see Brodie (2003). 

Applying (12), a special problem may arise when 
1t

hn   or 12 1.t
hn    In order to evaluate the required sam-

ple variances, one may borrow the sample variance from a 
related substratum or from the same substratum in an earlier 
month. Alternatively, one may impute a variance when it 
emerges from the data that there is a relationship of the form 

2 2 ;h hS O    see Särndal, Swensson and Wretman (1992, 
page 461). In addition, the corresponding covariance term 
might be ignored when its (expected) contribution to the 
total variance is small. This is often the case when the 
sampling fractions in strata h  and   are small, that is in 
strata with relatively small units and, consequently, with 
small variances compared to the strata with larger units. 
Similar remarks apply to the imputed 12,t t

h
   when 

12, 2 t t
hn    and 2 ( 0,12). t m

hn m    Since the 12,t t
h
 

are often fairly high, this seems to be a viable way. In the 
example given in section 4 the 12,t t

h
   have an overall mean 

of 0.90 and a variance of 0.0074 so that the impact of the 
imputed 12,t t

h
   on the final results is likely to be moderate.  

Furthermore, note that when 0t m
hn   ( 0m   or m   

12),  the corresponding covariance term in (13) can be 
neglected without affecting its unbiasedness, provided that 
the remaining 12,t t

hS 
  are estimated in an unbiased way. 

Under this assumption such a term with 0t m
hn   ( 0m   

or 12)m   can be neglected because the expectation of  

                        
12

12, 12,
12, 12,

ˆ1
t t

t t t th h
h ht t t t

h h

n n
n S

n N


 

 

 
 

 
 

 
 

 (14) 

from (13) is equal to  

12
12, 12,

12, 12,

12
12, 12,

12, 12,

ˆ   1

1 ,

t t
t t t th h
h h ht t t t

h h

t t
t t t th h
h ht t t t

h h

n n
E E n S

n N

n n
E n S

n N


 

 


 

 

          
     

     
   

 
  

 

 
 

 

 

and the expectation on the right-hand side is the parameter 
to be estimated. Moreover, when 0t m

hn   ( 0m   or 
12)m   and consequently 12, 0,t t

hn    the outcome of (14) 
is zero and the estimator 12,ˆ t t

hS 
  for 12,t t

hS 
  becomes ir-

relevant. Therefore, ignoring such a term when 0t m
hn    

( 0m   or 12)m   does not affect the expectations of (13) 
and (14).  
3.4 A comparison with Nordberg’s results   

Using the standard formalism of inclusion indicators t
hi  

for each stratum, Nordberg (2000) derives a different ex-
pression for the first component in (6). However, it can be 
shown after some algebra that our expression (9) is equiva-
lent to Nordberg’s (3.4); a proof is available from the 
authors upon request. In addition, Nordberg derives a non-
zero expression for the second component in (6), i.e., the 
covariance between the two corresponding conditional 
expectations. Note that the Swedish sampling design is 
somewhat different from ours. 

According to Nordberg (2000, page 370) the estimation 
of the second component for the Swedish sampling design 
requires a computer-intensive procedure which includes 
simulation of the sampling mechanism. However, since all 

12,t t
h hn n 
   and 12,t t

hn 
  are ancillary statistics, an alternative 

might be to condition on these statistics so that the second 
component can be ignored. Recall that a statistic is called 
ancillary when its marginal distribution doesn’t depend on 
the target parameters to be estimated; see Cox and Hinkley 
(1974, pages 31-35). Such an alternative approach without 
the second component is to be recommended especially 
when 12, 12,

STSRS PS,subˆ ˆt t t tg g   where 12,
PS,subˆ t tg   is the poststratified 

estimator based on the substrata .h  However, when the 
difference between 12,

STSRSˆ t tg   and 12,
PS,subˆ t tg   is non-negligible, the 

calculation of the unconditional variance seems to be 
indispensable, including the estimation of the second 
component according to Nordberg. For a different approach 
to the estimation problem of the second component, see 
Appendix A.   

For a justification of the use of a conditional (co)vari-
ance, see Holt and Smith (1979). An important advantage of 
the conditional (co)variance is that the corresponding confi-
dence interval has better coverage properties than the one 
based on the unconditional variance. Denote the standard 
conditional 95% confidence interval for an arbitrary para-
meter   by ˆ ˆ( , )l u     where   denotes the vector con-
sisting of all (ancillary) statistics involved in the conditional 
(co)variances. Then under the normality assumption and 
some mild conditions it holds that the actual 95% con-
fidence level (CL) equals the nominal confidence level 
because  
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ˆ ˆCL ( ) ( )

0.95 ( ) 0.95,

l uP P

P








        

  




 

where   stands for the set of all possible outcomes of the 
random vector .  When unconditional (co)variances are 
used, the confidence intervals thus obtained may be quite 
inaccurate for a given sample allocation. Moreover, when 
averaged over all allocations CL may differ from 0.95; for 
an example, see Knottnerus (2003, pages 133-135). Note 
that in the planning stage before the sample is drawn, 
unconditional variances are always useful for examining 
Kish’s design effect for a comparison of different sampling 
designs. In addition, note that for evaluating a conditional 
confidence interval for 12,t tg   the underlying variances of 

PS,sub
ˆ t mO   should also be taken conditional on the h   

( 0, 12).m   
Finally, the unbiased estimator proposed by Nordberg 

[2000, Equation (3.9)] for the first component in (6) is quite 
different than those described in the previous subsection. In 
fact, his estimator is based on the following procedure for 
estimating the covariance term 12, .t t

hS 
  Firstly, estimate the 

underlying quantity 
12, 12

1

t t
hN t t

i h i h iO O
 

 
   from the overlap 

12, .t t
hs 
  Secondly, estimate the corresponding turnover 

means from 12t
hs 
  and ,t

hs   respectively. Since the compo-
nents thus estimated stem from different samples, a negative 
outcome of (11) cannot always be avoided. For a small 
example with real data, see the following section. In the 
remainder Nordberg’s underlying estimator for 12,t t

hS 
  is 

denoted by 12,
NBG

ˆ .t t
hS 
  A derivation of the explicit expression 

for 12,
NBG

ˆ t t
hS 
  is available from the authors upon request.    

4. An application to the change of turnover  
     in Dutch Supermarkets  

4.1 Two estimators for the yearly change of 
turnover  

For the impact on the variance estimators it is important 
to know that in January the turnover is estimated twice. The 
first estimate, denoted by janOÔ  (with O for old ), is made 
before the yearly sample update and is used to estimate the 
monthly change of the turnover in January compared to that 
in December. The second estimate, denoted by janNÔ  (with 
N for new), is made after the yearly sample update and is 
used to estimate the monthly change of the turnover in 
February compared to January. This procedure implies that 
units of the old sample as well as those of the new sample 
receive a questionnaire in January.   

Unlike estimator (1) the actual estimator used by 
Statistics Netherlands for the yearly change in the monthly 
turnover is based on a chain of 12 monthly changes in 
turnover 

                 

11
, 12 , 12 , 1

act act
0
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dec 12
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ˆ ˆ ˆ

ˆ ˆ
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ˆ ˆ
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

   

   

  

  
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(15)

 

In this section we will compare the variances of estimators 
(1) and (15). Similar to (2) the variance formulas for , 12

actˆ t tg   
can be derived by a first-order Taylor series expansion.   
4.2 Description of the data  

The calculations for the variances and confidence inter-
vals in this example are based on turnover data of Dutch 
Supermarkets of 4-week periods in 2003 and 2004 (i.e., 

1, ..., 26).t   Hence, there are 13 observations in one year 
and, consequently, we use slightly adjusted symbols such as 

, 13t tg   in the remainder of this section.  
The population consists of about 3,500 establishments. 

The turnover data stem from a stratified sample and admin-
istrative files. A gross STSRS sample of about 900 units 
stratified by size is drawn from the full list of population 
units of the GBR that includes the units of the administrative 
files as well. Establishments with 50 or more employees are 
included with probability 1. The other establishments are 
sampled with decreasing inclusion probability from 1:2 (20-
49 employees per establishment) to 1:40 in the smallest size 
(1 employee per establishment). The administrative files 
contain about 950 units, present in all size classes. About 
500 of the 900 units in the gross sample were already 
present in the administrative files, but they do not receive a 
questionnaire. Thus, the net sample contains about 400 
units. In fact, the sample size for each stratum in this spe-
cific example is random. However, as explained in sub-
section 3.4, we estimate all (co)variances conditional on the 

hn  in such a case. Data from units within the administrative 
files are put into a separate stratum with the sampling frac-
tion being unity.    
4.3 Results  

Table 1 gives the yearly growth rates and their 95% 
margins for 16, ..., 24.t   It emerges that the 95% margins 
for the estimated growth rates , 13

actˆ ,t tg   currently used by 
Statistics Netherlands, vary between 0.8 and 1.0 (per cent 
point). For example, in the first period ( 16)t   the 95% 
confidence interval for the yearly growth rate is -1.3 to 0.7 
per cent. As expected, the 95% margins for the more 
complicated estimator , 13

actˆ t tg   are close to those for the 
simpler , 13ˆ t tg   from (1). The 95% margins of , 13ˆ t tg   vary 
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between 0.7 and 1.0 (per cent point). The estimator for the 
growth rate to be preferred is , 13

actˆ t tg   as it corrects for the 
yearly sample update in January. The estimation of its vari-
ance, however, can be simplified by using the variance esti-
mator described in section 3 rather than the more laborious 
expression for , 13

actˆ ˆvar( ).t tg    
Table 1 
Estimated growth rates with 95% margins 
 

t , 13
actˆ t tg    100% , 13ˆ t tg    100% 

16 -0.3 (± 1.0) 1 -0.4 (± 1.0) 
17 -3.7 (± 1.0) -3.8 (± 0.9) 
18 1.6 (± 1.0) 1.5 (± 0.9) 
19 -2.2 (± 0.9) -2.3 (± 0.9) 
20 0.5 (± 0.8) 0.4 (± 0.7) 
21 -1.7 (± 0.8) -1.8 (± 0.7) 
22 -2.2 (± 0.8) -2.3 (± 0.7) 
23 0.0 (± 0.8) -0.1 (± 0.7) 
24 -2.3 (± 0.9) -2.4 (± 0.9)  

1 The 95% margins are given between parentheses.   
As described in section 3, we have used the estimated 

correlation 13,
,OLPˆ t t

h
   from the overlap 13,t t

hs 
  to estimate co-

variance 13,t t
hS 
  in order to avoid negative outcomes of (11). 

Knottnerus and Van Delden (2006) evaluated the bias of 
13,
,OLPˆ t t

h
   for the Dutch Supermarket data and found a small 

underestimation of 13,
,OLPˆ t t

h
   resulting in a minor, less than 

5%, overestimation of , 13ˆvar( ).t tg   
The use of estimator 13,

,OLP
ˆ t t

hS 
  in (10) may give a negative 

outcome of (11) and an estimated correlation 13,ˆ t t
h
   larger 

than 1. For example, consider the specific population with 
50N   and 1H   consisting of the units of substratum 
65.h   From the panel data for this population, given in 

Table 2 for 3t   and 16,t   we obtain after some calcu-
lations 13ˆ 410.7,tS   ˆ 394.3tS   and , 13ˆ t tG   1.028. 
Note that in the remainder of this section the subscript 

11h   is omitted in the symbols because there is only one 
stratum. Table 3 gives, for three different approaches, some 
additional estimates for the panel data in Table 2. For 
example, using 13,

OLP
ˆ t tS   in (10) results in an estimated 

correlation 13,ˆ t t  1.39. This then yields a negative 
variance estimate from (11) of minus 2.2 million. Likewise, 
for the same data the alternative estimator 13,

NBG
ˆ t tS   of 13,t tS   

based on Nordberg (2000) results in minus 36.9 million as 
outcome of (11) because the corresponding estimate 13,

NBGˆ t t  
becomes 1.64. In contrast, using the correlation estimated 
from the overlapping sample 13,t ts   according to (12) yields 

13,
OLPˆ t t  0.9997 and the positive variance estimate from 

(11) becomes 52.1 million. In addition, for the panel data in 
Table 2 the outcome of Nordberg’s estimator (3.9) for the 
covariance between 13ˆ tO   and ˆ tO  is 111.1 million whereas 
covariance estimator (13) proposed here yields 67.8 million. 

 
Table 2 
Panel data1 from a population with N = 50 and H = 1  
 

period            turnover per unit (in thousand euros)  
  1 2 3 4 5 
t = 3    493.9 264.3 1,179.1 380.0 
t = 16  475.3 472.0 267.0 1,169.0  

1Actually, the panel data belonged to substratum 65.h    
5. Conclusions  

The variance formulas obtained in this paper are useful 
for calculating the variance of an estimated yearly growth 
rate of monthly turnover. The use of (13) as an estimator for 

12ˆ ˆcov( , )t tO O  results in reasonable estimates of the co-
variance of change in particular. The variance estimation 
procedure allows for rotating panels, births, deaths, and 
units that migrate between strata.  

Furthermore, we recommend estimating a population 
covariance according to (12) based on the corresponding 
correlation estimated from the overlap and on the corre-
sponding variances estimated from the larger separate 
samples. This may help to avoid a serious underestimation 
or a negative outcome of the variance estimator for the 
yearly growth rate. The resulting estimated covariances are 
only slightly biased.  

 
Table 3 
Estimates from three different approaches 
 

approach  parameters to be estimated 
  13,t tS   13,t t  , 13 13ˆ ˆvar( )t tt tO G O   

Nordberg(2000)  estimator 13,
NBG

ˆ t tS   13,
NBG

13

ˆ

ˆ ˆ

t t

t t

S

S S




 

Eq. (11)

 result 265.2  103 1.64 -36.9  106

Eq. (10) estimator 13,
OLP

ˆ t tS   13,
OLP

13

ˆ

ˆ ˆ

t t

t t

S

S S




 

Eq. (11)

 result 225.0  103 1.39 -2.2  106

Eq. (12) estimator 13, 13
OLP

ˆ ˆˆ t t t tS S   13,
OLPˆ t t  Eq. (11)

 result 161.9  103 1.001 52.1  106

 

 1 In fact, 0.9997.  
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For the sampling design of the Dutch Supermarkets the 
second covariance term in (6) is negligible due to the fact 
that dec, jan

,REQhn   is fixed. In contrast, for the SAMU design in 
Sweden this term is non-negligible and its estimation is 
time-consuming; the word SAMU (SAMordnade Urval) is a 
Swedish acronyme for coordinated samples. In Appendix A 
we propose an alternative method for estimating this co-
variance. However, under the condition that , 12 , 12

PS,subˆ ˆt t t tg g   
it suffices in our opinion to only use the first covariance. 
This simplifies the estimation procedure considerably. 
Moreover, under the normality assumption the conditional 
confidence interval has better coverage properties compared 
to the unconditional interval. 

The example of the Dutch Supermarkets shows one of 
the practical applications of the variance formulas: deter-
mining which estimator has the smallest variance. The re-
sults confirm that the variance of the simple estimator 

, 13ˆ t tg   is close to that of , 13
actˆ t tg   from section 4 which cor-

rects for the sample refreshment in January. Hence, for the 
Dutch Supermarkets , 13ˆ ˆvar ( )t tg   might be used for esti-
mating , 13

actˆvar ( ).t tg   For branches with another SIC code it 
needs to be checked whether , 13 , 13

actˆ ˆvar( ) var( )t t t tg g   since 
the impact of the refreshment in January need not be 
negligible.   
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Appendix A  
Justification of (5)   

Firstly, consider the case of strata without births and 
deaths. Apart from the yearly update in January, there are 
now no monthly updates. Hence, dec, jan

,REQ
t
h hn n   is fixed 

from which (5) follows. This case applies to the Dutch 
Supermarkets because that population has been quite stable 
over the years. Secondly, in case of births and deaths among 
the strata we can write t

hn   as  

                             12,
0 ,

H
t t t t t
h k

k h

n n n n



        (16) 

where 12,
0
t tn 
  or, for short, 0

tn   stands for the number of 
births in months 12, ..., 1t t   among .ts  Because the 
sampling procedure among the new births after month t   
12 is independent of the 12,t

hgn   the random variables 12,
0
t tn 
  

and 12t
hgn   have a zero covariance. Furthermore, using 

12cov( ,t
hgn  ) 0t

kn   for ,k h  it is seen from (16) that 
12cov( ,t

hgn  ) 0t
hn  ( 1, ..., ).h H   

In fact, it is assumed so far that the distribution of t
kn   

( )k h  can be described by a hypergeometric distribution 
with parameters 12,( , , )t t t t

kN N n
    irrespective of the values 

of the 12.t
hgn   A similar remark applies to 12,

0 .t tn 
  However, it 

can be argued that in practice these assumptions lead to a 
minor, second-order error in the variance formulas. In order 
to trace this error, we assume for simplicity’s sake and 
without loss of generality that (i) births and deaths do not 
migrate between strata, (ii) there are no deaths among the 
births, (iii) 0 0

t t
h h hn f N  is fixed, (iv) after their first month 

in the population births are irrelevant for the monthly 
updates during the rest of the study period and (v) deaths are 
not selected in or removed from the sample by the monthly 
updates; so a third-order error is still ignored. Under these 
assumptions we now look more closely at the second 
covariance component for ,h  say , sec,hhC  from (4a). In 
analogy with (6) , sechhC  can be written as  

, sec 12

1
12 12

1 0

1
12 12

12
1 1

1
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hg kh hg kht t
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 
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

         
    



 


 
(17)

 

where 12 12
1 , 1 1( , ..., , , ..., ).t t t t

h h h H h Hhn n n n 
   Note that under 

the above assumptions ,sec 0hC   for .h   
To estimate the covariances in (17), consider the formula 

for the conditional expectation of y  given 0x x  when y  
and x  follow a bivariate normal distribution. That is, in 
standard notation, 

0 02
( ) ( ).yx

y x
x

E y x x


     


 

In addition, for a given change 0x  of x  the conditional 
expectation of the change of y  is equal to 0( )E y x     

2
0 /yx xx    or, equivalently,  

                                20

0

( )
.yx x

E y x

x

  
  


 (18) 

So for estimating, for instance, 12
, 1cov( , )t t

h H khn n
  in (17) 

under normality it suffices to evaluate the expected effect on 
t
khy n  caused by a change of the future deaths 12

, 1
t
h Hx n 

  
in 12.t

hs    
Let 12

, 1
t
h Hn 

  denote an additional (positive) change of 
these deaths in 12.t

hs   Define jan,
, 1

t
h Hp   by jan, jan,

, 1 , 1 /t t
h H h Hp N   

12
, 1

t
h HN 

  where jan,
, 1

t
h HN   is the number of deaths in stratum h  

between January and month .t  Also, 12 12, 12/t t t t
hg hg hp N N    

( 1, ..., 1).g H   Using assumption ( ),v  the expected 
number of additional deaths in the sample of January before 
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the refreshment can be estimated by jan, 12
, 1 , 1.

t t
h H h Hp n 

   Sub-
sequently, the expected number of additional deaths in the 
sample after the refreshment can be estimated by  

                            
jan jan, 12
red , 1 , 1

jan
red

;

(0.9 ) / (1 ),

t t
h H h H

h h

p n

f f


  

   
 

(19)
 

where jan
red  is the reduction factor due to the refreshment in 

January. For the derivation of (19), see the end of this ap-
pendix. The corresponding monthly updates between Janu-
ary and month t  due to these additional deaths in the 
sample from stratum h  lead to the following estimate of the 
expected increase of incoming units t

khn  from stratum k  
( )k h  in the sample of month t  

                 12 jan jan, 12
, 1 red , 1 , 1( ) ,t t t t t

kh h H h H h H khE n n p n p 
         (20) 

where 12,
0/ ( ).t t t t t

kh kh h hp N N N   Recall from subsection 2.1 
that an update in month s occurs only when 1 1,s s

h h hd f D   
where ( )s s

h hD d  stands for the number of deaths in ( ),s s
h hU s  

and that 12,t t t
kh h khn f N   is fixed when jan,

, 1 0t
h HN   ( ).k h  

Furthermore, note that births are excluded in the definition 
of t

khp  in (20) because of assumption (iv).  
Next, define for 0,12m   

1
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Now using (18) and (20), we obtain for k h  the fol-
lowing covariance approximation 

12
, 1

12
, 1 12

, 112
, 1

jan jan, 12 12 12
red , 1 , 1 , 1

12
,
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( )
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
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      jan jan, 12 12
red , , 1 , 1 , 1(1 )(1 ),t t t t

h in h h H h H h H hA p p p p f 
       

where, for simplicity, we omitted the term 12/t
hN   

12( 1)t
hN    in the second line. Because 12t

hn   is fixed, it 
holds that 12 12 12

, 1 1cov( , ) cov( ... , ).t t t t t
h H kh h hH khn n n n n  

      
Hence, in analogy with the multihypergeometric distribution 

we can use for 1 g H   and k h  the following 
relationship for an approximation of 12cov( , )t t

hg khn n  
12

12 12
, 112

,

acov( , ) acov( , )
t
hgt t t t

hg kh h H kht
h H

p
n n n n
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where (21) is used as well. Alternatively, note that 
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th 12, 12

12 1 if  unit in  is included in sample 

0 otherwise.

t t t
t hg h
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i U s 
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Hence, by symmetry, 12 12
, 1cov( , ) cov( , ) /t t t t

hgi kh h H khn n n 
    

12,
,

t t
h HN 
  from which (22a) follows (1 ).g H   Likewise, 

for k h  we obtain from (21) and (22b) 
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respectively (1 ).g H   Now substituting (21)-(23) into 
(17), we get the approximation  

          12 12
, sec , 1 , ,( ) ( ) / .t t t t t

hh h h H h H in h hh hC A O O O O n 
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Assuming that the two terms between parentheses in (24) 
are absolutely smaller than ,thS  it follows from (24) that  
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Hence, when 12
, , 1, 0.1,t t

in h h Hp p 
   we may conclude that 

under the above assumptions the contribution of the second 
covariance component is less than 1% of var( )t

ho  so that 
(5) can be used without severely affecting the results. When 

,sechhC  is non-negligible, it can be estimated from the sam-
ple according to (24) by   
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where in analogy with (10) and (12) 12
,ˆcov( , )t t

h H hho o
  is 

defined by   
12 12,
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, ,OLP12 12 12,
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We used in (25) that (i) for two arbitrary (unbiased) 
estimators â  and ˆ ˆ ˆˆ ˆ, ( ) cov( , )b E ab ab a b   and (ii) 

12cov( , ) 0 (t t
hg kho o g h    or ).k h  

We conclude this appendix with the derivation of (19). 
The expected number of additional deaths remaining in the 
sample of January during the refreshment is jan,

, 10.9 t
h Hp   

12
, 1.

t
h Hn 

  The number of deaths outside the sample just 
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before the refreshment can be estimated by jan,
, 1

t
h HN    

jan jan, 12
, 1 , 1 , 1.

t t
h H h H h Hn p n 

     Hence, the number of new deaths in 
the sample due to the refreshments in all substrata 12,t t

hgU   
(1 )g H   in January can be estimated by 
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Now using jan 12, jan
0 0

t
h h hn f N   according to the above as-

sumptions, it is seen that after the refreshments the final 
number of additional deaths in the sample due to 12

, 1
t
h Hn 

  
can be estimated by 
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Appendix B  

Some useful covariance formulas for overlapping 
samples  

Let 123s  denote a mother sample consisting of three 
mutually disjoint SRS subsamples 1 2,s s  and 3.s  Let the 
variable x be observed in 12s  and the variable y in 23.s  The 
corresponding sample means are denoted by 12x  and 23,y  
respectively. Denote the size of ks  by (kn k  1, 2, 3, 12, 
23). Define 2 12 2 23/ , /n n n n     and / .k kf n N  
Furthermore, define xyS  by 

1

1
( )( ) .
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Then the covariance between 12x  and 23y  is equal to  
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This can be shown as follows 
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In the third line we used that 1 23 2 3cov( , ) cov( , )x y x y   
/ .xyS N  This follows from the conditional covariance 

formula 

2 3 2 3 2 2 2 3 2
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For an alternative proof based on the sampling autocorrela-
tion coefficient, see Knottnerus (2003, page 375).  
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Variance inflation factors in the analysis of complex survey data 

Dan Liao and Richard Valliant 1 

Abstract 
Survey data are often used to fit linear regression models. The values of covariates used in modeling are not controlled as 
they might be in an experiment. Thus, collinearity among the covariates is an inevitable problem in the analysis of survey 
data. Although many books and articles have described the collinearity problem and proposed strategies to understand, 
assess and handle its presence, the survey literature has not provided appropriate diagnostic tools to evaluate its impact on 
regression estimation when the survey complexities are considered. We have developed variance inflation factors (VIFs) 
that measure the amount that variances of parameter estimators are increased due to having non-orthogonal predictors. The 
VIFs are appropriate for survey-weighted regression estimators and account for complex design features, e.g., weights, 
clusters, and strata. Illustrations of these methods are given using a probability sample from a household survey of health 
and nutrition. 
 
