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Evidence functions: a compositional approach
to information

J.J. Egozcue1 and V. Pawlowsky-Glahn2

Abstract

The discrete case of Bayes’ formula is considered the paradigm of information acquisition. Prior
and posterior probability functions, as well as likelihood functions, called evidence functions, are
compositions following the Aitchison geometry of the simplex, and have thus vector character.
Bayes’ formula becomes a vector addition. The Aitchison norm of an evidence function is intro-
duced as a scalar measurement of information. A fictitious fire scenario serves as illustration. Two
different inspections of affected houses are considered. Two questions are addressed: (a) which
is the information provided by the outcomes of inspections, and (b) which is the most informative
inspection.
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1. Introduction

Each summer fires in forests and suburban areas affect houses, industries, and the whole
environment. When this occurs, authorities need to get a quick diagnostic of damages,
both for mitigation of effects, evaluation of economic costs and, especially, for evacua-
tion of population from houses and planning of further actions. Airborne photography
and visual inspection of houses are emergency means to classify houses into categories,
usually corresponding to (a) buildings that can be reoccupied by the previously evacu-
ated people, (b) buildings that require some repairs, (c) buildings that are largely dam-
aged or (d) buildings that are collapsed. The impact of such diagnostics is critical, as the
damnified population can or cannot recover their homes, do or do not receive economic
compensations, depending on the result of the inspection. Typical questions are: How
uncertain/informative are the results of an inspection? Which type of inspection is more
reliable? What is the amount of information after inspections? These questions are
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related to the quantification of information provided by an experiment (inspections) and,
therefore, should be answered by the statistical theory of information.
The above scenario of fires is not the only one where the questions on information

provided by experiments are relevant. A very similar situation corresponds to many
hazardous situations like earthquakes, floods, hurricanes, terrorist attacks... Also, clinic
diagnostic of deseases, military actions or, in general, operational decisions under un-
certainty correspond to the same type of scenario, which can be modelled as a collection
of uncertain states or events, frequently assumed non-overlapping, to which some prior
probabilities describing uncertainty on the true event are assigned; then, one or more
experiments (diagnostic tests, inspections) are carried out, trying to reduce uncertainty;
finally, after the results of the experiments, the updating of the probabilities (posterior
probabilities) may allow to use the information available in decision making schemes.
This scheme has been well known for decades, and still maintains its validity (e.g. Ben-
jamin and Cornell, 1960).
The previous questions have been addressed from different points of view in in-

formation theory, specially following the line proposed by Lindley (1956). However,
information theory was born from the study of coding and communication (Shannon,
1948, Shannon and Weaver, 1949, McMillan, 1953) and built on an early contribution
by Hartley (1928), where logarithms of probabilities were identified as a measure of
information. The initial development of the theory in the framework of communica-
tions and its particular syntaxis may be the reason why the statistical theory of informa-
tion was developed some years later (e.g. Kullback and Leibler, 1951a, Kullback, 1997,
Lindley, 1956, Khinchin, 1957, Ash, 1990). In medicine, diagnostic tests were studied,
for instance, by Aitchison and Kay (1975) (see also Aitchison, Kay and Lauder, 2005).
The statistical theory of information is directly related to the concept of entropy. This

is viewed as an average of measures of uncertainty (Shannon, 1948, McMillan, 1953)
which is common to all branches of information theory. More rarely, information ac-
quisition is linked to the Bayes’ formula (Lindley, 1956) and its extensions, for example
Dempster’s rule in the theory of beliefs (Yager and Liu, 2008).
The aim of the present contribution is rethinking the bases of information theory

from the point of view of compositional data analysis (Aitchison, 1986, Pawlowsky-
Glahn and Buccianti, 2011, Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015).
For completeness, Appendix A is a summary of Aitchison geometry for compositions,
introducing notation and basic tools used. The main proposal is that information is a vec-
tor magnitude identified as a composition. These compositions are here called evidence
functions, e-functions for short, and include traditional (discrete) probability functions
and also likelihood functions. The Aitchison norm of e-functions as compositions (see
Appendix A) is used as a scalar measure of information called e-information. This is in
contrast to Shannon information and its related magnitudes, which were developed as
scalar measures of information. Other points which are relevant to this proposal are:

• The Bayes’ formula (discrete case) is the paradigm of information acquisition;
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• The Bayes’ formula is a vector additive Abelian group operation in the simplex
endowed with the Aitchison geometry;

• Discrete probability functions (prior, posterior) and discrete likelihood functions
are compositions and, consequently, they share the same properties.

Section 2 reviews concepts of compositional geometry and identifies evidence func-
tions involved in Bayesian updating as compositions (see also Appendix A). Section 3
introduces a scalar measure of information, namely the Aitchison norm of an evidence
function. Its properties characterize it as a proper measure of information. Section 4 dis-
cusses the acquisition of information through a fictitious fire scenario and inspections of
affected houses.

2. Bayes theorem, evidence functions and compositions

Consider the fire scenario in which a number of isolated, but close, houses have been
affected. It is assumed that these houses can be in D = 4 states, denoted Ai, i =
1,2, . . . ,D, which can be identified with service or no damage (Nod), moderate dam-
age (Mod), severe damage (Sev) and ruin or collapse (Col). These states are assumed
non-overlapping. Based on previous urban studies, there is a perception that, after the
fire, most houses will remain in service (80%) or with little damage (15%), meanwhile
some of them will be largely damaged (4%) or in ruin (1%). In the Bayesian termi-
nology, the vector of probabilities p= (p1, . . . , pD) = (0.80,0.15,0.04,0.01), is known
as prior or initial probabilities (this prior is reported in Table 1 as p(1)). The vector p
is a composition. In fact, expressed as proportions or as percentages, the information
is exactly the same; in particular, ratios between components remain the same. More-
over, the set of odds obtained by the ratios between components contains all the relative
information and could be used to retrieve the numerical value of p. These simple fea-
tures characterize p as a D-part composition. The fact that the relative information
contained in p remains unaltered when it is multiplied by a positive constant corre-
sponds to the scale invariance principle of compositional data, and to its consequence,
namely that the relative information is provided by the ratios of components (Aitchison,
1986, 1994). More recently, compositional equivalence has been defined as the con-
dition that vectors of positive components which are proportional are compositionally
equivalent (Barceló-Vidal and Martı́n-Fernández, 2016, Pawlowsky-Glahn et al., 2015,
Barceló-Vidal, Martı́n-Fernández and Pawlowsky-Glahn, 2001). The generated equiva-
lence classes can always be represented in a unitary D-part simplex, denoted SD, so that
the sum of the parts is one, as in the usual normalization of probability. For simplic-
ity, the projection of a non-normalized composition onto SD is denoted by the closure
operator C .
Frequently, only some parts of the vector p are considered. For instance, only repara-

ble buildings, i.e. only the three first parts, are taken into account. This restriction is
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a subcomposition. A subcomposition like C (p1, p2, p3) corresponds to a conditional
probability vector (p1/pc, p2/pc, p3/pc) with pc = p1+ p2+ p3. This suggests that the
identification of vectors of probabilities with compositions is natural.
Returning to the fire scenario, assume that a visual inspection of affected houses has

been devised. The inspectors, after a quick visit of a building, decide to assign a color
code according to their perception: green for service or no damage, orange for moderate
damage, red for severe damage, and black for ruin or collapse. Obviously, this kind of
assessment is quite uncertain, and the color codes do not correspond exactly to the real
state of the building. Let R be the result of an inspection (e.g. orange: moderate damage
in a visual inspection). For each possible result R, the conditional probabilities qi =
Pr(R|Ai), i = 1,2, . . . ,D, characterize the experiment. In fact, the likelihood function
associated with R, q= (q1,q2, . . . ,qD), allows to apply Bayes’ formula to obtain final or
posterior probabilities f= ( f1, f2, . . . , fD) as

f=C · (p1q1, p2q2, . . . , pDqD) , C =
1

Pr(R)
=

(
D∑
k=1

pkqk

)−1
, (1)

with p the vector of prior probabilities. This expression of the final probabilities, af-
ter the observation of R, matches exactly the definition of perturbation in the simplex,
as pointed out by Aitchison (1986). Perturbation is an Abelian group operation in the
simplex, and it is the addition in the Aitchison geometry for compositions (Pawlowsky-
Glahn and Egozcue, 2001, Pawlowsky-Glahn et al., 2015), that is, Bayesian updating is
a shift of the prior probabilities to the final probabilities by the likelihood. The simplex
S
D, endowed with perturbation (⊕, group operation), powering (�, external multiplica-
tion) and Aitchison inner product, is a (D−1)-dimensional Euclidean space (Billheimer,
Guttorp and Fagan, 2001, Pawlowsky-Glahn and Egozcue, 2001) (see Appendix A for
detailed definitions). Therefore, denoting perturbation by ⊕, the Bayes formula is sim-
ply

f= p⊕q , (2)

where no reference to the normalizing constant is necessary due to the compositional
equivalence. Commonly, it is assumed that the difference between vectors of proba-
bilities (initial or prior, final or posterior) and the likelihood function is that the latter
is not normalized. The three symbols p, q and f are considered as compositions: in
fact, the normalization of probabilities is irrelevant and the likelihood principle (Birn-
baum, 1962), preconizes equal inferences for proportional likelihood functions, thus the
likelihood itself is a composition.
The standard information theory (e.g. Gray, 2011), assigns a measure of uncertainty

to a vector of probabilities called (Shannon) entropy,

HS(p) =−
D∑
i=1

pi log pi . (3)
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The terms log(1/pi), i = 1,2 . . . ,D, were proposed by Hartley (1928) as information
provided by the observation of the event Ai. Defining a random variable which takes the
values log(1/pi) with probability pi, Equation 3 is the mean of such random variable.
Then, within the framework of the standard information theory, differences of entropies,
for instance, after and before observing the result of an experiment, gives a measure of
information. There are several ways of measuring these differences of uncertainties or
entropies. The most popular is the Kullback-Leibler divergence (Kullback, 1997) which
considers the differences log(1/ fi)− log(1/pi) and takes the mean using the posterior
probabilities fi

IKL(f : p) =
D∑
i=1

fi log
fi
pi

,

using the notation p (prior) and f (final) in the Bayes’ formula (1). Following Lindley
(1956), the information, assigned to a vector of probabilities like p , is

IS(p) =
D∑
i=1

pi log pi =−HS(p) . (4)

These measures of information, and many other entropy divergences (e.g. Martı́n-Fer-
nández, 2001, and references therein) are not invariant under scaling of p and f and,
therefore, the computation of IS or IKL requires that p and f are normalized, i.e. their
components sum to 1. This is a major inconvenience for likelihood functions which, in
general, are not normalized. A symmetrized and compositional version of the Kullback-
Leibler divergence is given by Martı́n-Fernández (2001).
From the compositional point of view, the three compositions, p, q and f, live in

the same space, SD, equipped with the Aitchison geometry (see discussion in the con-
tinuous case by Egozcue et al., 2013). Furthermore, the three compositions model the
uncertainty on the actual event Ai or, from the opposite point of view, the evidence in
favour of these events. This motivates calling the three compositions evidence functions
or e-functions for short.
With this terminology, evidence functions are vectors and Bayes updating is just

vector addition (perturbation) in the space of e-functions. Figure 1, illustrates these
facts. In the left panel the three evidence functions (prior, likelihood and posterior) are
represented as probabilities. The likelihood corresponds to the visual observation of
moderate damage (vMod), the prior corresponds to the subjective impression of almost
complete destruction of houses in the neighbourhood (Pr(A4) = 0.7, Pr(A1) = Pr(A2) =
Pr(A3) = 0.1), which was selected for clarity of the picture. The right panel shows
the three evidence functions as vectors, in which the posterior is the vector sum of the
prior and the likelihood. The simplicity of the vectorial representation contrasts with the
difficulties in comparing the proportions in the left panel.



106 Evidence functions: a compositional approach to information

Nod Mod Sev Col

prior
v.Mod
post

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5
1.

0

Balance(Mod/Nod)

B
al

an
ce

(C
ol

/S
ev

)

prior

Likelihood−vMod posterior

Figure 1: Left panel: evidence functions, prior (blue), likelihood, corresponding to R =vMod (green),
posterior (red) for the actual states Nod, Mod, Sev, Col. Right panel: the Bayes’ formula in the two first
coordinates; it appears as a vector addition. See definition of coordinates in Section 4.

The consequences of the vectorial character of evidence functions are multiple. Ba-
yes’ formula, (1) and (2), has the equivalent expression in ilr coordinates or in clr coef-
ficients (see Appendix A), that is

ilr(f) = ilr(q)+ ilr(p) , clr(f) = clr(q)+ clr(p) ,

where the additive character of the Bayes updating is explicit. The size of a vector is
described by its norm (or a monotone function of it), regardless of its direction, a fact
which motivates the definition of a scalar measure of information (Section 3). Vectors
in a Euclidean space can be parallel, orthogonal, unitary; they can be projected one onto
other, approximated by linear combinations of other vectors; distances between them
are available, they can be expressed in coordinates. Remarkably, all these concepts and
operations can be applied to or performed on evidence functions and, consequently, to
information: information represented by evidence functions is a vectorial magnitude.
The parallelogram property of vectors in Euclidean spaces can be rephrased in terms

of Bayesian updating. Consider the result of an experiment which provides a likelihood
function q. Imagine that two different priors, p(1) and p(2), are proposed, for instance, in
the fire scenario the prior initially mentioned, p(1) = (p(1)1 , . . . , p(1)D ) = (0.80,0.15,0.04,

0.01), and that used in Figure 1, denoted p(2) = (p(2)1 , . . . , p(2)D ) = (0.1,0.1,0.1,0.7) (Ta-
ble 1). The Aitchison distance between p(1) and p(2), da(p(1),p(2)), can be easily com-
puted using any of the expressions in Equation (12) of Appendix A. In the example,
this Aitchison distance is approximately 4.65 and the norms are ‖p(1)‖a = 3.24 and
‖p(2)‖a = 1.69, that is, p(1) and p(2) are neither orthogonal nor parallel (see Table 1).
In fact, the two priors were designed to represent very different situations: p(1) assumes
that the zone, being largely affected by fire, has not been completely destroyed; for p(2)

houses which are completely destroyed are a large majority. These two priors p(1), p(2)

can be updated with the same likelihood q, thus obtaining two different final probabil-
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ities f(1) = p(1)⊕q, f(2) = p(2)⊕q. Elementary properties of Aitchison geometry, as a
Euclidean geometry, state that the perturbation difference between f(1) and f(2) is that of
the priors, that is

p(1)�p(2) = (p(1)⊕q)� (p(2)⊕q) = f(1)� f(2) .

Hence, due to the parallelogram property of vectors in Euclidean spaces, the relation
between the Aitchison distances is

da(p(1),p(2)) = da(f(1), f(2)) = da(p(1)⊕q,p(2)⊕q) .

This means that the difference of prior e-functions is equal to the difference of poste-
rior e-functions, provided that the likelihood was the same in the application of Bayes’
formula. This result is different when using Shannon information or Kullback-Leibler
divergence, for which the information provided by an experiment depends on the prior,
a property which is well accepted in Bayesian statistics. These facts, are illustrated in
Section 4.

3. Scalar information in an evidence function

Which of two results of an experiment is the most informative? This natural question
cannot be answered if information is a vector, as real vectors cannot be ordered. A scalar
measure of information associated with e-functions is needed, despite their vectorial
character. The norm of an e-function, as a composition represented in SD, is the natural
candidate for a scalar measure of information. Consequently, the scalar information
contained in an e-function, f= ( f1, f2, . . . , fD) ∈ S

D, is defined as

Ie(f) = ‖f‖a , (5)

where ‖ ·‖a denotes the Aitchison norm of a composition (Appendix A, Eq. 13). There-
fore, the scalar information Ie has all standard properties of a vector norm. Some
properties, which have a meaningful interpretation in the framework of information, are
detailed below (Egozcue and Pawlowsky-Glahn, 2011). It is worth comparing the fol-
lowing properties of Ie with those which are satisfied by the Shannon entropy,HS, for
instance, those proposed by Shannon (1948), Khinchin (1957) or Ash (1990). Entropy
is conceived as a measure of uncertainty, and information is then defined from differ-
ences between initial and final entropy (Kullback and Leibler, 1951a, Khinchin, 1957,
Ash, 1990), or even as negative entropy (Eq. 4) (Lindley, 1956).

Null e-Information. A flat e-function n = (1/D,1/D, . . . ,1/D) does not provide any
information, as Ie(n) = 0 corresponds to the neutral element in S

D. This property is
shared by all definitions of measures of information, alternatively entropy. Note that,
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reciprocally, for any e-function,Ie(f) = 0 implies f= n. This is due to the fact that ‖f‖a
is the Aitchison distance (not a divergence) from f to the neutral element n.

Continuity. Also common to all definitions of information is the continuity of informa-
tion/entropy with respect to each component of the e-function. The ilr coordinates (Eq.
10 in Appendix A) are continuous functions of the components of the e-functions. Also
the Aitchison norm (Eq. 13 in Appendix A) is a continuous function of the ilr coordi-
nates. Then,Ie(f) is a continuous function of the f components. The only critical points
are those in which one or more parts fi = 0, as null components place the value ofIe(f)
at infinity. Knowledge of the impossibility of event Ai represents the strongest informa-
tion. It forces the change of sample space just by removing event Ai. This is opposite
to the case of Shannon information, where − log fi is minus infinity before averaging,
while IS (Eq. 4) remains unaltered after averaging with null probability.

Monotonicity. A set of properties was used to introduce (Shannon) entropy, HS, in
an axiomatic way. Simultaneously, entropy was taken as opposite to information (for
the Shannon case IS = −HS). Following Ash (1990), the monotonicity property for
Shannon entropy HS is that, if d and D, d < D, are the number of parts of two neutral
compositions then

HS(1/d,1/d, . . . ,1/d)< HS(1/D,1/D, . . . ,1/D) ,

which, loosely speaking, means that uncertainty or entropy increases with the number
of components, here written for neutral compositions. This statement is not really use-
ful for a measure of information which attains a null value at neutral elements, like
Ie(1/d,1/d, . . . ,1/d) = 0. In the case of Ie this kind of monotonicity is captured
by the subcompositional dominance property of the Aitchison distance (e.g. Aitchison,
1983, Egozcue and Pawlowsky-Glahn, 2018), which is formulated as follows. Let x and
y be compositions in S

D and their corresponding d-part (d < D) subcompositions xd
and yd . Then, da(x,y) ≥ da(xd,yd). When y = (1/D, . . . ,1/D) (the neutral element),
distances become norms and

Ie(x)≥ Ie(xd) , D> d ,

which means that the information contained in a d-part subcomposition of an e-function
is always less than or equal to the information contained in the (D-part) original e-
function.

Null information extension. In Shannon entropy/information theory, extending the e-
function with zeroes does not decrease entropy or increase information (e.g. Khinchin,
1957). This is a direct consequence of the fact that, for pD+1 = 0 the term pD+1 ln pD+1
is assumed null, and the previous information in Equation (4) remains unaltered after
adding the term. This situation is completely different for Ie. It can be proven that
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Ie(x) = Ie(x,xD+1) if and only if xD+1 = gm(x) ,

that is, adding a part, xD+1, equal to the geometric mean of the previous e-function does
not alter Ie. In fact, the extended composition can be represented using a system of ilr
coordinates valid for x, plus a new coordinate

bD =

√
D

D+1
log

xD+1
gm(x)

= 0 ,

which corresponds to completing a previous Sequential Binary Partition (SBP) (see Ap-
pendix A) for xwith a sign code row (−1,−1, . . . ,−1,+1). When computing the square
Aitchison norm of (x,xD+1) a null term (Eq. 13 in Appendix A) is added.
The idea that extending a likelihood function, or other e-function, with zeros does not

change the information provided by the experiment is counterintuitive: the result of the
experiment informs the analyst that one or more categories are impossible, which would
imply a great amount of information (infinite if using Ie as an information measure).
This null extension seems acceptable when speaking of entropy or uncertainty: adding
a null probability term to the e-function does not increase uncertainty. This reveals that
Shannon entropy,HS should have a more elaborated relation with information than just
that expressed by IS = −HS; this can be seen in alternative interpretations of both
magnitudes (Kullback and Leibler, 1951b, Ash, 1990).

Decomposition of an e-function. Consider a D-part e-function, y, built appending
two compositions, x1 with D1 parts and x2 with D2 parts. Then, D = D1+D2. The
compositions are appended after multiplying by arbitrary positive constants a1 and a2;
that is, y= (a1x1,a2x2). The information conveyed by y is then

I 2
e (y) = I 2

e (x1)+I 2
e (x2)+

D1D2
D1+D2

log2
a1gm(x1)
a2gm(x2)

. (6)

The role of a1 and a2 is quite irrelevant, but they highlight the possibility of renormaliz-
ing the two compositions.
This kind of property differs from the corresponding property of Shannon entropy,

mainly due to the assumed scalar character of information, and also to the need of renor-
malization. The property for the Shannon entropy, known as grouping axiom (Ash,
1990), is

HS(C y) = m(x1)HS(C x1)+m(x2)HS(C x2)+HS(m(x1),m(x2)) ,

where C is the closure operation (Appendix A), andm(xk) is the sum of the components
of C y within the composition xk (k = 1,2). Note that the computation of HS requires
normalization, and m(xk) (k = 1,2) are the dividing normalization constants.

Independent probability table. Let be x1 ∈ S
D1 and x2 ∈ S

D2 two e-functions and A=
[ai j] a (D1,D2) table of probabilities such that ai j = x1ix2 j. Then A, up to normalization,
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is an independent table of probabilities. The scalar information associated with this table
as e-function is

I 2
e (A) = D2 I 2

e (x1)+D1 I 2
e (x2) . (7)

To prove this statement, construct a (D1,D2) table A2 with D1 identical rows, each one
equal to x2. Similarly, build a (D1,D2) table A1 with D2 identical columns, each one
equal to x1. The entry-wise multiplication, or matrix perturbation A1⊕ A2 (Egozcue
et al., 2015), of these two tables is A. In Egozcue et al. (2015) it is proven that A1 and
A2 as compositions are orthogonal, 〈A1,A2〉a = 0. Consequently, the square Aitchison
norm of A is the sum of the square Aitchison norms of A1 and A2 (Pythagoras’ theo-
rem). On the other hand, the square norm ‖A1‖2a = D2‖x1‖2a, as proven by Egozcue and
Pawlowsky-Glahn (2019, Appendix A). A similar result holds for ‖A2‖2a, what implies
the statement.
This is not what is expected in the Shannon information theory, in which the result

is HS(A) = HS(x1)+HS(x2), as reported, for instance, by Shannon (1948). The main
difference with respect to Equation (7) is that additivity of entropy or information is
thought in a scalar form in the Shannon theory; in the compositional approach informa-
tion is thought as a vector (composition). In this case, independence is translated into
orthogonality, thus reproducing the Pythagorean sum of squares in a Euclidean space.

Unit of information in evidence functions. The bit has been accepted as a unit of
information since early works in the field. A bit is the Shannon information unit (using
logarithms in basis 2) conveyed by an equiprobable binary code. It is obvious that this
kind of definition is well adapted to the study of communications and coding theory.
However, it is almost not interpretable in the present context of evidence functions and
the scalar measure of information Ie. In its place, a new unit of information adapted to
e-functions is here proposed.
Consider an e-function p = (p1, p2, . . . , pD) and a perturbation with a non closed

composition q = (u,u−1,1,1, . . . ,1), u = exp(
√
1/2). Then, f = p⊕ q is a shift of

p towards f. In order to compute Ie(q), one can decompose q into (u,u−1) and the
neutral element n, and use the decomposition property (6) which yields

I 2
e (q) = I 2

e (u,u
−1) =

(√
1
2
log

u
1/u

)2
= 1 .

Therefore, the perturbing composition q has a unit e-information, Ie(q) = 1. However,
this perturbation has an approximate interpretation. In fact exp(

√
1/2) = 2.028 
 2.

A perturbing composition doubling a component, halving another one, and retaining
unaltered other components has, approximately, unit e-information. There are many
other e-functions which have unit e-information, but they involve more than two parts.
In Figure 2 circles with radii 1, 5, 10 have been plotted. The smallest one is the loci of
e-functions with unit e-information.
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4. Acquisition of information from an experiment

The fire scenario briefly described in previous sections is studied here in more detail.
Consider a suburban zone close to some forest at fire risk. Authorities in charge of safety
have to design a mitigation plan for fire affecting the zone. The responsible team may
consider several a priori hypotheses about the possible states of houses and buildings
after the fire. Two of these a priori hypotheses have been denoted p(1) and p(2) in Section
2, giving the a priori probabilities of a house remaining in the four considered states: no
damage (Nod), moderate damage (Mod), severe damage (Sev), collapse or ruin (Col).
These two prior distributions of the state of a house correspond to quite different feelings
about the effects of the fire. Figure 3 shows p(1) and p(2) as compositional vectors in ilr
coordinates, defined in Table 6 by the sign code of an SBP. Observing the prior vectors
(circled arrows) in Figure 3, they do not appear as close to orthogonality. Orthogonality
of two e-functions means that their information is on unrelated features. In this case,
the two considered priors do inform on some common features. Table 1 shows the prior
e-functions, theirIe and the angle they form which is 43o, thus reflecting the difference
in direction of the two priors. The Ie also differs, since p(1) is quite more informative
than p(2) (see Table 1).

Table 1: Two priors of the state of houses in a suburban zone after a fire, with no damage (Nod), moderate
damage (Mod), severe damage (Sev) and collapse or ruin (Col) and evidence information Ie.

e-function Nod Mod Sev Col Ie angle with

p(1) 0.80 0.15 0.04 0.01 3.24 43.27o p(2)

p(2) 0.10 0.10 0.10 0.70 1.69 −43.27o p(1)

Next step is studying which inspection procedures are at hand to assess the state of a
house after a fire. Two realistic experiments are considered here. The first one consists
of a visual inspection of the house by a small trained team. The second is based in
airborne photography; the house is identified and its state is assessed on the picture. In
what follows, the results of both types of inspection are labelled as the four considered
states, adding v (visual) or a (airborne), depending on the type of inspection used. Both
types of inspection are uncertain due to several reasons: the inspectors do not know
the status of the house previous to the fire; vegetation, burnt or not, can mask relevant
details of the structure; access to some parts of the building can be difficult; structural
damage can be hidden; there can be errors in the identification of the house, etc. In
order to use the result of an inspection to make decisions under a controlled uncertainty,
the likelihood of each actual state should be known. Therefore, some assessment of the
probability of each outcome of the inspection, conditional to the actual state, is needed.
Tables 2 and 3 show the likelihood e-functions (the columns of the tables) for the two
types of inspections, visual and airborne, respectively.
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Table 2: Simulated likelihood for the visual inspection of houses. Each column is the likelihood associated
with R, i.e. the probabilities of the visual inspection outcome conditional to the actual states, Pr(R|Ai). Row
Ie (likelihood) shows the scalar information of the likelihood associated with the observation Rk. Rows
Pr[R(i)k ] are the probabilities of observing R j given the prior p(i), i= 1,2, and the likelihood.

Actual Visual inspection, R
state vNod vMod vSev vCol

No damage (Dam) 0.7665512 0.2001012 0.0333408 0.0000068
Moderate damage (Mod) 0.2000307 0.5999432 0.1201175 0.0799086
Severe damamage (Sev) 0.1176475 0.1765397 0.5293121 0.1765006
Collapse or ruin (Col) 0.0000001 0.1001036 0.1999045 0.6999918

Ie(likelihood) 12.87 1.30 1.99 9.10

Pr[R(1)k ] 0.648 0.258 0.068 0.026

Pr[R(2)k ] 0.108 0.168 0.208 0.516

Table 3: Simulated likelihood for the airborne inspection of houses. Each column is the likelihood associ-
ated with Q, i.e. the probabilities of an outcome of the airborne inspection conditional to the actual states,
Pr(Q|Ai). Row Ie (likelihood) shows the scalar information of the likelihood associated to the observation

Qk. Rows Pr[Q
(i)
k ] are the probabilities of observing Q j given the prior p(i), i= 1,2 and the likelihood.

Actual Airborne inspection, Q
state aNod aMod aSev aCol

No damage (Nod) 0.6436847 0.3563042 0.0000067 0.0000044
Moderate damage (Mod) 0.3725228 0.5097669 0.0882470 0.0294632
Severe damage (Sev) 0.0860468 0.0967638 0.4408675 0.3763220
Collapse or ruin (Col) 0.0000021 0.0204390 0.2040838 0.7754751

Ie(likelihood) 10.31 2.53 8.99 9.62

Pr[Q(1)
k ] 0.574 0.366 0.033 0.027

Pr[Q(2)
k ] 0.110 0.111 0.196 0.583

These likelihood tables can be estimated from previous experience in inspection of
buildings, which are used as training data for a likelihood model. For instance, a num-
ber of houses affected by fire for which the actual state is known were inspected and the
result of the inspection was reported. With this kind of data a discriminant analysis of
the response of the inspection gives an estimate of the probabilities of the observed state
R, conditional to the true state Ai, Pr(R|Ai). Tables 2 and 3 are the result of a logistic
regression on a training set of simulated inspections (not shown in this paper).
In order to represent e-functions in coordinates a contrast matrix (Pawlowsky-Glahn

et al., 2015) has been selected. The sign code of the SBP is shown in Table 4. A first
look at Tables 2 and 3 reveals the large uncertainty of both types of inspection. Also,
some features are clear. For instance, it seems that airborne photography is not efficient
in discriminating Nod from Mod and Sev from Col. However, it is able to distinguish
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Table 4: Sign code of SBP defining the coordinates used in the fire scenario.

coordinate Nod Mod Sev Col Expression

1 −1 −1 +1 +1 log(
√
Sev Col/

√
Nod Mod)

2 −1 +1 0 0 (1/
√
2) log(Mod/Nod)

3 0 0 −1 +1 (1/
√
2) log(Col/Sev)

quite reliably between the two pairs of states. These kinds of interpretation can be
improved by computing and representing each likelihood e-function in coordinates, so
that the direction and strength of the information are better shown. Figure 2 shows
the likelihood e-functions in the ilr-coordinates defined by the SBP coded in Table 4.
Although the choice of the SBP is arbitrary and the results of the analysis do not depend
on the selected basis, the SBP shown in Table 4 tries to remark the order of damage, from
small (−1) to large (+1). Two projections are used for the three-dimensional picture:
first and second ilr-coordinates (left panel) and first and third ilr-coordinates. Likelihood
e-functions are represented by red and blue arrows associated with the visual (v) and
airborne (a) inspections, respectively. The length of the arrows are the corresponding
scalar information Ie. The first observation is that inspections resulting in no damage
(vNod, aNod) or in collapse or ruin (vCol, aCol) are more informative (all of them
exceed 5 units of information; see Tables 2 and 3) than the moderate damage outcomes
(vMod,aMod). This is due to the fact that Nod and Col observations in both experiments
almost exclude the opposite state, Col and Nod, respectively; alternatively vMod, vSev,
aMod do not exclude any actual state and they are less resolutive. The most important
difference in information between the visual and airborne inspection is related to the
severe damage outcome (vSev, aSev). The aSev outcome is relatively much more infor-
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Figure 2: Likelihood functions as compositions in coordinates. Circles of radius 1, 5, 10. Visual inspec-
tion, red arrows; Airborne inspection, blue arrows. Projection first and second coordinates, left panel; first
and third coordinates, right panel. Filled markers are the vector averages of the Likelihood functions; red,
blue correspond to visual and airborne inspections.
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Figure 3: Bayesian updating: two different priors p(1) (orange, end arrow circled) and p(2) (blue, end
arrow circled) are updated with two likelihood cases corresponding to aSev (top panels) and vMod (bottom
panels). Left panels show the projection on coordinates 2 and 3 and right panels show projection on
coordinates 2 and one as ordered in Table 4. Likelihood (green) is added as a vector to prior. Obtained
posteriors f(1) (violet) and f(2) (red) are linked by dotted lines. Priors are also linked by a dotted line to
show the parallelogram rule.

mative, in the scalar sense, than vSev. However, the informative strength of aSev is at
the price that aSev gives information that can be confoundedwith aCol (also with vCol).
The disposition of the likelihood e-functions in both inspections also reveals weak-

nesses in the design of the inspections. The likelihood arrows in Figure 2 are shifts
applied to the prior e-functions. A good design of the experiments should be able to
shift the prior in any direction in the three dimensions. Note the inability of these like-
lihood functions to shift the posterior towards positive values of the balance (Mod/Nod)
(second coordinate in Table 4, see Appendix A for further explanation) or negative val-
ues of the balance (Col/Sev) (third coordinate in Table 4).
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Figure 3 shows the Bayesian updating of the two proposed priors, (p(1) and p(2)),
using outcomes aSev (observed severe damage in the airborne inspection) and vMod
(observed moderate damage in the visual inspection) for updating. Top panels of Figure
3 show the two considered priors p(1) and p(2) (Table 1) updated by the likelihood cor-
responding to the observation of severe damage in the airborne inspection (aSev) in two
coordinate projections. The main features are: (a) Likelihood e-functions are not paral-
lel to both priors; consequently, prior assumptions are not confirmed by the observation.
It is important to note that parallelism of e-functions would mean that prior assump-
tions are confirmed by the observations; alternatively, orthogonality of two e-functions
means that the e-information they convey do not interact or, more intuitively, they are
about different aspects of the scenario. (b) The likelihood is more informative than the
two considered priors, i.e. Ie(q) > Ie(p(k)), k = 1,2 (See also Tables 1 and 3). (c)
The updating hardly modifies the prior coordinate balance of moderate damage (Mod)
over no damage (Nod), as the likelihood is almost in the plane defined by the other two
coordinates.
Bottom panels of Figure 3 show the two considered priors, p(1) and p(2), updated

with the likelihood corresponding to the observation of moderate damage in the visual
inspection (vMod) in the same projections shown in the top panels. The situation is
different from the previous case. Again, the observation does not clearly confirm any of
the two priors considered, but the length of the likelihood, Ie(q), is now smaller than
that of the priors: Ie(q) = 1.30, whileIe(p(1)) = 3.24,Ie(p(2)) = 1.69, thus providing
a weak change of evidence information from prior to posterior.

