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Nonsampling errors in dual frame telephone surveys 
J. Michael Brick, Ismael Flores Cervantes, Sunghee Lee and Greg Norman 1 

Abstract 
Dual frame telephone surveys are becoming common in the U.S. because of the incompleteness of the landline frame as 
people transition to cell phones. This article examines nonsampling errors in dual frame telephone surveys. Even though 
nonsampling errors are ignored in much of the dual frame literature, we find that under some conditions substantial biases 
may arise in dual frame telephone surveys due to these errors. We specifically explore biases due to nonresponse and 
measurement error in these telephone surveys. To reduce the bias resulting from these errors, we propose dual frame 
sampling and weighting methods. The compositing factor for combining the estimates from the two frames is shown to play 
an important role in reducing nonresponse bias. 
 
Key Words: Nonresponse bias; Measurement error; Calibration; Sample allocation; Composite. 
 
 

1. Introduction  
Dual frame telephone surveys that sample from both 

landline and cell phones have become important in the U.S. 
to reduce undercoverage bias due to the incompleteness of 
the landline frame. Blumberg and Luke (2009) show that 
the percentage of households without a landline telephone 
but with at least one cell phone has increased dramatically in 
the last few years, reaching 20 percent by the end of 2008. 
Other countries also report substantial increases in the 
percentages of people who have only a cell phone (e.g., 
Kuusela, Callegaro and Vehovar 2008; Vicente and Reis 
2009). 

This paper uses data from the California Health Interview 
Survey (CHIS) and from 8 surveys conducted for the Pew 
Research Center for the People & the Press to examine the 
effects of nonsampling errors in dual frame telephone 
surveys. The CHIS 2007, a survey of California adults, was 
undertaken in late 2007. It combines a standard landline 
survey with a screening sample of cell phone numbers, 
where adults from the cell sample were interviewed only if 
they indicated that they did not have a landline number in 
the household. The Pew surveys are national surveys that 
interviewed an adult at all sampled residential telephone 
numbers from both landline and the cell samples. These 
surveys are described in more detail later. A number of 
important issues associated with the effect of nonsampling 
errors have been identified as a result of undertaking these 
dual frame telephone surveys – errors that have not been 
investigated fully in other studies.  

In the next section we review sample design, weighting 
and variance estimation methods developed for dual frame 
surveys, and describe CHIS 2007 and Pew dual frame 
telephone surveys that are used throughout the paper. The 

third section discusses nonsampling error in dual frame 
telephone surveys, and the effects these errors may have on 
the bias of estimates. Nonresponse and measurement errors 
have special importance in dual frame surveys. The fourth 
section studies sampling and estimation methods that may 
be used to alleviate bias in dual frame telephone surveys, 
and gives conditions under which these sampling and esti-
mation approaches may be most useful. In this section we 
propose three estimators to reduce the bias due to differ-
ential nonresponse within the overlap domain. The final 
section summarizes some of the findings for dual frame 
telephone surveys, and speculates on the applicability of 
these findings for other dual frame surveys.  

2. Background  
Most of the literature on dual frame surveys deals with 

the statistical theory related to efficiency in sample design 
and estimation. We summarize some of the key results in 
sampling, weighting and variance estimation, and then 
discuss the application of these methods to dual frame 
telephone surveys.  
2.1 Sampling  

The two sampling frames are denoted as A and B, and we 
assume the samples from these frames, AS  and ,BS  are 
independent. The domain of units that are only in A is a, the 
domain of units only in B is b, and the intersection 
containing the overlap units is ab. In our application to 
telephone surveys, A is the frame of landline numbers, B is 
the frame of cell phone numbers, a is the domain of 
households with only landline numbers, b is the domain of 
households with only cell phone numbers, and ab is the 
domain of households with both types of telephone service. 
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Many important features of dual frame surveys depend on 
how units that could fall into both sampling frames (ab) are 
handled.  

A screening dual frame approach attempts to make ab =  
∅  by removing any overlap units before sampling, after 
sampling but prior to data collection, during data collection, 
or after data collection. Lohr (2009) gives examples of dual 
frame surveys using each of these approaches. 

Brick, Edwards and Lee (2007) and Fleeman (2007) 
describe screening in dual frame telephone surveys. While 
U.S. telephone numbers can be partitioned by whether they 
are cell or landline numbers, this frame does not identify 
whether those numbers correspond to households with only 
landlines (a), households with only cell phones (b), or 
households with both types of service (ab). In the surveys 
described by Brick, Edwards and Lee (2007) and Fleeman 
(2007), households sampled from the cell phone frame (B) 
were screened out during the data collection if they reported 
having a landline. The CHIS 2007 used this screening 
approach. 

A second approach is called an overlap dual frame 
survey, and units in the overlap could be sampled from both 
frames. In this case, estimation methods must be employed 
to avoid biased estimates because the overlap units have 
multiple chances of selection. Steeh (2004), Brick, Brick, 
Dipko, Presser, Tucker and Yuan (2007), and Kennedy 
(2007) discuss dual frame telephone surveys with overlap. 
In these cases, all respondents are interviewed irrespective 
of the frame they are sampled from. The Pew surveys use 
the overlap approach.  
2.2 Estimation  

In a screening survey, producing weights for estimating 
totals and characteristics of the entire population is simple, 
at least in the absence of nonsampling errors. Since ab =  
∅  and the sampling is independent, the units sampled from 
each frame are assigned weights that are the inverse of their 
selection probabilities from the frame from which they were 
selected. An overall estimate of the total is the sum of the 
weighted domain estimates, ˆ ˆ ˆ ,scr A by y y= +  where ˆAy =  

Ai S i id y∈∑  and ˆ ( ) ,
Bi Sb i i iy d b y∈∑= δ  where id  is the 

inverse of the selection probability and ( ) 1i bδ =  if i  is in 
domain b and 0 otherwise. Variance estimation is also 
straight-forward since the two frames are strata and variance 
estimation methods appropriate for stratified samples can be 
applied. For telephone surveys, the landline sample units are 
weighted and added to the weighted cell phone sampled 
units, after the sampled cell phone units that have landlines 
are given a weight of zero.  

Screening during data collection, even in the absence of 
nonsampling errors, does have implications. For example, 
screened out households from B are not eligible for the 

interview, and this increases data collection costs and the 
variance of estimated totals (Kish 1965, Chapter 11). The 
units that are screened out should also be treated properly as 
sampled units in variance estimation.  

Overlap surveys are more complex because units could 
be sampled from either of the frames. One estimation ap-
proach is to combine the two domain estimates, ˆay  and ˆby  
with an average of the estimates of the overlap population 
from the separate frames. If ˆ A

aby  and ˆ B
aby  are the weighted 

estimates of the overlap domain from frame A and frame B, 
respectively, then an average or composite estimator is 
ˆ ˆ ˆ ˆ ˆ(1 ) ,A B

ave a b ab aby y y y y= + +λ + − λ  with 0 1.≤ λ ≤  Follow-
ing Lohr (2009) we refer to these as average estimators. 
Assuming ˆay  and ˆby  are unbiased for domain a and 
domain b, and ˆ A

aby  and ˆ B
aby  are both unbiased for domain 

ab, then ˆavey  is an unbiased estimator of the total. Estimates 
of means and other quantities can be produced using 
weights, where the weights for units in ab that are sampled 
from A are multiplied by λ  and the weights for overlap 
units sampled from B are multiplied by (1 ).− λ  The choice 
of the compositing factor, ,λ  has been investigated by 
many researchers and specific choices to reduce the vari-
ance of the estimates have been suggested by Hartley (1962, 
1974) and Fuller and Burmeister (1972). All of average 
estimators require that the domain for all sampled units can 
be identified.  

Variance estimation with the average estimator is rela-
tively simple if λ  is a fixed and not dependent on the 
selected sample. In this case, ˆ ˆ ˆ( ) ( )A

ave a abV y V y y= + λ +  
ˆ ˆ( (1 ) ),B

b abV y y+ − λ  and each of these variances can be 
computed using variance estimation methods appropriate 
for the separate samples. If λ  is sample dependent, as with 
the Hartley and Fuller and Burmeister estimators, then vari-
ance estimation is more complicated. The average esti-
mators with a fixed λ  have been used in most dual frame 
telephone surveys with overlap. This approach is discussed 
below for the Pew surveys. 

Other estimation approaches that have been considered 
for an overlap survey include the single frame estimator 
(Bankier 1986; Kalton and Anderson 1986; and Skinner 
1991), and the pseudo-maximum-likelihood estimator 
(Skinner and Rao 1996; Lohr and Rao 2000; and Lohr and 
Rao 2006). Lohr (2009) reviews these estimators. Nearly all 
telephone surveys with overlap that we have seen use some 
versions of the average estimator, and it is the focus of this 
research.  
2.3 Telephone survey applications  

Data from CHIS 2007 are used to illustrate issues that 
arise in dual frame telephone survey that use a screening 
approach. The CHIS 2007 is a telephone survey of 
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California’s population conducted by the UCLA Center for 
Health Policy Research in collaboration with the California 
Department of Public Health, the California Department of 
Health Care Services, and the Public Health Institute. Data 
collection for CHIS 2007 was carried out by Westat in late 
2007 through early 2008.  

In the CHIS 2007 landline sample, one adult was sam-
pled and interviewed in each household. In the cell phone 
sample, persons living in households with landline phones 
were screened out; an adult was sampled and interviewed in 
the cell sample if they lived in a household classified as cell- 
only. All responding households, including those screened 
out from the cell phone frame, were asked questions about 
telephone status and usage. Nearly 49,000 adult interviews 
were completed from the landline sample, and 825 inter-
views were completed with cell-only adults. The landline 
sample response rate was 35.5% in the interview conducted 
with a household informant, and a 59.4% for the sampled 
adult. Respective response rates for the sample from the cell 
frame were 22.1% and 52.0%. Since CHIS 2007 used a 
screening approach, the reported response rate for the cell-
only household informant interview is 30.5%. California 
Health Interview Survey (2009) discusses details of the 
study design, including differences between the overall cell 
phone response rate and the cell-only rate.  

In the CHIS 2007, the estimates from the cell phone 
sample are calibrated to the cell-only adult population in 
California at the screening stage (prior to nonresponse 
weight adjustment for the sampled adult). There are some 
difficulties with obtaining reliable control totals for the 
calibration at the state level that are discussed later. The two 
samples from the two frames are independent samples and 
are treated as such, until the ultimate stage where the two 
are combined and calibrated to independent totals of the 
entire adult population of California. This last calibration 
stage does not include telephone status as a domain. 

For dual frame telephone surveys with overlap, we use 
data aggregated from 8 surveys conducted for the Pew 
Research Center for the People & the Press in late 2008 
through early 2009. (The data for the Pew surveys were 
provided by Scott Keeter of the Pew Research Center for the 
People & the Press). All of these are surveys of the entire 
U.S. adult population. The surveys interview one adult in 
each sampled household from both frames using nearly 
identical questionnaires. Over the 8 surveys, nearly 11,300 
landline interviews and 3,800 cell phone interviews were 
completed. The response rates from the different surveys are 
very similar for the landline and the cell phone samples, 
with a median difference of one percentage point between 
the samples from the two frames. The response rates range 
across the 8 surveys and two frames from 17% to 24%.  

In the Pew surveys, like most dual frame telephone 
surveys with overlap, a calibrated version of the average 
estimator is employed. Most surveys calibrate to both the 
telephone status domain counts (number of adults living in 
households with only cell phones, the number in household 
with only landlines, and households with both landlines and 
cell phones), and to demographic variables. The Pew studies 
are also calibrated to demographic totals including age, 
education, race/ethnicity, region, and population density of 
households with adults 18 years of age or older. In addition, 
they calibrate to totals of telephone status and, within the 
overlap domain to relative usage of landline and cell 
phones.   

3. Nonsampling errors  
Dual frame theory has been developed for ideal condi-

tions – complete response and the absence of other nonsam-
pling errors. Nonsampling errors affect the bias and preci-
sion of the estimates in any survey, but their effects in dual 
frame surveys may be qualitatively different from those in 
single frame surveys for three reasons. First, nonsampling 
error in dual frame surveys often makes it difficult to 
determine the probability of selection of the sampled unit. 
This occurs when domain membership is ascertained during 
data collection, and nonresponse and measurement errors 
make it difficult to determine if a sampled unit is in the 
overlap. Second, nonsampling error in dual frame surveys 
may be linked directly, sometimes causally, to the sampling 
frame especially when data collection approaches differ by 
frame. Third, sampling from more than one frame adds 
complexity and creates more opportunities for nonsampling 
errors to have differential effects.  
3.1 Nonresponse effects  

Brick, Dipko, Presser, Tucker and Yuan (2006) show 
that the over-representation of the number of adults in cell-
only households that occurs in almost all dual frame tele-
phone samples may be due to nonresponse error. They 
suggest that this over-representation might be the result of 
differential accessibility – adults who rarely use cell phones 
are less likely to answer their cell phone than those who use 
their cell phones regularly. They did not find the same type 
of usage-related differential response rates in the landline 
sample. Kennedy (2007) further explores this type of 
nonresponse bias by examining the effects on specific 
estimates.  

To evaluate the differential representation, we compare 
the CHIS 2007 and Pew survey sample distributions by 
sampling frame and telephone usage to estimates from the 
National Health Interview Survey (NHIS). The NHIS is a 
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face-to-face survey sponsored by the National Center for 
Health Statistics with data collected by the U.S. Bureau of 
Census (the NHIS data were provided by S. Blumberg and 
J. Luke as a special tabulation). It is the only federal gov-
ernment survey that provides estimates of telephone status 
and usage (Blumberg and Luke 2009). We define usage for 
the dual users (those in households with both types of phone 
service) as cell-mainly and land-mainly, where cell-mainly 
are persons who live in households that receive all or almost 
all their calls on their cell phone and land-mainly are the 
dual users in households that do not receive all or almost all 
their calls on their cell phone.  

To be more comparable to the CHIS figures, Table 1 
restricts the NHIS estimates to those from the West region 
only (NHIS estimates for California are not available). 
California accounts for 52 percent of the adults in the West. 
The NHIS figures are population estimates from the first six 
months of 2008, which is roughly contemporaneous to the 
CHIS data collection period. The CHIS figures are the un-
weighted sample dispositions (the weighted dispositions are 
nearly identical). Even though CHIS used a screening 

approach, the telephone usage information was collected for 
every responding household in the cell phone sample. The 
table shows that the cell phone frame distribution over-
represents the percent of adults in cell-only households and 
under-represents land-mainly adults when compared to the 
NHIS estimates. The landline respondents over-represent 
the land-only users and under-represent the cell-mainly dual 
users. The landline frame differences are more substantial 
than observed in a 2004 survey as reported in Brick et al. 
(2006). 

Table 2 shows the same type of comparison of the NHIS 
national estimates from the second half of 2008 to the 
aggregated Pew survey unweighted outcomes (all the sur-
veys were equal probability samples). Similar to the CHIS 
results, the cell frame distribution from the Pew surveys 
over-represents the percentage in the cell-only group and 
under-represents the land-mainly group, but the differences 
are less substantial than in CHIS. The Pew distribution from 
the landline sample mirrors the NHIS distribution closely, 
with a slight under-representation of the cell-mainly group. 

 

 
Table 1 
Percentage distribution of adults from CHIS 2007 and NHIS, by telephone usage 
 

Telephone usage NHIS West adults in 
landline households 

CHIS 2007 landline 
distribution 

NHIS West adults in 
cell phone households 

CHIS 2007 cell phone 
distribution 

Landline-only 23.5% 
(1.5%) 

34.2%
(0.2%)

_ _

Dual – land-mainly 56.6% 
(1.7%) 

53.2%
(0.2%)

60.9%
(1.7%)

18.5%
(0.7%)

Dual – cell-mainly  19.9% 
(1.4%) 

12.7%
(0.2%)

21.4%
(1.4%)

31.2%
(0.9%)

Cell-only _ _ 17.7%
(1.3%)

50.3%
(0.9%)

Total 100.0% 100.0% 100.0% 100.0%
 

Notes NHIS-West is the National Health Interview Survey, West Region, first 6 months of 2008, with percentages of all households with that type 
of service (thanks to S. Blumberg and J. Luke for this special tabulation). CHIS 2007 is the California Health Interview Survey, collected in 
2007 and early 2008, with unweighted percentages from the landline and cell frames. In the cell phone sample, usage was obtained in the 
screening interview. Approximate standard errors given in (). 

 
Table 2 
Percentage distribution of adults from Pew surveys and NHIS, by telephone usage 
 

Telephone usage NHIS adults in 
landline households 

Pew surveys landline 
distribution 

NHIS adults in cell 
phone households 

Pew surveys cell 
phone distribution 

Landline-only 19.4% 
(0.7%) 

23.0%
(0.4%)

_ _

Dual – land-mainly 58.8% 
(0.8%) 

62.7%
(0.5%)

58.8%
(0.8%)

42.3%
(0.8%)

Dual – cell-mainly 19.3% 
(0.7%) 

14.4%
(0.3%)

18.5%
(0.7%)

24.0%
(0.7%)

Cell-only _ _ 22.7%
(0.7%)

33.7%
(0.8%)

Total 100.0% 100.0% 100.0% 100.0%
 

Notes NHIS is the National Health Interview Survey, second 6 months of 2008, with percentages of all households with that type of 
service. Pew surveys aggregates 8 surveys conducted for the Pew Research Center for the People & the Press from October 2008 
through March 2009, with unweighted percentages from the landline and cell frames. (Thanks to S. Keeter for providing these data). 
Approximate standard errors given in (). 
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Both of these surveys exhibit response distributions by 
frame and usage that are consistent with the accessibility 
conjecture of Brick et al. (2006). This conjecture implies an 
ordering of those that are most accessible and likely to 
respond – ordering from the most likely to respond to the 
least likely to respond in the cell frame is cell-only, cell-
mainly, and land-mainly. The special problem due to having 
two frames is that the ordering in the landline frame is 
different (land-only, land-mainly, cell-mainly), and the 
overlap units from the two frames could have very different 
response rates and biases. 

To examine nonresponse bias for a dual frame survey 
with overlap, suppose both the landline and cell samples are 
poststratified to telephone status domain totals prior to 
forming an average overall estimate. The poststratified esti-
mator is 

        ˆ ˆ ˆ ˆ ˆ(1 ) ,ˆ ˆ
A A B Ba b

ps a b ab ab
a b

N N
y y y g y g y

N N
= + + λ + − λ  (1) 

where the poststratification factor for the land-only sample 
is ˆ/ ,a aN N  for the cell-only sample it is ˆ/ ,b bN N  and the 
frame specific poststratification factors for the overlap are 

ˆ/A A
ab abg N N=  and ˆ/B B

ab abg N N=  for the landline and 
cell samples, respectively. The Horvitz-Thompson (HT) 
estimators of the number of units are ˆ

aN  for the land-only 
domain, ˆ

bN  for the cell-only domain, and ˆ A
abN  and ˆ B

abN  
for the overlap domain from the two samples. Since we 
focus on the overlap, we write 

                     ,ˆ ˆ ˆ(1 ) .A A B B
ps ab ab aby g y g y= λ + − λ  (2) 

This poststratified estimator differs from the approach 
suggested by Lohr and Rao (2000), who average and then 
poststratify rather than poststratify and then average. Both 
approaches are consistent and approximately unbiased when 
there are no nonsampling errors. 

If we allow for differential response rates by telephone 
usage within the overlap such as those observed in dual 
frame telephone surveys, (2) is biased. Let W be the 
proportion of the overlap that are land-mainly, and let mlY  
and mcY  be the population means for a characteristic for 
land-mainly and cell-mainly dual users, respectively. The 
bias of ,ˆ ps aby  is 

                  
,

1 1
1 1

ˆ( ) ( )

( (1 ) 1),

ps ab ab ml mc

l l c c

b y WN Y Y

r r r r− −

−

λ + − λ −  (3)
 

where lr  is the dual user’s response rate for the landline 
sample, 1lr  is the landline sample response rate of the land-
mainly, cr  is the dual user’s response rate for the cell 
sample, and 1cr  is the cell phone sample response rate of the 
land-mainly.  

To derive (3), we first define land-mainly and cell-mainly 
domain estimators from the landline sample as ˆ ( )A

aby ml =  
ˆ ( )A A

ml abN y ml  and ˆˆ ( ) ( ),A A A
ab mc aby mc N y mc=  and from the 

cell sample as ˆˆ ( ) ( )B B B
ab ml aby ml N y ml=  and ˆ ( )B

aby mc =  
ˆ ( ).B B

mc abN y mc  Now assume (a) ( ) ( )A B
ab abE y ml E y ml= =  

mlY  and ( ) ( ) ;A B
ab ab mcE y mc E y mc Y= =  (b) covariances 

such as ˆ ˆcov( / , ( )) 0;A A A
ml ab abN N y ml =  and, (c) the expected 

domain totals are simple expressions such as ˆ A
mlEN =  

1 ,l mlr N ˆ ,A
ab l abEN r N=  etc. Since ˆ ˆ( / )A A

ab ab abE N N y =  
ˆ ˆ ˆ{( ( ) ( )) / },A A A A A

ab ml ab mc ab abN E N y ml N y mc N+  we can write 
1 1 1

1 2 1
ˆ ˆ( / ) (A A

ab ab ab l l ml ml l l mc mc ab l lE N N y r r N Y r r N Y N r r− − −+ =
( ) ).ml mc mcW Y Y Y− +  A corresponding expression can be 

written for ˆ .B B
abEg y  Combining the two gives (3). 

These expressions assume that ( )B
ab mlE y ml Y=  and 

( ) .B
ab mcE y mc Y=  An alternative approach that does not 

require this assumption is to posit that there is response 
propensity associated with telephone usage. The bias in this 
case would be a function of the response propensities from 
each frame. We do not examine the response propensity 
approach here.  

Expression (3) shows that when 0 1,W< <  the bias of 
,ˆ ps aby  is zero if (a) ;ml mcY Y=  or (b) 1

1 (1 )l lr r−λ + − λ  
1

1 1.c cr r− =  Condition (a) is basically the well-known condi-
tion from single frame methodology. Condition (b) differs 
from single frame expressions because the bias depends on 
both the relative response rates and the compositing factor, 
λ . The exception is when 1 1

1 1 ,l l c cr r r r− −=  or equivalently 
1 1

1 2 1 2 ,l l c cr r r r− −=  where 2lr  is the landline sample response 
rate of the cell-mainly and 2cr  is the cell sample response 
rate of the cell-mainly. In this form, this expression is 
comparable to the single frame bias expression that shows 
no bias exists when response rates are constant.  

More generally, the value of λ affects the bias of the 
estimate, not just its variance. The bias can be eliminated by 
choosing  

                                   1
0

1 1

( )
.l c c

c l l c

r r r
r r r r

−
λ =

−
 (4) 

Since the proportion of the total population covered by the 
landline frame is approximately equal to the proportion 
covered by the cell phone frame, most applications have 
used λ = 0.50 without considering its effect on bias.  

We can now apply these expressions to evaluate the bias 
of dual frame telephone estimator for CHIS, assuming the 
bias is only from differential nonresponse in the overlap. 
Using the data in Table 1, W = 0.74 for the NHIS West 
region. We approximate 1

1l lr r−  by the relative poststratifi-
cation factor that is the ratio of the percentage of the CHIS 
landline sample classified as land-mainly to the percentage 
of the NHIS adults in landline households that are land-
mainly; 1

1c cr r−  is computed similarly for the cell phone 
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quantities. The quantities estimated from CHIS 2007 are 
given in Table 3, 1

1l lr r− 1.09 for the landline sample, and 
1

1c cr r− 0.50 for the cell sample. As an example, suppose 
mlY = 0.3 and mcY = 0.5, then the bias of the estimated 

percentage based on (3) is approximately 3 percentage 
points (a relative bias of about 9%) if λ = 0.5. Using (4), the 
bias is zero when λ 0.84; the bias becomes negative for 
larger values of .λ   
Table 3 
Within overlap, relative poststratification factors for CHIS 
2007 and Pew surveys 
 

Relative 
poststratification 
factors* CHIS 2007 Pew surveys 

1
1 /A A

l l mlr r g g−  1.09 1.07 
1

2 /A A
l l mcr r g g−  0.50 0.84 

1
1 /B B

c c mlr r g g−  0.74 0.78 
1

2 /B B
c c mcr r g g−  2.42 1.51 

 

* Poststratification adjustment factor for telephone usage domain 
within overlap divided by overlap poststratification factor.  
The same computations can be done using the data from 

the Pew surveys, and the estimates are also shown in Table 
3. The parameters differ substantially from those computed 
from CHIS. Since the Pew studies are national, the NHIS 
estimate is W = 0.81. The ratios of the Pew figures to the 
NHIS also have lower variability than those from the CHIS, 
with 1

1l lr r− 1.07 and 1
1c cr r− 0.84. As a result, the bias is 

only approximately 1 percentage points when λ = 0.5. The 
bias is zero when λ 0.7. 

To evaluate the biases more completely, estimates of 
ml mcY Y−  are needed for characteristics from a dual frame 

telephone survey rather than making arbitrary assumptions 
as done in the example above. Blumberg and Luke (2009) 
give estimates that suggest these differences may be as 
substantial as the differences between the cell-only and 
landline population that have been documented extensively 
elsewhere. However, the NHIS estimates are from a face-to-
face survey, not a dual frame telephone survey. 

Keeter, Dimock and Christian (2008) give estimated 
characteristics for dual telephone users by sampling frame, 
but not in sufficient detail to compute the biases. Keeter’s 
estimates indicate the estimates of dual users from the cell 
frame might be closer to the NHIS overlap estimates than 
those from the landline frame. However, since the response 
rates within the overlap are more variable from the cell 
frame than from the landline frame, a screening design that 
aims to reduce bias should exclude dual users from the cell 
phone frame rather than the landline frame when the cell 
frame has more variable response rates by frame.  

Because of the potential bias in the overlap design, Brick 
et al. (2006) suggest using a screening design that excludes 
adults in dual usage households if they were sampled from 
the cell frame. In a screening design, a bias still exists due to 
the differential nonresponse in the landline sample of dual 
users by telephone usage. Substituting 1λ =  into (2) and 
(3), the bias of ,ˆ ˆA A

scr ab aby g y=  is 

                 
1

, 1ˆ( ) ( ) ( 1).scr ab ab ml mc l lb y WN Y Y r r−= − −  (5) 

The bias for this design and estimator is equivalent to single 
frame estimators, with the bias vanishing when either mlY =  

mcY  or the landline response rates are the same for the land-
mainly and the cell-mainly. Notice that in this design, there 
is no compositing factor that can be used to control the bias. 

The bias of the screener estimator for CHIS 2007 is about 
half that of the average estimator using λ = 0.50 (the 
screener bias is 1.3 percentage points compared to the post-
stratified average estimator using λ = 0.50 with bias of -3.3 
points). With the Pew parameters, the bias of the post-
stratified average estimator and the screener estimator are 
nearly equal, with the bias of the screener slightly greater 
than the poststratified estimator (the screener bias is 1.1 
percentage points compared to -0.7 points for the post-
stratified overlap).  

An issue mentioned earlier is that domain totals for 
poststratification, even for telephone status alone (land-only, 
cell-only, and dual domains), are not generally available for 
state or local area surveys. While small area estimates of the 
percentage of adults who are cell-only at the state level have 
been published (Blumberg, Luke, Davidson, Davern, Yu 
and Soderberg 2009), these do not give small area estimates 
for all three domains. The situation for telephone usage 
control totals is even more limited, with only national NHIS 
estimates published. Since the response rates in the cell 
frame typically vary by usage, some assumptions about the 
response rates in the cell sample may be useful to avoid 
substantial over-representation of cell-only and cell-mainly 
adults from the cell frame sample when using the overlap 
design.  
3.2 Measurement error effects  

In addition to nonresponse, some of the differences in the 
distributions shown in tables 1 and 2 could be due to 
measurement error. Before we discuss hypotheses related to 
measurement error, some of the key procedures in the 
surveys that could be related to measurement error are 
discussed. There are fundamental differences in the surveys, 
such as mode and topic. The NHIS is a face-to-face survey; 
the CHIS and Pew surveys are telephone surveys. Both 
NHIS and CHIS are health surveys, while the Pew surveys 
cover a broad range of topics. 
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The surveys also use different methods for collecting 
telephone status and usage. In the NHIS an adult family 
member is asked to answer questions about telephone status 
and usage for the entire family in a section of the interview 
about family characteristics. In the cell phone sample in 
CHIS 2007, the telephone status items are asked during the 
household screening, but the usage items are in the sampled 
adult interview. In the CHIS landline sample and the Pew 
surveys, the status and usage items are all in one of the last 
sections of the adult interview. This later placement is 
possible because no screening is involved.  

The sampling of an adult is another procedure that may 
interact with the measurement process. In the CHIS 2007, 
an adult is sampled from all adults who share the same cell 
phone. In the Pew surveys, and most other cell phone 
surveys, the cell phone is considered a personal device, and 
the person answering the phone is interviewed. In dual use 
households, the CHIS and Pew methods may result in 
different samples of adults. 

The greatest potential source of measurement error may 
be related to differences in the questionnaire items for 
telephone status and usage in the surveys. The items asked 
in each survey are given in the appendix. The approaches 
are quite varied. At least part of the difference in the studies 
is because the CHIS and Pew surveys are conducted by 
telephone and have prior information about telephone status.  

The items used in all three surveys are derived from 
items used in a supplement to the Current Population 
Survey (CPS) in 2004. As discussed in Tucker, Brick and 
Meekins (2007), cognitive testing and behavioral coding for 
the supplement identified a number of concerns with the 
CPS items, especially the usage item. Their testing found 
that a lack of a specific reference period, not having a code 
for ‘‘half the time,’’ and difficulty in reporting for other 
members of the household made the usage item susceptible 
to measurement error. Tucker et al. (2007) also highlight the 
difficulty respondents had in reporting telephone status and 
usage for all household members in a single item. In 
addition, respondents had difficulty with understanding the 
meaning of “landline,” “regular,” a “working” cell phone, 
and the difference between using and answering a cell 
phone.  

These issues could affect domain classification, and thus 
bias estimates. For example, a 23-year-old living with 
parents might report being cell-only, while the parents might 
report dual usage. The effects on the estimates of these types 
of measurement errors in the NHIS and telephone surveys 
are difficult to predict, but inconsistent reporting in tele-
phone and face-to-face administrations is not unexpected. 

Another possible measurement problem is the relationship 
between reporting telephone usage and the sampling frame 
from which respondents were selected. The hypothesized 

error arises if the respondent, when asked which device they 
use to receive most of their calls, is more likely to choose 
the device they are using to do the interview. We do not 
believe this hypothesis has been tested, but any device effect 
of this nature would be expected to be in the same direction 
as the nonresponse effect. A dual user should have a greater 
likelihood of reporting as cell-mainly if sampled from the 
cell frame; they should be more likely to report as land-
mainly if sampled from the landline. Thus, the bias dis-
cussed earlier in the context of nonresponse could be arising 
due to the combined effect of nonresponse and device 
effect. Without being able to identify the magnitude of these 
sources of the bias, methods for reducing bias are unclear.   

4. Design and estimation approaches  
      with nonsampling errors  

Because of the additional issues at play in dual frame 
surveys, sampling and estimation methods should be de-
signed to account for the most important sources of error 
rather than focusing solely on sampling error. In this section 
we address sample design and estimation choices for dual 
frame telephone surveys within this larger error structure 
setting.  
4.1 Sample design approaches  

A key design decision for a dual frame telephone survey 
is whether to use a screening or full overlap sample design. 
We begin by exploring the optimal allocation of the sample 
for overlap and screening designs appropriate for dual frame 
telephone surveys when simple random samples are selected 
independently from the two frames and 0, 0,a bN N> >  
and 0.abN >  We assume throughout that the sample sizes 
are large enough to ignore the finite population correction 
factors. 

We use a linear expected cost function ( ) (A AE C c n= +  
1),B B An c c−  where Ac  is the cost of a landline interview, Bc  

is the cost of a cell phone interview, and An  and Bn  are the 
number sampled from frames A and B, respectively. 
Assuming a constant element variance, 2,σ  the variance of 
the overlap estimator is 2 2 2 1( ( )ov A a ab Av N N N n−= σ + λ +  

2 1( (1 ) ) ).B b ab BN N N n−+ − λ  The allocation that minimizes 
the variance with this cost function can be found by stan-
dard Lagrangian methods, and is  

            
( )

1 1 2
,

21 1
,

( ) ( )

( ) ( 1 ),

o A A A a ab

o B B B b ab

n E C c N N N

n E C c N N N

− −

− −

= τ + λ

= τ + − λ  (6)
 

where 
2 2( ) ( (1 ) ).A A a ab B B b abc N N N c N N Nτ = + λ + + − λ  
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For a screening design, a linear cost function appropriate 
for dual frame telephone surveys is ( ) ,A A b bE C c n n c= +  
where 1 ,b B B b sc c N N c−= + bn  is the sampled number of 
cell-only, and sc  is the cost of screening. The variance of 
the screening estimator is 2 2 2 1 1( ).sc A A B b Bv N n N N n− −= σ +  
The optimal allocation is just the stratified allocation given 
by 1

, ( ) ( )s A A A A A b bn E C N c N c c N −= +  and 

( ) ,B
B

A b A b b

E C Nn
c c N c N

=
+

 

yielding 

( ) b
b

A b A b b

E C N
n

c c N c N
=

+
 

cell-only interviews. 
With no nonsampling error and a fixed expected cost, the 

variance for the optimally allocated overlap design is smaller 
than the variance for the optimally allocated screener 
design when the cost of screening is large enough so that 

1( ).b b A Ac N N c−> τ −  When bias is included, the 
screening design may have smaller mean square error than 
the overlap design even when this condition holds. In the 
analysis below, we consider bias but do not account for all 
the effects of nonsampling error. For example, differential 
response affects the yield by the sampling frame from which 
the units are selected thus affecting the allocation and 
variance of the estimate. 

We compare the mean square errors of the screening and 
overlap designs under the CHIS 2007 parameters given 
previously. The mean square error is the sum of the variance 
and the bias squared. The variance is for the overall 
estimate, but the bias arises only from the overlap under our 
assumptions. The cost parameters for interviewing and 
screening cell phones are still not very well-known, but we 
use ( 1, 3, 2)A B sc c c= = =  based on information given by 
Keeter et al. (2008) and Edwards, Brick and Grant (2008). 
The other parameters needed for the comparison are the 
distribution of the population by telephone status domain, 
and we approximate national values from the 2008 NHIS 
national estimates ( 0.2 ,aN N= 0.2 ,bN N=  and abN =  
0.6 ).N  In this situation, the variance based on an optimally 
allocated overlap design with λ = 0.5 is slightly smaller 
than the variance for the optimal screening design (the ratio 
of the variances is 0.976). The variances of the two designs 
are approximately the same when the cost parameters are 
such that the screening from frame B is slightly less 
expensive ( 1, 3, 1.85).A B sc c c= = =  

The screening approach has smaller mean square error 
than the overlap design under these conditions because the 
screening approach reduces the bias of the estimates from 
-3.3 percentage points to 1.3 points. Even a relatively small 
bias dominates the mean square error comparison between 

the two designs, assuming the bias with the screening ap-
proach is half the bias under the overlap design. This is the 
case because the variances of the overlap and screening 
designs are so similar. If we instead use the parameters from 
the Pew surveys, then the mean square error for the overlap 
design is smaller because its bias is lower than the bias of 
the screener design.  

The allocation to the frames with the overlap approach 
given by (6) assuming only sampling error is determined by 
the population parameters, the cost parameters, and the 
compositing factor. While this is not the optimal allocation 
when differential response rates are admitted, it is still useful 
to consider this situation since it is likely to be encountered 
frequently in practice. In this situation, the bias of ,ˆ ps aby  due 
to differential nonresponse can be eliminated by choosing 
λ  to satisfy (4). Based on the CHIS parameters, the value 
that eliminates this bias is λ 0.84. If we continue with the 
cost and population assumptions as above, but set λ = 0.84, 
then the optimal allocation given by (6) would select about 
75% of the sample from the landline frame. This contrasts 
with the allocation with λ = 0.5, in which only 63% is from 
the landline frame. The choice of the compositing factor is 
critical. When λ = 0.84 is used in conjunction with the 
optimal allocation for the CHIS parameters, the estimator is 
unbiased and has a variance that is about 5 percent less than 
the estimator from the optimal screener design.   
4.2 Estimation approaches  

An approach suggested by Brick et al. (2006) is to use a 
full overlap design with an average estimator for the overlap 
that is poststratified to telephone usage domain totals, as is 
done in the Pew surveys. This estimator is unbiased and 
consistent if the estimates within the domains are unbiased 
and the domain sample sizes are sufficiently large.  

The auxiliary data needed for this poststratification for 
the entire U.S. are now published regularly from the NHIS. 
As mentioned above, there are some concerns about using 
these data as control totals that deserve further study. The 
control totals needed for this estimator are the number of 
land-only adults, the number of cell-only adults, and the 
number of adults who are land-mainly and the number who 
are cell-mainly ( mlN  and ,mcN  respectively). This partitions 
the dual users into its two components.  

An alternative estimator of the overlap total using the 
same auxiliary data is 

1

1

2 2

ˆ ˆ ˆ ˆ ( )ˆ ˆ

ˆ(1 ) ( )

ˆ ˆ( ) (1 ) ( ),

A Aa b
sep a b ml ab

a b

B B
ml ab

A A B B
mc ab mc ab

N N
y y y g y ml

N N

g y ml

g y mc g y mc

= + + λ

+ − λ

+ λ + − λ  (7)
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where the detailed poststratification factors are A
mlg =  

ˆ/ ,A
ml mlN N ˆ/ ,A A

mc mc mcg N N= ˆ/ ,B B
ml ml mlg N N= ˆ/ ,B B

mc mc mcg N N=  
and 10 1;≤ λ ≤ 20 1.≤ λ ≤  This estimator, like the others 
considered thus far, is unbiased and consistent in the 
absence of nonsampling errors. Like (1), the estimates from 
each frame are poststratified before being averaged. The 
primary difference between (1) and (7) is that the dual users 
in (7) are partitioned and poststratified by usage; it also 
introduces different compositing factors within the overlap.  

The estimator ˆsepy  may be useful when (1) is biased and 
usage control totals are available for poststratification. If the 
expected means within the usage domains are approxi-
mately equal ( ( ) ( )A B

ab ab mlE y ml E y ml Y= =  and ( )A
abE y mc =  

( ) ),B
ab mcE y mc Y=  then (7) is unbiased for any choice of 

10 1≤ λ ≤  and 20 1.≤ λ ≤  Since bias is not affected by 
the choice, different compositing factors may be used to 
reduce the variance of the estimates as is traditionally 
suggested in the dual frame literature. Table 3 shows that 
the proportion of respondents in the detailed usage domains 
varies considerably by the sampling frame, and this might 
make different compositing factors worthwhile.  

Because telephone usage control totals often are not 
available, we explored modifying (2) to use different 
compositing factors similar to those used in the overlap for 
(7). In this case, the goal would be to reduce bias rather than 
variance. A modified estimator of the overlap total is 

          
mod, 1 1

2 2

ˆ ˆ ˆ( ) (1 ) ( )

ˆ ˆ( ) (1 ) ( ).

A A B B
ab ab ab

A A B B
ab ab

y g y ml g y ml

g y mc g y mc

= λ + − λ

+ λ + − λ  (8)
 

However, this estimator may not be useful for reducing bias. 
Earlier, we showed that the bias of ,ˆ ps aby  vanishes when 

1
0 1 1 1( ) ( ) .l c c c l l cr r r r r r r −λ = − −  The choice of 1 2λ = λ =  
0λ  in (8) eliminates the bias for both land-mainly and cell-

mainly estimates, so that different compositing factors are 
not useful for bias reduction. The bias of the modified 
estimator is 

1 1
mod, 1 1 1 1

1 1
2 1 2 1

ˆ( ) ( ( (1 ) 1)

( (1 ) 1)),

ab ab ml l l c c

mc l l c c

b y WN Y r r r r

Y r r r r

− −

− −

= λ + − λ −

− λ + − λ −  (9)
 

where we make assumptions similar to those used earlier to 
approximate the bias of ,ˆ .ps aby  

Another reason for studying an overlap estimator like (8) 
is because it is appropriate with sample designs that screen 
out land-mainly adults from the cell frame. This approach 
has been considered because the number of cell frame 
respondents that are classified as land-mainly may be small, 
and the assumption that ˆ ( )B

ab mlEy ml Y=  may not hold and 
biases might result. 

Setting 1 1,λ =  (8) reduces to 

              
mod 1, 2

2

ˆ ˆ ˆ( ) ( )

ˆ(1 ) ( ).

A A A A
ab ab ab

B B
ab

y g y ml g y mc

g y mc

λ= = + λ

+ − λ  (10)
 

In this design, the landline sample alone is used to estimate 
both the land-only and the land-mainly totals. Both frames 
are used to estimate totals for the cell-mainly. If we assume 

( )A
ab mlE y ml Y=  and ( ) ( ) ,A B

ab ab mcE y mc E y mc Y= =  then 
we no longer need ( )B

ab mlE y ml Y=  for (10) to be unbiased. 
As before, setting 1

2 1 1 1( ) ( )l c c c l l cr r r r r r r −λ = − −  elimi-
nates the bias in the cell-mainly estimate.   

5. Discussion  
This exploration of nonresponse and measurement errors 

in dual frame telephone surveys suggests the effects of these 
errors may be very important. It leads us to believe that 
research on nonsampling errors to reduce biases may be 
more important than research that leads to incremental re-
ductions in sampling error.  

The research also reveals shortcomings in our knowledge 
about nonsampling errors in these surveys. The direction 
and magnitude of the effects of measurement error are 
especially unclear. The inconsistencies in some of the 
findings for the CHIS 2007 and Pew surveys may well be 
due to measurement errors associated with the different 
approaches to data collection in these surveys, or to inter-
actions due to the procedures. A thorough investigation of 
the error sources in dual frame telephone surveys is essential 
to improve the quality of dual frame telephone surveys, and 
we believe experiments to assess the effects of measurement 
error would be especially beneficial.  

We did find that the CHIS 2007 and Pew surveys consis-
tently over-represented cell-only and cell-mainly users in 
samples from the cell phone frame, and the surveys had a 
slight over-representation of the land-only and land-mainly 
from the landline frame. However, the degree of over-repre-
sentation of the domains differed by survey. In the CHIS, 
the over-representation could have led to substantial biases 
in the estimates if an overlap survey and a simple average 
estimator were used. The CHIS used a screening approach 
to reduce this potential bias, and this appears to have been 
largely successful. In the Pew surveys, the representation 
was less differential by frame and the potential for bias was 
smaller. In these conditions, the overlap approach may have 
smaller mean square error than a screening approach.  

Due to the potential for bias in dual frame telephone 
surveys with response patterns like the CHIS 2007, we 
examined sampling and estimation methods that could be 
implemented to deal with these biases. We found that 
screening approaches may be competitive or even pref-
erable in dual frame telephone surveys when the bias due 
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to differential nonresponse or measurement error is large. If 
the bias is not negligible, this finding even holds with small 
sample sizes. However, these results depend on the choice 
of the compositing factor and the current practice of choos-
ing λ = 0.5 should be reconsidered. An alternative is to 
choose the compositing factor to eliminate the bias of the 
average estimator. In many cases, this approach not only 
eliminates the bias, but also may be more efficient. 

We examined three estimators that deal with the bias due 
to differential nonresponse within the overlap domain. The 
first is ˆ ,psy  which uses telephone status as domain control 
totals. This estimator eliminates the bias due to differential 
nonresponse when 0λ  is used as the compositing estimator. 
This compositing factor indirectly uses information on the 
land-mainly and cell-mainly domain totals in computing 
response rates by domain and frame. A second estimator, 
ˆ ,sepy  eliminates this source of bias more directly by post-

stratifying to telephone status and usage control totals. This 
estimator also permits the use of different compositing 
factors within the overlap domain to reduce the variance of 
the estimates. The third estimator that might be used to 
reduce bias is modˆ ,y  but this estimator is more pertinent for 
a sample design that interviews the cell-only and the cell-
mainly respondents from the cell frame, along with all 
respondents from the landline sample. This modified 
screening design and estimator might be especially attract-
tive if there is concern that the mean of the land-mainly 
respondents from the cell frame sample is subject to 
nonresponse bias. All of these estimators could also be 
raked to additional demographic control totals after com-
bining the two samples. 

Given our current state of knowledge, we believe there 
are important advantages with the full overlap design and 
ˆ psy  with 0λ  chosen based on other similar surveys. It is 

worth observing that even though the CHIS and Pew 
surveys had very different response patterns, choosing a 
value of 0λ = 0.75 would have reduced the bias substan-
tially for both surveys. An advantage of this estimator over 
ˆsepy  in general is that ˆ psy  is not poststratified to usage 

domain totals. We suspect that usage domain totals esti-
mated from a face-to-face survey (NHIS) may be subject to 
substantially different errors than the estimates from tele-
phone surveys. These differences could result in telephone 
survey estimates that are biased and have underestimated 
variances. For state and local surveys where even telephone 
status totals are not well-known, control totals for usage 
domains are likely to be highly suspect.  

A screening design with ˆscry  as the estimator has the 
advantage that it only requires control totals for the entire 
population and for the cell-only component, such as those 
estimated from the NHIS. A disadvantage is that, unlike the 
overlap estimators, there is no compositing parameter that 

can be used to reduce the bias directly. The more elaborate 
screening design that interviews cell-only and cell-mainly 
from the cell frame and uses modŷ  has merit, but there have 
been no studies that examine the conditions which would 
favor this estimator. 

A more complete analysis of the effects of nonsampling 
error would include other factors such as the effect of the 
differential response rates by frame. For example, we noted 
that samples from the cell phone frame yield more cell-only 
households than would be expected. These differential 
response rates can be addressed in allocating the sample, but 
we have not done so here. Our exploration of this shows that 
it results in larger allocations to the landline frame, increases 
the value of the compositing factor, and makes the screening 
designs more efficient relative to the overlap designs. The 
screening design and estimator are still subject to the bias 
noted above.  

While this research concentrated on nonsampling errors 
in dual frame telephone surveys, we suspect that similar 
issues exist in many other dual frame surveys, but that these 
issues may not be recognized. Lohr (2009) mentions non-
sampling errors in general dual frame surveys and suggests 
comparing estimates of the overlap from each frame as a 
simple diagnostic test. We believe this is an excellent way to 
begin an investigation of problems associated with the 
overlap. 

As we noted earlier, the handling of the overlap is a 
major concern in dual frame surveys because nonsampling 
error may be associated with the sampling frame. Our inves-
tigation shows that nonresponse and measurement errors are 
tied to the sampling frame in dual frame telephone surveys. 
It is very likely that dual frame telephone surveys that use 
different modes might experience analogous effects. For 
example, consider a dual frame household survey designed 
to survey members of a rare population. Suppose it uses an 
incomplete membership list with telephone numbers for the 
rare group as frame A, and an area probability sample of 
households as frame B. Different response rates by sampling 
frame within the overlap might be expected, and these might 
be related to characteristics of the respondents leading to 
biases. Even within the overlap, there may be differences 
such as those related to how long the person has been a 
member of the organization used to create frame A and this 
might be related to characteristics such as age. This type of 
situation might parallel some of the within overlap domain 
issues identified in telephone surveys. Differential measure-
ment errors related to the modes are also possible.  

