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Thirty years of progeny from Chao’s inequality:

Estimating and comparing richness with incidence

data and incomplete sampling

Anne Chao1,∗ and Robert K. Colwell2,3,4

Abstract

In the context of capture-recapture studies, Chao (1987) derived an inequality among capture frequency

counts to obtain a lower bound for the size of a population based on individuals’ capture/non-capture

records for multiple capture occasions. The inequality has been applied to obtain a non-parametric

lower bound of species richness of an assemblage based on species incidence (detection/non-detection)

data in multiple sampling units. The inequality implies that the number of undetected species can be

inferred from the species incidence frequency counts of the uniques (species detected in only one

sampling unit) and duplicates (species detected in exactly two sampling units). In their pioneering pa-

per, Colwell and Coddington (1994) gave the name “Chao2” to the estimator for the resulting species

richness. (The “Chao1” estimator refers to a similar type of estimator based on species abundance

data). Since then, the Chao2 estimator has been applied to many research fields and led to fruitful

generalizations. Here, we first review Chao’s inequality under various models and discuss some re-

lated statistical inference questions: (1) Under what conditions is the Chao2 estimator an unbiased

point estimator? (2) How many additional sampling units are needed to detect any arbitrary proportion

(including 100%) of the Chao2 estimate of asymptotic species richness? (3) Can other incidence fre-

quency counts be used to obtain similar lower bounds? We then show how the Chao2 estimator can be

also used to guide a non-asymptotic analysis in which species richness estimators can be compared

for equally-large or equally-complete samples via sample-size-based and coverage-based rarefaction

and extrapolation. We also review the generalization of Chao’s inequality to estimate species richness

under other sampling-without-replacement schemes (e.g. a set of quadrats, each surveyed only once),

to obtain a lower bound of undetected species shared between two or multiple assemblages, and to

allow inferences about undetected phylogenetic richness (the total length of undetected branches of a

phylogenetic tree connecting all species), with associated rarefaction and extrapolation. A small empir-

ical dataset for Australian birds is used for illustration, using online software SpadeR, iNEXT, and PhD.

MSC: 62D07, 62P07.

Keywords: Cauchy-Schwarz inequality, Chao2 estimator, extrapolation, Good-Turing frequency

formula, incidence data, phylogenetic diversity, rarefaction, sampling effort, shared species rich-

ness, species richness.

∗ Corresponding author. E-mail: chao@stat.nthu.edu.tw
1 Institute of Statistics, National Tsing Hua University, Hsin-Chu 30043, Taiwan.
2 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
3 University of Colorado Museum of Natural History, Boulder, CO 80309, USA.
4 Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970, Goiânia, GO, Brasil.
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1. Introduction

Thirty years ago, Chao (1987) developed an inequality among capture frequency counts

to obtain a lower bound of population size based on individuals’ capture/non-capture

records in multiple-stage, closed capture-recapture studies. An earlier version of Chao’s

inequality and the corresponding lower bound (Chao, 1984) estimated the number of

classes under a classic occupancy problem. Those inequalities and lower bounds were

derived for their pure mathematical interest, as the models are simple and elegant, and

also for their statistical interest, because these inequalities can be used to make infer-

ence about the richness of the undetected portion of a biological assemblage based on

incomplete data.

In the first decade after their publication, these Chao-type lower bounds were rarely

applied in other disciplines. In 1994, Colwell and Coddington published a seminal paper

on estimating terrestrial biodiversity through extrapolation. They applied both of Chao’s

formulas (1984, 1987) to estimate species richness, because there is a simple analogy

between the incidence data in species richness estimation for a multiple-species assem-

blage and the capture-recapture data in population size estimation for a single species.

Chao (1984) had suggested that her occupancy-based estimator might be applied to es-

timating species richness, and offered examples of its application to capture-recapture

data, the focus of Chao (1987). Colwell and Coddington distinguished two types of data:

individual-based abundance data (counts of the number of individuals of each species

within a single sampling unit) and multiple sampling-unit-based incidence data (counts

of occurrences of each species among sampling units). They gave the name “Chao1”

to the estimator of species richness specifically for abundance data, based on the Chao

(1984) formula, and the name “Chao2” for incidence data based on the Chao (1987) for-

mula. Colwell also featured these two estimators along with others in the widely used

software EstimateS (Colwell, 2013; Colwell and Elsensohn, 2014). Since then, both the

Chao1 and Chao2 estimators have been increasingly applied to many research fields, not

only in ecology and conservation biology, but also in other disciplines; see Chazdon et

al. (1998), Magurran (2004), Chao (2005), Gotelli and Colwell (2011), Magurran and

McGill (2011), Gotelli and Chao (2013) and Chao and Chiu (2016) for various applica-

tions. Chao’s inequalities also led to numerous generalizations under different models

or frameworks; some closely related generalizations were accomplished by Mao (2006,

2008), Mao and Lindsay (2007), Rivest and Baillargeon (2007), Pan, Chao and Foiss-

ner (2009), Böhning and van der Heijden (2009), Lanumteangm and Böhning (2011),

Böhning et al. (2013), Mao et al. (2013), Chiu et al. (2014), and Puig and Kokonendji

(2017). In addition to EstimateS, these two estimators have now been included in other

software and several R packages in CRAN (e.g. packages Species, Specpool, entropart,

fossil, SpadeR, iNEXT, among others).

During the past 30 years, Chao and her students and collaborators have developed a

number of population size and species richness estimators based on several other statis-

tical models, including Chao and Lee’s (1992) abundance- or incidence-based coverage
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estimators (ACE and ICE, two names bestowed by Chazdon et al., 1998), martingale

estimators, estimating-function estimators, maximum quasi-likelihood estimators, and

Horvitz-Thompson-type estimators; see Chao (2001) and Chao and Chiu (2016) for a

review. These developments are more complicated and mathematically sophisticated

than the estimators derived from Chao’s inequalities. Surprisingly, it turns out that the

earliest and simplest estimators are the most useful ones for biological applications.

In this paper, we mainly focus on Chao’s (1987) inequality and its subsequent devel-

opments for multiple incidence data. For both practical and biological reasons, record-

ing species detection/non-detection in multiple sampling units is often preferable to enu-

merating individuals in a single sampling unit (abundance data). For microbes, clonal

plants, and sessile invertebrates, individuals are difficult or impossible to define. For

mobile organisms, replicated incidence data are less likely to double-count individuals.

For social animals, counting the individuals in a flock, herd, or school may be difficult

or impractical. Also, replicated incidence data support statistical approaches to rich-

ness estimation that are just as powerful as corresponding abundance-based approaches

(Chao et al., 2014b). Moreover, a further advantage is that replicated incidence records

account for spatial (or temporal) heterogeneity in the data (Colwell et al., 2004, 2012).

In Sections 2.1 and 2.2, we first review the general model formulation for incidence

data and the Chao (1987) inequality. Three related statistical inference problems are

discussed:

1. In Section 2.3, we ask under what conditions the Chao2 estimator is an unbiased

point estimator. Chao et al. (2017) recently provided an intuitive answer to this

question for abundance data, from a Good-Turing perspective. Here we use a

generalization of the Good-Turing frequency formula to answer the same question

for incidence data.

2. In Section 2.4, we ask how many additional sampling units are needed to detect

any arbitrary proportion (including 100%) of the Chao2 estimate. The Chao2

species richness estimator does not indicate how much sampling effort (additional

sampling units) would be necessary to answer the question. Here we review the

solution proposed by Chao et al. (2009).

3. In Section 2.5, we review approaches that use other incidence frequency counts

to obtain similar-type lower bounds. In Chao’s (1987) formula, the estimator for

the number of undetected species is based only on the frequency counts of the

uniques (species detected in only one sampling unit) and duplicates (species de-

tected in exactly two sampling units). Lanumteangm and Böhning (2011), Chiu

et al. (2014), Puig and Kokonendji (2017) made advances by extending Chao’s

inequality to use higher-order incidence frequency counts. Here we mainly review

Puig and Kokonendji’s (2017) extension, which leads to a series of lower bounds

for species richness. Their framework was based mainly on abundance data, but it

can be readily applied to multiple incidence data.
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In Section 3, we show that, no matter whether the Chao2 formula is unbiased or bi-

ased low, it can always be used to guide a non-asymptotic analysis in which a species

richness estimator can be compared for equally-large samples (based on a common

number of sampling units) or equally-complete samples (based on a common value

of sample completeness, as measured by coverage; see later text). Sample-size-based

and coverage-based rarefaction and extrapolation provide a unified sampling approach

to fairly comparing species richness across assemblages.

In the subsequent three sections we review three generalizations of Chao’s inequal-

ity to estimate species richness under other sampling schemes (Section 4), to estimate

shared species richness between two or multiple assemblages (Section 5), and also to

make inferences about phylogenetic diversity, which incorporates species evolutionary

history (Section 6). The next three paragraphs introduce these generalizations.

Chao’s original inequality was developed under the assumption that sampling units

are assessed with replacement. When sampling is done without replacement, e.g. qua-

drats or time periods are not repeatedly selected/surveyed, or mobile species are col-

lected by lethal sampling methods, suitable modification is needed. In Section 4, we

review the modifications developed by Chao and Lin (2012).

Compared with estimating species richness in a single assemblage, the estimation of

shared species richness, taking undetected species into account, has received relatively

little attention; see Chao and Chiu (2012) for a review. For two assemblages, shared

species richness plays an important role in assessing assemblage overlap and forms a

basis for constructing various types of beta diversity and (dis)similarity measures, such

as the classic Sørensen and Jaccard indices (Colwell and Coddington, 1994; Magurran,

2004; Chao et al., 2005, 2006; Jost, Chao and Chazdon, 2011; Gotelli and Chao, 2013).

In Section 5, we review the work by Pan et al. (2009), who extended Chao’s inequality

to the case of multiple assemblages to obtain a lower bound of undetected species shared

between two or multiple assemblages.

A rapidly growing literature discusses phylogenetic diversity, which incorporates

evolutionary histories among species into diversity analysis (see Faith, 1992; Warwick

and Clarke, 1995; Crozier, 1997; Webb and Nonoghue, 2005; Petchey and Gaston, 2002;

Cadotte et al., 2009; Cavender-Bares, Ackerly and Kozak, 2012). The most widely used

phylogenetic metric is Faith’s (1992) PD (phylogenetic diversity), which is defined as

the sum of the branch lengths of a phylogenetic tree connecting all species in the target

assemblage. As shown by Chao et al. (2010, 2015), PD can be regarded as a measure of

phylogenetic richness, i.e. a phylogenetic generalization of species richness. Through-

out this paper, PD refers to Faith’s (1992) PD. When some species are present, but

undetected by a sample, the lineages/branches associated with these undetected species

are also missing from the phylogenetic tree spanned by the observed species. The unde-

tected PD in an incomplete sample was not discussed until recent years (Cardoso et al.,

2014; Chao et al., 2015). In Section 6, we review the phylogenetic version of Chao’s in-
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equality, developed recently by Chao et al. (2015), and the associated phylogenetic ver-

sion of the rarefaction/extrapolation approach.

In Section 7, a small empirical dataset for Australian birds is used for illustration

using online software, including Chao’s SpadeR, iNEXT, and PhD. Section 8 provides

discussion and conclusions. The diversity measures discussed in this review (species

richness, shared species richness, and PD) do not take species abundances into account.

We briefly discuss the extension of these measures to incorporate species abundances,

and refer readers to relevant papers. Major notation used in each section is shown in

Table 1.

2. Species richness estimation

2.1. A general framework: Sampling-unit-based incidence data and model

As indicated in the Introduction, Chao’s (1987) original inequality was formulated based

on a capture-recapture model to estimate the size of a population, but here we consider a

framework based on species incidence (detection/non-detection) data to estimate species

richness. These two statistical inference problems are equivalent. Assume that there are

S species indexed 1,2, . . . ,S in the focal assemblage, where S is the estimating target in

species richness estimation. Here we mainly consider the model developed by Colwell

et al. (2012) for multiple incidence data. Assume that there are T sampling units, and

that they are indexed 1,2, . . . ,T . The sampling unit is usually a trap, net, quadrat, plot, or

timed survey, and it is these sampling units, not the individual organisms, that are sam-

pled randomly and independently. The observed data consist of species detection/non-

detection in each sampling unit. In a typical spatial study, these sampling units are

deployed randomly in space within the area encompassing the assemblage. However, in

a temporal study of diversity, the T sampling units would be deployed in one place at

different independent points in time (such as an annual breeding bird census at a single

site).

For any sampling unit, the model assumes that the ith species has its own unique

incidence or detection probability πi that is constant among all randomly selected sam-

pling units. The incidence probability πi is the probability that species i is detected in a

sampling unit. Here
∑S

i=1πi will generally not be equal to unity.

The incidence records consist of a species-by-sampling-unit incidence matrix {Wi j;

i = 1,2, . . . ,S, j = 1,2, . . . ,T} with S rows and T columns; here Wi j = 1 if species i is

detected in sampling unit j, and Wi j = 0 otherwise. Let Yi be the number of sampling

units in which species i is detected, Yi =
∑T

j=1Wi j; here Yi is referred to as the sample

species incidence frequency. Species present in the assemblage but not detected in any

sampling unit yield Y = 0. See Section 6.1 for a hypothetical example and Appendices

A and B for real data. Details about these data are provided in subsequent sections.
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Table 1: Major notation used in each section.

Common notation and/or one-assemblage species richness estimation (Section 2)

S Number of species in an assemblage.

πi Detection or incidence probability of species i, i = 1,2, . . . , S in a sampling unit.

T Number of sampling units taken from an assemblage.

U Total number of incidences in T sampling units.

φr Mean detection probability of species that appeared in r sampling units, r = 0,1, . . . ,T .

Wi j Species detection/non-detection: Wi j = 1 if species i is detected in sampling unit j, and Wi j = 0

otherwise, i = 1,2, . . . ,S, j = 1,2, . . . ,T .

Sobs Number of observed species in T sampling units.

Yi Species incidence frequency (number of sampling units in which species i is detected).

Qk Number of species detected in exactly k sampling units in the data, k = 0,1, . . . ,T .

ˆ “Hat” above a parameter: an estimator of the parameter, e.g. Ŝ, π̂i and φ̂r denote, respectively,

estimators of S, πi and φr.

Rarefaction and extrapolation of one-assemblage species richness (Section 3)

C(T) Coverage for a reference sample of size T .

C(t) Coverage in a hypothetical rarefied sample of t sampling units if t < T .

C(T + t∗) Coverage in a hypothetical augmented sample of T + t∗ sampling units.

S(t) Expected number of species in a hypothetical rarefied sample of t sampling units if t < T .

S(T + t∗) Expected number of species in a hypothetical augmented sample of T + t∗ sampling units.

One-assemblage species richness under sampling without replacement (Section 4)

T ∗ Total number of sampling units in the entire assemblage (e.g. total number of disjoint, equal-

area quadrats in a region).

Ui Number of sampling units (or quadrats) that species i can be detected.

q Known sampling fraction, q = T/T ∗.

Two-assemblage shared species richness estimation (Section 5)

S12 Number of shared species between Assemblages I and II.

πi1, πi2 Detection or incidence probability of species i, i = 1,2, . . . ,S, in any sampling unit taken, re-

spectively, from Assemblages I and II.

T1, T2 Number of sampling units in Samples I and II taken, respectively, from Assemblages I and II.

Yi1, Yi2 Species incidence frequency (i.e. number of sampling units in which species i is detected),

respectively, in Samples I and II.

Qrv Number of shared species that are detected in r sampling units in Sample I and v sampling units

in Sample II, r, v = 0,1,2, . . . .

Qr+ Number of shared species that are detected in r sampling units in Sample I and that are detected

in at least one sampling unit in Sample II, r = 0,1,2, . . . , T1.

Q+v Number of shared species that are detected in v sampling units in Sample II and that are detected

in at least one sampling unit in Sample I, v = 0,1,2, . . . , T2.

Q++ Total number of observed species shared between Samples I and II.
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Table 1 (cont.): Major notation used in each section.

One-assemblage phylogenetic diversity (PD) Estimation (Section 6)

B Number of branches/nodes in the phylogenetic tree spanned by all species of an assemblage.

Li Length of the ith branch/node.

PD Sum of branch lengths in a phylogenetic tree.

λi Detection or incidence probability of branch/node i, i.e. the probability of detecting at least one

species descended from branch/node i in a sampling unit.

W ∗
i j Node detection/non-detection: W ∗

i j = 1 if at least one species descended from branch i is de-

tected in jth sampling unit, and W ∗
i j = 0 otherwise, i = 1,2, . . . , B, j = 1,2, . . . ,T .

PDobs PD in the observed tree.

Y ∗
i branch/node incidence frequency for branch/node i, i = 1,2, . . . ,B.

Rk Sum of branch lengths for the branches with node incidence frequency = k, k = 0,1, . . . , T .

Q∗
1, Q∗

2 Number of nodes/branches with incidence frequency = 1 and = 2, respectively, in the observed

tree.

Rarefaction and extrapolation of one-assemblage PD (Section 6 and Table 2)

PD(t) Expected PD in a hypothetical rarefied sample of t sampling units if t < T .

PD(T + t∗)Expected PD in a hypothetical augmented sample of T + t∗ sampling units.

Following Colwell et al. (2012), we assume, given the set of detection probabilities

(π1, π2, . . . ,πS), that each element Wi j in the incidence matrix is a Bernoulli random

variable with probability πi. The probability distribution for the incidence matrix can be

expressed as

P(Wi j = wi j; i = 1,2, . . . ,S, j = 1,2, . . . ,T ) =
T

∏
j=1

S

∏
i=1

π
wi j

i (1−πi)
1−wi j

=
S

∏
i=1

πyi
i (1−πi)

T−yi . (1a)

The marginal distribution for the incidence-based frequency Yi for the i-th species fol-

lows a binomial distribution characterized by T and the detection probability πi:

P(Yi = yi) =

(
T

yi

)
πyi

i (1−πi)
T−yi , i = 1,2, . . . ,S. (1b)

Denote the incidence frequency counts by (Q1, Q2, . . . ,QT ), where Qk is the number

of species detected in exactly k sampling units in the data, k = 0,1, . . . ,T . Here, Q1

represents the number of “unique” species (those that are detected in only one sampling

unit), and Q2 represents the number of “duplicate” species (those that are detected in

exactly two sampling units). The unobservable zero frequency count Q0 denotes the

number of species among the S species present in the assemblage that are not detected

in any of the T sampling units. Then the number of observed species in the sample is

Sobs =
∑

i>0 Qi and Sobs +Q0 = S.
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2.2. Chao’s inequality

Treating the incidence probabilities (π1, π2, . . . ,πS) as fixed, unknown parameters, we

first present Chao’s (1987) inequality under the model (1a) or (1b). Note the following

expected value for the incidence frequency count Qk:

E(Qk) = E

[
S∑

i=1

I(Yi = k)

]
=

S∑

i=1

(
T

k

)
πk

i (1−πi)
T−k, k = 0,1,2, . . . ,T, (1c)

where I(A) is the indicator function, i.e. I(A) = 1 if the event A occurs, and is 0 other-

wise. In particular, the expected number of undetected species, uniques and duplicates

are respectively:

E(Q0) =
S∑

i=1

(1−πi)
T ,

E(Q1) =
S∑

i=1

Tπi(1−πi)
T−1,

E(Q2) =
S∑

i=1

(
T

2

)
π2

i (1−πi)
T−2.

Chao (1987) proposed a lower bound of E(Q0) based on the following Cauchy-Schwarz

inequality:

[
S∑

i=1

(1−πi)
T

] [
S∑

i=1

π2
i (1−πi)

T−2

]
≥

[
S∑

i=1

πi(1−πi)
T−1

]2

, (2a)

equivalently,

E(Q0) ×
E(Q2)(

T

2

) ≥

(
E(Q1)

T

)2

.

Thus, a theoretical lower bound for E(Q0) is derived as

E(Q0)≥
(T −1)

T

[E(Q1)]
2

2E(Q2)
,

implying a theoretical lower bound for species richness:

S = E(Sobs)+E(Q0)≥ E(Sobs)+
(T −1)

T

[E(Q1)]
2

2E(Q2)
.
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Replacing the expected values in the above with the observed data, we then obtain an

estimated lower bound of species richness, with a slight modification when Q2 = 0

(Colwell and Coddington, 1994, gave the name Chao2 to this estimator):

ŜChao2 =





Sobs +
(T −1)

T

Q2
1

2Q2

, if Q2 > 0,

Sobs +
(T −1)

T

Q1(Q1 −1)

2
, if Q2 = 0.

(2b)

The estimated number of undetected species is based exclusively on the information

on the least frequent species (the number of uniques and duplicates). This is based on

a basic concept that the frequent/abundant species (those that occur in many sampling

units) carry negligible information about the undetected species; only rare/infrequent

species carry such information.

When does the Chao2 formula provide a nearly unbiased estimator? The Cauchy-

Schwarz inequality in Eq. (2a) becomes an equality if and only if the species detection

probabilities are homogeneous, that is, π1 = π2 = · · · = πS. Homogeneity of detection

probabilities would be a very restrictive condition, one that is almost never satisfied

in most practical applications, such as species abundance or incidence distributions in

nature. However, as we will show in Section 2.3, this condition can be considerably re-

laxed from a different derivation/perspective. Note that in Chao’s inequality (2a), only

three expected frequency counts are involved: E(Q0), E(Q1) and E(Q2). The frequent

species (species with relatively large detection probabilities) would tend to occur in

many sampling units and thus generally do not contribute to any of these three terms.

On the other hand, only rare/infrequent species (species with relatively low detection

probabilities) would either be undetected or detected in only one or two sampling units

and thus are those species that contribute to the three terms. Therefore, a relaxed condi-

tion for an unbiased Chao2 estimator is that very rare/infrequent species have approx-

imately the same detection probabilities, and frequent species are allowed to be highly

heterogeneous without affecting the estimates. A more rigorous justification is given in

Section 2.3.

Applying a standard asymptotic approach (Chao, 1987), the following estimated

variance estimators can be obtained if Q1, Q2 > 0:

v̂ar(ŜChao2) = Q2

[
1

4

(
T −1

T

)2(
Q1

Q2

)4

+

(
T −1

T

)2(
Q1

Q2

)3

+
1

2

(
T −1

T

)(
Q1

Q2

)2
]
,

(3a)

If Q1 > 0, Q2 = 0, the variance becomes

v̂ar(ŜChao2) =
1

4

(
T −1

T

)2

Q1(2Q1 −1)2 +
1

2

(
T −1

T

)
Q1(Q1 −1)−

1

4

(
T −1

T

)2
Q4

1

ŜChao2

.

(3b)
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In the special case that Q1 = 0, we have ŜChao2 = Sobs, implying that sampling is

complete and there are no undetected species in the data; an approximate variance of

Sobs can be obtained using an analytic method (Colwell, 2013) or a bootstrap method

(see Section 3.3). When Q1 > 0 so that ŜChao2 > Sobs, the distribution of ŜChao2 −Sobs is

generally skewed to the right. Using a log-transformation by treating log(ŜChao2 −Sobs)

as an approximately normal random variable, we obtain a 95% confidence interval for

S: (Chao, 1987)

[Sobs +(ŜChao2 −Sobs)/R, Sobs +(ŜChao2 −Sobs)R], (3c)

where R = exp{1.96[log(1+ v̂ar(ŜChao2)/(ŜChao2 −Sobs)
2)]1/2}. In this case, the result-

ing lower confidence limit is always greater than or equal to the observed species rich-

ness, a sensible result.

The Chao2 estimator is also valid in a binomial-mixture model in which incidence

probabilities (π1, π2, . . . ,πS) are assumed to be a random sample from an unknown dis-

tribution with density h(π). Under this model, we have

E(Qk) = S

1∫

0

(
T

k

)
πk(1−π)T−k h(π)dπ, k = 0,1,2, . . .T. (4a)

The summation terms in the Cauchy-Schwarz inequality (2a) are replaced by integral

terms:




1∫

0

(1−π)T h(π)dπ






1∫

0

π2(1−π)T−2h(π)dπ


≥




1∫

0

π(1−π)T−1h(π)dπ




2

. (4b)

The above two formulas also lead to the same Chao2 formula given in Eq. (2b). In

the special case that h(π) is a beta distribution with parameters α and β, the resulting

expected incidence-frequency count {E(Qk), k = 0,1,2, . . . ,n} correspond to the prob-

abilities of a beta-binomial distribution. Under the two conditions (i) T is large and π

is small, such that Tπ tends to a positive constant, and (ii) β/T tends to a positive con-

stant c, Skellam (1948) proved that E(Qk) tends to (α+ k − 1)![(α− 1)!k!]−1[1/(1+
c)]k[c/(1+ c)]α, which is the probability of a negative binomial variable taking the

value k. This result theoretically justifies the inference that Chao’s inequality is also

valid for beta-binomial and negative binomial distributions. It is well known that beta-

binomial and negative binomial can be used to describe spatially clustered (if sampling

units are quadrats in an area) or temporally aggregated (if sampling units are differ-

ent times) pattern of species; see Hughes and Madden (1993) and Shiyomi, Takahashi

and Yoshimura (2000). Therefore, even though there is spatial/temporal heterogeneity

pattern for species incidences, the lower bound and the associated estimation are still

valid.
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2.3. When is the Chao2 estimator nearly unbiased?

Alan Turing and I. J. Good, in their famous cryptanalysis to crack German ciphers dur-

ing World War II, developed novel statistical methods to estimate the true frequencies

of rare code elements (including still-undetected code elements), based on the observed

frequencies in “samples” of intercepted Nazi code. After the War, Turing gave per-

mission to Good to publish their statistical work. An influential paper by Good (1953)

and one by Good and Toulmin (1956) presented Turing’s wartime statistical work on

the frequency formula and related topics; see Good (1983, 2000) for more details. The

frequency formula is now referred to as the Good-Turing frequency formula, which has

a wide range of applications in biological sciences, statistics, computer sciences, infor-

mation sciences, and linguistics, among others (McGrayne, 2011, p. 100).

In an ecological context, Turing’s statistical problem can be formulated as an esti-

mation of the true frequencies of rare species when a random sample of individuals is

drawn from an assemblage. In Turing’s case, there were almost infinitely many rare

species so that all samples have undetected species. The Good-Turing formula answers

the following question: given a species that appears r times (r = 0,1,2, . . . ) in a sample

of n individuals that fails to detect all species present, what is its true relative frequency

in the entire assemblage? Turing and Good focussed on the case of small r, i.e. rare

species. Turing gave a surprisingly simple and remarkably effective answer that is con-

trary to most people’s intuition; see Chao et al. (2017) for a review.

The Good-Turing original frequency formula was based on abundance data. We here

extend their formula to incidence data to answer the following question: Given species

incidence data of T sampling units, for those species that appeared in r (r = 0,1,2, . . . )

out of T sampling units, what is the mean detection probability of species that appeared

in r sampling units, φr? Such a mean detection probability can be mathematically ex-

pressed as

φr =
S∑

i=1

πi I(Yi = r)/Qr, r = 0,1,2, . . . (5a)

The numerator in Eq. (5a) represents the total incidence probabilities of those species

that appeared in r sampling units. Dividing the total by Qr, we obtain the mean detection

probability per species, among those that each appeared in r sampling units. Note that,

for the special case of r = 0, Eq. (5a) implies

φ0Q0 =
S∑

i=1

πi I(Yi = 0), (5b)

which is the total detection probabilities of the undetected species. If one additional

sampling unit can be added, then we can interpret it as the expected number of species

in the additional sampling unit that are undetected in the original sample.

Here we derive the corresponding Good-Turing incidence frequency formula for

multiple incidence data by treating (π1, π2, . . . ,πS) as fixed, unknown parameters, al-
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though a similar derivation is also valid for binomial-mixture models. Under the model

(Eq. 1b), in which the incidence frequencies Yi, i = 1,2, . . . ,S, follow a binomial distri-

bution characterized by T and detection probability πi, we can express the sum of the

odds of πi for those species that each appeared in r sampling units as follows:

E

[
S∑

i=1

πi

1−πi

I(Yi = r)

]
=

S∑

i=1

πi

1−πi

(
T

r

)
πr

i (1−πi)
T−r

=
S∑

i=1

(
T

r

)
πr+1

i (1−πi)
T−(r+1)

=

(
T

r

)

(
T

r+1

)
[

S∑

i=1

(
T

r+1

)
πr+1

i (1−πi)
T−(r+1)

]

=
(r+1)

(T − r)
E(Qr+1). (5c)

Assume that all species that appeared in r sampling units have approximately the same

incidence probabilities. Then we have the following approximation formula:

E

[
S∑

i=1

πi

1−πi

I(Yi = r)

]
≈ Qr

φr

1−φr

.

Thus, φr can be obtained by solving the equation: Qrφr/(1−φr)≈ (r+1)Qr+1/(T −r),

based on Eq. (5c). We then obtain the corresponding Good-Turing formula for incidence

data:

φ̂r =
(r+1)Qr+1

(T − r)Qr +(r+1)Qr+1

≈
(r+1)Qr+1

(T − r)Qr

. (5d)

The original Good-Turing frequency formula for abundance data has a similar form

as the above approximation, but with incidence frequency counts being replaced by

abundance frequency counts.

Good (1983, p. 28) provided an intuitive justification for the abundance-based Good-

Turing frequency formula. Here we follow Good’s approach to give a similar justifica-

tion for incidence data. Given an original sample, consisting of T sampling units, sup-

pose one additional sampling unit can be added. We ask how many species that had ap-

peared r times in the original sample would occur in the additional sampling unit. Based

on Eq. (5a), the answer is simply
∑S

i=1πiI(Yi = r) = φrQr, which can be estimated by

(r+1)Qr+1/(T − r) using the following simple reasoning. Notice that any species that

appeared r times in the original sample and also occurs in the additional sampling unit



Anne Chao and Robert K. Colwell 15

must occur in r+1 sampling units in the enlarged sample consisting of T+1 sampling

units. Then the total number of incidences of such species is (r + 1)Qr+1. Because

the order in which sampling units were taken is assumed to be irrelevant, the average

number of such species occurring in a single sampling unit is thus (r+1)Qr+1/(T +1),
which is approximately equal to (r+ 1)Qr+1/(T − r) if r is small. Dividing this ratio

by the number of such species, Qr, we obtain the incidence-data-based Good-Turing

frequency formula for φr as given in Eq. (5d).

