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number of dispensed asthma medications by
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and E.Z. Martinez4,∗

Abstract

In this paper, it is proposed a Bayesian analysis of a time series in the presence of a random
change-point and autoregressive terms. The development of this model was motivated by a data
set related to the monthly number of asthma medications dispensed by the public health services
of Ribeirão Preto, Southeast Brazil, from 1999 to 2011. A pronounced increase trend has been
observed from 1999 to a specific change-point, with a posterior decrease until the end of the
series. In order to obtain estimates for the parameters of interest, a Bayesian Markov Chain
Monte Carlo (MCMC) simulation procedure using the Gibbs sampler algorithm was developed.
The Bayesian model with autoregressive terms of order 1 fits well to the data, allowing to estimate
the change-point at July 2007, and probably reflecting the results of the new health policies and
previously adopted programs directed toward patients with asthma. The results imply that the
present model is useful to analyse the monthly number of dispensed asthma medications and it
can be used to describe a broad range of epidemiological time series data where a change-point
is present.
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1. Introduction

In many situations, epidemiological data come in the form of time series. Disease noti-
fications, hospitalizations due to a specific disease and mortality rates over a given time
interval are examples of variables which can be studied as time series. Statistical models
are useful to describe patterns of these series, such as temporal trends and seasonal fluc-
tuations. These models can be also used to predict future observations after observing
a series of longitudinal data, thus supplying information to aid in the surveillance and
management of events of public health interest.
Change-point models (Jensen and Lautkebohmert, 2007; Lee, 2010) have been in-

creasingly used in a broad spectrum of applications, such as in econometrics (Hackl,
2012), medicine (Ghosh and Vaida, 2007) and environmental studies (Achcar et al.,
2010; Achcar, Rodrigues and Tzintzun, 2011). These models are statistical tools used
in practical problems where a random variable indexed by time has modified their be-
haviour at one or more time instants. Thus, these models are useful when the interest of
the analyst lies in determining whether the observed time series is homogeneous over
the time interval. As an example, Achcar et al. (2008) considered a change-point anal-
ysis for the incidence of tuberculosis cases in New York City from 1970 to 2000, when
the number of cases of the disease presented three trends. In the first period of time, the
trend of declining incidence was probably associated with good control programs. In the
second period, there were increasing incidence rates, and in the third period there was a
new trend of declining rates. Modern Bayesian methods of inference by using Markov
Chain Monte Carlo (MCMC) techniques have been used to fit time series data in the
presence of one or more change-points (Achcar and Loibel, 1998; Barry and Hartigan,
1993; Carlin, Gelfand and Smith, 1992; Dey and Purkayastha, 1997; Lavielle and Lebar-
bier, 2001), including multiple change-point models where the number of change-points
is unknown (Chib, 1998; Fearnhead, 2006).
The present article introduces a single Bayesian model for change-point detection

including autoregressive terms to be applied to the monthly number of asthma medi-
cations dispensed by the public health services of Ribeirão Preto, Southeastern Brazil.
Climatic variables are included as independent variables.

2. Methods

2.1. Field of study and dataset

The present study is part of a larger research on dispensation of medications to treat
pulmonary diseases in the public health services of Ribeirão Preto, a city located in the
northwest region of the State of São Paulo, Brazil. Ribeirão Preto is ranked the eighth
largest city in the State of São Paulo, with about 600 thousand inhabitants (IBGE cen-
sus data, available from www.censo2010.ibge.gov.br/sinopse/). The city belongs to the
health coverage area of the XIII Regional Health Department of the Health Secretariat
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of the State of São Paulo, being considered a regional health care centre reference for
interventions of medium and high complexity and attending more than 1.2 million peo-
ple, of which approximately 62% depend exclusively on the Brazilian National Health
System (SUS) (Bittar, Mendes and Magalhães, 2011). The public healthcare network in
Ribeirão Preto is composed by municipal, state and philanthropic services, involving 36
pharmacies providing pharmaceutical care according to the National Drug Policy guide-
lines (GM Ordinance number 3916 of November 30th, 1998) and currently offering to
the population over 260 medications indicated for the treatment of various diseases,
including asthma.

Table 1: Monthly data on the number of dispensed medications (salbutamol sulfate tablets of 2 mg) in
Ribeirão Preto, Brazil, from February 1999 to December 2011.

Year Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1999 2,376 2,900 1,699 2,066 4,329 5,486 5,651 7,732 5,505 4,267 3,843
2000 6,855 7,809 7,659 6,386 6,822 8,297 5,936 8,255 6,171 7,119 4,980 7,523
2001 9,563 9,269 9,605 10,150 11,867 10,482 11,718 12,412 9,183 13,667 12,046 9,150
2002 10,641 11,975 10,651 6,089 13,843 15,336 16,418 15,401 12,518 12,960 11,295 13,100
2003 11,756 5,043 2,057 9,131 13,654 12,785 15,071 10,549 11,633 9,085 12,884 11,218
2004 10,477 12,671 18,303 17,445 15,606 15,011 19,448 17,124 15,132 13,218 17,054 14,596
2005 14,433 12,569 17,053 16,110 18,346 19,218 18,847 19,209 15,435 18,274 17,313 18,392
2006 13,411 12,675 18,597 16,258 20,357 20,457 16,339 18,552 16,910 20,617 19,634 23,567
2007 21,981 22,981 25,914 21,607 30,083 19,008 23,103 21,893 16,974 20,066 17,606 15,846
2008 18,134 18,578 18,306 17,982 21,032 19,222 19,274 15,841 13,864 14,600 13,431 12,865
2009 11,722 10,862 14,184 13,414 15,257 16,914 13,906 14,752 14,762 14,305 12,590 14,843
2010 11,876 12,284 14,468 13,505 13,765 11,929 4,313 10,475 11,644 11,837 9,949 10,040
2011 9,328 9,095 8,998 7,987 8,161 9,278 7,343 7,672 6,082 5,678 6,141 4,951

Data on the number of dispensed medications were provided by the HygiaWeb In-
formation System, a health information system which has been used by the Municipal
Health Secretariat of Ribeirão Preto since 1992. This system enables to record informa-
tion on health services in the entire municipal public healthcare network. In 1998, the
implementation of a medication management module in the HygiaWeb System enabled
the recording of data on dispensation of medications and pharmaceutical care. There-
fore, it has been possible to retrieve secondary information about the dispensation of
the main medications for asthma treatment since 1999, covering the whole city. For the
purposes of the present study, data on only one drug used to alleviate the symptoms of
asthma have been considered for developing the statistical model, namely, salbutamol
sulfate tablets of 2 mg. Full data on the number of dispensed medications, from Febru-
ary 1999 to December 2011, are listed in Table 1. In addition, data on temperature and
precipitation in the city of Ribeirão Preto were obtained from the Integrated Agromete-
orological Information Center of the Agronomic Institute (CIIAGRO, Centro Integrado
de Informações Agrometeorológicas do Instituto Agronômico).
The local Research Ethics Committee has approved the present study (CEP/CSE/

FMRP/USP, protocol number 453) and the permission to access and use the records from
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the HygiaWeb System was granted by the local representative of the Health Department
(document 248/11-GS RAS/ras).

2.2. Statistical model

Let yt be the number of dispensed medications at the month t, t = 1, . . . ,n, where n is
the number of months in the time series. The proposed model is given in a general form
by

yt = α+g1I[1,θ](t)+g2I(θ,n](t)+St+ εt ,

where

gk(t) = βk (t− θ)+
R∑
r=1

ψkr (xrt − xr)+
p∑
j=1

γk j (yt− j− y) , k = 1,2,

α is an intercept term, I{A}(t) denotes an indicator function such that I{A}(t) = 1 if
t ∈ {A}, and 0 otherwise, θ is the change-point to be estimated such that θ is an integer
number in the interval [1,n], x1t ,x2t , . . . ,xRt are observations of R covariates at the month
t, xr denotes the mean of xr1, . . . ,xrn, r = 1, . . . ,R, ψ1r and ψ2r are the effects of the
covariate xrt on yt before and after θ, respectively, y denotes the mean of y1,. . . ,yn, the
terms γ11, . . . ,γ1p,γ21, . . . ,γ2p, are autoregressive parameters of order p to be estimated
and the random error terms are represented by εt . In addition,

St = η1 sin

(
2πt
12

)
+η2 cos

(
2πt
12

)
is a monthly periodic function for estimating seasonal patterns, where η1 and η2 are
real numbers. By using this model, it is assumed that the terms εt , t = 1, . . . ,n, are
independent and follow the normal distribution with mean 0 and variance depending on
the change-point θ, or say,

εt ∼ N
(
0,σ21I[1,θ](t)+σ

2
2I(θ,n](t)

)
.

Thus, σ21 and σ
2
2 are the variances of εt before and after the change-point, respectively.

This model formulation corresponds to the following likelihood function:

f (y|θ,ξξξ) =
n

∏
t=1

(2πλt)
− 1
2 exp

[
−

n∑
t=1

(yt −μt)2
2λt

]
,

where
λt = σ21I[1,θ](t)+σ

2
2I(θ,n](t), (1)

μt = α+g1I[1,θ](t)+g2I(θ,n](t)+St , (2)
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y= (y1,y2, . . . ,yn)
T and ξξξ = (α,β1,β2,γ1,1, . . . ,γ1,p,γ2,1, . . . ,γ2,p,ψ1,1, . . . ,ψ1,R, ψ2,1, . . .,

ψ2,R,σ
2
1 ,σ

2
2 ,η1,η2)

T is the vector of parameters. By definition, f (y|θ,ξξξ) denotes the
joint probability density function of the sample Y = (Y1,Y2, . . . ,Yn). In the Bayesian
analysis, it is assumed that the parameters of the vector ξξξ and θ have distributions
based on previous knowledge (the prior distributions), which are updated by using the
data (represented by f (y|θ,ξξξ)) to produce the posterior distributions. This is formal-
ized by the Bayes’ theorem, given by f (θ,ξξξ|y) ∝ f (y|θ,ξξξ) p(θ,ξξξ), where p(θ,ξξξ) is
the joint prior distribution and f (θ,ξξξ|y) is the joint posterior distribution. The prior
distributions can be “non-informative”, with little effect on the posterior distribution.
Thus, the following prior distributions for the parameters of the vector ξξξ are consid-
ered: α ∼ N(0,c1), β1 ∼ N(0,c2), β2 ∼ N(0,c3), γ1, j ∼ N(0,c4, j), γ2, j ∼ N(0,c5, j),
j= 1, . . . , p, η1∼N(0,c6), η2∼N(0,c7),ψ1,r ∼N(0,c8,r), ψ2,r ∼N(0,c9,r), r= 1, . . . ,R,
σ21 ∼ IG(c10,c11) and σ22 ∼ IG(c12,c13), where c1, . . . ,c13 are known values for the
hyperparameters of the prior distributions, N(0,c) denotes a normal distribution with
mean 0 and variance c, and IG(h1,h2) denotes an inverse gamma distribution with mean
h2/(h1− 1) and variance h22/[(h1− 1)2(h1− 2)]. Large values of c1, . . . ,c13 yield non-
informative prior distributions for their respective parameters. It is further assumed prior
independence among these parameters. In addition, it is assumed a categorical prior dis-
tribution for the change-point θ such that the prior probabilities of the values 1,2, . . . ,n
are assumed to be equal to 1/n.

Alternatively, it can be considered that the terms εt follow a non-standardized Stu-
dent’s t-distribution with υ degrees of freedom, a location parameter μt , a scale pa-
rameter λt and variance λ2t υ (υ−2)−1 for υ > 2. In this case, the model formulation
corresponds to the following likelihood function:

f (y|θ,υ,ξξξ) =
n

∏
t=1

⎧⎨⎩ Γ
(
υ+1
2

)
Γ
(
υ
2

)
λt
√
πυ

[
1+

1
υ

(
yt −μt
λt

)2]−υ
2

⎫⎬⎭ ,

where Γ(·) is the gamma function, and λt and μt are given by (1) and (2), respectively.
For the Bayesian analysis, one can consider the same prior distributions assumed for the
previous model and a continuous uniform prior distribution for υ, or say, υ ∼U(2,cυ),
where cυ is a known hyperparameter (cυ > 2). In order to perform a brief sensitivity
analysis, we have also considered fixed values for υ.

A Bayesian Markov Chain Monte Carlo (MCMC) procedure using the Gibbs sam-
pler algorithm (Casella and George, 1992) was used to estimate the posterior distribu-
tions of the parameters of interest and variance components (Carlin and Louis, 1996).
The Gibbs sampler algorithm was run for 510,000 iterations and sampled in every 10th
simulation. To eliminate the effect of the initial values, the first 10,000 iterations were
discarded as a “burn-in-sample”. In this way, 50,000 final Gibbs samples were used
for inferences. The 95% credible intervals (95%CI) were obtained from the 2.5% and
97.5% percentiles of the posterior samples of the parameters. The 95% credible inter-
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vals are the Bayesian equivalent of the traditional 95% confidence intervals, expressing
the central 95% of the range of values that are credible for the respective estimated
parameter. Usual diagnostic methods were employed to check the convergence of the
MCMC calculations (Carlin and Louis, 1996). After the model fitting, the assumption of
independence between the successive random error terms εt was graphically verified by
plotting their respective autocorrelation and partial autocorrelation functions in relation
to different lags. The estimation was performed by using the MCMC algorithm imple-
mented in the freely available OpenBUGS software (Lunn et al., 2000). The OpenBUGS
code used for this analysis is given in the Appendix A.

2.3. Model specifications

In the absence of covariates, three different models were fitted to the data as described
below.

• Model 1: In this model, the autoregressive terms γ1,1, . . . ,γ1,p,γ2,1, . . . , γ2,p were
discarded, and consequently, gk = βk (t− θ), for k = 1,2. This model does not
consider the presence of covariates, nor the monthly periodic function St .

• Model 2: This model is similar to Model 1 but it considers the autoregressive
terms γ1,1, . . . ,γ1,p,γ2,1, . . . ,γ2,p.

• Model 3: This model is similar to Model 2 but it considers the monthly periodic
function St .

Models 1 to 3 were fitted based on the assumption that the residuals εt follow a
normal distribution or a Student’s t-distribution. In addition, Model 4 is defined as
follows:

• Model 4: This model is similar to Model 3, but it includes an independent vari-
able. The following variables were considered: average monthly temperature (oC),
maximum and minimum monthly temperature (oC) and average monthly precip-
itation (mm). Due to its highly skewed distribution, a log transformation was
applied to the measures of average monthly precipitation. These variables were
selected due to their known effects on the asthma admissions in various popula-
tions (Ivey, Simeon and Monteil, 2003; Chen, Xirasagar and Lin, 2006). Under
this formulation, four different models were fitted to the data, one for each inde-
pendent variable, thus avoiding problems of collinearity between variables.

2.4. Model selection

The deviance information criterion (DIC) is widely used for Bayesian model compar-
ison (Spiegelhalter et al., 2014). However, the proposed model is interpreted by the
OpenBUGS as a mixture model, and this software is not able to calculate the DIC value
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in this situation. Another criterion for model selection is derived from the conditional
predictive ordinate (CPO) statistics ( Gelfand, Dey and Chang, 1992). For the i-th ob-
servation, theCPOi is given by

f
(
Di|y[i]

)
=

∫
f (Di|Θ) f

(
Θ|D[i]

)
dΘ,

where Θ is the complete vector of parameters, Di is each instance of all data D , D[i] is
D without the current observation i and f (Θ|Di) is the posterior density of Θ givenD[i],
i = 1, . . . ,n. Thus, the CPO statistics expresses the posterior probability of observing
the value or set of values of Di when the model is fitted to all data exceptDi. A MCMC
approximation ofCPOi (Chen, Shao and Ibrahim, 2000) is given by

ĈPOi =

[
1
B

B∑
b=1

1
f (Di|Θb)

]−1

where B is the number of iterations during implementation of the MCMC procedure
after the burn-in period andΘb is the vector of the samples obtained at the b-th iteration.
Thus, approximate CPO statistics can be directly computed with OpenBUGS by defin-
ing nodes for f (Di|Θb)

−1. Assuming approximate normality, inverse values for ĈPOi

larger than 40 can be considered as possible outliers and higher than 70 as extreme
values (Ntzoufras, 2009). The log pseudo marginal likelihood (LPML) is a Bayesian
measure of fit or adequacy which is defined based on the CPO statistics (Geisser and
Eddy, 1979). For a given model, the LPML value is given by ̂LPML=

∑n
i=1 logĈPOi.

The larger is the value of LPML, the better is the fit of the model. The corresponding
pseudo Bayes’ factor (PBF) comparing models m and m′ is

PBFmm′ = exp
(
̂LPMLm− ̂LPMLm′

)
.

In addition, the discrepancy between the data and an estimation model can be mea-
sured by the sum of squared residuals (SSR) given by

SSR=
n∑
i=1

ε2i =
n∑
i=1

(yi− μ̂t)2 ,

where μ̂t is obtained by replacing the parameters in (2) by their respective estimates.
For fits of different models to a given dataset, a smaller SSR value indicates a better fit
to the data.
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Figure 1: Monthly number of dispensed medications (salbutamol capsule, 2mg) by the public health ser-
vices of Ribeirão Preto, Brazil, from February 1999 to December 2011.

3. Results

The graph in Figure 1 shows a time series of the number of monthly dispensations of
the salbutamol from February 1999 to December 2011. This graph gives evidence of the
presence of a change-point for the time series. It is observed an increase in the number
of dispensations of the medication at the beginning of the considered period and a great
reduction in March 2003, probably due to the short period when the drug was missing,
followed by a further increase in the number of dispensations, until May, 2007. There-
after, it is observed that the number of dispensed medications decreases until the end of
the period of observation. A great reduction in the number of dispensations was also
observed in July 2010. However, in the analysis of these data, only one change-point
in the time series will be considered. The reductions in the number of dispensations
observed in March 2003 and July 2010 will be treated as months with atypical numbers
of dispensed medications, instead of instants in which the trend behaviour of the series
has been modified.
In the Bayesian analysis, non-informative prior distributions were considered for all

parameters of the model. In this way, it was considered that c1 = c2 = c3 = c4, j = c5, j =
c6 = c7 = c8,r = c9,r = 106, j= 1, . . . , p, r = 1, . . . ,R, in the prior distributions for α, β1,
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β2, γ1, j, γ2, j, ψ1,r and ψ2,r, and c10 = c11 = c12 = c13 = 0.1 in the prior distributions for
σ21 and σ

2
2. In the case of the model with Student-t errors, it is also considered cυ = 50,

or say, υ ∼ U(2,50). The number of monthly dispensed medications was divided by
1,000 in order to facilitate the convergence of the computational algorithm.
Tables 2 and 3 show the results for the Models 1 to 3 obtained by using the Open-

BUGS software. The results in Table 2 consider that the residuals of the models follow a
normal distribution, while Table 3 shows results from models with residuals that follow
a Student’s t-distribution with υ degrees of freedom. In the case of the Models 2 and 3,
they were fitted considering one, two or more autoregressive orders, but it was observed
that models with order p equal to or greater 2 did not improve the goodness of fit. Thus,
we considered p= 1 in all the cases.
Table 2 shows that the results of Model 3 have the lowest SSR value and the highest

LPML value, suggesting that this model provides the best fit to the data among these
three models. The PBF value comparing the Models 3 and 2 is 6.05. In all the fitted
models, the estimates for β1 are positive and the estimates for β2 are negative, showing
that the number of dispensed medications is increasing over time until the change-point
θ is reached, but decreasing from this value. The 95% credible intervals for γ1,1 and
γ2,1 do not contain the value zero, evidencing the significance of the autoregressive
parameters of order p = 1. The results of Model 3 also show that the 95% credible
interval for η2 do not contain the value zero, suggesting the evidence of a yearly seasonal
pattern in the series.

Table 2: Results from the Bayesian change-point statistical models, with residuals following a normal
distribution.

Model 1 Model 2 Model 3

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 20.80 (20.01 , 21.59) 17.67 (16.18 , 19.13) 18.11 (16.61 , 19.58)
β1 0.166 (0.149 , 0.182) 0.094 (0.062 , 0.125) 0.104 (0.072 , 0.135)
β2 −0.268 (−0.297 , −0.240) −0.178 (0.230 , −0.127) −0.191 (−0.242 , −0.141)
θ 100.5 (99.0 , 103.0) 102.3 (100.0 , 107.0) 101.9 (100.0 , 107.0)
γ1,1 − − 0.444 (0.282 , 0.607) 0.401 (0.237 , 0.564)

γ2,1 − − 0.295 (0.099 , 0.500) 0.236 (0.041 , 0.439)

σ21 7.82 (5.88 , 10.36) 6.51 (4.87 , 8.65) 6.24 (4.64 , 8.29)

σ22 4.09 (2.73 , 6.16) 3.57 (2.32 , 5.53) 3.40 (2.22 , 5.22)

η1 − − − − 0.464 (−0.024 , 0.954)
η2 − − − − −0.585 (−1.107 , −0.068)

LPML −364.8 −354.7 −352.9
SSR 967.2 805.2 758.4



12 Using a Bayesian change-point statistical model with autoregressive terms to study...

Table 3: Results from the Bayesian change-point statistical models, with residuals following a Student’s
t-distribution with υ degrees of freedom.

Model 1 Model 2 Model 3

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 20.88 (20.11 , 21.64) 17.76 (16.26 , 19.19) 18.19 (16.75 , 19.57)
β1 0.166 (0.150 , 0.183) 0.096 (0.064 , 0.128) 0.104 (0.073 , 0.135)
β2 −0.263 (−0.292 , −0.235) −0.177 (−0.228 , −0.124) −0.190 (−0.237 , −0.141)
θ 99.9 (97.0 , 102.0) 101.9 (95.0 , 107.0) 102.0 (97.0 , 106.0)

υ (df) 11.1 (3.1 , 40.6) 13.2 (3.4 , 43.8) 9.2 (2.9 , 34.7)
γ1,1 − − 0.423 (0.258 , 0.590) 0.383 (0.220 , 0.543)

γ2,1 − − 0.303 (0.104 , 0.510) 0.244 (0.063 , 0.437)

σ21 5.40 (3.22 , 8.22) 4.90 (2.94 , 7.23) 4.35 (2.62 , 6.59)

σ22 3.11 (1.70 , 5.16) 2.68 (1.43 , 4.56) 2.16 (1.13 , 3.76)

σ21υ (υ−2)−1 7.85 (5.27 , 12.29) 6.60 (4.53 , 9.82) 6.69 (4.38 , 10.70)

σ22υ (υ−2)−1 4.55 (2.65 , 8.00) 3.63 (2.07 , 6.49) 3.35 (1.81 , 6.20)

η1 − − − − 0.510 (0.062 , 0.951)
η2 − − − − −0.631 (−1.091 , −0.161)

LPML −472.8 −442.8 −465.4
SSR 968.0 808.8 766.9

The results in Table 3 indicate that the estimates obtained from the models with
residuals following a Student’s t-distribution are close to those found when considering
a normal distribution (Table 2). The graphs in Figure 2 illustrate the simulated poste-
rior Gibbs samples for the change-point in each of the three assumed models. In addi-
tion, plots of the autocorrelation function (ACF) and the partial autocorrelation function
(PACF) of the residuals of the Models 1 to 3 are shown in Appendix B. The ACF and
PACF of residuals of the Models 2 and 3 at different lag times were not significantly
different from zero. From equation (1), the variances of εt before and after the change-
point are given by σ21υ (υ−2)−1 and σ22υ (υ−2)−1, respectively. Estimators for these
quantities are also presented in Table 3, and we can note that they are very similar to
those for σ21 and σ

2
2 obtained from the fit of the models based on the normal distribution

(Table 2). Alternatively, we also considered models based on the Student’s t-distribution
with fixed values for υ ranging from 2 to 50. For each possible choice of υ, we obtained
the correspondent values for LPML and SSR considering the Models 1 to 3 (results not
shown in the tables). We did not find important differences when compared the LPML
and SSR values obtained from models with fixed values for υ ranging from 2 to 50.
However, we noted a better fit to the data (i.e. higher LPML values and lower SSR val-
ues) for values relatively higher for υ, such as υ = 100 or υ = 200, thus suggesting that
models based on the normal distribution can be more adequate for the monthly number
of dispensed medications.
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Figure 2: Plots of the simulated posterior Gibbs samples for the change-point in each of the three assumed
models.