Key Words: Cluster sample; Collinearity diagnostics; Linearization variance estimator; Survey-weighted least squares; 

Stratified sample. 
 
 

1. Introduction  
Collinearity of predictor variables in a linear regression 

refers to a situation where explanatory variables are 
correlated with each other. The terms, multicollinearity and 
ill conditioning, are also used to denote the same situation. 
Collinearity is worrisome for both numerical and statistical 
reasons. The estimates of slope coefficients can be numer-
ically unstable in some data sets in the sense that small 
changes in the X ’s or the Y ’s can produce large changes 
in the values of these estimates. Statistically, correlation 
among the predictors can lead to slope estimates with large 
variances. In addition, when X ’s are strongly correlated, 
the 2R  in a regression can be large while the individual 
slope estimates are not statistically significant. Even if slope 
estimates are significant, they may have signs that are the 
opposite of what are expected (Neter, Kutner, Wasserman 
and Nachtsheim 1996). Collinearity may also affect fore-
casts (Smith 1974; Belsley 1984). 

In experimental designs, it may be possible to create 
situations where the explanatory variables are orthogonal to 
each other. But, in many surveys, variables that are substan-
tially correlated are collected for analysis. For example, total 
income and its components (e.g., wages and salaries, capital 
gains, interest and dividends) are collected in the Panel 
Survey of Income Dynamics (http://psidonline.isr.umich. 
edu/) to track economic well-being over time. When one 
explanatory variable is a linear combination of the others, 
this is known as perfect collinearity (or multicollinearity) 
and is easy to identify. Cases that are of interest in practice 
are ones where collinearity is less than perfect but still 
affects the precision of estimates (Kmenta 1986, section 
10.3). 

Although there is a substantial literature on regression 
diagnostics for non-survey data, there is considerably less 
for survey data. A few articles in the last decade introduced 
techniques for the evaluation of the quality of regression on 
complex survey data, mainly on identifying influential 
points and influential groups with abnormal data values or 
survey weights. Elliot (2007), for instance, developed 
Bayesian methods for weight trimming of linear and gener-
alized linear regression estimators in unequal probability-of-
inclusion designs. Li (2007a, b); Li and Valliant (2009, 
2011) adapted and extended a series of traditional diagnostic 
techniques to regression on complex survey data, mainly on 
identifying influential observations and influential groups of 
observations. Li’s research covers residuals and leverages, 
DFBETA, DFBETAS, DFFIT, DFFITs, Cook’s Distance 
and the forward search approach. Although an extensive 
literature in applied statistics provides valuable suggestions 
and guidelines for data analysts to diagnose the presence 
of collinearity (e.g., Farrar and Glauber 1967; Theil 
1971; Belsley, Kuh and Welsch 1980; Fox 1984; Belsley 
1991), none of this research touches upon diagnostics for 
collinearity when fitting models with survey data. 

The variance inflation factor (VIF) described in section 2, 
is one of the most popular conventional collinearity diag-
nostic techniques, and is mainly aimed at ordinary or 
weighted least squares regressions. A VIF measures the 
inflation of the variance of a slope estimate caused by the 
nonorthogonality of the predictors over and above what the 
variance would be with orthogonality. In section 3, we 
consider the case of an analyst who estimates model 
parameters using survey-weighted least squares (SWLS) 
and derive VIFs appropriate to SWLS. The components of 
the VIF can be estimated using the ingredients of a variance 
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estimator that is in common usage in software packages for 
analyzing survey data. In the case of linear regression, a 
type of sandwich variance estimator will estimate both the 
model variance and design variance of the SWLS slope 
estimator. As we will show in section 3, the model or design 
variance of ˆ ,k  an estimator of slope associated with the 
predictor ,kx  is inflated somewhat when different pre-
dictors are correlated with each other compared to what the 
variance would be if kx  were orthogonal to the other pre-
dictors. The measure of inflation, the VIF, is composed of 
terms that must be estimated from the sample. Our approach 
has been to substitute estimators that have both a model and 
design interpretation as described in section 3.5. 

The fourth section presents an empirical study using data 
from the United States National Health and Nutrition Exam-
ination Survey. The application of our new approach is 
demonstrated and the newly-derived VIF values for SWLS 
are compared to the ones for OLS or WLS, which can be 
obtained from the standard statistical packages. The 
comparisons show that VIF values are different for different 
regression methods and a VIF specific to complex sample 
should be used to evaluate the harmfulness of collinearity in 
the analysis of survey data. 

 
2. Collinearity diagnostics in ordinary least 

      squares estimation  
Suppose the sample s  has n  units, on each of which p  

x ’s or predictors and one analysis variable Y  are observed. 
The standard linear model in a nonsurvey setting is 

= ,Y Xβ    where Y  is an 1n   vector of observations 
on a response or dependent variable; 1= ( , ..., )X x x p  is an 
n p  design matrix of fixed constants with ,xk  the 1n   
vector of values of explanatory variable k  for the n  sample 
units; β  is a 1p   vector of parameters to be estimated; 
and   is an 1n   vector of statistically independent error 
terms with zero mean and constant variance 2.  We as-
sume, for simplicity, that X  has full column rank. The 
ordinary least squares (OLS) estimate of β  is 1ˆ = ( )β X XT   

,X YT  for which the model variance is ˆVar ( ) =βM  
2 1( ) .X XT   Here, we use the subscript M  to denote ex-

pectation under the model. 
Collinearities of explanatory variables inflate the model 

variance of the regression coefficients compared to having 
orthogonal X ’s. This effect can be seen in the formula for 
the variance of a specific estimated non-intercept coefficient 
ˆ

k  (Theil 1971),  

                          

2

2 2

1ˆVar ( ) =
1M k

ik k
i s

x R






 (1) 

where 2
kR  is the square of the multiple correlation from the 

regression of the thk  column of X  on the other columns. 
This R-square defined as 2

( ) ( ) ( ) ( )
ˆ ˆ= / ,X X x xT T

k k k k k k kR    
where ( )

ˆ
k  is OLS estimate of the slope when kx  is 

regressed on the other x ’s and ( )kX  is the X  matrix with 
the thk  column removed. The term 2 2/ ikx  is the model 
variance of ˆ

k  if the thk  predictor were orthogonal to all 
the other predictors. The value of 2

kR  may be nonzero be-
cause the thk  predictor is correlated with one other explana-
tory variable or because of a more complex pattern of depen-
dence between kx  and several other predictors. Conse-
quently, the collinearity between kx  and some other explan-
atory variables can result in the inflation of the variance of 
ˆ

k  beyond what would be obtained with orthogonal X ’s. 
The second term in (1), 2 1(1 ) ,kR   is called the variance-
inflation factor (VIF) (Theil 1971). 

A basic reference on collinearity and other OLS diag-
nostics is Belsley et al. (1980). Collinearity diagnostics are 
covered in many other textbooks including Fox (1984) and 
Neter et al. (1996). In some cases, it is desirable to weight 
cases differentially in a regression analysis to incorporate a 
nonconstant residual variance. This form of weighting is 
model-based and is called weighted least squares (WLS). 
Most of current statistical software packages, (e.g., SAS, 
Stata, S-Plus and R), use 2 1

(WLS)(1 )kR   as VIF for WLS, 
where 2

(WLS)kR  is the square of the multiple correlation from 
the WLS regression of the thk  column of X  on the other 
columns. Fox and Monette (1992) also generalized this 
concept of variance inflation as a measure of collinearity to 
a subset of parameters in b  and derived a generalized 
variance-inflation factor (GVIF). Furthermore, some inter-
esting work has developed VIF-like measures, such as 
collinearity indices in Steward (1987) that are simply the 
square roots of the VIFs and tolerance defined as the 
inverse of VIF in Simon and Lesage (1988). 

 
3. VIF in survey weighted least squares regression  
3.1 Survey-weighted least squares estimators  

 Suppose the underlying structural model in the 
superpopulation is = ,Y X β eT   where the error terms in 
the model have a general variance structure 2(0, )e V  
with known V  and 2.  Define W  to be the diagonal 
matrix of survey weights. We assume throughout that the 
survey weights are constructed in such a way that they can 
be used for estimating finite population totals. The survey 
weighted least squares (SWLS) estimator is SW

ˆ = (β XT  
1) ,WX X WYT  assuming 1T X W X  is invertible. Fuller 

(2002) describes the properties of this estimator. 
The estimate SWβ̂  is a model unbiased estimator of β  

under the model =Y X β eT   regardless of whether 
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2Var ( ) =e VM   is specified correctly or not, and is 
approximately design-unbiased for the census parameter 

1= ( )T
U U U

B X X ,X YT
U U  in the finite population of N  

units. The subscript U  stands for the finite population, 

1= ( , ..., ) ,Y T
U NY Y  and 1= ( , ..., )X x xU p  with kx  as the 

1N   vector of values for covariate .k   
3.2 Model variance of coefficient estimates  

The model variance of the parameter estimator SW
ˆ ,β  

assuming 2Var ( ) = ,e VM   can be expressed as  

             

2 1 1
SW

2 2

ˆVar ( ) = ( ) ( )

= = ,1 1

β X X X VX X X

A BA G

T T T
M

 

 



 

      

 (2)
 

where 1/2= , = , = ,1/ 2 1/ 2X W X V W VW A X XT    =B XT  
,VX   and = .1 1G A BA   

If the columns of X  are orthogonal, then =X XT   
diag( )x xT

k k   and 1 = diag(1/ ),A x xT
k k

    where 1/2=x wk k  
.xk  The thij  element of G  then becomes 2/ ( ) .x Vx x xT T

i j i i
     

Thus, when the X ’s are orthogonal, the model variance of 

SW
ˆ

k
  is  

                   
2 2

SW
ˆVar ( ) = / ( ) ,x V x x xT T

M k k k kk
       (3) 

a fact we will use later. More generally, the model variance 
of SW

ˆ ,
k

  the coefficient estimate for the thk  explanatory 
variable, is  

     
2 2

SW SW
ˆ ˆVar ( ) = Var ( ) = =i β i i Gi kk

M k M k k kk
g     (4) 

where ki  is a 1p   vector with 1 in position k  and 0’s 
elsewhere, and kkg  is the thk  diagonal element of 
matrix .G   
3.3 Model-based VIF  

As shown in Appendix A, the model variance of SW
ˆ

k
  in 

(4) can be written as:  

          

2
2

SW 2 2
SW( )

ˆVar ( ) = = ,
1 ( )

x V x

x x

T
kk k k k k

M Tk
k k k

g
R

  
 



 
 

 (5) 

where  

                       
= ,

e Ve e WVWe

e e e We

T T
xk xk xk xk

k T T
xk xk xk xk

 
 

 
 

with ( ) SW( )
ˆ=e x X βxk k k k  being the residual from SWLS 

regressing kx  on ( )kX  and ( ) SW( )
ˆ

xk k k k  e x X    
1/2 ,xkW e  

=
x x x Wx

x Vx x WVWx

T T
k k k k

k T T
k k k k

 
 
 

 

and 2
SW( ),kR  defined in Appendix A, is the square of the 

multiple correlation from the weighted regression of the thk  
column of X  on the other columns. Hence, k  and k  

depend on W  and .V  The variance under orthogonality in 
(3) is inflated  

                                    
2
SW( )

VIF =
1

k k
k

kR

 


 (6) 

times when incorporating the other 1p   explanatory 
variables in SWLS. The model-based VIF in SWLS in-
cludes not only the multiple correlation coefficient 2

SW( )kR  
but also two adjustment coefficients, k  and ,k  that are 
not present in the OLS and WLS cases. 

Using the singular value decomposition of ,V  we can 
bound the factor ,k k   which is the adjustment to the VIF in 
WLS. Based on the extrema of the ratio of quadratic forms 
(Lin 1984), the term k  is bounded in the range of 

min max( ) ( ),V Vk       and k  is bounded in the range 
of  

max min

1 1
,

( ) ( )V Vk  
    

where min ( )V   and max ( )V   are the minimum and maxi-
mum singular values of the matrix .V  Combining these 
results, the joint coefficient k k   is bounded in the range 
of:  

maxmin

max min

( )( )
.

( ) ( )

VV

V Vk k


   

 


   

Notice that when = ,V I = = 1k k   and (6) reduces to 

2

2
SW( )

1
,

1 x WxT
k k kR




 

which is the model variance of the WLS estimates when V  
is diagonal and W  is correctly specified as 1= .W V  In 
that unusual case, the VIF currently computed by software 
packages will be appropriate for SWLS. However, rarely 
will it be reasonable to think that 1= W V  in survey 
estimation. If ,V I  then k  and k  are not equal to 1 
and a specialized calculation of the VIF is still needed. 
When = ,V I  which is the usual application considered by 
analysts,  

= , = , =
e We x x

V W
e e x Wx

T T
xk xk k k

k kT T
xk xk k k

 
   
   

 

and  

min min

max max

( )
= ,

( )

V

V

w

w





  

where minw  is the minimum value of the survey weights and 

maxw  is their maximum value. In this case, the range of 

k k   is bounded by  

maxmin

max min

, .
ww

w w
 
 
 
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When all the survey weights are constant, = 1k k   and the 
VIF produced by standard software, 2 1

SW(1 ) ,R   does not 
need to be adjusted in SWLS; however, when the range of 
the survey weights is large, k k   can be very small or large 
and can be either above or below 1. In this case the VIF 
produced by standard software is not appropriate and a 
special calculation is needed. These facts will be illustrated 
in our experimental studies. 

The VIF in (6) is appropriate regardless of whether the 
model contains an intercept or not. An alternative version 
can also be written that assumes that an intercept is in the 
model when kx  is regressed on the other x ’s. The 
derivation of this form is in Liao (2010). We summarize the 
result below. 

The variance of SW
ˆ

k
  in a model M2 that includes an 

intercept and in which kx  is orthogonal to the other x ’s is:  

                2 SW 2
SW ( )

( ) ( )ˆVar ( ) =
SST

x 1 V x 1T
k k k k

M k
km

x x 


    
 (7) 

where 1/2 1/2
1= ( , ..., ),1 nw w ˆ= / ,i sk i kix w x N ˆ = ,i s iN w  

and 2
SW ( )

ˆSST = .x xT
k k k km

N x    The variance of SW
ˆ

k
  can 

then be rewritten as  

                
SW 2 SW2

SW ( )

ˆ ˆVar ( ) = Var ( )
1

k mk
M Mk k

m kR

 
 


 (8) 

where 2
SW ( )m kR  is the SWLS R-square from regressing kx  

on the ’sx  in the remainder of X  (excluding a column for 
the intercept). The term k  was defined following (5) and  

2ˆ( )
= .

( ) ( )

x x

x 1 V x 1

T
k k k

mk T
k k k k

N x

x x




 
  
    

 

Most software packages will consistently provide (1   
2 1
SW ( ))m kR   as the VIF as part of WLS regression output. 

Note that this is different from the VIF, 2 1
SW( )(1 ) ,kR   

introduced in section 3.3 which does not assume that an 
intercept is retained in the model. Software packages 
generally do not supply 2 1

SW( )(1 ) .kR   
Using arguments similar to those in the previous section, 

we can bound k mk   by  

maxmin

max min

( )( )
.

( ) ( )

VV

V Vk mk


   

 


   

The model variance of SW
ˆ

k
  is inflated by 

2
SW ( )

VIF =
1

k mk
mk

m kR

 


 

compared to its variance in the model (M2) with only the 
explanatory variable kx  and intercept. The new intercept-
adjusted VIFmk  retains some properties of VIFk  in (6). 

When = ,V I  we have = 1,k = 1mk  and the intercept-
adjusted VIF in (8) for SWLS is equal to the conventional 
intercept-adjusted VIF: 2 1

( )(1 ) .m kR   When = ,V I  we 
have = ,V W  

= ,
e We

e e
xk xk

k T
xk xk


 
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2ˆ( )
=
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x x

x 1 W x 1

T
k k k

mk T
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N x

x x




 
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    

 

and 

min min

max max

( )
= .

( )

V

V

w

w





  

The range of k mk   also depends on the range of survey 
weights as did .k k    
3.4 Estimating the VIF for a model with stratified 

clustering when V  is unknown  
In the previous sections, we used model-based arguments 

to derive VIFs. The VIFs contain terms, V  in particular, 
that are unknown and must be estimated. In this section, we 
construct estimators of the components of the VIFs, again 
using model-based arguments. However, a standard, design-
based linearization variance estimator also estimates the 
model variance, as shown below, and supplies the compo-
nents needed to estimate the VIF. In the remainder of this 
section, we will present estimators that are appropriate for a 
model that has a stratified clustered covariance structure. 

Suppose that in a stratified multistage sampling design, 
there are = 1, ...,h H  strata in the population, = 1, ...,i  

hN  clusters in the corresponding stratum h  and = 1, ...,t  

hiM  units in cluster .hi  We select = 1, ..., hi n  clusters in 
stratum h  and = 1, ..., hit m  units in cluster .hi  Denote the 
set of sample clusters in stratum h  by hs  and the sample of 
units in cluster hi  as .his  The total number of sample units 
in stratum h  is = ,i sh hih

m m  and the total in the sample is 

=1= .H
h hm m  Clusters are assumed to be selected with 

replacement within strata and independently between strata. 
Consider this model:  

( ) =

= 1, , , = 1, , , = 1, ,

Cov ( , ) = 0

, or, = and .

x βT
M hit hit

h hi

M hit h i t

E Y

h H i N t M

Y Y

h h h h i i
  

   

  
 (9) 

Units within each cluster are assumed to be correlated but 
the particular correlation of the covariances does not have to 
be specified for this analysis. The estimator of the regression 
parameter is:  

                          

1
SW

=1

ˆ =β A X W Y
H

T
hi hi hi

h i sh




   (10) 

where hiX  is the him p  matrix of covariates for sample 
units in cluster ,hi = diag( ),Whi t hiw t s  is the diagonal 
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matrix of survey weights for cluster hi  and hiY  is the 
1him   vector of response variables in cluster .hi  The 

model variance of SWβ̂  is:  

     

1 1
SW

=1

1 1

=1

ˆVar ( ) =

= ,

β A X W V W X A

A X W V W X A

H
T

M hi hi hi hi hi
h i sh

H
T
h h h h h

h

 



 

 
 
  
 
 
 




 

(11)

 

where = Var ( )V Yhi M hi  and = Blkdiag( ), .V Vh hi hi s  
Expression (11) is a special case of (2) with 1= ( ,X XT T  

2 , ..., ),X XT T
H hX  is the hm p  matrix of covariates for 

sample units in stratum ,h = diag( ),W Whi  for = 1, ...,h  
H  and hi s  and = Blkdiag( ).V Vh  

Denote the cluster-level residuals as a vector, =ehi  

SW
ˆ .Y X βhi hi  A design-based linearization estimator is:  

1 1
SW

=1

1 1

=1

ˆvar ( )= ( )( )
1

= ,
1

β A z z z z A

A z z z z A
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Th
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hi hi h h h
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n
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  
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 

 
 

(12)

 

where 
1

=h hii shhn z z  

and = T
hi hi hi hiz X W e  with SW

ˆ= .e Y X βhi hi hi  This ex-
pression can be reduced to the formula for a single-stage 
stratified design when the cluster sample sizes are all 
equal to 1, = 1.him  Expression (12) is used by the Stata 
and SUDAAN packages, among others. The estimator 

SW
ˆvar ( )βL  is consistent and approximately design-unbiased 

under a design where clusters are selected with replacement 
(Fuller 2002). Li (2007a, b) showed that (12) is also an 
approximately model-unbiased estimator under model (11). 

The term in brackets in (12) serves as an estimator of the 
matrix B  in expression (2). The components of SW

ˆvar ( )βL  
can be used to construct estimators of k  and k  in (5) and 

mk  in (8). In particular,  

                                
ˆ

ˆ = ,
e WVWe

e We

T
xk xk

k T
xk xk

  (13) 

where  

1ˆ ˆ= Blkdiag ,
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V V e eTh
h h h
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x WVWx

T
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k T
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  

with ( ) SW( )
ˆ= .e x X βxk k k k  The estimate of ˆ ,mk  defined 

following (8), is  

                  

2ˆ( )
ˆ = .

ˆ( ) ( )

x Wx

x 1 WVW x 1

T
k k k

mk T
k k k k

N x
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
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
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Given these component estimators VIFk  is estimated by 


2
SW( )

ˆ ˆ
VIF =

1
k k

k

kR

 
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and VIFmk  is estimated by  


2
SW ( )

ˆ ˆ
VIF = .