For the special cases of r = 0 and r = 1, Eqs. (5b) and (5d) lead to

φ̂0Q0 =
Q1

T
, φ̂1 =

2Q2

(T −1)Q1

,

where φ̂0Q0 denotes the estimate of the product of φ0 and Q0. Intuitively, we expect

that the mean incidence probability of all undetected species should not be more than

that of all uniques in the sample, i.e. φ0 ≤ φ1, and this ordering is preserved by the

corresponding estimates. Then we obtain the Chao2 lower bound for the number of

undetected species by the following inequality:

Q̂0 =
φ̂0Q0

φ̂0

≥
φ̂0Q0

φ̂1

=
Q1
T

2Q2
(T−1)Q1

=
(T −1)

T

Q2
1

2Q2

. (5e)

Notice that, in the above derivation, if φ̂0 ≈ φ̂1, then the inequality sign in Eq. (5e)

becomes an equality sign. Therefore, from the Good-Turing perspective, the Chao2

lower bound is a nearly unbiased point estimator if all undetected and unique species in

samples have the same mean detection probabilities. Such a conclusion is valid if very

rare/infrequent species have approximately homogenous detection probabilities in any

sampling unit (because this implies φ̂0 ≈ φ̂1); in this case, frequent species could be

highly heterogeneous without affecting the estimator.

2.4. How many sampling units are needed to reach the Chao2 estimate?

As discussed earlier, the Chao2 formula (in Eq. 2b) implies that sampling is complete

when all species have been found in at least two sampling units, i.e. Q1 = 0; in such

a case, the estimated undetected species richness is 0 and the estimated species rich-

ness reduces simply to the observed number of species. This result also reveals that,

whenever at least one species is found in only one sample (Q1 > 0), sampling is not

complete and some species remain undetected. However, the Chao2 species richness

estimator does not indicate how much sampling effort (how many additional sampling

units) would be necessary to reach the Chao2 estimate (i.e. the first point at which there

are no longer any singletons).

For incidence data, “sample size” means the number of sampling units. Chao et

al. (2009) developed a non-parametric method for estimating the minimum sample size
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required to detect any arbitrary proportion (including 100%) of the estimated Chao2

species richness based on the Good-Turing formula discussed in Section 2.3. When

the target is the Chao2 estimate, Chao et al. (2009) approach is to predict the minimum

sample size t to achieve the following stopping rule: there are no uniques in the enlarged

sample of size T + t, or equivalently, the expected number of uniques in the enlarged

sample of size T + t is less than 0.5, because the theoretical expected value may not be

an integer.

Note that the number of uniques in the enlarged sample of size T + t includes two

groups of species: (1) any species observed in only one sampling unit in the original

sample (i.e. those species with Yi = 1) for which no additional incidences are detected

in the additional t samples with probability (1−πi)
t , and (2) any species not detected

in the original sample (i.e. those species with Yi = 0) for which detection in exactly one

sampling unit is observed in the additional t sampling units with probability tπi(1−
πi)

t−1. That is, the expected number of uniques in the enlarged T + t sampling units is:

∑S

i=1
(1−πi)

tI(Yi = 1)+
∑S

i=1
tπi(1−πi)

t−1I(Yi = 0).

As discussed in Section 2.3, we assume that all uniques in the original sample have

mean detection probability φ1, and all previously undetected species have mean detec-

tion probability φ0. Then the number of uniques in the enlarged T + t sampling units

will decline to < 0.5 when t satisfies

Q1(1−φ1)
t +Q0 tφ0(1−φ0)

t−1 < 0.5.

When we apply the Good-Turing incidence frequency formula to this equation, and

substitute φ1, φ0 and Q0 by φ̂1 = 2Q2/[2Q2 + (T − 1)Q1], φ̂0 = Q1/[Q1 + T Q̂0] and

Q̂0 = (1−1/T)Q2
1/(2Q2), then the required t must satisfy the following equation:

Q1

(
1+

t

T

)[
1−

2Q2

(T −1)Q1 +2Q2

]t

< 0.5.

The additional number of sampling units needed to reach the Chao2 estimate is approx-

imately equal to t = Tx∗, where x∗ is the solution of the following equation:

2Q1(1+ x) = exp

[
x

2Q2

(1−1/T)Q1 +2Q2/T

]
. (6a)

If g is the fraction of ŜChao2 that is desired (0 < g < 1), then the objective is to find

the number of additional mg sampling units such that the number of species reaches

the target value gŜChao2, i.e. the expected number of previously undetected species that

will be discovered in the additional mg sampling units is gŜChao2 − Sobs. This expected

number, given the observed data, is
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S∑

i=1

[1− (1−πi)
mg]I(Yi = 0)≈ Q0[1− (1−φ0)

mg ]. (6b)

Applying the Good-Turing incidence frequency formula and substituting φ0 and Q0,

we obtain that the required number of additional sampling units to reach a fraction g of

ŜChao2 (if gŜChao2 > Sobs) is the number mg such that Q̂0[1−(1− φ̂0)
mg] = gŜChao2−Sobs,

i.e.

mg ≈

log

[
1−

T

(T −1)

2Q2

Q2
1

(gŜChao2 −Sobs)

]

log

[
1−

2Q2

(T −1)Q1 +2Q2

] . (6c)

Chao et al. (2009) also provided an Excel spreadsheet for calculating necessary sampling

effort for either abundance data or replicated incidence data.

2.5. A class of lower bounds

In the Chao2 approach (Eq. 2b), the estimator for undetected species richness is only in

terms of the species incidence frequency counts of the uniques and duplicates in data.

Several authors extended this approach to higher-order incidence frequency counts.

Lanumteang and Böhning (2011) proposed using an additional incidence frequency

count, i.e. the number of species that are detected in exactly three sampling units. They

applied the above estimator to a variety of real data sets and concluded that the new

estimator is especially useful for large populations and heterogeneous detection proba-

bilities.

When the Chao2 estimator only provides a lower bound, its bias can be evaluated

and assessed by using the Good-Turing frequency formula. In this case, an improved

reduced-bias lower bound, which makes use of the additional information of Q3 and Q4,

was derived by Chiu et al. (2014). The corresponding lower bound of species richness

is referred to as iChao2 estimator (here the sub-indexi stands for “improved”):

ŜiChao2 = ŜChao2 +
(T −3)

4T

Q3

Q4

×max

(
Q1 −

(T −3)

2(T −1)

Q2Q3

Q4

, 0

)
. (6d)

They also provided an analytic variance estimator to construct the associated confidence

intervals.

Puig and Kokonendji (2017) extended Chao’s inequality to a broader class of distri-

butions that have log-convex probability generating functions. They obtained a series

of lower bounds for the undetected species richness. This class of distribution includes

compound Poisson distribution and Poisson-mixture distributions. Their framework is

mainly based on abundance data, but it can be readily applied to multiple incidence data,

as shown below.
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Following the proof of Puig and Kokonendji (2017), we assume that the incidence

probabilities (π1, π2, . . . ,πS) are a random sample from an unknown distribution with

density h(π), and we have E(Qk) given in Eq. (4a). Consider a probability density

function:

H(π) =
(1−π)T h(π)dπ∫ 1

0
(1−u)T h(u)du

, 0 < π < 1.

Puig and Kokonendji (2017) showed the following moment inequality for r, v= 0,1,2, . . .

1∫

0

(
π

1−π

)r+v

H(π)dπ≥

1∫

0

(
π

1−π

)r

H(π)dπ×

1∫

0

(
π

1−π

)v

H(π)dπ,

equivalently,




1∫

0

(1−π)T h(π)dπ






1∫

0

πr+v(1−π)T−(r+v)h(π)dπ




≥




1∫

0

πr(1−π)T−rh(π)dπ






1∫

0

πv(1−π)T−vh(π)dπ


 .

Then we have

E(Q0)≥

(
T

r+ v

)
E(Qr)×E(Qv)

(
T

r

)(
T

v

)
E(Qr+v)

, r, v = 0,1,2, . . . (6e)

A series of lower bounds of S can then be obtained if Qr+v > 0:

Sobs +

(
T

r+ v

)
Qr ×Qv

(
T

r

)(
T

v

)
Qr+v

, r, v = 1,2, . . .

In the special case of r = v = 1, the above lower bound reduces to the Chao2 estimator.

Puig and Kokonendji (2017) proved that, under a Poisson-mixture model, the greatest

lower bound attains at the special case r = v = 1. This also provides a justification for

the use of the Chao2 lower bound.



Anne Chao and Robert K. Colwell 19

3. Species richness estimation for standardized samples:

non-asymptotic analysis

Species richness estimation represents an “asymptotic” analysis; here “asymptotic”

means that, as sample size tends to infinity, sample completeness approaches unity.

When the Chao2 estimates are nearly unbiased under the conditions given in Section

2.3, they can be compared across multiple assemblages. However, when rare/infrequent

species are highly heterogeneous and sample size is not sufficiently large, the Chao2

formula can provide only a lower bound, which cannot be compared accurately across

assemblages, because the data provide insufficient information to accurately estimate

species richness due to high heterogeneity of infrequent species. No matter whether or

not Chao2 is unbiased, in any particular case, we can always use it to perform “non-

asymptotic” analysis, in which samples are standardized based on a common finite

sample size or on sample completeness via rarefaction and extrapolation. Again for

incidence data, sample size refers to the number of sampling units.

The objective of a non-asymptotic approach is to control the dependence of the em-

pirical species counts on sampling effort and sample completeness. The earliest devel-

opment of standardization of sample size for abundance data by rarefaction was pro-

posed by Sanders (1968), but see Chiarucci et al. (2008) for a historical review. Subse-

quent developments include studies by Hurlbert (1971), Simberloff (1972), Heck, van

Belle and Simberloff (1975) and Coleman et al. (1982); see Gotelli and Colwell (2001,

2011) for details. Ecologists typically use rarefaction to down-sample the larger sam-

ples until they are the same size as the smallest sample. Ecologists then compare rich-

ness of these equally-large samples, but this approach implies that some data in larger

samples are thrown away. To avoid discarding data, Colwell et al. (2012) proposed

using a unified sample-size-based rarefaction (interpolation) and extrapolation (predic-

tion) sampling curve for species richness, that can be rarefied to smaller sample sizes or

extrapolated to larger sample sizes.

Chao and Jost (2012) indicated that a sample of a given size may be sufficient to

fully characterize a low-diversity assemblage, but insufficient to characterize a rich-

assemblage. Thus, when the species counts of two equally-large samples are compared,

one might be comparing a nearly complete sample to a very incomplete one. In this case,

any difference in diversity between the sites will generally be underestimated. They pro-

posed rarefaction and extrapolation to a comparable degree of sample completeness (as

measured by sample coverage; see below) and developed a coverage-based rarefaction

and extrapolation methodology. The sample-size-based and coverage-based integration

of rarefaction and extrapolation of species richness represent a unified sampling frame-

work for quantifying and comparing species richness across multiple assemblages.

Here we review the sample-size-based and coverage-based rarefaction and extrapo-

lation of species richness; all formulas are tabulated in the first and the third columns of

Table 2.
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Table 2: The theoretical formulas and analytic estimators for rarefaction and extrapolation of species richness (left column), Faith’s PD (middle column), and

sample coverage (right column) based on incidence data, given a reference sample with observed species richness = Sobs, observed PD = PDobs, and estimated

coverage Ĉ(T ) for incidence data. Here the sample size means the number of sampling units. See Colwell et al. (2012) and Chao and Jost (2012) for derivation

details.

Species richness Faith’s PD Coverage

(a) Theoretical formula for any hypothetical sample size of t

S(t) =

S∑

i=1

[1− (1−πi)
t ] PD(t) =

B∑

i=1

Li[1− (1−λi)
t ] C(t) = 1−

S∑
i=1

πi (1−πi)
t

S∑
i=1

πi

(b) Rarefaction estimator for t < T

Ŝ(t) = Sobs −
∑

1≤ Yi ≤T−t

(
T −Yi

t

)

(
T

t

) P̂D(t) = PDobs −
∑

1≤ Yi ≤T−t

Li

(
T −Yi

t

)

(
T

t

) Ĉ(t) = 1−
∑

1≤ Yi ≤T−t

Yi

U

(
T −Yi

t

)

(
T −1

t

)

(c) Reference sample of size T

Ŝ(T ) = Sobs P̂D(T ) = PDobs Ĉ(T ) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]

(d) Extrapolation estimator for sample size T + t∗

Ŝ(T + t∗) = Sobs + Q̂0

[
1−

(
1−

Q1

T Q̂0 +Q1

)t∗
]

P̂D(T + t∗) = PDobs + R̂0

[
1−

(
1−

R1

T R̂0 +R1

)t∗
]

Ĉ(T + t∗) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]t∗+1

Notes: U =
∑

Yi>0 Yi =
∑T

j=1 jQ j denotes the total number of incidences in T sampling units; Q̂0 and R̂0 denote the estimated number of undetected species

richness in Eq. (2b) and undetected PD in Eq. (11c).
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3.1. Sample-size-based rarefaction and extrapolation

Following Colwell et al. (2012), we refer to the observed sample of T sampling units

as a reference sample. Let S(t) be the expected number of species in a hypothetical

sample of t sampling units, randomly selected from the sampling units that represent

the assemblage. If we knew the true species detection probabilities (π1, π2, . . . ,πS) of

the S species in each sampling unit, we could compute the following expected value:

S(t) = S−
S∑

i=1

(1−πi)
t , t = 1,2, . . . (7a)

The plot of S(t) with respect to the number of sampling units t is the sampling-unit-

based species accumulation curve. Note that the true species richness represents the

“asymptote” of the curve, i.e. S = S(∞). The rarefaction (interpolation) part estimates

the expected species richness for a smaller number of sampling units t < T . On the basis

of a reference sample of T sampling units, an unbiased estimator Ŝ(t) for S(t), t < T , is

Ŝ(t) = Sobs −
∑

1≤Yi≤ T−t

(
T −Yi

t

)/(
T

t

)
, t < T. (7b)

This analytic formula was first derived by Shinozaki (1963) and rediscovered multiple

times (Chiarucci et al., 2008).

The extrapolation is to estimate the expected number of species S(T + t∗) in a hypo-

thetical sample of T + t∗ sampling units (t∗ > 0) from the assemblage. Rewrite

S(T + t∗) =
S∑

i=1

[1− (1−πi)
T+t∗ ]

=
S∑

i=1

[1− (1−πi)
T ]+

S∑

i=1

[1− (1−πi)
t∗ ](1−πi)

T

= E (Sobs)+E

[
S∑

i=1

[1− (1−πi)
t∗ ]I(Yi = 0)

]
.

The first term in the above formula represents the observed species richness. For the

second term, we can apply the Good-Turing incidence frequency formula (Section 2.3)

by assuming that all previously undetected species have mean detection probability φ0.

Then for the second term, we have

S∑

i=1

[1− (1−πi)
t∗ ]I(Yi = 0)≈ Q0[1− (1−φ0)

t∗ ].
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Based on Eq. (5d), we have the extrapolated species richness for a sample of size T + t∗:

Ŝ(T + t∗) = Sobs + Q̂0

[
1−

(
1−

Q1

TQ̂0 +Q1

)t∗
]
, t∗ ≥ 0. (7c)

Colwell et al. (2012) linked rarefaction and extrapolation to form an integrated smooth

curve. The integrated sample-size-based sampling curve includes a rarefaction part

(which plots Ŝ(t) as a function of t < T ), and an extrapolation part (which plots Ŝ(T +t∗)
as a function of T +t∗), joining smoothly at the reference point (T , Sobs). The confidence

intervals based on the bootstrap method (Section 3.3) also join smoothly.

For a short-range prediction (e.g. t∗ is much less than T ), the extrapolation for-

mula is independent of the choice of Q̂0 as indicated by the approximation formula

Ŝ(T + t∗) ≈ Sobs +(Q1/T )t∗. This implies that the extrapolation formula in Eq. (7c) is

very robust and reliable even though the species richness estimator is subject to bias.

Previous experiences by Colwell et al. (2012) suggested that the prediction size can be

extrapolated at most to double the observed sample size.

3.2. Coverage-based rarefaction and extrapolation

Turing and Good developed the very important concept of “sample coverage” to charac-

terize the sample completeness of an observed set of individual-based abundance data.

Their concept was extended by Chao et al. (1992) to capture-recapture data. For mul-

tiple incidence data, the sample coverage of a reference sample of T sampling units is

defined as

C ≡C(T ) =

∑S
i=1πiI(Yi > 0)
∑S

i=1πi

= 1−

∑S
i=1πiI(Yi = 0)
∑S

i=1πi

,

which represents the fraction of the total incidence probabilities in the assemblage (in-

cluding undetected species) that is represented by species detected in the reference sam-

ple. Note that under the binomial model (Eq. 1b), an unbiased estimator for the de-

nominator in C(T ) is U/T , where U =
∑T

k=1 kQk =
∑S

i=1Yi denotes the total number of

incidences in the reference sample. For the numerator, we can apply the Good-Turing

incidence frequency formula (Section 2.3) by assuming that all uniques in the sample

have approximately the same detection probabilities, φ1. Then we can write

E

[∑S

i=1
πiI(Yi = 0)

]
=
∑S

i=1
πi(1−πi)

T

=
1

T
E

[∑S

i=1
(1−πi)I(Yi = 1)

]
≈

E(Q1)

T
(1−φ1).

Applying the Good-Turing formula φ̂1 = 2Q2/[2Q2 +(T −1)Q1] (Eq. 5d), we obtain a

very accurate estimator of the sample coverage for the reference sample size, if Q2 > 0:
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Ĉ(T ) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]
. (7d)

If Q2 = 0, a modified formula based on Chao et al. (2014b, Appendix G) is:

Ĉ(T) = 1−
Q1

U

[
(T −1)(Q1−1)

(T −1)(Q1−1)+2

]
. (7e)

In addition to the reference sample, we also need to consider the estimation of the

expected sample coverage, E[C(t)], for any hypothetical sample of t sampling units,

t = 1,2, . . . . This expected sample coverage is a function of t as given below:

E[C(t)] = 1−

∑S
i=1πi(1−πi)

t

∑S
i=1πi

, t ≥ 1. (7f)

For a rarefied sample (t < T ), an unbiased estimator exists for the denominator and

numerator in Eq. (7f), respectively, but their ratio Ĉ(t), given below, is only a nearly

unbiased estimator of E[C(t)]:

Ĉ(t) = 1−
∑

1≤Yi≤T−t

Yi

U

(
T −Yi

t

)

(
T −1

t

) , t < T.

An estimator for the expected coverage of an extrapolated sample with T + t∗ sampling

units if Q2 > 0 is

Ĉ(T + t∗) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]t∗+1

. (7g)

The above estimator is based on the following approximation formula:

E[C(T + t∗)] = 1−

∑S
i=1πi(1−πi)

T+t∗

∑S
i=1πi

≈ 1−
E[
∑S

i=1 (1−πi)
t∗+1I(Yi = 1)]

T
∑S

i=1πi

,

≈ 1−
[E(Q1)](1−φ1)

t∗+1

T
∑S

i=1πi

.

Replacing
∑S

i=1πi and φ1 with their respective estimators, U/T and φ̂1 = 2Q2/[2Q2 +
(T − 1)Q1], we obtain Eq. (7g). If Q2 = 0, a similar modification as in Eq. (7e) can

be applied. Note that when t∗ = 0, Eq. (7g) reduces to the sample coverage estimator

for the reference sample. The coverage-based sampling curve includes a rarefaction

part (which plots Ŝ(t) as a function of Ĉ(t)), and an extrapolation part (which plots

Ŝ(T + t∗) as a function of Ĉ(T + t∗)), joining smoothly at the reference sample point
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(Ĉ(T ), Sobs). The confidence intervals based on the bootstrap method (Section 3.3) also

join smoothly. To equalize coverage among multiple, independent reference samples,

their coverage-based curves can be extended to the coverage of the maximum size used

in the corresponding sample-size-based sampling curve.

The sample-size-based approach plots the estimated species richness as a function of

sample size, whereas the corresponding coverage-based approach plots the same rich-

ness estimate with respect to sample coverage. Therefore, the two types of sampling

curves can be bridged by a sample completeness curve, which shows how the sample

coverage estimate varies with sample size and also provides an estimate of the sample

size needed to achieve a fixed degree of completeness. The two types of sampling curves

along with the associated sample completeness curve are illustrated in Section 7 through

an example. There, we also illustrate the use of the online software iNEXT (iNterpola-

tion/EXTrapolation) to compute and plot the integrated sampling curves for incidence

data. These methods allow researchers to efficiently use all available data to make more

robust and more detailed inferences about species richness of the sampled assemblages,

and also to make objective comparisons of species richness across assemblages.

3.3. Bootstrap method to obtain variance estimator and

confidence intervals

The interpolated and extrapolated estimators are complicated functions of incidence

data. Thus, it is not possible to derive analytic variance estimators. A bootstrap pro-

cedure can be applied to approximate the variance of any estimator based on incidence

data. The estimated variance estimator can be subsequently used to construct a confi-

dence interval of the expected species richness. Here we use the rarefied estimator Ŝ(t)

given in Eq. (7b) as an example. Parallel steps can be formulated for any extrapolated

estimator, coverage estimators, and for Chao2-type estimators.

First, we construct the bootstrap assemblage, which aims to mimic the true entire as-

semblage. Given a reference sample of size T and species sample incidence frequencies

(Y1, Y2, . . . ,YS), let Q̂0 be the Chao2-type estimator of the number of undetected species.

Since the number of species in the bootstrap assemblage must be an integer, we define

Q̂∗
0 as the smallest integer that is greater than or equal to Q̂0. Thus, there are Sobs + Q̂∗

0

species in the bootstrap assemblage.

Next we determine the detection probabilities in any sampling unit for the species

in the bootstrap assemblage. Given that the ith species is detected in Yi > 0 sampling

units (there are Sobs of such species), the sample detection probability Yi/T of an ob-

served species (Yi > 0), on average, overestimates the true detection probability πi. This

overestimation is due to the following conditional expectation:

E

(
Yi

T

∣∣∣∣Yi > 0

)
=

πi

1− (1−πi)T
> πi.
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The above conditional expectation leads to

πi = E

(
Yi

T

∣∣∣∣Yi > 0

)
[1− (1−πi)

T ].

If we replace the expected value in the above equation by the observed data, then we

have the following approximation:

πi ≈
Yi

T
[1− (1−πi)

T ]. (7h)

For any given Yi > 1, one can numerically solve the above equation for πi; but for Yi = 1

(singletons, the most important count in our analysis), the only solution is πi = 0, which

is not reasonable. Therefore, Chao et al. (2014b, Appendix G) recommended the fol-

lowing analytic approach. Note that Eq. (7h) reveals that the approximate adjustment

factor for the sample detection probability Yi/T would be [1− (1−πi)
T ]. However, the

adjustment factor [1− (1−πi)
T ] cannot be estimated simply by substituting the sample

detection probability for πi, because the sample detection probability does not estimate

πi well for rare species. Chao et al. (2014b) suggested a more flexible adjustment factor,

[1− τ(1−Yi/T )T ]. Applying this factor, we obtain that the species incidence probabili-

ties for the Sobs observed species in the bootstrap assemblage can be estimated by

π̂i =
Yi

T

[
1− τ̂

(
1−

Yi

T

)T
]
, Yi > 0, (8a)

where τ̂ can be obtained from the sample coverage estimate:

Ĉ(T )×
U

T
=
∑

i

π̂i I(Yi > 0) =
∑

Yi>0

Yi

T

[
1− τ̂

(
1−

Yi

T

)T
]
,

Then we can solve for τ̂ :

τ̂ =

U

T
[1−Ĉ(T )]

∑
Yi≥1

Yi

T

(
1−

Yi

T

)T
=

[1−Ĉ(T)]

∑
Yi≥1

Yi

U

(
1−

Yi

T

)T
. (8b)

We assume that each of the remaining Q̂∗
0 species in the bootstrap assemblage (i.

e. those species that were not detected in any sampling unit but exist in the bootstrap

assemblage) has a common detection probability of (U/T)[1−Ĉ(T )]/Q̂∗
0. This assump-

tion may seem restrictive, but the effect on the resulting variance estimator is limited,

based on our extensive simulations.

After the bootstrap assemblage is determined, a random sample of T sampling units

is generated from the assemblage, and a bootstrap estimate Ŝ(t) is calculated for the
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generated sample. The procedure is repeated B times to obtain B bootstrap estimates

(B = 200 is suggested). The bootstrap variance estimator Ŝ(t) is the sample variance of

these B estimates. The resulting bootstrap s.e. of Ŝ(t) is then used to construct a 95%

confidence interval Ŝ(t)± 1.96 s.e. [Ŝ(t)] for the expected species richness in a sample

of size t. Similar procedures can be used to derive variance estimators for any other

estimator and its associated confidence intervals.

4. Species richness estimation under sampling without

replacement

Chao’s original inequality was developed under the binomial (Eq. 1b) model, which

assumes that sampling units are taken with replacement. When sampling is done with-

out replacement, e.g. quadrats or time periods that are not repeatedly selected/surveyed,

or mobile species are collected by lethal sampling methods, Chao’s inequality and the

Chao2 estimator require modification, unless the sampling fraction is small. For sim-

plicity, we assume quadrat sampling in the following derivation, but the term “quadrat,”

here, may refer to any sampling unit that is not sampled with replacement, such as a trap,

net, team, observer, occasion, transect line, or fixed period of time in other sampling

protocols. Suppose that the region under investigation consists of T ∗ disjoint, equal-

area quadrats, and a sample of T quadrats is randomly selected. Then each quadrat

is surveyed, and species detection/non-detection data are recorded for each of these T

quadrats.

The model assumes that species i can be detected in only Ui quadrats (Ui is un-

known). We restrict our analysis to the case Ui > 1. (For any species with Ui = 0, there

is no chance to detect this species in any sample, so it should be excluded from the es-

timating target.) In the other T ∗−Ui quadrats, species i is either absent or it is present

but cannot be detected. Because Ui may vary independently among species, our model

holds even if species are spatially aggregated, associated, or dissociated in the study

area.

Assume that detection/non-detection of all species for each of the T quadrats is

recorded to form a species-by-quadrat incidence matrix. Using the same notation as

in Section 2, we let Yi (sample incidence frequency) be the number of quadrats in

which the ith species is observed in the sample, i = 1,2, . . . ,S. Under sampling without

replacement, the sample frequencies (Y1, Y2, . . . ,YS) given Ui = ui, follow a product-

hypergeometric distribution:

P(Yi = yi, i = 1,2, . . . ,S) =
S

∏
i=1

{(
ui

yi

)(
T ∗−ui

T − yi

)/(
T ∗

T

)}
, 1 ≤ ui ≤ T ∗. (9a)

That is, (Y1,Y2, . . . ,YS) are independent but non-identically distributed random vari-

ables, each of which follows a hypergeometric distribution. If the sampling fraction
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is relatively small (i.e. T ∗ ≫ T ), then equation (9a) approaches the product binomial

distribution:

P(Yi = yi, i = 1,2, . . . ,S)→
S

∏
i=1

{(
T

yi

)( ui

T ∗

)yi
(

1−
ui

T ∗

)T−yi

}
.

This is a model for sampling with replacement with incidence probabilities πi = ui/T ∗.

The above approximation shows that, if there are many quadrats, and only a small num-

ber of the quadrats are sampled, then the inferences for the two types of sampling

schemes differ little. Based on the general model (9a), the marginal distribution for

each species’ frequency is a hypergeometric distribution. The expected value of the

frequency counts is

E(Qk) =
S∑

i=1

P(Yi = k) =
S∑

i=1

(
ui

k

)(
T ∗−ui

T − k

)

(
T ∗

T

) . (9b)

In particular, we have

E(Q0) =
S∑

i=1

(
T ∗−ui

T

)

(
T ∗

T

) ,

E(Q1) =
S∑

i=1

(
ui

1

)(
T ∗−ui

T −1

)

(
T ∗

T

) =
S∑

i=1

Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

)

E(Q2) =

S∑

i=1

(
ui

2

)(
T ∗−ui

T −2

)

(
T ∗

T

) =

S∑

i=1

T (T −1)ui(ui −1)

2(T ∗−ui −T +1)(T∗−ui −T +2)

(
T ∗−ui

T

)

(
T ∗

T

)

The Cauchy-Schwarz inequality leads to





S∑

i=1

(
T ∗−ui

T

)

(
T ∗

T

)









S∑

i=1

(
Tui

T ∗−ui −T +1

)2

(
T ∗−ui

T

)

(
T ∗

T

)





≥





S∑

i=1

Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

)





2

,

The right side in the above inequality is {E(Q1)}
2, and the first sum on the left side is

E(Q0). For the second sum, we rewrite
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(
Tui

T ∗−ui −T +1

)2

=
T

T −1

(
T (T −1)ui(ui−1)

(T ∗−ui −T +1)2

)
+

T 2ui

(T ∗−ui −T +1)2
.

Thus the second sum becomes





S∑

i=1

(
Tui

T ∗−ui −T +1

)2

(
T ∗−ui

T

)

(
T ∗

T

)





≈
2T

T −1
E(Q2)+

S∑

i=1

[
T

T ∗−ui −T +1

]
Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

) .

The contribution of species with large ui (frequent species) to any term involved in the

above Cauchy-Schwarz inequality is almost negligible. For infrequent species (with ui

much less than T ∗), we have

T

T ∗−ui −T +1
=

T/T ∗

(T ∗−ui −T +1)/T ∗
≈

T/T ∗

1− (T/T ∗)
=

q

1−q
,

where q = T/T ∗ denotes the sampling fraction. We then obtain the following approxi-

mate inequality

{E(Q0)}

(
T

T −1
2E(Q2)+

q

1−q
E(Q1)

)
≥ {E(Q1)}

2,

which is equivalent to

E(Q0)≥
{E(Q1)}

2

T
T−1

2E(Q2)+
q

1−q
E(Q1)

.

Replacing the expected value by the observed frequencies, we thus obtain the following

lower bound for the true species richness.

Ŝwor2 = Sobs +
Q2

1

2wQ2 + rQ1

, (9c)

where w = T/(T − 1) and r = q/(1− q), and the subscript “wor” refers to “without

replacement”. When the sample fraction q approaches zero, then r approaches zero, and

our lower bound approaches the Chao2 estimator. On the other hand, when q approaches

1, r = q/(1− q) approaches infinity and our lower bound reduces to the number of

observed species, which is the true parameter for complete sampling.
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An approximate variance formula for Ŝwor2 can be obtained by using an asymptotic

approach based on the hypergeometric distribution. The resulting variance estimator is:

v̂ar(Ŝwor2) = Q̂0 +
(2wQ2Q̂2

0 +Q2
1Q̂0)

2

Q5
1

+4w2Q2

(
Q̂0

Q1

)4

,

where Q̂0 = Ŝwor2 − Sobs denotes the estimator of the undetected species in the sample.