Given the potential for bias in a dual frame survey, one 
of the important findings of our research is that the compos-
iting factor, ,λ  influences the bias as well as having an 
effect on the variance. While the choice of λ  typically has 
only a slight effect on the variance if λ  is in the vicinity of 
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the optimal value, the bias may be more sensitive to this 
choice. Thus, in dual frame surveys understanding how the 
choice of λ  affects the bias and the mean square error of 
the estimates is an important consideration. The other 
sampling and estimation methods discussed in this paper 
may also be applicable to other dual frame surveys. The 
usefulness of these methods depends upon understanding 
the nature of the nonsampling errors as well as the avail-
ability of auxiliary data that could be used in calibration.  
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Appendix  
Telephone usage items  

National Health Interview Survey   
N1. Is there at least one telephone inside your home that 

is currently working and is not a cellular phone?  
N2. Does anyone in your family have a working cellular 

telephone?  
N3. How many working cellular telephones do people in 

your family have?  
 [If both N1 and N2 are ‘yes’ ask N4]  
N4. Of all the telephone calls that your family receives, 

are …  
 All or almost all calls received on cell phones?  
 Some received on cell phones and some on regular 

phones?  
 Very few or none received on cell phones?  
California Health Interview Survey – Cell phone  
CC1. Is this cell phone your only phone or do you also have 

a regular telephone at home?  
 [If the phone is a cell phone and they have a regular 

phone then ask CC2]  
CC2. Of all the telephone calls that you receive, are …  
 All or almost all calls received on cell phones  
 Some received on cell phones and some on regular 

phones, or 

 Very few or none on cell phones?  
 [If respondent replies about half, record it]  
California Health Interview Survey – Landline  
CL1. Do you have a working cell phone?  
 [If yes or they share a cell phone ask CL2]  
CL2. Of all the telephone calls that you receive, are …  
 All or almost all calls received on cell phones  
 Some received on cell phones and some on regular 

phones, or  
 Very few or none on cell phones?  
 [If respondent replies about half, record it]  
Pew Research Center for the People & The Press – 
Cell phone  
PC1. Now thinking about your telephone use… Is there at 

least one telephone INSIDE your home that is 
currently working and is not a cell phone?   

 [If yes ask PC2]  
PC2. Of all the telephone calls that you receive, do you get?   
 [Rotate options − keeping SOME in the middle]   
 All or almost all calls on a cell phone   
 Some on a cell phone and some on a regular home 

phone   
 All or almost all calls on a regular home phone  
Pew Research Center for the People & The Press – 
Landline  
PL1. Now thinking about your telephone use… Do you 

have a working cell phone?   
 [If yes ask PL2]  
PL2. Of all the telephone calls that you receive, do you get?   
 [Rotate options − keeping SOME in the middle]   
 All or almost all calls on a cell phone   
 Some on a cell phone and some on a regular home 

phone   
 All or almost all calls on a regular home phone  
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Abstract 
Data linkage is the act of bringing together records that are believed to belong to the same unit (e.g., person or business) 
from two or more files. It is a very common way to enhance dimensions such as time and breadth or depth of detail. Data 
linkage is often not an error-free process and can lead to linking a pair of records that do not belong to the same unit. There 
is an explosion of record linkage applications, yet there has been little work on assuring the quality of analyses using such 
linked files. Naively treating such a linked file as if it were linked without errors will, in general, lead to biased estimates. 
This paper develops a maximum likelihood estimator for contingency tables and logistic regression with incorrectly linked 
records. The estimation technique is simple and is implemented using the well-known EM algorithm. A well known method 
of linking records in the present context is probabilistic data linking. The paper demonstrates the effectiveness of the 
proposed estimators in an empirical study which uses probabilistic data linkage. 
 
Key Words: Data linkage; Probabilistic linkage; Maximum likelihood; Contingency tables; Logistic regression. 
 
 

1. Introduction 
 
Data linking, also referred to as data linkage or record 

linkage, is the act of bringing together records that are 
believed to belong to the same unit (e.g., a person or busi-
ness), from two or more files. Data linkage is an appropriate 
technique when data sets must be joined to enhance dimen-
sions such as time and breadth or depth of detail. Ideally, the 
linkage will be perfect, meaning only records belonging to 
the same unit are linked and all such links are made. How-
ever, in many situations this does not happen, especially 
when linking records using fields that may have incorrect 
values, missing values or values that are legitimately dif-
ferent for a given unit.  

Probabilistic linking is often used when the files contain 
a set of common variables or fields that constitute partial 
identifying information, but which do not constitute a 
unique unit identifier. In probabilistic linking (Fellegi and 
Sunter 1969) all possible links are given a score based on 
the probability that the records belong to the same unit. This 
score is calculated by comparing the values of linking 
variables that are common to both files. A link is then 
declared if the link score is higher than some cut-off. An 
optimisation algorithm may be used to ensure that each 
record on one file is linked to no more than one record on 
the other file. Probabilistic methods for linking files are now 
well established (see Herzog, Scheuren and Winkler 2007, 
Winkler 2001 and Winkler 2005) and there is a range of 
computer packages available to implement them.  

This is a consequence of the continued importance of 
linkage in a variety of fields, particularly relating to health 
and social policy. Recent examples of probabilistic data 

linkage from the Australian Bureau of Statistics (ABS) 
include linking records from the 2006 Australian Census of 
Population and Housing to a number of data sets including 
Australian death registrations (Australian Bureau of Statis-
tics 2008), the 2006 Census Dress Rehearsal (Solon and 
Bishop 2009), and the Australian Migrants Settlements 
Database (Wright, Bishop and Ayre 2009). In the health 
arena within Australia, probabilistic linkage methods are 
used by the Western Australian Data Linkage Unit (Holman, 
Bass, Rouse and Hobbs 1999) and by the New South Wales 
Centre for Heath Record Linkage. Internationally, prob-
abilistic methods are used by Statistics Canada (Fair 2004), 
USBC (see Winkler 2001), the U.S. National Center for 
Health Statistics (National Center for Health Statistics 2009) 
and by the Switzerland Statistical agency as part of their 
Longitudinal Study of People Living in Switzerland.  

Data linking offers opportunities for new statistical 
output and analysis. Naively treating a probabilistically-
linked file as if it was perfectly linked will, in general, lead 
to biased estimates. Lahiri and Larsen (2005) and Scheuren 
and Winkler (1993) proposed methods to calculate unbiased 
estimates of coefficients for a linear regression model under 
probabilistic record linkage. More recently, Chambers, 
Chipperfield, Davis and Kovačević (2009) and Chambers 
(2008) extended this work to a wide set of models using 
generalised estimating equations and, in the case of linking 
two files, allowing one file to be a subset of the other file.  

This paper develops a maximum likelihood (ML) ap-
proach for analysis of probabilistically-linked records. The 
estimation technique is simple and is implemented using the 
well-known EM algorithm. The approach involves replacing 
the statistics, which would be observed from perfectly linked 
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data, with their expectation conditional on the linked data. 
Assuming this expectation is correctly specified, this ap-
proach overcomes the following two limitations of the 
previous work. 

First, the previous methods assume only one linkage pass 
is made, whereas, probabilistic linkage usually involves 
multiple passes. In the latter case, records not linked in the 
first pass are eligible to be linked in the second pass, and 
only records not linked in the first two passes are eligible to 
be linked in the third pass, and so on. Each pass is designed 
to link records with a particular common set of charac-
teristics. For example, the first pass may be designed to link 
records belonging to individuals who have not changed 
address between the reference dates of the two files. The 
second pass may be designed to accommodate changes of 
address. An example of such an approach is given in Table 
1 in section 5.  

Second, the previous methods assume that either the two 
files contain records from exactly the same units or the set 
of units on one file is a subset of those on the other file. The 
approach proposed can be used when one of the files to be 
linked is not necessarily a subset of the other file. This 
situation occurs frequently in practice and occurred in all the 
ABS examples mentioned above. It is also worth men-
tioning that the files to be linked do not need to be related 
via a sampling mechanism, such as the smaller file being a 
random sub-sample of individuals from the larger file. 
Removing this restriction means that the two files may be 
administrative data sets. 

Consider linking two files denoted by X and Y. File Y 
contains the variable y on the population of individuals yU  
comprising yn  records. File X contains a vector of vari-
ables, x, on the population of individuals xU  comprising xn  
records. The target of inference is with respect to the 
population of xyn  individuals, denoted by ,xy x yU U U= ∩  
who are common to File X and File Y. Files X and Y also 
contain a vector of fields, denoted by z, which are used to 
link the files using a probabilistic linkage algorithm. Of 
course, since we are considering probabilistic linkage here, 
the variable z does not constitute a unique unit identifier.  

Linking Files X and Y allows the joint distribution of x 
and y to be analysed. There are two sources of error that 
may affect analysis of the joint distribution using the linked 
file. These errors are referred to as incorrect links and 
unlinked records.  

A link is correct when the pair of linked records belong 
to the same individual. A link is incorrect when a pair of 
linked records do not belong to the same individual. Incor-
rect links can artificially increase or decrease the correlation 
between x and y. An example of the latter is random 
linkage, where records on File X are randomly linked to 
records on File Y. 

The thi  record on File X is defined as an unlinked 
record, if xyi U∈  and record i was not linked to a record 
on File Y. Or in other words, an unlinked record is a record 
on File X that could be correctly linked but was not linked at 
all (throughout this paper we use the convention of defining 
unlinked records in terms of File X, though the definition 
could equally be in terms of records on File Y). It may not 
always be possible to link a particular record on File X with 
much confidence that the link is correct. This situation may 
arise if a record is missing fields that are useful in estab-
lishing the correct link. More generally, unlinked records 
may occur when some sub-populations are relatively 
difficult to link. For example, fields such as marital status, 
qualification, field of study, and highest level of schooling 
would generally not be as powerful when linking children as 
when linking mature adults. In this situation, the data linker 
must decide whether or not to link such records. We define 
the set of linked records by lU  of size *n  so that *

xn n≤  
and * .yn n≤  

The problem of analysis with unlinked records has clear 
parallels with the problem of unit non-response. Both lead 
to only a subset of legitimate records being available for 
analysis. The non-response mechanism in survey sampling 
is, in reality, a function of an unknown set of variables. Here 
however, we have the slight advantage in knowing that the 
probability of a record remaining unlinked can only be a 
function of z. The problem of non-response is often ad-
dressed by weighting or by some conditioning argument. 
This paper considers both approaches to address the issue of 
unlinked records. 

There is a natural trade-off between the number of 
unlinked records and incorrect links (and consequently the 
bias that they introduce). Consider the case where File X is a 
subsample of File Y so that .xy xU U=  Linking all records 
on File X will result, by definition, in no unlinked records 
but will result in the number of incorrect links being 
maximised. If instead we decide to only form links which 
we are very confident are correct, the number of incorrect 
links will decrease but the number of unlinked records will 
increase. In practice, finding the optimal balance between 
the biases due to unlinked records and incorrect links 
depends upon the analysis to be undertaken, the linkage 
methodology, and their interaction. For an in-depth practical 
discussion of this issue see Bishop (2009). 

It is worthwhile mentioning that the problem of making 
inference in the presence of incorrect record linkage is 
similar to the problem of making inference in the presence 
of misclassification of the outcome variable, which is a form 
of measurement error (see Fuller 1987). In the latter case, 
identifying assumptions separate the misclassification mech-
anism from the model mechanism and are required since no 
error-free measurement is typically available. For example, 
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Hausman, Abrevaya and Scott-Morton (1998) considers 
misclassification in the outcome variable of a logistic 
regression model. Their identifying assumption is that the 
value of the, possibly misclassified, outcome variable is a 
particular function of the model’s explanatory variables. 
Our proposed method does not require the strong identifying 
assumptions of measurement error problems essentially 
because error-free measurement is available from a clerical 
sample which identifies correct links. The assumptions we 
make in this paper are outlined in section 3. 

Section 2 summarises the ML approach to contingency 
table and regression analysis under perfect linkage. Section 
3 considers the ML approach in the presence of incorrect 
links. Section 4 considers the ML approach in the presence 
of both incorrect links and unlinked records. Section 5 
demonstrates the effectiveness of many of the proposed 
estimators in an empirical study. Section 6 summarises the 
findings.  

2. Perfect linkage  
By way of introducing notation, this section discusses the 

case where the linkage is perfect. The estimating approach 
in this section is standard since, clearly, no special adjust-
ment for incorrect linkage is required. Section 2.1 discusses 
estimating cell probabilities in a contingency table and 
section 2.2 discusses estimating regression coefficients in a 
logistic regression.   
2.1 Contingency tables  

For notation, it is convenient when considering contin-
gency table analysis to transform ix  to a single categorical 
variable x so that 1, 2, ..., , ..., .x g G=  Define y  to be a 
categorical variable on file Y, where 1, ..., , ..., .y c C=  

Consider the following factorisation of the distribution of 
x and y  

1 2( , ) ( ; ) ( ),p y x p y x p x= ⎟ Π  

where 1( ,..., ,..., ) ,g G′ ′ ′ ′=Π π π π 1| | |( ,..., ,..., ) ,g g c g C g ′= π π ππ
 

|c gπ
 
is the probability that y c=  given .x g=  We as-

sume that for every value of x there are C possible values of 
y which implies that the dimension of Π  is CG.  

We now consider maximum likelihood estimation of the 
parameter ,Π  characterising 1,p  under perfect linkage. 
Perfect linkage means that all records on file X are correctly 
linked to their corresponding record on file Y (i.e., there are 
no incorrect links and no unlinked records). Under perfect 
linkage, xy xn n=

 
and the set of linked records is denoted 

by {( , ): 1, ..., }.i i xyy x i n= =d  Under perfect linkage, the 
score function for 1| | |( , ..., , ..., )x x c x C x

′= π π ππ  character-
ised by the multinomial distribution, is  

1| | 1|

Score( ; )

(Score( ; ), ..., Score( ; ), ..., Score( ; ))

x

x c x C x−

=

′π π π

π d

d d d
 
(1)

 

where  
1 1

| | | | |

1 1
| | | |

Score( ; ) ( )

,

c x i ic x ic x iC x iC x

c x c x C x C x

d w w

n n

− −

− −

−

−

π = Σ π π

= π π
 

for 1, ..., 1,c C= −  where | | |, 1c x i ic x ic xn w w= Σ =  if iy =  
c  and ix x=  and | 0ic xw =  otherwise, and the category 
corresponding to y C=  is the arbitrarily chosen reference 
category. Solving 1Score( ; )x C−=π d 0  for ,xπ  where 1C−0  
is a 1C −  column vector of zeros, gives the maximum 
likelihood (ML) estimator  

                                     | |ˆ / ,c x c x xn nπ =  (2) 

where 

|x c i ic xn w= Σ Σ  

and 
1

| |1
ˆ ˆ1 .C

C x c xc
−

=
π = − π∑  

 
2.2 Logistic regression  

Consider the logistic regression model  

                                         ( )i iE y = υ  (3) 

                               1 / [1 exp( )].i i′υ = + β x  (4) 

For (4) the K elements of ix  are dichotomous variables 
and iy  is now a dichotomous variable available from File 
Y. If we define 1( ,..., ,..., ) ,

xyi n ′=x x x x 1( ,... ,..., )
xyi ny y y ′=y  

and 1( , ... , ..., ) ,
xyi n ′= υ υ υυ  the score matrix for β  based   

on perfectly linked data, d, is 

                             Score( ; ) = ( ).′ −β d x y υ  (5) 

Solving Score( ; ) K=β d 0  for β  gives the ML esti-
mate ˆ ,β  which can be found by applying the well-known 
Newton-Raphson method.   

3. Analysis with incorrect links  
This section considers the situation where the linked file 

contains incorrect links but does not contain unlinked 
records. This occurs when all the records on File X are 
linked to a record on File Y (so ).x yn n≤  Define the linked 
file of records by * * *{ ( , ): 1, ..., },i i i xy i n= = =d d x  where 

*
iy  is the value of y that is linked to record i on file X. To 

clarify, iy  is the true value of y for record i on file X, so 
that *

i iy y=  if record i is correctly linked. 
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The estimator given by (2), together with the assumption 
that *

i iy y=  for 1, ..., ,xi n=  is naive since it treats the 
probabilistically linked file as if it were perfectly linked. In 
general the naive estimator will be biased. This section 
derives ML estimators which account for the fact that the 
data have been linked probabilistically or linked imperfectly 
in some way. 

It is common practice to select a subsample of the linked 
file, denoted by ,cs  which is then reviewed clerically. The 
clerical review classifies a link, ,id  as either correct or 
incorrect. Let i 1δ =  if record i on File X is correctly linked 
and i 0δ =  otherwise.  

Designing the clerical subsample is an important prob-
lem, especially since clerical review is often a costly exer-
cise. Possible uses of a clerical sample include estimating 
the proportion of correctly linked and unlinked records, to 
assist in deciding which records should be linked and which 
should remain unlinked, to ensure correct inference using 

*d  (i.e., the purpose of this paper), and to identify improve-
ments to the way in which records are linked (in the ABS 
applications mentioned above, clerical samples were de-
signed to ensure that each link had at least a specific 
probability of being correct). For the purpose of making 
correct inference using *d  selecting the clerical sample by 
simple random sampling is a reasonable approach. A more 
efficient clerical subsample could possibly be devised but 
there is no obvious way to do so. This is because the para-
meters that we need to estimate to implement the ML 
method described in this paper depend upon the specific 
analysis (e.g., choice of y and x). Designing a clerical 
sample for all possible analyses would be difficult.  

We factorise the joint distribution ( , , )i i ip y δx  by  

                      ( | ; ) ( ) ( | ),i i i i ip y p p δx θ x x  (6) 

where =θ β  in the regression case, =θ Π  in the contin-
gency table case. Factorisation (6) means that the links are 
incorrect at random (IAR) or, in other words, that the distri-
butions |i iy x  and |i iδ x  are independent. Under this as-
sumption it is only necessary to maximise the likelihood 
associated with the factor ( | ; ).i ip y x θ  Throughout this 
section we assume (6). It is important to point out that (6), 
and the development that follows, makes no assumption 
requiring File X to be a subset of File Y (e.g., when units on 
File X are a subsample of the units on File Y) or that the 
linkage process involves a single pass. We also assume that 
the correctness of linkage, ,iδ  is independent from record to 
record. 

As mentioned in the introduction, each linked record is 
assigned a score based on the probability that the records 
belong to the same unit. Denote the score by .ir  A referee 
suggested using ir  to more accurately parameterise the 
distribution of .iδ  Technically this suggestion would 

involve replacing ( | )i ip δ x  with ( | , )i i ip rδ x  in (6) and 
would likely reduce the variability of the ML estimators 
discussed in section 3. This would be a useful avenue of 
further research.  
3.1 Contingency tables  

Define *
| 1ic xw =  if *

iy c=  and ,ix x=  and *
| 0ic xw =  

otherwise. The expectation of |ic xw  given *
id  is 

*

* *

* *
||

*
| |

*
|

|

( | , )

(1 ) if

if and 1

if and 0

ic x i id d

ic x c x cxy xy

ic x c i

c x c i

E w x x y y

w p p i s

w i s

i s

= = =

+ π ∉

= ∈ δ =

= π ∈ δ =

−
 

and *xyp  is the probability that the thi  link is correct given 
ix x=  and * *.iy y=  The ML estimator of |c xπ  using the 

probabilistically linked data, *,id  is then 

                                ( ) 1
| | |c x c x c xcn n

−
π = ∑  (7) 

where 
                                        | | ,c x i ic xn w= Σ  (8) 

* *
*

| | |

*
|

|

ˆ ˆ(1 ) if

if

if and 0

ic x ic x c x cxy xy

ic x c

c x c i

w w p p i s

w i s

i s

= + π ∉

= ∈

= π ∈ =

−

δ

 (9) 

and 

                    ( ) ( )*

1
* *

| |ˆ .
c c

ic x i ic xxy i s i sp w w
−

∈ ∈
= δ∑ ∑  (10) 

The estimation procedure involves iterating between (7), 
(8) and (9) until convergence. Specifically the algorithm is:  

1. Calculate *ˆ
xyp  from (10).  

2. Initialise (0)
|c xπ  and then calculate (0)

|c xw  from (9) and 
then (0)

|c xn  from (8).  
3. Calculate ( )

|
t

c xπ  from (7) using ( 1)
| .t

c xn −   
4. Calculate ( )

|
t

c xw  from (9) using ( )
|
t

c xπ  and then calculate 
( )
|
t

c xn  from (8) using ( )
| .t

c xw   
5. Iterate between 3 and 4 until convergence.  
The initialised value (0)

|c xπ  could be set to the naive esti-
mate of | ,c xπ  which was described in section 3 above. How-
ever, our experience was that the choice of initial value was 
not important.  
3.2 Logistic regression  

Below we describe two ML methods (Methods 1 and 2) 
for estimating β  using the probabilistically linked data, *.d  
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Both methods give unbiased estimates under the IAR as-
sumption. The difference between the methods is the level 
of aggregation at which the probabilities of correct linkage 
are estimated. Method 1 requires these probabilities at a fine 
level of aggregation, which may mean its estimates are more 
variable than those of Method 2.   
3.2.1 Method 1  

The expectation of y  conditional on the linked data is  

*

* *

* *
d|d

*

*

( | , )

(1 ) if

if and 1

if and 0

i i i

i i cy y

i c i

i c i

E y y y

y p p i s

y i s

i s

= = =

+ υ ∉

= ∈ δ =

= υ ∈ δ

−

=

x x

x x

 

and *xyp  is the probability that the thi  link is correct given 
ix x=  and * *.iy y=  

The ML estimator is then obtained by iterating between 
finding the solution, denoted by ,β  for β  in (5) with iy  
replaced by ,iy  where  

* *
*

*

ˆ ˆ(1 ) if

if and 1

if and 0,

i i i cy y

i c i

i c i

y y p p i s

y i s

i s

= + υ ∉

= ∈ δ =

= υ ∈ δ

−

=

x x

 (11) 

iυ  has the same form as iυ  except that β  is replaced with 
β  and *ˆ

ypx  is the estimated proportion of correct links       
in the clerical sample for each combination of x  and *.y   
3.2.2 Method 2  

Let ′x y  in (5) have thk  element 

,
n n

k k i ik ik
i i

r y x r′= = =∑ ∑x y  

where .ik i ikr y x=  The expectation of ikr  conditional on 
*d  is 

*

* *

*
d|d

*

*

( | , )

[ (1 ) ] if

if and 1

if and 0

ik i i i

i i ik cky ky

i ik c i

i ik c i

E r y y

y p p x i s

y x i s

x i s

= =

−

=

+ υ ∉

= ∈ δ =

= υ ∈ δ =

x x

 (12) 

and *kyp  is the probability that a link with 1ikx =  is correct 
given * *.iy y=  The ML estimator is then obtained by 
iterating between finding the solution, denoted by ,β  for β  
in (5) with ikr  replaced by ,ikr  where  

* *
*

*

ˆ ˆ[ (1 ) ] if

if and 1

if and 0,

ik i i ik cky ky

i ik c i

i ik c i

r y p p x i s

y x i s

x i s

= + υ ∉

= ∈ δ =

= δ

−

υ ∈ =

(13) 

iυ  has the same form as iυ  except that β  is replaced with 
β  and *ˆ

kyp  is the estimated proportion of correct links in 
the clerical sample for each combination of x  and *.y  
Namely, if * 1,iy =  

*

1
* *

c c

n n

i ik i i ikky
i s i s

p y x y x
−

∈ ∈

⎛ ⎞⎛ ⎞
= δ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

and if * 0,y =  

*

1
* *(1 ) (1 ) .

c c

n n

i ik i i ikky
i s i s

p y x y x
−

∈ ∈

⎛ ⎞⎛ ⎞
= − δ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

This approach requires only 2K probabilities to be 
calculated from the clerical sample and, on this basis, may 
be preferable to the approach in section 3.2.1 which requires 
more probabilities to be calculated.  
3.3 Estimating the variance using the bootstrap  

In this section we describe how to calculate the variance 
of the ML estimates of section 3. Denote the parameter of 
interest by ,θ  introduced earlier, and its ML estimate by .θ  
The Bootstrap (Rubin and Little 2003) estimate of the 
variance of ,θ  denoted by bootˆ ( ),v θ  is obtained by  

1. Taking a replicate sample of size xn  from the linked 
file, *,d  by simple random sampling with replace-
ment. Denote the thr  replicate sample by * ( ).rd  The 

thr  replicate clerical sample is *( ) ( ).c cs r s r= ∩ d  
2. Calculating ( )rθ  which has the same form as θ  

except that * ( )rd  is used instead of *d  and ( )cs r  
is used instead of .cs  

3. Repeating steps 1 and 2 R times, where R is the 
number of replicates. 

4. Calculating 

                    boot 1

1ˆ ( ) ( ( ) ) ( ( ) ) .R
bv b b

R =
′= − −∑θ θ θ θ θ  

 
4. Analysis with incorrect links and  

      unlinked records  
This section discusses two ways of analysing linked data 

in the presence of incorrect links and unlinked records. As 
mentioned in the introduction, the problem of analysis when 
there are unlinked records has clear parallels with the 
problem of unit non-response. Unlinked records may result 
in some characteristics on the linked file being over- or 
under-represented, thus leading to biased analysis. As 
discussed in more detail below, we use the fact that the 
mechanism giving rise to unlinked records can only be a 
function of z.  
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This section considers two methods of making inference 
in the presence of incorrect links and unlinked records, 
where linked records are indexed by *1, ..., .i n=  (Re-
member that the thi  record on File X is an unlinked record 
if xyi U∈  and record i was not linked to any record on File 
Y.) The methods involve independently modelling the 
processes that determine which records are incorrectly 
linked and which are unlinked (see section 5 for an illustra-
tion). These models require a subsample, denoted by ,xcs  of 
all records on File X to be subjected to clerical review. 
Records in the subsample will be either linked to records on 
File Y or not linked. Linked records in the subsample must 
be identified as either correctly or incorrectly linked by the 
clerical review process. A subsample record which is not 
linked must be identified as either unlinked, or otherwise. 
Unlinked means the corresponding record was found on File 
Y but not linked to it, whereas otherwise indicates the 
corresponding record was not found on File Y and therefore 
assumed not to exist. The latter identification is potentially 
much more difficult and time-consuming than the former 
because it assumes some other error-free process is available 
for checking whether links, which were not made, are in fact 
correct. Unlinked records, by their nature, have limited 
information that can be used to identify the correct link, 
even during clerical review. Such a process may not exist, in 
which case adjusting for unlinked records would seem to be 
impossible. However, such a process may involve a clerical 
review of names appearing on the two files to be linked. For 
example, a clerical reviewer may realise that the names 
John O. Smith and Joh O. Smith on two different records 
may in fact be the same name (with an “n” missing in the 
latter case, perhaps due to errors in scanning), whereas the 
automated linking process may treat the two names as 
completely different. The clerical reviewer may then decide 
that the above two records correspond to the same 
individual and so therefore should be linked. (Bishop (2009) 
and Wright (2009) discuss the benefits of clerical review).  

The first method involves conditioning analysis on a 
variable ( ).i i i=ζ ζ z  The variable ζ  is defined so that in-
ference, in the presence of unlinked records, is unbiased 
conditional on .ζ  The term ζ  is introduced since, in many 
cases, it would be impractical or unnecessary to condition 
on all the information in z. It is possible to give iζ  a non-
missing value even when iz  contains missing values. The 
exact form of the function ( )ζ z  would need to be justified 
after analysis of the subsample, .xcs  For example, if persons 
under 20 years of age are under-represented in the linked 
file, ζ  would indicate whether a person is under 20 years of 
age. One approach to analysis is to include ζ  as a covariate 
in the regression model. The method in section 3 would then 
apply directly. However, analysts may like to integrate over 
ζ  so that it does not appear in the logistic model or 

contingency table. Section 4.2 discusses how to do this for 
contingency tables. Section 4.3 discusses a pseudo-likeli-
hood approach which assigns weights to the linked records 
that attempt to account for any under- or over-representation 
of certain subpopulations in the linked data. Again, the 
choice of weight would need to be justified after analysis of 
the subsample, ,xcs  which identifies unlinked records. This 
is discussed further in the context of the empirical study.  
4.1 Can we ignore unlinked records?  

Define the variable 1iγ =  if record i on File X is un-
linked and 0iγ =  otherwise. Also let iζ  be a variable so 
that 1, 2, ..., , ... ,i h H=ζ  where H is the number of cate-
gories for .ζ  We can ignore the fact that there are unlinked 
records if we are prepared to assume that, conditional on ,ix  
the distributions of ,iy iγ  and iδ  are independent. Techni-
cally this assumption leads to the factorisation, 

( , , , , )

( | ; ) ( | ) ( | ) ( )

i i i i i

i i i i i i i

p y

p y p p p

δ γ ∝

δ γ

x ζ

x θ x x ζ
 

where again =θ β  or .Π  It is worthwhile checking wheth-
er this assumption is valid from the clerical subsample. If 
the assumption is reasonable, then there is no need to apply 
the methods in section 4.2 and 4.3 and the methods in 
section 3 will suffice.  

We may not be prepared to make the assumption 
mentioned above. We may however be prepared to assume, 
conditional on x and ,ζ  the distributions of ,iy iγ  and iδ  
are independent. In this case, we say unlinked records are 
not ignorable. Technically this assumption leads to the 
factorisation,  

( , , , , )

( | , ; ) ( | ; ) ( | , ) ( )

i i i i i

i i i i i i i i i

p y

p y p p p

δ γ ∝

δ γ

x ζ

x ζ Λ x τ x ζ ζ
 

where Λ  is the parameter for the distribution of | , .i i iy x ζ  
If we are interested in ( | ; )i ip y x θ  but not ( | , ; ),i i ip y x ζ Λ  
one approach is to integrate out (i.e., average over) iζ  from 
the latter.   
4.2 Conditional Maximum Likelihood (CML) for 

contingency tables  
First. parameterise the joint distribution of ,iy ix  and iζ  

by the multinomial distribution with parameter, .Λ  Define 
1( ,... ,..., ) ,h H

′′ ′ ′=Λ Π Π Π  where 1( , ..., ,..., ) ,h h gh Gh
′′ ′ ′=Π π π π  

1| | |( , ..., , ..., )gh gh c gh C gh
′π = π π π  and |c ghπ  is the probability 

that ,iy c= ix g=  and .i h=ζ  The ML estimator of =Π  
|( )c xπ  from section 2.1 when linkage errors are not 

ignorable is |( ),c x= πΠ  where  

                                | | |
1

ˆ ,
H

c x c xh h x
h=

π = π π∑  (14) 
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where 

                            ( ) 1
| | |n n ,c xh c xh c xhc

−
π = ∑  (15) 

| |n ,
l lc xh i U ic xh i Uw∈ ∈= Σ Σ  is the sum over the *n  linked rec-

ords and |ˆ h xπ  for 1, ...,h H=  is the standard estimate of 
the marginal distribution of ζ  given x on File X. Further, if 

ci s∉  

                * *
*

| | |ˆ ˆ(1 ) ,ic xh ic xh c xhxy h xy hw w p p= + − π  (16) 

*ˆ
xy hp  is the probability that the thi  link is correct given 

,ix x= i hζ =  and * *,iy y= *
| 1ic xhw =  if ,ix x= iζ = h  

and * *,iy y=  and *
| 0ic xhw =  otherwise. If ,ci s∈  then 

*
| | |ic xh ic xh ic xhw w w= =  if the link is determined to be cor-

rect and | |ic xh c xhw = π  if it is determined to be incorrect. 
The ML estimator |c xπ  is obtained by iterating between 

(14), (15) and (16) until convergence.   
4.3 Pseudo-Maximum Likelihood (PML)  

This section discusses an alternative to the CML, dis-
cussed in section 4.2, which is referred to as Pseudo-Maxi-
mum Likelihood (see Chambers and Skinner 2003). It is 
essentially a weighting approach, which may be easier to 
implement than CML, and relies on the factorisation given 
in section 4.2. It involves solving weighted versions of the 
score functions, 1Score( ; ) =x C−π d 0  and Score( ; ) =β d  

K0  for xπ  and β  respectively, where a record’s weight 
equals the inverse of the probability that the record will 
remain unlinked. We denote the probability that record i 
will not remain unlinked by ( )i it E= γ  so that the unit 
weights are given by 1,i iq t−=  where here *1, ..., .i n=  
Consequently the PML estimator for |c xπ  is  

                            ( ) 1PML
| | | ,c x c x c xcn n

−
π = ∑  (17) 

where | | .
lc xy i U i ic xn q w∈= Σ  The estimate of PML

|c xπ  is obtained 
by iterating between updating | ,ic xw  given by (7), and (17) 
until convergence. The PML estimator for β  is the same as 
the ML estimator but where the estimating equation (5) now 
has unit weights of .iq  One possible approach to estimating 
the accuracy of the PML estimates under perfect linkage is 
to use the Bootstrap method as described earlier, but where 
now the weight iq  is introduced.  

To illustrate when unlinked records are not ignorable, 
consider linking a data base with personal employment 
status to another data base with education level. Also as-
sume that age and sex variables, which are correlated with 
employment and education, are available on one of the data 
bases. After conducting a clerical review, we may find that 

records for young males are 50% more likely to remain 
unlinked than records for females. This could be because 
males are less likely to provide their personal information, 
which is useful in linkage. Clearly, records for males on the 
linked file need to be given a weight double that for females 
in order for joint analysis of employment status and 
educational level to be unbiased. 

 
5. Empirical study  

A quality study conducted by the Australian Bureau of 
Statistics involved linking the 2006 Census of Population 
and Housing to its Dress Rehearsal. The Census Dress 
Rehearsal collected information from 78,349 persons and 
was conducted one year before the Census. The 2006 Cen-
sus collected information from more than 19 million people.  

Within a short window, during which the 2006 Census 
data were being processed, name and address were available 
for both the Census and the Census Dress Rehearsal. During 
this time, the two files of person level records were linked 
using two different standards of information:  

• Gold Standard (GS) used name, address, mesh block 
and selected Census data items. Mesh block is a geo-
graphic area typically containing 50 dwellings. All 
names and addresses were destroyed at the end of the 
Census processing period. 

• Bronze Standard (BS) used mesh block and selected 
Census data items (i.e., did not use name and address). 
This is a method proposed to be used for future linking 
work by the ABS.   

Full details of the quality study and the linkage metho-
dology are given in Solon and Bishop (2009). The role of 
GS in the quality study is critical. It provides a benchmark 
against which the reliability of BS can be compared. The 
usefulness of the GS as a benchmark is due to the fact that 
name and address are powerful variables for the purpose of 
identifying common individuals on the Census and CDR 
and that it was subjected to thorough clerical review. As a 
result, GS is assumed to correspond to perfect linkage. 
Accordingly, differences between estimates based on GS 
and BS are interpreted as error. In other words, interest 
focuses on the reliability of BS relative to GS.  
5.1 Linking methodology  
5.1.1 Blocking and linking variables and the 1 – 1 

assignment algorithm  
This subsection provides an overview of the CDR-to-

Census linkage methodology for BS. The linking method 
consisted of a sequence of passes, where each pass is 
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defined by a set of blocking and linking variables and a 1 - 1 
assignment algorithm. In the case of multiple passes, only 
records not linked in the first pass are eligible to be linked in 
the second pass, and only records not linked in the second 
pass are eligible to be linked in the third pass, and so on. 

Table 1 gives the blocking variables, denoted by “B” for 
the BS. For example, during Pass 1, a Census record and a 
CDR record are only considered as a possible link if they 
have the same value for mesh block.  

Linking variables are used to measure the degree of 
agreement between a record pair. A high level of agreement 
suggests that the likelihood of the record pair constituting a 
correct link is high. Table 1 gives the linking variables, 
denoted by “L”, for BS. For example, during Pass 1 of BS, a 
range of variables such as day, month and year of birth, 
country of birth and highest level of qualifications are used 
as linking variables.  
Table 1 
An example of blocking (B) and linking (L) variables used when 
linking 2006 Census data with the Census Dress Rehearsal. 
Different blocking variables were used on each of the two passes 
 

Variable Pass 1 Pass 2 
Day of birth L B 
Month of birth L B 
Year of birth L B 
Sex L B 
Indigenous status L L 
Country of birth L L 
Language spoken L L 
Year of arrival L L 
Marital status L L 
Religious affiliation L L 
Field of study of highest qualification L L 
Level of highest qualification  L L 
Highest level of schooling L L 
Mesh block B L  

An output from each pass is a score for all record pairs. 
The score is a measure of the level of agreement between 
the pair of records. We defer the formal definition of score 
(for details see (3.6), Conn and Bishop 2006) but illustrate 
how it can be interpreted below. Consider BS in Pass 2 
where record pairs have the same full date of birth and sex; 
a record pair would be assigned a score of 23.5 if there is 
agreement on mesh block (+17) and year of arrival (+8) and 
disagreement on religion (–1.5) (in this example agreement 
status for other linking variables would contribute to the 
score but for illustration purposes we ignore them). The 
contribution to the score for agreement on mesh block (+17) 
is greater than that for agreement on year of arrival (+8) 
because the former is less likely to occur by chance alone. 

To formalise the aim of the linkage algorithm, denote the 
score for record i on the CDR and record j on the Census 

during pass  p  of BS by .pijr  The set of all record pair 
scores pijr  and the cut-off pf  were used by the linking 
package Febrl (see Christen and Churches 2005) to 
determine the optimal set of links in pass  p. The term pf  is 
the minimum value for the score in order for a record pair to 
be assigned as a link during pass  p. The Febrl algorithm 
seeks to maximise ,i pijr∑  subject to .pij pr f>  Clearly, the 
number of links depends upon .pf  

In what follows, we evaluate BS with two different sets 
of cut-offs, where a set of cut-offs is defined by the pass 1 
and 2 cut-offs. The first is referred to as the Very Low (VL) 
cut-off and is considered to be optimal cut-off since, for a 
range of cut-offs, its naive estimates were “closest” to the 
corresponding GS estimates (see Bishop 2009). The second 
cut-off is referred to as Ultra-Low (UL) and effectively 
seeks to maximise the number of linked CDR records. 
Below we refer to the two BS linked files by their cut-offs, 
VL and UL.  
5.1.2 Linking results  

GS linked 70,274 of the 78,349 CDR records. Under the 
assumption that GS corresponds to perfect linkage, there 
were 8,075 individuals with CDR records but no Census 
records. In reality the GS is not perfect. For a discussion on 
this see Bishop 2009. 

VL linked 57,790 CDR records. Of the 70,274 CDR 
records that were linked by GS, 13,784 remained unlinked 
by VL, 700 were linked incorrectly by VL and 55,790 were 
linked correctly by VL. Also, 1,300 CDR records were 
linked by VL but were not linked by GS- these are also 
incorrect links. So in total there were 2,000 (= 700 + 1,300) 
incorrect links. 

UL linked 74,350 CDR records. Of the 70,274 CDR 
records that were linked by GS, 2,811 remained unlinked by 
UL, 9,793 were linked incorrectly by UL and 57,670 were 
linked correctly by UL. Also, 6,887 CDR records were 
linked by UL but were not linked by GS. 

In summary, 97% of the VL links are correct and 20% 
(= 13,784/70,274) of the GS’ CDR records remain unlinked. 
The corresponding figures for UL are 78% and 4% 
(= 2,811/70,274).   
5.1.3 Modelling the probability of a link being 

correct  
All UL and VL links were known to be correct or 

incorrect (e.g., if a UL link is also made by GS then the UL 
link is correct. Otherwise the UL link is incorrect). As a 
result, *xyp  in section 3.1 was known from GS. However, to 
simulate reality, *xyp  was estimated from a clerical sample 
of size 1,000 that was selected from the linked files by 
simple random sampling.  
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5.1.4 Modelling the probability of a record 
remaining unlinked  

Each CDR record linked by the GS was assigned a vari-
able which indicated whether the record was unlinked by BS. 
Namely, if the record remained unlinked by BS then the indi-
cator variable was assigned a ‘1’ otherwise a ‘0’. A logistic 
model was fitted using GS, where the response variable was 
the above indicator variable and the explanatory variables 
were obtained from the CDR. The more than 20 explanatory 
variables that are in the model were selected by standard 
forward-backward model selection. The explanatory vari-
ables included educational level, language, born overseas, 
Indigenous status, and indicators of missing key variables 
such as meshblock. The resulting prediction resulted in it  
and was used below to implement the Pseudo-ML method 
for both contingency tables and logistic regression.  
5.2 Results of tabular analysis  

Table 2 gives the results of cross-tabulating employment 
status of indigenous people as reported on the CDR and 
Census. Table 2a shows that the GS estimate of the propor-
tion of indigenous people employed in the Census, given 
they were employed in CDR, is 78.3%. The corresponding 
naive estimate for VL, which assumes the data are perfectly 
linked, is 86.7%. Even after replacing each of the 700 
incorrect VL links by their corresponding correct link and 
discarding the 1,300 linked records for which no correct link 
exists, the naive estimate is largely unchanged at 86.0% 
(referred to as Gold Links in Table 2a). This shows that the 
difference between the VL and GS estimates is not so much 
due to incorrect links but is mainly due to unlinked records. 
This explains in part why the ML estimate (86.4%) for VL 
(see section 3.1), which only corrects for incorrect links, did 
not lead to much improvement. Conditional ML (CML) (see 

section 4) was considered in an attempt to reduce the error 
due to unlinked records that may have led to a misrepresent-
tation, with respect to age and sex characteristics, in the 
linked file. The CML employment estimate was 86.6%. 
Unfortunately, CML did not make much of an improve-
ment, indicating that the underlying mechanism generating 
unlinked records did not depend upon age and sex. PML 
estimates (see section 4) also did not make much of an 
improvement, indicating that the logistic model described in 
section 5.1.4 did not explain the mechanism generating 
unlinked records. Interestingly, the ML estimate using UL 
was 81.8%- by far the closest estimate to the GS estimate of 
78.3%. The UL’s main source of error is due to incorrect 
links, the type of linkage error which the ML estimator 
addresses. This indicates that correcting for errors due to 
incorrect links was much more successful than correcting 
for errors due to unlinked records. 

Standard errors of the GS, naive and ML estimates are 
shown in parentheses in Table 2a. For VL and UL, ML 
standard errors are respectively about 25% and 75% larger 
than the corresponding naive standard errors. Also, the ML 
standard errors for UL are slightly smaller than for VL 
indicating that the extra links made by UL were worthwhile. 
Clearly, naive inference with UL over-states the level of 
confidence in estimates. For VL, naive and ML standard 
errors and estimates are very close. 

Irrespective of the cut-off, the ML estimates in Table 2 
a, b and c are always closer to the GS estimates than the 
corresponding naive estimate. For example in Table 2b the 
ML estimates for VL is 36.9%, noticeably closer to the GS 
estimate of 37.9% than the naive estimate of 33.3%. Based 
on the estimates in Table 2 it could be argued that the choice 
of whether to use VL or UL is not so important, as along as 
the ML estimator is used.  

 
Table 2 
Percentages of Indigenous persons in various employment categories in 2006 given their employment category in 2005. For each linked 
data set, Very Low and Ultra Low, the estimation methods can be compared with the Gold 
 

                                                                                             Estimates for different methods and linked data set
a: Indigenous persons employed in 2005 
Status in 2006 Gold Very Low Cut-off Ultra Low Cut-off
  Naive Gold links ML PML CML Naive ML
Employed 78.3 

(1.7) 
86.7 
(2.4) 

86.0 
 

86.4 
(3.0)

86.6 86.1 71.9 
(1.7) 

81.8 
(2.9)

Unemployed 3.7 
(0.84) 

4.2 
(1.2) 

4.3 4.1 
(2.5)

4.1 4.2 6.3 
(0.82) 

3.3 
(2.1)

Not in the labour force 
17.8 
(1.6) 

9.0 
(2.4) 

9.6 9.3 
(3.1) 

9.1 9.6 21.6 
(1.6) 

14.7 
(2.8) 

b: Indigenous persons unemployed in 2005 
Status in 2006 Gold Very Low Ultra Low 
  Naive ML Naive ML
Employed 27.5 27.7 27.2 35.2 23.8
Unemployed 34.4 38.9 36.4 32.3 38.0
Not in the labour force 37.9 33.3 36.3 32.3 38.0 
c: Indigenous persons not-in-the-labour force in 2005 
Employed 13.7 10.8 10.7 24.3 10.5
Unemployed 5.8 7.6 7.4 6.3 5.8
Not in the labour force 80.4 81.5 81.8 69.2 83.5 
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Table 3 is the same as Table 2 except that it describes 
analyses of linked records from all persons 15 and over 
rather than only Indigenous persons. Again the ML always 
makes an improvement for the UL, though this is not the 
case for VL. Table 4 gives the student status in 2006 for 
persons who were students in 2005. Again the ML generally 
makes the estimates closer to the corresponding Gold 
estimate, especially for UL. 

 
Table 3 
Percentages of all persons aged over 15 in various employment 
categories in 2006 given their employment category in 2005. For 
each linked data set, Very Low and Ultra Low, the estimation 
methods can be compared with the Gold 
 

 Estimates for different  
methods and linked data set 

Status in 2006 Gold Very Low Ultra Low 
  Naive  ML Naive ML 

a: Persons employed in 2005 

Employed 91.8 92.2 92.6 89.7 92.4 
Unemployed 1.8 1.7 1.6 1.9 1.6 
Not in the labour force 6.2 6.1 5.6 8.3 5.8 

b: Persons unemployed in 2005 

Employed 44.5 44.3 44.0 49.4 43.8 
Unemployed 26.8 26.6 27.5 22.8 27.6 
Not in the labour force 28.6 28.7 28.4 27.6 28.5 

c: Persons not-in-the-labour force in 2005 

Employed 12.1 12.3 11.1 16.8 11.0 
Unemployed 3.1 3.1 3.0 3.0 3.0 
Not in the labour force 84.7 84.5 85.7 80.1 85.9 

 
Table 4 
Student outcomes in 2006 for high school students in 2005 
 

Student Status in 2006 Gold Very Low Ultra Low 
  Naive  ML Naive ML 

High School Student 79.3 79.3 79.6 77.4 79.6 
Completed High School 14.0 14.3 13.7 14.7 14.1 
Did not Complete High School 6.6 6.3 6.6 7.8 6.2 

 
5.3 Simulation  

The following simulation study illustrates the problems 
with naive analysis and the benefit of using the method 
outlined in this paper. Files X and Y in the simulation, each 
containing 2,000 records, are independently generated 400 
times, where each generated file is denoted by X(r) and 
Y(r), and 1, ..., 400.r =  Specifically, on X(r) ix  is ran-
domly generated from the Bernoulli distribution with para-
meter 0.5. On Y(r), iy  is randomly generated from the 

Bernoulli distribution with parameter ,iυ  where iυ =  
0 1 0 1 01 / [1 exp( )], ( , ) ,ix ′+ β + β = β β β = −β 0.5, 1β = 1.5. 

The thr  set of imperfectly linked data, *( ),rd  is generated 
by correctly linking each record on File Y(r) to one record 
on File X(r) with probability p =  0.8, 0.90, 0.95 and 1. For 
each thr  set of linked data a clerical sample of 300 links is 
selected. Each link in the clerical sample is assigned as 
being correct or incorrect. We summarise the performance 
of the ML estimator from section 3.2.2 and the naive 
method, which assumes there is no linkage error, by their 
95% coverage rates and their Mean Squared Error (MSE). 
The coverage rates are based on the standard errors calcu-
lated from the Bootstrap described in section 3.3 with R =  
40 replicates. The MSE of β  is calculated by 

400
1

1MSE( ) ( ) ( )
400 r rr=

′= − −∑β β β β β  

where rβ  is the ML estimate of β  from *( ).rd  
Table 5 shows that the naive approach has poor coverage 

rates, due to its significant bias in the presence of linkage 
error, and consequently a relatively high MSE. The cover-
age rates for ML-Method 1 are very close to their nominal 
levels. The results show that, as the percentage of correct 
links reduces from 100% to 80%, the MSE of ML increases 
by a factor of about 3 for 0β  and 1.β  (The coverage rates 
and MSE of ML Method 1and 2 were very similar so only 
the former are reported).  
Table 5 
Mean squared error and coverage rates for linked simulated 
data, where correct linkage occurs with probability, p 
 

  
Mean Squared Error 

95% Coverage 
Rates 

 0.8 0.9 0.95 1 0.8 0.9 0.95
Naive  0β  0.024 0.010 0.0056 0.0043* 0.35 0.80 0.93 
 1β  0.11 0.038 0.016 0.011* 0.05 0.62 0.88 
ML-Method 1 0β  0.013 0.0078 0.0055 0.0043* 93.0 94.25 93.5 
 1β  0.031 0.018 0.013 0.011* 96.0 94.5 96.25 
* when p = 1 the naive and ML estimators are the same by 

definition.  
6. Discussion  

Data linkage is an appropriate technique when data sets 
must be joined to enhance dimensions such as time and 
breadth or depth of detail. Data linkage is increasingly being 
used by statistical organisations around the world. It is well-
known that errors can arise when linking files, for example 
when applying probabilistic linking methods. However, 
there has been little work reported in the literature about 
how to make valid inferences in the presence of such errors. 
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This paper provides methodological and practical advice to 
support analysts in this area. 