1
k mk

mk

m kR

 


 

 
4. Experimental study  

We will now illustrate the proposed, modified collinearity 
diagnostics and investigate their behavior using dietary 
intake data from the National Health and Nutrition Exami-
nation Survey (NHANES) 2007-2008 (http://www.cdc.gov/ 
nchs/nhanes/nhanes2007-2008/datadoc_changes_0708.htm). 
The dietary intake data are used to estimate the types and 
amounts of foods and beverages consumed during the 24-
hour period prior to the interview (midnight to midnight), 
and to estimate intakes of energy, nutrients, and other food 
components from those foods and beverages. NHANES 
uses a complex, multistage, probability sampling design. 
Oversampling of certain population subgroups is done to 
increase the reliability and precision of health status 
indicator estimates for these groups. Among the respondents 
who received the in-person interview in the mobile exam-
ination center (MEC), around 94% provided complete di-
etary intakes. The survey weights in this data were con-
structed by taking MEC sample weights and further 
adjusting for the additional nonresponse and the differential 
allocation by day of the week for the dietary intake data 
collection. These weights are more variable than the MEC 
weights. The data set used in our study is a subset of 2007-
2008 data composed of female respondents aged 26 to 40. 
Observations with missing values in the selected variables 
are excluded from the sample which finally contains 672 
complete respondents. The final weights in our sample 
range from 6,028 to 330,067, with a ratio of 55:1. The U.S. 
National Center for Health Statistics recommends that the 
design of the sample is approximated by the stratified 
selection with replacement of 32 PSUs from 16 strata, with 
2 PSUs within each stratum. 

For this empirical study, a linear regression of body 
weight(kg) is fitted using survey weighted least squares. The 
predictor variables considered include age, Black(race) and 
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nine daily total nutrition intake variables, which are 
calorie(100kcal), protein(100gm), carbohydrate(100gm), 
sugar(100gm), total fat(100gm), total saturated fatty 
acids(100gm), total monounsaturated fatty acids(100gm), 
total polyunsaturated fatty acids(100gm) and alco-
hol(100gm). All the daily total nutrition intake variables 
are correlated with each other to different degrees as 
shown in Figure 1. 

Three regression methods compared in this study. The 
first one uses ordinary least squares (OLS) method and 
ignores sampling complexities including the weighting. The 
second one uses weighted least squares (WLS), which 
incorporates the survey weights by assuming 1= V W  but 
ignores all sampling complexities. The third one is survey 
weighted least squares (SWLS), which uses the actual 
complex sampling design as described in section 3.4. The 
weight matrices, coefficient variance estimators and 
collinearity diagnostics of these three methods are listed 
in Table 1. 

The results from fitting the model using three different 
regression methods are displayed in Table 2. The model 
with all the predictors is shown in the upper part of the table. 
In the lower tier of the table, a reduced model with less of 
the near-dependency problem is fitted with only three 
predictors: age, Black and calorie. In the reduced model, the 
value of the coefficient for calorie is positive and significant 
when WLS or SWLS is used, which seems logical and 
reflects the anticipated positive relationship between a 
respondent’s body weight and her daily total calorie intake. 
However, when the other total nutrition intake variables are 
included in the model, the value of the calorie coefficient is 
negative and not significant due to its inflated variance. This 
is a typical example in which the variance of a coefficient is 
inflated, and its sign is illogical due to collinearity. 

Table 3 reports the VIF values when the three different 
regression methods are used. The VIF formulas for these 
regression methods are listed in Table 1. When all the 
predictors are included in the model, calorie has the largest 
VIF values in all the regressions due to its high near-
dependency with all the other total nutrition intake variables. 
As shown in Table 1, the VIF in SWLS can be obtained by 
multiplying the VIF from WLS with the adjustment 
coefficient .k k   In Table 3, the adjustment coefficients 

k k   for all the non-fat total nutrition intake variables are 
all less than 1, especially the one for carbohydrate which is 
0.46. This indicates that the VIF values for these variables in 
SWLS are much smaller than the ones in WLS and the 
collinearity among predictors in the model has less impact 
on the coefficient estimation when using SWLS, compared 
to using WLS. But for the fat-related nutrition intake 
variables, their k k   are all larger than 1. Thus, the 
collinearity among the fat-related nutrition intake variables 
is more harmful to the coefficient estimation in SWLS than 
in WLS. To take a closer look at this problem, we also fitted 
a model that only contains two nutrition intake variables: 
total fat and total monounsatruated fatty acids. The SWLS 
VIF values are three times as large as the ones from OLS or 
WLS for these two nutrition variables. If an analyst is 
analyzing this survey data using SWLS but uses the 
unadjusted VIF values provided by standard statistical 
packages for either OLS (as shown in the first column) or 
WLS (as shown in the second column), the unadjusted VIFs 
will give somewhat misleading judgements on the severity 
of collinearity in this model. In summary, although the 
estimated slopes and predictions in regression using WLS 
and SWLS are the same, the VIFs can be underestimated or 
overestimated if survey complexities are ignored. 

 
 

Table 1 
Regression methods and their collinearity diagnostic statistics used in this experimental study 
 

Regression Type Weight Matrix Wa  Variance Estimation of ̂   VIF fomula 

OLS I  2 1ˆ ( )X XT    
2

( )

1
VIF =

1

b

m kR
 

WLS Wc  2 1ˆ ( )X WXT    
2
SW ( )

1
VIF =

1 m kR
 

SWLS W  2 1 1ˆˆ ( ) ( )X WX X WVWX X WXT T T    
2
SW ( )

ˆ ˆ
VIF =

1

k mk

m kR

 


 

  with  with 
ˆ

ˆ = ,
e WVWe

e We

T
xk xk

k T
xk xk

  

  

=1

1ˆ = Blkdiag( )
1

V e e e e
H T Th

hi hi h hh h h

n

n n

 
   

  
2ˆ( )

ˆ =
ˆ( ) ( )

x x

x 1 V x 1

T
k k k

mk T
k k k k

N x

x x




 

  
    

 

 
a In all the regression models, the parameters are estimated by: 1ˆ = ( ) .X WX X WY T T  
b 2

( )m kR  is the OLS R-square from regressing xk  on the ’sx  in the remainder of X  (excluding a column for the intercept). 
c W is the diagonal matrix with survey weights iw  on the main diagonal. 
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a T.Fat: total fat;  
 T.S.Fat: total saturated fatty acid; 
 T.M.Fat: total monounsaturated fatty acid;  
 T.P.Fat: total polyunsaturated fatty acid.   

Figure 1 Pairwise scatterplots and correlation coefficients of nutrition variablesa 
 
 
 
 

Table 2 
Parameter estimates with their associated standard errors using three different regression methods 
 

          Full Model 
           OLS        WLS        SWLS 
Variable           Beta           SE.        Beta           SE.         Beta           SE.  

Intercept   63.90***a  6.95  67.47***   6.36   67.47***   8.76 
Age   0.26   0.19  0.08   0.18   0.08   0.25 
Black   10.39***   2.07  10.59***   2.38   10.59***   2.20 
Calorie   -6.41   5.76  -8.19   5.56   -8.19   5.75 
Protein   25.72   24.76  40.98   23.60   40.98   25.38 
Carbohydrate   26.67   23.93  32.31   22.96   32.31   22.65 
Sugar   -1.90   3.06  -0.30   2.82   -0.30   4.06 
Fiber   -41.17   20.23  -34.20   17.98   -34.20   19.05 
Alcohol   38.84   39.45  49.37   38.28   49.37   40.10 
Total Fat   150.25*   69.53  161.78*   72.12   161.78   94.76 
Total Saturated Fatty Acids   -113.20*   49.81  -101.40   56.26   -101.40   82.71 
Total Monounsaturated Fatty Acids   -72.05   48.03  -92.44   51.52   -92.44   83.51 
Total Polyunsaturated Fatty Acids   -92.60*   46.13  -75.55   51.16   -75.55   78.76 
          Reduced Model 
           OLS        WLS        SWLS 
Variable           Beta           SE.        Beta           SE.         Beta           SE.  

Intercept   62.26***   6.88  67.52***   6.29   67.52***   8.48 
Age   0.27   0.19  0.07   0.18   0.07   0.25 
Black   12.54***   1.98  11.74***   2.32   11.74***   2.05 
Calorie   0.15   0.10  0.23*   0.09   0.23*   0.10 

a p
 values of significance: * = 0.05;p  ** = 0.01;p  *** = 0.005.p   
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      calorie     
                                       0.75                       0.84                      0.58                       0.57                        0.23                      0.86                        0.81                       0.83                        0.74 
 
 

                                    protein 
                                                                     0.45                      0.17                       0.52                       0.041                      0.72                        0.71                       0.68                      0.56 
 
 
                                                                    carb 
                                                                                                  0.84                       0.54                      0.0061                     0.54                        0.51                       0.51                      0.47 
 
 

                                                                                                 sugar  
                                                                                                                                0.17                       0.026                      0.27                        0.27                       0.25                      0.23 
 
 

                                                                                                                                fiber 
                                                                                                                                                             0.045                       0.48                        0.43                       0.46                      0.46 
 
 
                                                                                                                                                            alcohol 
                                                                                                                                                                                            0.067                       0.04                      0.078                    0.088 
 
 

                                                                                                                                                                                            T.Fat 
                                                                                                                                                                                                                            0.93                       0.97                      0.85 
 
 
                                                                                                                                                                                                                        T.S.Fat 
                                                                                                                                                                                                                                                         0.87                       0.63 
 
 
                                                                                                                                                                                                                                                       T.M.Fat  
                                                                                                                                                                                                                                                                                       0.82 
 
 

                                                                                                                                                                                                                                                                                     T.P.Fat 
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Table 3 
VIF values using three different regression methods 
 

                          Full Model 
                   OLS WLS                         SWLS 

Variable  VIF VIF  VIF k k   

Age   1.02  1.03  0.96 0.94 
Black   1.10  1.07  1.12 1.05 
Calorie   3,411.61  3,562.70  2,740.83 0.77 
Protein   123.12  127.35  103.50 0.81 
Carbohydrate   1,074.87  1,007.40  462.08 0.46 
Sugar   8.37  7.03  4.87 0.69 
Fiber   4.59  3.94  2.37 0.60 
Alcohol   120.56  115.67  89.92 0.78 
Total Fat   1,190.24  1,475.27  2,513.69 1.70 
Total Saturated Fatty Acids   76.80  112.61  202.91 1.80 
Total Monounsaturated Fatty Acids   82.37  107.34  286.24 2.67 
Total Polyunsaturated Fatty Acids   34.73  49.45  118.21 2.39 
                          Reduced Model 
 OLS WLS                         SWLS 

Variable  VIF VIF  VIF  k k   

Age   1.00  1.00  0.98  0.98 
Black   1.02  1.01  0.97  0.96 
Total Fat   20.10  20.22  63.15  3.12 
Total Monounsaturated Fatty Acids   20.16  20.26  61.57  3.04 
                          Reduced Model 
 OLS WLS                         SWLS 

Variable  VIF VIF  VIF  k k   

Age   1.00  1.00  0.98  0.97 
Black   1.00  1.03  1.00  1.00 
Calorie   1.00  1.01  0.96  0.95 

 
 
 

 
5. Conclusion  

Regression diagnostics need to be adapted to be 
appropriate for models estimated from survey data to 
account for the use of weights and design features like 
stratification and clustering. In this paper we developed a 
new formulation for a variance inflation factor (VIF) 
appropriate for linear models. A VIF measures the amount 
by which the variance of a parameter estimator is inflated 
due to predictor variables being correlated with each other, 
rather than being orthogonal. Although survey-weighted 
regression slope estimates can be obtained from weighted 
least squares procedures in standard software packages, the 
VIFs produced by the non-survey routines are incorrect. The 
complex sample VIF is equal to the VIF from weighted 
least squares times an adjustment factor. The adjustment 
factor is positive but can be either larger or smaller than 1, 
depending on the nature of the data being analyzed. 

In an empirical study, we illustrated the application of 
our new approach using data from the 2007-2008 National 
Health and Nutrition Examination Survey. We provided a 
simple example of how the collinearity among predictors 
affects the estimation of coefficients in linear regression and 

demonstrated that although the estimated coefficients (and 
fitted values) are the same when weighted least squares or 
survey-weighted least squares are used, their estimated 
variances and VIF values (reflecting the impact of 
collinearity on coefficient estimation) can be different. 

The goals of an analysis must be considered in deciding 
how to use VIFs. If prediction is the main objective, then 
including collinear variables or selecting incorrect variables 
is less of a concern. If more substantive conclusions are 
desired, then an analyst should consider which variables 
should logically be included as predictors rather than relying 
on some automatic algorithm for variable selection. VIFs 
are a useful tool for identifying predictors whose estimated 
coefficients have variances that are unnecessarily large. 
Although VIFs might be considered as a tool for automatic 
variable selection, simulations in Liao (2010), not reported 
here, show that using VIFs is not a reliable way of 
identifying a true underlying model.  
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Appendix A  
Derivation of kkg   

Similar to the derivation of conventional OLS VIF in 
Theil (1971), the sum of squares and cross products matrix 

= ,A X XT   which can be partitioned as  

                        

( )

( ) ( ) ( )

=
x x x X

A
X x X X

T T
k k k k

p p T T
k k k k



 
 
 
 

  
  

 (15) 

where the columns of X  are reordered so that =X  

( )( )x Xk k
  with ( )kX  being the ( 1)n p   matrix con-

taining all columns except the thk  column of .X  
Using the formula for the inverse of a partitioned matrix, 

the upper-left element of 1A  can be expressed as:  

                 
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1 1

2
SW SW( ) ( )

2
SW( )

= = ( )

1
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1 SST

1
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1
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k k k k
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k kk
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 (16)

 

where 

SW ( ) ( ) SW( ) ( )2
SW( )

SW( )

ˆ ˆ
= ,

SST

X XT T
k kk k

k
k

R
  

 

with 1
SW ( ) ( ) ( )( )

ˆ = ( ) ,X X X xT T
k k k kk

      is the coefficient of de-
termination corresponding to the regression of kx  on the 

1p   other explanatory variables. The term SW( )
SST =

k
 

,x xT
k k   is the total sum of squares in this regression. 
The term 2 1

SW( )
(1 )

k
R   in (16) is the VIF that will be 

produced by standard statistical packages when a weighted 
least squares regression is run. Under the model =Y Xβ   
  with 2 1(0, ),W  expression (16) is equal to 

2
SW

ˆVar ( )/ .M k
   However, this is not appropriate for survey-

weighted least squares regressions because the variance of 

SWβ̂  has the more complex form in (2). 
The matrix 1 1=  G A BA  can be expressed as:  

  

( ) ( )
( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

=
ba a

G
b Ba A a A

kk k k kk k k
kk k k

k k k k k k k k
k k k k
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 (17) 

where the inverse matrix is 1 = [ ],A hka , = 1, ..., ,h k p  
( )k ka  is defined as the thk  row of 1A  excluding ,kka  

1 ( 1) ( 1)( , ..., , , ..., ),k k k k k kpa a a a  ( ) ( )= [ ]k k k k Ta a  and ( )( )k kA  
is defined as the ( 1) ( 1)k k    part of matrix 1A  ex-
cluding the thk  row and column. The partitioned version of 
B  is  

        

( ) ( )
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b x Vx x VX

B
b B X Vx X VX

T T
kk k k k k k k

T T
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b   
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 (18) 

By virtue of the symmetry of A  and ,B  the thk  
diagonal element of G  is  

      
( ) ( ) ( )

( ) ( )( )= ( 2 ) .b a a B akk kk kk k k k kT k k
kk k k k kg a a b    (19) 

Using the partitioned inverse of matrix ,A  which 
represents 1( ) ,X XT    it can be shown that  

        
( ) 1

( ) ( ) ( ) SW( )
ˆ= ( ) = .a X X X x βk k kk T kk

k k k k ka a      (20) 

Substituting ( )k ka  in (19), kkg  can be compactly ex-
pressed in terms of ,kka SW( )β̂ k  and the lower right compo-
nent of matrix B :  
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(21)

 

where ( ) SW( )
ˆ=e x X βxk k k k    is the residual from regressing 

kx  on ( ).X k
  
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Estimating agreement coefficients from sample survey data 

Hung-Mo Lin, Hae-Young Kim, John M. Williamson and Virginia M. Lesser 1 

Abstract 
We present a generalized estimating equations approach for estimating the concordance correlation coefficient and the 
kappa coefficient from sample survey data. The estimates and their accompanying standard error need to correctly account 
for the sampling design. Weighted measures of the concordance correlation coefficient and the kappa coefficient, along with 
the variance of these measures accounting for the sampling design, are presented. We use the Taylor series linearization 
method and the jackknife procedure for estimating the standard errors of the resulting parameter estimates. Body 
measurement and oral health data from the Third National Health and Nutrition Examination Survey are used to illustrate 
this methodology. 
 
Key Words: Clustering; Concordance correlation coefficient; Generalized estimating equations; Jackknife estimator; 

Kappa coefficient; Sample weighting; Stratification; Taylor series linearization. 
 
 

1. Introduction  
Surveys often collect multiple measures of latent condi-

tions such as quality of life and aspiration for a college 
education, as well as multiple measures of difficult- to-
classify conditions such as having chronic fatigue syn-
drome. When multiple measures are collected, interest 
naturally focuses on the agreement between the multiple 
measures and in obtaining confidence intervals on those 
agreement measures. Also, there may be interest in con-
trasting agreement across population subgroups and across 
alternate pairings of measurements. In this context, one 
might be interested in testing equality of agreement 
measures. This paper focuses on two measures of agreement 
between such multiple measures, the concordance corre-
lation coefficient (CCC, )c  and the kappa ( )  coefficient. 
The former is useful for continuous measurements with 
natural scales. If a measure of a latent concept has no natural 
scale, then it can be arbitrarily rescaled to have mean zero 
and unit variance. When this is possible, it is meaningless to 
talk about differences in marginal moments. However, if 
there is a natural scale, then rescaling is not desirable and a 
good measure of agreement will take into account both 
correlation and agreement of marginal moments. The kappa 
coefficient is most useful for binary classifications. 

The CCC has been shown to be more appropriate for 
measuring agreement or reproducibility (Lin 1989; Lin 
1992) than the Pearson correlation coefficient ( ).  It evalu-
ates the accuracy between two readings by measuring the 
variation of the fitted linear relationship from the 450 line 
through the origin (the concordance line) and precision by 
measuring how far each observation deviates from the fitted 

line. Let 1iY  and 2iY  denote a pair of continuous random 
variables measured on the same subject i  using two meth-
ods. The CCC for measuring the agreement of 1iY  and 2iY  
is defined as follows:  

  
2

1 2 12
2 2 2 2

indep 1 2 1 2 1 2

[( ) ] 2
= 1 =

[( ) ] ( )
i i

c
i i

E Y Y

E Y Y

 
 

       
 (1) 

where 2
1 1= var( ),iY 2

2 2= var( ),iY  and 12 1= cov( ,iY  

2)iY  (Lin 1989). As noted by Lin (1989), = 0c  if and 
only if = 0.  It can also be shown algebraically that c  is 
proportional to   and that 1 | | | | 1c          (Lin 
1989). Hence imprecision can be reflected by a smaller   
and systematic bias can be reflected by a smaller ratio of 

c  relative to .  Together, information on   and c  
provide a set of tools to identify which corrective actions, 
either to improve accuracy and/or to improve precision, is 
most beneficial (Lin and Chinchilli 1997). 

The intraclass correlation coefficient (ICC) is also a 
popular measure of agreement for variables measured on a 
continuous scale (Fleiss 1986). Suppose 1iY  and 2iY  can be 
described in a linear model as follows: =ij j i ijy e  
where j  is the mean of the measurement from the        

thj  method, 2(0, )i    is the latent variable for the thi  
subject, and the 2(0, )ij ee   are independent errors terms. 
Carrasco and Jover (2003, page 850) used a model with 
variance components to demonstrate that the CCC is the 
intraclass correlation coefficient (ICC) when one takes into 
account the difference in averages of the methods:  

2
12

2 2 2 2 2 2ICC
1 2 1 2

2
= = .

( )e



 

 


           
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Therefore, one can estimate the CCC using the variance 
components of a mixed effects model or the common 
method of moments. Because of its superiority to the 
Pearson correlation coefficient and its link to the ICC, 
application of the CCC has gained popularity in recent years 
(Chinchilli, Martel, Kumanyika and Lloyd 1996; Zar 1996). 
In 2009 and the 2010, the CCC was used as a measure of 
agreement in more than 60 medical publications in areas 
such as respiratory illness (Dixon, Sugar, Zinreich, Slavin, 
Corren, Naclerio, Ishii, Cohen, Brown, Wise and Irvin 
2009; Kocks, Kerstjens, Snijders, de Vos, Biermann, 
van Hengel, Strijbos, Bosveld and van der Molen 2010), 
sleep (Khawaja, Olson, van der Walt, Bukartyk, Somers, 
Dierkhising and Morgenthaler 2010), pediatrics (Liottol, 
Radaelli, Orsi1, Taricco, Roggerol, Giann, Consonni, 
Mosca1 and Cetin 2010), neurology (MacDougall, Weber, 
McGarvie, Halmagyi and Curthoys 2009), and radiology 
(Mazaheri, Hricak, Fine, Akin, Shukla-Dave, Ishill, 
Moskowitz, Grater, Reuter, Zakian, Touijer and Koutcher 
2009). 

The kappa coefficient ( )  (Cohen 1960) and the 
weighted kappa coefficient (Cohen 1968) are the most 
popular indices for measuring agreement for discrete and 
ordinal outcomes, respectively (Fleiss 1981). Let 1iY  and 

2iY  denote two binary random variables taking values 0 and 
1 with probabilities denoted by 1 1= Pr( = 1)iY  and 2 =  

2Pr( = 1).iY  Kappa corrects the percentage of agreement 
between raters by taking into account the proportion of 
agreement expected by chance (calculated under indepen-
dence), and is defined as follows:  

                                  = ,
1.0

o e

e

P P

P





 (2) 

where eP  is the probability that the pair of binary responses 
are equal assuming independence 1 2 1 2( (1 )(1 ))      
and oP  is the probability that the pair are equal (Cohen 
1960). The difference o eP P  is the excess of agreement 
over chance agreement. A value of 0 for   indicates no 
agreement beyond chance and a value of 1 indicates perfect 
agreement (Fleiss 1981). Disadvantages of kappa are that is 
a function of the marginal distribution of the raters (Fleiss, 
Nee and Landis 1979; Tanner and Young 1985) and its 
range depends on the number of ratings per subject (Fleiss 
et al. 1979). Robieson (1999) noted that the CCC computed 
from ordinal scaled data is equivalent to the weighted kappa 
when integer scores are used. Kappa has been used to 
measure the validity and reproducibility of the similarity 
between twins (Klar, Lipsitz and Ibrahim 2000), different 
epidemiologic tools (Maclure and Willett 1987), and 
control-informant agreement from case-control studies 
(Korten, Jorm, Henderson, McCusker and Creasey 1992). 