Evaluation of visual and airborne inspections

Up to now, only effects of a given observation have been examined. However, decision
makers are commonly interested in the evaluation of the available types of inspection,
both to know the economical implications of conducting each inspection and how infor-
mative they are. Thus, they are interested in the initial question of which of the two in-
spections is more informative? This question was addressed both by Lindley (1956) and
in the context of evidence-functions by Egozcue and Pawlowsky-Glahn (2011). In both
contributions an average of information provided by possible results of the experiments
is proposed. However, it can be discussed which kind of average is more convenient, or
which weights are adequate. Here information has a vectorial character, as proposed in
Section 2, and accordingly we are primarily concerned with vector averages.
A first possibility is to ignore the probability of each result of an experiment (in-

spection in our case). This is like considering the experiment outside its context. If
the possible likelihood e-functions of the experiments are qk, k = 1,2, . . . ,K (in the par-
ticular case of the considered inspections K = 4), the vector average of the likelihood
e-functions is
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q=
1
K
�

K⊕
k=1

qk ,

which is the compositional centre of the set of possible likelihood e-functions. When the
e-functions are expressed in coordinates, this is simply the average of the coordinates.
These averaged likelihood e-functions are represented in Figure 2 with red and blue
markers for the visual and the airborne inspections. If q is not close to the neutral
element, it points out that the experiment is quite unable to shift the posterior in the
opposite direction. This is the case of both inspections in this example. This motivates
the name of e-information bias for q or for its norm Ie(q). An experiment with q near
the neutral element has the possibility to update the prior e-functions in any direction
and is here called e-information unbiased experiment.
Common sense points out that the informative value of an experiment depends on the

probability of obtaining any outcome. This requires to put the experiment in a particular
probabilistic context, which is completely described when the prior e-function is given.
In fact, assume that L is a (K,D)−matrix with entries Pr(Rk|Ai), where Rk are the pos-
sible outcomes of the experiment R. Tables 2 and 3 show examples of such matrices for
the visual and airborne experiments. Matrix multiplication of L and prior probabilities p
give the marginal probabilities for Rk, Pr(Rk), known as predictive probabilities for the
observations Rk. The probabilistic weighted average of likelihood e-function is

ER[q] =
K⊕
k=1

(Pr(Rk)�qk) , (8)

which is the mean likelihood of an experiment in a given probabilistic context. Note
that once the prior probabilities and the matrix L are given, the predictive probabilities
are also determined. The mean likelihood e-function and its norm, Ie(ER(q)), can be
considered suitable descriptors of the information provided by an experiment. They can
be used to compare experiments.
There are more possibilities of averaging information provided by an experiment.

One of them is to average scalar values of Ie(qk). However, a discussion on which
is an appropriate scale for Ie(qk) is convenient. In general, the scale of Ie(qk) can
be transformed by a monotonous, invertible function φ : R+ → R and, then, one can
proceed to a weighted average of the transformed values of φ(Ie(qk)). For a general φ,
it is

Eφ
R [Ie(q)] = φ−1

(
K∑
k=1

Pr(Rk) φ(Ie(qk))

)
. (9)

The scaling function for averaging scalar information has been used by Egozcue and
Pawlowsky-Glahn (2011). Table 5 reports some of the available options of scaling func-
tions φ. These options are used to evaluate the mean information in Equation (9), pro-
vided by the visual and airborne inspections in the fire scenario, and are also reported in
Table 5.
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Table 5: Values of mean of scalar e-information Eφ
R [Ie(q)] (9) for the visual and airborne inspections.

Probabilities of outcome Pr(2)[Rk] are reported in Tables 2 and 3.

Inspection Visual Airborne

outcome pr. Pr(1)[Rk] Pr(2)[Rk] Pr(1)[Qk] Pr(2)[Qk]

φ name z= φ(x) Eφ
R [Ie(q)] Eφ

R [Ie(q)] Eφ
Q [Ie(q)] Eφ

Q [Ie(q)]

identity z= x 2.262 1.681 1.850 2.197

square z= x2 5.249 3.931 4.139 4.534

neg. exp. z= exp(−x) 3.914 3.986 4.918 6.107

logarithm z= logx 1.579 1.493 1.573 1.695

square root z=
√
x 0.488 0.369 0.425 0.535

Examining these results, one realizes that the mean values depend strongly on the
used scaling function, and also on the probabilities of the outcome of the inspection
(see values in Tables 2 and 3), which at the same time depend on the prior e-function
selected. A second conclusion is that for each scaling function φ the most informative
inspection depends on the prior. For instance, for φ being the identity, and for prior p(1)

and outcome probabilities Pr(1)[Rk] and Pr(1)[Qk], the visual inspection is moderately
more informative than the airborne inspection. The situation is reversed for the prior
p(2) and its corresponding outcome probabilities Pr(2)[Rk] and Pr(2)[Qk].
In Table 5 two φ options deserve a comment. First, the negative exponential, which

considers a monotonous decreasing function. The transformed values φ(Ie(qk)) no
longer mean information but a measure of uncertainty or entropy. Accordingly, the
average in Equation (9) is a mean value of uncertainties. When transforming back with
φ−1 = − log, the mean measure of uncertainty is again translated into e-information.
This approach seems quite appealing, but requires further research.
Also, in Table 5, the option φ = log may be interesting when a relative scale is

assumed for the scalar e-information. However, the relative scale can also be valid for
large values of all φ(Ie(qk)) of the experiment. This is due to the fact that the value
Ie(qk)= 0 assigned to the neutral likelihood is attainable, and the relative scale assumed
is then nonsensical.

5. Conclusions and further research

The discrete case of Bayesian updating has been considered as a paradigm of informa-
tion acquisition. Prior information, coded as a probability function, is changed into a
final or posterior probability function when the discrete likelihood corresponding to an
outcome of an experiment is used in the Bayes’ formula. The central idea is that prior,
posterior probability functions and, importantly, the discrete likelihood are considered
compositions represented in the simplex. The simplex, endowed with the Aitchison
geometry, is a Euclidean vector space. The three functions have the characteristics re-
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quired by the Aitchison geometry of compositions, thus motivating the common name
of evidence functions (e-functions). In this context, Bayes’ formula appears exactly
as a perturbation of compositions, prior perturbed with likelihood e-functions gives the
posterior e-function as a result. The fact that perturbation is the vector sum (group oper-
ation) in the Aitchison geometry implies a number of properties; among them, vectors,
e-functions in this case, can be represented in (Cartesian) coordinates, thus providing
intuitive representations and easy computing of metrics (projections, distances, norms).
The conclusion is that information, acquired through Bayes’ formula, is a vector mag-
nitude better than a scalar one, as traditionally assumed. Another consequence of this
vector approach is that information can be conceived not only for prior and posterior
probability functions, but also for likelihood functions which, at the end, is the vector
difference between the posterior and the prior.
Generically, vectors have a direction and a modulus or norm. The same is valid for

e-functions, which represent a direction of the evidence in the space of compositions
and a strength of the evidence, which can be measured as the norm of the e-function.
This scalar measure of information may be worth in applications and, accordingly, the
norm of e-functions (e-information for short) is taken as a scalar measure of the informa-
tion conveyed by an e-function. The vectorial character of e-functions introduces some
changes in the traditional scalar measures of uncertainty (entropy) or in their counterpart
of information. Some intricacies of standard information theory are easily overcome by
the Euclidean geometry. For instance, the perturbation-subtraction of e-functions or
their distance can advantageously replace divergences or mutual information.
A fire scenario has been used to introduce two kinds of inspection of houses. Ques-

tions as simple as which outcome of the inspection is the most informative or which of
the two inspections is the most informative? motivate discussions that require simple
operations in the Aitchison geometry. However, different kinds of averages of informa-
tion provided by the likelihood of an experiment have their own interpretations. The
main conclusion is that sensible averages of e-information of an experiment depend on
the probabilities of observing the results, which at the same time are determined by the
prior probabilities.
The theory and applications of information in evidence functions is not fully devel-

oped. A brief description of three possible research directions follows.

The continuous case. The generalization of the log-ratio approach of compositional
data to the analysis of density functions, including probability densities, is available
(Egozcue, Dı́az-Barrero and Pawlowsky-Glahn, 2006, Boogaart, Egozcue and Pawlow-
sky-Glahn, 2010, Egozcue et al., 2013, Boogaart, Egozcue and Pawlowsky-Glahn, 2014).
As in the discrete case, Bayes’ theorem consists of the perturbation of the prior density
by the likelihood. The continuous e-functions are densities of positive measures, and
they are included in infinite dimensional vector spaces called Bayes spaces. Orthogonal
projections of e-functions in reduced dimensions are safely introduced when the Bayes
space has a Hilbert space structure. In the continuous case, Bayes Hilbert spaces provide
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orthonormal coordinates which are Fourier coefficients with respect to bases easily con-
structed. Some applications have been developed in the framework of geostatistics and
functional data (e.g. Menafoglio, Guadagnini and Secchi, 2016, Menafoglio, Grasso,
Secchi and Colosimo, 2018), but information applications are still pending.

Weighting e-functions. The theory of Bayes Hilbert spaces (Egozcue et al., 2006,
Boogaart et al., 2014) requires a reference (probability) measure of the space. This
is specially important when the densities (e-functions) considered have an unbounded
support. For interval supported densities and for finite discrete support (compositions)
a uniform reference measure is almost automatically adopted. However, this is not the
case for infinite supports. This situation suggests that in the interval and compositional
cases, adopting a non-uniform reference measure is possible, and in some cases even
advisable, thus causing a weighting, in the metrics of the Aitchison geometry, of the in-
formation assigned to evidence functions. The way of changing the reference measure
for compositions was introduced by Egozcue and Pawlowsky-Glahn (2016), but this ap-
proach should be developed and extended to continuous e-functions. In particular, the
relationship between prior e-functions and reference measure require further study.

Connections with Dempster-Shafer theory of belief functions. An extensive sum-
mary of the theory of belief functions, mainly due to A. P. Dempster and G. Shafer can
be found in Yager and Liu (2008), or in the book of Shafer (1976). Belief functions
in Dempster theory are operated by Dempster’s rule of combination of beliefs (Yager,
1987). Although the support of belief functions is not that of e-functions, the combina-
tion of belief functions is just a perturbation, similar to the Bayes’ formula in Equation
(1). This suggests that belief functions can be viewed as compositions, and the theory
here exposed can be extended to belief functions. From this starting point, there is a
plea of ideas that deserve attention, like the meaning of orthogonality of e-functions and
of belief functions. They seem to be related to exchangeability and independence when
using Bayes’ formula. These are avenues that should be studied in the future.
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A Aitchison geometry

Based on the definitions of perturbation, powering and distance for compositions by
Aitchison (1982, 1986), the set of D-part compositions, represented in the simplex SD,
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admits a Euclidean vector space structure (Billheimer et al., 2001, Pawlowsky-Glahn
and Egozcue, 2001), which was termed Aitchison geometry in the latter reference.
The main elements of this geometry are the vector space operations, perturbation and

powering, the metric elements, inner product, distance and norm, and the coordinates for
the representation of compositions. In this Appendix A a quick operative reference of
these elements is presented. A more comprehensive exposition can be found elsewhere
(e.g. Pawlowsky-Glahn et al., 2015, and references therein).
Let x = (x1,x2, . . . ,xD) and y = (y1,y2, . . . ,yD) be D-part compositions represented

in SD. Their perturbation and the powering by a real constant α, are

x⊕y= C (x1y1,x2y2, . . . ,xDyD) , α�x= C (xα1 ,x
α
2 , . . . ,x

α
D) ,

where C is the closure operation which normalizes the composition to unit sum. With
these operations, SD is a (D−1)-dimensional vector space. Compositions are frequently
represented using the centered log-ratio (clr) coefficients and isometric log-ratio (ilr)
coordinates (Egozcue et al., 2003). The clr transformation of x is

clr(x) =
(
log

x1
gm(x)

, log
x2

gm(x)
, . . . log

xD
gm(x)

)
,

where gm(·) is the geometric mean of the arguments. From the clr coefficients, the
composition x is retrieved by

x= C exp(v1,v2, . . . ,vD) , vi = clri(x) = log(xi/gm(x)) ,

where exp operates componentwise. Note that
∑D

i=1 vi = 0.
The ilr coordinates are computed from a (D,D−1) contrast matrix V with the prop-

erties
VTV = ID−1 , VVT = ID− 1

D
1D1

T

D , (10)

where Ik is the (k,k) identity matrix and 1D is a column of D unitary entries. Then, the
ilr-coordinates associated with V , and with its inverse transformation, are

z= ilr(x) = log(VTclr(x)) , x= ilr−1(z) = C (exp(Vz)) ,

where clr(x) = v is considered as a column for matrix multiplication. The meaning
of these two transformations, clr and ilr, becomes clear after introducing the metric
elements of the Aitchison geometry. The Aitchison inner product is

〈x,y〉a = 1
2D

D∑
i=1

D∑
j=1

log
xi
x j

· log yi
y j

= 〈clr(x),clr(y)〉e = 〈ilr(x), ilr(y)〉e , (11)

where 〈·, ·〉e denotes the ordinary Euclidean inner product in RD when using clr, and in
R
D−1 when applied to ilr’s. From the Aitchison inner product in Equation (11), both the
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Aitchison norm, ‖x‖a = (〈x,x〉a)1/2, and the Aitchison distance da(x,y) = (‖x�y‖a)1/2
are readily obtained. Some useful expressions for the squared Aitchison distance are

d2a(x,y) =
1
2D

D∑
i=1

D∑
j=1

(
log

xi
x j

− log yi
y j

)2
=

D∑
i=1

[clri(x)− clri(y)]2

=
D−1∑
i=1

[ilri(x)− ilri(y)]2 , (12)

and for the squared Aitchison norm

‖x‖2a =
1
2D

D∑
i=1

D∑
j=1

(
log

xi
x j

)2
=

D∑
i=1

[clri(x)]2 =
D−1∑
i=1

[ilri(x)]2 , (13)

where clri(x) and ilri(x) denote the components of clr(x) and ilr(x) respectively.
From these definitions, it is clear that V contains the clr coefficients of the composi-

tions of the selected basis in SD. Then, the condition VTV = ID−1 implies the orthonor-
mality of the basis and, consequently, the corresponding ilr-coordinates are Cartesian
coordinates representing the composition. Both clr and ilr define isometries from S

D

onto RD
0 (real D-vectors which components add to zero) and R

D−1, respectively. This
can be summarized as

clr(α�x⊕y) = α · clr(x)+ clr(y) , ilr(α�x⊕y) = α · ilr(x)+ ilr(y) ,

and
〈x,y〉a = 〈clr(x),clr(y)〉e = 〈ilr(x), ilr(y)〉e ,

da(x,y) = de(clr(x),clr(y)) = de(ilr(x), ilr(y)) , ‖x‖a = ‖clr(x)‖e = ‖ilr(x)‖e ,
where subscripts amean Aitchison geometry, and subscripts e mean ordinary Euclidean
geometry. Note that real operations involving clr coefficients are carried out in R

D,
while those involving ilr correspond to RD−1.
A practical way of constructing ilr-coordinates, i.e. of obtaining the contrast ma-

trix V , is using sequential binary partitions (SBP) of the compositions. This technique
(Egozcue and Pawlowsky-Glahn, 2005) consists of separating into two (non overlap-
ping) groups the parts of a composition, for instance, marking the parts in each group
with a +1 and with a −1 otherwise. The partition is repeated in each group generated
in previous steps. A typical way of coding the SBP is shown as example in Table 6.
The sign code of the SBP is given in the (D,D− 1) matrix Θ = [θi j], where the

code component i j corresponds to the sign of xi in the j-th ilr coordinate. Each step of
partition corresponds to an element e j of the orthonormal basis, and the corresponding
j-th ilr-coordinate is computed as
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b j = ilr j(x) =
√

n+ ·n−
n++n−

log
(∏θi j=+1 xi j)

1/n+

(∏θi j=−1 xi j)1/n−
, j = 1,2, . . . ,D−1 (14)

where n+ and n− are the number of plus signs and minus signs, respectively. Note
that the expression (∏θi j=+1 xi j)

1/n+ in the numerator of the fraction in Equation (14)
is the geometric mean of the elements xi j which are marked with a +1 in the j-th par-
tition. Similarly the expression in the denominator for elements marked with a −1.
The coordinates b j have a particularly simple form: they are proportional to log-ratios
of geometric means of groups. Due to this fact, they are called balances between the
corresponding groups of parts (Egozcue et al., 2003, Egozcue and Pawlowsky-Glahn,
2005). An abbreviated way of denoting balances is to enumerate the parts in the nu-
merator and denominator separated by a slash. For instance, the j = 2 balance coded
as in Table 6 would be denoted as balance(x2,xD/x3,x4, . . . ,xD−1). The elements of the
contrast matrix, vi j are null if θi j = 0 and, for θi j =+1 and θi j =−1,

vi j =
θi j
n+

√
n+ ·n−
n++n−

, vi j =
θi j
n−

√
n+ ·n−
n++n−

,

respectively. Note that, if e j is the j-th element of the basis, then clr(e j) = (v1 j,v2 j,
. . . ,vD j)

T.

Table 6: Sign code for a SBP of a D part composition to compute coordinates ilr j(x). As an example, first
partition separates x1 (+1) from the rest of parts; the second step separates x2 and xD from parts previously
marked with −1; parts not participating in this partition step are labelled as 0. Take the +1, −1, 0 codes
as entries of a matrix ΘT.

sign code matrix ΘT

j x1 x2 x3 x4 . . . xD−1 xD

1 +1 −1 −1 −1 . . . −1 −1
2 0 +1 −1 −1 . . . −1 +1
3 0 +1 0 0 . . . 0 −1
...

...
...

...
...

. . .
...

...
D−1 0 0 +1 −1 . . . 0 0
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A contingency table approach based on nearest
neighbour relations for testing self and mixed

correspondence
Elvan Ceyhan∗

Abstract

Nearest neighbour methods are employed for drawing inferences about spatial patterns of points
from two or more classes. We introduce a new pattern called correspondence which is motivated
by (spatial) niche/habitat specificity and segregation, and define an associated contingency table
called a correspondence contingency table, and examine the relation of correspondence with
the motivating patterns (namely, segregation and niche specificity). We propose tests based on
the correspondence contingency table for testing self and mixed correspondence and determine
the appropriate null hypotheses and the underlying conditions appropriate for these tests. We
compare finite sample performance of the tests in terms of empirical size and power by extensive
Monte Carlo simulations and illustrate the methods on two artificial data sets and one real-life
ecological data set.
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1. Introduction

The spatial point patterns in natural populations (in R
2 and R3) have received consid-

erable attention in statistical literature. Among the frequently studied spatial patterns
between multiple classes/species are segregation and association (Dixon, 2002a), and
niche specificity pattern (Primack, 1998). Pielou (1961) proposed various tests based
on nearest neighbour (NN) relations in a two-class setting, namely, tests of segregation,
symmetry, and niche specificity, and also a coefficient of segregation. Inspired by niche
specificity and segregation, we introduce new multi-class patterns called self and mixed
correspondence in the NN structure. We use the NN relationships for testing these pat-
terns. In this article, we only use the first NN (i.e., 1-NN) of any point so NN always
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refers to the 1-NN. Furthermore, the terms “class” and “species” are used interchange-
ably and refer to any characteristic of the subjects such as gender, age group, health
condition, etc.
We also propose tests for the spatial patterns of self and mixed correspondence in

the NN structure. These tests are based on a contingency table called a correspondence
contingency table (CCT) which is constructed using the NN relations in the data. A
base-NN pair (or simply the NN pair) is the pair of points (p1, p2) in which p2 is a
NN of p1, and p1 is called the base point and p2 is called the NN point. The NN pair
(p1, p2) is called a self pair, if both p1 and p2 are from the same class, while it is called
a mixed pair, if p1 and p2 are from different classes. Self correspondence in the NN
structure occurs when there is a tendency for points from a class to be NNs to points
from the same class. That is, self correspondence occurs when self NN pairs are more
abundant than expected. On the other hand, mixed correspondence occurs when there
is a tendency for points and their NNs to be from different classes, i.e., mixed NN pairs
are more abundant than expected.
There are many methods available for testing various types of spatial patterns in

literature. These spatial tests include Pielou’s test of segregation (Pielou, 1961), Ripley’s
K-function (Ripley, 2004), or J-function (van Lieshout and Baddeley, 1999), and so
on. Some of these methods are based on nearest neighbour (NN) relations between the
points in the data set (Dixon, 2002b). For example, Clark and Evans (1954) use the
mean distance of points to their NNs in a spatial data set to measure the deviations of
plant species from spatial randomness and compare the deviations for multiple species.
However, in this article, we base our analysis on the class labels of NN pairs as was
done in Pielou (1961) and Dixon (1994). An extensive survey for the tests of spatial
point patterns is provided by Kulldorff (2006) who categorized and compared more
than 100 such tests. These tests are for testing spatial clustering in a one-class setting or
testing segregation of points in a multi-class setting. The null hypothesis is some type
of spatial randomness and is usually fully specified, but the alternatives are often not
so definite, in the sense that for most tests the alternatives are presented as deviations
from the null case are of interest as in pure significance tests of Cox and Hinkley (1974);
only a few tests specify an explicit alternative clustering scheme. Most of the tests for
multiple classes deal with presence or lack of spatial interaction usually in the form of
spatial segregation or association between the classes. However, none of the numerous
tests surveyed by Kulldorff (2006) are designed for testing correspondence; and the
pattern of correspondence and the associated tests are introduced in this article. The
tests for assessing the self and mixed correspondence in the NN structure are based on
the CCT which can also be constructed by collapsing the nearest neighbour contingency
table (NNCT). See Ceyhan (2010, 2008a) for an extensive treatment of NNCT and tests
based on it.
We provide the description of correspondence and related patterns, the list of nota-

tions and two motivating (artificial) examples in Section 2. A list of abbreviations used
in the article is provided in Table 1. We propose the pattern of correspondence together
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with the associated tests and the contingency table (i.e., CCT) and the benchmark and
the null patterns for correspondence in Section 3 where the asymptotic distributions of
the cell counts in the CCT and of the tests based on them are also derived. We prove con-
sistency of the tests in Section 3.3, and provide an extensive empirical size and power
analysis by Monte Carlo simulations in Section 4. We also illustrate the methodology
on one ecological data set in Section 5 and provide some discussion and guidelines in
Section 6.

Table 1: A list of abbreviations used in the article.

CSR: Complete Spatial Randomness
NN: Nearest Neighbour
NNCT: Nearest Neighbour Contingency Table
RL: Random Labelling
CCT: Correspondence Contingency Table

2. Preliminaries

2.1. Spatial Correspondence and Related Patterns

We first introduce the motivating patterns of niche specificity and segregation and then
discuss their connection with correspondence.

Niche/habitat specificity is the collection of biotic and abiotic conditions favouring
the development, hence existence and abundance of a species on a spatial scale (Ranker
and Haufler, 2008). That is, niche specificity is the dependence of an organism on an en-
vironment (i.e., niche or habitat). In literature, niche/habitat specificity is also discussed
within the context of species diversity under the title of habitat association of two or
more species (Primack, 1998). Niche specificity is a broad concept and is determined
by partitioning of the niche space. Furthermore, niche space has non-spatial coordinates
amenable for niche partitioning; e.g., Fargione and Tilman (2005) uses different phe-
nologies resulting in temporal partitioning of the niche space and Werner and Gilliam
(1984) incorporate ontogenetic changes (i.e., changes as an individual develops in size)
to partition the niche space. However, in this article, we are mainly concerned with the
spatial aspect of multi-class interaction patterns.
In a multi-species setting, segregation of a species is the pattern in which members

of a species occur near members of the same species (Dixon, 1994). Conversely, asso-
ciation of a species to another is the pattern in which members of the former species
tend to occur near the members of the latter. That is, under segregation, the members of
a class or species enjoy the company of the conspecifics, hence form one class clumps
or clusters, while under association they tend to coexist with members of other class(es)
and form mixed clumps or clusters (see, e.g., Ceyhan, 2008a for more detail).
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Niche specificity can be viewed as a factor that accounts for segregation which can
account for self correspondence. In a multi-species setting, if each species were con-
fined to its own support/niche, we would expect one-species clumps (which would tend
to exclude other species). So if (spatial) niche specificity is in effect for all species in
the study region, self correspondence would occur (i.e., self NN pairs would be more
abundant than mixed pairs). On the other hand, if niche specificity is in effect for one
species, then that species would exhibit segregation from the rest of the species. Self
correspondence is much closer to the concept of segregation compared to niche speci-
ficity, as self correspondence and segregation are both based on the spatial proximity of
the conspecifics. Self correspondence in the NN structure pertains to the NN pair types
as self or mixed for each class among all base-NN pairs and thus to a supra-species
characteristic. However segregation is a pattern at the species level, in the sense that
one can only talk of segregation of a species from another or others. That is, in a multi-
class or multi-species setting, self correspondence refers to the NN preference of species
for all species combined and so it is intended to measure whether species prefer their
conspecifics in a cumulative fashion, i.e., for all species taken into account together.
Thus, segregation is defined at species level, while self correspondence is defined at
multi-species level; and the two patterns are related but different in the sense that, e.g.,
all species together might exhibit self correspondence without significant segregation
for any of the species. But segregation of all or most species will usually substanti-
ate the presence of self correspondence, hence segregation can be viewed as a factor
that accounts for self correspondence. Lack of segregation might indicate mixed corre-
spondence, which may or may not imply association, since for association one needs to
consider each pair of species separately and test the interaction between the two species
in the pair. Lack of segregation is guaranteed to imply presence of association in the
two-class setting only.

2.2. Notation

For convenience to the reader, following the example of Vichi and Saporta (2009), we
provide the notation and terminology used in the article below.

X and Y class labels (interchangeably 1 and 2, respectively);
Xn and Ym a data set of size n from class X and a data set of size m from class Y ;
Wn represents the combined data set for the CSR setting, and the background

points for the RL setting;
Dn the set of ordered pairs (Wi,Li), where Wi stands for the location of the

point and Li stands for the corresponding class label;
Si the number of self base-NN pairs for class i;
Mi the number of mixed base-NN pairs with base point being from class i;
S andM sum of the first column (for self pairs) i.e. S =

∑k
i=1 Si and sum of the

second column (for mixed pairs) i.e. M =
∑k

i=1Mi in the CCT;
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Ni j the observed frequency of category (i, j) in the NNCT, i.e., the num-
ber of (base,NN) pairs in which base class is i and NN class is j;

Ci sum of column j in the NNCT;
R and Q twice the number of reflexive pairs and the number of points with

shared NNs, which occurs when two or more points share a NN;
Ql the number of points that serve as a NN to other points l times;
ZSi and ZS the test statistics for cell (i,1) in the CCT and for sum of the self

column, S;
Zii the cell-specific tests for cell (i, i) in the NNCT analysis;
S the vector of combined Si values (i.e., the self column in the CCT),

i.e., (S1,S2, . . . ,Sk);
ΣS the variance-covariance matrix of S;
XC the (quadratic form) test statistic for the correspondence;
XD the overall segregation test due to Dixon;
N and ΣN the vector of entries of NNCT concatenated row-wise and its covari-

ance matrix;
A− the generalized inverse of a matrix A;
χ2ν,α the 100αth percentile of χ2 distribution with ν degrees of freedom;
Nmc the number of Monte Carlo samples generated for the empirical size

and power comparison of the tests;
α̂T the empirical size estimate of a test statistic, T , at level α= 0.05;
α̂T1,T2 the proportion of agreement in rejecting the null hypothesis between

test statistics T1 and T2;
U (A) the uniform distribution on region A;
MatClust(κ,r,μ) Matérn cluster process with Poisson parameters κ and μ and radius

r;
β̂T the empirical power estimate of a test statistic, T , at level α= 0.05;
pasy the p-value based on the asymptotic approximation (i.e., asymptotic

critical value);
prand the p-value based on Monte Carlo randomization of the labels on the

given locations;
pmc the p-value based on 10000 Monte Carlo replication of the CSR in-

dependence pattern in the study region

2.3. Motivating Examples

To motivate the patterns of self/mixed correspondence and how they can be different
from segregation/association, we use two artificial data sets, each of which has three
classes (representing tree species) say, X , Y and Z in a square study region. We could
also choose examples with two classes, but with two classes only one of the newly intro-
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Figure 1: The scatterplots of the locations of three classes (representing three tree species) in our artificial
data set 1 (left) and artificial data set 2 (right). There are 40 points in each class/species.

duced tests provide new information compared to the existing segregation tests and there
are more possibilities of different types of pairwise interactions between classes with
three or more classes. Hence it would be more informative to discuss the differences
between the tests and patterns of self/mixed correspondence and segregation/association
with three or more classes. We generate 40 points for each class and the locations of
the points are plotted in Figure 1. The scatter plot for artificial data set 1 on the left is
suggestive of mild self correspondence and segregation with number of self NN pairs
being 54 and number of mixed NN pairs being 66. The scatter plot for artificial data set
2 on the right is suggestive of mild mixed correspondence and a lack of segregation with
number of self NN pairs being 34 and number of mixed NN pairs being 86. However,
these claims are not assessed rigorously yet to attach any significance (or lack of it) to
them. We will illustrate the correspondence and segregation patterns and the associated
tests using these examples in the following sections.

3. Correspondence in the NN Structure and the Associated
Contingency Table

3.1. Benchmark and Null Patterns for Multivariate Spatial Interaction

In this article, we are concerned with the (spatial) interaction between two or more
classes of points, particularly with correspondence. For multivariate spatial data analy-
sis, the benchmark pattern is usually complete spatial randomness (CSR) independence
or random labelling (RL) (Diggle, 2003) depending on the context. The distinction
between CSR independence and RL could be very important in practice. Under CSR
independence the (locations of the) points from two classes are a priori the result of
different processes (for instance, individuals of different species or age cohorts). On
the other hand, under RL, some processes affect the individuals of a single population
a posteriori (for instance, diseased versus non-diseased individuals of a single plant
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species) (Goreaud and Pélissier, 2003). Under CSR independence, the points from each
class are independently uniformly distributed in the region of interest conditioned on
the class sizes. That is, the points from each class are independent realizations from
a Homogeneous Poisson Process (HPP) with fixed class sizes (i.e., they are indepen-
dent realizations from a binomial process). On the other hand, under RL, class labels
are independently and randomly assigned to a set of given locations which could be a
realization from any pattern such as HPP or some clustered or regular pattern.
For simplicity, we describe the benchmark patterns for the two-class case. Extension

to multi-class case is straightforward. In a two-class setting, we label the classes as X
and Y (or interchangeably 1 and 2, respectively). Let Xn1 be a data set of size n1 from
class X andYn2 be a data set of size n2 from classY . Then under CSR independence, we
haveXn1 = {X1,X2, . . . ,Xn1} and Yn2 = {Y1,Y2, . . . ,Yn2} which are independent and are
both random samples from U (S), the uniform distribution on the common support S ⊂
R
d for classes X and Y where Rd is the d-dimensional Euclidean space. Unless stated

otherwise, for simplicity and practical purposes, we take d = 2 (i.e., consider planar
data) throughout the article. We combine Xn1 and Yn2 into one data set Wn = Xn1 ∪
Yn2 = {W1,W2, . . . ,Wn} where n = n1+ n2. In fact, we consider labeled data points as
Dn= {(Wi,Li) for i= 1,2, . . . ,n}where Li ∈ {0,1} or {X ,Y} are the class labels. Notice
that under CSR independence, the randomness is in the locations of the points Wi and
the class label is a fixed deterministic characteristic of the point. Under the RL pattern,
the class labels or marks are assigned randomly to points whose locations are given. The
spatial pattern generating these point locations is referred to as the background pattern
henceforth. Then Wn is the given set of locations for n points from the background
pattern. We have the pair of observations (Wi,Li)where Li ∈ {1,2} or {X ,Y} is the class
label of the pointWi for i= 1,2, . . . ,n. Then n1 (resp. n2) of theseWi points are assigned
as class X (resp. class Y ) randomly; i.e., the labels Li are 1 or X approximately with
probability n1/n (resp. 2 or Y with probability n2/n) independently for i = 1,2, . . . ,n.
Under RL, the locations of the points are fixed but the randomness is in the label, Li,
associated with these points.
There are two major types of interaction pattern types as deviation from these bench-

mark patterns in the multivariate spatial pattern analysis. These interaction patterns are
segregation and association. Segregation/association, niche specificity and correspon-
dence are related but different concepts (see Section 2.1), and hence the corresponding
null hypotheses are different. Niche specificity might account for or explain the self
correspondence or segregation patterns. In particular, if niche specificity occurs at sig-
nificant levels for each species, then there will be significant segregation for each species
and significant self correspondence for all species combined. But if niche specificity oc-
curs for some species (but for other species niche specificity is not significant or these
other species exist in mixed groups/clumps or scattered around the study region haphaz-
ardly), segregation is operating for these species, while self correspondencemay or may
not be in effect (e.g., segregation of species may not be strong enough to render self
pairs significantly larger than expected, or the associated pairs might hinder the occur-
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rence of self correspondence). Hence self correspondence and segregation are different
patterns with substantial overlap, but one is not the subset of the other. We provide the
explicit forms of the corresponding null hypotheses in the subsequent sections.