In general, naively treating a linked file as if it were 
perfectly linked will lead to biased estimates. The analyst 
should only use the naive approach when both the number 
of unlinked records, defined as records that could be cor-
rectly linked but were not linked at all, and the number of 
incorrect links are negligible. This paper has presented a 
maximum likelihood approach to making valid inferences in 
the presence of both sources of error. The approach uses the 
well-known EM algorithm and is easy to apply in practice. 
The method can be applied when one of the files is not 
necessarily a subset of the other and when the linkage 
involves multiple passes. These situations often arise in 
practice, including many recent examples in the Australian 
Bureau of Statistics. The empirical study shows that the ML 
approach makes significant and meaningful improvements 
to the estimates from the linked data.  

In the special case where File X is obtained by taking a 
random sample from File Y, the estimation procedure 
described is not ‘full’ maximum likelihood. This is because 
it does not use the fact that population totals for File Y are 
known. While inference using the method described here 
are still valid in this case, it could perhaps be made more 
efficient (see Scott and Wild 1997). 

 
Acknowledgements  

The authors would like to thank Raymond Chambers and 
two reviewers from Survey Methodology for their contri-
butions to this paper.  

 
References  

Australian Bureau of Statistics (2008). Census Data Enhancement - 
Indigenous Mortality Quality Study, 2006-07. Information Paper 
catalogue no. 4723.0. 

 
Bishop, G. (2009). Assessing the Likely Quality of the Statistical 

Longitudinal Census Dataset. Methodology Research Papers, 
catalogue no. 1351.0.55.026, Australian Bureau of Statistics, 
Canberra. 

 
Chambers, R., Chipperfield, J.O., Davis, W. and Kovačević, M. 

(2009). Regression Inference Based on Estimating Equations and 
Probability-Linked Data. Submitted for publication. 

 
Chambers, R.L., and Skinner, C.J. (2003). Analysis of Survey Data. 

New York: John Wiley & Sons, Inc. 
 
Chambers, R. (2008). Regression analysis of probability-linked data. 

Statisphere, Volume 4, http://www.statisphere.govt.nz/official-
statistics-research/series/vol-4.htm. 

Christen, P., and Churches, T. (2005). Febrl – Freely extensible 
biomedical record linkage. Release 0.3.1, viewed 17 November 
2008, http://cs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc- 
0.3/contents.html. 

 
Conn, L., and Bishop, G. (2006). Exploring Methods for Creating a 

Longitudinal Census Dataset. Methodology Advisory Committee 
Papers, catalogue no. 1352.0.55.076, Australian Bureau of 
Statistics, Canberra. 

 
Fair, M. (2004). Generalized record linkage system-Statistics 

Canada’s record linkage software. Austrian Journal of Statistics, 
33(1 and 2), 37-53. 

 
Fellegi, I.P., and Sunter, A.B. (1969). A theory for record linkage. 

Journal of the American Statistical Association, 64, 1183-1210. 
 
Fuller, W.A. (1987). Measurement Error Models. New York: John 

Wiley & Sons, Inc. 
 
Hausman, J.A., Abrevaya, J. and Scott-Morton, F.M. (1998). 

Misclassification of the dependent variable in a discrete-response 
setting. Journal of Econometrics, 87, 239-269. 

 
Herzog, T.N., Scheuren, F.J. and Winkler, W.E. (2007). Data Quality 

and Record Linkage Techniques. New York: Springer. 
 
Holman, C.D.J., Bass, A.J., Rouse, I.L. and Hobbs, M.S.T. (1999). 

Population-based linkage of health records in Western Australia: 
Development of a health services research linked database. 
Australian and New Zealand Journal of Public Health, 23(5), 453-
459. 

 
Lahiri, P., and Larsen, M.D. (2005). Regression analysis with linked 

data. Journal of the American Statistical Association, 100, 222-
230. 

 
National Center for Health Statistics (2009). Linkages between 

Survey Data from the National Center for Health Statistics and 
Program Data from the Social Security Administration. 
Methodology Report, http://www.cdc.gov/nchs/data/datalinkage/ssa_ 
methods_report_2009.pdf. 

 
Rubin, D.B., and Little, R.J.A. (2003). Statistical analysis of missing 

data, 2nd Edition. New York: John Wiley & Sons, Inc. 
 
Scheuren, F., and Winkler, W.E. (1993). Regression analysis of data 

files that are computer matched. Survey Methodology, 19, 39-58. 
 
Scott, A.J., and Wild, C.J. (1997). Fitting regression models to case-

control data by maximum likelihood. Biometrika, 84, 57-71.  
 
Solon, R., and Bishop, G. (2009). A Linkage Method for the 

Formation of the Statistical Longitudinal Census Dataset. 
Methodology Research Papers, catalogue no. 1351.0.55.025, 
Australian Bureau of Statistics, Canberra.  

 
Winkler, W.E. (2001). Record Linkage Software and Methods for 

Merging Administrative Lists. Statistical Research Report Series, 
No. RR2001/03, Bureau of the Census.  



24 Chipperfield, Bishop and Campbell: Maximum likelihood estimation for contingency tables 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Winkler, W.E. (2005). Approximate String Comparator Search 
Strategies for Very Large Administrative Lists. Statistical 
Research Report Series, no. RRS2005/02, Bureau of the Census.  

 

Wright, J., Bishop, G. and Ayre, T. (2009). Assessing the Quality of 
Linking Migrant Settlement Records to Census Data. 
Methodology Research Papers, catalogue no. 1351.0.55.027, 
Australian Bureau of Statistics, Canberra. 
 

 



Survey Methodology, June 2011  25 
Vol. 37, No. 1, pp. 25-37 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Yong You, Statistical Research and Innovation Division, Statistics Canada. E-mail: yongyou@statcan.gc.ca; Qian M. Zhou, Department of Biostatistics, 

Harvard University.  

 

Hierarchical Bayes small area estimation  
under a spatial model with application to health survey data 
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Abstract 
In this paper we study small area estimation using area level models. We first consider the Fay-Herriot model (Fay and 
Herriot 1979) for the case of smoothed known sampling variances and the You-Chapman model (You and Chapman 2006) 
for the case of sampling variance modeling. Then we consider hierarchical Bayes (HB) spatial models that extend the Fay-
Herriot and You-Chapman models by capturing both the geographically unstructured heterogeneity and spatial correlation 
effects among areas for local smoothing. The proposed models are implemented using the Gibbs sampling method for fully 
Bayesian inference. We apply the proposed models to the analysis of health survey data and make comparisons among the 
HB model-based estimates and direct design-based estimates. Our results have shown that the HB model-based estimates 
perform much better than the direct estimates. In addition, the proposed area level spatial models achieve smaller CVs than 
the Fay-Herriot and You-Chapman models, particularly for the areas with three or more neighbouring areas. Bayesian 
model comparison and model fit analysis are also presented. 
 
Key Words: Area level model; Bayesian model comparison; Disease rate; Gibbs sampling; Hierarchical spatial model; 

Posterior predictive model checking; Sampling variance. 
 
 

1. Introduction  
Model-based small area estimation methods have been 

widely used in practice due to the increasing demand for 
precise estimates for local regions and various small areas. 
In general sample surveys are designed to provide reliable 
estimates for large regions or aggregates of small areas such 
as the whole nation and provinces. Direct survey estimates, 
based only on the area specific sample data, usually provide 
reliable estimates of the parameter of interest for those large 
areas. For small areas, particularly some small geographical 
areas or specific small domains, direct estimates are likely to 
yield large standard errors because of the small sample sizes 
in those small areas. Therefore in making inference for 
small areas, it is necessary to borrow strength from related 
areas to form indirect estimates that increase the effective 
sample size and thus increase the precision of estimates. It is 
now generally accepted that the indirect estimates should be 
based on explicit models that provide links to related areas 
through the use of supplementary data such as census counts 
or administrative records; see, for example, Rao (2003) and 
Jiang and Lahiri (2006) for more discussion on model-based 
small area methods. The model-based estimates are ob-
tained to improve the direct design-based estimates in terms 
of precision and reliability, i.e., smaller coefficients of 
variation (CVs). There are two broad classifications for 
small area models: area level models and unit level models. 
Area level models are based on area direct survey estimates 
and unit level models are based on individual observations 
in small areas. In this paper we focus on area level models 

that borrow strength across regions to improve the direct 
survey estimates.  

Among the area level models, the Fay-Herriot model 
(Fay and Herriot 1979) is a basic and widely used area level 
model in practice to obtain reliable model-based estimates 
for small areas. The Fay-Herriot model basically has two 
components, namely, a sampling model for the direct 
estimates and a linking model for the parameters of interest. 
The sampling model involves the direct survey estimate and 
the corresponding sampling variance. The Fay-Herriot model 
assumes that the sampling variance is known in the model. 
Typically a smoothed estimator of the sampling variance is 
obtained and then treated as known in the model. Wang and 
Fuller (2003) and You and Chapman (2006) considered the 
situation where the sampling variances are unknown and 
modeled separately by direct estimators. In this paper we 
will consider both the smoothing and modeling methods for 
the sampling variances in the sampling model.  

The linking model relates the parameter of interest to a 
regression model with area-specific random effects. In the 
Fay-Herriot model, the area random effects are usually 
assumed to be independent and identically distributed (iid) 
normal random variables to capture geographically unstruc-
tured variations among areas. However, in some small area 
applications, particularly in public health estimation prob-
lems, geographical variation of a disease is a subject of 
interest, and estimation of overall spatial pattern of risk and 
borrowing strength across regions to reduce variances of 
final estimates are both important. Thus, it may be more 
reasonable to construct spatial models on the area-specific 
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random effects to capture the spatial dependence among 
them. The spatial models are generally used in health related 
small area estimation, and various spatial models have been 
proposed for small area estimation (e.g., Cressie 1990; 
Ghosh, Natarajan, Stroud and Carling 1998; Maiti 1998; 
Ghosh, Natarajan, Walter and Kim 1999; He and Sun 2000; 
Moura and Migon 2002; Singh, Shukla and Kundu 2005; 
Souza, Moura and Migon 2009). Best, Richardson and 
Thomson (2005) provided a comprehensive review on spa-
tial models for disease mapping. Rao (2003) also discussed 
several spatial small area models.  

The objective of this paper is to consider spatial correla-
tion small area models and illustrate the usefulness of these 
models through an application to health survey data. The 
paper is organized as follows. In section 2, we first study 
area level models including the Fay-Herriot model and 
spatial correlation linking models. Then in section 3 we 
propose hierarchical Bayes (HB) small area models with 
spatial correlation and obtain HB inference for small area 
parameters through the Gibbs sampling method. In section 
4, we apply the proposed models to the analysis of small 
area data from the Canadian Community Health Survey. We 
compare the performance of the model-based estimates with 
the direct design-based estimates, and moreover, we 
compare the proposed models with the Fay-Herriot model 
and the You-Chapman model (You and Chapman 2006) to 
investigate the effects of incorporating spatial structure on 
the area-specific random effects. Bayesian model compari-
son and model fit analysis are also provided. Finally in 
section 5, we offer some concluding remarks.   

2. Small area models and inference   
2.1 Fay-Herriot model  

Let iθ  denote the parameter of interest for the thi  area, 
where 1, ..., ,i m=  and m  is the total number of areas. 
The Fay-Herriot model assumes that the iθ ’s are related to 
area specific auxiliary data 1( , ..., )i i ipx x ′=x  through a 
linear regression model as follows:  

,i i iv′θ = β +x 1, ...,i m=  (1) 

where 1( , ..., )p ′β = β β  is the 1p ×  vector of regression 
coefficients, and the iv ’s are area-specific random effects 
assumed to be iid with E( ) 0iv =  and 2Var( ) .i vv = σ  The 
assumption of normality may also be included. This model 
is referred to as a linking model for .iθ  The Fay-Herriot 
model also assumes that a direct survey estimator ,iy  which 
is usually design-unbiased for the parameter of interest ,iθ  
is available whenever the area sample size 1.in >  It is 
customary to assume that 

,i i iy e= θ + 1, ...,i m=  (2) 

where ie ’s are the sampling errors associated with the direct 
estimator .iy  We also assume that the ie ’s are independent 
normal random variables with mean ( ) 0i iE e θ =  and 
sampling variance 2Var( ) .i i ie θ = σ  The model (2) is re-
ferred to as a sampling model for the direct survey estimator 

.iy  Combining these two components (1) and (2) leads to a 
linear mixed effects model (the Fay-Herriot model) as  

,i i i iy v e′= β + +x 1, ..., .i m=  (3) 

In the basic Fay-Herriot model (3), the sampling variances 
2
iσ  are usually assumed as known, which is a very strong 

assumption. Generally, we can use direct sampling variance 
estimates from the survey data, however, these direct esti-
mates are unstable if sample sizes are small. Therefore, in 
practice, a smoothed estimator of 2

iσ  is used in the model 
and treated as known. A generalized variance function is 
usually applied in practice to obtain a smoothed estimator 
for the sampling variance, e.g., Dick (1995). In recent years, 
a method of smoothing design effects has been developed 
and used in practice to obtain smoothed variance estimators 
(e.g., Singh, Folsom and Vaish 2005; You 2008a; Liu, 
Lahiri and Kalton 2008). In particular, You (2008a) applied 
an equal design effects modeling approach to obtain smooth 
estimates of sampling variances. The design effect for the 

thi  area may be approximately written as 
2

2deff ,i
i

ri

s
s

=  for 1, ..., ,i m=  

where 2
is  is the unbiased direct estimate of sampling 

variance based on the complex sampling design, and 2
ris  is 

the estimate of sampling variance based on the assumption 
of simple random sampling design. For each area, based on 
the assumption of a common design effect, a smoothed 
factor deff can be obtained by 1deff deff / .m

i i m=∑=  Then a 
smoothed sampling variance estimate 2

iσ�  can be obtained 
as 2 2 deff .i risσ = ⋅�  

Instead of plugging in the smoothed estimates of 
sampling variances in the model, alternatively we can model 
the sampling variance directly. In the papers by Wang and 
Fuller (2003) and You and Chapman (2006), they assume 
the sampling variance 2

iσ  unknown and estimate 2
iσ  by an 

unbiased direct estimator 2,is  which is independent of the 
direct survey estimator .iy  They also assume that 2 ~i id s  

2 2 ,
ii dσ χ  where 1,i id n= −  and in  is the sample size for the 

thi  area. You and Chapman (2006) considered the full HB 
approach with the Gibbs sampling method which auto-
matically takes into account the extra uncertainty associated 
with the estimation of 2.iσ  In this paper, we consider both 
the smoothing and modeling approaches for the sampling 
variances.  
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2.2 Spatial models  
To incorporate spatially correlated random effects in the 

linking model, a simple and obvious way is to add a spatial 
random effect iu  in the independent linking model (1) as 
follows:  

' ,i i i iv uθ = β + +x  (4) 

where iu ’s follow the well known intrinsic conditional 
autoregressive model given as 

2

| ~ N , ,
ij j

j i u
i i

ij ij
j i j i

w u
u u

w w
≠

−

≠ ≠

⎛ ⎞
σ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (5) 

where iu−  denotes the values of spatial random effects ju ’s 
in all other areas with ,j i≠  weights ijw  are fixed 
constants, and 2

uσ  is a unknown variance component. In 
practice, a common choice of ijw  is to let 0ijw =  unless 
areas i and j are neighboring areas (i.e., share a common 
boundary), in which case 1.ijw =  The model (4) is 
proposed by Besag, York and Mollie (1991) to separate 
spatial effects from overall heterogeneity in the areas. In 
model (4), independent random effects iv  capture geo-
graphically unstructured heterogeneity among areas, and 
spatial random effects iu  capture spatial dependence bet-
ween areas. In this way, the degree of overall spatial depen-
dence can be expressed based on the proportion of the total 
variation in i iv u+  captured by each component.  

In practice, it is often unclear how to choose between an 
unstructured model (e.g., the basic linking model) given by 
(1) and a purely spatially structured model (e.g., intrinsic 
autoregressive model) given by (5). For model (4), posterior 
inference about the spatial dependence is based on the 
proportion of the total variation in the sum of i iv u+  
captured by each component. However, although the 
univariate conditional distributions of the spatial component 
(5) are well defined, the corresponding joint distribution is 
improper (with undefined mean and infinite variance). 
Moreover, the model (4) has a potential identifiability 
problem where only the sum of the random effects i iv u+  
is well identified by the data; see, for example, Best et al. 
(2005), for a more detailed discussion. 

Alternatively, we can consider another spatial para-
meterization studied by Leroux, Lei, and Breslow (1999) 
and MacNab (2003), which avoids the identifiability prob-
lem encountered with the model (4). Let ,i i ib′θ = β +x  
and 1( , ..., ) .mb b ′=b  Following Leroux et al. (1999) and 
MacNab (2003), we place the following conditional auto-
regressive (CAR) model on the area specific spatial effects 

1( , ..., ) :mb b ′=b  
2~ MVN ( , ( , ))bΣ σ λb 0  (6) 

2 2 1( , ) ,b b
−Σ σ λ = σ D (1 )= λ + − λD R I  (7) 

where 2
bσ  is a spatial dispersion parameter and λ  is a 

spatial autocorrelation parameter, 0 1;≤ λ ≤ I  is an 
identity matrix of dimension ; ,m R  commonly known as 
the neighbourhood matrix, has thi  diagonal element equal 
to the number of neighbors of the area ,i  and the off-diago-
nal elements in each row equal to -1 if the corresponding 
areas are neighbors and 0 otherwise. The CAR model (6) - 
(7) corresponds to the following conditional distribution 
of :ib  

2

| ~ N , ,
1 1

b
i i ij j

j ii i

b b w v
w w−

≠+ +

⎛ ⎞σλ
⎜ ⎟

− λ + λ − λ + λ⎝ ⎠
∑  

where .j ii ijw w≠+ ∑=  The CAR model (6) - (7) becomes 
the intrinsic autoregressive model (5) if 1.λ =  On the 
other hand, if 0,λ =  the CAR model (6) - (7) reduces to 
the independent linking model (1) which assumes inde-
pendence on the area-specific random effects .iv  It is 
necessary to point out that the conditional mean and vari-
ances of |i ib b−  are weighted sums of the corresponding 
overall smoothing moments from the basic linking model 
(1) and local smoothing moments from the intrinsic auto-
regressive model:  
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Thus model (6)-(7) is a balance between the independent 
linking model (1) and the intrinsic CAR model (5). The 
spatial correlation parameter λ  measures the extent of the 
spatial effects for local smoothing of the neighbouring areas. 
The modeling structure (6) captures both the unstructured 
heterogeneity among areas and the spatial correlation effects 
of the neighbouring area.   
2.3 Hierarchical Bayes models and inference   

In order to estimate ,iθ  the parameter of interest, we 
apply a hierarchical Bayes (HB) approach using the Gibbs 
sampling method. Compared to other approaches such as 
EBLUP and empirical Bayes (EB), HB approach is straight-
forward and the inference for iθ  are exact unlike the EB or 
EBLUP. Moreover, the HB approach can deal with complex 
small area models using the Monte Carlo Markov Chain 
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(MCMC) method, which overcomes the computational 
difficulties of multi-dimensional integrations of posterior 
quantities to a large extent.  

Let 1( , ..., ) ,my y ′=y 1( , ..., ) ,m ′= θ θθ  and =X  
1( , ..., ) .m ′x x  We first construct two HB models without and 

with spatial structure under the assumption that the 
sampling variance 2

iσ  are assumed known and replaced by 
the smoothed estimate 2.iσ�   
Model 1: Fay-Herriot model, denoted as FHM (Fay and 
Herriot 1979; Rao 2003).  

• 
2 2| ~ N ( , ),i i i i iy θ θ σ = σ�  for  1, ..., ;i m=  

• 
2 2| , ~ N ( , ),i i vν ′θ β σ β σx  for  1, ..., ;i m=  

• Priors for the parameters 2 2( , ): ( ) 1; ( ) ~v vβ σ π β ∝ π σ  
0 0IG( , ),a b  where 0 0,a b  are chosen to be very small 

known constants to reflect vague knowledge on 2.vσ  N 
stands for the normal distribution and IG for the inverse 
gamma distribution.  

Model 2: Proposed area level CAR model, as an extension 
of the Fay-Herriot model, denoted as CAR-FHM.  

• | ~ MVN( , ),y θ θ E  where E  is a diagonal matrix 
with the thi  diagonal element 2 2 ;i iσ = σ�  

• 
2 2 1| , ~ MVN ( , ),v v

−β σ β σθ X D  where = λ +D R  
(1 ) ,− λ I  with ,I  an identity matrix of dimension m, 
and ,R  the neighbourhood matrix; 

• Priors for the parameters 2( , , ): ( ) 1; ( ) ~vβ λ σ π β ∝ π λ  
Uniform(0, 1),  where 2

0 00 1; ( ) ~ IG( , ),v a b≤ λ ≤ π σ  
where 0 0,a b  are chosen to be very small known 
constants. MVN stands for the multivariate normal 
distribution.  

Note that the proposed model CAR-FHM reduces to FHM 
when the spatial autocorrelation parameter 0.λ =  

We also consider two HB models with the sampling 
variance 2

iσ  unknown and modeled by the direct unbiased 
estimator 2.is   
Model 3: You-Chapman Model, denoted as YCM (You and 
Chapman 2006).  

• 
2 2| , ~ N ( , ),i i i i iy θ σ θ σ  for  1, ..., ;i m=  

• 
2 2

i i id s ⎟ σ
ind
∼ 2 2

ii dσ χ  where 1,i id n= −  for 1, ..., ;i m=  

• 
2 2| , ~ N ( , ),i i vν ′θ β σ β σx  for  1, ..., ;i m=  

• Priors for unknown parameters 2 2( , , ,v i iβ σ σ =  
2 2

0 01, ..., ): ( ) 1; ( ) ~ IG ( , ), ( ) ~v im a bπ β ∝ π σ π σ  
IG ( , )i ia b  for 1, ..., ,i m=  where ,i ia b (0 )i m≤ ≤  
are chosen to be very small known constants to reflect 
vague knowledge on 2

iσ  and 2.vσ   

Model 4: Proposed area level CAR model with unknown 
sampling variances, as an extension of You-Chapman 
model, denoted as CAR-YCM.  

• 
2 2
1| , , ..., ~ MVN( , ),mσ σy θ θ E  where matrix E  has 

diagonal elements 2 ;iσ  

• 
2 2

i i id s ⎟ σ
ind
∼ 2 2 ,

ii dσ χ  where 1,i id n= −  for i =  
1, ..., ;m  

• 
2 2 1| , ~ MVN ( , ),v v

−β σ β σθ X D  where = λ +D R  
(1 ) ;− λ I  

• Priors for the parameters 2 2( , , , , 1, ..., ):v i i mβ λ σ σ =  
( ) 1;π β ∝ ( ) ~ Uniform(0, 1),π λ  where 0 1;≤ λ ≤  

2
0 0( ) ~ IG ( , );v a bπ σ 2( ) ~ IG ( , )i i ia bπ σ  for i =  

1, ..., ,m  where ,i ia b (0 )i m≤ ≤  are chosen to be 
very small known constants.   

Again, note that the proposed model CAR-YCM reduces 
to the You-Chapman model when 0.λ =  For both models 
3 and 4 there is an implicit assumption that the area-specific 
sample size 2.in ≥  If flat priors are used for 2,iσ  we 
should have 4in ≥  to ensure proper posteriors (You and 
Chapman 2006).  

We apply the Gibbs sampling method to estimate the 
posterior mean E( | )iθ y  and the corresponding posterior 
variance Var ( | ).iθ y  The required full conditional distri-
butions of parameters under different models are given in 
Appendix A. For the Fay-Herriot model and the You-
Chapman model, all the full conditional distributions have 
closed forms and drawing samples from these distributions 
is straightforward. For the proposed two area level spatial 
models CAR-FHM and CAR-YCM, the conditional distri-
bution of the spatial correlation parameter λ  does not have 
a closed form. We use the Metropolis-Hastings algorithm 
within the Gibbs sampler (Chip and Greenberg 1995) to 
update .λ  Under the model CAR-FHM, the full conditional 
distribution of λ  in the Gibbs sampler can be written as 

2[ | , , ] h ( ) f ( )vλ β σ ∝ λ λθ  

where f ( )λ  is a density function of the uniform distribu-
tion, Uniform (0, 1), given as 

f ( ) 1,λ ∝  where 0 1≤ λ ≤  

and h ( )λ  is a function given by 

[ ]

[ ]( )

1/21

2

h ( ) (1 )

1exp ( ) (1 ) .
2 v

−−λ ∝ λ + − λ

⎧ ⎫⎪ ⎪′× − − β λ + − λ − β⎨ ⎬
σ⎪ ⎪⎩ ⎭

R I

θ X R I θ X
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We use f ( )λ  as the “candidate” generating density func-
tion in the Metropolis-Hastings updating step. To update λ  
from the current values of ( ) ( ) 2( )( , , ),k k k

vβ σθ  we proceed as 
follows: 

1. Draw ∗λ  from a uniform distribution; 
2. Compute the acceptance probability ( )( , )k∗α λ λ =  

( )min{ ( ) / ( ), 1};kh h∗λ λ  
3. Generate u  from a uniform distribution, if u <  

( )( , ),k∗α λ λ  then the candidate value ∗λ  is accepted, 
i.e., ( 1) ;k+ ∗λ = λ  otherwise ∗λ  is rejected, and set 

( 1) ( ).k k+λ = λ   
For the model CAR-YCM, a similar procedure can be 

applied when drawing samples from the conditional distri-
bution of .λ   

3. Data analysis  
3.1 Data description and implementation  

The Canadian Community Health Survey (CCHS) is a 
federal survey conducted by Statistics Canada. The primary 
objective of CCHS is to provide timely and reliable 
estimates of health determinants, health status and health 
system utilization across Canada. It is a cross-sectional 
survey which operates on a two-year collection cycle. The 
first year of the survey cycle “x.1” targets individuals aged 
12 or older who are living in private dwellings, and it is a 
general population health survey with a large sample 
(130,000 persons) designed to provide reliable estimates at 
the health region, provincial and national levels. The second 
year of the survey cycle “x.2” has a smaller sample (30,000 
persons) allocated based on provincial sample buy-ins and is 
designed to provide provincial and national level results on 
specific focused health topics. Although national and 
provincial estimates are very important, there is an in-
creasing demand for health data at lower levels of geog-
raphy voiced by a number of provinces including British 
Columbia (BC), Prince Edward Island (PEI), Quebec and 
others. Cycle “x.1” of the CCHS collected data corresponds 
to 136 health regions in the 10 provinces and three terri-
tories. It primarily used two sampling frames. The first one, 
used as the primary frame, was based on the area frame 
designed for the Canadian Labour Force Survey, and within 
the area frame, a multistage stratified cluster design was 
used to sample dwellings. The second frame consists of a 
list of telephone numbers. Random digit dialing metho-
dology is used in some of the health regions for cost 
reasons. More details of the design are provided in Béland 
(2002). In this paper, we use a small data set from Cycle 1.1 
as an example to demonstrate the analysis. We are interested 
in estimating the disease rate for local health regions within 

provinces. In particular, we apply the four models discussed 
in section 2 to estimate the asthma rate for 20 health regions 
in the province of BC using the data from Cycle 1.1. Figure 
1 shows the map of the 20 health regions in the province of 
British Columbia. We use this map to define the neigh-
bourhood correlation matrix used in the spatial models. 
Appendix B gives the list of health regions and related 
spatial structures.   

 
Figure 1 Map of 20 health regions in the province of British 

Columbia  
Let iθ  denote the true asthma rate for the thi  health 

region in BC, 1, ..., 20.i =  From the survey data of Cycle 
1.1, we obtained the direct survey estimate iy  of iθ  as the 
ratio of number of people having asthma (direct survey 
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estimate) divided by the corresponding population size 
(known constant). We have also included six area level 
auxiliary variables used in the model, and these six variables 
are total population size, number of persons who have 
asthma as one of the symptoms of the chronic disease, 
number of persons who have asthma as the main symptom 
of the chronic disease, number of persons who have diabetes 
as one of the symptoms of the chronic disease, number of 
persons who have diabetes as the main symptom of the 
chronic disease, and number of visits to hospitals. Note that 
in the literature related to disease mapping (e.g., Mollié 
1996; Maiti 1998; MacNab 2003), a Poisson or Binomial 
distribution is usually assumed in the sampling model for 
the direct estimate .iy  However, in small area estimation, 
the direct estimate iy  is obtained based on the complex 
sampling design used in the survey. Thus, it is a customary 
approach to assume a normal sampling model on the direct 
estimates ;iy  see, for example, Datta, Lahiri, Maiti and Lu 
(1999), Rao (2003), Mohadjer, Rao, Liu, Krenzke and 
Van de Kerckhove (2007), and You (2008a) . Note that we 
have only considered one kind of disease rate data from one 
province in our study and used this example as illustration 
of the proposed model and evaluate the effects of spatial 
modeling in small area models. 

To implement the Gibbs sampling, we use L = 5 parallel 
runs each with a “burn-in” length of B = 2,000 and Gibbs 
sampling size of G = 5,000. For the proposed models CAR-
FHM and CAR-YCM, in order to reduce the autocorrelation 
which results from the accept-rejection algorithm in the run, 
we take every 5th iteration after the “burn-in” period. 
Therefore, for models FHM and YCM, we have n = 5,000 
samples for each run, and for models CAR-FHM and CAR-
YCM, we have n = 1,000 samples for each run. Conver-
gence of the Gibbs sampling is monitored for the small area 
parameters iθ  and other unknown parameters in the model 
using the potential scale reduction factor (Gelman and 
Rubin 1992; Gelman, Carlin, Stern and Rubin 2004, page 
296-297). We have computed the reduction factors for all 
the monitored parameters in the model in the Gibbs 
sampling. These factor values are all very close to 1 (less 
than 1.05), which suggests that the desired convergence for 
these parameters is achieved by the Gibbs sampler.  

We have used vague priors for the hyperparameters in 
the model as a common practice in HB small area esti-
mation. In particular, the flat prior for regression parameter 

( ) 1π β ∝  and proper inverse gamma priors for variance 
components are commonly used (e.g., Arora and Lahiri 
1997; Ghosh et al. 1998; Datta et al. 1999; You and Rao 
2000; Rao 2003, page 237; Souza et al. 2009). Following 
MacNab (2003), we have used the uniform prior ( ) ~π λ  
Uniform(0, 1)  for the autocorrelation parameter. The uni-
form priors are also commonly used for the autocorrelation 

parameters in spatial models (e.g., Maiti 1998; He and Sun 
2000; Rao 2003, page 266). We also tried several different 
values for the inverse gamma priors. The HB estimates are 
quite stable and not sensitive to the choice of vague proper 
priors. More detailed discussion on sensitivity analysis can 
be found, for example, in You and Chapman (2006) for 
similar models.   
3.2 Comparison of results  

At first, we present the HB estimates of the asthma rate 
under models FHM and CAR-FHM in which the sampling 
variances 2

iσ  are assumed to be known. We used the 
smoothed estimate 2

iσ�  obtained by the smoothing technique 
in You (2008a) as described in Section 2. Figure 2 displays 
the direct estimates and the HB model-based estimates 
under FHM and CAR-FHM for the 20 health regions in BC. 
The health regions appear in the x-coordinate ranked by the 
order of sample size with the smallest (Peace Liard) on the 
left and the largest (South Fraser Valley) on the right. Model 
1 (FHM) and Model 2 (CAR-FHM) give similar point esti-
mates, and both the model-based estimates lead to moderate 
smooth estimates compared to the direct estimates. More-
over, the direct estimates and two HB estimates of the dis-
ease rate are very close for some health regions with large 
sample sizes, but for some areas with smaller sample sizes, 
they differ to some extent. Similar results are obtained under 
Model 3 (YCM) and Model 4 (CAR-YCM).   

 
Figure 2 Direct and HB model-based estimates under models 

FHM and CAR-FHM  
Figure 3 presents the CVs of the direct and two HB 

model-based estimates with the health regions ordered by 
the sample sizes from the smallest to the largest as in Figure 
2. The CVs of HB estimates are obtained by dividing the 
squared root of the posterior variance by the posterior mean. 
As expected, the CVs of the direct estimates show a clear 
tendency of decrease as the sample size increases. However, 
the two model-based estimates give smoother CVs. More-
over, the two HB model-based estimates exhibit a great 
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improvement over the direct design-based estimates in 
terms of precision and reliability, that is, smaller CVs. 
Compared to the direct estimates, the average CV reduction 
of the HB estimates under FHM is about 22.7% ranging 
from 7.8% to 40.5%, and the average reduction of the CVs 
for the HB estimates under the proposed CAR-FHM is 
27.8% ranging from 12.5% to 52.1%. Thus it is clear that 
the proposed spatial model CAR-FHM is superior to the 
Fay-Herriot model. We also obtained similar results for the 
models YCM and CAR-YCM when the sampling variance 
is modeled directly. The average CV reduction under YCM 
is 23.9%, whereas the average CV reduction is 29.0% under 
the proposed spatial model CAR-YCM. Details of the 
results including the point estimates and the corresponding 
CVs are presented in a table in Appendix C. In our example, 
the sample size at the health region level is relatively large. 
The model-based estimates have still shown great improve-
ment over the direct survey estimates. Our results indicate 
that the presented small area models can be used to improve 
the direct survey estimates even when the sample size is 
relatively large. Note that Bayesian credible intervals for the 
small area parameters can be easily constructed using the 
MCMC output from the Gibbs sampler if required by prac-
tical users. This is an advantage of using the HB inference 
via MCMC sampling. However in this paper we only report 
the model-based point estimates and the corresponding CVs 
as our main purpose is to compare the model-based esti-
mates with the direct estimates and to show the efficiency 
gain of the models. The gain in efficiency is clearly evident. 
 

 
Figure 3 Direct and HB CVs under models FHM and CAR-

FHM 
 

In order to investigate the effects of incorporating the 
spatial structure in the model, we present the CVs of the 
direct and HB estimates by health regions sorted according 
to the number of neighbouring regions from the smallest (2 
neighbours) to the largest (7 neighbours) in Figure 4. It 
shows that the HB estimates from the proposed model 

CAR-FHM has smaller CVs than the estimates from the 
Fay-Herriot model. In addition, the improvement of CAR-
FHM over the Fay-Herriot model is much more obvious in 
the regions with more neighbours, and these two models 
give very close CVs in the regions with less adjacent areas. 
Very similar results are also obtained for CAR-YCM over 
YCM. Table 1 gives the average reduction of the CVs 
across the health regions with the same number of neigh-
bours. The results in Table 1 present the CV reduction of the 
proposed spatial models for both cases of known and 
unknown sampling variances. For example, for known 2

iσ  
(smoothed 2 ),iσ�  for areas with only 2 neighbours, the 
average CV reduction of model CAR-FHM over the Fay-
Herriot model is only around 0.9%, whereas for areas with 7 
neighbours, the average CV reduction for CAR-FHM over 
FHM is as high as around 20%. For the case of unknown 

2,iσ  similar results are obtained for CAR-YCM over YCM. 
The numerical results in Table 1 confirm the clear trend of 
increased CV reduction under the proposed spatial model 
over FHM or YCM as the number of neighbours increases. 
Thus, more neighbouring areas can provide more informa-
tion in the spatial structure to improve the precision and 
reliability of the HB estimates. 
 

 
Figure 4 Direct and HB CVs under models FHM and CAR-

FHM with the health regions sorted by the number of 
neighbours 

 
Table 1  
Comparison of average CV reduction 
 

Number of 
neighbours 

Average CV reduction
CAR-FHM over 

FHM 
CAR-YCM over 

YCM 
2 0.9% 1.8%
3 3.7% 3.5%
4 6.3% 6.0%
5 8.9% 8.7%
6 13.7% 11.0%
7 19.2% 20.7%
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3.3 Bayesian model comparison  
In this section, we compare the proposed models CAR-

FHM with FHM and CAR-YCM with YCM, respectively. 
For hierarchical Bayes model comparison, the deviance 
information criterion (DIC) proposed by Spiegelhalter, Best, 
Carlin and van der Linde (2002) is commonly used in recent 
years to compare non-nested and mixed effects Bayesian 
models. The DIC is based on the deviance of the model 

( ),D θ  which is equal to minus twice the log-likelihood of 
the model, and the DIC is usually computed as DIC =  

ˆ( )D θ + 2 ,Dp  where ˆ( )D θ  is the deviance of the model 
evaluated at the posterior mean of the model parameters, 
which summarizes the goodness of fit of the model, and Dp  
is the effective number of parameters, which captures the 
complexity of the model. Dp  is defined as ( )Dp D= θ −  

ˆ( ),D θ  and ( )D θ  is the posterior mean of the deviance of 
the model. Thus the DIC is defined as the summation of the 
goodness of fit of the model and the model complexity. 
Smaller values of DIC indicate a better model fit. 
Computation of DIC is relatively straightforward provided 
that the deviance ( )D θ  is available in closed form, and Dp  
may be calculated after the Gibbs sampling run by taking 
the sample mean of the simulated values of ( )D θ  minus 
the plug-in estimate of the deviance ˆ( ).D θ  For the four 
models presented in section 2, we computed the correspond-
ding DIC values, as shown in Table 2. It is clear that the 
proposed spatial models CAR-FHM and CAR-YCM both 
have smaller DIC values than the non-spatial models FHM 
and YCM respectively, which indicates that the spatial 
models are better than the non-spatial models in our study. 
Both spatial models CAR-FHM and CAR-YCM perform 
well in this example. This result of model comparison is 
consistent with the estimation results presented in 
section 3.2.   
Table 2 
Comparison of DIC values for the four hierarchical models 
 

Model DIC value 
FHM 27.1 

CAR-FHM 24.6 
YCM 26.8 

CAR-YCM 24.5  
3.4 Test of model fit  

In order to check the overall model fit of the proposed 
models CAR-FHM and CAR-YCM, we use the method of 
posterior predictive distribution. Let repy  denote the repli-
cated observation under the model. The posterior predictive 
distribution of repy  given the observed data obsy  is de-
fined as rep obs rep obs( | ) ( | ) ( | ) .f y y f y f y d= θ θ θ∫  In this 
approach, a test statistic ( , )T y θ  that depends on the data y 
and possibly the parameter θ  can be defined and the 

observed value obs obs( , | )T y yθ  compared to the posterior 
predictive distribution of rep obs( , | )T y yθ  with any signify-
cant difference indicates a model failure. Lack of fit of the 
data with respect to the posterior predictive distribution can 
be measured by the p-value of the test quantity (Meng 1994; 
Gelman, Meng and Stern 1996). The posterior predictive p-
value is defined as rep( ( , )p P T y= θ ≥ obs obs( , ) | ).T y yθ  If 
the given model adequately fits the observed data, then 

obs obs( , | )T y yθ  should be near the central part of the 
histogram of the rep obs( , | )T y yθ  values if repy  is generated 
repeatedly from the posterior predictive distribution. Conse-
quently, the posterior predictive p-value is expected to be 
near 0.5 if the model adequately fits the data. Extreme p-
values (near 0 or 1) suggest poor fit. The posterior predictive 
p-value model checking has been criticized for being 
conservative due to the double use of the observed data; see, 
for example, Bayarri and Berger (2000). They proposed 
alternative model checking p-value measures, named the 
partial posterior predictive p-value and the conditional 
predictive p-value. However, their methods are more 
difficult to implement and interpret (Rao 2003; Sinharay 
and Stern, 2003). As noted in Sinharay and Stern (2003), the 
posterior predictive p-value is especially useful if we think 
of the current model as a plausible ending point with 
modifications to be made only if substantial lack of fit is 
found.  

To carry out the posterior predictive model checking, we 
need to specify a test quantity ( , ).T y θ  You (2008b) studied 
several test quantities in posterior predictive model checking 
for small area models through a simulation study and pro-
posed a test quantity given as  

( , ) max( ) mean( ) min( ) mean( ) .i i i iT y y yθ = − θ − − θ  

It is shown in You (2008b) that the proposed test quantity 
( , )T y θ  is sensitive to the choice of distribution of random 

effects and different mean functions under the Fay-Herriot 
model. A similar test quantity is also suggested in Gelman 
et al. (2004) for posterior predictive model checking. In our 
study, under the proposed model CAR-FHM, the estimated 
p-value is 0.472, and under model CAR-YCM, the esti-
mated p-value is 0.453. Thus there is no indication of lack 
of model fit and both proposed spatial models fit the data 
quite well.  

To access model fit at the individual observation level, 
we also computed the individual predictive probability 
values *

ip  as *
(rep) (obs) obs( | );i i ip P y y y= <  see, for exam-

ple, Gelfand (1996) and Daniels and Gatsonis (1999). These 
individual predictive probabilities provide information on 
the degree of consistent overestimation or underestimation 
of the observed data. For model CAR-FHM, the *

ip  ranges 
from 0.325 to 0.768 with a mean of 0.517 and a median of 
0.496; for model CAR-YCM, the *

ip  ranges from 0.316 to 
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0.772 with a mean of 0.511 and a median of 0.497. Both 
models give very similar results and the mean and median 
values are all around 0.5. There is no indication of any 
consistent overestimation or underestimation of the pro-
posed models. The overall p-values and individual pre-
dictive probabilities have shown that the proposed spatial 
small area models fit the data quite well.   
3.5 Bias diagnostics  

To evaluate any possible bias of the model-based esti-
mates under the proposed models with respect to the direct 
survey estimates, following Brown, Chambers, Heady and 
Heasman (2001), we consider a simple method of regression 
analysis for the direct estimates and the HB model-based 
estimates. You (2008a) also used the regression analysis 
method for model bias diagnostics. If the model-based 
estimates are close to the true values of the small area 
disease rate, then the direct survey estimates, which are 
assumed to be unbiased for the true disease rates, should 
behave like random variables whose expected values 
correspond to the values of the model-based estimates. That 
means the model-based estimates should be unbiased 
predictors of the direct estimates. In terms of regression 
analysis, we basically fit the regression model Y =  

Xα + β  to the data and estimate the coefficients, and see 
how close the regression line is to .Y X=  Let Y  be the 
direct survey estimates and X  be the model-based esti-
mates. Under the proposed CAR-FHM, we obtain a re-
gression line 0.0021(0.011) 1.0365(0.1445) ;Y X= − +  
under the proposed CAR-YCM, we obtain a regression 
line 0.0028(0.0108) 1.0458(0.1427) .Y X= − +  Thus 
both the regression lines show very little disparity from 

.Y X=  We therefore conclude that the model-based 
estimates are consistent with the direct estimates with no 
extra possible bias induced by the proposed models. The 
results also provide an indication of no evidence of any bias 
due to possible model misspecification.   

4. Conclusions   
In this paper we have discussed two area level models, 

namely, the well-known Fay-Herriot model in which the 
sampling variance is assumed to be known, and the You-
Chapman model in which the sampling variance is unknown 
and modeled separately by its direct estimator. In both the 
Fay-Herriot model and You-Chapman model, the area 
random effects are assumed to be iid normal random 
variables to capture unexplained area heterogeneity effects. 
After comparing various forms of Gaussian CAR models 
proposed in the literature (e.g., Best et al. 2005) for disease 
mapping to incorporate spatially correlated effects, we 
extended the independent area effects model to a spatial 
correlation model and combined it with the traditional small 

area models. The proposed new small area spatial corre-
lation models CAR-FHM and CAR-YCM include the small 
area sampling models and a spatial correlation linking 
model which captures both the unstructured heterogeneity 
among areas and the spatial correlation effects of the 
neighbouring areas. We don’t need to specify the spatial 
autocorrelation parameter in the model, and this parameter 
will be estimated from the data.  

In the data analysis we compared the proposed spatial 
models with the non-spatial effects models by applying the 
models to estimate the rates of asthma for 20 health regions 
in the province of British Columbia. Our results have shown 
that the model-based estimates achieve a great improvement 
over the direct estimates in terms of moderately smoothed 
point estimates and much smaller CVs. Particularly, the 
proposed models are superior to the Fay-Herriot model or 
You-Chapman model whether the sampling variances are 
assumed to be known or unknown. Moreover, note that the 
CV reduction of the proposed spatial models over the Fay-
Herriot model or You-Chapman model is greater for the 
areas with more neighbours. Results of the Bayesian model 
comparison and model fit analysis are also in favor of the 
proposed small area spatial models.  

In future work, the proposed small area spatial models 
can be extended to unmatched sampling and linking models 
(You and Rao 2002) with the sampling variance known or 
unknown. We plan to evaluate the estimation effects of 
different spatial models as well as the effects of spatial 
structures. For data analysis, we will produce model-based 
health status estimates based on the proposed models for 
health regions across Canada and evaluate the possibility of 
extending the model-based approach to lower level esti-
mates such as age-sex domains within heath regions. We 
also plan to consider the data cloning method (Lele, Dennis 
and Lutscher 2007; Lele, Nadeem and Schmuland 2010) for 
the spatial models. An advantage of data cloning method is 
that the results are independent of the choice of priors. But 
the computational burden could be considerably extensive.  
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Appendix A 
 

Full conditional distributions  
A.1. Gibbs sampling full conditional distributions under Model 1: FHM.  

• 
2 2[ | , , ]  ~  N[ (1 ) , ],i i i i i i i iy yν ′θ β σ γ + − γ β σ γx �  where 2 2 2/ ( ),i iν νγ = σ σ +σ�  for 1, ..., ;i m=  

• 

1 1
2 2

1 1 1
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i i i i i
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− −

ν ν
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⎣ ⎦
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A.2. Gibbs sampling full conditional distributions under Model 2: CAR-FHM.  

• 
2[ | , , , ] ~ MVN ( ( ) , ),vβ λ σ + − βθ y Λy I Λ X ΛE  where 1 2 1 1( / )v

− − −= + σΛ Ε D Ε  with 2 2
1diag{ , ..., }m= σ σE � �  

and (1 ) ;= λ + − λD R I  
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A.3. Gibbs sampling full conditional distributions under Model 3: YCM.  

• 
2 2 2[ | , , , ] ~ N[ (1 ) , ],i i i i i i i i iy yν ′θ β σ σ γ + − γ β σ γx  where 2 2 2/ ( ),i iν νγ = σ σ +σ  for 1, ..., ;i m=  
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A.4. Gibbs sampling full conditional distributions under Model 4: CAR-YCM.  

• 
2 2[ | , , , , ] ~ MVN ( ( ) , ),v iβ λ σ σ + − βθ y Λy I Λ X ΛE  where 1 2 1 1( / ) ,− − −= + σΛ Ε D Ε  and 

2 2
1diag{ , ..., },m= σ σE (1 ) ;= λ + − λD R I  
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Appendix B 
 

List of 20 health regions in the province  
of British Columbia with the corresponding sample sizes and spatial structures 

 

ID number Health region name Sample size Number of neighbours Neighbours 
1 East Kootenay 645 3 2, 3, 15 
2 West Kootenay-Boundary 705 3 1, 3, 4 
3 North Okanagan 890 5 1, 2, 4, 5, 15 
4 South Okanagan Similameen 1,063 4 2, 3, 5, 6 
5 Thompson 982 7 3, 4, 6, 9, 11, 12, 15
6 Fraser Valley 1,125 5 4, 5, 7, 8, 9 
7 South Fraser Valley 1,437 4 6, 8, 17, 19 
8 Simon Fraser 1,165 5 6, 7, 9, 17, 18
9 Coast Garibaldi 623 5 5, 6, 8, 11, 18

10 Central Vancouver Island 1,077 2 11, 20 
11 Upper Island/Central Coast 746 4 5, 9, 10, 12 
12 Cariboo 673 4 5, 11, 13, 15 
13 North West 650 3 12, 14, 15 
14 Peace Liard 611 2 13, 15 
15 Northern Interior 859 6 1, 3, 5, 12, 13, 14
16 Vancouver 1,285 4 17, 18, 19, 20
17 Burnaby 871 5 7, 8, 16, 18, 19
18 North Shore 842 4 8, 9, 16, 17 
19 Richmond 828 3 7, 16, 17 
20 Capital 1,225 2 10, 16 

Note that Vancouver (#16) and Capital (#20) are not adjacent regions in the map since they are separated by the ocean. However, due to the 
intensive and close connection between these two regions, we define them as neighbours in our study for illustration purpose only.  