The value of sample surveys have been well recognized 
and estimation for data collected from sample surveys has 
been widely documented (Hansen, Hurwitz and Madow 
1953; Cochran 1963; Kish 1965). For example, a number of 
federal studies conducted in the U.S. to obtain estimates of 
the health of the population are based on national surveys, 
such as the National Health Interview Survey (NHIS), the 
Behavioral Risk Factor Surveillance System (BRFSS), and 
the National Health and Nutrition Examination Surveys 
(NHANES). Each of these studies incorporates complex 
survey design structure, namely oversampling of subpopula-
tions, stratification and clustering. These designs are often 
used to improve precision, provide estimates for subpopula-
tions, or reduce costs associated with frame development. In 
order to draw design-based inference to the targeted 
population for complex survey designs, estimators and their 
variances include sampling weights and account for the 
design structure to obtain unbiased estimates. In addition, by 
including the sampling weights and incorporating the 
sample design in analyses, any potential correlation from the 
clusters in a multistage design is taken into account so that 
the standard errors of the estimators are not underestimated. 

Often researchers are not interested in testing whether 
their estimation of agreement using either the CCC or kappa 
is significantly different from zero. Their interest is to report 
the confidence intervals along with their estimates (e.g., 
Dixon et al. 2009; Mazaheri et al. 2009). Similar to the 
Pearson correlation coefficient, there is no target value that 
can be used to judge if agreement is strong. Therefore, it is 
essential that judgment of agreement between any test and 
reference methods should be made with an established 
degree of certainty. In some situations, studies are con-
ducted that require hypothesis testing or comparisons of 
agreement indexes for more than one new methods against a 
reference method. For examples, Khawaja et al. (2010) 
tested the equality of two CCCs that compared the apnea 
hypopnea index (AHI) from the first 2 and 3 hours of sleep 
with the gold standard AHI from FN-PSG (FN-AHI). In 
radiology research, associations between volume measure-
ments of prostate tumor from imaging and also from 
pathologic examination were assessed by comparing CCCs. 
The two imaging methods were tested for equality of 
agreement with the pathologic results (Mazaheri et al. 
2009). Tests of equal kappa have been used to compare 
visual assessment and computerized planimetry in assessing 
cervical ectopy (Gilmour, Ellerbrock, Koulos, Chiasson, 
Williamson, Kuhn and Wright 1997; Williamson, 
Manatunga and Lipsitz 2000), and in comparing mono-
zygotic and dizygotic twins in terms of cholesterol levels 
(Feinleib, Garrison, Fabsitz, Christian, Hrubec, Borhani, 
Kannel, Roseman, Schwartz and Wagner 1977). 
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As illustrated in the two NHANES III examples in 
Section 3, large differences can exist between the weighted 
and unweighted estimates of parameter estimate standard 
errors in survey studies. Failure to include sampling weights 
and take into account the sample design in analyses will 
result in underestimation of standard errors and incorrect 
inference. This is especially important for surveys repeated 
every few years, and researchers often have a special 
interest in comparing changes among domains or sub-
populations. For instance, in the first NHANES III applica-
tion, we compare the agreement between self reported and 
measured body weights at examination in adolescents. 
Computing accurate standard errors (confidence intervals) 
are necessary if interest is to compare the CCC across 
domains, such as normal weight and obese subgroups. 

We provide weighted measures of the CCC and kappa 
coefficient, along with the variance estimators of these 
measures accounting for the sampling design. In Section 2, 
we present a generalized estimating equations approach for 
estimating these two agreement coefficients from sample 
survey data. In Section 3, we illustrate our method with data 
collected from the NHANES III study. We use body 
measurement data to estimate c  for assessing the agree-
ment between self-reported and actual weight. We also use 
oral health data to estimate   for assessing the agreement 
between two definitions of periodontal disease. We account 
for stratification and clustering, and incorporate weights of 
the survey design in both examples. We conclude with a 
short discussion. 

 
2. Methods  

We propose a general approach for estimating the CCC 
and kappa from sample survey data using two GEE 
approaches. For the CCC, three sets of estimating equations 
are required. A first set of estimating equations models the 
distribution of the continuous responses. Following Barnhart 
and Williamson (2001), a second set of estimating equations 
is used to estimate the variances of the continuous re-
sponses. A third set of estimating equations estimates the 
CCC by modeling the covariance between the paired 
continuous responses and the estimates of the means and 
variances from the first two sets of estimating equations. For 

,  only two sets of estimating equations are required. A 
first set of estimating equations models the marginal 
distribution of the binary responses. Following Lipsitz, 
Laird and Brennan (1994), a second set of estimating 
equations is introduced to estimate   by modeling a binary 
random variable depicting agreement between two re-
sponses on a subject. 

In order to account for variable selection probabilities, 
weight matrices are incorporated into each set of estimating 

equations. Standard error estimation of the proposed ˆ c  and 
̂  from sample survey data are conducted with the Taylor 
series linearization method. We also show how standard 
error estimation of the proposed estimators can be ac-
complished by using the jackknife approach. 

Assume a sample survey is conducted with stratification, 
clustering, and unequal probabilities of selection. Let hijY  
denote the response variable for the thj  member ( =j  
1, ..., )him  of the thi  cluster ( = 1, ..., )hi n  of the thh  stra-
tum ( = 1, ..., ).h H  Averaging over all possible samples, 
the corresponding expected value is [ ] =hij hijE Y   if hijY  is 
a continuous response, and the corresponding probability 

[ ] = Pr[ = 1] =hij hij hijE Y Y   if hijY  is a binary response. 
The sampling weight hijw  is the inverse of the probability of 
selection for the thj  member of the thi  cluster of the thh  
stratum.  
2.1 The concordance correlation coefficient  

Liang and Zeger (1986) developed moment-based 
methods for analyzing correlated observations from the 
same cluster (e.g., repeated measurements over time on the 
same individual or observations on multiple members of the 
same family). The GEE approach results in consistent 
marginal parameter estimation, even with misspecification 
of the correlation structure by using a robust “sandwich” 
estimator of variance. We use the GEE approach to analyze 
sample survey data by additionally incorporating a sampling 
weight matrix as follows:  

=1 =1

ˆ( ( )) = ,
nH h

hi hi hi hi hi
h i

   1D W V Y 0   

where Dhi  is the ( )hiq m  derivative matrix [ ] / ,hid d   
Whi  is a ( )hi him m  main diagonal matrix consisting of the 
person-specific sampling weights ,hijw Vhi  is a ( )hi him m  
working variance-covariance matrix for the within-cluster 
responses, Yhi  is a ( 1)him   response vector consisting of 
the responses ,hijY  and = [ ]hi hiE Y  is possibly a function 
of the ( 1)q   parameter vector .  The GEE can then be 
solved non-iteratively, resulting in the usual estimate  

=1 =1 =1 =1 =1 =1

ˆ =
n m n mH Hh hi h hi

hij hij hij
h i j h i j

w Y w
   

       
   
   

if we are estimating a common mean =  ( = 1)q  and 
are using an independence working covariance matrix. 

Assume a pair of continuous responses are observed for 
the thj  member of the thi  cluster of the thh  stratum, 1hijY  
and 2,hijY  and their expected values are 1hij  and 2.hij  
Again, assume we are estimating common means 1  and 

2  without covariates for the pair of within-subject 
continuous responses, which can be estimated by using the 
above generalized estimating equation. 
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Barnhart and Williamson (2001) demonstrated how three 
sets of generalized estimating equations can be used to 
model the CCC defined in (1) using correlated data. We 
extend Barnhart and Williamson’s (2001) second set of 
GEE equations to estimate the variances of the continuous 
responses by again incorporating a weight matrix as 
follows:  

2 2
2 1 1 1 2

2 2 2 2
1 2 1 2

=1 =1

ˆ ˆ ˆ ˆ( , , , ) =

ˆ ˆ ˆ ˆ( ( , , , )) = ,
nH h

hi hi hi hi hi
h i



    

       1F W H Y 0
 

where Fhi  is the (2 2 )him  derivative matrix 2 2[ ] /hid d   
with 2 2 2

1 2= [ , ],  Whi  is a (2 2 )hi him m  main diagonal 
matrix consisting of the person-specific sampling weights 

,hijw Hhi  is a (2 2 )hi him m  working variance-covariance 
matrix for the within-cluster squared responses, 2 =Yhi  

2 2 2 2 2 2
11 12 21 22 1 2[ , , , , ..., , ]hi hi hi hi him himhi hi

Y Y Y Y Y Y   is a (2 1)him   
response vector of the continuous variables, and 2 =hi  

2[ ].YhiE  Although 2
hi  is a function of both the variance 

terms 2
1  and 2

2  and the means 1  and 2,  it is assumed 
that the means are fixed in 2

hi  and one only takes deriva-
tives of 2

hi  with respect to the variances. Again we choose 
the (2 2 )hi him m  matrix Hhi  to be the “independence” 
working variance-covariance matrix and the (2 1)him   
column vector 2 2 2 2 2 2 2 2

1 1 2 2 1 1 2= [ , , ..., ,hi             
2
2 ]  because we are assuming common variances and 

means across all strata and clusters. The above GEE can 
thus be solved non-iteratively:  

2 2 2

=1 =1 =1 =1 =1 =1

ˆ ˆ ,
N M N MH Hh hi h hi

p hijp hijp hijp p
h i j h i j

W Y W
   

         
   
   

for the thp  measurement in the pair, = 1, 2.p  
The CCC can be estimated in a third set of estimating 

equations by using the pairwise products of the responses to 
model 12,  once the means and variances are estimated. Let 

11 12 21 22 m 1 2= [ , , ..., ]hi hi hi hi hi hi himhi hi
Y Y Y Y Y Y U  be a ( 1)him   

vector of pairwise products of the responses and denote 
= [ ],hi hiE U  which is a function of the means, variances, 

and CCC. We solve for ˆ c  in a third set of estimating 
equations:  

2 2
3 1 1 1 2

2 2
1 2 1 2

=1 =1

ˆ ˆ ˆ ˆ ˆ( , , , , ) =

ˆ ˆ ˆ ˆ ˆ( ( , , , , )) = 0,

c
nH h

hi hi hi hi hi c
h i



     

       1C W K U 
 

where Chi  is a (1 )him  derivative vector = / ,hi c   
Whi  is a ( )hi him m  main diagonal matrix consisting of the 
person-specific sampling weights ,hijw  and Khi  is a 
( )hi him m  working covariance matrix that we choose to 
be the “independence” covariance matrix. The above GEE 
can be solved non-iteratively:  

12
2 2 2
1 2 1 2

ˆ2
ˆ ,

ˆ ˆ ˆ ˆ( )c


 

      
 

where 

 
 

12 1 2=1 =1 =1

12 1 2

12=1 =1 =1

ˆ ˆ ˆ= .

H N Mh hi
hij hij hijh i j

H N Mh hi
hijh i j

W Y Y

W
   

  
  

 

 
2.2 Linearization estimator of variance  

The usual robust estimators of variance for the means 
and CCC from the GEE approach are invalid here because 
they do not take into account the sampling structure, only 
the correlation of observations made on the same individual. 
We propose standard error estimation using the Taylor 
series linearization method (Binder 1983; Binder 1996). The 
first derivatives of c  (equation 1) with respect to 1,  

2 2
2 1 2, , ,    and 12  are: 

12 1 2
2

1

12 2 1
2

2

12
2 2
1

12
2 2
2
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2
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2
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2
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D

D

D

D

D
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where 2 2 2
1 2 1 2= ( ) .D         Thus  

1 1 2 2
1 2

2 2
1 12
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The above equation can be rearranged into two parts, one 
involving the parameter estimates 2 2

1 2 1 2ˆ ˆ ˆ ˆ, , , ,     and 12̂  
and the other involving only parameters which does not 
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contribute to the variance estimation of ˆ .c  Thus the first 
part becomes  

12 1 2 12 2 1
1 22 2

2 212 12
1 2 122 2

2 212
1 2 1 2 1 2 122

* *12
1 2 1 22

=1 =1 =1

* 2 *
1 1 2 2
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(3)

 

where *
=1 =1 =1= / ( ).

n mH h hi
h i jhij hij hijw w w    Equation (3) be-

comes a linear function of the data after the summation is 
moved to the front, which we can then express as =1

H
h  

*
=1 =1 ,

n mh hi
i j hij hijw z   where  
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(4)

 

One then creates a random variable ˆhijz  based on equation 
(4) that replaces the parameters with their respective esti-
mates. The variance of this new estimator ˆhijz  is an approxi-
mation for the variance of ˆ ,c  which can be estimated using 
standard survey software (see Appendix).  
2.3 Jackknife estimator of variance  

We also use the jackknife technique for standard error 
estimation of the parameters following Rust and Rao (1996, 
Section 2.1) for comparison with the linearization estimates. 
The jackknife technique is implemented by calculating a set 
of replicate estimates and estimating the variance using 
them. A replicate data set is created for each cluster by 
deleting all observations from the given cluster from the 
sample. The weights of all other observations in the stratum 
containing the cluster are inflated by a factor / ( 1).h hn n   
Weights in the other strata remain unchanged. Thus, the 
new weights for the replicated data set created by removing 
cluster i  from stratum h  are:  

( )

( )

( )
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/( 1) if=
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The resulting jackknife variance estimator for ˆ c  is  

2
( )

=1 =1
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ˆ ˆ ˆ( ) = ( )

nH h
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J c c hi c
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n
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 
    

 
   

where ( )ˆ c hi  is estimated in the same way as ˆ ,c  but using 
the recalculated weights ( )hi  instead of the weights .  
The jackknife estimators for the means are similarly 
calculated.  
2.4 The kappa coefficient  

Assume a pair of binary responses are observed for the 
thj  member of the thi  cluster of the thh  stratum, 1hijY  and 

2,hijY  and their expected values are the probabilities 1hij  
and 2.hij  Again assume we are estimating common proba-
bilities 1  and 2  without covariates for the pair of within-
subject binary responses. Lipsitz et al. (1994) demonstrated 
how two sets of generalized estimating equations can be 
used to develop simple non-iterative estimates of the  -
coefficient that can be used for unbalanced data as previous 
estimates of kappa and its variance were only proposed for 
balanced data. They defined the binary random variable 

1 2 1 2= (1 ) (1 ) = 1hij hij hij hij hijU Y Y Y Y    if both re-
sponses in the pair agree and 0 otherwise. Accordingly, 

[ ] = ,hij oE U P  which denotes the probability of observed 
agreement and is assumed here to be constant over all strata, 
clusters, and pairs of observations. Now let 1 2[ ]hij hijE Y Y 

1 2Pr[ = = 1] = .hij hijY Y   The probability of observed 
agreement can be expressed as 1 2= 1 2 .oP        
The probability of expected agreement by chance is defined 
as 1 2 1 2= (1 )(1 )eP         and is estimated by ˆ =eP  

1 2 1 2ˆ ˆ ˆ ˆ(1 )(1 ),        where 1̂  and 2̂  are calculated 
in the first set of estimating equations. 

We can derive estimates of   from sample survey data 
following the approach for the CCC in Section 2.1. We can 
incorporate the survey weight matrices into Lipsitz et al.’s 
(1994) two sets of GEE equations for estimating kappa. 
Then, by choosing “independence” working covariance 
matrices for the two sets of equations as in Lipsitz et al.’s 
(1994) approach, we arrive at the following non-iterative 
estimate of kappa for sample survey data:  

                 =1 =1 =1 =1 =1 =1

=1 =1 =1 =1 =1 =1

ˆ

ˆ = .
ˆ

n m n mH Hh hi h hi

hij hij e hij
h i j h i j

n m n mH Hh hi h hi

hij e hij
h i j h i j

w U P w

w P w






 

 
 (5) 

This estimator is identical to Lumley’s (2010), which can be 
computed using the R software survey package and 
svykappa function. 

Standard error estimation of ̂  can be conducted 
similarly to that of ˆ c  using the Taylor series linearization 
method. The first derivatives of kappa with respect to 

1, ,oP   and 2  are:  
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(6)

 

Replacing the parameters in (6) with their respective 
estimates, one then treats ˆhijz  as a random variable and 
estimates its variance using standard survey software that 
accounts for the sampling design. The variance of this new 
estimator ˆhijz  is an approximation for the variance of ˆ.  
The jackknife method can also be used to estimate the 
variance of ˆ.  

 
3. NHANES III survey  

We used data from the Third National Health and Nutri-
tion Examination Survey to illustrate our method. NHANES 
III was conducted by the National Center for Health Statis-
tics of the Centers for Disease Control and Prevention and 
was designed as a six-year survey divided into two phases 
(1988-1991 and 1991-1994). The data were collected using 
a complex, multistage, probability sampling design to 
select participants representative of the civilian, non-
institutionalized US population. Details of the survey 
design and analytic and reporting guidelines were published 
in the NHANES III reference manuals and reports (National 
Center for Health Statistics 1996).  
3.1 The adolescent weight study  

Obesity is a rapidly increasing public health problem 
with surveillance most often based on self-reported values 
of height and weight. A series of recent studies and systemic 

reviews have attempted to assess the agreement between 
self-reported and measured weight, especially in the ado-
lescent population. The general findings suggest that self-
reported weight was slightly lower than measured weight, 
and that a significant number of normal weight adolescents 
misperceive themselves as overweight and are engaging in 
unhealthy weight control behaviors (Field, Aneja and 
Rosner 2007; Gorber, Tremblay, Moher and Gorber 2007; 
Sherry, Jefferds and Grummer-Strawn 2007). Therefore, 
researchers have suggested that obesity prevention programs 
should address weight misperceptions and the harmful 
effects of unhealthy weight control methods even among 
normal weight adolescents (Talamayan, Springer, Kelder, 
Gorospe and Joye 2006). A similar Canadian study from the 
2005 Canadian Community Health Survey that focused on 
adult individuals also showed that associations between 
obesity and health conditions may be overestimated if self-
reported weight is used (Shield, Gorber and Tremblay 
2008). We use data obtained from the Body Measurements 
(Anthropometry) component of the NHANES III study to 
estimate the CCC that measures agreement between self-
reported and measured weight (pounds) obtained from 
adolescents (aged 12 through 16 years). 

The self-reported weight was obtained just prior to the 
actual measurement of weight. We use data from the entire 
six-year survey period (both 1988-1991 and 1991-1994). 
For simplicity, we excluded one stratum which only had one 
PSU. Hence, there were 48 strata and each stratum had two 
PSUs. The sample weight labeled wtpfex6 accounting for 
the differential selection probability was used in our 
analyses. There were 1,651 subjects with complete data for 
both weight measurements. The estimates of the self-
reported and actual weights (in pounds) were 135.5 (s.e. =
1.8) and 136.3 (s.e. = 1.8), respectively, calculated using 
PROC SURVEYMEANS in SAS. The estimates of the 
standard errors based on the jackknife approach are the 
same as above. 

The CCC is a natural choice for assessing the agreement 
between the two weight measurements because they are 
measured on the same scale and their ranges are similar 
(self-reported weight: 78 lbs   350 lbs and actual weight: 
73 lbs   372 lbs) (Lin and Chinchilli 1997). The estimate 
of the CCC for measuring the agreement between the two 
definitions of weight using the proposed method is 0.93. 
The standard error of the estimate is 0.021 using the Taylor 
series linearization method. The jackknife standard error of 
0.021 agrees closely with the linearization standard error. 
These statistics are summarized in Table 1 along with their 
values computed when the sampling structure is ignored. 
The standard errors for the estimates incorporating the 
sampling structure are much larger than the unweighted 
estimates. 
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Table 1 
Unweighted and weighted average, CCC, and respective 
standard errors for adolescent self-reported and actual weight 
in pounds  
 Self-reported  Actual  CCC  

Unweighted Estimate  135.31  136.96  0.890  
SE  0.76  0.80  0.0005  
    
Weighted Estimate  135.47  136.30  0.926  
SE  1.75  1.82  0.0205   

Similar to the CCC, the usual Pearson correlation 
coefficient between the self-reported and the actual weight 
measures is also 0.93. In this case, the mean difference 
between the two weight measurements is just less than one 
pound. When subpopulations are examined, differences are 
noted in the CCC and the Pearson correlation coefficient. 
Consider a subpopulation of those individuals that had a 
measured weight >  200 lbs at examination. Summarizing 
the data for this subpopulation, the self-reported weight is 
on average 8 pounds less than the measured weight 
(223.2 lbs vs 231.4 lbs). There is a slight departure of the 
CCC (0.72) from the Pearson correlation coefficient (0.76). 
The discrepancy between the two measures increases in the 
more obese subgroup. In the subpopulation where measured 
weight is > 220  lbs, the means of self-reported and 
measured weights are 231.9 lbs and 248.8 lbs, respectively. 
The CCC is 0.67, whereas the Pearson correlation coef-
ficient is 0.85. In this situation, the CCC reflects both the 
reproducibility and differences between the self-reported 
and measured means. Therefore, the CCC is informative 
and advantageous when considering these comparisons, 
particularly in domain analysis within a complex survey.  
3.2 The oral health study  

Slade and Beck (1999) used extent of pocket depth and 
loss of attachment as indices of periodontal conditions. 
Prevalence of periodontal disease using previously reported 
thresholds of pocket depth 4  mm and attachment loss 

3  mm were estimated by Slade and Beck (1999, Table 
1). Pocket depth may be reflective of inflammation rather 
than chronic periodontal disease and, thus, attachment level 
may be a more meaningful measure of periodontal destruc-
tion. However, pocket depth remains the recommended 
measurement in clinical practice (Winn, Johnson and 
Kingman 1999). Therefore, we compare the agreement of 
these two definitions of periodontal disease using the kappa 
coefficient. 

We use the sample that was analyzed by Slade and Beck 
(1999). The data include 14,415 persons aged 13 or older 
who had complete pocket depth and attachment loss 
assessment by six designated dentists. We again use data 
from the entire six-year survey period (both 1988-1991 and 
1991-1994). There were a total of 49 strata and each stratum 

had two PSUs. The variable labeled sample weight, 
wtpfex6, accounting for differential selection probability, 
was used in our analyses. 

The first definition of periodontal disease is pocket depth 
 4 mm and the second is maximum attachment loss 
3 mm. For both variables we are using the maximum values 
among all teeth in an individual’s mouth. The probability 
estimates of the attachment loss and pocket depth variables 
are 0.358 (jackknife s.e. = 0.0088) and 0.212 (jackknife 
s.e. =  0.016), respectively, using the proposed method. The 
asymptotic standard errors based on the usual Taylor 
series expansion (Woodruff 1971, produced by PROC 
SURVEYFREQ in SAS, version 9.1) are 0.0088 and 0.015, 
respectively. 