3.2. Tests of Correspondence and Their Relation to Segregation

The null case for self or mixed correspondence is that the entries for self (or mixed) pair
types in the CCT are as expected under RL or CSR independence.
For a species to exhibit self (resp. mixed) correspondence in the NN structure, self

(resp. mixed) NN pairs would be more abundant than expected under RL. To detect
such type of pattern, we construct a contingency table where NN pairs are classified as
self or mixed for each class. Let Si be the number of self NN pairs for class i, and Mi

be the number of mixed NN pairs with base point being from class i. For simplicity, we
assume there are no ties in the NN relations, which occurs with probability one, if Wn is
a random sample from a continuous distribution. Then

Si =
n∑

j �=i, j=1

n∑
i=1

I(Zj is a NN of Zi)I(Li = Lj),

and

Mi = ni−Si =
n∑

j �=i, j=1

n∑
i=1

I(Zj is a NN of Zi)I(Li �= Lj).

Then the resulting contingency table is a k× 2 contingency table for k classes with
first column (called self column) comprising of Si and the second column (called mixed
column) comprising ofMi values. See also Table 3 (left). Notice that row sums are class
sizes (i.e., sum of row i is ni), and sum of the self column is S =

∑k
i=1 Si and sum of the

mixed column is M =
∑k

i=1Mi.

Remark 3.1. Ties in the NN Structure. If there are ties in the NN structure, which can
happen, e.g., due to truncation of the coordinates of the observations when recording,
we can adjust the above formulas for Si and Mi by inserting a weight term for ties. For
instance, we can write 1

Nnni
I(Zj is a NN of Zi) to account for the ties where Nnn

i is the
number of NNs of point Zi. Note that Nnn

i = 1 with probability 1 when Wn is a random
sample from a continuous distribution. �

The k× 2 CCT is closely related to the k× k nearest neighbour contingency table
(NNCT) based on the same data. Here we provide a brief description of NNCTs (for
more detail, see, e.g., Ceyhan, 2008a). NNCTs are constructed using the NN frequencies
of classes. Let ni be the number of points from class i (assumed fixed) for i∈{1,2, . . . ,k}
and n =

∑k
i=1 ni. If we record the class of each point and its NN, the NN relationships

fall into the following k2 categories:
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(1,1), (1,2), . . . ,(1,k); (2,1), (2,2), . . . ,(2,k); . . . ,(k,k)

where in category or cell (i, j), class i is called the base class, and class j is called the NN
class. Denoting Ni j as the observed frequency of category (i, j) for i, j ∈ {1,2, . . . ,k},
we obtain the NNCT in Table 3 (right). Then,

Ni j =
n∑

j′ �=i′, j′=1

n∑
i′=1
I(Zj′ is a NN of Zi′)I(Li′ = i)I(Lj′ = j).

The number of self pairs for class i is same as the number of base-NN pairs with both
base and NN classes are from class i. Hence Si = Nii andMi = ni−Nii.

Table 3: The CCT (left) and the NNCT (right) for k classes.

pair type
self mixed total

class 1 S1 M1 n1
class 2 S2 M2 n2

base ...
...

...
...

class
class k Sk Mk nk
total S M n

NN class
class 1 . . . class k total

class 1 N11 . . . N1k n1
base ...

...
. . .

...
...

class
class k Nk1 . . . Nkk nk
total C1 . . . Ck n

Table 4: The CCT (left) and the NNCT (right) for the three classes in our artificial data set 1.

pair type
self mixed total

class 1 18 22 40
base

class 2 18 22 40
class

class 3 18 22 40
total 54 66 120

NN class
class 1 class 2 class 3 total

class 1 18 13 9 40
base

class 2 11 18 11 40
class

class 3 8 14 18 40
total 37 45 38 120

Table 5: The CCT (left) and the NNCT (right) for the three classes in our artificial data set 2.

pair type
self mixed total

class 1 7 33 40
base

class 2 19 21 40
class

class 3 8 32 40
total 34 86 120

NN class
class 1 class 2 class 3 total

class 1 7 15 18 40
base

class 2 10 19 11 40
class

class 3 18 14 8 40
total 35 48 37 120

We present the CCTs and NNCTs for the artificial data sets 1 and 2 in Tables 4 and 5,
respectively. For artificial data set 1, the CCT suggests presence of self correspondence
with self column entries being higher than expected. Equivalently, the NNCT diagonal
entries are higher than expected suggesting presence of segregation of the classes. For
artificial data set 2, based on the CCT, we observe that there seems to be mixed cor-
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respondence (with NN pairs in which base points are from classes 1 or 2). Likewise,
NNCT suggests that classes 1 and 3 are associated with each other, and there is a lack
of segregation for these classes, and class 2 points seem to be segregated from points of
other classes.
Under RL, we can determine the exact expected values, variances, and asymptotic

distributions of the cell counts in the CCT. In particular,

E[Si] = E[Nii] = ni(ni−1)/(n−1) and E[Mi] = E[ni−Nii] = ni(n−ni)/(n−1). (1)

Furthermore,

Var[Si] = Var[Nii] = (n+R)pii+(2n−2R+Q)piii+(n2−3n−Q+R)piiii−n2p2ii (2)

and since ni are fixed

Var[Mi] = Var[ni−Nii] = Var[Nii] = Var[Si].

In Equation (2), pxx, pxxx, and pxxxx are the probabilities that a randomly picked pair,
triplet, or quartet of points, respectively, are the indicated classes and are given by

pii =
ni (ni−1)
n(n−1) , piii =

ni (ni−1)(ni−2)
n(n−1)(n−2) , piiii =

ni (ni−1)(ni−2)(ni−3)
n(n−1)(n−2)(n−3) , (3)

and R is twice the number of reflexive pairs and Q is the number of points with shared
NNs, which occurs when two or more points share a NN. Then Q = 2(Q2+ 3Q3+
6Q4+ 10Q5+ 15Q6) where Ql is the number of points that serve as a NN to other
points l times. Since ni are fixed, the covariances of the cell counts can also be obtained
as

Cov[Si,S j] = Cov(Nii,Nj j) = (n2−3n−Q+R)pii j j−n2pii p j j

and
Cov[Mi,Mj] = Cov(ni−Nii,n j−Nj j) = Cov(Nii,Nj j)

where pii j j =
ni (ni−1)n j (n j−1)
n(n−1)(n−2)(n−3) . The covariance of cell counts in different columns is

Cov[Si,Mj] =

{
Cov[Nii,ni−Nii] =−Var[Nii] if i= j,

Cov[Nii,n j−Nj j] =−Cov[Nii,Nj j] if i �= j.
(4)

See Dixon (1994, 2002a) for the derivation of the above variance and covariance terms.
In a CCT, deviations of Si or Mi from their expected values under RL or CSR inde-

pendence can be assessed. Since Si = Nii, for cell (i,1) of the CCT, we have

ZSi =
Si−E[Si]√
Var[Si]

=
Nii−E[Nii]√
Var[Nii]

(5)
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for i= 1,2, . . . ,k. Notice that ZSi = Zii where Zii is the cell-specific tests for cell (i, i) in
the NNCT analysis (see, Dixon, 1994 and Ceyhan, 2008a for more details). Notice also
that the mixed column entries carry the same information as the self column entries, and
they will yield the test statistic with negative sign. That is, (Mi−E[Mi])/

√
Var[Mi] =

−ZSi for each i, hence the test statistics with mixed column entries are omitted. For large
ni, ZSi approximately has N(0,1) distribution (Dixon, 2002a).
The test statistics for the self cells of the CCT are as follows: For artificial data

set 1, we have ZS1 = Z11 = ZS2 = Z22 = ZS3 = Z33 = 1.4409 which is in agreement
with our observation in the CCT that all classes exhibit mild segregation. For artificial
data set 2, ZS1 = Z11 =−1.8033, ZS2 = Z22 = 1.7388, and ZS3 = Z33 =−1.5081 which
is in agreement with our observation in the CCT that classes 1 and 3 exhibit lack of
segregation at a moderate level while class 2 exhibits mild level of segregation.
One can combine the Si values (i.e., the self column in the CCT) into a vector S =

(S1,S2, . . . ,Sk) = (N11,N22, . . . ,Nkk). So E[S] is the vector of expected values of the en-
tries of S. The variance-covariancematrix of S, denoted ΣS, is the k×kmatrix with entry
(i, i) being Var[Si] =Var[Nii] and entry (i, j) with i �= j being Cov[Si,S j] = Cov[Nii,Nj j].
With the self column as the vector S, we have the quadratic form

XC = (S−E[S])TΣ−1
S (S−E[S]). (6)

where Σ−1
S is the inverse of ΣS. For large ni, XC approximately has a χ2k distribution.

Observe that the test statistic XC is obtained similar to the overall segregation test as
described in Ceyhan (2008a). Briefly, the overall segregation test due to Dixon is

XD = (N−E[N])TΣ−
N(N−E[N]) (7)

where N is the vector of entries of NNCT concatenated row-wise and ΣN is the covari-
ance matrix of N and A− is the generalized inverse of a matrix A (Searle, 2006).
For the artificial data set 1, we have XC = 5.0761 (p = 0.1664) and XD = 7.1274

(p = 0.3092). Notice that neither test is significant, although the correspondence test
yields a lower p-value. This suggests lack of significant deviations from the expected
cell counts in either contingency table. On the other hand, for the artificial data set 2,
we have XC = 9.4670 (p = 0.0237) and XD = 9.7879 (p = 0.1339). Notice that the
overall segregation test is not significant at the .05 level, which suggests that the cell
counts do not deviate significantly from their expected values. On the other hand,XC is
significant, which is suggesting significant deviation in the first column of CCT (or the
diagonal of NNCT). However, to determine the direction of correspondence, we assess
the cell counts in the CCT and conclude that there is an abundance of self pairs for class
2, while there is a lower number of self pairs (or there is an abundance of mixed pairs)
for the other classes. Together with the column sums in the CCT, we observe that there
is evidence for mixed correspondence compared to self correspondence.
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Alternatively, we could also concatenate self and mixed columns of CCT to obtain
the vector SII = (N11,N22, . . . , Nkk,n1−N11,n2−N22, . . . ,nk−Nkk) with the test statistic
XII = (SII −E[SII])′Σ−

II(SII −E[SII]), but this version is highly unstable due to severe
rank deficiency (see Ceyhan, 2014). Thus we employ the first form of the test statistic,
XC, which is the χ2 test for the self column and omitXII in our further discussion.
WhenXC is significant, it implies the presence of significant deviation of some of the

cell counts Si than expected under Ho in Equation (9) or small deviations of cell counts
in positive or negative direction might accumulate in the quadratic form in Equation (6)
and cause a significant result for XC. Furthermore, if some significant deviation exists
for some cell(s), this deviation could be toward significant segregation or lack of seg-
regation for a class, or significant association of this class with some other class(es). If
additionally, the deviations of cells are all toward positive direction (i.e., segregation) or
deviations of some cells toward segregation are strong enough, then the self pairs might
be more abundant indicating presence of self correspondence. So with XC to infer self
or mixed correspondence, one needs to check the direction and magnitude of deviation
for each class (after a significant XC), hence should look at the sign and magnitude
of the cell-specific Z tests (i.e., the diagonal cell-specific tests) in Equation (5). Thus
this process tests self or mixed correspondence by a two-step approach which may be
somewhat a subjective assessment of magnitude of the deviations. For example, in our
artificial data set 2, the correspondence test statistic is significant, but by itself, does not
indicate it is self or mixed correspondence. To determine the type of correspondence,
we either look at the CCT or the sign and magnitude of the tests for the cells in the self
column of the CCT. In particular, in this data set, we observe that the correspondence is
of mixed type due to large negative values for the ZS1 and ZS3 .
As an alternative approach, we propose a test based on the sum of the self column,

S, in the CCT. That is,

ZC =
S−E[S]√
Var[S]

. (8)

Here

E[S] = E

[
k∑
i=1

Nii

]
=

k∑
i=1

E[Nii] =
k∑
i=1

ni(ni−1)
n−1

and

Var[S] = Var

[
k∑
i=1

Nii

]
=

k∑
i=1

Var[Nii]+
k∑
i�= j

Cov[Nii,Nj j].

Observe that Var[S] is the sum of entries of Σsel f , the covariance matrix of S. As ni
values tend to infinity, ZC converges in law to N(0,1) distribution. Large (positive)
values of ZC indicate that self pairs are more abundant than expected under RL or CSR
independence, hence indicate presence of self correspondence, while smaller (negative)
values of ZC indicate presence of mixed correspondence.
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For artificial data set 1, ZC = 2.2529 (p= 0.0123) which indicates that the self col-
umn sum is significantly larger than its expected value. Since each cell count deviates
in the same direction, this constitutes evidence for self correspondence in the NN struc-
ture. Notice that although segregation is mild (and not significant) for each class, their
cumulative effect makes the number of self NN pairs significantly higher than expected
yielding a significant self correspondence. As for artificial data set 2, ZC = −0.8137
which implies the self column sum in the CCT is not significantly different from its ex-
pected value. However, this is not a contradiction with our finding of significantXC, as
the deviations in the first column are in opposite directions, hence cancel each other out
in the summation.
Although the test statistics, XC, Zii, and ZC are all related to correspondence and

segregation, they test different null hypotheses. The null hypothesis for correspondence
is

Ho : self (or mixed) NN pairs are as expected under RL and CSR independence. (9)

Hence, by construction, the cell-specific test Zii tests the hypothesis

Ho : E[Zii] =
ni(ni−1)
n−1 (10)

andXC tests the hypothesis

Ho : E[Zii] =
ni(ni−1)
n−1 for all i= 1,2, . . . ,k (11)

and ZC tests the hypothesis

Ho : E[S] =
k∑
i=1

ni(ni−1)
n−1 . (12)

The right (resp. left) sided alternative for Ho in Equation (12) will imply self (resp.
mixed) correspondence, and the right sided alternative forHo in Equation (10) will imply
segregation of species i from others. On the other hand, the left sided alternative for Ho

in Equation (10) will imply lack of segregation of species i from others (in a two-class
setting, this is equivalent to association of the species with the other, but in a multi-class
setting, this may or may not imply association).
For k= 2 classes,XC is equivalent to the overall test of segregation of Dixon (1994),

XD, since the CCT and NNCT convey the same information and both tests are effec-
tively based on N11 and N22 only. In particular, N11 and N22 constitute the first column
of the CCT and the diagonal entries of the NNCT and N12 and N21 constitute the sec-
ond column of the CCT and the off-diagonal entries of the NNCT. But for k > 2, the
information conveyed by the NNCT and CCT are different and theXC depends only on
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Si = Nii values in CCT, while the overall segregation test depends on all Ni j values in
NNCT.

Remark 3.2. Relation of Null Hypotheses with CSR Independence and RL. The
above null hypotheses in Equation (10)-(12) in terms of the expected values can result
from a more general setting. In particular, these null cases follow provided that there
is randomness in the NN structure in such a way that the probability of a NN of a
point being from a class is proportional to the relative frequency of that class. This
assumption holds, e.g., under CSR independence or RL of the points from each class.
Both CSR independence and RL patterns imply that there is no correspondence in the
NN structure. In fact, it is conceivable that other independence patterns (in which all
classes are independently generated from the same process or distribution) can yield the
same null hypothesis, but we restrict our attention to RL and CSR independence as they
are considered to be the benchmark patterns in spatial data analysis. �

Remark 3.3. Status ofQ and R under RL andCSR independence. Note the status of
the quantitiesQ and R under CSR independence and RL models. Under RL,Q and R are
fixed, while, under CSR independence, they are random. Hence the tests in Equations
(5)-(8) are conditional on the observed values ofQ andR under CSR independencewhile
no such conditioning is required under RL. The variance and covariance terms in Section
3.2 and all the corresponding tests also depend on Q and R. Hence these expressions are
appropriate for the RL pattern, but for the CSR independence pattern, they are variances
and covariances conditioned on Q and R. The unconditional variances and covariances
can be obtained by replacing Q and R with their expectations. Under HPP in the infinite
plane, Cox (1981) computed E[R/n]→ .6215 and Cuzick and Edwards (1990) computed
E[Q/n]→ .633 as n→ ∞. However, these results are assuming an infinite plane, and
our CSR independence case requires a bounded support (e.g., the unit square) and fixed
number of points which renders their computation for exact and asymptotic settings an
arduous task (due to, e.g., the edge effects). Alternatively, the expected values of Q and
R can be empirically approximated and used in the expressions. For example, for the
binomial process on the unit square, E[Q/n] tends approximately to .6324 and E[R/n]
tends approximately to 0.6219 (estimated empirically based on 1000000 Monte Carlo
simulations for increasing values of n). Notice that these estimates are pretty close to
the results under HPP. Hence one could also replace Q and R with 0.63n and 0.62n,
respectively and obtain the so-called QR-adjusted tests but we use the observed values
of Q and R in computing our test statistics even when assessing their behavior under
CSR independence. As shown in Ceyhan (2008b), QR-adjustment does not improve on
the unadjusted NNCT-tests. �

Remark 3.4. Recommended Strategy for k > 2 Classes. In the multi-class case with
k> 2, we recommend the following strategy for the practical implementation of the cor-
responding tests: PerformXC and ZC to check presence of self or mixed correspondence
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or any deviation in the self column and then perform the cell-specific tests to determine
which species (if any) exhibit segregation or lack of it. �

3.3. Consistency of Tests

A reasonable test should have more power as the sample size increases, so, we prove
the consistency of the tests in question under appropriate hypotheses. Let χ2ν,α be the
100αth percentile of χ2 distribution with ν degrees of freedom.

Theorem 3.5. Let the CCT be constructed from completely mapped spatial data under
RL. Then
(i) the one-sided (hence the two-sided) cell-specific tests using Zii given in Equation
(5) rejecting Ho in Equation (10) are consistent,

(ii) the test rejecting Ho in Equation (11) forXC >χ2k,1−α withXC as in Equation (6)
is consistent,

(iii) the one-sided (hence the two-sided) tests using ZC given in Equation (8) rejecting
Ho in Equation (12) are consistent.

Proof. (i) In the k class case, let Tn,i =
Si/n−E[Si/n]√

Var[Si/n]
= Nii/n−E[Nii/n]√

Var[Nii/n]
, then Tn,i = Zii for i =

1,2, . . . ,k. Consistency of Zi j was proved in Ceyhan (2010) for all i, j which includes the
special case of i= j, but we still present it here for the sake of completeness. Under RL,
E[Tn,i] = E[Zii] = 0 and Zii = (Nii−E[Nii])/

√
Var[Nii] are approximately distributed as

N(0,1) for large ni for i= 1,2, . . . ,k. Under the right sided (resp. left sided) alternative
Ha, for any i ∈ {1,2, . . . ,k}, we have E[Zii|Ha] = εi > 0 (resp. E[Zii|Ha] = εi < 0) where
εi is a parameterization of the alternative for class i for i = 1,2, . . . ,k. Let R(εi) and
Q(εi) be the numbers of reflexive pairs and shared NNs, respectively, pii(εi), piii(εi), and
piiii(εi) be the counterparts of pii, piii, and piiii in Equation (3). Then under Ha, we have
Var[Nii/n] = (1/n+R(εi)/n2)pii(εi)+(2/n−2R(εi)/n2+Q(εi)/n2)piii(εi)+(1−3/n−
Q(εi)/n2+R(εi)/n2)piiii(εi)− (pii(εi))2. So, under Ha, it follows that Var[Nii/n]→ 0
as ni → ∞. Hence the test using Zii is consistent for the right-sided (resp. left sided)
alternative. Consistency for the two-sided alternative follows similarly.

(ii) Let�ε = (ε1, . . . ,εk), then we have Ha :�ε �= 0, with 0 being the vector of k zeros.
Also let λ(�ε) be the non-centrality parameter of χ2k distribution for XC under Ha. The
α-level test based onXC is consistent, sinceXC is a quadratic form based on Zii values,
i.e.,XC ∼ χ2k(λ(�ε)) for some λ(�ε)> 0. Furthermore, for large n, the null and alternative
hypotheses are equivalent to Ho : λ = 0 versus Ha : λ = λ(�ε) > 0. Then by standard
arguments for the consistency of χ2 tests, consistency follows.

(iii) Let Tn,sc =
S/n−E[S/n]√
Var[S/n]

=
∑k

i=1Nii/n−E[
∑k

i=1Nii/n]√
Var[

∑k
i=1Nii/n]

, then Tn,sc = ZC. Under RL,

E[Tn,sc] =E[ZC] = 0 and ZC=(S−E[S])/√Var[S] is approximately distributed asN(0,1)



140 A nearest neighbour approach for testing correspondence

for large n. Under right-sided (resp. left sided) alternative Ha, we have E[S|Ha] = ε > 0
(resp. E[S|Ha] = ε < 0) where ε is a parameterization of the alternative with ε > 0
(resp. ε < 0) characterizing self (resp. mixed) correspondence. Let R(ε) and Q(ε)
be the numbers of reflexive pairs and shared NNs, respectively, pii(ε), piii(ε), and
piiii(ε) be the counterparts of pii, piii, and piiii in Equation (3). Then under Ha, we have
Var[Nii/n] = (1/n+R(ε)/n2)pii(ε)+ (2/n− 2R(ε)/n2+Q(ε)/n2)piii(ε)+ (1− 3/n−
Q(ε)/n2+R(ε)/n2)piiii(ε)− (pii(ε))2 and Cov[Nii/n,Nj j/n] = (1− 3/n−Q(ε)/n2+
R(ε)/n2)pii j j− pii p j j. So, underHa, it follows that Var[Nii/n]→ 0 and Cov[Nii/n,Nj j/n]
→ 0 as ni → ∞. Hence Var[S]→ 0 as ni → ∞. Thus the test using ZC is consistent for
the right-sided (resp. left sided) alternative. Consistency for the two-sided alternative is
similar. �

4. Empirical Size and Power Analysis

In this section we investigate the finite sample performance of the tests under RL or
CSR independence and under various alternatives via Monte Carlo simulations.

4.1. Empirical Size Analysis

To determine empirical size performance of the tests, we use CSR independence and
RL as our null hypotheses. Under these patterns, correspondence would occur at ex-
pected levels. That is, under these patterns we have E[Si] = ni(ni− 1)/(n− 1) for all
i = 1,2, . . . ,k as in Equation (11) and E[S] =

∑k
i=1 ni(ni− 1)/(n− 1) as in Equation

(12).
We estimate the empirical sizes (i.e., significance levels) based on the asymptotic

critical values. For example, let T be a test with a χ2d f distribution asymptotically, and
let Ti be the value of test statistic for the sample generated at ith Monte Carlo repli-
cation for i = 1,2, . . . ,Nmc. Then the empirical size of T at level α = 0.05, denoted

α̂T is computed as α̂T = 1
Nmc

∑Nmc
i=1 I

(
Ti ≥ χ2d f ,0.95

)
. Furthermore, let Z be a test with a

N(0,1) asymptotic distribution, and let Zi be the value of test statistic for ith sample gen-
erated. Then the empirical size of Z for the left-sided (resp. right-sided) alternative at
level α= 0.05, denoted α̂Z is computed as α̂Z = 1

Nmc

∑Nmc
i=1 I(Zi≤ z0.05 =−1.645) (resp.

α̂Z =
1
Nmc

∑Nmc
i=1 I(Zi ≥ z0.95 = 1.645)). The empirical size for the two-sided alternative

is computed as α̂Z = 1
Nmc

∑Nmc
i=1 I(|Zi| ≥ z0.975 = 1.96).

4.1.1. Empirical Size Analysis under CSR Independence

We consider the two-class and three-class cases. For the three-class case, we have
classes X , Y , and Z (or classes 1, 2, and 3) of sizes n1, n2, and n3 respectively. Under
Ho, at each of Nmc = 10000 replications, we generate n1 X points Xn1 = {X1, . . . ,Xn1},
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n2 Y points Yn2 = {Y1, . . . ,Yn2}, and n3 Z points Zn3 = {Z1, . . . ,Zn3} independently of
each other and iid from U ((0,1)× (0,1)) and combine X , Y and Z points as Wn =

Xn1 ∪Yn2 ∪Zn3 = {W1,W2, . . . ,Wn}. For the two-class case, we only generate points
from classes X and Y and combine them as Wn = Xn1 ∪Yn2 = {W1,W2, . . . ,Wn}. We
consider four cases for CSR independence:

CSR Case 1 (with 2 classes) : n1 = n2 = n= 10,20,30,40,50

CSR Case 2 (with 2 classes) : n1 = 20 and n2 = 20,30, . . . ,60.

CSR Case 3 (with 3 classes) : n1 = n2 = n3 = n= 10,20,30,40,50

CSR Case 4 (with 3 classes) : n1 = 20, n2 = 40, and n3 = 40,40, . . . ,80.

In CSR cases 1 and 3, the sample sizes are equal and increasing, to determine the
influence of the increasing balanced sample sizes on the empirical levels of the tests. On
the other hand, CSR cases 2 and 4 are designed to determine the influence of differences
in the sample sizes (i.e., differences in relative abundances of classes) on the empirical
levels of the tests.
The empirical significance levels for the tests under CSR independence are presented

in Table 6, where α̂Z11 , α̂Z22 , and α̂Z33 are for the cell-specific tests for cells (1,1), (2,2),
and (3,3) (for segregation); (see, e.g., Dixon, 1994 and Ceyhan, 2008a for details on the
cell-specific tests); α̂XC is for the χ

2 testXC, testing the self column in CCT; α̂ZC is for
ZC, testing the sum of the self column; α̂XD is for Dixon’s overall segregation test; and
α̂XC ,ZC is the proportion of agreement in rejecting the null hypothesis for XC and ZC;
α̂XD,XC is the proportion of agreement for XD and XC; and α̂XD,ZC is the proportion
of agreement for XD and ZC. For Nmc = 10000 replications, an empirical size estimate
is deemed conservative, if smaller than .0464 while it is deemed liberal, if larger than
.0536 at .05 level (based on binomial critical values with n= 10000 trials and probability
of success 0.05).
In the two-class cases (i.e., CSR cases 1 and 2), we do not present Dixon’s overall

test of segregation as it is identical to XC for two classes. Under CSR case 1, XC and
ZC are slightly conservative for smaller sample sizes. Under CSR case 2, XC and Z11
are conservative (with the latter being more so) when sample sizes are unbalanced (i.e.,
the relative abundance ratio, n2/n1, gets larger than two). Note also that ZC seems to be
robust to differences in relative abundance of the classes. The proportion of agreement
in rejecting the null hypothesis by XC and ZC is significantly smaller than .05, which
implies these tests have significantly different rejection/acceptance regions (i.e., they are
testing substantially different hypotheses).
Under the three-class cases of CSR cases 3 and 4, we also present Dixon’s overall

test of segregation as it is different from XC for more than two classes. Under CSR
case 3, all tests are slightly conservative for smaller sample sizes and cell-specific tests
are slightly liberal for larger sample sizes. Under CSR case 4, Z11 is conservative for
all sample size combinations (since it has the smallest sample size in this case where



142 A nearest neighbour approach for testing correspondence

Table 6: The empirical significance levels of the tests under CSR independence cases 1-4 with Nmc= 10000
at α= .05. α̂Z11 , α̂Z22 , and α̂Z33 are the empirical significance levels for the cell-specific tests for cells (1,1),
(2,2), and (3,3) (for segregation); α̂XD

for Dixon’s overall segregation test, XD; α̂XC
for the χ2 test XC;

α̂ZC for ZC; and α̂XC ,ZC is the proportion of agreement in rejecting the null hypothesis for XC and ZC;
α̂XD,XC

is the proportion of agreement for XD and XC; and α̂XD,ZC is the proportion of agreement for
XD and ZC. Size estimates larger than .0536 (resp. smaller than .0464) are liberal (resp. conservative)
and are superscripted with 
 (resp. c).

CSR case 1

n α̂XC
α̂ZC α̂XC ,ZC α̂Z11 α̂Z22

10 .0432c .0439c .0216 .0454c .0465

20 .0457c .0443c .0207 .0517 .0522

30 .0485 .0462c .0237 .0573 .0493

40 .0501 .0545
 .0254 .0507 .0525

50 .0472 .0468 .0215 .0454c .0472

CSR case 2

n2 α̂XC
α̂ZC α̂XC,ZC α̂Z11 α̂Z22

20 .0437c .0448c .0197 .0482 .0517

30 .0480 .0493 .0253 .0521 .0479

40 .0489 .0521 .0237 .0313c .0455c

50 .0427c .0526 .0219 .0295c .0478

60 .0452c .0465 .0233 .0395c .0495

CSR case 3

n α̂XD
α̂XC

α̂ZC α̂XD,XC
α̂XD ,ZC α̂XC,ZC α̂Z11 α̂Z22 α̂Z33

10 .0421c .0425c .0491 .0179 .0084 .0312 .0277c .0283c .0250c

20 .0408c .0438c .0481 .0180 .0094 .0293 .0332c .0283c .0318c

30 .0465 .0473 .0496 .0204 .0110 .0320 .0530 .0526 .0549


40 .0455c .0495 .0461c .0205 .0092 .0320c .0509 .0558
 .0595


50 .0474 .0497 .0504 .0229 .0120 .0329 .0605
 .0588
 .0564


CSR case 4

n3 α̂XD
α̂XC

α̂ZC α̂XD,XC
α̂XD,ZC α̂XC ,ZC α̂Z11 α̂Z22 α̂Z33

40 .0490 .0509 .0492 .0233 .0126 .0342 .0418c .0551
 .0510

50 .0412c .0443c .0450c .0187 .0100 .0297 .0344c .0460c .0489

60 .0488 .0466 .0528 .0212 .0123 .0354 .0238c .0543
 .0492

70 .0528 .0496 .0498 .0261 .0156 .0344 .0458c .0520 .0517

80 .0509 .0492 .0518 .0228 .0116 .0302 .0333c .0431c .0522

there is substantial class imbalance) whereas Z33 has the best size performance as it
corresponds to the class with the largest samples. The proportions of agreement by the
tests in rejecting the null hypothesis are all significantly smaller than .05, which implies
these tests have significantly different rejection/acceptance regions (with XC and ZC
having the largest overlap (i.e., these statistics are testing more similar hypotheses) and
XD and ZC having the smallest overlap in rejection regions (i.e., these statistics are
testing more different hypotheses compared to other pairs).
For unbalanced or small sample sizes, the tests are usually conservative (especially

for the cell-specific tests for the smaller samples), so we recommend the use of the
Monte Carlo randomized versions or the use of Monte Carlo critical values for the cell-
specific test for the smaller class. A Monte Carlo critical value is determined as the
appropriately ranked value of the test statistic in a certain number of generated data sets
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from the distribution under the null hypothesis. The class sizes are said to be balanced,
if the relative abundances of the classes are close to one, and they are called unbalanced,
if the relative abundances deviate substantially from one.

4.1.2. Empirical Size Analysis under RL

Under the RL pattern, the class labels or marks are assigned randomly to points whose
locations are given. Recall that Wn = {w1,w2, . . . ,wn} is the given set of locations for n
points from the background pattern. For two classes, at each background realization, n1
of the points are labeled as class 1 or X and the remaining n2 = n−n1 points are labeled
as class 2 or Y . Similarly, for three classes, at each background realization, n1 of the
points are labeled as class X , n2 of the points are labeled as class Y , and the remaining
n3 = n− (n1+n2) points are labeled as class Z.

Types of the Background Patterns (Two Classes)

RL Case 1: The background points are a realization of Zi
iid∼ U ((0,1)× (0,1)) for

i= 1,2, . . . ,n. That is, the background points,Wn, are generated iid uniform in the
unit square (0,1)× (0,1). We consider n1 = n2 = 10,20, . . . ,50.

RL Case 2: The background points, Wn, are generated as in case 1 above with
n1 = 20 and n2 = 20,30, . . . ,60.

RL Case 3: The background points, Wn, are generated from a Matérn cluster pro-
cess, MatClust(κ,r,μ) (Baddeley and Turner, 2005). In this process, first “parent”
points are generated from a Poisson process with intensity κ. Then each parent
point is replaced by N ∼ Poisson(μ) new points which are generated iid inside the
circle of radius r centered at the parent point. Each background realization is a
realization of Wn and is generated from MatClust(κ,r,μ). Let n be the number
of points in a particular realization. Then n1 = n/2� of these points are labeled
as class 1 where x� stands for the floor of x, and n2 = n− n1 as class 2. In our
simulations, we use κ = 2,4, . . . ,10, μ = 100/κ�, and r = 0.1. That is, we take
(κ,μ) ∈ {(2,50),(4,25) . . . ,(10,10)} so as to have about 100 background points
on the average with about half of them being from class 1 and the other half being
from class 2.