The upper panel of the Figure 3 shows the observed number of dispensed medica-
tions and the predicted values obtained from Model 1. Considering the results from the
Model 1 with residuals that follow a normal distribution, the predicted values linearly
increase up to the change-point θ estimated by t = 100.5 (Table 2), corresponding to the
month of May, 2007, with a 95% credible interval ranging from April 2007 to August
2007. After this change-point, the predicted values linearly decrease with the coefficient
β2 estimated by -0.268. Considering the Model 1 with residuals that follow a Student’s
t-distribution, the change-point θ is estimated by t = 99.9 (Table 3). However, auto-
correlation plots (not shown) for the residuals from Model 1 evidence significant serial
correlation between successive values of εt , that is, the assumption of independence
between the residuals was not attained. Therefore, Model 1 is useful to describe the
linear trend of the time series before and after the change-point, but inferences for the
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Figure 3: Comparison between the observed time series and the time series estimated from the Models 1
to 3, with residuals following a normal distribution and a Student’s t-distribution with υ degrees of freedom.
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parameters of the model can be harmed from this lack of independence for the residuals.
Results from the fit of the Models 2 and 3, considering autoregressive terms of order 1,
are also shown in Tables 2 and 3 and visualized in the Figure 3. Considering the fit
with residuals that follow a normal distribution, the change-point was now estimated
by t = 102.3 (Table 2), corresponding to the month of July, 2007, with a 95% credible
interval ranging fromMay, 2007, to November, 2007. Autocorrelation plots (not shown)
for the residuals from Models 2 and 3 did not evidence significant serial correlation
between successive values of εt , indicating a good fit of the model to the data. The
central and lower panels of the Figure 3 show the predicted values obtained fromModels
2 and 3, respectively. In both models, the estimate for the variance σ21 was greater
than the estimate for σ22, suggesting a higher dispersion of the number of dispensed
medications before the change-point.
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Figure 4: Comparison between inverse values for CPO obtained from the Model 3 considering residuals
following a normal distribution and a Student’s t-distribution with υ degrees of freedom. The horizontal
dashed lines pass through the values 40 and 70, identifying possible outliers and extreme values, respec-
tively.

Examination of a plot of inverse values for CPO values can identify possible outliers
in the model fitting, thus allowing for comparisons between models. Considering the
results from the Model 3, the graph in Figure 4 corresponds to the plot of inverse values
for CPO, where the two horizontal dashed lines in the figure pass through the values 40
and 70, identifying possible outliers and extreme values, respectively (see Subsection
2.4). This graph compares the inverse values for CPO obtained from the Model 3 con-
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sidering residuals following a normal distribution and a Student’s t-distribution with υ
degrees of freedom. We can note that the number of the extreme values is greater when
considering the model with residuals following a Student’s t-distribution, thus reinforc-
ing that the model with errors following a normal distribution is the model that best fits
to the data.
We also fitted alternative models that do not take into account the presence of a

change-point, but consider the presence of autoregressive effects of high order. How-
ever, we observed that these models did not fit well to the data. For example, for models
with residuals following a normal distribution and autoregressive effects of orders 4 and
5, we obtained LPML values given by−357.9 and−354.9, respectively, and SSR values
given by 891.2 and 866.4, respectively. In addition, for models with residuals follow-
ing a Student’s t-distribution and autoregressive effects of orders 4 and 5, we obtained
LPML values given by−436.7 and−435.4, respectively, and SSR values given by 892.6
and 868.1, respectively.

Table 4: Results from regression models that considers the monthly maximum and minimum absolute tem-
peratures as independent variables.

Maximum absolute temperature
(oC)

Minimum absolute temperature
(oC)

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 18.41 (16.85 , 19.94) 18.1 (16.58 , 19.58)
β1 0.110 (0.076 , 0.142) 0.103 (0.071 , 0.135)
β2 −0.199 (−0.254 , −0.147) −0.191 (−0.243 , −0.140)
θ 101.4 (100.0 , 106.0) 102.0 (100.0 , 107.0)
γ1,1 0.384 (0.218 , 0.548) 0.403 (0.238 , 0.566)

γ2,1 0.202 (0.005 , 0.413) 0.241 (0.042 , 0.447)

σ21 6.13 (4.53 , 8.19) 6.34 (4.71 , 8.47)

σ22 3.51 (2.29 , 5.37) 3.42 (2.22 , 5.29)

η1 0.164 (−0.497 , 0.814) 0.453 (−0.044 , 0.944)
η2 −0.413 (−0.985 , 0.164) −0.433 (−1.42 , 0.551)
ψ1 −0.195 (−0.470 , 0.084) −0.025 (−0.196 , 0.145)
ψ2 −0.132 (−0.436 , 0.174) −0.030 (−0.207 , 0.147)

LPML −353.8 −354.9
SSR 740.6 759.5

Tables 4 and 5 show the results from regression models (Model 4) in which monthly
maximum and minimum absolute temperatures, average monthly temperature and
monthly average precipitation are independent variables. These models assume that
the residuals follow a normal distribution. For all these independent variables, we can
observe that the 95% credible intervals for the parameters ψ1 and ψ2 include the value
zero. This implies that we do not have evidence that these climatic variables are as-
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Table 5: Results from regression models that considers the monthly average temperature and precipitation
as independent variables.

Monthly average temperature
(oC)

Precipitation
(log mm)

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 18.14 (16.62 , 19.62) 18.1 (16.598 , 19.58)
β1 0.104 (0.071 , 0.136) 0.103 (0.071 , 0.135)
β2 −0.193 (−0.245 , −0.142) −0.192 (−0.245 , −0.140)
θ 101.8 (100.0 , 107.0) 102.0 (100.0 , 107.0)
γ1,1 0.401 (0.236 , 0.563) 0.403 (0.239 , 0.566)

γ2,1 0.235 (0.038 , 0.438) 0.234 (0.032 , 0.442)

σ21 6.26 (4.62 , 8.41) 6.26 (4.66 , 8.33)

σ22 3.41 (2.22 , 5.28) 3.50 (2.26 , 5.48)

η1 0.321 (−0.223 , 0.863) 0.462 (−0.035 , 0.957)
η2 −0.142 (−1.053 , 0.758) −0.718 (−1.391 , −0.035)
ψ1 −0.204 (−0.551 , 0.146) 0.061 (−0.164 , 0.287)
ψ2 −0.164 (−0.517 , 0.191) 0.054 (−0.185 , 0.296)

LPML −354.1 −354.8
SSR 751.1 755.9

sociated with the monthly number of dispensed medications. These results can be still
observed even in similar models that not include the seasonal component St . Plots of the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the
residuals from these models are shown in Appendix B (Figure 7). The ACF and PACF
of residuals at different lag times were not significantly different from zero.

4. Discussion

Statistical methods of time series analysis are widely used in public health studies
(Zeger, Irizarry and Peng, 2006; Jornet-Sanz et al., 2017). These methods are use-
ful for detecting outbreaks, monitoring the occurrence of a disease at a regional level,
analysing epidemiological surveillance data, describing the seasonality of infectious dis-
eases, examining how climate change can affect the disease occurrence over time, and
predicting future scenarios of an event of interest. In the present article, we introduced
a Bayesian approach that can be used to estimate a change-point model with autore-
gressive terms. In the context of the monthly number of dispensed asthma medications,
this model is useful to provide a better understanding of the corresponding time series,
such as seasonal patterns, dependence on previous times and possible association with
climatic variables.
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Alternatively to the method presented here, a maximum likelihood estimate of the
change-point θ can be obtained by using the profile likelihood approach. In this case,
the profile likelihood �p(θ) for θ is defined by maximizing the likelihood function with
respect to all the other parameters in the model for a range of values for θ over which
the profile likelihood is to be evaluated. Thus, the maximum likelihood estimate for the
change-point is

θ̂ML = argθmax�p(θ) = argθmax
n∑
t=1

ln f (yt |θ,ξ̂ξξML),

where ξ̂ξξML is the vector of maximum likelihood estimates for the other parameters as-
sociated with the model. Although it is possible to implement a computer algorithm
in order to find the maximum likelihood estimate for θ, presentation of this analysis is
out of the scope of the present paper. We opted for the use of Bayesian methods, that
make it easy to incorporate prior knowledge about the change-point value. In addition,
Bayesian estimation is facilitated using the OpenBUGS software, that only requires the
specification of the distribution for the data and the prior distributions for the parameters.
As previously mentioned, the present statistical model was developed using a time

series of the dispensation of salbutamol sulfate tablets 2 mg. Currently, this presentation
form of salbutamol sulfate is no longer considered the most appropriate because it is
associated with a higher number of side effects when compared to other forms, such as
the oral spray (Sociedade Brasileira de Pneumologia e Tisiologia, 2012). Salbutamol
sulfate is also indicated for the treatment of other diseases such as chronic obstructive
pulmonary disease (COPD), preferably via inhalation. This drug can still be used in
some other situations, such as inhibition of uncomplicated premature labor in the last
gestational trimester, in which oral administration is the preferable choice (Motazedian
et al., 2010).
The graphs in Figure 2 shows that the behavior of the time series for the number

of monthly dispensations of the salbutamol sulfate tablets of 2 mg from 1999 to 2011
is interpreted in terms of the presence of a change-point. The Brazilian National Drug
Policy, introduced in October 30th 1998, established new guidelines for pharmaceutical
care in the public health by defining, among other things, a list of essential medications
according to the most common health problems reported in the population. Thereafter,
and with the decentralization process of drugs distribution for the states and cities (Or-
dinance GM 176 of March 8th, 1999), it was possible to expand the supply of medica-
tions in public health network (Botega and Santos, 2007), which explains the increased
number of dispensations of the medication at beginning of year 1999 (Figure 3). Fluc-
tuations in the monthly number of medication dispensed are observed in the Figure 2),
with some seasonality. It was hypothesised that local maximum points in the time series
are coincident with colder and drier periods, when the airway infections and episodes of
bronchospasm occur more frequently, creating a greater demand for the use of the med-
ication in specific periods of the year (Thomazelli et al., 2007; Peterson et al., 2012).
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However, the regression models used in this study do not show a significant association
between climatic variables and the number of dispensed medication.
Figure 1 shows a great reduction in the dispensation of salbutamol by March 2003

and July 2010, suggesting a period of discontinuity in the supply of the medication.
Despite the good results of the decentralization policy of the pharmaceutical care, the
provision of essential medications and medicines in some special situations (drugs be-
ing part of specialized pharmaceutical care) depended largely on efforts of the Brazilian
National Health System managers (Botega and Santos, 2007), which leads to unavail-
ability of the medicament to the population. The reduction in March 2003 was followed
by a further increase in the number of dispensations, which as observed until the month
of May, 2007. In 2004, as part of the National Policy on Integral Health Care of People
with Respiratory Diseases, the cities with primary healthcare services began receiving
beclomethasone 250 mcg oral spray, beclomethasone 50 mcg nasal spray and salbuta-
mol 100 mcg oral spray from the Brazilian Ministry of Health for treatment of both
asthma and allergic rhinitis, and given that asthma and allergic rhinitis often co-exist in
the same individual, the control of one of these diseases favors the control of another,
thus contributing to the implementation of better health practices for asthma. At that
moment, aminophylline 100mg tablets were being provided by National Health Sys-
tem and now they are no longer supplied, being replaced by salbutamol spray (Botega
and Santos, 2007). Figure 2 shows a further reduction in the number of dispensations
of salbutamol sulfate from 2007 to the end of 2011, characterizing a change-point that
probably reflects the improvement of healthcare provided to patients with asthma when
the new medications were introduced.
As a final consideration, the article provides suggestions for future investigations:

(a) Possible extensions of the model in order to accommodate more than one change-
point should be considered in future research works.

(b) In the proposedmodel, we assumed constant variances before and after the change-
point. Future works can assume the effect of covariates on these variances, thus
improving the fit of the proposed model.

(c) The actual numbers for asthmamedication are huge, as discussed in this paper, and
therefore the model assumptions are very reasonable. Extensions of the proposed
model for low count data are essential for the analysis of a large broad of other
epidemiological time series.

(d) By considering the data shown in Table 1, the change-point can be seen in the
central part of the time series. Studies with simulated data can be useful to verify
the performance of the proposed model in estimating the change-point when the
period after change is short (or say, when there are few observations after the
change).
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Appendix A

The OpenBugs code used to specify the statistical model in its general form and with
residuals following a normal distribution is given below. Observations of the indepen-
dent variable are denoted by x[t]. In addition, cp denotes the change-point value and N
is the length of the time series.

model
{

for(t in 1:N) {

y[t] ∼ dnorm(mu[t], tau[J[t]])
mu[t] <- alpha + beta[J[t]]* (t-cp)
+ gama[J[t]]* (w[t] - mean(w[])) + St[t]
+ phi[J[t]]*(x[t] - mean(x[]))

k[t] <- step(t - cp - 0.5)
J[t] <- 1 + k[t]
punif[t] <- 1/N
St[t] <- eta[1]*sin(2*pi*t/12) + eta[2]*cos(2*pi*t/12)
# Likelihood function
L[t] <- 1/sqrt(2*pi*(pow(sigma[1],1-k[t])
* pow(sigma[2],k[t])))
* exp(-(y[t]-mu[t])*(y[t]-mu[t])
/(2*(pow(sigma[1],1-k[t]) * pow(sigma[2],k[t]))))

# Inverse values for CPO
PO[t] <- 1/L[t]
}

for(i in 2:N) { w[i] <- y[i-1] }

w[1] <- y[1]
pi <- 3.14159265359
# Prior distributions
prec <- 1.0E-6
alpha ∼ dnorm(0.0, prec)
cp ∼ dcat(punif[])
for(j in 1:2) {

beta[j] ∼ dnorm(0.0, prec)
eta[j] ∼ dnorm(0.0, prec)
gama[j] ∼ dnorm(0.0, prec)
phi[j] ∼ dnorm(0.0, prec)
tau[j] ∼ dgamma(0.1,0.1)
sigma[j] <- 1/tau[j]

}}
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Appendix B

Figures 5 and 6 show autocorrelation functions (ACF) and partial autocorrelation func-
tions (PACF) of the residuals of the Models 1, 2 and 3 based on the normal distribution
(Figure 5) and Student’s t-distribution (Figure 6). Dashed horizontal lines correspond
to the significance boundaries for the non-zero terms. By comparing the plots in Fig-
ures 5 and 6, we can observe that the ACF and PACF functions from the models with
residuals based on normal and Student’s t-distributions are quite close one another. The
Figures show that there was no significant autocorrelation between residuals at different
lag times for the Models 2 and 3.
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Figure 5: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Models 1, 2 and 3 based on the normal distribution. In each plot, two horizontal dashed lines denote two
standard error limits of sample autocorrelation function.
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Figure 6: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Models 1, 2 and 3 based on the Student’s t-distribution. In each plot, two horizontal dashed lines denote
two standard error limits of sample autocorrelation function.

Figure 7 shows ACF and PACF of the residuals of the Model 4, based on the normal
distribution and including the climatic variables as independent variables. The plots
show that there was no significant autocorrelation between residuals at different lag
times.
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Figure 7: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Model 4 based on the normal distribution and the climatic variables included as independent variables. In
each plot, two horizontal dashed lines denote two standard error limits of sample autocorrelation function.

References

Achcar, J.A. and Loibel, S. (1998). Constant hazard models with a change-point: a Bayesian analysis using
Markov Chain Monte Carlo methods. Biometrical Journal, 40, 543–555.

Achcar, J.A., Rodrigues, E.R., Paulino, C.D. and Soares, P. (2010). Non-homogeneous Poisson models
with a change-point: an application to ozone peaks in Mexico city. Environmental and Ecological
Statistics, 17, 521–541.

Achcar, J.A., Rodrigues, E.R. and Tzintzun, G. (2011). Using non-homogeneous Poisson models with mul-
tiple change-points to estimate the number of ozone exceedances in Mexico City. Environmetrics,
22, 1–12.



24 Using a Bayesian change-point statistical model with autoregressive terms to study...

Achcar, J.A., Martinez, E.Z., Ruffino-Netto, A., Paulino, C.D. and Soares P. (2008). A statistical model
investigating the prevalence of tuberculosis in New York City using counting processes with two
change-points. Epidemiology and Infection, 136, 1599–1605.

Barry, D. and Hartigan, J.A. (1993). A Bayesian analysis for change point problems. Journal of the Ameri-
can Statistical Association, 88, 309–319.
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Botega, A. and Santos, M.R. (2007). Descentralização das ações de assistência farmacêutica - asma e
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Evaluating the complexity of some families of
functional data

E. G. Bongiorno1, A. Goia2 and P. Vieu3

Abstract

In this paper we study the complexity of a functional data set drawn from particular processes
by means of a two-step approach. The first step considers a new graphical tool for assessing to
which family the data belong: the main aim is to detect whether a sample comes from a monomial
or an exponential family. This first tool is based on a nonparametric kNN estimation of small
ball probability. Once the family is specified, the second step consists in evaluating the extent of
complexity by estimating some specific indexes related to the assigned family. It turns out that the
developed methodology is fully free from assumptions on model, distribution as well as dominating
measure. Computational issues are carried out by means of simulations and finally the method is
applied to analyse some financial real curves dataset.

MSC: 62-09, 62G05, 60G99.

Keywords: Small ball probability, log-Volugram, random processes, complexity class, complexity
index, knn estimation, functional data analysis.

1. Introduction

The description and the analysis of a statistical sample X1, . . . ,Xn often rely on the com-
plexity of the objects being observed. In usual multivariate situations (that is when each
Xi is a d-dimensional vector) the degree of complexity is linked with the dimension d
of the data which is in general known and statistical procedures are therefore developed
to estimate and/or describe some probabilistic characteristic of the underlying random
vector X (density function being the most common). For many reasons that we will
discuss just below, this general approach cannot be followed in functional data analysis,
that is the branch of statistics dealing with observations Xi which are curves, surfaces,
images or other objects. Such a topic has attracted a lot of researchers and the interest
towards this discipline is certified by monographs (see e.g. Bosq, 2000; Ferraty and
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Vieu, 2006; Horváth and Kokoszka, 2012; Ramsay and Silverman, 2005), collections
of recent contributions (see e.g. Aneiros et al., 2017; Bongiorno et al., 2014), special
issues (see e.g. Kokoszka et al., 2017; Goia and Vieu, 2016) and recent articles (see
among many others Bongiorno and Goia, 2016; Cardot, Cénac and Godichon-Baggioni,
2017; Chen, Delicado and Müller, 2017; Vilar, Raña and Aneiros, 2016). The question
of defining the complexity of a functional sample has to be thought in a much more
different way. The problem goes back to mathematical analysis in abstract infinite di-
mensional spaces, and more precisely to the difficulty for choosing some dominating
measure (as could be the Lebesgue measure for continuous vectors or the counting mea-
sure for discrete ones). This is discussed in details for instance in Bogachev (1998).
This has at least two important consequences. Firstly, the notion of density function
has to be revisited, and secondly the notion of complexity of the model could not be
reduced to a simple dimensionality index (see Bongiorno and Goia, 2017; Delaigle and
Hall, 2010; Ferraty, Kudraszow and Vieu, 2012).
An usual way to overpass this difficulty when the sample comes from a variable X

valued in some infinite dimensional topological space F is to consider the Small Ball
Probability (SmBP), that is the asymptotic behaviour of P(X ∈ B(χ,h)) as h tends to
zero. Here B(χ,h) stands for the ball centered at χ with radius h. Operatively, it is
useful to assume that the SmBP satisfies for small h

P(X ∈ B(χ,h))∼ ψ (χ)φ(h) , (1)

where, to ensure identifiability of the decomposition, one has to impose some normal-
ization restriction like E [ψ(X)] = 1. This factorization isolates the manner in which the
SmBP depends upon χ and h through the spatial and volumetric terms ψ and φ respec-
tively without referring to some dominating measure, and this justifies its utilization in
literature (see for instance Gasser, Hall and Presnell, 1998 and Masry, 2005). Although
the volumetric term has been studied extensively from a probabilistic point of view
and mostly for the Gaussian processes (see the surveys on small tail literature Li and
Shao, 2001; Lifshits, 2012 and references therein), from a statistical point it has only
been used as a tool for controlling asymptotic behaviour of nonparametric functional
estimator (see Ferraty and Vieu, 2006, Chapter 13; Masry, 2005). In fact, functional
data analysis literature has focused mostly on the spatial term ψ(χ) since it naturally
leads to define a surrogate density for the process and the methods vary from semi–
to non–parametric approaches (see Bongiorno and Goia, 2016, 2017; Ciollaro et al.,
2014; Delaigle and Hall, 2010; Delsol and Louchet, 2014; Ferraty et al., 2012) with ap-
plications in various statistical problems like defining/estimating functional modes (see
Ferraty and Vieu, 2006, Chapter 6; Delaigle and Hall, 2010; Gasser et al., 1998) and
classification problems (see Bongiorno and Goia, 2016; Ciollaro et al., 2014; Jacques
and Preda, 2014).
To understand how the volumetric term φ can be of help in evaluating the complexity,

firstly consider the multivariate setting F = R
d . Here, the complexity parameter is
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the dimension d which appears in φ(h) = vdhd (with vd being the volume of the d–
dimensional unit ball), while the function ψ (χ) represents the d–dimensional density
function. In the functional setting, there is an important additional problem coming
from the fact that the concentration function φ(·) may be of many different forms, most
of them being not as simple as in the multivariate one: often φ can not be expressed in
closed form not even asymptotically (see Bongiorno and Goia, 2017; Delaigle and Hall,
2010). On the other hand, there are some remarkable cases whose volumetric term can
be explicitly written; in particular, let us look at three specific cases (trajectories drawn
from two of them are depicted in Figure 1):

Figure 1: Ten trajectories drawn from a noised 3–dimensional process and a Brownian Bridge process are
depicted on left and right panel respectively.