Kappa is a natural choice for assessing the agreement 
between two binary ratings as it corrects for chance agree-
ment (Fleiss 1981). The estimate of kappa for measuring the 
agreement between the two definitions of periodontal 
disease (pocket depth of 4  mm and attachment loss of 

3  mm) using the proposed method is 0.307. The standard 
error of 0.0158 was obtained by both the Taylor series 
linearization and jackknife methods. Table 2 compares these 
results to the measures when the complex sampling struc-
ture is ignored. The standard error of the kappa coefficient is 
larger when accounting for the survey structure.  
Table 2 
Unweighted and weighted average, kappa, and respective 
standard errors for attachment loss and pocket depth 
 

 Attachment  
Loss  

Pocket 
Depth  

Kappa  

Unweighted Estimate  0.393  0.283  0.334  
SE  0.004  0.004  0.008  
    
Weighted Estimate  0.358  0.212  0.307  
SE  0.009  0.016  0.0158   

4. Discussion  
The CCC and kappa evaluate the agreement between two 

measurements for continuous and categorical responses, 
respectively. In this paper, we have proposed a generalized 
estimating equation approach for estimating the CCC for a 
pair of continuous variables, and kappa for a pair of binary 
variables, from sample survey data where the data have 
been collected using complex survey features such as 
stratification or clustering. The usual sandwich estimator of 
the variance only accounts for repeated measurements made 
on the same individual, and does not account for the 
sampling framework (e.g., clustering, stratification, and 
weighting). In the GEE approach, standard error estimation 
of the estimators is conducted with the Taylor series 
linearization and jackknife approaches. If the data are not 
collected using complex survey features, the proposed 
estimators will be identical to the usual estimators. As is 
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evident in the two examples from the NHANES III study, 
we have shown the need to incorporate sampling weights 
and the sampling design features so that the standard errors 
are not underestimated when data are collected from a 
complex sampling design. Tables 1 and 2 show that there 
were large differences in the standard errors between 
weighted and unweighted estimates of the standard errors 
for both CCC and kappa. Confidence intervals that incor-
porate weights and the design features will allow correct 
inference. 

In the appendix, we show steps for calculating the 
weighted measures of the CCC and kappa, along with their 
standard errors using standard survey software that incor-
porates the sampling weights, clustering and stratification. 
The GEE approach is advantageous because it is a conve-
nient framework for developing estimators of the agreement 
coefficients and is easily extended to multiple raters, 
multiple methods, covariate adjustment and unbalanced 
cluster sizes. This design-based approach results in correct 
standard error estimation without assuming an underlying 
model and accounting for the sampling structure. If one is 
interested in estimating the agreement between two ordinal 
variables with kappa then Williamson et al.’s (2000) gener-
alized estimating equation approach can be extended 
similarly to the proposed method. 
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Appendix  

Steps for calculating the CCC and its standard error using 
standard survey software  
Step 1: Calculate the means of the continuous variables 

1hijY  and 2hijY  using software for survey data that 
incorporates stratification, clustering, and sample 
weighting (e.g., PROC SURVEYMEANS in SAS). 

 

Step 2: Square the centered 1hijY  and 2hijY  values around 
their respective means. 

 

Step 3: Calculate the means of the squared centered 1hijY  
and 2hijY  values using standard software for survey 
data. These means are the variance estimates of 

1hijY  and 2.hijY  Calculate the mean of the product 
of the centered 1hijY  and 2hijY  values using stan-
dard software for survey data. This mean is the esti-
mated covariance of 1hijY  and 2.hijY  

 

Step 4: Calculate the CCC by substituting the estimated 
means and variances into equation (1). Create the 
new variable hijZ  based on equation (4). 

 

Step 5: Calculate the standard error of hijZ  using standard 
software for survey data. The standard error of hijZ  
estimates the standard error of ˆ .c  

 
SAS CODE:  

Let 1y  and 2y  denote the variables for the pair of 
continuous responses, and ,s c  and w  denote the variables 
for strata, cluster and weight: 
  
PROC SURVEYMEANS DATA=dataset MEAN;  /* Step 1 above */; 

STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR 1y 2;y  
ODS OUTPUT STATISTICS=stat; 

data _null_;  
set stat (where=(varname= 1’y‘ ));  
call symputx(‘muy1’, mean); 

data _null_;  
set stat (where=(varname= 2’y‘ ));  
call symputx(‘muy2’, mean); 

data dataset; set dataset;  /* Step 2 above */;  
1 = 1 & 1;cy y muy  
2 = 2 & 2;cy y muy  

1 = 1 * *2;vary cy  
2 = 2 * *2;vary cy  
12 = 1 * 2;covy cy cy  

PROC SURVEYMEANS MEAN;  /* Step 3 above */;  
STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR 1vary 2vary 12;covy   
ODS OUTPUT STATISTICS=stat;  

run; 
data _null_;  

set stat (where=(varname= 1’vary‘ ));  
call symputx(‘vary1’, mean); 

data _null_;  
set stat (where=(varname= 2’vary‘ ));  
call symputx(‘vary2’, mean); 

data _null_;  
set stat (where=(varname= 12’covy‘ ));  
call symputx(‘covy12’, mean); 

data dataset; set dataset;  /* Step 4 above */;  
= & 1 & 2 (& 1 & 2)d vary vary muy muy   ** 2;  

= 2 * & 12/ ;CCC covy d  
= (2 / ) * ( 1 * 2) (2 * & 12/ / ) * (( 1 * *2)z d cy cy covy d d cy 

( 2 * *2) 2 * (& 1 & 2) * ( 1 2));cy muy muy y y    
PROC SURVEYMEANS MEAN;  /* Step 5 above */ ; 

STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR CCC ;z  

run; 
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Steps for calculating kappa and its standard error using 
standard survey software  
Step 1: Estimate the probabilities of the binary variables 

1hijY  and 2hijY  using software for survey data that 
incorporates stratification, clustering, and sample 
weighting (e.g., PROC SURVEYFREQ in SAS). 

 

Step 2: Estimate 1 2 1 2ˆ ˆ ˆ ˆ(= (1 )(1 )).eP         
 

Step 3: Create the new agreement variable 1( =hij hijU Y  

2 1 2(1 ) (1 )).hij hij hijY Y Y    
 

Step 4: Calculate the sum of the sample survey weights 
and the sum of the weighted hijU  (e.g., using 
PROC SURVEYMEANS in SAS). Estimate 
kappa using equation (2). 

 

Step 5: Create a new variable hijz  using equation (6). 
 

Step 6: Calculate the standard error of hijz  using stan-
dard software for survey data. The standard error 
of hijz  estimates the standard error of ˆ.  
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Combining synthetic data with subsampling  
to create public use microdata files for large scale surveys 

Jörg Drechsler and Jerome P. Reiter 1 

Abstract 
To create public use files from large scale surveys, statistical agencies sometimes release random subsamples of the original 
records. Random subsampling reduces file sizes for secondary data analysts and reduces risks of unintended disclosures of 
survey participants’ confidential information. However, subsampling does not eliminate risks, so that alteration of the data is 
needed before dissemination. We propose to create disclosure-protected subsamples from large scale surveys based on 
multiple imputation. The idea is to replace identifying or sensitive values in the original sample with draws from statistical 
models, and release subsamples of the disclosure-protected data. We present methods for making inferences with the 
multiple synthetic subsamples. 
 
Key Words: Confidentiality; Disclosure; Multiple imputation. 
 
 

1. Introduction 
 
National Statistical Institutes (NSIs) like the U.S. Census 

Bureau and Statistics Canada conduct large scale surveys 
that are highly valued by secondary data analysts, such as 
the American Community Survey (ACS) and the National 
Longitudinal Survey of Children and Youth (NLSCY). 
While these analysts desire access to as much data as 
possible, the NSI also must protect the confidentiality of 
survey participants’ identities and sensitive attributes. A 
common strategy for reducing disclosure risks in large scale 
studies is to release subsamples of the original survey data; 
for example, the Census Bureau releases a subsample from 
the collected ACS data comprising 1% of all U.S. house-
holds (the collected ACS data comprise 2.5% of all house-
holds), and Statistics Canada releases a 20% sample of indi-
viduals from the NLSCY. See Willenborg and de Waal 
(2001) and Reiter (2005) for discussions of the confiden-
tiality protection engendered by sampling. Typically, how-
ever, subsampling alone does not eliminate disclosure 
risks, particularly for units in the subsample with unusual 
combinations of characteristics. NSIs therefore alter data 
before dissemination. For example, in the ACS, the Cen-
sus Bureau performs data swapping, topcoding of selected 
variables, aggregating of geography, and age perturbation; 
in the NLSCY, Statistics Canada uses data swapping and 
suppression. 

When implemented with high intensity, as may be nec-
essary to protect confidentiality in highly visible surveys, 
standard disclosure limitation strategies can seriously distort 
inferences (Winkler 2007; Elliott and Purdam 2007; 
Drechsler and Reiter 2010). Further, for many standard 
techniques it is difficult for data analysts - especially those 

without advanced statistical training - to properly account 
for the effects of the disclosure control in estimation. Moti-
vated by these limitations, we propose a new approach for 
generating public use microdata samples from large scale 
surveys called subsampling with synthesis. The basic idea is 
to replace identifying or sensitive values in the original 
sample with multiple draws from statistical models esti-
mated with the original data file, and release subsamples of 
the disclosure-protected data. The subsamples can com-
prise one common set of records, or they can be taken 
independently. 

This approach is a variant of partially synthetic data 
(Little 1993; Reiter 2003), which has been used in the U.S. 
to create several public use data products, including the 
Survey of Income and Program Participation, the Longitudi-
nal Business Database, the Survey of Consumer Finances, 
the American Community Survey group quarters data, and 
OnTheMap. The approach proposed here differs from par-
tial synthesis because of the subsampling, which neces-
sitates adjustments to the inferential methods of Reiter 
(2003); these are presented here. The approach also differs 
from the methods for creating synthetic public use micro-
data samples of census data developed recently by Drechsler 
and Reiter (2010). In subsampling with synthesis, the initial 
data come from a survey and not from a census; thus, infer-
ences must account for the additional uncertainty that results 
from the initial sampling. 

 
2. General approach  

We now describe the data generation and inferential 
procedures for the two approaches to subsampling with 
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synthesis: releasing different (independent) subsamples, and 
releasing a common set of records in each subsample. The 
data generation methods, as well as methods for making 
valid inferences from the multiple datasets, depend on the 
subsampling approach. For both approaches, we let D  
denote the original survey data of 1n  units sampled from a 
population consisting of N  units. We initially assume that 
the original sampling design is a simple random sample; we 
later extend to stratified sampling. We assume that all 
sampled units fully respond in .D  Unlike for standard 
partial synthesis (Reiter 2004), methods have not been 
developed to handle missing data and synthesis with sub-
sampling simultaneously. We focus here on general descrip-
tions of the approaches and presentation of the inferential 
methods. We do not discuss synthesis model building stra-
tegies; see Drechsler and Reiter (2009) and the references 
therein for guidance.  
2.1 Releasing different random subsamples  
2.1.1 Summary of approach  

To begin, the NSI creates m  partially synthetic datasets, 
= { : = 1, , },syn iD D i m  for the original survey following 

the approach of Reiter (2003). Specifically, the NSI replaces 
identifying or sensitive values in D  with multiple impu-
tations. Synthesis models are estimated using only the 
records whose values will be synthesized. The synthesis is 
done independently m  times, resulting in .synD  The NSI 
then takes a simple random subsample of 2 1<n n  records 
from each iD . These m  subsamples, = { : =syn id d i  
1, , },m  are released to the public. 

The analyst of synd  seeks inferences about some esti-
mand ,Q  such as a population mean or regression coef-
ficient. In each ,id  the analyst estimates Q  with some point 
estimator q  and estimates the variance of q  with some 
estimator ,u  where the analyst specifies q  and u  acting as 
if id  were the collected data. Here, u  is specified ignoring 
any finite population correction factors; for example, when 
q  is the sample mean, 2

2= / ,u s n  with 2s  being the 
sample variance. For = 1, , ,i m  let iq  and iu  be the 
values of q  and u  in .id  The following quantities are 
needed for inferences.  

                                       
=1

= /
m

m i
i

q q m  (1) 

                           2

=1

= ( ) / ( 1)
m

m i m
i

b q q m   (2) 

                                       
=1

= / .
m

m i
i

u u m  (3) 

The analyst then can use mq  to estimate Q  and  

                       2 1 2= ( / / ) /d m mT n n n N u b m   (4) 

to estimate the variance of .mq  Derivations of these 
estimates are presented in Section 2.1.2. We note that 
without subsampling, i.e., 2 1= ,n n  (4) equals the variance 
estimate for standard partial synthesis (Reiter 2003). For 
large 2,n  inferences are based on a t -distribution, ( mq   

) (0, ),dd
Q t T  with degrees of freedom = ( 1) (1d m    

2
2 1 2( / / ) / ) .m mn n n N mu b  
The inferential methods can be extended to stratified 

samples in which the NSI uses the same strata for the 
subsample and original sample. Let hN  be the population 
size in stratum ,h  where = 1, , .h H  For each ,h  let 

mhq  and dhT  be the values of (1) and (4) computed using 
only the records in synd  in stratum .h  These estimates are 
used in inferences for population quantities in stratum .h  
For inferences about the entire population mean, the point 
estimate of Q  is = ( / ) ,hm h mhq N N q  and its estimated 
variance is 2= ( / ) .hd h dhT N N T  Point and variance esti-
mates for nonlinear functions of means can be derived using 
Taylor series expansions. We note that NSIs should release 
the values of 2 1/h hn n  for all strata to enable variance 
estimation.  
2.1.2 Derivation of inferences for the different 

random subsamples approach  
The analyst seeks ( | ),synf Q d  which can be written as  

      ( | ) = ( | , ) ( | ) .syn syn syn syn syn synf Q d f Q D d f D d dD  (5) 

For all derivations in Section 2.1.2, we assume that the 
analyst’s distributions are identical to those used by the NSI 
for creating .synD  We also assume that the sample sizes are 
large enough to permit normal approximations for these 
distributions. Thus, we require only the first two moments 
for each distribution, which we derive using standard large 
sample Bayesian arguments. Diffuse priors are assumed for 
all parameters. 

Let iQ  and iU  be the point estimate of Q  and its vari-
ance that the analyst would compute with iD  (which is not 
available to the analyst). Let , ,m mQ U  and mB  be defined as 
in (1) - (3) but using iQ  and .iU  From standard partial 
synthesis results (Reiter 2003), we have ( | ) ( ,syn mQ D N Q  

/ ).m mU B m  We assume that 2 1( | ) ( , (1 / ) )i i i iq D N Q n n u  
and, as is typical in multiple imputation contexts, that 

.i mu u  Thus, using standard Bayesian theory, we have 

2 1( | ) ( , (1 / ) / )m syn m mQ d N q n n u m  and (( 1) /(m mm b B   
2

2 1 1(1 / ) ) | ) .m syn mn n u d    Hence, we have ( | ,synf Q d  

2 1, ) = ( , / (1 / ) / ).m m m m m mB U N q U B m n n u m    
To get ( | ),synf Q d  we need to integrate out mB  and mU  

from this distribution. We do so by substituting mB  and mU  
with their approximate expected values. To approximate 
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( | ),m synE B d  we use 2 1(1 / ) .m mb n n u   To approximate 
( | ),m synE U d  we note that  

Var( | ) = [var( | ) | ] var[ ( | ) | ]

= ( | ) var( | ).

i i i i i

i i i i

Q d E Q D d E Q D d

E U d Q d



 (6)
 

Here, 2var( | ) = (1 / ) .i iQ d n N u  Solving (6), we have 

2 1 2( | ) ( / / ) .m syn mE U d n n n N u   After substitution of 
these expected values, we have var( | ) = .syn dQ d T  

Since we use an estimated variance for ,Q  we approxi-
mate ( | )synf Q d  with a t -distribution with mean mq  and 
variance .dT  The degrees of freedom, ,d  is derived by 
matching the first two moments of 2 1( ) / {( /d dT n n   

2 2 1/ ) / (1 / ) / }m m mn N u B m n n u m    to those of a 2

d
  

distribution.  
2.2 Releasing the same random subsample   

At first glance, releasing a common set of records in each 
subsample looks like standard partial synthesis. However, 
Reiter’s (2003) variance estimator can be positively biased 
in this context. To illustrate, suppose that D  comprises one 
variable with sample mean 1.x  Also suppose that we create 

synD  by replacing all values of ,x  and we randomly select a 
common set of 2n  records for the subsample. Let = ,m   
and let Q  be the population mean of .x  If replacements are 
simulated from the correct model, which is estimated with 

,D  then 1= .q x  Hence, var( )q  is identical to the 
variance of 1,x  which is 2

1 1 1(1 / ) / .n N s n  However, 
Reiter’s (2003) variance estimate includes mu  based on 

2
2 2 2(1 / ) / ,n N s n  where 2 2

2 1( ) = .E s s  Hence, in general 
Reiter’s (2003) variance will have positive bias for sub-
samples with synthesis. 

In place of standard partial synthesis, we adopt the ap-
proach taken by Reiter (2008) for multiple imputation for 
missing data when records used for imputation are not used 
or disseminated for analysis. This setting is akin to sub-
sampling the same records in each id  because the models 
for the synthesis are estimated with ,D  but the analyst only 
has synd  for analysis; that is, not all records used for impu-
tation are disseminated for analysis. 

For convenience, we summarize the methodology of 
Reiter (2008) here but do not include the derivations. First, 
as in standard partial synthesis, the NSI estimates the syn-
thesis models using only the records whose values will be 
synthesized. Let   be the parameters that govern the distri-
bution of the synthetic data models. Second, the NSI sam-
ples m  values of   from its posterior distribution. Third, 
for each drawn ( )l  where = 1, , ,l m  the NSI draws a 
replacement dataset ( , )l pD  from the synthesis models based 
on ( ).l  The NSI repeats this process r  times for each 

( ).l  Finally, the NSI releases the collection of =M mr  

subsamples from these datasets, * ( , )= { : =l pd d l 1, , ;m  
= 1, , }.p r  Each ( , )l pd  includes an index of its nest .l  
For = 1, ,l m  and = 1, , ,p r  let ( , )l pq  and ( , )l pu  

be the estimate of Q  and its estimated variance computed 
with ( , ).l pd  Here, ( , )l pu  includes the finite population cor-
rection factor. The following quantities are used for 
inferences:  
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m r m
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                             ( , )
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M
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u u mr  (10) 

The analyst can use Mq  to estimate Q  and =s MT u   
(1 1/ ) /M M Mw m b w r    to estimate the variance of .Mq  

When r  is large, inferences are based on a t -distribution, 
( ) (0, ),M ss
q Q t T   with degrees of freedom  

           

12 2

2 2

{(1 1/ ) } {(1 1/ ) }
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s s

m b r w

m T m r T


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  
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It is possible that < 0,sT  particularly for small m  and 
.r  Instead, analysts can use the always positive but conser-

vative variance estimator, * = (1 ) (1 1/ ) ,s s MT T m b     
where = 1  when > 0sT  and = 0  otherwise. Motiva-
tion for this estimator is provided in Reiter (2008). Gener-
ally, negative values of sT  can be avoided by making m  
and r  large. When < 0,sT  inferences are based on a t -
distribution with ( 1)m   degrees of freedom, which comes 
from using only the first term and *

sT  in (11). 
For stratified designs, the point estimate for whole 

population quantities is = ( / ) ,hM h Mhq N N q  and its esti-
mated variance is 2= ( / ) ,hs h shT N N T  where Mhq  and 

shT  are the point estimate and its variance in stratum .h  The 
degrees of freedom in the t -distribution for stratified 
sampling is  
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This is derived by moment matching to a 2  random 
variable. 
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3. Illustrative simulations using a stratified 
      sampling design  

In this section, we investigate the analytical properties of 
the inferential procedures for subsampling with synthesis for 
stratified simple random sampling. We generate a popula-
tion of =N 1,000,000 records comprising five variables, 

1 5, , ,Y Y  in =H 4 strata. 1Y  is a categorical variable with 
ten categories generated according to the distribution in 
Table 1. The distributions for 2 5( , , )Y Y  are displayed in 
Table 2, along with the stratum sizes.  
Table 1 
Empirical distribution of 1Y  in the generated population 
  

    1 2 3 4 5 6 7 8 9 10 
percentage 24.77  32.63  16.38  15.06  7.13  2.53  0.95  0.33 0.15 0.09 

To create ,D  we randomly sample 1 =hn 7,500 records 
from each stratum. Each subsample comprises 2 =hn 5,000 
records for each stratum. In practice, the NSI might use 
proportional allocation to set each 1hn  and choose smaller 
sampling rates to set 2 .hn  We use a common sample size 
and large sampling fractions to illustrate that the variance 
formulas for subsampling with synthesis correctly handle 
non-trivial finite population correction factors, e.g., 50% of 
the records are sampled in stratum 4. 

We consider 4Y  and 5Y  to be the confidential variables 
and illustrate two synthesis scenarios. In the first, we 

synthesize all records’ values of 4Y  and 5.Y  To do so, in 
each stratum we simulate 4hY  using a regression of 4hY  on 

1 2 3( , , )h h hY Y Y  estimated with ,D  and we simulate 5hY  
using a regression of 5hY  on 1 2 3 4( , , , )h h h hY Y Y Y  estimated 
with .D  Predictions of 5hY  are based on the synthesized 
values of 4 .hY  In the second approach, in each stratum we 
replace 4hY  and 5hY  only for all records with 3 > ,h hY p  
where  hp   is the 90th  percentile of  3Y   in the population 
in stratum .h  We generate replacement values by sampling 
from regression models; however, the models in each 
stratum are estimated only with those records satisfying 

3 > .h hY p  
For the different subsamples approach, we generate 
= 5m  synthetic surveys as outlined in Section 2.1. For the 

same subsample approach, we first draw = 5m  values of 
,  the regression coefficients and variances. For each ( ),l  

we generate = 5r  synthetic datasets for every first stage 
nest. 

For all scenarios, we repeat the process of (i) creating D  
by sampling from the population and (ii) generating sub-
samples with synthesis a total of 5,000 times. For each of 
these 5,000 runs, we obtain inferences for fifty quantities, 
including the population means and within-stratum means 
of 4Y  and 5,Y  the coefficients from a regression of 3Y  on all 
other variables, and the coefficients from a regression of 5Y  
on all other variables. The regressions are estimated sepa-
rately in each stratum. 

 
 
 
Table 2 
Parameters for drawing 2 5( , , )Y Y  for the population 
  

   Stratum size  Model  Distribution of the error term 

Stratum 1  750,000  2 1=Y Y e   (0, 5)e N   

   3 1 2=Y Y Y e     

   4 1 2 3=Y Y Y Y e      

    5 1 2 3 4=Y Y Y Y Y e       

Stratum 2  200,000  2 1= 2Y Y e   (0, 10)e N   

   3 1 2= 2 0.5Y Y Y e     

   4 1 2 3= 2 0.5Y Y Y Y e      

    5 1 2 3 4= 2 0.5 0.5 0.25Y Y Y Y Y e       

Stratum 3  40,000  2 1= 3Y Y e    (0, 30)e N   

   3 1 2= 3 1.5Y Y Y e      

   4 1 2 3= 3 1 / 3Y Y Y Y e       

    5 1 2 3 4= 3 1 / 3 1 / 9Y Y Y Y Y e        

Stratum 4  10,000  2 1= 2Y Y e    (0, 20)e N   

   3 1 2= 1.5Y Y Y e      

   4 1 2 3= 2 1 / 4Y Y Y Y e       

   5 1 2 3 4= 2 1 / 4 1 / 16Y Y Y Y Y e      

 
  



Survey Methodology, June 2012 77 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Figure 1 displays key results of the simulations. The left 
panel displays the ratios of the simulated average of dT  
(and )sT  over the corresponding simulated var( )mq  for the 
fifty estimands. The median ratios are close to one in all 
scenarios, and the averages of dT  (and )sT  never differ by 
more than 10% from their actual variances. Thus, both sT  
and dT  appear to be approximately valid variance esti-
mators. 

