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Hierarchical models with normal and conjugate
random effects: a review

Geert Molenberghs1,2,∗, Geert Verbeke2,1 and Clarice G.B. Demétrio3

Abstract

Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) proposed a general
framework to model hierarchical data subject to within-unit correlation and/or overdispersion. The
framework extends classical overdispersion models as well as generalized linear mixed models.
Subsequent work has examined various aspects that lead to the formulation of several extensions.
A unified treatment of the model framework and key extensions is provided. Particular extensions
discussed are: explicit calculation of correlation and other moment-based functions, joint mod-
elling of several hierarchical sequences, versions with direct marginally interpretable parameters,
zero-inflation in the count case, and influence diagnostics. The basic models and several exten-
sions are illustrated using a set of key examples, one per data type (count, binary, multinomial,
ordinal, and time-to-event).

MSC: 62P10, 97K80.

Keywords: Conjugacy, frailty, joint modelling, marginalized multilevel model, mixed model, overdis-
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1. Introduction

Parametric or semi-parametric modelling of univariate non-Gaussian outcomes is often
done within the generalized linear model (GLM) framework (Nelder and Wedderburn,
1972; McCullagh and Nelder, 1989; Agresti, 2002), which rests on the exponential
family. Commonly encountered outcome types include categorical (binary, binomial,
ordinal, etc.), count, and time-to-event outcomes, for which modelling typically, though
not always, rests upon the Bernoulli, Poisson, and exponential/Weibull distributions,
respectively. A key feature of exponential family distributions is the so-called mean-
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variance relationship, i.e., the fact that the variance is a deterministic function of the
mean. For example, for Bernoulli outcomes with success probability μ = π, the vari-
ance is v(μ) = π(1− π), for counts using Poisson assumptions v(μ) = μ and for the
exponential model v(μ) = μ2. However, for many outcome types, empirically observed
data can contradict this relationship, in the sense that the observed variance may be
higher or lower than what follows from the model formulation; these are referred to as
overdispersion and underdispersion, respectively. The two phenomena combined are
sometimes referred to as extra-model-dispersion. Especially in the somewhat older lit-
erature, more attention was given to overdispersion than to underdispersion. Hinde and
Demétrio (1998ab) provide early overviews of (semi-)parametric approaches for deal-
ing with overdispersion. Well-known models include the beta-binomial (Skellam, 1948;
Kleinman, 1973) for binary and binomial data, and the negative binomial model (Bres-
low, 1984; Lawless, 1987) for counts. These models can be generated by assuming
the so-called natural parameter to follow a carefully chosen distribution. For example,
the beta-binomial models follow from assuming the outcomes follow a binomial dis-
tribution with parameter drawn from a beta distribution; the negative binomial model
follows from a Poisson model with gamma distributed parameter. The resulting mod-
els have elegant parametric expressions and are relatively easy to interpret, because the
outcome and random-effects distributions are conjugate, a precise definition of which is
given in Section 4.2. Other solutions to accommodating overdispersion include mixture
modelling and specific models for zero-inflated Poisson models (Ridout, Demétrio and
Hinde, 1998; Böhning, 2000; McLachlan and Peel, 2000).
Nowadays, it is very common to encounter aforementioned data types in a hierar-

chical context, such as resulting from multivariate, longitudinal, spatial, and clustered
designs. We will generically refer to these settings as repeated measures. The data hier-
archies induce association among the repeated measures, which can be captured, among
others, by random effects. Especially the generalized linear mixed model (GLMM; En-
gel and Keen, 1994; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993) has
beÃ§come a popular and widespread tool, routinely implemented in a suite of stan-
dard software packages. Reviews are given in Verbeke and Molenberghs (2000) and
Molenberghs and Verbeke (2005). A key ingredient is a linear predictor that also incor-
porates normally distributed random effects. These random effects engender not only
correlation among the repeated measures, but also some overdispersion. However, the
empirical correlation and overdispersion present in the data may be hard to model with
only a limited number of normal random effects. This is why Molenberghs et al. (2007;
henceforth referred to as MVD) and Molenberghs et al. (2010; henceforth referred to
as MVDV) have proposed a model family, the so-called combined model (CM) that
combines conjugate and normal random effects, leading to highly increased flexibility
for the triple of functions made up of the mean, variance, and correlation functions.
Note that, for time-to-event data, not only GLMM but also the so-called frailty models
(Duchateau and Janssen, 2007) have been used. These start from gamma rather than
normally distributed random effects, which are conjugate to the exponential distribu-
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tion, and lead to elegant expressions when combined with the Weibull distribution as
well (see Section 7).
After introducing a set of key examples (Section 2) and reviewing several key in-

gredients in Section 3, the CM is introduced in Section 4. Sections 5-7 are devoted to
the count, categorical, and time-to-event cases, respectively. In the count case, specific
attention is given to the occurrence of extra-model zeroes, i.e., zero-inflated versions of
the model. In the categorical case, we further distinguish between binary, binomial, and
ordinal data. Of note is the rather different algebraic nature of the model with logit and
that with probit link. In the time-to-event case, we also allow for censoring, and discuss
some issues with the moment functions of the so-called Weibull-gamma-normal model
and its sub-models. In Section 8 we describe maximum likelihood and some related
estimation strategies.
In Section 9, we show how the CM and its sub-models can be used, in most cases, to

derive explicit expressions for so-called manifest correlations, whereas often, for con-
venience, the latent correlation is considered. Usually, though, the manifest correlation
is considerably smaller than its latent counterpart; hence, using the latter may lead to
overly optimistic conclusions.
A typical problem arising with the GLMM, in contrast to the GLM, the linear mixed

model (LMM) for Gaussian outcomes, and models with conjugate random effects is
that deriving marginal expressions is not so straightforward and, related to this, that the
model parameters have a hierarchical (i.e., conditional on the random effects) but not
a marginal (i.e., averaged over a suitable population) interpretation. The CM evidently
inherits this problem. While some progress is made for the specific cases discussed in
Sections 5-7, it is still useful to take a different route: that of a so-called marginalized
multilevel model, based on work of Heagerty (1999) and Heagerty and Zeger (2000). It
will be referred to as the combined marginalized multilevel model, or COMMM.
Evidently, in line with a lot of contemporary work, it is perfectly possible to observe,

for example, several longitudinal sequences simultaneously. The resulting designs are
referred to as multivariate longitudinal or, more generically, joint modelling. The use of
the CM in this context is reviewed in Section 11. Finally, Section 12 describes diagnostic
measures based on local influence.
The review in this paper is based on work by MVD and MVDV, which is also based

on Booth et al. (2003), and various extensions of all of these. Evidently, also different
strands of research exist that extend the GLMM and increase its flexibility. In particular,
we refer to Lee and Nelder (1996, 2001ab, 2003), Lee, Nelder, and Pawitan (2006), who
proposed so-called hierarchical generalized linear models, accommodating many out-
come and random-effects distributions, while being efficient in computational terms. In
the particular case of count data, our model relates to theirs by considering log-gamma
and log-normal random effects together. Regarding estimation, we focus primarily on
marginal maximum likelihood estimation and Bayesian estimation, whereas Lee and
Nelder employ so-called h-likelihood. In particular, we analytically integrate over the
conjugate random effects and use numerical integration for the normal random effects.
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Skrondal and Rabe-Hesketh (2004) brought together in a single model framework, mul-
tilevel modelling, structural equations modelling, latent variables, latent classes, and
random-effects models for hierarchical data.

2. Case studies

We will describe five case studies. The outcomes are of a count, binary, binomial,
ordinal, and time-to-event nature, respectively.

2.1. A clinical trial in epileptic patients

The data considered here are obtained from a randomized, double-blind, parallel group
multicentre study for the comparison of placebo with a new anti-epileptic drug (AED),
in combination with one or two other AEDs. The study is described in full detail in
Faught et al. (1996). The randomization of epilepsy patients took place after a 12-
week baseline period that served as a stabilization period for the use of AEDs, and
during which the number of seizures were counted. After that period, 45 patients were
assigned to the placebo group, 44 to the active (new) treatment group. Patients were
then measured weekly. Patients were followed (double-blind) during 16 weeks, after
which they were entered into a long-term open-extension study. Some patients were
followed for up to 27 weeks. The outcome of interest is the number of epileptic seizures
experienced during the most recent week. The research question is whether or not the
additional new treatment reduces the number of epileptic seizures.

2.2. A clinical trial in onychomycosis

These data come from a randomized, double-blind, parallel group, multicentre study
for the comparison of two oral treatments (coded as A and B) for toenail dermatophyte
onychomycosis (TDO), described in full detail by De Backer et al. (1996). TDO is a
common toenail infection, difficult to treat, affecting more than 2 out of 100 persons
(Roberts, 1992). Anti-fungal compounds, classically used for treatment of TDO, need
to be taken until the whole nail has grown out healthy. The development of new such
compounds, however, has reduced the treatment duration to 3 months. The aim of the
present study was to compare the efficacy and safety of 12 weeks of continuous ther-
apy with treatment A or with treatment B. In total, 2× 189 patients, distributed over
36 centres, were randomized. Subjects were followed during 12 weeks (3 months) of
treatment and followed further, up to a total of 48 weeks (12 months). Measurements
were taken at baseline, every month during treatment, and every 3 months afterwards,
resulting in a maximum of 7 measurements per subject. At the first occasion, the treat-
ing physician indicates one of the affected toenails as the target nail, the nail which will
be followed over time. We will restrict our analyses to only those patients for which
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the target nail was one of the two big toenails (146 and 148 subjects, in group A and
group B, respectively). One of the responses of interest was the unaffected nail length,
measured from the nail bed to the infected part of the nail, which is always at the free
end of the nail, expressed in mm. This outcome has been studied extensively in Verbeke
and Molenberghs (2000). Another important outcome in this study was the severity of
the infection, coded as 0 (not severe) or 1 (severe). The question of interest was whether
the percentage of severe infections decreased over time, and whether that evolution was
different for the two treatment groups.

2.3. Iron-deficient diets in rats

These data result from an experiment where female rats were put on iron-deficient diets
(Shepard, Mackler, and Finch, 1980). This dataset has been analysed by Liang and
McCullagh (1993) and Moore and Tsiatis (1991). In Agresti (2002), the data were used
to estimate several logit models. Experimental rats were divided into 4 groups, one of
which is a control group. The number of female rats per group (total number of fetuses
per group) are: 31 (327) for placebo, 12 (118) for low dose, 5 (58) for medium dose,
and 10 (104) for high dose. Weekly injections of iron supplement were to bring the rats’
iron intake to normal levels. Rats in the placebo group were given placebo injection, the
others got three different doses of the iron supplements. Rats were made pregnant and
sacrificed 3 weeks later and the total number of fetuses and the number of dead fetuses
in each litter were counted. Hemoglobin levels of the mothers were also measured.

2.4. Diabetes study

In Belgium, the diabetes project was conducted from January 2005 until December
2006, with the aim to study the effect of implementing a structured model for chronic
diabetes care on the patients’ clinical outcomes. General practitioners (GPs) were of-
fered assistance and could redirect patients to the diabetes care team, consisting of a
nurse educator, a dietician, an ophthalmologist, and an internal medicine doctor. For
the project, two programs were implemented and GPs were randomized to one of two
groups: UQIP: Usual Quality Improvement Program and AQIP: Advanced Quality Im-
provement Program. A total of 120 GPs took part in the study, 53 in the UQIP group
and 67 in the AQIP group, including 918 and 1577 patients, respectively.
During the project, several outcomes useful to evaluate how well diabetes is con-

trolled were measured, at the moment the program was initiated (time T0) and one
year later (T1). The most important outcomes were HbA1c (glycosylated hemoglobin),
LDL-cholesterol (low-density lipoprotein cholesterol) and SBD (systolic blood pres-
sure). Furthermore, experts specified cut off values defining a so-called clinical target
for each outcome: HBA1C<7%, LDL-cholesterol< 100mg/dl and SBD≤ 130mmHg.
As a result, for a particular time point, every patient could reach between 0 and 3 clinical
targets. This number was reflected in the variable number of clinical targets. If at least
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one measurement per patient was missing, the value for the number of clinical targets
was set to missing as well. The data are discussed in Borgermans et al. (2009).

2.5. Recurrent asthma attacks in children

These data have been studied in Duchateau and Janssen (2007). Asthma is occurring
more and more frequently in very young children (between 6 and 24months). Therefore,
a new application of an existing anti-allergic drug is administered to children who are
at higher risk to develop asthma in order to prevent it. A prevention trial is set up with
such children randomized to placebo or drug, and the asthma events that developed over
time are recorded in a diary. Typically, a patient has more than one asthma event. The
different events are thus clustered within a patient and ordered in time. This ordering
can be taken into account in the model. The data are presented in calendar time format,
where the time at risk for a particular event is the time from the end of the previous
event (asthma attack) to the start of the next event (start of the next asthma attack). A
particular patient has different periods at risk during the total observation period which
are separated either by an asthmatic event that lasts one or more days or by a period in
which the patient was not under observation. The start and end of each such risk period
is required, together with the status indicator to denote whether the end of the risk period
corresponds to an asthma attack or not.

3. Some background

We briefly review some background on the exponential family and generalized linear
models (Section 3.1), overdispersion (Section 3.2), and models with normal random
effects (Section 3.3).

3.1. Generalized linear models

A random variable Y follows an exponential family distribution if the density is of the
form

f (y)≡ f (y|η,φ) = exp
{
φ−1[yη−ψ(η)]+ c(y,φ)

}
, (1)

for a specific set of unknown parameters η (‘natural parameter’ or ‘canonical param-
eter’) and φ (‘dispersion parameter’), and for known functions ψ(·) and c(·, ·). It fol-
lows that E(Y ) = μ = ψ′(η) and Var(Y ) = σ2 = φψ′′(η), with ensuing mean-variance
relationship σ2 = φψ′′[ψ

′−1(μ)] = φv(μ), with v(·) the variance function. Commonly
encountered examples and their model elements are presented in Table 1. Note that,
in the normal case, there is no mean-variance relationship. In the binary case, also the
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probit link is commonly encountered, whence η =Φ−1(π) andΦ(·) is the standard nor-
mal cumulative distribution function. As explained in Section 6.1, the probit link has
appealing properties when normal random effects are introduced into the model.
In the Weibull and exponential model, the decomposition ϕ = λeμ is often used, al-

lowing μ to be written as a function of covariates. Note that μ is a component of the
mean function, not the mean itself. The Weibull model does not belong to the exponen-
tial family in a conventional sense, unless when y is replaced by yρ. In Table 1, Γ(·)
represents the gamma function.
When not the full joint distribution but, say, the first and second moments only are

specified, a semi-parametric version of the model results, for which quasi-likelihood
estimation has been devised (McCullagh and Nelder, 1989; Molenberghs and Verbeke,
2005).
The generalized linear model (GLM) follows from the exponential family by as-

suming that a set of independent replicates Yi with p-dimensional covariate vectors
xxxi (i = 1, . . . ,N), follow exponential-family densities f (yi|ηi,φ). Specification of the
GLM is completed by modelling the means μi as functions of the covariate values:
μi = h(ηi) = h(xxxT

i ξξξ), for a known function h(·), and with ξξξ a vector of p fixed, unknown
regression coefficients. Here, h−1(·) is called the link function. In most applications, the
so-called natural link function is used, i.e., h(·) = ψ′(·), which is equivalent to assum-
ing ηi = xxxT

i ξξξ. In other words, it is assumed that the natural parameter satisfies a linear
regression model.

3.2. Overdispersion

As stated in the introduction, and as is clear from Table 1, many standard exponential
family models enforce a mean-variance relationship that may be contradicted by the
data, especially for count, binomial, and time-to-event data. For binary data, such a
violation can only occur when the outcomes are correlated (see Section 6).
As reviewed byHinde andDemétrio (1998ab), an obviousway to incorporate overdis-

persion is by allowing φ �= 1, so that the variance becomes Var(Y ) = φv(μ). An el-
egant way forward is through a two-stage approach. For binary data, one would as-
sume that Yi|πi ∼ Bernoulli(πi) and further that πi is a random variable with E(πi) = μi
and Var(πi) = σ2i . Using iterated expectations, it follows that E(Yi) = μi and var(Yi) =
μi(1−μi), underscoring that purely Bernoulli data are unable to exhibit overdispersion.
The situation is different for counts. In the Poisson case, we assume that Yi|ζi ∼ Poi(ζi)
and then that ζi is a random variable with E(ζi) = μi and Var(ζi) = σ2i . Then, it follows
that E(Yi) = μi and var(Yi) = μi+σ

2
i . We have not assumed a particular distributional

form for the random effects πi and ζi, respectively. Hence, this gives rise to a semi-
parametric specification. In case it is considered advantageous to make full distribu-
tional assumptions about the random effects, common choices are the beta distribution
for πi and the gamma distribution for ζi; of course, these are not the only ones.
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The two-stage approach is made up of considering a distribution for the outcome
variable, given a random effect f (yi|θi) which, combined with a model for the random
effect, f (θi), produces the marginal model:

f (yi) =
∫
f (yi|θi) f (θi)dθi. (2)

It is easy to extend this model to the case of repeated measurements by assuming a hi-
erarchical data structure, where now Yi j denotes the jth outcome measured for cluster
(subject) i, i = 1, . . . ,N, j = 1, . . . ,ni and YYY i is the ni-dimensional vector of all mea-
surements available for cluster i. In the repeated-measures case, the scalar ζi becomes a
vector ζζζ i= (ζi1, . . . ,ζini)

T, with E(ζζζ i) =μμμi and var(ζζζ i) =ΣΣΣi. For example, for the Poisson
case, similar logic as in the univariate case produces E(YYY i) =μμμi and var(YYY i) =Mi+ΣΣΣi,
where Mi is a diagonal matrix with the vector μμμi along the diagonal. Note that a diag-
onal structure of Mi reflects the conditional independence assumption: all dependence
between measurements on the same unit stems from the random effects. Generally, a
versatile class of models results. For example, assuming that the components of ζζζ i are
independent, a pure overdispersion model follows, without correlation between the re-
peated measures. On the other hand, assuming ζi j = ζi, i.e., that all components are
equal, then var(YYY i) =Mi+σ2i Jni , where Jni is an ni× ni dimensional matrix of ones.
Such a structure can be seen as a general version of compound symmetry.
Alternatively, this repeated version of the overdispersion model can be combined

with normal random effects in the linear predictor. This very specific choice was also
proposed by Thall and Vail (1990) and Dean (1991) for the count case.
Marginalization (2) is general and elegant, but one has to reflect on which parame-

ter to become random, in particular when full distributional assumptions are requested.
As always, this is easy for the linear mixed model, by combining a normal hierarchical
model with a normal random effect, and provided θi is used to express the conditional
mean as a linear function of covariates. It forms the basis of the two strands of random-
effects models that are potentially brought together in the combinedmodels of Section 4:
on the one hand, normal random effects can be considered with non-normal outcomes,
producing the GLMM; on the other hand, gamma random effects for the Poisson model,
beta random effects with binomial data, and gamma random effects for the Weibull
model can be considered. This is, seemingly, a disparate collection. However, they are
unified through so-called conjugacy, in the sense of Cox and Hinkley (1974, p. 370) and
Lee et al. (2006, p. 178). The topic is also discussed by Agresti (2002). Informally,
conjugacy refers to the fact that the hierarchical and random-effects densities have simi-
lar algebraic forms. Conjugate distributions produce a general and closed-form solution
for the corresponding marginal distribution.
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We will first define standard conjugacy, i.e., in models without the normal random
effects and then, in Section 4, introduce a further property, strong conjugacy, necessary
for situations where both normal and conventional conjugate random effects are present.
To simplify notation, we will provide the definition at a general distribution level, with
neither subject- nor measurement-specific subscripts, so that it can be applied to both
univariate and longitudinal data. The hierarchical and random-effects densities are said
to be conjugate if and only if they can be written in the generic forms:

f (y|θ) = exp{φ−1[yh(θ)−g(θ)]+ c(y,φ)
}
, (3)

f (θ) = exp{γ[ψh(θ)−g(θ)]+ c∗(γ,ψ)} , (4)

where g(θ) and h(θ) are functions, φ, γ, and ψ are parameters, and the additional func-
tions c(y,φ) and c∗(γ,ψ) are so-called normalizing constants. It can then be shown,
upon constructing the joint distribution and then integrating over the random effect, that
the marginal model resulting from (3) and (4) equals:

f (y) = exp

[
c(y,φ)+ c∗(γ,ψ)− c∗

(
φ−1+γ,

φ−1y+γψ
φ−1+γ

)]
. (5)

Table 1 gives model elements, such as density or probability mass functions, conditional
on random effects and marginalized over these, as well as the random effects distribu-
tions. For all models considered, the constants and functions featuring in (3)–(4) are
listed, and finally marginal means and variances are provided. For some models, these
are well known (Hinde and Demétrio, 1998ab) and/or easy to derive.
In the case of binary data, the model in Table 1 is the familiar beta-binomial model.

Note that the variance still obeys the usual Bernoulli variance structure. This is entirely
natural, given that we still focus on a single binary outcome, in contrast to the more
conventional binomial basis model, where data of the format ‘zi successes out ni trials’
are considered. We do not consider this situation in this section, but rather leave it to
Section 6. In such a case, the variance structure becomes πi(1− πi)[1+ ρi(ni− 1)],
where ρi is a measure for correlation. All parameters, pi and ρi, can be expressed in
terms of αi and βi, ‘cluster-specific’ versions of the beta parameters.
For count data, the familiar negative-binomial model results. Unlike in the binary

case, univariate counts are able to violate the mean-variance relationship inherent in the
Poisson distribution, hence the great popularity of this and other types of models for
overdispersion. The same applies to the exponential distribution. Of course, already the
Weibull model, with its extra parameter ρ, alleviates the constraint.
The normal distribution case is a special one. Not only is it self-conjugate, also

the model is not identified, unlike all others. This is because both random terms, seen
from writing Yi = μi+bi+ εi, are in direct, linear relationship. In the generalized linear
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context, the various random terms have no direct linear alliance. The normal case will
continue to be ‘the odd one out’ in models to come (Sections 3.3 and 5-7).
The parameters α and β in the beta and gamma distributions are not always jointly

identified. It is therefore customary to impose restrictions, such as setting one of them
equal to a fixed value, e.g., α = 1, or constraining their mean or variance, etc. Such
constraints operate differently, depending on other elements present in the models. For
example, the presence of additional random effects in a model for repeated measures,
such as in Section 4, alters the meaning and restrictiveness of such constraints.

3.3. Models with normal random effects

The generalized linear mixed model (GLMM; Engel and Keen, 1994; Breslow and Clay-
ton, 1993; Wolfinger and O’Connell, 1993) is a straightforward extension of the linear
mixed model (Verbeke and Molenberghs, 2000) to non-Gaussian hierarchical data. It is
implemented in many standard software tools.
Let Yi j be the jth outcome measured for cluster (subject) i = 1, . . . ,N, j = 1, . . . ,ni

and group the ni measurements into a vector YYY i. Assume that, in analogy with Sec-
tion 3.1, conditionally upon q-dimensional random effects bbbi ∼ N(000,D), the outcomes
Yi j are independent with densities:

fi(yi j|bbbi, ξξξ,φ) = exp
{
φ−1[yi jλi j−ψ(λi j)]+ c(yi j,φ)

}
, (6)

where

η[ψ′(λi j)] = η(μi j) = η[E(Yi j|bbbi, ξξξ)] = xxx T

i j ξξξ+zzz
T

i j bbbi (7)

for a known link function η(·), with xxx T
i j and zzzi j p-dimensional and q-dimensional vectors

of known covariate values, with ξξξ a p-dimensional vector of unknown fixed regression
coefficients, and with φ a scale (overdispersion) parameter. Finally, let f (bbbi|D) be the
density of the N(000,D) distribution for the random effects bbbi. These models closely
follow the ones formulated in the top part of Table 1, with key differences that now: (a)
data hierarchies are allowed for; (b) the natural parameter is written as a linear predictor,
a function of both fixed and random effects.

4. Models combining conjugate and normal random effects

4.1. General model formulation

Combining overdispersion (Section 3.2) and normal random effects (Section 3.3) into
the generalized linear model framework, produces the following general family:
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fi(yi j|bbbi, ξξξ,θi j,φ) = exp
{
φ−1[yi jλi j−ψ(λi j)]+ c(yi j,φ)

}
, (8)

The conditional mean follows as the product:

E (Yi j|bi, ξξξ,θi j) = μci j = ψ′(λi j) = θi jκi j, (9)

where the random variable

θi j ∼Θi j
(
υi j,σ

2
i j

)
, (10)

with mean υi j, variance σ2i j, and the mean component

g(κi j) = xxx T

i j ξξξ+zzz
T

i j bi (11)

depends on an ni × p fixed-effects design XXXi and a ni × q random-effects design ZZZi
through a link function g(·); ξξξ and bi ∼ N(0,D) are fixed and random effects, respec-
tively. The relationship between mean and natural parameter is

λi j = h(μci j) = h(θi jκi j). (12)

The mean satisfies:

E(Yi j) = E(θi j)E(κi j) = E[h
−1(λi j)]. (13)

Depending of the type of outcome under investigation, the distribution of θi j can be
chosen appropriately.
It is computationally convenient, but not strictly necessary, to assume that the sets

of random effects, θθθi and bbbi, are independent. Kalema and Molenberghs (2015) and
Kalema, Iddi, and Molenberghs (2016) relaxed this assumption. Regarding the compo-
nents θi j of θθθi, three special cases are: (1) independence; (2) correlated, implying that
the univariate distributions Gi j(ϑi j,σ

2
i j) must be replaced with a multivariate one; and

(3) equal (useful in applications with exchangeable outcomes Yi j).

4.2. Strong conjugacy

It is of interest to explore under what conditions Model (8) still allows for conjugacy,
now that normal random effects have been introduced into the linear predictor, leading
to the multiplicative factor κi j in the mean structure. To this end, MVDV considered
conjugacy conditional upon the normally-distributed random effect bbbi. Write in simpli-
fied notation:
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f (y|κθ) = exp{φ−1[yh(κθ)−g(κθ)]+ c(y,φ)
}
, (14)

generalizing (3), and retain (4). Applying the transformation theorem to (4) leads to

f (θ|γ,ψ) = κ · f (κθ|γ̃, ψ̃),

where γ̃ and ψ̃ are appropriate parameters. Next, we request that the parametric form
(4) be maintained:

f (κθ) = exp{γ∗[ψ∗h(κθ)−g(κθ)]+ c∗∗(γ∗,ψ∗)} , (15)

where the parameters γ∗ and ψ∗ follow from γ̃ and ψ̃ upon absorption of κ. Then, the
marginal model, in analogy with (5), equals:

f (y|κ) = exp
{
c(y,φ)+ c∗∗(γ∗,ψ∗)+ c∗∗

(
φ−1+γ∗,

φ−1y+γ∗ψ∗

φ−1+γ∗

)}
. (16)

Not every model satisfying conjugacy in the sense of Section 3.2 allows for this form
of conjugacy, referred to as strong conjugacy. Examples include the normal, Poisson,
and Weibull (and hence exponential) models with normal, gamma, and gamma random
effects, respectively. A counterexample is provided by the Bernoulli, and hence also
binomial, model. Because the probit model does not allow for conjugacy, it is out of the
picture here, too. The latter does not preclude the existence of closed forms in the probit
case, as was shown by MVDV. These authors noted that strong conjugacy stems from
the random-effects distribution, not from the data model. For example, they showed, for
a gamma random effect:

1
κ
f (θ|α,β) = f (κβ|α,κβ), (17)

and hence a scaled version of a gamma random effect is still a gamma random effect,
with invariant α and re-scaled β.
Strong conjugacy facilitates the use of standard software, which does not imply that

such software cannot be used once strong conjugacy does not hold. Arguably, the deriva-
tion of analytic quantities, such as moments, and hence means, variances, and covari-
ances, is simplified when the property holds.
All CM can be formulated using the same general principles. One simply has to

combine the models formulated in Table 1 with the GLMM (6) and corresponding linear
predictor (7). The effect θ is then replaced by θi jκi j, where κi j is defined by setting
η = ηi j equal to the linear predictor whence κi j is expressed, for the respective models,
as μ, π, λ, and φ.
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5. Count data

The model elements in this case are:

Yi j ∼ Poi(θi jκi j), (18)

κi j = exp
(
xxx T

i jξξξ+ z
T

i j bbbi
)
, (19)

bbbi ∼ N(000,D), (20)

E(θθθi) = E[(θi1, . . . ,θini)
T] =ϑϑϑi, (21)

var(θθθi) =ΣΣΣi. (22)

This model has the same structure as the one by Booth et al. (2003). In the spirit of
Table 1, the θi j can be assumed to follow a gamma model, producing, what we could
term, a Poisson-gamma-normal model (PGN). Recall that bbbi accommodates correlation
and some overdispersion, while residual overdispersion is captured by the components
θi j of θθθi. Should these components be assumed dependent, then both sets of random
effects capture some correlation as well as some overdispersion. In the correlated case,
a multivariate extension of the gamma distribution would be needed (see, for example,
Gentle, 2003).
This model enjoys strong conjugacy, as shown by MVDV. Continuing on the work

of Zeger, Liang, and Albert (1988), and using expressions for the standard Poisson
moments (Johnson, Kemp, and Kotz, 2005, p. 162), MVD derived the moments; condi-
tional upon the random effects are:

E(Y ki j) =
k∑
�=0

S(k, �)(θi jκi j)
�, (23)

where S(k, �) is the so-called Stirling number of the second kind. Integrating (23) over
the random effects produces:

E(Y ki j) =
k∑
�=0

S(k, �)
β�Γ(α+ �)

Γ(α)
exp
[
�xxx T

i jξξξ+
1
2�
2 z T

i jDzi j
]
. (24)

The mean components are:

μi j = φi j exp
(
xxx T

i j ξξξ+
1
2z

T

i jDzi j
)
, (25)

with the variance-covariance matrix

var(Yi) =Mi+Mi (Pi−Jni)Mi, (26)
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where Mi is a diagonal matrix with the μi j along the main diagonal, and the ( j,k)th

element of Pi equals

pi, jk = exp
(
1
2z

T

i jDzik
) · σi, jk+φi jφik

φi jφik
· exp( 12z T

ikDzi j
)
. (27)

MVD also derived a series-based expression for the marginal joint distribution:

P(YYY i = yyyi) =
∑
ttt

[
ni

∏
j=1

(
yi j+ t j
yi j

)
·
(
α j+ yi j+ t j−1

α j−1
)
· (−1)t j ·βyi j+t jj

]

× exp
⎛⎝ ni∑

j=1

(yi j+ t j)xxx
T

i j ξξξ

⎞⎠

× exp
⎛⎝1
2

⎡⎣ ni∑
j=1

(yi j+ t j)z
T

i j

⎤⎦D
⎡⎣ ni∑

j=1

(yi j+ t j)zi j

⎤⎦⎞⎠ . (28)

In the above equation, the vector-valued index ttt = (t1, . . . , tni)
T ranges over all non-

negative integer vectors.
In Section 9, the benefit of having closed-form expressions will show when deriving

quantities such as marginal correlations.
Kalema andMolenberghs (2015) and Kalema, Iddi, andMolenberghs (2016) showed

how the combined model formulation can be used to generate correlated count data.
Neyens, Faes, andMolenberghs (2012) adapted the framework to accommodate overdis-
persion in counts that arise in a spatial context.

5.1. A clinical trial in epileptic patients

We will analyse the epilepsy data, introduced in Section 2.1. Let Yi j represent the num-
ber of epileptic seizures patient i experiences during week j of the follow-up period.
Also, let ti j be the time-point at which Yi j has been measured, ti j = 1,2, . . . until at most
27. Consider the combined model (18)–(22), with specific choices

ln(κi j) =

{
(ξ00+bi)+ ξ01ti j if placebo

(ξ10+bi)+ ξ11ti j if treated,
(29)

where the random intercept bi is assumed to be zero-mean normally distributed with
variance d. We consider special cases (a) the ordinary Poisson model (P--), (b) the
negative-binomial model (PG-), (c) the Poisson-normal model (P-N), together with (d)
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Table 2: Epilepsy study. Parameter estimates (standard error) in (1) Poisson model (P--), (2) negative-
binomial model (PG-), (3) Poisson-normal model P-N), and (4) combined model (PGN), as well as their
zero-inflated counterparts ZI(P--), ZI(PG-), ZI(P-N), ZI(PGN).

Combined models Negative-binomial models

Effect Par. ZI(PGN) (PGN) ZI(PG-) (PG-)

Interc. plac. ξ00 0.947(0.167) 0.911(0.176) 1.236(0.110) 1.259(0.0.112)

Slope plac. ξ01 −0.016(0.008) −0.025(0.008) −0.007(0.011) −0.013(0.011)
Interc. treatm. ξ10 0.836(0.172) 0.656(0.178) 1.397(0.110) 1.475(0.109)

Slope treatm. ξ11 −0.006(0.007) −0.012(0.008) −0.022(0.011) −0.035(0.010)
Neg.-bin. par. α1 0.245(0.025) 2.464(0.211) 1.787(0.100) 0.527(0.026)

SD non-zero part RE
√
d1 0.997(0.085) 1.063(0.087) − −

Infl. Interc. γ0 −4.581(0.641) − −7.106(1.334) −
Infl. slope γ1 0.092(0.034) − 0.292(0.066) −
SD zero part RE

√
d2 2.533(0.440) - − −

Corr. RE ρ −0.096(0.153) − − −
Pred. prob. zeros 0.352 0.321 0.185 0.158

−2log-likelihood 5317.9 5417.0 6318.9 6326.1

Poisson-normal models Poisson models

Effect Par. ZI(P-N) (P-N) ZI(P--) (P--)

Interc. plac. ξ00 0.903(0.155) 0.818(0.168) 1.485(0.043) 1.266(0.0.042)

Slope plac. ξ01 −0.004(0.005) −0.014(0.004) −0.007(0.005) −0.0.013(0.004)
Interc. treatm. ξ10 0.908(0.159) 0.648(0.170) 1.806(0.040) 1.453(0.038)

Slope treatm. ξ11 −0.007(0.005) −0.012(0.004) −0.025(0.014) −0.033(0.004)
SD non-zero part RE

√
d1 0.971(0.082) 1.076(0.086) − −

Infl. Interc. γ0 −3.712(0.500) − −0.659(4.699) −
Infl. slope γ1 0.095(0.025) − −3.291(4.444) −
SD zero part RE

√
d2 2.222(0.343) − − −

Corr. RE ρ −0.154(0.157) − − −
Pred. prob. zeros 0.338 0.263 0.014 0.046

−2log-likelihood 5845.1 6271.9 10912 11590

the combined model (PGN). Estimates (standard errors) are presented in Table 2. The
table also contains zero-inflated versions, that will be discussed in Section 5.2. Clearly,
both the negative-binomial model and the Poisson-normal model are important improve-
ments, in terms of the likelihood, relative to the ordinary Poisson model. This should
come as no surprise since the latter unrealistically assumes there is neither overdisper-
sion nor correlation within the outcomes, while clearly both are present. In addition,
when considering the combined model, there is a very strong improvement in fit when
gamma and normal random effects are simultaneously allowed for. This strongly affects
the point and precision estimates of such key parameters as the slope difference and the
slope ratio. There is also an impact on hypothesis testing. The Poisson model leads to
unequivocal significance for both the difference (p = 0.0008) and ratio (p = 0.0038),
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whereas for the Poisson normal this is not the case for the difference of the slopes
(p= 0.7115), while some significance is maintained for the ratio (p= 0.0376). Because
the Poisson-normal is commonly used, it is likely that in practice one would decide in fa-
vor of a treatment effect when considering the slope ratio. This is no longer true with the
negative-binomial model, where the p-values change to p = 0.01310 and p = 0.2815,
respectively. Of course, one must not forget that, while the negative-binomial model ac-
commodates overdispersion, the θi j random effects are assumed independent, implying
independence between repeated measures. Again, this is not realistic and therefore the
combined model is a more viable candidate, corroborated further by the aforementioned
likelihood comparison. This model produces non-significant p-values of p = 0.2260
and p= 0.1591, respectively.
Thus, in conclusion, whereas the conventionally used and broadly implemented

Poisson-normal model would suggest a significant effect of treatment, our combined
model issues a message of caution, because there is no evidence whatsoever regarding a
treatment difference.
Molenberghs and Verbeke (2005, Ch. 19), considered a (P-N) model with random

intercepts as well as random slopes in time. It is interesting to note that, when allowing
for such an extension in our models, the random slopes improve the fit of the (P-N)
model with random intercept, but not of the combined one with random intercept (details
not shown). As a consequence, the combined model with random intercept is the best
fitting one. At the same time, note that fitting such a model establishes that the presence
of a conjugate random effect does not preclude the consideration of normal random
effects beyond random intercepts. The data were analysed by Booth et al. (2003), too.
Let us now turn to the correlation functions. Given that the gamma random effects

are assumed independent, we only need to consider the Poisson-normal and combined
cases; the versions with and without random slopes are considered. Because the fixed-
effects structure is not constant but rather depends on time, MVD formulated a correla-
tion function. In the (P-N) case with random intercepts only, and for the placebo group,
based on the parameter estimates in Table 2, they obtained:

Corr(Y (t),Y (s)) =
35.58 ·0.99t+s√

(4.04 ·0.99t+35.58 ·0.97t) · (4.04 ·0.99s+35.58 ·0.97s) ,

where Y (t) represents the outcome for an arbitrary subject at time t. Calculations in all
other cases are similar. The smallest and largest values for the correlation functions,
for both arms, for both the Poisson-normal and combined models, and for both choices
of the random-effects structure are given in Table 3. When only random intercepts are
considered, the correlations range over a narrow interval; they are rather high and there
is little difference between the Poisson-normal and combined models. However, turning
to the models with random intercepts and random slopes, several differences become
apparent. First, the values exhibit a much broader range between their smallest and
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largest values. Second, the range is somewhat over-estimated by the Poisson-normal
model, which then narrows when we switch to the combined model, thereby incorpo-
rating overdispersion effects, random intercepts, and random slopes. Thus, the random
slope allows for the correlation to range over a considerable interval, while the overdis-
persion effect prevents the range from becoming overly wide.

Table 3: Epilepsy study. Observed smallest and largest values for the correlation function, for the Poisson-
normal and combined models, and for both treatment arms. The time pair for which the values are observed
is shown too. (RI: random intercept; RS: random slope.)

Smallest value Largest value

Model Arm ρ time pair ρ time pair

Poisson-normal, RI placebo 0.8577 26 & 27 0.8960 1 & 2
Poisson-normal, RI treatment 0.8438 26 & 27 0.8794 1 & 2

Combined, RI placebo 0.8259 26 & 27 0.8981 1 & 2
Combined, RI treatment 0.8383 26 & 27 0.8744 1 & 2

Poisson-normal, RI+RS placebo 0.2966 1 & 27 0.9512 26 & 27
Poisson-normal, RI+RS treatment 0.2936 1 & 27 0.9530 26 & 27

Combined, RI+RS placebo 0.4268 1 & 27 0.9281 26 & 27
Combined, RI+RS treatment 0.4225 1 & 27 0.9329 26 & 27

Within each model, there is relatively little difference between the placebo and
treated groups, although the difference is a bit more pronounced in the combined model.
Further, the correlation range within every group is relatively narrow. The most note-
worthy feature, unquestionably, is the large discrepancy between both models. This
is because the (P-N) model forces the correlation and overdispersion effects to stem
from a single additional parameter, the random-intercept variance d. Thus, considerable
overdispersion also forces the correlation to increase, arguably beyondwhat is consistent
with the data. In the combined model, in contrast, there are two additional parameters,
giving proper justice to both correlation and overdispersion effects. It was already clear
from the above discussion and that in MVD that the combined model is an important
improvement. This now clearly manifests itself in the correlation function, too.
The above underscores the need for the combined model. Some indication came,

for example, from the correlation functions in the epilepsy case. It is useful to perform
formal comparison of all nestedmodels, usingWald statistics, for each of the three cases.
A summary is given in Table 4. Note that, owing to the familiar boundary problem that
occurs when testing for variance components, mixtures of a χ20 and χ

2
1 were used, instead

of the conventional χ21 (Molenberghs and Verbeke, 2007).
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Table 4: Epilepsy, onychomycosis, and asthma studies. Wald test results for comparison of nested models.

Null model Alternative model Z-value p-value

Epilepsy study

Poisson Negative-binomial 20.68 <0.0001
Poisson Poisson-normal 6.27 <0.0001
Negative-binomial Combined 6.10 <0.0001
Poisson-normal Combined 11.66 <0.0001

Onychomycosis study

Logistic Beta-binomial 17.91 <0.0001
Logistic Logistic-normal 10.53 <0.0001
Beta-binomial Combined 4.28 <0.0001
Logistic-normal Combined 8.01 <0.0001

Asthma study

Exponential Exponential-gamma 8.54 <0.0001
Exponential Exponential-normal 10.63 <0.0001
Exponential-gamma Combined 8.54 <0.0001
Exponential-normal Combined 3.99 <0.0001

For our case study, it is clear that: (a) independence is strongly rejected in favour
of both a model with normal random effects or a model with conjugate random effects;
(b) on top of one set of random effects, there is a clear need for the other set as well,
hence providing very strong evidence for the proposed combined model. The evidence
is extremely convincing. The table also contains results for two more case studies that
will be discussed in detail in subsequent sections.
These findings, taken together, imply that the data exhibit, at the same time, within-

subject correlation and overdispersion, in such a way that a single model feature cannot
capture both simultaneously.

5.2. Additional zeroes

It is not uncommon when count data are collected to observe more zeroes than pre-
dicted by the model assumed, whether of a simple Poisson nature, or more elaborate,
such as the combined model considered here. This feature, often referred to as zero
inflation, then needs to be accommodated, in addition to correlation and/or overdisper-
sion. Such data are often fitted by using either hurdle (Mullahy, 1986; Greene, 1994) or
zero-inflated models (ZI; Lambert, 1992). In the context of the CM, additional zeroes
were studied by Kassahun et al. (2014a) and Iddi and Molenberghs (2013).
We will first describe the hurdle (H) and zero-inflation (ZI) approaches for univariate

data, and then turn to hierarchical versions. The hurdle model is a two-part model,
whereby the first part is a binary model for the count value to be either zero or positive.
Given that the value is positive, a count distribution, say fi, is truncated at zero and fitted
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to the second part. SupposeYi is a univariate count outcome, and πi is the probability of
the ith observation to be in the zero state. The hurdle model then takes the form:

p(Yi = yi) =

{
πi if yi = 0,

(1−πi) fi(yi|λi)
1− fi(0|λi) if yi > 0.

(30)

An alternative approach is a zero-inflated model, which assumes zeros to come from
two processes. The first process generates only zeros with probability πi for observation
i, say, while the second process generates counts with probability 1−πi. The ZI model
is:

p(Yi = yi) =

{
πi+(1−πi) fi(0|λi) if yi = 0,

(1−πi) fi(yi|λi) if yi > 0.
(31)

Here, πi and λi are functions of covariates. Link functions, such as the logit or probit,
can be used for πi, with the log link commonly used for λi.
Kassahun et al. (2014a) extended the combined model to take zero-inflation into

account. The ZI version of the CM (ZICOM) is given by

p(Yi j = yi j|bbb1i, ξξξ,θi j,πi j) =
{
πi j+(1−πi j) fi(0|bbb1i, ξξξ,θi j) if yi j = 0,

(1−πi j) fi(yi j|bbb1i, ξξξ,θi j) if yi j > 0.
(32)

The ZI component πi j = π(xxx T
2i jγγγ + zzz T

2i j bbb2i) is modelled using a Bernouilli model: in
the simplest case with only an intercept, but potentially containing known regressors
xxx2i j and zzz2i j, a vector of zero-inflation coefficients γγγ to be estimated, as well as random
effects bbb2i. Common link functions, such as the logit or probit, can be used. Note that
xxxi j, zzzi j, and bbbi in Section 4 are now replaced by xxx1i j, zzz1i j, and bbb1i j, respectively, for
the non-zero count part. The regressors in the count and zero-inflation component can
either be overlapping, a subset of the regressors can be used for the zero-inflation, or
entirely different regressors for the two parts can be used. In many cases, but of course
not always, a simple random-intercept model is adequate, where bbb1i = b1i, bbb2i = b2i, and
zzz1i j = zzz2i j = 1. The variance-covariancematrix of the random effects, assumed normally
distributed, is denoted by D, as before. The model is denoted as ZI(PGN), as an obvious
extension with earlier notational conventions. Three obvious special cases are ZI(P-N),
ZI(PG-), and ZI(P--). Also, all four models without zero inflation are special cases as
well. The conditional mean and variance of the ZI(PGN) are:

E(Yi j|bbb1i, ξξξ,θi j) = θi jκi j(1−πi j), (33)

Var(Yi j|bbb1i, ξξξ,θi j) = θi jκi j(1−πi j)[1+ θi jκi j(πi j+1/α)]. (34)
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It can be seen that the conditional variance is inflated as a result of either overdispersion
in the data (parameter α), or as a result of ZI (parameter πi j), or both.
Further model developments that allow for extra zeroes are reported in Sections 10

and 11.

5.3. A clinical trial in epileptic patients

We re-analyse the epilepsy data, introduced in Section 2.1 and analysed before in Sec-
tion 5.1. Let Yi j represent the number of epileptic seizures that patient i experiences
during week j of the follow-up period. Also, let ti j be the time-point at which Yi j has
been recorded. Consider parameterization (29), but now accounting for zero inflation,
assuming that counts are generated from a (P-N) process with λi j as in (29), or from a
(PGN) process with mean λi j = θi jκi j, and now κi j specified as in (29). The ZI prob-
ability (πi j) is modelled as logit(πi j) = γ0+ b2i + γ1ti j. The data are analysed with
the ZI(PGN), ZI(PG-), ZI(P-N), ZI(P--). One can compare the results with the non-ZI
counterpart. Parameter estimates and predicted probabilities of zeros are presented in
Table 2, alongside the non-ZI counterparts. Clearly, in terms of likelihood comparison,
the zero-inflated versions performed much better, resulting in a substantial improvement
in fit.
The ZI(PG-) is an important improvement relative to the ZI(P--), while much more

improvement is gained in the case of the ZI(P-N). Moreover, the ZI(PGN) leads to a
substantially improved fit. Further, we observe that, omitting either the overdispersion or
the correlation underestimates the predicted probability of zeros, which becomes worse
when both are omitted at the same time. The ZI(PGN), fitted without random effects in
the zero-inflation part, results in -2log-likelihood of 5386.8, and predicted probability of
zeros equal to 0.3271. This implies that inclusion of random effects in the zero-inflation
part tends to have little impact on the predicted probability of zeros. However, based on
likelihood comparison, model fit improves considerably. This same phenomenon is also
evident in the ZI(P-N) fitted with random effects included only in the non-zero count
part (-2log-likelihood is 5971.9, and predicted probability of zeros 0.3112).
None of the zero-inflated models suggests evidence of significance in slope differ-

ence and slope ratio, except for the ZI(P--), where significance is maintained for the
slope difference (p = 0.004). However, the latter, unrealistically, omits correlation and
overdispersion. The zero-inflation regression coefficients can be interpreted as model
coefficients for the proportion of extra zeros, and are statistically significant in all ex-
cept the ZI(P--). Evidently, models can be extended further. For example, one could
consider a version with where the ZI component is specific to treatment arm.
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6. Categorical data

Categorical data come in various forms, and we usefully distinguish between them.
Building on MVDV, Molenberghs et al. (2012) laid out the combined-model framework
and various ramifications for the binary and binomial cases. An overview will be given
in Sections 6.1 and 6.2 for the binary cases with logit and probit links, respectively,
and in Section 6.3 for binomial data. The iron deficiency case study is analysed in
Section 6.4. An application of the binary version of the model to the Jimma Infant study
was reported in Kassahun et al. (2012). A binomial application is described in Del Fava
et al. (2014). Ivanova, Molenberghs, and Verbeke (2014) developed a version of the
combined model to handle ordinal data, which is the basis for Section 6.5.

6.1. Bernoulli-type models for binary data with logit link

Similar to the Poisson case in Section 5, a natural binary-data counterpart to (18)–(19)
is

Yi j ∼ Bernoulli(πi j = θi jκi j), (35)

κi j =
exp
(
xxx T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
xxx T
i jξξξ+ z

T
i j bbbi
) , (36)

completing the specification with (20)–(22). Unlike in the Poisson case, closed forms
for neither the mean nor the variance follow when normal random effects are present.
When only overdispersion random effects are included, especially when they are as-
sumed to follow a beta distribution, as in Table 1, conjugacy applies. However, the beta
distribution does not allow for the multiplicative invariance as (17), precluding strong
conjugacy.
When the overdispersion random effects are assumed to be equal: θi j = θi, then the

beta-binomial model follows if no normal random effects are present.
Explicitly considering θi j ∼ Beta(α,β), then φi j = E(θi j) = α/(α+β), and

σ2i j = var(θi j) = σi, j j =
αβ

(α+β)2(α+β+1)
,

σi, jk = cov(θi j,θik) = ρi jk
αβ

(α+β)2(α+β+1)
.

Observe that there are two correlations: ρi jk, which described the correlation between
draws from the beta distribution and (α+ β+ 1)−1. It is of course possible to let α
and β vary with i and/or j. In such cases, the above and below expressions will change
somewhat, but computations are straightforward.
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Using the general expressions, the above results can be used to derive approximate
expressions for means and variance-covariance elements. For the special case of no
normal random effects, but maintaining the fixed effects in (36), i.e.,

κi j =
exp
(
xxx T
i j ξξξ
)

1+ exp
(
xxx T
i j ξξξ
) , (37)

we obtain

E(Yi j) =
α

α+β
κi j, (38)

Var(Yi j) =
α

α+β
κi j−

(
α

α+β

)2
κ2i j,

Cov(Yi j,Yik) = ρi jk
αβ

(α+β)2(α+β+1)
κi jκik.

If we further make exchangeability assumptions, i.e., κi j = κik ≡ κi and ρi jk = ρi, further
simplification follows. Finally, setting κi = 1, the conventional beta-binomial follows.
It is then easy to derive the resulting binomial version by defining:

Zi =
ni∑
i=1

Yi j. (39)

Simple algebra then shows:

E(Zi) = ni
α

α+β
= niπi,

Var(Zi) = ni
αβ

(α+β)2

{
1+(ni−1) 1

α+β+1

}
= niπi(1−πi){1+(ni−1)ρ̃i} ,

with ρ̃i the beta-binomial correlation. Hence, the conventional beta-binomial model
follows.
While the logit link defeats closed-form expressionswhen normal random effects are

introduced, this is different with the probit link. The random-effects probit model has
received some attention in earlier decades (Schall, 1991; Guilkey and Murphy, 1993;
Hedeker and Gibbons, 1994; McCulloch, 1994; Gibbons and Hedeker, 1997; Renard,
Molenberghs, and Geys 2004).
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6.2. Bernoulli-type models for binary data with probit link

Introducing the probit version of the model, while at the same time assuming that the
overdispersion parameters are beta distributed, comes down to:

κi j =Φ1(xxx
T

i j ξξξ+ z
T

i j bbbi), (40)

θi j ∼ Beta(α,β). (41)

Like before, α and β could be allowed to vary with i and/or j.
It now follows that the joint distribution can be written as (see MVDV):

fni(yyyi = 1) =
(

α

α+β

)ni

·Φni(Xiξξξ;L
−1
ni ), (42)

with

Lni = Ini −Zi
(
D−1+ZT

iZi
)−1
ZT

i. (43)

Note that (42) is the joint probability only for the outcome (1, . . . ,1)T, a so-called success
probability. However, given that the dimension ni is arbitrary, all other probabilities can
be derived by appropriate contrasts of success probabilities. Precisely,

fni [yyyi =mmmi = (mi1, . . . ,mini)
T] =

∑
sss⊃ι(mmmi)

sgn(sss)Φ#sss

(
X̃ (sss)
i ξξξ;L−1(sss)

)
·
(

α

α+β

)#sss
, (44)

with ι(mmmi) = λ(mi1, . . . ,mini) the set of places for which mi j = 1,

sgn(sss) =

{
1 if #sss−#ι(mmmi) is even,
0 otherwise,

X̃ (sss)
i contains the rows from Xi with row number in sss, and L(sss) is the #s-dimensional
matrix built from the appropriate sub-matrices of these used in (43). The above devel-
opments straightforwardly generalize when (41) is replaced with θi j ∼ Beta(α j,β j).
Next, the means, variances, and covariances can be derived from (42), by evaluating

it for the one- and two-dimensional cases. We find:

E(Yi j) =
α

α+β
·Φ1(xxx

T

i j ξξξ;L
−1
1 ) =

α

α+β
·Φ1(|I+Dzi j z T

i j|−1/2xxx T

i j ξξξ), (45)

Var(Yi j) =
α

α+β
·Φ1(xxx

T

i j ξξξ;L
−1
1 ) ·

[
1− α

α+β
.Φ1(xxx

T

i jξξξ;L
−1
1 )

]
, (46)
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Cov(Yi j,Yik) =

(
α

α+β

)2
·
{
Φ2

[(
xxx T
i j

xxx T
ik

)
ξξξ,L−12 jk

]
−Φ1(xxx

T

i j ξξξ;L
−1
1 j )Φ1(xxx

T

ikξξξ;L
−1
1k )

}
,

(47)

where

L2 jk = I2−
(
z T
i j

z T
ik

)[
D−1+

(
z T
i j

z T
ik

)
(zi j zik)

]−1
(zi j zik).