Case 1 The functional data have some finite dimensional structure. In this case the
concentration function has the monomial form φ(h) = cdhd , for some constant
term cd and the complexity of the model is the positive integer parameter d. This
happens for instance when the topology on the functional space is constructed
by looking only at d directions (of a given orthonormal basis) of the functional
elements (see Ferraty and Vieu, 2006, Chapter 13).

Case 2 The functional data have some fractal structure (see Ferraty and Vieu, 2006,
Definition 13.1). This is an extension of the first situation in which the concen-
tration function takes the form φ(h) = cαhα, for some constant term cα and the
complexity of the model is now the (non integer) positive parameter α.

Case 3 The functional data come from some Gaussian processes. This corresponds
for instance to Wiener, Brownian Bridge or diffusion processes in L 2

[0,1] (see
Li and Shao, 2001), for which the concentration function has the exponential
form φ(h) = C1hγ exp

{−C2/hβ} with β ∈ (0,∞) and γ ∈ [0,∞). In this case
the complexity of the data is measured by the indexes γ, β which cannot be
interpreted as some dimensionality parameters (see Li and Shao, 2001 for deeper
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discussion and more examples of exponential type processes). Note that, such
an exponential structure is implicitly linked with the existence of some Gaussian
dominating measure for the process.

In what follows, the term monomial (exponential resp.) family refers to the set of pro-
cesses like in Case 1 or 2 (Case 3, resp.). Since these cases are, to the best of our
knowledge, the only ones for which the volumetric term can be specified and cover a
wide range of situations, we limit our analysis to them.
It is worth noticing that, by analogy with the finite dimensional setting, the function

φ may reveal some latent features of the process: φ can be interpreted as a rough-
ness/complexity function and characterizes the family to which the process belongs.
Each class of functions φ defines a different kind of process (see examples just above),
and inside each class the corresponding parameters (d, α, β, γ, . . . ) will be called the
complexity indexes.
In light of what explained above, we propose a flexible approach to evaluate the com-

plexity of functional data. The aim of our paper is twofold: firstly one has to detect the
kind of process the data belong to (distinguishing between monomial and exponential
families), and, once this is done, to estimate the complexity index(es). In the first step,
starting from an estimate of φ, we introduce a method being free of dominating measure
and based on a new graphical tool, named log-Volugram, that allows us to identify to
which family of processes the statistical sample belongs (this is done along Section 2.1).
To ensure a high degree of flexibility of the procedure, one has to use estimates being
free from parametric restriction and models being distribution-free: to achieve this goal
our procedure is based on kNN nonparametric functional smoothers which combine
flexibility, easiness of implementation (because the dependence on a single discrete pa-
rameter) and location-adaptive feature. This is why the exploited kNN methodologies
in functional data analysis are shortly reviewed at the beginning of Section 2. In the
second step, once the class of the process is detected, the complexity index(es) (d, α,
β, γ, . . . ) is(are) estimated and this can be done because of the free-modelling feature
of the estimate φ. To do this we adopt a strategy commonly used in nonparametric
framework: to study some specific submodel one compares a free-model estimate with
what would be the true target under the submodel (see Härdle and Mammen, 1993 for
earlier works in this direction in the multivariate regression setting). In our setting, the
non-parametric estimates of φ is compared through a dissimilarity measure with one
parametric family among the ones illustrated above and, by minimizing arguments, the
complexity index(es) are estimated. This second step is presented in Section 2.2. Prac-
tical aspects about the introduced methodology and computational issues are discussed
in Section 3.1 whereas the behaviour of the whole procedure is illustrated by means of
a wide scope simulation studies in Section 3.2; these show good performances under
different experimental conditions. Finally, to show how our two steps procedure can be
usefully applied in a real case, we examine its performance in a financial framework to
verify the compatibility of the data with standard model assumptions (see Section 4).
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2. Methodology

In this section, after reviewing how the volumetric term in factorization (1) can be es-
timated nonparametrically, we show how to use it in developing new graphical tools
that allow us to qualitatively detect the class of process from which the sample is drawn
(see Section 2.1). Therefore, Section 2.2 describes how the nonparametric feature of the
method allows to get estimates of the index complexity of the sample given the specified
family.
The first statistical step consists in estimating both components in the decomposition

(1) from a sample. To ensure a wide applicability of the method one has to develop
statistical models/procedures being fully nonparametric. In the functional data setting,
nonparametric statistics have been popularized in the book Ferraty and Vieu (2006) and
are now widely used as long as one is interested in estimating some functional operator
(regression, conditional distribution, . . . ). Among the various nonparametric smoothers,
the kNN method is particularly adapted to the functional setting because it provides
directly location adaptive estimates without needing highly complicated procedure (see
Laloë, 2008; Burba, Ferraty and Vieu, 2009 for introductory works on functional kNN,
see Biau, Cérou and Guyader, 2010; Lian, 2011; Kara et al., 2017; Kudraszow and Vieu,
2013 for the most recent advances and see Biau and Devroye, 2015 for a recent general
presentation of kNN ideas).
Concerning the estimation of the terms in (1) the kNN estimates has a very sim-

ple and appealing form (see Ferraty et al., 2012). In fact, given a sample of n curves
X1, . . . ,Xn drawn from X , a point χ ∈ F and a integer k < n, the surrogate density ψ at
χ can be estimated by

ψ̂k (χ) =
k (n−1)∑n

i=1 ki
, (2)

where ki= #{ j �= i : Xj ∈ B(Xi,Hn,k(χ))},Hn,k(χ)=min
{
h ∈ R

+,
∑n

i=1 1B(χ,h) (Xi) = k
}

and 1A(x) is the characteristic function of the set A. As a matter of consequence, the sin-
gle parameter involved in the method is a simple integer one, namely the number k of
data contained in each neighbourhood.
At this stage, once the surrogate density is estimated and given the asymptotic factor-

ization (1), one can easily derive nonparametric estimates of the volumetric component
φ in the following way:

φk,n (h) =
n−1

∑n
i=1 1B(χ,h) (Xi)

ψ̂k (χ)
. (3)

Theoretical assessments related to the consistency of estimators (2) and (3) are devel-
oped in Ferraty et al., 2012. In order to compute (3) one has to face some practical
problems. Firstly, since the asymptotic factorization (1) holds for small h, too large
values must be avoided since they may increase the estimation error. At the same time,
even too small values of h must be discharged since they force φk,n to be null: the ball,
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at the numerator on the right-side hand of (3), does not contain sample points. In other
words, a suitable range of values H = [hm,hM] for h should be identified; for details
see Section 3.1. Secondly, once h is appropriately chosen, one must take into account
that the point χ, at which the SmBP is estimated, affects the approximation error of the
whole factorization and, hence, the error of both ψ̂k and φk,n. In this view, to circumvent
such issue and to avoid an arbitrarily choice of χ, the estimation is averaged over the
sample, that is

φ̂k,n (h) = n−1
n∑
j=1

φ
( j)
k,n(h), (4)

where φ( j)k,n is (3) computed with χ = Xj. In the following, if no ambiguities arise the
dependences on k and/or n are dropped.
From such an estimate, one can visualize two graphical tools, that we name Volugram

and log-Volugram. The shape of the latter is of help in discriminating among different
family models for φ(·) and in evaluating the roughness/complexity indexes. This is the
basis of the descriptive approach to be developed in this paper.

2.1. The (log-)Volugram

The Volugram is the plot of φ̂ computed on the realizations x1, . . . ,xn versus h taken in
a suitable positive interval sufficiently closed to zero. Because the quantities φ̂(h) are
fully free from any kind of hypothesis (neither on the model, nor on the distribution of
X , nor on any underlying dominating analytic structure), the observation of the shape
of the curve φ̂ can be directly used to have an idea on what is the complexity of the
statistical sample. To fix the ideas let us just look at how behaves this Volugram in some
simple examples. Figure 2 depicts the Volugrams of the noised 3-dimensional process
and of the Brownian Bridge whose trajectories are illustrated in Figure 1. In both cases,
estimations are based on samples of size n= 200, the number of neighbourhood is fixed
to k= n/2 and, for the sake of computational practicality, h takes values in {Hn,k(xi)}ni=1.
Moreover, to ensure that the Volugram explores the smallest values of h, the plot is
restricted to the 50% smallest values of the latter grid.
As is clear from Figure 2, although the Volugrams behave as one can expect (in

both cases φ̂(h) decreases to zero as smaller values of h are considered), by looking at
the sole Volugram it is not possible to discriminate from which family (exponential or
monomial) the sample is drawn from. A practical tool to establish by eye such feature
is instead provided by the log-Volugram defined as the plot of log φ̂(h) versus logh. In-
deed, from a theoretical point of view, the volumetric term of processes in the monomial
family satisfy, for small values of h, logφ(h)∼ α logh whereas, in the exponential case,
logφ(h) ∼ −C2/hβ . In other words, for small values of h, logφ(h) is proportional to
logh (1/hβ respectively) for a process in the monomial (exponential respectively) fam-
ily and the log-Volugram presents (does not present) a straight line shape. As a matter of
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Figure 2: Volugrams associated to a sample (of size 200) of a noised 3-dimensional process (left) and a
Brownian Bridge (right) defined on [0,1]. In both cases, k = �n/2� and h takes values in the 50% smallest
values of {Hn,k(xi)}ni=1.

Figure 3: log-Volugrams associated to a sample (of size 200) of a noised 3-dimensional process (left) and
a Brownian Bridge (right) defined on [0,1]. In both cases, k= �n/2� and h takes values in the 50% smallest
values of {Hn,k(xi)}ni=1. The line passing through the first and the last points (ordered according to the
ascending order of h) is drawn as well.

illustration and using the same data and settings of Figure 2, the correspondent log-
Volugrams are depicted in Figure 3. For the sake of comparison, the latter figures are
completed by overlapping the line passing through the first and the last points (ordered
according to the ascending order of h).
These arguments make clear how the log-Volugram allows, better than the Volugram,

to drive the researcher towards the family of processes from which the sample comes.
In particular, the more {( logh, log φ̂(h))} are aligned, the greater the compatibility to
the monomial model is. On the contrary, deviations from this situation represent an
empirical evidence of exponential model. Hence, one can decide that the theoretical
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volumetric function φ(·) is of some specific form depending on a complexity parameter
θ ∈Θ where Θ is a subset of Rp

φ ∈ C = {φθ,θ ∈Θ}.

To fix the idea, the left panel of Figure 3 suggests the monomial family CM = {φα(h) =
cαhα,α> 0}, whilst the right panel leads towards the exponential oneCE = {φ(γ,β)(h)=
C1hγ exp{−C2/hβ},β > 0,γ ≥ 0}.

2.2. Estimating the complexity index

In the second step of the procedure the aim is to gain more insights into the structure
of the data by intending to estimate the complexity index θ of the chosen family C by
means of a comparison between the free-model estimate φ with one of the parametric
family that would be the true target. Precisely, this leads to consider the centered cosine
dissimilarity between g(φθ) and g(φ̂k) computed on the observed values and defined by

Δ(φ̂k,φθ) = 1− 〈g̃(φθ), g̃(φ̂k)〉2
‖g̃(φθ)‖2‖g̃(φ̂k)‖2

, k = 1,2, . . . ,(n−1), θ ∈Θ, (5)

where 〈 f1, f2〉 =
∫
H f1 f2 with H being a suitable interval included in (0,∞), ‖ f‖2 =

〈 f , f 〉 and g̃(φ) = g(φ)− ∫
H g(φ) with g(·) a suitable continuous real valued function

defined on (0,+∞). Note that centered cosine dissimilarity is invariant for affine trans-
formations. Practical aspects in computing (5), including how g(·) and H are chosen,
are treated in details in Section 3.1. The idea is to estimate the complexity index that
minimizes Δ(φ̂k,φθ) over suitable grids T for θ, and K for k. Let us now show how
such dissimilarity behaves in the simple examples that are following through the paper.
Figure 4 depicts the heat-map of Δ (top panels) and the curves {Δ(φ̂k,φθ) : k ∈K } (bot-
tom panels). These heuristically show that Δ reaches a minimum which appears rather
stable with respect to the choice of k.
That spontaneously leads to estimate the complexity index by minimizing (5) for a

fixed k, that is
θ̂ = argmin

θ∈T
Δ(φ̂k,φθ).

At this stage, it is worth noticing that if the shape of log-Volugram produces doubts
in the choice of the family, it is always convenient to firstly classify the sample as drawn
from the exponential family and estimate β. If a misspecification of the model occurred,
then the estimation of the complexity index tends to assume the minimum values in the
grid T , see Figure 5; i.e. the exponential part of the volumetric term can be considered
negligible. This can be used as a feedback procedure to avoid this kind of misspecifica-
tion error.
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Figure 4: Top panels: the heat maps of Δ(φ̂k,φθ) as a function of k/n and θ associated to a sample (of
size 200) of a noised 3-dimensional process (left) and a Brownian Bridge (right) defined on [0,1]. Bottom
panels: graphs of Δ(φ̂k,φθ) with k = �n/2�, as a function of θ, associated to the same samples.

In conclusion, the method detects the good class as explained above and, within the
selected family, it seems also capable to find a good estimation of the complexity index.
Simulations described in what follows confirm these abilities.

3. Algorithm in action

In this section we firstly describe the algorithm in Section 3.1 and, soon after in Sec-
tion 3.2, we show its performance over a set of selected simulations under different
experimental conditions.
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Figure 5: The heat map of Δ(φ̂k,φθ) (left panel) and the plot of Δ(φ̂k0 ,φθ) against θ (right panel) when
the noised 3-dimensional process (in left panel of Figure 3) is confused with a process from the exponential
family.

3.1. Procedure description

Here we detail the algorithm features; some of them depend on the family identified at
the first step of the methodology as described in Section 2.1.
Although the algorithm could be implemented for potentially anyF whose topology

is induced by a semimetric ρ, here, for simplicity, F is L 2
[0,1]: the separable Hilbert

space of square integrable function on [0,1] with usual inner product, norm and induced
metric. Thus the realizations x1, . . . ,xn of a sample X1, . . . ,Xn, drawn from theF -valued
random element X , are considered.
In computing the dissimilarity measure Δ(φ̂k,φθ), we have to specify g(·), H , T

andK .
For what concerns the transformation g(·), if the monomial class CM is suggested by

the log-Volugram, g is the identity function, whereas, for the exponential class CE , it is
the logarithm transformation. In both cases, the transformed empirical volumetric term
g(φ̂) is then compared with a term in the simple form chθ for small values of h. In fact,
if φ ∈ CM, then φ(h) = cαhα with α ∈ (0,∞). If φ ∈ CE ,

logφ(h) = logC1+γ logh−C2h−β ∼−C2h−β (6)

and then, in the exponential case, the leading complexity parameter is β. Indeed, at the
best of our knowledge, for the most of processes related to Brownian motion with known
SmBP asymptotic, it holds logφ(h) ∼ −C2h−2 (see, for instance, Nikitin and Pusev,
2013). In particular, C2 = 1/8 when X is Wiener, Brownian Bridge (BB), Geometric
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Brownian Motion (GBM), Ornstein-Uhlenbeck. Anyway, note that (6) is more accurate
if γ= 0, and this happens, for instance, in the case of Brownian Bridge that consequently
becomes a benchmark process. In practice, beside the BB, we have specialized our
method to deal with those processes suspected to be Wiener or GBM since these can be
led back to a BB by means of suitable transformations. In more details, if X(t) =W (t)
is Wiener on t ∈ [0,1], then

W (t)− tW (1), (7)

is a BB on [0,1], whereas if X(t) is the GBM identified by the stochastic differential
equation {

dX(t) = μX(t)dt+σX(t)dW(t), t ∈ [0,1],
X(0),σ > 0,

(8)

whose solution is X(t) = X(0)exp
{(
μ−σ2/2)t+σW (t)

}
, t ∈ [0,1], then

[log(X(t)/X(0))− (μ−σ2/2)t]/σ, t ∈ [0,1] (9)

is a Wiener process for which transformation (7) can be applied, leading to a BB on
[0,1]. The estimation of γ remains an open problem for processes different from the
BB, the Wiener process and the GBM.
For what concernsH = [hm,hM], hm is chosen in order to guarantee that there exists

at least an observed curve xi for which B(xi,hm) includes some x j �= xi; whereas, the
rangeH should become closer to zero as the sample size increases.
Finally,T is a equally spacedmesh over an interval that varies with the experimental

setting; our suggestion is to start with a wide range of values with a relatively rough step,
then to restrict the region of search by using a finer grid. To reveal possible dependencies
on k, in the simulation study, we use K = {�δn� : δ = 1/4,1/3,1/2} with �δn� being
the smaller integer greater than δn. Such a choice is coherent with many rules introduced
in literature (see, for instance, Devroye, Györfi and Lugosi, 1996; Duda, Hart and Stork,
2012; Györfi et al., 2006).

3.2. Numerical Experiments

In this section we present the results of numerical experiments aimed to evaluate the
ability of the method in estimating the complexity parameter by varying the underlying
process and the sample size.
We generate 1000 Monte Carlo samples each one constituted by n independent ran-

dom curves X1, . . . ,Xn drawn from a process X with n = 50,100,200,500. From each
sample the complexity index is estimated and its distribution analysed. In particular, we
consider noised finite dimensional processes and infinite dimensional ones.
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About the noised finite dimensional processes, curves are generated according to

X (t) =
d∑
j=1

a jξ j (t)+E (t), t ∈ [0,1]

where {ξ j}dj=1 are the first d elements of the Fourier basis

ξ j(t) =

{ √
2sin(2πmt−π), j = 2m−1√
2cos(2πmt−π), j = 2m m ∈ N,

{a j}dj=1 are i.i.d. as N (0,1) and E (t) is a Gaussian white noise with σ = 0.02 repre-
senting a measurement error. Here, d = 3 and d = 6 are considered.
For what concerns the infinite dimensional processes, we consider the Wiener pro-

cess and the Geometric Brownian Motion (GBM). Each curve in both families are dis-
cretized over an equispaced grid on [0,1] consisting of 100 points: the resulting data-sets
are n× 100 matrices with entries xi, j, i = 1, . . . ,n, j = 1, . . . ,100. GBM trajectories are
simulated from the stochastic differential equation (8), with X(0) = 1, μ = 0, σ = 1,
using the Euler-Maruyama approximation scheme (Kloeden and Platen, 1992, Section
9.1). Coherently with what stated in the previous section, Wiener curves are transformed
by means of (7) whereas GBM trajectories by (9) and, successively, (7). To operational-
ize (9), maximum likelihood estimates of parameters are computed for each discretized
curve in the sample: for each i= 1, . . . ,n, μ and σ are estimated by μ̂= 100−1

∑100
j=1 xi, j

and σ̂2 = 100−1
∑100

j=1(xi, j− μ̂)2 respectively. Integrals in (5) are approximated on such
grid by using a rectangular numerical rule. In what follows, T is an equispaced grid
with step 0.01 and k = �δn� with δ = 1/4,1/3,1/2.
Table 1 collects the results from the Monte Carlo experiments from which we can

appreciate the good performances of complexity index estimator. In particular, in all
the cases no relevant bias arises, variability of the estimator is moderate, especially, in
relative terms with respect to the true parameter. As expected, variability decreases with
n whereas, in the finite dimensional case, it slightly increases with the complexity: the
larger d is, the larger the variability in relative terms with respect to the true parameter
is. These comments hold true for all the chosen k, therefore, for practical purposes, an
heuristic choice like k = �n/2� is reasonable.
The distributions of estimated values d̂ and β̂ over the 1000 simulations when n =

500 and k= 250 are plotted in Figure 6: dashed vertical lines are superimposed to kernel
density estimates in correspondence of extreme quantiles of order 0.025 and 0.975, in
order to delimit a Monte Carlo empirical 95% confidence interval. All distributions
appear rather symmetric and bell-shaped: anyway, the Shapiro-Wilk test tends to reject
the normality assumption in all the cases at the level 5%.
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Table 1: Synthetic indicators of the estimated complexity indexes obtained from 1000 MC replication under
different experimental conditions.

Process δ → 1/2 1/3 1/4
family n ↓ Mean St.dev Mean St.dev Mean St.dev

Finite dimensional 50 2.966 0.305 2.994 0.312 3.023 0.316
(with d = 3) 100 2.985 0.167 3.007 0.169 3.023 0.170

200 3.014 0.100 3.034 0.100 3.046 0.100
500 3.072 0.072 3.090 0.071 3.101 0.070

Finite dimensional 50 5.938 1.559 5.962 1.596 5.986 1.629
(with d = 6) 100 5.891 0.911 5.926 0.933 5.947 0.947

200 5.894 0.497 5.923 0.509 5.940 0.521
500 5.985 0.249 6.008 0.255 6.023 0.260

GBM (β = 2) 50 1.995 0.190 1.927 0.187 1.897 0.188
100 2.011 0.117 1.949 0.113 1.916 0.112
200 2.015 0.072 1.956 0.070 1.924 0.069
500 2.005 0.039 1.952 0.038 1.921 0.038

Wiener (β = 2) 50 1.987 0.190 1.920 0.187 1.888 0.188
100 2.005 0.117 1.942 0.113 1.909 0.112
200 2.009 0.071 1.950 0.069 1.918 0.069
500 1.999 0.039 1.946 0.038 1.915 0.037

Figure 6: Kernel density estimates of d̂ and β̂ for the finite dimensional processes (d = 3 and d = 6, left
and right top panels respectively) and for the GBM and Wiener processes (β = 2, left and right bottom
panels respectively) when n= 500. Dashed vertical lines correspond to the 95% Monte Carlo confidence
interval limits.
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4. Application to financial data

A common problem in finance is the modelling of stock prices time series, for example
in implementing parametric option pricing models via Monte Carlo simulations. Thanks
to its nice properties, the GBM has gained a central place in theoretical and applied
financial literature, becoming a prototype for a generation of models; see, for example,
Fusai and Roncoroni (2007) and Campbell, Lo and MacKinlay (1997).
In this section we illustrate how the proposed methodology can provide a tool for

practitioners in detecting the family of processes to which the observed time series be-
longs, and for a rough evaluation of the complexity of such data. To do this, we analyze
in details the case of the S&P500 during the period 14th October 2016, 15th January
2017 with 1 minute frequency for a total of 63 market days and 390 observations per
day (we deleted shorter days). Data are collected by using the link https://www.google.
com/finance/getprices?i=60&p=200d&f=d,o,h,l,c,v&df=cpct&q=.INX. The correspond-
ing trajectory is depicted in the left panel of Figure 7. To qualitatively assess that the
observed trajectory is compatible with a GBM process, we apply our method on a sam-
ple derived from above dataset: given the high frequency of measurements, each market
day is divided into three non-overlapping parts having the same size to which correspond
three trajectories. Consequently, the sample is formed by n = 189 each one discretized
over an equally spaced grid of 130 points.
In order to implement the two steps of our method, the sample must be transformed

as explained in detail in Section 3.2. In particular, given the assumption that the under-
lying process is a GBM, since drift and volatility of a stock process vary with time, it
is reasonable to model each curve xi with specific parameters μi and σi. They are es-
timated by using the maximum likelihood approach illustrated in the previous section,

Figure 7: Left panel - Trajectory of S&P500 value from 14th October 2016 to 15th January 2017 with 1
minute frequency. Right panel - The functional sample: each functional observation is one third of a market
day trajectory after transformation (9).

https://www.google.com/finance/getprices?i=60{&}p=200d{&}f=d,o,h,l,c,v{&}df=cpct{&}q=.INX
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Figure 8: The log-Volugram for the transformed S&P500 sample.

starting from discretized points of each curve. The sample of curves which arise from
these manipulations is plotted in the right panel of Figure 7.
In the same spirit of Section 2.1, we plot the log-Volugram with k = �n/2�, see

Figure 8. Its shape drives our analysis towards the exponential family. The heat map of
dissimilarity Δ and the dissimilarity computed at k = �n/2� are drawn in Figure 9. The
minimization of Δ leads to β̂ = 1.94.
This first analysis supports the assumption that S&P500 could bemodelled as a GBM

with varying parameters at least for a short time period.