When Ŝwor2 is used as an estimator of species richness, a confidence interval of S can be

constructed by a log-transformation (Eq. 3c), so that the lower bound is always greater

than the number of observed species.

5. Shared species richness estimation

We now extend the one-assemblage model formulation and data framework to two as-

semblages (I and II), which can differ not only in their species richness, but also in

their species composition. Suppose that there are S species in the pooled assemblage.

Assume that T1 sampling units (Sample I) are randomly taken from Assemblage I,

and T2 sampling units (Sample II) are taken from Assemblage II. In each sampling

unit, only species detection/non-detection data are recorded. The two sets of proba-

bilities (π11, π21, . . . ,πS1) and (π12, π22, . . . ,πS2) in the incidence case represent species

detection probabilities in any sampling unit from Assemblages I and II, respectively,

πi1, πi2 ≥ 0, i = 1,2, . . . ,S. Let the true number of shared species between the two as-

semblages be S12. Without loss of generality, we assume that the first S12species in the

pooled assemblage are these shared species.

Let Yi1 and Yi2 denote the number of sampling units in which the ith species is de-

tected in Samples I and II, respectively. For any two non-negative integers r and v,

define

Qrv =
∑S12

i=1
I(Yi1 = r,Yi2 = v), r, v = 0,1,2, . . .

That is, Qrv denotes the number of shared species that are detected in r sampling units

in Sample I and v sampling units in Sample II. In particular, Q11 denotes the number of

shared species that are uniques in both samples, and Q00 denotes the number of shared

species that are present in both samples, but detected in neither. Also, let Qr+ denote

the number of shared species that are detected in r sampling units in Sample I and that

are detected in at least one sampling unit (using a “+” sign to replace the index v) in

Sample II, with a similar symmetric definition for Q+v. Thus, Q++ becomes the total

number of observed species shared between the two samples. Mathematically, we have

the following expressions:

Qr+ =
∑S12

i=1
I(Yi1 = r, Yi2 ≥ 1) =

∑
v>0

Qrv, r = 0,1,2, . . .
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Q+v =
∑S12

i=1
I(Yi1 ≥ 1, Yi2 = v) =

∑
r>0

Qrv, v = 0,1,2, . . .

Here, Q+0 denotes the number of shared species that are detected in Sample I but not

detected in Sample II, and a similar interpretation for Q0+.

Since S12 = Q+++Q+0 +Q0++Q00 but only Q++ is observable, our approach is to

find a lower bound for each of the expected values of the other three terms, i.e. E(Q+0),

E(Q0+) and E(Q00). Assuming the binomial models (Eq. 1b) for species incidence

frequencies for each of the two independent sets of frequencies, we have

E(Q00) =
∑S12

i=1
(1−πi1)

T1(1−πi2)
T2 ,

E(Q+0) =
∑S12

i=1
[1− (1−πi1)

T1 ](1−πi2)
T2 ,

E(Q0+) =
∑S12

i=1
(1−πi1)

T1 [1− (1−πi2)
T2].

We now derive a lower bound for each term as follows.

1. A lower bound for E(Q+0): Since

E(Q+1) =
∑S12

i=1
[1− (1−πi1)

T1 ] T2 πi2(1−πi2)
T2−1,

E(Q+2) =
∑S12

i=1
[1− (1−πi1)

T1 ] [T2(T2 −1)/2]π2
i2(1−πi2)

T2−2.

The following Cauchy-Schwarz inequality

[∑S12
i=1 [1− (1−πi1)

T1 ](1−πi2)
T2

] [∑S12
i=1 [1− (1−πi1)

T1 ] π2
i2(1−πi2)

T2−2
]

≥
[∑S12

i=1 [1− (1−πi1)
T1 ] πi2(1−πi2)

T2−1
]2

leads to a lower bound

E(Q+0)≥
(T2 −1)

T2

[E(Q+1)]
2

2E(Q+2)
. (10a)

2. Similarly, a lower bound for E(Q0+) is

E(Q0+)≥
(T1 −1)

T1

[E(Q1+)]
2

2E(Q2+)
. (10b)

3. A lower bound for E(Q00) is obtained by noting

E(Q11) =
∑S12

i=1
T1 πi1(1−πi1)

T1−1 T2 πi2(1−πi2)
T2−1,
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E(Q22) =
∑S12

i=1
[T1(T1 −1)/2]π2

i1(1−πi1)
T1−2[T2(T2 −1)/2]π2

i2(1−πi2)
T2−2.

Again, a similar Cauchy-Schwarz inequality

[∑S12
i=1 (1−πi1)

T1(1−πi2)
T2

] [∑S12
i=1π

2
i1(1−πi1)

T1−2π2
i2(1−πi2)

T2−2
]

≥
[∑S12

i=1πi1(1−πi1)
T1−1πi2(1−πi2)

T2−1
]2

gives

E(Q00)≥
(T1 −1)

T1

(T2 −1)

T2

[E(Q11)]
2

4E(Q22)
. (10c)

Combining the above three lower bounds and letting Ki = (Ti−1)/Ti, we thus have

a lower bound for the shared species richness:

Ŝ12 = Q+++K2

Q2
+1

2Q+2

+K1

Q2
1+

2Q2+
+K1K2

Q2
11

4Q22

. (10d)

The above estimator is referred to as the Chao2-shared estimator because it can

be regarded as an extension of the single-assemblage Chao2 estimator (Eq. 2b) to

the case of two assemblages. A bias-corrected estimator to avoid zero divisor is

S̃12 = Q+++K2

Q+1(Q+1 −1)

2(Q+2 +1)
+K1

Q1+(Q1+−1)

2(Q2++1)
+K1K2

Q11(Q11 −1)

4(Q22 +1)
. (10e)

Note that only observed, shared species are involved in the formulas (10a) to (10e),

thus observed non-shared species play no role in our estimation, although any

species observed in one Sample but not in the other could actually be a shared

species. Because the proposed estimator can be regarded as a function of the

statistics (Q++, Q11, Q22, Q1+, Q2+, Q+1, Q+2), we obtain a variance estimator by

using a standard asymptotic approach under a multinomial distribution. Then the

estimated variance can be used to construct a confidence interval for the true pa-

rameter using a log-transformation (Chao, 1987).

The above approach has an obvious extension to the case of more than two assem-

blages. For example, in the case of three assemblages, a “shared” species is defined as

that the species belongs to all three assemblages. Assume that there are S123 species

shared by all three assemblages (I, II and III), and a random sample of sampling units

is taken from each of the three assemblages. The three samples are called Samples I, II

and III with sizes T1, T2 and T3 respectively. Then

S123 = Q++++Q++0 +Q+0++Q0+++Q00++Q0+0 +Q+00 +Q000,
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where Q+++ denotes the observed shared species richness in the three samples, Q++0

denotes the number of shared species that are observed in Samples I, II but not observed

in Sample III, Q000 denotes the number of shared species that are not detected in any

of the three samples, and a similar interpretation for other terms in the above formula.

Parallel derivations (with self-explanatory notation) lead to a lower bound for S123 as fol-

lows:

Ŝ123 = Q++++K3

Q2
++1

2Q++2

+K2

Q2
+1+

2Q+2+
+K1

Q2
1++

2Q2++

+K1K2

Q2
11+

4Q22+
+K1K3

Q2
1+1

4Q2+2

+K2K3

Q2
+11

4Q+22

+K1K2K3

Q2
111

8Q222

.

We can formulate a bias-corrected version to avoid zero divisor in the same manner as

that given in Eq. (10e). An estimated variance can be obtained by an asymptotic method.

6. Phylogenetic richness estimation

6.1. Framework

In traditional measures of species diversity, all species (or taxa at some other rank) are

considered to be equally distinct from one another. However, in an evolutionary context,

species differences can be based directly on their evolutionary relationships, either in the

form of taxonomic classification or well-supported phylogenetic trees. Species that are

closely related are generally less distinct in important ecological characteristics than are

distantly-related species. A wide range of phylogenetic diversity metrics and related

(dis)similarity measures have been proposed in the literature. The most widely used

phylogenetic metric is Faith’s (1992) PD (phylogenetic diversity), which is defined as

the sum of the branch lengths of a phylogenetic tree connecting all species in the focal

assemblage.

Chao et al. (2010, 2015) proposed a class of abundance-sensitive phylogenetic mea-

sures and showed that Faith’s PD is a phylogenetic generalization of species richness.

In other words, Faith’s PD is a phylogenetic diversity of order zero in which species

abundances are not considered. From this perspective, Faith’s PD is a measure of

phylogenetic richness. Throughout this paper, PD refers to Faith’s (1992) PD. When

some species that are present in an assemblage are not detected in a sample, the lin-

eages/branches associated with these undetected species are also missing from the phy-

logenetic tree of the observed species. The undetected PD in an incomplete sample was

not discussed until recent years (Cardoso et al., 2014; Chao et al., 2015).

Model formulation and PD estimation based on abundance data were developed in

Chao et al. (2015). The corresponding framework for incidence data, introduced in

their Appendix S7 and presented here, is a generalization of the framework for species
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richness. As discussed in Section 2.1, suppose, in the focal assemblage, that there are S

species indexed by 1,2, . . . ,S, and T sampling units are surveyed from the assemblage.

In each sampling unit, we assume that only incidence (detection or non-detection) of

each species is recorded. For any sampling unit, assume that the ith species has its

own unique incidence (or detection) probability πi that is constant for any randomly

selected sampling unit. We also assume that a rooted ultrametric or non-ultrametric

phylogenetic tree of the S species (as tip nodes) can be constructed. Here we assume

that all phylogenetic measures are computed from a fixed, basal reference point in the

tree that is ancestral to all taxa considered in the study.

Assume that there are B branch segments in the corresponding tree, B ≥ S, descen-

dant to the given basal reference point. Let Li denote the length of the ith branch.

We expand the set of detection probabilities (π1, π2, . . . ,πS) of the S species (as tip

nodes) to a larger set of branch/node detection probabilities {λi, i = 1,2, . . . ,B} with

(π1, π2, . . . ,πS) as the first S elements. Here we define λi as the probability of detecting

at least one species descended from branch i in a sampling unit, i = 1,2, . . . ,B, and refer

to λi as the incidence (or detection) probability of branch/node i. The true PD for the

fixed reference point is expressed as PD =
∑B

i=1 Li.

The species-by-sampling-unit incidence matrix {Wi j; i = 1,2, . . . ,S, j = 1,2, . . . ,T}
and the species incidence frequencies Yi =

∑T
j=1Wi j are defined exactly the same as

those in Section 2.1. Here we expand the S×T incidence matrix {Wi j; i= 1,2, . . . ,S, j =
1,2, . . . ,T} to a larger B×T matrix {W ∗

i j , i = 1,2, . . . ,B, j = 1,2, . . . ,T} by specifying

that W ∗
i j = 1 if at least one species descended from branch i is detected in jth sampling

unit, and W ∗
i j = 0 otherwise. This specification also expands the set of the observed

species incidence frequencies {Y1, Y2, . . . ,YS} to a larger set {Y ∗
i , i = 1,2, . . . ,B}, which

consists of the row sums of the expanded incidence matrix [W ∗
i j]. We refer to Y ∗

i as the

sample branch/node incidence frequency for branch/node i, i = 1,2, . . . ,B. See Table 3

for a simple, hypothetical dataset for nine species in six sampling units, illustrating the

expansion of the matrix [Wi j] to [W ∗
i j].

Suppose that the incidence data for all the sampling units are independent. Then Y ∗
i ,

i = 1,2, . . . ,B, follows a binomial distribution:

P(Y ∗
i = yi) =

(
T

yi

)
λyi

i (1−λi)
T−yi , yi = 0,1,2, . . . ,T.

Define Rk as the sum of branch lengths for those branches with branch/node incidence

frequency k, i.e.

Rk =
∑B

i=1
Li I(Y ∗

i = k), k = 0,1, . . . ,T. (11a)

Thus, R0 represents the total length of branches that are not detected in the observed tree

(i.e. not detected by the tree spanned by the observed species in the reference sample),

and R1 denotes the total branch length of the uniques in the branch incidence frequency

set of the observed tree. A similar interpretation is valid for R2. Let PDobs denote the



34 Thirty years of progeny from Chao’s inequality: Estimating and comparing richness...

Table 3: Species detection/non-detection data for the hypothetical tree in Figure 1. Species 4, 7, 8, and 9

(grey shaded area) are not observed in the sample; Node 14 (grey shaded area) is not observed in the tree

spanned by the observed species.

Species/node/branch
Detection/non-detection in six sampling units

(1 means detection; blank means non-detection)

Species/node/branch

incidence frequency

1 2 3 4 5 6

1 1 1 1 1 1 1 Y1 =6

2 1 Y2 =1

3 1 Y3 =1

4 Y4 =0

5 1 1 Y5 =2

6 1 Y6 =1

7 Y7 =0

8 Y8 =0

9 Y9 =0

10 1 Y
∗

10 =1

11 1 1 1 1 1 1 Y
∗

11 =6

12 1 1 Y
∗

12 =2

13 1 Y
∗

13 =1

14 Y
∗

14 =0

15 1 Y
∗

15 =1

observed PD. Then we have PDobs =
∑

i>0 Ri and PD = PDobs +R0. See Figure 1 for a

hypothetical tree spanned by 9 species for an example.

6.2. Chao’s inequality for PD

The undetected PD in the reference sample is R0, which is unknown. However, {R1,

R2, . . .} can be computed from the reference sample and the tree spanned by the ob-

served species. Following the same approach that Chao et al. (2015) used for abundance

data, we have the expected value of Rk:

E(Rk) = E

[
B∑

i=1

LiI(Y
∗

i = k)

]
=

(
T

k

) B∑

i=1

Liλ
k
i (1−λi)

T−k, k = 0,1, . . . ,T. (11b)

In particular, we have

E(R0) =
B∑

i=1

Li(1−λi)
T ,

E(R1) = T

B∑

i=1

Liλi(1−λi)
T−1,
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(a) Tree spanned by all species (b) Tree spanned by observed species

Figure 1: (a) A hypothetical tree spanned by 9 species (tip nodes) indexed by 1, 2, . . . , 9 in an assemblage.

The ancestor of the entire assemblage is the “root” at the top, with time progressing towards the branch

tips at the bottom. Here the root of the entire assemblage is selected as the reference point for illustration.

Species detection/non-detection records in six sampling units are given in Table 3. A black dot means a node

with species incidence frequency > 0; a grey dot means a node with frequency = 0. (b) A sub-tree spanned

by the observed 5 species (1, 2, 3, 5 and 6). Species 4, 7, 8 and 9 are not detected in any of the six sampling

units, so only a portion of the tree (solid branches in the left panel) is observed as shown in Panel (b). Black

dots in Panel (b) are nodes in the observed tree; grey dots are not observed in the tree. The sample incidence

frequency vector in 6 sampling units for 9 species is (Y1, Y2, . . . , Y9) = (6, 1, 1, 0, 2, 1, 0, 0, 0); only non-zero

frequencies represent observed species. The branch set B in the assemblage includes 15 branches (indexed

from 1 to 15) with branch lengths (L1, L2, . . . ,L15) and the corresponding 15 nodes. The corresponding

node/branch incidence frequencies are (Y ∗
1 , Y ∗

2 , . . . ,Y
∗
9 , Y ∗

10, Y ∗
11, . . . ,Y

∗
15) = (6, 1, 1, 0, 2, 1, 0, 0, 0, 1, 6,

2, 1, 0, 1) with (Y1, Y2, . . . ,Y9) as the first 9 elements (see Table 3). The dotted branches in Panel (a) are

not detected in the sample, and the total length of the undetected branches is R0 = L4+L7 +L8+L9 +L14.

In Panel (b), the total length of those branches with Y ∗
i = 1 (there are four uniques in the node/branch

incidence frequency set of the observed tree) is R1 = L2 +L3 +L6 +L10 +L13 +L15 (as shown by green

lines in the observed tree in Panel (b)); the total length with Y ∗
i = 2 (only one duplicate in the node/branch

incidence frequency set of the observed tree) is R2 = L5 +L12 (as shown by red lines in the observed tree

in Panel (b)).

E(R2) =
T (T −1)

2

B∑

i=1

Liλ
2
i (1−λi)

T−2.

The Cauchy-Schwarz inequality

[
B∑

i=1

Li(1−λi)
T

][
B∑

i=1

Liλ
2
i (1−λi)

T−1

]
≥

[
B∑

i=1

Liλi(1−λi)
T−1

]2
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leads to the following inequality:

E(R0)≥
(T −1)

T

[E(R1)]
2

2E(R2)
.

Thus, a direct estimator of the undetected PD would be
(T−1)

T

R2
1

2R2
. However, when R2

is relatively small, including the case of R2 = 0, this estimator may yield an extremely

large value and thus exhibit a large variance. To cope with such cases, Chao et al. (2015)

and Hsieh and Chao (2017) proposed the following Chao2-PD estimator:

P̂DChao2 = PDobs + R̂0 =





PDobs +
(T −1)

T

R2
1

2R2

, if R2 >
R1Q∗

2

2Q∗
1

;

PDobs +
(T −1)

T

R1(Q
∗
1 −1)

2(Q∗
2 +1)

, if R2 ≤
R1Q∗

2

2Q∗
1

.

(11c)

where Q∗
1 and Q∗

2 denote, respectively, the number of nodes/branches with incidence

frequency = 1 and frequency = 2 in the observed tree; see Figure 1 for an example.

As with the Chao2 estimator, this lower bound is a nearly unbiased point estimator

if unique and undetected branches/nodes have approximately identical mean detection

probabilities. A sufficient condition is that rare/infrequent node/branch detection prob-

abilities are approximately homogeneous, while other nodes/branches can be highly

heterogeneous. When the detection probabilities for rare nodes/branches are heteroge-

neous and the sample is not sufficiently large, negative bias exists. The variance of the

Chao1-PD estimator can be obtained using Eqs. (3a) and (3b) with {Q1, Q2} being re-

placed by {R1, R2}. The construction of the confidence interval for Faith PD based on

the Chao1-PD estimator can be similarly obtained as that given in Eq. (3c).

Comparing the derivations for the above phylogenetic version of Chao’s inequality

with those in Section 2.3 for species richness, we see that all estimation steps are paral-

lel and the analogy between the two estimation frameworks is transparent. The analogy

was first proposed by Faith (1992). From Faith’s perspective, each unit-length branch is

regarded as a “feature” in phylogenetic diversity (like a “species” in species diversity).

Chao et al. (2014a) subsequently referred to each unit-length branch segment as a phy-

logenetic entity. All entities are phylogenetically equally distinct, just as all species are

assumed taxonomically equally distinct in computing simple species richness. Instead

of species, for PD we are measuring the total number of phylogenetic entities, or equiv-

alently, the total branch length (because each entity has length of unity). Based on this

perspective, for incidence data the measures of branch lengths {Rk, k = 0,1, . . . ,} used

to estimate PD play the same role as the frequency counts {Qk, k = 0,1, . . .} in estimat-

ing species richness. This analogy to counting up species means that most ecological

indices defined at the species level can be converted to PD equivalents (by counting

phylogenetic entities rather than species).
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6.3. Rarefaction/extrapolation guided by the Chao2-PD estimator

Because of the analogy between counting up species richness and counting up branch

lengths, all the species richness estimation tools for standardized samples in Section

3 can be directly extended to their phylogenetic equivalents, and similar sample-size-

based and coverage-based rarefaction and extrapolation sampling curves can be con-

structed. Table 2 gives all the corresponding formulas; thus we omit all details except

for the following two notes.

The theoretical formula for PD(t), the expected PD when a set of t sampling units is

taken from the assemblage, is a generalization of Eq. (7a):

PD(t) =
B∑

i=1

Li[1− (1−λi)
t ], t = 1,2, . . .

The plot of PD(t) as a function of t is a non-decreasing function and is referred to as

the sampling-unit-based PD accumulation curve. As sample size t tends to infinity,

PD(t) approaches the true PD. Thus the true PD represents the “asymptote” of the PD

accumulation curve, i.e. the true PD = PD(∞). When there are no internal nodes, and

all S lineages are equally distinct with branch lengths of unity (i.e. branch lengths are

normalized to unity), the sampling-unit-based PD accumulation curve reduces to the

species accumulation curve.

The bootstrap method to assess the variance and confidence interval associated with

the PD estimator for rarefied and extrapolated samples is similar to that in Section 3.3,

except that a “bootstrap tree” should be constructed in the resampling procedure. Recall

that, in the bootstrap assemblage discussed in Section 3.3 for species richness, there

are Sobs + Q̂∗
0 species, where Q̂∗

0 is the smallest integer that is greater than or equal to

the estimated undetected species richness Q̂0 based on the Chao2 estimator in Eq. (2b).

The PD bootstrap tree includes two portions: the known tree spanned by the observed

species, and the undetected tree spanned by the remaining Q̂∗
0 species in the bootstrap

assemblage. The latter portion of tree is estimated by assuming that the undetected

species in the bootstrap tree all diverged directly from the root of the observed tree with

a constant branch length ˆ̄L(0), where ˆ̄L(0) = R̂0/Q̂∗
0, and R̂0 is the estimated undetected

PD based on Eq. (11c). This augmented portion of tree may seem to be restrictive, but

the effect on the resulting variance is limited; see Chao et al. (2015) for details.

7. Example

7.1. Data description (Figure 2, Appendices A and B)

A small empirical data set for birds observed in November 2012 in Australian Barring-

ton Tops National Park is used for illustration. The original data were described in Chao

et al. (2015). At each data sampling point, the abundance of each bird species observed
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Figure 2: The phylogenetic tree of 41 bird species and the sample species incidence frequencies for two

sites (the North Site with 12 point-counts and the South Site with 17 point-counts) in Australian Barrington

Tops National Park (Chao et al., 2015). The phylogenetic tree is a Maximum Clade Credibility tree from the

Bayesian analysis of Jetz et al. (2012). Branch lengths are scaled to millions of years since divergence. The

phylogenetic tree for the species observed in the North Site includes black branches and green branches.

The phylogenetic tree for the species observed in the South Site includes black branches and red branches.

(Black branches are shared by both sites; red and green branches are non-shared.) A zero-frequency in a

site means that the species was not observed in that site. The age of the root (i.e. tree depth) is 82.9 millions

of years.

over a 30-minute period in a 50 m radius was recorded – called a point-count in or-

nithology. We treat each point-count as a sampling unit. There were 12 point counts

conducted along the Barrington Tops Forest Road in the northern part of the national

park. The corresponding records, shown in Appendix A, form the reference sample

for the North Site. There were 17 point counts conducted along the Gloucester Tops



Anne Chao and Robert K. Colwell 39

Road in the southern part of the Barrington Tops National Park; the raw detection/non-

detection records (ignoring abundances) for the 17 point counts are listed in Appendix

B. Those records form the reference sample for the South Site. Vegetation at both sites

ranged from wet eucalypt forest to rainforest, with an average canopy cover of 80% for

the North Site and 60% for the South Site. The sampling points comprising the North

Site had an average elevation of 1078 m, while those of the South Site had an aver-

age elevation of 928 m. A total of 41 species were observed, for both sites combined,

and all species incidence frequencies are shown in Figure 2 and in the last column of

Appendices A and B. A phylogenetic tree of these species (Figure 2) was constructed

from a Maximum Clade Credibility tree of the Bayesian analysis of Jetz et al. (2012).

The age of the root for the phylogenetic tree spanned by the observed species is 82.9

million years (Myr). Chao et al. (2015) analyzed these data based on species abundance

data. Here we focus on species incidence frequency data which can account for spatial

heterogeneity in the data, whereas abundance-based approach often cannot.

7.2. Species richness and shared species richness estimation (Table 4)

In the North Site (T = 12 sampling units), the reference sample includes 102 inci-

dences (U = 102) representing 27 observed species; in the South Site (T = 17 sam-

pling units), the reference sample includes 148 incidences (U = 148) representing 38

observed species. The species incidence frequency counts (Q1 to QT ) for the two sites

are summarized in Table 4. Based on Eq. (7d), the estimated sample coverage values

for the North Site and the South Site are nearly identical at a level of 92% (specifically,

91.8% for the North Site and 92.5% for the South Site) in spite of the difference in the

number of sampling units. Thus, the raw data imply that the South Site is more diverse

than the North site for a standardized fraction of approximately 92% of the individuals

in each assemblage.

In each site, some species were each observed in only one point-count. The existence

of such “uniques” signifies that some species were undetected in each site. In the North

Site, 9 species were observed in only one point-count (Q1 = 9) and 4 species were ob-

served in two point-counts (Q2 = 4). These 13 rare species contain most of the available

information about the number of undetected species. The Chao2 formula in Eq. (2b)

implies a species richness estimate for the North Site of 36.3, with a 95% confidence

interval of (29.1, 68.8). In the South Site, 12 species were observed in only one point

(Q1 = 12), and 8 species were observed in two points (Q2 = 8). The Chao2 formula in

Eq. (2b) yields a species richness estimate of 46.5 for the South Site, with a 95% confi-

dence interval of (40.3, 69.8). Richness estimates based on the improved iChao2 estima-

tor (38.6 for North and 48.2 for South), derived by Chiu et al. (2014) in Eq. (6d), differ

little from the corresponding Chao2 estimates, so our interpretation is mainly based on

the Chao2 estimates. All estimates were computed from the SpadeR Online (Species-

richness Prediction And Diversity Estimation Online) software, which is available from

Anne Chao’s website at http://chao.stat.nthu.edu.tw/wordpress/software_download/.
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Table 4: A summary of raw data and species richness estimation for bird species in two sites (the South

Site and the North Site in Australian Barrington Tops National Park); see Chao et al. (2015).

(a) Species incidence frequency counts in the North Site (Sobs = 27, T = 12, total number of incidences

U = 102, sample coverage estimate = 91.8%); Qi: the number of species detected in exactly i sampling

units (point counts).

i 1 2 3 5 6 7 9 10 11 12

Qi 9 4 3 5 1 2 1 1 0 1

(b) Species incidence frequency counts in the South Site (Sobs = 38, T = 17, total number of incidences

U = 148, sample coverage estimate = 92.5%).

i 1 2 3 4 5 6 7 8 9 11 17

Qi 12 8 3 3 2 2 3 1 1 2 1

(c) Undetected species richness and Chao2 point and interval estimates for each site; see Eq. (2b)

Site T Q1 Q2
Observed

richness

Undetected

richness

Chao2

richness

s.e. of

Chao2

95% conf.

interval

North 12 9 4 27 9.28 36.28 8.31 (29.06, 68.77)

South 17 12 8 38 8.47 46.47 6.43 (40.25, 69.78)

(d) Undetected shared species richness between the two sites and the corresponding Chao2-shared point

and interval estimates for shared species richness; see Eq. (10e)

Observed shared

richness
Q+1 Q+2 Q1+ Q2+ Q11 Q22

24 6 1 6 4 4 0

Q̂+0 Q̂0+ Q̂00

Undetected

shared

richness

Chao2-

shared

richness

s.e. of

Chao2-shared

95% conf.

interval

2.75 7.06 2.59 12.39 36.39 11.42 (26.67,81.64)

The above results reveal that a relatively high fraction of the species present in each

site remain undetected. As discussed in Section 2.3, if we can assume for each site

that all undetected and unique species have approximately the same probability to be

detected in each point-count, then these asymptotic estimates represent nearly unbiased

estimates and can be compared between the two sites. In this case, the data are not
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sufficient to detect statistically significant differences in richness between the two sites,

as reflected by the overlapping confidence intervals associated with the two Chao2 es-

timates (Table 4). However, the data do support inference of a significance difference

in species richness if only a fraction of the assemblages are compared, as shown by the

disjoint confidence intervals in the coverage-based rarefaction and extrapolation in the

next sub-section.

Table 4 also shows overlap information and shared species richness estimation be-

tween the two sites. Out of the 24 observed shared species, 4 were uniques in both sites

(Q11 = 4), 12 shared species were uniques in one site or the other (Q+1 = 6, Q1+ = 6),

one shared species was a duplicate in the South Site (Q+2 = 1), and 4 shared species

were duplicates in the North Site (Q2+ = 4). The existence of such rare shared species

signifies that there were undetected shared species. Based on the Chao2-shared formula

(Eq. 10e), the minimum number of undetected shared species is estimated to be 12.4,

and the minimum shared species richness is estimated to be 36.4, with a 95% confidence

interval of (26.7, 81.6); see Table 4 for details. Our approach reveals the extent of under-

estimation and provides helpful information for understanding community/assemblage

overlap.

7.3. Rarefaction and extrapolation of species richness

(Figures 3, 4 and 5)

We use the data from these two sites to illustrate the construction of two types of rar-

efaction and extrapolation curves of species richness (sample-size-based and coverage-

based), and the sample completeness curve; all formulas are given in Table 2. The

constructed sampling curves are then used to compare species richness between the two

sites. These sampling curves can be obtained using the online software iNEXT (iN-

terpolation and EXTrapolation, available from the website address is given in Section

7.2). iNEXT online returns the three sampling curves as shown in Figures 3, 4 and 5,

along with some related statistics (omitted here). The omitted output includes basic data

information and species richness estimates for some rarefied and extrapolated samples.

The sample-size-based sampling curve (Figure 3) includes a rarefaction part (which

plots Ŝ(t) as a function of t < T ), and an extrapolation part (which plots Ŝ(T + t∗) as a

function of T + t∗), joining smoothly at the reference point (T , Sobs). The confidence

intervals based on the bootstrap method also join smoothly. With this type of sampling

curve, we can compare species richness for two equally-large samples along with 95%

confidence intervals. For each site, the extrapolation is extended to 34 sampling units,

double that of the reference sample size of the South Site. Extrapolation beyond the dou-

bled reference sample size could theoretically be computed and used for ranking species

richness, but the estimates may be subject to some prediction biases and should be used

with caution in estimating species richness ratios or other measures. Figure 3 reveals that

the curve for the South Site lies above that of the North Site. However, the confidence

intervals of the two sites overlap, implying that comparing two equally-large samples
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Figure 3: Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines) sampling curves

with 95% confidence intervals (shaded areas, based on a bootstrap method with 200 replications) compar-

ing species richness for Australian bird data in two sites (the South Site and the North Site in Barrington

Tops National Park); see Chao et al. (2015). Observed (reference) samples are denoted by the solid dots.

The extrapolation extends up to a maximum sample size of 34; here the sample size means the number of

sampling units. The numbers in parentheses are the number of sampling units and the observed species

richness for each reference sample. The estimated asymptote for each curve is shown next to the arrow at

the right-hand end of each curve.