The rightmost density in (45) is the standard normal one. Evidently, (42) and (44) lead,
not only to the mean, variance, and covariance expressions, but also to the higher-order
moments.
MVDV noted that the existence of closed-form expressions for the probit case opens

a window of opportunity for the logit case. Indeed, the well-known approximation for-
mulae, linking the normal and logistic densities, prove useful here. As shown in Johnson
and Kotz (1970, p. 6) and used in Zeger et al. (1988):

ey

1+ ey
≈Φ1(cy), (48)

with c= (16
√
3)/(15π). Applied to (35)–(36), it follows that

πi j ∼ θi j
exp
(
xxx T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
xxx T
i jξξξ+ z

T
i j bbbi
) ≈ θi jΦ1[c(xxx

T

i jξξξ+ z
T

i j bbbi)]. (49)

Applying (49) to (42), yields

fni(yyyi = 1)≈
(

α

α+β

)ni
·Φni

(
cXiξξξ; L̃

−1
ni

)
, (50)

with

L̃ni = Ini − c2Zi
(
D−1+ZT

iZi
)−1
ZT

i.

For the expectation, we find, based on (49) and (45):

E(Yi j)≈ α

α+β
·Φ1

(
|I+ c2Dzi j z

T

i j|−1/2cxxx T

i j ξξξ
)
, (51)

with similar expressions for the variance and covariance terms. Upon estimating the pa-
rameters within the probit approximation paradigm, back-transformation to the original
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logit scale is possible, using expressions such as (49) and (51). This opens perspec-
tives for alternative estimation methods for the combined model with logit link, with the
important special case of the normal-logistic GLMM.
In the Bernoulli case, calculating the moments is extremely simple. Indeed, the

Bernoulli moments are all identical. The conditional moments are all E(Yki j|θi j,bbbi) =
θi jκi j (k = 1,2, . . . ). Hence, they all reduce to (38). In the probit case, they are equal to
(45).

6.2.1. A clinical trial in onychomycosis

We present the MVDV analysis of the binary onychomycosis data, introduced in Sec-
tion 2.2. For the logit, consider the model:

Yi j|(bi)∼ Bernoulli(πi j),
logit(πi j) = ξ1(1−Ti)+bi+ ξ2(1−Ti)ti j+ ξ3Ti+ ξ4Titi j, (52)

where Ti is the treatment indicator for subject i, ti j is the time-point at which the jth
measurement is taken for the ith subject, and bi ∼ N(0,d). Parameter estimates for the
logistic model, with and without the normal random effect on the one hand, and with and
without the beta-binomial component on the other hand, as described in Section 6.1, are
presented in Table 5. Observe that the model becomes hard to fit when the beta random

Table 5: Onychomycosis study. Parameter estimates (standard errors) for the regression coefficients in (1)
the logistic model, (2) the beta-binomial model, (3) the logistic-normal model, and (4) the combined model.
Estimation was done by maximum likelihood using numerical integration over the normal random effect, if
present.

Effect Par. Logistic Beta-binomial

Intercept treatment A ξ0 −0.5571 (0.1090) 17.9714 (1482.6)
Slope treatment A ξ1 −0.1769 (0.0246) 5.2454 (12970.0)
Intercept treatment B ξ2 −0.5335 (0.1122) 18.6744 (2077.13)
Slope treatment B ξ3 −0.2549 (0.0309) 4.7775 (12912.0)

Std. dev random effect
√
d — —

Ratio α/β — 3.6739 (0.2051)
−2log-likelihood 1812 1980

Effect Par. Logistic-normal Combined

Intercept treatment A ξ0 −1.6299 (0.4354) −1.6042 (4.0263)
Slope treatment A ξ1 −0.4042 (0.0460) −6.4783 (1.4386)
Intercept treatment B ξ2 −1.7486 (0.4478) −16.2079 (3.5830)
Slope treatment B ξ3 −0.5634 (0.0602) −8.0745 (1.5997)
Std. dev random effect

√
d 4.0150 (0.3812) 60.8835 (14.2237)

Ratio α/β — 0.2805 (0.0350)
−2log-likelihood 1248 1240
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effects are present, which is seen from estimates and standard errors in both the beta-
binomial model as well as the combined model. To understand this, we must observe
that the conjugate random effects in the Bernoulli case, unlike in the Poisson, bino-
mial, and Weibull cases, cannot add to the variability, only to the correlation structure.
This means that there is considerably less information available than in the other cases.
This does not mean that the beta random effects are unnecessary, but rather that they
challenge the stable estimation of other model parameters.

6.3. Models for binomial data with logit and probit link

Molenberghs et al. (2012) supplemented the study of the binary case with the binomial
one. Starting from the Bernoulli expressions (35) and (36) but now for three rather than
two levels, they got:

Yi jk ∼ Bernoulli(πi jk = θi jkκi jk), (53)

κi jk =
exp
(
xxx T
i jkξξξ+ z

T
i jk bbbi

)
1+ exp

(
xxx T

i jkξξξ+ z
T

i jk bbbi
) , (54)

where i stands for the independent block, as before, j for occasion, and k for the repeats
of the Bernoulli trials. It is natural to define Zi j =

∑mi j
k=1Yi jk. Also here, there are no

closed-form expressions for the moments when a logit link is used, but they do exist for
the probit case. The data consists of an array of successes zi = (zi1, . . . ,zini)

T out ofmmmi =
(mi1, . . . ,mini)

T trials. It is also convenient to provide for multi-indices ttt = (t1, . . . , tni)
T

and for vectors of the parameters ααα = (α1, . . . ,αni)
T and βββ = (β1, . . . ,βni)

T. The joint
distribution can then be written as:

f (zi|mmmi,ξξξ,D,ααα,βββ) =
mmmi−zi∑
ttt=0

[
ni

∏
j=1

(−1)t j
B(α j,β j)

(
mi j

zi j

)(
mi j− zi j

t j

)
B(zi j+α j+ t j,β j)

]
×

×Φ∑
j t j

[
(Xi(t)ξξξ;L(t)−1

]
. (55)

Here, Xi(t) is the design matrix, built from Xi, with row j in Xi replicated t j times. The
design matrix Xi is built similarly, and then, in analogy with (43),

L(t) = I∑
j t j
−Zi(t)

[
D−1+Zi(t)

TZi(t)
]−1
Zi(t)

T. (56)
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6.4. Iron-deficient diets in rats

We turn to the data in Section 2.3. Because the probability of a fetus dying varies from
litter to litter, the total variance of the proportions will be greater than that predicted by
a binomial model, even when covariates are accounted for. Hence, overdispersion and
correlation need to be accommodated.
Construct predictor function ηi = ξ0 + ξ2x2i + ξ3x3i + ξ4x4i with xgi = 1 if litter i

belongs to group g and 0 otherwise. The placebo group figures as a reference category.
Further, let Zi =

∑ni
j=1Yi j ∼ Binomial(ni,πi) be the number of dead fetuses out of ni

in litter i. Five models are considered: (a) the binomial model, logit(πi) = ηi; (b) the
GLMM: logit(πi) = ηi+bi, where bi∼N(0,d); (c) the beta-binomial model, logit(μi) =
ηi, where πi ∼ Beta(α,β), and μi = E(πi); (d) the beta-binomial model with normal
random effects: for bi ∼ N(0,d), logit(μi) = ηi, and πi and μi as in the beta-binomial;
(e) in the combined model: logit(κi) = ηi+ bi where πi = θiκi, θi ∼ Beta(α,β), and
bi ∼ N(0,d). The constraint αβ ≡ 1 is imposed in the latter case.
The results of the various models are presented in Table 6. We observe that the

two models that simultaneously account for overdispersion and correlation perform bet-
ter than the others. The classical beta-binomial model with normal random effects has
the same double negative log-likelihood as the combined model. This is the case only
for cross-sectional data; even though their hierarchical formulations are different, they
marginally coincide in this case. That said, the parameters have a different meaning, as
they are to be interpreted conditionally on the assumed random-effects structure. Dif-
ferences may be very noticeable when binomial measurements are collected repeatedly
over time or in an otherwise hierarchical fashion.
Between these two, the estimates’ precision is best in the combined model. Owing to

conjugacy, the mean model and overdispersion parameter estimators are less correlated,
leading to increased precision, even though the effect is modest.

Table 6: Iron-deficiency study. Parameter estimates (standard errors) for (1) the binomial model, (2) the
GLMM, (3) the beta-binomial model, (4) the conventional beta-binomial model with random effect in the
linear predictor, and (5) the combined model.

Effect Par. Binomial GLMM BB BB-normal Combined

Intercept ξ0 1.14(0.13) 1.80(0.36) 1.35(0.25) 1.79(0.38) 1.80(0.36)
Group2 ξ2 −3.32(0.33) −4.52(0.74) −3.11(0.50) −4.49(0.80) −4.51(0.74)
Group3 ξ3 −4.48(0.73) −5.86(1.19) −3.87(0.81) −5.81(1.30) −5.85(1.19)
Group4 ξ4 −4.13(0.48) −5.60(0.92) −3.93(0.67) −5.57(0.97) −5.59(0.92)
Std. dev. RE

√
d — 1.54(0.29) — 1.52(0.37) 1.53(0.29)

Overdispersion — — 0.24(0.06) 0.005(0.051) 0.0005(0.0018)
−2log-likelihood 244.9 183.9 186.9 183.8 183.8
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6.5. Ordinal data: a combined proportional odds-beta-normal model

The ordinal case was studied by Ivanova et al. (2014). Assume the ordinal outcome Yi j
can take values r = 1, . . . ,R, and replace it by a set of R dummies:

Zr,i j =

{
1 if Yr,i j = r,

0 otherwise,

for r = 1, . . . ,R. Evidently, there are redundant dummies, but any subset of R−1 com-
ponents is not. Group the dummies into vectorsZZZi j andZZZi for a specific subject i and oc-
casion j, and for a specific subject i, respectively. We assume a multinomial distribution
ZZZi j ∼ multinomial(πππi j), with πππi j = (π1,i j, . . . ,πr,i j, . . . ,πR,i j). The multinomial distribu-
tion at a given occasion is determined by the modelling choice for the ordinal outcome.
Under a proportional odds assumption, using normal random effects bbbi ∼ N(0,D) in the
linear predictor, and beta random effects θi j ∼ Beta(α j,β j) to capture further overdis-
persion, the probabilities can be written as:

πr,i j =

⎧⎪⎨⎪⎩
θi jκ1,i j if r = 1,

θi j(κr,i j−κr−1,i j) if 1< r < R,

1− θi jκR−1,i j if r = R.

(57)

where

κr,i j =
exp
(
ξ0r+xxx

T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
ξ0r+xxx

T
i jξξξ+ z

T
i j bbbi
) . (58)

Here, ξ01 ≤ ·· · ≤ ξ0,R−1 are intercepts, ξξξ are fixed regression coefficients, and xxxi j (zi j) is
the design vector for the fixed (random) effects at occasion j. Also here, some choices
in the above can be relaxed and/or altered. For example, like before, the α j and β j
parameters, describing the beta distribution, need not be dependent on j. To ensure
identifiability, a constraint needs to be applied to it, e.g., α jβ j = 1, but it is mathemati-
cally convenient to retain them as two separate parameters, with the understanding that
the constraint does apply. Finally, the θi j within a subject are assumed different from
each other and independent. One could allow them to be correlated, or even constant
across subjects. This will not be considered here.
As argued in MVDV, MVID, and Molenberghs et al. (2012), closed-form expres-

sions for marginal means, variances, covariances, and even the entire marginal distri-
bution, i.e., integrated over both sets of random effects, cannot be derived in the binary
case with logit link and normal random effects (regardless of the overdispersion random
effects). Evidently, the same will be true for the ordinal case. If necessary, numerical
integration or other Monte Carlo methods can be used to derive such marginal quantities.
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6.6. Diabetes study

We describe the analysis of the diabetes study (Section 2.4), reported in Ivanova et al.
(2014). Let Yi j = 0, . . . ,3 be the number of clinical targets patient i reached at occasion
j. Also, let ti j = 0,1 be the time point at which the jth measurement was taken. Consider
the combined proportional odds logistic regression model:

logit[P(Yi j ≤ r|ti j,Xi)] = ξ0r+bi+ ξ1ti j+ ξ2Xi,

(r= 0, . . . ,3), where the random intercept bi is assumed N(0,d) distributed, and Xi is an
indicator for group. The beta random effect is re-parameterized such that

ν =
eδ

1+ eδ
=

α

α+β
,

thus simultaneously avoiding identifiability and range violation issues. The parameter
δ is the one entered into the likelihood function. We consider (1) the ordinary propor-
tional odds model, (2) the proportional odds model with beta overdispersion effect, (3)
the proportional odds model with random normal effect, and (4) the combined model.
Estimates (standard errors) are presented in Table 7. Clearly, there is no significant im-

Table 7: Diabetes study. Parameter estimates (standard errors) from the regression coefficients in (1) the
ordinary proportional odds model, (2) the proportional odds model with beta overdispersion effect, (3) the
proportional odds model with random normal effect, together with (4) the combined model. Estimation was
done by maximum likelihood using numerical integration over the normal random effect, if present.

Effect Par. PO PO-Beta

Intercept 0 ξ00 −0.7130 (0.0662) −1.7129 (0.0662)
Intercept 1 ξ01 0.2668 (0.0560) 0.2667 (0.0560)
Intercept 2 ξ02 2.0279 (0.0648) 2.0277 (0.0650)
Slope time ξ1 −0.7614 (0.0575) −0.7610 (0.0575)
Slope group ξ2 −0.2053 (0.0587) −0.2053 (0.0587)
Std. dev. RE

√
d — —

Beta parameter δ — 13.1622 (390.44)

−2 log-likelihood 10588.18 10588.18

Effect Par. PO-Normal PO-Beta-Normal

Intercept 0 ξ00 −2.3201 (0.0100) −2.3201 (0.0999)
Intercept 1 ξ01 0.3336 (0.0818) 0.3335 (0.0818)
Intercept 2 ξ02 2.7727 (0.1035) 2.7728 (0.1035)
Slope time ξ1 −1.0268 (0.0659) −1.0268 (0.0659)
Slope group ξ2 −0.2605 (0.0912) −0.2605 (0.0912)
Std. dev. RE

√
d 1.5105 (0.0729) 1.5205 (0.0729)

Beta parameter δ — 15.4925 (246.55)

−2 log-likelihood 10320.39 10320.39
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provement, neither when we switch from model (1) to model (2), nor when we move
from (3) to (4). The estimate for the beta-parameter δ is large and has a very large
standard error. This indicates that there is probably no overdispersion in the data.

7. Time-to-event data

MVDV, using their general framework, also focused on time-to-event data, combining
the Weibull model with normal and gamma random effects. The model extends both the
GLMM and the gamma frailty model. Molenberghs et al. (2015) extended the approach
to allow for censoring. In what follows, we will give an overview of these developments.
Efendi andMolenberghs (2013) paid particular attention to various estimation strategies.
Abrams et al. (2017) integrated this framework in the modelling of current-status data,
in the context of infectious diseases modelling.
Molenberghs and Verbeke (2011a), using closed-form expressions for the model’s

moments, pointed to both probabilistic as well as data-analytic implications of using
(gamma) frailty models. We give a brief summary of these in Section 7.2.
The general Weibull model for repeated measures, with both gamma and normal

random effects can be expressed as

f (yyyi|θθθi,bbbi) =
ni

∏
j=1

λρθi jy
ρ−1
i j exxx

T
i jξξξ+z

T
i jbbbie−λy

ρ
i jθi je

xxx T
i j ξξξ+z

T
i j bbbi
, (59)

f (θθθi) =
ni

∏
j=1

1

β
α j
j Γ(α j)

θ
α j−1
i j e−θi j/β j , (60)

f (bbbi) =
1

(2π)q/2|D|1/2 e
− 1
2bbb

T
iD

−1bbbi . (61)

A few observations are in place. First, setting ρ = 1 leads to the special case of an ex-
ponential time-to-event distribution. Second, the classical gamma frailty model (i.e., no
normal random effects) and the Weibull-based GLMM (i.e., no gamma random effects)
follow as special cases. Third, strong conjugacy applies. This is definitely true for the
exponential model, but carries over to the Weibull model, using the transformation Y ρi j .
It is equally possible to derive this result by merely re-writing the factor φ= λκ. Fourth,
the above expressions are derived for a two-parameter gamma density. It is customary
in a gamma frailty context (Duchateau and Janssen, 2007) to set α jβ j = 1, for reasons
of identifiability. In this case, (60) is replaced by

f (θθθi) =
ni

∏
j=1

1(
1
α j

)α j
Γ(α j)

θ
α j−1
i j e−α jθi j , (62)
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Alternatively, assuming α j = 1 and β j = 1/δ j, one could write

f (θθθi) =
ni

∏
j=1

δ je
−δ jθi j , (63)

implying that the gamma density is reduced to an exponential one.
MVDV derived a multi-index series formulation of the marginal joint distribution:

f (yyyi) =
∑

(m1,...,mni )

ni

∏
j=1

(−1)mj

m j!

Γ(α j+mj+1)β
mj+1
j

Γ(α j)
λmj+1ρy

(mj+1)ρ−1
i j

× exp{(mj+1)
[
xxx T

i jξξξ+
1
2(mj+1) · z T

i jDzi j
]}
. (64)

In case censorship applies, it is easy to integrate (64) over the interval [Ci j,+∞[ or, in a
multivariate fashion, over the cube [0,CCCi]:

F(CCCi) =
∑

(m1,...,mni )

ni

∏
j=1

(−1)mj

(mj+1)!

Γ(α j+mj+1)β
mj+1
j

Γ(α j)
λmj+1C

(mj+1)ρ
i j

× exp{(mj+1)
[
xxx T

i j ξξξ+
1
2(mj+1) · z T

i jDzi j
]}
. (65)

Evidently, if censorship applies to some but not all of the times within the vector, then
the integration can be restricted to these, and the corresponding contribution will be an
amalgamation of components taken from (64) and (65).
MVDV also derived the following moment expression, with mean, variance, and

covariance expressions:

E(Y ki j) =
α jB(α j− k/ρ,k/ρ+1)

λk/ρβ
k/ρ
j

exp

(
−k
ρ
xxx T

i jξξξ+
k2

2ρ2
z T

i jDzi j

)
, (66)

E(Yi j) =
α jB(α j−1/ρ,1/ρ+1)

λ1/ρβ
1/ρ
j

exp

(
−1
ρ
xxx T

i j ξξξ+
1
2ρ2
z T

i jDzi j

)
, (67)

Var(Yi j) =
α j

λ2/ρβ2ρj
exp

(
−2
ρ
xxx T

i jξξξ+
1
ρ2
z T

i jDzi j

)

×
[
B(α j−2/ρ,2/ρ+1)exp

(
1
ρ2
z T

i jDzi j

)
−α jB

(
α j− 1

ρ
,
1
ρ
+1

)2]
, (68)
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Cov(Yi j,Yik) =
α jαk

λ2/ρβ
1/ρ
j β

1/ρ
k

exp

[
−1
ρ
(xxx T

i j ξξξ+xxx
T

ikξξξ)

]

×B

(
α j− 1

ρ
,
1
ρ
+1

)
B

(
αk− 1

ρ
,
1
ρ
+1

)

× exp
[
1
2ρ2

(z T

i jDzi j+ z
T

ikDzik)
][
exp

(
1
ρ2
z T

i jDzik

)
−1
]
. (69)

7.1. Recurrent asthma attacks in children

MVDV analysed the times-to-event, introduced in Section 2.5. They considered an
exponential model, i.e., a model of the form (59) with ρ= 1, and further a predictor of
the form:

κi j = ξ0+bi+ ξ1Ti,

where Ti is an indicator for treatment and bi ∼ N(0,d). Results from fitting all four
models (with/without normal random effect; with/without gamma random effect) can
be found in Table 8. A formal assessment of the treatment effect from all four models is
given in Table 9. The treatment effect ξ1 is stably identifiable in all four models. As can
be seen from Table 9, the treatment effects are similar in strengths, but including both
random effects reduces the evidence, relative to the exponential model. Needless to say
that too parsimonious an association structure might lead to liberal test behaviour.

Table 8: Asthma study. Parameter estimates (standard errors) for the regression coefficients in (1) the
exponential model, (2) the exponential-gamma model, (3) the exponential-normal model, and (4) the com-
bined model. Estimation was done by maximum likelihood using numerical integration over the normal
random effect, if present.

Effect Par. Exponential Exponential-gamma

Intercept ξ0 −3.3709(0.0772) −3.9782(15.354)
Treatment effect ξ1 −0.0726(0.0475) −0.0755(0.0605)
Shape parameter λ 0.8140(0.0149) 1.0490(16.106)

Std. dev. random effect
√
d — —

Gamma parameter γ — 3.3192(0.3885)
−2log-likelihood 18,693 18,715

Effect Par. Exponential-normal Combined

Intercept ξ0 −3.8095(0.1028) 3.9923(20.337)
Treatment effect ξ1 −0.0825(0.0731) −0.0887(0.0842)
Shape parameter λ 0.8882(0.0180) 0.8130(16.535)

Std. dev. random effect
√
d 0.4097(0.0386) 0.4720(0.0416)

Gamma parameter γ — 6.8414(1.7146)
−2log-likelihood 18,611 18,629
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Table 9: Asthma study. Wald test results for the assessment of treatment effect.

Model Z value p-value

Exponential −1.5283 0.1264

Exponential-gamma −1.1293 0.2588

Exponential-normal −1.2480 0.2120

Combined −1.0534 0.2921

7.2. Probabilistic and data-analytic issues with frailty models
and their combined-model extensions

Based on moment expression (66), Molenberghs and Verbeke (2011a) observed that
there can be a problem with models combining Weibull outcomes with gamma ran-
dom effects, as well as with several extensions and sub-models. In particular, they
established a connection with the so-called log-logistic distribution (Shoukri, Mian and
Tracy, 1988), a transformation of the logistic distribution to the half line with only a
finite number of finite moments.
To make their point, they started from a univariate Weibull distribution with gamma

random effects (adding the normal random effects to the linear predictor does not sub-
stantially change anything), for which all expressions are given in the last column of Ta-
ble 1. Like before, setting αβ = 1, and using formulation (62), the gamma and marginal
distributions are written as:

f (θ) =
1(

1
α

)α
Γ(α)

θα−1e−αθ, (70)

f (y) =
ϕρyρ−1αα+1

(α+ϕyρ)α+1
. (71)

Molenberghs and Verbeke (2011a) term this Case I. They also considered Case II, ob-
tained by setting α= 1 and β = 1/δ, line in (63), henceforth, Case II:

f (θ) = δe−δθ, (72)

f (y) =
ϕρyρ−1δ
(δ+ϕyρ)2

. (73)

Here, the gamma distribution has been replaced by its exponential special case and (73)
is the log-logistic distribution (Bennett, 1983; Collett, 2003).
The moments follow from (66). For the general case, with α and β free parameters,

for Case I, and for Case II, they are, respectively:



Geert Molenberghs, Geert Verbeke and Clarice G.B. Demétrio 225

General : E(Yk) =
αB(α− k/ρ,k/ρ+1)

(βϕ)k/ρ
, (74)

Case I : E(Yk) =

(
α

ϕ

)k/ρ k
ρ
B(α− k/ρ,k/ρ), (75)

Case II (log-logistic) : E(Yk) =
k
ρ

(
δ

ϕ

)kρ
·Γ(1− k/ρ) ·Γ(k/ρ). (76)

The moments (74) are finite if and only if k < αρ. Hence, if αρ is small, there is a risk
that even lower-order moments do not exist, which evidently is problematic. Molen-
berghs and Verbeke (2011a) gave an example, using data from Duchateau and Janssen
(2007). For certain methods of estimation in the context of the Weibull-Gamma frailty
model, this would imply that regularity conditions are not satisfied. For the log-logistic
case, this becomes k < ρ. The moments have been presented by Rinne (2009, p. 157) as
well, though without reference to the irregularity issue.

8. Estimation

MVD and MVDV showed that fitting the combined model is relatively easy, and that
standard software tools, such as the SAS procedure NLMIXED, can be used for maxi-
mum likelihood estimation in this case. More generically, any sufficiently flexible likeli-
hood maximization tool that allows for normally distributed random effects can be used
to this effect. This can typically be done with relatively little programming effort. Efendi
and Molenberghs (2013) expanded upon this for the specific case of time-to-event data,
and supplemented maximum likelihood with pairwise likelihood and Bayesian estima-
tion. Their simulations indicated that, while maximum likelihood can be faster than
pairwise likelihood, the latter has somewhat better convergence properties.
A priori, fitting a combined model of the type described in Section 4, proceeds by

integrating over the random effects. The likelihood contribution of subject i is

fi(yyyi|ϑϑϑ,D,ϑϑϑi,ΣΣΣi) =
∫ ni

∏
j=1

fi j(yi j|ϑϑϑ,bbbi,θθθi) f (bbbi|D) f (θθθi|ϑϑϑi,ΣΣΣi) dbbbi dθθθi. (77)

Here, ϑϑϑ groups all parameters in the conditional model for Y i. From (77) the likelihood
derives as:

L(ϑϑϑ,D,ϑϑϑ,ΣΣΣ) =
N

∏
i=1

fi(yyyi|ϑϑϑ,D,ϑϑϑi,ΣΣΣi)

=
N

∏
i=1

∫ ni

∏
j=1

fi j(yi j|ϑϑϑ,bbbi,θθθi) f (bbbi|D) f (θθθi|ϑϑϑi,ΣΣΣi) dbbbi dθθθi. (78)
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The key problem in maximizing (78) is the presence of N integrals over the random
effects bbbi and θθθ. It is widely claimed that the absence of a closed-form solution pre-
cludes an analytical-integration based solution (Molenberghs and Verbeke, 2005), ex-
plaining the popularity of Taylor-series expansion based methods, such as PQL and
MQL, Laplace approximation, and numerical-integration based methods. These have
been implemented in, for example, the SAS procedures GLIMMIX and NLMIXED.
Several of the series expansion methods tend to exhibit bias, an issue taken up in Bres-
low and Lin (1995), and suggesting the use of alternative methods.
However, thanks to our results in Section 4, further progress can be made. Closed-

form integration, apart from the normal case, is within reach for the Poisson, probit,
and Weibull cases. Now, some closed forms involve series expansions, and may be
either time consuming or cumbersome to implement. This notwithstanding, a variety of
alternative approaches are possible.
Let us turn to the Poisson case. While closed-form expressions can be used to imple-

ment maximum likelihood estimation, with numerical accuracy governed by the num-
ber of terms included in the series, one can also proceed by what we will term partial
marginalization. By this we refer to integrating (18)–(22) over the gamma random ef-
fects only, leaving the normal random effects untouched. The corresponding probability
is:

f (yi j|bbbi) =
(
α j+ yi j−1
α j−1

)
·
(

β j
1+κi jβ j

)yi j
·
(

1
1+κi jβ j

)α j

κ
yi j
i j , (79)

where κi j = exp[xxx
T
i jξξξ+ z

T
i j bbbi]. Note that, with this approach, we assume that the gamma

random effects are independent within a subject. This is fine, given the correlation is
induced by the normal random effects.
Similarly, for the Weibull case we obtain

f (yi j|bbbi) =
λκi jeμi jρy

ρ−1
i j α jβ j

(1+λκi jeμi jβ jy
ρ
i j)
α j+1

. (80)

Now, in the survival case it is evidently very likely that censoring occurs. Focusing
on right-censored data, it is then necessary to integrate the marginal density over the
survival time within the interval [0,Ci]. The corresponding cumulative distribution is
given in (65). In the spirit of (80), the partial marginalization of a censored component
takes the form:

f (Ci j|bbbi) =
∫ +∞

Ci j
f (yi j|bbbi)dyi j = 1

(1+λκi jeμi jC
ρ
i j)
α j
. (81)

The concept of partial integration always applies whenever strong conjugacy holds. In-
deed, an expression of the form (16) corresponds to integrating over the conjugate ran-
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dom effect θ, while leaving the normally distributed random effect embedded in the
predictor, κ in this notation. Recall that, while expressions of the type (16) appear to be
for the univariate case, they extend without problem to the longitudinal setting as well.
Because there is lack of strong conjugacy, the logit case defies the mere exploitation

of conjugacy, such as the negative binomial form (79) and the Weibull-gamma frailty
form (80). Nevertheless, it is easy to derive, for this case:

f (yi j|bbbi) = 1
α j+β j

· (κi jα j)
yi j · [(1−κi j)α j+β j]

1−yi j . (82)

For all of these, it is straightforward to obtain the fully marginalized probability by
numerically integrating the normal random effects out of (79), (80), and (82), using a
tool such as the SAS procedure NLMIXED that allows for normal random effects in
arbitrary, user-specified models.
For the specific case of the marginalized probit model, the computational chal-

lenge stems from the presence of a multivariate normal integral of the form (42), a
phenomenon also known from the fully marginally specified multivariate probit model
(Ashford and Sowden, 1970; Lesaffre and Molenberghs, 1991; Molenberghs and Ver-
beke, 2005). Specific to the context of the probit models with random effects, Zeger et
al. (1988) derived the marginal mean function, needed for their application of general-
ized estimating equations as a fitting algorithm for the marginalized probit model.
In the ordinal case, the partially marginalized density at occasion j for subject i takes

the form:

f (yi j|bbbi) = α j

α j+β j
· (κ1,i j)z1,i j ·

R−1
∏
r=2

(κr,i j−κr−1,i j)zr,i j ·
(
α j+β j
α j

−κR−1,i j
)zR,i j

.

From these, the likelihood can be constructed by assembling all contributions over sub-
jects and repeated measurements within subjects.
MVDV discussed a number of alternative estimation strategies. These include pseudo-

likelihood (or: pairwise likelihood; Aerts et al., 2002; Molenberghs and Verbeke, 2005),
Bayesian inferences, non-parametric maximum likelihood (Booth et al., 2003: Aitkin,
1999; Alfò and Aitkin, 2000). Also, hierarchical generalized linear models (Lee and
Nelder, 1996; Lee et al., 2006) can be used. They also referred to transformation-based
methods, whereby non-normal random effects are transformed to normal ones, or vice
versa (Liu and Yu, 2008; Nelson et al., 2006).
An important point is that not all parameters may be simultaneously identifiable.

For example, the gamma-distribution parameters in the Poisson case, α and β, are not
simultaneously identifiable when the linear-predictor part is also present, because there
is aliasing with the intercept term. Therefore, one can set, for example, β equal to a con-
stant, removing the identifiability problem. It is then clear that α, in the univariate case,
or the set of α j in the repeated-measures case, describe the additional overdispersion, in
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addition to what stems from the normal random effect(s). A similar phenomenon also
plays in the binary case, where both beta-distribution parameters are not simultaneously
estimable.
In addition, also Bayesian estimation and inference can be considered. Ghebretinsae

et al. (2013) considered a Bayesian version in the time-to-event case. Ghebretinsae et
al. (2012) presented a Bayesian joint CM. Efendi and Molenberghs (2013) juxtaposed
likelihood-based and Bayesian estimation. The performance of the Bayesian method for
the count case was assessed, using simulations, by Aregay, Shkedy, and Molenberghs
(2013) and Rizzato et al. (2016). Aregay, Shkedy, and Molenberghs (2015) compared
model versions with additive and multiplicative random effects. On a related note, Iddi
et al. (2014) examined empirical Bayes estimation for the combined model.

9. Implication for computation of correlation and derived quantities

As we have seen, the combined model allows for closed-form expressions for moments,
and hence for means and variances, for the normal, Poisson, probit, and Weibull cases,
with a combination of normal random effects on the one hand, supplemented on the
other hand with conjugate random effects, taking a normal, gamma, beta, and gamma
form, respectively. The obvious one missing from the list is the logit model, but then
the logit-probit connection, as discussed in Section 6.2, comes to the rescue.
These closed-form moments enable easy calculations of such derived quantities as

correlations. For the count case, this was done by Vangeneugden et al. (2011), while
Vangeneugden et al. (2014) focused on the binary setting.
For the count combined model, Vangeneugden et al. (2011) used the following

derivation. The mean vector μμμi = E(YYY i) has components:

μi j = φi j exp
(
xxx T

i j ξξξ+
1
2z

T

i jDzi j
)
, (83)

and the variance-covariance matrix is given by

var(YYY i) =Mi+Mi (Pi−Jni)Mi, (84)

where φφφi is the mean vector of the overdispersion random effects, with components φi j,
ΣΣΣi is the variance-covariance matrix of the overdispersion random effects, with compo-
nents σi j, andMi is a diagonal matrix with elements μi j. Further, the ( j,k)th element of
Pi equals



Geert Molenberghs, Geert Verbeke and Clarice G.B. Demétrio 229

pi, jk = exp
(
1
2z

T

i jDzik
) · σi, jk+φi jφik

φi jφik
· exp( 12z T

ikDzi j
)
. (85)

Evidently, from this variance-covariance structure, the correlations immediately follow.
For the binary combined model, with probit link, the means, variances, and covari-

ances were given in (45)–(47). When the logit link is used, no similar closed form exist.
One can proceed by approximating the logit function via the probit function, or by using
Taylor-series-based expressions. Details on these can be found in Vangeneugden et al.
(2014).
The availability of closed-form correlation and other moment-based functions is use-

ful in a number of contexts. For example, when studying psychometric reliability and
generalizability (Vangeneugden et al., 2008; 2010), the correlation function is the basic
building block. Correlation functions are also used in the context of surrogate marker
evaluation from clinical-trial data (Alonso et al., 2017). Milanzi et al. (2015) used
developments of this type to underscore the difference between manifest and latent cor-
relations, for example when reliability measures are calculated in item response theory.

10. Marginalized versions of the combined model

As is clear from Sections 4–7, for many though not all versions of the CM there are
explicit moment expressions and quantities derived there from. Nevertheless, they are
algebraically involved, chiefly due to the non-conjugate nature of the normal random
effects. To simplify the derivation of marginal quantities, such as effect measures, mean
functions, etc., it is sensible to turn to the methodology of Heagerty (1999) and Heagerty
and Zeger (2000), who modified the GLMM so that the first-order moments, i.e., the
mean functions, are directly marginally interpretable. They originally focused on the
logistic-normal model for binary longitudinal data, but they and others then extended
the framework to other data types and link functions. The method specifies, at first sight
contrary to intuition, a separate model for the marginal and conditional means. But this
works thanks to a connector function that depends on covariates, marginal parameters,
and the random-effects specification. Hence, both a marginal and conditional interpreta-
tion of the parameters can be maintained. The model, called the marginalized multilevel
model (MMM), also allows for the use of maximum likelihood and Bayesian inferences,
which is useful when data are incomplete.
To bring together the flexibility of the CM and the marginal interpretability of the

MMM, Iddi and Molenberghs (2012ab) developed the combined overdispersed and
marginalized multilevel model (COMMM). They focused on binary data and to some
extent on counts. Kassahun et al. (2014b) studied further the count data case. The time-
to-event case was studied by Efendi, Molenberghs, and Iddi (2014). Molenberghs et al.
(2013) and Kenward and Molenberghs (2016) established connections between various
ways of deriving marginally interpretable random-effects models, of which the MMM
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idea is one. Iddi and Molenberghs (2013) and Kassahun et al. (2014b) combined the
MMM idea, for counts, with the occurrence of zero-inflation.
The rest of this section is organized in the following way. In Section 10.1, the general

MMM and COMMM methodology is given. The analysis of the epilepsy, onychomy-
cosis, and asthma cases studies is presented in Sections 10.2–10.4. In Section 10.5, we
show how further zero inflation in the count case can be added.

10.1. Methodology

The general formulation of the CM was given in Section 4. The other building block
that we need is the general marginalized multilevel model (MMM), after which both
will be merged.
The general marginalized multilevel model due to Heagerty (1999) can be written

as:

g1(μ
m
i j) = xxx T

i j ξξξ
m, (86)

g2(μ
c
i j) = Δi j+zzz

T

i j bi, (87)

bi ∼ Fb (0,D) , (88)

Y ci j =Yi j|bi ∼ FYc
(
μci j,υ

)
. (89)

The two link functions g1 and g2 can be different, although frequently they will be
identical and then denoted by g. Further Fb is an arbitrary distribution. Here, υ is
a dispersion parameter, similar to the overdispersion parameter φ in the exponential
family. The marginal mean μmi j= E(Yi j) is made to depend on an ni× pmatrix of p linear
predictors XXXi through a link function g(·). Further, the conditional mean μci j = E(Yi j|bi)
relates to the random variable bi with distribution (88) and the function Δi j connects the
marginal and conditional means through the same link function; the latter aspect could
be relaxed if desired. The conditional response distribution is given by FYc . The function
Δi j is obtained from the solution to the integral equation

μmi j = g−1(xxx T

i j ξξξ
m) =

∫
b
g−1(Δi j+zzz

T

i j bi)dFb. (90)

For example, when the link function is logit and the distribution of the random effect is
normal, the expression of Δi j is obtained from:

expit(xxx T

i j ξξξ
m) =

∫
b
expit(Δi j+zzz

T

i j bi)ϕ(bi|0,D)dbi.

Here, expit(η) = eη/(1+ eη). Griswold and Zeger (2004) expanded the model by re-
laxing the common link function assumed for both the marginal and conditional model
specification. For example, using a logistic-probit-normal model:
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logit(μmi j) = xxx T

i j ξξξ
m,

Φ−1(μci j) = Δi j+zzz
T

i j bi,

bi ∼ Fb (0,D) ,

Y ci j|bi =Yi j ∼ FYc
(
μci j,υ

)
.

(90) becomes:

Δi j =
(√

1+zzz T
i jDzzzi j

)
·Φ−1{expit(xxx T

i j ξξξ
m)}. (91)

The logit-probit-normal is more attractive than the logit-logit normal version in the
sense that, for example, the marginal parameters will enjoy the odds ratio interpreta-
tion while at the same time retaining the computational advantage associated with the
probit-normal relationship. Of course, when both link functions are of probit form, (91)
becomes:

Δi j =
(√

1+zzz T
i jDzzzi j

)
·xxx T

i j ξξξ
m. (92)

For count data, a log-log-normal specification leads to

Δi j = xxx T

i j ξξξ
m−zzz T

i jDzzzi j/2. (93)

Note from this expression that, in particular for a random intercept model, i.e., one
where zzz T

i j bi = bi with bi ∼ N
(
0,τ 2

)
, then zzz T

i jDzzzi j =
√
1+ τ 2, which implies that only

fixed intercept parameters will be affected in the MMM model compared to their coun-
terparts in the conditional GLMM model. For a general random-effects design zzz T

i j bi,
this will not be the case. The expression for Δi j, in the case of probit-probit-normal,
log-log-gamma model and the logistic-logistic-Bridge MMM can be found in Griswold
and Zeger (2004).
Iddi and Molenberghs (2012), and Efendi et al. (2014) combined the MMMwith the

CM, by combining (9), (10), and (11) from the CM with (86), (88), and (89) from the
MMM in the following way:

g(μmi j) = xxx T

i j ξξξ
m

g(κi j) = Δi j+zzz
T

i j bi

μci j = θi jκi j

θi j ∼Θi j
(
τi j,σ

2
i j

)
bi ∼ Fb (0,D)

Y ci j = (Yi j|θi j,bi)∼ FYc
(
μci j,υ

)
.
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Note that the response distribution is now conditioned on two sets of random effects,
namely the overdispersion and longitudinal ones. This implies that the expression for Δi j
will change slightly. Because μci j = E(Yi j|θi j,bi), the function Δi j will then be obtained
from the integral equation

μmi j = g−1(xxx T

i j ξξξ
m) =

∫
b

∫
θ
θi jg

−1(Δi j+zzz
T

i j bi)dΘθdFb

=
∫
b
E(θi j)g

−1(Δi j+zzz
T

i j bi)dFb. (94)

These authors showed that for the logistic-probit-normal model with beta distribution
for the overdispersion parameter, i.e., θi j ∼ Beta(α1 j,β2 j), (94) becomes

Δi j =
(√

1+zzz T
i jDzzzi j

)
·Φ−1{(1+ c j) · expit(xxx T

i j ξξξ
m)},

where c j = β2 j/α1 j, which can serve as one of several possible constraints, given that
the model is now over-parameterized. For the log-log-normal MMM model with θi j ∼
Gamma(α1 j,α2 j),

Δi j =− log(α1 jα2 j)+xxx T

i j ξξξ
m−zzz T

i jDzzzi j/2.

The fully marginalized joint distribution can be obtained from integrating out the two
random effects. Less effort is needed here because the expressions for the marginal
distribution are similar to those found in Molenberghs et al. (2010), except for replacing
κi j with κi j = g−1(Δi j+zzz T

i j bi).
Efendi et al. (2014) showed that, in the particular case of the Weibull-gamma-normal

model, the integral equation leads to:

Δi j =− log(α jβ j)+xxx
T

i j ξξξ
m− z T

i jDzi j/2. (95)

Should there be no gamma random effects, then the first term on the right hand side of
(95) simply drops.
Parameter estimation conveniently proceeds by using the partially marginalized dis-

tribution method, explained in Section 8. Only here, the conditional distribution is partly
specified through the marginal mean function, which is passed on to the conditional
mean function via the connector function.

10.2. A clinical trial in epileptic patients

Building further on the models fitted in Sections 5.1 and 5.3, assume Yi j to follow a
Poisson distribution with marginal mean
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log(πmi j) =

{
β00+β01ti j if placebo,

β10+β11ti j if treatment.
(96)

Write the conditional model log(πci j) = Δi j + bi, with bi ∼ N(0,d) and Δi j the con-
nector. If also overdispersion is present, consider the COMMM version with then
πci j = θi jexp(Δi j+bi) where θi j ∼ Gamma(α1,α2) and impose constraint α2 = 1/α1.

Table 10: Epilepsy study. Comparison of the log-log-normal MMM with the combined gamma and log-
log-normal MMM.

CM MMM COMMM
Gamma and Log-Log- Gamma and

Effect Par. log-normal normal Log-Log normal

Interc. plac. β00 0.9112(0.1755) 1.3960 (0.1887) 1.4757 (0.1962)
Slope plac. β01 −0.0248(0.0077) −0.0143 (0.0044) −0.0248 (0.0077)
Interc. treatm. β10 0.6555(0.1782) 1.2256 (0.1901) 1.2200 (0.1970)
Slope treatm. β11 −0.0118(0.0075) −0.0120 (0.0043) −0.0118 (0.0075)
SD RE

√
d 1.0625(0.0871) 1.0755 (0.0857) 1.0625 (0.0871)

Neg.-bin. par. α1 2.4640(0.2113) — 2.4640 (0.2113)

Neg.-bin. par. α2 =
1
α1

0.4059(0.0348) — 0.4059 (0.0348)

−2 log-likelihood −7664 −6810 −7664

Parameter estimates and standard errors for the log-log-normalMMM and the gamma-
log-log-normal COMMM model are presented in Table 10. Observe that the parameter
estimates for the two models are very similar, with the same holding for the standard er-
rors. The log-log-normal model improves when the gamma random effect is introduced,
as seen from a likelihood ratio comparison. This crucially affects inferences about the
difference between the slopes as well as the ratio of the slopes. For the log-log-normal
model, the difference of the slopes β11−β01 was found not to be significantly different
form zero while the ratio of the slopes β11/β01 showed a significant difference from
one (p = 0.7111 and p = 0.0376, respectively). On the other hand both the slope dif-
ference (p = 0.2260) and ratio (p = 0.1591) showed non-significance in the combined
model. To understand this, two things need to be borne in mind. First, the above demon-
strates that, due to more careful modelling of the association and dispersion structures,
inferences about functions of the model parameters may be erroneous in the simpler
model, underscoring that care must be taken regarding conclusions based on the simpler
model. Indeed, it would lead to a significant treatment difference, whereas the more
general combined model showed no evidence for treatment difference. Similar obser-
vations were also made by MVD, where the combined Poisson-Gamma-normal showed
a strong improvement of the Poisson GLMM model, underscoring the importance of
introducing the gamma random effect. Second, and very important, one should not di-
rectly compare the estimates in the marginalized and the conditional version. Indeed, in
the MMM model, treatment effects, slopes, etc. have a marginal interpretation. In addi-
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tion, we can examine the results of fitting a combined beta and log-normal model, which
is purely conditionally specified. The interpretation of the latter should be considered at
the individual level, or at least for a change between two patients with different covariate
profile (e.g., treated versus non-treated), but with the same level of the random effect.
We note from these results that for a random intercept model, only the intercepts

parameters are affected but all other parameters remain the same compared to the com-
bined Gamma and log-log-normal model. These would, however, not be the same, for
example, for a random intercept and slope model. Given that the log link was used for
both marginal and conditional models, we see further that the log-likelihood remains the
same across both combined models.

10.3. A clinical trial in onychomycosis

Also here, both the conditional as well as the marginal mean are specified:

Yi j|bi ∼ Bernoulli(πci j),
Φ−1 (πci j)= Δi j+bi,

bi ∼ N(0,d),

logit(πmi j) = β0+β1Xi+β2ti j+β3Xiti j.

Recall that Xi is an indicator for the treatment applied to subject i, ti j is the time at which
the jth measurement is taken. For the COMMM model, the conditional mean model
is specified as πci j = θi jΦ(Δi j+bi) where θi j ∼ Beta(α1,α2) and Φ−1 is the probit link.
The constraint c= α2/α1 was imposed.
From the results presented in Table 11, it is again clear that introducing the beta

random effect improves significantly the model fit when comparing the log-likelihoods
(smaller AIC). Parameter estimates from both models are slightly different, but a much
more dramatic effect is seen in precision estimation. For many, but not all parameters,
the extended model yields a higher precision. Furthermore, we observed that whereas
the broader model encompassing both overdispersion and correlation concludes that
there is no effect of the evolution of treatment (β3) on the response with p-value of
p= 0.0790, the MMM model results in a significant treatment evolution (p = 0.0155).
Also presented in Table 11 are the results for a combined beta and probit-normal model
whose parameters have a conditional interpretation. The treatment evolution was found
to be significant with p= 0.0343. By comparing the two combined models, which both
account for overdispersion and correlation simultaneously but with different interpreta-
tion of parameters, we may conclude that, while there is a significant treatment evolution
given subjects, there is no evidence of population average treatment evolution.
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Table 11: A clinical trial in onychomycosis. Comparison of logistic-probit-normal MMM with the com-
bined Beta and logistic-probit-normal MMM.

CM MMM COMMM
Beta and logistic- Beta and logistic-

Effect Par. probit-normal probit-normal probit-normal

Interc. β0 −0.7285(0.8622) −0.6154 (0.1493) −0.4762 (0.0408)
Treatment β1 −0.7404(1.1816) −0.0382 (0.2120) −0.1858 (0.1240)
Time β2 −0.9109(0.2321) −0.1529 (0.0190) −0.1832 (0.0241)
Interaction β3 −0.3989(0.1876) −0.0702 (0.0288) −0.0691 (0.0392)
SD RE

√
d 8.6763(1.9535) 2.1061 (0.1904) 8.8901 (0.0152)

Beta-bin. par. α2/α1 0.2828(0.0372) — 0.2769 (0.0363)
−2 log-likelihood 1259.9 1265.2 1254.0

10.4. Recurrent asthma attacks in children

We now turn to the recurrent asthma data, described in Section 2.5. For each of the
226 patients, their treatment allocation and repeated time-to-event outcomes, the time
between the end of the previous to onset of the next attack, Yi j is recorded; the outcome
is subject to censoring. Also here, the combined model and its marginalized version are
presented next to each other. Regarding the normal random-effects structure, a random
intercept bi1 (with variance σ2i ) and a random slope bi2 (with variance σ

2
e ) is included.

While this could be relaxed, both random effects are assumed to be independently nor-
mally distributed. Model fitting is done using both full and pairwise likelihood. Param-
eter estimates (standard errors) are presented in Table 12.
Full likelihood estimates between the ordinary and marginalized models are similar.

Treatment effect is not significant. Because marginalization does not change the like-
lihood, the likelihood ratios are invariant to this operation (Griswold and Zeger, 2004).
Because we now include two normally distributed random effects, the connector func-
tion (95) uses a different vector zi j. This now implies that the treatment effect estimate
changes upon marginalization, although the change is minor.

Table 12: Asthma study. Original and marginalized combined model results. ‘WGN’ refers to the Weibull-
gamma-normal model, whilst ‘C’ and ‘CM’ means censored and censored-marginalized, respectively.

Effect Par WGN-C WGN-CM WGN-C WGN-CM

Full likelihood Pairwise likelihood

Estimate(s.e.) Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Treatment ξ −0.113(0.106) −0.111(0.102) −0.127(0.105) −0.127(0.105)
Shape λ 0.014(0.001) 0.017(0.001) 0.025(0.002) 0.027(0.003)
Conj.RE α 3.566(0.632) 3.566(0.632) 4.583(0.708) 4.584(0.708)
s.d. norm. R.int. σi 0.560(0.068) 0.560(0.068) 0.445(0.039) 0.445(0.039)
s.d. norm. R.eff. σe 0.077(0.734) 0.077(0.741) 11E-4(11E-4) 20E-6(20E-6)

−2 log-likelihood 16649 16649



236 Hierarchical models with normal and conjugate random effects: a review

Turning attention to results using pairwise likelihood estimation, it is found that the
estimates before and after marginalization are still similar. We also see that the estimate
of the random slope parameter is virtually zero in all cases, although more pronounced
in the pairwise-likelihood case. This does not contradict the results from full likelihood,
where this component was non-significant, although the numerical behaviour is quite
different.
In the four versions presented in the table, the conjugate random effect parameter

is statistically significant. This is important and underscores that neither the standard
GLMM nor the available marginalized model of Griswold and Zeger (2004) fit the data
adequately.

10.5. Adding zero inflation to the COMMM in the case of counts

In line with Kassahun et al. (2014b), the above construction can be combined with the
concepts of Section 5.2, where additional zeroes are allowed for in the CM for count
data.
We have to be careful regarding the correct logic. We first specify the model fully

hierarchically, derive its marginal mean function, model the former including connector
functions, and the latter in the usual parametric way.