Figure 9: The heat map of Δ (left panel) and Δ at k = �n/2� (right panel) for the transformed S&P500
sample.
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In order to evaluate the stability of results with respect to the way in which we built
the sample of functional data, we repeated the analysis using different cutting criteria:
besides dividing each market day in three parts, we tried also with two parts consisting of
195 points, five parts of 78 points and 6 parts of 65 (all the intervals are not overlapped).
Resulting samples have sizes n = 126,315,378 whereas the results obtained with k =
�n/2� are β̂ = 1.94,1.96,1.98 respectively. They confirm the compatibility of data with
a GBM (with time varying parameters) assumption that, hence, can be used as a good
approximating model for performing option pricing.

5. Comments

This paper has provided flexible tools for analysing the complexity of a functional sta-
tistical sample. In order to ensure its high degree of applicability the procedure is free
from any structural assumption from several points of view: from an analytic point of
view (it is free from any dominating measure assumption in the underlying infinite di-
mensional space), from a probabilistic point of view (it is free from any distribution
assumption on the underlying stochastic process), from a statistical point of view (it is
free from any parametric assumption on the model), and from a computational point of
view (the method depends on a single discrete parameter). This has been possible by
using kNN ideas that combine good theoretical properties and ease of implementation.
In a first step, the method provides some graphical tools (the so-called Volugram or
log-Volugram) which are used to detect the class of complexity of the data, while in a
second step it provides an automatic estimate of the index of complexity inside of the
detected class. The methodology provides excellent results in evaluating the complexity
family and index on simulated and real datasets.
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A. Goia thank for the hospitality. E. Bongiorno and A. Goia are members of the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
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Preliminary test and Stein-type shrinkage
LASSO-based estimators

M. Norouzirad and M. Arashi∗

Abstract

Suppose the regression vector-parameter is subjected to lie in a subspace hypothesis in a linear
regression model. In situations where the use of least absolute and shrinkage selection opera-
tor (LASSO) is desired, we propose a restricted LASSO estimator. To improve its performance,
LASSO-type shrinkage estimators are also developed and their asymptotic performance is stud-
ied. For numerical analysis, we used relative efficiency and mean prediction error to compare the
estimators which resulted in the shrinkage estimators to have better performance compared to
the LASSO.

MSC: 62F15, 62H05.

Keywords: Double shrinking, LASSO, preliminary test LASSO, restricted LASSO, Stein-type shrink-
age LASSO.

1. Introduction

Consider the linear regression model with form

Y = Xβββ+ εεε, (1)

where Y = (y1, . . . ,yn)
T is a vector of responses, X is an n× p non-stochastic design

matrix, βββ = (β1, . . . ,βp)
T is an unknown vector of parameters, εεε = (ε1, . . . , εn)

T is the
vector of random errors, with E(εεεn) = 0 and E(εεεnεεε

T
n) = σ2In(σ2 < ∞), In the identity

matrix of order n.
In general, the main goal of the linear regression model (1) is the estimation of pa-

rameters and prediction of response for a given design matrix. The estimation problem is
usually solved through the ordinary least squares (OLS) method. Provided Cn = X

TX is
well-conditioned, we use the OLS estimator given by β̃ββn = C

−1
n X

TY. The corresponding
estimator of σ2 is s2e = (Y−Xβ̃ββn)T(Y−Xβ̃ββn)/m, m= n− p.
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Assume the following regularity conditions:

A1: max1≤i≤n xT
iC

−1
n xi → 0 as n→ ∞ where xT

i is the ith row of design matrix X.

A2: limn→∞ n−1Cn = C, where C is finite and positive-definite matrix.
Then, asymptotically β̃ββn ∼ Np(βββ,σ

2C−1), which is independent of (ms2e)/σ2 ∼ χ2m
(asymptotically).

Now, suppose that we are provided with some prior information about the whole or
subset of covariates. This prior information can be utilized to improve the overall esti-
mation of the regression coefficients using shrinkage estimation (Ahmed and Raheem,
2012).
There are many notable studies incorporating prior information, in the form of re-

strictions, to improve estimation in the sense that the restricted and shrinkage estimators
have lesser risk and prediction error values.
Saleh (2006) gives extensive overviews on preliminary test and shrinkage estima-

tors using the OLS, ridge and maximum likelihood (ML) estimators as starting points.
Fallahpour et al. (2012) developed shrinkage estimators by using the weighted semi-
parametric OLS estimator. Hossain and Ahmed (2014) start by maximum partial likeli-
hood estimator and propose shrinkage and positive shrinkage estimators, while Roozbeh
(2015, 2016) develops shrinkage estimators in a ridge regression. Other related studies
include Hossain et al. (2015), Hossain and Howlader (2016), Hossain et al. (2016),
Yuzbasi and Ahmed (2016) and Yuzbasi et al. (2017), to mention a few.
However, in this study, we have different concerns. As a prelude, Tibshirani (1996)

proposed a new method for variable selection that produces an accurate, stable, and
parsimonious model, called least absolute shrinkage and selection operator (LASSO)
that is obtained by

β̂ββ
L
n = argmin

βββ

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi− p∑

j=1

β jxi j

⎞
⎠
2

+λn

p∑
j=1

|β j|

⎫⎪⎬
⎪⎭ , λn ≥ 0, (2)

where λn is the tuning parameter, controlling the level of sparsity in β̂ββ
L
.

Now, the questions are as follows:

1. How can we build the theory if we start with the LASSO instead of using the
OLS/ML estimator?

2. What will the form of shrinkage estimators be under restriction, when LASSO is
used as the starting point?

3. Is it possible to derive asymptotic properties of the preliminary test and shrinkage
estimators based on the LASSO?
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In this paper, we cover the above issues. Hence, we organize the paper as follows:
In Section 2, the restricted LASSO estimator is defined for inference under restriction
and the concept of double shrinking is introduced (covering questions 1 and 2 above).
Section 3 contains the asymptotic distributions of the proposed estimators (covering
question 3 above). An extensive numerical study is carried out in Section 4 and we
conclude our study in Section 5.

2. Restricted LASSO and double shrinking

The LASSO estimator has been denoted as β̂ββ
L
n and termed as unrestricted LASSO esti-

mator (ULE). Now, suppose that some non-sample information (a priori restriction on
the parameters) about the covariates is available. A set of q linear restrictions on the
vector βββ can be written as Hβββ = h. Or, we can suppose that our model is subjected to
lie in the linear subspace restriction,

Hβββ = h, (3)

whereH is a q× p (q≤ p)matrix of known elements, and h is a q vector of known com-
ponents. The rank ofH is q, which implies that the restrictions are linearly independent.
This restriction may be (i) a fact known from theoretical or experimental considerations,
(ii) a hypothesis that may have to be tested or (iii) an artificially imposed condition to
reduce or eliminate redundancy in the description of model (Sengupta and Jammala-
madaka, 2003).
Our proposal is to consider the following estimator as the restricted LASSO estima-

tor (RLE),

β̂ββ
RL
n = β̂ββ

L
n −C−1

n H
T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h). (4)

The above closed form RLE cannot be achieved via routine optimization techniques.
Indeed, we proposed it by the analogy of OLS estimator of βββ subject to the restriction
Hβββ = h.
When (3) is satisfied, β̂ββ

RL
n has smaller asymptotic risk than β̂ββ

L
n . However, for Hβββ �=

h, β̂ββ
RL
n may be biased and inconsistent in many cases. Now, how can we decide on ULE

or RLE, since we do not knowwhether the restriction holds? To solve this, it is plausible
to follow Fisher’s recipe and define the preliminary test LASSO estimator (PTLE) by

taking β̂ββ
L
n or β̂ββ

RL
n according to the acceptance or rejection of the null hypothesis, Ho :

Hβββ = h.
This estimator will have the form

β̂ββ
PTL
n = β̂ββ

L
n − (β̂ββ

L
n − β̂ββ

RL
n )I(Ln ≤ Ln,α), (5)
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whereLn,α is the upper α-level critical value of the exact distribution of the test statistic
Ln underHo. We will propose a relevant test statistic later in Section 3.
The PTLE is highly dependent on the level of significance α and has discrete nature

which is simplified to one of the extremes β̂ββ
L
n or β̂ββ

RL
n according to the output of the

test. In this respect, making use of a continuous and α-free estimator may make more
sense. Now, we propose a double shrinking idea which reflects a relevant estimator. It is
well-known that the LASSO estimator shrinks coefficients toward the origin. However,
when the restriction Hβββ = h is subjected to the model, it is of major importance that the
estimator be shrunken toward the restricted one as well. Hence, there must be shrinking
toward two directions or double shrinking concept, say. Consequently, we combine the
idea of James and Stein (1961) shrinkage and LASSO to propose the following Stein-
type shrinkage LASSO estimator (SSLE)

β̂ββ
SSL
n = β̂ββ

L
n − kn(β̂ββ

L
n − β̂ββ

RL
n )L −1

n , kn =
m(q−2)
m+2

, (6)

where kn is the shrinkage constant.

The estimator β̂ββ
SSL
n may go past the estimator β̂ββ

RL
n . So, we define the positive-rule

Stein-type shrinkage LASSO estimator (PRSSLE) given by

β̂ββ
PRSSL
n = β̂ββ

RL
n +(1− knL

−1
n )I(Ln > kn)(β̂ββ

L
n− β̂ββ

RL
n ),

= β̂ββ
SSL
n − (1− knL

−1
n )I(Ln ≤ kn)(β̂ββ

L
n − β̂ββ

RL
n ). (7)

We note that, as the test based on Ln is consistent against fixed βββ such that Hβββ �=
h, the PTLE, SSLE and PRSSLE are asymptotically equivalent to the ULE for fixed
alternative. Hence, we will investigate the asymptotic risks under local alternatives and
compare the performance of the estimators.

3. Some asymptotic results

For the purpose of this section, we consider the class of local alternatives,K(n) defined
by

K(n) :Hβββ = h+n−
1
2 ξξξ, ξξξ = (ξ1, . . . ,ξq)

T ∈ R
q.

Let β̂ββ
∗
n be any estimator of βββ. We define the asymptotic cumulative distribution function

(c.d.f.) of β̂ββ
∗
n, underK(n), as

Gp(x) = lim
n→∞

PK(n)

{√
ns−1e (β̂ββ

∗
n−βββ)≤ x

}
.
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If the asymptotic c.d.f. exists, then the asymptotic distributional bias (ADB) and quadratic
bias (ADQB) are given by

b(β̂ββ
∗
n) = lim

n→∞
E
[√

n(β̂ββ
∗
n−βββ)

]
=

∫
xdGp(x),

B(β̂ββ
∗
n) = σ−2[b(β̂ββ

∗
n)]

TC[b(β̂ββ
∗
n)],

respectively, where σ2C−1 is the mean squared error (MSE)-matrix of β̃ββn as n → ∞.
Defining

M(β̂ββ
∗
n) =

∫
xxTdGp(x) = lim

n→∞
E
[
n(β̂ββ

∗
n−βββ)(β̂ββ

∗
n−βββ)T

]
,

as the asymptotic distributional MSE (ADMSE), we have the weighted risk of β̂ββ
∗
n given

by
R(β̂ββ

∗
n) = tr[M(β̂ββ

∗
n)] = lim

n→∞
E[n(β̂ββ

∗
n−βββ)T(β̂ββ

∗
n−βββ)]

as the asymptotic distributional quadratic risk (ADQR).
Suppose the LASSO is weakly consistent, i.e., λn = o(n1/2). Up to this point, we

implemented a test statistic based on the OLS estimator, however, constructing a test
based on the LASSO estimator will give the same asymptotic behaviour under weak
consistency. A test statistic based on the ULE will have form

Ln =
(Hβ̂ββ

L
n −h)T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h)

s2L
, (8)

where

s2L =
1
m
(Y−Xβ̂ββLn)T(Y−Xβ̂ββLn) (9)

Using Theorem 2 of Knight and Fu (2000), Theorem 7.8.2.3 of Saleh (2006), and√
n-consistency, we have the following important result.

Theorem 1 Under the assumptions of Theorem 2 and λn = o(n1/2), we have

(i) W (1)
n =

√
n(β̂ββ

L
n −βββ)

D
=W =

√
n(β̃ββn−βββ).

(ii) W (2)
n =

√
n(β̂ββ

RL
n − βββ)

D→ Np(−δδδ,σ2A) where δδδ = C−1HT(HC−1HT)−1ξξξ and A =
C−1−C−1HT(HC−1HT)−1HC−1.

(iii) W (3)
n =

√
n(β̂ββ

L
n − β̂ββ

RL
n )

D→ Np(δ,σ
2(C−1−A)).

(iv) W (4)
n =Hβ̂ββ

L
n −h D→ Nq(Hβββ−h,σ2(HC−1HT)).

(v)

[
W (1)
n

W (3)
n

]
D→ N2p

([
0

δδδ

]
,σ2

[
C−1 C−1−A

C−1−A C−1−A
])

.
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(vi)

[
W (2)
n

W (3)
n

]
D→ N2p

([
δδδ

−δδδ

]
,σ2

[
A 0

0 C−1−A
])

.

(vii)

[
W (1)
n

W (4)
n

]
D→ Np+q

([
0

Hβββ−h
]
,σ2

[
C−1 C−1HT

HC−1 HC−1HT

])
.

(viii)
√
n(β̂ββ

SSL
n −βββ)

D
=W− k

{
C−1HT(HC−1HT)−1(HW+ ξξξ)

σ−2(HW+ ξξξ)T (HC−1HT)−1(HW+ ξξξ)

}
.

(ix)
√
n(β̂ββ

PRSSL
n −βββ)

D
= W− k

{
C−1HT(HC−1HT)−1(HW+ ξξξ)

σ−2(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

}

+C−1HT(HC−1HT)−1(HW+ ξξξ)

×
{
1− k

σ−2(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

}

×I(L < k).

whereW D→ Np(0,σ
2C−1).

Based on the part (a) of Theorem 1, the distribution of the test statistics is obtained
by Theorem 2.

Theorem 2 Under the foregoing regularity conditions and local alternatives K(n), if
the LASSO satisfies the weakly consistent condition, i.e., λn = o(n1/2), the test statis-
tics Ln defined in Eq. 8 converges in distribution to L , which has the non cen-
tral chi-square distribution with q degrees of freedom, non centrally parameter Δ2 =
σ−2ξξξT

(HC−1HT)−1ξξξ = σ−2δδδTCδδδ where δδδ = C−1HT(HC−1HT)−1ξξξ, and

L =
(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

σ2
.

Proof. Rewrite the numerator of test statistics in Eq. (8) as

(
H
(√

n(β̂ββ
L
n −βββ)

)
+
√
n(Hβββ−h)

)T(
H(nC−1

n )HT
)−1

×
(
H
(√

n(β̂ββ
L
n −βββ)

)
+
√
n(Hβββ−h)

)
(10)

Using part (i) of Theorem 1,
√
n
(
β̂ββ
L
n −βββ

)
has the same asymptotic distribution as W.

Hence, under K(n) and the regularity condition A2, Eq. (10) has the same distribution
as

(HW+ ξξξ)
T(HC−1HT

)−1
(HW+ ξξξ) (11)

On the other hand, by (i) of Theorem 1, it is obvious that s2L → σ2. Using this fact
together with Eq. (11), the result follows by Slutsky’s theorem.
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The results of Theorems 1 and 2 can be used to derive ADB, ADQB, and ADQR.
To verify the consistency of the estimators, we have the following theorem and sub-

sequent remarks.

Theorem 3 Under the foregoing regularity conditions and local alternatives K(n), we
have the following as n→ ∞,

(i) β̂ββ
RL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h).
(ii) β̂ββ

L
n − β̂ββ

RL
n

P→ C−1HT(HC−1HT)−1(Hargmin(Z)−h).
(iii) β̂ββ

PTL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h)I(L < Lα).

(iv) β̂ββ
SSL
n

D→ argmin(Z)− kC−1HT(HC−1HT)−1(Hargmin(Z)−h)L −1.

(v) β̂ββ
PRSSL
n

D→ argmin(Z)− (kL−1+(1− kL−1)I(L ≤ k))C−1HT(HC−1HT)−1

×(Hargmin(Z)−h).

where Lα is the upper critical value of chi-squared distribution with q d.f., k = q− 2,
and Z(φφφ) = (φ−βββ)TC(φ−βββ)+λ0

∑p
j=1 |φ j|.

Proof. According to Theorem 2 of Knight and Fu (2000), if C is a nonsingular matrix

and λn/n→ λ0 ≥ 0, then β̂ββLn D→ argmin(Z). To prove (i), by Slutsky’s theorem, Eq. (4),
and regularity condition (A2), we have

β̂ββ
L
n −C−1

n H
T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h) P→ argmin(Z)−C−1HT(HC−1HT)−1

×(Hargmin(Z)−h).

(ii) By Eq. (4), we have β̂ββ
L
n − β̂ββ

RL
n = CnH

T(HC−1
n H

T)−1(Hβ̂ββ
L
n − h), which converges

to C−1HT(HC−1HT)−1(Hargmin(Z)−h). the result follows by Slutsky’s theorem and

regularity condition (A2). (iv) From Theorem 2, I(Ln ≤ Ln,α)
D→ I(L ≤Lα). Making

use of Eq. (5), (iii), and Slutsky’s theorem, we have

β̂ββ
PTL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h)I(L < Lα)

To prove (iv) and (v), since kn → k = q−2, the result is obvious using Eq. (6), (iii), and
Slutsky’s theorem.

Similar results as in Theorem 3 can be obtained using Theorem 2 of Knight and Fu
(2000).

Remark 1 Under the assumptions of Theorem 3 and λn = o(n), we have the following
results,
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(i) β̂ββ
RL
n

P→ βββ− δδδ; δδδ = C−1HT(HC−1HT)−1(Hβββ−h).

(ii) β̂ββ
PTL
n

P→ βββ− δδδI(L < Lα).

(iii) β̂ββ
SSL
n

P→ βββ− δδδL −1.

(iv) β̂ββ
PRSSL
n

P→ βββ−{
kL −1+(1− kL−1)I(L < k)

}
δδδ.

Remark 2 UnderH0, all estimators are consistent for βββ.

4. Numerical analysis

In this section, we evaluate performance of the proposed estimators using a simulation
study along with a real example.

4.1. Simulation

In this section, we conduct a Monte Carlo simulation to analyse relative efficiencies with

respect to different levels of sparsity. In particular, we use RE(β̂ββ∗; β̂ββ
L
) = R(β̂ββ

L
)/R(β̂ββ

∗
),

where β̂ββ
∗
is one of the proposed estimators in this paper.

We generate a matrix X from a multivariate normal distribution with mean vector
μμμ = 0 and covariance matrix Σ. The off-diagonal elements of the covariance matrix
are considered to be equal to r with r = 0,0.2,0.9. We consider n = 100 and various p
ranging 10, 15, and 20.
One of the most applicable H and h is to select variables. Sometimes, an expert

claims that some variables do not affect regression model. If we suppose βββ = (βββ
T

1,βββ
T

2)
T,

then βββ2 = 0 is equivalent to the variables that may be ignored for predicting model.
Let us consider βββ =

(
βββ

T

1,βββ
T

2

)T
=
(
1T
p−q,0

T
q

)T
, where 1p−q and 0q stand for the vectors

of 1 and 0 with dimensions p− q and q, respectively. In order to investigate the be-
haviour of the proposed estimators, we define Δ∗ = ‖βββ−βββ0‖, where βββ0 =

(
1T
p−q,0

T
q

)T

and ‖·‖ is the Euclidean norm. If Δ∗ = 0, then βββ = βββ0 while βββ = (1T
p−q,Δ

T)T when
Δ∗ > 0, where Δ = (Δ, . . . ,Δ)T is the q-dimensional vector of Δ values. When we in-
crease the number of Δ∗, it indicates the degree of violation of the null hypothesis.
In our simulation study, without loss of generality, we assume βββ is a p-vector in

which the first s components of βββ are 1 and other (p− s) components are zero. The
responses were simulated from the following model:

yi =
p∑
i=1

xiβi+ ei, ei ∼ N (0,1)
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Each realization was repeated 1000 times to obtain risk of the estimated regression pa-
rameters. Thus, risks are calculated for the ULE, RLE, PTLE, SSLE and PRSSLE. The
results are tabulated in Tables 1-3.
The findings of Tables 1-3 may be summarized as:

a) When the null hypothesis is true (Δ2 = 0), RLE behaves better than other esti-
mator. As we depart from the null hypothesis, the performance of this estimator
decreases.

b) For large Δ2, the performance of estimators decreases; even, when the correlation
is low, the unrestricted LASSO performs better.

c) Neither PTLE nor Stein-type shrinkage LASSO estimator dominates each other.

d) The positive rule Stein-type shrinkage LASSO uniformly dominates Stein-type
LASSO estimator.

e) It is well - known that shrinkage and positive-rule shrinkage estimators are always
better than unrestricted estimator. Here, the results confirm that also.