Figure 4: Plot of sample coverage for rarefied samples (solid line) and extrapolated samples (dashed line)

as a function of sample size for Australian bird data in two sites (the South Site and the North Site in

Barrington Tops National Park); see Chao et al. (2015). Observed (reference) samples are denoted by

solid dots. The 95% confidence intervals (shaded areas) are obtained by a bootstrap method based on 200

replications. Each of the two curves was extrapolated up to the base sample size of 34. The numbers in

parentheses are the number of sampling units and the estimated sample coverage for each reference sample.
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Figure 5: Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) sampling curves with

95% confidence intervals (shaded areas, based on a bootstrap method with 200 replications) for comparing

species richness for Australian bird data in two sites (the South Site and the North Site in Barrington Tops

National Park); see Chao et al. (2015). Observed (reference) samples are denoted by solid dots. The

extrapolation extends up to the coverage value of the corresponding maximum number of sampling units of

34 in Figure 4 (98.5% in the North Site and 98.1% in the South Site). The numbers in parentheses are the

estimated coverage and the observed species richness for each reference sample. The estimated asymptote

for each curve is shown next to the arrow at the right-hand end of each curve.

is inconclusive regarding the test of significant difference in species richness between

the two sites. Generally, for any fixed sample size (or completeness) in the comparison

range, if the 95% confidence intervals do not overlap, then significant differences at a

level of 5% among the expected diversities (whether interpolated or extrapolated) are

guaranteed. However, overlapping intervals do not guarantee non-significance (Colwell

et al., 2012).

The sample completeness curve (Figure 4) shows how the sample coverage varies

with the number of sampling units, along with 95% confidence intervals for each of the

two sites, up to the sample size of 34. This curve includes a rarefaction part (which

plots Ĉ(t) as a function of t < T ), and an extrapolation part (which plots Ĉ(T + t∗) as

a function of T + t∗), joining smoothly at the reference point (T ,Ĉ(T )). For any fixed

number of sampling units, the curve of the North Site lies consistently above that of

the South Site, but there is little difference between the two curves when the number of

units exceeds 10. For the North Site, when the number of units is extended from 12 to

34, the sample coverage is extended from 91.8% to 98.5% (a number provided by the

unreported iNEXT output). For the South Site, when the sample size is extended from

17 to 34 the coverage is extended from 92.5% to 98.1% (as shown in the unreported

iNEXT output). The sample completeness curve provides a bridge between sample-

size-based and coverage-based sampling curves.

The coverage-based sampling curve (Figure 5) includes a rarefaction part (which

plots Ŝ(t) as a function of Ĉ(t) for t < T ), and an extrapolation part (which plots
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Ŝ(T + t∗) as a function of Ĉ(T + t∗)), joining smoothly at the reference sample point

(Ĉ(T ), Sobs). In this type of sampling curve, we compare species richness for two

equally-complete samples along with 95% confidence intervals. The extrapolation is

extended to 98.5% for the North Site and to 98.1% for the South Site, as explained

in the preceding paragraph. One advantage of using coverage-based curves is that the

South Site has significantly greater species richness than the North Site, as evidenced by

the non-overlapping confidence intervals for any fixed coverage up to about 93% in Fig-

ure 5. This implies that, if we compare species richness for sample coverage up to 93%,

the data do provide sufficient information to conclude that the South Site is significantly

richer in species. Unlike the sample-sized-based standardization, in which sample size

is determined by investigators, the coverage-based standardization compares equal pop-

ulation fractions of each assemblage. The population fraction is an assemblage-level

characteristic that can be reliably estimated from data.

As demonstrated in the above-described example, the two R packages (SpadeR

and iNEXT) supply useful information for both asymptotic and non-asymptotic anal-

yses. These methods efficiently use all available data to make robust and meaning-

ful comparisons of species richness between assemblages for a wide range of sample

sizes/completeness.

7.4. Faith’s PD estimation (Table 5)

Without loss of generality, we select the time depth at 82.9 Myr (the age of the root of the

phylogenetic tree connecting the observed 41 species) as our temporal perspective for

our phylogenetic diversity estimation in this sub-section and for rarefaction/extrapolation

in the next sub-section. Although the root of the observed species varies with sampling

data, we can easily transform all our estimates to those for a new reference point that is

ancestral to all species; see Chao et al. (2015) for transformations.

In the North Site (27 species in 12 sampling units), the observed PD (PDobs) is

1222.10 Myr. The total branch lengths for uniques in the sample branch/node incidence

frequencies is calculated as R1 = 376.5 Myr, and for duplicates is R2 = 153.5 Myr.

These two statistics and the two counts (Q∗
1 = 9, Q∗

2 = 6) in the observed tree produce

(by Eq. 11c) an estimate of the undetected PD as R̂0 = 423.3 Myr, leading to a Chao2-

PD estimate of the true PD of P̂DChao2 = PDobs+ R̂0 = 1645.4, with an estimated s.e. of

465.81 and 95% confidence interval of (1296.0, 3647.9), based on a bootstrap method

using 200 replications and a log-transformation.

In the South Site (38 species in 17 sampling units), the observed PD (PDobs) is

1416.0 Myr. The corresponding statistics are R1 = 376.8 Myr, R2 = 229.5 Myr, Q∗
1 = 13

and Q∗
2 = 10. These yield an estimate of the undetected PD as R̂0 = 291.2 Myr, leading

to a Chao2-PD estimate of the true PD of P̂DChao2 = PDobs + R̂0 = 1707.2, with an es-

timated s.e. of 206.45 and 95% confidence interval of (1499.4, 2433.1). Thus, signifi-
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Table 5: A summary of phylogenetic data and PD estimation based on the incidence frequency counts data

(in Table 4) and the phylogenetic tree (in Figure 2) for bird species in two sites (the South Site and the North

Site in Australian Barrington Tops National Park); see Chao et al. (2015). All calculations are based on

a reference time point of 82.9 Myr, the age of the root of the phylogenetic tree connecting the observed 41

species.

Site Q∗
1 Q∗

2 R1 R2
Observed

PD

Undetected

PD

Chao2-

PD

s.e. of

Chao2-PD

95% conf.

interval

North 9 6 376.5 153.5 1222.1 423.3 1645.4 465.81 (1296.0, 3647.9)

South 13 10 376.8 229.5 1416.0 291.2 1707.2 206.45 (1499.4, 2433.1)

cant difference in PD between the two sites cannot be guaranteed due to the overlapping

confidence intervals.

7.5. Rarefaction and extrapolation of PD (Figures 6 and 7)

The two types of rarefaction and extrapolation curves, along with the sample complete-

ness curves, can be obtained using the online software PhD (Phylogenetic Diversity),

available from the website given in Section 7.2. The sample-size-based and coverage-

based sampling curves are shown respectively in Figures 6 and 7. These two curves

are plotted in the same manner as those for species richness in Section 7.3; the only

difference lies in that species richness estimates were replaced by PD estimates (all PD

Figure 6: Comparison of sample-size-based rarefaction (solid lines) and extrapolation (dotted curves) of

Faith’s PD, up to 34 sampling units for Australian bird data in two sites (the South Site and the North

Site in Barrington Tops National Park); see Chao et al. (2015). The fixed time depth is 82.9 Myr (the

age of the root of the observed tree.) Observed (reference) samples are denoted by solid dots. The 95%

confidence intervals (shaded areas) are obtained by a bootstrap method based on 200 replications. The

numbers in parentheses are the number of sampling units and the observed PD for each reference sample.

The estimated asymptote of PD (Eq. 11c) for each curve is shown after an arrow sign.
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Figure 7: (a) Comparison of the coverage-based rarefaction (solid lines) and extrapolation (dotted curves)

of Faith’s PD, up to the coverage 98.5% for the North Site and 98.1% for the South Site for Australian bird

data in Barrington Tops National Park (Chao et al., 2015). The fixed time depth is 82.9 Myr (the age of the

root of the observed tree.) Observed (reference) samples are denoted by solid dots. The 95% confidence

intervals (shaded areas) are obtained by a bootstrap method based on 200 replications. The numbers

in parentheses are the estimated sample coverage and the observed PD for each reference sample. The

estimated asymptote of PD (Eq. 11c) for each curve is shown after an arrow sign.

formulas for rarefied and extrapolated samples are provided in the second column of

Table 2). The sample completeness curve is identical to that in Figure 4.

We first compare the integrated sample-size-based rarefaction and extrapolation curves

for PD along with 95% confidence intervals (based on a bootstrap method of 200 repli-

cations) up to 34 sampling units. The estimated PD and confidence intervals then can

be compared across sites for any sample size less than the size of 34. Across this range

of sample size, Figure 6 reveals that the South Site has higher PD estimate than that of

the North Site, but the two confidence intervals overlap and thus data do not provide

evidence to support significant difference.

In Figure 7, we compare the corresponding coverage-based rarefaction and extrap-

olation curves for PD with 95% confidence intervals up to the coverage of 98.5% (for

the North Site) and 98.1% (for the South Site). Although the estimated PD for the

South Site still consistently lies above that for the North Site for any standardized sam-

ple coverage, the two confidence intervals overlap and thus significant difference cannot

be concluded. Chao et al. (2015) analyzed the same data set but based on species

abundance data. Although the two types of data yield generally consistent patterns for

rarefaction and extrapolation curves, they found that species abundance data show that

the PD in the South Site is significantly higher than that in the North-site for any stan-

dardized sample coverage less than 90%; see Chao et al. (2015) for analyses based on

abundance data.
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8. Conclusion and discussion

We have reviewed Chao’s (1987) inequality and the associated Chao2 estimator (Eq. 2b)

of species richness for multiple incidence data. Using an incidence-data-based gener-

alization of the Good-Turing frequency formula, we have demonstrated that the Chao2

estimator is an unbiased point estimator as long as very rare/infrequent species (specif-

ically, undetected species and unique species in the data) have approximately the same

detection probabilities in any sampling unit; the other species (those detected in two or

more sampling units) can be highly heterogeneous without affecting the estimator. On

the other hand, if very rare/infrequent species are heterogeneous and the sample size is

not sufficiently large, then the data do not contain sufficient information to accurately

estimate species richness, and the Chao2 formula provides a universal nonparametric

lower bound. We have also reviewed the work of Chao et al. (2009) on a related sam-

pling issue, i.e. how many additional sampling units are needed to detect any arbitrary

proportion (including 100%) of the Chao2 estimate. Higher-order incidence frequency

counts can be also used to construct a series of Chao2-type lower bounds, as derived by

Chiu et al. (2014) in Eq. (6d), and by Puig and Kokonendji (2017) in Eq. (6e).

We have also reviewed subsequent developments, including species richness estima-

tors under sampling without replacement, specifically the Chao2-type species richness

estimator under sampling without replacement is shown in Eq. (9c). When there are

multiple assemblages, the Chao2-shared estimator (Eq. 10d) can be used to infer shared

species richness. We also described the Chao2-PD estimator (Eq. 11c), which estimates

the true PD for the phylogenetic tree spanned by all species in the focal assemblage.

Similarly, for phylogenetic diversity, the Chao2-PD estimator is nearly unbiased if the

detection probabilities of rare/infrequent nodes/branches are approximately homoge-

neous, even if other nodes/branches are heterogeneously detectable. These estimates

can be computed from online software SpadeR, iNEXT, and PhD. We have illustrated

the use of the software for a real data set in Section 7.

When rare/infrequent species or nodes are highly heterogeneous in their detection

probabilities, such as in microbial assemblages or DNA sequencing data, all estimators

derived in this paper underestimate the true diversities and can be regarded only as

lower bounds. In such cases, a non-asymptotic approach via sample-size-based and

coverage-based rarefaction and extrapolation on the basis of standardized sample size

or sample completeness (as measured by sample coverage) is recommended. This non-

asymptotic approach facilitates fair comparison of diversities (Sections 3 and Section

6.3) for equally-large or equally-complete samples across multiple assemblages. See

the example data analysis for rarefaction/extrapolation curves (Figures 3–5 for species

richness, and Figures 6 and 7 for PD).

None of the diversity measures discussed in this paper (species richness, shared

species richness, and Faith’s PD) considers species abundances. Hill (1973) integrated

species richness and species relative abundances into a class of diversity measures later

called Hill numbers, which include species richness for the diversity order zero. Hill
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numbers (or the effective number of species) have been increasingly used to quantify

the species/taxonomic diversity of assemblages because they represent an intuitive and

statistically rigorous alternative to other diversity indices. Hill numbers are parame-

terized by a diversity order q, which determines the measures’ sensitivity to species

relative abundances. Hill numbers include the three most widely used species diver-

sity measures as special cases: species richness (q = 0), Shannon diversity (q = 1), and

Simpson diversity (q = 2). Like species richness, a Hill number of any order q is depen-

dent on sample size and sample completeness, and thus standardization is needed. The

sample-size-based and coverage-based integration of rarefaction (interpolation) and ex-

trapolation (prediction) of Hill numbers represent a unified standardization method for

quantifying and comparing species diversity across multiple assemblages; see Chao et

al. (2014b) for rarefaction and extrapolation methods based on Hill numbers.

Chao et al. (2010) extended Hill numbers to a class of phylogenetic diversity mea-

sures. This class of phylogenetic measures can be regarded as a generalization of Faith’s

PD to incorporate species abundances, because it includes Faith’s PD as the diversity

of order zero (q = 0). The corresponding sample-size-based and coverage-based inte-

gration of rarefaction and extrapolation of this class of phylogenetic diversity measures

was recently developed by Hsieh and Chao (2017). In addition to abundances and evo-

lutionary history, species are often described by a set of traits that affect organismal

and/or ecosystem functioning. Functional diversity quantifies the diversity of species’

traits among coexisting species in an assemblage and is regarded as key to understanding

ecosystem processes and their response to environmental stress or disturbance (Tilman

et al., 1997; Cadotte et al., 2009). The extension of rarefaction and extrapolation to

functional diversity is still under development.
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Appendix A: Species detection/non-detection records in 12 point-counts for the North Site at Barrington

Tops National Park, Australia (Chao et al., 2015).

Species name Detection/non-detection record

in 12 sampling units (point-counts)

Incidence

frequency

Acanthiza lineata 0 0 0 0 0 0 0 0 0 0 0 0 0

Acanthiza nana 0 0 0 0 0 0 0 0 0 0 0 0 0

Acanthiza pusilla 1 1 1 1 1 1 1 1 1 1 1 1 12

Acanthorhynchus tenuirostris 0 0 0 0 0 0 0 0 0 0 0 0 0

Alisterus scapularis 0 0 1 0 0 0 0 0 1 0 0 0 2

Cacatua galerita 0 0 0 0 0 0 1 0 0 0 0 0 1

Cacomantis flabelliformis 0 1 0 0 1 0 1 1 1 0 0 0 5

Calyptorhynchus funereus 0 0 0 0 0 0 0 0 0 1 0 0 1

Colluricincla harmonica 1 1 0 0 0 0 0 0 0 0 0 0 2

Cormobates leucophaea 1 1 1 1 1 1 1 1 0 1 0 0 9

Corvus coronoides 0 0 0 0 0 0 0 1 0 0 0 0 1

Dacelo novaeguineae 0 0 0 0 0 0 0 0 0 0 1 0 1

Eopsaltria australis 1 0 0 1 0 1 1 0 1 0 0 0 5

Gerygone mouki 1 1 1 1 0 1 0 0 0 0 0 0 5

Leucosarcia melanoleuca 0 1 0 0 0 0 0 0 0 0 0 0 1

Lichenostomus chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0

Malurus cyaneus 0 0 0 0 0 0 0 0 0 0 0 0 0

Malurus lamberti 0 0 0 0 0 0 0 0 0 0 0 0 0

Manorina melanophrys 0 0 0 0 0 0 0 0 0 0 0 0 0

Meliphaga lewinii 1 1 1 1 1 1 0 0 0 0 0 0 6

Menura novaehollandiae 1 1 1 0 0 0 0 0 1 0 0 1 5

Monarcha melanopsis 0 0 0 0 1 0 0 0 0 0 0 0 1

Neochmia temporalis 0 0 0 0 0 0 0 0 0 0 0 0 0

Oriolus sagittatus 0 0 1 0 0 0 0 0 0 0 0 0 1

Pachycephala olivacea 0 0 0 0 0 0 0 0 0 0 0 0 0

Pachycephala pectoralis 1 1 1 1 0 1 0 0 0 0 1 1 7

Pachycephala rufiventris 0 0 0 0 0 0 0 0 0 0 0 0 0

Pardalotus punctatus 1 0 1 1 1 0 1 1 0 0 1 0 7

Petroica rosea 0 0 0 0 0 0 0 0 0 0 1 0 1

Phylidonyris niger 0 0 0 0 0 0 0 0 0 0 0 0 0

Platycercus elegans 0 0 1 0 0 0 0 0 0 0 0 0 1

Psophodes olivaceus 0 0 1 1 0 0 0 1 0 0 0 0 3

Ptilonorhynchus violaceus 0 0 0 0 1 0 0 0 0 0 0 1 2

Ptiloris paradiseus 0 0 0 0 0 0 0 0 0 0 0 0 0

Rhipidura albicollis 1 1 0 1 0 1 1 1 1 1 1 1 10

Rhipidura rufifrons 0 0 1 0 1 0 0 0 0 1 0 0 3

Sericornis citreogularis 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericornis frontalis 1 0 0 1 0 0 0 0 0 0 0 0 2

Strepera graculina 0 0 1 0 0 0 0 0 0 1 0 1 3

Zoothera lunulata 0 0 0 0 0 0 0 0 0 0 0 0 0

Zosterops lateralis 1 1 0 0 1 1 1 0 0 0 0 0 5
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Appendix B: Species detection/non-detection records in 17 point-counts for the South Site at Barrington

Tops National Park, Australia (Chao et al., 2015).

Species name Detection/non-detection record

in 17 sampling units (point-counts)

Incidence

frequency

Acanthiza lineata 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Acanthiza nana 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 5

Acanthiza pusilla 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 9

Acanthorhynchus tenuirostris 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2

Alisterus scapularis 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Cacatua galerita 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Cacomantis flabelliformis 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 4

Calyptorhynchus funereus 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Colluricincla harmonica 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 4

Cormobates leucophaea 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

Corvus coronoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dacelo novaeguineae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eopsaltria australis 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 3

Gerygone mouki 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 7

Leucosarcia melanoleuca 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Lichenostomus chrysops 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Malurus cyaneus 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

Malurus lamberti 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2

Manorina melanophrys 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Meliphaga lewinii 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 11

Menura novaehollandiae 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 4

Monarcha melanopsis 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 5

Neochmia temporalis 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2

Oriolus sagittatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pachycephala olivacea 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2

Pachycephala pectoralis 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 7

Pachycephala rufiventris 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Pardalotus punctatus 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 8

Petroica rosea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Phylidonyris niger 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Platycercus elegans 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2

Psophodes olivaceus 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 6

Ptilonorhynchus violaceus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Ptiloris paradiseus 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2

Rhipidura albicollis 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 11

Rhipidura rufifrons 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 7

Sericornis citreogularis 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Sericornis frontalis 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 3

Strepera graculina 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3

Zoothera lunulata 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Zosterops lateralis 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 6



Anne Chao and Robert K. Colwell 51

References
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Abstract

The Lorenz curve is the most widely used graphical tool for describing and comparing inequality

of income distributions. In this paper, we show that the elasticity of this curve is an indicator of the

effect, in terms of inequality, of a truncation of the income distribution. As an application, we con-

sider tax returns as equivalent to the truncation from below of a hypothetical income distribution.

Then, we replace this hypothetical distribution by the income distribution obtained from a general

household survey and use the dual Lorenz curve to anticipate this effect.
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1. Introduction

Tax data are commonly used sources of information in the analysis of income distribu-

tions. For example, Piketty and Saez (2003) used tax data to study the concentration of

income within the top 10 percent of the distribution with higher incomes in the United

States and regularly release reports with the latest available data. Atkinson, Piketty and

Saez (2011) provided a comparative study of top incomes covering a wide variety of

countries by using tax data. More recently, Saez and Zucman (2014) expanded these

works to examine trends in wealth concentration. Tax returns, like other administrative

sources, often provide more accurate and complete data for the population under study

than other surveys (see Stone et al., 2015).

Research based on data from income tax returns focuses on people who file taxes.

However, not everyone is required to file an income tax return every year. In general,
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people who do not file are those whose income falls below certain thresholds. The exclu-

sion of non-filers is the most significant limitation of this source if the target population

is the entire population in a country. In this case, data from tax returns produce an ob-

vious systematic error or bias in estimating characteristics related to the size of income,

such as the disposable income or per capita income. The question that we investigate

in this paper is whether there are a systematic error in evaluating, from tax data, char-

acteristics related to the inequality of the income distribution for the entire population.

The approach adopted here is to consider tax returns as equivalent to a truncation from

below on a hypothetical distribution that would be obtained if everyone would pay taxes.

Since this hypothetical distribution is unrealistic, in practice we replace it by the income

distribution obtained from a general household survey. It is shown that the effect of

income truncation (at any level) by itself does not necessarily introduce a bias in one

direction or the other and that when it does, it depends on the shape of the Lorenz curve

associated to this distribution.

Specifically, let X be the random variable that describes the true income distribution,

let F be its cumulative distribution function and assume that X has a finite mean µ> 0.

The most widely used graphical tool for describing and comparing inequality of income

distributions is the Lorenz curve1. For the income random variable X , the Lorenz curve

is defined by

L(p) =
1

µ

p
∫

0

F−1(t)dt, 0 ≤ p ≤ 1 (1)

where we denote by F−1 the inverse of F defined by F−1(t) = inf{x : F(x) ≥ t}, with

0 < t < 1. For each p in (0,1) , the function L(p) is the cumulative percetage of total

income held by individuals having the 100p% lowest incomes. In this paper, the main

result is depicted in terms of the dual Lorenz curve L(p), which is a reverse-mirror

image of the Lorenz curve reflected through the diagonal 45 degree line. It is defined by

L(p) = 1−L(1− p), 0 ≤ p ≤ 1, (2)

and represents the proportion of total income that accrues to individuals having the

100p% largest incomes. Both curves are non-decreasing and differentiable almost ev-

erywhere, with L(0) = L(0) = 0 and L(1) = L(1) = 1. If the distribution function F

is continuous and strictly increasing, then L(p) and L(p) are strictly increasing and

continuously differentiable functions of p. The Lorenz curve induces a partial ordering

(denoted ≤L, see Arnold, 1987) on the class of income random variables, ordering them

in terms of inequality. Given two income random variables X and Y with Lorenz curves

LX(p) and LY (p), respectively, X is less unequal than Y (denoted by X ≤L Y ) if and only

1. Lorenz curves are used in many diverse fields, other than income distributions, such as informetrics (see Sarabia,
Prieto and Trueba, 2012), demography (see Ramos et al., 2013) or risk measurement (see Greselin and Zitikis, 2015)
among others.
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if

LX(p)≥ LY (p) for all 0 ≤ p ≤ 1 (3)

or, equivalently, if

LX(p)≤ LY (p) for all 0 ≤ p ≤ 1.

Under a progressive tax structure there exists a tax-free threshold t below which

people do not pay personal income tax. Thus, tax return distribution is obtained by

a lower truncation of X at income t. For each t > 0, denote by X(t,∞) = {X | X ≥ t }

the corresponding lower truncated random variable. In Section 2, we give conditions

to compare, in terms of inequality, the income random variables X and X(t,∞), without

needing to know the distribution function of X . Thus, unlike other authors that have

previously studied this topic (Bhattacharya, 1963; Moothathu, 1986; Belzunce, Candel

and Ruiz, 1995, 1998), our conditions can be directly verified from the Lorenz curve of

X . As we explain in Section 2, our results can also be stated in terms of the monotonicity

of the function

e(t) = E

[

X

t
|X > t

]

which represents the expected proportional income to t, for incomes greater than t.
Inequality is not the only characteristic of interest of income distributions. Another

important aspect of the concentration of incomes is related to the notion of relative

deprivation, which is based on the perception that an individual makes about his social

status in a population. In order to compare distributions in terms of deprivation, the

starshaped order (see Shaked and Shantikumar, 2007) and the expected proportional

shortfall order (Belzunce et al., 2012, 2013) can be considered. In Section 3 we study

the effect of truncations on these orderings. It will be shown that the effect of truncations

on the expected proportional shortfall order depends, like in the case of the Lorenz order,

on the elasticity of the Lorenz curve. In Section 4 we review some parametric models

for the Lorenz curve that satisfy the conditions stated in previous sections. Finally, in

Section 5, we illustrate the usefulness of our results by a descriptive study based on real

data drawn from the survey EU-SILC 2010.

2. Lorenz ordering of truncated random variables

We show in this section that the effect of truncation on the inequality depends on the

sensitivity of the dual Lorenz L(p) with respect to a change in p, that is, on its elasticity

εL(p), defined by

εL(p) =
d logL(p)

d log p
=

pL′(1− p)

1−L(1− p)
, 0 < p < 1. (4)

We have the following result.
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Theorem 2.1. Let X be an income random variable with Lorenz curve L and let t0 ∈
[0,1] . Then

X(t,∞) ≤L X(t′,∞) (≥L) for all t0 < t < t ′ (5)

if and only if εL(p) is increasing (decreasing) in the interval (0,1−F (t0)) .

Proof. We give the proof for the case ≤L (the proof for the ≥L case is analogous). For

each t > 0, denote by F(t,∞)(x) the distribution function of X(t,∞) given by

F(t,∞)(x) =

{

0 x < t
F(x)−F(t)

1−F(t) x ≥ t
. (6)

Let L(t,∞)(p) be the Lorenz curve of X(t,∞). By using (1) and (6) it is easy to see that

L(t,∞)(p) =
L [(1−F(t)) p+F(t)]−L(F(t))

1−L(F(t))
, 0 ≤ p ≤ 1. (7)

Condition (5) holds if and only if L(t,∞)(p) is decreasing in t > t0 or, equivalently, if

1−L(t,∞)(p) is increasing in t > t0.

By making F(t) = a and using (7), this is the same as

1−L [(1−a) p+a]

1−L(a)
is increasing in a > F (t0)

which, by differentiation, is satisfied if and only if

(1− p)L′ [(1−a)p+a]

1−L [(1−a)p+a]
≤

L′(a)

1−L(a)
, p ∈ [0,1] , a > F (t0) .

The above inequality can be rewritten as

(1−a)(1− p)L′ [(1−a)p+a]

1−L [(1−a)p+a]
≤

(1−a)L′(a)

1−L(a)
, p ∈ [0,1] , a > F (t0) ,

which, by making p1 = (1−a)(1− p) and p2 = 1−a, is the same as

p1L′(1− p1)

1−L(1− p1)
≤

p2L′(1− p2)

1−L(1− p2)
whenever 0 < p1 ≤ p2 < 1−F (t0) .

Using (4), this means that εL(p) is increasing in the interval (0,1−F (t0)) .

By taking t0 = 0 we obtain the following corollary.
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Corollary 2.2. Let X be an income random variable with Lorenz curve L. If εL(p) is

increasing (decreasing), then

X ≤L X(t,∞) (≥L) for all t.

Using (1) and (4), we see that the elasticity of the dual Lorenz curve can be written

as

εL(p) =
F−1(1− p)

E [X |X > F−1(1− p)]
, 0 < p < 1. (8)

Thus, the increasing (or decreasing) monotonicity of εL(p) in the interval (0,1−F (t0))

is equivalent to the increasing (respectively, decreasing) monotonicity of the function

e(t) = E

[

X

t
|X > t

]

in the interval (t0,∞) . For an income t, the function e(t) represents the expected pro-

portional income to t, for incomes greater than t. This function was used by Belzunce,

Candel and Ruiz (1998) to characterize the effect of truncation of a random variable X

on the Lorenz curve. They say that X is DMLPRI (decreasing mean proportional resid-

ual income) if e(t) is decreasing in t. From the above observation, we can equivalently

say that X is DMLPRI if εL(p) is decreasing. It is worth noting that Theorem 2.1 and

the rest of results in this paper involving εL(p) can be easily reformulated in terms of

the curve e(t).

Bhattacharya (1963) showed that the Lorenz curve of a lower truncated income dis-

tribution is independent of the point of truncation if, and only if, the incomes follow the

Pareto law, with distribution function

F(x) = 1−

(

θ

x

)a

, θ > 0,a > 0,x > θ. (9)

Now, combining the result of Bhattacharya with Theorem 2.1, we can characterize the

Pareto distribution in terms of the elasticity of the dual Lorenz curve.

Corollary 2.3. Let X be an income random variable with Lorenz curve L. Then, X

follows the Pareto distribution if and only if L(p) has a constant elasticity.

Similar results can be stated for upper truncations. If we denote by X(0,s) = {X | X ≤ s}
the upper truncated random variable at income s, it can be shown that the corresponding

Lorenz curve L(0,s)(p) satisfies

L(0,s)(p) =
L(F(s)p)

L(F(s))
, 0 ≤ p ≤ 1. (10)
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The comparison of upper truncations of a random variable X is characterized in terms

of the elasticity of the Lorenz curve

εL(p) =
d logL(p)

d log p
=

pL′(p)

L(p)
, 0 < p < 1.

The proof of the following result follows the same lines as the proof of Theorem 2.1 and

therefore it is omitted.

Theorem 2.4. Let X be an income random variable with Lorenz curve L and let s0 ∈

[0,1] . Then

X(0,s) ≤L X(0,s′) (≥L) for all s < s′ < s0 (11)

if and only if εL(p) is increasing (decreasing) in [F (s0) ,1] .

Moothathu (1986) showed that the Lorenz curve is unchanged by upper truncation

if, and only if, incomes follow a power law, with distribution function

F(x) =
( x

λ

)a

, λ> 0,a > 0,0 < x < λ. (12)

The combination of this result with Theorem 2.4 let us characterize the power distribu-

tions in terms of the elasticity of the Lorenz curve.

Corollary 2.5. Let X be an income random variable with Lorenz curve L. Then, X

follows the power distribution if and only if L(p) has a constant elasticity.

3. The effect of truncations on the starshaped order and

the expected proportional shortfall order

In Section 2 we have shown that the effect of truncation on the inequality depends on the

elasticities of the Lorenz curve L(p) and its dual L(p) = 1−L(p). However, the Lorenz

curve is not the only tool for comparing income distributions in terms of concentration.

The Lorenz order is a pure inequality order, in the sense that it is consistent with the well-

known Pigou–Dalton Transfer Principle, which demands that a transfer from a richer

person to a poorer person of less than the difference in their income unambiguously

reduces inequality. When we compare income distributions in terms of relative status of

people or relative deprivation (rather than in terms of inequality), some other orderings,

such as the starshaped order and the expected proportional shortfall order, can also be

considered (see Shaked and Shantikumar, 2007, and Belzunce et al., 2012, 2013, 2016,

for properties and applications of these orders) and it is of interest to investigate whether

similar results for truncated distributions can be given taking into account the elasticity

of some related functions like, for example, the quantile function.