10.5.1. Zero-inflation

Dropping indices to diminish notational clutter at this point, the conditional model spec-
ification is:

P(Y = y|θ,bbb) =
{
πc+(1−πc) f (0|λc) y= 0,

(1−πc) f (y|λc) y> 0,
(97)

πc =Φ(Δ1+ z
T

1bbb1), (98)

λc = θ exp(Δ2+ z
T

2bbb2), (99)

θ ∼ Gamma(α,β), (100)

bbb=

(
bbb1
bbb2

)
∼ N

[(
0
0

)
,

(
D11 D12
D21 D22

)]
. (101)

It now follows:

E(Y |θ,bbb) = [πc+(1−πc) f (0|λc)] ·0+
∞∑
y=1

y
e−λ

c
(λc)y

y!
= (1−πc)λc. (102)
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We then require that the marginal mean is of the form:

E(Y ) = (1−πm)λm. (103)

The fact that calculating the mean form (102) results in the form (103) does not imply
that the marginal model behind (97)–(101) is equal to (103). In fact, as stated before,
we know this is not true.
Focusing on the mean functions, as we should, leads to the requirement:

∫ ∫
(1−πc)λc f (θ) f (bbb)dθdbbb= (1−πm)λm. (104)

It looks like this is straightforward, but there is a caveat: πc and λc are connected through
correlated random effects. In the special but relevant case thatbbb1 andbbb2 are uncorrelated,
and hence that D12 = 0, we can solve the system:∫

πc f (bbb1)dbbb1 = πm, (105)∫ ∫
λc f (bbb2) f (θ)dbbb2 dθ = λm. (106)

Now, (105) is the classical binary connector function integral equation; (106) is the
counterpart for the Poisson case.
In case D12 �= 0, the integral equation takes the form:∫ ∫ ∫

(1−πc)λc f (θ) f (bbb1) f (bbb2|bbb1)dθdbbb1 dbbb2 = (1−πm)λm. (107)

Given that

bbb2|bbb1 ∼ N
(
D21D−1

11 bbb1, D= D22−D21D−1
11 D12

)
,

and with some straightforward algebra, we obtain the following intermediate step:

E(θ)eΔ2+
1
2zzz

T
2Dzzz2

∫
(1−πc)ezzzT2D21D−1

11 bbb1 f (bbb1)dbbb1 = (1−πm)λm.

This, in turn, leads to

E(θ)eΔ2+
1
2 zzz

T
2D22zzz2

∫
(1−πc) f (bbb1;μ= D12z2)dbbb1.
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Upon applying a final transformation (b̃bb1 = bbb1−D12z2 ∼ N(0,D11)), we find that the
Poisson connector remains the same, but for the binary connector, we need to solve:

πc =Φ(Δ1+ z
T

1 b̃bb1+ z
T

1D12z2).

Of course, this is equal to the standard binary connector problem, but merely with a shift
applied to Δ1.

10.5.2. Hurdle models

Using the same simplified notation as before, we now have:

P(Y = y|θ,bbb) =
{
πc y= 0,

(1−πc) f (y|λc)
1− f (0|λc) y> 0,

, (108)

with the rest of the model specified by (98)–(101). It now follows:

E(Y |θ,bbb) = πc ·0+ 1−πc
1− f (0|λc)

∞∑
y=1

f (y|λc) = 1−πc
1− f (0|λc) ·λ

c =
1−πc
1− e−λc

·λc. (109)

Also here, we require conditional mean (109) to take the same form marginally:

E(Y ) = (1−πm) · λm

1− e−λm
.

When bbb1 and bbb2 are independent, we find the classical connector integral equation for
the binary component:

∫
πc f (bbb1)dbbb1 = πm.

For the count connector function, we need to solve:

∫∫
λc

1− e−λc
f (θθθ) f (bbb2)dθdbbb2 =

λm

1− e−λm
.

More explicitly,

∫∫
θeΔ2+zzz

T
2bbb2

1− e
−
[
θeΔ2+zzz

T
2bbb2

] f (θθθ) f (bbb2)dθdbbb2 = exxx
T
2ξξξ

1− e−e
xxxT
2ξξξ
.
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Of course, also here, a further modification is needed when the two normal random
effects are correlated. In line with what we find in the zero-inflated case, we now have:

∫∫∫
Φ(Δ1+z

T

1bbb1) ·
θeΔ2+zzz

T
2bbb2

1− e
−
[
θeΔ2+zzz

T
2bbb2

] f (θθθ) f (bbb1) f (bbb2|bbb1)dθdbbb1dbbb2=Φ(xxxT

1γγγ) ·
exxx

T
2ξξξ

1− e−e
xxxT
2ξξξ
.

However now, the denominator under the integrand implies that simplification is less
straightforward, and hence a Newton-Raphson approach for the pair (Δ1,Δ2) is an ob-
vious way forward. Note that in the zero-inflated case, we were able to derive intuitive
expressions for Δ1 and Δ2, but these are not unique, given that there is one integral equa-
tion with two tuning parameters. Thus, at best, one can find an algebraic expression for
Δ1, because even in the uncorrelated random-effects case, there is no closed form for the
count connector. Therefore, we can simply set one of the two equal to zero, Δ1 ≡ 0, say,
and then solve the reduced integral equation for Δ2.

11. Joint modelling of several outcomes

The common recording of not one but several longitudinal sequences is common prac-
tice nowadays. The use of normal random effects in the combined model allows one to
simultaneously analyse several longitudinal sequences, which do not even need to be of
the same type.
Iddi and Molenberghs (2012a) made use of this possibility to jointly model a con-

tinuous and a binary longitudinal sequence. Kassahun et al. (2015) jointly modelled a
continuous and a zero-inflated count sequence. Njeru Njagu et al. (2016) considered the
case where repeated time-to-event outcomes are coupled with a longitudinal outcome of
various types (continuous, binary, count) as well as the joint modelling of a continuous
and binary outcome. Ivanova, Molenberghs, and Verbeke (2016) allow for ordinal out-
comes as well. Ghebretinsae et al. (2012) used CM joint modelling to analyse comet
assay data.
To give an example, let us consider Case 1 of Njeru Njagu et al. (2016), where

a linear mixed model for the continuous outcome is coupled with a Weibull-gamma-
normal model for the time-to-event outcome. The joint model, conditional on both the
normal and gamma random effects, takes the form:

f (ttti,yyyi|bbbi,ψψψi) =∏
k

λkρktik
ρk−1ψikeμik+dike−λktik

ρkψike
μik+dik

× 1

(2π)
ni
2 |ΣΣΣi| 12

e
−1
2 (yyyi−Xiξξξ−Zi bbbi)TΣΣΣ−1i (yyyi−Xiξξξ−Zi bbbi), (110)
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with ΣΣΣi an ni by ni diagonal covariance matrix with diagonal elements σ2. Also, ttti is the
set of pi survival times for cluster i, while yyyi is the vector of ni continuous outcomes.
Moreover, dik =www T

ik bbbi, where www
T
ik is a vector of scale factors. Here, the index k refers to

the kth survival time in cluster i. For the scale and shape parameters in the baseline haz-
ard, we consider a more general case, where both λ and ρ are allowed to vary between
members of a cluster. The continuous and survival processes are assumed independent,
conditional on the shared normal random effects. Note that the shared random effect in
the way considered here is generic. For example, one can choose zi j and wwwi j such that
some random effects are present in the normal-outcome linear predictors, with others in-
fluencing the Weibull predictor, and a third set influencing both. As such, our paradigm
encompasses both shared as well as correlated random effects.

12. Influence diagnostics

Because of the relative novelty of the CM and its extensions, development regarding
model assessment and diagnostic tools has been limited. Rakhmawati et al. (2017)
presented local influence diagnostic tools for the count-data CM. Rakhmawati et al.
(2016ab) extended this to allow for zero inflation and incomplete data, respectively.
Local influence was presented by Cook (1986). The impact of individuals and mea-

surements on the analysis is assessed by comparing standard maximum likelihood es-
timates with those resulting from slightly perturbing the contribution of an individual
or measurement. The method is to be contrasted with global influence (case deletion),
where impact is assessed by simply deleting an individual or measurement. While con-
ceptually a bit technical, it is easy and fast to use in practice and in several cases it leads
to interpretable components of influence. Lesaffre and Verbeke (1998) introduced influ-
ence assessment for the linear mixed model. Ouwens, Tan, and Berger (2001) applied
local influence to the Poisson-normal model. Rakhmawati et al. (2017) followed their
ideas, but with extensions in three directions. First, they provided closed-form expres-
sions, based on an analytical form for the marginal likelihood function, as well as based
on an integral form for the said likelihood. Second, they considered three important
cases: binary, count, and time-to-event. Third, they started from the combined model,
rather than merely from the GLMM.
The general theory behind so-called case-weighted likelihood is as follows. Let the

log-likelihood for the generalized linear mixed model or its combined extension take the
form

�(θθθ) =
N∑
i=1

�i(θθθ), (111)
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in which �i(θθθ) is the contribution of the ith individual to the log-likelihood. Let

�(θθθ|ωωω) =
N∑
i=1

ωi�i(θθθ), (112)

and denote the perturbed version of �(θθθ), depending on an N-dimensional vector ωωω of
weights, assumed to belong to an open subset Ω of RN . The original log-likelihood
(111) follows for ωωω = ωωω0 = (1,1, . . . ,1)T. Let θ̂θθ be the maximum likelihood estimator
for θθθ, obtained by maximizing �(θθθ), and let θ̂θθω denote the estimator for θθθ under �(θθθ|ωωω).
Cook (1986) proposed to measure the distance between θ̂θθω and θ̂θθ by the likelihood dis-

placement: LD(ωωω) = 2
(
�(θ̂̂θ̂θ)− �(θ̂ωθ̂ωθ̂ω)

)
. LD(ωωω) will be large if �(θθθ) is strongly curved

at θ̂θθ. A graph of LD(ωωω) versusωωω brings out information on the influence of case-weight
perturbations. The graph is the geometric surface formed by the values of the (N+ 1)-
dimensional vector

ξξξ(ωωω) =

(
ωωω

LD(ωωω)

)
asωωω varies throughoutΩ. Following Cook (1986) and Verbeke andMolenberghs (2000),
we will refer to ξξξ(ωωω) as an influence graph.
Cook (1986) derived a convenient computational scheme. LetΔΔΔi be the s-dimensional

vector of second-order derivatives of �(θθθ|ωωω), w.r.t. ωi and all components of θθθ, and eval-
uated at θθθ = θ̂θθ and ωωω = ωωω0. Also, write Δ for the s× r matrix with ΔΔΔi in the ith column.
Let L̈ denote the s× s matrix of second derivatives of �(θθθ), evaluated at θθθ = θ̂θθ. For any
unit vector hhh in Ω, it follows that:

Ch = 2
∣∣∣ hhhTΔΔΔTL̈−1ΔΔΔhhh

∣∣∣ . (113)

Various choices for hhh have received attention. First, as will be done here, one can focus
on subject i only, by choosing hhh = hihihi, the zero vector with a sole 1 in the ith position.
Local influence then is

Ci ≡ Chi = 2
∣∣∣ ΔΔΔT

i L̈
−1

ΔΔΔi
∣∣∣ . (114)

Second, hhh=hhhmax can be considered, the direction of maximal normal curvature (Verbeke
and Molenberghs 2000). Expressions can be derived when only a sub-vector of the
parameter vector is of interest as well. We refer to Rakhmawati et al. (2017) for details.
These authors derived interpretable expressions for several cases. For example, for

the probit-normal case they showed that
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||ΔΔΔi||2 =
⎛⎝ ni∑

j=1

ri j xxxi j

⎞⎠⎛⎝ ni∑
j=1

ri j xxxi j

⎞⎠T

+
∑
k,l

{
− 1
2(D

−1)kl+
1
2
(D−1D−1)klVar(bi)

}2
.

LetCi =C1i+C2i with:

C1i = 2||L̈−1|| ||rrrT

i xxxi||2 cos(ϕi), (115)

C2i = 1
2 ||L̈−1|| ||(D−1)kl− (D−1D−1)klVar(bi)||2 cos(ϕi), (116)

where rrrT
i xxxi =

∑ni
j=1 ri j xxxi j. Note thatC1i andC2i are the contributions of subject i to local

influenceCi from βββ and D, respectively. Now,C1i andC2i were shown to equal:

C1i = 2||L̈−1|| ||xxxixxxT

i|| ||rrri||2 cos(αi)cos(ϕi), (117)

C2i = 1
2 ||L̈−1||cos(ϕi)×

[
tr
{
(D−1)2kl

}− tr{2(D−1)kl(D−1D−1)klVar(bi)
}
)

+tr
{
(D−1D−1)2klVar(bi)

2}] , (118)

where cos(αi) is the angle between vec(xxxixxx
T
i) and vec(rrri rrr

T
i), and ϕi is the angle between

vec(−L̈−1) and vec(ΔΔΔiΔΔΔT
i). Hence, the interpretable components ofCi in the case of the

Poisson-normal model can be described using the ‘length of the fixed effect’ (||xxxixxxT
i||),

the ‘squared length of the residual’ (||ririri||2), and the ‘squared of random effect variabil-
ity’ (Var(bi)2).
Rakhmawati et al. (2017) derived similar expressions for the probit-normal, logit-

normal and Weibull-normal models.

12.1. A clinical trial in epileptic patients

We start from the Poisson-normal (P-N) and Poisson-gamma-normal (PGN) models
studied before:

ln(λi j) =

{
(ξ00+bi)+ ξ01t j if placebo

(ξ10+bi)+ ξ11t j if treated,
(119)

whereYi j represent the number of epileptic seizures patient i experienced during week j,
t j is the time point at which Yi j was measured, and with random intercept bi ∼ N(0,d).
Parameter estimates are given in Table 13. Index plots (versus patient ID) for various
local influence analyses are given in Figure 2. The top row of the plot represents the
total local influence, with subsequent rows representing influence for sub-vectors: fixed
effects, random-intercept variance d, and, for the (PGN), the overdispersion parameter
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Figure 1: Epilepsy data. Individual profiles.

Poisson-normal Poisson-gamma-normal
full dataset without #38, #49 and #62 full dataset without #38, #49 and #62

Total Local Influence (Ci)

Local Influence (ξ)

Local Influence (d)

Local Influence (α)

Figure 2: Epilepsy data. Local influence plots.
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Table 13: Local influence. Parameter estimates (standard errors) for the generalized linear mixed and
combined models.

Epilepsy Poisson-normal Poisson-gamma-normal

Effect Par. Full #(38,49,62) Full #(38,49,62)

Interc. plac. ξ00 0.818(0.168) 0.903(0.157) 0.911(0.176) 0.907(0.163)
Slope plac. ξ01 −0.014(0.004) −0.031(0.005) −0.025(0.008) −0.031(0.008)
Interc. treat. ξ10 0.648(0.170) 0.492(0.162) 0.656(0.178) 0.510(0.169)
Slope treat. ξ11 −0.012(0.004) −0.007(0.005) −0.012(0.007) −0.009(0.007)
Treat. eff. ξ11−ξ10 0.002(0.006) 0.024(0.007) 0.013(0.011) 0.022(0.011)
Treat. eff. ξ11/ξ10 0.840(0.398) 0.236(0.170) 0.475(0.335) 0.281(0.250)
Std. rand. int. σ 1.076(0.086) 0.982(0.081) 1.063(0.087) 0.969(0.082)
Overdisp. par. α 2.464(0.211) 3.109(0.329)

Onychomycosis Logit-normal Logit-beta-normal

Effect Par. Full #(6,30,53) Full #(6,30,53)

Interc. plac. ξ0 −1.630(0.435) −1.940(0.523) −1.604(4.026) −2.420(3.089)
Slope plac. ξ1 −0.404(0.046) −0.430(0.049) −6.478(1.439) −6.075(1.264)
Interc. treat. ξ2 −1.749(0.448) −1.604(0.536) −16.21(3.58) −15.21(3.02)
Slope treat. ξ3 −0.563(0.060) −0.872(0.100) −8.075(1.600) −8.755(1.437
Treat. eff. ξ11−ξ10 −0.159(0.072) −0.442(0.105) −1.596(0.858) −2.680(0.822)
Treat. eff. ξ11/ξ10 1.394(0.206) 2.028(0.302) 1.246(0.148) 1.441(0.171)
Std. rand. int. σ 4.015(0.381) 4.814(0.490) 60.88(14.22) 56.47(11.69)
Overdisp. par. α/β 0.281(0.035) 0.231(0.031)

α, respectively. Patients #38, #49, and #62 stand out with large total influenceCi when
compared to other patients. Importantly, influences show a major drop when switching
from (P-N) to (PGN). This is most prominently seen for #38. For an explanation, turn
to the right hand panel of Figure 1. Patient #38 (and to some extent also #62 on the left
hand side) alternates periodically between very high numbers of episodes and periods
virtually without. This implies that their mean, variance, and association structure are
rather different from the majority of subjects. The impact on the mean structure, by way
of the fixed effects, is evident in the second row. For the (P-N) it is less clear when
turning to d, but we gain a lot of insight from the (PGN) results. Overall influence and
influence on ξξξ reduce drastically, but there now is clear influence on d and α. What it
means is that with these subjects present, the overdispersion parameter helps capturing
their anomalous behaviour, which ‘deflates’ d. In other words, adding overdispersion
protects the inferentially crucial fixed-effects parameter vector. When removing these
subjects, and also #49, little or no influence is left.
Note that the (PGN) model fitted to the full dataset exhibits a smaller value for

α, which corresponds to more overdispersion (no overdispersion corresponds to α ap-
proaching +∞), while it does not vanish with removal of the three subjects. Thus, there
appears to be genuine overdispersion in the data, further inflated by the influential sub-
jects.
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Poisson-Normal Combined model
full dataset without #38, #49 and #62 full dataset without #38, #49 and #62

||xxxi xxxT
i ||

||rrri||2

Var(bbbi)2

Figure 3: Epilepsy data. Plots of interpretable components of local influence.

In agreement with MVD, MVDV, and our earlier analysis, Rakhmawati et al. (2017)
considered the treatment effect in additive (ξ11− ξ01) and multiplicative (ξ11/ξ01) form.
Important differences are seen on the additive scale. (P-N) shows no significance (p =
0.7106), which is sustained for (PGN), with p= 0.2225. Removing the influential sub-
jects leads to a highly significant result for (P-N), with p= 0.0009, which changes to the
still significant p = 0.0350 for (PGN). Hence, the influential subjects mask a treatment
effect. This is logical, because the influential subjects exhibit an oscillating behaviour,
introducing an important source of variability. At the multiplicative level, where the
null hypothesis is for the ratio to be 1, the story is nicely confirmed, with p = 0.6872
and p = 0.1166 for (P-N) and (PGN), respectively; the counterparts after deletion are
p< 0.0001 and p= 0.0040, respectively.
To get further insight as to why these subject have higher influence than others, plots

with interpretable components are given in Figure 3: ‘squared length of the fixed effects’
||xxxixxxT

i||, ‘squared length of the residual’ ||rrri||2, and ‘random-effect variability’ Var(bi)2.
It is hardly surprising that #38 stands out in terms of ||rrri||2. Influences on #49 and #62
are less pronounced.
Our analysis has provided insight not available from earlier analysis. The influential

subjects exhibit a cyclic behaviour not observed in the majority of patients, but at the
same time well documented. Based on these findings, a focused clinical discussion can
take place, to determine the course of action. Options include removal, retention, or
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Logit-normal Logit-beta-normal model
full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

Total Local Influence (Ci)

Local Influence (ξ)

Local Influence (d)

Local Influence (α)

Figure 4: Onychomycosis data. Local influence plots.

even setting up a dedicated study to further scrutinize this sub-population. In this case, a
small group of patients with oscillating behaviour between two poles has been identified.

12.2. A clinical trial in onychomycosis

Before, we assumed Yi j|bi ∼ Bernoulli(πi j), where Yi j is severity of infection (1 for
severe, 0 for non-severe) for patient i at occasion j, Ti is the treatment indicator (1 for
experimental, 0 for standard) for subject, t j is the time point (months) at which the jth
measurement has been taken, and bi ∼ N(0,d). The conditional success probability is
expressed as:

logit(πi j) = ξ1(1−Ti)+ ξ2(1−Ti)ti j+ ξ3Ti+ ξ4Titi j+bi.
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Logit-Normal Combined model
full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

||xxxi xxxT
i ||

Var(bbbi)2

Figure 5: Onychomycosis data. Plot of interpretable components of local influence.

Both the logit-normal (L-N) and logit-beta-normal (LBN) are fitted. Parameter esti-
mates (standard errors) are displayed in Table 13, with local influence plots in Figure 4.
Subjects #6, #30, and #53 are detected as influential, overall, and with respect to the
fixed effects, in the (L-N). Accommodating overdispersion, hence turning to the (LBN),
deflates the magnitude of influence. Likewise, influence is drastically diminished by
removing these three subjects. Thus, in case the influential subjects should remain in
the analysis, the (LBN) may be the most sensible route forward. Alternatively, in case
they are considered anomalous, one can remove them. To decide on which scenario is
preferred in this case, we note that all three subjects are unusual: they set out with a
sequence of non-severe ratings, but then switch to a severe rating (‘0000111’ for #6,
‘0000011’ for #30, and ‘0000001’ for #53). Arguably, there is no reason to remove
these subjects from analysis, partly also to safeguard randomization. However, it is un-
common to switch from non-severe to severe in this particular way, so these patients
must be further clinically scrutinized. Also for these data, the interpretable components
do not lead to further insight (Figure 5).
The (L-N) and (LBN) lead to borderline significance when applied to the full data

[p= 0.0268 additively and p= 0.0560 multiplicatively for (L-N); p= 0.0627 additively
and p = 0.0964 multiplicatively for (LBN)]. When influential subjects are removed,
these values all become highly significant [in the same order, p < 0.0001, p = 0.0007,
p = 0.0011, and p = 0.0099]. These findings are qualitatively similar to the epilepsy
cases.
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13. Concluding remarks

Based on work by MVD, MVDV, and subsequent references, we have reviewed a gen-
eral and flexible framework for such combinations, starting from arbitrary generalized
linear models and exponential family members. Specific emphasis is placed on normally
distributed, binary, binomial, count, and time-to-event outcomes. There are various rea-
sons to do so. First, non-Gaussian hierarchical data exhibit three important features:
(1) the mean structure; (2) the variance structure; and (3) the correlation structure. Our
proposed framework features: (a) a mean structure; (b) overdispersion, often conju-
gate random-effects; (c) normal random effects. It will be clear from our case studies
that model fit can be improved and hence model interpretation changed, by shifting to
the extended model. Second, especially in cases where the variance and/or correlation
structures are of interest (e.g., surrogate marker evaluation, psychometric evaluation,
etc.) such extensions are useful. Third, even when interest remains with more conven-
tional models, such as the GLMM, the extended model can serve as a goodness-of-fit
tool. Fourth, because we can derive closed-form expressions for both standard and ex-
tended models, the accuracy of parameter estimation and resulting inferences can be
improved, while obviating the need for tedious numerical integration techniques. Fifth,
the analysis of the case studies corroborates this need. While the model extends the clas-
sical GLMM, it is actually easy to fit when standard non-linear mixed-model software
is available, such as the SAS procedure NLMIXED.
Because for most of these combined models, and their GLMM sub-models, closed

formmoment expressions are available, derived quantities such as correlation are easy to
obtain. Furthermore, versions with mean parameters that are directly marginally inter-
pretable can be constructed. Also, the model lends itself naturally to the joint modelling
of several hierarchical sequences simultaneously. Diagnostics based on local influence
ideas have been developed as well.
While we have aimed to give an extensive overview of a modelling framework to

accommodate data hierarchies and overdispersion, inevitably a number of topics have
been left untouched. For example, Molenberghs and Verbeke (2011b), Pryseley et al.
(2011) examined the occurrence of negative variance components in hierarchical data,
which is also relevant for this context. Likewise, underdispersion has received some
treatment (Oliveira et al., 2016; 2017).
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A bivariate response model for studying the marks
obtained in two jointly-dependent modules in

higher education
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Abstract

We study the factors which may affect students’ marks in two modules, mathematics and statis-
tics, taught consecutively in the first year of a Business Administration Studies degree course.
For this purpose, we introduce a suitable bivariate regression model in which the dependent vari-
ables have bounded support and the marginal means are functions of explanatory variables. The
marginal probability density functions have a classical beta distribution. Simulation experiments
were performed to observe the behaviour of the maximum likelihood estimators. Comparisons
with univariate beta regression models show the proposed bivariate regression model to be su-
perior.
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1. Introduction

Event counts such as the number of claims for third-party liability, other claims under
guarantee, medical consultations, the use of prescription drugs, and voluntary and/or in-
voluntary job changes, among many others, are likely to be jointly dependent. In these
cases, it is of interest to study how different covariates or factors may simultaneously af-
fect the two random (dependent) variables involved. Bivariate Poisson regression mod-
els, bivariate negative binomial regression models (see Maher, 1990) and their exten-
sions (see Gurmu and Elder, 2000), among other approaches, have been applied in these
settings. Nevertheless, few such studies have been conducted when the dependent vari-
ables are continuous and bounded.
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In the univariate case, Papke andWooldridge (1996) examined potential econometric
alternatives when the dependent variable is fractional, in a study of employee participa-
tion rates in 401(k) pension plans. More recently, Papke and Wooldridge (2008) anal-
ysed test pass rates and the portfolio choices of Australian households. Other research
work related to the beta regression model includes Cepeda-Cuervo (2001), Paolino
(2001), Ferrari and Cribari-Neto (2004) and Huang and Oosterlee (2011). The model
proposed by Gómez-Déniz, Sordo and Calderı́n-Ojeda (2013) provides an alternative
to the beta regression model, and affords a better fit, at least in an actuarial setting.
The model proposed by Pérez-Rodrı́guez and Gómez-Déniz (2015) also appears to be
comparable to the beta regression approach in financial econometrics. Using Bayesian
methodology, Bayes, Bazán and Garcı́a (2012) presented a variation of the beta regres-
sion model, while Cepeda-Cuervo and Núñez-Antón (2013), used spatial regression in
an analysis of the quality of education. In the bivariate case, Cepeda-Cuervo, Achcarb
and Garrido (2014) proposed a bivariate beta regression model with joint modelling of
the mean and dispersion parameters.
As an extension of the works related above, we propose a flexible bivariate fractional

response model in which the dependent variables are bounded and the marginal means
are functions of explanatory variables.
Although a bivariate regression model could be built by using, for instance, copulas

from the Sarmanov family of distributions (see Lee (1996)), we chose the bivariate beta
regression proposed by Olkin and Liu (2003) for this study because it is a simple model
with which to compute marginal distributions, means and variances. In this model, the
beta distribution has a straightforward formulation in which the Euler Gamma function
is the only one considered. In this respect, Cepeda-Cuervo et al. (2014) used copulas to
obtain a bivariate beta regression model in which, as in our own model, the marginal
distributions are beta. These authors assumed weak dependence between the variables of
interest andmodelled thedependenceusingaFarlie-Gumbel-Morgenstern copula function.
The model we propose is less complex than that presented in Cepeda-Cuervo et al.

(2014) and therefore, by the Ockham’s razor principle, it might be preferable (Jaynes,
1994).
In this paper, we study how some covariates may simultaneously affect the marks

(ranging from 0 to 10) obtained by students in two first-degree subjects – Mathematics
for Business and Basic Statistics in Business Administration Studies – taught at the
University of Las Palmas de Gran Canaria (Spain) during two consecutive terms (first
mathematics and then statistics). We assume that a good knowledge of mathematics
will significantly influence the student’s understanding of statistics and therefore that
there exists a positive correlation between these two variables. Accordingly, the model
proposed would be suitable for studying this relationship.
The importance of mathematical skills in other quantitative disciplines has been

widely examined. In the fields of business and economics, many studies have analysed
basic mathematical abilities as determinant factors of academic performance among first
year university students: see, for example, Johnson and Kuennen (2006), Dolado and
Morales (2009), Lunsford and Poplin (2011) and Arnold and Straten (2012).
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Study plans in business and economics courses are organised in different ways, de-
pending on the institution, but all have in common a requirement of basic mathematics to
favour a better understanding of subjects that require this skill as a tool to develop more
complex theories. In the present study, we focus on the above-mentioned mathematics
and statistics modules, to determine whether certain common factors might explain the
students’ marks obtained in each subject.
The rest of this paper is structured as follows. Section 2 describes the bivariate model

proposed by Olkin and Liu (2003), from which we derive the proposed bivariate re-
gression model. This model and its parameters are studied in Section 3. The data are
described in detail in Section 4. In Section 5 we fit the marginal beta regression mod-
els and the bivariate beta regression models, comparing the univariate and the bivariate
models. Finally the results obtained and the main conclusions drawn are reported in
Section 6.

2. Modelling bivariate marks

Although mathematics and statistics are known to be logical and effective means of
solving certain problems, most Business Administration students, especially those in
the first and second years of their degree courses, are not interested in these course
subjects. Indeed, numerous students in this area of study present some form of rejection
of mathematics and statistics. Nevertheless, our empirical evidence shows that the marks
obtained by students in statistics are positively related to those achieved in mathematics.
We assume this is because mathematics is an instrumental subject that influences the
results achieved in statistics.
Let Y1 and Y2 be two random variables which represent the marks achieved in math-

ematics and statistics, respectively. To address the study goal presented in the introduc-
tion, and taking into account the above comments, we need a bivariate distribution that
meets the following conditions:

a) The support of the distribution should be bounded, since the marks are usually
restricted to a given interval.

b) The bivariate distribution should provide a dependence structure.
c) The correlation between the two random variables should be positive. That is,
ρ(Y1,Y2)> 0.

d) Preferably, Pr(Y2 > y2|Y1 > y1) should be a nondecreasing function in y1 for all
y2. Thus, the higher the mathematics mark, the greater the probability of obtaining
higher marks in statistics.

e) Because we wish to study the factors which may affect the marks obtained in the
two courses, using a regression analysis, the marginal mean (the response variable)
should be expressed as a function of the explanatory variables through a simple
expression.



258 A bivariate response model for studying the marks obtained in two jointly-dependent...

In this case, the standard beta distribution may be extended to the bivariate case.
Many bivariate beta distributions have been derived from an application or as exten-
sions to or generalisations of other well-known bivariate beta distributions. Since the
latter are used in a wide variety of applications, the development and derivation of new
bivariate beta distributions has been extensively studied. Nevertheless, few such distri-
butions present these five features simultaneously. One, however, was proposed by Olkin
and Liu (2003), with the following probability density function (pdf):

f (y1,y2) =
ya1−11 ya2−12 (1− y1)a2+a3−1(1− y2)a1+a3−1

B(a1,a2,a3)(1− y1y2)a1+a2+a3
, (1)

where 0 < yi < 1 (i = 1,2), ai > 0 (i = 1,2,3) and where B(a1,a2,a3) is given by
B(a1,a2,a3) =∏3

i=1Γ(ai)/Γ(
∑3

i=1 ai), where Γ(·) is the Euler Gamma function. Hence-
forth, we use the expression (Y1,Y2) ∼ BB(a1,a2,a3) when the two random variables
(Y1,Y2) fit the pdf (1).
The marginal distributions ofY1 andY2 are beta distributions with parameters (a1,a3)

and (a2,a3), respectively. Thus, the marginal means, the variances and the cross moment
are given by

E(Yi) =
ai

ai+a3
, i= 1,2, (2)

var(Yi) =
aia3

(ai+a3)2(ai+a3+1)
, i= 1,2.

E(Y1Y2) =
a1a2Γ(a1+a3)Γ(a2+a3)

mΓ(a3)Γ(m+1) 3F2({m1,m2,m};{m+1,m+1};1), (3)

where mi = ai+1 (i= 1,2), m= a1+a2+a3 and 3F2 is the generalised hypergeometric
function. For details about this special function see, for instance, Gottschalk and Maslen
(1988). This can be computed using the Mathematica package (see Wolfram (2003)).
Using (2) and (3) we can obtain the covariance, cov(Y1,Y2), and the correlation between
Y1 and Y2, ρ(Y1,Y2). For reasons of space, these large expressions are not shown here.
Olkin and Liu (2003) showed that the correlation is always positive, with values in the
interval (0,1). The following result is obtained for the conditional distribution:

f (y1|y2) = ya1−11 (1− y1)a2+a3−1(1− y2)a1

B(a1,a2+a3)(1− y1y2)a1+a2+a3
, (4)

f (y2|y1) = ya2−12 (1− y2)a1+a3−1(1− y1)a2

B(a2,a1+a3)(1− y1y2)a1+a2+a3
. (5)
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After some algebra, we derive the conditional mean obtained from (4) and (5). Thus

E(Y1|Y2 = y2) =
a1

a1+a2+a3
2F1(1,a2+a3;a1+a2+a3;y2),

E(Y2|Y1 = y1) =
a2

a1+a2+a3
2F1(1,a1+a3;a1+a2+a3;y1), (6)

where 2F1 represents the hypergeometric function (see Gradshteyn and Ryzhik, 1994).
One of the advantages of using the pdf given in (1) is that for this distribution we

have

Pr(Y2 > y2|Y1 > y01) ≤ Pr(Y2 > y2|Y1 > y11), y01 < y11,

Pr(Y2 ≤ y2|Y1 ≤ y01) ≥ Pr(Y2 ≤ y2|Y1 ≤ y11), y01 < y11,

for all y2. In other words, Pr(Y2 > y2|Y1 > y1) is a nondecreasing function in y1 for all y2
and Pr(Y2 ≤ y2|Y1 ≤ y1) is a nonincreasing function in y1 for all y2, because the pdf (1)
is positively likelihood ratio dependent (see Tong (1980) and Olkin and Liu (2003) for
details). This is corroborated by the fact that in our case the random variables Y1 and Y2
are positively quadrant dependent, a concept introduced by Lehmann (1996). Thus, we
have

Pr(Y2 > y2|Y1 > y1) ≥ Pr(Y2 > y2)Pr(Y1 > y1),

Pr(Y2 ≤ y2|Y1 ≤ y1) ≥ Pr(Y2 ≤ y2)Pr(Y1 ≤ y1).

A possible interpretation of the parameters of the distribution in (1) is this. LetW be a
random variable measuring a student’s lack of mathematics skills for use in subjects such
as mathematics, statistics and physics. Empirical evidence shows that when Business
Administration students are asked about their skills in mathematics and statistics, most
of them acknowledge inadequacy in this field. Let Ui (i = 1,2) be the random variable
representing the student’s willingness to study these subjects i (i = 1,2). Assuming
that W and Ui can take values in (0,∞), then the marks obtained in subject i can be
represented by the random variables

Yi =
1

1+W/Ui
=

Ui

Ui+W
, i= 1,2.

The gamma distribution provides a flexible representation of a variety of distribution
shapes, by varying the shape parameter. Let us now assume that the random variables
U1, U2 and W are independent and follow a standard gamma distribution with shape
parameters a1, a2 and a3, respectively. Then, the random variable (Y1,Y2) follows the
distribution given in (1).
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In conclusion, the pdf given in (1) seems to be a suitable distribution to model the
joint random variables corresponding to mathematics and statistics marks when the latter
are influenced by the former.

3. Regression model and estimation

Let us now consider a more realistic model, in which covariates are included. The linear
regression model, which makes no distributional assumptions, is likely to be unsatis-
factory because certain combinations of parameters and regressors could violate the
nonnegative restriction and the upper limit on the mean. To avoid this situation we pro-
pose a parametric model based on using the distributional assumptions presented in the
previous section.
When a regression analysis is to be performed, it is often useful to model the mean of

the response. By equating the mean given in (2) to μi (i= 1,2), solving for ai (i= 1,2),
taking a3 = θ and replacing the resulting expression in the pdf of the bivariate beta
distribution in (1), we obtain the following reparametrisation.

f (y1,y2) =
yφ1μ1−11 yφ2μ2−12 (1− y1)φ2−1(1− y2)φ1−1

B(φ1μ1,φ2μ2,θ)(1− y1y2)(1−μ1μ2)φ1φ2/θ
, (7)

where φi = θ/(1−μi), 0<μi< 1, i= 1,2; with 0< y1< 1, 0< y2< 1 and θ > 0. Under
this reparametrisation of the bivariate beta distribution, the marginal mean is E(Yi) = μi,
for i= 1,2.
Now, let xxxT

κi = (x1i,x2i, . . . ,xpi) be a vector of the p covariates associated with the
ith observation. This is a vector of linearly independent regressors that are thought to
determine (y1,y2). For the ith observation, the model takes the form

(Y1i,Y2i)∼ BB(μ1i,μ2i,θ),

μκi(xxxκi,βββκ)≡ μκi =
exp(xxxT

κiβββκ)

1+ exp(xxxT
κiβββκ)

, κ= 1,2.

Here, i = 1, . . . ,n denotes the number of observations, xxxκi denotes a vector of p
explanatory variables for the ith observation and βββκ = (βκ1, . . . ,βκp)

T, κ= 1,2, denotes
the corresponding vectors of regression coefficients. It is clear that each variable Y1
and Y2 may be influenced by different characteristics and variables. For this reason,
the explanatory variables that are used to model each mean μκi, may not be the same.
Furthermore, observe that the logit link assumed ensures that μκi falls within the interval
(0,1).
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Under this model the log-likelihood function takes the form given in the Appendix,
which shows the equations used to provide the estimates of the parameters. The above
model presents the advantage of simplicity; on the other hand, the normal equations
require the use of the digamma function, ψ(z) = d

dz log(Γ(z)), z> 0, in order to estimate
all the model parameters. However, this problem is overcome by means of Mathematica
routines (see Wolfram, 2003) and RATS (see Brooks, 2009), which work well with this
special function.
Because the equations which provide the estimates of the parameters cannot be

solved explicitly, they must be addressed either by numerical methods or by directly
maximising the log-likelihood function; in this study, the latter approach is adopted.
Since the global maximum of the log-likelihood surface is not guaranteed, different
initial values of the parametric space can be considered as seed points. In this sense,
we have used the FindMaximum function of the Mathematica software package v.11.0
(Wolfram, 2003). Moreover, other methods provided by Mathematica, such as Newton,
PrincipalAxis and QuasiNewton (all of which are available in Mathematica) obtain the
same result. Finally, the standard errors of the estimated parameter are approximated by
inverting the Hessian matrix. This can also be done by approximating the Hessian ma-
trix and recovering it from the Cholesky factors. These parameters were also computed
by the RATS package, and the same values were obtained.

3.1. Marginal effects

The marginal effect reflects the variation of the conditional mean produced by a one-
unit change in the jth covariate ( j = 1, . . . , p). The marginal effect can be calculated
as δ j =

∂μκi
∂x ji

= βκ jμκi(1−μκi), κ = 1,2; i = 1, . . . ,n; j = 1, . . . , p. Thus, the marginal
effect indicates that a one-unit change in the jth regressor increases or decreases the
expectation of marks for the jth covariate by δ j units, j = 1, . . . , p. This expression is
the one normally obtained under the logit marginal effect. For indicator variables which
takes only the values 0 or 1 the marginal effect is δ j = E(yκ|x ji = 1)/E(yκ|x ji = 0) ≈
exp(βκ j), κ= 1,2; i= 1, . . . ,n; j= 1, . . . , p. Therefore, the conditional mean is exp(βκ j)
times larger if the indicator variable is one rather than zero.

3.2. Simulation study

We now present some simulation results, obtained by a bootstrap experiment, to study
the behaviour of the maximum likelihood estimators. The Mathematica package was
used to create random variables from the pdf (7). In this process, the first component
of the vector was generated from a marginal, and then a second one from a conditional
distribution. The estimated values of the parameters were then computed directly using
the FindMaximum function of Mathematica v.11.0 (Wolfram (2003)). The following sets
of model parameters were considered:



262 A bivariate response model for studying the marks obtained in two jointly-dependent...

Table 1: Average estimates (first row), the square root of the mean squared errors (second row in paren-
thesis) and the correlation (ρ) between estimated parameters based on 1000 replications.

n μ1 = 0.15 μ2 = 0.25 θ = 0.85 ρ(μ1,μ2) ρ(μ1,θ) ρ(μ2,θ)

25 0.1402 0.2213 0.9827 0.7524 –0.7481 –0.6804
(0.0367) (0.0585) (0.4490)

50 0.1932 0.3004 0.7256 0.6425 –0.8068 –0.7392
(0.0303) (0.0438) (0.1364)

75 0.1795 0.2537 0.7326 0.6009 –0.7757 –0.7566
(0.0246) (0.0310) (0.1116)

100 0.1526 0.2820 0.7292 0.4851 –0.7637 –0.5173
(0.0167) (0.0269) (0.0842)

μ1 = 0.25 μ2 = 0.75 θ = 0.5 ρ(μ1,μ2) ρ(μ1,θ) ρ(μ2,θ)

25 0.2308 0.7273 0.6525 0.4976 –0.7454 –0.5647
(0.0558) (0.0347) (0.1829)

50 0.2542 0.7529 0.4906 0.5719 –0.7883 –0.5647
(0.0375) (0.0323) (0.0998)

75 0.2395 0.7190 0.5886 0.4495 –0.7168 –0.3814
(0.0326) (0.0274) (0.0715)

100 0.2992 0.7943 0.4170 0.4116 –0.7040 –0.3814
(0.0298) (0.0180) (0.0438)

μ1 = 0.50 μ2 = 0.15 θ = 1.50 ρ(μ1,μ2) ρ(μ1,θ) ρ(μ2,θ)

25 0.5210 0.1273 1.9765 0.1815 0.0217 –0.7145
(0.0484) (0.0268) (0.4869)

50 0.5713 0.1603 1.4338 0.4822 –0.4643 –0.5710
(0.0332) (0.0249) (0.1888)

75 0.5289 0.1600 1.3432 0.1993 –0.4655 –0.5616
(0.0293) (0.0199) (0.1618)

100 0.5063 0.1851 1.5894 0.5823 –0.6167 –0.6597
(0.0240) (0.0198) (0.2168)

(μ1,μ2,θ) = (0.15,0.25,0.85),

(μ1,μ2,θ) = (0.25,0.75,0.50),

(μ1,μ2,θ) = (0.50,0.15,1.50).

In all three cases, we have simulated observations with a sample size given by
n = 25, 50, 75 and 100. We report the average estimates and the square root of the
mean squared errors based on 1000 replications, i.e. the bootstrap sample is taken from
the original by using sampling with replacement 1000 times. Additional replications are
considered unnecessary, as the computational time needed would be prohibitive; never-
theless, we acknowledge that the use of fewer replications might reduce the statistical
accuracy obtained. The results are shown in Table 1. In general, as the sample size in-
creases the estimates approach the true values and the biases and the mean squared er-
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Figure 1: Box-and-whisker charts showing the differences between the true parameter values and the
estimates based on the data in Table 1.

rors decrease. These outcomes corroborate the consistency of the maximum likelihood
estimates. From the standard errors obtained, it is evident that the errors are smaller as
the sample size increases. Furthermore, the correlation between the parameters is always
positive for μ1 and μ2 and negative for μ2 and θ. Hence, the correlation between these
two sets of parameters is not very high. Finally, Figure 1 shows that the parameters
estimated have a slight negative bias, which is more apparent in the θ parameter.

4. Factors affecting the mathematics and statistics marks obtained

In order to make use of the bivariate regressionmodel, we examined the relation between
the marks achieved by the students in two course subjects: Mathematics and Statistics
in Business Administration. Most of these students, before entering the university had
studied subjects focused on statistics, more so than basic mathematics. In fact, many of
them believed they did not need mathematics and did not consider the two courses to be
related. During the first term, difficulties were encountered in mathematics, but with the
start of the statistics class, in the second term, the students believed their performance
would be better. Therefore, at the beginning of the mathematics course, the students
were informed of the analysis that would be conducted, and were asked to complete a
questionnaire on this subject. The following section describes how the data were com-
piled and how many students comprised the final study sample.

4.1. The sample

The data for this study were collected from eight student groups in the Mathematics for
Business and Statistics modules taught during the first year of the Business Administra-
tion degree course at the University of Las Palmas de Gran Canaria (Spain). The study
population was initially composed of 725 students enrolled in these groups. On the first
day of classes in 2013, a questionnaire was handed out to 456 students.
The final sample was composed of the 213 students who completed both modules

(mathematics and statistics) and answered the survey. The questionnaire was divided
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Figure 2: Scatter plot of the marks in mathematics (×) and statistics (◦) on the left and box-and-whisker
charts for the two dependent variables on the right.

into two parts; the first contained questions dealing with personal and academic infor-
mation, and the second presented four short mathematics exercises.
During the academic year, the students are given three opportunities to take the class

exams. In total, 114 students (54%) of the students who completed the initial ques-
tionnaire passed the Mathematics for Business exam, and 92 (43%) passed in Basic
Statistics. The final marks for the students in the sample, for each of these two subjects,
are shown in the scatter plot in Figure 2. Few students obtained high marks in math-
ematics, and there was a large concentration of values below 0.6. Figure 2 also shows
box-and-whisker charts for the two dependent variables. Since the support of (1) does
not include the values zero or one, and taking into account that the data contained very
few such marks, instead of removing them, these marks were replaced by 0.001 and
0.999, respectively.
The range of possible exam marks was from 0 to 10. In Spain, a pass mark is 5 or

more. In the study sample, most of the marks obtained were between 4.5 and 7.0. Many
were under 4.0 and very few were over 7.0.

4.2. Personal and academic factors

The survey data collected concerning personal and academic factors are shown in Table
2. Among the personal and academic information sought in the questionnaire, the vari-
able AGE was obtained by dividing the students into those born in 1995 and those born
earlier. The year 1995 was taken because in 2013, when the study data were compiled,
these students would be aged 18 years, which is the usual age for university entrance.
To accompany the continuous variable AGE, a box-and-whisker chart is included in

Figure 3. This chart shows that most of the students in the study sample were aged 18-21
years. The outliers in the sample were aged 27-32 years. These students had entered the
university at age 25 years or older, and had had to pass specific examinations to do so.
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Table 2: Descriptive data: personal and academic information.

Personal and academic
information

% Respondents % Mathematics Passes % Statistics Passes
N= 213 N= 114 N= 92

AGE Born in 1995 47 43 40
Born before 1995 53 57 60

SCHOOL Public 82 80 84
Private 18 20 16

TRACK Technical-Science 12 14 12
Other 88 86 88

ADMSCORE [5, 8] 54 45 49
(8,14] 46 55 51

PREF Yes 90 94 92
Business No 10 6 8

Yes 71 68 64
NEWCOMER No 29 32 36

GRANT Yes 65 63 62
No 35 37 38

WORKING Yes 4 4 8
No 96 96 92

GENDER Male 48 51 51
Female 52 49 49

��

��

Figure 3: Box-and-whisker chart of the continuous variable AGE.

Other information requested concerned the type of school (public or private) attended
before university entrance. This variable was termed SCHOOL, and the academic spe-
cialisation chosen by the student during the last two years of high school was termed
TRACK. Different types of track are available, but for the purposes of this study, they
were divided into Technical-Science and Others.
In Spain, university entrance requires a specific examination, known as PAU (Prueba

de Acceso a la Universidad) to be taken, in addition to the final high-school exams.
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The weighted average of the latter mark and the PAU result determines the final admis-
sion score obtained; we term this variable ADMSCORE. The threshold for university
entrance ranges from 5 to 14, depending on demand for the course and on the places
available. The students in our sample were divided into those who obtained an admis-
sion score of 8 or less, and those who obtained 9 or more. After taking the PAU exam,
a period is allowed during which students may choose the degree course they wish to
study. For the purposes of this research, to identify the strength of vocation in the stu-
dents’ choice, the questionnaire asked whether the degree in Business was their first
preference. The study variable in this respect was termed PREF.
Every year, 400 new students enrol in the Mathematics for Business module. How-

ever, the total number of students enrolled each year is almost double this figure due
to the high number of students who failed to pass or did not sit the previous year’s
exam, and who had to retake the course. To distinguish new students from those re-
taking the course, this information was requested, and the corresponding variable was
termed NEWCOMER. Other variables included were the students’ gender (GENDER),
whether they were receiving a study grant (GRANT) and whether they were working
(WORKING).

4.3. Factors related to mathematics skills

The variables concerning the students’ mathematics skills are shown in Table 3. As part
of the questionnaire, the students were asked to solve four exercises and to describe how
they had done so. Different steps were involved in each exercise. The score awarded for

Table 3: Descriptive data for mathematics skills.

BASIC MATHEMATICS
SKILLS

Variables Exercices
%

Respondents
%

Pass rate

1. LINEAR EQUATION

Handle rational coefficients FRACTIONS
1
2
x+

3
4
x= 0 46 55

Solving the equation LINEAREQ 33 38

2. EQUATIONS SYSTEM
Resolution system method SYSTEM 64 73

Raising the quadratic equation EQ2
−x2+2x−3y = 0,

5x+3y = 0.

}
48 52

Solving the quadratic equation SOLVINGEQ2 22 21
Discuss the solutions DISCUSSEQ2 10 12

3. ALGEBRAIC EXPRESSIONS
Clear the unknown CLEANUNKN 2x2y3−ax3y= 0 24 31
Simplify exponents SIMPLIFYEXP 17 25

4. BASIC DERIVATIVES
Polynomial with integer exponent DERINTEXP 47 53

Polynomial with rational exponent DERRATEXP f (x) =
1
3
x3− x1/2+2 23 34

Simplify the final expression SIMPLYFYDER 11 18
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each step in the exercise was 1 when it was performed correctly, or 0 otherwise. The
following variables were associated with each step in the procedure.
The first exercise was a linear equation with rational coefficients. The question was

evaluated according to whether the student was able to handle the basic algebra involved
in manipulating the coefficients. The study variable in this respect was termed FRAC-
TIONS. Solving the equation and obtaining the value of the unknown parameter were
represented by the term LINEAREQ.
The second question concerned a very basic non-linear equation system. The mark-

ing criteria were defined using the following variables: the application of a method for
solving linear systems, SYSTEM; giving the resulting incomplete quadratic equation,
EQ2; solving the equation and discussing the solution obtained, SOLVINGEQ2 and
DISCUSSEQ2, respectively.
The third exercise consisted in giving the value of the parameter “a” after simpli-

fying the algebraic expression (see Table 3). To achieve a positive score, the students
had to clear the unknown, CLEANUNKN, and simplify the exponents, SIMPLIFYEXP.
In the final exercise, the students were asked to calculate the derivative function of an
elementary polynomial expression including an integer and rational exponents. The ex-
ercise was evaluated according to whether the integer exponent was correctly derived,
DERINTEXP, whether the derivative of the rational expression was correctly given,
DERRATEXP, and whether the last expression was correctly simplified, SIMPLYFY-
DER.
Observation of the final column in Table 3, the percentage of students who passed

the final subject exams, clearly shows that although the percentage of passing students
is higher among those who correctly responded to the questions in the initial survey, the
pass rates are still unacceptably low. The results obtained reflect a lack of basic skills in
some areas of mathematics.

5. Testing the models

The descriptive values obtained for the dependent variables are given by E(Y1)= 0.44169,
var(Y1) = 0.04728, E(Y2) = 0.39145 and var(Y2) = 0.04000. Thus, the mean value of
Y1 is larger than that of Y2 while the variance is similar in each case. The correlation
is positive, with a value of 0.67243 indicating that these values increase or decrease
together.

5.1. Model without covariates

The model was initially implemented without covariates, which produced the parameter
values shown in Table 4. The standard errors are shown between parentheses, and the
estimates obtained when the univariate beta distribution is assumed are also shown.
In addition, we show the value obtained for the Akaike information criterion (AIC).
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Table 4: Univariate and bivariate models without covariates.