 
Appendix C 

 
Direct and model-based point estimates and CVs  

 

Comparison of point estimates
Area ID Direct Est. FHM CAR-FHM YCM CAR-YCM

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.0765 
0.0804 
0.0745 
0.0893 
0.0782 
0.0943 
0.0702 
0.0858 
0.0877 
0.0763 
0.0661 
0.0717 
0.0631 
0.0673 
0.0793 
0.0657 
0.0859 
0.0583 
0.0619 
0.0877 

0.0793
0.0795 
0.0726 
0.0868 
0.0739 
0.0914 
0.0707 
0.0845 
0.0763 
0.0805 
0.0685 
0.0681 
0.0687 
0.0685 
0.0721 
0.0696 
0.0778 
0.0626 
0.0649 
0.0923

0.0812
0.0793 
0.0731 
0.0874 
0.0736 
0.0927 
0.0712 
0.0848 
0.0745 
0.0799 
0.0678 
0.0681 
0.0692 
0.0680 
0.0707 
0.0702 
0.0759 
0.0633 
0.0647 
0.0914

0.0795 
0.0797 
0.0725 
0.0867 
0.0729 
0.0918 
0.0711 
0.0844 
0.0765 
0.0805 
0.0679 
0.0678 
0.0690 
0.0685 
0.0728 
0.0697 
0.0773 
0.0618 
0.0653 
0.0917 

0.0812
0.0794 
0.0729 
0.0873 
0.0731 
0.0928 
0.0717 
0.0849 
0.0747 
0.0796 
0.0676 
0.0677 
0.0693 
0.0686 
0.0713 
0.0704 
0.0759 
0.0626 
0.0647 
0.0908

Comparison of CVs
Area ID Direct Est. FHM CAR-FHM YCM CAR-YCM

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.168
0.127 
0.135 
0.102 
0.158 
0.113 
0.124 
0.102 
0.158 
0.121 
0.141 
0.196 
0.168 
0.206 
0.121 
0.127 
0.124 
0.155 
0.154 
0.103

0.107
0.105 
0.116 
0.084 
0.094 
0.086 
0.099 
0.085 
0.119 
0.087 
0.118 
0.119 
0.115 
0.126 
0.101 
0.101 
0.107 
0.143 
0.135 
0.086

0.099
0.104 
0.106 
0.076 
0.076 
0.080 
0.096 
0.076 
0.105 
0.086 
0.108 
0.109 
0.108 
0.125 
0.087 
0.097 
0.100 
0.136 
0.134 
0.085

0.107 
0.097 
0.110 
0.079 
0.105 
0.086 
0.106 
0.081 
0.117 
0.086 
0.109 
0.130 
0.111 
0.136 
0.094 
0.103 
0.105 
0.134 
0.128 
0.083 

0.100
0.093 
0.097 
0.072 
0.083 
0.081 
0.101 
0.073 
0.105 
0.084 
0.105 
0.116 
0.108 
0.133 
0.083 
0.097 
0.096 
0.130 
0.128 
0.082
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Small area estimation under transformation to linearity 
Hukum Chandra and Ray Chambers 1 

Abstract 
Small area estimation based on linear mixed models can be inefficient when the underlying relationships are non-linear. In 
this paper we introduce SAE techniques for variables that can be modelled linearly following a non-linear transformation. In 
particular, we extend the model-based direct estimator of Chandra and Chambers (2005, 2009) to data that are consistent 
with a linear mixed model in the logarithmic scale, using model calibration to define appropriate weights for use in this 
estimator. Our results show that the resulting transformation-based estimator is both efficient and robust with respect to the 
distribution of the random effects in the model. An application to business survey data demonstrates the satisfactory 
performance of the method. 
 
Key Words: Sample survey; Survey estimation; Business surveys; Model calibration; Skewed data; Model-based direct 

estimation; Empirical best linear unbiased prediction. 
 
 

1. Introduction 
 
Commonly used methods for small area estimation 

(SAE) assume that a linear mixed model can be used to 
characterize the regression relationship between the survey 
variable Y and an auxiliary variable X in the small areas of 
interest. In particular, empirical best linear unbiased 
prediction (EBLUP), see Rao (2003, chapters 6 - 8) is 
typically based on a linear mixed model assumption. 
However, when the data are skewed, as is often the case in 
business surveys, the relationship between Y and X may 
not be linear in the original (raw) scale, but can be linear in 
a transformed scale, e.g., the logarithmic (log) scale. In 
such cases we would expect estimation based on a linear 
mixed model for Y  to be inefficient compared with one 
based on a similar model for a transformed version of Y. 
See Hidiroglou and Smith (2005). The use of transforma-
tions in inference has a long history, see for example 
Carroll and Ruppert (1988, chapter 4). Recently, Chen and 
Chen (1996) and Karlberg (2000a) have investigated the 
use of a ‘transform to linearity’ approach for regression 
estimation of survey variables that behave non-linearly. 
However, to the best of our knowledge there has been no 
application of this idea in SAE, even though economic 
theory (and casual observation) suggests that regression 
relationships in business survey data are typically multi-
plicative, and hence linear in the log scale. 

In this paper we extend the model-based direct (MBD) 
estimation ideas described in Chandra and Chambers 
(2005, 2009) to the situation where the linear mixed model 
underpinning SAE holds on the log scale, using weights 
derived via model calibration (Wu and Sitter 2001). In 
doing so, we note that our approach easily generalises to 

other monotone (i.e., invertible) transformations. In 
contrast, extension of the EBLUP approach to where the 
data follow a linear mixed model under transformation is 
complicated. We also relax the usual normality assumption 
for the area effects in order to examine robustness with 
respect to this assumption. 

In the following section we summarise the MBD 
approach to SAE under a linear mixed model. In section 3 
we describe an alternative to the linear mixed model for 
skewed data which reduces to the linear mixed model 
under log transformation, and in section 4 we use a model-
based perspective to motivate model calibrated estimation 
of population quantities where the underlying variable is 
linear after suitable transformation. In section 5 we bring 
these two ideas together, introducing the concept of a fitted 
value model derived from a linear mixed model in the 
transformed scale. We then use this fitted value model to 
specify survey weights for use in an MBD estimator in 
SAE. In section 6 we present empirical results from a 
number of simulation studies that contrast the proposed 
transformation-based MBD estimator with both the 
EBLUP and the ‘usual’ MBD estimator defined by fitting 
a linear mixed model to the data as well as with an indirect 
empirical predictor based on the same transformed scale 
linear mixed model. Section 7 concludes the paper with a 
discussion of outstanding issues. 

Note that the approach taken in this article is model-
based. Consequently all moments are evaluated with 
respect to a model for the population data. Also, all sample 
data are assumed to have been obtained via a non-
informative sampling method, e.g., probability sampling 
with inclusion probabilities defined by known model 
covariates. 
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2. Model-based direct estimation for small areas  
To start, we fix our notation. Let U denote a population 

of size N and let Uy  denote the N-vector of population 
values of a characteristic Y of interest. Suppose that our 
primary aim is estimation of the total UUy jt y∑=  of these 
population values (or their mean 1 ).UUy jm N y− ∑=  Let X 
denote a p-vector of auxiliary variables that are related, in 
some sense, to Y and let Ux  denote the corresponding 
N p×  matrix of population values these variables. We 
assume that the individual sample values of  X are known. 
The non-sample values of X may not be individually 
known, but are assumed known at some aggregate level. At 
a minimum, we know the vector of population totals Uxt  of 
the columns of  X. 

Suppose that it is reasonable to assume that the 
regression of Y on X in the population is linear, i.e., 

( )U U UE ⎟ = βy x x  and Var( )U U U⎟ =y x v  (1) 

where Uv  is known up to a multiplicative constant. Given a 
sample s of size n from this population, we can partition  

s

U

r

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

x
x

x
 

and 

ss sr

U

rs rr

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

v v
v

v v
 

into their sample and non-sample components. Here 
r U s= −  denotes the population units that are not in 
sample. The vector of weights that defines the Best Linear 
Unbiased Predictor (BLUP) of Uyt  is then (Royall 1976; 
Valliant, Dorfman and Royall 2000, section 2.4) 

BLUP BLUP

1

( ; )

( ) ( )

s j

s s Ux sx s s s ss sr r

w j s

−

= ∈

′ ′ ′= + − + −

w

1 H t t I H x v v 1  (2)
 

where 1 1 1( ) ,s s ss s s ss
− − −′ ′=H x v x x v sI  is the identity matrix of 

order ,n sxt  is the vector of sample totals of X and s1 ( )r1  
denotes a vector of ones of size n ( ).N n−  

We now assume that the target population U of size N 
can be partitioned into D non-overlapping small areas or 
domains, each of size ,iN 1, ..., ,i D=  such that N =  

1 .D
i iN=∑  Given a sample s of size n units is drawn from this 

population, we shall assume that a sub-sample is  of size in  
units is drawn from area i, with 1 .D

i in n=∑=  Note that we 
assume that all small areas are sampled and that there is at 
least one sample unit in each small area of interest. 

As noted in section 1, linear mixed models are often used 
in SAE. Such models can be written in the form 

U U U U= β + +y x g u e  (3) 

where u  is a random vector of so-called area effects, Ue  is 
a population N-vector of random individual effects and Ug  
is a known matrix. In general, area effects are vector-valued, 
so 1 2( )D′ ′ ′ ′=u u u u"  and diag{ ; 1, , },U i i D= =g g …  
where ig  is of dimension .iN q×  The area specific effects 
{ ; 1, , }i i D=u …  are assumed to be independent and 
identically distributed realisations of a random vector of 
dimension q with zero mean and covariance matrix .uΣ  
Similarly, the scalar individual effects making up Ue  are 
assumed to be independent and identically distributed 
realisations of a random variable with zero mean and 
variance 2,eσ  with area and individual effects mutually 
independent. The parameters 2( , )u eθ = Σ σ  are typically 
referred to as the variance components of (3).  

Given the values of the variance components, it is 
straightforward to see that (3) is just a special case of the 
general linear model (1) that underpins the BLUP weights 
(2). In particular, under (3) 

2

diag{ ; 1, , }

diag{ ; 1, , }

ss iss

is u is e is

i D

i D

= =

′= Σ + σ =

v v

g g I

…

…  (4)
 

and 

diag{ ; 1, , }

diag{ ; 1, , }.
sr isr

is u ir

i D

i D

= =

′= Σ =

v v

g g

…

…  (5)
 

Here isg  and irg  denote the restriction of ig  to sampled 
and non-sampled units in area i respectively. Given esti-
mated values 2ˆ ˆ ˆ( , )u eθ = Σ σ  of the variance components we 
can substitute these in (4) and (5) to obtain estimates ˆ ssv  
and ˆ srv  of ssv  and srv  respectively, and therefore compute 
‘empirical’ BLUP weights, or EBLUP weights for the 
population total of Y as 

EBLUP EBLUP

1

( ; ; 1, , )

ˆ ( )

ˆ ˆ ˆ( )

s ij i

s s Ux sx

s s s ss sr r

w j s i D

−

= ∈ =

′= + −

′ ′+ −

w

1 H t t

I H x v v 1

…

 (6)

 

where 1 1 1ˆ ˆ ˆ( ) .s s ss s s ss
− − −′ ′=H x v x x v  Note that we now use a 

double index of ij to differentiate between population units 
in different areas. 

The MBD estimator for the mean iym  of Y in area i 
(Chandra and Chambers 2005, 2009) based on the EBLUP 
weights for the total (6) is simply the corresponding 
weighted average of the sample values of Y in area i, 
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{ } 1
HJ-LinMBD EBLUP EBLUPˆ .

i i
iy ij ij ijj s j sm w w y

−

∈ ∈
= ∑ ∑  (7) 

Note that (7) is not the EBLUP for iym  under (3). This is 
(see Rao 2003, section 6.2.3) 

{ }

{ }

HT-LinEBLUP

1 -1

1

2 1

ˆ

ˆ{ , , }

ˆ ˆˆ ˆ ( )

( )

ˆ ˆˆ ˆ ˆ( ) ( ) .

i

iy

iy is is ir

i j ir ir irs iss is isj s

i i is i i

ir ir u is is u is e is is is

m

E m

N y

N n y N n

−
∈

−

−

= ⎟

⎡ ⎤′= + β + − β⎣ ⎦

⎡= + −⎣

⎤′ ′ ′ ′β + Σ Σ + σ − β ⎦

∑

y x x

1 x v v y x

x g g g g I y x  (8)

 

Here Ê  denotes the expectation operator under (3) with 
unknown parameters replaced by estimates, isx  and irx  are 
the matrices of sample and non-sample values of  X in area 
i, isy  is the vector of sample values of Y in the same area, β̂  
is the ‘empirical’ BLUE of ,β ˆ irsv  is the transpose of the 
estimated value of isrv  with ˆ issv  the corresponding estimate 
of ,issv  see (4) and (5), and ir1  is a vector of ones of length 

.i iN n−  Note that the last expression on the right hand side 
of (8) follows directly by substitution of (4) and (5), with 

irx  and irg  denoting the column vectors of order p and q 
defined by averaging the columns of irx  and irg  respec-
tively. Like the EBLUP (8), the estimator (7) is a weighted 
function of all the sample values. Note that under random 
intercept specification of (3), (8) reduces to the expression 
(7.2.39) in Rao (2003, section 7.2). 

Mean squared error (MSE) estimation for (8) is usually 
carried out using the theory described in Prasad and Rao 
(1990). Although this MSE estimator is somewhat compli-
cated, it works well under (3). However, when (3) fails it 
can be misleading. It is also inadequate as an estimator of 
the repeated sampling MSE of (8), as has been pointed out 
by Longford (2007). In contrast, MSE estimation for (7) is 
quite straightforward. This is because if one treats the 
weights defining this estimator as fixed, then it is a linear 
estimator of a domain mean, and so its prediction variance 

iV  under (1) can be estimated using well-known methods 
(see Royall and Cumberland 1978). Since in general the 
EBLUP weights for the total (6) are not ‘locally calibrated’ 
(i.e., they do not reproduce the area i mean ix  of X), (7) has 
a bias iB  under (1). A simple plug-in estimate of this bias is 
the difference between (7) and ˆ.i′βx  The final MSE 
estimator used with (7) is therefore defined by summing the 
estimate of iV  and the square of this estimate of iB . This 
method of MSE estimation has been empirically demon-
strated to have good model-based as well as repeated 
sampling properties. See Chandra and Chambers (2005, 
2009), Chambers and Tzavidis (2006), Chandra, Salvati and 

Chambers (2007) and Tzavidis, Salvati, Pratesi and 
Chambers (2008).  

3. Small area estimation under transformation  
In this section we extend the MBD approach to SAE 

when the underlying regression relationships are non-linear. 
In doing so, we shall focus on the important case where the 
population values of Y follow a non-linear model in their 
original (raw) scale, but their logarithms can be modelled 
linearly. The extension to other ‘transform to linear’ models 
is straightforward. 

Without loss of generality, suppose that both Y and X are 
scalar and strictly positive, with skewed population mar-
ginal distributions and clear evidence of non-linearity in 
their relationship, e.g., as in many business surveys ap-
plications. Furthermore, a linear mixed model is appropriate 
for characterising how the regression of log( )Y  on log( )X  
varies between the small areas. That is, for 1, ..., ;i D=  

1, ..., ij N=  we have 

0 1log( ) log( )ij ij ij ij i ijl y x e′= = β + β + +g u  (9) 

where ijy  and ijx  are the values of Y and X respectively for 
population unit j in small area i, ijg  denotes a ‘contextual’ 
covariate of dimension q, iu  denotes a random effect for 
area i also of dimension q and ije  is a scalar individual 
random effect. As usual with this type of model, we assume 
that all random effects are normally distributed and mutu-
ally uncorrelated, with zero expected values, Var( )i u= Σu  
and 2Var( ) .ij ee = σ  Here uΣ  is the q q×  matrix of covari-
ances for the random effects. Note that Var( )ij ijl x⎟ =  

2
ijj ij u ij ev ′= Σ + σg g  and Cov( , , ,ij ik ij ikl l x x⎟ , )ij ik =g g  
ijk ij u ikv ′= Σg g  under (9). 

Given sample values of ,ijy ijx  and ,ijg  standard 
methods of estimation (e.g., ML or REML, see Harville 
1977) can be used to estimate the parameters of (9). Let ˆ

uΣ  
and 2ˆ eσ  denote the resulting estimates of the variance 
components of this linear mixed model. The estimate of 

0 1( )′β = β β  is then 

( ) ( )-1-1 -1ˆ ˆ ˆis iss is is iss isi i
′ ′β = ∑ ∑d v d d v l  (10) 

where ˆ ,issv isd  and isl  are the sample components of 
2ˆˆ ˆ ˆ[ ] ,i ijk i u i e iv ′= = Σ + σv g g I [ ] [ log( )]i ijk i id= =d 1 x  and 

( ; 1, , )i ij il j N= =l …  respectively. Here ig  is the 
iN q×  matrix defined by the covariates ijg  in area i, iI  is 

the identity matrix of order ,iN i1  denotes a vector of ones 
of dimension iN  and log( )ix  denotes the vector of iN  
values of log ( )X  in area i. 

Note that when the variance components uΣ  and 2
eσ  are 

known, (10) is the BLUE for .β  Consequently, ˆ( )E β ≈ β  
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and 1 -1ˆ ˆVar ( ) ( ) .i is iss is
−∑ ′β ≈ d v d  Put ˆ ˆ ˆ( ) .i ij iφ = φ = βd  Then 

ˆ( )i iE φ ≈ βd  and 1 1ˆ ˆVar( ) [ ] ( )gi i ijk i gs gss gsa − −∑ ′φ = = ≈A d d v d  
,i′d  where ˆVar( ) 0ijk ij ika ′= β →d d  as .n → ∞  
Our aim is to use the log scale linear mixed model (9) for 

estimation of the small area means .iym  In particular, we use 
model calibration (Wu and Sitter 2001) based on this model 
to develop sample weights for use in the MBD estimator (7) 
of this quantity.  

4. Model calibrated weighting  
Model calibration was introduced by Wu and Sitter 

(2001) as a model-assisted method of calibrated weighting 
when the underlying regression relationship is non-linear. 
Here we provide a model-based perspective on the method, 
as a precursor to using it for constructing weights for use in 
an MBD estimator in a similar situation. 

Suppose that the underlying population model is non-
linear, with the relationship between Y and X in the 
population of form 

( | ) ( ; )j j jE y h= ηx x  and 2Var( | ) .j j jy = σx  (11) 

Here 1, , ,j N= … η  (typically vector-valued) and 2
jσ  are 

unknown model parameters and the mean function 
( ; )jh ηx  is a known function of jx  and .η  We also 

assume that population units are mutually uncorrelated 
given their respective values of X. Note that (11) is quite 
general, and includes linear, non-linear, and generalized 
linear models as special cases. In this situation, Wu and 
Sitter (2001) define the model-calibrated estimator of the 
population total Uyt  as ˆ ,mc mc

j sy j jt w y∈∑=  where the vector 
of weights ( )mc mc

s jw=w  is chosen to minimise an 
appropriately chosen measure of the distance from mc

sw  to 
the vector of Horvitz-Thompson weights 1( ),s j

π −= πw  
subject to the model calibration constraints 

mc
jj s w N

∈
=∑  

and (12) 

ˆ ˆ( ; ) ( ; )mc
j j jj s j Uw h hπ π∈ ∈

η = η∑ ∑x x  

with ˆ πη  a design consistent estimator of η . Note that 
unlike standard calibration, the constraints (12) require that 
we know the individual population values of X. The key 
idea behind this approach is that provided (11) fits 
reasonably, then jy  is (at least approximately) a linear 
function of its fitted value ˆ( ; )jh πηx  under this model and 
so we can carry out linear estimation using these fitted 
values as auxiliary information. 
 

A model-based perspective on model calibration can be 
developed as follows. Let η̂  denote a ‘model-efficient’ 
estimator of η  in (11), e.g., its maximum likelihood (ML) 
estimator, with associated fitted values ˆ( ; ).jh ηx  In general, 
these fitted values will not be unbiased. They will also be 
correlated. However, there will still be a systematic relation-
ship between the actual values of Y and their corresponding 
fitted values that we can approximate. Although there is 
nothing to stop us looking at more complex approximations, 
a linear model for the relationship between the population 
values jy  and the fitted values ˆˆ ( ; )j jy h= ηx  seems a 
reasonable starting point. We therefore replace the non-
linear model (11) by the linear model 

0 1ˆ ˆ( )j j jE y y y⎟ = α + α  

and (13) 

ˆ ˆCov( , , ) .j k j k jky y y y⎟ = ω  

We refer to (13) as the ‘fitted value’ model corresponding to 
(11). Let UJ  denote the population ‘design matrix’ under 
(13), i.e., ˆ[ ],U U U=J 1 y  where U1  denotes the unit vector 
of size N and ˆ ˆ( ; 1, , ),U jy j N= =y …  and put UΩ =  
[ ; 1, , ; 1, , ].jk j N k Nω = =… …  We can then partition 

UJ  and UΩ  according to sample (s) and non-sample (r) 
units as  

s
U

r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J
J

J
 

and 

,
ss sr

U

rs rr

Ω Ω⎡ ⎤
⎢ ⎥Ω =
⎢ ⎥Ω Ω⎣ ⎦

 

and hence write down the weights that define the BLUP of 
Uyt  under (13). These are the model-based model-calibrated 

weights 

1

( ; )

( ) ( )

mbmc mbmc
j

s cm U U s s s cm s ss sr r

w j s

−

= ∈

′ ′ ′ ′ ′= + − + − Ω Ω

w

1 H J 1 J 1 I H J 1
 
(14)

 

where 1 1 1( ) .mc s ss s s ss
− − −′ ′= Ω ΩH J J J  Clearly, these weights are 

model-calibrated since mbmc
j s jw N∈∑ =  and ˆmbmc

j s j jw y∈∑ =  
ˆ .j U jy∈∑  However, unlike the linear model EBLUP weights 

(2), they are not calibrated on X. In practice, the compo-
nents of UΩ  will not be known and will need to be       
estimated. When these estimates are substituted in (14),  
we obtain the empirical version embmcw  of these model-
calibrated weights.  
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5. Model calibrated weighting for  
      small area estimation  

We now use model calibration based on the log scale 
linear mixed model (9) to obtain sample weights for use in 
the MBD estimator (7). From the development in the 
previous section it can be seen that this requires us to first 
specify a fitted value model (13) for Y based on (9), i.e., we 
need to calculate appropriate fitted values ˆijy  as well as 
estimates ˆ ijkω  of Cov( , , , , )ijk ij ik ij ik ij iky y x xω = ⎟ g g  under 
(9). The sample weights to use in the MBD estimator (7) are 
then given by (14). 

A simple method of defining fitted values ˆijy  under (9) is 
one where parameter estimates derived under this model are 
used to obtain predicted values on the log scale which are 
then back-transformed. Unfortunately, as is well known, this 
approach is biased. We therefore develop the first and 
second order moments of an appropriate bias-corrected 
fitted value model based on (9). Let sx  and sg  denote the 
sample values of ijx  and ijg  respectively. Under (9), 

/2

ˆ ˆ /2

( , ) { , }

ˆ( , ) ( , )

ij ij ijj

ij ijj

l v
ij ij ij ij ij

v
s s ij ij ij

E y x E e x e

E e E y x

φ +

φ +

⎟ = ⎟ =

≠ ⎟ = ⎟

g g

x g g
 

so the usual bias correction that makes use of the fact that 
the conditional distribution of ijy  is lognormal is inad-
equate. Let ˆˆ ˆ( , )ij ijjv ′η = β  be an estimate of ijη = ( , )ijjv ′β  
such that ˆ( ) 0ij ijE η − η ≈  for large .n  Put ( )ijz η =  

/2.ij ijjveφ +  Using a second order Taylor series approximation 
we can write 

(1)

(2)

ˆ ˆ( ) ( ) ( ) ( )

1 ˆ ˆ( ) ( ) ( )
2

ij ij ij ij ij

ij ij ij ij ij

z z z

z

′η ≈ η + η − η η

′+ η − η η η − η
 

and so 

(2)

ˆ{ ( )} ( )

1 ˆ ˆ[ { ( ) ( ) ( ) }].
2

ij ij

ij ij ij ij ij

E z z

tr E z

η ≈ η

′+ η η − η η − η
 

Here 

/2 /2(1) 1( )
2

ij ijj ij ijjv v
ij ijz e eφ + φ +

′⎛ ⎞′η = ⎜ ⎟
⎝ ⎠
d  

and 

/2 /2

(2)

/2 /2

1
2

( )
1 1
2 4

ij ijj ij ijj

ij ijj ij ijj

v v
ij ij ij

ij
v v

ij

e e
z

e e

φ + φ +

φ + φ +

⎛ ⎞′⎜ ⎟
⎜ ⎟η = ⎜ ⎟
⎜ ⎟′⎜ ⎟
⎝ ⎠

d d d

d

 

are the vector and matrix respectively containing the first 
and second order derivatives of ( )ijz η  with respect to .ijη  
Since the asymptotic covariance between ML (or REML) 
estimators of the fixed and variance components of a linear 
mixed model is zero (McCulloch and Searle 2001, chapter 
2, pages 40 - 45), the covariance between β̂  and îjjv  will be 
negligible. It follows that 

( )

(2)

(2)

-1
12

ˆ ˆ[ { ( ) ( ) ( ) }]

ˆ ˆ[ ( ) {( ) ( ) }]

1ˆ ˆVar( )
4

1ˆ ˆ( , ) Var( )
4

ijj
ij

ij ij ij ij ij

ij ij ij ij ij

v

ij gs gss gs ij ijjg

ij ij ij ij ijj

tr E z

tr z E

e v

E y x a v

φ + −

′η η − η η − η

′= η η − η η − η

⎡ ⎤′ ′≈ +⎢ ⎥⎣ ⎦

⎡ ⎤= ⎟ +⎢ ⎥⎣ ⎦

∑d d v d d

g

 

where ˆˆˆ ( )ijj ij ija V′= βd d  and 1 -1ˆˆ ˆ( ) ( )i is iss isV −∑ ′β = d v d  is the 
usual estimator of ˆVar( ).β  Our fitted values are therefore 
defined by the second order bias corrected estimator of 

( , ),ij ij ijE y x⎟ g  
ˆ ˆ /21ˆˆˆ ( ; ) ij ijjv

ij ij ij ijy h k eφ +−= η =d  (15) 

where  

1 1ˆ ˆˆ ˆ1 ( )
2 4ij ijj ijjk a V v⎧ ⎫= + +⎨ ⎬
⎩ ⎭

 

and ˆ ˆ( )ijjV v  is the estimated asymptotic variance of ˆ .ijjv  
Under ML and REML estimation of the variance compo-
nents of (9), this estimated asymptotic variance is obtained 
from the inverse of the relevant information matrix. Note 
that the bias adjustment of Karlberg (2000a) is a special case 
of (15). 

In order to use (14) to define model-based model-
calibrated sample weights, we also need estimates of the 
second order moments of the population values of Y given 
these fitted values. The conditional moments ijkω  are a first 
order approximation to these moments. In particular, given 
normal random effects 

( ) ( )/2 ( 1)ij ik ijj ikk ijkv v v
ijk e eφ +φ + +ω = −  (16) 

Our estimate ˆ ijkω  of ijkω  is obtained by substituting ˆ
ijφ  and 

îjkv  for ijφ  and ijkv  in (16). 
The empirical model-based model-calibrated weights 

(14) corresponding to the fitted value model defined by (15) 
and (16) are 

1

( ; ; 1, , )

ˆ ( )

ˆ ˆ ˆ( ) .

embmc embmc
ij i

s mc U U s s

s mc s ss sr r

w j s i D

−

= ∈ =

′ ′ ′= + −

′ ′+ − Ω Ω

w

1 H J 1 J 1

I H J 1

…

 (17)
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Here ˆ[ ],U U U=J 1 y  so  

,
ˆ

i

U U s s
i j r ij

N n

y∈∑ ∑

−⎛ ⎞
⎜ ⎟′ ′− =
⎜ ⎟
⎝ ⎠

J 1 J 1  

and 1 1 1ˆ ˆ ˆ( ) .mc s ss s s ss
− − −′ ′= Ω ΩH J J J  Also ˆ ˆdiag{ ;ss issΩ = Ω  

1, , }i D= …  and ˆ ˆdiag{ ; 1, , },sr isr i DΩ = Ω = …  where 
ˆ

issΩ  and ˆ
isrΩ  are defined by the sample/non-sample 

decomposition of ˆ .iΩ  For example, when (9) corresponds 
to a random intercepts specification, 2 2ˆ ˆ ˆ ( )ijk u ev I j k= σ +σ =  
and so the components of ˆ

iΩ  are 
2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆˆ [ {1 ( ) ( 1)} 1].ij ik u e u e

ijk e e I j k eφ +φ +σ +σ σ σω = + = − −  

The development so far has assumed normality of log-
scale random effects. However, there is no good reason 
(beyond convenience) to assume that with skewed data 
these random area effects should be normal. One alternative, 
given a scalar area effect in (9), is to assume that the random 
effects in this model are drawn from the gamma family of 
distributions. From the properties of this distribution and 
using binomial and exponential expansions (ignoring higher 
order terms) we can show that /2( , ) ij ijjv

ij ij ijE y x eφ +⎟ ≈ =g  
( )ijz η  as in the normal case. This indicates that an MBD 

estimator based on the model-based model-calibrated 
weights (17) should be robust with respect to the distribu-
tion of the random effects in (9). 

Finally, we consider definition of the MBD estimator 
itself. As noted in section 2, this estimator is just the 
weighted average of the sample Y-values in an area. 
However, use of such a weighted average pre-supposes that 
the weights are reasonably close to being ‘locally calibrated 
on N’, i.e., when summed over the sample units in small 
area i we obtain a value that is not too different from the 
actual small area population size .iN  This property usually 
holds if the weights are the EBLUP weights for the total (6) 
defined by a linear mixed model for Y. It does not 
necessarily hold for the model-based model-calibrated 
weights (17). Consequently, we consider two specifications 
for the MBD estimator given these weights. The first, which 
we refer to as a ‘Hájek specification’, is just the weighted 
average (7), with weights defined by (17). The second, 
which we refer to as a ‘Horvitz-Thompson specification’, 
replaces the denominator in (7) by the actual value of .iN  
That is, the two types of MBD estimator under model-based 
model-calibrated weighting that we consider are 

{ } 1
HJ-TrMBDˆ

i i

embmc embmc
iy ij ij ijj s j sm w w y

−

∈ ∈
= ∑ ∑  (18) 

and 
HT-TrMBD 1ˆ .

i

embmc
iy i ij ijj sm N w y−

∈
= ∑  (19) 

Alternatively we can adopt a prediction-based approach 
to obtain an alternative indirect predictor for the small area 
mean under the log-transformed model (9). Our approach 
extends that of Karlberg (2000a). In this case, assuming 
model (9) holds, we predict each nonsample Y in small area 
i and then sum these predictions. Note that we need to 
correct for bias following back-transformation to the raw 
scale when calculating these predicted values for the 
nonsample Y. Under model (9), the resulting empirical 
predictor for the mean iym  of Y in area i (denoted TrEP) can 
be defined as  

{ }TrEP 1ˆ ˆ ,
i i

iy i ij ijj s j rm N y y−
∈ ∈

= +∑ ∑  (20) 

where ˆijy  is given by (15). 
Estimation of the MSE of (18) and (19) is carried out in 

the usual way for MBD estimators, i.e., via the MSE 
estimation approach described in section 2. Estimation of 
the MSE of (20) is not straightforward since this predictor is 
a non-linear function of Y values. We do not pursue this 
issue in this paper.  

6. An empirical evaluation  
In this section we provide empirical results on the 

comparative performances of five different methods of 
SAE. These are the two ‘transformation-based’ MBD esti-
mators (18) and (19), both based on the model-based model-
calibrated weights (17) and denoted by HJ-TrMBD and HT-
TrMBD respectively; the log-transformation based predictor 
(20) under model (9), denoted TrEP, the ‘standard’ MBD 
estimator (7) based on the linear mixed model (3) and the 
empirical EBLUP weights for the total  (6), which we 
denote by HJ-LinMBD to emphasise that it is a Hájek-type 
weighted mean based on weights derived under a linear 
mixed model; and the EBLUP (8) derived under the same 
linear mixed model, which we denote HT-LinEBLUP. Note 
that the MSEs for all three MBD estimators were estimated 
using the method described in section 2, while the MSE of 
HT-LinEBLUP was estimated using the method described 
in Prasad and Rao (1990). Note that we have not considered 
estimation of the MSE of TrEP. 

Our empirical results are based on two types of simu-
lation studies. The first type used model-based simulation 
to generate artificial population and sample data. That is, at 
each simulation population data were first generated under 
the model and a single sample was then taken from this 
simulated population by stratified simple random sampling 
without replacement with small area as strata. These data 
were then used to compare the performances of the 
different estimators. In section 6.1 we present the results 
from these model-based simulations. We carried out two 
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sets of model-based simulations. In the first set of simu-
lations (Set A), we investigated the performance of these 
estimators given population data generated using the log-
scale linear mixed model (9). In second set of simulations 
(Set B), we examined the robustness of these estimators to 
misspecification of this model. The second type of simu-
lation study was design-based. In section 6.2 we describe 
design-based simulations. Here we evaluated these esti-
mators in the context of repeated sampling from a real 
population using realistic sampling methods. That is, real 
survey data were first used to simulate a population, and 
this fixed population was then repeatedly sampled ac-
cording to a pre-specified design. In particular, the sample 
design used was stratified random sampling with strata 
corresponding to the small areas of interest and with 
stratum allocations set to the small area sample sizes in the 
original datasets. 

Four measures of estimator performance were computed 
using the various estimates generated in these simulation 
studies. They were the relative bias (RB) and the relative 
root mean squared error (RRMSE) of these estimates, 
together with the coverage rate and average width of the 
nominal 95 per cent confidence intervals based on them. In 
Tables 2 to 4 these measures are presented as averages over 
the small areas of interest.  
6.1 The model-based simulation study  

Model-based simulations are a common way of illus-
trating the sensitivity of an estimation procedure to variation 
in assumptions about the structure of the population of 
interest. Here we fixed the population size at 15,000N =  
and randomly generated the small area population sizes 

,  1, ..., 30iN i D= =  so that .i iN N∑ =  We used an 
overall sample size of 600n  =  with small area sample 
sizes set so that they were proportional to the corresponding 
small area population sizes. These area-specific population 
and sample sizes were kept fixed in all our simulations. The 
population and sample sizes are given in Table 1a.  
Table 1a 
Area specific population ( )iN  and sample ( )in  sizes for model-
based simulation 
 

Area  1 2 3 4 5 6 7 8 9 10

iN  525 538 510 468 526 484 516 458 529 518

in  21 22 20 19 21 19 21 19 21 21

Area  11 12 13 14 15 16 17 18 19 20

iN  502 524 509 484 487 459 542 498 512 500

in  20 21 20 19 19 18 22 20 20 20

Area  21 22 23 24 25 26 27 28 29 30

iN  497 492 443 506 513 536 506 495 463 460

in  20 20 18 20 21 21 20 20 19 18

In Set A of our model-based simulations the population 
values ijy  were generated using the multiplicative model 

5.0 ( 1,..., ; 1, ..., 30),ij ij i ij iy x u e j N iβ= = =  with random 
samples then taken from each small area. Here the values of 

ijx  were independently drawn from the log-normal distribu-
tion 2log ( ) (6, ),ij xx N σ∼  with the individual effects and 
area effects independently drawn as 2log( ) (0, )ij ee N σ∼  
and 2log( ) (0, )i uu N σ∼  respectively. The population 
values of x  were re-generated in each simulation. In 
particular, in each simulation we first generated the values of 
x ’s for a population of size N and then randomly assigned 
these values to different areas of sizes .iN  The values of eσ  
and uσ  were chosen so that the intra-area correlation in the 
population varied between 0.20 and 0.25. Table 1b shows the 
six different sets of parameter values that were used in Set A. 
These ensured that the simulated populations contained a 
wide range of variation. For each generated population and 
for each area i  we selected a simple random sample (with-
out replacement) of size ,in  leading to an overall sample size 
of n = 600. The sample values of y  and the population 
values of x  obtained in each simulation were then used to 
estimate the small area means. That is, using the sample data 
in each case, parameter values were estimated using the lme 
function in R (Bates and Pinheiro 1998), and estimates for 
the small area means then calculated, along with appropriate 
nominal 95% confidence intervals. The process of generating 
population and sample data, estimation of parameters and 
calculation of small area estimates was independently repli-
cated 1,000 times. The results from this part of the simulation 
study are shown in Table 2. 

 
Table 1b 
Population specifications for model-based simulation Set A 
 

Parameter Set β uσ  eσ xσ

1  0.5 0.30 0.50 3.00 
2  0.8 0.35 0.60 2.50 
3  1.0 0.40 0.70 2.25 
4  1.3 0.45 0.80 1.75 
5  1.5 0.50 0.90 1.50 
6  2.0 0.60 1.00 1.20 

 
In Set B of the model-based simulations, population data 

were generated using the model 25.0  [exp(logij ijy x=  
( ))] .ij i ijx u eγ  Here the individual effects ije  and the area 
effects iu  were independently drawn as log ( ) (0, 1)ije N∼  
and log ( ) (0, 0.25)iu N∼  respectively, while the covariate 
values ijx  were drawn as ( )log ( ) 3, 0.04 .ijx N∼  Five 
different values for the parameter γ  (-1.0, -0.5, 0.0, 0.5, 1.0) 
were investigated, thus generating population data with 
different degrees of curvature. All other aspects of these 
simulations, including the estimators considered, were the 
same as in Set A. Table 3 presents results from this 
component of the simulation study. 
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Table 2 
Average relative bias (ARB), average relative RMSE (ARRMSE), average coverage rate (ACR) and average interval width (AW) for 
model-based simulation Set A 
 

Criterion  Estimator  Parameter Set  
    1 2 3 4 5  6 
ARB,%  HJ-TrMBD  -82.68 -95.02 -98.08 -98.50 -98.29 -99.00
   HT-TrMBD  0.09 0.10 -0.14 -0.25 -0.03 0.04
   TrEP  0.08 0.09 -0.18 -0.48 -0.05 0.01
  HJ-LinMBD  12.01 4.09 -1.35 -5.54 -6.60 -9.88
   HT-LinEBLUP  13.39 5.18 -0.67 -5.24 -6.41 -9.67

ARRMSE HJ-TrMBD  4.80 1.39 1.25 1.44 1.42 1.62
   HT-TrMBD  0.15 0.26 0.45 0.64 0.66 0.91
   TrEP  0.30 0.41 0.58 0.80 0.81 1.09
  HJ-LinMBD  1.11 1.41 1.85 1.99 2.06 2.69
   HT-LinEBLUP  0.79 0.54 0.64 0.92 0.93 1.31

ACR  HJ-TrMBD  0.99 0.98 0.97 0.95 0.94 0.92
   HT-TrMBD  0.94 0.91 0.89 0.89 0.89 0.88
   HJ-LinMBD  0.87 0.85 0.85 0.88 0.88 0.87
   HT-LinEBLUP  0.85 0.85 0.86 0.87 0.88 0.87

AW  HJ-TrMBD  1,592 22,688 140,452 52 410×  35 510× 44 610×
   HT-TrMBD  219 4,414 34,105 14 410×  11 510× 15 610×
   HJ-LinMBD  1,005 19,232 139,420 57 410×  41 510× 56 610×
   HT-LinEBLUP  382 7,099 57,039 26 410×  21 510× 32 610×

 
 

Table 3 
Average relative bias (ARB), average relative RMSE (ARRMSE), average coverage rate (ACR) and average interval width (AW) for 
model-based simulation Set B 
 

Criterion Estimator               1.0γ = −               0.5γ = −              0.0γ =            0.5γ =            1.0γ =  

ARB,%  HT-TrMBD  4.92 0.66 0.14 -1.50  -8.75
  HJ-LinMBD  -0.21 0.04 0.12 0.16  -0.85
   HT-LinEBLUP  -0.19 0.04 0.13 0.17  -0.77

ARRMSE HT-TrMBD  0.38 0.35 0.33 0.37  0.41
   HJ-LinMBD  0.56 0.36 0.34 0.53  1.20
   HT-LinEBLUP  0.38 0.30 0.29 0.36  0.56

ACR  HT-TrMBD  0.94 0.92 0.92 0.91  0.87
   HJ-LinMBD  0.91 0.92 0.92 0.92  0.90
   HT-LinEBLUP  0.93 0.94 0.94 0.93  0.92

AW  HT-TrMBD  0.04 2.50 211 29,070  5 610×  
   HJ-LinMBD  0.06 2.70 214 38,660  13 610×  
   HT-LinEBLUP  0.05 2.60 214 33,442  10 610×  

 
 
 

6.2 The design-based simulation study 
 

This study used the same population and samples as the 
simulation studies described in Chandra and Chambers 
(2005) and Chambers and Tzavidis (2006), which was 
based on data obtained from a sample of 1,652 farms that 
participated in the Australian Agricultural and Grazing 
Industries Survey (AAGIS). A realistic population of 81,982 
farms was defined by sampling with replacement from the 
original sample of 1,652 farms with probabilities propor-
tional to their sample weights, all of which were strictly 

greater than one. A total of 1,000 independent samples, each 
of size n = 1,652, were drawn from this fixed population by 
simple random sampling without replacement within strata 
defined by the 29 Australian agricultural regions represented 
in the AAGIS sample. These regions are the small areas of 
interest. Regional sample sizes were fixed to be the same as 
in this original sample, varying from a low of 6 to a high of 
117, which allows an evaluation of the performance of the 
different estimation methods across a range of realistic small 
area sample sizes. Note that sampling fractions in these 
strata also varied disproportionately, ranging between 0.70 
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and 15.87 percent. The aim is to estimate average annual 
farm costs (TCC, measured in A$) in each region using 
farm size (hectares) as the auxiliary variable. The same 
mixed model specification as in Chandra and Chambers 
(2005) is used. This includes an interaction term (zone by 
size) in the fixed effects and a random slope specification 
for the area effect. In its linear form the model does not fit 
the AAGIS sample data terribly well. This fit is improved 
(albeit marginally) when a log-scale linear specification is 
used. Our results are summarized in Table 4.  
6.3 Discussion of simulation results  

The most striking feature of Table 2 is the extremely 
large values of the averages relative bias of HJ-TrMBD 
under model-based model-calibrated weighting. The two 
best performers with respect to relative bias are HT-
TrMBD, which is based on the same weights as HJ-
TrMBD, and TrEP. An investigation of the reason for the 
poor  performance of HJ-TrMBD revealed that summing 
the model-based model-calibrated weights (17) within small 
areas produced extremely variable estimates of the small 
area population sizes, implying that these weights cannot be 
considered as ‘multipurpose’ – they function well when 
used with variables that are reasonably correlated with the 
variable that defines the fitted value model, but can fail with 
other, less well correlated, variables (e.g., the indicator 
variable for small area inclusion). We further note that this 
problem does not arise with the ‘standard’ empirical 
EBLUP weights for the total (6), as HJ-LinMBD performs 
consistently for all six of the scenarios explored in Set A of 
the simulation study. From now on we therefore focus our 
discussion on the four estimators, HT-TrMBD, TrEP, HJ-
LinMBD and HT-LinEBLUP. 

Table 2 shows that the average relative biases and the 
average relative RMSEs for HT-TrMBD are consistently 
lower than those generated by HJ-LinMBD and HT-
LinEBLUP. The average relative biases of HT-TrMBD and 
TrEP are comparable. However, the average relative 
RMSEs of HT-TrMBD are consistently smaller than the 
TrEP. Furthermore, average coverage rates and interval 
widths for HT-TrMBD are better than those generated by 
HJ-LinMBD and HT-LinEBLUP. In comparison, for the 
same order of relative bias, the relative RMSEs of HT-
LinEBLUP is smaller than that of HJ-LinMBD, and, 
although both estimators generate very similar coverage 
rates, confidence intervals generated via HT-LinEBLUP 
tend to have smaller average widths than those generated via 
HJ-LinMBD.  

The plots in Figure 1 display the region-specific perfor-
mance measures generated by these four estimators for the 
Set A simulations. These show that the relative bias and the 
relative RMSE values generated by HT-TrMBD are smaller 
than corresponding values for HJ-LinMBD and HT-
LinEBLUP in all regions. With almost identical values of 
relative biases, the HT-TrMBD has smaller values of 
relative RMSEs than corresponding values for TrEP in all 
regions. Further, the relative bias and the relative RMSE of 
HJ-LinMBD and HT-LinEBLUP increase as the non-
linearity in the data increases (i.e., as we move from para-
meter set 1 to parameter set 6). We also see that HT-
TrMBD generates better coverage rates across all regions 
compared with the coverage rates generated by HT-
LinEBLUP and HJ-LinMBD. 

 

 
 

Table 4 
Average relative bias (ARB), average relative RMSE (ARRMSE) and average coverage rate (ACR) for design-based simulation using 
AAGIS data. Simulation standard errors of ARB and ARRMSE are shown in parentheses 
 

Criterion Estimator  Average of 29 regions Average of 28 regions 

ARB,%  HT-TrMBD  1.96 (0.20) 1.92 (0.11)
  HJ-LinMBD  -2.13 (0.15) -2.21 (0.12)
   HT-LinEBLUP  2.98 (0.18) 3.36 (0.16)
   PseudoEBLUP 4.01 (0.22) 4.41 (0.20)
   JL 1.89 (0.19) 2.23 (0.17)

ARRMSE, % HT-TrMBD  21.93 (4.47) 17.41 (1.18)
   HJ-LinMBD  20.15 (3.80) 16.91 (2.20)
 HT-LinEBLUP  19.87 (1.78) 19.30 (1.63)
 PseudoEBLUP 22.42 (2.52) 21.95 (2.46)
   JL 20.97 (1.48) 20.48 (1.31)

ACR  HT-TrMBD  0.89 0.92 
   HJ-LinMBD  0.93 0.95 
   HT-LinEBLUP  0.85 0.85 
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Figure 1 Area specific results for HT-TrMBD (solid line, ●), TrEP (thick line, ×), HT-LinEBLUP (thin line Δ) and HJ-LinMBD 
(dashed line, Δ) under parameter sets 1 (ParA1), 3 (ParA3), 5 (ParA5) and 6 (ParA6). Left column is Relative Bias 
(%) and right column is Relative RMSE 
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Overall, these results show that when the model for the 
underlying population is non-linear there can be significant 
gains from the use of HT-type MBD estimators for small 
area means based on the model-calibrated weights (17) 
compared with standard linear mixed model-based esti-
mators like HJ-LinMBD and HT-LinEBLUP. They also 
show that the indirect estimator HT-LinEBLUP performs 
relatively better than the direct estimator HJ-LinMBD in 
these situations. The indirect predictor TrEP based on log-
transformed model (9) performs well in terms of relative 
bias but is less efficient than the MBD estimator under the 
same model.  

In Set B of the model-based simulations we investigated 
the robustness of model-based model-calibrated direct 
estimation to misspecification of the non-linear model. The 
results in Table 3 show that in this case the biases generated 
by HT-TrMBD increase as the actual non-linear model 
deviates more from the assumed non-linear model ( 0.0γ =  
in the table). However, these biases are offset by small 
variability, so in terms of average relative RMSE, HT-
TrMBD still performs as well or better than HT-LinEBLUP 
and continues to dominate HJ-LinMBD. The biases 
generated by HJ-LinMBD and HT-LinEBLUP are of the 
same order, while the average relative RMSE of HT-
LinEBLUP dominates that of HJ-LinMBD. Average 
coverage rates for HT-LinEBLUP are marginally better than 
those of HJ-LinMBD and HT-TrMBD, but the average 
widths of the confidence intervals underpinning these rates 
tended to be smallest for HT-TrMBD, followed by HT-
LinEBLUP and then HJ-LinMBD. Overall, our model-
based simulation results for Set B indicate that although 
MBD-based SAE with model-based model-calibrated 
weights is susceptible to model misspecification bias, the 
overall performance of this approach appears relatively 
unaffected by slight deviations from the assumed non-linear 
model. 