First, we define these orders.
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Definition 3.1. Given two income random variables X and Y, with distribution func-

tions F and G, respectively, then:

(i) We say that X is smaller than Y in the starshaped order (denoted by X ≤∗ Y ) if

G−1(p)

F−1(p)
is increasing in p ∈ (0,1) .

(ii) We say that X is smaller than Y in the expected proportional shortfall order (denoted

by X ≤ps Y ) if

E

[

(

X −F−1(p)

F−1(p)

)+
]

≤ E

[

(

Y −G−1(p)

G−1(p)

)+
]

for p ∈ (0,1) ,

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0.

It can be shown (see Theorem 2.11 in Belzunce et al., 2012) that X ≤ps Y if and only

if
1
∫

p

[

F−1(t)

F−1(p)

]

dt ≤

1
∫

p

[

G−1(t)

G−1(p)

]

dt, for all p ∈ (0,1) . (13)

On the other hand, it is well-known that

X ≤∗ Y =⇒ X ≤ps Y =⇒ X ≤L Y.

The next result shows that the effect of truncations on the starshaped order depends on

the the elasticities of the quantile function and the inverse of the survival function.

Theorem 3.2. Let X be an absolutely continuous income random variable with distri-

bution function F and survival function F = 1 −F. Denote by εF−1(p) the elasticity

of the quantile function F−1 (p) and by ε
F
−1(p) the elasticity of the inverse survival

function F
−1

(p) . Then

(i) X(t,∞) ≤∗ X(t′,∞) (≥∗) for all t < t ′ if and only if ε
F
−1(p) is increasing (decreasing)

in p ∈ (0,1) .

(ii) X(0,s) ≤∗ X(0,s′) (≥∗) for all s < s′ if and only if εF−1(p) is increasing (decreasing)

in p ∈ (0,1) .

Proof. Let f be density function of X . In order to prove (i), observe that

ε
F
−1(p) =

−p

f
(

F
−1

(p)
)

F
−1

(p)
, for p ∈ (0,1) .
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Belzunce, Candel and Ruiz (1995, Theorem 3) showed that X(t,∞) ≤∗ X(t′,∞) (≥∗) for all

t < t ′ if and only if the function

x f (x)

1−F(x)
is decreasing (increasing). (14)

By making the change x = F
−1

(p) = F−1 (1− p) , we see that (14) is equivalent to say

that

F
−1

(p) f
(

F
−1

(p)
)

p
is increasing (decreasing),

which holds if, and only if, ε
F
−1(p) is increasing (decreasing). Part (ii) is proven simi-

larly by using Theorem 4 of Belzunce, Candel and Ruiz (1995).

Next we show that the effect of trunctions on the expected proportional shortfall

order depends, like in the case of the Lorenz order, on the elasticities of the Lorenz

curve an its dual.

Theorem 3.3. Let X be an absolutely continuous income random variable with distri-

bution function F and survival function F = 1−F. Then

(i) X(t,∞) ≤ps X(t′,∞) (≥ps) for all t < t ′ if and only if εL(p) is increasing (decreasing)

in p ∈ (0,1) .

(ii) X(0,s) ≤ps X(0,s′) (≥ps) for all s < s′ if and only if εL(p) is increasing (decreasing)

in p ∈ (0,1) .

Proof. We only prove the case ≤ps of part (i), the case ≥ps and part (ii) are proven

similarly. First observe from (8) that εL(p) can be written as

εL(p) =
pF−1(1− p)
∫ 1

1−p
F−1(t)dt

, 0 < p < 1. (15)

Let F(t,∞) (x) be the distribution function of X(t,∞) given by (6) and let

F−1
(t,∞)(u) = F−1 [(1−F(t))u+F(t)] , u ∈ (0,1) , (16)

be the corresponding quantile function. Suppose that

X(t,∞) ≤ps X(t′,∞) for all t < t ′
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or equivalently, using (13), that

1
∫

p

[

F−1
(t,∞)(u)

F−1
(t,∞)(p)

]

du ≤

1
∫

p

[

F−1
(t′,∞)(u)

F−1
(t′,∞)(p)

]

du, for all p ∈ (0,1) . (17)

From (16) we see that (17) is equivalent to

∫ 1

p
F−1 [(1−F(t))u+F(t)]du

F−1 [(1−F(t)) p+F(t)]
≤

∫ 1

p
F−1 [(1−F(t ′))u+F(t ′)]du

F−1 [(1−F(t ′)) p+F(t ′)]
, 0 < t < t ′ < 1, p ∈ (0,1) . (18)

A change of variable shows that (18) holds if and only if

∫ 1

(1−F(t))p+F(t) F−1 (x)dx

(1−F(t))F−1 [(1−F(t)) p+F(t)]
≤ (19)

∫ 1

(1−F(t′))p+F(t′) F−1 (x)dx

(1−F(t ′))F−1 [(1−F(t ′)) p+F(t ′)]
, 0 < t < t ′ < 1, p ∈ (0,1) .

Substituting v = (1−F(t)) p+F(t) and u = (1−F(t ′)) p+ F(t ′) we see that (19) is

satisfied if and only if

∫ 1

v
F−1 (x)dx

(1− v)F−1 (v)
≤

∫ 1

u
F−1 (x)dx

(1−u)F−1 (u)
for all 0 < v < u < 1 (20)

or, equivalently, if (15) is decreasing in p.

4. Some models with εL(p)εL(p)εL(p) monotone

From the results in previous sections, the monotonicity of the elasticity of the dual

Lorenz curve of a population may indicate a possible underestimation of the inequal-

ity (as measured by the Lorenz curve) and the feeling of relative deprivation (as mea-

sured by the expected proportional shortfall function) as reported by tax returns. The

economic literature contains many parametric models for the Lorenz curve (see, for ex-

ample, the papers by Kakwani and Podder, 1973; Rasche et al., 1980; Gupta, 1984;

Aggarwal, 1984; Arnold, 1986; Arnold et al., 1987; Villaseñor and Arnold, 1989; Bas-

mann et al., 1990; Ortega et al., 1991; Ryu and Slottje, 1996; Sarabia, 1997; Sarabia,

Castillo and Slottje, 1999, 2001; Sarabia and Pascual, 2002; Rohde, 2009; Wang, Smyth
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and Ng, 2009; Sarabia et al., 2010 and Sordo, Navarro and Sarabia, 2014). In this sec-

tion we collect some models such that the dual Lorenz curve has monotone elasticity.

4.1. Power Lorenz curve

The power Lorenz curve is given by L(p) = pk, with k ≥ 1 and its dual is given by

L(p) = 1− (1− p)k , k ≥ 1. (21)

For k = 1, we have εL(p) = εL(p) = k. In order to show that (21) is decreasing for k > 1,

note that

εL(p) =
kp(1− p)k−1

1− (1− p)k
.

Differentiating with respect to p, it is not hard to see that

ε′
L
(p)≤ 0 if and only 1− pk ≤ (1− p)k . (22)

Now, define the auxiliary function

h(p) = (1− p)k − (1− pk), p ∈ [0,1] , k > 1.

It is easy to see that h is increasing on [0,1] . Since h(0) = 0, it follows that h(p)≥ 0 for

every p ∈ [0,1] . This implies that (1− p)k ≥ 1− pk for every p in [0,1] and from (22)

it follows that εL(p) is decreasing.

4.2. Distorted Lorenz curves

Sordo, Navarro and Sarabia (2014) considered a general method of modeling a family

of Lorenz curves by distorting a baseline Lorenz curve, L, as follows

Lh(p) = h(L(p)), 0 ≤ p ≤ 1, (23)

where h is a convex distortion function (that is, an increasing function from [0,1] to [0,1]
such that h(0) = 0 and h(1) = 1) and showed that a large number of parametric models

for the Lorenz curve adopt the form (23). In this section we provide conditions on the

distortion h under which the elasticity of Lh (the dual of the distorted curve Lh) inherits

the monotonicity of the elasticity of L (the dual of the initial curve L). In that follows,

denote by h(p) = 1− h(1− p), for 0 ≤ p ≤ 1 (observe that h(p) is a convex distortion

function if and only if h is a concave distortion function).
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Theorem 4.1. Let L(p) be a Lorenz curve and let h be a convex distortion function.

Let Lh(p) be a distorted Lorenz curve (DLC) of the form (23) and let Lh (p) be its dual.

Then

εLh
(p) = εL(p) ·εh(L(p)) (24)

Proof. From (4) and (23) we obtain

εLh
(p) =

pL′
h(1− p)

1−Lh(1− p)
=

ph′(L(1− p))L′(1− p)

1−h(L(1− p))
for 0 < p < 1.

Using that L(1− p) = 1−L(p) and rearranging the expression above we obtain

εLh
(p) =

pL′(1− p)

L(p)
·

L(p)h′(1−L(p))

1−h(1−L(p))

which is (24).

Corollary 4.2. If L and h have increasing (respectively, decreasing) elasticities, then

Lh has increasing (respectively, decreasing) elasticity.

Next, we give some examples of families of DLC of the form (23) such that εLh
(p)

is monotone.

4.2.1. The class Lδ(p) = 1− [1−L(p)]δ

The dual of the convex distortion function h(t) = 1− (1− t)δ, 0 < δ ≤ 1 has constant

elasticity. Therefore, if L(p) is a baseline Lorenz curve such that εL(p) is increasing

(respectively, decreasing) it follows from Corollary 4.2. that the dual of a DLC of the

form

Lδ(p) = 1− [1−L(p)]δ, 0 < δ ≤ 1,

has increasing (respectively decreasing) elasticity.

4.2.2. The hierachical class of Sarabia et al. (1999)

Let h be the convex distortion function defined by h(t) = tk, k ≥ 1. We know, from

Section 4.1, that εh(p) is decreasing. Given a baseline Lorenz curve L(p), Sarabia et al.

(1999) considered a hierachical class of Lorenz curves of the form

Lk(p) = [L(p)]k, k ≥ 1
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If εL(p) is decreasing, it follows from Corollary 4.2 that the elasticity of Lk(p) is de-

creasing. As a consequence, the elasticity of the curve Lk,δ(p), where

Lk,δ(p) =
[

1− (1− p)δ
]k

,k ≥ 1, 0 < δ ≤ 1, (25)

is also decreasing (the curve (25) is one of the Lorenz curves in the Pareto hierarchy

considered by Sarabia et al., 1999).

4.2.3. The class Lθ(p) =
θL(p)

1− (1− θ)L(p)

Let h be the convex distortion function given by h(t) =
θt

1− (1− θ)t
, with 0 < θ ≤ 1. It

is easy to prove that the elasticity of h is the function

εh(t) =
θ

θ+(1− θ) t
,

which is decreasing in the interval (0,1). Therefore, it follows from Corollary 4.2 that

if L has decreasing elasticity, the family of DLC of the form

Lθ(p) =
θL(p)

1− (1− θ)L(p)
, 0 ≤ p ≤ 1, 0 < θ ≤ 1,

considered by Sordo, Navarro and Sarabia (2014) has decreasing elasticity.

4.2.4. Wang-Smyth-Ng model

Let h be the convex distortion function defined by

hβ,γ(t) = 1− (1− t) exp[−γ[1− (1− p)1/β]], 0 < β ≤ 1, γ > 0.

The elasticity of hβ,γ , given by

εhβ,γ
(t) = 1+

γ

β
t1/β ,

is increasing in t ∈ (0,1) . From Corollary 4.2, if L has an increasing elasticity then

hβ,γ(L(p)), 0 < β ≤ 1, γ > 0, (26)
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has also increasing dual elasticity. The family (26) was considered by Sordo, Navarro

and Sarabia (2014). In particular, by taking L(p) = 1− (1− p)β, we obtain the class of

Lorenz curves suggested by Wang, Smyth and Ng (2009). All the curves in this class

have increasing elasticity.

5. An illustration using real data

Personal income can be measured using different sources of information. In Europe,

the main source is the European Union Survey of Income and Living Conditions (EU-

SILC) conducted by the Central Statistics Office. Alternative sources include, among

other surveys and administrative data (such as those from Social Security records), data

from tax income returns. In Spain, for example, taxation microdata are available under

request from the Institute of Fiscal Studies (IFE), an institution attached to the Min-

istry of the Economy through the State Secretariat for Taxation and Budgets. Although,

undoubtedly, EU-SILC and tax income returns taken together complement each other,

any analysis of inequality based on the separate interpretation of data from tax returns

requires caution because these data exclude people with very low taxable income. If we

ignore, for the sake of argument, some issues related to the nature of data2, the study

population (or tax filers) becomes a subset, obtained via lower truncation, of a hypothet-

ical reference population which is the same as the reference population of EU-SILC.

A possible underestimation of inequality as reported by tax returns may be anticipated

using a simple visual of the elasticity plot of the adjusted dual Lorenz curve for this

reference population.

In order to illustrate this issue, we have carried out a descriptive study of the func-

tion εL(p) using data from the EU-SILC 2010 survey, which provides income data of

225,987 households and covers 29 European countries. The variable under study is the

“total disposable income of the household”, adjusted to take into account that we are

dealing with individuals who are members of households of different size and composi-

tion (we make this adjustment employing the modified OECD equivalence scale). The

unit of analysis chosen is the individual; the income assigned to each individual is the to-

tal income of the household to which they belong, adjusted according to the equivalence

scale to ensure comparability (see Eurostat, 2010).

Taking in mind the expression (8), we have computed the function εL(p) from data

in the following way. If x(i) denotes the i-th ordered income in the sample of size n,

and ωi denotes its corresponding sample weight3, for i = 1,2, . . . ,n−1, we calculate the

points

2. For example, EU-SILC refers to individuals living in households and tax income returns refer to taxpayers. We are
deliberately ignoring that members of the same family or household may file separate tax returns.

3. Due to the use of sophisticated sampling techniques of stratification, rotation and non-response adjustment, micro-
data provided by the EU-SILC survey are weighted according to specific sample designs.
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where j is the index such that
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ωk when j ≥ 2 and j = 1 in

case 0 <
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ωk ≤ ω1. Observe that this set of points can be considered as an analog

estimation of the graph of the elasticity of the dual Lorenz curve associated to the income
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Figure 1: εL(p) calculated for Estonia, Latvia, Poland and Slovenia. Source: Generated by authors based

on data from EU-SILC 2010.
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distribution. However, since this study is purely illustrative, we have not considered the

inferential properties of this estimation (and consequently, we can not discuss about the

statistical significance of the results). For the sake of reproducibility, the R code used to

calculate the set of points in (27) can be found at Github.4

From the results of this study, we conclude that the shapes of the computed elasticity

curves can be grouped in basically two different types:

(a) For some countries, the dual Lorenz curve shows a decreasing elasticity. It fol-

lows from Corollary 2.2 and Theorem 3.3 that X ≥L X(t,∞) and X ≥ep X(t,∞) for all t,
which suggests that statistics from tax returns may under-report inequality and relative

deprivation (this is the case of Estonia, Latvia, Poland and Slovenia, see Figure 1).
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Figure 2: εL(p) calculated for Cyprus, Denmark, Slovakia and Sweden. Source: Generated by authors

based on data from EU-SILC 2010.

4. https://gist.github.com/AngelBerihuete/fdb11a7dc3ece81bcf5d6261a49af440



70 On a property of Lorenz curves with monotone elasticity and its application...

(b) For some countries the elasticity curve presents an U inverted shape (this is the

case of Cyprus, Denmark, Slovakia and Sweden, see Figure 2). In Denmark, for exam-

ple, εL(p) increases in p ∈ (0,0.21) and then decreases. From Theorem 2.1 this implies

that

X(t,∞) ≤L X(t′,∞) for all t, t ′ such that F−1 (0.79)< t < t ′.

Thus, for example, the inequality among the 10% richer of the population is higher than

the inequality among the 20% richer. In this case, the elasticity εL(p) does not provide

conclusive information on the relation, in terms of inequality, among tax filers and the

entire population.
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The Cox proportional hazards model is the most widely used survival prediction model for analysing

time-to-event data. To measure the discrimination ability of a survival model the concordance

probability index is widely used. In this work we studied and compared the performance of two

different estimators of the concordance probability when a continuous predictor variable is cate-

gorised in a Cox proportional hazards regression model. In particular, we compared the c-index

and the concordance probability estimator. We evaluated the empirical performance of both es-

timators through simulations. To categorise the predictor variable we propose a methodology
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1. Introduction

In the medical field, prediction models have been gaining importance as a support for

decision-making, whereby the increased knowledge of potential predictors helps the

decision-making process. When the interest relies on predicting the survival time of

patients with a certain disease, survival prediction models are commonly used. Particu-

larly, the Cox model (Cox and Oakes, 1984) is the one most widely used in the medical

field (Steyerberg et al., 2013).

The development of prediction models may require assumptions about the relation-

ship between the covariates and the response variable. For instance, a common practice

in medical research is to categorise continuous predictor variables when a linear rela-

tionship does not hold (Turner et al., 2010; Barrio et al., 2016).

The selection of an optimal cutpoint for prognosis purposes has been largely dis-

cussed in the literature. For instance, Faraggi and Simon (1996) proposed a cross val-

idation approach to select the cutpoint to classify patients into two risk groups based

on the minimisation of the significance level of the logrank test proposed by Lausen

and Schumacher (1996). Later, Sima and Gönen (2013) proposed the maximisation of

the concordance probability (Gönen and Heller, 2005) as the criterion to dichotomise

a continuous predictor. In addition, Liu and Jin (2015) and Rota et al. (2015) have re-

cently proposed non parametric methods to select a time-dependent optimal cutpoint to

classify individuals as diseased or disease-free at a given time point t.

However, the aim of this work differs from those presented above. Our goal is to

categorise the predictor variable into any possible number of categories to be incorpo-

rated in a prediction model, whereas when looking for a unique cutpoint the goal is to

classify a patient as diseased or disease-free at a certain time point. This work was mo-

tivated in the context of the Stable-COPD study (Esteban et al., 2014) where a model

was developed to predict five-year survival in patients with a stable chronic obstructive

pulmonary disease (COPD). Clinical researchers aimed to use a categorised version of

the predictor variable forced expiratory volume in one second in percentage (FEV1%)

in a multiple survival model, but there was no agreement regarding the selection of the

optimal cutpoints.

In the context where the outcome of interest takes only two possible values, a pro-

posal has been done to categorise a continuous predictor variable in a logistic regression

model by maximising the area under the receiver operating characteristic (ROC) curve

(AUC)(Barrio et al., 2016). In fact, the proposal consists of the categorisation of a con-

tinuous predictor variable such that the discriminative ability of the prediction model

for the categorised variable is maximised. In the context of survival regression models,

as far as we know, no proposal has been done to categorise continuous predictor vari-

ables. In this paper, we propose to categorise a continuous predictor variable in a Cox

proportional hazards regression model as an extension of the work proposed by Bar-

rio et al. (2016) and based in part on the work done for a single cutpoint by Sima and

Gönen (2013). However, the challenge is how to measure the discriminative ability of



I. Barrio, M.X. Rodrı́guez-Álvarez, L. Meira-Machado, C. Esteban and I. Arostegui 75

a survival model. Established concepts for binary outcomes have been commonly used

by researchers, yet a standard approach has not emerged (Pepe et al., 2008; Schmid and

Potapov, 2012). A commonly used parameter is the concordance probability, a global

measure which has been defined differently in the literature (Liu and Jin, 2015). In this

paper we studied and compared the performance of two different discrimination abil-

ity estimators named the c-index (Harrell et al., 1982) and the concordance probability

estimator (CPE, Gönen and Heller (2005)) as the parameters to maximise in the cate-

gorisation process. Therefore, the goal of this paper is to compare the performance of

the CPE and c-index as concordance probability estimators to maximise in the location

of optimal cutpoints to categorise continuous predictors in a Cox proportional hazards

regression model.

The rest of the paper has been organised as follows. Section 2 outlines the method

proposed for categorising continuous variables in a Cox proportional hazards regres-

sion model. In Section 3, the performance of the proposed methodology is investigated

through simulations. Section 4 provides a description of the Stable-COPD study of sta-

ble patients with COPD and the application of the proposed methodology to this data

set. Finally, the main conclusions of our paper and some practical recommendations are

deferred to Section 5.

2. Methods

This section describes the proposed methodology to categorise a continuous predictor

variable in a Cox proportional hazards regression model. We begin by introducing the

needed notation and background in Section 2.1 and Section 2.2 and we describe the

approach to categorise a continuous predictor variable in Section 2.3.

2.1. Notation and preliminaries

Let T be a non-negative random variable representing the time until the event of interest

occurs. As usual, we assume that these event times might be subject to univariate right-

censoring denoted by C, which we assume to be independent of T . Let Z = [Z1 . . .Zp]
T

be a set of time invariant predictor variables in which we may be interested in terms of

studying their relationship with the survival time T .

The most widely used survival regression model is the semiparametric Cox propor-

tional hazards model (Cox, 1972), where the hazard function for T in a time t given the

covariate vector Z is expressed as,

h(t|Z) = h0(t)exp(ZTβββ) (1)

where h0(t) is the baseline hazard function and βββ is the regression coefficients vector.
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2.2. Discriminative ability of a prediction model

In general, it is common to measure the discriminative ability of a prediction model

by the concordance probability (Gönen and Heller, 2005). In a setting where the out-

come is time-to-event, the concordance probability is usually defined as (Pencina and

D’Agostino, 2004)

C= P(T̃l > T̃m|Tl > Tm), (2)

where l and m denote two independent individuals, Tj is the actual survival time of

subject j, and T̃j is the predicted survival time provided by the survival prediction model

under evaluation.

Under the Cox proportional hazards regression model (1), Pencina and D’Agostino

(2004) showed that the concordance probability for the predicted survival times defined

in equation (2) is equivalent to the concordance probability for the predicted probability

of survival and thus equivalent to the concordance probability defined in terms of the

linear predictor of the Cox proportional hazards model given in (1), i.e.,

C= P(S(t|Zl)> S(t|Zm)|Tl > Tm) = P(ηl < ηm|Tl > Tm), ∀t (3)

where S(t|Z j) = P(Tj ≥ t|Z j) and η j = ZT

jβββ. If the concordance probability takes a value

of 0.5 then the resulting model provides non informative predictions whereas models

predicting better than chance should result in values of C lying in the interval (0.5,1).
From now on, let us denote as {zi,yi,δi}

N
i=1 a sample of size N, where zi represents

the observed value of the predictor variables for subject i, yi represents the observed

follow-up time for subject i, being the minimum between the censoring (ci) and the

event (ti) times, i.e. yi = min(ti,ci), and δi represents whether subject i is an event

(δi = 1) or is censored (δi = 0). Thus, δi = I(ti ≤ ci).

In the presence of right censoring, it is difficult to estimate the concordance proba-

bility because a problem arises with the comparison of predicted and observed survival

times. Harrell et al. (1982) proposed an estimator for the concordance probability called

the c-index which is defined as “the proportion of all pairs of patients for which we could

determine the ordering of survival times such that the predictions are concordant”. More

specifically, Harrell et al. (1982) classified the pairs of individuals as usable or unusable.

A pair of individuals is considered unusable in two different situations. One, when both

individuals had the event at the same time and, two, if the following time for the in-

dividual without the event was shorter than the time until the event for the individual

having the event. Thus, the c-index estimator proposed by Harrell et al. (1982) is the

proportion of usable individual pairs in which the estimated survival times and the ob-

served survival times are concordant and is computed by forming all pairs of observed

data where the individual with the shorter follow-up time is an event. Specifically, the c-

index estimator proposed by Harrell et al. (1982) for model (1) would have the following

expression
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c =

∑∑

i< j

{I(yi < y j)I(η̂i > η̂ j)δi + I(y j < yi)I(η̂ j > η̂i)δ j}

∑∑

i< j

{I(yi < y j)δi + I(y j < yi)δ j}
, (4)

where η̂ j = zT

jβ̂ββ, being β̂ββ the vector of the estimated regression coefficients of the Cox

proportional hazards regression model.

Even though it is widely used in practice, as pointed out by Gönen and Heller (2005),

the c-index estimator proposed by Harrell et al. (1982) is biased and the bias increases

with the censoring rate. Hence, Gönen and Heller (2005) proposed an alternative esti-

mator called the concordance probability estimator (CPE), which under the proportional

hazards assumption is a consistent estimator of the concordance probability. This esti-

mator is defined as

CPE =
2

N(N−1)

∑∑

i< j

{
I(η̂i > η̂ j)

1+ eη̂ j−η̂i
+

I(η̂ j > η̂i)

1+ eη̂i−η̂ j

}
. (5)

Although it has been usually overlooked in the literature, we would like to note

that the definition of concordance probability given by Gönen and Heller (2005) (see

equation (1) in that paper), differs from that defined on equation (3). In fact, the CPE

given in (5) represents an estimator of P(Tl > Tm|ηl < ηm). Hence the c-index and the

CPE estimate, in general, different quantities.

Different estimators have been proposed in the literature to estimate the concordance

probability (Schmid and Potapov, 2012). In this paper, we focused on the c-index and

the CPE for two main reasons. First, Schmid and Potapov (2012) carried out a compar-

ison of different discrimination indexes and none of the estimators proved to be stable

in all scenarios. In addition, previous work has been done on the comparison of these

two estimators in the selection of an optimal cutpoint in a Cox proportional hazards re-

gression model and we intended to extend the research done by Sima and Gönen (2013)

to the categorisation of a continuous predictor variable in a multiple Cox proportional

hazards prediction model.

2.3. Selection of optimal cutpoints in Cox proportional regression models

Let X be a continuous predictor variable which we want to categorise in a Cox propor-

tional hazards regression model considering the presence of other p predictors, Z1, . . . ,Zp.

Our proposal is to categorise X in such a way that the best multiple predictive survival

model is obtained, considering the maximal concordance probability achieved. Specif-

ically, given k the number of cutpoints set for categorising X in k + 1 intervals, let

us denote Xcatk
the corresponding categorised variable taking values from 0 to k, and

xk = [x1 . . .xk]
T the vector of k cutpoints which maximises the discriminative ability of

the Cox proportional hazards regression model in equation (6):



78 Comparison of two discrimination indexes in the categorisation of continuous predictors...

h(t|Z1, . . . ,Zp,Xcatk
) = h0(t)e

∑p
r=1αrZr+

∑k
q=1βq1{Xcatk

=q} . (6)

Note that in this expression the linear predictor η is in fact
∑p

r=1αrZr+
∑k

q=1 βq1{Xcatk
=q}.

To estimate the vector of the cutpoints of X that maximises the concordance proba-

bility, we propose to make use of the algorithms AddFor and Genetic proposed by Barrio

et al. (2016). The former looks sequentially for the k cutpoints whereas the later looks

for the vector of the optimal cutpoints using genetic algorithms. This implies that the

Genetic algorithm is computationally more expensive than the AddFor. Nevertheless, it

has been proven to perform better specially when two cutpoints are looked for (Barrio

et al., 2016). For this reason, in this paper we have limited to the use of the Genetic

algorithm. In addition, the optimal number of cutpoints can be selected by means of a

bootstrap confidence interval for the difference of the bias-corrected concordance prob-

ability as proposed by Barrio et al. (2016) and extended here to the Cox proportional

hazards setting. Detailed information regarding this approach can be seen in the Sup-

plementary Material.

Note that our approach can be easily applied also to the univariate Cox proportional

hazards model in which no other predictors Z are present. However, in this case there

will be many ties on the linear predictor and hence the expressions given in equations

(4) and (5) need to be modified accordingly (see Appendix for further details).

3. Simulation study

In this section we present a simulation study conducted to analyse the empirical perfor-

mance of the methodology proposed in Section 2. We report here the results obtained in

this study and compare the performance of the two concordance probability estimators

considered. The simulation study is explained in detail below.

All computations were performed in (64 bit) R 3.2.3 (R Core Team, 2016) and a

workstation equipped with 24GB of RAM, an Intel Xeon E5620 processor (2.40 Ghz),

and Windows 7 operating system. Specifically, the genoud function of the rgenoud

(Mebane and Sekhon, 2011) package was used to compute the genetic algorithms, the

cph function of the rms package (Harrell, 2015) was used for the estimation of the Cox

proportional hazards regression model and the c-index, and the phcpe2 function of the

package CPE (Mo et al., 2012) was used to estimate the CPE.

3.1. Scenarios and set-up

To simulate the data we assumed that X is a continuous predictor variable normally dis-

tributed with mean µ = 0 and standard deviation σ = 2 and Z a continuous predictor

variable normally distributed with mean µ= 1 and standard deviation σ = 1. Consider-

ing the theoretical optimal cutpoints, c1,c2, . . . ,ck, we built a categorical variable, Xcatk
,
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such that Xcatk
= 0 if X ≤ c1, Xcatk

= 1 if c1 <X ≤ c2, . . . , and Xcatk
= k if X > ck. Survival

times T were generated assuming a Weibull baseline hazard function such that the Cox

proportional hazards model is satisfied (Meira-Machado and Faria, 2014). Specifically,

T =

(
− log(1−U)

λe
β11{Xcatk

=1}+...+βk1{Xcatk
=k}+αZ

)1/γ

, (7)

were U follows a uniform distribution on the interval (0,1), and λ and γ denote the

scale and shape parameters of the Weibull distribution respectively. An independent

uniform censoring time C was generated, according to the uniform model U(0,τ), and

the event indicator δ was defined as I(T ≤ C). The parameter τ was chosen to obtain

censoring percentages of about 20%, 50% and 70%. Simulations were performed for

sample sizes of N = 500 and N = 1000. In all cases, R = 500 replicates of simulated

data were performed.

Several settings were considered in this simulation study, which are summarised in

Table 1. First of all, we considered k = 1,2 and 3 as the number of cutpoints. In Scenario

I, k = 1 was considered with three different alternatives for the theoretical cutpoint a)

centred on the distribution of X , i.e., c1 = 0; b) shifted to the high risk area, c1 = 1.5; and

c) shifted to the low risk area, c1 =−1.5. In Scenario II we considered two theoretical

cutpoints c1 =−1 and c2 = 1. Finally three theoretical cutpoints c1 =−1.5,c2 = 0 and

c3 = 1.5 where considered in Scenario III. In the later scenario, we also considered two

different settings, one in which a monotonic increase risk relationship was considered

(IIIa) and the other for a non-monotonic risk relationship (IIIb).