Y1 : Maths Y2 : Statistics (Y1,Y2)

μ̂1 0.441821 0.438451
(0.015631) (0.014354)

μ̂2 0.384893 0.388744
(0.013748) (0.014500)

θ̂ 3.561590 4.745440 2.497550
(0.307957) (0.422396) (0.179619)

AIC –40.832 –93.8506 –203.260

y

y

Figure 4: Top: the smooth kernel densities (dashed curves) and the pdfs (solid curves) of the estimated
univariate beta distribution. Bottom: the smooth contour plot obtained from the data (left) and the estimated
contour plots of the bivariate beta pdf.

(AIC = 2(k− 	max), where k is the number of model parameters and 	max is the maxi-
mum value of the log-likelihood function; see Akaike (1974) for details.) These values
should be compared only with the fitted models obtained when covariates are included,
as described below.
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From the parameter values obtained by the model without covariates, we obtain the

estimated descriptive statistics ̂E(Y1) = 0.4384, ̂var(Y1) = 0.0452, ̂E(Y2) = 0.389 and
̂var(Y2) = 0.047. The estimated correlation result is 0.417. Thus, except for the correla-
tion, the estimated values are close to the true empirical values.
Figure 4 shows (top) the smooth kernel density and the pdf of the estimated univari-

ate beta distribution. The lower part of the figure shows the smooth contour plot obtained
from the data (left) and the estimated contour plots of the bivariate beta pdf. Clearly, the
univariate beta distribution provides a better fit to the sample values of the mathematics
marks than to those for statistics. The contour plot has a similar shape to the smooth
contour plot, from which we conclude that the bivariate distribution is a better model
than the univariate one.

5.2. Including covariates

The two models, univariate and bivariate, were then evaluated, making use of all the
covariates described in Tables 2 and 3. The normal equations and Fisher’s information
matrix for the univariate beta regression model, given by

f (yi) =
Γ(θ)

Γ(θμi)Γ((1−μi)θ)y
μiφi−1
i (1− yi)

(1−μi)θ−1, i= 1,2

are discussed in detail in Ferrari and Cribari-Neto (2004). The regression results are
shown in Tables 5 and 6. Better results are obtained with the bivariate regression model
than by the separate estimation of two univariate beta regressions. When the covariance
of the joint model is close to zero, the two models are nested. A likelihood-ratio test,
comparing the bivariate value to the sum of the log-likelihood values of the separate
estimation, provided further evidence of the advantages of the bivariate beta regression
model.
The univariate model was then analysed for each module (see Table 5). With re-

spect to personal and academic information, the following significant variables were
obtained: AGE and ADMSCORE. In addition, the AGE-SQUARED variable was intro-
duced to determine whether increased age was associated with poorer performance in
this academic area.
In the univariate model, the marks for statistics did not seem to be influenced by the

students’ skills in mathematics, as the significant variables for statistics did not differ
from those found for the Mathematics for Business class. This fact might be related
to the students’ background and/or to the class content. A good command of systems
of equations, together with an understanding of derivatives and of the simplification
process can have a positive effect on the marks obtained for mathematics, because a
large amount of basic calculus is included in the topics addressed in this subject.
The bivariate model obtains better results because new significant variables are pres-

ent. On the one hand, for personal and academic information, the significant variables
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are the same as in the univariate model, AGE and ADMSCORE (see Table 6). In both
cases, the marginal effect is positive. Thus, the older the students and the better their
admission score, the higher the marks obtained in the Mathematics for Business course.
However, for the AGE-SQUARED variable, the marginal effect is negative. The age
factor may have a positive effect on the students who are retaking the course, due to the
knowledge acquired from the previous year, in the case of those whose age is close to
that of the non-retakers (i.e. 18 years). On the other hand, when the AGE-SQUARED
variable is considered, the students’ additional age has a negative effect. We believe
this is because older students have much greater difficulty in understanding the course
contents. The same effects of the covariates were observed with respect to the statistics
course. In the latter case, however, a further variable, NEWCOMER, was significantly
present in the bivariate model, with a negative marginal effect. It may be relevant that
the new students, before starting university studies, took a course focused on statistics,
although not on calculus; however, this background does not seem to have any positive
impact on their later performance.

Table 5: Details for univariate fitted models including covariates.

MATHEMATICS
Personal and academic information

Variable Coeff Std Error |t|-Stat p-value

AGE 0.47428300 0.24773300 1.91450000 0.05695610
AGE-SQUARED –0.00859712 0.00535907 1.60422000 0.11021300
ADMSCORE 0.47627700 0.12479800 3.81639000 0.00017952

Skill in Mathematics

Variable Coeff Std Error |t|-Stat p-value

SYSTEM 0.35490300 0.12840300 2.76398000 0.00623282
DERRATEXP 0.46429600 0.18433700 2.51874000 0.01254520
SIMPLIFYDER 0.58471300 0.24651500 2.37192000 0.01862630

STATISTICS
Personal and academic information

Variable Coeff Std Error |t|-Stat p-value

AGE 0.31052900 0.23665300 1.31217000 0.19091700
AGE–SQUARED –0.00528830 0.00513981 1.02889000 0.30473200
ADMSCORE 0.34814600 0.12009600 2.89889000 0.00414850

Other parameters

Constant for Mathematics –6.80259000 2.81041000 2.42050000 0.01637510
Constant for Statistics –4.65696000 2.66416000 1.74800000 0.08194620
θ for Mathematics 4.88422000 0.43697500 11.17730000 0.00000000
θ for Statistics 5.06500000 0.45354600 11.16760000 0.00000000
Value of the AIC for Mathematics: –94.917
Value of the AIC for Statistics: –101.721
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Table 6: Details for bivariate fitted model including covariates.

MATHEMATICS
Personal and academic information

Variable Coeff Std Error |t|-Stat p-value δ j

AGE 0.228201842 0.183687046 1.24234 0.21411099 1.256
AGE-SQUARED –0.003363921 0.004001199 0.84073 0.40050008 0.996
ADMSCORE 0.434494686 0.090404187 4.80613 0.00000154 1.544

Skill in Mathematics

Variable Coeff Std Error |t|-Stat p-value δ j

FRACTIONS 0.254534936 0.089643529 2.83941 0.00451967 1.289
SYSTEM 0.412448241 0.124542939 3.31170 0.00092733 1.510
EQ2 –0.365876393 0.124355071 2.94219 0.00325899 0.693
SIMPLIFYEXP 0.421013978 0.110824320 3.79893 0.00014532 1.523
DERRATEXP 0.299258577 0.130434786 2.29432 0.02177237 1.348
SIMPLIFYDER 0.434442994 0.159227590 2.72844 0.00636346 1.544

STATISTICS
Personal and academic information

Variable Coeff Std Error |t|-Stat p-value δ j

AGE 0.152238309 0.210965922 0.72163 0.47052499 1.164
AGE-SQUARED –0.001916838 0.004500367 –0.42593 0.67015944 0.998
ADMSCORE 0.375708496 0.099697582 3.76848 0.00016424 1.456
FRESHMEN –0.357923647 0.108415456 3.30141 0.00096201 0.700

Skill in Mathematics

Variable Coeff Std Error |t|-Stat p-value δ j

DERINTEXP 0.205826943 0.089275677 2.30552 0.02113741 1.228

Other parameters

θ 3.164211826 0.199656264 15.84830 0.00000000
Constant for Mathematics –3.989088242 2.067120538 1.929780 0.05363408
Constant for Statistics –2.720631590 2.433508707 1.117990 0.26357246
Value of the AIC: –285.820

In the bivariate model, with respect to mathematics skills, some of the variables ob-
served in the univariate model were again found to be relevant; in addition, the folowing
new ones appeared: FRACTIONS, SYSTEM, EQ2, SIMPLIFYEXP, DERRATEXP and
SIMPLIFYDER. In every case, the marginal effects were positive. Thus, when students
are competent with the basic algebra of rational expressions, they are more likely to
obtain higher marks in mathematics. The same is true when they can correctly apply
a method for resolving a linear equations system to generate a quadratic equation to
be solved. Another factor that appears to be significant is the ability to simplify al-
gebraic expressions, to derive polynomial functions with rational exponents and to sim-
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plify the expression of the derivative function obtained. For these covariates, the positive
marginal effects mean that the students’ marks increase when they are able to correctly
complete the exercises in question. However, the corresponding results for the statis-
tics course show that the only significant factor was the covariate defining whether the
students were capable of determining the derivative of a polynomial expression with
integer exponents. Success in this task was also associated with higher marks in the sub-
ject, possibly because this type of expression appears in some elements of the statistics
course.

6. Results and conclusions

As part of the Business Administration degree offered by the University of Las Palmas
de Gran Canaria (Spain), a Mathematics for Business course is taught in the first term
of the first year; this is followed by a course focusing on applied statistics in social
sciences. In view of the obvious connection between these two courses, we decided to
analyse the relationship between the marks obtained in each course and to determine
which covariates might affect these marks.
Accordingly, we considered a flexible bivariate regression model to be applied when

the dependent variables are bounded and the marginal means are functions of the ex-
planatory variables. This model was applied to study the personal and academic factors
relevant to the students in our study sample and the basic mathematical skills that may
affect the marks obtained in the above-mentioned courses (mathematics and statistics).
In our opinion, the model proposed is competitive with that presented by Cepeda-Cuervo
et al. (2014), who generated a bivariate beta regression model from copulas evaluating
it using a Bayesian methodology. As in our own case, the marginal distributions of the
latter model were beta, but these authors assumed a weak dependence between the vari-
ables of interest, which was modelled by a Farlie-Gumbel-Morgenstern copula function.
The model we propose has fewer parameters and therefore is simpler.
The results obtained in the present analysis show that the mean value of the marks

obtained increases with the age of the students, in both courses. Specifically, the students
who were born before 1995 had higher marks both for mathematics and for statistics.
We interpret this finding as follows: some of the students in the final sample had been
enrolled in the same mathematics course the previous year, and so they were not new-
comers to the subject. Indeed, some had taken remedial courses, or had transferred from
other undergraduate studies. Thus, following an initial lack of success, these students
subsequently acquired mathematics skills enabling them to achieve better marks in the
subject.
With regard to the admission score variable, this too was significant for both subjects,

with a positive marginal effect. Thus, the higher the admission mark the better the marks
obtained for mathematics and statistics. In this respect, obviously, the best students were
most likely to achieve the best marks in mathematics and statistics.
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Among the other variables related to personal information, another relevant factor
was whether the students were newcomers, i.e. studying these subjects for the first time.
Nevertheless, this variable was only significant for the statistics subject, which probably
reflects the background acquired in this respect in the Social Sciences track studied at
high school.
Finally, with regard to the influence of mathematical skills on the marks obtained for

statistics, only the variable related to obtaining the derivative of polynomial expressions
with integer exponents was found to be significant. It is striking that no other mathemat-
ical ability affected the marks for statistics. This might be because the basic statistics
course in question is mainly descriptive, merely introducing the main concepts; conse-
quently, most of the students were already acquainted with these concepts having opted
for the Social Science track at high school. Despite these considerations, however, the
marks obtained for statistics and the success rate in this course were even worse than for
the business mathematics course.
In the light of the results obtained, we conclude that the bivariate beta regression

model is more suitable than the univariate model for the analysis described in this paper.
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Appendix

We present the equations needed to perform the estimation using the maximum likeli-
hood method when covariates are introduced into the model. Consider a sample con-
sisting of n observations (ỹ1, ỹ2) = {(y11,y21), . . . ,(y1n,y2n)}, taken from the probability
function (7). The log-likelihood is given by

	≡ 	(θ,β1,β2;(ỹ1, ỹ2)) =
n∑
i=1

[(φ2i−1) log(1− y1i)+(φ1i−1) log(1− y2i)

+(φ1iμ1i−1) logy1i+(φ2iμ2i−1) logy2i

−φ1iφ2i
θ

(1−μ1iμ2i) log(1− y1iy2i)

− logB(φ1iμ1i,φ2iμ2i,θ)] , (8)

where φκi = θ/(1−μκi), κ= 1,2.
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From straightforward computation, we have

∂μκi
∂βκ j

= μκixκ j,
∂φκi
∂βκ j

=
1
θ
(φκiμκixκ j)

2,

from which we obtain the first partial derivatives of the log-likelihood function (8) with
respect to θ and βκ j (κ= 1,2, j = 1, . . . , p), given by

∂	
∂θ

=
n∑
i=1

[
log(1− y1i)
1−μ2i +

log(1− y2i)
1−μ2i +

μ1i logy1i
1−μ1i +

μ2i logy2i
1−μ2i

+
φ1iφ2i
θ2

(1−μ1iμ2i) log(1− y1iy2i)− ψ(θ)−ψ(θ+∑2
κ=1φκiμκi)

B(φ1iμ1i,φ2iμ2i,θ)

]
,

∂	
∂β1 j

=
n∑
i=1

μ1ix1 j

[(
μ2i− φ1iμ1ix1 j

θ
(1−μ1iμ2i)

)
φ1iφ2i
θ

log(1− y1iy2i)

+

(
1+

φ1i
θ
μ21ix1 j

)
φ1i logy1i+

φ21iμ1ix1 j
θ

log(1− y2i)

+
μ1iφ1ix1 j

B(φ1iμ1i,φ2iμ2i,θ)

(
ψ(μ1iφ1i)−ψ(θ+

2∑
κ=1

φκiμκi)

)]
,

∂	
∂β2 j

=
n∑
i=1

μ2ix2 j

[(
μ1i− φ2iμ2ix2 j

θ
(1−μ1iμ2i)

)
φ1iφ2i
θ

log(1− y1iy2i)

+

(
1+

φ2i
θ
μ22ix2 j

)
φ2i logy2i+

φ22iμ2ix2 j
θ

log(1− y1i)

+
μ2iφ2ix2 j

B(φ1iμ1i,φ2iμ2i,θ)

(
ψ(μ2iφ2i)−ψ(θ+

2∑
κ=1

φκiμκi)

)]
,

where j = 1, . . . , p. By equating these 2p+ 1 equations to zero and then solving, we
obtain the maximum likelihood estimates of the model parameters.
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Abstract

A methodological approach for modelling the spatial distribution of bioclimatic indices is proposed
in this paper. The value of the bioclimatic index is modelled with a hierarchical Bayesian model
that incorporates both structured and unstructured random effects. Selection of prior distributions
is also discussed in order to better incorporate any possible prior knowledge about the parame-
ters that could refer to the particular characteristics of bioclimatic indices. MCMC methods and
distributed programming are used to obtain an approximation of the posterior distribution of the
parameters and also the posterior predictive distribution of the indices. One main outcome of
the proposal is the spatial bioclimatic probability distribution of each bioclimatic index, which al-
lows researchers to obtain the probability of each location belonging to different bioclimates. The
methodology is evaluated on two indices in the Island of Cyprus.
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1. Introduction

Bioclimatology is an ecological science that studies the relationship between climate and
the distribution of the living species on Earth, particularly the distribution of vegetation.
It aims to determine the relationship between certain numerical values of temperature
and precipitation and the areas in which single plant species and plant communities are
geographically distributed. The spatial distribution of the species and the relationship
between climate and vegetation allows us to better manage plant resources and land-
scape, as well as to forecast the production of agricultural and forestry resources to
combat hunger and determine future vegetation scenarios in certain geographic areas
through the study of vegetation borders.
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As an ecological science, the distribution of the spatial structure of species and
its relationship with environmental factors having high spatial dependence has been
an important subject of study for several years. Osborne et al. (2000); Britton et al.
(2001); Cheddadi, Guiot and Jolly (2001); Tasser and Tappeiner (2002); Legendre, Bor-
card and Peres-Neto (2005); Dostálek, Frantı́k and Šilarová (2014); Baltensperger and
Huettmann (2015) are examples of studies applying these ideas to analyse land-use
changes and distribution of terrestrial vegetation.
Bioclimatic Classification Systems have been introduced to assign bioclimates to a

region under study by means of what are known as bioclimatic indices. But more impor-
tantly, these bioclimates allow us to identify the geographical limits of the main types
of vegetation in the region under study. As a result, having a good spatial representation
of the bioclimatic indices is key to describing the relationship between climate and the
distribution of vegetation.
Information about bioclimatic indices is usually available only in meteorological

stations, not in the whole region of study. It is therefore important to be able to construct
maps from these data. Until now, many studies have used only standard geographical
information system (GIS) techniques. Geostatistics has also been proposed as a way
to explain bioclimatic indices (Robertson, 1987; Rossi et al., 1992; Burrough, 2001;
Garzón-Machado, Otto and del Arco Aguilar, 2014), although this approach can present
certain obstacles such as spatial scale problems (Atkinson and Tate, 2000).
Our main interest in this research is twofold. Firstly, we present another way to

model the spatial distribution of bioclimatic indices. Specifically, we propose a hierar-
chical Bayesianmodel to predict (in non-sampled locations) the bioclimatic index values
by incorporating the altitude and spatial features of each sampled location. As usual in
Bayesian approaches, we also explain how to select prior distributions in this context.
But more importantly, we secondly describe the two main outcomes of the modelling,
i.e., the posterior predictive distribution of bioclimatic indices and the probability maps
for the bioclimates, which provide more realistic geographical limits. As the resulting
hierarchical model has no closed expression for the posterior distribution of all the pa-
rameters, we also present how to perform inference by MCMC methods, and how to
predict on non-observed locations by means of distributed programming, reducing the
computation time by more than 80% in comparison to standard R packages.
The remainder of this article is organised as follows. After this introduction, Section

2 presents a general Bayesian hierarchical spatial model of the bioclimatic indices. In
Section 3, we describe how to select prior distributions, while Section 4 explains how to
perform inference and prediction for these indices. In Section 5, we apply this method-
ology in a real setting, we obtain the predictive distributions of two bioclimatic indices
on the island of Cyprus, using the altitude and the climate information (temperatures
and rainfall) from 59 meteorological stations. Finally, Section 6 concludes and presents
some future lines of research.
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2. Modelling bioclimatic indices

In what follows, we first introduce three bioclimatic indices of the Worldwide Biocli-
matic Classification System by Rivas-Martı́nez (Rivas-Martı́nez, 1994; Rivas-Martı́nez
et al., 2002; Rivas-Martı́nez and Rivas-Saenz, 2016), one of the most popular Biocli-
matic Classification Systems available. This classification encompasses five macrobio-
climates (Tropical, Mediterranean, Temperate, Boreal and Polar), which are in turn sub-
divided into twenty-seven bioclimates and five bioclimatic variants. It is worth noting
that all the results presented here could also be applied to any other bioclimatic index
from any classification selected. After defining the bioclimatic indices, Section 2.2 de-
scribes the Bayesian hierarchical spatial model for each one of them.

2.1. Bioclimatic indices

As previously mentioned, the procedure for constructing bioclimatic maps is based on
the bioclimatic indices. In general, these indices are values obtained by simple mathe-
matical expressions that combine certain climatic parameters and factors such as altitude
or latitude, and which are commonly used to characterise the climate of a region. This
makes it possible to recognise climatically homogeneous areas that may have similar
vegetation types (species, communities, series).
One of the most important bioclimatic indices is theOmbrothermic Index (OI), which

relates the rainfall and the temperature in an area using an average of the last n years
(usually at least 25 years), and it is defined by

OI =
10
n

n∑
j=1

(
Pp, j
Tp, j

)
, (1)

where Pp is the sum of the average rainfall (in mm.) of the months whose average tem-
perature is above zero degrees Celsius, and Tp is the sum of monthly average tempera-
tures above zero degrees Celsius, expressed in tenths of a degree.
The variation of temperature (thermicity) over the seasons in an area is one of the

most influential factors in the characterisation of climate, since the vegetation distribu-
tion is greatly affected by the area’s thermicity. Hence, another important bioclimatic
index is the Thermicity Index (TI) of the last n years, defined as

T I =
10
n

n∑
j=1

(Tj+mj+Mj) , (2)

where T is the sum of the annual mean temperature in decimal degrees,m is the average
of the minimum temperature of the coldest month andM is the average of the maximum
temperature of the coldest month.
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This Thermicity Index has some problems of definition in extratropical regions (North
and South of latitude 23 N and S respectively). The Compensated Thermicity Index
(TIc) avoids these problems by weighting the Thermicity Index value (TI) by adding or
subtracting the Compensation Value,Ci, in those places where the Continentality Index
(CI), defined as the annual oscillation variation of temperature CI = Tmax−Tmin) takes
extreme values:

T Ic=

{
T I if 8≤CI ≤ 18,

TI+Ci ifCI < 8 orCI > 18, i= 0, . . . ,4
(3)

Note that all the temperatures are in Celsius, and periods are 25 years, the minimum
recommended period.

2.2. Bayesian hierarchical model for bioclimatic indices

After presenting the bioclimatic indices, we now introduce a way of modelling them by
means of a Bayesian hierarchical spatial model. If Y = [Y (si)]

n
i=1 represents the vector

of values of the bioclimatic index in a subset of locations s = (s1, . . . ,sn) in the region
D, then the usual geostatistical assumption is that Y is multivariate normal:

Y ∼N (μμμ,Σ) , (4)

where μμμ denotes the mean vector of the process, andΣ represents the covariance matrix
between locations. This matrix can be re-written separately as spatial and non-spatial
covariances matrices

Σ=Σw+Σr, (5)

which, assuming that the observations are conditionally independent given the spatial
process, can also be expressed as

Σw = σ2H(θθθ); andΣr = τ 2I , (6)

where H(θθθ) is the Matérn correlation matrix between locations (Matérn, 1986), which
depends on two parameters θθθ = (φ,ν); the scale parameter φ > 0 and the shape param-
eter ν > 0. It is worth noting that the Matérn is a really flexible and general family of
correlation generalising many of the most-used covariance models in spatial statistics
(exponential and Gaussian among them).
The mean vector of the process can be related with covariates (in our case, altitude),

and so the bioclimatic index is expressed as
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Y|βββ,W,τ 2 ∼N
(
Xβββ+W,τ 2I

)
, (7)

where Xβββ represents the linear predictor associated with the covariates at the locations
s= (s1, . . . ,sn).
Hence, the Bayesian hierarchical model corresponding to geostatistical homoge-

neous Gaussian process data for a bioclimatic index is expressed in three levels of infor-
mation as

(I) Y|βββ,W,τ 2 ∼N
(
Xβββ+W,τ 2I

)
(II) W|σ2,θθθ ∼N

(
0,σ2H(θθθ)

)
(III) p(βββ,σ2,τ 2,θθθ),

(8)

where the first level is the Gaussian process, the second level shows the information
on the spatial effect and the third level specifies the prior distribution parameters and
hyper-parameters.
Following Yan et al. (2007), and in order to avoid the identifiability problem of spa-

tial and non-spatial variability, we reparametrise (8) as

(I)Y ∼N
(
Xβββ,ξ2 [(1−κ)H(θθθ)+κI]

)
(II) p(βββ,ξ2,κ,θθθ) ,

(9)

where ξ2 = σ2+ τ 2 now represents the total variability of the random effects, and κ =
τ 2/ξ2 stands for the proportion of the non-spatial variability with respect to the total
variability.
Once the model is determined, the next step is to estimate its parameters. As we are

using the Bayesian paradigm, we have to select the prior distribution for the vector of
parameters involved in the model.

3. Selection of prior distributions

Making use of previous information is considered one of the most useful characteristics
of Bayesian statistics. A subjective approach involves defining prior distributions for
unknown parameters according to personal experience and impression, recognising that
the expert opinion is better than no knowledge. In contrast, objective Bayesians defend
the idea that no other information should be considered apart from that introduced during
model specification, although finding that prior distribution which contains only that
knowledge can sometimes be tricky. In the context of spatial geostatistics models, the
case in hand, it must be taken into account that using non-informative priors can lead to
improper posterior distributions (De Oliveira, 2007).
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A usual assumption when expressing prior knowledge is to consider prior indepen-
dence of the parameters, that is,

p(βββ,ξ2,κ,θθθ) = p(βββ)p(ξ2)p(κ)p(θθθ) .

In order to express our knowledge for each of these parameters, we must elicit both
their distributions and the values of their hyperparameters. As mentioned above, for
the latter the choice of their values can come under the “complete ignorance” premise,
although we can also include the information available about them in order to improve
the final posterior distribution (Dongen, 2006).
In particular, the distribution for βββ is again based on the assumption of prior inde-

pendence of its components, the usual choice being either Gaussian distributions or non-
informative improper distributions. As the resulting posterior is in both cases proper, we
use the improper one, that is,

p(βββ) = p(β0,β1) = p(β0)p(β1) ∝ 1 .

With respect to the proportion κ, the natural choice is a uniform distribution between
0 and 1, κ∼ U(0,1) .
For the Matérn function parameters, θθθ = (φ,ν), and taking into account that we

are using the parameterisation proposed by Handcock and Wallis (1994) in which the
parameter φ is largely independent of ν, we propose using a product of two independent
distributions. In particular, our choice for the prior distribution of φ is

p(φ) = U

(
1
d1

,
1
d2

)
, (10)

where d1 is the furthest distance between two locations, and d2 is the minimum dis-
tance between the two nearest locations. Following recommendations by Stein (1999)
and Finley, Banerjee and Gelfand (2015), our choice of smoothing parameter ν is ν ∼
U(0.05,1.95).
The last parameter to be elicited is the total variability ξ2 of the bioclimatic index. In

this case, note that information is available which can be included in the prior. Indeed,
as explained in the previous section, indices depend on temperature and precipitation by
definition, and therefore, they only take values within a defined range (the highest and
lowest value of the index in the region of study, according the Rivas-Martı́nez classifi-
cation), denoted by (Ymin,Ymax), with Ymin > 0.
This information about ξ2 can be incorporated in the scale parameters of different

distributions. The underlying idea is to consider that the observed values of the index
on a set of locations is a priori uniformly distributed between (Ymin,Ymax). Note that this
uniform distribution is the most disadvantageous option as this would imply that all the
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regions have the same orographic features. The corresponding variability of this uniform
distribution is

Var(Y ) =
(Ymax−Ymin)2

12
, (11)

the maximum value of which (denoted as Vmax) would be an upper bound of the vari-
ability index. A prior distribution could then be constructed by matching the range of
variability (a,Vmax) with the quantile 0.95 of any chosen distribution (Chambers and
Dunstan, 1986; Strupczewski et al., 2007). In other words,

0.95=
∫ Vmax

a
f (y|ααα)dy, (12)

where f is the chosen prior distribution and ααα its corresponding parameters. Since vari-
ability is always positive, a can be chosen to be as small as possible (e.g. a = 0.001).
Table 1 shows the resulting scale parameters for the usual priors: uniform over the vari-
ance, uniform over the standard deviation, inverse gamma or half-Cauchy.

Table 1: Upper bound for the variability index and prior distribution
for a specific bioclimatic index range.

p(ξ2)∼ U(0.001,b) b=
Vmax−0.00005

0.95

p(ξ)∼ U(0.001,
√
b) b=

Vmax−0.00005
0.95

p(ξ2)∼ IG(2,β) 0.95=
∫ Vmax

0.001

β2

Γ(2)
x−3e−βxdx

p(ξ2)∼HC(δ) δ =
Vmax

tan
( 1
2 ·π ·0.95)

To summarise, the final model for any bioclimatic index Y using the second option
of Table 1 (uniform over the standard deviation) is

(I) Y ∼N
(
Xβββ,ξ2 [(1−κ)H(θθθ)+κI]

)
; θθθ = (φ,ν)

(II) p(βββ,ξ,κ,φ,ν) ∝ 1×U(0.001,
√
b)×U(0,1)×U(1/d1,1/d2)×U(0.05,1.95)

(13)

Note that the advantage of this final model is that we only have to assign a prior
distribution on ξ, since the remaining parameters are obtained as σ2 = (1−κ)ξ2 and
τ 2 = κξ2.
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4. Inference and prediction

The model in (13) contains all our knowledge about the index, but it does not yield
closed analytic expressions for the posterior distribution of the parameters, p(βββ,ξ,κ,φ,
ν|Y,X). Therefore, numerical approximations are needed in order to make inference
about them. Among others, one feasible (indeed one of the most popular) possibility is
to use Markov chain Monte Carlo (MCMC) methods (Gamerman and Lopes, 2006) that
draw samples from any intractable posterior by running a cleverly constructed Markov
chain over a long period, the stationary distribution of which is the one we want to simu-
late from. Among the different ways of building these chains, the most popular are Gibbs
sampling and the Metropolis-Hastings algorithm (Gilks, Richardson and Spiegelhalter,
1996).
In our case, we use WinBUGS (Lunn et al., 2000), a flexible software for performing

the Bayesian analysis of complex statistical models (see Banerjee, Carlin and Gelfand,
2014 for examples of how to implement spatial hierarchical Bayesian models with Win-
BUGS). The reason for this choice is that it gives us more flexibility when specifying the
matrix variance-covariance of the first hierarchy level. Moreover, it allows us to easily
set prior distributions over the standard deviation.
As usual in MCMC, we run three chains for a long period discarding the first hun-

dreds or thousands (depending on the convergence, the burn-in period can be extended)
and then take samples from the three chains. Regarding convergence (to the correct sta-
tionary distribution) assessment, the Brooks-Gelman-Rubin statistic and the effective
sample size (see Gelman et al., 2013 for more information about these statistics) can be
calculated for every parameter in the model. The Brooks-Gelman-Rubin statistic must
have a value under 1.1, while the effective number of iterations must be above 100 for
every mentioned parameter.
Once the inference has been carried out, the next step is to predict the values of the

bioclimatic indices in the rest of the area of interest, especially in unsampled locations.
In our case, as we are using the Bayesian approach, prediction is reduced to obtain the
posterior predictive distribution of the indices in a set of new locations.
In particular, if Yp represents the values of a bioclimatic index in a new set of loca-

tions with observed covariates Xp, then the posterior predictive distribution of the new
values Yp (conditional to the observed ones, henceforth, Yo) is

p(Yp|Yo,Xo,Xp) =
∫
p(Yp|Yo,Xp,βββ,ξ,κ,φ,ν)p(βββ,ξ,κ,φ,ν|Y,X)d(βββ,ξ,κ,φ,ν) ,

(14)
where the extended data vector p(Yp|Yo,Xp,βββ,ξ,κ,φ,ν) has a conditional multivariate
normal distribution arising from the joint multivariate distribution of Yp and Yo in (7).
As with the posterior distribution of the parameters, expression (14) has no closed

form, and again numerical approximations are needed. One way to obtain a simulated
sample from this posterior predictive distribution is via the composition method. In par-
ticular, if {βββi,ξi,κi,φi,νi}Mi=1, represents a simulated sample from the posterior distribu-
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tion of the parameters, then a simulated sample from the posterior predictive distribution
is obtained by simulating from the conditional multivariate distribution of the observed
values Yp, that is, {p(Yp|Yo,Xp,βββ i,ξi,κi,φi,νi)}Mi=1.
Note that the conditional multivariate distribution p(Yp|Yo,Xp,βββ,ξ,κ,φ,ν) is a mul-

tivariate normal distribution with mean

E [Yp|Yo] = μμμp+ΣpoΣ
−1
oo (Yo−μμμo) (15)

and variance-covariance matrix

V [Yp|Yo] =Σpp−ΣpoΣ
−1
oo Σop , (16)

where

Σ=

(
Σpp Σpo

Σop Σoo

)

is the covariancematrix of the joint multivariate normal distribution of the extended data
vector (Yp,Yo).
As we are following the reparametrisation by Yan et al. (2007) in (9), the conditional

multivariate distribution p(Yp|Yo,Xp,βββ,ξ,κ,φ,ν) is a multivariate normal distribution
but with mean

E(Yp|Yo) = Xpβββ+((1−κ)Hpo(θθθ)+κI)((1−κ)Hoo(θθθ)+κI)−1 (Yo−Xoβββ) (17)

and variance-covariance matrix

V (Yp|Yo) = (18)

ξ2
[(
(1−κ)Hpp(θθθ)+κI

)−((1−κ)Hpo(θθθ)+κI
)
((1−κ)Hoo(θθθ)+κI)−1

(
(1−κ)Hop(θθθ)+κI

)]

where

H(θθθ) =

(
Hpp(θθθ) Hpo(θθθ)

Hop(θθθ) Hoo(θθθ)

)

is the Matérn correlation matrix between predicted and observed locations.
Implementing the above composition method implies evaluating this mean vector

and variance-covariance matrix for each of the simulations. But note that this evaluation
can be computationally expensive. Dealing with 15000 simulations (5000 per chain)
from the posterior distribution and about 1000 new locations (to predict) would involve
evaluating 15000 times expressions (17) and (18). This is the reason why we do not use
WinBUGS, because although feasible, it is really slow.
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An obvious (but naive) option would be to consider fewer points over the surface to
predict, and a small random sample from the posterior distribution. However, this option
would produce posterior predictive distributions with lower resolution and, therefore, the
resulting predictive maps would have no practical interest. Other options would be to
use the spatial-temporal modelling R library spBayes (Finley et al., 2015), or to directly
implement equations (15) and (16) using programming languages such as the R matrix
computation language (Bates and Maechler, 2015); C++ via the interface package Rcpp
to connect with R (Eddelbuettel et al., 2011); or directly C++ (Sanderson, 2010).
Our approach is to use intensive computation techniques such as parallel computa-

tion (Adams et al., 1996; Blackford et al., 1997; Rosenthal, 2000; Rossini, Tierney and
Li, 2007; Whiley and Wilson, 2004), that allow us to increase the performance when
doing matrix calculations, and therefore, work with a large number of new locations to
predict with all the samples previously obtained by simulation from the posterior dis-
tribution using WinBUGS. Nevertheless, as stated by Golub and Van Loan (1996) and
Cuenca, Giménez and González (2004), the use of parallel computation is convenient
only if computational times are substantially reduced.
In this study we use C language to program the prediction equations, and then the

ScaLAPACK and PLAPACK libraries to perform the linear algebra calculations needed
to obtain the mean vector and variance-covariance matrix. Interestingly, with this par-
allelisation of the algorithm for generating a multivariate normal sample, we reduce
the computation time by close to 80% compared to other options such as spBayes and
similar R packages.

Graphical representation of the posterior predictive distributions of Bioclimatic indices

Having obtained the posterior predictive distribution of the indices, our final task is to
represent these distributions throughout the area of interest in order to obtain a good
visualisation of their behaviour in the area. We present two different representations of
these predictive distributions, the first one being the mean and the standard deviation of
the posterior predictive distribution, and the second one, the probability distribution of
each bioclimatic index belonging to different bioclimates.
To obtain the map of the mean (similarly the map of standard deviation), we use

multilevel B-splines Approximation (Lee, 1997) to interpolate the values of the mean
(the standard deviation) of the bioclimatic indices over the whole area using the obtained
values of the posterior mean (standard deviation) predictive distribution on the predicted
locations.
Although the mean and the standard deviation reflect most of the information about

the posterior predictive distributions, the most valuable information we can get from
these distributions comes from the way that they can show us the probability of each
location belonging to the different bioclimates. Indeed Rivas-Martı́nez’s bioclimatic
classification system uses different ranges of the bioclimatic indices to classify the dif-
ferent bioclimates. For example, the Continentality Index ranks the climate in three
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types, namely, Hyperoceanic (CI ∈ [0,11[), Oceanic (CI ∈ [11,21[), and Continental
(CI ∈ [22,65]). Note that representing the probability of the predictive distribution of
belonging to each of these ranges can be very relevant for studying changes in vegeta-
tion zones, climate change advances, and many other climatic issues that could provide
valuable information for the management and use of land in the area under study.
Obtaining this probability is straightforward using the simulated values of the predic-

tive distribution. If a bioclimatic index Y is defined in l disjoint intervals R1, R2, . . . ,Rl
that describe l bioclimates, and {rik}ni=1 represents a sample from the posterior predic-
tive distribution for each location in {sk}mk=1, then the posterior probability that each
location belongs to each interval constituting the index is given by:

P(Y (sk) ∈ Rj) =
∫
R j

∫
p(Y (sk)|Yo,Xp,βββ,ξ,κ,φ,ν)p(βββ,ξ,κ,φ,ν|Y,X)d(βββ,ξ,κ,φ,ν)dY (sk)

≈ #{rik ∈ Rj}
n

, j = 1, ·, l,k = 1, ·,m. (19)

The result is a discrete probability distribution for each location that we call the
spatial bioclimatic probability distribution. Note that the best way to represent this dis-
tribution is by presenting a single figure made up of different graphs, each one showing
the probability of belonging to each bioclimate (see Figure 4 for an example).
The representation of each probability can be seen as a puzzle of pieces that fit by

overlapping and provide the distribution boundaries between the types of bioclimates
for each index. These boundaries are highly relevant because they determine the areas
that could be about to change in the near future (caused for example by a slight change
in climatic parameters). This representation is therefore critical in studies about climate
change and its effects on the vegetation of a region.

5. Bioclimatic classification of the island of Cyprus

We illustrate the usefulness of the approach presented here through an application to
analyse two bioclimatic indices (Ombrothermic Index and Thermicity Index) on the
island of Cyprus with the final aim of showing its bioclimatic classification.
Cyprus is an island country in the Eastern Mediterranean. It is the third largest and

the third most populous island in all the Mediterranean. Some of its geographical charac-
teristics are as follows: it measures 240 kilometres (149 miles) long and 100 kilometres
(62 miles) wide at its widest point; it lies between latitudes 34◦ and 36◦ N, and longi-
tudes 32◦ and 35◦ E. Cyprus is dominated by two mountain systems, the Troodos and
the Kyrenia Mountains, between which lies a central plateau, the Mesaoria.
The information gathered to create the bioclimatic classification of the island con-

sisted of the geographical location, the altitude and the values of the two bioclimatic
indices from 59 meteorological stations across the island, together with the geographi-
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Figure 1: Upper left: geographical location of observed and predicted sites in the Cyprus island. Black
triangles represent the 59 meteorological stations (observed locations), while red points represent the 755
locations where prediction had to be performed. Upper right: contour map of the island. Lower left: ther-
micity and altitude relationship. Lower right: Log(Ombrothermic index) and altitude relationship.

cal location and altitude of other 775 locations (used to predict the indices), in particular,
the ones that the geographical map of the island provides. Figure 1 shows the geograph-
ical location of observed and predicted sites, jointly with the contour map of the island
and the relationship between both indices and the altitude. It is worth mentioning that
these two indices are not related, as can be seen in the left side of Figure 2. This allows
us to analyse both indices independently. If the indices were related, a joint modelling
would be necessary (see the right side of Figure 2 for an example of two related indices,
namely the ombrothermic and continentality indices).

5.1. Ombrothermic Index

We first present the results obtained when analysing the Ombrothermic Index (using
the logarithm transformation to improve its linear relationship with altitude). Table 2
presents the median of the posterior distribution of the parameters of the model in equa-
tion (13) along with their corresponding 95% credible intervals. These posterior distri-
butions were obtained by simulation usingWinBUGS (Lunn et al., 2000). Each posterior
distribution was approximated from 15000 (5000 from each of three simulation chains)
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Figure 2: Relationship between indices after adjusting linear regression of each index by altitude. Left side,
relationship between residuals of ombrothermic and thermicity indices. Right side, relationship between
residuals of ombrothermic and continentality indices.

Table 2: Median of the posterior distribution and 95% credible intervals
of the parameters for the Ombrothermic Index model.

Parameters Median p2.5 p97.5

β0 5.28×10−1 3.63×10−1 6.84×10−1
β1 7.61×10−4 6.02×10−4 9.12×10−4
ξ2 4.80×10−2 2.37×10−2 1.70×10−1
κ 1.03×10−1 1.91×10−2 3.83×10−1
φ 5.54×10−5 2.92×10−5 9.55×10−5
ν 1.48 1.02 1.93

simulated values (obtained after discarding ten thousand simulations from a burn-in
period that guaranteed convergence). As commented above, these posterior distributions
were obtained using the uniform distribution over the standard deviation.
As expected, results for β1 in Table 2 show a positive effect on the altitude. Note also

that the spatial effect is necessary to describe the behaviour of the index, as expressed by
the small value of κ (which indicates the small proportion of non-spatial variability with
respect to the total variance). It is also worth noting that the maximum variance (used
in expression (11) to obtain the prior distributions) in Mediterranean bioclimate, 0.515,
does not affect our results. Indeed, this shows that our prior construction methodology
can really be considered as uninformative.
It is worth noting that a sensitivity analysis about the prior selection was performed

for both indices. In particular, we fitted different models using all the different priors
introduced in Table 1. Results indicate that both estimations and credible intervals ob-
tained were similar independently of the priors used.
Figure 3 shows the maps of the mean and standard deviation (as a prediction error

measure) of the posterior predictive distribution of the Ombrothermic Index. As men-
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Figure 3: Mean (left) and standard deviation (right) of the posterior predictive distribution of the Om-
brothermic Index.

tioned above, this predictive distribution was approximated by means of intensive com-
putation techniques that allow us to predict the values of the bioclimatic indices in the
775 unsampled locations.
The mean map clearly reflects the topography of the island, while the standard de-

viation map shows the uncertainty in areas with no data but, more importantly, it also
reflects the areas where the terrain is changing on the island. Note also that the scale
of the observed prediction error is very small compared to the scale of measurement of
the index considered throughout the island. The proposed method is therefore a very
powerful tool for creating the bioclimatic rating of Cyprus based on the Ombrothermic
Index. Note also that the map of the mean is similar that the one we could obtain using
multiple linear regression followed by ordinary kriging of the regression residuals as in
Garzón-Machado et al. (2014), although with our approach we can explore further the
behaviour of the indices.
From a biological point of view, also note that the mean map in Figure 3 also prop-

erly reflects zones with higher altitude (corresponding to larger values of the index),
and those areas with the highest rainfall. Indeed, the predicted map obtained shows the
landscape changes that can be observed in any orthophoto of the island.
Once we have the posterior predictive distribution of the index we can use it to obtain

the maps of the spatial bioclimatic probability distribution introduced in the previous
section. As mentioned above, these maps show the posterior probability of an index
belonging to each subtype.
Figure 4 shows the posterior probability of the nine possible ombrotypes (categories

of the Ombrothermic Index) that can be observed in the Mediterranean bioclimate. The
figure represents the probability of one location on the island belonging to each om-
brotype. Note that in Cyprus the subtypes Hyperhumid, Ultrahyperhumid, Arid, Hyper-
arid and Ultrahyperarid are not possible, while probabilities greater than zero indicate
that Humid and Subhumid are possible at the highest altitudes, and the Dry subtype is
possible on the coast and Semiarid in the north and east.
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Figure 4: Spatial bioclimatic probability distribution of the Ombrothermic Index.

As it can be seen from the figure, there is a high probability of the Humid subtype
being found in the two mountain peaks of the Central mountains and of the Subhumid
subtype occurring in the mountainous area of the central mountains. The Dry subtype
has a high probability of occurring on the hillsides of those peaks and the northern
ridge of the island and finally the Semiarid subtype is likely to be found in the central
plateau. It is worth noting how important these probability distribution maps are from
a biological point of view, as they provide more accurate information on the subtype
boundaries, by using a gradient map showing the border from one subtype to another.

5.2. Thermicity Index

We now show the results for the Thermicity Index in Cyprus. This index presents a
peculiar relationship with the orography, and obviously with the temperature-altitude
pair, i.e., higher altitude is associated with lower temperature.
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Table 3: Median of the posterior distribution and 95% credible intervals
of the parameters for the Thermicity Index model.

Parameters Median p2.5 p97.5

β0 6.10 6.06 6.13

β1 −5.48×10−4 −6.04×10−4 −4.92×10−4
ξ2 7.90×10−3 5.53×10−3 1.21×10−2
κ 3.95×10−1 1.94×10−2 9.11×10−1
φ 3.12×10−4 2.52×10−5 5.40×10−4
ν 0.594 0.0763 1.75
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Figure 5: Mean (left) and standard deviation (right) of the posterior
predictive distribution of the Thermicity Index.

Table 3 shows the median of the posterior distribution of the parameters along with
their corresponding 95% credible intervals for this index. As above, these posterior dis-
tributions were obtained by simulation using WinBUGS, although in this case neither
efficiency (in terms of computational time) nor convergence were as good as for the
Ombrothermic Index (indeed the number of discard simulations needed in the burn-in
was 20000 for this index).
Results for β1 in Table 3 now show a negative effect on the altitude, which corre-

sponds to the effect in climatology known as the mountain-valley wind effect. The value
for κ is around 0.395 with a credible interval that nearly covers the whole [0,1] interval.
This clearly indicates that the model can not distinguish between the spatial and non-
spatial variabilities. The fact that some weather stations present different values even
though they are close to one another, clearly indicates that this index probably does not
have a major spatial effect.
Figure 5 shows the mean and the standard deviation of the posterior predictive distri-

bution of the parameters for the Thermicity Index model. The mean map clearly shows
the island’s mountain system, which is a real factor in explaining the variability for the
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Figure 6: Spatial bioclimatic probability distribution of the Thermicity Index.

Thermicity Index, as mentioned previously. Figure 5 also shows the differences between
the south and the north of the island and the two principal mountains.
Figure 6 shows the spatial bioclimatic probability distribution of the four possible

thermotypes that can be observed in the Mediterranean bioclimate. As can be appreci-
ated from the figure, there is a strong relationship between altitude and thermicity. The
Supramediterranean subtype is very likely to be found at the highest locations, while
on the hillsides there is a high probability the Mesomediterranean thermotype. Finally,
there is a high probability of the ombrotype for the rest of the island beinf Thermo-
mediteranean. Again, this map could be very helpful for landscape management, as it
illustrates the vegetation frontiers, due to the close relationship between thermicity and
vegetation.
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6. Conclusions

In this study, we have introduced a hierarchical Bayesian model that allows us to ob-
tain the spatial distribution of bioclimatic indices by incorporating the altitude and spa-
tial features of each sampled location. Two of the most important advantages of the
Bayesian model formulation are that it incorporates parameter uncertainty (both in the
inferential and prediction processes), and also prior information can be easily handled.
In this context, we have shown how to incorporate our prior knowledge about the pa-
rameters via their prior distributions taking into account the particular characteristics of
bioclimatic indices. Interestingly, this approach could be easily extended in other con-
texts. Moreover, sensitivity analysis have shown that there is no dependence on the prior
selected.
Also interest is the usefulness of the two main outcomes of the modelling. Posterior

predictive distributions reflect most of the information about the bioclimates, but the
most valuable information they provide comes from the fact that they inform us of the
probability of each location belonging to the different bioclimates. This is done using
what we have called the spatial bioclimatic probability distributions. These distributions
could be a powerful tool in studies about climate change and its effects on the vegetation
of a region, but also in landscape management, in particular to establish future policies
or future resource management.
This study also explains how to use MCMC methods, in particular WinBUGS, for

the inference in this context, and also how to perform distributed programming for the
prediction, which allows us to reduce the computation time.
Another important issue to be mentioned is that in the case that the two analysed

indices were related, a joint modelling should be used. In our case, as the Thermicity
and Ombrothermic indices are not related there is no need for it, but with other indices
the opposite applies and a joint modelling would be needed.
Finally, it should be noted that all the analytical approaches we used here to docu-

ment the spatial distribution of bioclimatic indices can be applied in any other part of
the world.
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The Pareto IV power series cure rate model
with applications
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Abstract

Cutaneous melanoma is thought to be triggered by intense, occasional exposure to ultraviolet ra-
diation, either from the sun or tanning beds, especially in people who are genetically predisposed
to the disease. When skin cells are damaged by ultraviolet light in this way, often showing up as a
sunburn, they are more prone to genetic defects that cause them to rapidly multiply and form po-
tentially fatal (malignant) tumors. Melanoma originates in a type of skin cell called a melanocyte,
such cells help produce the pigments of our skin, hair, and eyes. We propose a new cure rate sur-
vival regression model for predicting cutaneous melanoma. We assume that the unknown number
of competing causes that can influence the survival time is governed by a power series distribu-
tion and that the time until the tumor cells are activated follows the Pareto IV distribution. The
parameter estimation is based on the EM algorithm which for this model can be implemented in
a simple way in computational terms. Simulation studies are presented, showing the good perfor-
mance of the proposed estimation procedure. Finally, two real applications related to a cutaneous
melanoma and melanoma data sets are presented.

MSC: 62N01, 62N02, 62P10.

Keywords: Competing risks, cure rate models, EM algorithm, Pareto IV distribution, power series
distribution.

1. Introduction

Cancer is a process of uncontrolled growth and dissemination of cells. It can occur in
practically any location in the body. The tumor can invade the neighbouring region of the
body and can also provoke metastasis in parts of the body remote from the original site.
Many types of cancer can be prevented by avoiding exposure to common risk factors
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such as, for example, tobacco smoke. Moreover, a major proportion of cancers can be
cured by surgery, chemotherapy or radiation, especially if they are detected at an early
stage. Melanoma that occurs on the skin, called cutaneous melanoma, is the most com-
mon type of melanoma. This type of melanoma occurs in all parts of the skin, including
the soles of feet, on the palms of the hand, in between toes and fingers, and underneath
the finger and toe nails.
Skin melanoma occurs most frequently in people with a light complexion, since

they are least protected against UV radiation. Also, people with more than 50 moles, a
family history of melanoma, a weakened immune system, or those who sunbathe or use
tanning beds, are at increased risk. Melanoma is the fastest growing cancer in men and
the second fastest growing cancer in women (after lung cancer).
Regression models for survival data with a surviving fraction (also known as cure

rate models or long-term survival models) play an important role in reliability and sur-
vival analysis. These models typically assume that all units under study are susceptible
to an event of interest and will eventually experience it if follow-up is sufficiently long.
However, there are situations in which a fraction of individuals are not expected to ex-
perience the event of interest, that is, those individuals are cured or not susceptible. For
example, researchers may be interested in analysing the recurrence of a disease. Many
individuals may never experience a recurrence; therefore, a cured fraction of the popu-
lation exists. Cure rate models have been applied to investigate the possible existence of
a cured fraction. An approach for those models is the following.
Let M be a random variable denoting the initial number of carcinogenic cells of

an individual. Several different assumptions about the probability mass function of M
have appeared in the literature: Bernoulli (Berkson and Gage, 1952), Poisson (Yakolev
and Tsodikov, 1996), Negative Binomial (Rodrigues et al., 2009a), among others. A
generalization that includes all these models is the power series distribution (Noack,
1950) used by Cancho, Louzada and Ortega (2013a) in the cure rate context. Evidently
this model doesn’t include all distributions that can be used in this context (see for
instance, Rodrigues et al., 2009b and Rodrigues et al., 2015).
On the other hand, let Wa be a random variable expressing the time at which the

a-th cell produces a detectable cancer. In their proposal, Cancho et al. (2013a) used the
Weibull distribution. Other approaches include the generalized gamma (Ortega et al.,
2014), the Beta-Weibull (Ortega et al., 2015) and the Birnbaum-Saunders distribution
(Cordeiro et al., 2016). Our proposal is one in which we assume for eachWa a Pareto
IV distribution (Arnold 1983, 2015). This is a very flexible model which includes some
interesting distributions as particular cases and which has the characteristic that both,
the survival and density functions, have analytic tractable forms.
The sections of this paper are organized in the following manner. In Section 2, we

explain the model formulation and give some of its main properties. In Section 3, we
develop parameter estimation for the model based on the EM algorithm. In Section 4,
two real data applications are discussed. In Section 5, a simulation study is presented.
Finally, some conclusions are given in Section 6.
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2. The Pareto IV power series cure rate model

The model proposed in Cancho et al. (2013a) can be defined as follows. Let M be a
random variable denoting the initial number of carcinogenic cells of an individual with
probability mass function given as in Noack (1950) by

P(M = m;θ) =
amθm

A(θ)
, m= 0,1,2, . . . , (1)

where am > 0 and A(θ) =
∑∞

m=0 amθ
m. θ is the so-called power parameter of the distri-

bution and A(θ) is the series function. We denote the distribution in (1) by PS(θ,A(θ)).
Table 1 shows some particular cases of this distribution. Θ denotes the parameter space
for θ in each model.

Table 1: Some particular cases of PS(θ,A(θ)).