To reduce the influence of a particular background realization on the size perfor-
mance of the tests, we generate 100 different realizations of each background pattern.
For each case, the RL scheme described is repeated 1000 times for each (n1,n2) combi-
nation at each of 100 different background realizations. So we have Nmc = 100000. In
RL cases 1 and 2, the points are from HPP in the unit square with fixed n1 and n2 (i.e.,
from binomial process), where RL case 1 is for assessing the effect of equal but increas-
ing sample sizes on the tests, while RL case 2 is for assessing the effect of increasing dif-
ferences in sample sizes of the classes (with one class size being fixed, while the other is
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increasing). On the other hand, in the background realizations of RL case 3, centers and
numbers of clusters are random. On the average, with increasing κ, the cluster sizes tend
to decrease and the number of clusters tend to increase (so as to have fixed class sizes
on the average). Hence in RL case 3, we investigate the influence of increasing num-
ber of clusters with randomly determined centers on the size performance of the tests.
The empirical size estimates of the tests for two classes under RL cases 1-3 are

presented in Table 7. For Nmc = 100000 replications, if all the Monte Carlo replications
were independent, an empirical size estimate would have been deemed conservative, if
smaller than .04887 while it would have been deemed liberal, if larger than .05113 at .05
level (based on binomial critical values with n= 100000 trials and probability of success
0.05). This approach is like providing critical values for a two-sided hypothesis test.
Equivalently, one might construct a confidence interval (say 95 %) for the proportion
of rejections (i.e., empirical size estimate) and check whether it contains the nominal
level of .05 or lies completely at one side of .05. However, under our RL scheme, the
Monte Carlo replications are not independent as 100 replications are performed at each
of 100 background realizations, hence within sample independence is violated rending
both the critical value and the confidence interval approaches are not appropriate. But
we can account for dependence due to the use of same background realization for 100
of the realizations, at each of which 1000 Monte Carlo replications are performed, by
using a linear mixed effects model. In particular, in the “lme4” package in R, we can
employ “lmer” command with properly declaring the error structure for dependence
in the background realization. For example, let “bg” stand for the background factor
(i.e., takes the same value for each Monte Carlo replication at the same background
realization). Then we can apply a mixed modeling with “lmer” command by declaring
the error structure as “(1|bg)” and construct a 95 % confidence interval for the size
estimate value. We mark the empirical sizes not significantly different from .05 with an
asterisk.
Under RL case 1, tests are either slightly conservative or liberal (with more con-

servative for smaller samples), and under RL case 2, cell-specific tests for the smaller
sample is moderately conservative, and the other tests are slightly conservative or lib-
eral. The tests have sizes about the nominal level under RL case 3, since in this case,
the class sizes are about 50, which seems large enough for the normal approximation to
take effect. Moreover, the size performance of the tests does not depend on the number
and size of the clusters in the background pattern and the more important factor is the
sample sizes.

Types of the Background Patterns (Three Classes)

RL Case (i): Same as in RL Case 1 of the two class setting with n1 = n2 = n3 =
10,20, . . . ,50.

RL Case (ii): Same as in RL Case 2 of the two class setting with n1 = 20, n2 = 40
and n3 = 40,50, . . . ,80.
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RL Case (iii): Same as in RL Case 3 of the two class setting with n1 = n2 = n/3�
points are labeled as classes 1 and 2 and n3 = n− (n1+ n2) as class 3. In our
simulations, we use κ = 2,4, . . . ,10, μ = 150/κ�, and r = 0.1. That is, we take
(κ,μ) ∈ {(2,75),(4,37) . . . ,(10,15)} so as to have about 150 background points
on the average with about a third of them being from each of classes 1-3.

Table 7: The empirical significance levels of the tests for two classes under RL cases 1-3 with Nmc =
100000 (1000 replications for each of 100 background realizations) at α= .05. The empirical size labeling
for the tests is as in Table 6. Size estimates not significantly different from .05 are marked with an asterisk.

RL case 1

n α̂XC
α̂ZC α̂Z11 α̂Z22

10 .04281 .04276 .04513 .04625

20 .04511 .04612 .05349 .05209

30 .04862* .04616 .05220 .05258

40 .04782 .05398 .05232 .05217

50 .04942* .04932* .04740 .04642

RL case 2

n2 α̂XC
α̂ZC α̂Z11 α̂Z22

20 .04602 .04670 .05479 .05414

30 .04735 .04783 .05050* .04886*

40 .04551 .05357 .03375 .04358

50 .04611 .05649 .03456 .04893*

60 .04395 .04670 .04042 .04749

RL case 3

κ α̂XC
α̂ZC α̂Z11 α̂Z22

2 .04700 .04957* .04734 .04577

4 .04804 .04959* .04901* .04860*

6 .04905* .05023* .05103* .04926*

8 .04859 .04983* .05096* .04914*

10 .04869* .05011* .05042* .05097*

The empirical size estimates of the tests for three classes under RL cases (i)-(iii)
are presented in Table 8. Under all cases XD and XC are slightly conservative (with
the former being more conservative), and ZC is closest to the nominal level. Under RL
case (i) cell-specific tests are conservative for smaller samples, under RL case (ii), cell-
specific tests for the smaller samples are conservative, while larger samples are close to
the nominal level. Under RL case (iii) all Z tests are at about the desired level.
Based on the empirical size performance of the tests under CSR independence and

RL, we observe that the new tests XC and ZC are more appropriate for both balanced
or unbalanced sample sizes (with the latter being more robust to the imbalance in class
sizes).

4.2. Empirical Power Analysis

To compare the empirical power performance of the tests, we consider various alterna-
tive cases with the two and three classes for deviations from the null case in the NN
structure. The empirical power estimates are computed at α= .05 as in the size estima-
tion in Section 4.1.
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Table 8: The empirical significance levels of the tests with three classes under RL cases (i)-(iii) with Nmc =
10000 at α= .05. The notation is as in Table 6. Size estimates not significantly different from .05 are marked
with an asterisk.

RL Case (i)

n α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
10 .03879 .03957 .04964* .02536 .02585 .02528

20 .04479 .04571 .05043* .03293 .03364 .03175

30 .04558 .04756 .05151 .05292 .05365 .05370

40 .04628 .04773 .04789 .05328 .05231 .05280

50 .04797 .04877* .05009* .05855 .05804 .05823

RL Case (ii)

n3 α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
40 .04701 .04728 .04674 .04048 .05155* .04995*

50 .04674 .04736 .05120* .03374 .04592 .05375

60 .04696 .04578 .05006* .02355 .05240 .05036*

70 .04870* .04881* .04689 .04483 .05102* .04662

80 .04798 .04970* .05085* .03427 .04768 .04747

RL Case (iii)

κ α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
2 .04692 .04728 .04940* .05081* .05069* .04764*

4 .04650 .04836 .04878* .04752 .04813* .04886*

6 .04860 .04900* .04927* .04825* .04878* .04959*

8 .04743 .04836 .04736 .04994* .04923* .04833*

10 .04693 .04791 .04868* .04918* .04881* .05032*

4.2.1. Empirical Power Analysis for Two Classes

For the two classes, we consider five alternative cases.

Case I: For this class of alternatives, we generate Xi
iid∼U ((0,1)×(0,1)) for i= 1, . . . ,n1

and Yj
iid∼ BVN(1/2,1/2,σ1,σ2,ρ) for j = 1, . . . ,n2, where BVN(μ1,μ2,σ1,σ2,ρ) is the

bivariate normal distribution with mean (μ1,μ2) and covariance

[
σ1 ρ

ρ σ2

]
. In our

simulations, we set σ1= σ2= σ and ρ= 0. We consider the following three alternatives:

H1
I : σ = 1/5, H2

I : σ = 2/15, and H3
I : σ = 1/10. (13)

The classes 1 and 2 (i.e., X and Y ) have different distributions with different local inten-
sities. In particular, X points are a realization of uniform distribution in the unit square,
while Y points are clustered around the center of the unit square (1/2,1/2) where the
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level of clustering increases as σ decreases. This suggests a high level of niche speci-
ficity for Y points around the center of the unit square compared to X points, which in
turn implies segregation of Y points from X points. Furthermore, self NN pairs would
be more likely to occur compared to mixed NN pairs, hence self correspondence is ex-
pected to be observed.
The empirical power estimates under the alternatives, H1

I −H3
I , with n1 = n2 = 40

are presented in Table 9, where β̂XC is power estimate for the χ
2 test for the self col-

umn, XC; β̂Z11 and β̂Z22 are for the cell-specific tests for cells (1,1) and (2,2) (for
segregation), and β̂ZC is for the Z test for the sum of self column, ZC. Under the case I
alternatives, the power estimates increase as σ decreases. In particular, the self column
test,XC, and the right-sided cell-specific tests for cells (1,1) and (2,2) have high power
estimates, which indicates segregation of Y points from X points and vice versa. Since
segregation occurs for both classes, andXC has high power implies self correspondence.
Also, the right-sided Z test for the sum of the self column has high power, confirming
self correspondence in this case. Notice that the ZC has the highest power estimates.

Case II: For this type of alternatives, first, we generate Xi
iid∼ U ((0,1)× (0,1)) for i =

1,2, . . . ,n1 and for each j = 1,2, . . . ,n2, we generate Yj around a randomly picked Xi
with probability p in such a way that Yj = Xi+Rj (cosTj,sinTj)t where vt stands for
transpose of the vector v, Rj ∼ U (0,mini�= j d(Xi,Xj)) and Tj ∼ U (0,2π) or generate
Yj uniformly in the unit square with probability 1− p. In the pattern generated, Yj are
more associated with Xi. The three values of p constitute the following alternatives:

H1
II : p= .25, H2

II : p= .50, and H3
II : p= .75. (14)

Table 9: The power estimates under the case I-III, and V alternatives in Equations (13)-(15), and (17) with
Nmc = 10000, n1 = n2 = 40 at α = .05. β̂Z11 and β̂Z22 are is power estimates for the cell-specific tests for
cells (1,1) and (2,2) (for segregation), β̂XC

is for XC, testing deviations in the self column, and β̂ZC is
for ZC, testing the sum of self column. The “>” (resp. “<”) sign in the superscript implies the power is
estimated for the right-sided (resp. left-sided) alternative.

Power estimates under

case I alternatives

β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

H1I .2226 .4167 .2648 .3320

H2I .8523 .9599 .8403 .9164

H3I .9929 .9994 .9887 .9972

Power estimates under

case II alternatives

β̂XC
β̂<
ZC

β̂<
Z11

β̂<
Z22

H1II .1469 .3998 .2658 .2330

H2II .4051 .7788 .5625 .4054

H3II .5393 .9003 .7373 .3366

case III alternatives

β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

H1III .4196 .6812 .5141 .5134

H2III .9247 .9876 .9437 .9439

H3III .9999 1.000 .9999 .9997

case V alternatives

β̂XC
β̂<
ZC

β̂<
Z11

β̂<
Z22

H1V .1795 .3499 .2160 .3867

H2V .4384 .7081 .5562 .6280

H3V .6808 .8937 .7937 .7795
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In this case, X points constitute a realization of the uniform distribution in the unit
square, while Y points are clustered around the X points, and the level of clustering
increases as p increases. The empirical power estimates under the alternatives, H1

II −
H3
II, with n1 = n2 = 40 are presented in Table 9. Notice that XC implies significant
deviations in the self column, but Z11 and Z22 have high power estimates for the left-
sided alternative, which implies significant association between the classes. Z11 having
higher power for the left-sided alternative is due to severe lack of segregation of class
X points from class Y points (or class Y points being significantly associated with class
X points), and Z22 has smaller power since Y points are clustered around X points,
which also causes slight clustering of Y points. Furthermore, ZC has high power for the
left-sided alternative, which implies mixed NN pairs are more abundant, hence there is
significant mixed correspondence in the NN structure.

Case III: For this class of alternatives, we consider Xi
iid∼ U ((0,1− s)× (0,1− s)) for

i= 1, . . . ,n1, andYj
iid∼U ((s,1)×(s,1)) for j= 1, . . . ,n2. The three values of s constitute

the following alternatives;

H1
III : s= 1/6, H2

III : s= 1/4, and H
3
III : s= 1/3. (15)

Notice that these alternatives are the segregation alternatives considered for Monte Carlo
simulations in Ceyhan (2010). The empirical power estimates under the segregation
alternatives H1

III −H3
III are presented in Table 9. The tests have high power which in-

creases as s increases. There is significant segregation (at the same level for both classes
by construction), and the cell-specific tests are also significant for the right-sided alter-
natives. Furthermore, XC indicates significant deviations in the self column, and ZC
has high power for the right-sided alternative, indicating self correspondence in the NN
structure.

Case IV: We also consider alternatives in which, by construction, self-reflexive pairs

are more frequent than expected under CSR independence. We generate Xi
iid∼ S1 for

i= 1, . . . ,n1/2� and Yj iid∼ S2 for j = 1, . . . ,n2/2�. Then for k = n1/2�+1, . . . ,n1, we
generate Xk = Xk−n1/2� + r (cosTj,sinTj)t and for l = n2/2�+ 1, . . . ,n2, we generate
Yl =Yl−n1/2�+ r (cosTj,sinTj)t where r ∈ (0,1) and Tj ∼ U (0,2π). Appropriate small
choices of r will yield an abundance of self-reflexive pairs. The three values of r we
consider constitute the self-reflexivity alternatives at each support pair (S1,S2). Then
the nine alternative combinations we consider are given by

(i) H1IV : S1 = S2 = (0,1)× (0,1), (a) r = 1/7, (b) r = 1/8, (c) r = 1/9,

(ii) H2IV : S1 = (0,5/6)× (0,5/6) and S2 = (1/6,1)× (1/6,1), (a) r = 1/7, (b) r = 1/8, (c) r = 1/9,
(16)

(iii) H3IV : S1 = (0,3/4)× (0,3/4) and S2 = (1/4,1)× (1/4,1) (a) r = 1/7, (b) r = 1/8, (c) r = 1/9.
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Table 10: The power estimates under the case IV alternatives with Nmc = 10000, n1 = n2 = 40 at α= .05.
The empirical power labeling and superscripting for “<” and “>” are as in Table 9.

Power estimates under
the case IV alternatives

r β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

1/7 .8671 .9572 .8866 .8848

H1IV 1/8 .9377 .9834 .9455 .9436

1/9 .9735 .9949 .9746 .9743

1/7 .9440 .9885 .9522 .9523

H2IV 1/8 .9740 .9949 .9769 .9779

1/9 .9890 .9982 .9895 .9908

1/7 .9930 .9990 .9925 .9932

H3IV 1/8 .9973 .9996 .9967 .9973

1/9 .9991 .9999 .9984 .9989

In this case, under H2
IV and H

3
IV , by construction, there is segregation of the classes

due to the choices of the supports. The empirical power estimates under the alternatives
H1
IV −H3

IV are presented in Table 10. Notice that the tests all have very high power es-
timates. Furthermore, there is significant segregation (at the same level for both classes
at each alternative by construction), and the cell-specific tests are also significant for the
right-sided alternatives. Furthermore, XC has high power estimates indicating signifi-
cant deviation in the self column and ZC has high power for the right-sided alternative,
indicating self correspondence in the NN structure. The power estimates for these tests
increase from H1

IV to H
3
IV and they also increase as r decreases from (a) to (c) at each

(S1,S2) combination. Hence the power estimates increase as the levels of segregation
increases.

Case V: In this case, first, we generate Xi
iid∼ U ((0,1)× (0,1)) and then generate Yj as

Yj = Xi+ r (cosTj,sinTj)t where r ∈ (0,1) and Tj ∼ U (0,2π). In the pattern generated,
appropriate choices of r will cause Yj and Xi more associated; that is, a Y point will be
more likely to be the NN of an X point, and vice versa. The three values of r we consider
constitute the three association alternatives;

H1
V : r = 1/4, H2

V : r = 1/7, and H
3
V : r = 1/10. (17)

These are also the association alternatives considered for Monte Carlo simulations in
Ceyhan (2010).
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The empirical power estimates under H1
V −H3

V are presented in Table 9. Notice that
XC has high power estimates indicating significant deviations in the self column, and
the cell-specific tests have high power estimates for the left-sided alternatives indicating
presence of significant association of the classes. Furthermore, ZC has high power for
the left-sided alternative indicating that there is significant mixed correspondence in the
NN structure. The power estimates for these tests increase as r decreases.

4.2.2. Empirical Power Analysis for Three Classes

For the three classes, we consider two cases. We generate n1= n2= n3= 40 points from
classes X , Y and Z.

Case 1: For this class of alternatives, we generate X andY points as in Case III of power
analysis for two classes of Section 4.2.1, and Z points as Y points in Case I of Section
4.2.1. We consider the following two alternatives:

H1
1 : s= 1/6, σ = 1/5, and H2

1 : s= 1/4, σ = 2/15. (18)

The classes 1 and 2 (i.e., X and Y ) are segregated with shifted supports and class 3
is clustered around (1/2,1/2). Furthermore, by construction a higher level of niche
specificity for Z points exists around the center of the unit square compared to X and Y
points, which in turn implies segregation of Z points from X and Y points as well.
The empirical power estimates under the alternatives, H1

1 and H
2
1 , with n1 = n2 =

n3 = 40 are presented in Table 11, where β̂XD is power estimate for Dixon’s overall test
of segregation; β̂Z33 is for the cell-specific test for cell (3,3) (for segregation), the other
notation is as in Table 9. Under the case 1 alternatives, the power estimates increase as
σ decreases and s increases. In particular, Dixon’s overall test and the self column test,
XC have high power estimates, and the right-sided cell-specific tests for cells (1,1),
(2,2) and (3,3) have high power, which indicate segregation of each class from the
others. Also, the right-sided Z test for the sum of the self column, ZC, has high power,
implying self correspondence is operating as well. Notice that the ZC has the highest
power estimates.

Case 2: For this class of alternatives, we again generate X and Y points as in Case III
of Section 4.2.1, and Z points as Y points in Case V of Section 4.2.1. We consider the
following two alternatives:

H1
2 : s= 1/6, r = 1/7, and H2

2 : s= 1/4, r = 1/10. (19)

The classes 1 and 2 (i.e., X and Y ) are segregated with shifted supports and class 3 is
clustered around X and Y points.
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Table 11: The power estimates under the case 1 and 2 alternatives with Nmc = 10000, n1 = n2 = n3 = 40
at α = .05. β̂XD

is the power estimate for Dixon’s overall segregation test, β̂Z33 is for the cell-specific test
for cell (3,3). The other notation and superscripting for “<” and “>” are as in Table 9.

Power estimates under

case 1 alternatives

β̂XD
β̂XC

β̂>
ZC

β̂>
Z11

β̂>
Z22

β̂>
Z33

H11 .3297 .4453 .6453 .5186 .5254 .1951

H21 .9527 .9809 .9958 .9606 .9570 .6985

case 2 alternatives

β̂XD
β̂XC

β̂>
ZC

β̂>
Z11

β̂>
Z22

β̂<
Z33

H12 .2620 .2289 .0539 .1877 .1834 .2954

H22 .6514 .4818 .1032 .3488 .3433 .4099

The empirical power estimates under the alternatives, H1
2 and H

2
2 , with n1 = n2 =

n3 = 40 are presented in Table 11. Under the case 2 alternatives, the power estimates
increase as r decreases and s increases. In particular, Dixon’s overall test and the self
column test, XC have high power, and the right-sided cell-specific tests for cells (1,1)
and (2,2), and left-sided test for cell (3,3) have high power, which indicate segregation
of X and Y points from other classes, and lack of segregation of Z points from X and Y
points which might be association of Z points with one or both of classes X and Y . To
determine the specifics one needs to check the off-diagonal cell specific tests in row 3
of the corresponding NNCT. Also, the right-sided Z test for the sum of the self column
is mildly significant, implying a mild level of self correspondence is operating as well.
Notice also that the ZC has the lowest power estimates.
In alternative cases I-V the classes are either both segregated or associated (i.e., the

direction of the deviation in each diagonal cell is same for both classes). Hence this
cumulative effect is better captured by ZC which has the highest power estimates under
all these cases. Similarly, in alternative case 1, by construction, each class is segregated
from others (although the type and level of segregation is different for class Z compared
to X andY ), hence the direction of the deviation in the self column in CCT (i.e., diagonal
cells in NNCT) is same for all classes, thereby rendering ZC the most powerful test again.
However, in alternative case 2, while X and Y are segregated, Z is associated with both
classes. Hence direction of deviation in the self column cells are positive for X and Y
and negative for Z. So this sign difference tends to nullify the deviations from the null
case, which causes ZC have the lowest power estimates.
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5. Real-Life Example Data Set

To illustrate the methodology, we use an example data set with 6 classes: the Lansing
Woods data which is available in the spatstat package in R (Baddeley and Turner, 2005).
The Lansing Woods data contains locations of trees (in feet (ft)) and botanical clas-

sification of trees according to their species in a 924 ft × 924 ft (19.6 acre) plot in
Lansing Woods, Clinton County, Michigan, USA (Gerrard, 1969). The data set com-
prises of 2251 trees together with their species as hickories, maples, red oaks, white
oaks, black oaks and miscellaneous trees. In our analysis, we consider each species as
a class and miscellaneous trees as another class. The scatterplot of these tree locations
are presented in Figure 2.
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Figure 2: The scatterplot of the locations of hickories (circles ◦), maples (triangles�), white oaks (pluses
+), red oaks (crosses ×), black oaks (diamond shapes �), and other species (inverse triangles �) in the
Lansing Woods, Clinton County, Michigan, USA.

The CCT for this data is presented in Table 12. Notice that some cell counts in
the contingency tables are not integers, since there are ties in the NN relations. For
self correspondence, the abundance proportions for the species is hickories:maples:whit
oaks:red oaks:black oaks:other ≈ 6 : 70 : 4.90 : 4.27 : 3.30 : 1.29 : 1.00 and the propor-
tions of the entries in the self column is ≈ 14.14 : 9.70 : 5.50 : 4.20 : 1.08 : 1.00, which
seems to be much different than the abundance proportions, suggesting significant pres-
ence of self correspondence.
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Table 12: The CCT for the Lansing Woods data.

pair type
self mixed total

hickory 353.5 349.5 703
maple 242.5 271.5 514

white oak 137.5 310.5 448
red oak 105 241 346base species
black oak 27 108 135
other 25 80 105
total 890.5 1360.5 2251

Table 13: The test statistics and the p-values for Lansing Woods data. Zii are cell-specific tests for cells
(i, i) for i= 1,2, . . . ,6, XD is Dixon’s overall test of segregation. ZC, and XC are as defined in the text; TS
stands for the test statistic, pasy, pmc, and prand stand for the p-values based on the asymptotic approxima-
tion, Monte Carlo simulation, and randomization of the tests, respectively.

Test statistics and p-values for Lansing Woods data

XD XC Z>S Z>11 Z>22 Z>33 Z>44 Z>55 Z>66

TS 376.8609 325.9750 16.4759 9.4622 11.0934 4.7895 6.3717 5.5085 7.4514

pasy < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

prand < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

pmc < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

We compute Q = 1560 and R = 1400. Again the more appropriate null hypothesis
is the CSR independence pattern, since the locations of the tree species can be viewed a
priori resulting from different processes (Goreaud and Pélissier, 2003). We present the
test statistics and the associated p-values in Table 13, where in this table pasy stands for
the p-value based on the asymptotic approximation (i.e., asymptotic critical value), prand
is based on Monte Carlo randomization of the labels on the given locations of the trees
10000 times and pmc is the p-value based on 10000 Monte Carlo replication of the CSR
independence pattern in the region plotted in Figure 2. Notice that pasy, prand and pmc are
similar and highly significant for all tests. The cell-specific tests are all significant for the
right-sided alternative, and the χ2 test for the self column,XC, is significant, implying
significant self correspondence for these species, and hence significant segregation of
the species (from each other). Similarly, ZC is significant confirming significant self
correspondence for all species combined.

6. Discussion and Conclusions

In this article, we introduce the correspondence in the NN structure pattern for multiple
classes/species and tests for it based on a contingency table called correspondence con-
tingency table (CCT) which can also be derived from the associated nearest neighbour
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contingency table (NNCT). These tests are a χ2 test of correspondence for the first
column of CCT (called self-column),XC, and a Z test for the sum of the self column of
CCT, ZC. We show that in the two class case, the CCT and the NNCT contain the same
information (but in different order in their entries), and the corresponding quadratic test
for the self column,XC and Dixon’s overall test of segregation,XD, are equivalent. For
more than two classes, these tests are different and hence provide different information.
On the other hand, regardless of the number of classes, ZC is different fromXC andXD

(i.e., ZC provides new information not provided by the segregation tests for two or more
classes) whereas ZSi and Zii are identical (i.e., they always give the same information).
For k ≥ 2 classes, NNCT is of dimension k× k and the corresponding CCT is of

dimension k×2, where the entries in the first column (i.e., self column) are the diagonal
entries of the NNCT and each entry in the second column (i.e., mixed column) of CCT is
the sum of off-diagonal entries at each row of NNCT. Overall segregation test based on
NNCT measures any deviation in the entries of the NNCT and a cell-specific test based
on NNCTmeasures the deviation in the corresponding entry of the NNCT (Dixon, 1994,
2002b). On the other hand, the tests based on the CCT are a χ2 test for the self column
and a Z test for the sum of the self column. The former test is based on deviations of the
frequencies of the self NN pairs, and the latter is based on the sum of these frequencies.
Both tests might indicate presence of self or mixed correspondence which can not be
tested directly in the NNCT, hence the need to introduce CCT.
We show that XC provides information on the overall deviations jointly in the self

column (or in the mixed column) in CCT, ZC provides information on the abundance
of self pairs when all classes are combined. Hence to determine the level and type of
correspondence as self or mixed,XC should be employed together with the cell-specific
tests Zii (see Equation (5)) so that whenXC is significant cell-specific tests will provide
the direction and significance of the deviations for each diagonal cell in the NNCT (or
each cell in the self-column of CCT). If they are all or mostly in the positive (resp.
negative) direction, the pattern would be segregation (resp. lack of segregation) for the
classes corresponding to the positive (resp. negative) significant Zii values and self (resp.
mixed) correspondence for all classes combined. On the other hand, for ZC we do not
need to confer to the cell-specific tests, as it by itself is sufficient to indicate that the
correspondence is of type self or mixed. Another advantage of ZC is that it is more
robust to differences in relative abundances of the classes (i.e., to the class imbalance
problem).
Among the tests considered, ZC is more powerful if all or most classes are segregated.

The same holds if all or most class pairs are associated. But if the pattern is mixed (i.e.,
some classes are segregated while some pairs are associated) the deviations in the self
column tend to cancel each other in the sum, rendering ZC perform rather poorly. In
such a case,XC (together with the cell-specific tests) provide a more accurate picture of
the patterns in the data and are more powerful.
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Based on our simulations and example data sets, we recommend to perform both of
the tests ZC andXC, and if any of them is significant, then the cell-specific tests can be
performed (to determine segregation or lack of it at the class/species level). When the
cell counts in the self column of CCT are all larger than 10, it is safe to employXC with
the asymptotic approximation, and if some cell count is 5 or less, it is better to useMonte
Carlo randomized version of the test. If some cell counts are between 5 and 10, both
versions (i.e., asymptotic approximation andMonte Carlo randomization) can be used to
reach more reliable conclusions. Since ZC is the sum of the self column, the cell counts
are not that relevant as long as column sum is 20 or larger (even 10 or larger seems to
work in practice). We recommend randomization version of ZC if column sum is 10 or
less, and for sum between 10 and 20, one can employ both asymptotic approximation
and randomization versions for more reliable conclusions.
Throughout this article, we assume the total sample size and class sizes are all fixed.

If it is desired to have the sample size be a random variable, we may consider a spatial
Poisson point process on the region of interest instead of the binomial process. In fact,
this case is also a realistic situation for data collection schemes in plant ecology. That is,
in the region of interest, one can examine each subject, determine its species and that of
its NN. In this framework, all margins of the NNCT and CCT would be random. The ef-
fect of such randomness on the behavior (e.g., distribution), size and power performance
of the tests is a topic of prospective research. For the cases where CSR independence
is the appropriate benchmark (see Section 3.1), this framework might be more realis-
tic, but for the cases where RL is the appropriate benchmark, then our approach in this
article is more realistic.
We have discussed the patterns of segregation and (self and mixed) correspondence

mostly in the context of plant ecology. However, the patterns and the associated tests
can be applied in other contexts as well. For example, one can apply them in an epi-
demiological or a social context by using the residences of people as their location. In
the epidemiological context, the question of interest could be the distribution (i.e., clus-
tering or lack of it) of a disease. In disease clustering, significant segregation of disease
cases can have further implications (e.g., one can then search for the reasons of such
clustering which can help in controlling the spread of the disease or curing the diseased
people). In the social context of racial distribution of residences, segregation of any
particular race would imply their clustering in certain neighbourhoods; self correspon-
dence would mean that all racial groups tend to live in clumps or clusters of same race
residents (i.e., there is lack of local diversity in the region) On the other hand, mixed
correspondence of racial status of residents would imply that the society is diverse at the
local level as people of different races live side by side in a mixed neighbourhood and
there is no preference of the residents to live by people of the same race.
In the literature, usually NN relationships are based on the distance metrics. For

example, in this article, Euclidean distance in R2 is the only metric used. The NN rela-
tions based on dissimilarity measures is an extension of NN relations based on distance
metrics. In such an extension, NN of an object, x, refers to the object with the minimum
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dissimilarity to x. We assume that the objects (events) lie in a finite or infinite dimen-
sional space satisfying the lack of any inter-dependence which implies lack of self or
mixed correspondence in the NN structure. Under RL, the objects’ locations are fixed
yielding fixed interpoint dissimilarity measures, but the labels are assigned randomly to
the objects. Although our correspondence tests are constructed assuming data are in R2,
the extension to higher dimensions is straightforward.
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Efficiency of propensity score adjustment and
calibration on the estimation from non-probabilistic

online surveys
Ramón Ferri-Garcı́a and Marı́a del Mar Rueda∗

Abstract

One of the main sources of inaccuracy in modern survey techniques, such as online and smart-
phone surveys, is the absence of an adequate sampling frame that could provide a probabilistic
sampling. This kind of data collection leads to the presence of high amounts of bias in final es-
timates of the survey, specially if the estimated variables (also known as target variables) have
some influence on the decision of the respondent to participate in the survey. Various correction
techniques, such as calibration and propensity score adjustment or PSA, can be applied to re-
move the bias. This study attempts to analyse the efficiency of correction techniques in multiple
situations, applying a combination of propensity score adjustment and calibration on both types of
variables (correlated and not correlated with the missing data mechanism) and testing the use of
a reference survey to get the population totals for calibration variables. The study was performed
using a simulation of a fictitious population of potential voters and a real volunteer survey aimed
to a population for which a complete census was available. Results showed that PSA combined
with calibration results in a bias removal considerably larger when compared with calibration with
no prior adjustment. Results also showed that using population totals from the estimates of a
reference survey instead of the available population data does not make a difference in estimates
accuracy, although it can contribute to slightly increment the variance of the estimator.