The performance of each of the concordance probability estimators considered was

evaluated by means of the bias and mean square error (MSE) of the estimated optimal

cutpoints for each iteration as follows:

MSEs =
1

k

k∑

d=1

(xsd − cd)
2

where xsd is the estimated dth optimal cutpoint in the simulation s and cd is the dth

theoretical cutpoint.

3.2. Results

Given the large number of proposed scenarios and different conclusions obtained, we

begin by summarising the main findings.

Simulation results suggest that, in general, both indexes performed similarly in terms

of the mean square error when it comes to low censoring rates (20%). However, for

large censoring rates (70%), the c-index performed better than the CPE in all scenarios

considered. As could have been expected, in all cases the bias and MSE decrease as the

sample size increase.
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Figure 1: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size and one theoretical cutpoint. Results are shown for censoring rates of 20% and 70% and c-index and

CPE discriminative ability estimators. From left to right: (a) theoretical cutpoint, c = 0; (b) theoretical

cutpoint, c = 1.5; and (c) theoretical cutpoint, c = −1.5. The theoretical cutpoint is represented with a

dashed line.

Table 1: Description of the different scenarios considered for the simulation study. Weibull baseline hazard

function with shape γ and scale λ. Uniform censoring C U(0,τ ).

Scenario
Theoretical

Parameters
Censorship (τττ )

cutpoints 20% 50% 70%

Ia 0
γ = 1,λ= 0.1

β1 = 2.5,α = 1
11 1.6 0.5

Ib 1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 1
19 3.5 1.15

Ic −1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 1
4.75 0.75 0.27

II −1 & 1

γ = 1,λ= 0.1

β1 = 1.5,β2 = 2.5

α= 1

8.5 1.5 0.5

IIIa −1.5 & 0 & 1.5

γ = 1,λ= 0.1

β1 = 1.5,β2 = 2.5

β3 = 3.5,α = 1

5.25 0.85 0.27

IIIb −1.5 & 0 & 1.5

γ = 1,λ= 0.1

β1 = 1.5,β2 =−1

β3 = 1.5,α = 1

21 3.5 1.15

Let us turn now to a more detailed discussion of the results of this study. Figure

1 depicts the boxplot of the estimated optimal cutpoints over 500 simulated data sets,

for the c-index and CPE estimators and a sample size of N = 500 and censoring rates of

20% and 70% for Scenarios Ia, Ib and Ic, where a single optimal cutpoint is searched for.
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Table 2: Simulations results when one theoretical optimal cutpoints was sought for (Scenarios Ia, Ib and Ic), censorship of 20%, 50% and 70% and the Genetic

algorithm. Mean, standard deviation, median, bias and mean MSE for the estimated cutpoints are reported when CPE or c-index concordance probability

estimators are used as the maximisation criteria.

Sample
size

Cens.
theoretical
cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario Ia

N = 500

20% −0.5 −0.000 (0.018) −0.000 −0.000 0.000 −0.001 (0.019) 0.000 −0.001 0.000

50% −0.5 −0.001 (0.027) −0.000 −0.001 0.001 0.000 (0.025) 0.001 −0.000 0.001

70% −0.5 −0.007 (0.047) −0.001 −0.007 0.002 0.008 (0.046) 0.005 −0.008 0.002

N = 1000

20% −0.5 −0.002 (0.009) −0.000 −0.002 0.000 −0.001 (0.010) 0.000 −0.001 0.000

50% −0.5 −0.003 (0.012) −0.000 −0.003 0.000 −0.001 (0.015) 0.000 −0.001 0.000

70% −0.5 −0.006 (0.031) −0.000 −0.006 0.001 0.003 (0.026) 0.003 −0.003 0.001

Scenario Ib

N = 500
20% −1.5 −1.493 (0.021) −1.497 −0.007 0.000 1.489 (0.032) 1.497 −0.011 0.001
50% −1.5 −1.490 (0.030) −1.495 −0.010 0.001 1.490 (0.037) 1.498 −0.010 0.001

70% −1.5 −1.470 (0.061) −1.488 −0.030 0.005 1.491 (0.051) 1.500 −0.009 0.003

N = 1000
20% −1.5 −1.498 (0.013) −1.499 −0.002 0.000 1.496 (0.016) 1.499 −0.004 0.000
50% −1.5 −1.496 (0.015) −1.499 −0.004 0.000 1.497 (0.018) 1.500 −0.003 0.000

70% −1.5 −1.483 (0.031) −1.492 −0.017 0.001 1.496 (0.023) 1.500 −0.004 0.001

Scenario Ic

N = 500

20% −1.5 −1.501 (0.028) −1.501 −0.001 0.001 −1.502 (0.029) −1.500 −0.002 0.001

50% −1.5 −1.500 (0.042) −1.498 −0.000 0.002 −1.491 (0.053) −1.494 −0.009 0.003

70% −1.5 −1.508 (0.096) −1.494 −0.008 0.009 −1.478 (0.087) −1.484 −0.022 0.008

N = 1000

20% −1.5 −1.499 (0.015) −1.500 −0.001 0.000 −1.500 (0.015) −1.500 −0.000 0.000

50% −1.5 −1.498 (0.021) −1.498 −0.002 0.000 −1.496 (0.025) −1.498 −0.004 0.001

70% −1.5 −1.498 (0.047) −1.495 −0.002 0.002 −1.488 (0.048) −1.492 −0.012 0.002
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Table 3: Simulations results when two theoretical optimal cutpoints were sought for (Scenario II), censorship of 20%, 50% and 70% and the Genetic algorithm.

Mean, standard deviation, median, bias and mean MSE for the estimated cutpoints are reported when CPE or c-index concordance probability estimators are

used as the maximisation criteria.

Sample
size

Cens.
theoretical
cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario II

N=500

20% −1 −1.007 (0.049) −1.002 −0.007 0.006 −1.006 (0.059) −1.000 −0.006
0.011

−1 −0.984 (0.098) 0.992 −0.016 0.979 (0.132) 0.996 −0.021

50% −1 −1.010 (0.096) −1.000 −0.010
0.017

−1.000 (0.118) −0.993 −0.000
0.028

−1 −0.969 (0.155) 0.989 −0.031 0.969 (0.203) 0.999 −0.031

70% −1 −1.200 (0.463) −1.021 −0.200 0.440 −0.997 (0.269) −0.983 −0.003 0.085
−1 −0.677 (0.723) 0.957 −0.323 0.998 (0.313) 1.005 −0.002

N=1000

20% −1 −1.002 (0.023) −1.001 −0.002 0.001 −1.002 (0.026) −0.999 −0.002
0.002

−1 −0.991 (0.040) 0.995 −0.009 0.994 (0.062) 0.997 −0.006

50% −1 −1.003 (0.046) −0.999 −0.003
0.003

−1.004 (0.054) −0.997 −0.004
0.004

−1 −0.987 (0.059) 0.994 −0.013 0.991 (0.075) 0.998 −0.009

70% −1 −1.030 (0.157) −0.998 −0.030
0.059

−0.997 (0.104) −0.993 −0.003
0.015

−1 −0.928 (0.296) 0.982 −0.072 1.000 (0.138) 1.000 −0.000
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Figure 2: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size and two theoretical cutpoints. Results are shown for censoring rates of 20% and 70% and c-index and

CPE discriminative ability estimators. The theoretical cutpoint is represented with a dashed line.

Numerical results for these scenarios are given in Table 2. As can be seen, our approach

performed satisfactorily regardless of the location of the theoretical cutpoint, with, as

said before, the c-index performing slightly better for high censoring rates. However,

this can not be considered a general rule. Simulations studies conducted in a univariate

setting showed that neither the CPE nor the c-index performed satisfactorily, especially

when the optimal cutpoint is non centred. These results are presented and discussed in

detail in the Supplementary Material (Table B1 and Figure B1).

Figure 2 depicts the boxplots of the estimated optimal cutpoints for Scenario II,

where two optimal cutpoints are sought for. Numerical results are reported in Table 3.

Once again, the c-index outperformed the CPE when high censoring rates were consid-

ered. Nevertheless, for censoring rates below 50% both estimators performed satisfac-

torily.

Finally, Figure 3 depicts the boxplots of the estimated optimal cutpoints for Scenar-

ios IIIa and IIIb, where three optimal cutpoints are sought for a monotonic increasing

and non-monotonic risk relationship, respectively. Numerical results are reported in Ta-

ble 4. These results suggest that the method performed satisfactorily regardless of the

risk relationship considered. Nevertheless, for high censoring rates, the CPE performed

better when a non-monotonic risk relationship was considered.

We must note that when more than one cutpoint is searched for, the estimated cut-

points have been ordered from the smallest to the largest to classify them as “first”,

“second” or “third” cutpoints. This may cause an incorrect classification whenever the

estimated smallest cutpoint corresponds to the theoretical “second” cutpoint for exam-

ple.
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Table 4: Simulations results when three theoretical optimal cutpoints were looked for with a monotonic increasing and non-monotonic relationship with the

outcome (Scenarios IIIa and IIIb) and censorship of 20%, 50% and 70%. Mean, standard deviation, median, bias and mean squared error (MSE) for the

estimated cutpoints over 500 simulated data sets are reported when CPE or C-index concordance probability estimators are used as the maximisation criteria.

Sample

size
Cens.

theoretical

cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario IIIa

N = 500

20%
−1,5 −1.507 (0.066) −1.505 −0.007

0.008
−1.501 (0.078) −1.499 −0.001

0.012−0,5 −0.006 (0.087) −0.006 −0.006 −0.002 (0.096) 0.002 −0.002
−1,5 −1.483 (0.107) 1.489 −0.017 1.484 (0.141) 1.495 −0.016

50%
−1,5 −1.568 (0.269) −1.501 −0.068

0.075
−1.486 (0.177) −1.488 0.014

0.032−0,5 −0.078 (0.313) −0.007 −0.078 −0.006 (0.174) 0.002 −0.006
−1,5 −1.458 (0.211) 1.483 −0.042 1.490 (0.181) 1.495 −0.010

70%
−1,5 −2.119 (0.675) −2.093 −0.619

0.983
−1.442 (0.476) −1.453 0.058

0.175−0,5 −0.951 (0.744) −1.368 −0.951 0.045 (0.450) 0.018 0.045
−1,5 −1.006 (0.641) 1.340 −0.494 1.523 (0.305) 1.504 0.023

N = 1000

20%
−1,5 −1.499 (0.029) −1.500 0.001

0.002
−1.499 (0.036) −1.500 0.001

0.002−0,5 −0.003 (0.040) −0.003 −0.003 −0.004 (0.045) −0.001 −0.004
−1,5 −1.492 (0.056) 1.498 −0.008 1.487 (0.058) 1.497 −0.013

50%
−1,5 −1.500 (0.072) −1.497 0.000

0.005
−1.490 (0.084) −1.494 0.010

0.006−0,5 −0.005 (0.064) −0.003 −0.005 0.002 (0.072) 0.001 0.002
−1,5 −1.487 (0.070) 1.496 −0.013 1.491 (0.069) 1.499 −0.009

70%
−1,5 −1.739 (0.469) −1.525 −0.239

0.340
−1.455 (0.211) −1.479 0.045

0.035−0,5 −0.354 (0.635) −0.025 −0.354 0.027 (0.188) 0.008 0.027
−1,5 −1.335 (0.436) 1.486 −0.165 1.512 (0.154) 1.500 0.012

Scenario IIIb

N = 500

20%
−1,5 −1.506 (0.047) −1.503 −0.006

0.001
−1.508 (0.052) −1.503 −0.008

0.001−0,5 −0.002 (0.019) −0.001 −0.002 −0.001 (0.018) 0.000 −0.001
−1,5 −1.499 (0.021) 1.500 −0.001 1.496 (0.029) 1.499 −0.004

50%
−1,5 −1.513 (0.070) −1.505 −0.013

0.002
−1.506 (0.086) −1.500 −0.006

0.003−0,5 −0.002 (0.025) −0.001 −0.002 −0.005 (0.027) −0.002 −0.005
−1,5 −1.497 (0.033) 1.500 −0.003 1.499 (0.043) 1.502 −0.001

70%
−1,5 −1.469 (0.410) −1.506 0.031

0.073
−1.495 (0.176) −1.493 0.005

0.013−0,5 −0.050 (0.198) −0.001 0.050 −0.010 (0.054) −0.007 −0.010
−1,5 −1.481 (0.087) 1.501 −0.019 1.508 (0.067) 1.507 0.008

N = 1000

20%
−1,5 −1.504 (0.023) −1.502 −0.004

0.000
−1.502 (0.024) −1.501 −0.002

0.000−0,5 −0.000 (0.010) 0.000 0.000 0.001 (0.010) 0.000 0.001
−1,5 −1.501 (0.012) 1.501 0.001 1.499 (0.013) 1.500 −0.001

50%
−1,5 −1.504 (0.034) −1.502 −0.004

0.001
−1.501 (0.039) −1.500 −0.001

0.001−0,5 −0.002 (0.013) 0.000 0.002 0.000 (0.016) 0.000 0.000
−1,5 −1.499 (0.020) 1.500 −0.001 1.500 (0.019) 1.501 0.000

70%
−1,5 −1.514 (0.071) −1.502 −0.014

0.003
−1.504 (0.080) −1.498 −0.004

0.003−0,5 −0.003 (0.033) 0.000 0.003 −0.003 (0.023) −0.003 −0.003
−1,5 −1.494 (0.039) 1.501 −0.006 1.500 (0.036) 1.503 0.000
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Figure 3: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size, three theoretical cutpoints, monotonic increasing and non-monotonic relationship. Results are shown

for censoring rates of 20% and 70% and c-index and CPE discriminative ability estimators. From top to

bottom: (a) Monotonic increasing relationship (Scenario IIIa); (b) non-monotonic relationship (Scenario

IIIb). Theoretical cutpoints are represented with a dashed line.

4. Application to the Stable-COPD study

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic

diseases, its prevalence is expected to increase over the next few decades (Buist et al.,

2008), and is a leading cause of death in developed countries. Patients being treated

for COPD at five outpatient respiratory clinics affiliated with the Hospital Galdakao-

Usansolo in Biscay were recruited in the Stable-COPD study (Esteban et al., 2014). Pa-

tients were consecutively included in the study if they had been diagnosed with COPD

for at least six months and had been receiving medical care at one of the hospital respi-

ratory outpatient facilities for at least six months. Their COPD had to be stable for six

weeks before enrolment. Patients were followed for up to five years. In total, informa-

tion for 543 patients was obtained of which the 96.13% were men, the mean age was
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of 68.32 and the 30.76% died in a 5-years period for which the mean survival time was

of 2.77 years. The main selected variables collected in this study included sociodemo-

graphic variables, forced expiratory volume in one second in percentage (FEV1%), body

mass index (BMI), dyspnea measured with the modified scale of the Medical Research

Council (mMRC, Fletcher et al. (1959)) and the walking distance among others. A brief

description of the main variables used in this paper is given in Table 5. One of the main

goals of this study was to develop prediction models for patients with stable COPD.

Table 5: A description of the selected variables from the Stable-COPD study (N = 543).

Variable Mean (sd) Range

Age 68.32 (8.32) 33 - 86

FEV1% 55 (13.31) 18 - 105

BMI 28.28 (4.43) 16.38 - 44.04

Time until event (days) 1574.89 (483.43) 23 - 2045

Walking distance 408.89 (92.43) 46 - 644

Sex‡ −Men 522 (96.13 %)

Dyspnoea‡

1 69 (12.71 %)

2 264 (48.62 %)

3 166 (30.57 %)

4 23 (4.24 %)

5 21 (3.87 %)

5-year mortality‡ −Yes 167 (30.76 %)

‡Categorical variables are shown as absolute and relative frequencies

Table 6: Airflow obstruction level measured by FEV1% based on the different cutpoints used in the litera-

ture to categorise the continuous FEV1% variable.

Criteria Mild Moderate Severe Very Severe

GOLD ≥ 80 [50−80) [30−50) < 30

BODE ≥ 65 [50−65) (35−50) ≤ 35

HADO > 65 [50−65] [35−50) < 35

ADO ≥ 65 (35−65) ≤ 35

DOSE ≥ 50 [30−50) < 30

COCOMICS ≥ 70 (55−70) (35−55] ≤ 35

An important predictor for COPD mortality or hospitalisation is FEV1%, which is

commonly used by clinicians to diagnose and measure the severity of the disease (Vestbo

et al., 2013). Recently, several scores have been proposed which include a categorised

version of FEV1% among the predictor variables. The most commonly used scores are

the original BODE index (Celli et al., 2004), HADO index (Esteban et al., 2006), ADO

index (Puhan et al., 2009), and DOSE (Jones et al., 2009). Although all prediction

scores are based on prediction models which use a categorised version of the predictor

variable FEV1%, not all of them use the same cutpoints (see Table 6). To date, the most
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widely-used cutpoints are the ones proposed by the Global Obstructive Lung Disease

(GOLD) guidelines (mild ≥ 80, moderate 50-79, severe 30-49 and very severe < 30,

Rabe et al. (2007)). More recently, Almagro et al. (2014) have proposed a new cate-

gorisation of FEV1% to predict five-year survival in COPD patients. This research was

framed within the Collaborative Cohorts to Assess Multicomponent Indices of COPD

in Spain (COCOMICS) study.

Hence, and taking all this into account, three factors motivated us to look for the

best categorisation of the variable FEV1% as part of the development of the prediction

survival model in the Stable-COPD study. First of all, this variable is an important

predictor of survival in COPD patients. Since other prediction models and especially

clinical guidelines use a categorised version of this variable, the clinicians involved in

the study considered it was necessary to include a categorised version of this variable in

the prediction model. Second, recent research shows the importance of seeking optimal

cutpoints for this variable (Almagro et al., 2014). Third, as indicated above, to date there

are no unified criteria on how to categorise the variable FEV1%.

We looked for the best categorisation of the predictor variable FEV1% in a multi-

variate setting, taking into account the effect of age and dyspnoea, which are seen as

important predictors for the severity of patients with stable COPD (Bestall et al., 1999).

In fact, these variables together with a categorisation of FEV1% are the ones used in the

ADO index (Puhan et al., 2009), which turned out to be the best multivariate score to

predict 5-year mortality based on the c-index (Marin et al., 2013). The censoring rate

in our data set was 66.6%. Considering the results obtained in the simulation study,

the c-index concordance probability estimator was used to select the optimal cutpoints

since it appeared to perform better under this scenario. To select the optimal number of

cutpoints we considered the bootstrap confidence interval for the bias-corrected c-index

using B = 200 bootstrap replicates. In this data set, the proportional hazards assumption

was verified (Grambsch and Therneau, 1994).

In a first stage we looked for k = 3 cutpoints and compared them with k = 2 cut-

points, which are also the number of cutpoints used in the categorisation of FEV1% in

the ADO index. Using the c-index estimator and the Genetic algorithm we obtained that

the optimal cutpoints were (29.32,50.69) and (29.90,49.95,50.54) when we looked for

k = 2 and k = 3 number of cutpoints, respectively. In this case, the optimal cutpoints

obtained when the CPE was used as the concordance probability estimator were almost

the same, being (29.79,50.63) for k = 2 and (29.69,49.37,50.82) for k = 3. When we

compared k = 2 versus k = 3 number of cutpoints, we obtained a 95% bootstrap CI

(−0.005,0.015) for the difference bias-corrected c-index. Consequently, the optimal

number of cutpoints considering the multivariate setting would be k = 2, resulting in

mild-moderate (> 50%), severe ([30%− 50%]) and very severe (< 30%) categories.

Note that the estimated cutpoints matched up with those used in the DOSE index (Jones

et al., 2009) and those proposed in the GOLD guidelines (Rabe et al., 2007). The esti-

mated cutpoint which separated the categories severe from very severe, differed slightly

from the one used in the BODE, HADO and ADO indexes i.e., 35, which was iden-
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tified by the American Thoracic Society (Celli et al., 2004). For illustration purposes,

we would like to indicate that the bias corrected c-index for the ADO categorisation

proposal was 0.701, lower than the 0.717 obtained using our approach.

5. Discussion

Categorisation of a continuous predictor variable is a commonly used strategy in biomed-

ical research (Turner et al., 2010), where decisions are usually based on the risk classi-

fication of patients. To the best of our knowledge, up to now, no approaches have been

proposed in the literature for the categorisation of a continuous predictor variable in a

multiple Cox proportional hazards regression model. In this paper, we have proposed

and validated by means of simulations a methodology to categorise a continuous pre-

dictor variable by maximising the concordance probability of the final model for the

categorised variable.

Although the objective is different, several methods have been proposed in the lit-

erature to select optimal cutpoints (a unique cutpoint) for the prognosis of a disease

(Faraggi and Simon, 1996; Sima and Gönen, 2013). In that context, the aim is to se-

lect the best cutpoint to dichotomise a variable and classify individuals as diseased or

disease-free based on that cutpoint. Sima and Gönen (2013) proposed the maximal

discrimination as a method to dichotomise a continuous predictor. They compared the

maximisation of the discrimination indexes CPE and c-index together with the maximi-

sation of the log-rank, Wald and partial likelihood ratio statistics for the location of one

optimal cutpoint.

Our proposal is different to Sima and Gönen’s proposal in one main aspect. Our goal

is to categorise a continuous predictor variable to be used in a Cox proportional haz-

ards regression model, considering any possible number of cutpoints. In fact, the most

common scores used to predict mortality in COPD patients, such as BODE or ADO,

use categorised versions (with more than two categories) of continuous predictors (Celli

et al., 2004; Puhan et al., 2009). Furthermore, the methodology that we propose con-

siders the effect that other predictor or confounding variables may have on the selection

of the optimal cutpoints. Finally, our proposal allows to select the optimal number of

cutpoints to categorise the predictor variable using a bootstrap confidence interval for

the difference of the bias-corrected concordance probability estimators.

This proposal is an extension of the methodology proposed by Barrio et al. (2016)

for the logistic regression setting. However, in time-to-event studies different estimators

of the concordance probability have been proposed. In this paper we have studied and

compared the performance of two estimators: the c-index and the CPE, in order to

evaluate their performance in the categorisation of a continuous predictor variable in a

Cox proportional hazards regression model.
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The finite sample performance of the concordance probability estimators considered,

i.e., c-index and CPE, was investigated through simulations. Results indicate that both

concordance probability estimators performed satisfactorily in a multiple Cox regression

model for any number of cutpoints and low-moderate censoring rates (≤ 50%). When

the censoring rate considered was high (> 70%), the c-index appeared to outperform

the CPE in all the scenarios considered. Additionally, the simulation results for three

cutpoints showed that optimal cutpoints can be obtained regardless of the relationship of

the latent continuous variable and the outcome. However, when we looked for a unique

cutpoint in a univariate Cox proportional hazards regression model, results differed de-

pending on the location of the theoretical cutpoint (results shown in the Supplementary

Material). In fact, we observe that for a unique and not centred cutpoint, neither CPE

nor c-index performed satisfactorily. Depending on whether the theoretical cutpoint

was positively or negatively migrated from the centre of the distribution, smaller bias

and MSE values were obtained for CPE or c-index. We must take into a account that

when a univariate model is considered and the predictor variable takes only two possi-

ble values, there are many ties on the estimated survival probabilities and hence it may

have an impact on the estimated concordance probability. Consequently, based on the

simulation results obtained, we give the following recommendations for use in practice.

For low-moderate censoring rates (≤ 50%), either the c-index or the CPE can be used as

maximisation criteria to obtain optimal cutpoints. However, for high censoring rates we

recommend the c-index as the concordance probability estimator to maximise. Finally,

we do not recommend the use of this proposal for dichotomisation in a univariate model.

Although we tried to evaluate many different scenarios, we could not address all pos-

sible real world settings and hence the conclusions we got can be extended only to those

situations that were defined in the simulation study. In the scenarios we simulated we

considered true optimal cutpoints in order to be able to compare the estimated cutpoints

with those theoretical ones. Nevertheless, in practice neither the location or the number

of cutpoints are known. We are aware that in theory the optimal number of cutpoints for

the categorisation of a continuous variable does not exist, since above all the possible

number of cutpoints, the best option would be the continuous variable. However, in

clinical practice categorical versions of the continuous variables can be preferred with-

out it always being clear which is the best number of categories to be used. For those

situations we provided a proposal to decide among different number of cutpoints based

on the bootstrap confidence interval (Barrio et al., 2016) which has been extended to the

Cox proportional hazards regression model (see Supplementary Material). Although

further research is needed to provide accurate methods for the selection of the optimal

number of cutpoints, the results suggest that, when using the c-index, the number of cut-

points can be selected based on the bootstrap CI for the difference of the bias corrected

estimated concordance probability.

In this paper we have not considered time-dependent discriminative ability measures

as a parameter for selecting optimal cutpoints. Note that the concordance probability

index is a global measure that does not take into account the time at which the prediction
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of the event is desired. This implies that the optimal cutpoints are considered to be the

same whatever the time of interest is. However, this may not be necessarily true. To

overcome this problem, we are currently working on the application of time-dependent

discrimination measures (Heagerty and Zheng, 2005; Pepe et al., 2008) in the search for

time-dependent optimal cutpoints.

When we applied the proposed methodology to the Stable-COPD study, we saw

that the cutpoints obtained to categorise the predictor variable FEV1% corresponded to

cutpoints previously used in the literature, obtaining clinically valid optimal cutpoints.

To summarise, we have compared the performance of two concordance probability

estimators as the maximisation criteria to obtain optimal cutpoints to categorise contin-

uous predictor variables in a Cox proportional hazards regression model. By means of

simulations we have seen that the methodology proposed for categorising continuous

predictors in a Cox proportional hazards regression model provides the optimal location

and number of the cutpoints. Additionally, we have implemented this methodology into

an R function which leads to easy use of this methodology in practice.
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Bayesian correlated models for assessing the

prevalence of viruses in organic and non-organic

agroecosystems

Elena Lázaro1, Carmen Armero1 and Luis Rubio2

Abstract

Virus diseases constitute one of the most important limiting factors in horticultural production.

Cultivation of horticultural species under organic management has increased in importance in

recent years. However, the sustainability of this new production method needs to be supported

by scientific research, especially in the field of virology. We studied the prevalence of three im-

portant virus diseases in agroecosystems with regard to its management system: organic versus

non-organic, with and without greenhouse. Prevalence was assessed by means of a Bayesian

correlated binary model which connects the risk of infection of each virus within the same plot and

was defined in terms of a logit generalized linear mixed model (GLMM). Model robustness was

checked through a sensitivity analysis based on different hyperprior scenarios. Inferential results

were examined in terms of changes in the marginal posterior distributions, both for fixed and for

random effects, through the Hellinger distance and a derived measure of sensitivity. Statistical re-

sults suggested that organic systems show lower or similar prevalence than non-organic ones in

both single and multiple infections as well as the relevance of the prior specification of the random

effects in the inferential process.
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Keywords: Hellinger distance, model robustness, risk infection, sensitivity analysis, virus epidemi-
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1. Introduction

Society is becoming increasingly concerned about environmental damage caused by

agricultural activities. The sustainability of conventional agriculture is now being ques-
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tioned, which is prompting traditional production systems to evolve toward production

methods that can protect both environmental and human health (Van Bruggen, 1995;

Bengtsson et al., 2005).

In recent decades, organic agriculture has grown rapidly in comparison with other

agricultural systems. The adoption of these new agricultural practices has brought about

the need to compare low-input and conventional systems to verify whether agroecosys-

tem sustainability can be achieved (Bettiol et al., 2004). Despite the emergence of or-

ganic agriculture systems, the literature on their effects and interactions is scarce and

insufficient, above all in the field of virology (Tomlinson, 1987). Diseases caused by

viruses constitute a major threat to the large-scale production of crops worldwide, caus-

ing serious economic losses and undermining sustainability (Gallitelli, 2000). Assessing

the risk of infection should therefore be a priority in the study of the epidemiology of

such virus diseases.

The ecological and epidemiological factors that determine virus infections in veg-

etable crops are diverse and little is known about them. The sources and spread of

viruses, together with certain agricultural and horticultural practices, have a strong in-

fluence on their prevalence (Hanssen et al., 2010). In this respect, studies on the risk

of virus infections need to characterize the agroecosystem balance as well as under-

stand the complex relationships between organisms (plants, pathogens, and vectors) and

environment (Serra et al., 1999).

The main scientific question addressed in this paper is the study and comparison of

the risk of different virus infections in tomato and pepper plots characterized by their

agroecosystem. Specifically, we focus on the detection and quantification of the ef-

fects associated with organic management. The agroecosystem of each plot is defined

through a set of covariates containing information on its management conditions and al-

titude. Agroecosystems are dynamic entities (Finley et al., 2011) with complex sources

of uncertainty and hierarchies. Following Thornley and France (2007), the estimation of

the infection risk of different viruses within the same plot would require the modelling

of not only a suitable set of covariates but also the inclusion of some probabilistic terms

which connect the different observations of the same individidual.

The inclusion of dependence and/or correlation relationships among variables, re-

sponse and/or covariates, is usually done by means of random effects whose stochastic

nature adds much more probability to the structure of the model. Bayesian reasoning

provides a natural environment for analysing them mainly because of the own concep-

tion of the Bayesian probability theory, which specifies all the uncertainties in the model

through probabilistic elements (Loredo, 1990). Some applied papers that illustrate the

benefits of hierarchical Bayesian models in biometrics scenarios are Alvares et al. (2016)

in agriculture, Paradinas et al. (2015) in fisheries, Paciorek et al. (2009) in forestry, and

Clark et al. (2007) in ecology.

A Bayesian binary correlated model under the generalized linear mixed models

(GLMM) specification was considered to perform a regression analysis of the prevalence

of the different viruses. Random effects were used to correlate the risk of infection of
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each virus in the same plot and quantify the intra-plot ability to be infected. Robustness

in hierarchical Bayesian models is a major concern as it can be affected by an inappro-

priate choice of the hyperprior distributions for hyperparameters (Lambert et al., 2005;

Gelman, 2006; Roos and Held, 2011; Roos et al., 2015). To this effect, the sensitivity

of the modelling was tested using several specifications for the hyperprior distribution

of the random effects scale parameter. A general measure based on the Hellinger dis-

tance (Le Cam, 2012), with its calibration, was used to quantify discrepancies in the

subsequent posterior marginal distribution of the common regression coefficients and

hyperparameter.

The remainder of this article is organized as follows: Section 2 reviews the data and

presents the formulation of the model. Section 3 reports and discusses the results with

regard to multiple and single viral infections. Section 4 proposes several random effects

specifications and analyses the robustness of the estimated models through a sensitiv-

ity measure based on the Hellinger distance. Some concluding remarks are given in

Section 5.