Distribution am A(θ) Eθ [M
d ], d = 1,2 Θ

Poisson (m!)−1 eθ θ+(d−1)θ2 (0,∞)

Logarithmic (m+1)−1 − log(1−θ)

θ
1− θ

(1−θ) log(1−θ)

(
3+2θ
1−θ

)d−1
(0,1)

Negative Binomial

(
m+q−1

m

)
(1−θ)−q

(
θ

1−θ

)(
1+qθ
1−θ

)d−1
(0,1)

Binomial

(
q
m

)
(1+θ)q q

(
θ

1+θ

)(
qθ2+(q+1)θ+1

q(1+θ)

)d−1
(0,∞)

Note: We denote those distributions as Po(θ), Lo(θ), NB(q,θ) and Bin(q,θ) respectively. In both, NB(q,θ) and
Bin(q,θ), q is considered known.

Denote byWa the random variable representing the time at which the a-th cell pro-
duces a detectable cancer. For non-cured patients, M > 0 and Wa, a = 1,2, . . . ,M, are
conditionally independent givenM and identically distributed with common cumulative
distribution and survival functions F(t;λ) and S(t;λ) = 1−F(t;λ), where λ is a vector
of unknown parameters. For cured patients,M= 0 and it is assumed that P(W0=∞) = 1.
The distribution F is assumed to be a proper distribution function. The time until the
event of interest depends upon the count variable (M) and the survival time variables
(W1, . . . ,WM) and can be expressed by T = min{Wa, 0 ≤ a ≤ M}. As mentioned by
Cancho et al. (2013a), it can be verified that the survival function for T (also known as
population survival function) is given by

Spop(t;θ,λ) =
A(θS(t;λ))

A(θ)
. (2)
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From (2), it is possible to verify that the cure fraction of the model is p0 = A(0)/A(θ)=
a0/A(θ) and the corresponding density function for (2) is given by

fpop(t;θ,λ) =
A′(θS(t;λ))

A(θ)
θ f (t;λ),

where A′(η) = ∂A(η)
∂η and f (t;λ) is the density function corresponding to time till the

event of interest for each of the carcinogenic cellsWa.
The Weibull distribution is extensively used in survival analysis because it explains

biological processes relatively well and because it is a distribution that is easy to work
with. For these reasons, Cancho et al. (2013a) considered this distribution.
However, the Pareto IV distribution is more flexible than the Weibull distribution

and is not markedly more difficult to work with in the cure rate models context. For
this reason, we propose to use the Pareto IV distribution for modeling the time until the
activation of the carcinogenic cells.
The Pareto IV distribution (Arnold 1983, 2015) is very flexible and has the conve-

nient feature that its survival function is available in a simple analytic form. LetW be
a random variable with a Pareto IV distribution and corresponding vector of parameters
(μ,σ,γ,α). (We denote this byW ∼ P4(μ,σ,γ,α)). The survival function ofW is

S(w;μ,σ,γ,α) =

[
1+

(
w−μ
σ

)1/γ]−α

, w> μ,μ ∈ R,σ,γ,α > 0,

with the corresponding density function

f (w;μ,σ,γ,α)=
α

γσ

[
1+

(
w−μ
σ

)1/γ]−α−1(
w−μ
σ

)1/γ−1
,w>μ,μ∈R,σ,γ,α> 0.

The s-th moment of this distribution is given by

E(Ws) =
σsΓ(α−γs)Γ(1+γs)

Γ(α)
, if −1< γs< α, (3)

and the pth quantile, say wp, is given by

wp = σ(p−1/α−1)γ, 0< p< 1. (4)

Since we are working in a context of positive variables which are not bounded away
from 0, we fix μ= 0. Thus, the parameter vector related to the initial concurrent causes
are defined by λλλ= (σ,γ,α).
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Some particular cases of this distribution are the following

• γ = 1: The Pareto II distribution (P2) also known as Lomax distribution.

• α= 1: The Pareto III distribution (P3).

Since these models are particular cases of the P4 distribution, it is possible to use, for
instance, likelihood ratio tests to decide between the hypothesis H0 : γ = 1 (α= 1) and
H1 : γ �= 1 (α �= 1).
The model in (2) in which we assume that S(·;λλλ) is the survival function of a P4

distribution will be called the Pareto IV Power series cure rate model (henceforth, P4PS).
Below we describe some particular cases of this model.

• The Binomial Pareto IV (BP4) model. If A(θ) = (1+ θ)q, then M ∼ Bin(q,θ).
Note that q is a positive integer that can be interpreted as the maximum number of
carcinogenic cells for each individual. The cure rate is p0 = (1+ θ)−1. The case
q = 1 (M ∼ Bernoulli(θ)) corresponds to the first survival model with cure rate
in the literature (the mixture model) proposed in Berkson and Gage (1952). The
population survival function of the BP4 model is

Spop(t;θ,λ) =

⎛⎜⎝1+ θ
[
1+

(
t
σ

)1/γ]−α

1+ θ

⎞⎟⎠
q

.

• The Poisson Pareto IV (PP4) model. If A(θ) = eθ, then M ∼ Po(θ). This is the
same assumption used in Yakolev and Tsodikov (1996), the so-called promotion
time cure rate model and it is the only cure rate model with proportional hazard
structure (see Theorem 5 in Rodrigues et al., 2009a). The cure rate of the model is
p0 = e−θ. The population survival function is

Spop(t;θ,λ) = exp

{
−θ

(
1−

[
1+

( t
σ

)1/γ]−α
)}

.

• The Negative Binomial Pareto IVmodel. If A(θ)= (1−θ)−q, thenM∼NB(q,θ).
Here, typically, q is a positive integer although the definition remains valid if q is
any positive real number. The Negative Binomial distribution includes the Poisson
distribution as a limiting case. Moreover an extended definition of the Negative
Binomial distribution (introduced by Piegorsch, 1990) allowing q to be negative
permits one to view the binomial and Bernoulli distributions as particular cases.
This observation was used in Rodrigues et al. (2009a) in unifying the mixture
model and the promotion time cure rate model (the most popular cure rate model
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until then). The cure rate is given by p0 = (1− θ)q. The particular case q = 1,
i.e., when M has a Geometric distribution, it is usually used in literature. (For in-
stance, Cancho, Louzada and Barriga, 2013b and Gómez and Bolfarine, 2016).
The population survival function is

Spop(t;θ,λλλ) =

⎛⎜⎝ 1− θ
1− θ

[
1+

(
t
σ

)1/γ]−α

⎞⎟⎠
q

.

• The Logarithmic Pareto IV model. If A(θ) =−θ−1 log(1− θ), then M ∼ Lo(θ)
in contrast to the other models, the mode ofM in this case is zero implying that the
probabilities for M are decreasing. The cure rate is given by p0 =−θ/ log(1− θ).
This is not a very common model in literature. The population survival function is

Spop(t;θ,λλλ) =
log

(
1− θ

[
1+

(
t
σ

)1/γ]−α
)

[
1+

(
t
σ

)1/γ]−α
log(1− θ)

.

3. Estimation

In this section, we discuss the estimation for the P4PS cure rate model using a classical
approach. Assume that the data are obtained with right censoring. Thus, the observed
data for the i-th individual can be represented by Ti =min(T ∗

i ,Ci) and δi = I(T ∗
i ≤Ci),

1, . . . ,n, where T ∗
i andCi denote failure and censoring times respectively. Denote the ob-

served data by Dobs = (t,δδδ,z), with t= (t1, . . . , tn)
T, δδδ = (δ1, . . . ,δn)

T and z= (zi, . . . ,zn)
T,

where zi is a vector of covariates (of dimension r× 1) related to the cure of the i-th
individual. For each individual, those covariates can be introduced into the model by
allowing the parameter θ to depend on the covariates in the following manner,

θi =

⎧⎪⎨⎪⎩
exp(zTiβββ) for the Poisson and Binomial models

exp(zTiβββ)
1+ exp{zTiβββ}

for the Logarithmic and Negative Binomial models
(5)

where βββ = (β1,β2, . . . ,βr)
T is a vector of parameters of dimension r. Note that this spec-

ification guarantees the identifiability of the model in the sense of Li et al. (2001) and
Hanin and Li-Shang (2014).
On the other hand, note that the vectorM = (M1, . . . ,Mn) is non-observable and thus

the complete data areDcomp= (t,δδδ,z,M). In Cancho et al. (2013a), the estimation proce-
dure forψψψ= (βββ,λλλ)was performedmaximizing the observed likelihood, i.e., maximizing
the following expression
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�(ψψψ |Dobs) =

n∑
i=1

[
δi log fpop(ti;ψψψ)+(1− δi) logSpop(ti;ψψψ)

]
=

n∑
i=1

[
logA(θiS(ti;λλλ))

+ δi (logθi+ log f (ti;λλλ)+ logA
′(θiS(ti;λλλ))− logA(θiS(ti;λλλ)))− logA(θi)

]
.

(6)

However, the maximization of �(·) can be difficult because there are many parame-
ters, especially when the number of covariates that are used is high. For this reason,
in a cure rate model context there are many proposals based on the EM algorithm (see
for instance, Gallardo, Bolfarine and Pedroso-de-Lima, 2016a; Gallardo and Bolfarine,
2016b; Gallardo, Romeo and Meyer, 2016c and Pal and Balakrishnan, 2016). Particu-
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Figure 1: Population hazard function for P4PS model with different parameters and cure rate fixed at
50%. Left upper: Poisson. Right upper: Logarithmic. Left lower: Negative Binomial (q= 1). Right lower:
Binomial (q= 1).



304 The Pareto IV power series cure rate model with applications

larly, we follows a similar scheme that Gallardo et al. (2016c) and we omit technical
details about the method.
The k-th iteration of the algorithm (assuming q is known in the Binomial and Nega-

tive Binomial cases) takes the form:

• E-step: Define μ(k)i = θ
(k)
i S(ti;λλλ(k)) and κ

(k)
i =

(
1− μ

(k)
i(

1−μ
(k)
i

)
log
(
1−μ

(k)
i

)
)
and com-

pute for i= 1, . . . ,n,

M̃(k)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi+μ
(k−1)
i for Poisson model

(1−δi)κ
(k−1)
i +δi

(
1−μ

(k−1)
i

)2
log
(
1−μ

(k−1)
i

)
−μ

(k−1)
i

(
3+2μ(k−1)

i

)
(
1−μ

(k−1)
i

)
logμ(k−1)

i −μ
(k−1)
i

for Logarithmic model

δi+μ
(k−1)
i +(q−1)δiμ(k−1)

i

1−μ
(k−1)
i

for NB model

(1−δi)q

(
μ
(k−1)
i

1+μ
(k−1)
i

)
+δi

(
q
[
μ
(k−1)
i

]2
+(q+1)μ(k−1)

i +1

q
(
1+μ

(k−1)
i

)
)

for Binomial model

• CM-step I: Using M(k) = (M(k)
1 , . . . ,M(k)

n ) obtained previously in the E-step, up-
date β̂(k) maximizing

Q1(β |ψψψ(k)) =

n∑
i=1

[
M̃(k)
i logθi− logA(θi)

]

with respect to β.

• CM-step II: Update α̂(k) as follows

α̂(k) =

n∑
i=1

δi

n∑
i=1

M(k)
i log

(
1+

( ti
σ̂(k−1)

) 1
γ̂(k−1)

)

• CM-step III: With M(k),α(k) and γ(k−1), update σ̂(k) solving the following non-
linear equation for σ

n∑
i=1

⎡⎢⎣
(
α(k)M(k)

i +2δi
)( ti

σ

)1/γ(k−1)
+ δi(

1+
( ti
σ

)1/γ(k−1))
⎤⎥⎦= 0
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• CM-step IV: WithM(k),α(k) and σ(k), update γ̂(k) solving the following non-linear
equation for γ

n∑
i=1

(
ti

σ(k)

)1/γ (
2δi log

(
σ(k)

)−α(k)M(k)
i log

(
ti

σ(k)

)
+γδi

)
+ δi

(
log

(
σ(k)ti

)
+γ(k)

)
(
1+

(
ti

σ(k)

)1/γ(k)) = 0.

The E and CM-I/CM-IV steps are alternated repeatedly until a suitable convergence
rule is satisfied, e.g., the difference in successive values of the estimates is less than a
tolerance value. The variance of (βββ,α,σ,γ) can be estimated based on the inverse of
minus the hessian matrix of the model. Details about this matrix can be seen in the
additional material.
Finally, for the binomial and the negative binomial distributions for which q will

typically be unknown, we can consider a grid of values for q, sayQ= q1,q2, . . . ,qB and
we apply the EM algorithm for each value in Q, obtaining for each q j, j = 1, . . . ,B, a

set of estimates parameters, say ψ̂ψψ1,ψ̂ψψ2, . . . ,ψ̂ψψB. Then, we choose q = qb as the value in
Q such that

max
j=1,...,B

�(ψ̂ψψ j | Dobs) = �(ψ̂ψψb | Dobs),

where �(·) is the observed likelihood function defined in (6).

3.1. Interpreting the parameters

We highlight that, up till now, we have been unable to find in the literature any work
where the regression coefficients are interpreted in a cure rate model context, except
in the case in which Mi ∼ Bin(1,θ) corresponding to the mixture model. In that setting
the coefficients can be interpreted in terms of the log-odds ratio, similar to the case of
logistic regression for dichotomic responses.
In general, efforts to interpret the coefficients are limited to illustrating the behaviour

in the cure rate when varying a continuous covariate and fixing the others (as we shall
illustrate this issue in the application Section). To this end, we propose the following
methodology. Note that, based on a Taylor expansion of the first order around the in-
tercept (or another convenient point) of the logarithm of the cure rate, we can write
q0i ≈ exp{a0+b0z

T
iβββ}, where a0 and b0 depends on the respective model and the value

for the intercept. If zi( j) represents the zi vector with the j-th element increased in 1 unit,
then the ratio between q0i( j) and q0i is

q0i( j)
q0i

≈
exp{a0+b0z

T

i( j)βββ}
exp{a0+b0zTiβββ}

= exp{b0β j},
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providing an approximate way to interpret the β j’s in terms of the percentage increment
(or decrease) in the cure rate, maintaining the rest of the covariates fixed.
Finally, in relation to the vector λλλ, rather than interpreting each component it may

be of more interest to evaluate descriptive measure related to the distribution of Wa’s.
For instance, mean, variance and quantiles can be obtained using (3) or (4). Confidence
intervals can also be constructed for those quantities using the delta method Sen, Singer
and Pedroso-de-Lima (2010).

4. Applications

In this section we consider two applications of the PSP4 model to real data sets.

4.1. Cutaneous melanoma data set

This data set refers to patients involved in a Phase III cutaneous melanoma clinical trial
presented in Ibrahim, Chen and Sinha (2001) and is available at http://merlot.stat.
uconn.edu/˜mhchen/survbook/, labeled as E1690 data. The data set comes from a
clinical trial for the evaluation of postoperative treatment performance with a high dose
of the drug interferon alpha-2b in order to prevent recurrence. Patients were included in
the study from 1991 to 1995, and follow-up was conducted until 1998. The response is
considered to be the relapse-free survival time (in years). The data set includes informa-
tion on 408 patients, for each of which the following covariates were measured: treat-
ment (0: placebo, 198 patients; 1: interferon alpha-2b, 210 patients); tumor thickness (in
mm, mean = 3.98 and standard deviation = 3.22) and nodal category (1: 110 patients;
2: 131 patients; 3: 86 patients; 4: 81 patients). Figure 2 shows the Kaplan-Meier (KM)
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Figure 2: KM estimator by nodal category for Phase III cutaneous melanoma clinical trial.
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estimator of the survival function by nodal category. As expected, the survival function
decrease faster in more advanced categories. However, in all cases the survival function
is stabilized at a certain value, suggesting that there is a proportion of patients for whom
the malignant melanoma will never recur (in all nodal categories).
We fit the P2PS, P3PS and P4PSmodel for four particular cases.Model selection was

performed based on the AIC and SBC criteria (Akaike, 1974 and Schwarz, 1978, respec-
tively). Those criteria are presented in Table 2. We also fit the gamma and Birnbaum-
Saunders (BS) PS model for the concurrent causes. The Birnbaum-Saunders model has
been the subject of intense research in cure rate models in recent years. For instance,
Cancho et al. (2013b) and Cordeiro et al. (2016).

Table 2: AIC and SBC criterion for power series cure rate model with Pareto IV and BS distribution for
concurrent causes.

P2 P3 P4 Gamma BS

Poisson 841.42/873.51 835.66/867.75 837.23/873.33 837.96/874.06 888.27/924.37
Logarithmic 849.52/881.61 826.26/858.35 827.78/863.89 828.10/864.20 927.71/963.81

Geometric 841.70/873.79 830.14/862.23 831.64/867.74 831.76/867.87 907.44/943.54
Binomial 844.87/876.96 840.33/872.42 842.38/878.48 845.14/881.24 875.33/911.43

Both criterion suggest that the Logarithmic cure rate model with a Pareto III distri-
bution for the concurrent causes is the best model. For this model, we also tested the
hypothesesH0 : α= 1 versus H1 : α �= 1 using the log-likelihood ratio (LR) test and the
Wald test. In both cases, we failed to reject the null hypothesis at the 5% of significance
and consequently we prefer the P3 instead of the P4 distribution for the time-to-event in
the concurrent causes.
Estimates of the parameters of the selected model, i.e., the Logarithmic P3 cure rate

model, are presented in Table 3. Based on the Taylor expansion of first order (around
zero in this case) discussed in Section 3.1 for the logarithmic model, we obtain b0 ≈
−0.1596685. For this reason, we present the following approximated interpretations for
the regression coefficients:

• exp
(
b0× (β̂nodule1− β̂nodule2)

)
= 1.193, i.e., the cure rate for patients with nodule

in stage one is 19.3% greater than the cure rate for patients in stage two.

• exp
(
b0× (β̂nodule1− β̂nodule3)

)
= 1.342, i.e., the cure rate for patients with nodule

in stage one is 34.2% greater than the cure rate for patients in stage three.

• exp
(
b0× (β̂nodule1− β̂nodule3)

)
= 1.624, i.e., the cure rate for patients with nodule

in stage one is 62.4% greater than the cure rate for patients in stage four.

• exp
(
−b0× β̂thickness

)
= 1.019, i.e., for each mm that is increased the tumor thick-

ness the cure rate is decreased in 1.9%.
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• exp
(
b0× β̂treatment

)
= 1.079, i.e., the cure rate for patients receiving treatment is

7.9% greater than the cure rate for patients witouth treatment.

On the other hand, the mean and median of the time-to-event of carcinogenic cells
are 3.97 and 1.82 years respectively with their respective 95% confidence intervals
(1.74,6.21) and (1.18,2.46).

Table 3: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial.

Parameter estimate s.e. 95% Conf. Interval

βnodule1 −0.2471 0.2584 −0.2594 −0.7536
βnodule2 −1.3547 0.1658 −1.0296 −1.6797
βnodule3 −2.0878 0.2186 −1.6593 −2.5163
βnodule4 −3.2853 0.2736 −2.7491 −3.8216
βthickness −0.1178 0.0034 −0.1111 −0.1245
βtreatment −0.4738 0.0973 −0.6645 −0.2832

σ −1.8368 0.1126 −1.6161 −2.0575
γ −0.6415 0.0023 −0.6370 −0.6460

We also show in Figure 3 some plots showing the cure rate in terms of tumor thick-
ness for combinations of nodule and treatment.
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Figure 3: Estimated cure rate for patients that received and not received treatment (left and right panel
respectively) and nodule in stage 1 and 4. The continuous line represent the point estimation and the dashed
line represent the respective 95% confidence interval.

Additionally, in order to analyse possible influential observations, we compute the
jackknife residuals defined by
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Ji =
(
ψ̂ψψ− ψ̂ψψ(i)

)T

Ĥ
−1(

ψ̂ψψ− ψ̂ψψ(i)

)
, i= 1, . . . ,n.

where ψψψ(i) represents the estimator of ψψψ without the i-th observation. Figure 4 show
these residuals. Note that observation 11 is a potentially influential observation. This
observation corresponded to an individual with a nodule in stage 1 who received treat-
ment. Table 4 show a descriptive comparison of this observation with the others in same
nodule stage and with treatment. Observation 11 was a patient who died in a short time
when compared with others patients in similar conditions. Also his tumor thickness was
very big in relation to other patients in similar conditions.
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Figure 4: Jackknife residuals for cutaneous melanoma data set.

Table 4: Descriptive analysis for observation 11.

Observation ti δi thickness

11 0.0767 1 14.000

Mean∗ 5.900 0.34 5.900

Median∗ 2.437 0.00 6.611

*Considering the 56 observations in

stage 1 that received treatment.

Finally, Table 5 shows the estimates for all parameters with observation 11 deleted
from the data set. Note that the magnitudes of the estimates are different from thecor-
responding values in Table 3. However, the significance and the sense of all parameter
estimates is maintained.
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Table 5: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial without observation 11.

Parameter estimate s.e. 95% Conf. Interval

βnodule1 −0.3335 0.2516 −0.1597 −0.8267
βnodule2 −1.4401 0.1674 −1.1120 −1.7681
βnodule3 −2.1708 0.2216 −1.7365 −2.6050
βnodule4 −3.3909 0.2787 −2.8446 −3.9372
βthickness −0.0989 0.0032 −0.0926 −0.1053
βtreatment −0.5190 0.0980 −0.7110 −0.3269

σ −1.8228 0.1071 −1.6130 −2.0327
γ −0.6336 0.0022 −0.6292 −0.6380

4.2. Melanoma data set

This data set is available at timereg package in R Scheike (2015). The data set refers
to 205 patients with malignant melanoma, followed up after removing the lesions. The
following covariates were measured: ulceration (absent: 115 patients; present: 90 pa-
tients); tumor thickness (in mm, mean = 2.92 and standard deviation = 2.96). Figure 5
shows the KM estimator by ulceration status. Note that the survival function is lower
for patients with ulceration. On the other hand, the survival function is stabilized at a
certain value, suggesting in this study also the existence of a proportion of patients for
whom the malignant melanoma will never recur.
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Figure 5: KM estimator by nodal category ulceration status for melanoma data set.
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Table 6: AIC/SBC criteria for power series cure rate model with Pareto IV and BS distribution for concur-
rent causes in the melanoma data set.

P2 P3 P4 Gamma BS

Poisson 438.55/458.49 427.77/447.70 427.59/447.53 427.42/447.35 430.16/450.10
Logarithmic 447.47/467.41 418.31/438.25 418.39/438.33 418.31/438.25 425.88/445.82
Geometric 438.13/458.07 423.04/442.98 422.76/442.70 422.83/442.77 428.63/448.56
Binomial 441.42/461.36 432.79/452.72 432.79/452.73 432.84/452.78 432.84/452.78

In this case, we also fit the P2PS, P3PS and P4PS model for four particular cases,
together with the gamma and BS models. The AIC and SBC criteria are presented in
Table 6.
Both criterion suggest that the Logarithmic cure rate model with a Pareto III and

gamma distributions for the concurrent causes are the best models, both yielding sim-
ilar results. We also tested the hypotheses H0 : α = 1 versus H1 : α �= 1 using the log-
likelihood ratio (LR) test and the Wald test. In both cases, we failed to reject the null
hypothesis at the 5% significance level and consequently, we prefer the P3 instead of
the P4 distribution for the time-to-event in the concurrent causes. Parameter estimates
of both selected model are presented in Table 7.

Table 7: Estimates and standard errors (s.e.) for logarithmic P3 and gamma cure rate models for
melanoma data set.

Estimate s.e. Estimate s.e.

βintercept −0.8874 0.5714 βintercept −0.9761 0.5967

βulceration −1.9991 0.5864 βulceration −1.9619 0.5846

βthickness −0.3753 0.1304 βthickness −0.3774 0.1339

σ −7.3228 2.3068 α −2.6801 0.5092

γ −0.4325 0.0594 ν −0.3399 0.1726

Note that all parameters related to the regression are significantly different from zero
in both models. Once more, based on a Taylor expansion of first order (around the inter-
cept in this case) for the logarithmic model, we obtain b0≈−0.1162651. In this manner,
we present the following approximate interpretations of the regression coefficients:

• exp
(
−b0× β̂thickness

)
= 1.045, i.e., for each mm that is increased the tumor thick-

ness the cure rate is decreased in 4.5%.

• exp
(
−b0× β̂ulceration

)
= 1.262, i.e., patients without ulceration have a cure rate

26.2% greater than patients with ulceration.

On the other hand, the mean and median of the time-to-event of carcinogenic cells
are 10.18 and 7.32 years respectively with their respective 95% confidence intervals
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Figure 6: Jackknife residuals for melanoma data set.

Table 8: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial without possible influence observations.

deleted observations

149 154 171 149, 154 and 171

estimate s.e. estimate s.e. estimate s.e. estimate s.e.

βintercept −1.0667 0.5242 −1.0099 0.5208 −1.0247 0.5151 −1.2670 0.4673

βulceration −2.0037 0.5691 −1.9633 0.5728 −1.9602 0.5722 −1.9473 0.5536

βthickness −0.3656 0.1269 −0.3708 0.1296 −0.3712 0.1297 −0.3614 0.1271

σ −6.6195 1.8311 −6.6301 1.8278 −6.5522 1.7669 −5.5503 1.2191

γ −0.4262 0.0587 −0.4229 0.0583 −0.4205 0.0579 −0.4026 0.0558

(2.54,17.82) and (2.80,11.84). It can be verified that both models provide similar results
in terms of estimated cure rates and survival functions. For this reason, henceforth we
will continue the analysis based only on the logarithmic P3 model. Figure 6 shows
the Jackknife residuals for this data set, suggesting that observations 149, 154 and 171
are possible influential observations. Based on a simple descriptive analysis, we note
that those observations present large observed times even though the respective tumor
thickness also are large.
Table 8 shows the estimates for the logarithmic P3 model deleting the possible in-

fluence observations separately and jointly. Note that in all cases the significance of
parameters is unchanged and the estimates are very close to the estimations using the
complete data set. Finally, Figure 7 presents the estimated cure rate and the respective
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Figure 7: Estimated cure rate for patients with ulceration status absent and present. The continuous line
represent the point estimation and the dashed line represent the respective 95% confidence interval.

95% confidence intervals, suggesting that ulceration is a risk factor. On the other hand,
tumor thickness influences in the cure rate of patients subject to this intervention mainly
for small tumors.

5. Simulation study

In this section we report a simulation study to assess the recovery of known parameters
by the proposed estimation procedure. The data were drawn in conformity with the
P4PS model. We assume the Pareto IV distribution with parameters α= 0.4, σ = 1 and
γ = 0.6 for the concurrent causes, i.e., a similar scheme to that fitted in the applications.
We assume that observations belong to two groups, say z1 = 0 or z1 = 1. In addition, we
assume a second continuous covariate, say z2. For i= 1, . . . ,n, we drew z1i and z2i from a
Bernoulli distribution with success probability equal to 0.5 and a Uniform distribution in
the interval (0,20) respectively. For each model, the parameters related to the cure were
computing by fixing cure rates (say q0 and q1) at determined values for each group,
without considering the effect of covariate z2i. We consider three kinds of cure rates:
high (q0 = 0.8 and q1 = 0.65), medium (q0 = 0.6 and q1 = 0.45) and low (q0 = 0.4 and
q1 = 0.25). To achieve this, the values for β0 and β1 for each distribution assumed for
M are given in Table 9.
On the other hand, the value for β2 was fixed as 0.1 in all cases. Using this setup, for

each i = 1, . . . ,n the value of θi was computed according to (5) and Mi was simulated
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Table 9: Values for β0 and β1 assumed in the simulation study.

Distribution High cure rate Medium cure rate Lower cure rate

assumed forM β0 β1 β0 β1 β0 β1

Poisson −1.4999 0.6578 −0.6717 0.4467 −0.0874 0.4141

Logarithmic −0.5264 0.9607 −0.7343 0.9857 −2.1180 1.7826

NB (q= 1) −1.3863 0.7673 −0.4055 0.6061 −0.4055 0.6931

Binomial (q= 1) −1.3863 0.7673 −0.4055 0.6061 −0.4055 0.6931

depending on each of the four power series distributions. We define W0i = ∞ and for
Mi> 0, we drewW1i, . . . ,WMii from a Pareto IV distribution (ifU ∼U(0,1), so σ(U− 1

α −
1)γ ∼ P4(α,σ,γ)). Then, we define T ∗

i =min(W0i,W1i, . . . ,WMii). The failure time was
defined as Ti=min(T ∗

i ,10) and δi= I(T ∗
i ≤ 10).We consider three sample sizes: n= 50,

n= 100 and n= 200. Each case was replicated 10,000 times and we report the average
bias (AB) and the average of mean square error (AMSE) of the estimates. Results are
presented in Table 10.

Table 10: Simulation study for PSP4 model with cure rate.

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

High cure rate

Poisson β0 −0.050 0.423 −0.024 0.186 −0.015 0.085

β1 −0.043 0.203 −0.016 0.092 −0.011 0.042

β2 −0.007 0.002 −0.003 0.001 −0.002 0.000

α −0.040 0.254 −0.033 0.163 −0.021 0.094

σ −0.098 0.501 −0.054 0.201 −0.031 0.103

γ −0.010 0.341 −0.005 0.119 −0.001 0.052

Logarithmic β0 −0.030 2.320 −0.012 0.607 −0.020 0.245

β1 −0.143 1.105 −0.048 0.392 −0.030 0.185

β2 −0.016 0.009 −0.006 0.003 −0.003 0.001

α −0.045 0.287 −0.037 0.195 −0.019 0.087

σ −0.116 0.592 −0.076 0.257 −0.024 0.121

γ −0.037 0.320 −0.017 0.067 −0.007 0.045

Geometric β0 −0.053 0.668 −0.027 0.286 −0.017 0.132

β1 −0.059 0.379 −0.025 0.171 −0.012 0.082

β2 −0.007 0.003 −0.003 0.001 −0.002 0.001

α −0.045 0.237 −0.037 0.195 −0.019 0.057

σ −0.136 0.574 −0.065 0.266 −0.091 0.078

γ −0.019 0.219 −0.008 0.110 −0.004 0.055
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Table 10: Simulation study for PSP4 model with cure rate (continuation).

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

High cure rate

Bernoulli β0 −0.088 0.798 −0.079 0.355 −0.038 0.156

β1 −0.065 0.541 −0.050 0.307 −0.019 0.112

β2 −0.015 0.006 −0.008 0.003 −0.003 0.001

α −0.058 0.277 −0.037 0.178 −0.019 0.051

σ −0.100 0.612 −0.063 0.186 −0.022 0.067

γ −0.023 0.321 −0.004 0.009 −0.002 0.005

Medium cure rate

Poisson β0 −0.010 0.255 −0.013 0.116 −0.003 0.054

β1 −0.030 0.134 −0.013 0.061 −0.006 0.029

β2 −0.007 0.001 −0.004 0.001 −0.002 0.000

α −0.034 0.233 −0.029 0.136 −0.015 0.087

σ −0.087 0.452 −0.051 0.186 −0.027 0.092

γ −0.009 0.321 −0.004 0.100 −0.001 0.043

Logarithmic β0 −0.168 2.616 −0.025 0.656 −0.011 0.269

β1 −0.147 1.234 −0.072 0.492 −0.023 0.223

β2 −0.014 0.010 −0.007 0.004 −0.002 0.002

α −0.039 0.254 −0.031 0.143 −0.015 0.076

σ −0.102 0.475 −0.062 0.212 −0.021 0.112

γ −0.034 0.287 −0.014 0.062 −0.006 0.038

Geometric β0 −0.009 0.518 −0.005 0.225 −0.001 0.103

β1 −0.040 0.314 −0.017 0.141 −0.008 0.069

β2 −0.008 0.003 −0.003 0.001 −0.001 0.001

α −0.040 0.212 −0.032 0.171 −0.015 0.043

σ −0.117 0.534 −0.061 0.247 −0.072 0.054

γ −0.015 0.192 −0.007 0.087 −0.003 0.049

Bernoulli β0 −0.074 0.542 −0.057 0.314 −0.032 0.139

β1 −0.055 0.451 −0.043 0.236 −0.015 0.100

β2 −0.011 0.005 −0.006 0.002 −0.002 0.001

α −0.041 0.243 −0.037 0.141 −0.011 0.034

σ −0.081 0.517 −0.052 0.159 −0.015 0.053

γ −0.019 0.259 −0.003 0.008 −0.002 0.004
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Table 10: Simulation study for PSP4 model with cure rate (continuation).

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

Poisson β0 −0.045 0.231 −0.017 0.098 −0.009 0.045

β1 −0.025 0.115 −0.009 0.050 −0.004 0.024

β2 −0.007 0.001 −0.004 0.000 −0.002 0.000

α −0.029 0.198 −0.025 0.119 −0.011 0.053

σ −0.075 0.276 −0.043 0.150 −0.021 0.076

γ −0.008 0.276 −0.003 0.086 −0.000 0.033

Logarithmic β0 −0.350 0.253 −0.013 1.014 −0.044 0.427

β1 −0.253 3.837 −0.082 0.789 −0.044 0.341

β2 −0.013 1.993 −0.007 0.005 −0.003 0.002

α −0.032 0.214 −0.028 0.113 −0.012 0.059

σ −0.089 0.429 −0.053 0.189 −0.018 0.097

γ −0.021 0.253 −0.010 0.042 −0.004 0.025

Geometric β0 −0.063 0.012 −0.030 0.232 −0.013 0.106

β1 −0.050 0.287 −0.021 0.134 −0.007 0.065

β2 −0.005 0.002 −0.003 0.001 −0.001 0.001

α −0.030 0.193 −0.023 0.154 −0.011 0.031

σ −0.109 0.497 −0.053 0.212 −0.053 0.049

γ −0.011 0.153 −0.005 0.067 −0.002 0.032

Bernoulli β0 −0.049 0.417 −0.049 0.284 −0.023 0.097

β1 −0.043 0.445 −0.035 0.200 −0.009 0.071

β2 −0.007 0.004 −0.004 0.002 −0.001 0.001

α −0.029 0.210 −0.027 0.119 −0.007 0.029

σ −0.065 0.471 −0.047 0.132 −0.010 0.043

γ −0.017 0.212 −0.002 0.006 −0.001 0.002

Table 10 reveals an acceptable bias and MSE for all parameters and cases, except for
the parameter σ for which a high bias and MSE was encountered for the small sample
size. The bias and MSE decrease when the sample size is increased, suggesting that the
parameter estimators are consistent. Finally, the bias and MSE decreases when the cure
rate is decreased, which also is expected because for a lower cure rate, we expect more
failure times observed in the sample, i.e., more precise information.

6. Final discussion

The Pareto IV power series cure rate model has been shown to outperform an analogous
competing Birnbaum Saunders model for modeling a cutaneous melanoma data set. A
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simulation study confirms that, with reasonable sample sizes, accurate parameter esti-
mation is feasible within this model. An EM algorithm approach to obtaining maximum
likelihood estimates can be recommended for these models. It is interesting to note that
the rarely used logarithmic distribution turns out to be the distribution of choice among
the four power series models considered.
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Abstract

This paper has two complementary objectives: on the one hand, it introduces the EURO method
for the estimation of (regional) Social Accounting Matrices. This method is widely used by Eurostat
for the estimation of missing national Supply, Use and Input-output tables but it has not been used
before within the context of social accounting matrices or of regional statistics and/or regional
impact analyses. On the other hand, this work discusses the possibility of producing non-survey-
based regional Social Accounting Matrices that may eventually allow the user to carry out impact
analyses such as those of rural development policies, among others. The analysis is carried out
for 12 selected European regions based on clusters.
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1. Introduction

Social AccountingMatrices (SAMs) are datasets comprising economic transactions that
allow the extraction of information on the different economic agents such as produc-
ers, consumers, the government and the foreign sector, as well as on the behaviour of
productive factors and institutions. They complete the information provided by input-
output tables. A Social Accounting Matrix can be defined (in a simplified form) as an
extension of an input-output table with a more disaggregated structure of expenditures
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and income, integrating the relationships between institutional sectors, estimated with
information from national accounting systems. In this way, the objective of closing the
full economic flow is achieved. Thus, a SAM is a consistent framework for gathering na-
tional income data, product accounts, input-output tables, reflecting the monetary flows
among institutions. Therefore, a SAM is a matrix representing in a comprehensive, flex-
ible and disaggregated way all the transactions of a socio-economic system. It reflects
the process of income generation by activities, of production, and the distribution and
redistribution of income between institutional groups (Pyatt and Round, 1985; Pyatt and
Thorbecke, 1976). Figure A1 in Annex 1 shows the standard structure of a SAM.
The interest in SAMs is based on the fact that they illustrate the production relation-

ships between the economic sectors as well as the transactions that take place among
the different institutions of a certain economic system in terms of revenues or expenses.
Besides their statistical interest, which enables us to close the circular flow of income,
SAMs have become a useful tool for evaluation of policy interventions in national or
regional frameworks. In this sense, it is interesting to have regional SAMs to be able to
analyse the effect and impact of regional development policies, especially in rural areas.
But the difficulty of obtaining databases for this purpose is an important obstacle that
we attempt to overcome with the methodology presented here.
Moreover, it is possible to carry out a complete analysis of the productive structure

of the economy and to obtain a general perspective of changes that might occur in the
event of any shock (e.g. key sectors). Below, we present the approach used for obtaining
12 NUTS 3 level1 regional SAMs. The estimates of the NUTS 3 SAMs are obtained
using a two-step process:

1. Input-output frameworks are regionalised (i.e. Supply, Use and Symmetric tables)
from the NUTS 1 regions or countries concerned, using the EUROmethod (Beutel,
2002, 2008; Eurostat, 2008; Temurshoev and Timmer, 2011; Valderas et al., 2016).

2. The NUTS 3 SAM estimation is calculated using the regionalised SUT and some
additional information to produce the input-output tables.

Regarding policies, the Rural Development Policy, often referred to as Pillar 2, has
become one of the most significant elements of the Common Agricultural Policy (CAP),
representing close to one third of the total CAP budget. Before integration of flexibility
between pillars and other adjustments, the amount dedicated to rural development poli-
cies over the financial period of 2014-2020 is likely to reach EUR 95 billion out of a
total of EUR 348 billion for both pillars of the CAP (27% of the total). In recent years,

1. NUTS: Nomenclature of Territorial Units for Statistics. The NUTS classification is a hierarchical system for di-
viding up the economic territory of the EU for the purpose of socio-economic analyses of the regions: NUTS 1: major
socio-economic regions; NUTS 2: basic regions for the application of regional policies; NUTS 3: small regions for spe-
cific diagnoses. The NUTS 2013 classification is valid from 1 January 2015 and lists 98 regions at the NUTS 1 level, 276
regions at the NUTS 2 level and 1,342 regions at the NUTS 3 level.
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several research programmes, scientific papers and policy reports have looked at ways to
assess the impacts of Pillar 2 at country and regional levels. The European Commission
and the Member States carry out periodic ex ante, mid-term and ex post evaluation of
the rural development policy and of the Rural Development Programmes. Several FP7
and Horizon 2020 research programmes are dedicated to the evaluation of the impact of
rural development policies.
However, the diversity of rural situations across Europe has complicated the em-

pirical studies of these impacts of rural development and often makes any comparison
between regions rather trivial. Also, rural development policies do not only aim at sup-
porting specific sectors (such as agriculture); indeed several measures are focused on
non-farm actors, and others are related to the improvement of quality of life in rural ar-
eas. Hence, it is necessary to use multi-sectoral models, requiring a significant amount
of data, in order to capture the full economic impact. In this sense, well-known lin-
ear multiplier models and computable general equilibrium (CGE) models use SAMs to
develop their analysis. Also, given the nature of rural development (regional implemen-
tation through Rural Development Programmes and the existence of menus offered to
the beneficiaries in each region), the need for modelling at a sub-regional level has led
to the application of these models at the NUTS 3 level with models going as deep as
modelling the rural area and the urban area of NUTS 3 regions. The challenge of such
work is that it requires extensive effort in the construction of NUTS 3 SAMs, especially
if the rural-urban split is modelled.
In this context, this paper builds NUTS 3 SAMs for 12 regions, following a detailed

analysis of the source data rather than using an automatic approach, which would derive
regional SAMs directly from superior level tables, using an optimisation method and
some regional proxies. It aims to cover all types of NUTS 3 regions with significant
participation of rural areas, so that the impact of rural development policies can be stud-
ied for most of the types of regions receiving aid, thus allowing the evaluation of their
effectiveness. The selection of these NUTS 3 regions uses an empirical classification
of NUTS 3 regions (Raggi et al. (2013)), which reflects the heterogeneity of NUTS 3
characteristics in the EU. This multidimensional classification is based on the following
set of four criteria: Rural character; Accessibility; Actual economic diversification; and
Total gross domestic product per capita.
So, this paper has two complementary objectives: it introduces the EUROmethod for

the estimation of (regional) Social Accounting Matrices and illustrates the possibility of
producing non-survey-based regional Social AccountingMatrices for rural development
policies’ impact analyses.
The rest of the paper is structured as follows: Section 2 discusses the methodology

used in the regionalised SAM estimations and its application in some European Union
regions. Section 3 presents the main results and, finally, Section 4 provides conclusions.
Some tables and aggregated versions of the estimated SAMs are included in the Annex.
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2. Methodology and data

2.1. The EURO method for estimating supply and use tables

The general balancing problem of matrices basically consists of only knowing one single
base table (be it a Supply and Use Table (SUT), Symmetric Input-Output Table (SIOT)
and/or Social Accounting Matrix (SAM)) and at least the row and column totals for the
unknown table that has to be estimated2. There are different ways to approach this under-
determined problem where unknowns (e.g. elements of the interior tables) outnumber
external constraints (e.g. RAS3 or bi-proportional scaling methods, Lenzen, Gallego and
Wood, 2009, among others).
However, none of these methods allows the estimation of SUTs and SIOTs whenever

row and column totals are not given and with the minimum amount of information pos-
sible. Actually, to the knowledge of the authors, the EURO method is the only existing
method that allows the estimation of SUTs and SIOTs without given row and column
totals. The EURO method typically aims at updating SIOTs at basic prices from one
year to another and is based on a previous version initially developed by Beutel (2002)
for input-output tables and further explained by the Eurostat Manual of Supply, Use and
Input-Output Tables (2008, Ch. 14).
The EURO method is a robust update procedure which is inexpensive and has lim-

ited data requirements. It exclusively uses official data and integrates all quadrants of
SIOTs. Row and column totals for intermediate consumption and output and the cor-
responding final demand structure are derived endogenously, not allowing for arbitrary
changes of input-output coefficients. The method is fully consistent with supply and de-
mand through the Leontief quantity model (Eurostat, 2008). Therefore, it is sustained
on economic grounds rather than on optimisation and/or pure mathematical techniques.
Recently, Temurshoev, Webb and Yamano (2011) formalised a SUT variant of the

EURO method based on Beutel (2008). Beutel and Rueda-Cantuche (2012) elaborated a
more detailed version to be used by Eurostat. And, in line with the pioneering works of
Hewings (1969, 1977), we formulate an adapted version of the latter to be used in this
project for the regionalisation of supply and use tables.
The EURO method is used in this paper as a method for regionalisation for the first

time. Below, we present an adapted and more detailed explanation of the EURO method
for SUT regionalisation, mostly based on Temurshoev et al.’s (2011) description of the
EURO method for updating SUTs.
The initial SUTs (typically at the NUTS 1 or NUTS 2 level) consist of the following

components all expressed at basic prices: domestic and imported intermediate use matri-

2. Mı́nguez, Oosterhaven and Escobedo (2009) and Oosterhaven and Escobedo (2011) consider several known tables
as base tables but the lack of information at NUTS3 level makes this analysis inappropriate for our purpose.

3. In the original presentation of this method (i.e. working paper), the vector of row multipliers was designated by r,
the table of inter-industry transactions in coefficient form in the base year by A and the vector of column multipliers by
s. Hence the juxtaposition of the notation led to the nomenclature RAS (as originally in Stone, 1961).
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ces (commodity× industry); domestic and imported final demand matrices (commodity
× category of final use); supply matrix (commodity × industry); vector of total value
added of industries (industry × 1); and a vector of total taxes less subsidies on prod-
ucts by industries and final use categories. The projected SUTs require the following
macroeconomic statistics for the SUTs at the NUTS 3 level, based on regionalisation
rates4 of macroeconomic variables: value added by industry; total final demand by use;
total taxes less subsidies on products; and total imports. The listed data requirements
mean that the vectors of value added per industry, totals of final demand categories and
aggregate values of taxes less subsidies on products and imports need to be known at
the NUTS 3 level too.
Following Thissen, Diodato and van Oort (2010), we have used information on in-

terregional transport flows to estimate regional imports and exports. We have used the
Eurostat data on road freight transport loading (exports) and unloading (imports) in
physical terms and have calculated a ratio over the whole country (in physical terms).
The method uses these official statistics as exogenous inputs, and replicates them in the
derived SUTs. This method involves minimum data requirements, which is appropriate
given the lack of macroeconomic data at the NUTS 3 level.
Each of the iterations of the EURO method consists of two steps (see Figure 1). The

first step of the first iteration defines domestic and imported intermediate and final uses,
the vector of value added, the vector of taxes less subsidies on products, and the sup-
ply matrix of the projected SUTs. This first estimation of the (unbalanced) use table is
basically a cell-wise arithmetic average resulting from multiplying the corresponding
regionalisation rates by the rows and columns of the initial use table. Subsequently, the
total commodity output (from the estimated use table) is allocated row-wise proportion-
ally to the initial supply table (i.e. constant market shares) in order to obtain the first
estimation of the supply table at the NUTS 3 level. The total industry outputs and inputs
are not equal after this first step (column sums of projected supply and use tables). To
make the derived SUTs consistent, it is assumed that the domestic and imported input
structures of industries and the totals of commodities’ final uses from the first step are
valid. Given this assumption, the so-called fixed commodity sales structure model de-
termines consistent industry output and input levels (Eurostat, 2008, Model D, p. 351).
This second step ensures the consistency of the industry outputs and inputs, and com-
modity supply and demand, but it deviates from macroeconomic statistics, i.e. value
added per industry, final uses of categories, total value added and total imports.
The regionalisation rates initially used are then adjusted in an iterative procedure in

order to make the difference between the actual and projected (in each of the iterations)
regionalisation rates minimal (less than 1%). The observed deviations are used to correct
these rates in such a way that it should ensure that if the model overestimates (underes-
timates) the available macroeconomic statistics, the corresponding regionalisation rates

4. They are calculated as regional/national ratios.
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Figure 1: EURO method for regionalising SUTs.

Source: Own elaboration based on Beutel and Rueda-Cantuche (2012).
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are decreased (increased). This is done through correction factors (see Eurostat, 2008).
Then, the first step of the second iteration computes the projected SUT components as
in the first iteration, i.e. domestic and imported intermediate and final uses, the vector of
value added, the vector of taxes less subsidies on products, and the supply matrix of the
projected SUTs. As was the case with the first step of the first iteration, the results do not
ensure the equality of industry outputs and inputs. The consistent industry outputs and
inputs are again found using the fixed commodity sales structure model, which is then
used to derive the consistent SUTs of the second iteration in exactly the same manner as
defined earlier for the first iteration.
However, note that now the domestic and imported input structure matrices are de-

rived from the outcomes of the first step of the second iteration. As a result, one obtains
a new deviation vector, which quantifies the difference between the projected regionali-
sation rates and the macroeconomic statistics.
If the difference between the actual and projected regionalisation rates is acceptable,

the resulting SUTs are the final outcome of the EURO projection. Otherwise, the steps
of the second iteration are repeated until the projected variables resemble (closely or
perfectly) those of the macroeconomic statistics.
It is important to note that each such subsequent iteration begins with the computa-

tion of new correction factors, which are then used to correct the regionalisation rates
from the previous iteration. The convergence in the EURO method can always be found
by changing the tolerance level until convergence is reached. The last important point
concerning the EURO method is that it requires that the number of industries and com-
modities are equal. Thus, even though the EURO method distinguishes between prod-
ucts and industries, it does not allow for the estimation of rectangular SUTs5.
The data requirements of the EURO method are the following for the NUTS 3 case

studies: gross value added by industry; taxes less subsidies on products (total); final de-
mand components (totals), including exports; and total imports. The following sections
explain the data sources and methods used in the calculation of the necessary data for
the projections.

Gross value added by industry. It is not very common or easy to find detailed data on
gross value added by industry at the NUTS 3 level. In this paper, we use a breakdown of
6 products/sectors (see below), which will be split up into 13 products/sectors according
to the NUTS 1 or NUTS 2 shares, depending on the available information (see Table A2
in Annex 1 for details about the 13 products/sectors).

Taxes less subsidies on products (total). Provided that the GDP is available for the
NUTS 3 regions, its difference with respect to the total sum of gross value added at
basic prices (also available) makes the overall total of taxes less subsidies on products.

5. In this paper, the EURO method is programmed in the Eviews software and Excel templates are used to adapt the
results to the standard Eurostat format.
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Table 1: Example of a final demand estimation using NUTS 2 or NUTS 1 data.

Baden-Württemberg

Share of GDP final demand components

Konstanz

Values (million EUR)

GDP 100% 7,961.68

Consumption of households 54.4% 4,328.71

Consumption of Public

Administration and NPISH
15.3% 1,221.22

Gross capital formation 18.4% 1,463.84

Net exports 11.9% 947.91

Source: Own elaboration.

Final demand components and imports. Gross domestic product (GDP) is defined as
the sum of: final consumption of households; final consumption of government and
non-profit institutions serving households; gross capital formation (investment); and net
exports (exports minus imports).
Therefore, by using this definition of GDP, we split up the value of GDP for NUTS

3 regions using the shares of GDP components from the NUTS 2 or NUTS 1 regions
(wherever available). As an example (see Table 1), the Baden-Württemberg (NUTS 2)
shares of GDP components are given below as well as the GDP of Konstanz (NUTS 3)
for 2007 and the corresponding calculation of its final demand total by category.
However, we are interested in calculating exports and imports separately and not

as net exports. In order to do so, we estimate NUTS 3 exports and NUTS 3 imports
according to the NUTS 3/NUTS 1 share of the Eurostat data on road freight transport
loading (exports) and unloading (imports). As a result, in a second step, net exports are
recalculated and the other final demand components adjusted accordingly.

2.2. Estimation and selection of representative regional SAMs

For the construction of NUTS 3 SAMs, we initially develop a basic SAM linking the
input-output framework previously estimated, closing economic flows between produc-
tive sectors, commodities and institutional sectors. To do this, we use additional infor-
mation, most of it from Eurostat in order to achieve greater uniformity in the estimation
of the matrices for all the NUTS 3 analysed. However, when more specific information
is necessary, we obtain it from local or national statistical offices. The basic sources6

used are:

• allocation of primary and secondary income account of households by NUTS 1
and NUTS 2 regions (e. g. Baden-Württemberg/Freiburg-Konstanz) - Eurostat;

6. All Eurostat data can be found in http://ec.europa.eu/eurostat/data/database.
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• income of households by NUTS 2 region (e.g. Freiburg-Konstanz) - Eurostat;
• compensation of employees by NUTS 2 region (e.g. Freiburg-Konstanz) - Euro-
stat;

• employment by NUTS 3 regions - Eurostat;
• non-financial transactions (e.g. Germany-Konstanz) - Eurostat;
• gross domestic product (GDP) at current market prices by NUTS 3 region - Euro-
stat;

• gross value added at basic prices by NUTS 3 regions (NACE R1) - Eurostat;
• disposable income of households - national statistical offices (e.g. Konstanz: VGR
der Länder: Regionaldatenbank Deutschland);

• Input-output tables at NUTS 1 or country level (e.g. Germany 2005) - Eurostat and
OECD7.