MSC: 62D05

Keywords: Online surveys, Smartphone surveys, propensity score adjustment, calibration, simu-
lation

1. Introduction

Traditional surveys are experiencing, along with society, a number of changes which
affect their validity and applicability. Several reasons can be cited (e.g., see Couper,
2017, Schonlau et al., 2009) on the decline of participation and completion rates in
surveys conducted using traditional modes of contact, such as telephone or face-to–
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face surveys. A review performed by Dı́az de Rada (2012) stated that response rates
in traditional surveys have been dropping for two decades. The increasing difficulty of
contacting households members in face-to-face surveys results in increased costs per in-
terview and therefore non-sampling errors are problematic to deal with in this context;
regarding telephone surveys, the rise of mobile phones makes it more difficult for gov-
ernment agencies to keep an adequate sampling frame, in terms of coverage, of landline
phones (Pasadas-del-Amo, 2018).
At the same time, the arrival of the internet and mobile phone lines has led to the us-

age of new survey administration methods, with online surveys and smartphone surveys
being the most popular and promising ones to deal with the above mentioned issues in
order to contact respondents. Online surveys can be defined, given how they are con-
ducted nowadays as described by Mei and Brown (2017), as surveys completed from
computers that respondents can access anytime. Questionnaires might have a conven-
tional structure adapted to the online context (e.g., SurveyMonkey) and might also be
provided using online social networks. Smartphone surveys differ in the mode in which
they are completed: any survey completed using a mobile device or a tablet can be con-
sidered a smartphone survey. Sometimes, the questionnaire might be hosted in an URL,
thus it could be considered a browser survey and therefore an online survey. This states
a clear divide in the smartphone surveys between those app-based questionnaires or re-
lated and those completed using a browser available in the device itself, as the latter do
not properly seize the advantages of a mobile device.
The change from the traditional survey to the internet survey has brought important

changes and new challenges have arisen (Dı́az de Rada and Domı́nguez, 2015, 2016).
These new methods offer substantial advantages against traditional survey techniques,
specially in terms of monetary and time costs as they usually do not require any effort
by any interviewer and the information collection becomes instantaneous. In addition,
online surveys are considered to be more advantageous for information collection; de-
spite the advantages of smartphones such as the audiovisual options and the possibility
to retrieve data on certain variables without the need of any extra question in the survey,
web surveys take less time to be completed by interviewers, as proved by Couper and
Peterson (2017).
Along with the described advantages, some serious concerns often arise when using

these new surveymethods. As noted in Elliott and Valliant (2017), internet surveys (even
when a structured voluntary panel is used) suffer mostly from selection bias, specially
from the bias induced by the internet availability and penetration in the general popu-
lation. This issue will be broadly discussed later. Internet surveys are also affected by
nonresponse bias; a meta-analysis conducted by Manfreda et al. (2008) estimated that
online surveys are associated with a decrease in response rates between 6% and 15%
in comparison to other survey modes. In addition, the use of incentives as a method
to improve cooperation have been proved as less efficient in online surveys (Dı́az de
Rada, 2012). Other important sources of non-sampling errors in online and smartphone
surveys are measurement errors; although the social desirability effect is less prone to
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appear in online surveys (Heerwegh, 2009), they still suffer from other effects such as
technical issues (e.g., poor internet connection may lead to a lack of completion of a
survey), or lack of veracity in the responses given, which in the online case has a variety
of causes.
Nonresponse bias, as well as measurement errors, have been widely studied in the

literature as they have been common issues in traditional survey methods since their
initial development. However, selection bias presents some particular characteristics in
the new survey methods which require other strategies in order to tackle it. In all cases,
online and smartphone surveys are often applied under inadequate sampling conditions;
they are generally taken by self-selected respondents which conform a non-probabilistic
sampling. Even if an acceptable random sampling is eventually performed, it may be
particularly troublesome to establish a reliable sampling frame to meet the probabilistic
sampling assumptions (Couper, 2000, Couper and Peterson, 2017). On the other hand,
the coverage of such surveys is also limited by the population access to the internet.
Although no interview mode is exempt from suffering coverage bias, it happens to be
much more important in internet surveys (Couper (2007), according to Schonlau et al.
(2009)), as internet access is often associated with sociodemographic variables which
could be eventually related to the outcome variables of a certain study. To mention some
examples, data from the Pew Research Center (2017) reveal that in 2016 while 99% of
U.S. adults between 18 and 29 years old could be considered internet users, only a
64% of those above 65 years of age fell into the same group. In the case of Spain, the
generation gap is wider according to the National Institute of Statistics (2017a); while
the internet penetration rate is above 90% for all age groups below 54 years of age, in
citizens between 65 and 74 years old penetration rate is 43.7%.
It is obvious that such a problem can be responsible for a large increase in the bias

of the final results. Therefore, developing methods to deal with the lack of represen-
tativity has become a priority. To date, the more relevant methods are considered to
be calibration techniques and propensity score adjustment (PSA). Calibration weighting
using auxiliary information (Deville and Särndal, 1992) has been established as the main
technique to deal with problematic sampling frames, but its efficacy can decrease when
the self-selection procedure is tied, directly or not, to the target variables (Bethlehem,
2010). Calibration for coverage issues has also been studied using the superpopulation
model approach through general regression (GREG) weights (Dever, Rafferty and Val-
liant, 2008); even though it successfully address both nonresponse and noncoverage in
online surveys, it requires an structured sampling design, something that does not apply
to volunteer surveys. When calibration is ineffective, PSA can be a proper substitute
if it is feasible to use a probabilistic sample on the same target population, on which
a subset of variables measured on the non-probabilistic sample have been measured on
the probabilistic sample as well. Research findings have shown that PSA successfully
removes bias in some situations, but at the cost of increasing the variance of the es-
timates (Lee, 2006, Lee and Valliant, 2009). The efficacy of bias removal by PSA is
strongly dependent on using covariates related to the actual propensity to participate
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and the target variables (Schonlau and Couper, 2017), and its sole application without
any further adjustment can lead to biased estimates (Valliant and Dever, 2011). The
aim of this study was to examine the behaviour of the estimators when both techniques,
PSA and calibration, are applied, in comparison to the situations where only calibration
is performed or where no weighting technique is applied at all. Given that, for most
situations, auxiliary information can be troublesome to find, calibration is tested us-
ing known population totals and using population estimates coming from the reference
(probabilistic) sample that it is supposed to be available. Under the initial hypothesis of
the study, the combined weighting of PSA in a first step and calibration in a second one
would outperform the estimates obtained with calibration weighting only in terms of
bias reduction, although the estimators will have a higher variance as the reference sam-
ple size gets smaller in comparison to the convenience (non-probabilistic) sample size.

2. Methodology

2.1. Calibration weighting

Surveys often have a coverage error associated to them, in the sense of being made using
a sampling frame that does not cover the entire population to which survey results are
to be extrapolated. This coverage error, which can be the result of several irregulari-
ties, can be controlled by the use of reweighting or calibration techniques. Calibration
was defined by Särndal (2007) as the combination of three items: “a) a computation of
weights that incorporate specified auxiliary information and are restrained by calibration
equation(s), b) the use of these weights to compute linearly weighted estimates of totals
and other finite population parameters: weight times variable value, summed over a set
of observed units, c) an objective to obtain nearly design unbiased estimates as long as
non-response and other non-sampling errors are absent”.
Calibration theory can be explained as follows (Deville and Särndal, 1992): let y

be the variable of interest in the survey estimation and s the sample collected in the
survey, with each element k in the sample having an associated probability of selection,
πk = 1/dk. Without any auxiliary information, the population total of y, Y , is estimated
in a non-biased way with the Horvitz-Thompson estimator:

ŶHT =
∑

k∈a
dkyk (1)

Let x be an auxiliary vector associated to y, with population total assumed to be known
X=

∑N
k=1xk. The calibration estimation ofY consists in the obtaining of a new weights

vector wk for k ∈ s which modifies as little as possible the original sample weights, dk,
which have the desirable property of producing unbiased estimations, respecting at the
same time the calibration equations:
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∑

k∈s
wkxk = X. (2)

Given a distance G(wk,dk), the calibration process consists on finding the solution to
the minimization problem

min
wk

E{
∑

k∈s
G(wk,dk)} (3)

while respecting the calibration equation (2). Several distances were defined in Deville
and Särndal (1992), the linear distance being one of the most commonly used (Rueda et
al., 2010, Martı́nez et al., 2010). This distance is calculated by:

∑

k∈S

(wk−dk)2

qkdk
(4)

qk are positive weights that are usually assumed as uniform (i. e. 1/qk = 1), although
unequal weights 1/qk are sometimes used. The problem now concerns finding the min-
imum of (4) subject to (2), leading to the calibrated weight:

wk = dk(1+qkx′kλ) (5)

where the vector of multipliers, λ, is calculated as:

λ= T−1
s (X−

∑

s

xkdk) (6)

Ts, whose inverse is assumed to exist, is the equivalent of:

Ts =
∑

s

dkqkxkx′k (7)

The resulting estimator of Y is the general regression estimator (Cassel, Särndal and
Wretman, 1976)

Y =
∑

s

wkyk =
∑

s

ykdk+(X−
∑

s

xkdk)′B̂s (8)

where B̂s is
B̂s = T−1

s

∑

s

dkqkxkyk (9)

In general, the resulting estimator for Y is biased, but it is assumed to be asymptotically
unbiased as the new weights wk would approach the sampling weights dk.
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2.2. Propensity score adjustment (PSA)

The propensity score adjustment method was originally developed by Rosenbaum and
Rubin (1983) which sought to reduce the bias due to treatment and control assignment
in non-randomized studies. The main idea of the adjustment is to balance the differences
between groups in non-randomized designs with the computation of a score whose dis-
tribution is the same for all groups. The proposed score for a given unit is equivalent
to its probability of being in the treatment group, which can be estimated using a re-
gression model. Although the implications of this approach in survey nonresponse were
considered shortly after Rubin (1986), according to Little and Rubin (2002), it was not
proposed for online surveys until Harris Interactive took it into account in their internet
research (Taylor, 2000, 2001). To a lesser extent, these first attempts added one element
to the requirements for performing PSA: a reference survey. The concept of reference
survey was extended in further studies (see Lee, 2006).
When treating an online survey, it is expected that the sampling was conducted in a

non-probabilistic manner or even not conducted at all, with the survey being completed
by volunteer respondents. It is feasible to consider that the decision to take part on the
survey depends on a probability which, depending on the respondent characteristics,
might be higher or lower. In this case, a reference survey can be very helpful to deter-
mine this probability. A reference survey is conducted on the same target population
than the online survey, with the main difference that the former has a better coverage
and higher response rates than the latter, thus it is adequate to represent the behaviour
that the target population should have when a probabilistic survey is performed on it.
Once data is collected from both surveys, the propensity for an individual to take

part on the volunteer (non-probabilistic) survey is obtained by binning the data together
and training a logistic regression model on the dichotomous variable, z, which measures
whether the respondent took part in the volunteer survey or in the reference survey. The
model uses covariates, x, that have been measured in both surveys, thus the formula to
compute the propensity of taking part in the volunteer survey, π, can be displayed as

π(x) =
1

e−(γTxk) +1
(10)

for some vector γ, as a function of the model covariates.
We denote by sR the reference sample and by sV the volunteer sample. Following the

approach described in Lee and Valliant (2009) which will be used in this study, propen-
sity scores are divided in g classes, with g = 5 as the conventional choice following
Cochran (1968), where all units may have the same propensity score or at least be in a
very narrow range. For each class, an adjustment factor is calculated as stated in (11):

fg =

∑
k∈sRg dRk/

∑
k∈sR dRk∑

k∈sV g dVk/
∑

k∈sV dVk
(11)
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where sRg is the set of individuals in the reference sample that are in the gth class of
propensity scores, and dRk is the original design weight of the k individual in the ref-
erence sample, sV g is the set of individuals in the volunteer sample that are in the gth
class of propensity scores, and dV k is the original design weight of the k individual in
the volunteer sample. Finally, the adjusted weights d∗ are the product of the original
weights and the adjustment factor; following the same notation, the adjusted weight for
individual k in sV g (i. e. the individual k of the gth propensity class in the volunteer
sample) is computed as indicated in (12). These weights are equivalent to the weights
used for the Horvitz-Thompson (H-T) estimator.

d∗k = fgdVk =

∑
k∈sRg dRk/

∑
k∈sR dRk∑

k∈sV g dVk/
∑

k∈sV dVk
dVk (12)

Alternatively, the approach proposed by Schonlau and Couper (2017) can be used
to obtain weights for a Hajek-type estimator using propensity scores. This approach
has the particularity of adjusting to the population of the probabilistic sample, rather
than the combined population of the two samples. Weights are defined as the inverse
propensity scores, as indicated in (13)

wi =
1− π̂(xk)
π̂(xk)

(13)

where π̂(xk) is the estimated response propensity for the individual k of the volunteer
sample as predicted by logistic regression with covariates x.

3. Simulation study

3.1. Data description

To explore the effectivity of PSA with further calibration compared to calibration alone,
a fictitious population was simulated in order to analyse and establish conclusions for
the behaviour of these techniques when applied in real situations. The simulation was
based on the study presented in Bethlehem (2010), introducing several changes to ex-
tend the spectrum of possible cases in which adjustment methods can be used. In the
proposed simulation study, a survey would be conducted to examine a population’s
voting intention. The population had a fixed size of N = 50000, and six variables
were included in the study: age, nationality (native/non-native), gender, education (pri-
mary/secondary/tertiary), access to the internet (yes/no), and party to which they in-
tended to vote, with four possible options: Party 1, Party 2, Party 3 and Abstention. The
distribution of the variables and the relationships between them were fixed as follows:
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Table 1: Probability of each education level as the highest achieved by the fictitious individual, by age
groups.

Education level/Age group < 35 years old 35-65 years old > 65 years old

Primary education 0.35 0.45 0.8
Secondary education 0.2 0.25 0.1
Tertiary education 0.45 0.3 0.1

Table 2: Probability of access to the internet by a given individual, by age groups and nationality.

Nationality/Age group < 35 years old 35-65 years old > 65 years old

Native 0.9 0.7 0.5
Non-native 0.2 0.1 0.0

• Age followed a beta distribution with α = 2 and β = 3 to make it similar to the
Spanish population pyramid (National Institute of Statistics, 2017b), and it ranged
from 18 to 100 years old.

• Probability of being non-native depended on the age, which was divided in three
classes (< 35, 35-65, and>65 years old) and individuals on each had a probability
of 0.15, 0.1 and 0.025 respectively of being non-native. This probability is similar
to the nationality distribution by ages in Spain (National Institute of Statistics,
2016).

• Probability of being a woman was fixed at 0.5 for everyone, except for individuals
above 75 years old, whose probability of being a woman was 0.65, as women
in Spain tend to have a greater representation in older ages (National Institute of
Statistics, 2017b).

• Probabilities of having a specific education level were fixed to resemble as much
as possible the Spanish adult population (National Institute of Statistics, 2017c).
These probabilities can be consulted in Table 1.

• Access to the internet was made dependent of two variables: age and national-
ity. This time the probabilities assignment was not based in real data, in order to
capture more patterns in the experiment. Probability of access by age groups and
nationalities can be consulted in Table 2.

• Probability of voting for each party depended on the party itself. The following
relationships were established to make sure all kinds of missing data mechanisms
would be represented in the analysis:

− Voting for Party 1 depended on the gender of the individual; women had a prob-
ability of 0.2 to vote for this party while men had a 0.0 probability. Gender is not
related to internet access (which is the responsible for non-response) thus the
missing data mechanism could be considered as MCAR (Missing Completely
At Random).
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− Voting for Party 2 depended on the age of the individual; voting probability
was 0.0 for people younger than 35 years old, 0.4 for people between 35 and
65 years old, and 0.6 for people older than 65 years old. Given that age, which
is an auxiliar variable, is related to internet access, the missing data mechanism
was MAR (Missing At Random).

− Voting for Party 3 depended on the access to the internet and the age; people
with no access to the internet had a 0.1 probability, no matter how old they were,
while people with access had a 0.6, 0.4 and 0.2 probability for each respective
age group. In this case, the target variable is directly related to the non-response
mechanism, configuring a NMAR (Not Missing At Random) situation.

3.2. Results

To estimate the bias for every possible situation, several configurations of sample sizes
for the volunteer sample were considered, letting it vary between 500 and 10,000 indi-
viduals. On the other hand, the reference sample size was fixed in 500 individuals for
all the experiments. For each volunteer sample size, 1,000 simulations were computed
for the results on estimated percent of vote for each of the parties, using the following
methods:

• Non-adjusted (unweighted) estimates from the volunteer sample.
• Calibrating the volunteer sample with population totals or estimated population
totals (from the reference sample).

• Reweighting with PSA and applying those weights directly to the sample with no
further adjustments.

• Reweighting with PSA and calibrating those weights with population totals or
estimated population totals (from the reference sample).

Propensity scores were calculated using both approaches presented in Section 2.2
(with g = 5 for stratification in the Horvitz-Thompson estimator weights computation).
Variables used for PSA and calibration were assigned in four different situations with
the following combinations:

• Situation 1: age and education as PSA covariates, gender as calibration variable.
• Situation 2: age and education as PSA covariates, nationality as calibration vari-
able.

• Situation 3: age and nationality as PSA covariates, education as calibration vari-
able.

• Situation 4: age and nationality as PSA covariates, gender as calibration variable.
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Voting estimates for Party 3 (NMAR) using Hajek weights

Adjustment
PSA + calibration on pop. data PSA + calibration on pop. estimates PSA with no further adjustment

Vol. sample calibrated on pop. data Vol. sample calibrated on pop. estimates Volunteer sample

Figure 1: Bias of each method in voting intention estimations by party in Situation 1.

For eachmethod and situation, the bias, as a result of the difference between real vote
% and estimated vote %, was calculated, as well as the standard deviation of the voting
estimation for the 1000 simulations. Figures 1 and 2 summarize results for Situation 1.
Results showed that the difference in bias when the missing data mechanism was

completely random is negligible; however, when data was MAR or NMAR, using PSA
(regardless of doing calibration afterwards or not) resulted in a reduction in the amount
of bias, although this reduction was much higher when data is MAR. It is worth men-
tioning that these statements could be extended to all the studied sample size situations.
In terms of standard deviations, which give a measure of the variance of the esti-

mator for each method, it can be observed that methods involving PSA resulted in an
increase in variance in comparison to methods involving calibration only. However, it
is important to point out that the use of estimates of population totals did not increase
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Figure 2: Standard deviation of voting intention estimations by party provided
by each method in Situation 1.

variance of the survey estimates in MAR and NMAR cases. For the MCAR case, meth-
ods involving estimates of population totals resulted overall in greater variance of the
estimators.
It is worth mentioning that using Horvitz-Thompson weights or Hajek weights after

the computation of the PSA scores made almost no difference in final results in terms of
bias reduction or estimators’ variance. The very slight differences that could be observed
between results may be attributed to the randomness of the experiment rather to an actual
effect of the type of weighting.
Figures 3 and 4 summarize results for Situation 2. Bias reduction kept its con-

sistence between weighting methods (Horvitz-Thompson and Hajek), but some dif-
ferences were found in reference to Situation 1. The only difference between them
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Figure 3: Bias of each method in voting intention estimations by party in Situation 2.

was the calibration variable used (nationality instead of gender), but it turned out to be a
critical choice. As it can be seen in Figure 3, the application of calibration in Situation
2 resulted in an increase of bias on the estimates, while PSA with no further adjustment
produced the same bias reduction than the registered in Situation 1. Estimates involving
calibration also had a higher variance, as it can be observed in Figure 4.
Figures 5 and 6 summarize results for Situation 3. In this case, there is a difference

in bias reduction motivated by the weighting method used. It is noticeable that Hajek-
type estimates are less biased than Horvitz-Thompson-type estimates in the MCAR and
MAR cases. It is also worth mentioning that PSA with calibration removed more bias
than PSA with no adjustment in the MAR case using Horvitz-Thompson weights. On
the contrary, in the NMAR case Horvitz-Thompson-type estimates are less biased than
Hajek-type estimates. Finally, in terms of variance, it can be observed in Figure 6 that
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Figure 4: Standard deviation of voting intention estimations by party provided
by each method in Situation 2.

Hajek-type estimators have a greater variance than Horvitz-Thompson-type estimators,
specially when the volunteer sample size is relatively small.
Figures 7 and 8 summarize results for Situation 4. The differences between weight-

ing methods disappear in the MCAR case but remain in the MAR and NMAR cases.
In addition, no reduction in bias could be attributed to the calibration of the sample,
in contrast with Situation 3, where calibration resulted in less biased estimates in all
cases. Regarding standard deviations, the most remarkable result in this situation is the
increase in variance that calibration produces in this situation.
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Figure 5: Bias of each method in voting intention estimations by party in Situation 3.
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by each method in Situation 3.
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4. Application study

4.1. Data description

The probabilistic sample data for the application case was obtained through a survey
conducted amongst the students of the University of Granada, Spain (UGR) in 2015,
with a sample size of n= 856 participants. Respondents were recruited through face-to-
face interviews following a cluster sampling scheme in three phases, in which Faculties
were the primary units, degrees were the secondary units, and academic years were
the tertiary units. A total of 34 clusters were randomly drawn from the population
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following this design. Sampling error was estimated at± 3.3% given the sample size and
a confidence level of 95%. Respondents had to complete questionnaires which included
several screening instruments for certain kinds of abuse or dependency, including the
Cannabis Abuse Screening Test (CAST) and the Severity of Dependence Scale (SDS),
which were both validated for the sample. The questionnaire also measured the age and
gender of the participants.
The non-probabilistic sample used in this application case came from a survey per-

formed in 2017 by students of the UGR amongst their peers, with a sample size of n =
341 participants. Respondents were recruited following a snowball sampling scheme
in online social networks, and completed the questionnaire using an online platform
(Google DriveTM). The questionnaire included the CAST and the SDS, as well as ques-
tions regarding the age and gender of the respondents. The sampling method implied
an internet connection from the respondent and a certain willingness to volunteer in the
survey, meaning selection bias came from the same sources than in most of the online
non-probabilistic surveys.
The aim of the application was to estimate the SDS mean score for the non-proba-

bilistic sample using the aforementioned correction techniques. Given that SDS scores
were provided only for cannabis users in both samples, the original sample sizes dropped
out to n = 115 participants for the probabilistic survey and n = 87 for the non-probabi-
listic survey.

4.2. Results

The probabilistic sample was used to estimate the total number of cannabis users in
the UGR by age groups and gender. These estimates were used as population totals in
calibration, in reference to the simulation study results which showed no difference, in
terms of bias reduction, between using actual population totals or their estimates. How-
ever, this meant that only age and gender could be used as calibration variables. On the
other hand, PSA could be performed using age, gender and CAST scores. Differences
in data for the three variables between both samples can be consulted in Table 3.
The difference in gender proportions between both samples is statistically significant

(p = 0.0012), hence it can be assumed that the frames from which samples were with-
drawn had different gender proportions. However, this assumption cannot be made for
any of the other variables; no practical or statistical significance was found in the differ-
ence between samples. These results are an evidence of the lack of discriminant power
of PSA potential covariates, thus the propensity of belonging to any of both samples
might be much less explanatory.
Estimates of the SDS mean score were computed for each possible combination of

techniques (no adjustment, calibration, PSA, and PSA with calibration), auxiliary vari-
ables and PSA covariates. Hajek estimator weights were computed in PSA considering
the small number of covariates to be used in several combinations, which might not al-
low to properly allocate the propensity in groups. In each case, jackknife leave-one-out
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Table 3: Means and relative frequencies of each sociodemographic level in the studied samples, and p-
values for tests of independence or difference in means performed on each variable.

Variable Level Probab. sample Non-probab. sample p-value

Gender
Male 51.30 % 74.71 % 0.001a

Female 48.70 % 25.29 %
Age

18 or younger 13.91 % 16.09 % 0.425b

19 13.91 % 18.39 %
20 9.57 % 12.64 %
21 20.87 % 10.34 %
22 12.17 % 14.94 %

23 or older 29.57 % 27.59 %
CAST score

Mean score 4.435 5.322 0.167c

aTwo sample test for equality of proportions with continuity correction
bPearson’s chi-squared test
cWelch two-sample t-test

was performed in order to compute an unbiased estimate of the standard error commit-
ted by each method. Results are presented in Table 4, along with the relative difference
(in percentage) between each estimate and the mean SDS score provided by the proba-
bilistic sample.
In this application, reweighting with PSA and a Hajek-type estimator is the less bi-

ased alternative when using gender, age and CAST score as PSA covariates. When
using only gender and CAST scores, the estimator achieves the minimum standard error
within all the alternatives. Overall, estimates reweighted with PSA or PSA and calibra-
tion to gender and age presented the best results, both in terms of least difference with
the reference sample value and least standard error according to the jackknife method.
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Table 4: Estimated SDS mean, standard error and difference with the mean estimated with the probabilistic
sample by method, calibration auxiliary variables, and PSA covariates.

Mean SDS score
Method Calibration aux.

variables
PSA covariates Estimated Std. Err. Dif.

Reference sample
Unweighted 6.261 0.199
Volunteer sample

Unweighted 7.264 0.272 16.03 %
Calibration

Sex 7.004 0.253 11.87 %
Age 7.206 0.276 15.09 %
Sex and age 6.904 0.253 10.26 %

PSA (Hajek)
Sex 6.939 0.252 10.84 %
Age 7.349 0.286 17.39 %
CAST 6.986 0.246 11.58 %
Sex, age 6.997 0.266 11.76 %
Sex, CAST 6.790 0.238 8.46 %
Age, CAST 6.971 0.251 11.34 %
Sex, age, CAST 6.742 0.247 7.68 %

PSA (Hajek) +
calibration

Sex Sex 7.311 0.278 16.77 %
Age 7.007 0.253 11.92 %
CAST 7.028 0.253 12.25 %
Sex, age 7.323 0.280 16.97 %
Sex, CAST 7.311 0.278 16.78 %
Age, CAST 7.052 0.254 12.63 %
Sex, age, CAST 7.331 0.281 17.10 %

Age Sex 7.182 0.283 14.70 %
Age 7.126 0.264 13.82 %
CAST 7.239 0.278 15.62 %
Sex, age 7.086 0.270 13.19 %
Sex, CAST 7.195 0.282 14.92 %
Age, CAST 7.136 0.261 13.97 %
Sex, age, CAST 7.086 0.266 13.18 %

Sex and age Sex 7.216 0.283 15.26 %
Age 6.837 0.243 9.20 %
CAST 6.955 0.254 11.09 %
Sex, age 7.136 0.272 13.97 %
Sex, CAST 7.233 0.283 15.53 %
Age, CAST 6.875 0.240 9.81 %
Sex, age, CAST 7.145 0.269 14.12 %
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5. Discussion and conclusions

In the last years we are witnessing a strong development of online research methods in
general and web surveys specifically. Web surveys are a very attractive option because
fieldwork costs are rather low when compared with other modes as mail, telephone and
face to face. In addition to cost-effectiveness, there are other reasons that explain why
the market research industry has decidedly embraced web surveys in the last years such
as the speed of data collection and the advantages associated with the computerization
of the questionnaire and self-administration. However, currently the web survey mode
has some limitations to adequately represent the general population. In spite of the fast
adoption of the internet in the last decades, the number of non-users is still important in
most countries. Moreover, non-internet users differ significantly from those who have
access and use this technology. As a result, web surveys that fail to include non-internet
users are at a high risk of incurring in coverage bias. A second problem that hinders
the use of probability sampling in web surveys of the general population is the lack of a
proper sampling frame.
In this paper we have focused on the problem of the the lack of coverage of non-

probabilistic samples. It is obvious that such a problem can be responsible for a large
increase in the bias of the final results. Various correction techniques, such as calibra-
tion and Propensity Score Adjustment or PSA, can be applied to remove the bias. This
study attempts to analyse the efficiency of correction techniques in multiple situations,
applying a combination of PSA and calibration.
The simulation study, which is a technique widely used when studying methods to

improve the estimates provided by problematic surveys and particularly calibration or
PSA (Lee, 2006, Lee and Valliant, 2009, Kim and Park, 2009, Bethlehem, 2010), is
performed in this work with several limitations, such as the variables selected for PSA
and calibration and the diversity among possible situations.
Some of the results presented in this work successfully reproduce relevant findings

of the existing literature. For example, it is proved in Bethlehem (2010) that bias can
be highly reduced through calibration with the right covariates when the non-response
due to volunteering has a MAR scheme, while it cannot be equally done in NMAR sit-
uations. This is similar to the results obtained in the simulation study; PSA achieves
an improvement in the amount of bias much higher for MAR than for NMAR, but as a
difference, the right covariates were used for PSA this time rather than for calibration.
As a result, calibration fails to remove any bias if not combined with PSA. These results
can be linked to Lee (2006), where it was stated that it is critical to add covariates related
to the objective of the study, in order to make PSA useful. These findings are relevant in
the sense of finding a procedure to remove coverage error when calibration with covari-
ates is not possible; however, results also show that using estimates of the population
totals does not cause any significant difference in final results, therefore the usage of
the reference survey to estimate population totals of covariates might be considered for
calibration purposes.
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In addition, it is worth to note that this work introduces the comparison of the effi-
ciency of Horvitz-Thompson and Hajek weights for PSA, a duality proposed in Schon-
lau and Couper (2017). Results of this study conclude that a difference in efficiency
can be made between both approaches only if the right covariates and calibration totals
have been chosen previously, and in fact the individual observed differences in weights
computed in the simulation study are negligible. This could be explained by the fact
that the strata formed with the propensity scores are thought to have individuals whose
propensity score is very similar between them, something feasible given the features of
the logistic regression model used for that purpose. Under these circumstances, it is very
likely that stratification makes no effect in the computation of final weights. On top of
that, PSA weights were subsequently used as original calibration weights, contributing
to dilute even more the difference between the former.
Finally, the application of the developed adjustment methods in a specific volunteer

survey reflects the conclusions of several studies performed in the past on PSA (Lee,
2006, Valliant and Dever, 2011) that the choice of covariates used for the PSA plays
a fundamental role on its further efficiency. However, as it happens in most of health-
related surveys, this application is limited by the fact that there are no population totals
that estimates can be compared with. Further studies should take into account the avail-
ability of population counts in their earlier research steps.
On the other hand web surveys, as any other survey, suffer from non-response even

if the use of responsive or adaptive design features account for participation rates. Non-
sampling errors are particularly important when the investigator has to gather infor-
mation concerning highly personal, sensitive, stigmatizing and perhaps incriminating
issues such as abortion, drug addiction, HIV/AIDS infection status, duration of suffer-
ing from a disease, sexual behaviour... In these situations, collecting data by means of
survey modes based on direct questioning methods of interview is likely to encounter
two serious problems: (i) participants in the survey may deliberately release untruthful
or misleading answers, or (ii) participants may refuse to respond (“unit nonresponse”
or “item nonresponse”) due to the social stigma or because they feel threatened by such
inquiries and fear that their personal information may be released to third parties for
purposes other than those of the survey.
A considerable limitation of the presented approach could be the “big data” issues

that may arise when the volume of data gets larger. This is a feasible situation in internet
surveys, given that their characteristics allow for an important number of respondents to
take part on them. Themain potential limitation of PSA under these circumstances could
be related to the adequacy of logistic regression as a predictor for propensity scores, as
they would tend to oversimplify the actual relationships between covariates and target
variables. The usage of some alternatives to these models, such as machine learning
algorithms (e.g., classifiers), should be considered in future research in the area.
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Field rules and bias in random surveys with quota
samples. An assessment of CIS surveys
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Abstract

Surveys applying quota sampling in their final step are widely used in opinion and market re-
search all over the world. This is also the case in Spain, where the surveys carried out by CIS (a
public institution for sociological research supported by the government) have become a point of
reference. The rules used by CIS to select individuals within quotas, however, could be improved
as they lead to biases in age distributions. Analysing more than 545,000 responses collected in
the 220 monthly barometers conducted between 1997 and 2016 by CIS, we compare the empiri-
cal distributions of the barometers with the expected distributions from the sample design and/or
target populations. Among other results, we find, as a consequence of the rules used, significant
overrepresentations in the observed proportions of respondents with ages equal to the minimum
and maximum of each quota (age and gender group). Furthermore, in line with previous litera-
ture, we also note a significant overrepresentation of ages ending in zero. After offering simple
solutions to avoid all these biases, we discuss some of their consequences for modelling and
inference and about limitations and potentialities of CIS data.
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1. Introduction

The revolution in information and communication technologies is transforming society
and changing the world of business. Collecting, transmitting and storing vast amounts of
data (both structured and unstructured) is more viable than ever and has made it easier
to find out the individual needs and wishes of certain sectors of the population. As
instruments for studying the opinions and attitudes of society as a whole, however, they
appear less effective (e.g., Burnap et al., 2016; Jungherr et al., 2017; Kalampokis et al.,
2017). Challenges, such as the polarization of opinions expressed on the internet, the
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division of sociopolitical communities, the difficulties that still arise in the automatic
processing of natural language and the biases of connectivity and internet use (e.g., Del
Vicario et al., 2017; Ebrahimi, Yazdavar and Sheth, 2017; Mellon and Prosser, 2017)
together with the enormous limitations of representativeness still apparent in Big Data
(Meng, 2016), point towards a future in which random surveys will continue to be a
necessary and fundamental tool for governmental and business decision-making.
Conducting an opinion poll using sampling methods is a very complex process with

many interconnected issues, which must respond to well-established principles and
methodologies (Groves et al., 2009). The design and planning of a probabilistic survey
involves bringing together many facets to create a single tool. Specifying objectives, de-
lineating the target population, designing the questionnaire, choosing the sample, speci-
fying the fieldwork rules and offering guidelines on how the interviewers should act are
just some of the tasks that the survey designer must ponder before starting any research,
trying to anticipate biases and any problems that may arise (Cea D’Ancona, 2004). The
biases from which a survey may suffer are not insignificant, could have multiple origins
and can even vary depending on the context (Pavı́a, Badal, and Garcı́a-Cárceles, 2016),
so they should be avoided wherever possible.
In Spain, surveys carried out by the Centre for Sociological Research (CIS, from

its acronym in Spanish: Centro de Investigaciones Sociológicas) and, in particular, its
monthly barometers, are a benchmark in the sector of opinion andmarket studies, thanks
to, among other things, the professionalization of its network of interviewers, the size
of its samples and the spatial distribution procedures it implements (Pavı́a and Garcı́a-
Cárceles, 2012). However, there is still room to improve CIS surveys; without cost. In
this paper, we focus on analysing the impact of the rules that CIS uses for choosing
respondents within the home. In particular, we study the effects that fieldwork rules R1
and R2 have in terms of age distribution within each quota (which we will call intra-
quota distributions): (R1) “when in a dwelling there is more than one person who meets
the conditions demanded by the quota, the youngest one will be interviewed”, and (R2)
”if it is impossible to obtain a certain age quota, it can be replaced by one of the age
adjacent quotas” (Dı́az de Rada, 2005, 2014).
Although the controversy following the 1948 US Presidential Election definitely

stated the superiority of probability sampling over (old versions of) quota sampling
(Mosteller et al., 1949), market researchers and political pollsters all over the world
have continued using quota sampling alongside probability-based methods due to its
cost-effective relationship (Vehovar, 1999; Vavreck and Rivers, 2008). Indeed, despite
its detractors (e.g., Smith, 1983; Sudman, 1976; Marsh and Scarbrough, 1990), quota
sampling is currently the dominant method in online studies through the use of panels
(Kennedy et al., 2016) and is gaining even more popularity in traditional telephone and
face-to-face surveys due to the growing increase of nonresponse rates and the extra costs
they entail (Yang and Banamah, 2014). Certainly, although criticism from the statistical
academic community against any practice of quota sampling can be sometimes fierce,
the reality is that complex, modern versions of quota sampling, like the one used by
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CIS, are closer to probability sampling than to (traditional) quota sampling. The quota
sampling design operated by CIS in door to door surveys, often referred to as quota-
random sampling or quasi-random sampling (Trochim and Donnelly, 2006), is clearly
more refined than the standard quota sampling employed in market research and has
been positively used by the academia (Stephenson, 1978).1

As discussed in the second section, CIS uses quotas for age and gender to choose
interviewees within the household. The number of people to be interviewed from each
age and gender group (which we will call inter-quota distributions) is determined exoge-
nously, by design, looking to adjust to a reference (or design) population. The number
of people who are interviewed for each age within each quota (intra-quota distributions)
is, however, endogenous, depends on chance although influenced by R1 (and R2). Our
hypothesis is that within each quota the distributions by age will not be adjusted to the
distributions of the target population 2 (from which the respondents are chosen) and that
there will be an overrepresentation of the younger subjects as a consequence of R1. Re-
garding the effect of R2 in the intra-quota distributions, we do not have any hypothesis
a priori although, as we will see, its effects are visible. In light of the results, we ven-
ture a hypothesis (not evaluable with our data) on how the interviewers interpret R2.
Likewise, although our research focuses on the study of intra-quota distributions, we
also analyse for completeness whether the empirical inter-quota distributions conform
to those designed, reflecting on the possible effect on them of R2.
The analysis was carried out based on the study of the variables of sex, age and

province collected from the more than 545,000 interviews completed in the 220 barom-
eters conducted by CIS between January 1997 and December 2016. All the microdata
used in this research have been obtained from the CIS Data Bank (www.cis.es). The
supplementary material lists the numbers of the surveys analysed. The data for the
comparisons have been obtained from the Spanish National Institute of Statistics, INE
(www.ine.es). In the case of intra-quota analysis (the main objective of this research),
the comparisons are made on the target populations associated with the collection dates
of each barometer and in the case of inter-quota analyses on the reference populations
used in each barometer to define quotas. Regarding the latter issue, it should be noted
that although the CIS now uses the figures of Spanish residents to define the quotas,
until 2015 it used the figures of total residents, with a non-regular update schedule (see
Table 1).
The rest of the article is structured as follows. The second section briefly describes

the sample design used by CIS in its monthly barometers, paying special attention to
the selection of individuals within the household. The third section is devoted to de-
limiting comparison populations. It specifies the reference and target populations of

1. For example, a version of random-quota sampling, similar to current CIS designs, was used during the seventies
(due to budgets constraints) in some waves of the prestigious General Social Survey conducted by NORC.