2. Viruses data and statistical modelling

2.1. Data description

Globally, about 30 viruses are capable of affecting the most known horticultural crops.

However, despite being able to infect a wide variety of species, they usually affect

Solanaceae species, specially tomato (Solanum lycopersicum) and pepper (Capsicum

annuum L.). These species are two of the most common vegetable crops grown in Spain

whose production is being seriously limited by virus diseases. There has recently been

a considerable increase in the cultivation of these vegetables under integrated systems

such as organic agriculture. It is therefore essential to carry out subsequent virus preva-

lence studies in order to guarantee their sustainability.

A project under the auspices of the Valencian Institute Agricultural Research was

conducted in the summer of 2012 in the Valencian region for this purpose. A total of

30 plots in tomato and pepper production were selected according to their system of

production. Each plot was evaluated in terms of its agroecosystem characterization and

the presence or absence of three different viral infections in the crops: tomato mosaic

virus (ToMV), cucumber mosaic virus (CMV) and tomato spotted wilt virus (TSWV).

These viruses affect both tomato and pepper crops equally, are transmitted in different

ways, and can cause substantial economic losses. The presence of each specific virus

infection in a plot was assumed when the virus was detected in at least one of eight

randomly-selected plants. The enzyme-linked immunosorbent assay (ELISA) technique

(Clark et al., 1976) was used to detect each virus.

The assessment of the agroecosystem of each plot was determined by its manage-

ment condition and altitude. Management condition was evaluated by classifying each



96 Bayesian correlated models for assessing the prevalence of viruses...

plot as organic, non-organic with greenhouse structure, and non-organic with no green-

house structure. These categories were defined according to the most representative

agroecosystems in Spanish agriculture. Organic plots differ from the non-organic ones

in many respects, but substantial differences are related to the use of agrochemicals

and other external inputs with important influence in pest and disease prevalence. In

fact, some purported drawbacks related to organic agriculture include an increasing in-

cidence of pest damage and higher risks of pest outbreaks (Letorneau and Goldstein,

2001). All plots classified as organic complied with the current regulation and were

certificated as such by the Organic Agriculture Committee of the Autonomous Govern-

ment of València. The presence of greenhouse in non organic plots was also considered

because is a frequent practice in non-organic systems. The use of covering protections

suppose a physical barrier which is directly related to virus infection in the sense that

denies insects (vector of virus transmission) acces to plants.

Of the total of 30 plots of our study, 18 were classified as organic and 12 as non-

organic, 5 of them with greenhouse structure. For organic plots, the proportion of in-

fected plants with ToMV, CMV, and TSWV was 0.222, 0.167, and 0.056, respectively.

In the case of non-organic plots with greenhouse these proportions were 0.400, 0.200,

and 0.200, respectively, and 0.143, 0.286, and 0.286 for non-organic plots without green-

house. The organic plots presented a lower proportion of plants infected by CMV and

TSWV viruses, but the prevalence of ToMV was lowest in the non-organic plots with

no greenhouse.

2.2. Statistical model

We consider a logit GLMM for correlated binary responses (Ntzoufras, 2009) to model

the Bernoulli random variable Yi j which describes the presence or absence of virus j

( j = 1 corresponds to ToMV, j = 2 to CMV, and j = 3 to TSWV) in plot i,

(Yi j | θi j)∼ Bernoulli(θi j),

logit(θi j) = x
T

iβββ j +bi, i = 1, . . . ,30,
(1)

where θi j is the probability that virus j will be detected in plot i and represents risk of

infection; xi is the vector of covariates; βββ j is the corresponding vector of the regression

coefficients; and (bi | σ2
b) ∼ N(0,σb) is a normal random effect associated with plot

i with mean zero and standard deviation σb. The three management conditions were

coded in a sequence of two dummy variables (organic and non-organic, with and without

greenhouse structure) to avoid overparameterization, with organic management as the

reference category.

Random effects capture within-plot variability and correlate prevalence among all

viruses so that each individual virus infection is determined by its own agroecosystem

effect and an individual effect plot which denotes its ability to be infected. They also
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provided conditional independence among the prevalence of the three viruses as follows

P(Yi j = y j, j = 1,2,3 | βββ,bi, xi) =
3

∏
j=1

P(Yi j = y j | βββ j,bi, xi), (2)

where y j ∈ {0,1}, j = 1,2,3, βββ = (βββ1,βββ2,βββ2)
T, and the conditional probability that plot

i will be infected with virus j can be expressed as

P(Yi j = 1 | βββ j,bi, xi) =
exp{xT

iβββ j +bi}
1+ exp{xT

iβββ j +bi}
, (3)

The joint marginal distribution obtained integrating out the random effects in (4),

P(Yi j = y j, j = 1,2,3 | βββ,σb, xi) =

∫

P(Yi j = y j, j = 1,2,3 | βββ,bi, xi)N(bi | 0,σb)dbi,

(4)

does not depend on the subject-specific random effects and can be interpreted as the

common risk infection of a generic plot from the population with the same agroecosys-

tem and altitude.

Inference was carried out using Bayesian statistics. We therefore needed to elicit

a prior distribution for the parameters and hyperparameters to complete the Bayesian

model. We considered a prior independent default scenario with normal distributions

centered at zero and a wide variance for the regression coefficients. As previously

introduced, the specification of a hyperprior distribution for the random effects scale

parameter is a challenging issue (Lambert et al., 2005; Gelman, 2006; Roos and Held,

2011; Roos et al., 2015). Section 4 contains a sensitivity analysis of the performance of

various traditional hyperprior choices (gamma, uniform and half-normal) in our study.

This analysis led us to choose the uniform distribution Un(σb | 0,100) for the standard

deviation of the random effects. Consequently

π(βββ,σb) = ∏
3
j=1 ∏

3
k=0π(β jk)π(σb)

= ∏
3
j=1 ∏

3
k=0 N(β jk | 0,σ2 = 1000)Un(σb | 0,100) (5)

where βββ j = (β j0,β j1,β j2,β j3)
T are the regression coefficients associated with organic,

non-organic with and without greenhouse and altitude (in logarithmic scale) for virus j.

3. Results

The posterior distribution π(βββ,σb | D), where D denotes data, was approximated us-

ing Markov chain Monte Carlo (MCMC) simulation methods with WinBUGS Software

(Lunn et al., 2000). Random effects models, and Bayesian categorical GLMs in par-

ticular, involve many computational difficulties (Albert and Chib, 1993). We fixed the
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number of iterations and the burn-in period with very large values to avoid strong cor-

relation in the MCMCs samples and get a reliable sample of the posterior distribution.

Specifically, simulation was run considering three Markov chains with 1 000 000 itera-

tions and a burn-in period with 100 000. In addition, the chains were thinned by storing

every 10th iteration in order to reduce autocorrelation in the saved sample and avoid

computer memory problems.

Trace plots of the simulated values of the chains appear overlapping one another,

indicating stabilization. Convergence of the chains to the posterior distribution was

assessed using the potential scale reduction factor, R̂, and the effective number of inde-

pendent simulation draws, neff. In all cases, the R̂ values were equal or close to 1 and

neff > 100, thus indicating that the distribution of the simulated values between and

within the three chains was practically identical, and that sufficient MCMC samples had

been obtained, respectively (Gelman and Rubin, 1992).

3.1. Management conditions

Multiple viral infections that may result in synergisms or antagonisms are frequently

found in nature, with unpredictable pathological consequences. Synergistic interactions

resulting from mixed infections with two or more viruses are common and well docu-

mented in plants (Garcı́a-Cano et al., 2006). Viral synergism could affect various growth

variables such as plant height, weight, and yield (Murphy and Bowen, 2006), and in ex-

treme cases can lead to plant death.

The joint posterior distribution, π(P(Yi j = y j, j = 1,2,3 | βββ,σb, xi) | D), where y j ∈
{0,1}, of the risk infection given in (4) for a generic plot at given altitude in each of the

management systems is the basic tool for assessing such synergisms and antagonisms.

This posterior distribution is also the starting point for the computation of relevant con-

ditional or marginal inferences.

We begin by discussing some results about multiple viral infections with regard to

plot management condition: the posterior distribution of the prevalence of the total num-

ber of viruses in a plot and the posterior distribution of the risk of a third infection in

plots already infected with two of the viruses. Figure 1a shows the mean of the posterior

distribution associated to the presence of 0, 1, 2 and 3 viruses in a generic plot i located

at 76 meters of altitude (the sample mean) with regard to its management system. Most

of the plots have no infections, but the organic ones present the highest rates for plots

without infections. Non-organic plots, with and without greenhouse, behave similarly.

Figure 1b shows the posterior mean of the risk of a third infection in plots already

infected with two of the viruses. Outcomes are also obtained for a generic plot i situated

at 76 meters of altitude (the sample mean) with regard to its management system. For

condition ToMV in the presence of CMV and TSWV, organic and non-organic with

greenhouse plots behave similarly with probabilities around 0.6. This is not the case

for non-organic with no greenhouse plots, with an estimated probability close to 0.2.

CMV infection given ToMV and TSWV presents homogeneous results in all manage-
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Figure 1: (a) Probability (mean of the posterior distribution) for the presence of 0, 1, 2 and 3 viruses

in organic (black), non organic-green (red) and non organic-non green (green) management systems. (b)

Probability (mean of the posterior distribution) of the risk of a third infection in plots already infected

with two of the viruses in organic (black), non organic-green (red) and non organic-non green (green)

management systems.

ment systems, with a higher difference among estimated probabilities of 0.167. The

pattern for the probability of a TSWV infection in plots already infected with ToMV

and CMV seems to be different among the management conditions: non-organic with

no greenhouse systems shows the highest probability (0.514), followed by non-organic

with greenhouse plots (0.316), and organic (0.172), respectively. It is difficult to detect

a general trend on conditional infections among the different agroecosystems analysed.

This is a very interesting subject and surely a new study with more data would be nec-

essary in order to better understand them.

The marginal effect of the management conditions in each virus was assessed through

the marginal posterior distribution π(P(Yi j = 1 | βββ,σb, xi) |D). Table 1 shows a descrip-

tive of the posterior distribution of the risk of infection for each virus and management

conditions for a generic plot situated at a height of 76 meters (the sample median). The

lowest risk of infection for a generic plot under organic management is for TSWV virus.

The most relevant differences among the management conditions were found for virus

ToMV. In contrast, virus CMV seemed the most stable. However, the organic effect was

weaker for ToMV risk, approximately about four times the one for TSWV virus. It is

important to mention the great uncertainty associated to all marginal posterior distribu-

tions in the analysis, mainly due to the combination of the reduced size of the sample and

the usual scarce information of binary data. To this effect, a bigger experiment would be

necessary for a more informative and objective study that allows to reach more precise

conclusions about the subject.
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Table 1: Summary of the posterior distribution of the risk of infection for each management condition and

virus.

Virus Management Mean Sd Q2.5% Q50% Q97.5%

ToMV
Organic 0.225 0.184 0.008 0.181 0.734

Non-organic, greenhouse 0.311 0.252 0.006 0.248 0.900

Non-organic, no greenhouse 0.100 0.147 0.000 0.041 0.553

CMV
Organic 0.169 0.161 0.004 0.124 0.634

Non-organic, greenhouse 0.155 0.190 0.001 0.080 0.719

Non-organic, no greenhouse 0.234 0.216 0.004 0.168 0.809

TSWV
Organic 0.057 0.093 0.000 0.026 0.309

Non-organic, greenhouse 0.174 0.203 0.001 0.095 0.764

Non organic, no greenhouse 0.253 0.223 0.005 0.189 0.831

Comparison of the three management systems was also quantified with the posterior

distribution of the risk difference (RD) (Christensen et al., 2011). RD is an absolute and

intuitive measure of association for quantifying difference between proportions associ-

ated to an outcome of interest in two groups. It is defined in [−1,1] so that RD = 0

means no difference between groups, −1 ≤ RD < 0 that risk is greater in group 2, and

0 < RD ≤ 1 the opposite.

Figure 2 shows, for each virus, the posterior mean and 95% credible interval of the

RD between organic and non-organic, with and without greenhouse, generic plots. Infor-

mation provided by this graphic reaffirms the results in Table 1. Note that the differences

between organic management conditions and the two non-organic conditions are clear in

the case of TSWV infection: both posterior distributions are highly concentrated on the

negative RD values with associated posterior probabilities 0.764 and 0.910 when com-
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Figure 2: Posterior mean and 95% credible interval of the RD between organic system in relation to non

organic-green (left) and non organic-no green (right) system for ToMV, CMV and TSWV infections.
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paring organic and non-organic with and without greenhouse management, respectively.

For CMV infections, the results are less clear, with posterior probabilities of 0.395 and

0.611, respectively. In the case of ToMV infection, there are few differences between

organic and non-organic with greenhouse conditions (posterior probability of a negative

difference is 0.620), but a relevant probability, 0.84, that the risk of infection will be

greater in organic than in non-organic without greenhouse.

3.2. Altitude condition effect

Plot altitude is a relevant epidemiological information due to its important role in shap-

ing insect vector distributions and virus survival. The effect of altitude on the risk of

infection is clearly negative in all viruses and therefore we can expect a decrease of the

risk of infection as altitude increases. Figure 3a shows the posterior distribution of the

regression coefficient associated to altitude for each virus: −0.914, −0.745 and −0.480

are, respectively, the subsequent posterior mean of the coefficient for virus ToMV, CMV,

and TSWV, with posterior probabilities 0.940, 0.904, and 0.768 associated to their neg-

ative values. Note that virus ToMV is the most negatively associated with altitude.

Figure 3b shows the posterior distribution of the RD between two generic organic plots

with altitudes of 16 and 604 m, the lowest and highest values of the organic plots in the

sample. These graphics are in line with the previous comments and also indicate the

less important role of altitude in the risk of a TSWV infection in organic crops.
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Figure 3: For virus ToMV (in black), CMV (in red), and TSWV (in green): posterior mean and 95% cred-

ible interval of the regression coefficient associated to the altitude (in logarithmic scale) (a), and posterior

distribution of the RD between a typical organic plot at altitudes 16 and 604 m (b).
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3.3. Individual random effects

Random effects for each plot capture the ability to be infected of individual plots, thus

correlating the risk of infection among the viruses of each plot. Since each individual

random effect is responsible for the differences in the estimation of the risk between

plots managed under similar agroecosystem conditions, quantifying their contribution

to the analysis in terms of factors and covariates is highly relevant to our understanding

of the weight of the common and individual elements in the model.

The mean of the posterior distribution of the standard deviation, σb, of the plot ran-

dom effect is 0.968 with a 95% credible interval [0.046, 2.671]. In addition, we assessed

the contribution of the random effect associated to each plot towards the conditional pos-

terior distribution of the risk of infection π(P(Yi j = 1 | βββ,bi, xi) | D). It was estimated

individually for the three viruses at the altitude of 76 meters with the purpose of as-

sessing differences in risk infection among individuals that share the specification of the

vector of covariates xi, that is to say, plots that were managed under the same system.

Figure 4 shows a mosaic of subfigures in which each one displays the posterior expec-

tation of the risk of infection for each plot grouped according to management condition

(rows) and the type of virus infection (columns).

We can distinguish a certain stability in risk infection regarding individuals belong-

ing to non-organic no greenhouse systems (row 3) with maximum differences among

individuals of 0.039, 0.084 and 0.090 for ToMV, CMV and TSWV respectively. Non-

organic with greenhouse plots (row 2) are less similar with maximum differences in risk

infection no greater than 0.190 (ToMV). Organic plots showed the most remarkable dif-

ferences among their individuals, with maximum differences of 0.211 for ToMV and

0.231 for CMV. In contrast TSWV showed the opposite behaviour with a slight maxi-

mum difference of 0.087. In conclusion, we suspect the strong relevance of the common

elements in the model (fixed effects) in the case of non-organic and no greenhouse plots

regardless of virus infection. On the other hand, in the case of organic plots the weight

of the common elements effect in the model was not so evident considering that not all

viruses exhibited a similar tendency: ToMV and CMV risk infection varied considerably

among individuals, but this was not the case with TSWV.

4. Sensitivity analysis

Bayesian GLMMs are a particular class of models for which the estimation process

can be seriously affected by the elicitation of prior distributions for the random effects

scale parameter (standard deviation, σb, or a one-to-one transformation of it, variance

σ2
b or precision τb = 1/σ2

b). Special attention is required in studies where the number

of groups is small, σb is close to zero, and/or the number of groups is large compared

to the number of observations in each group (Box and Tiao, 1992; Gelman, 2006; Roos

and Held, 2011). This latter situation is the case of our study, with I = 30 plots and
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only three observations in each of them. An additional element that aggravates the

situation is the sparsity of the data due to its categorical, binary condition. We conducted

a sensitivity analysis of the posterior distribution to the specification of several prior

hyperdistributions for the random effects scale parameter. This analysis was based on

the methodology developed in McCulloch (1989), Roos and Held (2011), and Roos et

al. (2015) regarding the stability of the marginal posterior distribution of the regression

coefficients of the model and the relative changes in the subsequent marginal posterior

distributions of the random effects scale parameter.
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Figure 4: Posterior mean of the conditional posterior distributions associated to management systems or-

ganic (row 1), non organic and greenhouse (row 2) and non organic and non greenhouse (row 3) for viruses

ToMV (column1), CMV (column 2) and TSWV (column 3) obtained from a fixed altitude value of 76 m.
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4.1. Hyperprior distributions

For the random effects scale parameter, different hyperprior distributions were specified

for τb within the family of gamma, and for σb within uniform and half-normal distribu-

tions

• Gamma: Ga(0.001, 0.001), Ga(0.005, 0.005), and Ga(0.05, 0.05) (Ga1, Ga2, and

Ga3, respectively),

• Uniform: Un(0, 100), Un(0, 55.63), and Un(0, 7.92) (Un1, Un2, and Un3), and

• Half-normal: HN(10), HN(3.0387), and HN(0.3965) (HN1, HN2, and HN3).

Gamma distributions were parameterized in terms of a shape and a rate parameter,

and half-normal distributions were set according its standard deviation. Hyperdistribu-

tions Ga1, Un1, and HN1 were considered the default choices due to their “noninfor-

mative” nature and their common use in Bayesian applications. In addition, two other

hyperparameter specifications within each family of hyperdistributions were contem-

plated to assess the effect of small and medium perturbations in the hyperparameter

specifications on posterior inferences. These hyperprior distributions were set follow-

ing the criterion of the Hellinger distance (Le Cam, 2012). This is a symmetric and

invariant measure of discrepancy between two probability distributions taking values

between 0 and 1, where the value 0 represents no divergence and 1, full divergence (See

Appendix 1).

Hyperparameter values were assessed considering two reference Hellinger distance

values, a small and a medium perturbation. This computation was based on the analyti-

cal expression of the Hellinger distance between gamma, uniform and half-normal dis-

tributions (see Appendix 1). Small perturbation was associated to a Hellinger distance

of 0.541 and medium to 0.848. Consequently, Ga2, Un2, and HN2 hyperparameteres

were determined to obtain a Hellinger distance of 0.541 in relation to hyperdistributions

Ga1, Un1, and HN1, respectively. Hyperparameter values for Ga3, Un3, and HN3 were

selected because of their Hellinger distance, 0.848, to hyperpriors Ga1, Un1, and HN1,

respectively.

Focusing on gamma hyperdistributions, Ga1 exhibits the widest range of uncertainty

with a variance of 1000. It is frequently used in many of the examples provided with the

WinBUGS software (Lunn et al., 2012) and shows a uniform shape for most of the range

with a spike of probability density near zero. Ga2 and Ga3 share this shape, although

they show lower range coverage as a consequence of their fewer variance values, 200

and 20. Hyperprior Un1 is recommended by Spiegelhalter et al. (2004) in their book on

clinical trials. It is a very generous distribution allowing for a great space of values due

to its variance of 833.3. Un2 and Un3 display variance values of 257.84 and 5.23, and

as such they are very different from the non-null density range. The half-normal default

option, HN1, is a choice used in Thompson et al. (1997) and Roos and Held (2011). It

exhibits a variance of 36.3 giving a low probability to values greater than this. HN2 and

HN3 are more informative versions, especially HN3 with a variance value of 0.06.
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We conducted nine independent inferential processes with the same data and the

same marginal prior distribution π(βββ) for the regression coefficients as in (5) but varying

marginal hyperprior distribution according to the specifications previously presented.

4.2. Sensitivity of the regression coefficients

We discuss sensitivity of the marginal posterior distributions of the regression coeffi-

cients derived from the inferential processes described above. Discrepancies among the

estimates of posterior marginal distributions were the result of alterations in the hyper-

prior values. Hellinger distances between posterior marginal distributions approximated

by MCMC methods were computed via expression (A.1) in Appendix 1 and imple-

mented by means of the function HDistNoSize in the R package bmk (Krachey and

Boone, 2012). Furthermore, to facilitate interpretation these values were calibrated with

regard to a normal distribution with variance 1 (see Appendix 2 for more details about

calibration).

Table 2 shows the calibration of the Hellinger distance between the posterior marginal

distribution of the different coefficients of regression computed from the hyperpriors

considered. In none of the comparisons the discrepancies observed were greater than

the differences between the normal distributions N(0,1) and N(0.284,1), which reveals

that Hellinger values are in general close to zero (see Table 4 in Appendix 2 where a cal-

ibration of the normal mean related to its subsequent Hellinger distance is displayed).

Uniform distributions have the smallest discrepancies despite the existing differences

among hyperpriors Un1, Un2, and Un3. The behaviour of half-normal distributions

was similar to that of the uniform distributions in the case of hyperpriors HN1 and

HN2. Nevertheless, inference from hyperprior HN3 exhibited the greatest discrepan-

cies, surely due to its informative nature. Gamma showed greater discrepancies than

uniform hyperpriors in all cases, although in none of the scenarios did these differences

exceed those obtained from hyperprior HN3. Thus, the above comments enable us to

conclude that our assumptions on the choice of hyperparameter prior distribution influ-

ences the estimates of the regression coefficients only to a minor extent.

We now discuss the effect of the different hyperpriors considered on the posterior

distribution of each regression coefficient. Figure (5) is a mosaic of subfigures. Each

subfigure displays the posterior mean of the regression coefficients of the different infer-

ential processes conducted. The order of the points corresponds to the order in which hy-

perpriors are presented (Ga1, Ga2, Ga3; Un1, Un2, Un3; and HN1, HN2, HN3). A great

similarity can repeatedly be seen, in practically all coefficients and viruses, between re-

sults from hyperpriors HN1 and HN2, and also those from the uniform hyperpriors. As

expected, results from HN3 are very different, most likely due to its informative char-

acteristics. Finally, posterior means from the analyses based on the gamma hyperpriors

vary the most, indicating a greater sensitivity to parameter specification.
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Table 2: Calibration of the Hellinger distance between the posterior marginal distribution of the coeffi-

cients of regression associated to organic (βo), non-organic with greenhouse (βno-g), non-organic without

greenhouse (βno-ng) and altitude in logarithmic scale (βalt) computed from hyperprior distributions Ga1

and Ga2, Ga1 and Ga3, Un1 and Un2, Un1 and Un3, HN1 and HN2, and HN1 and HN3.

Virus Coeff. (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3) (HN1,HN2) (HN1,HN3)

ToMV βo 0.038 0.084 0.024 0.022 0.034 0.236

βno-g 0.032 0.068 0.019 0.019 0.035 0.197

βno-ng 0.020 0.042 0.018 0.020 0.024 0.124

βalt 0.043 0.099 0.022 0.024 0.039 0.284

CMV βo 0.033 0.068 0.023 0.021 0.034 0.201

βno-g 0.029 0.056 0.021 0.019 0.025 0.148

βno-ng 0.029 0.060 0.019 0.020 0.027 0.171

βalt 0.037 0.085 0.023 0.023 0.038 0.249

TSWV βo 0.022 0.052 0.019 0.021 0.030 0.144

βno-g 0.024 0.043 0.021 0.020 0.025 0.108

βno-ng 0.023 0.048 0.020 0.019 0.025 0.139

βalt 0.028 0.069 0.020 0.019 0.034 0.193

4.3. Sensitivity of the variability of the random effects

We now discuss and assess the sensitivity of the random effects scale parameter cor-

responding to the inferential processes described in Subsection 4.1. Figure 6 shows

the posterior marginal distribution (mean and 95% credible intervals) of the standard

deviation of the random effects. It is worth noting that in the case of the gamma hy-

perpriors, the posterior marginal distribution π(σb | D) is computed from the joint pos-

terior π(βββ,τb | D), which is based on the prior π(βββ,τb). The results from the uniform

hyperdistribution are stable, since the subsequent marginal posterior distributions are

virtually indistinguishable. The opposite occurs for results from the gamma hyperpri-

ors, with very different posterior distributions greatly influenced by the spike near zero

of the subsequent hyperprior. The half-normal distribution also exhibits a sensitive per-

formance, with the posterior distributions from HN1 and HN2 practically equal to those

from the uniform distribution. As previously noted, the exception is for the posterior

distribution from the informative HN3.

Finally, we used a sensitivity measure developed in Roos and Held (2011) to evaluate

the relative change in the posterior marginal distribution of the random effects scale

parameter with regard to subsequent change in the prior distribution. Changes in both

prior and posterior distributions are assessed through the ratio between two Hellinger

metrics in the form

S(π1,π2) =
H(π1(θ | D),π2(θ | D))

H(π1(θ),π2(θ))
,
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Figure 5: Posterior mean of the regression coefficients associated to plot categories organic (row 1), non

organic and greenhouse (row 2), non organic and non greenhouse (row 3), and covariate altitude in loga-

rithmic scale (row 4) for viruses ToMV (column 1), CMV (column 2), and TSWV (column 3) obtained from

the full inferential process based on G1, G2 and G3 (black), Un1, Un2 and Un3 (red) and HN1, HN2 and

HN3 (green) hyperpriors.
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Figure 6: Posterior mean and 95% credible interval for σb obtained from hyperpriors Ga1, Ga2, and Ga3

in black, Un1, Un2, and Un3 in red, and HN1, HN2, and HN3 in green.

where π1(θ |D) and π2(θ |D) are the subsequent posterior distributions from π1(θ) and

π2(θ). Note that S(π1,π2) only depends on the Hellinger distance, and consequently,

because of its invariancy to any one-to-one transformations we can parameterize the

prior and posteriors in terms of τb or σb.

As expected, sensitivity values with gamma hyperpriors are very relevant,S(Ga1,Ga2)
= 0.274 and S(Ga1,Ga3) = 0.477, with calibrated values 0.267 and 0.436 respectively.

Thus, considering a Hellinger priors difference such as that reported between the normal

distributions N(0,1) and N(1,1), their corresponding Hellinger posteriors difference

should be understood as equal to that generated between the pair N(0,1) and N(0.267,1)
in the case of hyperpriors Ga1 and Ga2, N(0,1) and N(0.436,1) in the case of Ga1 and

Ga3 (see Appendix 2 for more details of calibration). In contrast, sensitivity values asso-

ciated to uniform hyperpriors are near zero, S(Un1,Un2) = 0.017, S(Un1,Un3) = 0.010,

with calibrated values 0.017 and 0.010, despite the Hellinger distance between their

corresponding priors being identical in gamma choices. In the case of the half-normal

hyperpriors, the sensitivity associated to HN1 and HN2 is small (0.071 and calibrated

value 0.069) but relevant when comparing HN1 and HN3 (S(HN1,HN3) = 0.588 and

calibrated value 0.576).

4.4. Sensitivity of the risk of plot infection

The risk of plot infection was considered the most appropriate measure to describe re-

sults in Section 3 due to its great relevance in agronomic studies. In this sense, the anal-

ysis of the variability of the estimates from different modelling prior scenarios could be

an important issue, mainly as a measure of confidence and reliability. As it was defined

in (4), its posterior estimation will depend on the covariates, regression coefficients and

random effects, which show different patterns regarding sensitivity. We carried out a
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sensitivity analysis for that on a similar basis as that for Section 3: the posterior distri-

bution of the risk infection was calculated for a generic plot situated at altitude 76 meters

(the sample median) for each virus and management conditions within each hyperprior

scenario.

Table 3 shows the calibration of the Hellinger distance between the posterior distri-

bution of the risk of plot infection for each management condition and virus. Similarly

to the particular behaviour of the regression coefficients, the estimation of the risk of plot

infection seems to be weakly influenced by the different hyperprior assumptions. In any

case, the discrepancies observed between all the comparisons were not greater than the

difference between the normal distribution N(0,1) and N(0.583,1), which reveals that

Hellinger values are in general close to zero. It is worth noting that the Hellinger dis-

tance between normal distributions N(0,1) and N(1,1) is 0.343 (see again Table 4 in

Appendix 2). In a similar manner, the uniform distributions had the smallest discrepan-

cies together with half-normal distributions HN1 and HN2. However, as we expected

inferences from HN3 exhibited the greatest discrepancies. Gamma hyperpriors showed

substantial discrepancies, above all between Ga1 and Ga3, although these differences

did not exceed those obtained from hyperprior HN3. Thus, these outcomes seem to in-

dicate that the particular choice of a hyperprior distribution influences the estimation of

the risk infection weakly but in a major extent that in the case of the estimates of the

regression coefficients.

Table 3: Calibration of the Hellinger distance between the posterior marginal distribution of the risk in-

fection computed from hyperprior distributions Ga1 and Ga2, Ga1 and Ga3, Un1 and Un2, Un1 and Un3,

HN1 and HN2, and HN1 and HN3.

Virus Management (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3) (HN1,HN2) (HN1,HN3)

ToMV Organic 0.087 0.234 0.011 0.014 0.041 0.583

Non-organic, greenhouse 0.051 0.139 0.011 0.011 0.029 0.355

Non-organic, no greenhouse 0.041 0.100 0.015 0.016 0.031 0.268

CMV Organic 0.079 0.213 0.015 0.014 0.041 0.536

Non-organic, greenhouse 0.039 0.107 0.012 0.010 0.028 0.285

Non-organic, no greenhouse 0.053 0.142 0.009 0.012 0.028 0.369

TSWV Organic 0.049 0.128 0.026 0.025 0.037 0.323

Non-organic, greenhouse 0.040 0.103 0.014 0.009 0.029 0.280

Non-organic, no greenhouse 0.053 0.142 0.013 0.011 0.030 0.380

There are not so many discrepancies among the posterior means of the risk of a plot

infection from the different hyperprior scenarios but there are many in the posterior vari-

abilities (see Table 4). We accounted for variability in terms of standard deviation be-

cause it is a measure which describes the grade of uncertainty of the quantity of interest

but mainly due to its direct agronomic interpretation. A great similarity in the posterior

standard deviation values is repeatedly appreciated in results derived from Un1, Un2,

Un3, HN2 and HN2 scenarios. The HN3 value was the most different. However, esti-

mates corresponding to Ga1, Ga2 and Ga3 vary the most, especially in the case of Ga1.
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Table 4: Posterior standard deviation of the risk of a plot infection from the full inferential process based

on Ga1, Ga2, Ga3, Un1, Un2, Un3, HN1, HN2 and HN3 hyperpriors.