Table 1: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r = 0, s = 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.003) 1.63 (0.011) 1.52 (0.011) 1.23 (0.008) 1.35 (0.009)
15 1 (0.002) 2.32 (0.013) 2.19 (0.013) 1.75 (0.007) 2.05 (0.010)
20 1 (0.001) 3.51 (0.007) 2.98 (0.007) 2.44 (0.004) 2.99 (0.006)

p Δ2 = 0.1

10 1 (0.001) 1.57 (0.003) 1.46 (0.003) 1.21 (0.003) 1.32 (0.003)
15 1 (0.001) 2.18 (0.007) 2.02 (0.007) 1.66 (0.005) 1.95 (0.006)
20 1 (0.001) 3.48 (0.015) 2.92 (0.015) 2.40 (0.008) 2.98 (0.011)

p Δ2 = 0.5

10 1 (0.001) 0.85 (0.000) 0.86 (0.001) 1.05 (0.001) 1.07 (0.001)
15 1 (0.002) 1.57 (0.002) 1.42 (0.003) 1.37 (0.003) 1.54 (0.003)
20 1 (0.001) 2.86 (0.004) 2.34 (0.004) 2.19 (0.004) 2.58 (0.004)

p Δ2 = 1

10 1 (0.001) 0.36 (0.000) 0.90 (0.001) 1.00 (0.001) 1.00 (0.001)
15 1 (0.000) 0.82 (0.000) 0.86 (0.000) 1.12 (0.000) 1.14 (0.000)
20 1 (0.003) 1.81 (0.002) 1.43 (0.004) 1.81 (0.005) 1.90 (0.005)

p Δ2 = 5

10 1 (0.001) 0.02 (0.007) 1.00 (0.007) 0.94 (0.004) 0.94 (0.006)
15 1 (0.001) 0.06 (0.000) 1.00 (0.000) 0.98 (0.000) 0.98 (0.000)
20 1 (0.001) 0.13 (0.000) 1.00 (0.001) 1.00 (0.001) 1.00 (0.001)
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Table 2: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r= 0.2, s= 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.003) 1.95 (0.014) 1.71 (0.014) 1.34 (0.008) 1.44 (0.011)
15 1 (0.002) 2.70 (0.015) 2.37 (0.016) 1.90 (0.012) 2.28 (0.014)
20 1 (0.000) 4.77 (0.010) 3.55 (0.009) 2.98 (0.006) 3.63 (0.008)

p Δ2 = 0.1

10 1 (0.001) 1.93 (0.004) 1.61 (0.004) 1.33 (0.002) 1.40 (0.003)
15 1 (0.001) 2.69 (0.009) 2.30 (0.010) 1.92 (0.006) 2.21 (0.008)
20 1 (0.001) 4.72 (0.010) 3.39 (0.009) 2.96 (0.006) 3.62 (0.008)

p Δ2 = 0.5

10 1 (0.001) 0.97 (0.000) 0.91 (0.001) 1.17 (0.002) 1.17 (0.002)
15 1 (0.002) 1.87 (0.003) 1.30 (0.004) 1.70 (0.004) 1.74 (0.004)
20 1 (0.001) 3.74 (0.005) 1.93 (0.006) 2.75 (0.005) 2.91 (0.005)

p Δ2 = 1

10 1 (0.001) 0.37 (0.000) 0.99 (0.001) 1.08 (0.001) 1.08 (0.001)
15 1 (0.000) 0.85 (0.000) 0.97 (0.000) 1.37 (0.000) 1.37 (0.000)
20 1 (0.003) 1.85 (0.000) 1.07 (0.003) 2.10 (0.007) 2.10 (0.007)

p Δ2 = 5

10 1 (0.001) 0.01 (0.001) 1.00 (0.001) 0.99 (0.001) 0.99 (0.001)
15 1 (0.001) 0.04 (0.000) 1.00 (0.000) 1.02 (0.001) 1.02 (0.001)
20 1 (0.001) 0.85 (0.000) 1.00 (0.001) 1.13 (0.001) 1.13 (0.001)

The linear regression model is fitted to this dataset in order to predict the response
variable. The LASSO of Tibshirani (1996) (the UL in our study), restricted LASSO
(RL), preliminary test LASSO (PTL), Stein-type shrinkage LASSO (SSL), and positive
rule Stein-type shrinkage (PRSSL) estimators are used to estimate the unknown regres-
sion coefficients.
Since one of the biggest problems in estimation is to determineH and h, we suppose

that H = I7. This choice is just for simplicity and also to avoid errors obtained by
incorrect selection of parameters.
In order to show the impact of correctness or incorrectness of hypothesis, we con-

sider the following two cases:

Case I. Let h= (0,0,10,0.2,0.7,0.06,0)T. The null hypothesis changes intoHo : βββ = h
and thus, the variables POPULATION, INCOME, and AREA are insignificant.

Case II. Let h = (0,0,0,0,0,0,0)T. The null hypothesis changes into Ho : βββ = 0 and
thus, all variables are insignificant.
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Table 3: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r= 0.9, s= 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.002) 6.76 (0.051) 3.34 (0.052) 1.86 (0.019) 1.86 (0.019)
15 1 (0.001) 8.46 (0.006) 5.76 (0.061) 4.28 (0.036) 4.68 (0.042)
20 1 (0.000) 14.74 (0.064) 14.48 (0.064) 6.13 (0.065) 11.31 (0.057)

p Δ2 = 0.1

10 1 (0.001) 6.35 (0.062) 2.95 (0.017) 1.81 (0.004) 1.82 (0.004)
15 1 (0.001) 8.31 (0.004) 5.77 (0.041) 4.28 (0.024) 4.68 (0.031)
20 1 (0.001) 14.11 (0.085) 12.56 (0.085) 5.96 (0.052) 10.68 (0.082)

p Δ2 = 0.5

10 1 (0.001) 3.28 (0.003) 1.39 (0.005) 1.69 (0.005) 1.69 (0.005)
15 1 (0.002) 5.41 (0.017) 2.71 (0.020) 3.85 (0.028) 3.92 (0.028)
20 1 (0.001) 10.40 (0.020) 7.10 (0.021) 6.77 (0.032) 8.68 (0.031)

p Δ2 = 1

10 1 (0.002) 1.18 (0.000) 0.96 (0.001) 1.55 (0.005) 1.55 (0.005)
15 1 (0.000) 2.50 (0.000) 1.26 (0.001) 3.14 (0.003) 3.14 (0.003)
20 1 (0.002) 5.28 (0.012) 2.57 (0.019) 5.33 (0.053) 6.58 (0.053)

p Δ2 = 5

10 1 (0.005) 0.02 (0.000) 1.00 (0.005) 0.87 (0.004) 0.87 (0.004)
15 1 (0.002) 0.06 (0.000) 1.00 (0.002) 1.58 (0.004) 1.58 (0.004)
20 1 (0.001) 0.19 (0.000) 1.00 (0.001) 2.68 (0.006) 2.68 (0.006)

Table 4: Description of the variables of state.x77.

Variables Description Role

LifeExp Average years of life expectancy at birth Response
Population in thousands Predictor
Income dollars per capita Independent
Illiteracy Percentage of those unable to read and write Independent
Murder number of murders and non-negligent manslaughters per 100000 people Independent
HS Grad percentage of adults who were high-school graduates Independent
Frost mean number of days per year with low temperatures below freezing Independent
Area in square miles Independent

4.2. Real data

In this section, we study the performance of proposed LASSO-based shrinkage estima-
tors using state.x77 dataset (available by default in R software). Descriptions of the
variables in this dataset are given in Table 4.
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Table 5: 5-fold cross validation relative average prediction errors for state data.

RLE PTLE SSLE PRSSLE
0.01 0.05 0.10

Case I 22.2615 1.0009 1.0004 1.0004 1.0200 1.0208
Case II 1.0017 1.0000 1.0000 1.0000 1.0000 1.0008

The performance of the estimators are evaluated using average five-fold cross val-
idation error. By choosing 1000 as a large enough number for repeating process in a
bootstrap simulation scheme, Table 5 shows the relative average prediction errors in the
two cases.
Based on Table 5, RLE is the best estimator because the hypothesisHβββ = h is nearly

true, but PRSSLE has lower prediction error than other estimators in case I. This estima-
tor is followed by SSLE. Indeed, by departing from the null hypothesis, these estimators
will behave similar to the LASSO in case II. If the level of significance α for construct-
ing PTLE increases, then the prediction error decreases.

5. Conclusion

In this paper, we proposed improved LASSO-based estimators by imposing a subspace
restriction to the linear regression model. Particularly, we introduced preliminary-test
LASSO, Stein-type shrinkage LASSO, and positive-rule shrinkage LASSO estimators.
Asymptotic performance of the proposed estimators studied in case n> p. The proposed
methodology for improving the LASSO can also be applied to the high-dimensional case
p> n. Indeed the test statistic forHo :Hβββ = h plays a determining role.
In addition to the given theorems for the asymptotic behaviour of the proposed esti-

mators, using a simulation study, we compared the performance of estimators numeri-
cally for various configurations of p, correlation coefficient between the predictors (r),
and the error in variance (σ2). For different non-centrality parameter Δ, degree of model
misspecification, the number of non-zero βs varied, and then the performance of esti-
mators evaluated. We found that the positive-rule shrinkage LASSO estimator has the
best performance among all. When we deviated from the null model, neither PTLE
nor SSLE dominated one another and the PTLE performed better as α became large.
Relative efficiency of the proposed estimators increased when there were more near-
zero parameters in the model. As an application, a real dataset was analysed, where a
five-fold cross-validation averages and standard deviations of the prediction errors were
evaluated for the LASSO and its other four variants. The new estimators dominated the
LASSO in average prediction error sense.
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Heteroscedasticity irrelevance when testing
means difference

Pablo Flores M.1 and Jordi Ocaña2

Abstract

Heteroscedasticity produces a lack of type I error control in Student’s t test for difference between
means. Pretesting for it (e.g., by means of Levene’s test) should be avoided as this also induces
type I error. These pretests are inadequate for their objective: not rejecting the null hypotheses is
not a proof of homoscedasticity; and rejecting it may simply suggest an irrelevant heteroscedas-
ticity. We propose a method to establish irrelevance limits for the ratio of variances. In conjunction
with a test for dispersion equivalence, this appears to be a more affordable pretesting strategy.

MSC: 62F03.

Keywords: Homoscedasticity, equivalence test, indifference zone, pretest, Student’s t test

1. Introduction

Student’s t test for determining possible inequalities between two population means is
subject to normality and homoscedasticity assumptions. (Readers not familiar with ba-
sic statistical techniques, such as Student’s or Welch’s test, may refer to sources like the
SPSS tutorial at https://libguides.library.kent.edu/SPSS/IndependentTTest.) Presumably,
these assumptions are or are not confirmed by means of other (pre)tests on the same
data. The pretests (or the order in which they are applied) may vary. When the null hy-
pothesis of a normality test (Shapiro-Wilk, Kolmogorov-Smirnov, etc.) is rejected, the
traditional procedure is to assume that the sample does not come from a normal distribu-
tion. In such cases, a non-parametric approach is adopted, for example the Wilcoxon’s
test to compare the location parameters of two independent samples – possibly under the
additional yet false assumption of its supposedly higher robustness to dispersion differ-
ences. Otherwise, when the null hypothesis of normality is not rejected, this assumption
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is taken as true; and pretesting then proceeds to the next step by means of a test with
perfect homoscedasticity as the null hypothesis (F , Levene, Bartlett, Cochran, etc.). If
its null hypothesis is not rejected, then homoscedasticity is taken as true. This leads
to the use of Student’s t test as an adequate procedure for comparing means. Other-
wise, heteroscedasticity is assumed and a procedure like Welch’s test (Welch, 1947) is
adopted.
Although it is not unusual to find such pretesting recommendations, several studies

(Hsu, 1938; Overall, Atlas and Gibson, 1995; Scheffé, 1970) show that these strategies
alter the overall type I error probability (TIEP) especially when sample sizes are un-
equal. Zimmerman (2004) performed a simulation study using different sample sizes,
levels of heteroscedasticity and levels of significance to estimate the overall TIEP. The
results showed that when Student’s test is performed without any homoscedasticity
pretesting, and when Levene’s pretest is used to decide between Student’s or Welch’s
test, the overall TIEP is severely inflated. On the other hand, the TIEP for Welch’s test
remains close to the significance level for all heteroscedasticity levels. In strategies that
alter the TIEP, the largest variance associated with the largest sample size deflates the
TIEP while it is inflated when the largest variance is associated with the smallest sample
size. The severity of this distortion increases with the heteroscedasticity level. In addi-
tion, overall TIEP distortion increases as the significance level of the pretest decreases,
the overall TIEP ceases to be affected at high levels of significance in the preliminary
test, e.g., at the non-usual value α= 0.20.
Rasch, Kubinger and Moder (2011), state that pretesting to validate the assumptions

in the comparison of means test leads to alterations in the type I and type II error prob-
abilities. These authors show that using a pretest for normality (Kolmogoroff-Smirnov)
and a pretest for equality of variances (Levene) causes an increase in the overall TIEP.
In contrast, when Welch’s test is used directly (without a pretest), these overall TIEP
distortions largely disappear. They conclude that pretesting does not pay off. Instead,
applying Welch’s test directly without pretesting is best, and it should be recommended
in textbooks as well as implemented in statistical software as the standard option for
comparing means. In addition, the authors advise that Wilcoxon’s and Student’s t-test
should never be used.
The next section introduces some concepts and notation in equivalence testing. Sec-

tion three describes the algorithm that we have used to determine these irrelevance lim-
its. In the fourth section, a simulation study comparing the previously cited pretesting
strategies is presented. In the fifth section, two illustrative examples are presented. Fi-
nally, in the last section the main conclusions are discussed.
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2. Equivalence testing concepts and some additional notation

The above results contribute to other evidence indicating that pretesting in order to ful-
fill validity conditions (not only in the problem of means comparison) is not a reliable
strategy. However, one may ask if this inadequacy is (fully or partially) due to the fact
that these pretests are intrinsically inappropriate for their goal: Note that their null hy-
pothesis states complete fulfilment of the normality or homoscedasticity assumptions.
As is well known, not rejecting the null hypothesis is not a proof of its correctness,
while rejecting it may simply indicate an irrelevant departure from perfect normality
or homoscedasticity. In other words, asserting that there is a non-significant difference
between variances should not be confused with there being homogeneity. In the words
of Altman and Bland (1995) “Absence of evidence is not evidence of absence”.
Figure 1 schematically shows these ideas in the specific case of the homoscedasticity

assumption, which will constitute the focus of the present paper.

Figure 1: Traditional and equivalence approach.

Wellek (2010) (p. 164), proposes an approach that is based on equivalence test-
ing. In this class of tests, the alternative hypothesis states equivalence, i.e., perfect fit
(to normal) or equality (of variances) except for irrelevant deviations while the null
hypothesis states relevant ones. In this approach, the relevant differences between vari-
ances are stated in the null hypothesis; thus the assumption of near homoscedasticity is
reinforced if the null is rejected.
In brief, Wellek’s test may be described as follows: For the hypotheses

H0 :
σ21
σ22

≤ ω21 ∧
σ21
σ22

≥ ω22 No equivalence (relevant difference of variances)

H1 :ω
2
1 <

σ21
σ22

< ω22 Equivalence (non-relevant difference)

(1)
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with ω21 < 1< ω22, a uniformly more powerful invariant test is one whose critical region
is given by:

{C̃(1)
α,n1−1,n2−1(ω

2
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2)< Q< C̃(2)
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2
1,ω
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where Q stands for the test statistic:
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S2X
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Fn1−1,n2−1() corresponds to the cumulative distribution function of a centred F distribu-
tion, with n1−1 degrees of freedom in the numerator and n2−1 in the denominator.
One of the most important aspects of equivalence testing is to establish the equiva-

lence limits. Wellek does not propose a technical criterion to determine them, instead
he provides some hints based on what he calls “a common statistical sense”, which may
not be enough in many applications. For this reason, here we develop a procedure that
allows us to calculate these limits in the specific problem of determining (enough) ho-
moscedasticity when the end objective is to perform a comparison of means and assum-
ing that normality is fulfilled. As its input, the procedure requires objective information
on the experimental design and (admittedly, less objective) information on the tolerable
possible distortion in the TIEP (perhaps with the help of “common statistical sense”).

3. Irrelevance limits for the ratio of dispersions
of two Gaussian distributions

As mentioned above, using an equivalence dispersion test for two Gaussian distributions
as an homoscedasticity pretest overcomes the logical difficulty of approaches like the F
test when it is used for the same purpose. However, the equivalence approach has a
notable ambiguity: The values of the equivalence or irrelevance limits (ω21, ω

2
2) that

define the hypotheses to be tested must be specified. Criteria such as common statistical
sense or the researchers prior knowledge on their subject of interest may be subjective
and insufficient.
If the equivalence test refers to a parameter involved in a validity requirement for

another test – for example, the ratio of variances for Student’s t test – then one possibility
is to define an irrelevance limit δ > 0 for the difference between the true TIEP and the
significance level α. Obviously α±δ must be inside the (0,1) interval. This irrelevance
(or permissiveness or indifference) parameter δ is the maximum distance above and
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below α that is acceptable as an irrelevant affectation of the TIEP. This approach may
seem to be imprecise and prone to arbitrariness but it follows the line of thought (fairly
correct in our opinion) that these validity conditions are just idealizations. Possibly,
perfect normality and perfect homoscedasticity are never present in nature. As Box
(1979) states about normality, a normal distribution does not exist in the real world,
but models known to be false often derive in useful approximate results; what is really
important is not whether the populations “are normal” but knowing if the approximate
model is good enough to be useful. In our approach the approximation will or will not be
considered good based on how close the true TIEP is to the nominal significance level.
In this same sense, Cochran (1942) suggested that a distance of 20% of the true TIEP
from the nominal significance level is an acceptable approximation. This authoritative
criterion, known sometimes as “Cochran’s Criterion”, could be used as the default in
algorithms implementing the method proposed here.
In Student’s t test, the true TIEP is a continuous function of the population ratio of

variances ω2 = σ21/σ
2
2 and its value equals the nominal significance level α at ω

2 = 1.
From this point of complete homoscedasticity (and depending also on the sample sizes),
this TIEP function may be of an increasing or decreasing nature. As a consequence, ω21
and ω22 define an interval around 1 and they correspond to the ratio ω

2 values where the
TIEP equals α− δ or α+ δ.
Given a nominal significance level α, a degree of permissiveness δ and sample sizes

n1, n2, the procedure for obtaining the pair (ω21, ω
2
2) is based on a simulation iterative

process. More precisely, starting from a ratio in the neighbourhood of ω2 = 1, the true
TIEP of Student’s t test is obtained by simulation, as the proportion of null hypothesis
rejections. This process is iterated by progressively decrementing or incrementing this
ratio until crossing the threshold α± δ and until the TIEP reaches these limits with
a given precision. The following additional safeguard is included: Provided that the
resulting TIEP in each simulation iteration is just an estimation of the true TIEP, the
algorithms implementing the method may require that a confidence interval for the true
TIEP must be fully included inside α± δ.
The simulation process is fast because, to repeatedly generate Student’s t statistic

values, it is not necessary to simulate pairs of independent Gaussian full data samples
of sizes n1 and n2, respectively, and then compute the t statistic from them. Instead,
provided that we are simulating under a Student’s t test scenario of true null hypothe-
sis, the difference of the sample means (the numerator of the t statistic) can be directly
generated from a Gaussian distribution with zero mean and variance σ21/n1+ σ22/n2.
In addition, the sum of squares necessary for computing the pooled variance estimate,∑n1

i=1

(
X1i−X1

)2
+
∑n2

i=1

(
X2i−X2

)2
can be directly generated as the sum of two in-

dependent values (and also independently from the difference between sample means)
that are generated from a distribution σ2i χ

2
ni−1, i= 1,2, where χ

2
ν stands for a chi-square

distribution with ν degrees of freedom. A further simplification comes from the fact
that the only relevant parameter is the ratio of variances and not the variances them-
selves; thus, one of the variances to be simulated can be fixed at one. What is more,
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because complete symmetry exists between the equivalence limits in balanced cases,
it is sufficient to obtain only one of them, e.g., the second one, ω22, and then compute
ω21 = 1/ω22. Finally, a variance reduction technique based on the method of“control
variates” is applied to avoid the need for very large numbers of simulation replicates to
deliver acceptable precision. This technique is also applied in the simulations described
in the next chapter, and it is explained in the Appendix.

Table 1: Indifference zone (ω21 , ω
2
2) with δ = 0.2α.

α= 0.1 α= 0.05 α= 0.01

n= (5,5) (0.130 - 7.691) (0.225 - 4.428) (0.397 - 2.519)

n= (3,7) (0.709 - 1.412) (0.779 - 1.289) (0.819 - 1.163)

n= (7,3) (0.711 - 1.410) (0.776 - 1.325) (0.832 - 1.166)

n= (10,10) (0.002 - 501.0) (0.097 - 10.325) (0.282 - 3.542)

n= (6,14) (0.727 - 1.408) (0.783 - 1.292) (0.846 - 1.157)

n= (14,6) (0.716 - 1.362) (0.787 - 1.264) (0.859 - 1.148)

n= (5,10) (0.679 - 1.387) (0.741 - 1.286) (0.819 - 1.196)

n= (10,5) (0.716 - 1.452) (0.786 - 1.331) (0.862 - 1.256)

For illustrative purposes, Table 1 displays the irrelevance limits for some sample
sizes (balanced and unbalanced) and significance level scenarios. These values were
obtained from 100000 simulation replicates. The results show that, first, there is more
heteroscedasticity permissiveness (wider irrelevance intervals) in the balanced scenarios
than in the unbalanced ones and, second, that larger sample sizes correspond to wider
irrelevance intervals in the balanced cases.

4. Results on pretesting homoscedasticity

4.1. Overall TIEP affectation when the FFF pretest is used to verify
the homoscedasticity assumption

Many tests have been developed for the hypotheses

H0 :
σ21
σ22

= 1

H1 :
σ21
σ22

�= 1,
(3)

to eventually prove heteroscedasticity – and not homoscedasticity. As has been previ-
ously stated, some studies use Levene’s test as their pretesting option. Provided that
the test for heteroscedasticity irrelevance considered in this paper is based on the ratio
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Q of sample variances and the Fisher-Snedecor F distribution, for the sake of compar-
ison we consider here the traditional F test that is based on the Q statistic to prove
heteroscedasticity and we then use it as a reference for comparison with the equivalence
approach. However, very similar results were delivered by complementary simulations
using Levene’s test and other tests for heteroscedasticity (not presented here). At this
point, it would be fair to advise against the widespread use of the F test given its lack of
robustness in front of departures from normality (see, for example, point 4.3 in Rasch
and Guiard, 2004). These drawbacks do not invalidate the results in the present paper
because we assume and simulate under perfect normality of data conditions. However,
these considerations may be of obvious practical interest.

Figure 2: Overall TIEP estimation when Student’s t or Welch’s test are conditioned to the result of the F
test: If the null hypothesis of variances equality is not rejected, then Student’s t test is applied; otherwise
Welch’s test is applied. The scale of the TIEP axis differs in accordance with the different significance levels
under consideration. The relative distance from the nominal significance level is of importance here.