In Table 4 and Figure 2 we present the average and 
region-specific performance measure generated by different 
SAE methods for AAGIS data respectively. These results 
show that the average relative bias of HT-TrMBD is smaller 
than that of both HT-LinEBLUP and HJ-LinMBD, while 
the average relative RMSE of HT-TrMBD is marginally 
larger than the corresponding values for HJ-LinMBD and 
HT-LinEBLUP. Inspection of Figure 2 shows that this result 
is essentially due to one region (21) in the original 
AAGIS sample that contained a massive outlier (TCC > 
A$30,000,000). This outlier was included in the simulation 
population (twice) and then selected (in one case, twice) in 
37 of the 1000 simulation samples, leading to completely 
unrealistic estimates for region 21 being generated by HT-
TrMBD and HJ-LinMBD. The right-hand column in Table 
4 therefore shows the average performances of the different 

methods when this region is excluded. Here we see that now 
HT-TrMBD and HJ-LinMBD are essentially on a par, with 
both dominating HT-LinEBLUP. The fact that HT-TrMBD 
does not provide significant gains over HJ-LinMBD in this 
case reflects the fact that the raw-scale and log-scale linear 
mixed models used in these estimators both provide 
relatively poor fits to the AAGIS data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Region-specific simulation results for HT-

TrMBD (thick line, 0), HT-LinEBLUP 
(thin line Δ) and HJ-LinMBD (dashed line, 
Δ) in design-based simulations based on the 
AAGIS data. Plots show (in order from the 
top), RB (%), RRMSE (%) and CR. 
Regions are ordered in terms of increasing 
population size 
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7. Conclusions and further research  
The simulation results discussed in the previous section 

show that combining model-based model-calibrated weights 
with direct estimation can bring significant gains in SAE 
efficiency if the population data are clearly non-linear. As 
one would expect, these gains are less when the assumed 
non-linear model is misspecified. Although we do not 
provide the details, our conclusions were essentially unaf-
fected when we carried out similar simulations using 
gamma distributed random effects. 

Our main caveat concerning the use of the model-based 
model-calibrated weights (17) for SAE is their specificity. 
These weights do not appear to have the same ‘multi-
purpose’ characteristics as standard EBLUP weights for the 
total based on linear mixed models. Further research is 
therefore required on how to build model-calibrated weights 
for SAE that are more ‘general purpose’. It is to be expected 
that such weights would not be as efficient as the variable 
specific weights (17), but hopefully this will be more than 
offset by their increased utility. A further issue that is 
extremely important in practice is that positively skewed 
survey variables can also take zero (or even negative) 
values. For example, economic variables like debt and 
capital expenditure often take zero values, while variables 
defined as the difference of two non-negative quantities 
(e.g., profit, which is the difference between income and 
expenditure) can be negative. Karlberg (2000b) uses a 
mixture model to characterise data that are a mix of zeros 
and strictly positive values. This type of model can be used 
in model-based model-calibrated weighting. 

Finally, we note that using a transformation-based MBD 
approach where the usual linear model assumptions are only 
approximately valid (the situation considered in this paper) 
is not the only approach that has been suggested for this 
problem. Two alternative approaches in the literature are the 
pseudo-EBLUP (Rao 2003, section 7.2.7) and the model-
assisted EB-type estimator of Jiang and Lahiri (2006). 
Recollect from (8) that the EBLUP is defined by replacing 
the unknown area i mean iym  by an estimate of its expected 
value given the observed sample values of Y in area i and 
the area i values of X. Let ijπ  denote the sample inclusion 
probability of population unit j in small area i. The pseudo-
EBLUP is then defined by replacing iym  by an estimate of 
its expected value given the value of its design-consistent 
estimate 

( ) 1
1 1ˆ

i i i
iy ij ij ij ij ijj s j s j sm y w y

−
π − −

∈ ∈ ∈
= π π =∑ ∑ ∑ �  (21) 

and the area i values of X. That is, under (3) the pseudo-
EBLUP of iym  is 
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where ˆ ,wβ � ˆ
uwΣ �  and 2ˆ ewσ �  are pseudo-maximum likelihood 

estimates based on the weights ijw�  and iwg �  and iw′x �  are 
design-consistent estimates of ig  and ix  that are defined in 
exactly the same way as ˆ iymπ  above. Under the same model 
the Jiang and Lahiri (2006) model-assisted EB-type ap-
proach leads to an estimator that is also defined by condi-
tioning on the value of ˆ ,iymπ  
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where isw�  is the vector of standardised sample weights ijw�  
in area i. Note that in (23) we use optimal (i.e., ML or 
REML) estimates for model parameters. 

Both (22) and (23) are essentially motivated by the idea 
of estimating the area i mean by its conditional expectation 
under (3) given the value of the usual design-consistent 
estimator (21) for this quantity. As such, they are indirect 
estimators like the HT-LinEBLUP. Under (3), neither will 
be as efficient as the HT-LinEBLUP, while if (9) rather than 
(3) holds, then both estimators rely on the design consis-
tency of ˆ iymπ  for robustness. Since relying on a large sample 
property of a small sample statistic seems rather optimistic, 
we prefer to tackle the model specification problem directly, 
replacing (3) by (9) and using the transformation-based 
MBD approach described in section 5. Values of average 
relative bias and average relative RMSE for the pseudo-
EBLUP (22) and the Jiang and Lahiri estimator (23) are 
shown in Table 4. It is interesting to note that neither 
estimator appears to perform any better than the standard 
EBLUP in these design-based simulations, and all three are 
substantially out performed in terms of average relative 
RMSE by the two MBD-type estimators that were invest-
tigated in this study. Clearly the results of a single (but 
reasonably realistic) simulation study should not be con-
sidered as anything more than indicative. However, they do 
provide some evidence that asymptotic design-based proper-
ties are no guarantee of small area estimation performance. 

The indirect predictor (20) of the small area mean is 
obtained by using well known prediction-based ideas. 
Under log transformed models, there are alternative ap-
proaches to obtain better indirect predictor for small area 
mean. For example, Slud and Maiti (2006) described an 
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indirect predictor for the small area mean under an area 
level version of the log transformed model (9). Berg (2009, 
private communication) follows the Slud-Maiti approach to 
obtain a predictor for small area mean under a random 
intercepts specification of the unit level log transformed 
model (9). However, like the Slud-Maiti predictor, Berg’s 
predictor ignores the bias correction necessary after back-
transformation to the raw scale. The empirical properties of 
this predictor have yet to be examined.   
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The construction of stratified designs in R with the package stratification 
Sophie Baillargeon and Louis-Paul Rivest 1 

Abstract 
This paper introduces a R-package for the stratification of a survey population using a univariate stratification variable X and 
for the calculation of stratum sample sizes. Non iterative methods such as the cumulative root frequency method and the 
geometric stratum boundaries are implemented. Optimal designs, with stratum boundaries that minimize either the CV of 
the simple expansion estimator for a fixed sample size n or the n value for a fixed CV can be constructed. Two iterative 
algorithms are available to find the optimal stratum boundaries. The design can feature a user defined certainty stratum 
where all the units are sampled. Take-all and take-none strata can be included in the stratified design as they might lead to 
smaller sample sizes. The sample size calculations are based on the anticipated moments of the survey variable Y, given the 
stratification variable X. The package handles conditional distributions of Y given X that are either a heteroscedastic linear 
model, or a log-linear model. Stratum specific non-response can be accounted for in the design construction and in the 
sample size calculations. 
 
Key Words: Linear models; Log-linear models; Optimal stratification; Survey sampling; Take-all stratum; Take-none 

stratum. 
 
 

1. Introduction 
 

The establishment of strata and the planning of a strati-
fied design have been important topics in survey sampling, 
since the pioneering contributions of Dalenius more than 
sixty years ago. This work is concerned with univariate 
stratification where the strata are constructed using a posi-
tive stratification variable X  known for all the units of the 
population. X  is assumed to be related to the survey vari-
able .Y  Stratum h  contains all the units with an X -value 
in the interval 1[ , )h hb b−  for = 1, ,h L…  such that 0 =b  
min X  and = max 1,Lb X +  where min X  and max X  
are respectively the minimum and the maximum values of 
the stratification variable. 

The determination of optimal stratum boundaries has a 
long history, see chapter 5A of Cochran (1977). The cu-
mulative root frequency method (cum )f  of Dalenius and 
Hodges (1959) provides an approximate solution to this 
problem. Instances where X  has a skewed distribution are 
frequent in business surveys and have been given a special 
emphasis. Gunning and Horgan (2004) proposed a geo-
metric stratification method and Hidiroglou (1986) argued 
that the large units should be put in a take-all stratum. 
Rather than relying on an approximate method for con-
structing the strata, Lavallée and Hidiroglou (1988) sug-
gested an iterative algorithm that gives the optimal bound-
aries for a particular X  variable. Their algorithm sometimes 
fails to converge (Detlefsen and Veum 1991) and Slanta and 
Krenzke (1996) have shown that in some cases the optimal 
boundaries are not uniquely defined. Alternative methods, 
such as the search algorithm of Kozak (2004), have been 

proposed to alleviate some of these difficulties. The assump-
tion that the survey variable Y  is the same as the stratifi-
cation variable X  is not realistic when calculating sample 
sizes and several authors, including Dayal (1985) and 
Sigman and Monsour (1995), proposed to allocate the 
sample to the strata on the basis of the anticipated moments 
of Y  knowing that X  is in 1[ , ).h hb b−  Sweet and Sigman 
(1995) and Rivest (1999, 2002) suggested using these 
anticipated moments in the stratification algorithm of 
Lavallée and Hidiroglou (1988). Recently, Baillargeon and 
Rivest (2009) showed that putting the small units in a take-
none stratum, which is not sampled, might reduce the sam-
ple size needed to reach a predetermined precision level. 

This article introduces the R-package stratification that 
implements most of the methods presented above. It pro-
vides a friendly computer environment to build stratified 
designs and to evaluate their performance on some real 
populations. This package is presented by revisiting exam-
ples in the stratification literature selected to illustrate its 
important features. The four functions of stratification with 
the prefix strata construct stratified sampling designs. 
These functions are strata.cumrootf, strata.geo, 
strata.LH, and strata.bh. The first two implement the 
simple cum f  and geometric stratification methods. The 
function strata.LH derives optimal stratified sampling 
plans using iterative algorithms while the last function 
handles user defined stratum boundaries. These four func-
tions construct strata, determine stratum sample sizes and 
calculate the precision of the simple expansion estimator sy  
of ,Y  the population mean of some survey variable Y  
related to the stratification variable .X  
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The four strata-functions use Hidiroglou and Srinath’s 
(1993) rule to allocate the n  units in the sample to the 
strata. The stratum sample sizes are proportional to 2 1q

hN  
22 32 ,qq

h yhY S  where hN  is the size of stratum ,h  and hY  
and 2

yhS  are the anticipated mean and variance of Y  in 
stratum .h  In the strata-functions, an allocation rule is 
specified by the argument alloc that contains the expo-
nents 1 2 3( , , );q q q  Neyman’s allocation corresponds to 
alloc=c(1/2,0,1/2). A strata-function takes as an in-
put the population vector of the stratification variable ,X  
the number of strata Ls, and a total sample size n  or a target 
CV for the simple expansion estimator .sy  Its output is an 
R-object of class “strata” that defines a stratified design. It 
contains a set of strata determined by their upper boundaries 
{ }hb  and stratum population and sample sizes, hN  and .hn  
There is a fifth function in stratification called var.strata 
that takes as an input an R-object of class strata and a popu-
lation vector of a survey variable Y  and returns the variance 
of sy  for the input variable Y  and the input stratified design. 

The text contains R instructions to be typed in an R com-
mand window; these lines start with >. It also presents out-
puts printed in an R command window. A special typeface 
allows an easy identification of these R instructions and 
print-outs in the text. The appendix contains a summary 
table that lists all the possible arguments of the five strati-
fication functions. When using this package, the R-instruc-
tion help(stratification) calls a clickable help file that 
provides detailed information on the package and examples 
that can be pasted in a command window.  

2. Basic stratification methods  
This section discusses two elementary stratification meth-

ods, the cumulative root frequency method of Dalenius and 
Hodges (1959) and the geometric method of Gunning and 
Horgan (2004). These two methods are exact; they do not 
rely on an iterative algorithm. Throughout this section 

= ,Y X  so that the variance of sy  is evaluated using the 
values of the stratification variable .X  Using the same 
variable to stratify a population and to evaluate the preci-
sion of survey estimates might underestimate their vari-
ances. The calculation of variances when Y X≠  is con-
sidered in Section 4.  
2.1 Cumulative root frequency method  

This stratification algorithm, presented in chapter 5A 
of Cochran (1977), is implemented by the function 
strata.cumrootf. Its arguments are x, the population 
vector of the stratification variable, nclass the number of 
bins of equal size for the x-variable, a target CV for sy  or a 
predetermined sample size n, the number of strata Ls, and 
an allocation rule alloc. This algorithm pools the nclass 
bins into Ls strata in such a way that the sums of the square 

roots of the bin frequencies are approximately equal for the 
Ls strata. 

As an illustration, consider the proportion of industrial 
loans of =N 13,435 banks used in Cochran (1961). We 
stratify this population and evaluate the sample size needed 
for sy  to have a CV of 5% when Neyman allocation is 
used. The following R-code creates the vector of the strati-
fication variable loans from Table 2 of McEvoy (1956). 
The function strata.cumrootf is then applied to the 
loans variable. Following Table 2 of Cochran (1961), 
nclass is set to 20 so that the strata will be created using 20 
bins and Ls=3 strata will be constructed. The output is 
placed in cum, an R-object of class strata. Typing cum or 
print(cum) in the R command window prints details of the 
sampling plan. The input arguments, either the default or as 
specified by the user, appear first. Then stratum information 
is provided such as boundaries, sizes hN  and sample sizes 

.hn  The third part of the print-out provides information 
about the sampling properties of .sy   
> values <- c(seq(0.5, 9.5, 1), seq(12.5, 97.5, 5)) 
> nrep <- c(1985, 261, 339, 405, 474, 478, 506, 569, 464, 499, 
 2157, 1581, 1142, 746, 512, 376, 265, 207, 126, 107, 82, 50, 
 39, 25, 16, 19, 2, 3) 
> loans <- rep(values, nrep) 
> cum <- strata.cumrootf(x = loans, nclass = 20, CV = 0.05,  
 Ls = 3, alloc = c(0.5, 0, 0.5)) 
> cum 
 
Given arguments:  
x = loans 
nclass = 20, CV = 0.05, Ls = 3 
allocation : q1 = 0.5, q2 = 0, q3 = 0.5 
model = none 
 
Strata information: 

rh | bh anticip.Mean anticip.var Nh nh fh
Stratum 1 1 | 10.2 4.12 10.46 5980 14 0.00
Stratum 2 1 | 29.6 17.92 27.74 5626 20 0.00
Stratum 3 1 | 98.5 44.47 165.83 1829 16 0.01
Total 
 

13435 50 0.00

Total sample size: 50 
Anticipated population mean: 15.39408 
Anticipated CV: 0.0494897   

In the Given arguments, model=none means that the 
sampling properties of ,sy  presented at the end of the print-
out, are evaluated at = ,Y X  that is for the loans variable. 
Its mean is 15.39408 and the anticipated CV of 0.0494897 is 
that of the estimator sy  of the mean of the variable loans 
obtained with this sampling design. The stratum boundaries 
given in this output are (10.2, 29.6, 98.5), they are equal to 
those appearing at the bottom of page 349 of Cochran 
(1961), once the rounding used for creating the vector 
loans is accounted for. In the Strata Information, hr  
refers to the stratum response rates that are discussed in 
Section 5.1. The R-object cum contains several elements 
that are listed by the command names(cum). 
 
> names(cum) 
[1] "Nh" "nh" "n" "nh.nonint""certain.info"
[6] "opti.criteria""bh" "meanh" "varh" "mean" 
[11]"stderr" "CV" "stratumID" "nclassh" "takeall" 
[16]"call" "date""args"    
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An element in the cum strata object can be printed by 
typing cum$ followed by the name of the object. For 
instance the cum$stratumID prints the stratum of each unit 
in the population. The variable cum$nclassh is specific to 
the strata.cumrootf function; it gives how the 
nclass=20 original bins have been pooled into three strata;  
> cum$nclassh 
[1] 2 4 14  

Thus, in this stratification, strata 1, 2 and 3 contain 
respectively 2, 4 and 14 of the nclass=20 original bins.  
2.2 Geometric method  

The geometric stratification method has been introduced 
by Gunning and Horgan (2004). It sets the stratum bound-
aries to /min (max / min ) ,h L

hb X X X= ×  for 1, ...,h =  
1.L −  Once the boundaries hb  are determined, the stratum 

sample size calculations are the same as those carried out in 
strata.cumrootf. 

As an illustration we stratify the four populations 
presented in Gunning et Horgan (2004), Debtors, USbanks, 
UScities, and UScolleges, into Ls=5 strata. The last three 
populations were considered in Cochran’s (1961) investi-
gations. These four populations are stored in stratification; 
the command data(Debtors) calls the first one. Rather 
than specifying a target CV we set the sample size to n =  
100 following Gunning and Horgan (2004). The following 
commands create the R-object pop1 that contains the 
stratified design for the Debtors population.  
> data(Debtors) 
> pop1 <- strata.geo(x = Debtors, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5))  

Table 1 summarizes the geometric stratified designs for 
the four study populations. It reproduces Table 4 of Gunning 
and Horgan (2004) partially. There are however some minor 
differences caused by different rounding strategies. More 
details about stratification rounding methods are available 
in the help file.  
Table 1 
Stratified designs for four populations with n = 100 
 

Population CV  1 2 3 4 5
Debtors 0.0359 hb  148.28 549.67 2,037.60 7,553.33
  hN  1,054 1,267 732 265 51
  hn  3 14 27 33 23
UScities 0.0145 hb  18.17 33.01 59.98 108.98
  hN  364 418 130 87 39
  hn  18 28 17 20 17
UScolleges 0.0183 hb  434.00 941.76 2,043.61 4,434.60
  hN  94 255 198 74 56
  hn  3 15 27 20 35
USbanks 0.0107 hb  118.59 200.92 340.39 576.68
  hN  114 116 64 39 24
  hn  13 20 25 18 24
 

2.3 Take-all stratum  
In Table 1, the fifth stratum for the USbanks population 

is a take-all stratum since 5 5 24.n N= =  Under Neymann 
allocation, the fifth stratum gets a sample size 5n  larger than 
the stratum size 5.N  Then strata.geo automatically 
identifies this stratum as a take-all stratum and allocates the 

5n N−  units for the first four strata using Neyman allo-
cation. This adjustment is important to have a sample size of 

100n =  as specified in the strata.geo arguments. 
To illustrate this point, we use the function strata.bh to 

make an allocation without a take-all stratum adjustment. 
This function allocates the sample and calculates the 
precision of sy  for a predetermined set of stratum bound-
aries. By setting takeall.adjust=FALSE, Neyman 
allocation is used in the five strata and since 5 5n N>  one 
has 5 5.n N=  The following R-code gets the geometric 
stratum boundaries { }hb  in the strata object adjust; it then 
uses the strata.bh function with the geometric stratum 
boundaries to get the sampling design without adjusting for 
a take-all stratum five in the noadjust strata object.  
> data(USbanks) 
> adjust <- strata.geo(x = USbanks, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5)) 
> noadjust <- strata.bh(x = USbanks, bh = adjust$bh,  
 n = 100, Ls = 5, alloc = c(0.5, 0, 0.5), takeall = 0,  
 takeall.adjust = FALSE)  

The two designs are presented in Table 2. Failing to 
include a take-all stratum yields a sample size of = 99,n  
smaller than the target = 100.n  In this case, the unrounded 
sample size for stratum 5 is noadjust$nh.noint[5]= 
25.40 for 5 = 24N  units. Note that when n  is large or 
when the target CV is small, it is possible to get several 
take-all strata.  
Table 2 
Stratified designs obtained with and without an automatic 
adjustment for a take-all stratum 
 

 n      1  2  3  4  5 
  hb    118.59  200.92  340.39  576.68 
  hN    114  116  64  39  24 

adjust  100 hn    13  20  25  18  24 
noadjust 99  hn    13  20  24  18  24  

2.4 Adding a take-all stratum  
We now consider the data base on = 284N  Swedish 

municipalities given in the appendix of Särndal, Swensson 
and Wretman (1992). The following instructions use the geo-
metric method to stratify this population in Ls=5 strata using 
the variable REV84, the 1984 real estate values. The power 
allocation with exponent 0.7 and alloc=c(0.35,0.35,0) 
is used. The R-object of class strata geo contains the 
stratified design. The command plot(geo) produces the 
plot presented in Figure 1. It provides a histogram of the 
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stratification variable with the stratum boundaries and a 
summary table for the stratified design.  
> data(Sweden) 
> geo <- strata.geo(x = Sweden$REV84, CV = 0.05, Ls = 5,  
 alloc = c(0.35, 0.35, 0))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Plot of the R-object geo  
Figure 1 shows that the geometric stratification method 

puts two of the three extreme REV84 values in a take-all 
stratum. The following Rcode creates cum a stratified 
design for this population using the cum f  method. The 
application of this stratification method is awkward since 
the bins have length {max(REV84)−min(REV84)}/50= 
1191. Considering Figure 1 most of the bins have a null 
frequency; indeed stratum 5 comprises 43 of the 50 bins. 
This design does not have a take-all stratum. To calculate 
the sample sizes obtained by requesting a take-all stratum 
one can use the function strata.bh, with the cum f  
boundaries stored in cum$bh, with the command 
takeall=1. This gives the third sampling plan in Table 3. 
The fourth sampling plan of Table 3 cum3 is created by 
setting the sample size in stratum 5 of the cum f  
design equal to its population size with the command 
cum3$nh[5]<-cum3$Nh[5]. The variance of the estimate 

sy  for the variable REV84 using this fourth sampling design 
is calculated using var.strata.  
> cum <- strata.cumrootf(x = Sweden$REV84, nclass = 50,  
 CV = 0.05, Ls = 5, alloc = c(0.35, 0.35, 0)) 
> cum2 <- strata.bh(x = Sweden$REV84, bh = cum$bh, CV = 0.05,  
 Ls = 5, takeall = 1, alloc = c(0.35, 0.35, 0)) 
> cum3 <- cum 
> cum3$nh[5] <- cum3$Nh[5] 
> cum3.var <- var.strata(cum3, y = Sweden$REV84) 
 
 
 

Table 3 
Four stratified designs for the population of Swedish municipalities 
 

Method     1  2  3  4  5 n  CV 
geometric   hN   56 134 77 15 2   

  hn   3 7 10 6 2 28 4.83 
cum f    hN   120 70 52 27 15   

  hn   7 7 9 8 10 41 4.87 
 1modif

hn  2 2 3 2 15 24 4.44 
 2modif

hn  7 7 9 8 15 46 2.29  
Table 3 highlights that the sampling fraction in the fifth 

stratum drives the value of n. The cum f  design appears 
to be less efficient than the geometric design since it 
sampling fraction in stratum 5 is 10/15 = 67%. Requesting a 
take-all stratum gives a value of n comparable to that 
obtained with the geometric design. The REV84 population 
has three outliers that were identified in Table 1. The 
geometric and cum f  stratification methods depend 
heavily on the maximum X -value; therefore before ap-
plying these techniques it might be wise to put the three 
outliers aside. This is considered in the next section. 

The simple ad hoc method to arbitrarily change the 
stratum sample sizes presented in this section can be applied 
in several situations. For instance, when some strata have 
samples of size 1, they can be increased to 2 in order to have 
an unbiased variance estimator.  
2.5 Certainty stratum  

In a stratified design it might be useful to constrain some 
units to be sampled, before constructing the strata. The 
argument certain available in the four strata-function 
makes this possible. As an example we revisit the compari-
son of the cum f  and the geometric sampling designs 
presented in Table 3. The three large municipalities high-
lighted in Figure 1 are put in a certainty stratum, and the 
N = 281 remaining municipalities are stratified into Ls=4 
strata using the two stratification methods. The R-code for 
constructing these two designs is given below. The com-
mand x=sort(Sweden$REV84) orders the municipalities by 
increasing REV84; thus the three large municipalities are 
entries 282, 283 and 284 of the sorted vector. The two R 
objects of class strata, geo_cer and cum_cer, each contain 
an element certain.info that provides information on the 
certainty stratum.  
> geo_cer <- strata.geo(x = sort(Sweden$REV84), CV = 0.05,  
 Ls = 4, alloc = c(0.35, 0.35, 0), certain = 282:284) 
> cum_cer <- strata.cumrootf(x = sort(Sweden$REV84),  
 nclass = 50, CV = 0.05, Ls = 4, alloc = c(0.35, 0.35, 0), 
 certain = 282:284) 
> cum_cer$certain.info 
  

Nc meanc 
3.00 38923.67 
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In Table 4, the cum f  design is more efficient that the 
geometric design. Putting the three large municipalities in a 
certainty stratum is helpful since the sample sizes in Table 4 
are smaller than those of Table 3. The argument certain 
can force any set of units in the sample. It can be used to 
include units that are extreme for a secondary variable, 
different from the stratification variable, or that have a 
history of high volatility.  
Table 4 
Two stratified designs for the Swedish municipalities constructed 
with a certainty stratum 
 

Method     1  2  3  4  5 n CV
geometric   hN    42  116  88  35  3 
  hn    2  5  7  7  3  24  4.71 
cum f    hN    127  79  46  29  3 
  hn    3  4  4  5  3  19  4.72  

3. Optimization method  
The stratification methods introduced in Section 2 do not 

always give an optimal stratified design, that minimizes the 
sample size n  needed to reach the target CV (or minimizes 
the CV for a fixed n). This section introduces the function 
strata.LH that allows the determination of optimal 
designs. The name LH stands for Lavallée and Hidiroglou 
(1988) who pioneered the construction of optimal stratified 
designs for real life survey populations. In a stratified design 
with a take-all stratum, the variance of the simple expansion 
estimator is given by  

21
2

=1

1 1Var( ) = ,
( )

L
h

s yh
h L h h

N
y S

N n N a N

− ⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
∑  

where { }ha  is the allocation rule for setting stratum sample 
sizes. The n  that ensures a CV of c  is given by  
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In this expression one can write 1= ( , , )Ln n b b…  to 
highlight that the value of n  depends on the stratum bound-
aries. The strata.LH function tries to find the optimal 
boundaries hb  that minimize 1 1( , , ).Ln b b −…  Two minimi-
zation algorithms are available, either Sethi’s (1963) algo-
rithm as implemented by Lavallée and Hidiroglou (1988) 
with algo="Sethi" or Kozak’s (2004) random search 
algorithm with algo="Kozak". The latter is the default 
option. This section assumes = ;Y X  it does not distin-
guish the stratification from the survey variable. 

3.1 Sethi (1963) example with the normal 
distribution  

A classical problem is to determine the optimal bound-
aries for L  strata in an infinite population from a known 
distribution. For instance, Sethi (1963) derived the optimal 
bounds for the normal and the 2

30χ  distributions. To obtain 
approximate solutions, one can run the strata.LH function 
on a large Monte Carlo population simulated from the 
known distribution, without requesting a take-all stratum. In 
(1), one has 2/ 0hN N ≈  and the optimal boundaries are the 
same for any target CV .c  

The following R-code simulates populations of size 510  
from the (10, 1)N  and the 2

30χ  distributions. Observe that 
stratification requires the stratification variable to be non 
negative, so that it would not work on standard normal 
deviates. By subtracting 10 from the (10, 1)N  bound-
aries, we get the ones for a (0, 1).N  The calculations are 
done with the strata.LH function with the argument 
algo="Sethi" and with takeall=0, so that a take-all 
stratum is not requested.  
> z <- rnorm(100000, 10) 
> zl5 <- strata.LH(x = z, CV = 0.001, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Sethi") 
> zl5$bh - 10  
[1] -1.1247340 -0.3480829 0.3297044 1.0979017 
 
> x30 <- rchisq(100000, 30) 
> xl5 <- strata.LH(x = x30, CV = 0.01, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Sethi") 
> xl5$bh  
[1] 22.82148 28.12303 33.38642 40.20165  

In Table 5, the agreement between the true bounds 
reported in Table 8 of Sethi (1963) and the Monte Carlo 
bounds is quite good. This approach could be used to 
calculate the optimal stratum boundaries for an arbitrary 
distribution, see for instance Khan, Nand, and Ahmad 
(2008). 
 
Table 5 
Comparison of Sethi’s (1963) optimal stratum boundaries and 
of the approximate boundaries obtained with stratification 
  

          stratification’s results          Sethi’s results  
 L  1  2  3  4   1  2  3  4 
 2  -0.007     0.00 

hb  3  -0.531  0.567     -0.55  0.55 
(0,1)N 4  -0.883  -0.008  0.864    -0.88  0.00  0.88 

 5  -1.125  -0.348  0.330  1.098   -1.11  -0.34  0.34  1.11

 2  30.674     30.6 

hb  3  26.535  35.141     26.0  35.0 
2
30χ  4  24.340  30.733  38.179    24.0  30.6  38.0 
 5  22.821  28.123  33.386  40.202   22.0  28.0  33.0  40.0  

3.2 Gunning and Horgan (2004) example  
In their original proposal, Lavallée and Hidiroglou 

(1988) always had a take-all stratum for a skewed survey 
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variable. To show that this was not always mandatory, 
Gunning and Horgan (2004) derived the optimal stratified 
designs featuring a take-all stratum for the four populations 
considered in Table 1. The findings of their Table 7 (with 
slight corrections due to rounding errors) is reproduced in 
Table 6. Comparing Tables 1 and 6, one sees that the opti-
mal designs featuring a take-all stratum have n -values 
larger than 100 for three populations out of four. The op-
timal design is superior to the geometric design only for the 
Debtors population. The R-code to run Sethi’s algorithm on 
the Debtors population is given below.  
> pop1LH <- strata.LH(x = Debtors, CV = 0.0359, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 1, algo = "Sethi")   

In Table 6, one would expect the optimal designs 
obtained through an iterative algorithm to have a smaller 
sample size than the ad hoc geometric designs. This fails to 
occur for three populations. This might be caused by a 
failure of Sethi’s algorithm to find the true minimum value 
for n. To check this, we reran the programs to produce Table 
6 with the argument algo="Kozak". The sample sizes n  
are given in the second column of Table 7. Kozak’s 
algorithm finds a smaller n -value that Sethi’s for three of 
the four populations. This highlights the weakness of Sethi’s 
algorithm for real populations. The second column of Table 
7 has n  values larger than 100 for two of the four popu-
lations. In these cases, the geometric design might be better 
because a take-all stratum is not required. To check this we 
reran Kozak’s algorithm wihout a take-all stratum, i.e., with 
takeall=0. The results are reported in the third column of 
Table 7. For the Debtors and the UScolleges populations, 
taking away the take-all stratum reduces the sample size n . 
Still, for the UScities population, Kozak’s algorithm does 
worst than the geometric design. It failed to find the true 
minimum value of n  with the default arguments that 
control its random search. To better understand the re-
sults of Table 7, we now present in more details the 
selection of initial stratum boundaries in strata.LH and 
the parameters that control the random search with 
algo="Kozak".  
Table 6 
Optimal stratified designs featuring a take-all stratum obtained 
with Sethi’s algorithm for the 4 populations of Table 1 
 

Population n  CV   1  2  3  4  5 
Debtors 93 0.0359 hb   349.33  1,190.16  3,482.98 10,322.50 
   hN   1,856  991  350 146 26 
   hn   13  17  17 20 26 
UScities 137 0.0145 hb   14.72  21.62  35.59 80.47 
   hN   189  270  336 164 79 
   hn   4  8  16 30 79 
UScolleges 107 0.0183 hb   512.32  869.76  1,577.23 3,668.85 
   hN   133  180  185 110 69 
   hn   4  6  10 18 69 
USbanks 104 0.0107 hb   99.37  129.60  181.94 317.36 
   hN   70  66  82 65 74 

   hn   4  4  7 15 74 

Table 7 
Sample size n  for three optimal designs and four populations 
 

Population  algo=Sethi  algo=Kozak algo=Kozak 
takeall=1 takeall=1  takeall=0 

Debtors 93  92  82 
UScities 137  114  123 
UScolleges 107  107  95 
USbanks 104  88  88  

3.3 Customization of the algorithms  
The default initial stratum boundaries for the two 

iterative algorithms are the arithmetic starting point of 
Gunning and Horgan (2007), with = min (maxhb X X+ −  
min ) / ,X h L×  for = 1, , 1h L −… . In Table 7, this 
choice is questionable and the geometric stratum bound-
aries would have been closer to the true optimal boundaries. 
In strata.LH, the argument initbh= allows to specify a 
vector of 1L −  initial boundary values. The maximum 
number of iterations can be changed with the maxiter 
element of the algo.control argument. 

Kozak’s algorithm was first proposed in Kozak (2004), 
see also Kozak and Verma (2006). It uses a random 
search that selects the 1L −  stratum boundaries among 
the sorted values of ,X  with the duplicates discarded. At 
one iteration, it randomly picks a number d  in the set 
{-maxstep,-maxstep+1,…,maxstep} and one of the 

1L −  boundaries. Then it moves the selected boundary by 
d  positions in the vector of sorted X -values. If (1) is 
smaller with the new boundary it is kept, otherwise it is 
discarded and the boundaries are left unchanged at this 
iteration. The algorithm stops when the boundaries have not 
been changed for maxstill consecutive iterations. The 
default values are maxstep=3 and maxstill=100. Two 
consecutive runs of Kozak’s algorithm might lead to 
different designs because of the random nature of this 
algorithm. The strata.LH runs the algorithm rep times 
and the information for each run is contained in the 
rep.detail element of R-objects of class strata; the 
default value is rep=3. If the rep runs lead to different 
designs, then the tuning parameters of the algorithm can be 
changed. One can also use use rep="change" which runs 
the algorithm 27 times with different starting and maxstep 
values. An additional example illustrating an instance where 
Kozak’s algorithm does not reach a global minimum is 
presented in the Appendix. 

With uN  unique X -values, there are approximately 
1

1
uN

L
−
−

( )  possible sets of stratum boundaries. If this number is 
smaller than minsol all the possible sets of strata are tried, 
rather than carrying out a random search. The default value 
is minsol=1000. The elements maxstep, maxstill, 
minsol and rep belong to the algo.control argument. In 
Table 7, we were unable to improve the geometric stratified 
design for the UScities population. The command to run 
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Kozak’s algorithm 27 times with various tuning parameters 
is given below.  
> data(UScities)  
> pop2LHrep <- strata.LH(x = UScities, CV = 0.0145, Ls = 5, 
 alloc = c(0.5, 0, 0.5), takeall = 0, algo = "Kozak",  
 algo.control = list(rep = "change"))   

This command takes a few seconds to run and yields a 
stratifed design with = 100,n  similar to that presented in 
Table 1 for the UScities.  
3.4 Designs with a predetermined sample size n  

With Kozak’s algorithm it is possible to find the 
boundaries that minimize the CV of sy  for a fixed sample 
size n  rather than minimizing n  for a predetermined CV. 
As an example we revisit the stratified designs of Table 1. 
The geometric boundaries are used as initial values and the 
default Kozak algorithm is run. The R-code for the Debtors 
population is given below.  
> pop1k <- strata.LH(x = Debtors, initbh = pop1$bh, n = 100,  
 Ls = 5, alloc = c(0.5, 0, 0.5), algo = "Kozak")  

The CVs of the estimator of sy  obtained with the 
optimal stratified designs are 3.12%, 1.43%, 1.72%, and 
1.04% for the four populations as compared with 3.59%, 
1.45%, 1.83%, and 1.07% in Table 1. Thus the iterative 
algorithm allowed to reduce the CVs.  

4. Stratification with anticipated moments  
A difference between the stratification variable X  and 

the survey variable Y  can be accounted for by having a 
model for the conditional distribution of Y  given .X  In 
stratification, there is a log-linear model where 

exp( ) exp( ),Y X β= α σε  

and an heteroscedastic linear model with  
                              ,Y X X γ= α + β + σε  (2) 

and , ,α β  and γ  are real parameters specified by the user 
and ε  is a (0, 1)N  random variable. A random replace-
ment model (Rivest 1999) is also available and stratum 
specific mortality rates (Baillargeon, Rivest and Ferland 
2007) can be added to the log-linear model. 

Under these models, the anticipated mean of Y  for the 
units classified in stratum h, with 1[ , )h hX b b−∈  are  

<1

1= ( | )h i
b X bh h i h

Y E Y X
N ≤−

∑  
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where ( | )hE Y X  is the average of the predicted values 
of Y  for the units in stratum h. In strat.cumrootf, 
strata.geo and strata.bh these expressions are used to 
evaluate the sampling properties of sy  while in strata.LH, 
the minimization of (1) is carried out with anticipated 
moments. In strata.LH the stratum boundaries depend on 
the model for the relationship between X  and ;Y  they do 
not for the other strata functions.  
4.1 An example with the MU284 Swedish 

municipalities  
In Section 2.5 two stratified sampling plans were derived 

for the MU284 population with 84REV  as stratification 
variable. The R-code that follows investigates the perfor-
mance of these sampling designs for the variable 85RMT . 
The vector ord contains the position of the order statistics of 
the 84REV  variable; thus Y[ord] is the vector of the 

85RMT  variable, ordered by increasing 84REV -value.  
> data(Sweden)  
> X <- Sweden$REV84 
> Y <- Sweden$RMT85  
> ord <- order(X)  
> geo_rmt <- var.strata(geo_cer, y = Y[ord])  
> cum_rmt <- var.strata(cum_cer, y = Y[ord]) 
> c(geo_rmt$RRMSE,cum_rmt$RRMSE) 
 
[1] 0.06889558 0.07368794   

In section 2.4, the CVs of the estimator sy  for the 
stratification variable 84REV  were less than 5% for the 
cum f  and the geometric designs. When estimating the 
mean of 85,RMT  the CVs are larger than 6%. This 
emphasizes that calculating sample sizes with a stratification 
variable underestimate the n  needed to reach the target CV 
for a different survey variable. These results are reported in 
the first two designs of Table 8. Table 8 also shows the 
optimal design calculated by applying Kozak’s algorithm to 
the 84REV  variable, assuming = .Y X  

Following Rivest (2002), a log-linear model is fitted for 
the relationship between the two variables. As shown in 
Figure 2, there are outliers and the following R-code esti-
mates the parameters of the log-linear model by discarding 
the municipalities with extreme /X Y  quantiles. The 18 
discarded municipalities are represented by a star in Figure 
2. The R-code for fitting the model to the non outliers 
follows.  
> keep <- (X/Y > quantile(X/Y, 0.03)) & (X/Y < quantile(X/Y, 0.97)) 
> reg <- lm(log(Y)[keep] ~ log(X)[keep]) 
> coef(reg) 
 
(Intercept) log(X)[keep] 
-3.153025   1.058355 
 
> summary(reg)$sigma 
 
[1] 0.25677 
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Figure 2 Plot of RMT85 by REV84 from the data set Sweden  
The following code stratifies the MU284 population on 

REV84 using the cum f  and the geometric method. The 
allocation is however carried out with anticipated moments 
calculated with the log-linear regression model of RMT85 
on REV84. The strata of these two designs are the same as 
those calculated earlier. The model affects only the antici-
pated CV. It is not so for the optimal design where the 
anticipated moments are used in the stratification algorithm. 
Kozak’s algorithm might fail to find the global minimum n  
value when using anticipated moments; thus we use the 
bounds calculated with Y X=  as starting values.  
 
> geo_cer.m <- strata.geo(x = X[ord], CV = 0.05, Ls = 4,  
 alloc = c(0.35, 0.35, 0), model = "loglinear",  
 certain = (length(X) - 2):length(X), model.control = 
 list(beta = 1.058355, sig2 = 0.25677^2)) 
> geo_cer.var <- var.strata(geo_cer.m, y = Y[ord]) 
> cum_cer.m <- strata.cumrootf(x = X[ord], nclass = 50,  
 CV = 0.05, Ls = 4, alloc = c(0.35, 0.35, 0), 
 certain = (length(X) - 2):length(X), model = "loglinear", 
 model.control = list(beta = 1.058355, sig2 = 0.25677^2)) 
> cum_cer.var <- var.strata(cum_cer.m, y = Y[ord]) 
> LH <- strata.LH(x = X, CV = 0.05, Ls = 5,  
 alloc = c(0.35, 0.35, 0), takeall = 1) 
> LH.var <- var.strata(LH, y = Y) 
> LH_m <- strata.LH(x = X, CV = 0.05, Ls = 5,  
 initbh = LH$bh, alloc = c(0.35, 0.35, 0), takeall = 1,  
 model = "loglinear", model.control = list(beta = 1.058355, 
 sig2 = 0.25677^2)) 
> LH_m.var <- var.strata(LH_m, y = Y) 
 

In Table 8, sample sizes calculated with anticipated 
moments give CVs smaller than 5% for estimating the mean 

85RMT  variable. The optimal LH design requires a n  
slightly smaller than the other two. Accounting for Y X≠  
when minimizing (1) gives a larger take-all stratum since its 
size increased from 4 to 5 when using the anticipated 
moments. 

Finally observe that the arguments model and 
model.control can be used with var.strata. For the 
geometric design considered in this section, one can get 
results very similar to those obtained with the argument 

y = Y. As shown below, the model yields a CV of 6.894% as 
compared with 6.890% obtained with the original 85RMT -
variable. For the cum f  method the model CV is 7.282% 
as compared to 7.369% found earlier while for the Lavallée 
Hidiroglou algorithm these two values are 7.080% and 
7.110%.  
> geo_rmt2 <- var.strata(geo_cer, model = "loglinear", 
 model.control = list(beta = 1.058355, sig2 = 0.25677^2)) 
> geo_rmt2$RRMSE 
 
[1] 0.0689368 

 
Table 8 
Three stratified designs for estimating the mean 85RMT  with 

84REV  as the stratification variable 
 

Model Method   1  2  3  4  5  n anticip.
CV

=Y X  cum f  hN  127  79  46  29  3 
  hn   3  4  4  5  3  19  7.37 
 geometric hN  42  116  88  35  3 
  hn   2  5  7  7  3  24  6.89 
 LH hN  120  82  45  33  4 
  hn   3  4  4  5  4  20  7.11 
loglinear cum f  hN  127  79  46  29  3 
  hn   6  8  9  10  3  36  4.78 
 geometric hN  42  116  88  35  3 
  hn   3  8  13  13  3  40  4.74 
 LH hN  121  81  45  32  5 
  hn   6  7  7  9  5  34  4.90 

 
4.2 Anderson, Kish and Cornell (1976) example with 

the bivariate normal distribution  
Anderson et al. (1976) investigated the optimal stratifica-

tion for Y  based on X  when ( , )X Y  has a bivariate 
normal distribution with correlation .ρ  Thus model (2) 
holds with 0, ,α = γ = β = ρ  and 2 21σ = − ρ  where X  
has a (0, 1)N  distribution. To reproduce Anderson et al. 
(1976) results, we generate a population of size N = 105 
from a (0, 1)N  distribution and select model="linear" 
(as in Section 3.1 a mean of 10 was used to prevent X  from 
being negative). For a linear model, only Kozak’s algorithm 
works. Given the special nature of the problem, the 
maxstep parameter is set to 20 and only one repetition 
(rep=1) of the algorithm is run. When there is no take-all 
stratum, the optimal stratum boundaries are independent of 
the CV, as in Section 3.1. We used CV =  0.01 in the 
calculations. 
 
> x <- rnorm(1e+05, 10) 
> bi3a <- strata.LH(x = x, CV = 0.01, Ls = 3, takenone = 0, 
 model = "linear", 
 model.control = list(beta = 0.25, sig2 = 1 - 0.25^2,  
 gamma = 0), algo.control = list(maxstep = 20, rep = 1)) 
> bi3a$bh – 10 
 
[1] -0.619354 0.604198 
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In Table 9, stratification’s results are equal to Anderson’s 
et al. (1976) findings up to nearly two decimals. This high-
lights the flexible nature of the package; it can find the 
optimal stratified design for any distribution of the stratifi-
cation variable and for some general models for the condi-
tional distribution of Y  given .X  

 
Table 9 
Comparison of Anderson et al. (1976) optimal stratum boundaries 
with the approximate boundaries obtained with stratification 
 

     stratification’s results   Anderson et al.’s results 

L    ||ρ    1   2   3   4   1   2   3   4  

 3   0.250   -0.619  0.604       -0.61   0.61     

  0.950   -0.591  0.568       -0.58   0.58     

  0.990   -0.571  0.549       -0.56   0.56     

 4   0.250   -0.984  0.004   0.985     -0.98   0.00  0.98   

  0.950   -0.930  0.009   0.942     -0.93   0.00  0.93   

  0.990   -0.902  -0.001   0.895     -0.90   0.00  0.90   

 5   0.250   -1.245  -0.377   0.387   1.251   -1.24   -0.38  0.38  1.24 

  0.950   -1.187  -0.358   0.372   1.197   -1.19   -0.37  0.37  1.19 

  0.990   -1.136  -0.344   0.353   1.144   -1.14   -0.35  0.35  1.14 

 
5. Additional features  

Baillargeon and Rivest (2009) considered additional 
aspects of a stratified design, namely stratum specific 
anticipated non-response rates and the addition of a take-
none stratum with a null sample size. This section discusses 
briefly how these additional items are handled in stratifica-
tion. Non-response needs to be accounted for when opti-
mizing for .n  A take-none stratum makes sy  biased; in this 
case the precision target is specified in terms of a Relative 
Root Mean Squared Error (RRMSE) rather than a CV. 
Formula (4.3) of Baillargeon and Rivest (2009) provides a 
generalization of (1) that includes these two features. This is 
the formula used for calculating sample sizes in the opti-
mization procedure.  
5.1 Non-response  

Non-response can be corrected a posteriori, by dividing 
the no non-response stratum sample sizes by the response 
rates. This is illustrated in the following R-code that 
considers the MRTS variable, representative of Statistics 
Canada Monthly Retail Trade Survey. Post hoc non-
response corrections are implemented in the var.strata 
function with the argument rh.postcorr=TRUE. An 
alternative is to consider response rates when allocating the 
sample to the strata. They can be specified in a strata 
function with the argument rh=. This approach penalizes 
strata with a high non-response; it typically yields a smaller 

n  value than the a posteriori corrections. This is illustrated 
in the cum f  portion of Table 10. With four strata and 
response rates of 0.8, 0.8, 0.9, 1, the a posteriori correction 
needs = 445n  to reach the target CV for the MRTS 
variable, as compared with = 444n  for an allocation that 
takes non-response into account. 
 
> data(MRTS)  
> cum <- strata.cumrootf(x = MRTS, nclass = 500, CV = 0.01,  
 Ls = 4, alloc = c(0.5, 0, 0.5))  
> cum.var <- var.strata(cum, rh = c(0.8, 0.8, 0.9, 1))  
> cum.post <- var.strata(cum, rh = c(0.8, 0.8, 0.9, 1), 
 rh.postcorr = TRUE)  
> cum_rh <- strata.cumrootf(x = MRTS, nclass = 500, CV = 0.01, 
 Ls = 4, alloc = c(0.5, 0, 0.5), rh = c(0.8, 0.8, 0.9, 1)) 

 
Non-response can also be accounted for when construc-

ting an optimal sampling design, either a posteriori or in the 
stratum construction. These two approaches are imple-
mented for the MRTS population in the following R-code. 
The higher non-response rates for the small units penalize 
the first stratum which is smaller when non-response is 
accounted for in the stratification algorithm, as can be seen 
in Table 10. Still accounting for non-response in the stratum 
construction gives a smaller n -value than an a posteriori 
correction. Table 3 of Baillargeon and Rivest (2009) pres-
ents additional examples, including both anticipated mo-
ments and non-response, of the construction of stratified 
designs for the MRTS population.  
> LH <- strata.LH(x = MRTS, CV = 0.01, Ls = 4,  
 alloc = c(0.5, 0, 0.5), takeall = 1)  
> LH.var <- var.strata(LH, rh = c(0.8, 0.8, 0.9, 1))  
> LH.post <- var.strata(LH, rh = c(0.8, 0.8, 0.9, 1), 
 rh.postcorr = TRUE)  
> LH_rh <- strata.LH(x = MRTS, CV = 0.01, Ls = 4,  
 alloc = c(0.5, 0, 0.5), takeall = 1, rh = c(0.8, 0.8, 0.9, 1))   
Table 10 
Two examples of non-response correction: Either a posteriori (post) 
or when constructing the design 
 

Method   rh     1   2   3   4   n    anticip. 
CV  

cum f    none  hN    778   742   355   125     
    hn    87   90   88   125  390  1.11  
    post

hn   109   113   98   125  445  1.00  
  given  hN    778   742   355   125     
    hn    105   108   106   125  444  1.00  
LH   none  hN    774   675   374   177     
    hn    77   65   60   177  379  1.11  
    post

hn   96   81   67   177  421  1.00  
  given  hN    675   677   449   199     
    hn    70   69   80   199  418  1.00   
5.2 Take-none stratum  

A take-none stratum with a null sample size might be 
advantageous when the population has small units with Y -
values close to 0. The precision of sy  is then measured by 
the mean squared error, Var 2

0( ) ( / ) ,s yy T N+  where 0 yT  is 
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the anticipated Y -total in the take-none stratum. Setting 
takenone=1 in the strata.LH function constructs an 
optimal design with a take-none stratum. Baillargeon and 
Rivest (2009) showed that Sethi’s algorithm does not work 
in this case and that Kozak’s algorithm should be used. 
When a take-none stratum is used, a rough bias correction 
can be implemented by dividing sy  by the proportion of the 
total of the X  variable in the take some strata. Thus the bias 
penalty in the mean square error might be too stringent and 
an alternative measure of precision, such as Var ( )sy +  

2
0( / ) ,yp T N×  could be used in the stratification algo-

rithm where p  is a number in (0, 1).  This smaller bias 
penalty can be implemented by setting the argument 
bias.penalty equal to .p  The following R-code con-
structs three optimal stratified designs for the MRTS popu-
lation, with and without a take-none stratum; the default full 
bias penalty is compared to a reduced penalty with =p 0.5.  
> data(MRTS)  
> notn <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5))  
> tn1 <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5), takenone = 1)  
> tn0.5 <- strata.LH(x = MRTS, CV = 0.1, Ls = 3,  
 alloc = c(0.5, 0, 0.5), takenone = 1, bias.penalty = 0.5)   

The sample sizes n  for the three designs are given in 
Table 11. Including a take-none stratum with a full bias 
penalty reduces ,n  from 22 to 16; for this design the take-
none stratum accounts for 3% of the total of the X-variable. 
Reducing the biais penalty to =p 0.5 increases the size of 
the take-none stratum and reduces .n  Additional illus-
trations are given in Table 2 of Baillargeon and Rivest 
(2009). They show that the size of a take-none stratum 
typically decreases with the target RRMSE. For the MRTS 
example, the addition of a take-none stratum diminishes the 
n -value substantially while for others it does not change the 
design. 