The middle panel of Figure 1 summarizes the percent-
ages of the 5,000 synthetic 95% confidence intervals based 
on dT  (and on )sT  that cover their corresponding .Q  The 
coverage rates are close to 0.95 except for the regression 
coefficients for the same subsampling approach with 100% 
synthesis. For these coefficients, < 0sT  in up to 38% of 
the simulation runs, so that confidence intervals are based 
on the conservative *.sT  The highest fraction of negative 
variances occurs in the smallest stratum which has a 
sampling rate of 50%. All variance estimates are positive 
when only 10% of the records are synthesized. 

The right panel of Figure 1 displays the ratios of the 
simulated root mean squared error (RMSE) of mq  over the 
simulated RMSE from the subsamples without any synthe-
sis. For the same subsampling approach, the RMSEs of the 
synthetic subsamples tend to be smaller than the RMSEs 
based on the subsamples without any synthesis, particularly 
for the 100% synthesis. The smaller RMSEs result because 
the synthesis models are determined with ,D  i.e., the survey 
data before taking the subsample, so that they carry addi-
tional information that is not in the subsamples without 

synthesis. For the different synthetic subsamples, the RMSE 
ratios typically exceed one. Here, increased synthesis leads 
to greater loss in efficiency. We note that the RMSEs from 
the different sample and same sample approaches in Figure 
1 are not directly comparable because they are based on 
different denominators. 

To enable comparisons across the methods, as well as to 
illustrate the losses in efficiency from subsampling, we 
repeat the simulation design using =m 25 for the inde-
pendent subsamples approach and =mr 25 for the same 
subsamples approach. The left panel of Figure 2 displays the 
simulated RMSE ratios for the fifty estimands in the 
different scenarios, where the denominators are the average 
RMSEs based on the original data before any confidentiality 
protection. The right panel of Figure 2 displays the ratios of 
simulated average lengths of the 95% confidence intervals, 
where the denominators are the average lengths based on 
the original data before any confidentiality protection. Based 
on the left panel, for a given total number of released data-
sets and given synthesis percentage, the independent sample 
approach results in more efficient estimates than the same 
sample approach. The right panel tells a similar story, 
although it is harder to see because of the scaling. Here, the 
same sample approach with 100% synthesis results in high 
fractions of negative variance estimates, so that the adjusted 
variance *

sT  is often used, thereby inflating the interval 
lengths. Figure 2 also includes results from synthesis with-
out any subsampling, which generally provides more effi-
cient estimates than either subsampling approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Simulation results for the stratified sampling design. In the labels, s and d indicate the same subsample and the different 
subsamples approach. The numbers indicate the percentage of records that are being synthesized. The denominators of 
the RMSE are based on the point estimates from the subsamples without synthesis. For the different subsamples 
approach, the RMSE is computed from the average of the m  point estimates. Each box plot comprises fifty estimands 
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Figure 2 Efficiency comparisons for the stratified sampling design. In the labels, org  and syn  indicate the original sample and the 
synthetic sample before subsampling; and, s, d, and the numbers are as in Figure 1. The denominators of the RMSE are 
based on the point estimates from the original sample without synthesis. Each box plot comprises fifty estimands 

 
 

4. Concluding remarks  
The different subsamples and same subsamples ap-

proaches have competing advantages. For a fixed number of 
released datasets ,M  the different subsamples approach 
enables estimation with greater efficiency than the same 
subsamples approach - as evident in Figure 2 - since the 
released subsamples are independent rather than correlated. 
The different subsamples approach also guarantees positive 
variance estimates; the same subsample approach does not. 
However, with large M  the different subsamples approach 
weakens the confidentiality protections of subsampling, 
since the combined datasets are likely to contain most of the 
records from the original survey. Hence, unless the sub-
sampling rate is small (e.g., 1% or 2%), the NSI may have 
to make m  modest (e.g., =m 5) to use the different sub-
samples approach. Because of this, the different samples 
approach is not viable when the original sample size is 
modest. 

As an alternative to subsampling with synthesis, agencies 
could release partially synthetic data that include all records 
from the original sample, assuming that they are willing to 
release files of that size. Partial synthesis on the original data 
generally engenders estimates with lower variances than 
subsampling with synthesis - as evident in Figure 2 - since 
more records are released. However, partial synthesis on the 
original data generally engenders higher disclosure risks 
than subsampling with synthesis, since more at risk records 
are in the released data and since the additional protection 
from subsampling is absent. Agencies can compare the two 
options on disclosure risks using the methods of Drechsler 
and Reiter (2008), which account for the protection afforded 

by sampling, and on data utility by comparing inferences for 
representative analyses. 

It is also possible that the process of subsampling may 
engender sufficient additional protection to enable lesser 
amounts of synthesis than would be necessary in a partial 
synthesis of the entire original dataset. Evaluating the data 
utility for subsampling with synthesis versus synthesis only 
for given disclosure risks is beyond the scope of this short 
note, but it is an interesting area for future research. 

We have not developed subsampling with synthesis ap-
proaches for sampling designs other than (stratified) simple 
random samples. For the different subsamples approach, 
appropriate inferential methods require an approximately 
unbiased estimate of the variance from the first phase of 
sampling that can be computed from the subsample alone. 
This is elusive for complicated designs. For the same 
subsample approach, we conjecture that analysts can use the 
inferential methods presented in Section 2.2, provided that 

Mu  appropriately accounts for the two phases of sampling. 
We note that the formulas for Mw  and Mb  remain the same 
for other designs. Evaluating this conjecture is a subject of 
future research.  
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A hierarchical Bayesian nonresponse model 
for two-way categorical data from small areas 

with uncertainty about ignorability 

Balgobin Nandram and Myron Katzoff 1 

Abstract 
We study the problem of nonignorable nonresponse in a two dimensional contingency table which can be constructed for 
each of several small areas when there is both item and unit nonresponse. In general, the provision for both types of 
nonresponse with small areas introduces significant additional complexity in the estimation of model parameters. For this 
paper, we conceptualize the full data array for each area to consist of a table for complete data and three supplemental tables 
for missing row data, missing column data, and missing row and column data. For nonignorable nonresponse, the total cell 
probabilities are allowed to vary by area, cell and these three types of “missingness”. The underlying cell probabilities (i.e., 
those which would apply if full classification were always possible) for each area are generated from a common distribution 
and their similarity across the areas is parametrically quantified. Our approach is an extension of the selection approach for 
nonignorable nonresponse investigated by Nandram and Choi (2002a, b) for binary data; this extension creates additional 
complexity because of the multivariate nature of the data coupled with the small area structure. As in that earlier work, the 
extension is an expansion model centered on an ignorable nonresponse model so that the total cell probability is dependent 
upon which of the categories is the response. Our investigation employs hierarchical Bayesian models and Markov chain 
Monte Carlo methods for posterior inference. The models and methods are illustrated with data from the third National 
Health and Nutrition Examination Survey. 
 
Key Words: Metropolis-Hastings sampler; SIR algorithm; Nonignorable nonresponse model; Expansion model. 
 
 

1. Introduction 
 
In sample surveys, data are typically summarized in two-

way categorical tables. We consider the problem of non-
ignorable nonresponse for many r c  categorical tables, 
each obtained from a single area. For many of these surveys, 
there are missing data and this gives rise to partial 
classification of the sampled individuals. Thus, for each 
two-way table there are both item nonresponse (one of the 
two categories is missing) and unit nonresponse (both 
categories are missing). One may not know how the data are 
missing and a model that includes some difference between 
the observed data and missing data (i.e., nonignorable 
missing data) may be preferred. For a general r c  
categorical table, we address the issue of estimation of the 
cell probabilities of the two-way tables when there is 
possibly nonignorable nonresponse but there is really no 
information about ignorability. In such a situation, we 
would like to express a degree of uncertainty about 
ignorability. Nandram and Choi (2002a, b) have described 
an expansion model appropriate for binary data when there 
are data from many small areas. We will extend this work to 
r c  categorical tables. 

Letting x denote the covariates and y the response 
variable, Little and Rubin (2002) describe three types of 
missing-data mechanism. These types differ according to 
whether the probability of response (a) is independent of x 

and ;y  (b) depends on x but not on ;y  or (c) depends on 
y  and possibly x. The missing data are missing completely 

at random (MCAR) in (a), missing at random (MAR) in (b) 
and the data are missing not at random (MNAR) in (c). 
Models for MCAR and MAR missing-data mechanisms are 
called ignorable if the parameters of the dependent variable 
and the response variable are distinct (Rubin 1976). Models 
for MNAR missing-data mechanisms are called non-
ignorable. The general difficulty with nonignorable non-
response model is that the parameters are not identifiable 
[e.g., see Nandram and Choi (2004, 2005, 2008, 2010) and 
Nandram, Han and Choi (2002)]. 

For a r c  categorical table, let 1ijklI   if the thl  
individual within the thi  area falls in the thj  row and thk  
column and 0 otherwise. Also, let 1ilJ   if the thl  
individual within the thi   area has complete information and 
0 otherwise. Finally, let ( 1 1, 0, ,il ijkl ij k lP J I I j j       

) .ijkk k     For unit nonresponse, if ,ijk i    the model 
is ignorable; for item nonresponse, if the columns are 
missing, row is observed and ijk ij    (or ),ijk i    the 
model is ignorable; and if the rows are missing but columns 
are observed and ijk ik    (or ),ijk i    the model is 
ignorable. All other models are nonignorable; see Rubin 
(1976) for further explanation. 

Nandram and Choi (2002a, b) use an expansion model to 
study nonignorable nonresponse binary data. The expansion 
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model, a nonignorable nonresponse model, degenerates into 
an ignorable nonresponse model (in the spirit of Draper 
1995) when a centering parameter is set to unity. This 
permits an expression of uncertainty about ignorability; see 
also Forster and Smith (1998). 

We discuss the model of Nandram and Choi (2002a, b) 
for binary data from small areas. So that ilJ  denote the 
response indicators and ilI  denote the binary response. 
Specifically, introducing the centering parameters i  for 
area i to incorporate uncertainty about ignorability, the 
model of Nandram and Choi (2002a, b) is  

iid

iid

iid

|  Bernoulli( ),

|{ , = 0} Bernoulli( ), = 1, , , = 1, , ,

|{ , , = 1} Bernoulli( ),  0 < < 1.

il i i

il i il i i

il i i il i i i i

I p p

J J l n i l

J y

 

     

 







 

When 1,i   the nonignorable nonresponse model 
degenerates to an ignorable nonresponse model. Here i  is 
the ratio of the odds of success among respondents to the 
odds of success among all individuals for the thi  area. The 
parameter i  describes the extent of nonignorability of the 
response mechanism for area i, and it is through the i  that 
uncertainty about ignorability is incorporated. Nandram and 
Choi (2002a, b) define { (1 )}i i i i ip p       to be the 
probability that an individual responds in area i in the entire 
population, and with a belief that all the areas are similar 
they take ( , , )i i ip    to have a common distribution. 
A priori they take beta distributions for ip  and i  
respectively. 

Here, the parameters are not identifiable. However, if 
1,i   then all the parameters are identifiable. That is, 

identifiability of the parameters depend on the .i  Note, that 
when 1,i   we get an ignorable model for a MAR 
mechanism. As the parameters are identifiable in this model, 
it is quite sensible to use this model (or similar models) as a 
baseline model. However, note this model is still not 
justified because it assumes that missing data are like 
observed data. Thus, to add flexibility to this ignorable 
nonresponse model, we use the .i  

Let iuv  be the number of individuals with ,ilI u  
( , 0, 1)ilJ v u v   in the thi  area. Then, under the model,  

ind

00 01 10 11( , , , ) | , , Multinomial{ ,

(1 ) (1 ), (1 ) , (1 ) , }
i i i i i i i i

i i i i i i i i i i

y y y y p n

p p p p

 
        

  

with independence over areas. Here, only 01iy  and 11iy  are 
observed, and therefore all parameters are nonidentifiable if 
the i  are unknown. We obtain the likelihood function in a 
similar manner for the more complete r c  categorical 
table with missing data. 

We start with a gamma distribution, and to permit 
centering on the ignorable nonresponse model, we must take 
each i  to have mean 1. However, we need to use a 
truncated gamma distribution because 0 1i    and 
0 1 / .i i     An interesting idea of Nandram and Choi 
(2002a, b) is to model the centering as a truncated gamma  

iid

| Gamma( , ), 0 < < 1 / , 0 < < 1.i i i i        

The model is complete with noninformative prior densities 
on all hyperparameters. One can use alternative distributions 
(e.g., a truncated lognormal density) for the ,i  but this is 
not a key issue and it would not matter much. 

One can use an area level model with random effects in 
which, conditional on the observed data, the nonresponse is 
dependent upon area-level random effects. This can be 
formulated using a logit link function, but we have not 
developed our models in this direction partly because we are 
not using covariates here; see Nandram and Choi (2010) for 
the use of covariates and random effects. 

The approach in Nandram and Choi (2002a, b) is 
attractive, but it does not apply immediately to the current 
r c  categorical table problem. Specifically, only one 
centering parameter per area is needed in Nandram and 
Choi (2002a, b). In our formulation, one now needs rc 
centering parameters per area; each of these parameters has 
to have a distribution centered at one to allow degeneration 
to the ignorable nonresponse model. There are also 
inequality constraints that must be included in the non-
ignorable nonresponse model. In addition, one cannot rule 
out the possibility that these parameters are correlated. The 
methodology needed to apply the work of Nandram and 
Choi (2002a, b) to the r c  categorical table is not 
straightforward. Noting these difficulties Nandram, Liu, 
Choi and Cox (2005) (with a single supplemental table) and 
Nandram, Cox and Choi (2005) (with the three 
supplemental tables) use a simpler idea, but not quite as 
elegant as in Nandram and Choi (2002a, b), for centering; 
see also Nandram and Choi (2005). 

Essentially, Nandram, Cox and Choi (2005) and 
Nandram, Liu, Cox and Choi (2005) assume an ignorable 
model, obtain samples of the response probabilities and use 
these sampled response probabilities to fit the response 
probabilities of a nonignorable nonresponse model while 
“controlling” its parameters. Of course, a possible alter-
native occurs when there is information about the degree of 
nonignorability. However, the problem of incorporating 
prior information about a systematic departure from 
ignorability is more complex for our problem, and it would 
need additional costly field work to obtain such information. 

We discuss our philosophy about the nonignorable 
nonresponse problem, a fundamentally aliased problem. In 
fact, this problem is extremely difficult and we believe that 
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there is really no solution to it, but we must try. Without any 
information one cannot tell how respondents and non-
respondents differ. An ignorable nonresponse model is short 
because it assumes that respondents and nonrespondents are 
similar, but the respondents and nonrespondents may differ. 
Statisticians must not confront imprecision (sampling error) 
only, but they must be bold enough to study subjectivity 
(ignorance arising from missing information). Unfortu-
nately, as is well known, nonignorable nonresponse models 
have nonidentifiable parameters. We discuss how the key 
nonignorability parameters are identified. We know that if 
the respondents and nonrespondents are similar, then the i  
are equal unity, and we get the ignorable nonresponse model 
with all parameters identified. We can now expand the 
ignorable nonresponse model into a nonignorable non-
response model by putting a distribution on these i  
centered at 1, still maintaining identifiability. One can 
formulate a nonignorable nonresponse model to add 
flexibility to the ignorable nonresponse model as we have 
done in our work; the flexibility is a form of sensitivity 
analysis, coherent in this case, and indeed it is a Bayesian 
uncertainty (risk) assessment (e.g., Greenland 2009). This is 
what we have been doing or trying to do in our work. 

In this paper we attempt to solve the difficult problem of 
Nandram and Choi (2002a, b) in its original form for r c  
tables for many areas. The plan of this paper is as follows. 
In Section 2, we describe the hierarchical Bayesian model. 
Specifically we describe the nonignorable nonresponse 
mechanism and we construct an appropriate prior distri-
bution. In Section 3, we show how to fit the model using the 
sampling importance resampling (SIR) algorithm to 
subsample from an approximate posterior density after an 
innovative collapsing of the complete joint posterior density. 
In Section 4, we illustrate our methodology with public-use 
data from thirteen states in the third National Health and 
Nutrition Examination Survey (NHANES III). Section 5 has 
concluding remarks.  

2. The nonignorable nonresponse model  
For the problem of nonresponse in a two-dimensional 

table, we can have both item and unit nonresponse. Thus, 
one may consider the full data array to consist of four tables: 
one for complete data and three supplemental tables ˗ one 
for missing row information, one for missing column 
information and a table for which neither row nor column 
membership has been recorded. Throughout this paper, we 
index rows by 1, , ;j r   columns, by 1, , ;k c   and 
the four tables by 1, 2, 3, 4.s   We index areas by 

1, 2, ,i A   and individuals within areas by 1, 2, ,l    
.in  We next describe the nonignorable nonresponse model 

(i.e., the expansion model). 

2.1 Sampling process  
We adapt the terminology and definitions used in 

Nandram, Cox and Choi (2005) to our situation. For sample 
individual l in area i, let  

1, if the outcome category is ( , )
=

0, otherwise,ijkl

j k
I





 

and let ilJ  denote one of the 4-tuples (1, 0, 0, 0),  
(0,1, 0, 0), (0, 0,1, 0), (0, 0, 0,1).  We assume that  

def

iid

= vec({ | =1, , ;

=1, , }) | Mult{1, }

il ijkl

i i

I j r

k c





I

p p
 

(1)
 

and 

iid

 |{ =1, = 0 for all

and | } Mult{1, },

il ijkl ij k l

ijk ijk

I I j j

k k

   

  π π

J


 

(2)
 

where 
def

= vec({ | 1, 2, , ; 1, 2, , })i ijkp j r k c  p  is a 
vector of probabilities for the table of rc categories for the 
variable of observation which must sum to one and, for cell 
( , )j k  in that two-dimensional table,  

def

= vec({ } for =1,2,3,4)ijk isjk sπ  

is a vector of probabilities which must sum to one. 
Next, we define cell counts ,isjky  for each table 
1, ,4s    for area i such that, for cell ( , ),j k  

1 2 3 4
=1

( , , , ) = ,
in

i jk i jk i jk i jk ijkl il
l

y y y y I J  

where 1i jky  are observed and ,isjky  for 2, 3,4,s   are 
latent variables which satisfy the observed constraints 

2 3,k ji jk ij i jk iky u y v    and , 4 .j k i jk iy w   All 
inferences will be conditional on the observed quantities, 

,ij iku v  and .iw  But see Nandram (2009) for the analysis of 
a single r c  table under nonresponse when the margins 
are also random. We will denote the vector of the 1i jky  by 

1,y  the vector of the , 2, 3, 4,isjky s   by (1),y  and the 
complete vector by 1 (1)( , ) .y y y  

The parameters isjk  are not identifiable. If the 
distributions of these parameters are known completely, 
then the nonidentifiability will disappear. Thus, the key 
issue is how to identify these parameters. We know that if 
the respondents and nonrespondents are similar (i.e., the 
four patterns, complete and partially complete tables), then 
we can take ;isjk is    this is the ignorable nonresponse 
model. The is  can be estimated by the proportions of cases 
falling in the four tables for each area. This is a natural point 
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to start. To expand the ignorable nonresponse model into a 
nonignorable model, and still maintain identifiability, first 
we need a simplification. We take ,ijks ijk is     which 
gives a nonignorable nonresponse model in which the 
parameters ijk  are not identifiable. 

To center the nonignorable model on the ignorable 
model, we take 

, for =1,
=

, for = 2,3,4,
ijk is

isjk
ijk is

s

s

   


 (3) 

and require that 4
1 1.s is    A little algebra then yields the 

relationship  

1
1 1

1

1 1

1
= 1 (1 )

= ( , ) ,

i
ijk i ijk i

i

ijk i ijk ijk ia

   
          

   


 

(4)

 

where 1 1 1
1 1( , ) ={ ( 1)( 1)},ijk i ijk ijk ijk ia            from 

which it is clear that =1ijk  if, and only if, = 1.ijk  Note 
that since 0 1isjk    and 1

1(1 )i
  1min{ ; =is s  

2,3,4},  it follows that 0 < ijk 1
1(1 ) .i
   

By combining (1) and (2) and noting the definition of 

isjk  in (3), similar to binary case, we get a multinomial 
distribution for y conditional on , , ,p   and the likelihood 
function for the sample can now be seen to be  

1

1

1
=1 ,1 2 3 4

4

=2 ,

4
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1
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where  

1
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1
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1
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= vec({ | = 1, , ; = 1, , }),
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Collecting factors which are powers of ,is  the likelihood 
function may also be expressed as  

1...

=1 1 2 3 4

4

1
=1 ,

( | , , ) =
, , ,

{ } ( , ) ,i jki jkis
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i
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(6)

 

where 0 1, 1sis is      and 1
10 (1 ) .ijk i

      Here 
we note that ..isy   and 1i jky  are observed variables but the 

.i jky  are latent variables.  
2.2 Prior construction  

The following assumptions describe the prior distribu-
tions for the nonignorable nonresponse model:  
1. For the vector of cell probabilities ,ip  we assume that  

iid

1 1 1 1|  Dirichlet( ),i   μ μp  

where 1 111 112 11 121 1 1= ( , , , , , , ) ; 0;k rc jk          
and 1 1 1 1.r c

j k jk      The parameter 1  informs us of 
similarity among the :ip  the larger 1,  the more alike 
the .ip  This is true because large 1  means that the 
variances of the ip  are small, and because they have the 
same mean, this means that they are more similar with 
larger 1.   