2. In each barometer, the target population is made up of residents over 18 years of age with Spanish nationality at
the time of the survey. In the CIS barometers, the reference and target populations have not historically coincided.
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each barometer, details how these have been calculated from the official statistics and
outlines our reflections on the consequences of applying R1 and R2. The fourth sec-
tion introduces methodological issues. In the fifth section, the main results obtained are
presented. These are extended and complemented substantially in the supplementary
material that accompanies this article. Finally, the sixth section summarises the results,
proposes solutions and discusses limitations and strengths of CIS data.

2. The barometers of the CIS. Selection of final units

A CIS barometer consists of a personal survey, conducted monthly in homes (except
in August), using a standardized questionnaire whose universe (target population) is
the population of 18 years or older resident in Spain and with Spanish nationality. In
general, barometers had a designed size of 2,500 individuals3 with, theoretically, all
units having the same probability of being selected.
The selection procedure for interviewees is carried out within households, after

choosing them through a complex sampling procedure of several stages in which strati-
fied sampling, cluster sampling, random routes and age and gender quotas are applied.
First, strata are formed crossing the 17 administrative regions of Spain (CC.AA) with
seven categories of habitat size (less than or equal to 2,000 inhabitants, from 2,001 to
10,000, from 10,001 to 50,000, from 50,001 to 100,000, from 100,001 to 400,000, from
400,001 to 1,000,000, and more than 1,000,000 inhabitants)4. Once the sample size is
spread among the strata (usually by proportional allocation), the next step is to determine
how many and which census sections to visit in each stratum. For this, municipalities
are chosen at random and, within the municipalities, census sections. Municipalities
and sections are selected with probabilities proportional to their different sizes. More
details on this procedure can be found in Dı́az de Rada (2005, 2008, 2014), Rodrı́guez
Osuna (1991, 2005) and Pavı́a and Garcı́a-Cárceles (2012).
Once the interviewers are in place, in the selected census sections, the last stage

begins: that of choosing respondents. The interviewees are chosen directly by the inter-
viewers, in the field, through a combined application of random routes and quotas for
age and gender. Given the impossibility of having a detailed list of the residents in each
household, the interviewers choose interviewees using a series of rules, set in advance,
that aim to favour randomness and representativeness. First, households are selected
and, then, subjects within the household.
For the selection of households, the interviewer receives a list with the streets (and

door numbers) that make up the census section and information about the starting point

3. Since September 2018 there are 3000 individuals.

4. Among other deviations from this norm, it should be noted the positive inclusion of Ceuta and Melilla in the
barometers in July 2013 or that, in the definition of the strata, there are certain peculiarities related to metropolitan and
insular areas.
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of her route. From here, the interviewers visit homes following very detailed criteria
(which have suffered some variations over time) related to the routes they must follow,
the number of dwellings to visit at each door number, the distances between dwellings
and door numbers when an interview takes place, the criteria of election and substitution,
etc. (Dı́az de Rada, 2005, 2008, 2015). When a dwelling is selected (and its members
are willing to collaborate), the last stage begins: that of choosing the person to interview.
Only one person is interviewed per household.
For the selection of people within a dwelling the most commonly used methods are

either chance (e.g., Kish, 1995; Lind, Link and Oldendick, 2000; O’Rourke and Blair,
1983) or quotas. In the barometers, CIS uses the quota method. Before beginning
the fieldwork, the interviewers receive instructions on the number of people of each
age and gender (quota) that they must interview in each census section and they only
select homes with people who meet the characteristics set in the quotas, until they have
completed the survey. This approach means that, as field work progresses, more and
more households are discarded as a result of not pursuing quotas that have already been
filled (Dı́az de Rada, 2014). The CIS considers 12 possible groups crossing gender
(Female, Male) with age, classified into 6 categories: 18-24; 25-34; 35-44; 45-54; 55-
64; and 65 or more years.
When faced with only one person who meets the quota in the home selected, this

person is interviewed. The difficulty comes when there is more than one suitable person
representing the quotas still to be filled. In this case, the R1 fieldwork rule of CIS recom-
mends interviewing the youngest person. Given that on average younger people spend
more time outside the home, this rule tries to facilitate the work of the interviewers,
allowing them to choose the people that are more difficult to encounter in the home first.
This rule makes sense when people belong to different quotas but it does not favour a
representative selection within each age bracket; which, in line with our hypothesis, we
will see causes the appearance of imbalances in the distributions by age of the samples.
Together with the previous rule, in case of impossibility or difficulty in encountering a
certain quota, CIS allows the quota to be met by replacing it with one of the adjacent
quotas.5

3. Comparison populations

Through the sample design, CIS aims to replicate the structure of age and gender of its
target population, which is made up of the Spanish population aged 18 years or over
and resident in Spain. Unfortunately, the target and design populations have not always
coincided. Until 2015, CIS exclusively used the statistics of total residents to select
municipalities and sections and to determine the size of the quotas. This (historical)

5. The fieldwork rules of CIS only permit alterations in the age quota, never in the gender, and only allow one
substitution in each route (Dı́az de Rada, 2015).
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divergence between the target and the reference (or design) populations has introduced
certain deviations in the variables being considered that are worth quantifying6. In our
research, we focus on another issue: studying the impact of R1 and R2 on the distribu-
tions by age collected. Thus, the demographic structures derived from the barometers
(empirical inter-quota and intra-quota distributions) are compared with the correspond-
ing population structures associated with each barometer (theoretical distributions of
design and target populations). The theoretical distributions are obtained from the offi-
cial statistics of the Spanish National Institute of Statistics (INE).
On the one hand, for the inter-quota analyses, the population figures used by CIS are

employed to determine the size of the quotas in the design of each barometer (reference
populations). On the other hand, for the intra-quota comparisons, the population figures
of resident Spaniards corresponding to the month of completion of each barometer (tar-
get populations) are considered, conditional on the sizes of the design quotas in each
survey.

3.1. Inter-quota distributions7

Historically, in the 20 years of barometers analysed, we can identify three stages with
respect to the demographic structures used for the design of the surveys. The first stage
covers the period from 1997 to 2005 (except September 2005) and encompasses 98
barometers, in which CIS used the resident population and the 1995 Municipal Register
for deciding the distribution of the sample size, the selection of units (census sections)
and the determination of the quotas. In this first stage, the size assigned to each cross
of age and gender (quota) in each autonomous community was obtained by multiplying
the sample size that corresponded to the autonomous community by its corresponding
population structure.
The second stage covered the period from January 2006 to June 2015 (including

September 2005). In this period, which included 106 barometers, the census is updated
annually (with a schedule not completely regular) taking as a reference the resident
population of the latest Municipal Register available from INE: 10 different Registers
were used (see Table 1). In this stage, the quota size that corresponds to each au-
tonomous community is determined as in the previous stage, although an adjustment
is introduced regarding its distribution among census sections. Previously, they were
distributed using a random procedure with restrictions. In this period, they are dis-
tributed taking into account the structure by age and gender of the census sections to be
visited such that when a particular section has more residents of a certain quota, more
people in that census section of that quota will be assigned to be interviewed. This new

6. In Pavı́a and Garcı́a-Cárceles (2012) a first approximation can be found in the case of intention to vote in pre-
election survey.

7. We appreciate the invaluable help of Valentı́n C. Martı́nez (technical advisor of the CIS research department) in
answering our questions for the preparation of this section. Any inaccuracy that exists is the sole responsibility of the
authors.
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Table 1: Municipal Registers (and reference variables) used in the analysed barometers.

Barometers (dates) Register Variable Number of barometers

1997.01-2005.12 (except 2005.09) 1995 Total residents 98
2006.01-2006.09 (including 2005.09) 2004 Total residents 9
2006.10-2007.09 2005 Total residents 11
2007.10-2008.10 2006 Total residents 12
2008.11-2009.10 2007 Total residents 11
2008.11-2009.10 2007 Total residents 11
2009.11-2010.09 2008 Total residents 10
2010.10-2011.12 2009 Total residents 14
2012.01-2012.10 2010 Total residents 9
2012.11-2013.06 2011 Total residents 8
2013.07-2014.03 2012 Total residents 8
2014.04-2015.06 2013 Total residents 14
2015.07-2016.05 2014 Spanish residents 10
2016.06-2016.12 2015 Spanish residents 6

Source: Compiled by the authors from personal communication with V. Martı́nez.

strategy seeks to reduce field work time and to compensate for the increasing rates of
non-response (Pavı́a and Larraz, 2012; Dı́az de Rada, 2014).
The last stage began in July 2015 and continues today (up to the time of writing

this paper). In this stage, new improvements are introduced regarding the construction
of the strata and relative to the reference populations used for the design of the survey.
The Register is updated annually (see Table 1), but now CIS uses the total number of
residents as reference population to define the strata but the total Spanish population
to distribute the sample among the strata. Likewise, the Spanish resident population
aged 18 or over is used for the allocation of the quota sizes, not taking into account the
stratification for its distribution but only the sections that are going to be visited. That
is, quotas are now only representative at the national level.
Although the main objective of this paper is to evaluate the bias introduced by the

rules R1 and R2 in the intra-quota distributions (since the adjustment to the inter-quotas
distributions should be fulfilled, at least approximately, by design), for the sake of com-
pleteness, we have also made comparisons (between theoretical and empirical distribu-
tions) for inter-quota distributions in the first part of the results section 5.1. Inter-quota
distributions are, in turn, necessary to make intra-quota comparisons when analysing
combined age groups (see Figure 3).
Before we can use the theoretical inter-quota distributions employed in the design

of each barometer, however, we have to address two questions. On the one hand, the
problem posed by the unavailability of the data corresponding to the 1995 Municipal
Register, used in the barometers from 1997 to 2005. On the other hand, the possible
impact that the so-called rounding effect8 may have on inter-quota distributions, which

8. The rounding effect emerges when one tries to replicate a population structure of several million people through
a sample of, at most, a handful of thousands of people, and manifests itself in the differences that exist between the
percentage distributions of the design and sample populations.
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may cause significant differences between the inter-quota distributions of the reference
populations and the inter-quota distributions actually used.
Both problems are addressed in the supplementary material. The first of the ques-

tions is solved by making a comparison between the official statistics of the Municipal
Registers and Population Now-Cast estimates of INE, from which we obtain an estimate
of residents corresponding to the 1995 Municipal Registers9. Regarding the second
question, the effect of rounding, we find that, although this is significant at CC.AA level
(which would affect the autonomous region inter-quota distributions in the barometers
prior to July 2015), it does not appear at the aggregate level, nationally10. Given that
our comparisons between theoretical inter-quota distributions and empirical quotas are
limited to the national ambit, we infer from the analysis that we can use as comparative
inter-quota distributions the demographic structures that were used to define the quotas
in each group of barometers, which can be calculated directly from the official statistics
of INE11.

3.2. Intra-quota distributions

The inter-quota distributions are determined a priori, by design, with the objective of
replicating in the sample the same demographic structure (by groups) that exists in the
reference population, although, as we have already seen, the reference and target popu-
lations have historically shown certain divergences. In the case of intra-quota distribu-
tions, however, there is a correspondence with the target population12. The interviewers
are instructed to select Spanish residents (in households) aged 18 years or older.
With the limits imposed by the inter-quota distribution of the sample (number of

people of each group of age/gender that should be interviewed), the interviewers se-
lect individuals within each quota among the resident Spanish population. Therefore,
without the effect of R1 and R2, the expected intra-quota structures of the surveyed pop-
ulation should mimic those of the target population; a result that will not be expected
when the whole sample is considered together. For the whole sample, the expected
structure of the surveyed population will not exactly match that of the resident Span-
ish population (unless the target and reference populations are equal), since each quota
(age/gender group) can have a different relative weight in the design (reference) and
target populations.

9. See the section ”Estimation of the distribution by age and gender (inter-quota) of the 1995 Register” in the supple-
mentary material.

10. The details that support these conclusions are offered in the section ”Analysis of the impact of the rounding effect
on inter-quota distributions” in the supplementary material.

11. This result is interesting because it makes the analyses that we have carried out more transparent and easily repli-
cable.

12. It should be noted, however, that Ceuta and Melilla are incorporated into the sampling frame in July 2013. This
issue has been taken into account when constructing the intra-quota comparison populations.
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Once the previous points have been addressed, we are in a position to define the
comparison populations for the intra-quota distributions. Specifically, if we denote by
pte,s the proportion of Spanish residents with age e, sex s at time t, and by πtg,s the
proportion of people who, by design, should be selected within the age group g with sex
s at time t, we would have that, without the effect of R1 or R2, the proportion (relative
size) of the expected intra-quota of Spanish residents with age e, sex s at time t for the
population as a whole, Cpte,s , will be given by equation (1)

13, and that, on the other
hand, the expected intra-quota proportion of Spanish residents within the corresponding
quota, Dpte,s, will be given by equation (2).

Cpte,s =

∑
g∈G p

t
e,s · δte,s ·πte,s∑

g∈G
∑

e∗∈Eg p
t
e∗,s · δe,g

· 1∑
g∈Gπtg,s

(1)

Dpte,s =
pte,s∑

g∈G
∑

e∗∈Eg p
t
e∗,s · δe,g

(2)

where s ∈ S = {W : Women, M: Men}, e ∈ E = {18,19,20, . . . ,84,85+}14, g ∈ G =
{18− 24,25− 34,35− 44,45− 54,55− 64,65+}, Eg denotes the set of ages included
in the group g (for example, E18−24 = {18,19,20,21,22,23,24}), and δe,g = 1 if e ∈ Eg
and, otherwise, equal to zero.
The previous notation is complex but its meaning is easy to understand by look-

ing at the following example. Supposing that (i) the percentage of Spanish women
residents (target population) of 18, 19, 20, 21, 22, 23 and 24 years old at a given mo-
ment are respectively, 0.8%, 0.7%, 1.0%, 1.3%, 1.1%, 1.2% and 1.5% (pt18,W , . . . , p

t
24,W )

(ii) the total percentage of women resident in Spain between 18 and 24 years old is
7.0% (πt18−24,W ) and (iii) the total of residents of 18 years or more in Spain is 85%
(
∑

g∈Gπ
t
g,s), then it can be seen that, without the effect of R1 and R2, the expected

proportion of women aged 20 in the total population interviewed, Cp20,W , and the ex-
pected proportion of women aged 20 within the corresponding quota in the surveyed
population, Dp20,W , would be:

Cp20,W =
1.0% ·7.0%

0.8%+0.7%+1.0%+1.3%+1.1%+1.2%+1.5%
· 1
85%

≈ 1.08%

Dp20,W =
1.0%

0.8%+0.7%+1.0%+1.3%+1.1%+1.2%+1.5%
≈ 13.16%

In other words, these proportions are no more than (i) the relative weight that each
age represents in the target population, re-weighted by the design weight of the group

13. Note that pte,s/
∑

e�18 p
t
e,s =Cpte,s, if the target and reference populations coincide.

14. In the intra-quota comparisons, people of 85 years or more (85+) have been added to simplify the graphical presen-
tations and to facilitate the verification of the theoretical conditions that are required by the hypothesis tests of goodness-
of-fit implemented.
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to which it belongs, and (ii) the relative weight that each age represents within its group
(quota). Obviously, when working with the subset of men or women, the corresponding
Cp proportions would be calculated in a similar way.
In general, the comparisons are made within each quota (Dp proportions), as the

results are sharper and easier to interpret. For an overview— i.e., when we compare the
empirical and theoretical (expected) distributions of all ages together— we will useCp
proportions, since the distributions equivalent to those collected in the barometers are
obtained by re-weighting the intra-quota distributions of the target populations with the
inter-quota distributions actually used in the design of each barometer.
In fact, the demographic structure defined by the set of proportions {pte,s/

∑
e�18 p

t
e,s}

should not be used as a population comparison to evaluate the impact of rules R1 and
R2 on the set of empirical intra-quota proportions since part of the discrepancies that
could be observed would not be attributable to the effect of R1 and R2 but would be a
consequence of the possible differences existing between πtg,s and

∑
e∗∈Eg p

t
e,s · δe,g. A

different issue would be to study to what extent the distribution by age and gender of the
responses collected in the barometers matches the corresponding structure of the target
population, regardless of whether the discrepancies originate from the use of R1 and
R2 rules or from the differences between target and design populations. In that case,
it would be pertinent to use the set of proportions {pte,s}, duly weighted by restricting
to persons of 18 years of age or older, {∑s p

t
e,s/

∑
e∗�18 p

t
e∗,s}, or men or women of

18 years of age or older, {pte,s/
∑

e∗�18 p
t
e∗,s}. For completeness, we also carry out

this comparison (see bottom panel of Figure 3). In fact, we think that the differences
between the discrepancies of both comparisons could be interpreted as an indicator of
the practical impact of the divergences between target and design populations.15

To calculate the comparable intra-quota distributions, however, we need to know the
distributions of the target populations in each of the months in which the barometers
were carried out. The difficulty lies in the fact that Spanish resident population statistics
are only published once a year (referenced, except in 1996, to January 1), so we have
proceeded to estimate them in each of the months where official statistics are not avail-
able. Specifically, we estimate the number of resident Spanish people with age e, sex s
in a month τ , Nτ

e,s, located between two Municipal Registers referenced in the months
t and t∗, with t < τ < t∗, as a weighted average of the corresponding official figures,
Nt
e,s and N

t∗
e,s, with inverse weighting coefficients to the number of months away. The

mathematical expression of the estimator is given by equation (3).

Nτ
e,s =

Nt
e,s · (τ − t)−1+Nt∗

e,s · (t∗ − τ)−1

(τ − t)−1+(t∗ − τ)−1
(3)

15. Obviously it would be simple to make a direct comparison between the intra-quota distributions of the target and
design populations, for which no data needs to be collected. However, these discrepancies would only highlight the
impact of the differences between these populations and would not take into account the possible interactions with R1
and R2.
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The solution to equation (3) is equivalent to assuming a uniform distribution of de-
mographic events between two consecutive censuses (Lledó, Pavı́a and Morillas, 2017).

3.3. Intra-quota and inter-quota distributions. Discussion

At this point and before making the comparisons, it is time to think over on the different
nature of intra-quota discrepancies (understood as the deviations between the theoretical
percentages of people that would be expected by chance to be interviewed within each
group of age/gender and those that were really interviewed) and inter-quota discrepan-
cies.
The deviations, statistically significant, in the intra-quota distributions will be an

indicator of a non-representative selection of subjects within each quota and of an effect
of the rule R1 (and perhaps also of R2). On the other hand, inter-quota deviations
theoretically should not exist, since the sample design imposes to the sample to mimic
the reference population. There are several reasons, however, why there could also be
divergences in the inter-quota distributions, that is, between the sizes of the reference
and collected quotas. Discounting (at national level) the possible rounding effect, the
discrepancies could occur as a consequence of rule R2.16 If this rule manifests any
effect, however, it should not be very pronounced because the random substitutions
between adjacent quotas should occur sometimes in one direction and sometimes in the
opposite direction. In any case, given that in practice it is easier to find older people in
households (Dı́az de Rada, 2014), we expect a greater propensity to make substitutions
towards higher age quotas and, therefore, a slight underrepresentation of the youngest
quotas.
Regarding the empirical intra-quota distributions, we would initially expect that, at

random, the number of people interviewed within each age group would replicate the
corresponding distribution of the quota, with the relative higher probability of older
people being at home not playing any significant role here, given that within each quota
the age differences are relatively small (except for the group of 65 and older). However,
due to rule R1, which recommends interviewing the youngest person if there is more
than one person suitable for the survey in the home, our a priori is that within each
quota there will be overrepresentation of younger people.

4. Methodology

Our main hypothesis is that as a consequence of R1 there will be an overrepresentation
of younger people within each quota. This implies, on the one hand, that the proportion
of people interviewed with the minimum age of each quota (18, 25, 35, 45, 55 and 65

16. The possible effect of non-response is negligible here. In the 220 barometers analysed, 99.42% of the 550,000
planed interviews (546,789) were carried out.



194 Field rules and bias in random surveys with quota samples. An assessment of CIS surveys

years) will tend to be greater than the corresponding proportion in the target population
and, on the other hand, that the distribution of people surveyedwithin each quota will not
adjust to the theoretical distribution of the target population. Regarding the inter-quota
distributions, our hypothesis is that these will be adjusted to the designed distributions,
that is, to the distributions of the reference populations used to determine the quotas
during the planning of the surveys.
To evaluate these hypotheses we have used tests of hypothesis. On the one hand,

unilateral parametric hypothesis tests for a proportion, with null hypotheses pυm ≤ ptm
and alternative hypotheses pυm > ptm, where p

υ
m represents the true probability that a

person of minimum age (m = 18, 25, 35, 45, 55, 65) in the corresponding quota is
interviewed according to the fieldwork rules and ptm the theoretical proportion of people
with that same age in the target population. On the other hand, classical goodness-of-fit
χ2 tests, where the null hypotheses postulate that the empirical distributions conform
to the theoretical one and the alternative hypotheses state that they do not fit. Given
the tendency of hypothesis tests, especially parametric ones, to accept null hypotheses,
the rejection of these, mainly of pem ≤ ptm, will provide strong evidence in favour of our
hypothesis regarding intra-quota distributions.
It is known, however, that the classic goodness-of-fit tests (χ2, Kolmogorov-Smirnov,

Kuiper, ...) have a lot of statistical power, so they tend to reject the null hypothe-
sis when the sample size is extremely large (Badal-Valero, Alvarez-Jareño and Pavı́a,
2018). Hence, as an alternative to the classic χ2 test, we have also implemented, when
working with very large samples, the equivalent Monte Carlo test. This test has as a
limit, when the sample size tends to infinity, the uniformly most powerful test associ-
ated with the hypothesis (Hope, 1968).
In addition to the results of the statistical tests, which we analyse through p-values,

we have also used a classic indicator of dissimilarity to numerically evaluate the degree
of adjustment between empirical and theoretical distributions. Specifically, we have em-
ployed the mean absolute statistical error, Δ, to measure the average percentage differ-
ence between distributions. For the inter-quota comparisons the statistical mathematical
expression is given by equation (4) and for the intra-quota comparisons by equation
(5)17.

Δ=
1
12

∑
s∈S

∑
g∈G

|πt∗g,s− π̂t∗g,s| (4)

Δ=
1

|Eg|
∑
e∈Eg

|Dpte,s− D̂pte,s| (5)

where πt∗g,s = πtg,s/(
∑

s∈S
∑

g′∈Gπ
t
g′,s) represents the theoretical percentage that, by de-

sign, corresponds to the quota of group g and sex s, reweighted so that the sum of all

17. When working with Cp proportions, equation (5) is of course modified.
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the quotas is 100%, π̂t∗g,s is the corresponding value in the sample, D̂pte,s is the sample
estimation of Dpte,s and |Eg| represents the number of ages included in Eg.18
The presentation of results using only statistical summaries is very useful and suc-

cinct, but it can also obscure other interesting facts and make communication of the
results less agile. Therefore, in line with recommendations made in Cleveland (1993),
we decided to make also comparisons from a graphical perspective. This has made it
possible to discover aspects present in the data that could otherwise have gone unno-
ticed. In our opinion, the power of the graphic representations (presented in the article
and in the supplementary material) is such that they will convince the most sceptical
reader of the conclusions derived from this study. All statistical calculations and analy-
ses have been performed in version 3.3.1 of R (R Core Team, 2016).

5. Results

This section shows the main results of the comparisons made to study the effect of the
fieldwork rules R1 and R2 on the age distributions collected in the 220 monthly barom-
eters carried out by the CIS between January 1997 and December 2016. In addition,
the supplementary material, which accompanies this article, considerably broadens the
analyses presented in this section, especially in relation to intra-quota distributions.
In the first subsection of this section, a comparison is made between the theoretical

and empirical inter-quota distributions, which are expected to show no statistically sig-
nificant differences. In the second subsection, the analysis of intra-quota distributions is
discussed; this shows a greater and richer range of results.

5.1. Inter-quota analysis

As can be seen in Figure 1, where the comparison between the empirical and theoretical
inter-quota distributions are grouped according to the Municipal Register used in each
barometer to determine the quota sizes, both sets of distributions are very similar, as
expected. The greatest differences between distributions are detected for the barometers
that used the 1995Municipal Register for the sample design. This is not surprising since
the data actually used in the barometers of that stage are not available and, as explained
in the third section and detailed in the supplementary material, they had to be estimated
from the Population Now-Cast estimates.
In fact, except for the data set associated with the surveys made with reference to

the 1995 Register, the null hypothesis of adjustment of the empirical data to the corre-
sponding theoretical distribution is not rejected for any other set of observations with
the usual level of significance (α) of 5%. When the responses of all the barometers

18. The number of ages in Eg equals to 7 when g= 18−24, equals to 10 when g∈G= {25−34,35−44,45−54,55−
64} and equals to 21 when g= 65−85+.
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Figure 1: Comparison of distributions between theoretical (design, INE) and empirical quotas (collected
in the corresponding barometers, CIS). The comparisons have been grouped according to the Register used
to determine the quotas for each survey. As a summary, the last two panels offer an aggregate comparison,
with and without the barometers that used the 1995 Register as the reference population. As well as the
graphical comparison, each panel shows the p-value associated with the χ2 goodness-of-fit test, the number
of observations used (sample size, n) and the value of the dissimilarity statistic Δ defined in equation (4).
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are combined and compared with the population obtained as a weighted average of the
different theoretical populations, the null hypothesis is rejected however. This occurs
despite the fact that the dissimilarity statistic value Δ for the set of barometers associated
with the Registers from 2004 to 2015 is very small, with an average discrepancy of only
0.08%. This rejection may be due to the known propensity that classic goodness-of-fit
tests show to reject the null hypothesis when the sample size tends to infinity. Using the
equivalent Monte Carlo test we obtained a p-value of 0.0112, which would not result
in a rejection of, in this case, the null hypothesis for α = 1%. The same exercise for
the set of observations associated with the 1995 Register or the set of all the Registers,
however, continues producing p-values smaller than 0.0001 and indicating the need to
reject the null hypothesis in these cases.
Although in terms of joint distributions the R2 rule does not show any effect that

represents a statistically significant overall deviation of the theoretical inter-quota distri-
butions, a result is visible in the data, which had already been foreseen in subsection 3.3,
related to the existence of a certain tendency towards underrepresentation of the lower
age quotas with respect to the designed sizes. This result is consistent with the greater
difficulty that exists in practice of encountering younger people to interview and the con-
sequent greater likelihood of substitution for the adjacent higher age quota, as suggested
in the application of R2. In fact, we find in 27 of the 30 analysed quotas corresponding
to groups of 18 to 24 years old (90%) that the percentage of respondents is lower than
the percentage designed. In the case of women, the quota is underrepresented, on aver-
age, by 0.25%. This figure is reduced to 0.11% in the case of men, increasing to 0.18%
when excluding the three cases in which the proportion of respondents belonging to the
quota of men between 18 and 24 years is above the proportion designed. This trend
also manifests itself in the following quotas of groups between 25 and 34 years, whose
percentage of underrepresentation reaches 70%. Overrepresentation is predominant for
the rest of the groups.

5.2. Intra-quota analysis

Just as expected, the sizes of the inter-quota distributions collected fit to the sizes
designed in the barometers, with the possible deviations introduced by R2 not having
statistically significant effects. In the same vein, the results for the intra-quota distribu-
tions are also as expected, in this case, for not adjusting to the theoretical distributions.
In fact, as shown in Figure 2, where the comparison between empirical and theoretical
intra-quota distributions for the set of barometers is shown graphically, the null hypoth-
esis, which states that within each quota the empirical distributions by ages conform to
the theoretical ones, is rejected for all age and gender groups.
Added to the generalized rejection of the hypothesis of equality between empirical

and theoretical intra-quota distributions is the expected rejection of the hypothesis that,
in each quota, the observed proportion of respondents with the minimum age of the
quota is equal to or less than the corresponding theoretical proportion. This rejection,



198 Field rules and bias in random surveys with quota samples. An assessment of CIS surveys

which is to be expected as a logical consequence of the use of the R1 rule, provides
evidence to support our hypothesis. Looking more closely at the different representa-
tions shown in Figure 2 (and also in Figure 3, where all the information contained in the
different panels of Figure 2 is presented together), the previous conclusions are not the
only interesting conclusions to be made. In addition to the sample overrepresentation
that is apparent for the minimum ages of each quota, two further results stand out. On
the one hand, it is clear that for each age/gender group, the upper limits of each quota
are also overrepresented. On the other hand, similarly, the ages ending in zero are also
generally overrepresented, excluding 20 years19.
The existence of overrepresentation of the ’whole’ ages (finishing in zero or in five)

in censuses and surveys has been a recognized dysfunction for many years (e.g., My-
ers, 1940; Bachi, 1951 and Carrier, 1959), which usually manifests itself more strongly
in populations with lower levels of education, as various studies on historical popula-
tions or more recent transnational analyses have shown (Brian, Baten and Crayen, 2009;
Lyons-Amos and Stones, 2017). In this literature, the numbers ending in zero and, to a
lesser extent, in five are seen to act as poles of attraction (rounding) for the interviewees
when declaring their age, causing relative gaps in the adjacent ages. These same patterns
are also observed, in part, for the ages ending in zero in the empirical age distributions
of the CIS barometers, especially after age 40. In our data, a greater gap is observed in
the adjacent older ages than in the adjacent younger ones, which could suggest that the
rounding responds to a psychological self-deception on the part of the interviewees who
wishes to consider themselves younger or to a certain effect of social desirability in an
attempt to appear younger before the interviewer.
For ages ending in five, which coincide with the lower limits of our intervals (ex-

cept for the lower age quota), we also observe overrepresentation, although the same
previous patterns as in ages ending in zero are not observed in Figure 2 or, if anything,
to a small degree for ages 45 and 65. For these ages, the fact that the ages 46 and 66
show values below 47 and 67, respectively, would suggest that a part of the overrepre-
sentation observed for the minimum ages of these intervals could be a consequence of
the attraction effect towards ’whole’ ages. Fortunately, for our hypothesis regarding the
impact of R1, two results clearly point out that the distortion effect of R1 in the intra-
quota distributions is genuine and of appreciably greater intensity. On the one hand, the
overrepresentation shown by the age(s) 18 (and 19) cannot be attributed to the effect of
attraction towards ’whole’ ages. On the other hand, our data show an overrepresentation
of ages ending in five consistently greater than the overrepresentation of ages ending
in zero (see also Figures S3 to S137 in the supplementary material), whilst the litera-
ture states the overrepresentation of ages ending in five as being systematically of less
intensity.

19. Although in Figure 2 for the 30 years age group there is no overrepresentation in the strict sense, it is notable that
the percentage of people who claim to be 30 years old is noticeably greater than those who claim to be 29 or 31 years,
which is a clear indicator of relative overrepresentation.
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Figure 2: Comparison between the theoretical intra-quota distributions (in the target population, INE)
and the empirical distributions (set of responses collected in the 220 barometers analysed, CIS). The the-
oretical distributions have been calculated as the sum of the theoretical distributions associated with each
barometer. In addition to the graphical comparison, each panel shows the pb-value associated with the χ2

goodness-of-fit test, the pm-value associated with the unilateral test for the minimum proportion of each
quota, the number of observations used (size of the sample, n) and the value of the dissimilarity statistic Δ
defined in equation (5).