Figure 2 illustrates similar results to those obtained in the references cited in this
paper. They were obtained from 100000 simulation replicates and correspond to sce-
narios defined by crossing significance levels of α = 0.1, 0.05 and 0.01; several het-
eroscedasticity degrees given by the ratio ω =

√
σ21/σ

2
2; and sample sizes that are bal-

anced (n= (5,5) and n= (10,10)), and unbalanced (n= (5,10) and n= (10,5)), always
under equality of population means. Independently of the significance level for compar-
ison of means, all F pretests were performed at a fixed 0.05 significance level.
These results agree with those obtained in the previous studies: There is inflation or

deflation in the overall TIEP when the decision to use Student’s t orWelch’s test is condi-
tioned to the result of a pretest (here, the F test) to (supposedly) verify homoscedasticity.
This affectation is clearly less concerning in the case of balanced sample sizes as well
as with growing sample sizes. However, when there are few observations and/or unbal-
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ancing, the affectation increases considerably as the level of heteroscedasticity grows;
so once again we verify that performing this type of pretest is a bad strategy.

4.2. Overall TIEP affectation when the equivalence dispersion pretest
is used to verify the homoscedasticity assumption

Figure 3 shows comparable simulation results when the Wellek’s equivalence pretest is
used, and once the zone of indifference (ω21, ω

2
2) has been determined for each signifi-

cance level (of the comparison of means test) and sample sizes scenario. The δ values
correspond to those suggested by Cochran’s criterion, with a tolerance limit for the TIEP
equal to 20% of the significance level. We observe much greater control of the TIEP
(not perfect, but in any case within the irrelevance limits) with values much closer to the
significance level than when pretesting was entrusted to the F test. Independently of the
comparison of means significance level, all of the equivalence pretests were performed
at a fixed 0.05 significance level.

Figure 3: Overall TIEP estimation when Student’s t test or Welch’s test are conditioned to the result of the
equivalence Wellek’s test: If the null hypothesis of relevant ratio of variances is rejected, then Student’s t
test is applied; otherwise Welch’s test is applied.

4.3. Pretesting vs non-pretesting strategies

Figure 4 shows that, for all sample sizes under consideration, performing Student’s t test
directly without prior verification of the homoscedasticity assumption greatly inflates or
deflates the TIEP as the heteroscedasticity increases. The inflation/deflation of TIEP
depends on sample size and especially on balancing/unbalancing; so, for unbalanced
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cases, this TIEP’s affectation is much greater. For unbalanced cases, the TIEP is below
the significance level when the largest sample corresponds to greater variance; whereas,
when the smallest sample corresponds to greater variance, the estimated TIEP is above
the significance level.

Figure 4: TIEP affectation using α = 0.05 and δ = 0.01 jointly comparing the pretesting and non-
pretesting strategies. Note again that the TIEP scales differ.

When a traditional pretest such as the F test is used to verify homoscedasticity before
deciding on Student’s t test or Welch’s test should be used, the TIEP also inflates/deflates
in the same way as the previous case, although with less intensity, and it becomes less
concerning for increasing balanced sample sizes.
Very similar behaviour occurs when Welch’s test is used directly, without pretesting,

and when pretesting is based on the Wellek’s equivalence test. Both strategies are quite
stable, with true TIEP values close to the nominal significance level. For low and un-
balanced sample sizes, the equivalence test has low power; the null hypothesis stating
a disturbing level of heteroscedasticity is rarely rejected; due to there being not enough
evidence to prove a non-disturbing level of heteroscedasticity, the cautionary approach
of using Welch’s test is taken (which seems a more reliable strategy than assuming ho-
moscedasticity based on being unable to prove heteroscedasticity by means of Student’s
test).
The strategy of using exclusively Welch’s test and the strategy based on Wellek’s

pretest only slightly differ for large and preferably balanced sample sizes. Then, as
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the heteroscedasticity irrelevance test reaches enough power, more often there is some
evidence to think on a non-disturbing heteroscedasticity and to use Student’s t test in-
stead of Welch’s test. Although both strategies are tenable (while the other two should
be advised against), it is difficult to say which strategy is best. Equivalence pretesting
translates into a less conservative strategy, but both have true TIEP values that are very
close to the nominal significance level, i.e., always within the α± δ limits.

5. Illustrative examples

To illustrate these methods, we will use two datasets available at the website of the Uni-
versity of Sheffield. The data files and the R scripts with the functions implementing the
methods described above are available on request to the authors. In all these examples,
tests were performed at a nominal significance level of 0.05 and irrelevance in the TIEP
distortion was fixed in a 20% level and, therefore, the Cochran’s criterion was applied.
The first dataset is available at: https://www.sheffield.ac.uk/mash/statistics2/data.
These data are part of a study trying to relate margarine (or more precisely, its active

ingredient, stanol ester) as part of a low fat, low cholesterol diet, with the reduction on
cholesterol levels. Here we compare this response on 18 subjects, which are assigned in
a balanced way to two margarine types, A and B.
From the algorithm described in Section 3, and provided that both sample sizes (A

and B) are n1 = n2 = 9, all values of the true ratio of variances ranging from 0.1076 to
9.2928 are acceptable to keep the true TIEP of Student’s t test inside the limits 0.05±
0.01. We feed these equivalence limits (0.1076 and 9.2928) into Wellek’s algorithm to
determine the critical region of the equivalence test (Section 2). The resulting critical
region is 0.3420 < Q < 2.9236. Provided that the sample variances are 1.7090 and
0.6820, and thus the resulting test statistic isQ= 2.5059, then the null hypothesis stating
the existence of a relevant heteroscedasticity is rejected. Therefore, applying Student’s
t test may be considered acceptable. Its resulting p-value is 0.2771 and, therefore, it is
impossible to reject the null hypothesis of means equality. Under the “always Welch
- no pretests” strategy the resulting p-value is very similar, 0.2801, obviously with the
same conclusion.
The second dataset considered here is available at: https://www.sheffield.ac.uk/polo

poly fs/1.570199!/file/stcp-Rdataset-Diet.csv.
These data correspond to a study relating loss in body weight with three diets. We

will consider only two groups: diets 1 and 3, and the loss in body weight after 6 weeks
of treatment will be used as the observed variable. The respective sample sizes are
higher than in the previous example and they are unbalanced: n1 = 24 and n3 = 27.
Given these sample sizes and the previously fixed tolerance in the TIEP, 0.05± 0.01,
the resulting equivalence or heteroscedasticity irrelevance limits are 0.0008 and 3.5068.
These equivalence limits conduct to the critical region of the equivalence test defined

https://www.sheffield.ac.uk/mash/statistics2/data
https://www.sheffield.ac.uk/polopoly_fs/1.570199!/file/stcp-Rdataset-Diet.csv
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by 0.0015 < Q < 1.7900. For the sample variances 5.0183 and 5.7387, for diet 1 and
diet 3, respectively, and then for the ratio Q = 0.8744, the hypothesis of a relevant
heteroscedasticity is rejected. Consequently, applying Student’s t test may be considered
acceptable. It provides a p-value of 0.0066, which conducts to the rejection of the
null hypothesis of equality of means in favor of the two-sided alternative of difference.
Again, Welch’s test would come to the same conclusion, with a 0.0065 p-value.
Additional examples are available in the R scripts mentioned at the beginning of this

section.

6. Conclusions and discussion

This paper reinforces the arguments against traditional pretests, such as the F test (or
Levene’s, Bartlett’s, Cochran’s, etc.) for testing the homoscedasticity assumption prior
to Student’s t test for comparison of means. It seems to support the categorical state-
ment of Rasch et al. (2011) that directly advises against using Student’s t test and instead
promotes making routine use of Welch’s test. Our results only qualify this conclusion
slightly. Since there is only a small difference between directly applying Welch’s test
without any previous homoscedasticity verification and pretesting by means of an equiv-
alence/irrelevance dispersion test, and because also both strategies seem to be reliable,
it is difficult to recommend any one of them over the others. In any case, the decision
should be made on the basis of balancing what is preferable: on the one hand, we have
an always small difference in type I error control, which is slightly less conservative in
equivalence pretesting; and, on the other, we have the opposite situation when applying
only Welch’s test without pretesting –which in any case is a simpler procedure.
When choosing between an equivalence pretesting approach or a more robust test

against the failure to fulfil validity conditions, all doubts will disappear in situations
lacking this second option. For example, it is our opinion that generalizing to more than
2 groups in Welch’s test (Welch, 1951) leads to poor control of the TIEP. This could
spark interest in continuing this study by expanding it to more general situations. An
obvious first step would be to study the suitability of Wellek’s test for heteroscedasticity
irrelevance for more than two groups (Wellek, 2010, p. 227) as a pretest for the one-way
ANOVA.

Acknowledgements

This research is partially supported by Grant MTM2015-64465-C2-1-R (MINECO/FE-
DER) from the Ministerio de Economı́a y Competitividad (Spain) and by grant 2014
SGR 464, Generalitat de Catalunya.
The authors are also very grateful to all three referees of this paper, for their very

valuable and constructive comments.



70 Heteroscedasticity irrelevance when testing means difference

A. Appendix: A variance reduction technique when the simulation
A. output is a proportion

In the simulations described in this paper, the parameter to be estimated was a prob-
ability. Vegas and Ocaña (1992) and Ocaña and Vegas (1995) developed a simulation
variance reduction technique based on the “control variates” method, specifically de-
voted to this situation. To implement control variates, the simulation output of each
simulation replicate, say Y , (here it is an “indicator” variable: 1 if in the end the null
hypothesis of equality of means has been rejected, 0 otherwise) should be paired with a
correlated “control variate”, sayC, with known expectation, E(C). In the present study,
C was the outcome of Student’s t test under the same simulated data but adapted to come
from a perfect homoscedasticity scenario, with known E(C) = α. In fact, the generation
process was the inverse. First, a scenario of perfect homoscedasticity was simulated to
obtain C; then, these (homoscedastic) simulated values were subsequently transformed
to represent each desired degree of heteroscedasticity in order to obtain Y .
Assume that, after performing m simulation replicates, the simulation output (abso-

lute frequencies) and the associated probabilities (here with p.1=α) can be summarized
as shown in the following table:

C = 0 C = 1
Y = 0 m00 m01 m0.
Y = 1 m10 m11 m1.

m.0 m.1 m

C = 0 C = 1
Y = 0 p00 p01 p0.
Y = 1 p10 p11 p1.

p.0 p.1 1

Ocaña and Vegas (1995) showed that

p̃1. = p.0 p̃10+ p.1 p̃11 = p.0
m10

m00+m10
+ p.1

m11
m01+m11

is an unbiased estimator of p1., which is more efficient than the raw relative frequency,
m1./m. Its variance can be estimated by means of:

σ̃2p̃1. =
p̃00 p̃10

np.0+ p.0−2 +
p̃01 p̃11

np.1+ p.1−2 .
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Empirical analysis of daily cash flow time-series
and its implications for forecasting
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Abstract

Usual assumptions on the statistical properties of daily net cash flows include normality, absence
of correlation and stationarity. We provide a comprehensive study based on a real-world cash
flow data set showing that: (i) the usual assumption of normality, absence of correlation and
stationarity hardly appear; (ii) non-linearity is often relevant for forecasting; and (iii) typical data
transformations have little impact on linearity and normality. This evidence may lead to consider
a more data-driven approach such as time-series forecasting in an attempt to provide cash man-
agers with expert systems in cash management.
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1. Introduction

Cash management is concerned with the efficient use of a company’s cash and short-
term investments such as marketable securities. The focus is placed on maintaining the
amount of available cash as low as possible, while still keeping the company operating
efficiently. In addition, companies may place idle cash in short-term investments (Ross,
Westerfield and Jordan, 2002). Then, the cash management problem can be viewed as
a trade-off between holding and transaction costs. If a company tries to keep balances
too low, holding cost will be reduced, but undesirable situations of shortage will force to
sell available marketable securities, hence increasing transaction costs. In contrast, if the
balance is too high, low trading costs will be produced due to unexpected cash flow, but
the company will carry high holding costs because no interest is earned on cash. There–
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Figure 1: Example of a cash flow time-series.

fore, there is a target cash balance which each company must optimize according to the
particular characteristics of its cash flows. An example of a raw cash flow time-series
is shown in Figure 1, where observations do not apparently follow any seasonal pattern
and whose evolution over time seems to be quite stable in terms of mean and variance,
similarly to a white noise signal.
Testing the validity of time-series assumptions is an ongoing issue in finance (Mara-

the and Ryan, 2005; Ewing and Thompson, 2007; Cavaliere and Xu, 2014; Horváth,
Kokoszka and Rice, 2014; Arratia, Cabana and Cabana, 2016; Torabi, Montazeri and
Grané, 2016). Since Baumol (1952), a number of cash management models have been
proposed to control cash balances. These models are based either on the specific sta-
tistical properties of cash balances or on cash flow forecasts. A comprehensive review
of models, from the first proposals to the most recent contributions, can be found in
Gregory (1976), Srinivasan and Kim (1986), and da Costa Moraes, Nagano and So-
breiro (2015). Most of them are based on assuming a given probability distribution for
cash flows such as: (i) a random walk in the form of independent Bernouilli trials as in
Miller and Orr (1966); (ii) a Wiener process as in Constantinides and Richard (1978),
Premachandra (2004), and Baccarin (2009); (iii) a double exponential distribution as in
Penttinen (1991). From these and other works, we observe that common assumptions
on the statistical properties of cash flow time-series include:

• Normality: cash flows follow a Gaussian distribution with observations symmet-
rically centered around the mean, and with finite variance.

• Absence of correlation: the occurrence of past cash flows does not affect the prob-
ability of occurrence of the next ones.
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• Stationarity: the probability distribution of cash flows does not change over time
and, consequently, its statistical properties such as the mean and variance remain
stable.

• Linearity: cash flows are proportional either to another (external) explanatory vari-
able or to a combination of (external) explanatory variables.

Surprisingly, little and/or contradictory empirical evidence on these assumptions has
been provided besides individual cases through time. Early on, negative normality tests
were reported in Homonoff and Mullins (1975) for the times series samples of a manu-
facturing company. Contrastingly, later on, Emery (1981) reported normally distributed
cash flow, after data transformation, for two out of three companies, and a small serial
dependence for all of them. Pindado and Vico (1996) provided negative normality and
independence results on 36 companies, but considering daily cash flow for only a single
month. Previous works also reported day-of-week and day-of-month effects on cash
flows, in line with the works of Stone and Wood (1977), Miller and Stone (1985), and
Stone andMiller (1987). Recently, Gormley andMeade (2007) described the time-series
from a multinational company with a non-normal distribution and serial dependence.
We consider that the evidence derived from these works is inconclusive due to: (i)

the disagreement between the conclusions of some of the works; (ii) the limited number
of companies analysed; and (iii) the short time range of the observations. Moreover,
none of the previous works considered the presence of non-linear patterns for forecast-
ing purposes. In this work, we provide an analysis of the statistical properties of 54
real cash flow data sets from small and medium companies in Spain as a representative
sample of the most common type of companies in Europe. Indeed, small and medium
companies contribute to 99.8% of all enterprises, 57.4% of value added, and 66.8% of
employment across the EU28 (Muller et al., 2015). To the best of our knowledge, this
is the most comprehensive empirical study on daily cash flow so far. We base this state-
ment on both the length and number of data sets, which amounts to 58005 observations
in total, with a minimum, average and maximum time range of 170, 737, 1508 working
days, respectively. In addition, we consider a wider range of statistical properties. A
further contribution of the present work is to make all the aforementioned data publicly
available online1. Finally, from a forecasting perspective, we also aim to identify the
family of forecasters that best accommodate to cash flow time-series data sets. To this
end, we propose a new and simple cross-validated test for non-linearity that provides
further knowledge to cash managers in their search for better forecasting models.
Our results show the unlikely occurrence of normality, absence of correlation and

stationarity in the data sets under study. These results are consistent with the cited re-
ports of Homonoff and Mullins (1975), based on only one time-series, and Pindado and
Vico (1996), based on a very short time range, raising doubts about the claim of indepen-

1. http://www.iiia.csic.es/ jar/54datasets3.csv

http://www.iiia.csic.es/~jar/54datasets3.csv
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dence. We also report that normality could not be achieved through removing outliers,
contrary to what was reported by Emery (1981), based on only three time-series. Our
analysis also confirms the influence of seasonality as suggested in Miller and Stone
(1985) and Stone and Miller (1987). Thus, we consider that our results provide stronger
evidence against normality, uncorrelatedness and stationarity than previous works. Note
that we do not claim that these results can be extrapolated to all kind of companies. On
the contrary, we provide further evidence against standard assumptions in cash man-
agement. This evidence may lead to consider a more data-driven approach such as
time-series forecasting in order to provide cash managers with expert systems in cash
management (Nedović and Devedžić, 2002).
In an attempt to achieve Gaussian and stationary time-seres, practitioners typically

use the Box-Cox transformation (Box and Cox, 1964), and time-series differencing
(Makridakis, Wheelwright and Hyndman, 2008). Furthermore, some kind of outlier
treatment is also a recommended practice. Then, we also study the impact of outlier
treatment by replacing them with linear interpolations between two consecutive obser-
vations. However, in our study, we find little benefit when these methods are applied to
our data sets. As a result, we point out the underlying question about data transformation
in relation to the properties of a time-series. Is it always possible to achieve a Gaussian
and linear time-series through data transformations? We rely here both on common
statistical tests and on our novel non-linearity test to answer this question and we find
that: (i) outlier treatment and Box-Cox transformation are not always enough to achieve
normality; (ii) outlier treatment produces mixed results in terms of noise reduction and
information loss; (iii) outlier treatment and Box-Cox transformations do not produce
linearity. These results suggest that non-linear models conform a justifiable alternative
for cash flow time-series forecasting, beyond the current conjectures of the literature.
The remaining of the paper is organized as follows. In Section 2, we provide a

statistical summary of the contributed 54 real cash flow data sets including normality,
correlation and stationarity. In Section 3, we propose a new cross-validated test for non-
linearity based on the comparison of a linear model and a non-linear model. Later, we
present in Section 4 detailed results on the impact of data transformations on linearity.
Finally, we provide some concluding remarks in Section 5.

2. Data summary

The data set contains daily cash flows from 54 different companies from the manufac-
turing and the service sector in Spain with annual revenue up to e10 million each. No
company from the primary sectors is included in the sample. We select only small and
medium companies since it is the most common size of companies in both Spain and
Europe (Muller et al., 2015). This data set covers a date range of about eight years and
is available online. An instance in the data set contains the following fields or columns:
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Table 1: Data sets statistical summary. Mean, standard deviation, minimum, maximum in thousands of e.

Id Length Null % Mean Std Kurtosis Skewness Min Max

1 856 35.7 0.01 3.38 594.81 22.37 −9.07 90.27
2 684 29.8 0.26 5.80 58.98 3.69 −56.51 62.66
3 856 8.5 0.36 35.35 163.62 6.28 −303.20 671.04
4 1201 34.9 −0.12 14.32 78.14 −6.30 −223.38 72.76
5 849 19.4 0.00 1.67 56.10 −0.48 −18.26 16.42
6 799 20.7 0.01 6.63 33.21 −2.42 −68.97 56.27
7 772 38.5 0.07 5.36 86.75 6.74 −24.41 82.91
8 695 21.7 0.05 3.15 14.27 −2.57 −24.21 11.31
9 852 18.8 0.73 56.54 18.92 −0.78 −411.41 473.36
10 744 13.2 0.12 6.95 70.63 0.60 −81.13 78.72
11 639 62.6 −0.05 8.56 391.86 −17.65 −191.53 30.74
12 503 2.6 0.48 35.30 449.38 20.70 −47.27 771.38
13 697 24.7 0.52 24.24 18.81 2.06 −99.39 227.45
14 604 4.6 0.10 13.23 8.51 1.05 −63.23 92.71
15 605 4.1 0.68 11.67 4.43 0.33 −54.75 55.61
16 596 6.4 0.01 1.46 107.82 6.68 −8.48 22.61
17 1102 25.1 0.58 13.31 215.97 11.96 −118.01 250.13
18 552 3.1 0.16 2.16 70.23 5.10 −16.14 26.36
19 503 2.4 −0.31 2.58 6.43 0.50 −15.06 15.28
20 848 27.8 0.02 1.07 96.19 3.86 −12.07 16.04
21 829 18.7 −0.06 5.99 33.36 −1.62 −70.00 53.17
22 494 1.6 −0.46 27.28 22.64 −1.96 −244.29 138.87
23 604 9.1 1.63 20.85 79.99 5.41 −124.19 269.27
24 1097 8.4 0.96 20.36 95.45 6.48 −73.33 317.85
25 587 10.9 0.49 13.94 119.60 6.93 −116.01 201.13
26 751 11.6 −0.02 1.77 15.73 0.15 −10.73 15.56
27 332 8.1 0.29 1.64 10.60 2.14 −4.36 11.84
28 855 5.1 0.00 4.64 13.83 1.77 −18.10 39.01
29 609 13.6 0.04 6.07 108.66 −6.35 −90.04 55.89
30 554 8.1 0.03 1.47 68.26 5.47 −4.81 19.82
31 372 29.6 0.37 8.05 31.46 −2.41 −80.44 34.95
32 1103 24.8 0.28 4.03 11.07 0.54 −25.76 24.50
33 854 31.0 −0.19 6.81 115.63 −1.74 −94.33 95.59
34 1508 11.5 −0.06 10.13 19.89 −2.32 −96.82 49.65
35 501 7.4 0.20 5.40 11.41 −0.58 −31.42 29.19
36 359 11.4 0.42 1.85 12.24 2.44 −7.87 11.84
37 361 3.0 −0.69 17.82 139.06 −1.38 −228.88 218.42
38 170 9.4 −1.20 7.10 43.34 −5.73 −61.93 19.66
39 1104 29.0 0.02 0.95 7.95 −0.07 −5.67 6.57
40 198 0.0 0.78 12.38 0.58 1.02 −25.63 36.91
41 341 17.6 −0.25 8.34 15.80 1.22 −44.29 64.34
42 566 11.0 0.01 1.82 308.62 −15.80 −37.02 7.48
43 750 3.2 0.34 13.10 7.66 −0.04 −65.84 73.40
44 287 4.2 0.52 11.46 81.19 −0.05 −118.74 120.34
45 1465 49.8 0.04 9.12 43.51 −2.89 −107.20 75.47
46 565 44.8 0.54 5.58 75.41 2.91 −51.16 73.83
47 503 4.4 1.98 46.81 46.03 1.37 −338.39 478.26
48 605 13.1 0.21 22.71 34.31 −1.68 −207.04 203.09
49 993 50.5 −0.08 1.36 27.18 −2.18 −10.78 12.73
50 605 45.0 −0.01 27.37 43.79 −2.01 −262.52 221.96
51 1225 0.2 15.09 96.96 2.77 0.12 −419.88 481.66
52 1225 0.4 8.94 49.39 36.23 2.81 −325.46 700.66
53 1223 39.7 0.47 9.13 203.12 −10.25 −196.88 38.48
54 1225 52.3 0.46 77.91 151.93 4.28 −1021.36 1532.10
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• Date: standardized YYYY-MM-DD dates from 2009-01-01 to 2016-28-08.
• Company: company identifier from 1 to 54.
• NetCF: daily net cash flow in thousands of e.
• DayMonth: categorical variable with the day of the month from 1 to 31.
• DayWeek: categorical variable with the day of the week from 1 (Monday) to 7
(Sunday).