 
Table 11 
Sample sizes for three optimal stratified designs for the MRTS 
population 
 

 takenone   0   1   1  
 bias.penalty   NA   1   0.5  

n    22   16   13  
% xT    0   3   9   

6. Conclusion  
The R-package stratification offers flexible methods for 

the construction of a stratified sampling design using a 
univariate stratification variable such as a measure of size in 
a business survey. Several methods are available to deter-
mine the stratum boundaries and the stratum sample sizes. 

stratification allows the investigation of features such as a 
take-all stratum, a take-none stratum, the extent of the 
discrepancy between X and Y, and a stratum specific non-
response.  
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7. Appendix  
7.1 More details on Kozak’s algorithm  

As described in Section 3.3 Kozak’s algorithm uses a 
random search. Besides decreasing the optimization crite-
rion, either the n -value or the RRMSE  of ,sy  stratification 
requires that the take-some strata contain at least minNh 
units and that they have positive sample sizes, for the 
new boundary to be admissible. The default is minNh=2. 
A non random, Kozak’s algorithm is also available with 
method="modified" in the algo.control argument. It 
tries all the possible changes at one iteration and picks the 
one that gives the largest drop of the optimization criterion. 
It is slower than Kozak’s algorithm without improving the 
detection of the global minimum of the optimization 
criterion. Therefore, it will not be discussed any further. 

To illustrate the complete enumeration of all possible 
solutions mentioned in Section 3.3, consider the USbanks 
data set. It contains 357 values, but only 200 unique values. 
If one wishes to stratify this population in two strata, only 

200 1
2 1
−
−

( )= 199 solutions are possible. The following command 
performs a complete enumeration of the possible solutions:  
> enum <- strata.LH(x = USbanks, CV = 0.05, Ls = 2,  
 alloc = c(0.5, 0, 0.5))   

These solutions, with their associated optimization crite-
ria value, can be found in enum$sol.detail. Only the 
solutions fulfilling the admissibility constraints mentioned 
above are included in enum$sol.detail. 

When running Kozak’s algorithm, the initial boundary 
values might fail to meet the admissibility constraints; the 
algorithm might not be able to move at all. In such a case, 
the initial boundaries are replaced by robust ones. The 
robust boundaries give an empty take-none stratum if such a 
stratum is requested, take-all strata as small as possible, and 
take-some strata with approximately the same number of 
unique X -values. 



Survey Methodology, June 2011 63 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Consider once again the example of Section 3.2 with the 
UScities data set, where Kozak’s algorithm reached a 
local minimum with the default arguments. With geometric 
initial boundaries, Kozak’s algorithm converges rapidly to 
what appears to be a global minimum. 
 
> LH_init <- strata.LH(x = UScities, initbh = pop2$bh,  
 n = 100, Ls = 5, alloc = c(0.5, 0, 0.5), takeall = 0,  
 algo.control = list(rep = 1)) 
> LH_init$iter.detail 
 
 b1 b2 b3 b4 opti step iter run

1 18.5 33.5 59.5 107 0.01444981 0 0 1
2 20.5 33.5 59.5 107 0.01435576 2 2 1
3 19.5 33.5 59.5 107 0.01434272 -1 10 1
4 19.5 33.5 58.0 107 0.01432714 -1 12 1
5 19.5 31.5 58.0 107 0.01431013 -2 13 1
6 19.5 32.5 58.0 107 0.01430163 1 63 1
 
> LH_init$niter 
[1] 163  

The output element LH_init$iter.detail contains 
information about the initial boundaries and the 5 iterations 
with a change of boundaries only. A total of 163 iterations 
were needed for the algorithm to converge. The geometric 
initial boundaries are very close to the optimal solutions. A 
local minimum can also be avoided by changing some of 
the algorithm’s parameters. The following R-code allows 
larger steps (maxstep=20) and increases the maximal num-
ber of iterations (maxstill=1000) and the number of 
repetitions of the algorithm (rep=20).  
> LH_param <- strata.LH(x = UScities, n = 100, Ls = 5,  
 alloc = c(0.5, 0, 0.5), takeall = 0, algo.control = 
 list(maxstep = 20, maxstill = 1000, rep = 20))  

The results for the 20 repetitions are reported in 
LH_param$rep.detail and summarized in Table 12. The 

solution obtained with the geometric initial boundaries is 
reached 9 times out of 20. 

 
Table 12 
Solutions found by Kozak’s algorithm for 20 repetitions 
 

CV B1 B2 B3 B4 frequency
0.0143 19.50 32.50 58.00 107.00 9 
0.0167 16.50 23.50 37.50 78.00 5 
0.0167 15.50 22.50 35.50 73.00 6  
Figure 3 shows how larger steps help the algorithm to 

reach the global minimum (CV = 0.0143), compared to a 
run of the algorithm with the default arguments (dotted 
lines, CV = 0.0167).  
7.2 R package stratification summary table  

This appendix provides a quick reference for the R 
package stratification. Table 13 lists the five functions in 
stratification and their arguments. The following notes 
complete the table.  
(1) According to the general allocation scheme (Hidiroglou 
and Srinath 1993). The stratum sample sizes are propor-
tional to 31 2 22 2 .qq q

h h yhN Y S   
(2) The default value of initbh is the set of arithmetic 
starting points of Gunning and Horgan (2007), see Section 
3.3. If takenone=1 and initbh is of size Ls-1, the initial 
boundary of the take-none stratum is set to the first percent-
tile of X. If this first percentile is equal to the minimum 
value of X, this initial boundary would lead to an empty 
take-none stratum. In that case, the initial boundary of the 
take-none stratum is rather set to the second smallest value 
of X. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3 Iterations histories for two runs of Kozak’s algorithm 
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(3) The elements to specify in the algo.control argument 
depend on the algorithm. The following table shows the 
elements used by each algorithm and their default values. 
See help(strata.LH) for a complete description of every 
element. 
 
Algorithm maxiter method minNh maxstep maxstill rep minsol

Sethi 500 - - - - - - 

Original Kozak 10,000 “original” 2 3 100 3 1,000 

Modified Kozak 3,000 “modified” 2 3 - - 1,000  
(4) The elements of the model.control argument depend 
on the model: 

• loglinear model with mortality: 
exp( log( ) )

with probability=
0 with probability 1

h

h

X
pY

p

α + +⎧
⎪
⎨
⎪ −⎩

beta epsilon

 

 

where (0, )Nepsilon sig2∼  is independent of .X  
The parameter hp  is specified through ph, ptakenone 
and pcertain. 

 
 

• heteroscedastic linear model : 

=Y X +beta epsilon  

where 

(0, ).N X gammaepsilon sig2∼  

• random replacement model: 

with probability 1
=

new with probability
X

Y
X

−⎧
⎨
⎩

epsilon

epsilon
 

where Xnew is a random variable independent of X with 
the same distribution as X.  

The following table presents model.control default values 
according to the model. 
 
model beta sig2 ph ptakenone pcertain gamma epsilon

"loglinear" 1 0 rep(1,Ls) 1 1 - - 

"linear" 1 0 - - - 0 - 

"random" - - - - - - 0 
 

 

 

 

 

 

Table 13 
R package stratification summary table 
 

argument St
ra
ta
.c
um
ro
ot
f 

St
ra
ta
.g
eo
 

St
ra
ta
.L
H 

St
ra
ta
.b
h 

Va
r.
st
ra
ta
 

description format default 

x •  •  •  •   stratification variable vector none (x is mandatory) 
n •  •  •  •   target total sample size scalar none (n or CV is mandatory) 
CV •  •  •  •   target CV or RRMSE scalar none (n or CV is mandatory) 
Ls •  •  •  •   number of sampled strata scalar 3 

alloc •  •  •  •   allocation specification (1) list (q1,q2,q3) where qi≥ 0 Neyman (q1=q3=0.5, q2=0) 
certain •  •  •  •   x–indices for units sampled with 

certainty 
vector NULL (no certainty stratum) 

nclass •      number of bins scalar min(10L, N) 
bh    •   strata boundaries vector none (bh is mandatory) 

takeall.adjust    •   indicator of adjustment for take-all 
strata 

True or False FALSE (no adjustment) 

takeall   •  •   number of take-all strata one of {0, 1,…, Ls − 1} 0 
initbh   •    initial strata boundaries (2) vector equidistant boundaries 
algo   •    algorithm identification "Kozak" or "Sethi" "Kozak" 

algo.control   •    algorithm’s parameters specification 
(3) 

list (maxiter, method, minNh, 
maxstep, maxstill, rep) 

depends on algo 

strata     •  stratification scheme strata object none (strata is mandatory) 
y     •  study variable vector NULL (model given instead) 

model •  •  •  •  •  model identification "none", "loglinear", 
"linear"* or "random"* → 

"none"  
(*unavailable with Sethi’s algo) 

model.control •  •  •  •  •  model’s parameter specification (4) list (beta, sig2, ph, 
ptakenone, gamma, epsilon) 

depends on model, but equivalent 
to model="none" 

rh •  •  •  •  •  anticipated response rates scalar or vector rep(1,Ls) or rh from strata 
rh.postcorr     •  indicator of posterior correction for 

non-response 
TRUE or FALSE FALSE (no correction) 

takenone   •  •   number of take-none strata 0 or 1 0 
bias.penalty   •  •   penalty for the bias scalar 1 
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Replication variance estimation under two-phase sampling 
Jae Kwang Kim and Cindy Long Yu 1 

Abstract 
In two-phase sampling for stratification, the second-phase sample is selected by a stratified sample based on the information 
observed in the first-phase sample. We develop a replication-based bias adjusted variance estimator that extends the method 
of Kim, Navarro and Fuller (2006). The proposed method is also applicable when the first-phase sampling rate is not 
negligible and when second-phase sample selection is unequal probability Poisson sampling within each stratum. The 
proposed method can be extended to variance estimation for two-phase regression estimators. Results from a limited 
simulation study are presented. 
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1. Introduction  
Two-phase sampling, first introduced by Neyman (1938) 

and sometimes called double sampling, is a cost effective 
technique in survey sampling. It is typically used when it is 
very expensive to collect data on the variables of interest, but 
it is relatively inexpensive to collect data on variables that are 
correlated with the variables of interest. Two-phase sampling 
has application in different forms (e.g., Rao 1973; Cochran 
1977; Breidt and Fuller 1993; Rao and Sitter 1995; 
Hidiroglou and Särndal 1998; Fuller 1998; Hidiroglou 2001; 
Fuller 2003). Two-phase sampling for stratification refers to 
the situation where the observation from the first-phase 
sample is used to make a stratification for the second-phase 
sampling. By selecting the first-phase sample for stratifica-
tion purpose, two-phase sampling is a useful tool when there 
is no sampling frame available for stratification at the 
beginning. For example, in forest surveys, it is very difficult 
and expensive to travel to remote areas to make on-ground 
determinations. However, aerial photographs are relatively 
inexpensive, and determinations on, say, forest type from 
aerial photos are strongly correlated with ground deter-
minations and can be used to stratify the first phase sample.  

Replication variance estimation is very popular in 
complex surveys. Rust and Rao (1996) and Wolter (2007) 
provide comprehensive overviews on this topic. The repli-
cation method does not require the computation of the 
partial derivative of the Taylor expansion and the user can 
easily produce variance estimates without knowing the 
sampling design that was used to collect the data. Further-
more, this tendency is increasing because of confidentiality 
issues (Lu and Sitter 2006). Once the replication weights are 
provided, the design information such as stratum identifier 
is not needed for the user’s analysis.  

There are two commonly used estimators of the popula-
tion mean under two phase sampling: the double expansion 

estimator (DEE) and the reweighted expansion estimator 
(REE), named by Kott and Stukel (1997). In general the 
REE is more efficient than the DEE in the situation of two-
phase sampling for stratification when the y ’s within a 
stratum are homogeneous. Variance estimation for two-
phase sampling is a challenging practical problem, and 
replication variance estimation is of interest among practi-
tioners. Rao and Shao (1992) proposed a consistent jack-
knife variance estimator for the REE in the context of hot 
deck imputation treating the respondents as the second-
phase sample. Kott and Stukel (1997) considered the same 
problem and concluded that the jackknife variance estimator 
works well for the REE if the first-phase sampling rate is 
negligible. The sampling rate, or the sampling fraction, 

1
1f nN −=  is called negligible if 1f  converges to zero 

under the asymptotic setup described in Section 2. Binder, 
Babyak, Brodeur, Hidiroglou and Jocelyn (2000) studied 
variance estimation for a similar two-phase sample design 
using the Taylor linearization method. Kim et al. (2006, 
KNF) provided a rigorous investigation of the replication 
method and considered replication for other types of 
estimators. The KNF method has been developed mainly 
under the situation where the first-phase sampling rate is 
negligible and the second-phase sampling is a stratified 
random sampling. If the first-phase sampling rate is not 
negligible, additional replicates are needed to get 
consistent variance estimates.  

In this paper, we propose a new replication method for 
variance estimation under two-phase sampling. The pro-
posed method is an extension of the KNF method to cover 
the situation where the first-phase sampling rate is not 
necessarily negligible. Unlike the KNF method, the pro-
posed method does not require additional replicates for bias 
correction in the variance estimation, but does require adjust-
ments in the replication weights. Also, the proposed method 
is applicable to unequal probability Poisson sampling within 
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second-phase strata, which was not discussed in KNF. 
Because the proposed method is a replication-based method, 
it is very easy to implement and can be applied to various 
types of estimators.  

The rest of the paper is organized as follows. In Section 
2, the basic setup is introduced, and in Section 3, the 
proposed method is described. In Section 4, the proposed 
method is extended to other estimators in two-phase 
sampling. In Section 5, results from a limited simulation 
study are presented. Concluding remarks are made in 
Section 6.   

2. Basic setup  
For better motivation, in this section we simply assume 

the situation where the first phase is a simple random 
sample of size n  from a finite population of size N  and the 
second phase sampling is a stratified random sample. In 
section 3, the setup is extended to include any arbitrary 
measurable sampling in the first phase and unequal 
probability Poisson sampling within each stratum in the 
second phase. Using the information obtained from the first-
phase sample, it is stratified into H  strata for second-phase 
sampling. In stratum ,h  we have hn  first-phase sample 
elements and let 1hA  be the set of indices for the first-phase 
sample elements in stratum .h  In the second-phase 
sampling, a stratified random sample of size r  is selected 
with sample size ( )h hr n≤  in stratum ,h  where 1

H
h hr r=∑=  

and the sampling rate h hr n/  is fixed for each stratum. To 
formally discuss the asymptotic theory, we assume a 
sequence of finite populations, a sequence of first-phase 
samples, and a sequence of second-phase samples, as 
described in KNF. In this asymptotic setup, we allow that 
the second-phase sample size r  goes to infinity at the same 
rate as the first phase sample size ,n  i.e., ( )r O n=  and 

1 1( ),r O n− −=  and H  is fixed. Thus, in the setup of fixed 
,H 1 1( ).hr O n− −=  
When the study variable iy  is observed in the second 

phase sample, the population mean of y  is estimated by  

21

1

h

H
h

tp i
h i A h

n
y y

n r= ∈

= ,∑ ∑  

where 2hA  is the set of indices for the second-phase sample 
elements that belong to stratum .h  The variance of tpy  can 
be written as  

2
2 2

1
1
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where 1
h hw n n−=  and �  indicates an approximation 

ignoring the terms of order 1( ),o n−  the variance term (1) is 
approximated by  
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(2)

 

where 1
1 .f nN −=  

A consistent estimator of the variance of tpy  can be 
derived from (2) by replacing 1hy  and 2

1hs  by their estimates 
2

1
2 hi Ah h iy r y−

∈∑=  and 
2

22 1
2 2( 1) ( ) ,

hi Ah h i hs r y y−
∈∑= − −  

respectively. That is, a consistent variance estimator is  
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where 12 2.H
h h hy w y=∑=  The variance estimator (3) is a 

linearized variance estimator.  
Kott and Stukel (1997) and KNF developed a jackknife 

variance estimator by successively deleting units from the 
entire first-phase sample and then adjusting the weights. The 
full jackknife replicates are  

( )( ) ( )
21

1

1 ˆ
H

kk k
tp hh

h
y yN

N =
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where k  is the index of the unit deleted in the jackknife 
replicate,  
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The full jackknife variance estimator of the form  
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where ( )k
tpy  is defined in (4), is asymptotically equivalent to  
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Thus, comparing (7) with (2), the bias of the jackknife 
variance estimator (6) is  

1 1 2
1 2

1

ˆBias ( ) ( )
H

J h h h
h

V E f r n s
⎧ ⎫
⎪ ⎪− −
⎨ ⎬
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− − .∑�  

Therefore, if the first-phase sampling rate is negligible in the 
sense of 1 0,f �  the bias is negligible, i.e., the bias =  

1( ).o n−  Otherwise, the variance estimator underestimates 
the variance.  

To consider a bias-corrected jackknife method, instead of 
(5), we consider  
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where hδ  is to be determined. In (5), 1hδ =  was used. The 
jackknife variance estimator using (8) instead of (5) is 
asymptotically equivalent to  
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Thus, the asymptotic bias is  
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The asymptotic bias is zero if  

1 ( 1)
h

h
h h h

r
r r d

δ =
+ − /

 

where 1
1 1(1 ) (1 ).h h hd f r n f−= − / −  Hence, with such 

determined hδ  in equation (8), the resulting jackknife vari-
ance estimator is approximately unbiased without assuming 

1 0.f �   
3. Proposed method  

The proposed method in Section 2 is now extended to a 
more general first-phase sampling design. To do this, we 
need to assume that the replication variance estimator of the 
form  

( ) 2
1

1

ˆ ˆˆ ( )
L

k
k

k
V c

=

= θ − θ ,∑  

where 
1

ˆ ,i A i iw y∈∑θ =  and 
1

( ) ( )ˆ ,k k
i A i iw y∈∑θ =  is consistent 

for the variance of θ̂  under the single (first) stage sampling 
design. That is,  

1̂ 1 (1).ˆVar ( ) p
V o− =
θ

 (9) 

Here L  is the number of replicates. For most of the 
measurable designs, which are designs with all positive joint 
inclusion probabilities, we can construct a replication 
variance estimator satisfying (9) even when the sample rate 
f n N= /  is large. For example, see Fay (1984) and Flyer 

(1987). Brick and Morganstein (1996) describes the basic 
algorithm for WesVar, a commercially available software 
for replication variance estimation in survey sampling.  

In this section, we also consider a more challenging case 
of stratified unequal probability sampling for the second 
phase. More specifically, the second phase sampling 
considered is unequal probability Poisson sampling within 
the second-phase strata. Fuller (1998) also considered 
Poisson sampling in the second phase and argued that 
Poisson sampling in the second phase sampling is a good 
approximation. An example of this in the context of forest 
surveys is that, in addition to forest types, the photo-
interpreters can also identify tree density and tree height 
from the aerial photos taken in the first phase, which can be 
used to construct the second phase selection probabilities 
within each stratum (forest type).  

In this section, we will focus on the REE-type estimator 
first since it is more efficient than the DEE-type, and 
extension to the DEE is discussed in Section 4. Let iw  be 
the first-phase sampling weight and let 2iw  be the inverse of 
the conditional probability in the second-phase. That is, 

1
2 2i iw −= π  where 2 2 1Pr ( ).i h hi A i Aπ = ∈ | ∈  The REE-

type estimator can be written as 

1 2
1

1 ˆ
H

tp h h
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y N y
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where 
11

ˆ
hi Ah iN w∈∑=  and 

2 2

1 1 1
2 2 2( )

h hi A i Ah i i i i iy w w y− − −
∈ ∈∑ ∑= π π .  

In KNF, 2iπ  is assumed to be constant within the second-
phase stratum.  

We consider a replication-based approach for variance 
estimation of the REE-type estimator (10) when 2iπ  is not 
necessarily constant within the second-phase stratum. We 
consider the special case when the second-phase sampling 
design is Poisson sampling. Using the replication method 
satisfying (9), the KNF-type variance estimator can be 
applied to estimate the variance of tpy  in this situation. That 
is,  

( ) 2
KNF
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k
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with 
2 2

( ) ( ) 1 1 ( ) 1
2 2 2( )

h h

k k k
i A i Ah i i i i iy w w y− − −
∈ ∈∑ ∑= π π  and ( )

1
ˆ k
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1

( ),
h

k
i A iw∈∑  and kc  is a factor associated with replicate k  

determined by the replication method. Under Poisson 
sampling in the second phase, we have the following 
asymptotic bias:  

1 2
KNF 2 22

1

1ˆBias ( ) (1 ) ( ) ,
h

H

i i i h
h i U

V y Y
N

−

= ∈

= − π − π −∑ ∑  (13) 

where hU  is the set of indices of population elements in 
stratum h  and 1 .

hi Uh h iY N y−
∈∑=  A sketched proof of (13) 

is presented in Appendix A.  
An asymptotically unbiased estimator of the bias (13) is  
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The bias is negligible if 0.n N/ �  Thus, we can safely 
ignore the bias of the KNF-type variance estimator when the 
first-phase sampling rate is negligible. The bias can be 
arbitrarily large if the first-phase sampling rate n N/  is not 
negligible. KNF also discuss a bias-correction replication 
method using additional replicates, which can lead to a large 
number of replicates. Creating additional replicates for bias-
correction can be cumbersome for large scale surveys.  

We consider an alternative bias-corrected replication 
variance estimator that does not require creating additional 
replicates. To develop a replication-based bias-corrected 
variance estimator, define a random variable  

kiδ
indep

∼ Bernoulli ( ),kp  (15) 

where kp  is to be determined. Let  
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with  
( )
2 1 ( )k

i ki k iM p b= + δ −  (19) 

and ib  is also to be determined. By construction, 
( ) 0,ki kE p∗ δ − =  where E∗  denotes that the expectation 

is taken with respect to the mechanism in (15). Thus, the 
replicates (18) create additional variation in the replication 
weights, where the additional variation in (18) comes from 

the distribution (15). A suitable choice of ip  and ib  can 
make the resulting variance estimator consistent.  

Under the regularity conditions discussed in KNF, we 
have  

2
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where 1 (1 ).L
k k k ku c p p=∑= −  A sketched proof of (20) is 

presented in Appendix B. If ib  are determined by  
1 1

2(1 )i i ib w u− −= − π ,  (21) 

the variance estimator (16) is consistent because the second 
term in (20) cancels out biasV̂  in (14). This is true even when 
the first-phase sampling rate n N/  is not negligible. To 
guarantee nonnegative replication weights in (18), we 
require that ib  in (19) is 1.≤  If we set kp = 0.5, then  

1
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kk

w
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which is less than or equal to 1 if 1 4.L
k kc=∑ ≥  In fact, the 

kp ’s can be chosen to be any number between 0 and 1 as 
long as the resulting ib  in (21) is less than or equal to 1.   

4. Extensions  
In this section, we consider some extensions of the 

proposed replication method to types of two-phase esti-
mators other than the REE in (10).   
4.1 Double expansion estimator  

In two-phase sampling, the double expansion estimator, 
termed by Kott and Stukel (1997), is also used. The double 
expansion estimator (DEE) has the simple form  
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1
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When the second-phase sample is a stratified random 
sample, 2i h hr nπ = /  and the KNF method can be applied 
using the replicate  
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The KNF variance estimator for DEE is consistent when the 
first-phase sampling rate is negligible. When the first-phase 
sampling rate is not negligible, we can use the replication 
method proposed in Section 3. The proposed replication 
method for the DEE creates replicates,  
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and ( )
2
k

iM  is the replication factor defined in (19). The bias 
of the replication variance estimator using replicate (23) is 
negligible if the replicates are constructed to satisfy (21).  

If the second-phase sample is an unequal probability 
sample within each stratum, the replication method such as 
(23) is not directly applicable. The DEE in (22) is generally 
less efficient than the REE in (10). Note that the REE in 
(10) can also be expressed as  
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The replicates (17) can be written  
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and ( )
2
k

iM  is defined in (19).   
4.2 Regression estimator  

In two-phase sampling, auxiliary variables that are 
observed in the first-phase sample can be further used at the 
estimation stage. The two-phase regression estimator of the 
population total can be written in the form  

REG 1 2
ˆˆ ˆ

t xY , ,′= T β  (28) 

where 
11

ˆ
i Ax i iw∈, ∑=T x  is the vector of estimated population 

totals of the control variable ix  estimated with the first-phase 
sample and 

2 2

1
2 2 2

ˆ ( )i A i Ai i i i i i i iw w w w y∗ − ∗
∈ ∈∑ ∑′= x x xβ  is a 

vector of estimated regression coefficients estimated with 
the second-phase sample and 2iw∗  is given by (25). Note that 
the regression estimator in (28) can incorporate the stratified 
sampling design in the second-phase if ix  includes the 
vector of stratum indicators.  

Using the arguments of Section 3, the thk  replicate for 
REGt̂Y ,  can be constructed by  
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and ( )
2

k
iw∗  is defined in (27).  

The replication method (29) can be directly applicable to 
the two-phase calibration estimator that was discussed in 
Hidiroglou and Särndal (1998). If 1,H =  then the replicate 
of 2β̂  in (29) reduces to  

2 2

1
( ) ( ) ( ) 1 ( ) ( ) 1
2 2 2 2 2
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i i i i i i i i i i
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5. Simulation study  

To study the finite sample performance of the proposed 
estimators, we conducted a limited simulation study. In the 
simulation, we first generated an artificial finite population 
of size N = 1,000 with five variables ( ),i i i i iz q x y u, , , ,  
where the population elements are independently generated 
from 2exp(1) 2; (1) 2; (2, 1);i i iz q x N+ χ +∼ ∼ ∼ iu ∼  
Unif {1 2 3 4},, , ,  where Unif {1 ..., }G,  denotes a discrete 
uniform distribution with support {1 ..., };G,  and  

0 1 2 3i i i i iy x z q e= β + β + β + β +  

with 0 1 2 3( ) (0 2 1 1)β , β , β , β = , , ,  and (0 1).ie N ,∼  The 
variables ,i i i iz q x u, , ,  and ie  are mutually independent. 
The stratum for the second-phase sampling was defined 
using variable .iu  Variable ix  was used to compute the 
two-phase regression estimator (28) with (1 ) ,i ix ′= ,x  
variable iz  was used as a size measure for the unequal 
probability sampling in the first phase sampling, and 
variable iq  was used as a size measure for the unequal 
probability sampling in the second phase sampling.  

To obtain unequal probability samples for this simulation 
study, we used either Poisson sampling or Rao-Sampford 
sampling (Rao 1965 and Sampford 1967), with selection 
probabilities proportional to the measure of the size 
variable. Note that the final sample size is random under 
Poisson sampling but is fixed under Rao-Sampford 
sampling. 

The simulation setup employed a 2 3 2× ×  factorial 
structure with three factors. The factors are   

1. Sampling for the first-phase sample (2): Simple random 
sampling of size n= 200 versus the Rao-Sampford 
sampling of size n= 200 using iz  as the measure of 
size.  



72 Kim and Yu: Replication variance estimation under two-phase sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

2. Sampling for the second-phase sample (3): Stratified 
random sampling of size hr = 25, stratified Poisson 
sampling with expected sample size hr = 25 using iq  
as the size measure for the unequal probability sam-
pling, and stratified Rao-Sampford sampling of size 

hr = 25 using iq  as the size measure for the unequal 
probability sampling.  

3. Variance estimation methods (2): The KNF estimator 
(11) without additional replication versus the proposed 
variance estimator using (16) were computed based on 
the jackknife method.  

 
From the finite population generated above, we gener-

ated B = 5,000 independent Monte Carlo samples for 
simulation. For the designs with Rao-Sampford sampling in 
the first phase, we used the jackknife variance estimation 
method proposed by Berger (2007), which gives a 
consistent estimator of the first phase sampling variance. 
The parameter of interest is the population mean of the y  
variable. From each Monte Carlo sample, we computed two 
point estimators, the REE in (24) and the regression 
estimator (REG) in (28) using the auxiliary variable (1 ).ix,  
Relative biases of the variance estimators were computed by 
dividing the Monte Carlo bias of the variance estimator by 
the Monte Carlo variance of the point estimator.  

Table 1 shows the mean and variance of the two point 
estimators. For point estimation, the regression estimator is 
significantly more efficient than the REE for this population 
because the auxiliary variable x  is correlated with the study 
variable .y  The theoretical asymptotic variance of the 
regression estimator under simple random sampling in the 
first phase and stratified random sampling in the second 
phase is approximately equal to  

1 1 1 18 4 0 052
200 1,000 100 200

⎛ ⎞ ⎛ ⎞− + − = .⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

and the theoretical asymptotic variance of the REE under 
the same design is, approximately, (1 100 1 1,000) 8/ − / =  
0.072, which is consistent with the numerical results in 
Table 1. The Rao-Sampford sampling in the second phase is 
slightly more efficient than the Poisson sampling because of 
the fixed sample size in the Rao-Sampford sampling.  

Table 2 shows the relative bias (RB) and coefficient of 
variation (CV) of the two variance estimators. Relative 
biases of the variance estimators were computed by dividing 
the Monte Carlo bias of the variance estimator by the Monte 
Carlo variance of the point estimator. Coefficients of varia-
tion of the variance estimator were computed by dividing 
the Monte Carlo standard error of the variance estimator by 
the Monte Carlo average of the variance estimator.  

 

Table 1 
Mean and variance of the point estimators (5,000 samples) 
 

Estimator  First-phase  Second-Phase Mean Variance  
 Sampling  Sampling    
REE  SRS St. SRS  10.0 0.0749  

St. Poi  10.0  0.0784   
St. RS  10.0  0.0754   

RS  St. SRS  10.0  0.0768   
St. Poi  10.0  0.0827  
St. RS  10.0  0.0781   

REG  SRS  St. SRS  10.0  0.0540  
St. Poi  10.0  0.0510   
St. RS  10.0  0.0495   

RS  St. SRS  10.0  0.0551   
St. Poi  10.0  0.0531   
St. RS  10.0  0.0515   

 

REE: reweighted expansion estimator (23), 
REG: regression estimator (27), 
SRS: Simple random sampling, 
RS: Rao-Sampford sampling, 
St.  SRS: Stratified simple random sampling, 
St.  Poi: Stratified Poisson sampling, 
St.  RS: Stratified Rao-Sampford sampling.  
Table 2 
Relative bias (RB) and coefficient of variation (CV) for the 
variance estimators (5,000 samples) 
 

Method Estimator First-phase  Second-Phase RB (%) CV(%) 
  Sampling  Sampling    

KNF  REE  SRS St. SRS  -11.25 18.22 
St. Poi  -9.56 18.67 
St. RS  -7.75 15.35 

RS  St. SRS  -8.05 18.61 
St. Poi  -9.03 20.84 
St. RS  -5.73 17.27 

REG  SRS  St. SRS  -6.76 22.32 
St. Poi  -6.06 15.81 
St. RS  -3.26 12.82 

RS  St. SRS  -4.17 21.74 
St. Poi  -3.64 16.92 
St. RS  -3.20 13.78 

New  REE  SRS St. SRS  0.09 18.23 
St. Poi  -1.23 19.70 
St. RS  -0.04 16.06 

RS  St. SRS  0.78 19.78 
St. Poi  -2.07 21.26 
St. RS  1.00 17.67 

REG  SRS  St. SRS  -0.61 22.00 
St. Poi  -0.57 16.55 
St. RS  -0.08 13.36 

RS  St. SRS  0.67 22.86 
St. Poi  -0.01 16.97 
St. RS  0.59 14.02 

 

KNF: Kim et al. (2006) variance estimator without additional 
replicates for bias correction,  

New: the proposed variance estimator (16),  
REE: reweighted expansion estimator (23),  
REG: regression estimator (27),  
SRS: Simple random sampling,  
RS: Rao-Sampford sampling,  
St. SRS: Stratified simple random sampling,  
St.  Poi: Stratified Poisson sampling,  
St.  RS: Stratified Rao-Sampford sampling.  
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In this simulation, because the first-phase sampling 
fraction is not negligible (n N/ = 0.2), the KNF variance 
estimator without additional replicates underestimates the 
true variance and the proposed variance estimator estimates 
the variance with smaller bias, less than 3% in absolute 
values in all cases, which is consistent with the theory in 
Section 3 and Section 4. The absolute value of the relative 
biases in the KNF variance estimator are big because, 
although in (29) the variance due to 1

ˆ
x,T  is consistently 

estimated, the variance due to 2β̂  is underestimated without 
additional replicates. The relative biases in our proposed 
variance estimator are reduced because replicates (18) create 
additional variation in the replication weights through addi-
tional perturbation kδ  drawn from a properly chosen distri-
bution. The proposed variance estimator shows slightly 
bigger CVs than the KNF method because it involves extra 
randomness due to generating kiδ  from (15).   

6. Concluding remarks  
Replication variance estimation under two-phase sam-

pling is an importance practical problem in survey sampling 
and the KNF method is a useful tool in this direction. In this 
article, we propose an extension of the KNF method in that 
it can be directly applicable when the first-phase sampling 
rate is non-negligible, without increasing the number of 
replicates. The proposed method is also applicable to 
unequal probability Poisson sampling within each stratum in 
the second-phase sample. Although the theory has been 
developed only under Poisson sampling in the second phase, 
the simulation results in section 5 show that the proposed 
method works reasonably well for other unequal probability 
sampling designs, such as the Rao-Sampford sampling 
design. Since the proposed replication method provides 
consistent variance estimators for population means, it can 
be readily applied to other finite population parameters 
which are smooth functions of population means.  

In some large scale surveys, the number of replicates can 
be quite large because it uses the same number of replicates 
for the first-phase sample. If one wishes to reduce the 
number of replicates further, the method of Fuller (1998) or 
Kim and Sitter (2003) can be considered. Further investi-
gation in this direction will be a topic of future study.   
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Appendix 
 
A. Proof of (13)  

Let 1( ..., )Na a= ,a  where ia  is the extended version of 
the second-phase sampling indicator as discussed in Kim 
et al. (2006). That is, 1ia =  if unit i  is selected for the 
second-phase sample once it is in the first-phase sample and 

0ia =  otherwise.  
By assumption (9), conditional on ,a  we have  

( ) 2 1
2 2 2

1
( ) Var ( ) ( )

L
k

k h h h p
k

c y y y o n−

=

− = | + .∑ a  

Thus, the bias of ( ) 2
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k k h hc y y=∑ −  as an estimator for 
2Var ( )hy  is then equal to, ignoring 1( )o n−  terms,  
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Using the extended definition of ,ia  we have  
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and, by the Poisson sampling assumption of ia ’s,  
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Thus, the bias of the KNF variance estimator is of the form 
(13) under the Poisson sampling assumption of .ia   
B. Proof of (20)  

For each ,k  
( ) ( ) ( ) ( ) ,k k k k

tp tp tp tp tp tpy y y y y y∗ ∗− = − + −  

where ( )k
tpy  is defined in (12). Thus,  
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By the construction of ( ),k
tpy∗  we have  

( ) ( ) 1( ) ( ).k k
tp tp pE y y o n∗ −

∗ = +  (B.2) 

Also, writing ( )
2 1,k

ki iq M= −  we have 1 2( )ki pq O n− /=  
and we can apply a Taylor expansion to get  
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Also, because  
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for any z  variable with bounded fourth moments, it can be 
shown that (B.3) reduces to  
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Hence, we can write  
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Inserting (B.2) and (B.4) into (B.1), we have  

2

KNF KNF

2 2 2 2
2 22

1 1
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and because 2 2( ) (1 ) ,ki k k iE q p p b∗ = −  we have (20).   
References  

Berger, Y.G. (2007). A jackknife variance estimator for unistage 
stratified samples with unequal probabilities. Biometrika, 94, 953-
964.  

 
Binder, D.A., Babyak, C., Brodeur, M., Hidiroglou, M. and 

Jocelyn, W. (2000). Variance estimation for two-phase stratified 
sampling. The Canadian Journal of Statistics, 28, 751-764. 

 
Breidt, F.J. and Fuller, W.A. (1993). Regression weighting for 

multipurpose samplings. Sankhyā, B, 55, 297-309.  
 
Brick, J.M., and Morganstein, D. (1996). WesVarPC: Software for 

computing variance estimates from complex designs. Proceedings 
of the 1996 Annual Research Conference, U.S. Bureau of the 
Census, 861-866. 

 
Cochran, W.G. (1977). Sampling Techniques. New York: John Wiley 

& Sons, Inc.  
 

Fay, R.E. (1984). Some properties of estimates of variance based on 
replication methods. Proceedings of the Survey Research Method 
Section, American Statistical Association, 495-500. 

 
Flyer, P. (1987). Finite population correction for replication estimates 

of variance. Proceedings of the Section on Survey Research 
Methods, American Statistical Association, 732-736. 

 
Fuller, W.A. (1998). Replication variance estimation for two-phase 

samples. Statistica Sinica, 8, 1153-1164. 
 
Fuller, W.A. (2003). Estimation for multiple phase samples. In 

Analysis of Survey Data, (Eds., R.L. Chambers and C.J. Skinner). 
Wiley, Chichester, England, 307-322. 

 
Hidiroglou, M.A. (2001). Double sampling. Survey Methodology, 27, 

143-154. 
 
Hidiroglou, M.A., and Särndal, C.-E. (1998). Use of auxiliary 

information for two-phase sampling. Survey Methodology, 24, 11-
20. 

 
Kim, J.K., Navarro, A. and Fuller, W.A. (2006). Replicate variance 

estimation after multi-phase stratified sampling. Journal of the 
American Statistical Association, 101, 312-320. 

 
Kim, J.K., and Sitter, R.R. (2003). Efficient variance estimation for 

two-phase sampling. Statistica Sinica, 13, 641-653. 
 
Kott, P.S., and Stukel, D.M. (1997). Can the jackknife be used with a 

two-phase Sample? Survey Methodology, 23, 81-89. 
 
Lu, W., and Sitter, R.R. (2006). Disclosure risk and variance 

estimation. Proceedings of Statistics Canada international 
symposium series, 11-522-XIE.  

 
Neyman, J. (1938). Contribution to the theory of sampling human 

populations. Journal of the American Statistical Association, 33, 
101-116.  

 
Rao, J.N.K. (1965). On two simple schemes of unequal probability 

sampling without replacement. Journal of the Indian Statistical 
Association, 3, 173-180.  

 
Rao, J.N.K. (1973). On double sampling for stratification and 

analytical surveys. Biometrika, 60, 125-133. 
 
Rao, J.N.K., and Shao, J. (1992). Jackknife variance estimation with 

survey data under hot deck imputation. Biometrika, 79, 811-822. 
 
Rao, J.N.K., and Sitter, R.R. (1995). Variance estimation under two-

phase sampling with application to imputation for missing data. 
Biometrika, 82, 453-460. 

 
Rust, K.F., and Rao, J.N.K. (1996). Variance estimation for complex 

surveys using replication techniques. Statistical Methods in 
Medical Research, 5, 283-310. 

 
Sampford, M.R. (1967). On sampling without replacement with 

unequal probability of selection. Biometrika, 54, 499-513. 
 
Wolter, K. (2007). Introduction to Variance Estimation. 2nd Edition, 

New York: Springer. 

 



Survey Methodology, June 2011  75 
Vol. 37, No. 1, pp. 75-94 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Stanislav Kolenikov, Department of Statistics, 146 Middlebush Hall, University of Missouri, Columbia, MO 65211-6100, U.S.A. E-mail: 

kolenikovs@missouri.edu; Gustavo Angeles, Associate Director of the Center for Evaluation Research, National Institute of Public Health, Mexico, 
Mexico. E-mail: gangeles@insp.mx. 

 

Cost efficiency of repeated cluster surveys 
Stanislav Kolenikov and Gustavo Angeles 1 

Abstract 
We analyze the statistical and economic efficiency of different designs of cluster surveys collected in two consecutive time 
periods, or waves. In an independent design, two cluster samples in two waves are taken independently from one another. In 
a cluster-panel design, the same clusters are used in both waves, but samples within clusters are taken independently in two 
time periods. In an observation-panel design, both clusters and observations are retained from one wave of data collection to 
another. By assuming a simple population structure, we derive design variances and costs of the surveys conducted 
according to these designs. We first consider a situation in which the interest lies in estimation of the change in the 
population mean between two time periods, and derive the optimal sample allocations for the three designs of interest. We 
then propose the utility maximization framework borrowed from microeconomics to illustrate a possible approach to the 
choice of the design that strives to optimize several variances simultaneously. Incorporating the contemporaneous means 
and their variances tends to shift the preferences from observation-panel towards simpler panel-cluster and independent 
designs if the panel mode of data collection is too expensive. We present numeric illustrations demonstrating how a survey 
designer may want to choose the efficient design given the population parameters and data collection cost. 
 
Key Words: Longitudinal study; Cluster samples; DHS; NHIS. 
 
 

1. Introduction 
 
To analyze the dynamics of social, behavioral or popu-

lation health phenomena, researchers and policymakers 
need to obtain information on characteristics of the 
population on multiple occasions. Complex design surveys 
are the most frequently used sources of information for large 
populations, such as a country as a whole. Besides the 
standard considerations in single-shot surveys, e.g., stratifi-
cation and clustering, other issues may be important in 
surveys collected over two or more time periods. In such 
surveys, the total cost and the total survey error are affected 
by an overlap among consecutive samples, (informative) 
sample attrition, time-in-sample or conditioning effects, and 
other dynamic factors. 

For the purposes of estimation of change from repeated 
surveys, it is often desirable to have high temporal corre-
lation of the observation units which can be achieved by 
administering the survey to the same sampling and/or 
observation units. In longitudinal surveys, the same obser-
vation units (individuals, households) are revisited for 
several periods, potentially indefinitely many periods (the 
US Panel Study of Income Dynamics (PSID), British 
Household Panel Study (BHPS) and others). A compendi-
um of information on the longitudinal studies can be found 
at the Institute for Social and Economics Research web site, 
http://iser.essex.ac.uk/ulsc/keeptrack/index.php). In rotating 
panel surveys, the observation units are recruited into the 
sample for a few periods, then rotated out of the sample, and 
surveyed again at a later time. Examples of rotating panel 

surveys include the US Current Population Survey (CPS) 
(Binder and Hidiroglou 1988, Eckler 1955, Rao and 
Graham 1964) and a number of environmental surveys 
(Fuller 1999, McDonald 2003, Scott 1998). Yet another 
option is to use the same primary sampling units (PSUs) in 
different waves, but sample the observation units (secondary 
sampling units, SSUs) independently. Surveys collected in 
this way include international Demographic and Health 
Surveys (DHS) and the US National Health Interview 
Survey (NHIS). 

We shall concentrate on surveys collected in two time 
periods, or waves, using a two-stage cluster design in each 
wave of data collection. We consider three possible designs 
differing in the amount and depth of overlap of sampling 
units over time. The sample designer can simply ignore any 
possible effects arising from the sample overlap, and take 
two independent samples in two periods of time. We shall 
refer to this design as the independent design. Alternatively, 
the sample designer may find it beneficial to recycle the 
PSUs from one wave to another. If the designer finds it 
difficult to track the SSUs from one wave to another, the 
subsamples within clusters can be taken independently in 
two waves of data collection. We shall refer to this design as 
the cluster-panel design. If an utmost precision is essential, 
the fully longitudinal design will attempt to locate all 
individuals who responded in the first wave, and solicit the 
second interview. To distinguish this design from the 
cluster-panel design, we shall refer to it as the observation-
panel design. 
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A particular aspect that we found important in survey 
management, but underaddressed in the existing literature, is 
the implementation cost (Groves 1989). The traditional cost 
models such as those used in derivation of Neyman-
Tchuprow optimal allocation design (Neyman 1938) can be 
extended to include terms related to the cost of the first visit 
to the cluster and ultimate observation unit, as well as the 
cost of consecutive visits. The cost of revisiting the cluster is 
likely to be lower on the second occasion. There is no need 
to create new maps and set up frames. The same interview-
ers can be used to conduct interviews in subsequent waves 
of data collection. Cooperation with community leaders has 
been established earlier, if it is important, as it is in some 
traditional societies. The effect of the panel mode of data 
collection at the individual level is less clear. If the 
household that was interviewed in earlier waves moved out 
and would have to be located, possibly in different geo-
graphic area, the (average) cost of the panel interview goes 
up. The likelihood of such circumstances increases with 
longer intervals between surveys typical for the developing 
countries surveys: the intervals between waves of DHS are 
usually about 5-7 years. On the other hand, if a less 
expensive interview mode can be used after the first round, 
(e.g., a phone interview instead of the personal visit), the 
cost of the panel interview goes down. 

This paper brings together statistical and economic 
considerations in the choice of the appropriate design and its 
parameters. We assume the survey designer can be inter-
ested in estimating the change in the population mean 
between two time periods, and/or the means themselves. We 
introduce a sketchy population in Section 2, and compute 
the design variances of the means and their differences for 
the three sampling designs of our interest. 

To incorporate economic aspects of data collection, we 
introduce a relatively simple cost model for a repeated 
cluster survey in Section 3. We set up and solve opti-
mization problems to obtain the optimal sample sizes for the 
three considered designs. By plugging in the estimates of 
the statistical parameters (variances and autocorrelations) 
and cost components (cluster-level and individual-level 
costs), the survey designer can compare the numeric values 
of the variances to choose the best design. Section 4 
illustrates this approach and shows that each of the designs 
may be the best one, depending on the parameter values. 
The intuitive results (e.g., the higher cost of data collection 
and lower autocorrelations of the observed characteristics 
make panel modes of data collection less appealing) are 
given an analytic justification and quantitative backing. 

While Sections 2-4 deal with the efficiency in estimating 
the difference in means only, more realistic goals of data 
collection efforts would include contemporaneous char-
acteristics and their variances. To this end, Section 5 

introduces a utility maximization framework describing the 
survey designer’s choice of the sampling scheme. This 
framework provides an aggregated objective function that 
combines several design criteria. The results are again as 
expected: if the more expensive panel modes of data 
collection result in smaller sample sizes, the estimates of the 
means are less efficient than in simpler designs. The only 
way to justify these efficiency losses is by a drastic 
improvement in the estimation of the difference that can 
only occur with higher autocorrelations. Such effects are 
also illustrated in Section 5. Section 7 concludes. Proofs are 
given in the Appendix.  