Regarding the other surprising result, that of the huge overrepresentation shown by
the upper limits of all quotas of age and gender (except obviously in the groups of 65 and
over), our assumption (impossible to contrast with our data) is that this is due to the way
the interviewers apply the R2 rule. Our assumption would be that, in order to minimize
their work time, the interviewers are more willing to use the R2 rule as the field work
progresses. Specifically, we conjecture that when interviewers have fewer and fewer
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Figure 3: Comparison between the empirical percentages of interviewees of each age group (for women,
men and total) for the set of barometers (CIS) and the theoretical percentages expected according to the
target and design population (INE) of the survey (upper panel) and the target population (bottom panel). In
the panels corresponding to women and the total, the right axis is truncated (the percentage of people with
85 years and more is higher than shown) in order to make the results clearer. The theoretical percentages
are calculated as a weighted sum of the theoretical percentages corresponding to each stage and each
barometer. In addition to the graphical comparison, each panel shows the p-value associated with the χ2

goodness-of-fit test and the value of the dissimilarity statistic Δ defined by equation (5) adapted to the Cp
proportions.

free quotas available they tend to take advantage of the R2 rule to fill a missing quota
with a person whose age is one year either side of that quota as soon as s/he is available.
This assumption would explain the observed overrepresentation of the upper limits and
would help to explain part of the overrepresentation of the lower limits of the different
quotas, except, for obvious reasons, in quotas of ages from 18 to 24.
The alternative explanation according to which the overrepresentation of the upper

limits within each quota could be mainly due to the positive correlation that exists be-
tween age and time spent in the home does not hold. On the one hand, a big difference
is seen between ages ending in three and those ending in four and, on the other hand,
the figures for ages ending in two and in three are practically the same.
The observed patterns in the data set as a whole do not seem to be a consequence

of isolated operations or trends, occurring only at certain moments of time or in a part
of the territory, but to a generalized global trend that extends across all provinces, au-
tonomous communities, years and stages, as can be seen in Figures S3 to S137 and
in Tables S3 to S6 of the supplementary material. For example, the average overrep-
resentations at provincial level in the intra-quota percentages of men aged 35, 40 and
44 are, respectively, 1.6%, 0.5% and 1.7%, affecting 80.8%, 59.6% and 76.9% of the
provinces, respectively (see Table S4). This result, along with many others visible in the
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data (see Figures S3 to S104 and Tables S3 to S6), would reinforce the likelihood of our
conjecture about how interviewers apply R2.
Finally, by performing a combined analysis of the intra-quota distributions, we see,

as expected, that the empirical distributions are more adjusted to the populations de-
fined by the Cp proportions (that is, incorporating the differences between the design
and target inter-quota distributions) than those of target populations. Although this is
not entirely evident by comparing the values of the dissimilarity coefficients Δ of the
upper and lower panels of Figure 3, this result becomes unquestionable when analysing
Figures S105 to S137 of the supplementary material. For example, considering exclu-
sively the values of Δ for the years 2006 to 2016,20 we see that, on average, the dissimi-
larity value Δ is 11.8% higher when the combined empirical distributions are compared
with the target populations (upper rows of the panels) than when compared with the
adjusted-target populations (lower rows of the panels).

6. Summary and concluding remarks

Due to budget and time constraints, quota samples are extensively used by opinion poll-
sters and consumer researchers all over the world. Quota sampling, however, is strongly
contested by the statistical community due to its break from randomness. Hence, to
achieve representative samples, the more prestigious organizations relying on this ap-
proach try to follow wherever possible random steps and rules in their sampling designs
and only use quota sampling in the final step. CIS is one of these organizations. Their
surveys are far removed from traditional quota sampling, being closer to probability
sampling. Indeed, surveys carried out by CIS, in particular its monthly barometers, are
a point of reference for Spanish market research and public opinion polls.
Whatever the approach adopted, however, we should not overlook the detail. This

paper shows that even seemingly innocuous fieldwork rules can have significant conse-
quences, biasing the collected samples. Our analysis tries to warn practitioners about
the need of thinking carefully about all the components that define a sampling design.
We show that, for selecting individuals within the household, the CIS fieldwork rules
R1 (of selection, in case of doubt, between and within quotas) and R2 (of substitution,
in case of difficulty, between quotas) should be improved, since they lead to biases in
the distribution by age within each quota. In this article we study, using the more than
545,000 responses collected in the 220 barometers conducted between 1997 and 2016,
the effect of these rules on age distribution and analyse the existence of bias comparing
the empirical distributions with the theoretical ones (those expected according to the
sample design and/or the target populations).

20. An assessment excluding the barometers designed using the 1995 Register is pertinent as it avoids the possible
distorting effect that could introduce in the analysis the use of estimated data for inter-quota distributions associated with
the barometers referenced to the 1995 Register.
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The study implemented reveal a set of highly interesting results that support the ex-
istence of biases in the intra-quota distributions of the CIS barometers. Regarding the
inter-quota distributions, it is observed that rule R2 induces a certain tendency for under-
representation of younger quotas, consistent with the lower probability of encountering
younger people in the home, although this causes no statistically significant deviation.
The most interesting results are seen for the intra-quota distributions.
Specifically, within all quotas the hypothesis that the empirical distribution by ages

fits the theoretical distribution is rejected, illustrated by the three overrepresentations
highlighted. Firstly, as a logical consequence of the use of the R1 rule, the results
show that there is a significant overrepresentation of the proportion of interviewees in
the survey having the minimum age of each quota. Secondly, as has been previously
observed in dozens of studies, we detect the existence of a significant overrepresentation
of ages ending in zero. Thirdly and unexpectedly, it is notable that the maximum ages
of each quota (excluding older quotas) are clearly overrepresented.
Regarding the last overrepresentation, our speculation is that this is a consequence

of R2. We surmise that, shielded by rule R2, interviewers tend to choose a person
from an adjacent quota when the person to be interviewed is only one year of age away
from a quota not covered. If this conjecture were true, this would also help to explain
part of the overrepresentation observed in the minimum ages of each quota. Obviously,
our previous supposition is questionable. We could ask ourselves why, if R2 allows
interviewers to substitute respondents with whatever age of an adjacent quota, do they
decide, as a rule, to restrict themselves to just one year either side of the quota. We
venture that maybe, just to stop what they can anticipate it will be a hard search, they
are reluctant to discard an encounter when they find a willing respondent who is only a
year away from the preferred quota, believing that this substitution would not represent
a significant deviation. In order to confirm (or reject) our supposition, we would need
to know in each census section the order followed to complete all the interviews. This
will allow us to build the ordered distribution of ages of the interviewees and to assess
the likelihood of our assumption. Furthermore, having access to the “sampling sheet”
would also allow us to check if interviewers follow the rule of performing a quota-age
substitution up to a maximum per census section.
Regarding the other sources of overrepresentation, these could be easily remedied.

On the one hand, to avoid the effect of R1, if the eligible younger persons belong to the
same age group (including the quotas of women and men) the choice could be made at
random, for example, using the Kish tables (Kish, 1995). On the other hand, to eliminate
the attraction effect of ‘whole’ ages, the solution would be to ask the date of birth instead
of the age at last birthday, although later, to reinforce the anonymity of the respondents,
only the age at last birthday should be recorded in the corresponding microdata file.
The biases encountered do not invalidate the samples collected by CIS; they simply

represent new challenges in research. The same way that analysts try to amend the col-
lected data from the deviations induced by (total or partial) non-response or introduced
as a consequence of using quota sampling in the last step (which, as it is well-known,
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tends to over-represent the persons that spend more time at home), these new biases
should also be taken into account to carry out proper inferences and model analyses.
When making inferences, like estimating the voting intention or the climate economic
mood of the whole population, the detected biases should be accounted for to correctly
weigh the probability that each individual age being included in the sample. Otherwise,
given the known inverse relationship between age and ideology in the left-right axis, we
might obtain, for example, estimates slightly biased to the left side when making either
assessments about global attitudes and values in Spanish society or estimates of trends
in public opinion. In our view, however, when modelling, these biases would not intro-
duce additional deviations to the ones already presented in the data21 once the individual
age (not the age group) of each observation was included in the model as an explanatory
(predictor) variable. Conditional on age, rules R1 and R2 would have no effect on the
collected data, other biases apart. In any case, despite CIS data limitations, it should
be noted that the CIS databank comprises the largest and most reliable public database
available in Spain for the study of social and political issues. The datasets of CIS can
be free downloaded from its website and, as we have already mentioned, its sampling
designs has been previously tested with acceptable results by the academia (Stephenson,
1978).
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A. Marinas2 and F. J. Urbano2

Abstract

Authentication of extra virgin olive oil requires fast and cost-effective analytical procedures, such
as near infrared spectroscopy. Multivariate analysis and chemometrics have been successfully
applied in several papers to gather qualitative and quantitative information of extra virgin olive
oils from near infrared spectra. Moreover, there are many examples in the literature analysing
the effect of agro-climatic conditions on food content, in general, and in olive oil components,
in particular. But the majority of these studies considered a factor, a non-numerical variable,
containing this meteorological information. The present work uses all the agro-climatic data with
the aim of highlighting the linear relationships between them and the near infrared spectra. The
study begins with a graphical motivation, continues with a bivariate analysis and, finally, applies
redundancy analysis to extend and confirm the previous conclusions.
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Keywords: Extra virgin olive oil, infrared spectroscopy, agro-climatic data, linear correlations, re-
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1. Introduction

Spain is the first worldwide producer of extra virgin olive oil (EVOO), where Andalu-
sia encompasses 80% of the national production. EVOO is an edible oil very much
appreciated by its flavour and benefits for health. Its high quality could be affected by
frauds in marketing, such as adulteration with other cheaper oils (for example, palm,
corn, hazelnut or refined olive oil) or with the indication of a false geographical ori-
gin. These practices considerably modify its quality indexes. Therefore, authentication
of EVOO requires fast, reliable and cost-effective analytical procedures which require
no or little sample manipulation, such as near infrared spectroscopy (NIR). Contrary to
classical separation techniques (for example, gas chromatography), NIR spectra provide
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continuous information rich in both isolated and overlapping bands and their analysis re-
quires the application of multivariate statistics (see Öztürk, Yalçin and Özdemir, 2010).
There are in the literature many examples of the application of chemometrics to de-

termine qualitative and quantitative information of EVOO from NIR spectra, specially,
with the aim of its authentication. For instance, Bertran et al. (2000) apply NIR and
pattern recognition as screening methods for the authentication of EVOO of very close
geographical origins. Mailer (2004) shows a rapid evaluation of olive oil quality by NIR
reflectance spectroscopy. Galtier et al. (2007) determine geographic origins and com-
positions of EVOO by chemometric analysis of NIR spectra. Woodcock, Downey and
O’Donnell (2008) show a confirmation of declared provenance of European EVOO sam-
ples by NIR spectroscopy. Casale et al. (2012) present a characterization of Protected
Designations of Origin (PDO) olive oil Chianti Classico by non-selective (UV-visible,
NIR and MIR (mid-infrared) spectroscopy) and selective (fatty acid composition) ana-
lytical techniques. Finally, some previous papers of our research group (see Sánchez-
Rodrı́guez et al. (2013) and Sánchez-Rodrı́guez et al. (2014)) show new chemometric
approaches to empathize the potential of NIR and MIR spectra to determine the fatty
acid profile of EVOO, the fatty acids being its major components and considered as a
quality parameter in order to its authentication. Therefore, NIR andMIR spectra contain
valuable and diverse information about EVOO.
Moreover, there are in the literature many works analysing the influence of weather,

agro-climatic or meteorological1 conditions on food content, in general, or in EVOO
components, in particular. Thus, for example, Martı́nez-Herrera et al. (2006) analyse
the chemical composition of Jatropha curcas L., a multipurpose shrub of significant
economic importance because of its several potential industrial and medicinal uses, from
different agro-climatic regions of Mexico. Jarvis et al. (2008) and Khokhar et al. (2017)
study the influence of agro-climatic conditions on wheat in western Canada and India,
respectively. Zheng et al. (2012) show the effects of latitude and weather conditions
on the contents of black currant, while Yang et al. (2017) analyse the same effects on
Finnish berries. Falasca, Ulberich and Ulberich (2012) develop an agro-climatic zoning
model to determine potential production areas for castor bean. Luciano et al. (2013)
treat the effects of the weather and the soil on the composition of grapes. Rymbai et
al. (2014) study the physiological characteristics of mango in different agro-climatic
regions of India. Edmunds et al. (2015) analyse the relationships of preharvest weather
conditions and soil factors to susceptibility of sweetpotato. Dorey et al. (2016) model
sugar content of pineapple under agro-climatic conditions on Reunion Island. Finally,
there are many papers treating the effect of weather and agro-climatic conditions on oils
(such as Leskinen, Suomela and Kallio, 2009a and Leskinen et al., 2009b), especially
the numerous studies of olive oils: for example, Sacco et al. (2000), D’Imperio et al.

1. Climatology deals with the scientific study of climate, that is, the processes and phenomena of the atmosphere
over relatively long periods of time. However, Meteorology studies the characteristics of the atmosphere over a short
period of time, especially as a means of forecasting the weather. The agro-prefix placed before both terms refers to the
interrelationship between Climatology and Meteorology with the processes of agricultural production.
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(2007), Cornejo, Bueno and Gines (2012), Awan (2014), Alowaiesh, Singh and Kailis
(2016), Ozdemir (2016), Veizi, Peçi and Lazaj (2016), Zaied and Zouabi (2016) and
Merchak et al. (2017). But there are few studies considering NIR data to study this
agro-climatic influence on oils or other food products.
Regarding the multivariate statistical technique being applied, the majority of the

studies included in the literature consider a single factor, a non-numerical variable, to
establish different meteorological or agro-climatic zones – see, for example, Alowaiesh
et al. (2016), Cornejo et al. (2012), Leskinen et al. (2009a) and Leskinen et al. (2009b),
Merchak et al. (2017) or Zheng et al. (2012). If this factor is used as an independent
variable in a statistical model, ANOVA (or MANOVA) and a post-hoc test can be used
to compare the means corresponding to the defined zones in a numeric variable. The
agro- climatic factor can also be used as a dependent variable in the linear discrimi-
nant analysis (LDA), where the high dimensionality of the independent variables can
be reduced by previously applying principal component analysis (PCA) or partial least
squares (PLS). However, the present study rather uses the complete agro- climatic data
base obtained from the official webpage of the Automatic Weather Stations (AWEs) of
Andalusia. In particular, the historical daily information from 2005 to 2010 has been
downloaded for the following variables: temperature, humidity, wind speed, radiation,
precipitation and evapotranspiration.
In this case, the agro-climatic data are aggregated in different ways and associated

to the EVOO (taking into account the nearest AWE) by using computational programs
designed by the powerful free software R-project (R Core Team (2018)). The aim of the
study is to explore the linear relationships between agro-climatic and EVOO NIR data:
firstly, by using bivariate correlation analysis and, then, generalizing the procedures to
multivariate analysis with the application of Redundancy Analysis (RDA).
In particular, Section 2 describes the process of acquisition of NIR and agro-climatic

data, the statistical bivariate and multivariate methodology and the computational im-
plementation. Section 3 shows the results and discussion: firstly, the graphical analysis
of NIR (original and derivative) spectra and the series of agro-climatic data; secondly,
the results of the correlation analysis between the agro-climatic measurements and the
spectral absorbance are shown; thirdly, some of the previous conclusions are confirmed
and extended by the application of the multivariate technique of RDA. Finally, Section
4 includes the main conclusions of the work.

2. Materials and methods

2.1. Data

2.1.1. NIR data

Olive oil was extracted by the producers through a two-phase centrifugation system.
Information from 222 Andalusian extra virgin olive oils, collected from consecutive
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harvests from 2005-06 to 2010-11 (denoted H1, H2,..., H6, respectively), is available.
The chemical data from each EVOO have been provided by near-infrared (NIR) spec-
troscopy by the staff of the Organic Chemistry Department of the University of Cordova
(Spain). The instruments employed for spectra collection were available at Central Ser-
vice of Analyses (SCAI) and included a Spectrum One NTS FT-NIR spectrophotome-
ter (Perkin Elmer LLC, Shelton, USA) equipped with an integrating sphere module.
Samples were analysed by transflectance by using a glass petri dish and a hexagonal
reflector with a total transflectance pathlength of approximately 0.5 mm. A diffuse re-
flecting stainless steel surface placed at the bottom of the cup reflected the radiation
back through the sample to the reflectance detector. The spectra were collected by using
Spectrum Software 5.0.1 (Perkin Elmer LLC, Shelton, USA). The reflectance (log 1/R)
spectra were collected with two different reflectors. Data correspond to the average of
results with both reflectors, thus ruling out the influence of them on variability of the
obtained results. Moreover, spectra were subsequently smoothed using the Savitzky-
Golay technique, which performs a local polynomial least squares regression in order
to reduce the random noise of the instrumental signal (Savitzky and Golay (1964)).
Once pre-treated, NIR data of 1237 measurements for each case (representing energy
absorbed by olive the oil sample at 1237 different wavelengths, from 800.62 to 2499.64
nm) were supplied to the Department of Statistics (University of Cordova) in order to
be analysed (Figure 1).

Figure 1: NIR spectrum of an extra virgin olive oil.
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2.1.2. Agro-climatic data

The agro-climatic data used in the work has been obtained of the official website of
the Andalusian Institute of Agricultural, Fisheries, Agrifood and Organic Production
Research and Training (IFAPA). In this webpage, the long-run information registered
in the Automatic Weather Stations (AWEs) can be accessed2. These stations have a
suitable plan of maintenance and an exhaustive review of the records that supply the
sensors. There are approximately 120 AWEs in all the Andalusian provinces, though in
this work only the historical daily information corresponding to the 28 AWEs specified
in Table 1 (see Appendix A), for the period 2005-2010 (years before the considered
harvest years), has been downloaded. These AWEs have been selected due to their
proximity with the point of extraction of the available oils.
Information about the following variables has been considered in this study:

• Temp: Daily average temperature, in ◦C. The temperature is measured by a sen-
sor Pt1000 whose functioning is based on the variation of the resistance of the
platinum element by the temperature.

• Hum: Daily average relative humidity, in %. The measurement of the relative
humidity is realized by a capacitive device of solid condition: sensor HUMICAP
180, plastic polymer that tends to absorb humidity. The sensor changes its electri-
cal characteristics by the variations of humidity, in such a way that diminishes its
electrical capacity by the absorption of dampness.

• WSpe: Daily average wind speed, in meters per second. Its measurement is real-
ized by a weather vane, in which the rotation of a propeller produces an electrical
sign in alternating current, of frequency proportional to the wind speed.

• Rad: Daily average radiation, in MJ per m2. The measurement is realized by
a pyrometer constituted by a photoelectric cell of silicon being sensitive to the
radiation from 350 to 1100 nm, orientated in a southerly direction and ensuring
that another sensor or accessory of the tripod does not cast shade on it.

• Precip: Daily precipitation, in mm. The AWE has a device of swinging small
containers to measure the volume of rainfall, that is measured by the number of
contacts with a tab of the device (each one equivalent to 0.20 mm) that are pro-
duced by the overturning of the rain water from one container to the other.

• ET0. The potential evapotranspiration (PET) is the loss of dampness (in mm per
day) of a surface for direct evaporation together with the water loss for perspira-
tion of the vegetation. PET represents the maximum quantity of water that can
evaporate from a soil completely covered with vegetation, which develops in ideal
conditions and supposing that there are no limitations in the availability of water.
ET0, denoted here as ETo for purposes of labelling, is similar to the ETP though

2. The link is https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController, where the histori-
cal data can be downloaded by clicking on the name of the station and selecting the agro-climatic measurements and the
start and end dates [accessed on 02 October 2018].
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it is applied to a specific or standard cultivation, habitually cereals or alfalfa, from
8 to 15 cm of uniform height, of active growth, totally covering the soil and not
being submitted to water deficit.

2.2. Methodology

2.2.1. Bivariate analysis

Pearson’s linear correlation coefficient, r, determines the degree of linear association
existing between two numerical variables, being higher as the coefficient is closer to
1 in absolute value. Assuming bivariate normality of the variables, and under the null
hypothesis of zero correlation, the statistic t = r

√
(n−2)/(1− r2) has t-Student distri-

bution with n− 2 degrees of freedom, where n is the sample size, equal to 222 in this
study. Using a significance level of α= 0.05, values of r such as−0.1317< r< 0.1317
show no statistical evidence for rejecting the hyothesis of zero correlation.

2.2.2. Redundancy analysis

Canonical redundancy analysis (RDA) and canonical correspondence analysis (CCA)
are two forms of asymmetric canonical analysis, where asymmetric means that the ma-
trices involved in the analysis, X and Y, do not play the same role: Y is a matrix of
response variables – in this case, containing the spectral information – and X is the ma-
trix of explanatory variables – in this study, the agro-climatic measurements. This aspect
contrasts with canonical correlation analysis where the two matrices play the same role
in the analysis and so can be interchanged. X is used to explain the variation in Y, as in
regression analysis, in two steps3 4:

1. Multivariate regression ofY onX, which is equivalent to a series of multiple linear
regressions of the individuals variables of Y on X and produces a matrix of fitted
values Ŷ.

2. Principal component analysis (PCA) of Ŷ in order to reduce its dimension. PCA
components of Ŷ, called RDA components or redundancy axes, are obtained as a
reduced number of linear combinations of the variables of Ŷ, orthogonal among
themselves, explaining a maximum percentage of their variability.

Therefore, in RDA the variability of the variables of Y are explained from PCA
components (factors or latent variables) depending on the variables of X and so RDA
can be seen as a constrained version of PCA.

3. X and Y are generally standardized to eliminate the effect of the measurement units.

4. The main assumptions of the data are linearity between the variables of matrix Y and the variables of the matrix X
and the variance homogeneity of each set of data.
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Each eigenvalue of the correlation matrix of the variables of Ŷ, λ j for j = 1, . . . ,g,
represents the variance of each redundancy axis, whose direction is calculated from the
corresponding eigenvector. The proportion of the total variance of Y explained by a
redundancy axis k, k = 1, . . . ,g, is given by:

λk∑g
j=1λ j

.

The redundancy index of the model (similar to a coefficient of determination) is defined
by:

R2m =

∑m
j=1λ j

∑g
j=1λ j

,

being m the number of redundancy axes (among the possible g RDA components) to
retain.
The results of the applications of RDA analysis are usually shown by representing

both matrices, X and Y, in a space of reduced dimension: the two or three-dimensional
space formed by the first RDA components. Variables or cases with the highest coor-
dinates (scores) in a RDA component or redundancy axis are very useful to interpret it,
showing the variables and/or cases that are discriminated by this RDA component. Be-
sides, the proximity between variables, cases or RDA components represents the high
association between them.
Redundancy analysis as an alternative for canonical correlation analysis was pre-

sented by authors such as Rao (1964) and van den Wollenberg (1977). More recently,
Legendre, Oksanen and ter Braak (2011), test the significance of the redundancy axes in
RDA.

2.2.3. Functional data analysis

For some years, the computing applied to different areas has caused a major tech-
nological change due to the addition of faster and more precise measuring equipments.
This fact affects one of the paradigms on classical statistics: the number of data should
be greater than the number of variables. Currently, large databases corresponding to
observations of random variables taken over a continuous interval (or increasingly ex-
tensive discretizations of this continuous interval). This kind of data, named functional
data, appear in a natural way in fields such as the spectrometry, where the measure-
ment result is a curve, a spectrum (see, for example, Aguilera et al. (2010) or Saeys, De
Ketelaere and Darius, 2008).
Moreover, in chemometrics, the treatment of a spectrum in the context of functional

data analysis, as a continuous function, enables the obtaining of the spectral derivatives
as any differentiable function must be continuous at every point in its domain. Many
studies of different fields, in particular, of olive oil have proven that the first or second
derivative of NIR spectra provide valuable qualitative or quantitative information about



216 Effect of agro-climatic conditions on near infrared spectra of extra virgin olive oils

oil that, however, the original spectra do not show (see, for example, Chen et al. (2015)
or Woodcock et al. (2008)). Although the original spectral curves overlap, sometimes
those ones associated to a high content in a concrete compound or having the effect of an
external factor show show higher variability. Therefore, these variations or discrepan-
cies are appreciated more clearly in the first derivative of the spectra than in the original
spectra.

2.2.4. Computational implementation

The agro-climatic data corresponding to the year previous to the olive harvest and to
the nearest AWE (or the average of the nearest AWEs) are associated to each oil sam-
ple. A procedure has been programmed, using R, that permits to select the considered
agro-climatic variable (Temp, Hum,WSpe, Rad, Precip, ETo) and accumulates the daily
measurements corresponding to several days or months. In particular, the following
function has been defined:

AGR-CLIM-function(station, harvest, month1, month2, agro-climatic measurement),

with the following arguments:

- station: among the 28 observed AWEs, the case has associated the code of the
nearest geographically (see Table 1),

- harvest years, from 1 (2005-06) to 6 (2010-11),
- given the station and the harvest, the period of time (from month1 to month2) can
be selected to aggregate the daily agro-climatic measurements,

- agro-climatic measurement, distinguishing among the 6 previously described: Temp,
Hum,WSpe, Rad, Precip, ETo,

The function returns as value the aggregated agro-climatic measurement according
to the selected months and the established meteorological criterion.
Having extracted the data, Pearson’s linear correlation is computed between the dif-

ferent agro-climatic measurement, aggregated for different months, and some spectral
values of absorbance for the original spectra or their (first or second) derivatives. The
graphical procedures will mark in all cases the correlation coefficients which are (or not)
statistically different from zero (with α = 0.05). As stated above, for the sample size
n= 222 they are the values outside the range (−0.1317,0.1317).
The packages of R-project ‘fda’ (Ramsay et al. (2017)) and ‘fda.usc’ (Febrero-Bande

and Oviedo de la Fuente, 2012) have been used to obtain the spectral derivatives and the
multivariate analysis of RDA has been developed by using the package ‘vegan’ (Oksa-
nen et al. (2018)). Detailed information of the code of the programs designed to read the
agro-climatic and chemical data, including the above-mentioned function, and to obtain
the diverse range of graphics considered in the study can be seen in the Supplementary
Material.
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3. Results and discussion

3.1. Graphical analysis

3.1.1. Analysis of NIR spectra

NIR spectra are the representation of the absorbance, that is, the quantity of energy
absorbed by an oil at each wavelength (from 800.62 to 2499.64 nm, 1237 measures in
total). As indicated above, the continuous treatment of a spectrum, instead of an ex-
tensive discretization, permits the obtaining of its derivatives that, in occasions, contain
valuable information about olive oil compositions.
Thus, in Figure 2 the original spectra as well as their two first derivatives are rep-

resented, where the spectra are grouped in the same colour corresponding to a same
harvest. The visual analysis highlights the separation or divergence of some spectra, es-
pecially those corresponding to the last harvest (H6, depicted in pink). This discrepancy
is more pronounced in some ranges of wavelengths of derivative spectra, whose detail is
represented in Figure 3 (where the points of maximum discrepancy are denoted by P1,
P2, . . . ,P10 for future analysis).
In addition, in Figure 4 the transposes of the original spectra and their two first

derivatives are shown, i.e., the curves are represented as a function of the case. This
graphic also highlights the structural change corresponding to the last harvest, H6; this
change is especially evident by the view of the derivative spectra.

Figure 2: NIR spectra and their first and second derivatives.
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Figure 3: Spectral details corresponding to the maximum discrepancies.

Figure 4: Spectral and derivative NIR values, as a function of the case.

3.1.2. Analysis of series of agro-climatic data

In this section, the series of the six agro-climatic measurements (Temp, Hum, WSpe,
Rad, Precip, Eto) are represented for the six harvests. The daily values are accumulated
for each month (afterwards, the reason is explained) and then standardized in order
to eliminate the effect of the measurement units of each variable. So, dimensionless
series are obtained that can be represented and compared in the same graphic. These
standardized values are represented in Figure 5 which shows a cyclical tendency for all
the considered variables. In general, the proximity of the trajectories of evolution of
the variables Temp, WSpe, Rad and Eto, on the one hand, and Hum and Precip, on the
other, is observed, noting also the symmetry among them. With regard to the relation
between precipitation and radiation, Bradley et al. (2011) use cross-spectral analysis
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Figure 5: Monthly accumulated and standardized agro-climatic measurements.

Ann. prec.

Year (in mm.)

2005 290.65

2006 508.97

2007 442.13

2008 533.80

2009 419.85

2010 819.05

Figure 6: Monthly accumulated precipitation (in mm.), for each harvest.

to show that precipitation has a role to play in the maintenance of phenology cycles
because it maintains constant vegetation growth reducing so the seasonal impact of the
solar radiation.
As fundamental irregularity of Figure 5, the especially high values of the variables

that represent the wind speed (WSPe, in green) and the volume of precipitation (Precip,
in pink) at the beginning of the 4th harvest and at the beginning and the end of the 6th
harvest (H6) can be highlighted. This fact corroborated the work of Back and Bretherton
(2005) which studied the relationship between wind speed and precipitation in the Pa-
cific and found a significant correlation between these variables. The specially irregular
behaviour of the Precip variable in H6, whose accumulated mean values are specially
high, can also be deduced from the observation of Figure 6.
Therefore, the anomalous accumulated precipitation (or wind speed) values corre-

sponding to the sixth harvest together with the anomalous derivative NIR spectra cor-
responding to the same harvest justify the formulation of the following question: What
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Figure 7: Standardized mean agro-climatic measurements, for each AWE.

is the effect of the precipitation or the wind speed, in particular, or the agro-climatic
conditions, in general, on NIR spectra or on the chemical compounds of EVOO?
Finally, Figure 7 depicts the standardized mean values for the six agro-climatic mea-

surements for the 28 automatic weather stations. The obvious discrepancies among the
mean values corresponding to the different AWEs makes reasonable the assignation the
agro-climatic measurements associated to the nearest AWE to each olive oil (case).

3.2. Bivariate analysis

The following function:

AGR-CLIM-function(station, harvest, month1, month2, agro-climatic measurement),

described in Section 2.2 (Methodology) and whose code is included in the Supplemen-
tary Material, has been applied to each EVOO (222, in total), considering the nearest
AWE (station) and the corresponding harvest. The six agro-climatic measurements pre-
viously downloaded (Temp, Hum, WSpe, Rad, Precip and Eto) have been accumulated
for each month, from January to December. Therefore, a list of 12 matrices of dimen-
sion 222×6, [X1|X2| · · · |X12], is available. Moreover, Y is the matrix of dimension
222×10 whose columns contain the absorbance associated to the 10 peaks of maximum
discrepancy (P1, P2, ..., P10) represented in Figure 3.
The aim of aggregating the agro-climatic measurements has been to relate themmore

adequately to the phenological cycle of the olive grove, which will directly influence the
composition of the oil. As shown in Figure 8, this cycle is not distributed equally,
and in this way the months of interest in each case could be studied independently. In
the bibliography, authors such as Orlandi et al. (2012), in the study of the influence of
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Figure 8: Phenological stages of olive.

climate data on oil production in southern Italy, also consider meteorological variables
on a monthly basis.

3.2.1. Correlations between the agro-climatic measurements
and the discrepancy spectral peaks

In this section, Pearson’s linear correlation coefficients are calculated between each of
the six agro-climatic measurements, accumulated for each month, and the discrepancy
spectral peaks denoted in Figure 3. The results are shown in Figures B.1-B.4 (in Ap-
pendix B), where the light grey lines of points mark the correlations -0.5 and 0.5 and the
dark grey lines of points show the frontier between the values being different (or not)
statistically from zero for α= 0.05.
The following fundamental conclusions can be deduced from the observation of Fig-

ures B.1-B.4:

• There are many high correlations, next to −1 or 1, specially for the accumulated
agro-climatic measurements corresponding to January, February, March, June and
November. Therefore, the lowest correlations between the discrepancy spectral
peaks and the aggregate agro-climatic measurements appear for the months of the
phenological stages corresponding to the development and the maturation of olives
(see Figure 8). And so it may be interpreted that the highest effect of the meteo-
rological conditions (in particular, of the precipitation), reflected in NIR spectra,
takes place not on the fruit but on the tree.

• From the observation of the different agro-climatic measurements, the precipita-
tion (Precip, in pink) and the radiation (Rad, in blue) are the variables showing,
in general, the highest (positive or negative) correlations, having opposite sign.
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As shown in Bradley et al. (2011), precipitation and radiation have negative linear
correlation and now Figures B.1-B.4 highlight that both agro-climatic measure-
ments have a contrary effect on the discrepancy spectral peaks. Besides, the sign
of the pairwise correlations between Precip-Rad and the peaks P2, P3, P5, P7 are
the same, and the opposite of the sign of the correlations between the rest of the
peaks. By coincidence, these peaks are the relative maxima of the derivative NIR
spectra while the other peaks are the relative minima.

• Some agro-climatic variables are almost uncorrelated between the discrepancy
spectral peaks for many months but, nevertheless, shown values closer to 1 (in
absolute terms) for a concrete month. These are the case, for example, of the
evapotranspiration (ETo, in yellow) or the humidity (Hum, in red) in March or
November, whose influence on the spectral peaks is the contrary. The negative or
inverse correlation between both variables can be intuited from the observation of
Figure 5. Besides, in March and November, the standardized values for ETo and
Hum are quite similar and, however, the effect on the discrepancy spectral peaks
is the highest.