Table 1 shows the statistical summary of daily net cashflow on non-holidays, grouped
by company. Small and medium companies are likely to experiment daily null cash
flows, meaning that no monetary movement is observed at a particular working day
even under regular activity. As a result, the occurrence of null cash flows is an impor-
tant characteristic of small and medium companies due to the size of companies. Indeed,
almost 30% of the companies in our data set present more than 25% of null cash flow
observations even at working days. This fact implies that a null cash flow prediction
will be right at least 25% of the times for this group of data sets. Therefore, two good
baseline forecasting models for comparative purposes would be an always-predict-null
or an always-predict-mean forecaster (Makridakis et al., 2008).
In addition, the average net cash flow shows that a high percentage of companies

present either positive or negative mean with the exception of companies 5 and 28.
High positive kurtosis indicates a peaked data distribution in comparison to the normal
distribution that has zero kurtosis. The skewness is a measure of the symmetry of the
data distribution. Negative skewness indicates that the left tail is longer, and positive
skewness indicates that the right tail is longer.

2.1. Normality

First, we study if our cash flows follow a Gaussian distribution. In fact, the observed
kurtosis and skewness can be used as a first normality test of the data distribution for
each company. Table 1 shows that no company presents zero kurtosis and skewness.
Only company 40, with kurtosis 0.58 and skewness 1.02, could be considered close to
normality. The proportion of null cash flows is also a strong evidence against normality.
Since this situation is likely to be common for SMEs and, due to the high proportion of
this type of companies in Europe, we believe that cash managers should test normality
before applying cash management models based on this assumption.
Two additional tests can be used to either verify or reject the hypothesis of normality:

the Shapiro-Wilk test for normality (Royston, 1982) and the Lilliefors (Kolmogorov-
Smirnov) test for normality (Lilliefors, 1967). The results from these two tests applied
to the original time-series (summarized in Table 2) allow us to reject the hypothesis of
normally distributed cash flows for all the companies in our data set (no exception).
However, the presence of correlation and possible changes in the mean of data sets may
limit the reliability of these tests. We overcome this problem by performing an addi-
tional normality test. More precisely, we check the normality of the residuals of fitting
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an ARMA model to each of the time-series as suggested by Ducharme and Lafaye de
Micheaux (2004). To obtain ARMA models, we follow the automatic fitting procedure
described in Hyndman and Khandakar (2008). Finally, we test the normality of the resid-
uals by means of Neyman (1937) smooth tests as recently proposed by Ducharme and
Lafaye de Micheaux (2004) and Duchesne, Lafaye de Micheaux and Tagne Tatsinkou
(2016). The results from Table 2 before any data transformation suggest the rejection of
the normality hypothesis.
As pointed out elsewhere (Emery, 1981; Pindado and Vico, 1996), a possible ex-

planation for non-normality could be the presence of abnormally high values or heavy
tails. Thus, we repeated the Shapiro-Wilk, the Lilliefors (Kolmogorov-Simirnov), and
the Neyman tests for normality, but now using a trimmed version of the net cash flow
time-series by deleting observations greater or lower than three times the sample stan-
dard deviation. No difference in the results of the tests was observed, confirming the
non-normality hypothesis beyond the conjectures of Emery (1981) and Pindado and
Vico (1996).
Non-normal residuals may be problematic in the estimation process when using lin-

ear models. Data transformations such as the Box and Cox (1964) transformation to nor-
mality represent a possible solution. Forecasts are then calculated on the transformed
data, but we must reverse the transformation to obtain forecasts on the original data,
resulting in two additional steps. However, these transformations are not always the
solution to the non-normality problem. Using both the original observations and the
trimmed version of our data sets, we proceeded to transform the data using a Box-Cox
transformation of the type:

y(λ) =

⎧⎨
⎩

(y+λ2)
λ1−1

λ1
if λ1 �= 0,

log(y+λ2) if λ1 = 0,
(1)

where y is the original time-series, and λ1 and λ2 are parameters. In these experiments,
we first set λ2 to minus two times the minimum value of the time-series to avoid prob-
lems with negative and zero observations. Box and Cox (1964) provided the profile like-
lihood function for λ1 and suggested to use this function as a way to tune this parameter.
Then, we follow the recommendations in Venables and Ripley (2013) to compute the
profile likelihood function for λ1, and we later select the value that maximizes the log-
likelihood function when applying a linear regression model of the time-series based
on day-of-month and day-of-week dummy variables. After a Box-Cox transformation
on the trimmed time-series, we repeated the Shapiro-Wilk, the Lilliefors (Kolmogorov-
Smirnov), and the Neyman smooth tests for normality obtaining again negative results
as shown in Table 2. A possible explanation of these results is that the correlational
structure of a transformed time-series closely depends on the original. A special case of
this feature for a logarithmic transformation can be found in Moriña, Puig and Valero
(2015). As a result, we must conclude that, even after Box-Cox transformation, the
normality hypothesis does not hold.
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Table 2: Normality tests. SW: Shapiro-Wilk; LKS: Lilliefors (Kolmogorov-Smirnov).

Before data transformation After trimming and Box-Cox transformation
Id SW p-value LKS p-value Neyman p-value SW p-value LKS p-value Neyman p-value
1 0.20 < 0.05 0.31 < 0.05 13165.72 < 0.05 0.76 < 0.05 0.23 < 0.05 2125.70 < 0.05
2 0.36 < 0.05 0.35 < 0.05 6539.22 < 0.05 0.55 < 0.05 0.35 < 0.05 3884.23 < 0.05
3 0.42 < 0.05 0.26 < 0.05 6452.81 < 0.05 0.76 < 0.05 0.26 < 0.05 839.58 < 0.05
4 0.45 < 0.05 0.32 < 0.05 10249.73 < 0.05 0.69 < 0.05 0.28 < 0.05 4463.36 < 0.05
5 0.54 < 0.05 0.24 < 0.05 5103.79 < 0.05 0.83 < 0.05 0.23 < 0.05 949.19 < 0.05
6 0.59 < 0.05 0.27 < 0.05 3694.65 < 0.05 0.78 < 0.05 0.26 < 0.05 768.83 < 0.05
7 0.48 < 0.05 0.32 < 0.05 4768.18 < 0.05 0.74 < 0.05 0.29 < 0.05 1223.53 < 0.05
8 0.64 < 0.05 0.33 < 0.05 1902.93 < 0.05 0.75 < 0.05 0.28 < 0.05 1724.23 < 0.05
9 0.54 < 0.05 0.39 < 0.05 2558.89 < 0.05 0.63 < 0.05 0.38 < 0.05 1563.74 < 0.05
10 0.41 < 0.05 0.24 < 0.05 6437.00 < 0.05 0.78 < 0.05 0.25 < 0.05 1715.64 < 0.05
11 0.17 < 0.05 0.39 < 0.05 10234.39 < 0.05 0.49 < 0.05 0.35 < 0.05 3164.46 < 0.05
12 0.11 < 0.05 0.37 < 0.05 9828.61 < 0.05 0.76 < 0.05 0.28 < 0.05 1171.58 < 0.05
13 0.59 < 0.05 0.33 < 0.05 2229.85 < 0.05 0.65 < 0.05 0.31 < 0.05 1111.39 < 0.05
14 0.84 < 0.05 0.17 < 0.05 353.45 < 0.05 0.89 < 0.05 0.16 < 0.05 127.69 < 0.05
15 0.89 < 0.05 0.16 < 0.05 216.99 < 0.05 0.91 < 0.05 0.16 < 0.05 148.40 < 0.05
16 0.53 < 0.05 0.22 < 0.05 3145.88 < 0.05 0.88 < 0.05 0.20 < 0.05 175.85 < 0.05
17 0.24 < 0.05 0.34 < 0.05 14724.84 < 0.05 0.69 < 0.05 0.31 < 0.05 2295.82 < 0.05
18 0.55 < 0.05 0.19 < 0.05 2660.82 < 0.05 0.89 < 0.05 0.19 < 0.05 242.65 < 0.05
19 0.92 < 0.05 0.10 < 0.05 456.82 < 0.05 0.97 < 0.05 0.10 < 0.05 54.93 < 0.05
20 0.53 < 0.05 0.24 < 0.05 4530.45 < 0.05 0.84 < 0.05 0.24 < 0.05 578.91 < 0.05
21 0.69 < 0.05 0.23 < 0.05 2015.07 < 0.05 0.84 < 0.05 0.22 < 0.05 588.95 < 0.05
22 0.67 < 0.05 0.22 < 0.05 1263.64 < 0.05 0.82 < 0.05 0.21 < 0.05 285.96 < 0.05
23 0.48 < 0.05 0.27 < 0.05 3365.92 < 0.05 0.77 < 0.05 0.27 < 0.05 500.78 < 0.05
24 0.49 < 0.05 0.29 < 0.05 5986.28 < 0.05 0.71 < 0.05 0.31 < 0.05 1345.56 < 0.05
25 0.36 < 0.05 0.28 < 0.05 5084.02 < 0.05 0.74 < 0.05 0.28 < 0.05 805.87 < 0.05
26 0.75 < 0.05 0.21 < 0.05 1271.00 < 0.05 0.84 < 0.05 0.21 < 0.05 476.22 < 0.05
27 0.81 < 0.05 0.17 < 0.05 3832.19 < 0.05 0.92 < 0.05 0.14 < 0.05 1034.84 < 0.05
28 0.77 < 0.05 0.21 < 0.05 1622.42 < 0.05 0.85 < 0.05 0.19 < 0.05 486.48 < 0.05
29 0.31 < 0.05 0.39 < 0.05 6782.20 < 0.05 0.55 < 0.05 0.37 < 0.05 3712.34 < 0.05
30 0.62 < 0.05 0.20 < 0.05 1988.27 < 0.05 0.86 < 0.05 0.21 < 0.05 196.55 < 0.05
31 0.69 < 0.05 0.18 < 0.05 1707.62 < 0.05 0.86 < 0.05 0.19 < 0.05 580.67 < 0.05
32 0.73 < 0.05 0.22 < 0.05 1838.10 < 0.05 0.80 < 0.05 0.22 < 0.05 741.53 < 0.05
33 0.24 < 0.05 0.37 < 0.05 10442.42 < 0.05 0.44 < 0.05 0.38 < 0.05 6581.93 < 0.05
34 0.68 < 0.05 0.27 < 0.05 2529.16 < 0.05 0.77 < 0.05 0.23 < 0.05 1048.52 < 0.05
35 0.74 < 0.05 0.24 < 0.05 1027.85 < 0.05 0.83 < 0.05 0.23 < 0.05 356.87 < 0.05
36 0.67 < 0.05 0.26 < 0.05 4331.31 < 0.05 0.80 < 0.05 0.23 < 0.05 1949.37 < 0.05
37 0.10 < 0.05 0.46 < 0.05 6768.47 < 0.05 0.18 < 0.05 0.46 < 0.05 5398.45 < 0.05
38 0.41 < 0.05 0.30 < 0.05 1695.03 < 0.05 0.68 < 0.05 0.21 < 0.05 371.92 < 0.05
39 0.82 < 0.05 0.24 < 0.05 497.26 < 0.05 0.87 < 0.05 0.23 < 0.05 191.56 < 0.05
40 0.89 < 0.05 0.21 < 0.05 50.00 < 0.05 0.95 < 0.05 0.15 < 0.05 2155.90 < 0.05
41 0.66 < 0.05 0.28 < 0.05 1117.07 < 0.05 0.73 < 0.05 0.27 < 0.05 507.15 < 0.05
42 0.21 < 0.05 0.36 < 0.05 8189.26 < 0.05 0.68 < 0.05 0.24 < 0.05 725.85 < 0.05
43 0.84 < 0.05 0.16 < 0.05 686.05 < 0.05 0.90 < 0.05 0.17 < 0.05 281.96 < 0.05
44 0.37 < 0.05 0.30 < 0.05 2611.31 < 0.05 0.71 < 0.05 0.30 < 0.05 427.38 < 0.05
45 0.42 < 0.05 0.36 < 0.05 11122.67 < 0.05 0.57 < 0.05 0.35 < 0.05 6084.71 < 0.05
46 0.34 < 0.05 0.37 < 0.05 5194.50 < 0.05 0.51 < 0.05 0.37 < 0.05 2620.56 < 0.05
47 0.40 < 0.05 0.30 < 0.05 3979.90 < 0.05 0.64 < 0.05 0.30 < 0.05 1869.51 < 0.05
48 0.52 < 0.05 0.34 < 0.05 2851.85 < 0.05 0.66 < 0.05 0.33 < 0.05 1247.03 < 0.05
49 0.38 < 0.05 0.46 < 0.05 6891.41 < 0.05 0.51 < 0.05 0.45 < 0.05 2739.27 < 0.05
50 0.30 < 0.05 0.39 < 0.05 6871.79 < 0.05 0.40 < 0.05 0.38 < 0.05 4855.75 < 0.05
51 0.93 < 0.05 0.11 < 0.05 320.22 < 0.05 0.94 < 0.05 0.12 < 0.05 293.46 < 0.05
52 0.80 < 0.05 0.15 < 0.05 1538.44 < 0.05 0.93 < 0.05 0.13 < 0.05 293.37 < 0.05
53 0.35 < 0.05 0.33 < 0.05 9770.54 < 0.05 0.62 < 0.05 0.29 < 0.05 3792.57 < 0.05
54 0.30 < 0.05 0.37 < 0.05 11389.52 < 0.05 0.45 < 0.05 0.37 < 0.05 7568.90 < 0.05
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2.2. Correlation and seasonality

In what follows, we test the correlation of cash flows and we also explore if season-
ality is present. Autoregressive Integrated Moving Average (ARIMA) models by Box
and Jenkins (1976), have been extensively used for time-series analysis and forecasting.
When dealing with time-series, the autocorrelation coefficient, rk, describes the relation-
ship between observations that are lagged k time periods (Makridakis et al., 2008). We
say that a time-series is not autocorrelated when the rk values for different lags are close
to zero. An example of an independent time-series is the so-called white-noise model
where each observation is made by adding a random component to a certain level.
An intuitive plot to assess correlation is the Poincaré map (Kantz and Schreiber,

2004), which is a scatter plot of the original time-series and a k-periods lagged time-
series as in Figure 2, which shows a lag of 1 day for time-series 1 and 2 from Table 1.
As a reference, we also include the Poincaré map for a white-noise and for a sinusoidal
time-series. A cloud of points suggests lack of correlation, as for time-series 1 and
white-noise, and the presence of any form suggests a more complex relationship, as for
time-series 2 and the sinusoidal. For comparative purposes, we present in Figure 3 the
classical plots showing autocorrelation and partial autocorrelation functions for different
lags within the range 1-20 with dashed horizontal lines representing 95% confidence
intervals. From the analysis of Figure 3, we note correlation for time-seres 1 and 2 at
lags 1 and 15, respectively.
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Figure 2: Poincaré map with lag 1 for time-series 1 and 2.
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Figure 3: Autocorrelation plots for time-series 1 and 2.

A more general approach is to consider a set of the first rk values as a whole as in the
Ljung and Box (1978) test, which we applied to the original time-series and produced
mixed results. More precisely, we found that the null hypothesis of independence could
not be rejected in 24 out of 54 companies as summarized in Table 3. These results
imply that some kind of serial correlation is likely to be present in the case of companies
presenting a certain degree of autocorrelation in the sample. A plausible type of serial
correlation is seasonality, that is, the existence of a pattern that repeats itself over fixed
time intervals in the data (Makridakis et al., 2008). It can be identified by significant
autocorrelation coefficients. Seasonal trend decomposition methods Cleveland et al.,
1990), seasonal ARIMA models (Box and Jenkins, 1976; Franses and Van Dijk, 2005)
or linear (and non-linear) regression models based on seasonal variables are available
options to deal with seasonality. In cash flow forecasting, the distribution approach by
Miller and Stone (1985) also deserves to be mentioned.
As mentioned in the introduction, previous works by Emery (1981), Miller and Stone

(1985), Stone and Miller (1987), and Pindado and Vico (1996), reported the influence of
day-of-month and day-of-week effects on cash flow patterns. Here, we test the presence
of seasonality by fitting a regression model on raw daily cash flows using day-of-month
and day-of-week dummy variables. To avoid co-linearity issues in regression, we use
thirty day-of-month dummy variables from the 2nd to the 31st day of the month and four
day-of-week variables fromMonday to Thursday up to a total of 34 regression variables.
At each time step t, predictor xti is set to one if the corresponding day-of-month is i, zero
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otherwise, and xt j is set to one if the corresponding day-of-week is j, with j ranging from
1 for Monday to 4 for Thursday. Mathematically, the linear regression model used to
test seasonality is expressed as follows:

yt =
31∑
i=2

βixti+
4∑
j=1

β jxt j+ ε. (2)

Table 3 reports, on the one hand, the Ljung-Box correlation test applied to raw data
and, on the other hand, the F-statistic, the p-value and the coefficient of determination
R2, derived from the regression model. One may expect that the rejection of the correla-
tion null hypothesis results in better regressions. Our results, however, show a different
behavior. Non-linear patterns, non-periodical temporal correlations, and the effect of
outliers become possible explanations as we will see below.

2.3. Stationarity

In this section, we analyse if cash flows from our data set can be labelled as stationary.
More precisely, we focus on weak stationarity that considers the change over time of the
first (mean) and second moment (variance) of a random process. We can visually assess
stationarity by inspecting a time-series plot as the one shown in Figure 1. Virtually,
every process we find in nature is non-stationary, since its parameters depend on time
(Kantz and Schreiber, 2004). However, a minimum requirement is that basic statistical
properties of a distribution, such as mean and variance, remain constant over time, when
measured through appropriately long time windows. It is important to highlight that sea-
sonality is a particular case of non-stationarity, at least, within each periodic fluctuation
when we focus on short-term changes in parameters. In what follows, we pay attention
to long-term changes (periods longer than a month) as a way to assess stationarity.
Following the recommendations in Kantz and Schreiber (2004), we perform a sta-

tionarity test based on the fluctuations of a sample mean and variance. More precisely,
we compute the sample mean and variance of each original time-series by months and
obtain the standard errors for both. If the observed fluctuations of the running mean and
variance are within these errors, then we consider the time-series stationary. The results
from this test shows that none of the time-series is stationary. These results are consis-
tent with the fact that most of the p-values of the regression models used for checking
seasonality are below 0.05 as summarized in Table 3.
One way of removing non-stationarity is time-series differencing, which is defined

as the change between two consecutive observations. Similarly, seasonal differencing is
the change between corresponding observations from two consecutive seasonal periods.
Since the presence of seasonality is likely (see Table 3), we next explore three alternative
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Table 3: Correlation and seasonality test results.

Id Ljung-Box Test Statistic p-value F-statistic p-value R2

1 Non-rejected 11.05 1.00 1.99 < 0.05 0.08
2 Rejected 65.99 < 0.05 1.05 0.39 0.05
3 Non-rejected 34.47 0.72 1.87 < 0.05 0.07
4 Rejected 120.15 < 0.05 1.51 < 0.05 0.04
5 Rejected 120.91 < 0.05 1.85 < 0.05 0.07
6 Non-rejected 46.96 0.21 1.12 0.29 0.05
7 Rejected 166.97 < 0.05 5.47 < 0.05 0.20
8 Rejected 67.15 < 0.05 0.79 0.80 0.04
9 Rejected 97.32 < 0.05 5.30 < 0.05 0.18
10 Rejected 145.00 < 0.05 2.04 < 0.05 0.09
11 Non-rejected 10.57 1.00 0.97 0.51 0.05
12 Non-rejected 3.25 1.00 0.98 0.51 0.07
13 Rejected 139.26 < 0.05 5.21 < 0.05 0.21
14 Rejected 74.58 < 0.05 7.13 < 0.05 0.30
15 Rejected 87.67 < 0.05 1.92 < 0.05 0.10
16 Non-rejected 38.12 0.56 4.31 < 0.05 0.21
17 Non-rejected 14.49 1.00 4.91 < 0.05 0.14
18 Rejected 57.25 < 0.05 2.99 < 0.05 0.16
19 Rejected 75.16 < 0.05 2.58 < 0.05 0.16
20 Non-rejected 43.37 0.33 2.71 < 0.05 0.10
21 Non-rejected 46.65 0.22 1.37 0.08 0.06
22 Non-rejected 33.35 0.76 1.49 < 0.05 0.10
23 Rejected 68.36 < 0.05 5.60 < 0.05 0.25
24 Non-rejected 41.30 0.41 15.41 < 0.05 0.33
25 Non-rejected 33.35 0.76 4.23 < 0.05 0.21
26 Rejected 95.79 < 0.05 1.22 0.18 0.05
27 Non-rejected 44.66 0.28 1.24 0.18 0.12
28 Rejected 112.21 < 0.05 5.64 < 0.05 0.19
29 Non-rejected 42.55 0.36 1.37 0.08 0.08
30 Rejected 107.46 < 0.05 6.18 < 0.05 0.29
31 Non-rejected 47.51 0.19 1.25 0.16 0.11
32 Rejected 105.26 < 0.05 4.81 < 0.05 0.13
33 Rejected 201.50 < 0.05 1.57 < 0.05 0.06
34 Rejected 130.53 < 0.05 11.61 < 0.05 0.21
35 Rejected 66.04 < 0.05 0.99 0.49 0.07
36 Non-rejected 44.66 0.28 1.82 < 0.05 0.16
37 Rejected 96.75 < 0.05 1.58 < 0.05 0.14
38 Non-rejected 45.37 0.26 1.06 0.39 0.21
39 Rejected 192.30 < 0.05 6.11 < 0.05 0.16
40 Rejected 78.81 < 0.05 0.86 0.68 0.15
41 Non-rejected 39.05 0.51 1.72 < 0.05 0.16
42 Non-rejected 22.85 0.99 3.90 < 0.05 0.20
43 Rejected 80.56 < 0.05 2.96 < 0.05 0.12
44 Non-rejected 19.56 1.00 1.89 < 0.05 0.20
45 Rejected 82.69 < 0.05 1.26 0.15 0.03
46 Non-rejected 32.23 0.80 1.32 0.11 0.08
47 Non-rejected 35.67 0.67 0.90 0.63 0.06
48 Non-rejected 42.53 0.36 1.71 < 0.05 0.09
49 Rejected 105.02 < 0.05 26.15 < 0.05 0.48
50 Rejected 135.48 < 0.05 1.24 0.17 0.07
51 Rejected 131.27 < 0.05 16.66 < 0.05 0.32
52 Rejected 66.68 < 0.05 5.01 < 0.05 0.13
53 Non-rejected 18.62 1.00 1.59 < 0.05 0.04
54 Rejected 129.11 < 0.05 0.88 0.67 0.02
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seasons (or periods) to apply differencing: 1) one day, equivalent to no seasonality; 2)
five days, to account for day-of-week seasonality; and 3) twenty days, to account for
day-of-month seasonality. Finally, differencing can be applied only once to data, twice
or a number n of times defining the order of differencing. In Table 4, we summarize
stationarity results for our data set in terms of the number of time-series that are labelled
as stationary in mean and variance according to the test described above. Only a small
fraction of time-series can be considered stationary in mean (but not in variance) after
first and second-order differencing. From this analysis, we conclude that our cash flow
time-series are non-stationary, even after differencing.