Thus, the density for p is  

  

1 1 1 1 1 1
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=1 1 1
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2. Independently of the ,ip  the 1 2 3 4( , , , )i i i i i     π  
follow the specification  

iid
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4

123 24 2 2, ) , 0, 1ss s       and 2τ  is a measure of 
similarity among the .iπ  Thus, the density for iπ  is  
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3. For each i, let 11 1 21 2= ( , , , , , , ,i i i c i i c   ψ     
)irc   so that 1= ( , , ) .A  ψ ψ ψ  We assume for each i 

that the ijk  are independently and identically 
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distributed in accordance with a distribution derived 
from the Gamma( , ),   where the support is confined 
to the open interval 1

1(0, (1 ) );i
   in other words, the 

ordinary gamma distribution is truncated as  

ind

1
1

| , Gamma( , )

such that 0 < < (1 ) .

ijk i

ijk i


   

  

π 
 

It is worth noting that these ijk  are identically 
distributed over j and k. Again, one can use other 
distributions such as a truncated lognormal density, but 
this will make little difference. In this formulation, there 
is some information about   because the small areas are 
assumed to share a common effect. 
Thus, for area i, the density for i  is 
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For 1
10 < < (1 ) .ijk i

    Making the transformation 
,ijk ijkt   one can see that the normalizing constant in 

the denominator of each of the factors in 3 ( | , )i i ig ψ π  
is 1

1[ (1 ) ],iG 
     where ( )G   is the gamma function 

with scale parameter   To eliminate the dependence of 
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for 0 < < 1.ijk  The joint prior for iπ  and i  is just the 
product of 3 ( | , )i i ig  π  and 2 2 2( | , ).i ig    Thus, the 
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The description of the model is completed by specifying 
the assumptions on the hyperparameters. As there are no 

conjugate priors, we use shrinkage priors for 1 2   and   
because these are proper and noninformative. Priors of the 
form 1 1( ) 1 / ,p     and specifically proper diffused 
gamma priors, are discouraged; see, for example, Gelman 
(2006). Other alternatives are half Cauchy densities and 
gamma densities (one would need to specify the hyper-
parameters). Thus, we take  

1. 1 2   and   have independent shrinkage priors of the 
form  

0
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f x x
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where 0a  is specified; it is standard practice to take 

0 1.a    
2. We also assume that 1 Dirichlet(1,1, ,1)μ   and 

2 Dirichlet(1,1,1,1).μ   
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where, substituting 1
1(1 )i ijk
    for ,ijk  

 1
1 1

1

1 1
(π , ) = 1 1 .i

ijk i ijk i ijk
ijk i

a
    

            
 (12) 

To make inferences about the ,ijkp  we will draw 
samples from (1) 1( , , , , | , , , )h  πp y y u v w  using Markov 
chain Monte Carlo methods. This procedure is described in 
Section 3. 
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3. Computations  
We use the SIR algorithm to subsample a random sample 

from an approximate posterior density. There are three steps 
to accomplish this task. We collapse over the ,i iπp  and ,i  
approximate the collapsed density by a simpler one and 
sample from it, and then subsample these samples to get 
samples from the original density. We show how to do these 
three steps in this section. 

To obtain the approximation and to simplify the 
computations, in Appendix A we collapse over the ,i iπp  
and i  to get  
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To evaluate iI  for each 1, , ,i A   we proceed as 
follows given (1)( , ) :i y

  
1. Draw independent samples of vectors iπ  and *

i  from 
the (2)

2 2Dirichlet( )i  μy  and (1)Dirichlet( ),i  y j  
respectively. For each iπ  and *,i  draw a sample of 
values for iW  from the truncated gamma distribution on 
the interval 1(0,{ /1 })i ib   with parameter .rc    

2. For each *,i iπ   and iW  selected in step (1), compute 
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3. Repeat steps (1) and (2) 1,000 times. Then compute the 
average of 1 2R R  over these 1,000 values.   
The rest of our computation has two parts. First, we use 

the griddy Metropolis-Hastings sampler to draw from 

(1) 1( , | , , , ).a  y y u v w  We sample 1 2 1μ , μ    and 2  from 
their conditional posterior densities using grids; this entails 
transforming 1  and 2  to the unit interval (0,1).  For each 
distribution, 100 grids are used; see Nandram, Cox and Choi 
(2005) for a similar procedure. Here (1)y  is drawn by 
sampling from its conditional probability mass function 
component wise. Draws are made from the conditional 
posterior density of   using a Metropolis step in a manner 
similar to Nandram and Choi (2002a, b). We have per-
formed this algorithm 11,000 times and we allowed a “burn-
in” of 1,000 iterates. We found that the autocorrelations 
among the iterates was small, thereby indicating strong 
mixing of the sampler. We have also used the batch-means 
method to further assess the computation. We used batches 
of 25 to compute numerical standard errors. 

Second, we use the SIR algorithm to subsample the 
sample of 10,000 iterates we obtained from a ( ,  

(1) 1| , , , ).y y u v w  For each of the 10,000 iterates we calculate 
the weights  
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and we resample 
( ) ( )

(1){ , }m m y  with probabilities propor-
tional to the weights mw  for 1, ,m M   without replace-
ment. We use a 10% sampling, and we subsample the 10,000 
iterates to get 1,000 iterates; sampling without replacement 
is a good idea because it avoids repeated values which 
already exist because the Metropolis-Hastings sampler is not 
really an accept-reject sampler and it gives repeated values. 
As usual with sampling without replacement the weights are 
calculated every time a value is selected. 

Finally, we can now make exact (within limitations of 
Markov chain Monte Carlo methods) inference about ip  
a posteriori. Letting 4

1si jk isjky y   and *
iy  denote the 

vector of .i jky   Then,  
ind

* *
1 1 1 1| , , Dirichlet( ), = 1, , .i i i i A    p y y  



Survey Methodology, June 2012 87 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Thus, for each value of *
1, ,i μy  and i  we obtain from the 

SIR algorithm, we draw a value of , 1, , .i i A p  Thus, 
we obtain a Rao-Blackwellized density for each of the ,ip  
and inference proceeds in the usual way.  

4. An illustrative example 

 
Our illustrative example is in health statistics. In Section 

4.1 we briefly discuss the data we used from the third 
National Health and Nutrition Examination Survey 
(NHANES III). Specifically, we study the relationship 
between bone mineral density and family income; see 
Nandram, Cox and Choi (2005) for a discussion of this 
problem. In Section 4.2, after briefly discussing our 
computation, we present posterior inference on the cell 
probabilities. In section 4.3 using the Bayes factor we 
discuss the relation between BMD and FI.  
4.1 NHANES III data  

The sample design is a stratified multistage probability 
design which is representative of the total civilian non-
institutionalized population, 2 months of age or older, in the 
United States. Further details of the NHANES III sample 
design are available (National Center for Health Statistics 
1992, 1994). The NHANES III data collection consists of 
two parts: the first part is the sample selection and the 
interview of the members of a sampled household for their 
personal information, and the second part is the examination 
of those interviewed at the mobile examination center 
(MEC). The health examination has information on physical 
examination, tests and measurements performed by techni-
cians, and specimen collection. The sample was selected 
from households in 81 primary units across the continental 
United States during the period from October 1988 through 
September 1994. The final data for this study is a part of the 
35 largest primary sampling units with population at least 
500,000, and we consider 13 subnational areas. 

Nonresponse occurs in the interview and examination 
parts of the survey. The interview nonresponse arises from 
sampled persons who did not respond for the interview. 
Some of those who were already interviewed and included 
in the subsample for a health examination missed the 
examination at home or at the MEC, thereby missing all or 
part of the examinations. 

Doctors believe that obese and overweight individuals do 
not generally turn up at the MEC. Cohen and Duffy (2002) 
point out that “Health surveys are a good example, where it 
seems plausible that propensity to respond may be related to 
health.” NHANES III is a good example. 

Sampled persons in NHANES III can be categorized by 
many types of attributes, and researchers analyze such 
categorical tables for goodness of fit or independence. Here 
we study bone mineral density (BMD) and family income 
(FI). We note here that while FI is a discrete variable, we 
have classified BMD into three levels (normal, osteopenia 
and osteoporosis), and FI into three levels (low, medium and 
high). However, only partial classification of the individuals 
is available because some individuals are classified by only 
one attribute while others are not classified. About 62% of 
the households have both FI and BMD observed, 8% with 
only BMD observed, 29% with only income observed, 1% 
with neither income nor BMD among those participated in 
the examination stage. Our problem is to estimate the cell 
probabilities and to test for association between BMD and 
FI for each of 13 subnational areas using our expansion 
model that pools the data adaptively. 

In Table 1 we present the 3 3  tables of BMD and FI 
for the aforementioned 13 areas. Note that areas 6 and 48 
have enough data so that they can stand by themselves. 
However, the other areas are very small; the counts in the 
table with row totals are generally small except for area 17 
and the counts in the table with just total are small. Even for 
the table with complete data the cell counts are generally 
small forcing us to use small area estimation techniques to 
borrow strength. 

 

Table 1 
Counts of the 3 3  tables of BMD and FI corresponding to 13 subnational areas in NHANES III 
 

State Complete Table  Column Total  Row Total Total 
4 21 14 9 8 7 3 2 2 0 11 5 6 4 0 1 1
6 257 127 106 92 51 32 32 5 7 178 54 82 65 28 4 20
12 33 18 21 22 4 4 15 5 0 18 11 16 5 6 2 1
17 25 15 13 8 5 3 0 0 1 18 10 16 17 2 2 4
25 9 7 12 6 5 9 2 1 0 9 6 12 1 4 5 1
26 18 11 18 6 5 9 2 1 1 10 5 11 4 3 0 1
29 9 4 10 3 2 4 3 1 2 9 2 9 0 2 4 1
36 42 17 27 32 13 18 9 6 1 43 21 42 9 7 6 1
39 8 6 14 2 5 4 3 0 1 9 7 5 2 3 0 0
42 14 8 11 12 8 4 8 1 2 35 15 24 3 1 0 0
44 12 9 6 8 5 0 5 1 0 19 4 12 7 1 0 1
48 159 44 22 51 11 13 9 6 2 88 12 23 16 8 2 14
53 14 10 15 10 10 14 3 1 1 9 4 8 2 4 1 0

Note: In the complete 3 3  table the first (second, third) set of three numbers is the first (second, third) row; the column (row) total refers to the 
3 3  table with only column (row) totals; the total refers to the 3 3  table with only total.  
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4.2 Posterior inference of the cell probabilities  
We discuss the performance of our computations for the 

expansion model, and then we discuss posterior inference 
about the cell probabilities. We use the posterior mean 
(PM), posterior standard deviation (PSD) and 95% credible 
interval for each of parameters of interest.  We also present 
the numerical standard errors (NSE) to assess the 
repeatability of our computations. 

In Table 2 we present summaries of the posterior 
distributions of 1 2 1 2, , , μ μ  and   both before and after 
the application of the SIR algorithm. These summaries are 
very similar indicating that the SIR approximation 

(1) 1( , | , , , )a  y y u v w  is not unreasonable. For example, a 
95% credible interval for   before and after the application 
of the SIR algorithm are respectively (1.081, 1.940) and 
(1.086, 1.947), very good agreement. The estimates of 1  
and 2  should show the largest discrepancies, but these are 
also reasonably close [e.g., for 1  95% credible intervals 
with the approximation is (28.282, 64.204) and with the SIR 
algorithm it is (27.962, 64.425)]. In both cases the NSEs are 
small indicating that the computations are repeatable. 

In Table 3 we have compared our expansion model 
(Model 3) with two other models. Model 1, an ignorable 
nonresponse model, and Model 2, a nonignorable non-
response model (no centering), are described in Appendix 
B. For illustration we have selected three areas, a large area, 
a medium-sized area and a small area. There are differences 
among the three models. In general, the larger estimates 
tend to be smaller for Model 2, and even smaller than Model 

1, than for Model 3 (i.e., the estimates from Model 3 are 
naturally closest to Model 1, and not Model 2). Model 2 
produces the largest variability; as expected, Model 3 gives 
slightly larger variability than Model 1. Because of space 
restrictions we have not presented the NSEs, but we note 
that they are all smaller than 0.005.  
4.3 Bayes factor for evidence of association  

We have also considered the association between BMD 
and FI. It appears doubtful whether such an association 
might exist, but it is interesting to look at this issue; see 
Nandram, Cox and Choi (2005) for a discussion on this 
problem. We use the Bayes factor (Kass and Raftery 1995) 
to measure the strength of the evidence of an association 
relative to no association in the r c  categorical table. We 
have done so for each of the thirteen areas and all areas 
combined. 

We have used two procedures, one without extensive 
modeling and the other using our nonignorable nonresponse 
(expansion) model. The simple method is to fill in the cell 
counts using an ordinary raking procedure, and we assume 
there is no error in doing so. This is a common sense 
procedure that survey practitioners have used routinely. In 
the second procedure using our nonignorable nonresponse 
model, we have obtained 1,000 combined tables for each 
area as described in Section 3 on computations. For each 
area we have obtained the cell counts for all four tables, and 
we summed them to get a single table of all counts. 

  
Table 2 
NHANES data on 13 areas: Comparison of the approximate posterior density and the correct posterior density using the posterior means 
(PM), posterior standard deviations (PSD), numerical standard errors (NSE) and 95% credible intervals of the hyperparameters 
 

 Approximation Adjusted 

 PM PSD NSE 95% Int PM PSD NSE 95% Int 

21  0.528 0.031 0.001 (0.463, 0.582) 0.525 0.031 0.008 (0.456, 0.578) 

22  0.131 0.021 0.001 (0.096, 0.181) 0.133 0.021 0.002 (0.094, 0.179) 

23  0.328 0.028 0.001 (0.274, 0.383) 0.328 0.028 0.005 (0.269, 0.383) 

24  0.013 0.006 0.000 (0.004, 0.027) 0.014 0.006 0.000 (0.004, 0.029) 

2  21.638 9.559 0.255 (8.347, 46.587) 20.078 8.632 0.303 (8.538, 38.625) 

111  0.280 0.023 0.001 (0.234, 0.324) 0.277 0.023 0.004 (0.228, 0.319) 

112  0.133 0.016 0.000 (0.102, 0.165) 0.134 0.017 0.002 (0.101, 0.165) 

113  0.200 0.019 0.000 (0.163, 0.238) 0.199 0.019 0.003 (0.162, 0.236) 

121  0.105 0.015 0.000 (0.078, 0.135) 0.107 0.015 0.002 (0.079, 0.135) 

122  0.065 0.011 0.000 (0.044, 0.088) 0.065 0.011 0.001 (0.044, 0.087) 

123  0.072 0.012 0.000 (0.050, 0.096) 0.073 0.012 0.001 (0.049, 0.097) 

131  0.061 0.011 0.000 (0.041, 0.083) 0.061 0.011 0.001 (0.040, 0.083) 

132  0.037 0.008 0.000 (0.023, 0.054) 0.036 0.008 0.001 (0.022, 0.054) 

133  0.048 0.009 0.000 (0.031, 0.068) 0.048 0.009 0.001 (0.031, 0.068) 

1  45.960 10.094 0.153 (28.282, 64.204) 45.177 10.562 0.679 (27.962, 64.423) 

  1.472 0.218 0.004 (1.081, 1.940) 1.449 0.208 0.022 (1.086, 1.947) 

Note:  The hyperparameters are 1 2 1 2, , τ , τμ μ  and    
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Table 3 
Posterior means of the cell probabilities and 95% credible intervals (CI) for three areas (large, medium and small) by the three models 
 

Model 1 Model 2 Model 3
Cell PM PSD 95% CI PM PSD 95% CI PM PSD 95% CI
a. Large     

(1,1) 0.239 0.044 (0.157, 0.326) 0.196 0.046 (0.117, 0.295) 0.259 0.038 (0.189, 0.335)
(1,2) 0.140 0.035 (0.078, 0.213) 0.127 0.035 (0.068, 0.200) 0.132 0.029 (0.082, 0.197)
(1,3) 0.240 0.044 (0.159, 0.332) 0.198 0.047 (0.118, 0.301) 0.248 0.037 (0.175, 0.322)
(2,1) 0.092 0.032 (0.039, 0.162) 0.098 0.040 (0.037, 0.188) 0.077 0.022 (0.039, 0.126)
(2,2) 0.074 0.028 (0.029, 0.136) 0.077 0.030 (0.030, 0.144) 0.056 0.020 (0.024, 0.099)
(2,3) 0.133 0.036 (0.070, 0.210) 0.121 0.042 (0.056, 0.219) 0.110 0.028 (0.058, 0.168)
(3,1) 0.036 0.020 (0.008, 0.083) 0.069 0.039 (0.013, 0.153) 0.047 0.018 (0.018, 0.086)
(3,2) 0.023 0.015 (0.003, 0.061) 0.043 0.025 (0.007, 0.100) 0.032 0.014 (0.009, 0.063)
(3,3) 0.025 0.017 (0.003, 0.066) 0.071 0.040 (0.010, 0.154) 0.042 0.016 (0.016, 0.079)

b. Medium      
(1,1) 0.233 0.034 (0.169, 0.302) 0.213 0.043 (0.141, 0.305) 0.254 0.032 (0.194, 0.318)
(1,2) 0.143 0.028 (0.093, 0.200) 0.127 0.032 (0.072, 0.196) 0.146 0.024 (0.102, 0.197)
(1,3) 0.190 0.031 (0.132, 0.254) 0.140 0.034 (0.084, 0.218) 0.208 0.027 (0.156, 0.259)
(2,1) 0.174 0.031 (0.118, 0.237) 0.160 0.042 (0.092, 0.249) 0.154 0.027 (0.106, 0.211)
(2,2) 0.043 0.018 (0.015, 0.083) 0.060 0.028 (0.017, 0.124) 0.032 0.012 (0.012, 0.059)
(2,3) 0.049 0.020 (0.017, 0.095) 0.065 0.031 (0.018, 0.136) 0.042 0.014 (0.020, 0.072)
(3,1) 0.112 0.025 (0.068, 0.167) 0.120 0.041 (0.059, 0.209) 0.092 0.020 (0.056, 0.134)
(3,2) 0.047 0.018 (0.018, 0.088) 0.059 0.026 (0.019, 0.118) 0.040 0.014 (0.018, 0.071)
(3,3) 0.010 0.009 (0.000, 0.033) 0.056 0.032 (0.006, 0.122) 0.032 0.012 (0.013, 0.059)

c. Small      
(1,1) 0.196 0.052 (0.103, 0.305) 0.164 0.055 (0.077, 0.288) 0.253 0.043 (0.175, 0.334)
(1,2) 0.081 0.034 (0.028, 0.158) 0.081 0.032 (0.030, 0.155) 0.091 0.028 (0.043, 0.152)
(1,3) 0.213 0.052 (0.118, 0.323) 0.175 0.055 (0.087, 0.300) 0.220 0.043 (0.137, 0.306)
(2,1) 0.093 0.041 (0.028, 0.186) 0.111 0.055 (0.029, 0.234) 0.073 0.028 (0.030, 0.139)
(2,2) 0.056 0.029 (0.012, 0.126) 0.066 0.031 (0.018, 0.136) 0.045 0.020 (0.014, 0.094)
(2,3) 0.115 0.045 (0.042, 0.215) 0.118 0.053 (0.038, 0.240) 0.092 0.030 (0.041, 0.158)
(3,1) 0.115 0.048 (0.036, 0.222) 0.113 0.056 (0.031, 0.239) 0.081 0.030 (0.033, 0.148)
(3,2) 0.044 0.028 (0.006, 0.113) 0.065 0.035 (0.013, 0.144) 0.043 0.020 (0.012, 0.086)
(3,3) 0.087 0.042 (0.022, 0.184) 0.107 0.055 (0.023, 0.227) 0.103 0.034 (0.047, 0.181)

Note:  See Appendix B for a description of Models 1 and 2. 
 
The raking procedure to obtain the cell counts is de-

scribed as follows. Let jkn  denote the cell counts for the 
four tables combined. Let (1)

jkn  denote the cell counts for the 
table with complete data, (2)

, 1j cn   denote the table with row 
totals, (3)

1,r kn   denote the table with column totals and 
(4)

1, 1r cn    denote the table with total. The cell counts for the 
four tables are estimated as  

(1) (1) (1)
(1) (2) (3) (4)

, 1 1, 1, 1(1) (1) (1)
= ,jk jk jk

jk jk j c r k r c
j k

n n n
n n n n n

n n n
   

  

     
            
     

 

= 1, , , = 1, , .j r k c   
In either case we denote the sum of the cell counts for 

each area by .jkn  For the raking procedure we have a single 
table for each area, and for the nonignorable nonresponse 
model we have a sample of 1,000 tables for each area. We 
also have a single combined table for all areas under the 
raking procedure and 1,000 tables for all areas combined. 
We obtain the Bayes factor for each table under a 
multinomial-Dirichlet model. It is worth noting that our 
method uses the expansion model so that the cell counts 
borrow strength from other areas unlike the raking 
procedure. 

Then, for each table we take  

| Multinomial( , ) and Dirichlet( ).nπ π π 1 n  

That is, we take a uniform prior for π  with 0jk   and 

1 1 1.r c
j k jk      Under the hypothesis of no association 

we have ,jk j k     where 10, 1r
jj j     and 

10, 1.c
kk k     Thus, the hypothesis of association is 

that the jk  are unrestricted (except that they are 
nonnegative and sum to unity) whereas for the hypothesis of 
no associate .jk j k     

The Bayes factor is the ratio of the marginal likelihood 
under association versus the marginal likelihood under no 
association. This measures the strength of evidence of 
association versus no association; see Kass and Raftery 
(1995). Let ( )ap n  denote the marginal likelihood under 
association and 0 ( )p n  denote the marginal likelihood 
under no association. Then, letting 1

c
kj jkn n   and 

1 ,r
jk jkn n   it is easy to show that 

1
1 1

0
0

1 1

.! . !
( ) ( ) ,

( )( ) !

r c
n j kj k

a r c
u jkj k

n nu rc
p p

u r u c n


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where 11
00( ) ! ( ) .n

up n u rc 
 n  Observe that 0 ( )p n  is 

not a function of { }.jkn  Thus, as a measure of association it 
is the deviation of 1 1! !r c

j kj kn n     from 
 1 1 !r c

j k jkn    
that matters. However, we note that for the classical Pearson 
statistic for independence it is the deviations of jkn  from 

 
j kn n   that matter. But note that this test cannot be applied 

because many of the expected cell counts are smaller than 5 
under the hypothesis of no association and multinomial 
sampling. 

We present our results in Table 4 and in Figure 1 
corresponding to the data in Table 1 for the cross-
classification of BMD and FI. We have presented the 

logarithms of the marginal likelihoods (base e) and the 
Bayes factors; these are to be interpreted using the rule of 
thumb of Kass and Raftery (1995). 

In Figure 1 we can see that the box plots are all above 
zero except the one for the third area which provides no 
evidence for association; perhaps there is no evidence for 
association in area 42 (10 in figure) as well. A summary of 
these results are presented in Table 4. The Bayes factors 
show association in all areas, except area 12, and they are 
much larger under the nonignorable nonresponse model. 
Area 6 and all areas combined are elevated (336.3 vs. 5.8 
and 3,798.2 vs. 0.183). 