2. Design variances  
Let the population consist of N  clusters, or PSUs, in 

both time periods, and each cluster consist of M  indi-
viduals, or SSUs. Out of these, an SRS of 1 < tn N≤  
clusters is taken at time = 1, 2,t  and an SRS of 
1 < tm M≤  individuals is taken in each cluster that is 
present in the sample at time .t  Let the index i  denote 
PSUs, and the index ,j  SSUs. Thus the typical measure-
ment will be denoted as tijY  in the population, and tijy  in 
the sample. The population totals [ ]T ⋅  and their estimates 

[ ]t ⋅  can then be found as follows:   
cluster total:  

=1 =1
[ ] = , [ ] = ,

M M

ti tij ti tij
j j

MT Y Y t y y
m⋅ ⋅∑ ∑  

population total: 

                   
=1 =1

[ ] = , [ ] = [ ].
N N

t ti t ti
i i

NT Y Y t y t y
n⋅⋅ ⋅ ⋅⋅ ⋅∑ ∑  (2.1) 

The means per observation units are  
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The variance of Y  and its within- and between-cluster 
components are  
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The characteristic of primary interest is the change in the 
means,  
                                     2 1= ,D Y Y⋅⋅ ⋅⋅−  (2.6) 

estimated by  
                                     2 1= .d y y⋅⋅ ⋅⋅−  (2.7) 

An attractive property of this estimator for analysts and data 
users is its internal consistency: the estimator of the 
difference is the difference of the estimators. If the samples 
in consecutive periods overlap only partially, then compos-
ite or GLS estimators (Fuller 1999, Hansen, Hurwitz and 
Madow 1953, Patterson 1950, Rao and Graham 1964, 
Wolter 2007) have better efficiency. 

In what follows, we assume all sampling procedures to 
be simple random sampling without replacement. For the 
contemporaneous mean, the variance is given by (Cochran 
1977, Th. 10.1):  

               
2 2

V[ ] = 1 1 .tb tw
t

S Sn my
N n M nm⋅⋅

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.8) 

For simplicity and clarity of exposition, we shall often be 
making an assumption of symmetric conditions:  

  2 2 2 2 2 2 2 2 2
1 2 1 2 1 2= = , = = , = = .wi wi wi w w w b b bS S S S S S S S S  (2.9) 

Analytic derivations are possible without these assumptions, 
but become extremely cumbersome. Besides, it is unrealistic 
to think that the survey designer could know the charac-
teristics of the future population. Thus (2.9) should be 
viewed as a reasonable working model.  
2.1 Independent design  
Proposition 1. Let 1n  out of N  clusters and 1m  out of M  
observation units in selected clusters be taken without 
replacement at time = 1.t  Let 2n  out of N  clusters and 

2m  out of M  observation units in selected clusters be taken 
without replacement at time = 2,t  with sampling per-
formed independently from that at time = 1.t  Then  

         

2 2
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⎝ ⎠ ⎝ ⎠

ι

 
(2.10)

 

The result follows immediately from (2.8) by inde-
pendence of the two samples. The subindex of the variance 
ι  stands for the “independent design”. Under the symmetric 

conditions of (2.9), if the sample sizes are the same in two 
periods, 1 2= =n n n  and 1 2= = ,m m m  then  

         
2 2

,V [ ] = 2 1 2 1 ,b w
e

S Sn md
N n M nm

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ι  (2.11) 

where the subindex ,e ι  stands for “equal variances, inde-
pendent design”.  
2.2 Cluster-panel design  
Proposition 2. Let n  out of N  clusters be sampled without 
replacement in the first period and be used in both time 
periods. Let m  out of M  observation units be sampled 
without replacement independently in two periods. Then  
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⎝ ⎠

ρ − −
− ∑

 

(2.12)

 

Here, subindex c  stands for the “cluster-panel design”, 
and Iρ  is the intertemporal correlation, or autocorrelation, 
of the cluster means. The superscript I  denotes the first 
stage of sampling. If Iρ  is positive, then the cluster-panel 
design is more efficient than the independent design for 
fixed values of n  and .m  Under the symmetry conditions,  

2 I 2

,
(1 )

V [ ] = 2 1 2 1 ,b w
e c

S Sn md
N n M mn

− ρ⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(2.13) 

where the subindex ,e c  stands for the “equal variances, 
cluster-panel design”.  
2.3 Observation-panel design  
Proposition 3. Let n  out of N  clusters and m  out of M  
observation units be sampled without replacement in the 
first period and be used in both time periods. Then  
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Subindex o  stands for the “observation-panel design”. 
Under the assumption of symmetric conditions,  
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with corresponding ,e o  subindex for the “equal variances, 
observation-panel design”. 

Here, IIρ  is the intertemporal correlation, or auto-
correlation, of the individual observations within clusters. 
The superscript II  stands for the second stage of sampling. 
If IIρ  is positive, then the observation-panel design is more 
efficient than the cluster-panel design for fixed values of n  
and .m  

How are the two autocorrelations that appear in (2.15) 
related? Conceptually, one can think of any number of 
possible relations between them. Let us introduce a super-
population model  

   = , E [ ] = 0, E [ ] = 0,tij t ti tij ti tijY a aξ ξμ + + ε ε  (2.16) 

in which tia  and sijε  are independent of one another for all 
, = 1, 2.s t  The subindex ξ  stands for the superpopulation 

model expectations. The case of I = 0ρ  and II = 1ρ  occurs 
when the changes in the cluster means occur independently 
between clusters 1 2(E [ ] = 0),i ia aξ  but the individuals retain 
their positions within the cluster, 1 2= .ij ijε ε  The case of 

I = 1ρ  and II = 0ρ  occurs when the cluster random effects 
are the same in both periods, 1 2= ,i ia a  while the individual 
random effects are uncorrelated 1 2(E [ ] 0).ij ijξ ε ε =  Neither 
of these situations is entirely realistic. However, it can 
probably be expected that the individual, rather than the 
cluster, dynamics are a more important source of varia-
tion over time, thus making the relations II I 0ρ ≥ ρ ≥  
the most plausible ones. We shall study in numeric 
examples of Sections 4 and 5 the extent to which the 
choice of the best design is sensitive to the relation 
between the two correlations.  

3. Costs for repeated cluster samples  
In this section we shall analyze the cost efficiency of 

cluster samples when one wants to estimate the difference 
between two sample means from two different periods. 

Some discussion of the costs of cluster sampling is given 
in Kish (1995, Section 8.3B), Thompson (1992, Section 
12.5), and Lehtonen and Pahkinen (2004). More mathemati-
cal details are available in Hansen et al. (1953, volume II, 
Section 6.11), with the variance formulas corrected for finite 
populations. 

3.1 Notation and cost models  
Let us assume the following cost structure, which is an 

extension of Kish (1995) for repeated surveys:  
 

• 
I
1c  is the cluster level cost at time = 1t  for clusters that 

are used in the first wave only;  
 

• 
I
2c  is the cluster level cost for a new cluster at time 
= 2;t   

 

• 
I
12c  is the cluster level cost for clusters in which the data 

are collected in both periods = 1t  and = 2t  (PSU 
panel cost);  

 

• 
II
1c  is the individual level cost at time = 1t  for 

individuals that are observed in the first wave only;  
 

• 
II
2c  is the individual level cost at time = 2t  for 

individuals that are observed in the second wave only;  
 

• 
II
12c  is the individual level cost if the unit is observed in 

both periods in the observation-panel design (SSU 
panel cost);  

 

• 0C  is the total budget allocated to the field work in both 
time periods.  

 
Roman superscripts denote the sampling stage. Arabic 

subscripts correspond to the occasion at which the sample is 
taken. The cluster level costs include the cost of sampling 
the clusters, obtaining the PSU maps, collecting community 
data, local interviewer training, etc. The individual level 
costs are mostly those of the personal interviews with the 
ultimate observation units. The total cost 0C  is thought of as 
the variable cost of the survey that is directly related to the 
number of sampled units. Fixed cost, such as the cost of 
preparing the survey instrument and other organization-level 
costs are not part of 0.C   
3.2 Independent design  

The budget constraint for the independent design is given 
by  

              I II I II
0 1 1 1 1 1 2 2 2 2 2= .C c n c n m c n c n m+ + +  (3.1) 

The first two terms are the costs of the first wave of data 
collection, and the last two terms, of the second wave.  
Proposition 4. If the survey setting parameters are the same 
in the two time periods:  

                       I I I II II II
1 2 1 2= = , = = ,c c c c c c  (3.2) 

then the optimal sample sizes and the resulting variances 
are given by  
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(3.3)

 

In equations (3.3), the sample sizes n  and m  are treated 
as continuous variables. In practice, the nearest integer 
should be used, with a minimum of 2 necessary to estimate 
the appropriate variance component, and the maxima of N  
and ,M  respectively. 

The number of observations sampled within a cluster 
depends only on the relative costs at the cluster and the 
observation level, I II/ ,c c  and relative variances 2 2/ ,b wS S  or 
equivalently the intraclass correlation. Greater interview 
cost IIc  prevents the sample designer from using more 
observations: an increase in IIc  leads to a decrease in both 
m  and .n  Greater cluster-level cost leads to redistribution 
of the sampled units: n  decreases with I,c  while m  in-
creases with it. Greater within-cluster variance 2

wS  necessi-
tates a greater number of observations m  to be taken within 
a cluster to maintain overall precision. Greater between-
cluster variance 2

bS  necessitates a greater number of clusters 
n  to be sampled. Finally, the total survey budget 0C  affects 
the number of clusters ,n  but not the subsample size .m  As 
a result, the variance of d  is inversely proportional to 0.C  

The non-symmetric situation can be treated as a by-
product of the first order conditions derived in the proof (see 
Appendix). However, no analytic solution is available in 
that case. 

 
3.3 Cluster-panel design  

The budget constraint for the cluster-panel design is 
given by  

                        I II II
0 12 1 1 2 2= .C c n c nm c nm+ +  (3.4) 

The first term is the cluster-level cost associated with the 
sample design, and the remaining two terms are the costs of 
collecting individual-level data in the first and the second 
waves, respectively.  
Proposition 5. The sample sizes for the cluster-panel design 
are given by  
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The variance of the difference estimator is found by 
plugging these expressions into (2.13). Under the assump-
tions of symmetric conditions in two rounds of the survey 
(2.9) and (3.2),  
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and ,V [ ]e c d  can be found from (2.13). 
Interestingly, the number of the SSUs depends on the 

SSU costs II,c  but not on the PSU costs I
12.c  An increase in 

the intracluster correlation, or increase in 2,bS  or decrease in 
2,wS  predictably leads to decrease in the optimal number of 

SSUs and increase in the optimal number of PSUs. The 
dependence of the design parameters on the survey budget 

0C  is non-trivial. For very small surveys, the number of 
units per cluster is proportional to 0,C  and the number of 
clusters is not affected by 0.C  Indeed, if the characteristic 
demonstrates strong correlation between time periods, it 
would be preferable to get accurate estimates of the cluster 
means, and good accuracy of the overall difference esti-
mator will follow. To put it differently, the first term in 
(2.13) is relatively small by virtue of the positive correlation 
coefficient I,ρ  and the second term is inversely proportional 



80 Kolenikov and Angeles: Cost efficiency of repeated cluster surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

to 0.C  For large surveys, 0,D C∝  so both the number of 
units per cluster and the number of clusters are proportional 
to 0 .C  The first term in (2.13) is then inversely propor-
tional to 0 ,C  and the second term is inversely propor-
tional to 0.C  An increase in the budget of the survey will 
affect all terms, although to a different extent.  
3.4 Observation-panel design  

The budget constraint for the observation-panel design is 
given by  
                               I II

0 12 12= .C c n c nm+  (3.6) 
The first term is the cluster-level cost, and the second term 
is the cost of individual interviews.  
Proposition 6. The optimal sample sizes for the observation-
panel design are given by  
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The design variance of the resulting difference estimator is  
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The sample size expressions (3.7) resemble the ones for 
the independent design, equation (3.3), with the cost of data 
collection in a single wave replaced by the cost of panel data 
collection, and the variance components 2

bS  and 2
wS  

replaced by I 2(1 ) bS− ρ  and II 2(1 ) wS− ρ . The second stage 
sampling size m  only depends on the relative cost at the 
cluster and observation levels, and on the ratio of the 
variance components augmented by the autocorrelations. 
Hence, like in the independent design, the dependency of 
the sample size on the scale of the survey is only through 

0,n C∝  and the variance of the difference decreases 
inversely proportional to 0.C  

Extending the relations between the functional forms of 
equations (3.3) and (3.8), we can establish the general 
relations between the two designs:  
Proposition 7. If 1M  and 1,N  then , ,V [ ] V [ ]e e od d≷ι  
if  
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Unfortunately, the variance for the cluster-panel design 
that can be obtained by combining the results of Proposition 
5 with (2.13), does not permit an equally lucid comparison.  

4. Numeric illustration  
To illustrate how the characteristics of population 

(variances and autocorrelations) and the data collection 
process (costs) affect the choice of the most efficient design, 
we consider a numeric example. Let us choose the basic 
setup with symmetric conditions, and let the parameter 
values be:  

              
I II

II II II I I
1 2 12 1 2

I
12 0

= 10,000, = 1,000, = 100,

= 400, = 0.1, = 0.35,

= = 1, = 3, = = 10,

= 18, = 20,000.

b
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N M S

S

c c c c c

c C

ρ ρ

 (4.1)

 

The cost structure implies that the cost of collecting the 
initial information for a cluster is the cost of ten interviews, 
while the cost of the followup in the same cluster is only 
eight interviews. On the other hand, getting the second 
interview with the same unit is twice as expensive as getting 
the first interview. 

With these parameters, the sample sizes and design 
variances are:  
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(4.2)

 

The observation-panel design is 1.2% more efficient than 
the cluster-panel design, and 10.7% more efficient than the 
independent design. However, it has a notably smaller total 
sample size, only 2 / 3  of the cluster-panel design sample 
size and 70% of the independent design sample size. 
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Of course these finding are highly specific to the 
parameters of the population and the cost structure. Can we 
describe general patterns of how the variances, and hence 
the relative efficiency of different designs, change with 
those parameters? The variances in (4.2) are derived from 
13 parameters given in (4.1), and it is difficult to make 
meaningful statements about all of these parameters simulta-
neously. Below, we shall attempt to provide two-dimen-
sional cross-sections of this 13-dimensional space and give 
graphical illustrations of the variability of the design 
variances, and hence the domains of optimality of each 
design, as we vary two parameters at a time. We provide the 
graphs of variances of the designs involved (typically, the 
cluster-panel design with dotted lines, the observation-panel 
design with dashed lines, and the independent design with 
dash-dotted lines. For most plots, the independent design is 
not affected by the variations of the parameters that make up 
the axis of the plots, and hence omitted). We also show the 
relative efficiency of different designs, marking the domains 
of the parameter space in yellow/light gray if the inde-
pendent design is the most efficient one; in green/medium 
gray if the cluster-panel design is the most efficient one; and 
in purple/dark gray if the observation-panel design is the 
most efficient one (R code used to produce graphs is avail-
able at http://web.missouri.edu/~kolenikovs/SMJ2011/). 

 
 

Figure 1 shows how the design variances, and hence the 
most efficient design, vary with the panel costs of the PSU 
and SSU, I

12c  and II
12.c  Obviously, these variations do not 

affect the variance of the independent design, which serves 
as a benchmark. Also, the variations in II

12c  do not affect the 
performance of the cluster-panel design, which corresponds 
to the dotted vertical iso-variance lines on the left panel. The 
dashed downward sloping lines are the iso-variance lines for 
the observation-panel design. Note that the lower left corner 
of the graph corresponds to the free lunch situation in which 
the second wave of data collection does not cost anything: 
the panel costs are equal to the single period cost, I I

12 1= ,c c  
II II
12 1= .c c  When the costs of the panel data collection are 

prohibitively high (the upper right corner of the graph), the 
independent design is the most efficient one. The point 
where all three designs have the same variances is I

12 =c  
22, II

12 = 3.05;c  i.e., the cost of the second interview is 2.05 
higher than the cost of the first interview, and the cluster-
level costs in the second wave are 20% higher than in the 
first wave. Still, a positive autocorrelation justifies the 
reduction in the sample size of the observation-panel design 
as compared to the independent design. If the cluster level 
panel cost is lower and the second interview cost is higher, 
the cluster-panel design is the most efficient. For 
inexpensive second interviews, the most efficient design is 
the observation-panel design. The latter domain includes our 
baseline case with I

12 = 18c  and II = 3.c  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Design variances as functions of the data collection costs I II
12 12, .c c  Left: contour lines of ,V [ ]e c d  (dotted) and ,V [ ]e o d  

(long dashed); ,V = 99.86;e ι  right: domains of optimality of the three designs 
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Figure 2 shows the changes in design variances asso-
ciated with the changes in the autocorrelations I II, .ρ ρ  The 
independent design variance is unaffected by these varia-
tions, and the cluster-panel design is unaffected by varia-
tions in II.ρ  The observation-panel design is more efficient 
for higher SSU autocorrelation, II > 0.34.ρ  Otherwise, the 
cluster-panel design provides lower variance. 

Figure 3 investigates the impact of the cluster-level cost 
and autocorrelation on the choice of the design. The combi-
nations of expensive second wave of data collection and low 
PSU autocorrelation in the upper left corner of the plot 
makes the independent design the most appealing one. 
Otherwise, the observation-panel design is the best one to 
use. Note that the contour lines for the cluster-panel and 
observation-panel designs are very close to one another, and 
differences in variances between the two designs are less 
than 2% in the whole parameter space of this plot. 

Figure 4 investigates the impact of the observation-level 
cost and autocorrelation on the choice of the design. Neither 
the independent design nor the cluster-panel design vari-
ances are affected by variation of the parameters shown on 
this plot. The independent design variance is 99.86, while the 
cluster-panel design variance is 91.37, so the observation-
panel design is compared to the latter only. High auto-
correlations II( 0.6)ρ ≥  can justify very high cost of the 
second interview (up to fourfold compared to the first 
interview), but in the upper left corner of the plot corre-
sponding to the low autocorrelations and high panel cost, 
the cluster-panel design performs better. 

Figure 5 relates the design variances to the cluster-level 
costs of the survey. The horizontal axis is the cost in the first 
period, I

1,c  and the vertical axis is the additional cost of in 
the second period when the data are collected in a panel 
mode, I I

12 1.c c−  The vertical axis is ignored for the 
independent design, as this parameter does not appear in the 
independent design. Also, by virtue of (4.1), I I

1 2= .c c  The 
observation-panel design is uniformly better than the 
cluster-panel design for all parameter combinations on this 
graph, although the difference in variances does not exceed 
2%. In the upper left corner, the additional cost of the panel 
mode of data collection is prohibitively high, and the 
independent design offers better performance. 

Figure 6 shows the dependence of the most efficient 
design on the total budget of the survey and the cost of panel 
mode of data collection at the cluster level. For 0 >C 10,000, 
the observation-panel design performs better if I

12 <c  22.7, 
i.e., if the additional cost of the panel mode of data 
collection at the cluster level does not exceed 127% of the 
initial cluster-level cost in the first wave. Interestingly, for 
some isolated parameter configurations in small surveys, the 
cluster-panel design can perform better than the observation-
panel design that dominates the rest of the plot. The differ-
ence in design variances between the cluster-panel and 
observation-panel designs is less than 4% across all para-
meter combinations on this graph. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 2 Design variances as functions of the population correlations I II, .ρ ρ  Left: contour lines of ,V [ ]e c d  (dotted) and ,V [ ]e o d  
(long dashed); ,V = 99.86;e ι  right: ratio , ,V [ ] / V [ ]e o e cd d  
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Figure 3 Design variances as functions of the cluster-level autocorrelation Iρ  and cost I
12.c  Left: contour lines of ,V [ ]e c d  (dotted) 

and ,V [ ]e o d  (long dashed); ,V = 99.86;e ι  right: ratio , ,V [ ] / V [ ]e o ed dι  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Design variances as functions of the observation-level autocorrelation IIρ  and cost II
12.c  Left: contour lines of ,V [ ]e o d  

(long dashed); ,V = 99.86;e ι  ,V [ ] = 91.37;e c d  right: ratio , ,V [ ] / V [ ]e o e cd d  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Design variances as functions of the cluster level costs in the first wave, I
1,c  and in the second wave, I I

12 1.c c−  Left: contour lines 
of ,V [ ]e c d  (dotted), ,V [ ]e o d  (long dashed) and ,V [ ]e dι  (dash-dotted); right: ratio , ,V [ ] / V [ ]e o ed dι  
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Figure 6 Design variances as functions of the total budget 0C  and the PSU panel cost II
12.c  Left: contour lines of ,V [ ]e c d  (dotted), 

,V [ ]e o d  (long dashed) and ,V [ ]e dι  (dash-dotted); right: domains of optimality of the three designs 
 
 

Overall, this numeric illustration shows that depending 
on the parameters of the population and costs of data 
collection, each of the three designs can be the most effi-
cient one. Low correlations and high costs in the second 
wave tend to favor the independent design. Given that the 
initial six population parameters and five cost parameters 
may not be representative of many repeated surveys, a 
sensitivity analysis like the one performed here may be 
needed for any particular survey a statistician needs to 
design.  

5. Survey design with multiple criteria  
So far, our analysis was confined to estimation of the dif-

ference between the means in two waves of data collection 
of a single variable. Most large scale surveys are collected to 
study several characteristics, and to many users, the contem-
poraneous estimates are also of interest. To accommodate 
accuracy requirements associated with these different vari-
ables and different estimates, the survey designer must have 
several variances in mind when choosing the design to be 
implemented. This is a multicriterial optimization problem, 
and no single design will work best for all possible esti-
mation problems. In the current context, the observation-
panel design may give good estimates of the change when 
both PSU and SSU autocorrelations are high, but it may 
result in a small sample size if both PSUs and SSUs are 
expensive to follow up. Greater precision of the estimates 
for any single period could be obtained by switching to 
the cluster-panel or even independent designs. 

Comparing different designs in this situation is possible 
with the standard microeconomic argument of utility maxi-
mization under budget constraints (Mas-Colell, Whinston 
and Green 1995). In the survey design context, the utility of 
the survey designer increases with the precision of the 
survey estimates, or equivalently decreases with survey vari-
ances. A simple functional form is given by Cobb-Douglas 
utility function:  

          31 2
design 1 design 2 design(design) = V [ ] V [ ] V [ ].U y y d−α−α −α

⋅⋅ ⋅⋅  (5.1) 

Here, 1,α 2α  and 3α  are positive constants describing the 
relative weights of the three design variances in decision-
making process. Variances 1V[ ]y  and 2[ ]V y  in (5.2) are 
the variances of the means in cluster surveys given by (2.8). 
The variance of the difference estimator is (2.10), (2.12) or 
(2.14), depending on the design. The survey designer prob-
lem is then to maximize (5.1) subject to design-specific 
budget constraints (3.1), (3.4) or (3.6). Maximization is 
performed over the design parameters (mode of data collec-
tion, number of clusters in each time period, number of 
observations in each time period), given the characteristics of 
population (variances and autocorrelations) and the data 
collection process (costs). 

Let us assume that the precision of each of the three 
estimates 1,y 2y  and d  is equally important to the decision 
maker, so 1 2 3= = .α α α  To have an objective function 
that is measured in the variance units and is on the same 
scale as variances, it will be convenient to define a multi-
criterial variance  
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           1/3
design design 1 design 2 designV = (V [ ] V [ ] V [ ]) ,y y d⋅⋅ ⋅⋅  (5.2) 

and express the optimization problem as minimization of 
this expression. 

Analytic characterization of the design that optimizes 
(5.2) becomes quite cumbersome. Instead, we utilize a 
numeric illustration of the previous section to demonstrate 
how accounting for other design objectives affects the choice 
of the design. We should expect that for the designs with 
more expensive follow-ups I I I II II

12 1 2 12 1( ,c c c c c≥ + ≥ + II
2 ),c  

the simpler designs would be selected more often: the 
cluster-panel design may be preferred to the observation-
panel design, and the independent design may be preferred 
to the cluster-panel design. For the baseline settings (4.1), 
we have  

, , ,

, , ,

V [ ] 49.93, V [ ] 47.68, V [ ] 61.69,

V 62.91, V 59.23, V 70.02,

e e c e o

e e c e o

y y y= = =

= = =

ι

ι

 

where the time indices of ty ⋅⋅  are omitted. The observation-
panel design is rather inefficient in estimating the period-
specific means as this design samples fewer units. Instead, 
the cluster-panel design is the most efficient one, closely 
followed by the independent design. 

Figures 7-12 parallel Figure 1-6, respectively. Since the 
best design in terms of V  is now the cluster-panel design, 
most of these plots show the preference toward this design. 
Figure 7 shows that when the variances of the contempora-
neous means are taken into account, the simpler inde-
pendent and cluster-panel designs are preferred for a greater 
fraction of parameter settings, and occupy a larger portion of 

the plot than in Figure 1. The point where the three designs 
are equivalent is I II

12 12= 20.6, = 2.27,c c  closer to the 
origin than in Figure 1, in which only the variance of the 
difference was taken into account. 

Figure 8 shows that the observation-panel design is only 
justified when both autocorrelations are higher than 0.6 (for 
the given values of population variances and costs). Recall 
that in Figure 2, the observation-panel design was preferred 
whenever II > 0.34,ρ  with little dependence on I.ρ  

Figure 9 shows how the PSU-level correlations and costs 
affect the choice of the design. The observation-panel 
design is less efficient than the cluster-panel design for all 
combinations of parameters in this plot. Hence, the choice 
of the design is between the independent and the cluster-
panel designs. Naturally, if the data collection in the panel 
mode is expensive, the independent design is preferred to 
the cluster-panel design. Interestingly, the preference towards 
a particular design is not monotone in I

12.ρ  With values 
I
12 > 0.7,ρ  the V[ ]d  component in (5.2) produces designs 

with so few clusters that V[ ]y  suffers notably enough to 
hurt the whole objective function. At that value of panel 
autocorrelation, the maximum panel cost at which the 
cluster-panel design is still the most efficient one is I

12 =c  
24.4, i.e., the cluster-level cost in the second wave is 44% 
higher than in the first wave. 

Figure 10 shows that the higher autocorrelation of the 
SSU measurements may justify modest extra cost associated 
with data collection. The highest cost for which the obser-
vation-panel design is still the most efficient one is II

12 =c  
2.75 with II = 0.78;ρ  i.e., the cost of the second interview 
can be 75% more than the cost of the first interview. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Design variances as functions of the data collection costs I II

12 12,c c . Left: contour lines of ,Ve c  (dotted) and ,Ve o  (long 
dashed); ,V = 62.91;e ι  right: domains of optimality of the three designs 
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Figure 8 Design variances as functions of the autocorrelations I II, .ρ ρ  Left: contour lines of ,Ve c  (dotted) and ,Ve o  (long 

dashed); ,V = 62.91;e ι  right: ratio , ,V / Ve o e c  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 Design variances as functions of the cluster-level autocorrelation Iρ  and cost I

12.c  Left: contour lines of ,Ve c  (dotted) 
and ,Ve o  (long dashed); ,V = 62.91;e ι  right: ratio , ,V / Ve c e ι  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Design variances as functions of the observation-level autocorrelation IIρ  and cost II

12.c  Left: contour lines of ,Ve o  (long 
dashed); ,V = 62.91;e ι ,V = 59.23;e c  right: ratio , ,V / Ve o e c  
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Figure 11 parallels Figure 5. The left panel shows that the 
observation-panel design is less efficient than the cluster-
panel design. The right panel shows that if the cluster-level 
cost of the second wave exceeds the cluster-level cost of the 
first wave by more than 15 units, the independent design 
delivers better efficiency than the cluster-panel design. 

Finally, Figure 12 shows the variances as functions of the 
total survey budget and the cost of the panel mode of data 
collection. There is very little dependence on 0C  in the plot, 
and the independent design is preferred if the panel mode is 
too expensive, namely, when the cluster-level cost in the 
second cost exceeds 107% of that in the first wave. 

As it was conjectured in the beginning of this section, 
incorporation of the variances of the contemporaneous 
means into the design optimization objective function shifted 
the preferences of the survey designer towards simpler 
designs that can sample a greater number of the ultimate 
observation units. The observation-panel design now only 
makes sense when both the PSU and SSU autocorrelations 
are high, and the panel costs are reasonably low. Moreover, 
the cluster-panel design is generally justified only if there is 
an economy in cluster-level cost in the second wave of the 
survey. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Design variances as functions of the data collection costs I I
1 12, .c c  Left: contour lines of ,Ve c  (dotted), ,Ve o  (long dashed) 

and ,Ve ι  (dash-dotted); right: ratio , ,V / Ve c e ι  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Design variances as functions of the total budget 0C  and the PSU panel cost II
12.c  Left: contour lines of ,Ve c  (dotted), 

,Ve o  (long dashed) and ,Ve ι  (dash-dotted); right: domains of optimality of the three designs 
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6. Extensions to multiple waves  
If the survey to be designed will have more than two 

waves of data collection, the survey designer may be able to 
extend the framework of the utility maximization problem 
(5.1), with the following considerations in mind.   

1. A greater number of targets of inference. Possible 
variances that the survey designer may need to take 
into account can now include: contemporaneous vari-
ances 1 2V[ ], V[ ], , V[ ];Ty y y…  consecutive differ-
ences 2 1 1V[ ], , V[ ]T Ty y y y −− −…  or composite/ 
GLS estimators of the change between two adjacent 
periods of time; other contrasts V[ ], = 0;t t t tc y c∑ ∑  
variance of the linear growth rates from regression of 

ty  on ,t  estimated by OLS or GLS; etc.  
2. A possibility of discounting. In economics, it is cus-

tomary to specify the budget constraints that look into 
the future in the form of t

t tx∑ δ  where tx  is the 
amount spent in time t , and < 1δ  is the discount 
factor associated with interest rates. Discounting may 
also be relevant for the utility function, and design 
variances farther in the future may have lower 
weights in the optimization problem.  

3. Unknown functional forms of the time-series pro-
cesses associated with the variable of interest. The 
survey designer needs to have a good idea about the 
covariance structure of the time series of both indi-
vidual observations and cluster means. It is likely that 
the results will be sensitive to the choice of the 
particular model. In the current analysis, the issue is 
ameliorated, as it suffices to have a single correlation 
parameter for each level. The survey designer may 
have to introduce more parameters into the model, 
and correspondingly study sensitivity of the design 
choice with respect to these parameters.   

The complexity of the problem, as outlined above, can grow 
out of control very quickly. We thus abstain from a more 
detailed treatment of it in this paper.  

7. Discussion  
This paper has analyzed different options for imple-

mentation of repeated cluster surveys. We have provided 
analytical expression for design variances of the simple 
difference estimator for three popular designs (the inde-
pendent, the cluster-panel and the observation-panel de-
signs). We have also derived the optimal sample sizes for 
estimation of the difference between two waves of data 
collection. 

The sample designer who knows that the characteristic of 
interest is going to have some degree of persistence over 
time will likely choose one of the panel designs, provided 
that the costs of re-visiting the clusters and/or observation 
units are not prohibitively high. Analytical comparison is 
possible between the independent and the observation-panel 
designs, and is given by Proposition 7. It is worth noting that 
the design variance of the difference is 1

0( )O C−  for both the 
independent design and the observation-panel design, and is 

1/2
0( )O C−  for the cluster-panel design, where 0C  is the total 

budget of the survey. Hence the cluster-panel design is only 
viable for smaller surveys, while the large scale surveys will 
likely have either the independent or the observation-panel 
format. 

The cost structure considered in Section 3 is rather 
simplistic. For instance, the second stage costs in the second 
time period may differ across individuals sampled from the 
new or from the reused clusters. Also, the costs may depend 
on the cluster size ,iM  as it may take more time and 
resources to obtain maps and collect cluster level data for 
bigger clusters. Our original motivation was to consider 
situations in which the SSU panel cost is higher than twice 
the cost of individual interviews. However, as suggested by 
one of the referees, this cost may be lower if the follow-up 
interviews are performed in cheaper mode, such as a phone 
interview or a self-administered mail survey instead of a 
personal interview. If this is the case, the observation-panel 
design is apparently the most cost-efficient of the three 
designs. 

The population structure is also an oversimplification. 
The clusters are assumed to be of balanced unchanging 
sizes. No units leave the population, and no new units 
appear. These assumptions are quite restrictive for many 
practical situations. If the population changes between two 
waves of data collection, the sample designer would want to 
include new clusters at the second wave, using the 
algorithms of Ernst (1999). The new clusters are placed into 
a separate stratum, and a clustered sample is taken from that 
stratum. In NHIS, this is implemented by “permit” frame. 
Also, the dynamic measurement effects such as condi-
tioning and time in sample lead to rotation bias, so it might 
be beneficial to provide at least some rotation of the PSUs. 
For DHS studies, in particular, the first argument (coverage) 
is likely to be more important than the second one (time in 
sample) due to a substantial time between the waves of the 
survey (about 5 years). Arguably, both non-response and 
loss of coverage can be added to the current framework as 
sources of bias, leading to optimization of the mean squared 
total survey error rather than the design variance. Con-
vincing models of such biases may be difficult to formulate, 
however. 
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Another issue that would arise with clusters of different 
sizes is that of the greater range of applicable designs. In this 
paper, we assumed SRSWOR at both stages. Other designs, 
such as sampling with probability proportional to size (PPS), 
can be used instead. For designs other than SRS, the Horvitz-
Thompson estimator and its variance (Särndal, Swensson 
and Wretman 1992, Thompson 1997) would need to be used. 
The analytical derivations become unwieldy, although prac-
tical numerical demonstrations similar to our Sections 4 and 
5 can still be implemented. If cluster sizes change over time, 
obtaining the optimal design becomes a moving target, and 
designs optimal for the “old” measures of size will lose their 
efficiency with the “new” measures of size. 

In earlier drafts of this paper, we analyzed intermediate 
designs where a non-trivial fraction of the units are retained, 
and other units are sampled independently. The problem can 
then be viewed as variance minimization subject to inequal-
ity constraints on the degree of the overlap I0 1,≤ π ≤  

II0 1.≤ π ≤  The general theory of non-linear constrained 
optimization ensures that as long as the variance of the 
population mean change D  is monotone in Iπ  and II,π  the 
optimum will be achieved in one of the vertices of the 
parameter space. This justifies our interest in the three 
designs considered in the paper. They correspond to the 
vertices of the parameter space: (0, 0), (1, 0)  and (1,1)  for 
the independent, cluster-panel and observation-panel de-
signs, respectively. The point (0,1)  corresponds to an im-
possible design with complete overlap of the individual 
units with no overlap of the clusters. Cumbersome deri-
vations show that it is possible to satisfy the first order 
conditions in some intermediate cases, too, but they corre-
spond to local maxima of the variance. While these results 
may also be of interest (in the sense of providing an upper 
bound on the design variances), we did not consider them in 
the paper. In the more complicated cases of the multicriterial 
optimization of Section 5, monotonicity does not necessarily 
hold, and other designs beside the three extreme cases 
considered in the paper may lead to the optimal values of 
the objective function (5.2). 

Conditions of equal variances (2.9) can be relaxed at the 
price of producing substantially more complicated expres-
sions. If the sample sizes are fixed between the two occa-
sions, then the following changes will be necessary in all 
relevant formulas. In the expressions that do not involve 
autocorrelations,  

              2 2 2 2 2 2
1 2 1 22 , 2 ,b b b w w wS S S S S S+ +6 6  (7.1) 

while in the expressions that do involve autocorrelations,  

              
I 2 2 2 I

1 2 1 2

2 II 2 2 I
1 2 1 2

2(1 ) 2 ,

2 (1 ) 2 .
b b b b b

w w w w w

S S S S S

S S S S S

− ρ + − ρ

− ρ + − ρ

6

6  (7.2)
 

Qualitatively, the results will be the same. 

The multicriterial framework of Section 5 allows for 
different importance weights to be given to different vari-
ances of interest. Relatively larger values of 1 2,α α  corre-
spond to the greater importance of the contemporaneous 
means, while larger values of 3α  correspond to the greater 
importance of the change estimate. The original problem of 
optimizing the design for V[ ]d  can be considered within 
the context of (5.1) by setting 1 =α 2 = 0,α 3 =α  1. This 
framework can also be expanded to include designs aimed at 
measuring several variables. An additional challenge of such 
a setup is that the autocorrelations may differ across 
different variables. Some individual characteristics are 
constant over time (race, gender); others change slowly 
(housing, expenditure, political preferences), yet others may 
change faster (income or behavior). 

This paper dealt with three designs and a specific 
estimator of change: the difference in the two estimates of 
the mean in two periods of time. Other options for either 
designs or estimators are also available. For instance, in 
rotation designs, a fraction of the first wave units is retained, 
and some new units are recruited. For such designs, com-
posite estimation (Hansen et al. 1953, Patterson 1950, Rao 
and Graham 1964, Wolter 2007) that weighs differently the 
contributions of the independent units (those retired from 
the sample after the first wave, and those newly recruited for 
the second wave) and the contributions of the panel units 
(used in both waves) would result in more efficient esti-
mates. Generally, motivation for such designs comes from 
non-sampling considerations, such as decrease of the re-
sponse burden and deterioration of the sample represen-
tativeness of population due to the population change. These 
considerations can be accounted for in either the cost model 
(e.g., a greater number of callbacks required to convince a 
unit to respond), or the total survey error model (by intro-
ducing the non-response or undercoverage bias, and con-
sidering mean squared error rather than the design variance 
of an estimate). 
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Appendix  
Expectations, variances and covariances in the proofs 

below are with respect to the corresponding designs. The 
first stage of selection will be denoted with a superscript I.  
The second stage of selection will be denoted with a 
superscript II.  

 
Proof of Proposition 2. Let us denote the sample of the 
PSUs by I,S  the sample of SSUs in the first period by II

1 ,iS  
and the sample of SSUs in the second period by II

2.iS  Then  

2 1 2 1
I II II

2 1

1= = .ij ij
i j ji i

d y y y y
mn⋅⋅ ⋅⋅

∈ ∈ ∈

− ⎛ − ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
S S S

 

Denoting the expectations with respect to the first stage as 
IE ,  and those with respect to the second stage as IIE ,  we 

have the design variance of d  equal to  
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where the last equality assumes symmetric conditions (2.9).  

Proof of Proposition 3. Let us denote the sample of the 
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with the last equality holding under the symmetry 
conditions.   
Proof of Proposition 4. The Lagrangian function of mini-
mizing (2.11) subject to constraint (3.1) is  
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Working through the first order conditions of this 
Lagrangian function leads to 
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From the survey budget (3.1), the number of clusters is 
found to be  
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Plugging these expressions into (2.11) and using the equal-
ity relations (2.9), we obtain the variance of the estimator as  
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Proof of Proposition 5. The Lagrangian function of mini-
mizing (2.13) subject to constraint (3.4) is  
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Expressing n−λ  from these conditions, one obtains:  
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The solution with D−  leads to a negative value of 1,m  
and must be discarded. 

The remaining design characteristics are  
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The variance of the difference estimator can be found using 
(2.15). 

Under symmetric conditions, = 1,κ  and  
I 2 2 II I 2

12= 4[2(1 ) 2 / ]b w wD S S M c c S− ρ −  

is non-negative unless the expression in the square brackets 
is negative (which can only happen when Iρ  is large and 
M  is small. In that case, a corner solution =m M  is 
realized). Furthermore,  

2 I
12

1 2 I 2 2 II

0 0
I II 2 I II
12 I 12

12 I 2 2

,

I 2 II 2

II 2 I 2
I 2

12
0

= = = ,
2[(1 ) / ]

= = ,
2 2

(1 ) /

V [ ]

(1 ) (1 )
= 2 1 2 1

(1 ) 2(1 )2= (1 ) 2 1

2= (

w

b w

w

b w

e o

b w

w b
b

S c
m m m

S S M c
C C

n
c mc S c c

c
S S M

d

S Sn m
N n M nm

S SmS
n M m N

c
C

−ρ −

+
+

−ρ −

−ρ −ρ⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎡ ⎤−ρ −ρ⎛ ⎞−ρ + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

I II

I 2
I 2 II 2

I II
12

0
I 2

I 2 II 2 II 2

I
I I 2 II 2 II 12
12

0

I II 2 II
12

2 )

2(1 )1 1(1 ) 2 (1 )

2= ( 2 )

2(1 )2 2(1 ) (1 ) (1 )

2= (1 ) 2(1 ) 2

2 (1 ) 2

b
b w

b
b w w

b w

w

mc

S
S S

m M N

c mc
C

S
S S S

m M N
cc S S c

C M

c S mc
m

+

−ρ⎡ ⎤⎛ ⎞× −ρ + − −ρ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+

−ρ⎡ ⎤× −ρ + −ρ − −ρ −⎢ ⎥⎣ ⎦
⎧ ⎡ ⎤

−ρ + −ρ −⎨ ⎢ ⎥⎣ ⎦⎩

+ −ρ + I 2 II 2

I 2

I
I I 2 II 2 II 12
12

0
II I 2 2 2 II I

12

2 I II
I 2 II 212

I 2 2

I 2

2(1 ) (1 )

2(1 )

2= (1 ) 2(1 ) 2

2(1 ) 2[(1 ) / ]

2 2(1 ) (1 )
(1 ) /

2(1 )

b w

b

b w

b w w

w
b w

b w

b

S S
M

S
N

cc S S c
C M

S S M S c c

S c c
S S

MS S M

S
N

⎫⎡ ⎤−ρ − −ρ ⎬⎢ ⎥⎣ ⎦ ⎭
−ρ

−

⎧ ⎡ ⎤
−ρ + −ρ −⎨ ⎢ ⎥⎣ ⎦⎩

+ −ρ −ρ −

⎫⎪⎡ ⎤+ −ρ − −ρ ⎬⎢ ⎥⎣ ⎦−ρ − ⎪⎭
−ρ

− .

 

 
 

Proof of Proposition 6. The Lagrangian function of mini-
mizing (2.15) subject to constraint (3.6) is  
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Expressing 2n−λ  from these conditions, one obtains:  
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From the survey budget (3.6),  
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Finally, the variance of the difference estimator is 
 



Survey Methodology, June 2011 93 
 

 
Statistics Canada, Catalogue No. 12-001-X 

,

II 2 I II
I 12 12
12 I 2 II 2

0

I 2

I 2 II 2II
II 212

I II 2
12

I 2

I 2 I
12

0

II 2 I II
12 12

V [ ]

(1 )2=
(1 ) (1 ) /

(1 )

(1 ) (1 ) / 1 (1 )
(1 )

2(1 )

2= (1 )

(1 )

e o

w

b w

b

b w
w

w

b

b

w

d

S c c
c

C S S M

S

S S Mc
S

Mc S

S
N

S c
C

S c c

⎛ ⎞− ρ
+⎜ ⎟⎜ ⎟− ρ − − ρ⎝ ⎠

⎡
× − ρ⎢
⎢⎣

⎤⎛ ⎞−ρ − −ρ
+ − −ρ ⎥⎜ ⎟⎜ ⎟−ρ ⎥⎝ ⎠ ⎦

− ρ
−

⎧⎪
⎨ − ρ
⎪⎩

+ −ρ
I 2 II 2

II 2

I 2 II 2

II 2 I II
12 12

I 2 II 2

I
II 2 II 12

12

I 2

(1 ) (1 ) /
(1 )

1(1 ) (1 )

(1 )
(1 ) (1 ) /

(1 )

2(1 )
.

b w

w

b w

w

b w

w

b

S S M
S

S S
M

S c c
S S M

cS c
M

S
N

−ρ − −ρ
−ρ

⎡ ⎤+ −ρ − −ρ⎢ ⎥⎣ ⎦

−ρ
×

−ρ − −ρ

⎫⎛ ⎞
+ − ρ − ⎬⎜ ⎟

⎝ ⎠⎭

− ρ
−

 
Proof of Proposition 7. Ignoring the finite population cor-
recting terms of the order 1( )O N −  and 1( ),O M −  equation 
(3.3) can be written as:  
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Likewise, equation (3.8) can be written as  
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The statement of Propostion 7 follows immediately from 
these two expressions.   
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On the efficiency of randomized probability proportional to size sampling 
Paul Knottnerus 1 

Abstract 
This paper examines the efficiency of the Horvitz-Thompson estimator from a systematic probability proportional to size (PPS) 
sample drawn from a randomly ordered list. In particular, the efficiency is compared with that of an ordinary ratio estimator. 
The theoretical results are confirmed empirically with of a simulation study using Dutch data from the Producer Price Index. 
 
Key Words: Horvitz-Thompson estimator; Producer Price Index; Ratio estimator; Sampling autocorrelation coefficient. 
 
 

1. Introduction 
 
When the study variable y  in a population of N  units is 

more or less proportional to a size variable ,x  one may use 
the ratio estimator from a simple random sample of size n  
without replacement (SRS). An alternative estimator in such 
a situation is the Horvitz-Thompson (HT) estimator in 
combination with a systematic probability proportional to 
size sample from a randomly ordered list, henceforth called 
a randomized PPS sample. 

In recent years several authors investigated variance esti-
mation procedures for the HT estimator from a randomized 
PPS sample. See, among others, Brewer and Donadio 
(2003), Cumberland and Royall (1981), Deville (1999), 
Knottnerus (2003), Kott (1988 and 2005), Rosén (1997) and 
Stehman and Overton (1994). For a comparison between the 
efficiencies of the ratio estimator and the randomized PPS 
estimator, the reader is referred to Foreman and Brewer 
(1971), Cochran (1977) and the references given therein. A 
drawback of these comparisons is that finite populations 
corrections are ignored. Hartley and Rao (1962) take the 
finite population correction into account but without an 
explicit formula for the efficiency. Elaborating on the results 
of Gabler (1984), Qualité (2008) shows that the related HT 
estimator from a rejective Poisson sample of size n  is more 
efficient than the Hansen-Hurwitz estimator for a sampling 
scheme with replacement. No formula for the increased 
efficiency is given, however. 

The main aim of this paper is to derive formulas for the 
efficiency of the randomized PPS estimator relative to the 
ratio estimator. To this end, we present a simple formula for 
the change in the sample size required to maintain the same 
variance when a randomized PPS estimator is replaced by a 
ratio estimator. From the design based point of view these 
formulas are valid when ( )n o N=  as .N → ∞  This con-
dition suggests that the finite population correction can be 
neglected for this kind of sampling design. Surprisingly, as 
we will see in an example in section 4, the randomized PPS 
sampling can reduce variance by more than 30% compared 

to PPS sampling with replacement even when the sampling 
fraction /n N  is much smaller than 30%; see also Kott 
(2005, page 436). Furthermore, the formulas remain ap-
propriate from a model assisted point of view when n  and 
N  are of the same order, provided that N  is large and that 
the hypothetical model for the observations iY (i =  
1, ..., )N  satisfies mild conditions.  

The outline of the paper is as follows. Section 2 describes 
an alternative expression for the variance of the HT esti-
mator based on the sampling autocorrelation coefficient. 
The corresponding variance estimator for randomized PPS 
sampling is shown to be nonnegative with probability 1. 
Section 3 presents the formulas for the efficiency of the 
randomized PPS estimator relative to the ratio estimator for 
various data patterns often met in practice. Section 4 
features an example with data on the Producer Price Index 
in The Netherlands illustrating the substantial efficiency 
gains obtainable in practice. A counterexample shows that 
randomized PPS sampling is not always advantageous. The 
paper concludes with a summary.   