Table 4: Percentage of time-series labelled as stationary in mean and variance.

Differencing Zero-order First-Order Second-Order

Seasonality Mean Var Mean Var Mean Var

1 0 0 18.5 0 18.5 0
5 0 0 3.7 0 5.6 0
20 0 0 0 0 0 0

2.4. Discussion

Our results show that the widely extended hypothesis of cash flow normality is not
present in our data sets. The presence of high abnormal values does not explain this
behavior since non-normality persisted after removing these abnormal values. Non-
linearity could be a possible explanation as we will see below. We also reported mixed
results on autocorrelation and the influence of day-of-month and day-of-week effects
on cash flow along the lines of the literature. We additionally report that common solu-
tions to non-normality and non-stationarity such as data transformation and differencing
produced little benefit when applied to our time-series. Since seasonality and serial cor-
relation are also present in our data set, we further explore the usefulness of alternative
forecasting models. More precisely, we next study linearity and data transformation as
an additional part of our empirical analysis for cash flow forecasting.

3. A simple cross-validated test for non-linearity

Most forecasting models are linear for computational convenience. However, non-linear
patterns are likely to be present in finance and business time-series. A time-series linear
model is defined as a variable yt that depends on the additive contribution of a number
of explanatory variables in vector xtxtxt for any time t as follows:

yt = βββTxtxtxt+ et (3)
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where βββT is a transposed vector of coefficients, and et is the error or the residual compo-
nent. An alternative and more general model can also be considered:

yt = g(xtxtxt)+ εt (4)

where g(xtxtxt) is any function that aims to describe the underlying time-series. By consid-
ering non-linear relationships between the set of predictors and the cash flow dependent
variable, more complex patterns such as interactions between the day-of-week and the
day-of-month may be captured.
Different tests of linearity can be found in Ramsey (1969), Keenan (1985), Lee,

White and Granger (1993), and Castle and Hendry (2010). Basically, all of them follow
a common approach: first, they choose a function g(xtxtxt) in equation (4) including linear
and non-linear terms and, second, they test for the significance of the non-linear terms.
However, these approaches are not suitable for forecasting purposes owing to the fol-
lowing reasons: (i) the assumption of a specific form g(xtxtxt) for the regression equation
such as quadratic, cubic or exponential forms; (ii) cross-validation is neglected.
If we relax the assumption of linearity, different non-linear models such as ran-

dom forests (Breiman, 2001), neural networks (Hornik, Stinchcombe and White, 1989;
Zhang, Patuwo and Hu, 1998), or radial basis functions (Broomhead and Lowe, 1988),
could also be considered. However, the consideration of non-linear functions may lead
to overfitting to the original time-series. To prevent this problem, we propose the use of
time-series cross-validation. Cross-validation is a method to assess the predictive per-
formance of a forecasting model that circumvents the problem of overfitting the data by
testing the accuracy of the model on subset of data not used in the estimation (Hyndman
and Athanasopoulos, 2013). As a result, we here propose a simple cross-validated test
for non-linearity based on the following steps:

1. Estimate two alternative forecasting models, one linear and another one non-linear.
2. Cross-validate the predictive accuracy of both models with respect to a baseline.
3. Label as trivial2 if both models are significantly worse than the baseline.
4. Label as non-linear if the error of the non-linear model is significantly lower than
that of the linear model. Otherwise, label as linear as described in Figure 4.

Since we do not assume any distribution for the forecasting results, we use the two-
sided Wilcoxon rank-based for statistically significant differences in performance be-
tween models. More precisely, we test the null hypothesis that the distribution of the
difference is symmetric about zero with a 95% confidence interval (Wilcoxon, Katti and
Wilcox, 1970). Approximate p-values are computed based on the asymptotic distribu-
tion of the two-sided Wilcoxon test statistic and used to label data sets as detailed in
Algorithm 1.

2. Trivial is here used with the meaning of very little value with respect to a basic standard.
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Figure 4: Simplified flow chart for our cross-validated test for non-linearity.

Algorithm 1 Algorithm for a simple cross-validation test for non-linearity
1: Input: Cash flow data set of T instances, minimum number k of instances to estimate a

model, baseline m0, linear model m1, non-linear model m2, prediction horizon h, level of
significance α.

2: Output: Average prediction error, statistic for the difference in mean errors, confidence
interval.

3: for i = 1,2, . . . ,T − k− h+ 1 do
4: Select the instances from time k+ i to k+ h+ i− 1, for the test set;
5: Estimate m0 with instances at times 1,2, . . . ,k+ i− 1;
6: Estimate m1 with instances at times 1,2, . . . ,k+ i− 1;
7: Estimate m2 with instances at times 1,2, . . . ,k+ i− 1;
8: Compute test errors ε0, ε1, ε2 from time k+ i to k+ h+ i− 1;
9: Compute average h-step errors ε0(h), ε1(h), ε2(h);

10: Test for α significant differences between ε0(h), ε1(h), ε2(h);
11: if ε0(h)< ε1(h) and ε0(h)< ε2(h) then
12: Label as trivial;
13: else if ε2(h)< ε1(h) then
14: Label as non-linear;
15: else
16: Label as linear.
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A common practice to assess the usefulness of forecasts derived from any model is to
compare its accuracy to that of a baseline forecasting model. The use of a baselinemodel
allows us to label our data sets as trivial if neither the linear model nor the non-linear
model are able to improve the accuracy of the baseline. We here report accuracy results
with respect to a mean forecaster, meaning that forecasts are always the average of all
past observations. We also tried with an additional baseline forecaster using the last
observed value as a forecast (persistence model) with much worse results in comparison
to the mean forecaster.
We consider the minimum length k to estimate a model as the 80% of the oldest

instances forming the training set. The remaining 20% of the instances form the test
set for cross-validation. Initially, both the linear and the non-linear model are estimated
using the first 80% of the instances. Then, forecasts for a prediction horizon up to 20
days are computed using the estimated models and squared errors are recorded. Then,
forecasting accuracy is evaluated on a rolling basis, since both the last observation of
the training set and the first observation of the test set roll forward in time. As a result,
forecasting errors are recorded for each remaining observation in the test set resulting
into two paired error samples, one for the linear model and one for non-linear model.
A critical point when using our cross-validated test for non-linearity is the selection

of both the linear and the non-linear forecast model. In essence, our test is a comparative
tool based on forecasting accuracy as a proxy for non-linearity. Given a set of explana-
tory variables, a linear label result from our test implies that the non-linear model is not
able to capture non-linearity. However, chances are that alternative non-linear models
might perform differently. In this sense, if the time-series is not a white-noise process,
then the search for a more informative set of features is meant to play a key role. As
a result, multiple runs of our test are necessary to discard/assess non-linearity by using
alternative linear and non-linear models
For illustrative purposes, we here restrict ourselves to a linear regression model and

a non-linear random forest model, both using day-of-month and day-of-week variables
as predictors. Salas-Molina et al. (2017) report that these two models perform signifi-
cantly better than autoregressive models when producing forecasts for usual prediction
horizons up to one hundred days. Here, we are interested in comparing forecasting
models that perform well for a wide range of planning horizons from the information
available at some point in time. Thus, we expect that forecasting models based on sea-
sonal variables capture patterns for common prediction horizons better than time-series
models based on previous observations due to lack of relevant information as reported
by Salas-Molina et al. (2017).
In the case of the linear regression model, each instance contains 34 dummy predic-

tor variables, 30 for day-of-month and 4 for day-of week, and a cash flow observation.
This linear regression model is the same that we used in Section 2.2 to check seasonal-
ity. In the case of random forests, each instance contains two categorical variables, one
for day-of-month and one for day-of-week. Random forests are ensembles of slightly
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Figure 5: A basic decision tree. DOM = Day-of-month; DOW = Day-of-week.

different decision trees (Ho, 1998; Breiman, 2001). An ensemble methodology is able
to construct a predictive model by integrating multiple trees in what is called a decision
forest (Dietterich, 2000). Decision trees split the input space in subsets based on the
value of features such as the day-of-month and day-of-month. In the example in Fig-
ure 5, for days comprised between the 25th (node S1) and the 29th of each month (node
S2) occurring on Friday (node S3), the predicted cash flow is -1.
Recent examples of time-series forecasting using random forests can be found in

Booth, Gerding andMcgroarty (2014), Zagorecki (2015) and Salas-Molina et al. (2017).
Summarizing, random forests are used to forecast variables based on an ensemble of
different trees. Unlike linear regression, random forests allow to capture (if any) more
complex relationships between predictor variables allowing us to identify possible non-
linearities in the underlying cash flow process represented by our sample data sets.
In Table 5, we summarize results only for data sets that can be labelled as trivial

because neither the linear model nor the non-linear model were able to significantly beat
the baseline forecaster. As described in Algorithm 1, we label time-series as linear when
lower normalized squared errors are obtained using the regression model. Similarly, we
label time-series as non-linear when lower errors are obtained using the random forest
model. In addition, we test the significance of the difference in performance between
regression and random forest models. When p-values from these tests are below 0.05,
we consider that sample errors for the linear and the non-linear model are significantly
different.
From those time-series in which the absence of correlation could no be rejected (see

Ljung-Box test at Table 3), 20 out of 24 were labelled as trivial. On the other hand,
only 6 of them were labelled as non-linear according to our cross-validated definition.
As mentioned above, these results depend on the selected forecasting models. Instead
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Table 5: Results of the test for non-linearity. Reg NSE = Regression normalized squared error; RF NSE =
Random forest normalized squared error.

Id Reg NSE RF NSE Statistic p-value Triviality Linearity

1 0.99 1.00 26 < 0.05 Non-Trivial Linear
3 0.99 1.01 8 < 0.05 Non-Trivial Linear
4 1.00 1.01 0 < 0.05 Non-Trivial Linear
7 0.81 0.83 0 < 0.05 Non-Trivial Linear
9 0.90 0.93 3 < 0.05 Non-Trivial Linear
13 0.86 0.88 13 < 0.05 Non-Trivial Linear
14 0.76 0.77 45 < 0.05 Non-Trivial Linear
16 0.85 0.86 64 0.13 Non-Trivial Linear
18 0.86 0.88 63 0.12 Non-Trivial Linear
19 0.96 0.94 182 < 0.05 Non-Trivial Non-linear
20 0.99 0.98 209 < 0.05 Non-Trivial Non-linear
23 0.78 0.79 78 0.33 Non-Trivial Linear
24 0.73 0.79 0 < 0.05 Non-Trivial Linear
25 0.77 0.81 21 < 0.05 Non-Trivial Linear
28 0.84 0.90 0 < 0.05 Non-Trivial Linear
29 0.99 0.99 30 < 0.05 Non-Trivial Linear
30 0.73 0.80 5 < 0.05 Non-Trivial Linear
33 0.94 0.93 166 < 0.05 Non-Trivial Non-linear
34 0.97 0.95 172 < 0.05 Non-Trivial Non-linear
39 0.96 0.96 36 < 0.05 Non-Trivial Linear
42 0.88 0.87 149 0.11 Non-Trivial Linear
43 0.99 0.96 210 < 0.05 Non-Trivial Non-linear
48 1.01 0.99 191 < 0.05 Non-Trivial Non-linear
49 0.63 0.65 7 < 0.05 Non-Trivial Linear
51 0.77 0.80 0 < 0.05 Non-Trivial Linear
52 0.94 0.94 116 0.70 Non-Trivial Linear

of claiming that random forests are able to better capture non-linear patterns than alter-
native models, we encourage practitioners to consider additional combinations of both
linear and non-linear models.
One may assume either linearity or non-linearity from the results of our non-linearity

test, but it is important to analyse the robustness of these results to both the presence of
outliers and the impact of other data transformations.

4. The impact of data transformations

In this section, we aim to analyse the impact of outlier treatments on noise reduction, as
intended, and on information loss, as an undesirable effect. We also study the influence
of Box-Cox data transformations on the results of our cross-validated non-linearity test.
Detection and treatment of outliers is an ongoing issue in data mining (Rousseeuw and
Leroy, 1987; Hodge and Austin, 2004). An outlier is an observation that appears to
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significantly deviate from other members of the sample in which it occurs (Grubbs,
1969). Outliers arise due to changes in systems, measurement errors or simply due to
deviations from average activity. It is also important to note that an outlier may also be
the most interesting part of the data.
On the one hand, from the set of cash flow time-series labelled as trivial, some of

them may be labelled as non-trivial after removing outliers as a way of noise reduction.
On the other hand, from those data sets labelled as non-trivial, some of them may be la-
belled as trivial due to the information loss produced by the treatment. We here measure
the effect of removing outliers on the prediction error using time-series cross valida-
tion for different thresholds of outlier replacement. For each data set, we progressively
identify as outliers cash flow observations greater than 5, 4, and 3 times the standard
deviation in a training set with the 80% oldest observations. We replace outliers with
a linear interpolation of the previous and the posterior observation and we proceed as
detailed in Algorithm 1 to cross-validate triviality and linearity. The results from this
analysis are summarized in Table 6, where global performance after treatments is as-
sessed by averaging noise (error) reduction. Note that some time-series in Table 6 are
not present in Table 5 because outlier treatment and Box-Cox transformation produced
a improvement in accuracy.
By following this procedure, we identify data sets 5, 10, 17, 32, 44 and 54 (6 out

of 28), initially labelled as trivial that, after outlier treatment, can be labelled as non-
trivial due to noise reduction. Similarly, data sets 4 and 48 that were initially labelled
as non-trivial can be labelled as trivial after outlier treatment due to information loss.
If we measure noise reduction by the error reduction and information loss by the error
increase, then we can assess the impact of outlier treatment. Following this approach, we
obtained mixed results for non-trivial data sets after outlier treatment: an average noise
reduction of 22%, and an average information loss of 14%. It is important to recall that
unexpected observations are often the most interesting part of the data to predict, e.g.,
when the goal is to forecast unusual but genuine cash flows.
Non-linearity and outliers are closely linked. Indeed, Castle and Hendry (2012) hy-

pothesized that non-linear functions can align with outliers, causing functions to be con-
sidered relevant spuriously, which can be detrimental for generalizing and forecasting.
If this hypothesis is correct, the relative forecasting ability of a linear model in compar-
ison to a non-linear model would increase as the presence of outliers in a training set is
reduced. From the set of time-series finally labelled as non-trivial, data sets 33, 34 and
54, initially labelled as non-linear changed their labels to linear. Surprisingly, data sets
17, 18, 23, 25, 39, 44 and 49 (7 out of 30), could be labelled as non-linear after outlier
treatment. Except for data sets 17 and 44, in all cases there was information loss, i.e.,
error increase, suggesting that non-linear models can deal better with information loss.
We also considered a Box-Cox transformation to analyse if this kind of data trans-

formation may influence the results from our cross-validated non-linearity test. From
the set of non-trivial data sets we compare linearity labels, first, after outlier treatment,
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Table 6: Results of the test for non-linearity after outlier treatment and Box-Cox transformation. Changes
in labels are marked with ∗.

After outliers After outliers and Box-Cox
Id Triviality Linearity Noise reduction Linearity Noise reduction

1 Non-Trivial Linear 0.00 Non-linear∗ −0.01
3 Non-Trivial Linear 0.02 Non-linear∗ 0.00
5 Non-Trivial Non-linear 0.40 Non-linear 0.41
7 Non-Trivial Linear −0.10 Linear −0.13
9 Non-Trivial Linear −0.04 Linear −0.04
10 Non-Trivial Non-linear 0.46 Non-linear 0.47
13 Non-Trivial Linear −0.18 Linear −0.21
14 Non-Trivial Linear −0.05 Linear −0.07
16 Non-Trivial Linear −0.18 Linear −0.17
17 Non-Trivial Non-linear∗ 0.71 Non-linear 0.71
18 Non-Trivial Non-linear∗ −0.20 Non-linear −0.20
19 Non-Trivial Non-linear −0.03 Non-linear −0.04
20 Non-Trivial Non-linear −0.02 Non-linear −0.02
23 Non-Trivial Non-linear∗ −0.22 Non-linear −0.22
24 Non-Trivial Linear −0.20 Linear −0.06
25 Non-Trivial Non-linear∗ −0.26 Non-linear −0.25
28 Non-Trivial Linear −0.05 Linear −0.04
29 Non-Trivial Linear 0.07 Non-linear∗ 0.00
30 Non-Trivial Linear −0.06 Linear −0.04
32 Non-Trivial Non-linear 0.18 Non-linear 0.21
33 Non-Trivial Linear∗ −0.12 Linear −0.11
34 Non-Trivial Linear∗ 0.12 Linear 0.09
39 Non-Trivial Non-linear∗ −0.02 Linear∗ −0.01
42 Non-Trivial Linear −0.23 Linear −0.14
43 Non-Trivial Non-linear 0.04 Non-linear 0.03
44 Non-Trivial Non-linear∗ 0.48 Non-linear 0.82
49 Non-Trivial Non-linear∗ −0.56 Non-linear −0.61
51 Non-Trivial Linear −0.03 Linear −0.03
52 Non-Trivial Linear 0.01 Linear 0.03
54 Non-Trivial Linear∗ 0.17 Linear 0.17

Average performance 0.00 0.02

and second, after outlier treatment and Box-Cox transformation as described in equation
(1). In addition, we compare information loss computed as the difference between the
sum of errors of the linear and non-linear forecasting models before and after the outlier
treatment. A positive value means noise reduction or error reduction while a negative
value means information loss or error increase. Results from Table 6 show a similar
performance after Box-Cox transformation since the change in labels occurs in data sets
with similar linear and non-linear noise reduction.
Table 7 shows the impact of outlier treatment and data transformation on the clas-

sification of time-series derived from our cross-validated non-linearity summarized in
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Table 7: Number of time-series data sets and their labels after transformation. OT=Outlier treatment;
DT=Data transformation.

Label Raw data After OT After OT and DT

Trivial 28 24 24
Non-trivial 26 30 30

-Linear 20 17 15
-Non-linear 6 13 15

Table 6. The high number of trivial data sets may be caused by the general inherent ran-
domness of cash flows. In addition, an increase in the number of time-series classified
as non-trivial after treatments suggests a positive impact. However, non-linear models
seem to obtain a higher benefit from treatments. First, outlier treatment produced a small
improvement in non-triviality but also an outstanding increase in non-linearity. Second,
after both outlier treatment and Box-Cox data transformation, resulted in similar results
but with better performance for non-linear models.
It is worth mentioning that global performance in terms of error reduction remained

unchanged after outlier treatment and slightly improved after data transformation (see
Table 6). Thus, we conclude that: (i) common data transformations had little impact on
our time-series in terms of linearity and accuracy; and (ii) outlier treatment and Box-Cox
transformation were unable to transform non-linear into linear cash flows.

5. Concluding remarks

Small and medium companies contribute to a high percentage of all enterprises, value
added and employment in Europe. In this paper, we provide a complete empirical study
of the statistical properties of daily cash flows based on 54 real-world time-series for
small and medium companies. To the best of our knowledge, this work is the most com-
prehensive empirical study on daily cash flows so far in terms of the range of statistical
properties considered, and also in terms of the number and the length of the data sets.
Particularly, we focus on the implications of our analysis for forecasting due to its key
role in cash management. An additional contribution of this work is to make all data
publicly available online for further research.

5.1. Summary of findings

Our results show that the extended hypotheses of normal, stationary and uncorrelated
cash flows are hardly present in our cash flow data set. Thus, we conclude that the
standard assumptions of normality, stationarity and uncorrelatedness that have been ex-
tensively used in the cash management literature must be verified before the deployment
of any cash management model based on them. We do not claim that these results can be
generalized to all small and medium companies. Indeed, we hypothesize that companies
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with a larger number of daily cash flowsmay be closer to satisfy these usual assumptions
than small and medium companies. This hypothesis represents an interesting subject of
future research and we here set the path to this research by providing the methods to
verify such hypothesis. We also highlight that common solutions to non-normality and
non-stationarity such as data transformation and differencing produce little benefit when
applied to our data sets, with the risk of losing important information on extreme cash
flows. Alternative and more complex data transformations are nevertheless an option to
consider in further research to achieve Gaussian cash flows.
In an attempt to discover the attributes of actual-world cash flows, we also studied the

presence of non-linearity. To this end, we proposed a new simple test for non-linearity
with two main advantages in comparison to alternative approaches. First, our test does
not assume any non-linear function. Second, it is based on time-series cross validation
to increase robustness and to avoid overfitting. It is important to note that our cross-
validated definition of non-linearity depends on the alternative models considered, one
linear and another one non-linear.
Our cross-validated non-linearity test labelled as either trivial, linear or non-linear

our cash flow data set after outlier treatment resulting in an important increase in the
number of data sets labelled as non-linear. After both outlier treatment and Box-Cox
transformation, linearity could not be achieved and non-linear models showed more
robust. However, the overall impact of data transformations on forecasting performance
was limited. The application of our test to provide further evidence on these topics when
using alternative cash flow data sets represents a natural extension of our work.

5.2. Implications

Our results raise questions about two common assumptions in cash flow time-series
since we found that: (i) the usual assumption of normality, absence of correlation and
stationarity is hardly present; and (ii) common data transformations such as outlier treat-
ment and Box-Cox transformation have little impact on normality and linearity. Con-
trary to the rather common assumption in the literature, these results imply that neither it
is always possible to achieve a Gaussian, white-noise and linear time-series through data
transformation nor it is always desirable due to information loss. In this paper, we are
interested in models that produce forecasts for a wide range of planning horizons. Thus,
autoregressive and linear models should be considered as an initial step towards more
realistic ones which are better adapted to real cash flow situations. The results from our
cross-validated test for non-linearity suggest that non-linear models represent a justifi-
able alternative for time-series forecasting. Moreover, since our test is both model and
outlier dependent, a promising line of future work is the integration of outlier treatment
in the test itself in an attempt to assess noise reduction or information loss.
We claim that a number of preliminary steps are necessary in cash flow forecast-

ing before model selection: (i) statistical summary including normality, correlation and
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stationarity; (ii) impact of data transformations such as outlier treatment and Box-Cox
transformation; (iii) non-linearity test to determine the type of model which is expected
to deliver a better performance. This process is not limited to daily cash flow, since it
can also be applied to any other time-series data set when cross-validation is required.
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