This information is incorporated into the input-output framework provided, obtain-
ing a first version of the matrix for each NUTS 3 region. Small discrepancies that may
arise in the estimation process are corrected by using a simple technical adjustment
through RAS8. The result is a NUTS 3 level basic SAM composed of the accounts pre-
sented in Table A3 (see Annex 1).
Basic SAMs for each NUTS 3 region can be extended to successively incorporate

the accounts and sectors needed to perform the required analysis of the corresponding
regions. For this, the basic SAM accounts are disaggregated by block, using new infor-
mation, almost entirely from Eurostat, to achieve the greatest possible homogeneity:

• farmland: number of farms and areas by economic size of farm (ESU) and NUTS
2 region;

• agricultural accounts according to EAA 97 Rev.1.1 by NUTS 2 region;
• average annual earnings by economic activity, sex, occupation - country level;.
• employment by occupation and economic activity - country level;
• structure of consumption expenditure by degree of urbanisation (COICOP level 2)
(1 000) - country level;

• mean consumption expenditure by degree of urbanisation (in PPS) - country level;

7. OECD (2015).

8. The only exception in this initial procedure is the SAM for Huesca (Aragon, Spain), which comes from a previous
expert’s version for 2005 (elaborated by the authors) and which has simply been updated to 2007 using basic information
from Eurostat and the RAS adjustment.
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• household characteristics by degree of urbanisation - country level;
• population in rural areas (NUTS 2-3 level) - Eurostat Regional Statistics; Rural
Development Indicators;

• employment (in persons) by rural/urban typology (NACE R1) - country level;
• gross value added at basic prices (NACE R1) - country level.

In selected regions, SAMs are estimated following an innovativemethodologywhich
allows reliable kind of database to be obtained despite the great difficulty of procuring
data at this level of disaggregation, combining regionalisation and updating methods
with the use of Regional and National Accounts and other socio-economic and business
statistics.
The aim is to provide SAMs that are representative of rural regions of the EU, so first

it is necessary to select an adequate list of NUTS 3 level regions reflecting the actual
heterogeneity. With this in mind, regions have been chosen following first a cluster clas-
sification of European NUTS 3 regions (Raggi et al., 2013). This cluster classification
divides the set of NUTS 3 regions into six groups with the following characteristics (the
percentage of the total NUTS 3 regions is shown in brackets):

• Cluster 1 includes NUTS 3 regions classified as intermediate urban/rural, which
are economically diversified, with high accessibility and a high GDP (28.2%);

• Cluster 2 contains rural NUTS 3 regions, which are dependent on agriculture, with
good accessibility and a high GDP (25.8%);

• Cluster 3 takes into account NUTS 3 regions that are predominantly rural and
dependent on agriculture, with low accessibility and a low GDP (13.7%);

• Cluster 4 considers NUTS 3 regions that are predominantly urban and not reliant
on agriculture, with high accessibility and a high GDP (12.8%).

• Cluster 5 contains rural NUTS 3 regions, which are strongly economically depen-
dent on agriculture, with the lowest accessibility index and a low GDP (11.3%);

• Cluster 6 consists of urban and intermediate NUTS 3 regions with a low GDP,
intermediate accessibility and intermediate economic diversification (8.2%).

After discussion, and taking into account the data availability and the weight of each
cluster, regions have been selected. The objective of this selection is to have significant
representation of each cluster, so all the different typologies of regions will be well
represented. Given that the purpose of the study is to provide databases (SAMs) to study
measures of rural development, Cluster 4 regions have been excluded from the selection
(no rural or agricultural component type). The selected list of regions and clusters are
presented in Table A1 in Annex 1.
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Here it is necessary to specify the information required to distinguish between rural
and urban activities. The former are those carried out in rural areas, while the latter
are those that are based in urban areas. To distinguish between urban and rural areas,
we take as a reference the DGURBA20119 database which provides information on
new classifications of urbanisation10. The LAU 211 types 1 or 3 are directly classified
as urban or rural, respectively, while type 2 is classified using a threshold of 30 000
inhabitants (below this threshold is classified as rural and above is classified as urban).
This typology allows fitting the objectives of the study to better distinguish between
cases within ‘intermediate’ areas.
It is very difficult to obtain aggregated and homogeneous accurate information for

this split for all cases. We have therefore used an estimate based on a private database
(Orbis, developed by Bureau van Dijk) from companies at the highest level of geograph-
ical disaggregation. This database distinguishes the number of businesses by industry
(NACE R1-R2) at the equivalent of the LAU 2 level or similar. We have completed the
necessary information base with LAU 2 demographic data and other official statistics
from Eurostat on predominantly rural, intermediate and predominantly urban areas.
With this data, the percentages of companies in rural and urban areas in each sector

in each NUTS3 region are obtained, which allows the disaggregation between rural and
urban sectors in the corresponding SAMs. This disaggregation based on the number of
companies gives an adequate representation of the economic reality of each region.
With this statistical information, the percentage representing economic activities in

rural and urban areas for each sector can be identified for each NUTS 3 region. This
disaggregation criterion considers that companies that have their head office in a LAU
2 (or similar) regarded as rural (urban) are entirely allocated to the “rural” (“urban”)
part of the corresponding NUTS 3 region. This creates a division between rural and
urban activities within each sector and NUTS 3 region. Obviously, economic activities
in intermediate areas are classified as rural or urban based on the previous decision on
the allocation of their place of establishment.
For the distinction between large and small farms, we have used data on the number

of farms and areas by the economic size of farm (ESU) and NUTS 2 region, and agri-
cultural accounts according to EAA 97 Rev.1.1 by NUTS 2 region, both available from
Eurostat. The threshold of 16 ESU is used to distinguish between large and small farms
for all regions. While we acknowledge that such an assumption may lead to inaccuracies
in the description of farm sectors across the EU, it is necessary to protect a strong degree
of data homogeneity.

9. http://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?TargetURL=DSP DEGURBA

10. The classification we use is: 1: densely populated (urban); 2: intermediate (small towns and suburbs); and 3:
sparsely populated (rural). We also use population at level LAU 2 (completed with data from national statistical offices).

11. LAU: Local Administrative Units. The lowest LAU level (LAU level 2, formerly NUTS level 5) consists of munic-
ipalities or equivalent units in the 28 EU Member States.
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Regarding the SAM estimations, we have also had to take into account that the time
periods for which we have additional statistical information do not always coincide with
the reference year (2007). In such cases, the nearest periods have been taken and we
have used ratios because they are more stable than absolute values.
Next, once the accounts have been disaggregated, we have applied the Cross-Entropy

Method to achieve the final adjustment for the final version of the SAMs at the NUTS 3
level. The Cross-Entropy Method (CEM) has been developed and adapted, among oth-
ers, by Golan, Judge and Robinson (1994), Thissen and Lofgren (1998) and Robinson,
Cattaneo and El-Said (2001). In comparison with the RAS estimation method, CEM is
more flexible, cost-efficient and consistent with all the information provided by national
accounts and other resources. This method has been extensively used in the literature
and can also consider relationships to be incorporated into the estimation model as ad-
ditional restrictions12.
The Cross-Entropy approach involves projecting technical coefficients instead of to-

tal SAM flows. Once the new coefficients have been obtained, the new SAM can be
derived in the usual way. Because CEM aims directly at estimating technical coeffi-
cients, the scaling method does not work. The problem would consist of the following
minimisation problem:

d
(
A0,Â

1
)
=

n∑
i=1

n∑
j=1

(
â1i j
/
Xj

) (
ln
(
â1i j
/
Xj

)
− ln

(
a0i j
/
X0j

))
(1)

s.t.

n∑
j=1

â1i j = Xi ∀i

n∑
i=1

â1i j = Xj ∀ j

a0i j = 0→ â1i j = 0

where A = (ai j) represents a matrix in a set An of (n× n) non-negative matrices with
no row or column full of zeros. Considering a matrix A0 ∈An, a positive vector x ∈ R

n
+

and a loss function d : An×An → R, then x0j = Σi a0i j is the value for the j-th row and
column sum in the original matrix; and a0i j/x

0
j and â

0
i j/x j the initial and updated technical

coefficients, respectively.
Many other distances from metric spaces, besides the RAS and Cross Entropy (CE)

minimands, are available to minimise the loss function but either they do not seem to

12. For further details, see Cardenete and Sancho (2004).
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outperform RAS or their interpretation is not straightforward in terms of information
theory or economic content (see Jackson and Murray, 2003). A possible complement to
RAS and CE is suggested by classical information retrieval theory, a branch of computer
science concerned with developing efficient methods of retrieving information from a
data bank (Salton and McGill, 1983). Whenever a query for data is formulated, a re-
trieval algorithm fetches documents in a data bank that are closely related to the query
in some way. The greater the similarity between the query and the information con-
tained in the retrieved documents, the more successful the algorithm. Notice that a base
SAM can be seen as a query for the true but unknown SAM document and an infor-
mation retrieval algorithm will fetch from the data bank (the set of feasible SAMs) one
with information content closely matching that required by the query. For a technical
description of the procedure, see Cardenete and Sancho (2004).
Finally, it is necessary to stress that the final structure of the SAM accounts should

be unique and wide enough to collect specific circumstances of a particular regional
economy. For this reason, we leave in the SAMs accounts such as Agriculture or Forestry
in urban areas, which in an ad hoc analysis of many economies would be considered
negligible but are modelled for homogeneity reasons. Furthermore, the structure of the
NUTS 3 SAMs comprising 63 accounts is as shown in Table A4 (see Annex 1).
In order to analyse changes in technical coefficients, the first idea is to measure some

indicators of statistical distances between the I/O or SAM tables. When pairs of Input-
Output or SAM tables are compared, it is possible to compute the Le Masné Index (Le
Masné, 1990) for the sector j:

S j = 100∗
(
1−0.5

∑
i

∣∣aAi j−aSi j
∣∣) (2)

The Le Masné Index will be close to 100 in cases of high similarity, and is therefore
one of the many statistical distance indicators that can be analysed for the purpose of
studying the similarity between tables. Table 2 shows the Le Masné index for Huesca,
Konstanz and Lüneburg for analysing the similarities between a SAM built with an
automatic procedure and a SAM built with an expert procedure.

Table 2: Le Masné Index (average values) - Automatic procedure vs. Expert procedure.

Huesca Konstanz Lüneburg

Activities accounts 90.63 91.78 91.42

Commodity accounts 79.07 86.96 88.73

Rest of accounts 81.04 72.97 77.02

All accounts 83.76 84.68 86.34

Source: Own elaboration.
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Table 2 shows that the total average similarity between procedures is 83.76% for
Huesca, 84.68% for Konstanz and 86.34% for Lüneburg. In the case of the average for
activities, it shows 90.63% for Huesca, 91.78% for Konstanz and 91.42% for Lüneburg.
The similarity is higher than average for commodities: 79.07% for Huesca, 86.96% for
Konstanz and 88.73% for Lüneburg. There is a high degree of similarity in the majority
of accounts, with it being higher in Lüneburg and lower in Huesca. However, the case
of Huesca is slightly different and the similarity indicator is the lowest. This may be due
to the specific characteristics in the construction and later updating of this database. The
NUTS 3 SAM of Huesca has been constructed with specific data which was available in
regional statistical accounts, while the two other NUTS 3 SAMs are ultimately derived
from the German national accounts.

3. Results

Following the methodology presented, the 12 SAMs for the selected regions are esti-
mated, all referring to 2007 (for reasons of data availability at the time of the completion
of paper). Such matrices are available in full upon request to the authors; Annex 2 shows
only an aggregation.
However, to illustrate the validity and importance of the SAMs obtained, a summary

is given in Table 3 including some of the main ratios derived from the estimated SAMs
and reference to the rural or urban character of the NUTS 3 region; the importance of
the activities in rural areas in general, and agricultural activities and (rural and urban)
food processing industries in particular; and the trade relationship established outside
the regions. The results presented in Table 3 correspond largely with the characteristics
that define each of the clusters, demonstrating the importance of the rural economy and
the need for its development and the importance of investment and public support (for
example through Pillar 2).
Some interesting results can be obtained as illustrative examples of potential analy-

ses that could be further developed with the estimated regional SAMs, for example to
identify the economic structure of these regions.
Apart from the classification of NUTS 3 regions in one cluster or another, the im-

portance of the economy of rural areas is fundamental, especially in the units classified
in Clusters 5 and 6. With the exception of the low value in Noord-Drenthe (NL) (due to
the diffuse criterion that sometimes separates both activities in this type of region), the
percentage of GVA is high, surpassing 50% in all other regions except Lüneburg (DE),
Norfolk (UK) and Slupski (PL), where it stands at around 40%.
Another significant aspect is the weight of public (government) investment, espe-

cially high in the provinces or regions of Cluster 1. The only low values are found in
Huesca (ES) and Gorenjska (SI). The different role of trade with other regions is also
remarkable, showing a possible cross-hauling effect with simultaneous imports and ex-
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Table 3: Some summary ratios of the NUTS 3 SAMs for 2007.

Cluster Country
NUTS 3
region

Rural activities
share in
total GVA

Agriculture and
food (Rural + Urban)
share in total GVA

Government
investment/

Total investment

Imports/
GDP

Exports/
GDP

(1) DE Lüneburg 0.392 0.029 0.351 0.363 0.474

(1) UK Norfolk 0.388 0.030 0.386 0.495 0.409

(1) DE Konstanz 0.739 0.032 0.399 0.350 0.404

(2) FR Finistère 0.677 0.052 0.182 0.392 0.340

(2) SI Gorenjska 0.780 0.039 0.031 2.670 2.342

(2) NL Noord-Drenthe 0.063 0.051 0.129 1.204 1.256

(2) SE Örebro 0.605 0.036 0.244 0.673 0.747

(3) HU Heves 0.610 0.087 0.286 1.172 1.218

(3) EE Lääne-Eesti 0.586 0.096 0.287 1.134 0.897

(3) PL Slupski 0.477 0.091 0.121 0.826 0.538

(5) ES Huesca 0.801 0.133 0.031 0.625 0.483

(6) PT Setúbal 0.711 0.042 0.198 0.713 0.584

Source: Own elaboration. (GVA: gross value added; GDP: gross domestic product).

ports of the same goods, with trading totals being especially high in Gorenjska (SI),
Heves (HU) and LääneEesti (EE).
Comparing the results by NUTS 3 territories, the share of Agriculture and food ac-

tivities in Cluster 1 regions (Lüneburg, Norfolk and Konstanz) only represents 3% of
their regional GVA with high shares of public investment, i.e. around 35-40% of the
total gross fixed capital formation. Besides, the ratio of exports and imports on GDP
shows similar behaviour. These results suggest strong dependency on the public sector
with weak links with the rest of the national and international economies.
Regarding regions of Cluster 2, the behaviour is not so homogeneous. The agri-

food activities in Gorenjska and Örebro are almost 4% of their total regional GVA,
while Noord Drenthe and Finistère are over 5%. Public investment is not so important
in these regions except in Örebro, where it is 24% of the total regional investment.
Greater disparities are observed in the trade links with the rest of the economy provided
that Gorenjska and Noord Drenthe have trade flows well above their respective regional
GDP; opposite to Finistère and Örebro, where they are much lower, especially in the
French region.
In Cluster 3 regions, agri-food activities represent almost 10% of their regional GVA,

with public investment around 30% of total regional investment, except in Slupski. Only
the Polish region shows both ratios of imports and exports below one.
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In Huesca (Cluster 5), the agri-food activities represent 13% of its regional GVA,
with a very small public sector share in its total regional investment (i.e. 3%) and around
40-60% of its GDP traded with other territories.
Finally, the agricultural sector and the agri-food industry in Setúbal (Cluster 6) rep-

resent together 4% of its regional GVA, with a public investment close to 20% of their
total regional investment. Trade shares over GDP with other regions and countries are
similar to Huesca, although slightly higher.
Therefore, in the light of the results obtained, the methodology used for estimating

the SAMs at NUTS 3 level appears to be adequate and provide a significant contribu-
tion as a tool for obtaining such information, which is important for the assessment of
regional economic development policies.

4. Conclusions

This paper describes a novel methodology for estimating non-survey-based regional So-
cial Accounting Matrices with limited information for a selection of 12 NUTS 3 EU
regions. For the first time, a modified version of the EURO method for Supply and
Use Tables has been used as a method for regionalisation. The resulting SAMs can be
further used for policy analysis, for example for modelling the impacts of rural devel-
opment policies by using linear multipliers or computable general equilibrium (CGE)-
based model approaches.
These SAMs used, as far as possible, existing regional/local data from their respec-

tive national and/or regional statistical offices, with consideration of the disaggregation
of specific institutional sectors by degree of urbanisation (rural vs. urban areas).
Given the lack of official survey-based information to build regional (NUTS 2/NUTS

3) SAMs, we conclude that the methodology proposed in this paper can be useful (and
replicated) to estimate non-survey-based regional SAMs with (optional) ad hoc spe-
cific considerations for certain sectors depending on the purpose of the analysis, i.e. ru-
ral/urban split for analysing rural development policies. Notwithstanding the caveats/as-
sumptions made in our approach, we believe that sound impact analyses (e.g. using lin-
ear multipliers, CGE models, etc.) can be carried out in the future with regional SAMs
estimated in the way we propose in this paper.
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Annex 1. Tables and figures

Table A1: NUTS 3 regions selected.

NUTS 3 Cluster NUTS 2 NUTS 1 Member State

1 Lüneburg (1) Lüneburg NIEDERSACHSEN Germany

2 Norfolk (1) East Anglia EAST OF ENGLAND United Kingdom

3 Konstanz (1) Freiburg BADEN-WÜRTTEMBERG Germany

4 Finistère (2) Bretagne OUEST France

5 Gorenjska (2) Zahodna Slovenija SLOVENIJA Slovenia

6 Noord-Drenthe (2) Drenthe NOORD-NEDERLAND Netherlands

7 Örebro (2) Östra Mellansverige ÖSTRA SVERIGE Sweden

8 Heves (3) Észak-Magyarország ALFÖLD ÉS ÉSZAK Hungary

9 Lääne-Eesti (3) Eesti EESTI Estonia

10 Słupski (3) Pomorskie REGION PÓŁNOCNY Poland

11 Huesca (5) Aragón NORESTE Spain

12 Penı́nsula de Setúbal (6) Área Metrop. de Lisboa CONTINENTE Portugal

Source: Own elaboration.

Table A2: List of products/sectors.

Original data source Used in SAMs

1. Agriculture, forestry and fishing 1. Agriculture13

2. Manufacturing industry 2. Forestry

3. Construction 3. Fishing

4. Trade, transport and telecommunications 4. Mining

5. Finance, renting and business services 5. Food and beverages

6. Public services and other services 6. Other manufacturing activities

7. Utilities

8. Construction

9. Trade

10. Hotels and restaurants

11. Transport and telecommunications

12. Other private services

13. Public services

Source: Own elaboration.

13. This industry still needs to be broken down further into arable crops, permanent crops and other agricultural prod-
ucts.
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Table A3: NUTS 3 basic SAM accounts.

A.0-1 Agriculture, hunting and related services C.0-6 Other manufacturing

A.0-2 Forestry, logging and related services C.0-7 Utilities

A.0-3 Fish C.0-8 Construction

A.0-4 Mining C.0-9 Trade

A.0-5 Food industries C.0-10 Hotels and restaurants

A.0-6 Other manufacturing C.0-11 Transport and communication

A.0-7 Utilities C.0-12 Other private services

A.0-8 Construction C.0-13 Public services

A.0-9 Trade L Labour

A.0-10 Hotels and restaurants K Capital

A.0-11 Transport and communication ANT Activity net taxes

A.0-12 Other private services CNT Commodity net taxes

A.0-13 Public services INT Income net taxes

C.0-1 Prod. of agric., hunting and related services H Households

C.0-2 Prod. of forestry, logging and related services E Enterprises

C.0-3 Fish G Government

C.0-4 Mining IS I-S

C.0-5 Food industries ROW Rest of the world

Source: Own elaboration.

Table A4: Structure of the NUTS 3 SAM for 2007.

Rural activities

A.0-1 1 R Small arable crops farms Rural
A.0-1 2 R Large arable crops farms Rural
A.0-1 3 R Small permanent crops farms Rural
A.0-1 4 R Large permanent crops farms Rural
A.0-1 5 R Small other farms Rural
A.0-1 6 R Large other farms Rural
A.0-2 R Products of forestry, logging and related services Rural
A.0-3 R Fish Rural
A.0-4 R Mining Rural
A.0-5 R Food industries Rural
A.0-6 R Other manufacturing Rural
A.0-7 R Utilities Rural
A.0-8 R Construction Rural
A.0-9 R Trade Rural
A.0-10 R Hotels and restaurants Rural
A.0-11 R Transport and communication Rural
A.0-12 R Other private services Rural
A.0-13 R Public services Rural
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Table A4 (cont.)

Urban activities

A.0-1 1 U Small arable crops farms Urban
A.0-1 2 U Large arable crops farms Urban
A.0-1 3 U Small permanent crops farms Urban
A.0-1 4 U Large permanent crops farms Urban
A.0-1 5 U Small other farms Urban
A.0-1 6 U Large other farms Urban
A.0-2 U Products of forestry, logging and related services Urban
A.0-3 U Fish Urban
A.0-4 U Mining Urban
A.0-5 U Food industries Urban
A.0-6 U Other manufacturing Urban
A.0-7 U Utilities Urban
A.0-8 U Construction Urban
A.0-9 U Trade Urban
A.0-10 U Hotels and restaurants Urban
A.0-11 U Transport and communication Urban
A.0-12 U Other private services Urban
A.0-13 U Public services Urban

Commodities

C.0-1 1 Arable crops products
C.0-1 2 Permanent crops products
C.0-1 3 Other agricultural products
C.0-2 Products of forestry, logging and related services
C.0-3 Fish
C.0-4 Mining
C.0-5 Food industries
C.0-6 Other manufacturing
C.0-7 Utilities
C.0-8 Construction
C.0-9 Trade
C.0-10 Hotels and restaurants
C.0-11 Transport and communication
C.0-12 Other private services
C.0-13 Public services

Factors
SL Skilled labour
UL Unskilled labour
K Capital

Taxes (net)
ANT Activity net taxes
CNT Commodity net taxes
INT Income net taxes

Institutional sectors

RH Rural households
UH Urban households
E Enterprises
G Government

Investment/Save IS I-S

Rest of the world ROW Rest of the world

Source: Own elaboration.
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Annex 2. Social accounting matrices14-NUTS 3 regions 2007 (mio
EUR, current prices)

Lüneburg

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 280 280

OtR 2,866 2,866

AgU 50 50

OtU 3,618 3,618

COM 196 1,596 36 1,530 475 1,385 673 540 1,639 8,069

FACT 93 1,198 15 2,003 23 3,332

RH 714 140 199 2 1,055

UH 1,976 388 552 5 2,920

ENT 620 360 979

GOV -8 73 -1 85 374 1,093 109 0 50 15 3,565

I -S 193 402 50 349 995

ROW 1,254 22 14 41 292 16 405 2,043

Tot 280 2,866 50 3,618 8,069 3,332 1,055 2,920 979 3,565 995 2,043

14. AgR: Agricultural and food activities Rural; OtR: Other activities Rural; AgU: Agricultural and food activi-
ties Urban; OtU: Other activities Urban; COM: Commodities; FACT: Factors; RH: Rural households; UH: Urban house-
holds; ENT: Enterprises; GOV: Government (incl. taxes); I-S: I-S; ROW: Rest of the world; Tot: Total.
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Norfolk

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 534 534

OtR 12,019 12,019

AgU 1,017 1,017

OtU 18,735 18,735

COM 317 5,757 728 8,784 4,282 5,082 5,387 3,394 6,842 40,574

FACT 214 5,115 320 8,139 135 13,923

RH 6,233 1,366 4,027 96 11,722

UH 7,201 1,578 4,653 111 13,544

ENT 423 4,554 4,977

GOV 3 1,147 -31 1,812 5,561 6,544 655 0 776 65 32,995

I -S 1,708 1,717 355 2,372 6,151

ROW 8,269 66 171 201 1,023 92 1,982 11,804

Tot 534 12,019 1,017 18,735 40,574 13,923 11,722 13,544 4,977 32,995 6,151 11,804

Konstanz

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 676 676

OtR 10,104 10,104

AgU 67 67

OtU 3,721 3,721

COM 458 4,891 47 1,828 559 3,615 1,311 1,456 2,968 17,134

FACT 230 4,990 21 1,802 50 7,093

RH 660 288 214 2 1,164

UH 4,046 1,766 1,312 12 7,136

ENT 2,336 768 3,104

GOV -12 222 0 90 398 2,579 233 0 122 52 7,329

I -S 190 840 192 810 2,032

ROW 2,567 51 16 102 625 36 454 3,851

Tot 676 10,104 67 3,721 17,134 7,093 1,164 7,136 3,104 7,329 2,032 3,851
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Finistère

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 2,621 2,621

OtR 24,450 24,450

AgU 399 399

OtU 11,637 11,637

COM 1,704 12,078 288 5,411 7,601 3,282 5,298 4,452 6,682 46,795

FACT 918 11,476 110 5,793 132 18,429

RH 10,211 1,528 3,137 78 14,954

UH 5,001 748 1,536 38 7,324

ENT 3,193 2,006 5,199

GOV -1 896 2 432 6,018 2,637 616 0 376 61 22,033

I -S 1,063 1,286 530 879 1,070 4,828

ROW 7,689 24 272 119 1,776 187 10,066

Tot 2,621 24,450 399 11,637 46,795 18,429 14,954 7,324 5,199 22,033 4,828 10,066

Gorenjska

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 396 396

OtR 6,264 6,264

AgU 10 10

OtU 1,722 1,722

COM 294 4,275 7 1,134 1,283 484 660 1,135 6,279 15,550

FACT 115 1,845 4 549 74 2,586

RH 1,649 48 364 29 2,090

UH 615 18 136 11 780

ENT 243 77 320

GOV -13 144 -1 39 651 245 94 0 37 23 2,419

I -S 109 33 10 37 982 1,171

ROW 7,158 78 48 18 150 22 7,475

Tot 396 6,264 10 1,722 15,550 2,586 2,090 780 320 2,419 1,171 7,475
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Noord Drenthe-

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 168 168

OtR 633 633

AgU 673 673

OtU 9,848 9,848

COM 109 399 497 5,689 1,318 761 1,342 966 5,811 16,893

FACT 58 217 178 3,964 56 4,472

RH 2,116 476 837 26 3,455

UH 1,161 261 459 14 1,895

ENT 1,085 1,952 3,037

GOV 1 16 -2 195 1,497 868 164 0 89 27 5,695

I -S 564 223 318 164 1,269

ROW 5,572 110 76 44 1,817 54 213 7,886

Tot 168 633 673 9,848 16,893 4,472 3,455 1,895 3,037 5,695 1,269 7,886

Örebro

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 685 685

OtR 10,838 10,838

AgU 79 79

OtU 6,444 6,444

COM 420 6,083 44 3,207 1,704 1,822 2,452 1,701 6,191 23,626

FACT 289 4,388 39 2,946 53 7,715

RH 3,255 350 1,042 29 4,675

UH 3,090 332 989 27 4,438

ENT 1,303 373 1,676

GOV -23 367 -4 290 1,929 2,062 258 0 148 27 10,090

I -S 953 459 184 515 2,111

ROW 5,579 67 89 95 552 55 262 6,700

Tot 685 10,838 79 6,444 23,626 7,715 4,675 4,438 1,676 10,090 2,111 6,700
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Heves

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 334 334

OtR 2,986 2,986

AgU 198 198

OtU 1,859 1,859

COM 216 1,878 142 1,129 659 303 483 475 2,449 7,734

FACT 132 1,059 59 697 79 2,025

RH 1,260 55 374 19 1,708

UH 515 22 153 8 698

ENT 225 178 403

GOV -13 49 -3 33 703 314 63 0 30 25 2,406

I -S 312 65 60 175 613

ROW 2,357 25 34 15 202 17 107 2,758

Tot 334 2,986 198 1,859 7,734 2,025 1,708 698 403 2,406 613 2,758

Lääne Eesti-

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 268 268

OtR 1,523 1,523

AgU 51 51

OtU 1,111 1,111

COM 170 905 32 625 449 255 259 546 1,094 4,334

FACT 106 590 21 466 57 1,240

RH 657 55 109 12 832

UH 359 30 59 7 455

ENT 213 77 291

GOV -9 28 -2 19 322 176 22 0 23 12 1,172

I -S 48 17 8 163 333 569

ROW 1,383 11 14 7 176 1 1,592

Tot 268 1,523 51 1,111 4,334 1,240 832 455 291 1,172 569 1,592
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Slupski

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 503 503

OtR 2,455 2,455

AgU 316 316

OtU 3,361 3,361

COM 330 1,322 240 2,005 1,244 725 698 858 1,474 8,895

FACT 179 1,069 77 1,274 110 2,709

RH 1,551 60 236 30 1,877

UH 908 35 138 17 1,099

ENT 233 26 259

GOV -6 63 -1 81 575 337 92 0 36 7 2,365

I -S 35 24 22 108 704 893

ROW 2,261 18 22 13 50 3 2,367

Tot 503 2,455 316 3,361 8,895 2,709 1,877 1,099 259 2,365 893 2,367

Huesca

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 2,320 2,320

OtR 6,574 6,574

AgU 149 149

OtU 1,840 1,840

COM 1,682 3,126 107 865 998 2,558 1,307 963 2,466 14,072

FACT 690 3,061 45 870 76 4,741

RH 1,060 173 258 99 1,591

UH 2,719 445 663 254 4,081

ENT 854 357 1,211

GOV -53 388 -3 105 409 1,049 92 0 30 259 4,361

I -S 173 442 424 33 1,072

ROW 3,189 108 11 33 77 13 79 3,511

Tot 2,320 6,574 149 1,840 14,072 4,741 1,591 4,081 1,211 4,361 1,072 3,511
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Setúbal

AgR OtR AgU OtU COM FACT RH UH ENT GOV I-S ROW Tot

AgR 1,072 1,072

OtR 12,648 12,648

AgU 133 133

OtU 4,759 4,759

COM 751 6,954 97 2,349 1,419 4,009 2,024 2,101 4,939 24,643

FACT 311 5,302 33 2,277 874 8,797

RH 2,142 639 778 80 3,639

UH 4,614 1,377 1,675 172 7,838

ENT 2,016 689 2,705

GOV 10 392 3 133 1,149 3,201 325 0 80 -350 9,921

I -S 1,029 513 433 206 2,181

ROW 6,031 26 41 115 365 33 6,611

Tot 1,072 12,648 133 4,759 24,643 8,797 3,639 7,838 2,705 9,921 2,181 6,611
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tionale face au Défi International. Ed. E. Archanmault, O. Arkhipoff (Economica, Parı́s).

Lenzen, M., Gallego B. and Wood, R. (2009). Matrix balancing under conflicting information. Economic
Systems Research, 21, 23–44.

Mı́nguez, R., J. Oosterhaven and F. Escobedo (2009). Cell-corrected ras method (CRAS) for updating or
regionalizing an input-output matrix. Journal of Regional Science, 49, 329–348.

OECD (2015). Input-Output Tables. http://www.oecd.org/trade/input-outputtables.htm https://stats.oecd.
org/Index.aspx?DataSetCode=IOTS

Oosterhaven, J. and Escobedo, F. (2011). A new method to estimate input-output tables by means of struc-
tural lags, tested on spanish regions. Papers in Regional Science, 90, 829–845.

Pyatt, G. and Round, J. (1985). Social Accounting Matrices: a Basis for Planning. Washington: The World
Bank.

Pyatt, G. and Thorbecke, E. (1976). Planning Techniques for a Better Future. Geneva: International Labour
Office.
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Abstract

Aging societies have given rise to important challenges in the field of health insurance. Elderly pol-
icyholders need to be provided with fair premiums based on their individual health status, whereas
insurance companies want to plan for the potential costs of tackling lifetimes above mean expec-
tations. In this article, we focus on a large cohort of policyholders in Barcelona (Spain), aged 65
years and over. A shared-parameter joint model is proposed to analyse the relationship between
annual demand for emergency claims and time until death outcomes, which are subject to left
truncation. We compare different functional forms of the association between both processes,
and, furthermore, we illustrate how the fitted model provides time-dynamic predictions of survival
probabilities. The parameter estimation is performed under the Bayesian framework using Markov
chain Monte Carlo methods.
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1. Introduction and motivation

The developed world is experiencing significant growth in its elderly population, which
not only means people are living longer, but that they tend to face a greater number
of years affected by a range of health problems. In the context of health insurance, the
changing demographic structure of the population leads to a steady rise in demand for
medical services, while the increasing usage of health care systems, in turn, extends
longevity even further. This is especially true of private health insurance policyhold-
ers, as they are assumed to enjoy greater preventive care than the rest of the population
(see e.g., Dow et al., 2010; Chen et al., 2012). Given these circumstances, assessing the
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relationship between subject-specific medical history and time until death is of obvi-
ous interest for elderly policyholders, as they seek fair premiums. Likewise, insurance
companies share this interest, as the must determine the potential costs associated with
people living longer than mean expectations. Building on such a scheme, joint mod-
elling techniques are postulated as a proper way to relate the historical information on
medical records and the time-to-event outcomes.
The research is conducted on a real health insurance dataset of insured subjects aged

65 years and over, a cohort that requires critical medical care more frequently than their
younger counterparts, and, consequently, they have more difficulties in finding private
coverage at a reasonable price. Our data contain information both on their health care
use and lifespan, and we aim to explain, at subject-level, the underlying mortality risk
using the relationship between emergency medical services demanded and time until
death. Specifically, the variable of interest in the longitudinal part is the annual rate of
emergency claims, including ambulance services, hospitalizations, and non-routine vis-
its. The data only consider the subjects who reach the age of 65, defined in the study as
the pre-specified time zero. This assumption has two practical consequences: a) those
subjects who die before 65 years of age are not observed, and therefore their time-to-
event outcomes are not included, and b) all subjects entering the study after the age of
65 are considered as delayed entries, so their time-to-event data are left-truncated fur-
ther than the usual censorship (Uzunogullari and Wang, 1992; Klein and Moeschberger,
2003), and not all subjects present the same number of longitudinal measurements. In or-
der to avoid an overestimation of the survival probabilities, a proper consideration of the
left truncation issue in the mortality risk is achieved by using the subject’s age above 65
years as the particular time scale (Lamarca et al., 1998; Thiébaut and Bénichou, 2004).
The relationship between longitudinal and time-to-event processes can be properly

analysed using a shared-parameter joint model (JM), where the corresponding outcomes
are stochastically correlated by means of a common latent structure. Using this ap-
proach, longitudinal and event times are independent given the random effects, as are
repeated measurements in the longitudinal process. Complete overviews of the joint
modelling techniques can be found in Tsiatis and Davidian (2004) and Yu, Taylor and
Sandler (2008). An exhaustive explanation of the shared-parameter JM, with differ-
ent examples, is provided by Rizopoulos (2012). In the context of the application of
joint modelling techniques to health insurance studies, previous work can be found in
Piulachs et al. (2015), where the study focused on elderly policyholders and the counting
process was approximated by a log-transformation of the longitudinal outcome.
Given the discrete nature of emergency claims per year, the longitudinal response

must account for non-Gaussian data. Previous approaches of this kind have been pro-
posed. For example, Rizopoulos and Ghosh (2011) defined a Bayesian JM to relate
multiple longitudinal outcomes (discrete or continuous) to a time-to-event outcome.
Murawska, Rizopoulos and Lessaffre (2012) presented a two-stage JM where the lon-
gitudinal information was summarized by either a non-linear mixed-effects model or a
generalized linear mixed model (GLMM) in the first stage, while in the second the Em-
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pirical Bayes estimates of the subject-specific parameters were included as predictors
in the proportional hazards model. Viviani, Alfó and Rizopoulos (2012) implemented
an expectation-maximization algorithm to incorporate non-Gaussian data in the longi-
tudinal response, with particular attention to Poisson and binomial mixed models. More
recently, Ivanova, Molenberghs and Verbeke (2016) formulated a JM to handle differ-
ent types of responses, i.e., continuous, discrete and ordinal. Parameters were estimated
under a likelihood-based approach.
A common feature of the aforementioned extensions is that they do not account for

delayed entries in the time-to-event sub-model. In contrast, we consider here the lifetime
elapsed from the moment a subject is 65 until his or her death. As a consequence, left
truncation has to be accounted for in survival times of these subjects entering the study
above the age of 65. Additionally, most event times cease to be observed at administra-
tive closure of study, whereas some others are not completely observed due to dropout.
In order to simultaneously deal with left-truncated and right-censored event times, a
Cox proportional hazards model with time-dependent covariates is used for the survival
analysis. Our final goal is to assess, in a personalized manner, the relationship between
emergency claims per year and the time until death (i.e. subject’s mortality risk) by pos-
tulating an appropriate JM. In this regard, we investigate the role played by information
contained in medical records and identify a cumulative and fading effect, so that more
recent records have a greater influence than older records on the hazard of death. Finally,
we illustrate how the fitted JM can also be employed to obtain subject-specific survival
estimates. From a statistical perspective, this problem requires an innovative application
of a joint framework, where a pronounced dependency pattern between longitudinal and
time-to-event outcomes for the elderly is expected. From a methodological perspective,
the statistical analysis poses challenges in handling correlated counts in the longitudinal
response of the JM, and to incorporate the delayed entries in the survival outcome.
The remainder of the paper is organized as follows. Section 2 includes a description

of the study’s health insurance dataset, which consists of 5470 policyholders aged 65
years and over. Section 3 presents the specification, under the Bayesian framework,
of the proposed JM for longitudinal counts and left-truncated time-to-event outcomes.
Section 4 shows the application of the derived JM to our health insurance dataset, and
the results are commented. Section 5 illustrates how to obtain personalized and time-
dynamic predictions for survival from the fitted JM. Finally, Section 6 presents a final
discussion and some concluding remarks.

2. Health insurance dataset

The motivating dataset was provided by a Spanish medical insurance company, and con-
sists of a cohort of 5470 policyholders (37.6% men and 62.4% women), aged 65 years
and above, living in the city of Barcelona (Spain). The data contain, for each subject,
historical information on emergency claims (use of ambulance services, hospitaliza-
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tions, and non-routine visits) from January 1, 2006 to February 1, 2014. We also know
the age of each subject upon entry into the study and their age at death or right cen-
soring, where the latter is assumed to be independent of all other survival and covariate
information.
A set of control points was fixed at the 31st of December each year throughout

the study period, and we collected, for each subject, subsequent measurements of the
amount of emergency claims demanded in a calendar year; this time unit is the one
used by most insurance companies, and, in general, in actuarial studies. Hence, instead
of directly working with the amount of observed counts, the main longitudinal out-
come in our study is defined in terms of count rates. In our case, for each subject we
observed repeated measurements of emergency claims per year. These measurements
were recorded at each of the control points covered by each of the subject-profiles. In
this regard, the entry of each subject into the study period was registered in their longi-
tudinal response by the measurement associated with the first control point reached by
his or her observed profile. We assumed a last observation carried forward approach for
handling the longitudinal information, i.e. an observed measurement within each sub-
ject’s profile remains constant between two subsequent control points. However, not all
subject-profiles started to be observed at the beginning of a specific calendar year. This
resulted in the first measurement of emergency claims having an exposure time less than
one year. We therefore needed to explicitly consider exposure effects in order to avoid
spurious effect estimates (Cameron and Trivedi, 1998). This procedure was carried out
by relating the amount of emergency claims observed at the end of a calendar year to the
corresponding exposure, i.e. counts/exposure, thus taking into account the real period-
at-risk in which the aforementioned amount was collected. Since this premise assumes
that the likelihood of a emergency claim is constant over time, very large (and there-
fore unrealistic) values of count rates could be obtained in case of very small exposures.
These cases were avoided by imposing a rule that each of the values registered for a
subject must have been obtained from an exposure above half a year.

Table 1: Descriptive statistics of observed emergency claims per year stratified by event indicator.

Death Subjects
Emergency claims per year summary

Mean SD Min Max % Zeros

No 4961 0.80 1.55 0 20 63.8
Yes 509 1.50 2.45 0 18 52.4

Overall 5470 0.84 1.63 0 20 63.1

The longitudinal outcome across all count rates ranges from 0 to 20 emergency
claims per year, and the overall mean and variance values are 0.84 claims/year and 2.66
(claims/year)2, respectively, suggesting a marked heterogeneity in the response (see Ta-
ble 1). A large number of zeros are exhibited in the longitudinal outcome, representing
63.1% of the overall measurements. Here, it must be pointed out that the Spanish health
system offers universal coverage, so a rate count of zero may occur either because insur-
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Figure 1: Subject-profiles of emergency claims per year across time (subject’s age) for 100 randomly
selected subjects who are still alive after their follow-up interval (top panel) and for 100 randomly selected
subjects whose death is observed (bottom panel).

ance coverage is used solely for routine medical care, or due to the fact that policyhold-
ers have only been treated in public medical centers. This circumstance is, in general,
an important source of overdispersion in the longitudinal response.
Figure 1 shows various subject-profiles of emergency claims per year, where mea-

surements collected for each subject are connected by line segments. The top panel
shows the trajectories for a random sample of 100 subjects alive after their follow-up in-
terval, while the bottom panel shows 100 randomly selected profiles of subjects whose
death event is recorded during the study period. Notice that the group of subjects who
died during the study presents, in average terms, higher longitudinal responses than
those presented by the subjects who remain alive.
Following the suggestions of Charpentier (2015), we also analysed the evolution of

the average demand for emergency claims per year according to policyholder’s age.
We fitted the average values by a generalized additive model (GAM) under the Poisson
(PO) and negative binomial (NB) distributions (see Figure 2), and a changing trend
was detected around the age of 90 years. Thus, our data show that the use of emergency
services in the health insurance company decreases among those subjects of an advanced
age. This may reflect the fact that a fraction of the elderly population have taken up
residence in nursing homes at older ages, and thus, receive personalized care, or it might
be a result of a preference for public over private treatment for severe conditions.
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Figure 2: Observed annual rates of emergency claims by age, with PO and NB GAM fittings. The 95%
confidence regions are presented.

Only policyholders living above the age of 65 are considered within the study pe-
riod 2006-2014, which means that 79.8% of subjects are registered as late entries. The
mean age of policyholders entering the study is 75.4 years (i.e., 10.4 years above the
pre-specified time zero), with an average follow-up of 5.1 years. Furthermore, a classic
right censoring mechanism arises, which is assumed to be independent of all other sur-
vival information. During the study period, death is recorded for a total of 509 (9.3%)
individuals, entailing that 4961 policyholders survive or are no longer under observation
at the end of the study, representing 90.7% of right censoring. Of these, 3429 (69.1%)
are alive at the administrative closure of study, on February 1, 2014. The remaining 1532
right-censored survival times (30.9%) are attributable to insurance cancellations caused
by different reasons not related to the event of death (e.g., dissatisfaction with the medi-
cal services, a change of company, or an unwillingness to pay), which in practice means
that the subject is no longer covered by the insurance policy. Figure 3 displays a non-
parametric survival curve estimate of the overall sample (on the left) and one stratified
by gender (on the right). Although higher survival estimates are registered for women,
the corresponding log-rank test does not suggest a significant improvement in women’s
survival when stratifying by gender (p= 0.242).
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Figure 3: Kaplan-Meier estimate of the survival function of time until death (with 95% confidence inter-
vals) for our overall health insurance dataset (left panel), and stratified by gender (right panel).

3. Joint model specification

3.1. Longitudinal approach to panel count data

Let us assume a panel data context with repeated measurements over time, where yi =
{yi(t), i = 1, . . . ,n} denote the observed responses for the i-th subject, recorded at a
fixed set of time points ti j, j = 1, . . . ,ni. Given the vector bi of random effects for the
i-th subject, we assume that the observed measurements on this individual derive from
a counting process generated by an exponential family (EF) distribution, yi(t) | bi ∼
EF{ψi(t), φ}, with probability mass function:

py{yi(t) |bi; ψi(t), φ}= exp
(
φ−1

[
yi(t)ψi(t)−b{ψi(t)}

]
+ c{yi(t), φ}

)
. (1)

Here, b(·) and c(·) are known functions, and ψi(t) and φ are termed the canonical and
scale parameters, respectively. It can be shown straightforwardly that E{yi(t) |bi} =
μi(t) = b ′ {ψi(t)} and V{yi(t) |bi} = σ2i (t) = φ b ′′ {ψi(t)} (Molenberghs and Verbeke,
2005).
In many longitudinal studies, the subject-specific count responses are observedwithin

a pre-specified time interval, and can be implicitly interpreted as frequency rates. In such
cases, modelling the count rates is more relevant than working with the raw counts, thus
considering the expected longitudinal outcome μi(t) in terms of counts per time unit. In
our case, a calendar year is taken as the reference time frame during which emergency
claims uniformly occur, but a small percentage of subjects start to be observed after the
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beginning of a calendar year (i.e., their first longitudinal measurement is not recorded
for the duration of a whole year). With this data pattern, the set of observations for a
specific subject at their corresponding control points might have occurred during differ-
ent lengths of time, making it necessary to explicitly consider exposure effects. For the
i-th subject at time t, an exposure term ei(t) is included as a predictor variable of the ex-
pected longitudinal outcome μi(t). In addition, it is necessary to introduce a continuous
and differentiable link function g(·) in order to relate μi(t) to a linear combination ηi(t)
of a set of fixed and random covariates. The most common choice for modelling panel
count rates is a logarithmic link, g(·) = log(·)⇒ g−1(·) = exp(·), which ensures posi-
tive outcomes and provides a straightforward interpretation of the estimated regression
parameters:

{
log{μi(t)}= log{ei(t)}+ηi(t) = log{ei(t)}+xT

i(t)βββ+ z
T
i(t)bi

E{yi(t) |bi}= μi(t) = ei(t) exp{ηi(t)}, bi ∼ N(0,Dq+1) .
(2)

Note in the above equation that the exposure term is logged and included as an offset
variable, i.e., a predictor whose coefficient is fixed at one. If we move the exposure to
the left side of the equation, we evince the fact that our expected outcome is divided by
the length of time, μi(t)/ei(t), so we are effectively modelling the expected response in
terms of rate counts. The terms xT

i(t) and z
T
i(t) denote the row vectors of the fixed and ran-

dom design matrices, respectively, whileβββ = (β0,β1, . . . ,β p)
T and bi= (bi0,bi1, . . . ,biq)

T

are the corresponding fixed-effects and random-effects vectors. The random effects al-
low for the expression of individual deviations from the overall trend, and in most cases
they can be assumed to follow a multivariate normal distribution with zero mean and
unspecified variance-covariance matrix Dq+1.
The basic option for modelling panel counts in equation (2) is to consider a POmixed

model, defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi(t) |bi ∼ PO{μi(t)} , μi(t)> 0
μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{xT

i(t)βββ+ z
T
i(t)bi}

py{yi(t) |bi; μi(t)}= exp{−μi(t)}μi(t)yi(t)
yi(t)!

E{yi(t) |bi}= V{yi(t) |bi}= μi(t).

(3)

The PO mixed model allows for robust parameter estimates, even if the underlying dis-
tribution is not true, provided that the expectation is correctly specified (Gourieroux,
Monfort and Trognon, 1984). However, the observed response usually has a variance
greater than the mean, so the longitudinal outcome is affected by overdispersion. This is
a common issue when dealing with counts or count rates, primarily due to missing infor-
mation, aggregate data, or even an excess of zeros in the longitudinal outcome (Harrison,
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2014). In such cases, the derived inference under the PO mixed model could lead to er-
roneous conclusions about parameter significance. A detailed discussion of this issue
can be found in Zuur et al. (2009) and Hilbe (2011).
Although there are several alternative models for dealing with the overdispersion re-

lated to correlated counts, the NB mixed model appears in the literature as being the
most natural choice; see, for example, Ismail and Jemain (2007), Greene (2008), and
Hilbe (2011). The NB distribution for longitudinal data can be easily derived from the
PO distribution by placing a multiplicative gamma random noise εi in the conditional
mean response. Specifically, such a latent variable is defined in terms of shape and rate
parameters by εi ∼ G(κ,κ) , κ > 0, with E(εi) = 1 and V(εi) = 1/κ, so that the longitu-
dinal counts are modelled by yi(t) |bi ∼ PO{εiμi(t)}. This Poisson-gamma mixture has
a closed-form solution, leading to a NB mixed model with dispersion parameter κ:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi(t) |bi ∼ NB{μi(t),κ} , μi(t)> 0, κ > 0
μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{xT

i(t)βββ+ z
T
i(t)bi}

py {yi(t) | bi; μi(t), κ}= Γ{κ+ yi(t)}
Γ(κ)yi(t)!

μi(t)yi(t) κκ

{μi(t)+κ}κ+yi(t)
E{yi(t) |bi}= μi(t); V{yi(t) |bi}= μi(t)+μi(t)2/κ,

(4)

where Γ(·) denotes the gamma function.
The NB distribution has the general canonical form of the exponential family equa-

tions for any fixed κ. Because of the quadratic expression for the variance, it is some-
times referred to as NB type 2 in the literature. Note that the NB distribution can actually
be understood as an extension of the PO distribution when overdispersion is accounted
for by parameter κ, since it can be proven that NB converges to PO as κ→ ∞. This
result is well-documented by Lawless (1987) and Hinde and Demétrio (1998); see also
Boucher, Denuit and Guillén (2008) for a numerical application in the field of insurance
studies.

3.2. Joint model for counts and delayed entries

Assuming the age above 65 years as our particular time scale, let T ∗
i be the true event

time for the i-th subject. We define an independent random variable τi ≥ 0 as the time
at which a policyholder enters the study after the age of 65, giving rise to left-truncated
event times for those subjects whose τi > 0. In addition, once a subject enters the study,
the event time is affected by the usual right censorship mechanism, denoted by a po-
tential censoring time Ci. This means we can only know the observed survival time for
the i-th recruited individual, Ti =min{T ∗

i , Ci} > τi, and a dichotomous event indicator
δi= I(T ∗

i ≤Ci). We use a time-dependent proportional hazards model to simultaneously
account for left truncation and right censoring in the time-to-event sub-model. Conse-
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quently, the probabilistic distribution of the event times has to be defined according to
the proportion of subjects living beyond time point t, and is conditional on their be-
ing older than the corresponding left truncation time, S(t | τ) = Pr(T ∗ > t |T ∗ > τ) =

Pr(T ∗ > t) / Pr(T ∗ > τ) = S(t)/S(τ).
Building on the longitudinal analysis considered in section 3.1, repeated count rates

and time-to-event responses can be coupled by assuming independence between both
processes given the shared random effects (conditional independence hypothesis). The
JM for the i-th subject, i= 1, . . . ,n, is expressed by means of a relative risk model where
the hazard of death at time t takes into account the expected longitudinal response until
t, Mi(t) = {μi(s), 0≤ s≤ t}:

hi {t |Mi(t),wi}= h0(t)exp
[
γγγTwi+αF{μi(t)}

]
. (5)

As in the standard proportional hazards model, h0(t) in equation (5) denotes the base-
line risk function, wi the subject’s baseline survival covariates, and γγγ the vector of the
corresponding regression parameters. The functional form F(·) specifies a proper man-
ner in which the longitudinal information provided by μi(t) is accounted for in survival.
Because μi(t) > 0 in a counting process, F(·) is positively defined and increases with
t. The parameter α quantifies the strength of association between the particular lon-
gitudinal evolution until time t, and the corresponding mortality risk. Specifically, the
quantity exp(α) returns the hazard ratio for a one-unit increase in the value F{μi(t)} at
time snapshot t.
Although h0(t) traditionally remains unspecified in the Cox proportional hazards

model, this constraint is usually lifted when using joint modelling techniques. In partic-
ular, the logarithm of baseline hazard function can be approximated using penalized B-
splines. As a preliminary step, we define a knot sequence ξξξ of Q increasing and equally-
spaced knots, ξ1 < · · · < ξQ, over the time range [0,Tmax]. Accordingly, the baseline
hazard on the log-scale is approximated through a linear combination of d-th degree
B-splines:

log{h0(t)}=
R∑
r=1

γh0,r Bd,r (t,ξξξ) , (6)

where {Bd,r (t,ξξξ) , r = 1, . . .,R} denotes the set of d-th degree B-spline basis functions,
γγγh0 = (γh0,1, . . . ,γh0,R)

T is the vector of B-spline coefficients (also called control points),
and R = Q+ d− 1. The r-th B-spline function is locally defined on a support spanned
by the d+2 adjacent knots, and, to achieve boundary conditions of a B-spline curve, the
original knot vector is extended so that the end-knots ξ1 and ξQ have multiplicity d+1
(the total number of knots will be Q+2d). A major concern at this point is the number
Q of knots that should be employed. A too-small number of knots (and, consequently, of
the number R of B-spline basis functions) could lead to biased results, while too many
knots might result in an overly flexible curve with random fluctuations (small “wig-
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gles”). Following the indications of Eilers and Marx (1996), a relatively large number
of knots should be used, and the potential overfitting problems can be circumvented by
considering a roughness penalty based on finite differences of adjacent B-spline coeffi-
cients, i.e., by means of a P-splines regression. A complete overview of recent research
in P-splines can be found in Eilers, Marx and Durbán (2015).
A standard approach to relate longitudinal rate counts to survival is undertaken by

associating the current expected longitudinal outcome with the hazard of an event using
the identity function: F{μi(t)} = Id {μi(t)} = μi(t). However, instead of taking just a
single time point, in some cases it may be more relevant to consider the whole path of
the longitudinal outcome. In particular, an extension of the basic option is to include the
entire background previous to the measurement at time t (Abrahamowicz, Beauchamp
and Sylvestre, 2011). Furthermore, we assume that historical effects of subject’s health
fade over time, so the more distant history is less relevant than the more recent. Thus,
F(·) transformation can be defined to account for the recency-weighted cumulative effect
of the longitudinal outcome:

F{μi(t)}=
∫ t

0
ω(t− s)μi(s)ds, s≤ t, (7)

where ω(·) is the selected average weighting function. Due to the importance of the most
recent information for explaining the current health status, we introduced an exponential
function with rate parameter ν in order to assign different weights for each of the past
observed longitudinal values: ω(t− s) = ν exp{−ν(t− s)} , ν > 0.