2. An alternative variance expression for 
      randomized PPS sampling   

Consider a population {1, ..., },U N=  and let s  be a 
sample of fixed size n  drawn from U  without replacement 
according to a given sampling design with first order inclu-
sion probabilities iπ  and second order inclusion proba-
bilities ( , 1, ..., ).ij i j Nπ =  The HT estimator of the popu-
lation total, ,i U iY Y∈= Σ  is defined by HT

ˆ / .i s i iY Y∈= Σ π  
Suppose there is a measure of relative size iX  (i.e., X =  

1)i U iX∈Σ =  such that all 1/ .iX n≤  In fact, it is assumed 
here that units with 1/iX n>  are put together in a separate 
certainty-stratum. When the iπ  are proportional to these 
size measures, .i inXπ =  Defining / ,i i iZ Y X=  we can 
write Y  as a weighted mean of the ,iZ  that is, zY = μ =  

.i U i iX Z∈Σ  Likewise, we can write the HT estimator of Y  in 
randomized PPS sampling as HT PPS

ˆ ˆ ,sY Y z= =  where sz  is 
sample mean of the .iZ  
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The variance of the randomized PPS estimator PPSŶ  is 

         PPS 2
1ˆvar( ) ( )ij i j i j

i U j U
Y Z Z

n ∈ ∈

= π − π π∑∑  (1) 

                          2
2

1 ( ) ( )
2 ij i j i j

i U j U
Z Z

n ∈ ∈

= − π − π π −∑∑  (2) 

with .ii iπ = π  The former is attributed to Horvitz and 
Thompson (1952) and the latter is due to Sen (1953) and 
Yates and Grundy (1953). The following alternative expres-
sion for the variance is more convenient for our purposes: 

            
2

PPS
ˆvar( ) var( ) {1 ( 1) } ,z

s zY z n
n
σ

= = + − ρ  (3) 

where 2 2( ) ,i Uz i i zX Z∈∑σ = − μ  and 

          .  
( 1)

ij j zi z
z

i U j U z z
j i

ZZ
n n∈ ∈

≠

π − μ⎛ ⎞⎛ ⎞− μ
ρ = ⎜ ⎟⎜ ⎟− σ σ⎝ ⎠⎝ ⎠

∑∑  (4) 

For a proof of (3), see Knottnerus (2003, page 103). Note 
that 2/z nσ  would have been the variance if the sample had 
been drawn with replacement with drawing probabili-
ties .iX  

The sampling autocorrelation coefficient zρ  in (4) is a 
generalization of the more familiar intraclass correlation 
coefficient ρ  in systematic sampling with equal probabi-
lities; see, for instance, Cochran (1977, pages 209 and 240) 
and Särndal, Swensson and Wretman (1992, page 79). Note 
that zρ  is a fixed population parameter. The phrase sam-
pling autocorrelation is used because zρ  refers to the 
autocorrelation between two randomly chosen observations, 
say 1sz  and 2,sz  from .s  Consequently, the value of zρ  
depends on the sampling design. In particular, when sam-
pling with replacement, 0,zρ =  while under SRS sam-
pling, 1 / ( 1).z Nρ = − −  

Although exact expressions for the ijπ  under randomized 
PPS sampling are available, they can be cumbersome when 
N  is large. For an exact expression, see Connor (1966) and 
for a modification Hidiroglou and Gray (1980). Here we use 
an approximation proposed by Knottnerus (2003, page 197):  

                  

(1 )
( 1)

(1 2 )(1 2 )

1 1 .
2 2 1 2

i j i j
ijK

i j

i
i U

i

X X X X
n n

X X

X
X∈

− −
π = −

γ − −

γ = +
−∑

 (5)

 

These ijKπ  have been shown to satisfy the second-order 
restrictions for the :ijπ  

, ( ) ( 1),iji j U j i n n
∈ ≠

π = −∑  

and 

( ) ( 1) .ij ij U j i n
∈ ≠

π = − π∑  

Furthermore, (5) is correct for SRS sampling for any 
,n N≤  while ijKπ  coincide with the ijBDπ  from the special 

designs proposed by Brewer (1963a) and Durbin (1967) for 
PPS samples with 2.n =  Moreover, the ijKπ  in (5) can be 
written in factorized form as proposed by Brewer and 
Donadio (2003). That is,  

                            ( ) / 2,ijK i j i jc cπ = π π +  (6) 

and 

( 1) / (1 2 ).i ic n n X= − γ −  

An implication of approximation (5) is that / ( 1) ijK n nπ −  
does not depend on .n  Hence, the corresponding approxi-
mation of zρ  does not depend on n  (recall we have 
assumed that every 1 / ).iX n<  

This nondependence on n  would also result had we used 
the approximation proposed by Hartley and Rao (1962) for 
randomized PPS sampling: 

2 2

3

( 1)

{1 2( )

3 ( 2 )},

ijHR i j

i j x i j i j

x i j x i U i

n n X X

X X X X X X

X X X∈

π = −

+ + − μ + + +

− μ + − μ − Σ  (7)

 

where 2
Ux i iX∈μ Σ=  (recall ).z i U i iX Z∈μ = Σ  Obviously, 

/ ( 1)ijHR n nπ −  does not depend on .n  At the time Hartley 
and Rao assumed that (1)n O=  as .N → ∞  In addition, 
referring to a private conversation with J.N.K. Rao, 
Thompson and Wu (2008) state that approximation (7) is 
valid when ( )n o N=  as .N → ∞  For an example that (5) 
and (7) can not be used for any n  and ,N  see Appendix A. 

Since both (5) and (7) lead to approximations for zρ  in 
randomized PPS sampling that are {1 (1)}z oρ +  as N → ∞  
with ( ),n o N=  (5) can be used for calculating zρ  in prac-
tice when n N<<  and N  is large. For ease of the exposi-
tion, it is assumed here that there is a positive constant c  
such that / .z c Nρ < −  See also Kott (2005, page 436) who 
discusses estimating the variance under PPS sampling when 

2/3( ).n O N=  
Suppose 21 (1/ )x O Nγ = + μ +  and (1/ )x O Nμ =  

(which follow from the conditions of Theorem 1 below). It 
is not hard to see that, after dropping (1/ )O nN  terms, ic  in 
(6) is identical with ( 1) /{ (1 2 )}.iHR x ic n n X= − + μ −  The 
latter expression is equation (11) of Brewer and Donadio, 
which is based on ijHRπ  in (7). 

The approach proposed here is somewhat different from 
Knottnerus (2003). First, rewrite (5) as 

          1/ 2 1/ 2( 1) .
1 2 1 2

i j
ijK

i j

X X
n n

X X
⎛ ⎞

π = − +⎜ ⎟⎜ ⎟γ − −⎝ ⎠
 (8) 
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Substituting (8) into (4), we obtain a new, simple approxi-
mation for :zρ  

( )

22

1/2 1/2 
1 2 1 2

1
1 2

0 .
1 2

i j ji
z

i U j U i j z z
j i

i j ji

i U j U i z z
j i

i i

i U i z

X X Z YZ Y
X X

X X Z YZ Y
X

X Z Y
X

∈ ∈
≠

∈ ∈
≠

∈

⎛ ⎞ −⎛ ⎞⎛ ⎞−
ρ = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟γ − − σ σ⎝ ⎠⎝ ⎠⎝ ⎠

−⎛ ⎞ ⎛ ⎞⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟γ − σ σ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞−
= − ⎜ ⎟γ − σ⎝ ⎠

∑∑

∑∑

∑ (9)

 

In the second line, we used the equality ,i j ij im v∑ =  
,i j ij jm v∑  when .ij jim m=  In the last line, we used 

( ) 0.j U j jX Z Y∈∑ − =  
Next, let X  denote the population mean of 1, ..., NX X  

and define 2
xσ  and 2

xV  by 
2 2( ) ,x i i xi U X X

∈
σ = − μ∑  

and 
2 2( ) / ,x ii UV X X N

∈
= −∑  

respectively. In the following theorem (9) is further 
simplified.   
Theorem 1. Suppose that ( ) / (1)i zZ Y O− σ =  as N → ∞  
and that there are positive constants c  and C  such that 

/ ,xV X c< /x x cσ μ <  and 0 1/2.iX C< < <  Then, for 
large N and n << N,  

2 2

2 2

( ) 1 11 .
( )

i ii U
z

i ii U

X Z Y
O O

NX Z Y N
∈

∈

− ⎧ ⎫⎛ ⎞ ⎛ ⎞ρ = − + +⎨ ⎬⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎩ ⎭

∑
∑

 (10) 

 
Proof. Because 1/ ,X N=  it follows from the above 
assumptions that the weighted mean 2 2[ (x i xX N Vμ =Σ = +  

2 )]X  is of order 1/N  and hence, (1/ ).x O Nσ =  Because 
1 2(1 2 ) 1 2 ( )i i iX X O X−− = + +  for 0 1/2,iX C< < < zρ  

from (9) can be written for N → ∞  as 

22
31 ,i i

z i
i U i Uz

X Z Y
O X

∈ ∈

⎛ ⎞− ⎛ ⎞
ρ = − +⎜ ⎟ ⎜ ⎟γ σ γ ⎝ ⎠⎝ ⎠

∑ ∑  

where 3 2 2 2( ),i U i x xX O N −
∈∑ = σ + μ =  and 

2

2

1 1 {1 2 ( )}
2 2

1 11 1 ,

i i i
i U

x

X X O X

O O
NN

∈

γ = + + +

⎛ ⎞ ⎛ ⎞= + μ + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 

from which (10) follows. This concludes the proof.  

Substituting (10) into (3), we get  

            

2
2 2

PPS

2

1ˆvar( ) ( )  

1 {1 ( 1) }( ) ,

z
i i

i U

i i i
i U

nY X Z Y
n n

X n X Z Y
n

∈

∈

σ −
= − −

= − − −

∑

∑  (11)

 

which is also given by Hartley and Rao (1962). It is note-
worthy that approximation (10) also follows directly from 
substituting the simple approximation ( 1)ijAP n nπ = −  

i jX X  into (4). Likewise, use of ijHRπ  leads to an expres-
sion almost similar to (9) and hence to (10). In addition, 
direct use of ijAPπ  in (1) or (2) for the SRS case with 

1/i jX X N= =  may lead to errors of more than 100% for 
populations with 2 ;yY V=  see Knottnerus (2003, pages 
274-6). Hence, (1) and (2) are more sensitive to small errors 
in the ijπ  than (3) and (4). Furthermore, note that when n  is 
so small that 1,zn⎟ ρ ⎟ <<  we may set 0zρ =  yielding the 
with-replacement variance formula of Hansen and Hurwitz 
(1943).  

In order to estimate (3) using ,zρ  denote, as before, a 
randomly chosen observation from s by 1.sz  Then we have 

2
1 1 1

2

var( ) var{ ( )} {var( )}

1var( ) ,

z s s s

s z

z E z s E z s

nz E s
n

σ = = ⎟ + ⎟

−⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

where  

2 21 ( ) .
1z i si ss Z z

n ∈
= −

− ∑  

Now from (3), it is seen that 2 / (1 )z zs − ρ  is an unbiased 
estimator for 2.zσ  When zρ  is very small, the term (1 )z− ρ  
can be neglected. When n  is sufficiently large, the ratio zρ  
from (9) can be estimated by  

( )2

9 2

ˆ( ) / 1 2
ˆ ,

( )
i i s ii s

z
i si s

X Z z X
Z z

∈

∈

− γ −
ρ = −

−
∑

∑
 

where  

1 1 1ˆ .
2 2 1 2i s

in X∈
γ = +

−∑  

Because ˆ 1 γ ≥  and 1/ ,iX n≤  we have 9ˆ 1/ ( 2).z nρ ≥ − −  
For the bias of an estimated ratio when n  is small, see 
Cochran (1977, page 160).  

In a similar manner zρ  from (10) can be estimated by  
2

10 2

( ) 1 1ˆ .
1( )

i i si s
z

i si s

X Z z
n nZ z

∈

∈

− − −
ρ = − ≥ >

−−
∑
∑

 

Hence, replacing 2
zσ  and zρ  in (3) by 2

10ˆ/ (1 )z zs − ρ  and 
10ˆ ,zρ  respectively, leads to a nonnegative variance estimator 
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with probability 1. This also holds for 9ˆ zρ  when all iX ≤  
1 / ( 1).n +  The estimator for PPS

ˆvar( )Y  thus obtained be-
comes 

2
9

PPS
9

ˆ{1 ( 1) }ˆˆvar ( ) .    
ˆ(1 )

z z

z

n s
Y

nρ
+ − ρ

=
− ρ

 

Moreover, for moderate values of ,N  estimator 9ˆ zρ  has 
probably better properties than 10ˆ zρ  because the ijKπ  under-
lying (9) satisfy exactly the second-order restrictions irre-
spective of the values of n  and .N   

3. Efficiency of P̂PSY  for large n and N  
3.1 Efficiency formulas   

Because 1,X =  the ratio estimator for Y  becomes 

ˆ .i is i s
R

s ii s

X Zy
Y

x X
∈

∈

= = ∑
∑

 

For sufficiently large n  the commonly used approximation 
for its variance is 

                 2 2( )ˆvar( ) ( ) .
( 1)R i i

i U

N N nY X Z Y
n N ∈

−
= −

− ∑  (12) 

From (3) and (12) it can be seen that the efficiency of PPSŶ  
relative to R̂Y  can be written as  

2 2

/ 2
PPS

ˆ ( ) ( )var( ) ,ˆ {1 ( 1) }var( )
i ii UR

P R
z z

N n X Z YYEff
nY
∈

− −
= =

+ − ρ σ
∑  (13) 

assuming / ( 1) 1.N N − ≈  Combining (10) and (13) gives 

                               /
( ) .

1 ( 1)
z

P R
z

N nEff
n

− − ρ
=

+ − ρ
 (14) 

Now suppose that the observations iY  satisfy the model: 

                                       ,i i iY X= μ + ε  (15) 

with ( ) 0,iE ε = 2 2( ) ,i iE X δε =σ  and ( ) 0i jE ε ε = ( ).i j≠  
Consequently, for the iZ  we have i iZ u= μ+  with 

( ) 0,iE u = 2 2 2( ) ,i iE u X δ−= σ  and ( ) 0i jE u u = ( ).i j≠  
According to Kott (1988), δ  often lies between 1 and 2. See 
also Brewer (1963b). Brewer and Donadio (2003) showed 
that by assuming a model like (15), (7) and hence (10) and 
(14) hold when n  and N  are of the same order as 

.N → ∞  Furthermore, for sufficiently large N  we can 
replace Y  as well as the numerator and denominator in (10) 
by their model expectations. This yields  

                               1 .i U i
z

i U i

X
X

δ
∈

δ−
∈

Σ
ρ = −

Σ
 (16) 

In the next subsections we look more closely at the 
relationship between δ  and the efficiency of PPS

ˆ .Y    
3.2 Efficiency of P̂PSY  when 2δ =   

For 2,δ =  (16) gives 2 ,z i U i xX∈ρ = −Σ = −μ  which 
can also be written as 

                             21 (1 ),z xCV
N

ρ = − +  (17) 

because  

2 2 2 2 21 (1 ),i x x
i U

X V X X CV
N ∈

= + = +∑  

where 1/X N=  and /x xCV V X=  is the coefficient of 
variation of the .iX  Substituting (17) into (14) gives  

2

/ 2

( ) (1 )
.

( 1) (1 )
x

P R
x

N n CV
Eff

N n CV
− +

=
− − +

 

Hence, for 2,δ =  the efficiency of the randomized PPS 
sample is high when the variability among the iX  is high. 
When 0,xCV =  randomized  PPS sampling amounts to 
SRS sampling and obviously, / 1P REff =  assuming 
( 1) ( );N n N n− + ≈ −  note that this assumption holds 
when N  is sufficiently large and 0/ 1.n N f< <  

Observe that substituting 2
PPS (1 )xn n CV= +  into (12) 

leads to about the same outcome as (3) and (10) with PPSn  
instead of .n  Hence, when xCV = 1.5, randomized PPS 
sampling with sample size PPSn = 100 is as efficient as the 
ratio estimator from an SRS sample of size SRSn = 325. 
More generally, assuming that ( 1) / 1,n n− ≈  it is seen 
from (3), (10), and (12) that a ratio estimator from an SRS 
sample of size SRSn  is as efficient as a PPS sample of size 

PPSn  when 

                                    SRS PPS .zn n N= − ρ  (18) 

 
3.3 Efficiency of P̂PSY  for 1δ <  vs 1δ ≥   

Another special case is 1.δ =  From (16), 1 /z Nρ = −  
when 1.δ =  Subsequently, it follows from (14) that under 
model (15) 1

/ 1 ( ),P REff O N −= +  provided that /n N <  
0 1f <  as N → ∞  irrespective of the value of .xCV  

Furthermore, it can be shown that /P REff  is an increasing 
function of .δ  This is proven below in  Lemma 1. Hence, 
for 1δ <  the randomized PPS estimator is less efficient 
than the ratio estimator, while for 1δ >  the randomized 
PPS estimator is more efficient than the ratio estimator.    
Lemma 1. Let /P REff  and zρ  be defined by (14) and (16), 
respectively. If 2 0,xV >  then /P REff  is a monotonically 
increasing function of .δ   
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Proof. Write zρ  from (16) as a weighted mean of the 
(negative) iX   

( ) ,z i i
i U

u w X
∈

ρ = − δ = −∑  

where 
1

1 [Note that (2)].i
i x

ii U

X
w u

X

δ−

δ−
∈

= μ =
∑

 

Let i jX X> ( ),i j≠  and define ( ) as /i jh w wδ =  
1( / ) .i jX X δ−  Since ( )h δ  is increasing in ,δ  the weight of 

the larger iX  is increasing compared to that of jX  when δ  
is increasing. Hence, ( )u δ  is increasing and zρ  is de-
creasing in .δ  It suffices therefore to show that /P REff  is 
decreasing in .zρ  Writing (14) as  

/ 1
( ) ,

( 1)P R
z

N nEff
n−

− −
=
ρ + −

 

it is seen that /P REff  is decreasing in zρ  indeed. This 
concludes the proof.   
3.4 An alternative structure among the disturbances  

Finally, suppose the variance of the disturbances in (15) 
is of the form:  

2
1 2 1 2var( ) (0 , 1).i i ic X c X c cε = + < ≤  

See Kott (1988). For this case we obtain in analogy 
with (16) 

,z i i
i U

X
∈

ρ = − ω∑  

where 

2 1
1

,   and  /
(1 )

i
i

ii U

X
c c

X
∈

+ φ
ω = φ =

+ φ∑
 

when 0, 1/ .z Nϕ = ρ = −  Hence, when 2 0,c =  PPS 
sampling is only as efficient as the ordinary ratio estimator 
from SRS sampling. Along the same lines as the proof of 
Lemma 1, it can be shown that zρ  is decreasing in ϕ  while 

/P REff  is increasing in ϕ  Hence, for this case the ran-
domized PPS estimator is always more efficient than the 
ratio estimator when c2  is positive.   

4. An application to the Producer Price Index   
The Producer Price Index (PPI) in The Netherlands is 

based on about 2,500 commodity price indexes organized 
by type of product. The price index for a specific commod-
ity can be written as 

,i ii UY X Z
∈

= ∑  

where iZ  is the price change for that commodity of 
establishment i relative to the basic period while iX  is the 
relative sales of that commodity by establishment i  in the 
basic period (recall 1).iXΣ =   

In the example given here, we examine the price changes 
of 70 establishments for the commodity Basic Metal in 
December of 2005 relative to December of 2004; see Table 
1. We compare the variance of the ratio estimator from an 
SRS sample with the variance of the HT estimator from a 
randomized PPS sample when 9.n =  Applying (12) to 
these data gives ˆvar( ) 101.RY =  If the sample had been 
drawn with replacement the variance would have been 116. 
Applying (3) and (9) for a randomized PPS sample gives 

PPS,
ˆvar( )Y γ = 29.9. This outcome takes γ  into account and 

lies close to the result ( )
PPS

simV = 29.2 from a simulation 
experiment consisting of 80,000 randomized PPS samples 
of size 9n =  from the set of 70 establishments. Hence, 

/P REff = 3.5. Because formula (12) for ˆvar( )RY  is only 
asymptotically unbiased, we also carried out simulations 
evaluating the mean square error (MSE) and the bias of R̂Y  
resulting in ( )MSE sim

R = 108 and a relatively small bias of 
0.7. This confirms the conjecture that (12) gives an 
underestimation of the true variance; see Cochran (1977). 
Hence, for moderate samples the true value of /P REff  might 
be somewhat higher than (14) suggests. 

Furthermore, it is noteworthy that the simpler formula 
(10) for zρ  in combination with (3) gives almost the same 
result PPS

ˆvar( )Y = 30.7 even though 70N =  is not very 
large. The with replacement PPS variance would have been 
43.8. Hence, the variance reduction for randomized PPS 
sampling is more than 30% even though the sampling 
fraction /n N  is much smaller. According to (18), formula 
(12) with SRSn = 26 gives about the same outcome as (3) 
with PPSn = 9; note: 0.042.zρ = −  Hence, the sample sizes 
differ by a factor 2.9, which is more or less in line with the 
factor 2(1 ) 3.1xCV+ =  from subsection 3.2. This should 
not be surprising because the price changes and their 
variability hardly depend on the sizes of the company. 
Fitting a double log regression  

                      2ln ( ) lni i iZ Y X v− = α + β +  (19) 

results in the estimate β̂ = 0.07 for the data in Table 1; units 
with iZ Y=  should be omitted in the regression. The 
estimate β̂ = 0.07 corresponds with δ̂ = 2.07 for the 
disturbances in (15) which explains the superiority of 
randomized PPS sampling for this type of data. Also for 
other commodities δ̂  often was about 2; see Enthoven 
(2007). 
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Table 1 
Price changes ( )iZ  and sizes ( )iX  of 70 establishments  
 

i price change size i price change size
1 -18.4% 0.0608 36 34.8% 0.0427
2 -16.0% 0.0784 37 13.1% 0.0121
3 3.3% 0.0762 38 31.7% 0.0351
4 12.5% 0.0100 39 -24.8% 0.0074
5 0.0% 0.0029 40 55.3% 0.0009
6 8.3% 0.0006 41 40.5% 0.0066
7 -39.0% 0.0182 42 34.6% 0.0022
8 -25.1% 0.0020 43 1.7% 0.0001
9 1.1% 0.0040 44 0.0% 0.0039

10 4.4% 0.0066 45 3.9% 0.0304
11 -4.9% 0.0039 46 25.4% 0.0209
12 -8.9% 0.0070 47 25.6% 0.0062
13 -7.0% 0.0148 48 0.0% 0.0033
14 -15.0% 0.0108 49 -0.3% 0.0019
15 -10.7% 0.0087 50 66.6% 0.0346
16 -9.0% 0.1079 51 0.0% 0.0039
17 -11.3% 0.0247 52 -2.9% 0.0007
18 10.6% 0.0024 53 15.8% 0.0011
19 -23.2% 0.0001 54 0.0% 0.0026
20 -25.4% 0.0001 55 0.0% 0.0018
21 -80.7% 0.0002 56 11.6% 0.0057
22 13.4% 0.0005 57 0.0% 0.0042
23 -42.5% 0.0010 58 0.0% 0.0236
24 -34.8% 0.0014 59 -1.5% 0.0015
25 -30.0% 0.0126 60 0.0% 0.0003
26 8.0% 0.0530 61 11.7% 0.0067
27 0.0% 0.0208 62 0.0% 0.0012
28 2.1% 0.0119 63 0.8% 0.0040
29 11.3% 0.0208 64 2.0% 0.0009
30 0.7% 0.0322 65 2.3% 0.0018
31 9.5% 0.0447 66 4.7% 0.0026
32 11.5% 0.0018 67 0.9% 0.0064
33 5.8% 0.0174 68 -1.0% 0.0309
34 -6.9% 0.0197 69 -0.5% 0.0005
35 0.0% 0.0124 70 0.0% 0.0006

 
 

We conclude this section with a small example showing 
that randomized PPS is not always better than the ratio 
estimator. Although the data in Table 2 for a population of 
five units are artificial, a data pattern like this may occur in 
financial branches where very small financial companies 
may grow very fast with respect to certain financial vari-
ables. This high variability among growth rates of small 
companies results in a low value for .δ  For an SRS sample 
with 2n =  from the five units in Table 2 the variance of 
the ratio estimator is 211 according to (12); simulations give 

( )MSE sim
R = 323. This is much less than the variance of 557 

found in a simulation consisting of 80,000 randomized PPS 
samples of size 2.n =  Formula (3) in combination with (9) 
gives the same outcome: 557. This would also be the correct 
variance had sample been drawn according to Brewer 

(1963a) or Durbin (1967). Formula (11), based on (10), 
gives a slightly different value, 556.  

Regression (19) with the data from Table 2 yields 
ˆ 3.0,β = −  and hence ˆ 1.0.δ = −  In line with the findings 
of subsection 3.3 this low value ˆ 1.0δ = −  explains why 

PPSŶ  is less efficient than R̂Y  in this example. Moreover, the 
ordinary direct estimator sN y  from an SRS sample has a 
variance of 356, which is even smaller here than the 
variance in randomized PPS sampling; sy  being the sample 
mean of the .iY  Hence, for this type of data, the ratio 
estimator is the best option. Recall that the ratio estimator 
has a smaller variance than sN y when /2b Y X>  where 
b  is the slope of a regression from iY  on iX  and a constant 
( 1, ..., );i N=  see Knottnerus (2003, page 117). So the data 

( )i i iY X Z=  in Table 2 certainly do not exhibit a flat trend. 
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Table 2 
Growth rates of assets ( )iZ  and sizes ( )iX  of 5 establishments  
 

i growth rate size 
1 200% 0.0455 
2 33% 0.1364 
3 75% 0.1818 
4 33% 0.2727 
5 62% 0.3636  

5. Summary  
This paper compares the variance of the HT estimator 

PPSŶ  from a randomized PPS sample with the variance of 
the classical ratio estimator R̂Y  from an SRS sample of the 
same size. In this comparison the sampling autocorrelation 
coefficient zρ  plays an important role.  

When the data pattern of the variables x and ( / )z y x=  
is such that 1 / ( 1),z Nρ < − −  it can be shown under mild 
conditions that PPSŶ  is more efficient than R̂Y  for suffi-
ciently large n  and ,N  provided that iX  and iZ  are uncor-
related. Under model (15) with 2 2( )i iE X δε = σ  it holds that 

1/ ( 1)z Nρ < − −  when 1.δ >  Hence, for this type of data 
PPSŶ  is to be preferred. Moreover, it emerges from (14) and 

(16) that for 2δ =  the relative efficiency of PPS sampling 
compared to that of the ratio estimator is increasing when 

xCV  is increasing. In addition, R̂Y  is to be preferred when 
the data correspond to a model with 1.δ <  These findings 
are confirmed empirically with a simulation study using two 
different data sets. When model (15) is not applicable, the 
relative efficiency of PPSŶ  is given by (14) provided n  is 
large and N  is relatively larger. In practice the unknown 

zρ  in (14) is replaced by 9ˆ .zρ  The fact that n N<<  does 
not necessarily mean that the factor ( 1) zn − ρ  in (3) is 
always negligible.   
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Appendix A 
 

A counterexample   
Equations (5) and (7) cannot always be used for 

randomized PPS sampling when n  and N  are of the same 

order while iX  and iZ  are correlated. To see that, consider 
a population U  consisting of two groups 1U  and 2U  with 
means 1Y  and 2,Y  respectively. Both stratum sizes are 

/2.N  Let s  be a randomized PPS sample of size n =  
3 /4N  from the whole population .U  Let the iX  be such 
that  

1

2

1 if

0.5 if .i i

i U
nX

i U

∈⎧⎪π = = ⎨
∈⎪⎩

 

Obviously, group 1 does not contribute to the variance. The 
selected units in s  from 2U  constitute an ordinary SRS 
sample of size /4.N  Hence, for randomized PPS sampling 
the correct variance formula in this example is  

2 22
2 2

PPS
1ˆvar( ) 1 ,

2 2 / 4 2
y yS NSNY

N
⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and 

2

2 2
2 2 2

2 ( ) .
2y ii US Y Y

N ∈
= −

− ∑  

However, approximation (11) gives an entirely different, 
larger outcome unless 1 22 .Y Y=   
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The use of estimating equations to 
perform a calibration on complex parameters 

Éric Lesage 1 

Abstract 
In the calibration method proposed by Deville and Särndal (1992), the calibration equations take only exact estimates of 
auxiliary variable totals into account. This article examines other parameters besides totals for calibration. Parameters that 
are considered complex include the ratio, median or variance of auxiliary variables. 
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1. Introduction  
In survey statistics, two main approaches are used in the 

estimation phase: “model-assisted” estimators (such as the 
regression estimator or the ratio estimator) and calibration 
estimators (such as the raking ratio), proposed by Deville and 
Särndal (1992). The two approaches are somewhat similar, 
as shown by the regression estimator, which is the same as 
the calibration estimator with the 2χ  distance (“linear” 
calibration method). 

The purpose of this article is to expand the family of 
calibration estimators. With the current method, calibration 
can be performed on totals. The idea is to be able to take 
into account the calibration constraints of complex para-
meters or statistics such as a ratio, a median or a geometric 
mean. The reason for doing this is that auxiliary information 
may consist of a complex statistic rather than totals. For 
example, a ratio relative to the total population might be 
known, but not the total in the numerator or denominator. 

The issue of complex parameters in calibrations has been 
discussed in the literature. Särndal (2007) reviewed a 
number of them, in particular the work of Harms and 
Duchesne (2006) on the calibration estimation of quantiles, 
and the work of Krapavickaite and Plikusas (2005) on 
calibration estimators of certain functions of totals. 

The originality of the approach in this article is that it 
reduces calibration on a complex parameter to calibration on 
a total for a new ad hoc auxiliary variable. The advantage of 
this approach is that current calibration tools can be used 
and that there is no need to solve a complex optimization 
program. 

In section 2 of the article, we review how the calibration 
method works, define calibration on complex parameters 
and describe simple cases in which calibration on a complex 
parameter can be reduced to calibration on a total. In 
section 3, we focus on parameters that can be defined as a 
solution to an estimating equation (Godambe and 
Thompson 1986). We introduce the concept of calibration 

on a complex parameter defined by an estimating equation 
and show that the resulting calibration equation can be 
replaced with an equation for calibration on a total. 

 
2. A complex parameter  

       defined as a function of totals  
2.1 Review of calibration on totals  

Let U  be a finite population of size N. The statistical 
units of the population are indexed by a label k, where 

{1, , }.k N∈ …  A sample s is selected using sample plan 
( ).p s  Its size is denoted n and may be random. Let kπ  be 

the probability that k is included in sample s, and let 
1 /k kd = π  be its sampling weight. 

For any variable z that takes the values kz  for the units in 
U indexed by k, the sum k Uz kt z∈∑=  is referred to as the 
total of z over U. 

Let y(1),…, y(Q) be Q variables of interest, whose values 
are known only for sample s, and let θy be the parameter of 
interest that is a function of the totals (1) ( ), , :Qy yt t…  

(1) ( )( , , ).Qy yf t tθ =y …  

The estimator of θy is 

(1) ( ), , ,
ˆ ˆ ˆ( , , ).Qy yf t tπ π π
θ =y …  

It is simply the function ( , ..., )f ⋅ ⋅  with totals ( )qyt  
replaced by their Horvitz-Thompson estimator ( ),

ˆ qyt π
=  

( )q
k s k kd y∈∑  (Särndal, Swensson and Wretman 1992). This 

estimator can be described as a substitution estimator. 
Let x(1),…, x(P) be P auxiliary variables known on s, and 

let (1) ( ), ..., Px xt t  be the totals on U for those auxiliary 
variables, also known. For an individual k, the vector of 
values taken by the auxiliary variables on k is denoted 

(1) ( )= ( , ..., ).P
k k kx x′x  
The calibration estimator of θy is 
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(1) ( ),CAL ,CAL , CAL
ˆ ˆ ˆ( , , )Qy yf t tθ =y …  

with ( )
( )

, CAL
ˆ ,q

q
k s k kyt w y∈∑=  and a series of weights 

( ){ } ,k k sw ∈  known as calibration weights (which should be 
denoted ( ),kw s  since they depend on the sampling), 
obtained by solving the following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 

(1) (1)

( ) ( )

,CAL

,CAL

ˆ =

ˆ =P P

x x

x x

t t

t t

⎧
⎪⎪
⎨
⎪
⎪⎩

…  

( , )d ⋅ ⋅  is a pseudo-distance, i.e., a function that measures the 
difference between the calibration weight and the sampling 
weight (unlike a difference, a pseudo-distance is not neces-
sarily symmetrical on its two arguments). The program is 
solved with a Lagrangian. When the distance used is the 

2χ  distance (i.e., 2( , ) (1 /2) ( ) / ),k k k k kd w d w d d= −  the 
solution is kw =  (1 )k kd ′+ λx  (where λ  is a P-vector of 
Lagrange multipliers).  
2.2 Calibration on a complex parameter xη   
Definition 1: Let (1) ( ), , Px x…  be P auxiliary variables 
known on s, and let (1) ( )= ( , ..., )Px xg t tηx  be a complex 
parameter, a function of the totals of those auxiliary 
variables, also known. 

In the case of calibration on the complex parameter ,ηx  
the calibration weights are obtained by solving the 
following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 
(1) ( ),CAL ,CAL , CAL

ˆ ˆˆ ( , , ) .Px xg t tη = = ηx x…  

The totals ( )qxt  do not have to be known, but the complex 
parameter ηx  does. 

Consider the example of the ratio 

(1)

(2)

(1)

(2) .kx k U

kx k U

xt
R

t x
∈

∈

= = ∑
∑x  

The calibration estimator of Rx is of the form 
(1)

,CAL (2)
ˆ .k kk s

k kk s

w x
R

w x
∈

∈

= ∑
∑x  

 

The calibration equation in the case of calibration on a 
ratio is 

(1)

,CAL (2)
ˆ k kk s

k kk s

w x
R R

w x
∈

∈

= =∑
∑x x  

Rx  is known auxiliary information, as the total of the 
auxiliary variables usually is. This scenario may occur when 
we have proportions that are well known and stable over 
time, for example, but the specific totals in the numerator 
and denominator are not known. 

We described the case of calibration on a single complex 
parameter, but it is clearly a simple matter to calibrate on 
more than one complex parameter. In that case, there are as 
many constraints as calibration parameters.  
2.3 Simple cases where calibration on a complex 

parameter can be reduced to calibration on a 
total  

It is not easy to determine from the outset whether an 
equation for calibration on a complex parameter can be 
written in the form of an equation for calibration on a total. 
In other words, it is not always a trivial matter to find a 
“new” auxiliary variable z, associated with the complex 
parameter, on whose total we can calibrate. 

For example, that is quite straightforward for all 
moments of an auxiliary variable x (it is assumed that under 
the sampling plan, the population size N can be estimated 
exactly). If 1

m
m

k U kx N x−
∈∑μ =  is auxiliary information, we 

can simply take /m
k kz x N=  and calibrate on :mxμ  

/ .m
m

k s k k xw x N∈∑ = μ  
If we want to calibrate on the variance and the mean of 

variable x with xμ  and 2
xσ  as auxiliary information, we can 

use the two new auxiliary variables 
(1) k
k

x
z

N
=  

and 
2

(2) ( )
.k x

k
x

z
N
− μ

=  

On the other hand, if we do not know ,xμ  but we have 
2
xσ  in the auxiliary information and we want to calibrate on 

that variance, things become more complicated. We can see 
this if we write the substitution estimator of 2

xσ  (where the 
sampling plan allows the population size N to be estimated 
exactly): 

2

2
,CAL

1ˆ .l ll s
x k k

k s

w x
w x

N N
∈

∈

⎛ ⎞⎛ ⎞
σ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑  

Finding a new auxiliary variable z is not straightforward, 
since the initial calibration equation is not linear relative to 
the weight vector. We will return to the variance case in 
section 3.3 below.  
Ratio example  
Proposition 1: Calibration on a ratio is equivalent to 
calibration on the total of the new auxiliary variable: kz =  

(1) (2) .k kx R x− x  
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The calibration equation is written 

,CALˆ = = 0.z zt t  

Proof: 

(1) ( 2) (1) (2)

(1)

( 2)

,CAL

(1) (2) (1) (2)

, CAL , CAL , CAL , CAL

, CAL

, CAL

ˆ =

( ) = ( )

ˆ ˆ = = 0

ˆ
=

ˆ

z z

k k k k k
k s k U

x x x x

x

x

t t

w x R x x R x

t R t t R t

t
R

t

∈ ∈

⇔ − −

⇔ − −

⇔

∑ ∑x x

x x

x

 

i.e., ,CAL
ˆ .R R=x x   

Function of a ratio of linear combinations of totals  
Let ηx  be a complex parameter that is a bijective 

function of a ratio of linear combinations of totals: 

= h
′⎛ ⎞α ⋅

η ⎜ ⎟′β ⋅⎝ ⎠
x

x
x

t
t

 (1) 

with 1= ( , ..., )P′α α α  and 1= ( , ..., )P′β β β  being vectors of 
real coefficients of size P, and (1) ( )( , , ).Px xt t′ =xt …   
Proposition 2: Performing a calibration on complex 
parameter ηx  defined by function (1) is equivalent to 
calibrating on the total of the new auxiliary variable: 

1= ( ( ) )kz h−′ ′α − η β ⋅x kx  

with calibration equation 

,CALˆ = = 0.z k k z
k s

t w z t
∈

=∑  

 
Proof: 

,CAL

1

1

1

ˆ
ˆ = =ˆ

ˆ
= ( )ˆ

ˆ( ( ) ) = 0

( ( ) ) = 0.k
k s

h

h

h

w h

−

−

−

∈

′⎛ ⎞α ⋅
η η ⇔ η⎜ ⎟⎜ ⎟′β ⋅⎝ ⎠

′α ⋅
⇔ η

′β ⋅

′ ′⇔ α − η β ⋅

′ ′⇔ α − η β ⋅∑

x,CAL
x x x

x,CAL

x,CAL
x

x,CAL

x x,CAL

x k

t
t

t
t

t

x

 

Consider the example of the geometric mean: 
1/

Geo, = .
N

k
k U

x
∈

⎛ ⎞
μ ⎜ ⎟

⎝ ⎠
∏x  

 

This expression can be rewritten as 

Geo,

ln( )
= exp .

1
kk U

k U

x
∈

∈

⎛ ⎞
μ ⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∑x  

We denote (1) (2)= ( , ) = (ln( ),1), = (1, 0),k k k kx x x′ ′αx  ′β =  
(0,1)  and 11( ) = ( ) = ln( ).exph u u u−−  

Hence, the new auxiliary variable is 

Geo,= ln( ) ln( ) 1.k kz x − μ ⋅x  

We will see later in the article that the estimating 
equations method provides another approach to displaying 
the new auxiliary variable(s) z.  

3. Parameter defined by an estimating equation  
3.1 Estimating with an estimating equation  

Certain parameters θy are defined, or can be defined, as 
the solution to an implicit function known as the estimating 
equation on U (Godambe and Thompson 1986), i.e.: 

( , ) = 0k
k U∈

Φ θ∑ y y  

with (1) ( )= ( ,..., )Q
k k ky y′y  being the vector of values taken 

by the variables of interest for individual k. 
In this context, an estimator of θy  is defined for sample 

s, denoted , ,
ˆ ,ee πθy  which is the solution of the estimating 

equation on s (see in particular Hidiroglou, Rao and Yung 
2002): 

, ,
ˆ( , ) = 0.k ee k

k s
d π

∈

Φ θ∑ y y  

 
Table 1 
Examples of parameters defined by estimating equations on U 
 

Parameter y( ,y )Φ θ k  Estimating equation on U 

mean μ  ( )k − μy  ( ) 0kk U y∈ − μ =∑  

ratio 1 2/R = μ μ  (1) (2)( )k ky R y−  (1) (2)( ) 0k U k ky Ry∈ − =∑  

median m (1 1 / 2)
ky m≤ −  (1 1 / 2) 0

ky mk U ≤∈ − =∑   
Consider also the example of the coefficient of a logistic 

regression. Let (1)y  be a dichotomous variable that takes the 
values 0 and 1 on U, and let (2)y  be a quantitative variable. 
The value (1)

ky  taken by (1)y  for unit k is assumed to be an 
instance of the random variable (1)

kY , which has a Bernoulli 
distribution 

(2)
0

11, = .
1 exp( )k

k

p
y

⎛ ⎞
⎜ ⎟

+ −β⎝ ⎠
B  
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We have limited the number of parameters to one, but it 
would be just as simple to consider the multidimensional 
case. However, we should provide a definition of the 
estimating equations that take the case of the vector para-
meters into account. 

The parameter of interest to us is the estimator of 0,β  
denoted ,β  calculated on the finite population by the 
maximum likelihood method. The estimating equation of β  
on U will be the maximum likelihood equation. The log-
likelihood in the case of Bernoulli variables is 

(1) (1)( ) = ln( ) (1 ) ln(1 ).k k k k
k U k U

y p y p
∈ ∈

β + − −∑ ∑L  

It is easy to derive the estimating equation of β  on U: 

(2) (1)
(2)

1 = 0.
1 exp( )k k

k U k

y y
y∈

⎛ ⎞
−⎜ ⎟

+ −β⎝ ⎠
∑  

The estimating equation on s which defines the estimator 
,

ˆ
ee πβ  on the basis of the sampling weights is 

(2) (1)
(2)

,

1 = 0.ˆ1 exp( )k k k
k s ee k

d y y
y∈ π

⎛ ⎞
−⎜ ⎟⎜ ⎟+ −β⎝ ⎠

∑  

The estimating equation is not linear in the parameter; 
,

ˆ
ee πβ  cannot be expressed as a simple function of the 

observations. 
The logistic regression example is very interesting 

because it shows that we do not need to know ,
ˆ

ee πβ  to 
perform the calibration. We will see in the next subsection 
that we only need to know the generic term of the esti-
mating equation on 

(2) (1)
(2)

1, ( , ) = ,
1 exp( )k k k

k

U y y
y

⎛ ⎞
Φ β −⎜ ⎟

+ −β⎝ ⎠
y  

for all .k s∈   
3.2 Calibration in the case of parameters defined by 

estimating equations  
Let x′k = (x(1), …, x(P)) be the vector of  P  known auxiliary 

variables on s, and let ηx  be a complex parameter, also 
known, defined by the estimating equation 

( , ) = 0.k
k U∈

Ψ η∑ x x  

Definition 2: In the case of calibration on the complex 
parameter ,ηx  the calibration weights are obtained by 
solving the following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 
( , ) = 0.k k

k s
w

∈

Ψ η∑ x x  

Proposition 3: Calibration on a complex parameter ,ηx  
defined by an estimating equation, is equivalent to a 
calibration on the total of the new auxiliary variable: kz =  

( , ),kΨ ηx x  with the calibration constraint 0.k s k kw z∈∑ =   
Definition 3: A calibration estimator of the parameter of 
interest ,θy  denoted , ,CAL

ˆ ,eeθy  is a solution to the 
estimating equation on s weighted by the calibration 
weights ( ){ } :k k sw ∈  

, ,CAL
ˆ( , ) = 0.k ee k

k s
w

∈

Φ θ∑ y y  

In most cases, the solution to the estimating equation is 
unique. The median is an example of a parameter for which 
there may be more than one solution. In this case, the 
infimum is often used as an estimator.  
Proposition 4: If there is only one solution to the equation 

, ,CALˆ( , ) 0,k s k ee kw∈∑ Ψ η =x x  then 

, ,CALˆ = .eeη ηx x  

Proof: ηx  is a solution to the estimating equation that 
defines , ,CALˆ .eeηx  Since there is a unique solution, we have 

, ,CALˆ .eeη = ηx x   
3.3 Calibration on a variance  

In this section, we examine calibration on variance 2,xσ  
which is a more complicated complex parameter than those 
discussed above. We will show that when the variance is the 
only auxiliary information we have, we can perform an 
approximate calibration that produces calibration weights 
that have better properties than the sampling weights. 

Back to the variance case. The mean xμ  and the variance 
2
xσ  on U of auxiliary variable x can be defined by two 

estimating equations on U: 

2 2

( ) 0 (2)

(( ) ) 0. (3)

k x
k U

k x x
k U

x

x

∈

∈

⎧ − μ =
⎪⎪
⎨
⎪ − μ − σ =
⎪⎩

∑

∑
 

If we know the two parameters, calibrating on them is 
easy, since we merely have to calibrate on the totals of the 
two new auxiliary variables (1)

xz x= − μ  and (2)z =  
2 2( ) .x xx − μ − σ  

On the other hand, if we consider the textbook case 
where the mean xμ  is not known, the parameter 2

xσ  cannot 
be defined by a unique estimating equation. If we replace 

xμ  with its explicit definition 

=
1
ll U

x
j U

x
∈

∈

μ ∑
∑
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in equation (3), we obtain the equation 

2

2 = 0,
1
ll U

k x
k U j U

x
x ∈

∈ ∈

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟− − σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ ∑
 

which cannot be written in the form of an estimating 
equation: 2( , ) 0.k U x kx∈∑ Ψ σ =  

xμ  thus becomes a nuisance parameter (Binder 1991). 
To overcome this difficulty, we can replace it in equation 
(3) with its substitution estimator: , ,

ˆˆˆ / ,x xt Nπ π πμ =  with 
ˆ 1k s kN d∈π ∑=  being the Horvitz-Thompson estimator of 

the size of population U. This leads to the “approximate” 
calibration equation 

 
2

, 2
ˆ

= 0.ˆ
x

k k x
k s

t
w x

N
π

∈ π

⎛ ⎞⎛ ⎞⎜ ⎟− − σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  (4) 

Proposition 5: With estimating equation (4), calibration on 
the variance is not perfect, and we have 

 
2

, ,CAL2 2
, ,CAL

CAL

ˆ ˆ
ˆ = .ˆ ˆ

x x
x ee x

t t
N N

π

π

⎛ ⎞
σ σ − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

Proof: 
 

• The “approximate” calibration equation is equation (4).  
• The definition of the parameters’ calibration estimators: 

, ,CAL

2 2
, ,CAL , ,CAL

ˆ( ) = 0

ˆ ˆ(( ) ) = 0.

k k x ee
k s

k k x ee x ee
k s

w x

w x

∈

∈

⎧ − μ
⎪⎪
⎨
⎪ − μ − σ
⎪⎩

∑

∑
 

This can be rewritten 

,CAL
, ,CAL

CAL

2
, 2

, ,CAL
CAL

ˆ
ˆ = = ˆ

ˆ
ˆ = 0.ˆ

k k xk s
x ee

kk s

x CAL
k k x ee

k s

w x t
w N

t
w x

N

∈

∈

∈

⎧
μ⎪
⎪⎪
⎨ ⎛ ⎞⎛ ⎞⎪ ⎜ ⎟− − σ⎜ ⎟⎪ ⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

∑
∑

∑
 

• If we subtract the second estimating equation from the 
approximate calibration equation, we get 

22
, ,CAL 2 2

, ,CAL
CAL

ˆ ˆ
ˆ = 0.ˆ ˆ

x x
k k k x x ee

k s

t t
w x x

N N
π

∈

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟− − − − σ + σ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  

Using the identity 2 2 ( )( ),a b a b a b− = − +  we have 

,CAL , , ,CAL

CAL CAL

2 2
CAL , ,CAL

,CAL , , ,CAL

CAL CAL

2 2
CAL , ,CAL

,CA

ˆ ˆ ˆ ˆ
2ˆ ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ ˆ ˆ ˆ
2ˆ ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ

x x x x
k k

k s

x x ee

x x x x
k k

k s

x x ee

x

t t t t
w x

N N N N

N

t t t t
w x

N N N N

N

t

π π

∈ π π

π π

∈π π

⎛ ⎞⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

− σ − σ

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− σ − σ

∑

∑

L , ,
,CAL CAL ,CAL

CAL

2 2
CAL , ,CAL

2
,CAL , 2 2

CAL CAL , ,CAL
CAL

ˆ ˆ ˆˆ ˆ2ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ ˆˆ ˆ ˆ( ) = 0.ˆ ˆ

x x
x x

x x ee

x x
x x ee

t t
t N t

N N N

N

t t
N N

N N

π π

π π

π

π

⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

− σ − σ

⎛ ⎞
− − σ − σ⎜ ⎟⎜ ⎟

⎝ ⎠

 

This is the same as the expression for 2
, ,CALˆ x eeσ  in 

equation (5). 
 
This result is interesting because, without an exact 

calibration, we have a calibration estimator of 2
xσ  that is 

asymptotically more precise than the substitution estimator 
2

,ˆ .x πσ  That is, if we resort to the asymptotic framework 
typically used in surveys and employ linearization of 
complex estimators (Deville 1999), we have 

2 2
,

1ˆ =x x pO
nπ

⎛ ⎞σ − σ ⎜ ⎟
⎝ ⎠

 

and 

, ,CAL2 2 1/2
, ,CAL

CAL

ˆ ˆ 1ˆ( ) = = .ˆ ˆ
x x

x ee x p
t t

O
nN N

π

π

⎛ ⎞ ⎛ ⎞σ − σ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

This yields 

2 2
, ,CAL

1ˆ = .x ee x pO
n

⎛ ⎞σ − σ ⎜ ⎟
⎝ ⎠

 

 
4. Conclusion  

In this article, we presented a simple method of 
performing a calibration in cases where the auxiliary 
information takes the form of a complex parameter. That 
method is based on the concept of the estimating equation. 
Its major advantage is that it can be used with current 
calibration software. 
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In future research, it would be interesting to determine 
the practical cases in which the use of complex parameters 
in the calibration improves the precision of the parameters 
of interest.  
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