 
Table 4  
NHANES data on 13 areas: Comparison of the negative marginal likelihoods and Bayes factors or association of BMD and F1 from the 
raking procedure and the expansion model by area 
 

 Raking Expansion
area 0ln{ ( )}p n  ln{ ( )}ap n BF ln{ ( )}ap n  BF

4 26.19 23.07 22.855 23.50.014 14.780.169

6 45.73 43.98 5.766 40.50.038 336.2711.465

12 31.14 38.01 0.001 33.40.054 0.370.027

17 29.13 27.03 8.134 27.00.026 10.270.191

25 25.44 26.02 0.558 23.80.029 9.550.202

26 26.89 23.18 40.562 23.90.018 24.710.370

29 23.21 20.87 10.301 21.30.018 8.400.115

36 34.99 36.09 0.330 33.10.064 21.130.928

39 23.77 24.89 0.325 23.60.044 2.240.68

42 29.51 30.21 0.497 30.30.099 4.330.255

44 25.61 30.48 0.008 24.40.027 5.190.137

48 38.83 35.34 32.650 39.10.060 2.150.081

53 27.11 24.82 9.865 24.20.017 19.400.282

All 53.43 55.13 0.183 46.10.049 3,798.24151.82 

Note:  Area ‘all’ refers to all areas combined; the notation ba  means that the average is a and the standard error is b over the 1,000 iterates; 
0ln{ ( )}p n  is the same for both procedures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Box plots of log Bayes factors versus areas to measure evidence for association between BMD and FI 
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5. Concluding remarks  
The purpose of this paper has been to develop a 

methodology to analyze data from incomplete two-way 
categorical tables, each table corresponding to an area. We 
have done so by extending the Bayesian methodology of 
Nandram and Choi (2002a, b) for binary data to r × c 
categorical tables for small areas. We have constructed a 
new Bayesian nonignorable nonresponse model (i.e., 
expansion model) which is centered on the ignorable 
nonresponse model. We have used Markov chain Monte 
Carlo methods (specifically the griddy Metropolis-Hastings 
sampler) to fit the model. We have compared our model 
with an ignorable nonresponse model and a nonignorable 
nonresponse model. Finally, we have done an illustrative 
example on estimating the cell probabilities for the 3 3  
table of BMD and income over thirteen subnational areas. 

We have shown that there are differences among the 
three models. Using the data on BMD and FI, we have 
shown that our expansion model is a compromise between 
the ignorable nonresponse model and the nonignorable 
nonresponse model. Using the Bayes factor we have shown 
that there are differences between the tests of association for 
BMI and FI when the cell counts are estimated from our 
model and when using a raking procedure. In fact, owing to 
the borrowing of strength, we have seen that the evidence 
for association under our model is much stronger than the 
from the raking procedure. 

There are three additional avenues that we can explore. 
First, we can construct a model to incorporate systematic 
departure from ignorability. This task will need more costly 
field work to get the much-needed information. Second, it is 
also interesting to relax the assumption that the margins of 
the categorical table are fixed; see, for example, Nandram 
(2009) who looked at a single large area. Third, there can be 
further improvement in calibration (i.e., incorporating 
information about margins).  
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Appendix A  

Joint posterior density of the expansion model  
First, integrating the joint posterior density over p  we 

get that  
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Note that 4
10 1, 1sis is      and 0 1.ijk    We 

simplify the computation for iI  in (A.3) in two steps. 
First, in (A.3) we make the transformation 
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where *= min{{1 / } 1, , ; 1, , }.i ijkb j r k c     
 

Second, letting 1= { /1 }i i iW T    and absorbing the 
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Appendix B 
 

Ignorable and nonignorable nonresponse models  
Set 1ijk   in the expansion model to form the 

ignorable nonresponse model. For 1, , ,i A   we then take  

iid

2 2 2 2| , Dirichlet( )i      

and independently  

iid

1 1 1 1| , Dirichlet( ).i  p    

Also, 2
2 1 1 1( ) {1 / (1 ) }, 0, Dirichlet ),p           

2( )p   2
2 1{1/ (1 ) }, 0    and 2 Dirichlet ).   Here 

we have independence at all levels and the vectors 1 are of 
the appropriate dimension with every coordinate equal to 
one. Note, that all the parameters of the ignorable model are 
identifiable and estimable. 

Set isjk is ijk     in the expansion model to form the 
nonignorable nonresponse model. In this case, for 

1, , ,i A   

iid

2 2 2 2| , Dirichlet( )ijk      

and independently  

iid

1 1 1 1| , Dirichlet( ).i  p    

In this model, the parameters ijk  are not identifiable and 
we take 2 0 0Gamma , ),    where 0  and 0  are to 
be specified. The model specification is then completed by 
assigning 1 1    and 2  the same distributional properties 
as in the previous paragraph. 

As in Nandram, Cox and Choi (2005), 0  and 0  are 
specified as follows. The ignorable nonresponse model is fit 
to obtain a sample from the posterior density of 2.  Then 

0  and 0  are obtained using the method of moments. 
Nandram, Cox and Choi (2005) found that inference about 

ip  is not very sensitive to the choice of these parameters. 

 
References  

Cohen, G., and Duffy, J.C. (2002). Are nonrespondents to health 
surveys less healthy than respondents? Journal of Official 
Statistics, 18, 13-23.  

Draper, D. (1995). Assessment and propagation of model uncertainty 
(with discussion). Journal of the Royal Statistical Society, Series 
B, 57, 45-97.  

Forster, J.J., and Smith, P.W.F. (1998). Model-based inference for 
categorical survey data subject to non-ignorable nonresponse. 
Journal of the Royal Statistical Society, Series B, 60, 57-70.  

Gelman, A. (2006). Prior distribution for variance parameters in 
hierarchical models. Bayesian Analysis, 1, 515-533.  



Survey Methodology, June 2012 93 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Greenland, S. (2009). Relaxation penalties and priors for plausible 
modeling of nonidentified bias sources. Statistical Sciences, 24, 
195-210.  

Kass, R.E., and Raftery, A.E. (1995). Bayes factors. Journal of the 
American Statistical Association, 90, 773-795.  

Little, R.J.A., and Rubin, D.B. (2002). Statistical Analysis with 
Missing Data, Second Edition. New York: John Wiley & Sons, 
Inc.  

Nandram, B. (2009). Bayesian inference of the cell probabilities of a 
two-way categorical table under non-ignorability. Communica-
tions in Statistics - Theory and Methods, 38, 3015-3030.  

Nandram, B., and Choi, J.W. (2002a). Hierarchical Bayesian 
nonresponse models for binary data from small areas with 
uncertainty about ignorability. Journal of the American Statistical 
Association, 97, 381-388.  

Nandram, B., and Choi, J.W. (2002b). A Bayesian analysis of a 
proportion under nonignorable nonresponse. Statistics in 
Medicine, 21, 1189-1212.  

Nandram, B., and Choi, J.W. (2004). A nonparametric Bayesian 
analysis of a proportion for a small area under nonignorable 
nonresponse. Journal of Nonparametric Statistics, 16, 821-839.  

Nandram, B., and Choi, J.W. (2005). Hierarchical Bayesian 
nonignorable nonresponse regression models for small areas: An 
application to the NHANES data. Survey Methodology, 31, 73-84.  

Nandram, B., and Choi, J.W. (2008). A Bayesian allocation of 
undecided voters. Survey Methodology, 34, 37-49.  

Nandram, B., and Choi, J.W. (2010). A Bayesian analysis of body 
mass index data from small domains under nonignorable 
nonresponse and selection. Journal of the American Statistical 
Association, 105, 120-135.  

Nandram, B., Cox, L.H. and Choi, J.W. (2005). Bayesian analysis of 
nonignorable missing categorical data: An application to bone 
mineral density and family income. Survey Methodology, 31, 213-
225.  

Nandram, B., Han, G. and Choi, J.W. (2002). A hierarchical Bayesian 
nonignorable nonresponse model for multinomial data from small 
areas. Survey Methodology, 28, 145-156.  

Nandram, B., Liu, N., Choi, J.W. and Cox, L. (2005). Bayesian 
nonresponse models for categorical data from small areas: An 
application to BMD and age. Statistics in Medicine, 24, 1047-
1074.  

National Center for Health Statistics (1992). Third national health and 
nutrition examination survey. Vital and Health Statistics, Series 2, 
113.  

Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581-
592.  

Smith, A.F.M., and Gelfand, A.E. (1992). Bayesian statistics without 
tears: A sampling-resampling perspective. The American 
Statistician, 46, 84-88. 
 

 



E L E C T R O N I C 
P U B L I C A T I O N S 
A V A I L A B L E  A T

P U B L I C A T I O N S 
É L E C T R O N I Q U E S 
D I S P O N I B L E  À

www.s t atcan.gc.ca



Survey Methodology, June 2012  95 
Vol. 38, No. 1, pp. 95-99 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Phillip S. Kott, RTI International, Suite 902, 6100 Executive Blvd., Rockville, MD 20852, U.S.A. E-mail: pkott@rti.org. 

 

Why one should incorporate the design weights when  
adjusting for unit nonresponse using response homogeneity groups 

Phillip S. Kott 1 

Abstract 
When there is unit (whole-element) nonresponse in a survey sample drawn using probability-sampling principles, a common 
practice is to divide the sample into mutually exclusive groups in such a way that it is reasonable to assume that each 
sampled element in a group were equally likely to be a survey nonrespondent. In this way, unit response can be treated as an 
additional phase of probability sampling with the inverse of the estimated probability of unit response within a group 
serving as an adjustment factor when computing the final weights for the group’s respondents. If the goal is to estimate the 
population mean of a survey variable that roughly behaves as if it were a random variable with a constant mean within each 
group regardless of the original design weights, then incorporating the design weights into the adjustment factors will 
usually be more efficient than not incorporating them. In fact, if the survey variable behaved exactly like such a random 
variable, then the estimated population mean computed with the design-weighted adjustment factors would be nearly 
unbiased in some sense (i.e., under the combination of the original probability-sampling mechanism and a prediction model) 
even when the sampled elements within a group are not equally likely to respond. 
 
Key Words: Double protection; Prediction model; Probability sampling; Response model; Sampling phase; Stratified 

Bernoulli sampling. 
 
 

1. Introduction  
In the absence of nonresponse, it is possible to estimate 

the mean of a finite population from a survey sample 
without having to assume a statistical model which, no 
matter how reasonable, may not hold true. This is done by 
assigning each element of the population a positive proba-
bility of sample selection and creating estimators around this 
random-selection mechanism. Unfortunately, surveys taken 
in the real world often suffer from nonresponse.  

Two different types of models can be used in the face of 
unit (whole-element) nonresponse. One is a prediction or 
outcome model in which the survey variable of interest is 
assumed to behave like a random variable with known 
characteristics but unknown parameters. The other is a 
response or selection model where the very act of an 
element’s responding to a survey is treated as an additional 
phase of random sample selection.  

Conventionally, survey statisticians prefer response mod-
els for two reasons. In addition to the convenience of 
response modeling allowing them to treat unit response as 
an additional phase of random sampling, a survey is usually 
designed to collect information on a number of variables 
from the sampled elements. Prediction modeling requires 
assuming a different model for each survey variable any one 
of which could fail. Response modeling, by contrast, requires 
only the assumption of a single model. This is no longer true 
when there is item (survey-variable-specific) nonresponse. 
Consequently, prediction modeling is more common when 

handling item nonresponse through imputation. That being 
said, item nonresponse is beyond the scope of this note.  

Under an assumed response model, the element proba-
bilities of response are treated as unknown, which means 
that they have to be estimated from the sample. Typically, 
the response mechanism is assumed to be independent 
across elements and not to depend on whether the element is 
in the sample (each element has an a priori probability of 
response which becomes operational if it is selected for the 
sample). The simplest and mostly commonly used response 
model separates the sample, and implicitly the entire 
population, into mutually exclusive groups, called “response 
homogeneity groups” by Särndal, Swensson and Wretman 
(1992) (the term “weighting classes” is more common; see, 
for example, Lohr (2009, pages 340-341)), and assumes that 
each element in a group is equally likely to be a unit respon-
dent regardless of its probability of selection into the origin-
nal sample, .k  Thus, the response mechanism produces a 
stratified Bernoulli subsample with the groups serving as the 
strata.  

Conditioned on the respondent sample sizes in the groups, 
a stratified Bernoulli subsample with unknown selection 
(response) probabilities is converted into a stratified simple 
random subsample with known selection probabilities: 

/g gr n  for the elements in group g when that group has gn  
sampled elements, gr  or which respond.  

Although the conditional probabilities of response in 
group g under the stratified Bernoulli response model is 

/ ,g gr n  we will see it is often better to multiply the design 
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weight, 1 / ,k kd    for a responding element in the group 
not by / ,g gn r  but by  

                                       ,g

g

k
k S

g
k

k R

d

f
d









 (1) 

where gS  is the original sample and gR  the respondent 
subsample in group .g  This adjustment factor can be dif-
ferent from /g gn r  when the kd  in group g  vary.  

Little and Vartivarian (2003) claim that using the gf  is 
what is usually done in practice. They argue, however, that 
incorporating design weights into the adjustment factor in 
this way can “add to the variance”.  

In section 2, we develop the notation for estimating the 
population mean of a survey variable. Using the /g gn r  

produces a double-expansion estimator, while using the gf  

produces a reweighted-expansion estimator. We can express 
both using a formulation in Kim, Navarro and Fuller (2006). 
From that expression, it is possible to see that if the survey 
variable roughly behaves like a random variable with a 
constant mean within each group regardless of the design 
weights, then using the gf  will often be more efficient than 
using the / .g gn r  In fact, if the survey variable behaved 
exactly like such a random variable, then the estimated 
population mean computed with the gf  would be nearly 
unbiased under the combination of the original sampling 
design and this prediction model even when the response 
model fails.  

In Section 3, we show that empirical results in Little and 
Vartivarian (2003) are consistent with these arguments and 
offer some concluding remarks.  

 
2. The two estimators 

 
Suppose we want to estimate the population mean of a 

survey variable :ky  

1 1

1 1

,
g

g

G G

k g Uk
g k U gk U

U G G

g g
g g

y N yy
y

N
N N
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 

  
  

 
 

where the population U  is divided into G  groups, 1, ...,U  
,GU  each gU  contains gN  elements, and 1 ...N N    
.GN  In the absence of nonresponse, each gN  is estimated 

in an unbiased fashion under probability-sampling theory by 
ˆ ,

gk Sg kN d  and each 
gUy

 
is estimated in a nearly (i.e., 

asymptotically) unbiased fashion  

                                 ,g

g

g

k k
k S

S
k

k S

d y

y
d









 (2) 

under mild conditions when gn  is sufficiently large. We 
assume both here.  

For a formal statement of the conditions under which 
each 

gSy
 
is consistent under probability sampling theory 

and therefore nearly unbiased, see Fuller (2009, page 115). 
The interested reader is directed to Fuller whenever a result 
in this note depends on assumptions about the design and 
population as the sample size grows arbitrarily large. A 
more rigorous treatment of much of what is to be discussed 
here under the response model can be found in Kim, 
Navarro and Fuller (2006).  

Let us label the full-sample estimator for Uy  we have 
been discussing ˆ .

g

G
S g Sy N y

 
There are more direct 

ways to render ,Sy  but this version will better serve our 
purposes.  

If we adjust for nonresponse using the gf  in equation 
(1), we have the reweighted-expansion estimator:  
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Technically, ˆ
rwy  is the ratio of two reweighted-expansion 

estimators, but we use the simpler terminology here.  
Employing the /g gn r  results in the double-expansion 

estimator: 
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For our purposes, this estimator can also be expressed as  
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where 

                        
1

  for g
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p k S
d n
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
 (3) 

(so that ˆ ).
g gS Sk k k gd p d N    

Both ˆ
rwy  and ˆ

dey  can now be written in the form:  
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For the reweighted-expansion estimator, all 1,kq   while 
for the double-expansion estimator, k kq p  as defined by 
equation (3).  

We will soon have use of the following for our two 
estimators:  
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where .k k Se y y   Equation (5) holds exactly when all 
1.kq   When ,k kq p  the near equality depends on the 

gr  being sufficiently large and other mild conditions.  
Now assume the following response model holds: Each 

element k  in a group has an equal, positive probability of 
response that does not vary with k  or with .ky  That is to 
say, the response indicator ,k  which is 1 when k  responds 
if sampled and is 0 otherwise, is a Bernoulli random 
variable with a common mean in gU  regardless of the 
values of k  and .ky  

By treating unit response as a second phase of probability 
sampling in this way, the added variance/mean-squared-
error due to nonresponse given the original sample and the 

gr  for both estimators can be expressed as  
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(7)

 

under mild conditions on the population and original 
sampling design we assume to hold, including (again) that 
the gr  are sufficiently large. These conditions make both 
estimators nearly unbiased under quasi-probability sampling 
theory (probability theory augmented with a response 
model) and render the distinction between large-sample 
variance and mean squared error moot. Quasi-probability 
sampling theory is also known as “quasi-design-based” and 
“quasi-randomization-based” sampling theory. 

Looking at equations (6) and (7), we see that at one 
extreme ˆ

rwy  has an added variance due to nonresponse of 
(approximately) zero when all the originally sampled ky  in 
a group are equal, while at the other ˆ

dey  has an added 
variance of zero when all the originally sampled k kd e  (or, 
put another way, the [ ])k k Sd y y  in a group are equal.  

Heuristically, the reweighted-expansion estimator is 
more efficient than the double-expansion estimator when 

gSe  is a better predictor of ke  for gk S  than .
gk Sp e  

Thus, when the groups were constructed as advised in Little 
and Vartivarian (2003) and earlier in Little (1986) so that 
the ky  in a group are homogeneous (as opposed to the 

[ ]k k Sd y y  being homogeneous), then the reweighted-
expansion estimated computed with the gf  will usually be 
more efficient than the double-expansion estimator com-
puted with the / .g gn r  

The heuristic observation can be formalized with an 
alternative justification for using the reweighted-expansion 
estimator. Suppose the following prediction model holds: 
Each ky  in gU  is a random variable with common mean, 

,g  regardless of k  and .k  Then ˆ
rwy  is nearly unbiased 

under mild conditions with respect to the combination of the 
original sampling mechanism (which treats the kd  as 
random, where 0kd   for )k S  the prediction model 
(which treats the ky  as random). That is to say, E [Ed y  

ˆ( )] 0,rw Uy y S    since the double expectation of both 
ˆ

rwy  and Uy  are nearly / .G G
g g gN N   This combined 

unbiasedness is exact when the design is such that S kd   
.N  Stratified, simple random sampling is an example of 

such a design. Unstratified sampling with unequal proba-
bilities and many multistage designs are not.  
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It is not hard to see that ˆ
rwy  is also exactly unbiased with 

respect to this double expectation (i.e., ˆE [ E (d y rwy   
)] 0)Uy S   when all the g  are equal. In fact, the pre-

diction-model expectation of both ˆ
rwy  and ˆ

dey  equals this 
common mean, as does the prediction-model expectation of 
an estimator without any adjustment for unit nonresponse, 
that is, with the gf  in ˆ

rwy  replaced by 1. The advantage of 
ˆ

rwy  over ˆ
dey  under the prediction model obtains only when 

the g  vary, that is, when the survey variable has a different 
prediction mean across the groups.  

Notice that if either the response model or the prediction 
model holds, then the reweighted-expansion estimator is 
nearly unbiased in some sense (i.e., under the combination 
of the original design and the response model or under the 
original design and the prediction model). This property has 
been called “double protection” against nonresponse bias. 
See, for example, Bang and Robins (2005).   

3. Concluding remarks  
In this note, we discussed two distinct types of models. 

We stressed a response model, which treats the response 
indicators, ,k  as a Bernoulli random variable within each 
group but with unknown parameters. We also described a 
prediction model, which treats the survey values, ,ky  as 
random variables with unknown means that could vary 
across groups but not within them.  

As part of the response model, we assumed that within a 
group, the k  do not depend on the .ky  Analogously as part 
of the prediction model, we assumed that within a group, the 

ky  do not depend on the .k  When both k  and ky  are 
treated as random variables the former assumption, that 
nonrespondents are missing at random, is equivalent to the 
latter assumption, that the response mechanism is ignorable 
(see, for example, Little and Rubin 1987). It should be under-
stood, however, that the ky  need not be treated as random 
variables under the response model and the k  need not be 
treated as random variables under the prediction model. The 
two concepts (missingness at random and ignorable non-
response) may be equivalent in some sense but they are not 
identical. 

The heart of Little and Vartivarian (2003) is a series of 
simulations featuring a binary survey variable, two potential 
response groups, and two original selection probabilities. 
Both the survey variable and response indicators are gener-
ated under five models. The expected value of each is a 
function of, 1, the response group only, 2, the selection 
probability only, 3, neither, or, 4 and 5, one of two equal 
combinations of response group and selection probability. 
This produces 25 scenarios, of which 10 are of primary 
interest to us. Those are the ones in which the survey 

variable is a function either of only the response group or of 
neither the response group nor the selection probability. 

As our theory predicts when the survey variable is a 
function of neither the response group nor the selection 
probability, both the reweighted- and double-expansion 
estimators have empirical biases near zero (Table 5 in Little 
and Vartivarian) because both are nearly unbiased under the 
combination of the original sampling design and a valid 
prediction model: all population elements have the same 
mean. When the survey variable is a function of the re-
sponse group and the response indicator is wholly or partly 
a function of the selection probability, only the reweighted-
expansion estimator is nearly unbiased empirically since 
only it is unbiased under the combination of the original 
sampling design and a valid prediction model. As a result, 
ˆ

rwy  also has less empirical root mean squared error and 
significantly less average absolute error as an estimator for 

Sy  (Tables 4 and 6 in Little and Vartivarian, respectively; 
the significance test treats the mean value across the 
simulations of ˆ ˆ

rw S de Sy y y y        as asymptotically 
normal). 

When both the survey variable and response indicators 
are functions of the response group only, the reweighted-
expansion estimator has slightly less empirical root mean 
squared error and average absolute error than the double-
expansion estimator but the latter is not significant.  

It should not surprise us that the reduction in empirical 
root mean squared error is modest. The contribution to the 
variance from nonresponse under the response model 
mechanism expressed in equations (6) and (7) is conditioned 
on the original sample (technically, the contribution of non-
response to the total quasi-probability variance of ,

ˆ
Sy q  is 

the expectation of Aq  in equation (6) under the original 
sampling mechanism). In applications where the response 
rates are relatively large (in the simulations they averaged 
0.5), this contribution can be dominated by the probability-
sampling variance/mean squared error of the full-sample 
estimator, ˆ .Uy  

Two warnings are in order. The respondent sample size 
within each group must be sufficiently large for the 
reweighted-expansion estimator to nearly unbiased under 
quasi-probability theory. For the double-expansion esti-
mator, each gr  need only be positive. Moreover, that the 
reweighted-expansion estimator is doubly protected against 
nonresponse bias is only helpful when either the assumed 
response or prediction model is correct. If both the 
response probabilities and survey values vary with the 
design weights, then the reweighted-expansion estimator 
can be meaningfully biased. Despite the slant taken in this 
note, that is the take-away message Little and Vartivarian 
(2003) intended, and it cannot be disputed.  
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