3.3. Bayesian estimation for the JM

Let θθθ = (θθθy,θθθt ,θθθb)
T be the JM full parameter vector that collects the longitudinal pa-

rameters, the survival parameters, and the parameters for the random effects covariance
matrix, respectively. In addition, let Dn = {(yi,τi,Ti,δi), i = 1, . . . ,n} denote the infor-
mation from our original dataset with n policyholders. Taking advantage of the condi-
tional independence assumption, the overall joint likelihood conditioned on the random
effects bi can be properly formulated to tackle left truncation as

p(Dn |bi,θθθ) =
n

∏
i=1

ni

∏
j=1

py{yi(ti j) |bi,θθθ} pt (Ti,δi |bi,θθθ)
Pr(Ti > τi |bi,θθθ) , (8)

where py(·) is the conditional probability mass function to handle longitudinal rate
counts, and pt(·) is the conditional probability density function for the event times.
The mean estimates of parameters and random effects are then derived by Markov

chain Monte Carlo (MCMC) algorithms, which enable inferences to be made by effi-
ciently drawing a sample from the posterior distribution of (θθθ,bi) conditioned on the
observed data:
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π (θθθ,bi |Dn) ∝ p(Dn |bi,θθθ)π(θθθ,bi) = p(Dn |bi,θθθ) pb (bi |θθθ) π(θθθ), (9)

where pb(·) is the conditional probability density function of the random effects, and
π(θθθ) is the prior distribution of θθθ.
The models’ fitting was performed using a Bayesian approach, with non-informative

priors being used whenever possible. Specifically, for the longitudinal analysis, we used
independent univariate vague normal priors for the fixed effects, defined in terms of
mean and precision parameters, {β0,β1,βt90} ∼ N

(
μβ = 0,τβ = 10−3

)
. In the time-to-

event sub-model, the log-baseline hazard was approximated by using third-degree B-
splines and Q= 15 knots, uniformly allocated over the time range [0, Tmax = 38.5]. The
joint prior for the baseline hazard coefficients was assumed to be normally distributed,
γγγh0 ∼ N(μμμγγγh0

= 0, Tγγγh0 = τBsMγγγh0
), whereMγγγh0

is an appropriate penalty matrix to con-
trol the amount of roughness in the precision parameter τBs ∼ G(aBs,bBs). In general, the
penalty matrix is defined asMγγγh0

=ΔΔΔT

KΔΔΔ K+10−6 I, where ΔΔΔ K is the difference matrix
of order K, whereas the term 10−6 I introduces a small “ridge penalty” to avoid a lin-
early dependent system. A common choice for cubic B-splines is K = 2, while for the
hyper-prior parameters of τBs we used aBs = 1 and bBs = 0.005 as a standard choice for a
non-informative prior. The subject’s gender was included in the time-dependent propor-
tional hazards model as a dichotomous baseline covariate, wgi (man= 0, woman= 1),
and we made the assumption that the corresponding coefficient follows an improper
normal distribution, γg ∼ N

(
μg = 0,τg = 10−3

)
.

For the constant association parameter, we assumed α ∼ N
(
μα = 0,τα = 10−3

)
.

When considering the functional form to link the recency-weighted area under the ex-
pected longitudinal profile to the time-to-event outcome, a flat prior was assumed for
the rate parameter of the exponential weighting function, ν ∼ U(aν ,bν). Because ν > 0,
we set aν = 0, while for the second hyper-parameter it is common to set a large enough
positive value to express the uncertainty around ν, say bν = 20.
Finally, for the random effects, we used a bivariate standard normal distribution as

a prior function, (bi0, bi1)
T ∼ N(0,D2), where the terms of the 2× 2 unstructured co-

variance matrix are summarized by D2[1,1] = σ2b0 , D2[1,2] = D2[2,1] = ρσb0 σb1 , and
D2[2,2] = σ2b1 . We assumed that the inverse matrix follows a standard Wishart distri-

bution, D−1
2 ∼ W(I2,kw), where the degrees of freedom were established at kw = 3. In

the particular case of considering 1 RE, we have bi1 = σb1 = 0, assuming that bi0 ∼
N(μb0 ,τb0) with μb0 = 0 and τb0 ∼ G

(
10−3,10−3

)
.

3.4. Bayesian model assessment

To compare both the different longitudinal models and joint models, we focused on
the analysis of the Bayesian deviance term, which in generic form can be expressed
as D(θθθ,bi) = −2∑n

i=1 log{p (Dn |bi,θθθ)}. In particular, we assessed the goodness-of-
fit of a specific model by using the deviance information criterion (DIC) suggested by
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Spiegelhalter et al. (2002). This criterion evaluates the fit of a model by balancing model
adequacy with model complexity:

DIC(θθθ,bi) = D(θθθ,bi)+2pD, (10)

where D(θθθ,bi) = −2∑n
i=1 log{p(Dn | bi,θθθ)}, and the term pD = D(θθθ,bi)−D(θθθ,bi) is

the effective number of parameters, calculated as the difference between the posterior
mean of the deviance and the deviance at the posterior means of the JM parameters. The
aforementioned criterion can be reformulated as DIC(θθθ,bi) = D(θθθ,bi)+ pD, thus rein-
forcing the idea that this criterion takes into account both the adequacy of the model,
assessed through the posterior mean estimate of the deviance, and the number of param-
eters required, assessed through the penalty term pD. The score provided by DIC serves
in general as the basis for ranking the fitted models, where lower scores correspond to
a better model fit. To conclude this section, it is important to point out that the DIC
score obtained for a specific model is not a fixed value, but it can be subject to a certain
amount of random variability due to its dependency on the MCMC output of the model.
Consequently, it will become a key point to get a DIC value derived from a relatively
large number of iterations in the MCMC process before reaching convergence in each
of the JM parameters.

4. Results from the health insurance dataset

4.1. Longitudinal data analysis

The fixed effects of the longitudinal outcome were set at {β0,β1,βt90}, respectively
motivated by the intercept term, the observation time (directly linked to the subject’s
age), and a binary variable which takes into account the observed downward trend of
medical emergency demand after the age of 90, t90 = I(t ≥ 25). The longitudinal mea-
surements were fitted using PO and NB mixed models, testing these models with ran-
dom intercepts (1 RE) and with ρ-correlated random intercepts and random slopes in
time (2 RE). In all cases, the general expression for the expected response can be writ-
ten as μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{β0+bi0+(β1+bi1) t+βt90 I(t ≥ 25)}, with
(bi0, bi1)

T ∼ N(0,D2).
Setting θθθ� = (θθθy,θθθb)

T
=

(
β0,β1,βt90 ,κ,σb0 ,σb1 ,ρ

)T
, we approximated the posterior

distribution π(θθθ�,bi | yi) by using the Bayesian software JAGS (Plummer, 2003), ver-
sion 4.2.0. We ran two parallel chains of 25,000 iterations, with a burn-in period (here
included in the total number of iterations) of 10,000 iterations. We then kept every
15-th iteration from each chain in order to reduce the autocorrelation in the samples
from the posterior distribution, resulting in 2000 total samples. We checked that the
chains had a good mixing, and also their convergence to the stationary distribution. For
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each model, the DIC was calculated by means of the corresponding Bayesian deviance
D(θθθ�,bi) =−2∑n

i=1 log p(yi |bi,θθθ�).
Table 2 provides the posterior summaries of the parameters’ distribution for each

longitudinal model fitted, and also the corresponding values of DIC. In the case of the
two PO mixed models, the DIC provides a lower score for the option which considers
2 RE in the linear predictor. On the other hand, the NB mixed model with 2 RE also
provides evidence of an improvement in the DIC score in comparison with the model
using 1 RE. Therefore, it is preferable to use a random intercept and a random slope to
summarize subjects’ profiles. Along with the PO results, the estimates obtained from the
NB mixed model with 2 RE highlight the importance of the variability around the inter-
cept fixed effect compared to fluctuations in the slope. Hence, accounting for baseline
heterogeneity indeed plays a much more important role to explain the subject’s particu-
larities. This could lead us to consider the extent to which the introduction of a random
slope is necessary in this case (i.e., when a linear trend is assumed in the specification
of ηi(t)).

Table 2: Posterior summaries of all parameters for PO and NB mixed models with a different number of
random effects. Mean, standard error, 95% credible interval, and DIC are sampled for each parameter from
the corresponding posterior distribution.

PO mixed model 1 RE NB mixed model 1 RE

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

β0 −1.085 0.0007 −1.147 −1.026 −0.976 0.0015 −1.041 −0.910
β1 0.032 0.0001 0.029 0.036 0.031 0.0001 0.027 0.035
βt90 −0.117 0.0008 −0.193 −0.045 −0.189 0.0023 −0.298 −0.086
κ – – – – 0.998 0.0004 0.948 1.050
σb0 1.075 0.0004 1.045 1.107 0.963 0.0006 0.929 0.996

DIC(θθθ�,bi) 76961 74201
PO mixed model 2 RE NB mixed model 2 RE

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

β0 −1.158 0.0009 −1.240 −1.075 −0.974 0.0009 −1.049 −0.900
β1 0.035 0.0001 0.029 0.040 0.029 0.0001 0.024 0.034
βt90 −0.190 0.0022 −0.281 −0.103 −0.197 0.0015 −0.328 −0.071
κ – – – – 1.058 0.0007 1.003 1.120
σb0 1.750 0.0011 1.662 1.848 1.157 0.0015 1.074 1.239

σb1 0.112 0.0001 0.106 0.118 0.074 0.0001 0.069 0.079

ρ −0.796 0.0003 −0.818 −0.773 −0.614 0.0007 −0.671 −0.547
DIC(θθθ�,bi) 74993 74095

The overall comparison between the fitted models suggests that the NB mixed mod-
els are more adequate to capture the characteristics of the longitudinal data. This re-
sult is unsurprising since the two NB mixed models account for response heterogene-
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ity through parameter κ, whose mean estimate exhibits strong evidence for overdisper-
sion for both one and two random effects, κ1 RE = 0.998 (95% CI: 0.948, 1.050) and
κ2 RE = 1.058 (95% CI: 1.003, 1.120). In particular, the NB mixed model with 2 RE is
the one which presents the lowest DIC score among the tested options. Consequently,
we decided to include the effect of random slope when overdispersion is accounted for.
In what follows, the longitudinal approach in our JM framework is carried out using

a count mixed model with two random intercepts per subject, one for the intercept and
the other for the slope. Additionally, the longitudinal analysis will be carried out using
either a PO or a NB mixed model, thus allowing us to directly assess how the goodness-
of-fit changes when considering the overdispersion effect.

4.2. JM analysis

The JM that we propose is summarized by:

⎧⎪⎪⎨
⎪⎪⎩

μi(t) = ei(t)exp
{
β0+bi0+β1 t+bi1 t+βt90 I(t ≥ 25)

}
hi {t |Mi(t), wgi}= h0(t)exp

[
γgwgi+αF{μi(t)}

]
(bi0, bi1)

T ∼ N(0,D2).

(11)

The starting point to carry out the JM fits under a Bayesian approach was the R pack-
age JMbayes (Rizopoulos, 2016), taking advantage of the structure of the function
jointModelBayes (·). However, the code to fit the different joint models in this arti-
cle was finally written in JAGS software, and executed within the R-environment. Set-
ting θθθ = (θθθy,θθθt ,θθθb)

T = (β0,β1,βt90 ,κ,ν,γγγh0 ,γg,α,σb0 ,σb1 ,ρ)
T, the posterior distribution

π(θθθ,bi |Dn) was approximated by running the MCMC algorithm for 2 parallel chains
with a total of 35,000 iterations each, with the first 15,000 discarded as the burn-in pe-
riod. We kept every 20-th iteration from each chain, resulting in 2000 total samples from
the posterior distribution of (θθθ,bi). A good mixing and convergence of the 2 chains were
assessed, and no autocorrelation was detected in the lag plots.
First, the estimation of JM parameters was conducted by quantifying the degree of

association between the current expected value of emergency claims per year at any time
t, denoted by μi(t) =E{yi(t) |bi}, and the mortality risk at the same t. The results (given
in Table 3) point to a strong association between the annual rate of emergency claims
and survival, so each unit increase in the current value of the emergency claims per year
involves a exp(αV,PO) = 1.47-fold increase (95% CI: 1.41, 1.54) in the policyholder’s
mortality risk under the PO longitudinal sub-model, whereas this association parameter
leads to a exp(αV,NB) = 1.59-fold increase (95% CI: 1.49, 1.71) if we assume a NB
longitudinal sub-model. Thus, we have an increasing relationship between the frequency
of use of emergency medical services and the corresponding mortality risk. From a
goodness-of-fit perspective, the comparison between the fitted joint models is performed
using the DIC, where the use of the NB distribution provides a better fit.
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Table 3: Posterior summaries of all parameters for the JM when accounting for the current value of emer-
gency claims per year. Mean, standard error, 95% credible interval, and DIC are sampled for each param-
eter from the corresponding posterior distribution.

JM with PO sub-model JM with NB sub-model

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

Longitudinal
β0 −1.174 0.0010 −1.254 −1.085 −1.000 0.0008 −1.072 −0.920
β1 0.036 0.0001 0.030 0.041 0.031 0.0001 0.026 0.037
βt90 −0.130 0.0010 −0.212 −0.043 −0.117 0.0018 −0.236 −0.004
κ – – – – 1.067 0.0004 1.012 1.125
σb0 1.780 0.0011 1.685 1.872 1.169 0.0019 1.080 1.247

σb1 0.115 0.0001 0.109 0.121 0.076 0.0001 0.070 0.081

ρ −0.800 0.0003 −0.821 −0.775 −0.611 0.0002 −0.626 −0.595
Survival
γg −0.287 0.0018 −0.449 −0.132 −0.326 0.0019 −0.483 −0.164
Association
α 0.387 0.0005 0.342 0.431 0.464 0.0011 0.397 0.534
Goodness-of-fit
DIC(θθθ,bi) 93050 86938

Table 4: Posterior summaries of all parameters for the JM when accounting for the recency-weighted area
under the expected profile of emergency claims per year. Mean, standard error, 95% credible interval, and
DIC are sampled for each parameter from the corresponding posterior distribution.

JM with PO sub-model JM with NB sub-model

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

Longitudinal
β0 −1.166 0.0010 −1.250 −1.089 −1.002 0.0015 −1.068 −0.936
β1 0.035 0.0001 0.030 0.041 0.031 0.0001 0.026 0.036
βt90 −0.129 0.0016 −0.212 −0.044 −0.116 0.0020 −0.234 −0.003
κ – – – – 1.066 0.0005 1.011 1.124
ν 9.572 0.0218 8.154 11.060 9.691 0.0275 8.246 11.218
σb0 1.770 0.0016 1.698 1.846 1.175 0.0014 1.096 1.261

σb1 0.114 0.0001 1.110 1.119 0.076 0.0002 0.071 0.082

ρ −0.798 0.0003 −0.820 −0.774 −0.607 0.0003 −0.647 −0.561
Survival
γg −0.269 0.0019 −0.433 −0.092 −0.298 0.0021 −0.489 −0.124
Association
α 0.398 0.0005 0.354 0.443 0.480 0.0010 0.422 0.537
Goodness-of-fit
DIC(θθθ,bi) 92983 86892

One of the more interesting features of the JAGS software is its flexibility in choosing
the structure association F(·) that captures the relationship between the longitudinal and
time-to-event sub-models. The JM estimates in Table 4 were conducted by associating
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the recency-weighted area under the expected longitudinal profile with the mortality
risk. Specifically, an exponential weighting function was employed, again showing a
strong relationship between both processes, so that a exp(αW,PO) = 1.49-fold increase
(95%CI: 1.42, 1.56) in the policyholder’s mortality risk is inferred for each unit increase
in the exponentially-weighted area under the expected profile of emergency claims per
year with the PO distribution, and a exp(αW,NB) = 1.62-fold increase (95% CI: 1.53,
1.71) if we assume an underlying NB distribution. The estimated mean rates of the
exponential weighting functions for the PO and NB longitudinal outcomes are ν PO =

9.57 (95% CI: 8.15, 11.06) and ν NB = 9.69 (95% CI: 8.25, 11.22), respectively. Thus,
in practice, it is shown that only the 0.25 years (i.e., three months) prior to t are strongly
related to the current mortality risk. In this regard, note the broad similarity between
the association parameters of these results and those obtained in Table 3 for the current-
value association structure, thus emphasizing that only the most recent past emergency
claims have a real influence on the survival. Once again the DIC indicates that a more
accurate claims distribution is achieved under the NB longitudinal sub-model.
Among all the fitted joint models presented in this section, the results indicate that the

lower DIC scores are obtained for the functional form which links the recency-weighted
area under the expected longitudinal outcome with survival. This becomes an adequate
manner to capture the fading effect of emergency medical demand on mortality risk. In
particular, the JM which considers a NB longitudinal outcome is the one which provides
the lowest DIC score of all, since it includes the overdispersion effect.

4.3. Residual diagnostics and model assessment

After fitting the joint models, it is a primary step to validate all the necessary model
assumptions before performing inference. To achieve this validation, we need plots of
residuals for each of the two components of the JM, i.e. the longitudinal and the time-
to-event sub-models.
For the longitudinal part, the analysis of the plots of residuals is focused on the

non-Gaussian mixed models assumed for the joint models with a recency-weighted cu-
mulative effect. We will consider both PO and NB distributions in order to compare
their results. However, a direct graphical interpretation of the residuals under these dis-
tributions is usually difficult, since the normality and homoscedasticity of the residuals
derived from a count model is, in general, not expected. When longitudinal response
takes a limited number of low count rates, the scatterplot of the residuals versus the
fitted values typically shows a non-homogeneous configuration, the data being grouped
on a set of quasi-parallel and curvilinear traces of points according to distinct response
values. In such circumstances, it becomes difficult to evaluate the residual plot, even if
the model is correctly specified. To solve this limitation, we can obtain continuously
distributed residuals by taking advantage of the idea of randomized quantile residuals
(Dunn and Smyth, 1996). The underlying idea is based on applying a transformation
scale to the original residuals that standardizes them to continuous values between 0
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and 1, so that the residuals are obtained by finding the equivalent standard normal devi-
ate for each subject-specific observation in the original data. By delving deep into this
work scheme, the quantile residuals can also be directly obtained through a simulation-
based approach. In particular, this task has been recently implemented in the R package
DHARMa (Hartig, 2017), which standardizes the residuals to uniformly distributed values
in the unit interval. As a first step, from JM results we use the fitted longitudinal sub-
model py{yi(t) |bi,μi(t),κ} to simulate a relatively large numberM of new longitudinal
datasets, {ỹ (m)

i }M
m=1. Then, for a particular subject-specific observation yi(t) in the origi-

nal data, we have a set ofM simulated values {ỹ (1)
i (t), . . . , ỹ (M)

i (t)}, allowing us to obtain
its corresponding empirical cumulative distribution function, P̃y{ỹi(t) |bi,μi(t),κ}. Fi-
nally, the quantile residual associated with the original observation yi(t) is calculated
as:

rqi (t) = P̃y{yi(t) |bi,μi(t),κ}= Pr{ỹ (m)
i (t)≤ yi(t)} ∈ (0,1). (12)

Recall that, if the longitudinal model is correctly specified, there will be no difference
between the original dataset and the M simulated datasets, so all the values in the em-
pirical cumulative distribution will have the same probability. In such a case, this would
lead to a uniform distribution of the residuals, regardless of the longitudinal model em-
ployed to fit the data. Once the described process has been repeated for each of the
original observations, a residual analysis can easily be carried out, detecting deviations
from the uniform distribution, residual dependency on a predictor, or overdispersion.

Figure 4: Randomized quantile residuals for the longitudinal sub-model of the joint models with a recency-
weighted cumulative effect, for both PO longitudinal sub-model (left panel) and NB longitudinal sub-model
(right panel).
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Figure 4 depicts the randomized quantile residuals derived from both PO and NB
longitudinal sub-models in the fitted JM with a recency-weighted cumulative effect pa-
rameterization, where M = 500 datasets were simulated for each sub-model. The quan-
tile residuals of the estimated PO longitudinal sub-model show clear evidence of lack
of fit, exhibiting a quadrature pattern, probably due to the overdispersion effect. In or-
der to confirm this trend, we also plotted the residuals against the time predictor, and
again a systematic deviation quadrature was obtained in the corresponding Q-Q plot.
By contrast, the quantile residuals of the NB sub-model are almost perfectly uniformly
distributed, lying approximately on the diagonal line. These graphical results strongly
suggest the adequacy of the NB longitudinal sub-model.
To check the quality of the survival model’s predictions, the analysis of martin-

gale residuals (Barlow and Prentice, 1988) is a very common graphical method. Let
Ri(t) = I (Ti ≥ t) be the indicator that the i-th subject is at risk at time t, and Ni(t) be
the corresponding cumulative number of events until time t. In general, the martingale
residuals for subject i at time t is defined by the mean estimates (θθθ,bi) as

rmi (t) = Ni(t)−
∫ t

0
Ri(s)hi{s |Mi(s),θθθ}ds, rmi (t) ∈ (−∞,1]. (13)

Here, hi {s |Mi(s),θθθ}= h0(s)exp
[
γgwgi+αF{μi(s)}

]
, where h0(·) is the estimated

baseline hazard function of the relative risk model, and μi(s) = ei(s)exp{β 0 + bi0 +
β 1 s+bi1 s+β t90 I(s≥ 25)}. The martingale residuals are calculated, for each subject-
specific measurement, as the difference between the observed number of events

Figure 5: Martingale residuals derived from the joint models with a recency-weighted cumulative effect.
The left panel shows the martingale residuals versus the subject-specific values fitted with the PO longi-
tudinal sub-model, and the right panel shows the results obtained with the NB longitudinal sub-model. In
both plots, a loess function has been overlaid to determine the trend.
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(0 or 1) and the number of events expected to happen. This implicitly allows for the
identification as outliers of those cases where the survival function predicts an event
either too early (values near 1) or too late (extreme negative values). Using an adequate
model specification, these residuals should be uncorrelated with one another and have a
zero mean, even though they are not symmetrically distributed around zero value.
Taking the results of the JM approach with a recency-weighted cumulative effect, we

have calculated the martingale-based residuals for both PO and NB longitudinal sub-
models. Figure 5 shows the corresponding plots of the martingale residuals versus the
fitted values for the emergency claims per year. In general, these residuals are skewed
towards negative values, and for this reason it is very useful to superimpose a loess
function (solid line) to better assess the shape of the relationship between the residuals
and the fitted values. In the JM with the PO longitudinal sub-model, the loess trend
deviates from zero as the fitted value increases. By contrast, in the plot for the JM with
NB longitudinal response, the loess curve shows almost no evidence of a trend across
all the fitted values.

5. Individualized survival predictions

Using the Bayesian joint framework, personalized and dynamically-updated survival
predictions can be obtained by considering each subject-specific longitudinal profile
(Proust-Lima and Taylor, 2009; Rizopoulos, 2012; Serrat et al., 2015). Let us consider
a new subject, denoted by k = i+ 1, not included in the original dataset but sampled
from the target population. If emergency claims per year are recorded until time t, we
implicitly know that this new subject is alive at least until t, thus providing a historical
set of observed measurements, Yk(s) = {yk (sk j) , τk ≤ sk j ≤ t, j = 1, . . . ,nk}, as well
as a specific value for gender factor wgk. From this information, we want to predict
the conditional subject-specific survival probabilities at any future time u > t, given
survival up to t: p̃k(u | s) = pt (T ∗

k ≥ u |T ∗
k > s,Yk(s),wgk,Dn). This prognosis task can

be carried out quite straightforwardly by adopting a Bayesian strategy. LetΩΩΩ = (θθθ,bk)
denote the full vector of uncertainties in the joint model and the random effects of the
new subject. Then, the the conditional survival probability can be estimated from the
posterior predictive distribution of the observed data:

p̃k(u |s) =
=

∫∫
ΩΩΩ
pt (T

∗
k ≥ u |T ∗

k > s,Yk(s),wgk,bk,θθθ)π (θθθ |Dn)dbk dθθθ (14)

=
∫∫

ΩΩΩ
pt (T

∗
k ≥ u |T ∗

k > s,bk,θθθ) pb (bk |T ∗
k > s,Yk(s),wgk,θθθ)π (θθθ |Dn)dbk dθθθ

=
∫∫

ΩΩΩ

Pr(T ∗
k ≥ u |Mk(u),bk,θθθ)

Pr
(
T ∗
k > s |Mk(s),bk,θθθ

) pb (bk |T ∗
k > s,Yk(s),wgk,θθθ)π (θθθ |Dn)dbk dθθθ.
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Using the previous result and the MCMC sampling information from π (θθθ,bi |Dn)

for a particular JM fit (we assume that the inclusion of a new subject does not entail the
updating of θθθ), a simulation scheme can be applied to obtain a Monte Carlo estimate
of p̃k(u | s). By way of an example, let us consider a male and female policyholders,
both aged 70 years upon entering the study (τk = 5), and not included in the original
dataset. The same number of emergency claims per year is assumed for them during the
next decade, those being observed annually between the ages of 70 and 80, providing
{Yk(s), s = 5, . . . ,15}. Moreover, we assume a NB counting sequence within the JM
approach with a recency-weighted cumulative effect. We first focus on estimating the
survival probability of both subjects at 90 years of age, conditioned on their being alive
at s, p̃k (u= 25 |s). The results are obtained by adapting the code of survfitJM (·) func-
tion from the JMbayes package, and they show how the Monte Carlo estimates update
dynamically as new longitudinal information is considered (Table 5). Time-dynamic
updating of this kind emphasizes the need for a well-characterized follow-up for each
policyholder when we aim for personalized decisions and an accurate prediction of the
insurance capital needed to cover the corresponding health insurance plan.

Table 5: Time-dynamic probabilities of being alive at 90 years for a man and a woman with the same
longitudinal information collected between the ages of 70 and 80. The results are estimated from the JM
with a recency-weighted cumulative effect parameterization and a NB longitudinal sub-model.

Age (yr.) Emergency claims
per year, yk(s)

Man’s survival at 90 yr. Woman’s survival at 90 yr.

Mean q2.5% q97.5% Mean q2.5% q97.5%

70 0 0.783 0.478 0.864 0.796 0.509 0.871
71 0 0.804 0.601 0.868 0.817 0.628 0.874
72 1 0.790 0.550 0.863 0.803 0.563 0.872
73 0 0.806 0.635 0.868 0.818 0.647 0.874
74 2 0.776 0.556 0.854 0.790 0.585 0.863
75 0 0.793 0.616 0.861 0.807 0.632 0.871
76 0 0.807 0.660 0.867 0.822 0.682 0.875
77 8 0.671 0.359 0.812 0.692 0.367 0.826
78 1 0.690 0.404 0.816 0.708 0.410 0.829
79 2 0.688 0.406 0.812 0.706 0.414 0.827
80 0 0.719 0.479 0.825 0.736 0.501 0.839

We conclude that there is an increasing probability of being alive at the age of 90
when no emergency claims are observed, whereas this probability decreases sharply
when a large number of emergency claims are annually reported. The survival proba-
bilities for the female are higher than those for the male policyholder, since the gender
regression coefficient indicates that ceteris paribus males have a higher mortality risk
than females. Hence, by the age of 80, the survival estimate at 90 years of age for the
male policyholder is p̃k,m(u = 25 | s = 15) = 0.719, whereas a woman with the same
demand presents an estimate of p̃k,w(u= 25 |s= 15) = 0.736.
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Table 6: Time-dynamic probabilities of being alive above 80 years for a man and a woman with the same
longitudinal information collected between the ages of 70 and 80. The results are estimated from the JM
with a recency-weighted cumulative effect parameterization and a NB longitudinal sub-model.

Age (years)
Man’s survival above 80 yr. Woman’s survival above 80 yr.

Mean q2.5% q97.5% Mean q2.5% q97.5%

80 1.000 1.000 1.000 1.000 1.000 1.000
82 0.972 0.945 0.983 0.974 0.945 0.985
84 0.934 0.871 0.960 0.939 0.875 0.964
86 0.882 0.773 0.929 0.890 0.779 0.935
88 0.812 0.640 0.884 0.824 0.655 0.896
90 0.719 0.479 0.825 0.736 0.501 0.839

If we know for certain that both subjects from the previous example remain alive
when they are 80 years old, then we can also assess their future survival from the infor-
mation contained in our dataset of policyholders above the age of 80. Table 6 provides
the survival estimates of these two subjects. Recall that logically the last row in this
table provides the same results as those in Table 5, since both survival estimates at the
age of 90 are performed under the same assumptions.

6. Conclusions

Health insurance companies have access to a valuable source of information for use in
follow-up studies, as they keep records of the medical claims made by each of their
policyholders, in what is a discrete counting process. In this article, we have assessed
the degree of relationship between an elderly policyholder’s annual demand of medical
emergency claims (as a longitudinal discrete response) and his or her time until death.
We defined elderly people as those with a chronological age of 65 years or above, so the
event times are left-truncated for all subjects whose observation time starts after this age
threshold.
A correct statistical analysis of the association between the longitudinal and time-

to-event outcomes entails a joint modelling approach. The longitudinal analysis was
carried out using either a PO or a NB mixed model, whereas for the survival analy-
sis, a time-dependent Cox model was used. The JM for annual rate counts and delayed
entries was fitted under the Bayesian paradigm via JAGS software, entailing the chal-
lenging task of applying it to a large dataset. First, we examined the influence of the
current longitudinal outcome on mortality risk. Then, in a second stage, we considered
the effect of the recency-weighted area under the longitudinal profile on survival. In both
cases, the results show that relatively high cumulative demand for ambulance services,
hospitalizations, and non-routine visits is positively related to a deterioration in the sub-
ject’s health status and, consequently, it entails higher mortality risk (i.e., lower survival
probabilities). The most interesting conclusion is that the most recent critical medical
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demand has the greatest impact on the current survival. This is what the JM is able to
capture by means of the functional form which relates the recency-weighted area under
the expected longitudinal profile with the time-to-event outcome, this approach being
preferable to the one which only takes into account the effect of the current expected
longitudinal value. Moreover, the results confirm the adequacy of assuming a NB distri-
bution in the longitudinal sub-model as a first step to account for overdispersion in the
longitudinal response. However, further extensions in the longitudinal part can be con-
sidered to specifically deal with zero inflation, such as different versions of zero-inflated
and Hurdle models. To conclude, subject-specific survival predictions have been ob-
tained as an example of the enormous potential of joint analysis as a predictive tool.
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Abstract

Catastrophe bonds are financial instruments designed to transfer risk of monetary losses arising
from earthquakes, hurricanes, or floods to the capital markets. The insurance and reinsurance
industry, governments, and private entities employ them frequently to obtain coverage. Parametric
catastrophe bonds base their payments on physical features. For instance, given parameters such
as magnitude of the earthquake and the location of its epicenter, the bond may pay a fixed amount
or not pay at all. This paper reviews statistical and machine learning techniques for designing
trigger mechanisms and includes a computational experiment. Several lines of future research
are discussed.

MSC: 62-07.

Keywords: Catastrophe bonds, risk of natural hazards, classification techniques, earthquakes,
insurance.

1. Introduction

Catastrophe (CAT) bonds are financial instruments that package catastrophe risk in a
tradeable security. These tools are in effect responsible for the existence of a newmarket
for trading risk at the frontier between finance and insurance, the so-called convergence
market (Cummins and Weiss, 2009), which promises an enormous supply of capital
for CAT risk transfer as long as pricing remains attractive for all parties involved. By
purchasing a CAT bond, investors take the risk from a sponsor (risk ceding party) in
exchange for some interest or spread. This spread constitutes the premium that compen-
sates the risk-taking party.
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CAT bonds can be of different types depending on how their payment behaviour is
structured. Earthquake CAT bonds in particular can base their payments on a variety
of proxies (Wald and Franco, 2017). While some base payments on actual, experienced
losses (indemnity), others (parametric) base them on the observable and measurable
parameters that describe an event. Strategies to provide coverage for large losses ensu-
ing after earthquakes through these parametric tools have been in use since the 1990s
(Franco, 2014). Their popularity in the market is due to historically lower prices rela-
tive to traditional (re)insurance and their appeal among investment and hedge funds is
due to their transparency. Lately, as traditional reinsurance pricing has decreased signif-
icantly, the price differential between traditional and alternative risk transfer (sometimes
referred to as ART) is very small and is no longer the driving rationale for seeking para-
metric coverage. Rather, sponsors now look to parametric risk transfer for the flexibility
and the ease of payment it provides.
Parametric earthquake CAT bonds employ a kind of trigger mechanism, typically a

numerical check of some sort, to determine the payment that should take place when an
earthquake occurs. These trigger mechanisms rely on obtainable physical characteristics
of the event via respected third parties, often public agencies (Cummins, 2007; Croson
and Kunreuther, 1999).
Since neither the investor nor the sponsor has the ability to manipulate this informa-

tion, the risk transfer process is without moral hazard (the risk that the parties involved
influence the payment outcome). Earthquakes around the world cause enormous losses,
of which only about 30% have insurance coverage (Guy Carpenter, 2014). These finan-
cial impacts often disrupt individual livelihoods and national economies. Therefore, the
possibility of expanding the coverage of insurance to minimize these impacts is very
appealing. Making earthquake insurance more accessible, however, is difficult for tra-
ditional providers since their operations are typically resource- and time-consuming.
Parametric risk transfer, in contrast, can be seamless, fast and cheap but in order to be
viable, parametric solutions need to be accurate. They also need to be designed and
customized without much effort so they can be easily industrialized.
Despite the popularity of parametric CAT bonds in the reinsurance market, the num-

ber of scientific works discussing these financial tools is rather limited. Thus, one of the
main contributions of this paper is to help to fill this gap by proposing simple, fast, and
automatic approaches able to design accurate trigger mechanisms. While a few authors
have proposed ad hoc complex approaches based on the use of genetic algorithms, we
explore here the use of more general tools based on statistical and machine learning
methods. In particular, we review eight techniques to classify events as to whether they
should trigger a payment or not, following a binary payment scheme often used in the
industry. Events are classified using the fundamental parameters of focal location (i.e.,
longitude, latitude and depth) and the moment magnitude. Note that all the approaches
need to be trained with a given dataset. These data need to constitute a large sample of
events and have to include a monetary loss for each earthquake. Therefore, we turn to
an earthquake CAT model to obtain a viable training dataset since historical catalogues
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usually do not contain a large enough sample of this type of information. In order to
test the performance of these techniques against a known benchmark, we recover the
analysis presented in Franco (2010) and solve the same problem using the same dataset.
We then compare across methods on such issues as accuracy, computational effort, and
spatial correlation of the classifier results. According to the obtained results, the tech-
niques employed can produce trigger mechanisms of equal or better accuracy than the
technique described in the aforementioned paper. Moreover, several techniques provide
huge efficiency gains in terms of decreasing classification time. Additionally, they pro-
vide scalability, being easily adapted to a larger parameter space and larger catalogues
without losing much efficiency. Finally, they are relatively easy to implement using mod-
ern programming languages and software such as Python and R.
The rest of this work is structured as follows. While Section 2 contextualizes this

work and describes the characteristics of the trigger mechanism, Section 3 reviews the
related work. Afterwards, the techniques considered are introduced in Section 4. Section
5 explains the computational experiments. Finally, our conclusions and suggestions for
future research are collected in Section 6.

2. CAT bonds and the trigger mechanism

CAT bonds have allowed insurers, reinsurers, governments, private entities and catas-
trophe pools to cede risks of earthquake losses to the capital markets via transparent
mechanisms associated with physical event features. Since they bypass the claims ad-
justing process, these tools provide a very fast recovery of funds to their sponsor after
an event. Within the realm of parametric earthquake CAT bonds there are also several
classes of tools. Some first-generation parametric CAT bonds, or so-called “CAT-in-a-
box” triggers, rely on the main physical descriptors of an earthquake event (see, for
instance, Cardenas et al., 2007; Franco, 2010; Franco, 2013). Others, second-generation
indexes, rely on spatially-distributed features such as ground motions recorded at sen-
sors located throughout a region (see for instance Goda, 2013; Goda, 2014; Pucciano,
Franco and Bazzurro, under review). From here, this paper focuses on first-generation
triggers.
Consider a set of l earthquake events in a geographic region of interest A. An earth-

quake event i is characterized by a magnitude mi, a hypocenter depth di, and epicenter
coordinates (xi,yi) within A. A binary trigger will determine whether a payment should
be disbursed due to event i. This response is represented by the variable B′, whose values
1/0 indicate trigger/no-trigger (payment/no-payment). Two situations may arise: (1) at
least one earthquake i triggers the bond (B′

i = 1) during its contract life, which means
that the entire bond principal has to be disbursed and, as a consequence, the buyers of
the bond lose their investment (and the bond sponsors receive compensation), or (2) no
earthquake triggers the bond during its life, in which case the principal is returned to the
investors with interest.
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Since the payment of a large sum of money is at stake, it is important that the trigger
performs as desired, i.e. that the trigger responds positively to events that cause a large
loss beyond a design threshold and that it does not respond to events that cause a loss
below this threshold. The accuracy of the trigger determines its success in the market.
Triggers that behave erratically erode the confidence of the markets in these tools and
therefore jeopardize the risk transfer process. It is crucial to design triggers that behave
as they should.
To describe the accuracy of the trigger, first consider a reference variable B that

represents its idealized behaviour and that depends on a measure based on the losses
(typically monetary). For an earthquake event i, this variable can be described as follows:

Bi =

{
0 if Li ≤ L

1 otherwise

where Li is the actual loss caused and L is a loss threshold specified by the sponsor, usu-
ally expressed in terms of a specific return period. In this idealized scenario, events trig-
ger this CAT bond only if the corresponding loss is above a given pre-specified threshold
L.
The objective of parametric trigger mechanism design is to develop a classification

mechanism that uses physical parameters of events to determine the trigger behaviourB′.
Discrepancies between variables B and B′ or the sum of errors (E =

∑l
i=1 I(Bi �= B′

i)),
represent lack of correlation between the output of the trigger and the ideal trigger.
Effective parametric trigger mechanism design aims to minimize these discrepancies.
A database including a set of events, their characteristics and the variable B can be

used to calculate trigger errors for this specific set of events. A measure of the loss has to
be obtained or estimated to computeB. It is preferable to have a reliable historical dataset
including a high number of events but in earthquake research, this is not possible due to
the low frequency of earthquakes, and the great uncertainty surrounding their associated
losses, and the evolution of insured portfolios over time. For this reason, the design of
triggers for seismic risk relies on simulated CAT model output.
According to the description offered in this section, the development of a trigger

mechanism can be labelled as a binary classification problem, allowing us to employ
a wide range of techniques to address it. In the following sections, some of them are
introduced and tested, and their use is illustrated.

3. Related work

The literature related to CAT bonds has increased during the last few years due to their
growing popularity. Combining instruments in finance and insurance fields with engi-
neering seismic risk assessment, Tao and Tao (2005) propose a method to set the rate
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for earthquake property and personal insurances with two kinds of deductibles. More-
over, the authors present a framework to set the annual coupon rate for earthquake CAT
bonds, which considers the probability of a catastrophe occurrence from seismic risk
assessment, the yields of reinvestment, the principal protected ratio and the issuance fee
ratio. An illustrative example focused on an urban area of China is described. Zimbidis,
Frangos and Pantelous (2007) produce a model for the risk dynamics of the magnitude
of the earthquakes by using advanced techniques from the extreme value theory. The
model is tested on historical data of earthquakes in Greece. Moreover, the theory of in-
complete markets and price CAT bonds is discussed. Tao, Tao and Li (2009) builds a
pricing model, which employs the probability of an earthquake, estimated by a seismic
risk assessment method. The cash flows of the insurance in complete and incomplete
markets are described by Geometric Brownian Motion and Jump-Diffusion processes,
respectively. Wu and Zhou (2010) reviews the state-of-the-art approaches in modelling
losses for CAT bonds’modelling and pricing. They are compared by using a catalogue of
earthquakes in China from 1966 to 2008. The double exponential Jump-Diffusion model
fits better. Damnjanovic, Aslan, andMander (2010) propose an integrativemodel linking
engineering design parameters with financial indicators. The authors explain a frame-
work based on a four-step structural loss model and a transformed survival model, which
estimates excess returns. Härdle and Cabrera (2010) study the calibration of a CAT bond
forMexican earthquakes, which proves that a hybrid strategy combining traditional rein-
surance and CAT bonds presents a better performance in the sense that provides cover-
age for a lower cost and lower exposure in comparison with a strategy without CAT
bonds. Goda (2013) compares the effectiveness of two trigger mechanisms for para-
metric earthquake CAT bonds: scenario-based and station intensity-based approaches.
The results indicate that the latter method performs at least as well as the former. Addi-
tionally, different spatial correlation models of peak ground motions are studied. Later,
Goda (2014) extends the station intensity-based trigger method, which uses direct obser-
vation of ground motions at recording stations, by promoting a flexible multiple-discrete
payment structure. Gunardi and Setiawan (2015) present a study case for Indonesia, in
which formulas are proposed for pricing three types of CAT bonds. A generalized ex-
treme value distribution is used to model the probability of maximum magnitude for
Indonesian earthquakes. Shao, Pantelous and Papaioannou (2015) investigate the pric-
ing process for CAT bonds considering financial and catastrophe-independent risks. An
application for earthquakes is considered employing extreme value theory, and a numer-
ical example based on California is detailed. Finally, Cummins (2007) reviews the status
of the market for CAT bonds and other risk-linked securities. It discusses the comple-
mentarity between CAT bonds and the reinsurance market. In addition, the role of other
modern financing mechanisms such as risk swaps, industry loss warranties, and sidecars
is explained.
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4. Statistical and machine learning approaches

Classification techniques (Kotsiantis, 2007) constitute a set of procedures from statistics
and machine learning (more specifically, supervised learning) to determine a category
or class for a given observation. Having a dataset of l observations composed of ex-
planatory or independent variables (X1,X2, . . . ,Xn), and a response or dependent vari-
able Y , these techniques attempt to explain the relationships between variables and/or
classify new observations based on the explanatory variables. In the problem of CAT
bond trigger design, the response of the mechanism is the dependent variable Y , while
the characteristics of an earthquake event (i.e., the magnitude, the hypocenter depth, and
the epicenter coordinates) represent the independent variables.
Nowadays, there are plenty of classification techniques. Some of the most employed,

e.g., Linear Discriminant Analysis or Logistic Regression, have been applied for more
than five decades. These are mainly linear methods. Boosted by the computing advances
in the 1980s and 1990s, non-linear methods such as Classification Trees, Neural Net-
works and Support Vector Machines emerged and started to attract attention. This sec-
tion introduces some well-known and powerful techniques that we propose to automati-
cally design a trigger. The reader interested in comprehensive and practical descriptions
is referred to the books written by Hastie, Tibshirani and Friedman (2009) and Lantz
(2015).

4.1. The nearest neighbours classifier

TheNearest Neighbours classifier is a simple technique that assigns a new observation to
the class of the most similar observations, so-called neighbours. Therefore, it is suitable
when observations of the same class tend to be homogeneous. Its main weaknesses are:
not producing a model (which hinders the exploration of relationships among variables),
taking a relatively high amount of time, and consuming a large amount of memory. This
classifier depends on a parameter k representing the number of neighbours. The neigh-
bours are selected according to a distance function, usually Euclidean. This parameter
allows the balance between overfitting and underfitting (also known as bias-variance
trade-off): a large k reduces the variance caused by noisy data or outliers but may ignore
small/local patterns; conversely, a small value may introduce too much bias.

4.2. The naı̈ve Bayes classifier

The naı̈ve Bayes classifier is based on Bayes’ theorem. “Naı̈ve” refers to the assump-
tion that all variables are independent and equally important. Even if this condition is
not usually met in real-life applications, this classifier frequently provides competitive
results. The posterior probability for a given class y is computed as:
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P(Y = y | X1 = x1∩X2 = x2∩ ·· · ∩Xn = xn) =

P(X1 = x1 | Y = y)P(X2 = x2 | Y = y) · · ·P(Xn = xn |Y = y)P(Y = y)
P(X1 = x1)P(X2 = x2) · · ·P(Xn = xn)

The classification for a given observation is obtained by comparing the probabilities
of each class given the values of the explanatory variables, and selecting the class asso-
ciated to the highest probability. There are many classifiers differing in the assumption
made regarding the distribution of P(Xj = x j | Y = y). Gaussian distributions consti-
tute a typical choice. This technique employs frequency tables and, consequently, each
variable must be categorical. Numeric variables are usually discretized.

4.3. Linear and quadratic discriminant analyses

In Linear Discriminant Analysis, the distribution of the explanatory variables is sepa-
rately modelled in each of the classes, and then Bayes’ theorem is used to flip these
around into estimates for the probability of the response variable taking a specific value
given the explanatory variables. Commonly, these distributions are assumed to be Gaus-
sian. In this case, the resulting models are similar to those provided by Logistic Re-
gression. Linear Discriminant Analysis is more commonly employed when there are
more than two classes. While this technique assumes that observations are drawn from
a distribution with a common covariance matrix in each class (which leads to linear de-
cision boundaries), Quadratic Discriminant Analysis does not make assumptions on the
covariance matrices (producing quadratic decision boundaries).

4.4. Classification trees

Contrary to global models (where a predictive formula is supposed to hold in the entire
data space) such as those of Logistic Regression, Classification Trees try to partition the
data space into small enough parts where a simple model can be applied. The results can
be represented as a tree composed of internal and terminal (or leaf) nodes, and branches.
Its non-leaf part is a procedure to determine for each observation which model (i.e.,
terminal node) will be used to classify it. At each internal node of the tree, the value of
one explanatory variable is checked and, depending on the binary answer, the procedure
continues to the left or to the right sub-branch. A classification is made when a leaf is
reached.
The most relevant advantage of this classifier is the easiness to understand what

trees represent. Theymirror human decision-makingmore closely than other techniques.
Furthermore, trees require little data preparation, are able to handle both numerical and
categorical data, and perform well (i.e., use standard computing resources in reasonable
time) with large datasets.
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4.5. Logistic regression

Logistic Regression techniques are designed to model the posterior probabilities of each
class by means of linear functions. These probabilities, such as the one shown below,
must be non-negative and sum to one.

P(Y = y | X1 = x1∩X2 = x2∩ ·· ·∩Xn = xn) =
eβ0+β1x1+β2x2+···+βnxn

1+ eβ0+β1x1+β2x2+···+βnxn

Thesemodels are usually fitted by maximum likelihood employing Newton’s method.
The previous expression can be rewritten in terms of log-odds as follows:

log
( P(Y = y | X1 = x1∩X2 = x2∩ ·· · ∩Xn = xn)
1−P(Y = y | X1 = x1∩X2 = x2∩ ·· · ∩Xn = xn)

)
= β0+β1x1+β2x2+ · · ·+βnxn

This technique is especially useful when the aim is to explain (i.e., not only classify)
the outcome based on the explanatory variables. Non-linear functions can be considered
including interactions and transformations of the original variables.

4.6. Clusterwise logistic regression

While Regression Analysis consists of fitting functions to analyse the relationship be-
tween variables, Clustering seeks subsets of similar observations (or variables) in a
dataset. Thus, the aim of Clusterwise Regression is to combine both techniques in order
to discover trends within data when more than one trend is likely to exist (DeSarbo and
Cron, 1988). This technique is highly flexible because different functions can be esti-
mated. It is considered a “white-box technique” in that its mathematical systems are not
complex and its results are relatively easy-to-interpret.

4.7. Neural networks

Neural Networks model the relationship between the explanatory variables and the re-
sponse variable using a model inspired by how a biological brain responds to stimuli
from sensory inputs. They extract linear combinations of the explanatory variables as
derived variables and model the response variable as a non-linear function of these
transformed variables. These models have several kinds of layers: the input layer, the
output layer, and one or more hidden layers between them. Each layer contains neurons
representing the variables. Increasing the number of hidden layers and/or neurons adds
complexity and may improve computational capacity. With too few layers, the model
may lack the flexibility to capture non-linearities in data. Neural Networks tend to have
many weights, which can cause problems of overfitting. Weight decay is a method of
regularization to prevent it. The “backpropagation” algorithm is a technique commonly
employed for parameter estimation or training a Neural Network.
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4.8. Support vector machines

A Support Vector Machine can be imagined as a surface that defines a boundary be-
tween various points of data that represent observations plotted in a multidimensional
space. The goal is to create a flat boundary, called a hyperplane, which leads to fairly
homogeneous partitions of data on either side. Among all potential hyperplanes, the one
that creates the greatest separation between classes (a soft margin may be considered for
the case on non-linearly separable data) is selected. The support vectors are the points
from each class that are the closest to the hyperplane; each class must have at least one.
In many real-life applications, the relationships between variables are non-linear. A key
feature of this technique is its ability to efficiently map the observations into a higher
dimension space by using the kernel trick. As a result, a non-linear relationship may be
transformed into a linear one.