3.2.2. Correlations between the agro-climatic measurements
and the spectral absorbance

In this section, Pearson’s linear correlation coefficients between the monthly accumu-
lated agro-climatic measurements and the spectral absorbance are calculated. The re-
sults, that coincide with the ones obtained from Figures B.1-B.4, are shown in Figures
C.1-C.4 (in Appendix C).
The following general conclusions can be obtained:

• January and December are the months showing, in general, the highest correlations
(in absolute terms) and April is the one with the correlation values nearest to zero.
This fact confirms, newly, that the highest correlations appear in the phenological
stage of winter resting of olive tree (see Figure 8).

• Taking into account the different agro-climatic measurements, the precipitation
(Precip, in pink) and the radiation (Rad, in blue) are the variables showing the
highest correlations, being the opposite the sign of their linear correlation. In
general, the sign of the correlation for the radiation and the evapotranspiration
(ETo, in yellow) is the same, and the opposite to the sign of the correlation for all
other variables.

3.3. Multivariate analysis

In this section, redundancy analysis (RDA) is applied to generalize the previous results
and highlight the cause and effect relationships between two data matrices: one of them,
the matrix of explanatory variables, containing in its columns the six accumulated agro-
climatic measurements for a specific month (Xi, i = 1, . . . ,12) and the other, the matrix
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of response variables (Y), formed by the spectral absorbance associated to the 10 peaks
of maximum discrepancy (P1,P2, . . . ,P12) represented in Figure 3.
The results of the application of each RDA are shown in the two-dimensional space

formed by the two first RDA components (RDA1 and RDA2), where both matrices, Xi
andY, are represented. The results are drawn, for each month, in Figure 9. Each individ-
ual representation shows: a) the cases, using different colors for the different harvests
(black, red, green, blue, cyan and pink for H1,H2,...,H6, respectively); b) the response
variables: the absorbance for the spectral peaks (Y, in orange); c) the explanatory vari-
ables: the agro-climatic measurements for each month (Xi, i = 1, . . . ,12, in gray). The
redundancy index is greater than 0.95 for all the months (as it is shown at the top right
of each graphic), which indicates that the percentage of the total variance of Y (spectral
peaks) explained by the two first RDA components is greater than 95%.
In general lines, the conclusions obtained from the observation of Figure 9 confirm

some of the above-mentioned ones, deduced from the bivariate analysis. More in par-
ticular, the following results can be enumerated:

• Cases analysis: The cases corresponding to the last harvest (H6, in pink) are
clearly discriminated or separated from the remaining harvests for all the months:
cases of H6 have high scores (in absolute terms) in RDA1 for all the months
whereas all the other cases have scores near zero in this axis. RDA2 permits to
discriminate the harvest H5 (in cyan) from the others: cases of H5 have high (abso-
lute) scores in RDA2. Cases of H6 have also high scores in RDA2 for months such
as October but the groups of cases can be discriminated by the scores in RDA1.
The cases associated to H1, H2, H3 and H4 are, in general, overlapped and, so,
they are not discriminated by RDA1 and RDA2 (the most important redundancy
axes), showing scores near zero in both redundancy axis, in general. RDA sta-
tistically modelled the situation previously represented in Figure 3, where spectra
corresponding to H6 (and H5, to a lesser degree) are clearly discriminated from
the others for some ranges of the original spectra or their first two derivatives.

• Response variables analysis: P2, P3, P5, P7 are clearly discriminated from the
other spectral peaks in all the months (being all of them depicted in orange). For
all months, the peaks have scores greater than one, in absolute terms, in RDA1,
whereas the scores in RDA2 are near zero. In this case, RDA has also a clear
correspondence with the representation of Figure 3, as P2, P3, P5, P7 are relative
maxima of the derivative spectra while P1, P4, P6, P8, P9 and P10 are relative
minima.

• Explanatory variables analysis: As in bivariate analysis, taking into account the
different agro-climatic measurements (represented in gray), the radiation (Rad)
and the precipitation (Precip) are the variables having the highest scores (in abso-
lute terms) in RDA1 (especially, in February, June and December). The sign of
the scores (and, so, the correlation) is the opposite for these two variables (in line
with the observation of Figure 5 and Bradley et al. (2011)). The humidity (Hum)
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Figure 9: RDA representations from January to December.
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and the temperature (Temp) are clearly discriminated by RDA2 for months such
as May or June, having both agro-climatic measurements opposite scores. The
evolution of these two variables is also the opposite in Figure 5. Finally, with re-
spect to the cases, response and explanatory variables, in months such as January,
March or November, Precip shows high scores, in absolute terms, in RDA1 close
to the scores of the relative maxima peaks P2, P3, P5, P7 and the last harvest (H6).
Besides, in March, May or June, Temp shows high (absolute) scores in RDA2, this
variable being near the cases of H5.

4. Conclusions

During recent years NIR spectroscopy has been commonly used because it is a fast,
reliable and cost-effective chemical technique. Many studies apply chemometrics anal-
ysis to highlight the valuable information contained in NIR spectra of EVOO. Firstly,
studies such as Galtier et al. (2007) or Sánchez-Rodrı́guez et al. (2013) and Sánchez-
Rodrı́guez et al. (2014) show the prediction of the fatty acid profile (quantitative infor-
mation) from NIR spectra. Other authors (Bertran et al. (2000) or Öztürk et al. (2010))
highlight the potentiality of NIR spectra to analyse the traceability of EVOO in order to
their authentication. Casale et al. (2012) characterize PDO olive oil (qualitative infor-
mation) from NIR spectra.
Moreover, this paper highlights the effect of agro-climatic conditions on spectra of

olive oils. In particular, the study show the structure of linear relationships being be-
tween two sets of Big Data: NIR spectra of EVOO and agro-climatic data downloaded
from the official Andalusian Automatic Weather Stations (AWEs). The graphical anal-
ysis of both data sets detects, firstly, an irregular behaviour of (original and derivative)
NIR spectra corresponding to the last harvest of extraction of EVOO (H6), in particu-
lar, ten peaks of maximum discrepancy, P1, P2, ..., P10, are determined. Secondly, the
graphical analysis of the series of agro-climatic data shows irregularities in the volume
of precipitation (Precip) or the wind speed (WSpe) accumulated for the previous year.
This fact motivates the question about what is the effect of the agro-climatic conditions
on NIR spectra or on the chemical compounds of EVOO (as NIR spectra are useful
to determine quantitative information of EVOO). The answer is obtained, initially, by
using bivariate analysis between the agro-climatic measurements and the spectral ab-
sorbance and, then, by extending the previous results by applying RDA. The first RDA
component or redundancy axis (obtained when the matrix of spectral absorbance is the
response and the matrix of agro-climatic measurements contains the explanatory vari-
ables) clearly discriminate the cases of EVOO corresponding to H6 whereas the cases
corresponding of H5 are discriminated by the second RDA component. As final con-
clusions from bivariate and multivariate analysis, the variables monthly accumulating
the precipitation (Precip) and the radiation (Rad) show, in general, the highest (in abso-
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lute terms) linear correlation between the spectral absorbance, but having opposite sign.
The correlation coefficients associated to wind speed (WSpe) are the closest to zero and
so, unlike precipitations, the irregularities of the series of WSpe at the beginning of the
harvest H6 can not be associated with the discrepancy of the EVOO NIR spectra of this
harvest.
Therefore, the main contributions of this work are the treatment of the original agro-

climatic data, instead of defining a factor with levels associated to the meteorological
conditions, and the computational implementation in R to analyse the structure of corre-
lations between this set of Big Data and the EVOO spectral data and efficiently represent
the results (see the designed programs in the Supplementary Material). Once the effect
of agro-climatic conditions on EVOONIR spectra has been highlighted by using the Big
Data and since NIR spectra contain important qualitative and quantitative information
of EVOO, a further study could treat the influence of meteorological aspects in some
quality parameters of olive oils, such as the fatty acids content, in order to authenticate
the oils and prevent fraudulent practices.
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Appendix A
Table 1: Automatic weather stations (AWEs).

Province Station Code

Cadiz Villamartı́n 1

Adamuz 2
Baena 3
Belmez 4
Cabra 5

Cordova Córdoba 6
El Carpio 7

Hinojosa del Duque 8

Hornachuelos 9
Palma del Rı́o 10
Santaella 11

Granada Loja 12

Pinos Puente 13

Alcaudete 14
Chiclana de Segura 15

Jaén 16
Higuera de Arjona 17

Jaen Mancha Real 18
Marmolejo 19

Pozo Alcón 20
San José de los Propios 21

Santo Tomé 22

Antequera 23

Malaga Archidona 24

Pizarra 25
Sierra de Yeguas 26

Sevilla Écija 27

Osuna 28
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Appendix B

Figure B.1: Correlations for January, February and March.

Figure B.2: Correlations for April, May and June.
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Figure B.3: Correlations for July, August and September.

Figure B.4: Correlations for October, November and December.
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Appendix C

Figure C.1: Correlations between the NIR spectral absorbance and the accumulated agro-climatic mea-
surement for January, February and March.

Figure C.2: Correlations between the NIR spectral absorbance and the accumulated agro-climatic mea-
surement for April, May and June.
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Figure C.3: Correlations between the NIR spectral absorbance and the accumulated agro-climatic mea-
surement for July, August and September.

Figure C.4: Correlations between the NIR spectral absorbance and the accumulated agro-climatic mea-
surement for October, November and December.
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Poisson excess relative risk models: new
implementations and software
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Abstract

Two new implementations for fitting Poisson excess relative risk methods are proposed for as-
sumed simple models. This allows for estimation of the excess relative risk associated with a
unique exposure, where the background risk is modelled by a unique categorical variable, for
example gender or attained age levels. Additionally, it is shown how to fit general Poisson linear
relative risk models in R. Both simple methods and the R fitting are illustrated in three examples.
The first two examples are from the radiation epidemiology literature. Data in the third example
are randomly generated with the purpose of sharing it jointly with the R scripts.
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ming

1. Introduction

The excess relative risk (ERR) represents the additional risk of disease (e.g., leukaemia,
brain tumour) per unit of exposure (e.g., absorbed dose of ionising radiation). In a linear
ERR model with d exposures, the risk is modelled by

eη

⎛

⎝1+
d
∑

j=1

β jD
( j)

⎞

⎠ ,

where each parameter β j is the ERR associated with the absorbed dose D( j). The risk is
represented by the product of the background risk term, eη, and the term within paren-
thesis, which is the relative risk. Poisson linear ERR models can be used to calculate
the ERR in longitudinal cohort studies with active follow-up. It is assumed that
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Ci ∼ Pois
⎛

⎝PYie
ηi

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠

⎞
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where Ci and PYi are the number of disease cases and the number of person-years of
follow-up, and D( j)

i is the mean dose (weighted by the person-years) of exposure j
for stratum i = {1, . . . ,n} respectively (BEIR VII Phase 2, 2006). The most common
situation in ERR models is to have only one exposure variable. More complicated ERR
models with effect modification of the dose-response are also often reported, e.g. Grant
et al. (2017).
The background risk can be modelled by m covariates, i.e. ηi = α0+

∑m
k=1αkx

(k)
i .

These covariates are usually time-dependent variables, e.g. attained age or transplant
status. The model (1) is not the canonical log-linear Poisson model (McCullagh and
Nelder, 1989). Since it mixes both log-linear and linear terms it is a generalised non-
linear model.
In this work, Poisson ERR models with simple forms are studied to obtain estimates

in closed or almost closed form. This allows calculations to be made faster and more
accurate. As an alternative to other implementations in the literature, such as Epicure
(Preston et al., 1993) and SAS (SAS Institute Inc., Cary, North Carolina) (Richardson,
2008), the software R (R Core Team, 2017) was used to fit general Poisson ERRmodels.
Three applied examples are detailed, and the data and R scripts of the third example are
included as supplementary material.

2. Simple ERR model

A simple ERR model may be defined by assuming one exposure, d = 1, and that the
background risk linear predictor, ηi, is of the form α1+

∑K
k=2αk1{k}(xi), where xi repre-

sents a categorical variable with K levels. This model is simple, with only one exposure,
and one categorical covariate in the background risk term.
Following these assumptions

Ci ∼ Pois
(

PYie
α1+

∑K
k=2αk1{k}(xi) (1+βDi)

)

. (2)

Let �α = {α1, . . . ,αK} and X = {C,PY,D,x}, then the likelihood of the parameter set
Θ= {�αβ} is given by

L(Θ|X) =
n

∏
i=1

[PYie
α1+

∑K
k=2αk1{k}(xi)(1+βDi)]

Ci exp(−PYieα1+
∑K

k=2αk1{k}(xi)(1+βDi))

Ci!
(3)

and the log-likelihood is
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l(Θ|X) = log(L(Θ|X)) =
n
∑

i=1

[

Ci(logPYi+α1+
K
∑

k=2

αk1{k}(xi)+ log(1+βDi))

]

−
n
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i=1

PYie
α1+
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k=2αk1{k}(xi)(1+βDi)−

n
∑

i=1

logCi!.

(4)

For this model two implementations are proposed, one is frequentist and the other is
Bayesian. The frequentist implementation provides a closed form of the profile likeli-
hood of β and the Bayesian provides the marginal posterior for β also in a closed form.

2.1. Profile likelihood and maximum likelihood estimator

A profile likelihood CI (PLCI) for the ERR parameter is preferred to the typical Wald
CI because the likelihood function of ERR models is usually non-normal in shape. Let
L(Θ|X) be the likelihood function as in 3, then the profile likelihood of β is

L1(β|X) =max
θ
L(θ,β|X).

The (1−a) ·100% PLCI are the values of β that meet the requirement

log(L1(β|X))> l̂−χ21,1−a/2,

where l̂ = l(Θ̂|X) is the maximum value of the log-likelihood function and χ21,1−a is the
1−a quantile of a chi-squared distribution with 1 degree of freedom. Note that L1(β|X)
is the likelihood of a Poisson GLM: C ∼ Pois(PY (1+βD)eη) where PY (1+ βD) is
the offset. In general, for only one exposure the profile likelihood of the ERR is the
likelihood of a Poisson GLM with canonical logarithm link.
Assuming a simple model as (2), the profile likelihood for β can be calculated by

solving
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂ l
∂α1

= S− eα1
(

T1+
K
∑

k=2

Tke
αk

)

= 0

∂ l
∂αk

= Sk−Tkeα1+αk = 0, k = {2, . . . ,K}
,

where S=
∑n

i=1Ci, Sk =
∑

i|xi=kCi, and Tk =
∑

i|xi=k PYi(1+βDi). Let�α(β) = {α1(β),
. . . ,αK(β)} then the profile likelihood for β is L1(β) = L(�α(β),β|X) where

α1(β) = log

(

S−
K
∑

k=2

Sk

)

− log(T1) ,

αk(β) = log(Sk)− log(Tk)−α1(β), k = {2, . . . ,K}.
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To obtain the maximum likelihood estimators of the parameters, the partial derivative
of the log-likelihood with respect β is evaluated at �α=�α(β), i.e.

∂ l
∂β

∣

∣

∣

∣

�α=�α(β)

=
n
∑

i=1

CiDi

1+βDi
− eα1(β)R1− eα1(β)

K
∑

k=2

eαk(β)Rk = 0,

where Rk =
∑

i|xi=k PYiDi. This equation is solved numerically to get the estimator β̂

and the rest of the estimators are �̂α=�α(β̂).
The likelihood ratio test p-value for null hypothesis β = 0 is

P
(

χ21 > l(�α(β̂), β̂|X)− l (�α(0),0|X)) ,

where χ21 is a chi-squared distribution with 1 degree of freedom.
It is possible that the PLCI bound does not converge. In this situation, the Wald-type

CI bound is usually reported. This can be calculated by the Hessian matrix,

H(�α,β) =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−eα1
(

T1+
K∑

k=2

eαk Tk

)

−eα1+α2T2 −eα1+α3T3 . . . −eα1+αK TK −eα1
(

R1+
K∑

k=2

eαkRk

)

−eα1+α2T2 0 . . . 0 −eα1+α2R2
−eα1+α3T3 . . . 0 −eα1+α3R3

. . .
...

...
−eα1+αK TK −eα1+αKRK

−
n∑

i=1

CiD2i
(1+βDi)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and evaluating it at the maximum likelihood estimator, i.e. H(�α(β̂), β̂). The variance-
covariance matrix is −H(�α(β̂), β̂)−1.

2.2. Posterior ERR

Bayesian analysis combines prior information, in the form of probability distributions,
with the likelihood function of an assumed model, providing posterior results as proba-
bility distributions too. The continuous version of Bayes’ theorem establishes

P(Θ|X) = L(Θ|X)P(Θ)
∫

L(Θ|X)P(Θ)dΘ, (5)

where Θ is the continuous parameter set, X is the observed data set, L(Θ|X) is the
likelihood function, P(Θ) is the prior probability density function of Θ and P(Θ|X) is
the posterior probability density of Θ given data X . See, for instance Christensen et al.
(2011), for further description.



Manuel Higueras and Adam Howes 241

Following model (2): X , Θ and L(Θ|X) are as stated in Section 2. Assuming all αk’s
and β are independent, the prior probability density is

P(Θ) = P(β)
K

∏
k=1

P(αk).

It is also assumed that all αk’s priors are non informative, such that the probability is
the same for all the values in the support of the parameters. This leads to the following
improper uniform priors:

αk ∼ U (−∞,+∞), k = {1 . . .K} (6)

and a prior for β open to any distribution with support bounded below by −1/max(D),
to ensure the Poisson intensity is positive. The Bayesian framework affords the defini-
tion of improper prior distributions.
Applying Bayes’ theorem (5), the posterior of Θ is

P(Θ|X)∝ P(β) ·L(Θ|X)

∝ P(β)
n

∏
i=1

(PYie
α1+

∑K
k=2αk1{k}(xi)(1+βDi))

Ci exp(−PYieα1+
∑K

k=2αk1{k}(xi)(1+βDi))

= P(β) · exp
(

Sα1− eα1
n
∑

i=1

PYie
∑K

k=2αk1{k}(xi)(1+βDi)

)

·

·
n

∏
i=1

(PYie
∑K

k=2αk1{k}(xi)(1+βDi))
Ci.

(7)

The goal here is to get the marginal posterior of the ERR, the posterior distribution
of β. Let �α−1 = (α2, . . . ,αK), the first step is to calculate the joint marginal posterior of
(�α−1,β) which it is proportional to the integral of expression (7) over α1, i.e.

P(�α−1,β|X) ∝ P(β)
∫ +∞

−∞
L(Θ|X)dα1

= P(β)

[

n

∏
i=1

(PYie
∑K

k=2αk1{k}(xi)(1+βDi))
Ci

]

·
∫ +∞

−∞
exp

(

Sα1− eα1
n
∑

i=1

PYie
∑K

k=2αk1{k}(xi)(1+βDi)

)

dα1
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= P(β)

n

∏
i=1

(PYie
∑K

k=2αk1{k}(xi)(1+βDi))
Ci

[

n
∑

i=1

PYie
∑K

k=2αk1{k}(xi)(1+βDi)

]S (S−1)!

∝

P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

e
∑K

k=2 Skαk

⎡

⎣

∑

i|xi=1
PYi(1+βDi)+

K
∑

k=2

⎛

⎝eαk
∑

i|xi=k
PYi(1+βDi)

⎞

⎠

⎤

⎦

S .

(8)

Then the marginal posterior of the ERR is proportional to the multiple integral of Ex-
pression (8) over �α−1,

P(β|X) =
∫

�α−1
P(�α−1,β|X)d�α−1

∝ P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

∫

�α−1
e
∑K

k=2 Skαk

·
⎡

⎣

∑

i|xi=1
PYi(1+βDi)+

K
∑

k=2

⎛

⎝eαk
∑

i|xi=k
PYi(1+βDi)

⎞

⎠

⎤

⎦

−S

d�α−1

=

P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

⎡

⎣

∑

i|xi=1
PYi(1+βDi)

⎤

⎦

∑K
k=2 Sk−S

K

∏
k=2

⎡

⎣

∑

i|xi=k
PYi(1+βDi)

⎤

⎦

Sk

· (S2−1)!
S2−1
∏
i=1

S− i

K

∏
k=3

(Sk−1)!
Sk−1
∏
i=1

S−
k−1
∑

j=2

Sk− i

∝

P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

⎡

⎣

∑

i|xi=1
PYi(1+βDi)

⎤

⎦

∑K
k=2 Sk−S

K

∏
k=2

⎡

⎣

∑

i|xi=k
PYi(1+βDi)

⎤

⎦

Sk
.

(9)
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Consequently,

P(β|X) =
P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

⎡

⎣

∑

i|xi=1
PYi(1+βDi)

⎤

⎦

∑K
k=2 Sk−S

N
K

∏
k=2

⎡

⎣

∑

i|xi=k
PYi(1+βDi)

⎤

⎦

Sk
, (10)

where N is the normalizing constant

N =

∫ +∞

0
P(β)

[

n

∏
i=1

(1+βDi)
Ci

]

⎡

⎣

∑

i|xi=1
PYi(1+βDi)

⎤

⎦

∑K
k=2 Sk−S

K

∏
k=2

⎡

⎣

∑

i|xi=k
PYi(1+βDi)

⎤

⎦

−Sk

dβ, (11)

that is calculated by numerical integration (there is no analytical solution). The prob-
ability density (10) does not have a recognizable form, but this is not unusual when
dealing with Bayesian analysis.
The integrals in expressions (8) and (9) are calculated by recursive integration by

parts.

3. Poisson ERR fitting in R

Cohort studies in radiation epidemiology are usually huge, and hence maximum likeli-
hood estimation of the model parameters is computationally intensive. This computa-
tional load increases for the calculation of the profile likelihood confidence intervals.
As mentioned in Section 1 a general ERR model has the form

Ci ∼ Pois
⎛

⎝PYie
α0+

∑m
k=1αkx

(k)
i

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠

⎞

⎠ . (12)

Let�α= {α0, . . . ,αm} and �β = {β1, . . . ,βd}, the log-likelihood function of of the param-
eter set Θ=

{

�α,�β
}
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l(Θ|X) =
n
∑

i=1

⎡

⎣Ci(logPYi+α0+
m
∑

k=1

αkx
(k)
i + log

⎛

⎝1+
d
∑

j=1

β jD
( j)
i )

⎞

⎠

⎤

⎦

−
n
∑

i=1

PYie
α0+

∑m
k=1αkx

(k)
i

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠−
n
∑

i=1

logCi!.

(13)

The gradient of the log-likelihood function can be efficiently defined by the following
expressions

∂ l
∂�α

= �S− [(PY ◦ (1+�β ·D)◦E) ·A],
∂ l

∂�β
= [C� (1+�β ·D)] ·D − (PY ◦E) ·D ,

(14)

where

D =

⎡

⎢

⎢

⎢

⎢

⎣

D(1)
1 D(2)

1 . . . D(d)
1

D(1)
2 D(2)

2 . . . D(d)
2

...
...

. . .
...

D(1)
n D(2)
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n

⎤

⎥
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⎥

⎦
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⎡

⎢

⎢

⎢

⎢

⎣

1 x(1)1 x(2)1 . . . x(m)1
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...

...
...

. . .
...

1 x(1)n x(2)n . . . x(m)n
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⎥

⎥

⎥

⎥

⎦

,

E = exp
(

�α ·AT) , �S =C ·A,

and operators ◦ and � represents the Hadamard product and division respectively.
In cases where the PLCI bound does not converge, the Hessian can be calculated

using the following second-order partial derivatives of the log-likelihood to calculate
the Wald-type CI bound,

∂ 2l
∂αt∂αq

= −eα0Tt,q, t,q = {0, . . . ,m},

∂ 2l
∂αt∂βq

= −eα0Rt,q, t = {0, . . . ,m}, q= {1, . . . ,d},

∂ 2l
∂βt∂βq

= −
n
∑

i=1

CiD
(t)
i D

(q)
i

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠

2 , t,q= {1, . . . ,d},
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where

Tt,q =
n
∑

i=1

PYi

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠x(t)i x
(q)
i e

∑m
k=1αkx

(k)
i ,

Rt,q =
n
∑

i=1

PYiD
(q)
i x(t)i e

∑m
k=1αkx

(k)
i ,

In R (version 3.5.1), by means of the maxLik() function from the maxLik package
(Henningsen and Toomet, 2011) (version 1.3.4), model (12) can be fitted by defining the
log-likelihood function (13). For faster and more accurate results, the gradient function
implemented as in (14) can be included in the maxLik() function.
The R script for the results in Section 4.3 is provided as supplementary material, as

a reference for the R implementation of model (12) fitting.
ERR models are usually fitted by Epicure, a very specialised proprietary software,

which is the gold standard in radiation epidemiology practice. In recent years, some
studies have been published using SAS, e.g. Journy et al. (2015), but there is not a
SAS Stored Process for this aim. However, there are some SAS macros for fitting ERR
models and calculating PLCI’s, e.g. in Richardson (2008) for Poisson models by means
of PROC NLMIXED. In Grant et al. (2017), an R routine was developed to analyze the
Life Span Study data of a-bomb survivors in Hiroshima and Nagasaki, by means of the
gnm() function in package gnm (Turner and Firth, 2018). There is also an R package
called linERR which fits ERR models for censored survival data (Morinña, 2016).
This is proposed as a free licence and open source alternative of Epicure’s AMFIT

module, which is used to fit Poisson ERR models. Moreover, the R routines in Grant
et al. (2017) also cover this purpose, in fact they also allow to fit more complex models
with dose-effect modification.
The previous step to fitting the Poisson ERR model is to generate the person-years

table. These tables are created by stratifying by categories of different variables, e.g.
attained age, the original censored data. For each cell of the table, the accumulated
person-years and events are calculated. In Epicure the module DATAB generates these
tables. Further work in this project includes the creation of an R package with tools to
fit Poisson ERR models, calculate PLCI’s and generate person-years tables. Function
pyears() in the survival package (Therneau, 2015) builds person-time tables, but for
non-dynamic exposures.

4. Practical examples

Two applied examples for data from the literature are given. The third example is the
application of the proposed implementations here to a subset from the first example data
set. This third example is presented to facilitate reproducible and replicable research,
because the data sets of the first two examples are not shareable.
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The ERR is per mGy (milligray) in all examples shown here.

4.1. Pearce et al. 2012

Pearce et al. (2012) analysed the risk of leukaemia and brain tumours in young patients
who were first underwent computed tomography (CT) scans in National Health Service
hospitals in England, Wales, or Scotland in a 23 years retrospective cohort study. In
the leukaemia follow-up, there were 74 leukaemia diagnosis for 178,604 patients, and
a total of 1,720,984 person-years. The person-year table was built assuming 2 years
exclusion and lag periods.
A Poisson ERR model is assumed with unique exposure (the accumulated ionising

radiation dose), and the background risk is modelled by

η = α11ai<5+α215≤ai<20+α3120≤ai<30+α4130≤ai<35+α51ai≥35

where ai is the attained age. This model has the same form as the simple model in
Section 2: one exposure and baseline rate modelled by a unique categorical variable.
Following the implementation in Section 2.1, the maximum likelihood estimate of

the ERR is β̂= 0.0362 and its 95% PLCI is (0.0052,0.1198)with p-value 0.0097. These
values match with those shown in Pearce et al. (2012).
Following the implementation in Section 2.2 and considering β∼U (−1/max(D)=

−0.0015,+∞), Figure 1 shows the posterior density function of the ERR following
Equation (10). The modal posterior ERR value is 0.0361 and its 95% highest posterior
density (HPD) interval is (0.0023, 0.1460).
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Figure 1: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.1.
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One of the big advantages of the Bayesian framework is that it is possible to calculate
the posterior probability of a parameter being contained by a given interval. For instance
in this case there is a posterior probability of 0.5111 for the ERR being greater than
0.050.
In order to compare this model with improper flat priors to a model with informative

priors, a model with the following priors is assumed

�α ∼ N ([−10,0,0,0,0]T,0.1 · I5),
β ∼ Gamma(1.1,5).

(15)

I5 is the identity matrix of size 5. The parametrization of the multivariate normal dis-
tribution is represented by the mean vector and precision matrix, and for the gamma
distribution by the shape and rate values. The posterior distribution of the ERR is drawn
using JAGS (version 4.3.0) (Plummer (2003)). The modal posterior ERR value is 0.0377
and its 95% HPD interval is (0.0042, 0.114). This MCMC model has 2 chains of 50,000
iterations after 1000 burning iterations and thinning interval 10. It is computational
intensive, it takes around 20 hours.
Although both the Bayesian and the frequentist methods provide estimation and un-

certainty results, when comparing them it is important to note that they represent dif-
ferent foundational approaches. In particular, the frequentist method assumes that the
parameter is a fixed value and the maximum likelihood estimator is a random variable
whereas the Bayesian method assumes the opposite.

4.2. Harbron et al. 2018

Harbron et al. (2018) analysed the risk of leukaemia and lymphoma in patients who
underwent cardiac catheterizations while aged 22 years or younger. There were 36 cases
for 9,467 patients, and a total of 74,405.88 person-years at risk in this study. Doses were
lagged by 2 years. The exclusion period was also 2 years.
To calculate the ERR, a Poisson ERRmodel was assumedwith unique exposure with

background risk as

η = α11ai<5+α215≤ai<10+α3110≤ai<15+α4115≤ai<20+α5120≤ai<25+α61ai≥25+Ti

where ai is the attained age and Ti represents the status of organ transplantation. Note
that this model does not have the same structure as the simple model in Section 2.
In Harbron et al. (2018) this model was fitted in R as stated in Section 3. The max-

imum likelihood estimate of the ERR is β̂ = 0.0180, and its 95% PLCI is (−0.0021,
0.0961) with p-value 0.1084.
Assuming a simple model with background risk modelled only by the transplant

status, the results for the two methods are:
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Figure 2: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.2.

• Following the method in Section 2.1 the maximum likelihood estimate of the ERR
is β̂ = 0.0214 and its 95% PLCI is (−0.0008, 0.1049) with p-value = 0.0661.

• Following the method in Section 2.2 and considering β ∼ U (−1/max(D) =
−0.0030,1), Figure 2 shows the posterior density function of the ERR follow-
ing Equation (10). The modal posterior ERR value is 0.0215 and its 95% HPD is
(−0.0030, 0.2125), and P(β|X > 0.050) = 0.4091.

4.3. Sub-cohort

A 14,000 random row subset of the person-years table from the leukaemia analysis in
Section 4.1, with information of accumulated person-years, weightedmean accumulated
dose, sex and weighted mean attained age was generated. In this sub-cohort there are 9
leukaemia cases in a total of 158,953.3 person-years.
A Poisson ERR model is assumed, with unique exposure and background risk mod-

elled by η= α0+α1ai, where ai is the attained age. The attained age is not a categorical
variable, so this model does not have the same structure as the simple model in Section 2.
Fitting this model in R as stated in Section 3, the maximum likelihood estimate of

the ERR is β̂ = 0.0247 (it agrees with the result returned by gnm()), and its 95% PLCI is
(−0.0553∗, 0.3341) with p-value 0.4535. The symbol ∗ denotes the bound is Wald-type.
To check the effect of gender on the ERR, an interaction between the dose and the

sex is added to the previous model, i.e. the ERR term is (1+β1Di+β2FiDi where Fi is
the indicator of female patient.
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Figure 3: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.3.

This can be fitted as a model with two exposures, Di and FiDi, and the ERR results
0.0039 for male and 0.0541 for female, this is β̂1 = 0.0039 and β̂2 = 0.0502, but the
female effect is not significant because the likelihood ratio test p-value for testing β2 = 0
is 0.3059.
Now, assuming a simple model with background risk modelled by three categories

of attained age, i.e.
η = α11ai<10+α2110≤ai<15+α31ai≥15,

the results for the two methods are:

• Following the method in Section 2.1 the maximum likelihood estimate of the ERR
is β̂ = 0.0247 and its 95% PLCI is (−0.0584∗, 0.3659) with p-value = 0.3884.

• Following the method in Section 2.2 and considering β ∼ U (−1/max(D) =
−0.0015,1), Figure 3 shows the posterior density function of the ERR following
Equation (10). The modal posterior ERR value is 0.0247 and its 95% HPD inter-
val is (−0.0015, 0.7717), and P(β|X > 0.050) = 0.7724. If β ∼ Gamma(1.1,5),
the modal posterior ERR value is 0.0234 and its 95% HPD interval is (0, 0.3294).
Analogously to example at Section 4.1, an MCMC model is applied to draw the
posterior of the ERR, assuming the same priors (with the difference of the dimen-
sion of �α, i.e. �α ∼ N ([−10,0,0,0,0]T,0.1 · I3)), the modal posterior ERR value
is 0.0346 and its 95% HPD interval is (0.0001, 0.3073).
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5. Conclusion

The simple methods presented here for estimating the ERR in radiation epidemiology
follow-up studies are easy to implement. Although these models have restricted forms,
they cover a wide range of situations. For instance, the leukaemia analysis in Pearce et
al. (2012) was performed with this type of model. Additionally, they can be used to get
sensible initial values for fitting ERR models with more complex structures.
R is an open-source statistical software program with a free license and large user

community. As such, it is well suited for the development of reproducible and repli-
cable research. In this work an R script for fitting Poisson ERR models is shared and
guidelines for implementing ERR models in R are given in Section 3.
Further work in this project will lead to the development of an R package with tools

to fit Poisson ERRmodels, build person-years tables with time-dependent variables, and
calculate PLCI’s. This package will have application in radiation epidemiology follow-
up studies.
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