4.9. Discussion of classification techniques

Several techniques have been presented in the literature to design trigger mechanisms
that determine – from an earthquake’s physical characteristics – whether a principal
bond should be paid (Franco, 2010, 2013). As mentioned, the aim of this work is to intro-
duce and illustrate the application of simple, well-known, and efficient techniques that
have heretofore not been explored in this context. Neural Networks and Support Vec-
tor Machines constitute two relatively modern and powerful techniques. Typically, they
are able to reach high levels of accuracy by capturing nonlinear relationships between
variables. However, this same characteristic makes them prone to overfitting. There are
many procedures to avoid this problem such as the addition of a parameter to limit the
growth of the weights or the introduction of randomness into the training data or the
training algorithm. Sometimes it may be difficult to avoid overfitting and underfitting.
Training Neural Networks often takes a long time, and both techniques require a non-
trivial process of fine-tuning parameters. Furthermore, the resulting models are difficult
if not impossible to interpret. For this reason, application of these techniques is almost
always limited to classification/prediction purposes. Techniques such as Nearest Neigh-
bours and Naı̈ve Bayes Classifiers are easier to understand and implement and may
provide relatively high accuracy. While the first is non-parametric and, consequently,
flexible or unstable, the second relies on some assumptions that may be quite unrealistic
in most cases.
Logistic Regression is a well-established technique, which enables the understanding

of the effects of the explanatory variables on the response. Clusterwise Logistic Regres-
sion aims to incorporate the strengths of Logistic Regression while offering more flexi-
bility, which should lead to a better understanding of the relationships among variables
and higher accuracy. Classification Trees constitute an efficient technique that only uses
the most important variables and results in a logic model. As other techniques studying
non-linear relationships, these three techniques are particularly susceptible to overfitting
or underfitting the model. Typically, small changes in training data may lead to signif-
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icant modifications. In addition, Classification Trees may derive decisions that seem
counterintuitive or are unexpected.
Closely related to Logistic Regression, the classic Linear/Quadratic Discriminant

Analysis techniques search for the linear/quadratic combination of variables that ex-
plains the data the best. Logistic Regression is preferred if the assumption of normally-
distributed explanatory variables does not hold. Otherwise, Discriminant Analysis can
provide better results.
All these techniques have different features worthy of consideration when addressing

a classification problem. Consequently, all are included in the following computational
experiments.

5. Computational experiments

This section illustrates the application of the techniques introduced in Section 4 and
compares the results with those obtained in Franco (2010). A framework for evaluation
is presented such that the techniques can be compared to one another and to the reference
methodology along the dimensions of accuracy, efficiency, and spatial correlation.
The dataset analysed is an earthquake catalogue representing 10,000 years of simu-

lated seismic activity in and around Costa Rica. The catalogue contains a total of 24,957
earthquakes. These records should include the four main physical parameters enumer-
ated before and the corresponding simulated loss. For each synthetic earthquake event in
the catalogue, the model computes a ground motion footprint, which is in turn translated
into estimated levels of damage to a user-defined portfolio of properties distributed in
space. CATModels have been discussed in previous studies (e.g. Grossi and Kunreuther,
2005) and we will not discuss the CAT modelling process here. The target of the clas-
sifier algorithms, in short, is to discriminate events based on their physical parameters
to identify large loss-producing events. A more detailed description of the catalogue
can be found in the aforementioned work. In this case study, the events in the database
are assumed to be triggering events if their loss is equalled or exceeded with an annual
probability of 1%.

5.1. Evaluation framework

In the case of parametric trigger design, it is difficult a priori to select the “best” classi-
fication technique for two main reasons. First, it is a multi-objective problem. Although
from a statistical perspective, the sole objective may be to maximize accuracy, in real-
life applications many other characteristics will likely play an important role. These may
include ease of implementation, ease of explanation to non-experts, popularity, and ex-
istence of graphical representations or summaries of the outputs, among many others.
The second reason is that, assuming we are only interested in the accuracy, the best tech-
nique will depend on the data at hand. Consequently, we present a general discussion of
all techniques, and evaluate the trigger mechanisms they produce in three ways.
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Table 1: Structure of a confusion matrix. Note: This table summarizes the alignments and discrepancies
between the behaviour of the designed trigger mechanism and the idealized trigger behaviour.

Predicted Class

B′ = 0 B′ = 1

Idealized Class
B= 0 True Positive (TP) False Positive (FP)

B= 1 False Negative (FN) True Negative (TN)

First, the confusion matrix (Table 1) is obtained for each trigger mechanism. This
table summarizes the alignments and discrepancies between the behaviour of the de-
signed trigger mechanism and the idealized trigger behaviour (described in Section 2).
In the context of parametric triggers, B′ is a function representing the predicted trigger
behaviour and B is a function representing the idealized trigger behaviour. In both cases,
the function is equal to 1 if the bond triggers and is equal to 0 otherwise.
Next, several metrics are computed from the confusion matrix to quantify perfor-

mance of each technique’s trigger mechanism: error, sensitivity, and specificity. The
formulas for computation thereof are shown below.

Error=
FP+FN

TP+FP+FN+TN

Sensitivity=
TP

TP+FN

Specificity=
TN

TN+FP

Both false positive and false negative are equally penalized in this framework. In
other words, we simply focus on minimizing the total number of errors. The Error
metric above quantifies the rate at which the trigger mechanism misclassifies events1.
Sensitivity characterizes how often the mechanism triggers when it should trigger, and
specificity characterizes how often the mechanism does not trigger when it should not.
The time required to design the trigger mechanism is also reported for each technique.
The metrics described above constitute the numerical evaluation of the trigger mech-
anisms. Moreover, maps of the resulting trigger patterns are produced for a subset of
techniques. This exercise is intended to assess whether classification techniques pro-
duce trigger mechanisms with realistic geospatial trigger patterns.

1. Note that error is equal to one minus accuracy.



384 Statistical and machine learning approaches for the minimization of trigger errors...

5.2. Application of classification techniques

As mentioned in Section 2, the design of a parametric trigger mechanism is driven by
the minimization of discrepancies between its outputs and those from a trigger with an
idealized behaviour (one based directly on the losses). If the resulting trigger mechanism
is expected to be useful for new or unseen observations, one should avoid employing
the same observations for developing the mechanism and assessing its performance.
This could lead to a problem of overfitting (i.e., obtaining complex models that capture
specificities of the data but do not generalize well for other observations). An effective
technique to avoid this problem is to split the dataset into three subsets: a training set
used for constructing the triggers, a validation set employed to tune the parameters, and
a test set required to assess their performance. We apply this approach using 50% of the
observations for training, 25% for validation, and the remaining 25% for testing. z-score
standardization has been applied for all techniques except Classification Trees, Logistic
Regression and Clusterwise Logistic Regression. A confidence level of 95% has been
considered for the statistical tests. Details of the application of each of the classification
techniques are provided in the following paragraphs. The R program (R Core Team,
2012) has been used.

The nearest neighbours classifier. This technique requires a choice of the number of
nearest neighbours to consider. Values ranging from 3 to 10 have been tested, and the
corresponding accuracies associated to each value have been assessed using the valida-
tion set. Ultimately, 5 nearest neighbours are considered for construction of the trigger
mechanism, since this provides the highest accuracy but is still small enough to reduce
both the variance and the computational time required to make predictions.

Classification trees. Construction of a Classification Tree relies on the selection of the
complexity parameter (a parameter that measures the tree cost-complexity). A total of
20 equidistant values from 0.01 up to 0.20 have been tested, and the corresponding accu-
racies associated with each value have been assessed using the validation set. The value
0.05 has been selected, since it provides the most accurate result. The representation of
the tree is shown in Figure 1. Observations which satisfy the condition shown for each
internal node terminate to the left; otherwise, they proceed to the right. The percentage
shown at the bottom of each node indicates the proportion of observations that reach that
node. The value above that percentage refers to the binary classification. For instance,
the first condition is ‘m < 6.15’, and it is evaluated for all observations (i.e., 100%).
Approximately 70% of the earthquakes satisfy this condition and their prediction (i.e.,
B′) is set to 0. The remaining earthquakes are further divided according to the condi-
tion ‘y < 9.785’. The same steps are iteratively repeated until a prediction is set for all
earthquakes. Thus, eight conditions are considered and only 0.22% of the earthquakes
are assigned a value of 1.
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m < 6.15

yc < 9.785

xc < −84.56

xc >= −83.88

yc >= 10.09

xc < −84.25

m < 6.55

d >= 32.65

100.00%

70.17%

29.83%

19.42%

10.41%

7.59%

2.82%

1.29%
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Figure 1: Classification Tree. Note: Representation of the Tree. Observations which satisfy the condition
shown for each internal node terminate to the left; otherwise, they proceed to the right. The percentage
shown at the bottom of each node indicates the proportion of observations that reach that node. The value
above that percentage refers to the binary classification.

Neural Networks. Even if complex and powerful Neural Networks exist, we focus on a
topology characterized by only one hidden layer. Despite its minimalism, this approach
is commonly used, tends to provide good results and is conceptually simple. The number
of units in the hidden layer (26) has been tuned by testing the set of values ranging from
10 to 40.

Table 2: Kernels considered for Support Vector Machines. Note: This table presents some of the most
popular kernels for Support Vector Machines in the literature, which are considered in the computational
experiments.

Linear k(a,b) = aT b

Polynomial 2 k(a,b) = (αaT b+c)d

Radial Basis 3 k(a,b) = exp(−γ|a−b|2)
Sigmoid 4 k(a,b) = tanh(σaT b+e)

Support Vector Machines. In order to efficiently employ this technique, it is required
to select a kernel and tune the corresponding parameters. The most popular kernels have
been considered and are shown in Table 2. There is also a parameter cost related to the
cost of a misclassification for which the following values have been considered: 0.01,
0.1, 1, 5, and 10. Using the validation set, each combination of cost and kernel (including

2. Values tested for α, c, and d, respectively: {0.1,0.2,0.3,0.4}, {0,0.2,0.4,0.6}, and {2,3,4,5}.
3. Values tested for γ: {0.1,0.2,0.3,0.4}.
4. Values tested for σ and e, respectively: {0.1,0.2,0.3,0.4} and {0,0.2,0.4,0.6}.
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the type and the corresponding set of parameters) has been tested by computing the
associated accuracy level. According to the results, the best option is a polynomial kernel
with the following parameters: cost= 10, α= 0.4, c= 0.4, d = 4.

5.3. External validation

In order to validate the application of these techniques to the development of parametric
triggers for earthquake catastrophe bonds, we compare our results with those provided
by the methodology in Franco (2010). In this paper, the author proposes the construc-
tion of binary “cat-in-a-box” trigger mechanisms, where the geographical space is dis-
cretized in square boxes or sub-regions of the same size. Each sub-region belongs to
a specific zone denoted as k. This approach relies on the concept of optimization and
its aim is to determine the parameters of a trigger mechanism for each zone as well as
the zone assignment of each sub-region such that the total trigger error is minimized.
Concretely, the trigger mechanism for zone k has the following structure:

∀(xi,yi) ∈ Ak, B′
i =

{
0 if mi ≤Mk or di ≥ Dk

1 if mi ≥Mk or di ≤ Dk

where Mk and Dk represent the parametric triggers for the zone, namely the magnitude
and depth thresholds, respectively. All sub-regions belonging to zone k have the same
trigger structure. An Evolutionary Algorithm (EA) is implemented to address this op-
timization problem and is executed for different combinations of geographic resolution
and number of zones. Although the paper does not report computational times, these
methods may consume several hours to perform the parameter optimization.

5.4. Performance

The performance of the trigger mechanisms designed using all nine statistical and ma-
chine learning techniques and using the EA employed in Franco (2010) is reported and
discussed here. Performance measures are shown in Table 3. Total time takes into ac-
count the time to construct the trigger, fine-tune its parameters and test its performance.
A suitable trigger mechanism design should exhibit low error and high specificity

and sensitivity and should require minimal computational effort. It can be concluded
from the table that the non-linear and non-parametric techniques obtain the best per-
formances of the statistical techniques in terms of accuracy, sensitivity and specificity.
In particular, Nearest Neighbours classifier, Classification Trees, Neural Networks and
Support Vector Machines are all consistently superior across the three metrics. The re-
sults reveal a high variability with respect to computational time, ranging from a few
seconds to several minutes. There tends to be trade-off between accuracy and time-
required, particularly in the cases of Neural Networks and Support Vector Machines,
both of which require significantly more time than the other techniques.
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Table 3: Parametric trigger mechanism performance for ten design techniques. Note: This table shows the
performance of the trigger mechanisms designed using all nine statistical and machine learning techniques
and using the EA employed in Franco (2010). It considers the error, the sensitivity, the specificity, and the
computational time.

Technique Error Sensitivity Specificity Time (sec.)

Nearest Neighbours classifier 0.18% 99.84% 94.44% 7.22

Naı̈ve Bayes classifier 0.77% 99.58% 4.35% 1.62

Linear Discriminant Analysis 0.64% 99.57% 0.00% 0.28

Quadratic Discriminant Analysis 0.42% 99.63% 57.14% 0.12

Classification Trees 0.24% 99.79% 87.50% 2.62

Logistic Regression 0.45% 99.58% 33.33% 0.87

Cluster-wise Logistic Regression 0.43% 99.57% undefined 5.7

Neural Networks 0.14% 99.94% 82.14% 190.86

Support Vector Machines 0.27% 99.78% 81.25% 161.25

Evolutionary Algortihm (Franco, 2010) 0.34% 99.86% 55.56% hours

Several techniques exhibit superior performances to the EA in terms of accuracy,
sensitivity and specificity. While EA produces relatively low error rates, the time re-
quired is significantly longer than all of the statistical and machine learning techniques.
The triggering events in the idealized trigger mechanism (those for which B = 1)

comprise less than 0.5% of the total test catalogue, while the other 99.5% of catalogue
events do not trigger the idealized bond. Hence, a supposed “null” trigger mechanism in
which no events ever trigger the bond would exhibit 99.5% accuracy (0.5% error), 100%
sensitivity and 100% specificity. The burden in this case is therefore on any designed
trigger mechanisms to outperform this null trigger mechanism benchmark. Eight out of
the ten techniques produce trigger mechanisms superior to the null trigger mechanism
in terms of accuracy, while the Naı̈ve Bayes Classifier and Linear Discriminant Analysis
perform worse by a small margin.
That so few events trigger the bond in the idealized scenario suggests that a larger

catalogue might produce more informative and nuanced results using the statistical and
machine learning techniques for parametric trigger mechanism design. With a larger
catalogue to “learn” from, the techniques would have more triggering events from which
to decipher patterns and connections. Reduction of the loss threshold used to construct
the idealized trigger scenario would also generate more triggering events from which
the statistical techniques could “learn”, but since CAT bonds are typically constructed
for relatively high return period losses (greater than 100 years), these solutions would
not be relevant from a practical standpoint.
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Figure 2: Map of predictions obtained with Neural Networks (left) and the EA described in Franco (2010).
Note: Evaluation of two techniques that produce trigger mechanisms: Neural Networks and the EA from
Franco (2010). The first layer is composed of white points, where each point represents an earthquake of
the catalogue. The second layer includes the black points, which identify those earthquakes belonging to
the test set with B′ = 0. Similarly, the third layer covers the gray triangles, i.e., earthquakes from the test
set with B′ = 1, respectively.

While accuracy is certainly an indispensable feature of any suitable technique for
design of parametric trigger mechanisms, a technique should also produce trigger be-
haviour that is meaningful from a physical perspective. Namely, a suitable technique for
parametric trigger mechanism design should produce trigger behaviour that reflects the
seismic hazard and/or development patterns in the region of study. For this reason, the
physical performance of the techniques trigger mechanisms was evaluated representing
earthquakes falling into the test set in maps. Figure 2 shows the evaluation of two tech-
niques that produce trigger mechanisms that are suitable from a numerical perspective:
Neural Networks and the EA from Franco (2010). The first layer is composed of white
points, where each point represents an earthquake of the catalogue. The second layer in-
cludes the black points, which identify those earthquakes belonging to the test set with
B′ = 0. Similarly, the third layer covers the gray triangles, i.e., earthquakes from the test
set with B′ = 1. Note that the plot on the left (Neural Networks) gathers all gray triangles
in the centre, while the plot on the right (EA) shows more dispersion.

6. Conclusions and future research

Natural catastrophes continue to cause enormous losses that remain largely uninsured,
leaving populations vulnerable to severe financial impacts. The insurance and reinsur-
ance industry, governments and catastrophe pools have started to employ financial in-
struments such as parametric CAT bonds to cede these catastrophic risks to the capi-
tal markets. Were these tools extended for more widespread usage at the retail level,
we could progressively and massively reduce the “insurance gap” for earthquake risks.
However, this requires the construction of accurate and unbiased parametric triggers
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with extreme efficiency and automation, something that is not available in the industry
today.
To address this problem, we have explored solving the trigger design challenge as a

classification problem, employing well-known and powerful techniques from statistics
and machine learning. From a numerical perspective, it has been shown that these tech-
niques can produce trigger mechanisms of equal or better accuracy than previously pub-
lished techniques (Franco, 2010). Furthermore, several statistical and machine learning
methods provide huge efficiency gains in terms of decreasing classification time. Addi-
tionally, they provide scalability, being easily adapted to a larger parameter space and
larger catalogues without losing much efficiency, and ease of implementation since there
is a wide range of programs and programming languages that enable free and simple
implementation of these statistical and machine learning techniques such as R (R Core
Team, 2012), Octave (Eaton et al., 2014) and Scilab (Scilab Enterprises, 2012). Appli-
cation of these statistical and machine learning techniques to the problem of parametric
trigger design is not without complication, however, because while these methods pro-
vide accuracy and efficiency improvements, some of the examples shown in this paper
produce trigger mechanisms with relatively low specificity values.
Several lines of future research emerge from the introduction of classification tech-

niques to the development of trigger mechanisms for earthquake CAT bonds. First, it is
apparent from the experiments in this paper that more meaningful insights as to the ap-
plicability of classification techniques to the development of trigger mechanisms could
be gleaned from the use of a larger earthquake catalogue. It would also be worthwhile
to examine the behaviour of the trigger mechanisms at multiple return periods, partic-
ularly lower ones. There is a natural imbalance in the data at high return periods since
very few events trigger the bond. Consequently, there are two groups of events sub-
jected to classification (depending on whether they should trigger a given CAT bond),
but they greatly differ in size. Techniques may present low accuracy with respect to
the minority (triggering) group and still have a good global accuracy. Analysis of the
same simulated earthquake catalogue at lower return periods would reduce this clas-
sification group imbalance but would not produce a usable trigger mechanism, since
CAT bonds are typically constructed to protect against high return period losses. There-
fore, such an experiment could provide valuable insights into the different classifica-
tion techniques but would not produce directly usable trigger mechanisms. A popu-
lar numerical alternative to this complication is to oversample events in the minority
group, which would constitute an artificial expansion of the original earthquake cata-
logue.
Introduction of such a large number of alternative techniques for parametric trig-

ger mechanism design motivates the development of a selection framework. From the
standpoint of practical implementation, it would be interesting to identify the most de-
sirable characteristics for a trigger mechanism and order them. For instance, if accuracy
is supreme, one should explore the use of more modern and complex techniques such
as Random Forests and Multi-Layer Neural Networks (provided a larger catalogue was
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available). In contrast, if the interpretability plays the largest role, it would make sense
to employ more classical techniques and study graphical tools.
The technological developments characterizing the era of Big Data and the Internet

of Things have potentially fascinating implications in this field. These avenues open
the possibility of designing triggers not only based on few physical characteristics of
an earthquake but on much more information obtained through broad networks of sen-
sors. Metaheuristics, simheuristics (i.e., algorithms combining metaheuristics and sim-
ulation techniques) and other classical instruments may be used to perform a feature
selection or extraction. Finally, the capacity of simulators to create larger catalogues is
ever-increasing, constantly being able to generate more and more data, more and more
reliably. In this scenario, non-linear approaches such as Deep Learning would be worth
exploration.
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Horizontal collaboration in freight transport:
concepts, benefits, and environmental challenges
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Abstract

Since its appearance in the 1990s, horizontal collaboration (HC) practices have revealed them-
selves as catalyzers for optimizing the distribution of goods in freight transport logistics. After
introducing the main concepts related to HC, this paper offers a literature review on the topic and
provides a classification of best practices in HC. Then, the paper analyses the main benefits and
optimization challenges associated with the use of HC at the strategic, tactical, and operational
levels. Emerging trends such as the concept of ‘green’ or environmentally-friendly HC in freight
transport logistics are also introduced. Finally, the paper discusses the need of using hybrid op-
timization methods, such as simheuristics and learnheuristics, in solving some of the previously
identified challenges in real-life scenarios dominated by uncertainty and dynamic conditions.

MSC: 90B06.

Keywords: Horizontal collaboration, freight transport, sustainable logistics, supply chain manage-
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1. Introduction

Terms such as ‘joint venture’, ‘network’, ‘alliance’, ‘coalition’, ‘cooperation’, ‘agree-
ment’, or ‘partnership’ are frequently used in modern business activities. Due to their
relevance, they are often accompanied by the ‘strategic’ adjective. Specifically, the con-
cepts of ‘cooperation’ and ‘collaboration’ are occasionally used as synonymous by some
authors (as it will be the case in this paper), while others consider that the latter extends
the former by also including mutual trust, a higher stage of commitment, etc. Several
researchers have tried to rank these terms, obtaining different results depending on the
economic sector and criteria considered (Mentzer, Foggin and Golicic, 2000; Golicic,
Foggin and Mentzer 2003). As Barratt (2004) concluded, “cooperation is an amorphous
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Table 1: Well-known works providing general overviews on collaboration practices.

Unrelated Vertical Horizontal

Marketing Rokkan, Heide and
Wathne (2003)

Zhang et al. (2013) Czernek (2013)

R&D Teirlinck and
Spithoven (2013)

Zeng et al. (2015) Roijakkers and Hagedoorn
(2006)

NPD Yam and Chan (2015) Petersen, Handfield
and Ragatz (2005)

Chen (2005)

L&T
Maritime

N/A Álvarez-SanJaime et al.
(2013b)

Álvarez-SanJaime et al.
(2013a)

L&T Air N/A Fu, Homsombat and
Oum (2011)

Kuchinke and Sickmann
(2005)

L&T
Landside

N/A Bahinipati and
Deshmukh (2012)

Cruijssen, Cools and Dullaert
(2007b) and Cruijssen, Dullaert
and Fleuren (2007c)

meta-concept that has been interpreted in many different ways”. According to Ham-
mant (2011), 95% of the companies surveyed implemented some type of collaboration
strategy. However, as pointed out by Raue and Wieland (2015), misunderstanding of a
collaboration agreement can lead to problems in the inter-firm relationship derived from
unmet expectations from one of the sides. On the one hand, inter-firm agreements imply
maintaining an independent legal personality while, on the other hand, they also en-
tail the establishment of formulas, protocols, and frameworks that enable the collabora-
tion in some business-related areas: finance, new product development (NPD), research
and development (R&D), marketing, logistics and transportation (L&T), etc. Therefore,
multiple variants of collaboration practices can occur in these areas. Table 1 classifies
some representative works that offer general overviews on the concept of collaboration
in different areas, including Marketing, R&D, NPD, and different variants of L&T.
Companies involved in collaboration practices might be related somehow: for exam-

ple, they might belong to different levels in a supply chain (vertical collaboration) or
to the same level in different supply chains (horizontal collaboration or HC). In vertical
collaboration, or supply chain management (SCM), agreements take place among com-
panies belonging to different levels inside a supply chain (Chopra andMeindl, 2007). On
the contrary, HC refers to joint actions performed by several companies working at the
same level of the supply chain and oriented to obtain an enhanced performance in terms
of economic and ecologic impact (Bahinipati, Kanda and Deshmukh, 2009). Lambert,
Emmelhainz and Gardner (1996) defined HC as a tailored relationship that is based on
mutual trust and openness, with the aim of obtaining a competitive advantage – that is,
assuming that conjoint performance is higher than the one each partner would achieve on
its own. Cruijssen et al. (2007b) consider HC to be an interesting approach to decrease
costs, improve service quality, and protect market positions. HC relies on the sharing of
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Figure 1: Evolution of indexed publications related to HC in L&T.

activities and information, which would necessarily imply sharing operation costs.
Through information-sharing, small and medium enterprises expect to act as if they were
a large enterprise able to benefit from economies of scale. However, sharing information
implies mutual trust, which uses to be a major drawback in most HC practices (Zeng et
al., 2015). Vertical collaboration inside supply chains has been intensively studied in
the literature (Soosay and Hyland, 2015). There are also studies related to inter-modal
transportation, establishing collaborations between truck and ship operators to provide
inter-modal services (Saeed, 2013; López-Ramos, 2014). As noticed by some authors
(Leitner et al., 2011), the scientific literature related to HC practices is still scarce in
comparison with the one dedicated to vertical collaboration, specially in the L&T field.
Despite this, during the last decade there has been an increasing interest among re-
searchers in analysing HC practices in L&T. This trend can be observed in Figure 1,
which shows the historical evolution of Scopus- and WoS-indexed articles related to the
concept of HC in L&T.
This paper aims at partially close this gap in the literature on HC by providing the fol-

lowing contributions: (i) it offers an updated literature review on the topic and provides a
classification of best practices in HC; (ii) it analyses the main benefits and optimization
challenges related to the use of HC at the strategic, tactical, and operational levels; (iii)
it introduces the concept of environmentally friendly, sustainable, or ‘green’ HC (GHC)
in freight transport logistics; and (iv) it discusses the need of using hybrid optimization
methods, such as simheuristics and learnheuristics, in solving some of the previously
identified challenges in real-life scenarios dominated by uncertainty and dynamic con-
ditions. To construct this survey, an intensive search was carried out in Scopus and Web
of Science. In this search, the following terms were used: “Horizontal cooperation”,
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“Horizontal collaboration”, “coalition”, and “alliance”. The search was limited by using
keywords such as “logistics”, “transportation”, and “carrier”. In addition, recent articles
from well-known authors in the area of HC were analysed in order to complete our set
of papers. All in all, a total of 175 references were analysed.
The remaining of this article is structured as follows: Section 2 offers an updated

literature review on HC practices; Section 3 offers a classification of HC practices; Sec-
tion 4 discusses potential benefits of HC at the strategic, tactical, and operational levels,
respectively; Section 5 analyses the emergent research field of GHC; Section 6 proposes
the use of simheuristics and learnheuristics algorithms for optimizing HC practices in
real-life scenarios; finally, Section 7 summarizes the main findings of this work and
outlines some future research lines.

2. Literature review on HC concepts

This section offers an exhaustive review of existing works on horizontal collaboration.
In order to improve its readability, the review has been organized in the following two
subsections: groundworks on horizontal collaboration and works discussing its benefits
and challenges.

2.1. Groundworks on horizontal collaboration

In their work related to the grocery sector, Caputo and Mininno (1996) are among the
first authors in addressing HC in L&T. these authors highlighted the potential benefits
that “cooperation between institutions placed in the same level” could provide. Before
2006, only a few publications explicitly refer to HC in the land-side transportation. Ta-
ble 2 lists those publications and briefly summarizes their main contributions to the
HC field. A turning point took place around 2007, when the topic became much more
popular. Distinguished works, such as the ones by Cruijssen et al. (2007b, c), boosted
HC and laid the groundwork for upcoming research. Afterwards, the remarkable arti-
cle by Ballot and Fontane (2010) was published, being the first paper that clearly dis-
cussed the environmental impact associated with HC policies. As suggested in Bengts-
son and Kock (1999), HC may arise due to trade-offs between cooperation and compe-
tition (Figure 2). Two or more companies are ‘coexisting’ when there are no economic
exchanges, i.e., they are neither competing nor cooperating. A ‘pure cooperative’ sce-
nario takes place among non-competing companies which aim at increasing their value
chain through cooperation. A good example is presented in Hsu and Wee (2005), where
two non-related manufacturers share information about production, inventory, and de-
livery in a stochastic environment with the aim of reducing risks. Schmoltzi and Wal-
lenburg (2011) list six different factors of cooperation: contractual scope (type of agree-
ments used), organizational scope (number of participant partners), functional scope
(contributors for each functional area), geographical scope (where it will work), ser-
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Table 2: Initial works covering horizontal collaboration.

Article Contributions to the HC field

Caputo and
Mininno (1996)

Propose policies to take advantage of HC in the grocery sector: order management,
inventory management, warehousing handling, packaging, and transportation.

Lambert et al.
(1996)

Propose a partner-selection model to build horizontal alliances. Define different co-
operation types based on facilitator and driver points from surveys.

Zinn and
Parasuraman
(1997)

Define a framework and a taxonomy to deal with horizontal relationship in logistics
activities based on scope and intensity. Discuss the concepts of integrated, extensive,
focused, and limited logistics alliances.

Bengtsson and
Kock (1999)

Define a framework and describe four types of horizontal relationship that compa-
nies might have: coexistence, competition, cooperation, and co-opetition.

Lambert,
Emmelhainz and
Gardner (1999)

Implement a partner selection model in logistics.

Lau and Liu (2000) Propose a solving procedure for an inventory management problem and a vehicle
routing problem with time windows in a collaborative environment.

Bahrami (2002) Discusses the possibility of considering HC within supply chains as an option to
increase productivity. It shows a real case of two German companies that merged
their distribution network, comparing a traditional situation against two alternative
HC scenarios (one preserving the current logistics network and other modifying it).

Golicic et al.
(2003)

Describe a series of focus-group practices aimed at discussing and identifying inter-
organizational relationships. A chaotic paradigm of cooperation is presented as a
result of the variety of opinions.

Barratt (2004) Identifies elements of collaboration (joint decision making, supply chain metrics,
etc.) as well as the consequences of misunderstanding cooperation concepts.

Hageback and
Segerstedt (2004)

Propose HC in rural areas as a way to stop depopulation.

Groothedde,
Ruijgrok and
Tavasszy (2005)

Quantify economies of scale achieved through cooperation

Krajewska and
Kopfer (2006)

Explain how to perform HC practices between partners having similar characteris-
tics. Propose a model that includes the re-distribution of profit. The model is based
on the combinatorial auction theory and on game theory.

vice scope (which services are offered), and resource scope (corporate characteristics
of each partner). ‘Competition’ arises among companies focused on the same target
group. Relationships among competitors are based on action-reaction patterns, and they
involve a limited information flow. ‘Co-opetition’ occurs when HC is jointly developed
by competing firms. Trust and commitment become key elements to achieve fruitful
relationships while keeping competition. In the L&T sector co-opetition is probably the
most usual context (Limoubpratum, Shee and Ahsan, 2015).
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Figure 2: Horizontal relationships among enterprises, based on Bengtsson and Kock (1999).

2.2. Works discussing benefits and challenges of HC

Reducing transportation costs is one of the most pursued goals in HC. However, many
other benefits may be achieved: for example, improving service quality, diminishing en-
vironmental impact, reducing risk, and enhancing market share. Table 3 shows relevant
references covering some of the previous purposes. The existing literature also contains
experiences describing the use of HC practices in non-profit associations, as in Schulz
and Blecken (2010). These authors try to adapt HC practices to disaster relief logistics,
describing both benefits and issues related to these practices. According to them, the
main challenges when implementing HC strategies are related to: (i) how to establish-
ing mutual trust among cooperating firms; and (ii) how to achieving a fair redistribution
of both costs and profits among the partners. Due to their complex nature, HC practices
offer high potential for conflicts or disagreements (Raue andWieland, 2015;Wallenburg
and Raue, 2011; Adenso-Dı́az, Lozano and Moreno, 2014). Difficulty to find a suitable
partner is another issue when dealing with HC (Lambert et al., 1999). On the one hand,
a good knowledge of the potential partners’ assets is required to evaluate the candidates.
On the other hand, companies must share a common goal. A survey on profits / costs al-
location is provided in Guajardo and Rönnqvist (2016), whereas Liu et al. (2010) focus
on the less-than-truckload segment. These authors review over 40 different methodolo-
gies to share costs and profits in a coalition. However, as noticed by Yengin (2012), the
Shapley’s method is the most recurrent approach in the literature due to its clarity and
simplicity. Table 4 summarizes recent references covering some of the main challenges
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Table 3: Main HC goals in the scientific literature.

Objectives Discussed in

Reducing
transportation costs

Soysal et al. (2016), Fernández, Fontana and Speranza (2016), Bottani, Rizzi and
Vignali (2015), Vornhusen, Wang and Kopfer (2014), Verdonck et al. (2013), Audy
et al. (2012)

Improving service
quality

Ghaderi, Dullaert and Amstel (2016), Lehoux, Damours and Langevin (2014)

Reducing
environmental
impact

Danloup et al. (2015), Perez-Bernabeu et al. (2015), Juan et al. (2014), Pan et al.
(2014), Pradenas, Oportus and Parada (2013), Peetijade and Bangviwat (2012)

Reducing risk Stojanović and Aas (2015), Li et al. (2012), Bahinipati et al. (2009)

Enhancing market
share

Wei, Zhao and Li (2015), Gou et al. (2014)

Table 4: Main HC challenges discussed in the scientific literature.

Challenges Discussed in

Difficulty to ensure
relationships based
on trust

Zeng et al. (2015), Raue and Wieland (2015), Schmoltzi and Wallenburg (2012),
Wilhelm (2011)

Difficulty to find
suitable partners

Ayadi, Halouani and Masmoudi (2016), Dao, Abhary and Marian (2014), Raue and
Wallen-burg (2013), Audy et al. (2012), Asawasakulsorn (2015), Bahinipati et al.
(2009)

Difficulty to share
profits/losses

Guajardo and Rönnqvist (2016), Kimms and Kozeletskyi (2016), Guajardo and
Rönnqvist (2015), Defryn, Sörensen and Cornelissens (2016), Karsten, Slikker and
Van Houtum (2015), Vanovermeire et al. (2014), Lozano et al. (2013), Frisk et al.
(2010), Dai and Chen (2012), Liu et al. (2010), Massol and Tchung-Ming (2010),
Dai and Chen (2015), Frisk et al. (2010), Xu et al. (2009)

Difficulty to
establish an
appropriate
framework

Lehoux et al. (2014), Leitner et al. (2011), Cruijssen et al.(2010), Pomponi et al.
(2013), Nadarajah and Bookbinder (2013), Audy et al. (2012)

associated with HC practices. Older references can be found in Cruijssen (2006), Crui-
jssen et al. (2007b), Cruijssen et al. (2007c) and Pomponi et al. (2013).

3. Classification of HC practices

Several criteria have been proposed to classify HC practices. In this paper, we focus on
the taxonomies proposed by Zinn and Parasuraman (1997), Lambert et al. (1999), and
Pomponi et al. (2013) since they offer complete and easy-to-implement classification
systems. In order to compare these taxonomies, some common factors and levels have
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Table 5: Factors and levels to classify HC practices.

Factor High Mid Low

Time Frame More than 3 years Between 1 and 3
years

Less than 1 year

Amplitude Whole company
involved

Just a division Few aspects of the
company involved

Stamina Legal contract No contract but
formal rules

Just relational rules

Organizational
level

Strategic Tactical Operational

been identified in Table 5. The main factors are: time frame, amplitude, stamina, and
closeness. Time frame refers to the duration of the agreement. Amplitude refers to the
level of commitment in terms of range of pooled services: for example, fleet, informa-
tion, orders, warehouses, etc. Stamina is the ability of the coalition to survive by means
of legal contracts, conjoint investments, etc. Finally, the organizational level denotes
characteristics of the conjoint project, such as operational, tactical, or strategic ones.
For each factor, three intensity levels are presented.
One of the first attempts to categorize HC practices in L&T was presented in Zinn

and Parasuraman (1997). These authors proposed a taxonomy based on the intensity
and scope of the coalition. The former relates to the extent of direct involvement among
allies, whereas the latter refers to the range of involved services. By combining intensity
and scope, four types of cooperation arise (Table 6).

Table 6: Taxonomy proposed by Zinn and Parasuraman (1997) for HC practices.

Time Frame Amplitude Stamina Organizational level

Limited Low Low Low Low

Extensive Low Mid Mid Low

Focused Low Low Mid Mid

Integrated Mid-High High High Mid-High

Another approach for classifying HC practices is provided by Lambert et al. (1996),
who consider three types of cooperation (Table 7). Type I cooperation represents agree-
ments in which the involved companies recognize each other as partners and coordinate
their activities on a limited basis for a very short time. Type II cooperation denotes a
medium-term relationship for an entire project duration and a greater level of coopera-
tion. In contrast, in Type III cooperation firms have a high level of integration for an un-
limited duration, thus involving the entire organization. In that classification, an increas-
ing level of trust is assumed: that is, a Type I cooperation is required before a Type II one.
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Table 7: Taxonomy proposed by Lambert et al. (1996) for HC practices.

Time Frame Amplitude Stamina Organizational level

Type I Low Low Low Low

Type II Mid Mid Mid Mid-High

Type III Mid-High High High Mid-High

Finally, Pomponi et al. (2013) did not consider time restrictions and designed a
framework in which cooperation is categorized based on its organizational level: op-
erational, tactical, or strategic (Table 8).

Table 8: Taxonomy proposed by Pomponi et al. (2013) for HC practices.

Time Frame Amplitude Stamina Organizational level

Operational Low-Mid-High Low Low Low

Tactical Low-Mid-High Mid Mid Mid

Strategic Low-Mid-High High High High

As in many other areas, it is not easy to find a universal classification for all HC
practices in L&T. However, this section has identified several key factors that are com-
mon in the several works and which refer to a correct understanding of a collaboration
agreement in terms of duration, amplitude, legal form, and organizational level involved.

4. Quantifying the benefits of hc in freight transport logistics

By taking advantage of economies of scale, HC practices contribute to increase firms’
efficiency and competitiveness. Hence, cost reduction, improvement of service quality,
and mitigation of CO2 emissions are the main benefits of HC in road freight transporta-
tion. Table 9 summarizes recent outcomes of different research works, including the
approaches adopted and their impact on costs. Notice that in some cases there is a high
variability depending on factors such as the topology of the distribution network, the
degree of cooperation, and the specific cooperative mechanism adopted. In those cases,
a short explanation is provided as a footnote to the table. Since the existing literature
presents several ways of achieving benefits depending on the decision level involved
(strategic, tactical, or operational), the following subsections discuss preeminent ap-
proaches used in HC for each of these levels.



10 Horizontal collaboration in freight transport: concepts, benefits, and environmental challenges

Table 9: Summary of recent outcomes applying HC approaches and their impact.

Level Advantages Disadvantages References Impact on costs

Tactical
(conjoint
routes)

It does not
require a
high level
of
integration

Revenue
contracts are
required

Dahl and Derigs (2011)
Wang and Kopfer (2014)
Muñoz-Villamizar,
Montoya-Torres and Vega-Mejı́a
(2015)
Perez-Bernabeu et al. (2015)
Wang, Kopfer and Gendreau
(2014b)
Cruijssen et al. (2007a)
Özener, Ergun and Savelsbergh
(2011)

−14%
−11%
−25%
25
25
−5% to −90% (1)
−89%
25
25−31%
−26% to −30% (2)

Strategic
(consolida-
tion
centers)

Relatively
easy to
apply

A large capital
investment is
required

Groothedde et al. (2005)
Vornhusen et al. (2014)
Verdonck et al. (2013)
Wang et al. (2014a)
Cruijssen et al. (2010)

−14%
−18%
−22%
−5% to −50% (3)
−8%

Operational
(load
factors)

Relatively
easy to
apply

A high level of
trust and
commitment is
required
Revenue
contracts are
required

Li (2013)
Bailey, Unnikrishnan and Lin (2011)
Sprenger and Mönch (2012)
Hernández and Peeta (2014)

−28%
−27%
−25%
−2% to −55% (4)

(1): −5% in a clustered topology and −90% in scattered topology
(2): −26% without a mechanism of side payments and −30% with that mechanism
(3): −5% when companies look for a high profit margins and −50% when it is low

(4): −2% when low degree of collaboration and −55% when it is high

4.1. Strategic level – consolidation centres

Strategic decisions are carried out for a long-time period and involve the whole com-
pany. Determining the best location for the distribution centres of a firm is a typical ex-
ample of such a strategic decision. Figure 3 describes an illustrative case in which firms
must serve all the customers placing orders to them. In a collaborative scenario, some
consolidation centres are selected to distribute products among customers in the nearby.
As described in Verdonck et al. (2016), fixed assets such as warehouses and distribution
centres can be shared in order to consolidate production from several manufactures, thus
reducing the number of long-trip deliveries required. Collaborative hubs are proposed
by Groothedde et al. (2005) to deal with a real case developed in The Netherlands. These
authors also provide a methodology to assess the benefits obtained through collabora-
tion. Transshipments, as a collaborative strategy in shared warehouses, are explored in
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Vornhusen et al. (2014). The introduction of transshipments reaches significant cost re-
ductions when compared against isolated planning and even to centralized planning. A
similar collaborative hub is proposed in Cruijssen et al. (2010), where a step-wise ap-
proach is formulated considering potential savings in infrastructures that require large
investments.

Figure 3: Non-collaborative (left) vs. collaborative scenarios (right) for freight consolidation.

4.2. Tactical level – conjoint routes

Tactical decisions are focused on the mid-term and they typically require a high level
of synchronization among the departments of a firm. In this context, the use of con-
joint routes emerges as the primary source of cost saving: two or more companies pool
their customers to serve them from a shared depot. Therefore, clients’ orders are ex-
changed to get a better match between customers and depots. Most articles start with a
non-collaborative scenario, after which they analyse the potential benefits that could be
obtained if a collaborative scenario was used instead. That is the case of Perez-Bernabeu
et al. (2015), who compared clustered and scattered non-collaborative scenarios against
the collaborative one. Similarly, Muñoz-Villamizar et al. (2015) focused on the last-
mile distribution to develop a collaborative planning for carriers and assuming stochas-
tic demands. Considering a less-than-truckload framework, Wang and Kopfer (2014)
introduced a pick-up and delivery problem with time windows to illustrate HC bene-
fits. Similarly, Nadarajah and Bookbinder (2013) considered a two-stage framework for
less-than-truckload transportation: firstly, collaboration between multiple carriers at the
entrance of a city is considered; secondly, there is a carrier collaboration for transship-
ment to finalize the initial routes. Finally, Dahl and Derigs (2011) developed a real-time
collaborative decision support system in the express carrier network. Their main pur-
pose is assessing potential benefits obtained by sharing customers. Broadly speaking,
it represents moving from several vehicle routing problems to one multi-depot vehicle
routing problem, as depicted in Figure 4.
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Figure 4: Non-collaborative (left) vs. collaborative (right) scenarios for conjoint routes.

Figure 5: Non-collaborative (left) vs. collaborative (right) scenarios for back-hauling.

4.3. Operational level – load factors

Cooperation is an efficient way to increase load factors, thus avoiding lack of efficiency
in transport activities. HC approaches can help to raise these load factors in several
ways, e.g.: (i) by sharing the vehicle capacity among different companies; and (ii) by
employing collaborative back-hauling. As pointed out by Hernández and Peeta (2014),
sharing the vehicle capacity can significantly increase load factors, since it generates
the potential to gain revenue on non-full haul trips. These authors run several sensitivity
analyses based on the degree of cooperation and fuel prices. In a similar way, Sprenger
and Mönch (2012) discussed the concept of vehicles sharing within a German food in-
dustry. They also proposed a methodology for a collaborative transportation planning
problem in a rolling horizon setting. For this problem, they used simulation to charac-
terize the dynamic and stochastic transport system. Usually, customers are widespread
over the geography, which generates long empty back-hauls after deliveries. Thus, load
factors can be easily improved by collaborating to reduce empty back-hauls when com-
panies share their logistics operations (Figure 5). Thus, after completing its route, a
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vehicle may finish in a depot different from the initial one. That is the case studied in
Li (2013), who showed that load factors could reach 92% by using such a collaborative
strategy. Likewise, Bailey et al. (2011) investigated possible reductions in empty back-
hauls by considering customer requests from partners.

5. Environmental issues in horizontal collaboration

As noticed by Allen et al. (2017), one of the main advantages of HC practices is the
reduction of the externalities associated with freight transportation. According to Belien
et al. (2017), the main HC benefits include: (i) a 20-25% diminution in CO2 emissions;
(ii) a 10% improvement in transport reliability; and (iii) a 10-15% reduction in trans-
portation cost. Following Demir et al.(2015), it is possible to classify these externalities
into seven dimensions or impact groups: air pollution, greenhouse gas emissions, noise
pollution, water pollution, traffic congestion, traffic accidents, and use of land by trans-
port infrastructure. Despite all of these groups are relevant, air pollution and greenhouse
gas emissions are likely to be the externalities that cause a higher social alarm. Green or
sustainable HC refers to the use of HC practices that, by making a more efficient use of
resources, contribute to reduce the environmental impact of L&T activities.
In effect, freight transport logistics generates emissions of greenhouse gases: carbon

dioxide (CO2), nitrous oxide, and methane. CO2 is the dominant greenhouse gas, and
the remaining gases can be expressed as CO2 equivalents (Lera-López et al., 2014).
Road transportation, as the primary mode of freight movement, is the largest source of
freight-related CO2 emissions in most developed countries. International agreements,
such as the Kyoto Protocol and the Doha Amendment to Kyoto Protocol are pushing
developed countries to accomplish a reduction in gas emissions. National policies have
a great influence on transportation companies, which start to promote internal policies
towards the development of environmentally-friendly supply chains. Aiming at reducing
CO2 emissions, countries such as UK have implemented strict government regulations
(Ramanathan, Bentley and Pang, 2014). According to the International Energy Agency,
worldwide CO2 emissions due to fuel consumption raised a 56.4% from 1971 to 2013,
whereas in OECD countries it raised just a 9.4% in the same time period (IEA, 2015).
CO2 emissions in the transport sector, and their contribution to climate change, represent
one of the main issues in the sustainable management of logistics activities.
HC practices contribute to make the transportation sector more sustainable by means

of the following policies: (i) design of conjoint routes in freight delivery, which leads to
shorter distribution networks; (ii) sharing of responsibilities during the last-mile distri-
bution, which allows to achieve ‘greener’ routes and to reduce the logistics activities in
city centres; and (iii) construction of large-scale logistics scenarios, which benefit from
a reduction in uncertainty –thus generating solutions involving less vehicles and routes.
As previously highlighted, the design of conjoint routes emerges as the primary

source of reducing gas emissions. Insights on this topic are presented in Danloup et
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Table 10: Summary of recent works on Green HC.

Level Reference Impact on CO2

Tactical (conjoint routes) Soysal et al. (2016)

Danloup et al. (2015)

Andriolo et al. (2015)
Perez-Bernabeu et al. (2015)

Özener (2014)

−29%
−26%
−27% to −50% (1)
−5% to −92% (2)
−5%

Strategic

(consolidation centres)

van Lier, Caris and Macharis (2016)
Pan et al. (2014)

Pan, Ballot and Fontane (2013)
Ballot and Fontane (2010)

−7%
−19%
−14%
−25%

Operational (load factors) Basu, Bai and Palaniappan (2015)

Pradenas et al. (2013)
Juan et al. (2014)
Lin and Ng (2012)

−66%
−30%
−27%
−3% to −20% (3)

(1): depending on the lot sizing policy applied
(2): −5% in a clustered topology and −92% in scattered topology
(3): depending on purchasing-of-carbon rights

al. (2015). These authors analysed how it was possible to reduce CO2 emissions by sim-
ply increasing the loading factor of the trucks. In a similar way, Özener (2014) tested
an extensive set of instances to assess CO2 reduction. Freight consolidation is also an-
other driver to reach environment-friendly logistics management. As described in Ballot
and Fontane (2010), warehouses and distribution centres can be shared to consolidate
production from several manufactures, thus reducing the number of deliveries required.
Through a case study run in France, these authors showed that freight consolidation
could achieve a significant reduction of CO2 emissions. Another case study in France
was conducted by Pan et al. (2014), where three different scenarios were compared to
the original one in terms of CO2 emissions. Internal collaboration is explored in van Lier
et al. (2016). A summary of green HC references is displayed in Table 10. Again, a high
variability occurs due to factors such as the distribution network topology, the degree of
cooperation, and the specific cooperative mechanism adopted.

6. Dynamism and uncertainty in real-life HC practices

The existing body of research on HC optimization mainly assumes deterministic and
static models to describe freight transport systems. However, real-life optimization prob-
lems in the area of horizontal collaboration are usually characterized by properties such
as large-scale dimension, dynamic conditions, and stochastic elements. In effect, since
HC practices imply the aggregation of different distribution companies and their asso-
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ciated customers, the size of the resulting problems tends to be much larger than the
one associated with any individual partner. Since several combinatorial problems in the
L&T area are NP-hard in nature, the use of metaheuristic algorithms is usually required
to cope with these large-scale instances. Moreover, since HC optimization problems
typically consider heterogeneous enterprises and their customers, they usually offer a
high degree of dynamism and uncertainty: the working conditions (and their related
constraints) might be different from one company to another, the availability of shared
resources might depend upon changing environmental conditions, the customers’ de-
mands might vary according to the assigned distributor or distribution time, etc. Fortu-
nately, different hybrid algorithms can be utilized to solve rich and real-life optimization
HC challenges in L&T. Prominent examples are matheuristics that arise from integration
of exact and metaheuristic methods (Doerner and Schmid, 2010), or simheuristics (Juan
et al., 2015) that result from combination of simulation with metaheuristics. Different
works discuss how metaheuristics can be employed to solve optimization problems un-
der uncertainty scenarios (Bianchi et al., 2009). In particular, simheuristics allow to inte-
grate real-life uncertainty both as part of the objective function and as probabilistic con-
straints in the optimization problems. Recent examples on the application of simheuris-
tics to deal with horizontal collaboration problems under uncertainty can be found in the
literature. Thus, Gruler et al. (2017) propose a simheuristic approach to optimize a waste
collection problem in clustered urban areas where horizontal collaboration strategies
are considered by different city managers. Likewise, Quintero-Araujo et al. (2017) pro-
pose the use of simheuristics to promote HC practices in city logistics under uncertainty
conditions. Finally, de Armas et al. (2017) propose a simheuristic approach to solve
large-scale facility location problems with stochastic demands –notice that this prob-
lem is strongly related to the use of consolidation centres in HC practices. In a similar
way, by combining metaheuristics with statistical-learning techniques, learnheuristics
allow to efficiently deal with the high level of dynamism around modern freight trans-
port systems (Calvet et al., 2017, 2016b). Thus, for instance, in Calvet et al. (2016a) the
authors propose the integration of statistical learning inside a metaheuristic framework
to deal with a multi-depot distribution problem with dynamic users’ demands. The en-
suing models represent more accurately real-world freight transport scenarios. Among
other strengths, these hybrid methods accommodate elements of uncertainty (stochastic
factors) and dynamism (evolving environmental conditions). As solution methods and
techniques grow rapidly in complexity, scale, and scope, and they can easier find their
way in solving more practical instances across a number of fields, a further emergence
of sustainable and green HC problems considering complex multi-objective functions
and probabilistic constraints is warranted.
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7. Conclusions

As analysed in this paper, horizontal collaboration (HC) practices represent an effi-
cient way of reducing costs in freight transport logistics and promote environmentally-
friendly policies. For that reason, the analysis of ‘green’ or sustainable HC practices is
gaining importance in the recent literature. By using sustainable HC in freight trans-
port logistics, small-size carriers may not only achieve greater economies of scale –thus
increasing their competitiveness levels in a global market–, but also contribute to min-
imize the environmental impact of their business activities. Trust-related issues among
companies, as well as difficulty to allocate costs and profits among partners are the main
barriers to implement HC practices in real-life scenarios.
In this paper, a classification of HC activities has been provided, as well as an analy-

sis of the benefits and challenges that HC practices can provide at each decision-making
level: strategic (consolidation centres), tactical (conjoint routes), and operations (load
factors). Since these practices often imply solving combinatorial optimization problems
characterized by a large-scale dimension and the existence of stochastic / dynamic con-
ditions, the use of hybrid algorithms (e.g., simheuristics and learnheuristics) is proposed
as one of the most efficient ways to cope with rich and real-life HC optimization prob-
lems.
The emergence of new optimization methods, as well as the continuous increase

in computational power, allow to consider several research lines for the future, includ-
ing: (i) the inclusion of multiple goals (e.g., monetary, environmental, sustainability
indexes, etc.) in the function to be optimized; and (ii) the modeling and solving of real-
istic freight transport logistics scenarios including time-evolving and stochastic inputs
(e.g., dynamic availability of shared resources, variable customers’ demands depending
on the assigned carrier, etc.).
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