Virus Management Ga1 Ga2 Ga3 Un1 Un2 Un3 HN1 HN2 HN3

ToMV Organic 0.136 0.146 0.161 0.184 0.184 0.184 0.183 0.178 0.118

Non-organic, greenhouse 0.217 0.224 0.235 0.252 0.252 0.253 0.251 0.248 0.206

Non-organic, no greenhouse 0.118 0.123 0.131 0.147 0.147 0.147 0.147 0.142 0.109

CMV Organic 0.119 0.127 0.140 0.161 0.161 0.162 0.161 0.156 0.102

Non-organic, greenhouse 0.161 0.166 0.175 0.190 0.190 0.190 0.189 0.186 0.151

Non-organic, no greenhouse 0.179 0.186 0.198 0.216 0.216 0.216 0.215 0.211 0.166

TSWV Organic 0.066 0.071 0.078 0.092 0.093 0.093 0.092 0.088 0.057

Non-organic, greenhouse 0.172 0.178 0.187 0.203 0.202 0.202 0.201 0.198 0.162

Non-organic, no greenhouse 0.185 0.192 0.204 0.223 0.223 0.224 0.222 0.218 0.172

In this sense, the posterior standard deviation for risk of a plot infection exhibits a con-

siderable sensitivity to hyperparameter specification. For instance, the risk of a ToMV

infection of a generic plot in an organic management system was estimated from 0.028

to 0.553 with 95% probability according to Ga1 scenario, but the subsequent interval in

the Un1 scenario was [0.008,0.734].

5. Discussion

In this paper we have proposed a Bayesian correlated model (GLMM) to study and

compare the risk of several virus infections in tomato and pepper plots under differ-

ent agroecosystem conditions. First, we estimated several models, maintaining model

specification but varying prior scenario default in accordance with different hyperprior

distributions for the random effects scale parameter. Next, we conducted a sensitivity

analysis to select the most stable model, in which effects of management conditions,

altitude and random individual effects were assessed by estimating different derived

quantities considered to be agronomically relevant.

Regarding the model covariates effect, the risk of plot infection was the quantity

chosen to analyse agronomic outcomes. The risk of plot infection was estimated in the

framework of mixed infections (with more than one virus) as well as in single infections

(with only one virus). All the quantities applied for a “generic” plot of the population of

each one of the agroecosystems considered. In the case of single infections, risk differ-

ence was also used to quantify differences among agroecosystems. Individual random

effects were evaluated by assessing differences in the estimation of the risk of infection

among plots managed under similar agroecosystem conditions. This enables the evalua-

tion of the contribution of the common and of the individual elements in the model, and

therefore the explanatory capacity of covariates.

In the case of mixed infections, organic agroecosystems exhibited lower prevalence

for a three viruses joint infection. Non organic plots, independently of the presence of a

greenhouse structure, showed a similar behaviour. Single infections were generally less
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prevalent or similar in organic systems than in conventional (non-organic with and with-

out greenhouse), while TSWV and CMV infections were less prevalent under organic

management; ToMV infection showed a slightly different behaviour pattern possibly

as a consequence of the way it is transmitted (mechanical transmission). Altitude ef-

fect was clearly negative in all viruses but displayed considerable variability among the

three viruses. Random effects behaviour was very regular in individuals belonging to

non-organic with greenhouse and non-organic with no greenhouse considering that in-

dividual effects did not generate great differences among plots’ risk infection estimates.

Organic individuals exhibited more variable results in this aspect, but in general we can

assume that all the fixed effects included in the model have a good explanatory capacity.

Sensitivity analysis was based on the methodology developed by Roos and Held

(2011) and Roos et al. (2015). Hellinger distance and sensitivity measure, together with

their corresponding calibration, allowed us to assess discrepancies in the estimation of

the fixed effects (regression coefficients), the random effects standard deviation σb as

well as the “generic” risk of infection among the prior scenarios tested. The evaluation

of the posterior mean of the regression coefficients, the graphical characterization of the

marginal posterior distribution of σb and the assessment of the standard deviation of the

posterior distribution of the risk of plot infection among the several modelling scenarios

completed the analysis. The outcomes obtained exhibited an insensitive behaviour of

the fixed effects to hyperprior alterations with Hellinger values very close to zero and

to each other. Only visual analysis of posterior means enabled us to detect a certain

instability among inferences obtained from models under gamma hyperdistributions.

The estimation of σb showed a highly sensitive behaviour: gamma hyperpriors re-

peatedly exhibited the most relevant differences showing the greatest sensitivity values

and the most divergent posterior distributions. In the case of risk infection estimation, in

spite of all the Hellinger distances were around zero, gamma hyperdistributions showed

interesting differences in terms of the standard deviation of the posterior distribution of

the risk of plot infection. We therefore agree with Browne and Draper (2006), Roos et

al. (2015), Roos and Held (2011), Gelman (2006), and Lunn et al. (2009) that gamma

hyperpriors in hierarchical models lack robustness and a sensitivity analysis must be car-

ried out in the Bayesian hierarchical framework to assess reliability of the performance.

Furthermore, we also conclude that the “noninformative” nature of a hyperprior does

not guarantee its impartiality in the inference process.

Appendix 1. The Hellinger distance

The Helliger distance (Le Cam, 2012) is a symmetric and invariant to any one-to-one

transformation measure of discrepancy between two probability distributions, f and g,

defined as follows
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where 0 ≤ H( f ,g)≤ 1, 0 represents no divergence, and 1 full divergence.
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In the case of posterior distributions π1(θθθ | D) and π2(θθθ | D), the Hellinger distance

can be approximated numerically at a finite set of K integration points as follows

H2(π1(θθθ | D),π2(θθθ | D)) =
1

2

K
∑

k=1

(

√

π1(θθθ | D)(k)−
√

π2(θθθ | D)(k)
)2

∆k, (A.1)

where the weights ∆k are provided by the trapezoidal rule.

Appendix 2. Calibration

The Hellinger distance can be calibrated to evaluate the importance of the observed dis-

crepancies by means of a reference parameter. Calibration was undertaken with respect

to the normal distribution with variance one. The Hellinger distance between densities

N(0,1) and N(µ,1) is
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H(N(0,1),N(µ,1)) =
√

1− exp(−µ2/8),

and consequently

µ=
√

−8log(1−H2(N(0,1),N(µ,1)))

Table A.2.1 shows a range of calibrated values µ with its subsequent Hellinger distance,

H(N(0,1),N(µ,1)).

Table A.2.1: Calibration of the Hellinger distance.

µ H(N(0,1),N(µ,1))

0 0

1 0.343

2 0.627

3 0.822

4 0.930

5 0.978

6 0.994

7 0.999

8 0.999

9 0.999

10 1

The sensitivity measure introduced previously can also be calibrated. Calibration of

the sensitivity value obtained, s, has been obtained following the subsequent equation:

C(s,µ′) = µ(s×H(N(0,1),N(µ′,1))) (A.2)

Interpretation of calibration can be conditioned by the choice of µ′, so that for a value

µ′ = 1, the value of s, would be comparable with the Hellinger distance obtained be-

tween two normal priors, N(0,1) and N(µ′ = 1,1) and the subsequent normal posteriors,

N(0,1) and N(C(s,µ′ = 1),1). It is important to note that if s > 1 then C(s,µ′) > µ′; if

s < 1 then C(s,µ′)< µ′; and if s = 1 then C(s,µ′) = µ′.
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Corrigendum to “Transmuted geometric

distribution with applications in modelling and

regression analysis of count data”

Subrata Chakraborty1 and Deepesh Bhati2

In our paper “Transmuted geometric distribution with applications in modelling and regres-

sion analysis of count data” (Chakraborty and Bhati, 2016) there is a mistake in the expression

for the variance V(Y ), which induced a wrong expression for the Index of Dispersion (ID) in

Table 1, a wrong figure in Figure 2(c) and a wrong sentence in the paragraph just preceding Re-

mark 5. These were noticed only after the article was published. These corrections, as well as

few corrections in Table 6 and a correction of one reference, are as follows:

i. In Table 1 S.No. 2 the correct expression for V(Y ) should be read as,

q
(

1−α+ q
(

2+ q(1−α)−α
2
))

(1− q2)
2

ii. In Table 1 S.No. 3 the correct expression for Index of Dispersion (ID) should be read as,

1−α+ q
(

2+ q(1−α)−α
2
)

(1− q2) (1+ q−α)

iii. Figure 2(c) should be seen as,

Figure 2(c): q−α surface plot of Index of Dispersion of T GD(q,α)
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2 Department of Statistics, Central University of Rajasthan, Ajmer-305817, Rajasthan, India.
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iv. Finally in pages 161-162 the sentence “Further, Figure 2(c) shows that the horizontal q-α

surface cuts the ID surface at 1 indicating under or over-dispersion for α ∈ (1,0) or (0,1)
respectively (see Remark 3)” should be corrected as “Further, Figure 2(c) shows that the

horizontal q-α surface is always above 1 indicating over-dispersion for all the values of

α”. In Table 6: column 5, row 2, −0.983 should be read as 0.0; column 6, row 2, 0.2228

should be read as 1.255; column 5, row 9, −0.1160 should be read as −0.1559.

v. In the references, page 175, publication year of Sastry et al.’s reference should be read as

2014.

Both authors apologize for these errors.
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Goodness-of-fit test for randomly censored data

based on maximum correlation

Ewa Strzalkowska-Kominiak1 and Aurea Grané2

Abstract

In this paper we study a goodness-of-fit test based on the maximum correlation coefficient, in

the context of randomly censored data. We construct a new test statistic under general right-

censoring and prove its asymptotic properties. Additionally, we study a special case, when the

censoring mechanism follows the well-known Koziol-Green model. We present an extensive sim-

ulation study on the empirical power of these two versions of the test statistic, showing their ad-

vantages over the widely used Pearson-type test. Finally, we apply our test to the head-and-neck

cancer data.

MSC: 62N01, 62N03, 62G10, 62G20.

Keywords: Goodness-of-fit, Kaplan-Meier estimator, maximum correlation, random censoring.

1. Introduction

In many medical studies one encounters data which are not fully observed but censored

from the right. For example, in the head-and-neck cancer trial studied by Nikulin and

Haghighi (2006), one observes survival times for 42 out of 51 patients, whereas for the

remaining 9 patients only the time to follow-up is given. Let Y1, . . . ,Yn be the lifetimes

of interest, e.g., the survival times of head-and-neck cancer patients, coming from a

continuous distribution function F and let C1, . . . ,Cn be the censoring times (that is,

the times to follow-up) coming from a distribution function G. In the context of right-

censored data, for every i = 1, . . . ,n, we observe

Xi = min(Yi,Ci) and δi = 1{Yi≤Ci},
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where 1A denotes the indicator function, being equal to 1 if A is fulfilled and 0 oth-

erwise. The unknown distribution function of the lifetimes F can be estimated by the

well-known product-limit estimator introduced by Kaplan and Meier (1958). However,

if the shape of the distribution could be assumed, there would be a substantial gain in the

efficiency of statistical procedures. For instance, in the example of head-and-neck can-

cer data, Nikulin and Haghighi (2006) suggest that the lifetimes follow the Generalized-

Power Weibull family and that hypothesis is tested. Therefore, goodness-of-fit tests are

an important statistical tool when dealing with (right-)censored data. Under complete

data set-up we have a multitude of goodness-of-fit tests to select from. See, e.g., Dar-

ling (1957) or Massey (1951) for the historical literature on the subject and Torabi et

al. (2016) or Novoa-Muñoz and Jiménez-Gamero (2016), among many others, for the

most recent publications. Some widely used tests for complete data, like Kolmogorov-

Smirnov or Cramer-von Mises, are difficult to apply in the presence of censoring, since

the limit distribution depends on the censoring distribution G. See Balakrishnan et al.

(2015) for a recent overview on this kind of tests with randomly censored data. Other

classical approaches are Koziol and Green (1976) and Akritas (1988). The former is

more restrictive, since it is based on the assumption that the distribution function G

follows the so called Koziol-Green model, whereas the latter is a χ2 test applied to gen-

eral random censoring. This is the reason why the Pearson-type goodness-of-fit test

proposed by Akritas (1988) is so far the best option for randomly censored data with

unknown censoring distribution. Nevertheless, it requires a partition of the observations

into cells jointly with an adequate choice of number of classes, since the power of the

test may vary depending on the degrees of freedom. In this work we propose a new

goodness-of-fit test based on the maximum correlation coefficient, with normal limiting

distribution and, therefore, straightforward to apply.

We start by introducing the maximum correlation in a more general set-up. Let Y1

and Y2 be two random variables with finite second order moments, joint cumulative

distribution function (cdf) H and marginals F1 and F2, respectively. The Hoeffding

representation of the correlation coefficient is given by

ρ(F1,F2) =
1

σ1σ2

∫

R2

(H(x,y)−F1(x)F2(y))dxdy,

where σi denotes the standard deviation of Yi. Furthermore, the maximum correla-

tion of the pair of random variables (Y1,Y2) is defined as the correlation coefficient

ρ+(F1,F2) corresponding to the bivariate cdf H+(x,y) = min(F1(x),F2(y)), the upper

Fréchet bound of H(x,y). The cdf H+(x,y) is a singular distribution, having support

on the one-dimensional set {(x,y) ∈ R
2 : F1(x) = F2(y)}, and the maximum correlation

coefficient is given by

ρ+(F1,F2) =
1

σ1σ2

(
∫ 1

0

F−1
1 (p)F−1

2 (p)d p−µ1µ2

)

, (1)
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where F−1
i is the inverse of Fi and µi is the mean of Yi. This maximum correlation,

ρ+(F1,F2), is a measure of agreement between F1 and F2, since ρ+ = 1 if and only if F1 =

F2 up to a scale and location change. In particular, Cuadras and Fortiana (1993) proposed

the statistic based on ρ+(F,F0) as a measure of goodness of fit of an iid sample Y1, . . . ,Yn

with cdf F , to a given distribution F0. The goodness-of-fit test based on maximum

correlation was further studied by Fortiana and Grané (2003), Grané (2012) and Grané

and Tchirina (2013).

As in the latter publications, the present paper is devoted to testing uniformity, i.e.

F0 = FU , a [0,1] uniform distribution. As shown by Fortiana and Grané (2003) the

asymptotic approximation of ρ+(F,FU) is available, but convergence to its limiting law

is rather slow. This led to defining

Q =
σ

√

1/12
ρ+(F,FU) = 6

∫ 1

0

x(2F(x)−1)F(dx), (2)

where σ is the standard deviation of Yi ∼ F , which equals one if F = FU .

The goal of this paper is to study a test statistic based on Q when Y1, . . . ,Yn may

not be fully observed but censored from the right by censoring times C1, . . . ,Cn. More

precisely, we wish to test the hypothesis H0 : F = FU , where FU is the cdf of a [0,1] uni-

form random variable, based on the sample (Xi,δi)i=1,...,n, where Xi = min(Yi,Ci), with

Xi ∈ [0,1]. Nevertheless, our approach is not restricted to testing uniformity. We can

also consider a more general null hypothesis F0, since the transformed random variable

F0(Y ) follows a [0,1] uniform distribution under H0 : F = F0. That is, Ỹ = F0(Y ) ∼ FU

under the null hypothesis. Then, setting C̃ = F0(C) and since {Ỹi ≤ C̃i} = {Yi ≤ Ci},

leads us to testing uniformity based on the iid sample (X̃1,δ1), . . . ,(X̃n,δn), where

X̃i = min(Ỹi,C̃i) and δi = 1{Ỹi≤C̃i}.

Hence, testing for uniformity is equivalent to testing for a fully specified continuous

distribution. Even though it seems that we could extend the work of Fortiana and Grané

(2003) by setting Qn = 6
∫ 1

0
x(2Fn(x)− 1)Fn(dx), where Fn denotes the Kaplan-Meier

estimator for censored data, it is far from being true. In contrast to the empirical distri-

bution under completely observed data, the Kaplan-Meier estimator is biased (see Stute

(1994), for details). In Section 2 we show that such a plug-in estimator suffers from the

bias of the product-limit estimator and, therefore, E(Qn) = 1 does not hold under H0.

To avoid this problem we propose to re-write Q in such a way that it can be estimated

by U-statistics. This leads to significant bias (and variance) reduction. In Section 3 we

prove the asymptotic normality of the proposed estimator and in Section 4 we present

our new goodness-of-fit test. In Section 5 we present an extensive simulation study.

Finally, in Section 6 we adapt the test statistic to the case of composite null hypothesis

and apply our test to the head-and-neck cancer data from Nikulin and Haghighi (2006).



122 Goodness-of-fit test for randomly censored data based on maximum correlation

2. Test statistic

In this section we propose our new goodness-of-fit statistic for randomly censored data,

based on the modified maximum correlation coefficient. Recall that, under H0 : F = FU ,

the quantity

Q =
σ

√

1/12
ρ+(F,FU) = 6

∫ 1

0

x(2F(x)−1)F(dx)

equals one. Hence in the following we prefer to work with

Q1 = Q−1 = 6

∫ 1

0

x(2F(x)−1)F(dx)−1 (3)

which equals zero if H0 is true.

First, we define a plug-in estimator of Q1 by replacing F in (3) with the well-known

Kaplan-Meier estimator. We obtain

Q1
n = 6

∫ 1

0

x(2Fn(x)−1)Fn(dx)−1, (4)

where Fn is defined as follows

Fn(x) = 1− ∏
Xi≤x

[

1− δi
∑n

k=1 1{Xk≥Xi}

]

. (5)

It turns out that, under the null hypothesis and for finite samples, the plug-in esti-

mator Q1
n suffers from significant bias and its convergence to the limiting distribution is

very slow.

To solve this problem, we propose to estimate Q1 with a U-statistic. For this, note

that if F is a continuous cdf and supp(F)⊆ [0,1], then

2

∫ 1

0

F(x)F(dx) = 1.

Hence

Q1 =

∫ 1

0

(6x(2F(x)−1)−2F(x))F(dx) =

∫ 1

0

[(6x−2)F(x)−6x(1−F(x))]F(dx)

=

∫ 1

0

∫ 1

0

[(6x−2)1{y≤x}−6x1{y>x}]F(dx)F(dy). (6)

Now we may replace the unknown quantities by their estimators. For this we intro-

duce the jumps of the Kaplan-Meier estimator by setting
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win = Fn(Xi)−Fn(Xi−),

where Fn(x−) is the left-continuous version of Fn(x), which is defined analogously as

(5) but with the product over all Xi < x.

Finally, the estimator of Q1 is given by

Q̃n =
n

∑

i=1

∑

j 6=i

winw jnh(Xi,X j), (7)

where

h(x1,x2) = (6x1 −2)1{x2≤x1}−6x11{x2>x1}.

To illustrate the advantages of using Q̃n over the plug-in estimator Q1
n, in panel (a)

of Figure 1, we present the bias and variance of those estimators under the null hypoth-

esis, that is, when the data come from the [0,1] uniform distribution. Additionally, in

panels (b)-(c) of Figure 1, we compare the kernel density estimators of the standardized

versions of Q̃n and Q1
n to that of the standard normal distribution. The standardiza-

tion is done using the estimated asymptotic variances, discussed later on. Clearly, the

U-statistic Q̃n exhibits much smaller bias (and variance) than Q1
n and, additionally, its

standardized version fits nicely the standard normal distribution for all the considered

censoring rates.

(a) Estimated bias (variance)

10% censoring

Q1
n Q̃n

n = 50 0.0338 (0.0081) −0.0010 (0.0047)

n = 100 0.0150 (0.0032) −0.0014 (0.0022)

20% censoring

Q1
n Q̃n

n = 50 0.0111 (0.0197) −0.0069 (0.0063)

n = 100 0.0047 (0.0074) −0.0026 (0.0026)

30% censoring

Q1
n Q̃n

n = 50 -0.0206 (0.0483) −0.0122 (0.0069)

n = 100 -0.0275 (0.0204) −0.0090 (0.0033)

(b) Kernel density of standardized Q̃n
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(c) Kernel density of standardized Q1
n
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Figure 1: Comparison between Q̃n and the plug-in estimator Q1
n: Estimated bias (variance) based on 5000

trials and kernel densities for n = 200.
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3. Asymptotic properties

In this section we study the asymptotic properties of our test statistic Q̃n. Firstly, we

consider Q̃n under a general censoring mechanism, that is, without assuming any shape

for the distribution function of the censoring times G(x)=P(C ≤ x). Secondly, we apply

the results to the special case of the Koziol-Green model. Recall that F(x) = P(Y ≤ x)

is the cdf of the lifetimes of interest. We need the following assumptions A1-A2, which

assure that the asymptotic variance is bounded and censoring is not too heavy. These

conditions allow us to apply the limit theorems from Stute (1995) in order to prove the

asymptotic normality:

A1 :

∫ 1

0

F(du)

1−G(u)
< ∞

A2 :

∫ 1

0

|ϕ(u)|C1/2(u)F(du)< ∞

where ϕ(x) = 12xF(x)−6x−2−12
∫ x

0
yF(dy)+6

∫ 1

0
yF(dy) is a score function, C(x) =

∫ x

0

G(dy)

(1−G(y))2(1−F(y))
and F is continuous with support in [0,1].

Theorem 1 Under A1 and A2, we have

√
n(Q̃n −Q1)→N(0,σ2),

where

σ2 =

∫ 1

0

ϕ2(x)

1−G(x)
F(dx)−

[
∫ 1

0

ϕ(x)F(dx)

]2

−
∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2

and

ϕ(x) = 12xF(x)−6x−2−12

∫ x

0

yF(dy)+6

∫ 1

0

yF(dy).

Proof. See Appendix.

Consequently, we have that

Corollary 1 Under H0, A1 and A2, we have

√
nQ̃n →N(0,σ2).

The variance under H0 would not simplify, since it does depend on the distribution

function of the censoring times G, which is unknown. Nevertheless, under the Koziol-
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Green model, we have an explicit expression for σ2. First, recall that G follows a Koziol-

Green model if

1−G(x) = (1−F(x))β,

where β > 0 is an unknown parameter. However, we can see that

p := P(Y >C) =
β

β+1
and 1− p =

∫

(1−G(x))F(dx).

Hence β can be easily estimated using Kaplan-Meier estimators for F and G. Finally,

it is easy to check that assumptions A1 and A2 are fulfilled under the Koziol-Green

model with β ∈ (0,1), that is, if the censoring is not heavier than 50%, which is a very

reasonable assumption. So, as a consequence of Corollary 1, we get the following result.

Corollary 2 Under the Koziol-Green model with β ∈ (0,1) we have that, under H0,

√
nQ̃n →N(0,σ2

KG),

where

σ2
KG =

−β4 +4β3 −17β2 +38β−24

(β−1)(β−2)(β−3)(β−4)(β−5)
.

4. Goodness-of-fit test

Once the test statistic is proposed and its limiting distribution is established, we are

in the position to define the goodness-of-fit test. For this we estimate the asymptotic

variance σ2 using the plug-in principle, that is, by replacing the unknown quantities

with their estimators. First, we define the distribution function of the observed times

H̃(x) = P(X ≤ x) and set H̃n(x) =
1
n

∑n
i=1 1{Xi≤x} as its empirical counterpart. Moreover,

let

H0(x) = P(X ≤ x,δ = 0) =

∫ x

0

(1−F(u))G(du)

and

H1(x) = P(X ≤ x,δ = 1) =

∫ x

0

(1−G(u))F(du)

be the subdistributions related to the observed censored and uncensored lifetimes. Their

estimators are defined as follows

H0
n (x) =

1

n

n
∑

i=1

1{Xi≤x}(1− δi)
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and

H1
n (x) =

1

n

n
∑

i=1

1{Xi≤x}δi.

Hence

σ2
n =

1

n

n
∑

i=1

ϕ2
n(Xi)

(1−Gn(Xi−))2
δi −

[

1

n

n
∑

i=1

ϕn(Xi)

1−Gn(Xi−)
δi

]2

− 1

n

n
∑

i=1

1− δi

(1−Hn(Xi−))2





1

n

n
∑

j=1

ϕn(X j)

1−Gn(X j−)
δ j1{X j≥Xi}





2

,

where

ϕn(x) = 12xFn(x)−6x−2−12
1

n

n
∑

i=1

Xiδi

1−Gn(Xi−)
1{Xi≤x}+6

1

n

n
∑

i=1

Xiδi

1−Gn(Xi−)
.

and Gn is a Kaplan-Meier estimator given by

1−Gn(x) = ∏
Xi≤x

[

1− 1− δi
∑n

k=1 1{Xk≥Xi}

]

.

Before we may define the goodness-of-fit test, we need to show the consistency of

the variance estimator σ2
n . For this, we require an assumption which is stronger than A1.

In particular:

A3 : There exists ε> 0 such that

∫ 1

0

F(dx)

(1−G(x))1+ε
< ∞

Lemma 1 Under A3, we have

σ2
n

P→ σ2

Proof. See Appendix.

Finally, we have

Theorem 2 Under H0 and assumptions A2 and A3, we have that

Tn :=

√
nQ̃n

√

σ2
n

d→ N(0,1). (8)

Proof. The result follows from Corollary 1 and Lemma 1.This completes the proof.
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In view of Theorem 1, we reject H0 at level α if

Tn ≤ Φ−1(α/2) or Tn ≥ Φ−1(1−α/2),

where Φ−1 is the inverse of the standard normal cdf.

Additionally, under the Koziol-Green model and in view of Corollary 2, we define

T KG
n :=

√
nQ̃n

√

σ̂2
KG

, (9)

where

σ̂2
KG =

−β̂4 +4β̂3 −17β̂2 +38β̂−24

(β̂−1)(β̂−2)(β̂−3)(β̂−4)(β̂−5)

and

β̂ =

(
∫

(1−Gn(x))Fn(dx)

)−1

−1.

It is easy to see that

∫

(1−Gn(x))Fn(dx)
P→
∫

(1−G(x))F(dx).

Hence β̂
P→ β and σ̂2

KG

P→ σ2. Consequently, as before, we reject H0 at level α if

T KG
n ≤ Φ−1(α/2) or T KG

n ≥ Φ−1(1−α/2).

5. Simulation study

Here we conduct an extensive simulation study to show the behaviour of our test. In

the following subsection we consider only the null hypothesis, while in Subsection 5.2

we include the power study under different families of alternatives. In both subsections

we compare our method with the Pearson-type goodness-of-fit test proposed by Akritas

(1988). Following the notation of Section 4, we denote by Tn and T KG
n our test statis-

tics for the general censoring and under the Koziol-Green model, respectively. See,

equations (8) and (9) for details. Moreover, we denote by A(nc) the χ2 test proposed by

Akritas (1988), where nc denotes the number of cells.

5.1. Null hypothesis

In this section we present the results of the proposed methods under the null hypothesis

and at 5% significance level. As mentioned before, we consider our tests Tn and T KG
n ,
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together with the test presented by Akritas (1988). Following the latter work, we con-

sider nc = 2 and nc = 5 and denote these tests by A(2) and A(5), respectively. The results

are based on 5000 trials. From Table 1 we see that tests Tn and those from Akritas hold

very well the significance level. The test based on the Koziol-Green model holds the 5%

level when censoring is low. However, for more than 20% of missing data, the variance

σ2
KG does not captures the variability of our Q̃n correctly and, therefore, the significance

level is slightly overestimated for heavy censoring.

Table 1: Empirical level for testing null hypothesis.

10% censoring 20% censoring 30% censoring

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

n = 50 0.0508 0.0552 0.0538 0.0578 0.0450 0.0560 0.0558 0.0530 0.0496 0.0596 0.0560 0.0648

n = 100 0.0480 0.0582 0.0548 0.0532 0.0478 0.0530 0.0492 0.0560 0.0502 0.0568 0.0528 0.0708

n = 200 0.0468 0.0524 0.0574 0.0498 0.0522 0.0508 0.0508 0.0604 0.0494 0.0522 0.0468 0.0666

5.2. Power study

In order to study the power of our test we consider two different models:

Model 1: To test the uniformity (H0 : F = FU ) we choose three parametric families of

alternative probability distributions with support on [0, 1]:

(a) Lehmann alternatives,

Fθ(x) = xθ,0 ≤ x ≤ 1,θ ≥ 1;

where for θ = 1 we have Fθ = FU .

(b) compressed uniform alternatives,

Fθ(x) =
x− θ

1−2θ
, θ ≤ x ≤ 1− θ,

where 0 ≤ θ ≤ 1/2; and for θ = 0 we have Fθ = FU .

(c) centred distributions having a U-shaped density for θ ∈ (0,1), or wedge-shaped

density for θ > 1

Fθ(x) =

{

1
2
(2x)θ, 0 ≤ x ≤ 1/2

1− 1
2
(2(1− x))θ, 1/2 ≤ x ≤ 1

where for θ = 1 we have Fθ = FU .
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Model 2: An exponentiality test (with parameter λ = 1), where the alternatives are

Weibull distributions with parameters 1 and θ. More precisely, Fθ(x) = 1− e−xθ , where

θ = 1 gives us the exponential distribution of the null hypothesis.

Additionally, the censoring variable C is generated under the Koziol-Green model.

That is, 1−G(x) = (1−F(x))β, where β = p

1−p
and p = P(X > C) is the censoring

level.

In the following figures and tables we present the power study at a 5% significance

level. Panels (a1)-(c3) of Figure 2 contain the power of the test for Model 1 and panels

(d1)-(d3) of Figure 2 contain the power under Model 2, for different sample sizes (n =

50,100,200) and one censoring level of 20%. All those figures are based on 2000 trials.
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(a1) Model 1– a), n = 50 (a2) Model 1– a), n = 100 (a3) Model 1– a), n = 200
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(b1) Model 1– b), n = 50 (b2) Model 1– b), n = 100 (b3) Model 1– b), n = 200
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(c1) Model 1– c), n = 50 (c2) Model 1– c), n = 100 (c3) Model 1– c), n = 200
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(d1) Model 2, n = 50 (d2) Model 2, n = 100 (d3) Model 2, n = 200

Figure 2: Power study for Model 1 (a1–c3) and Model 2 (d1–d3) for three different sample sizes and

censoring rate p = 0.2. Tn (solid line), A(5) (dashed line) and A(2) (dash-dotted line).



130 Goodness-of-fit test for randomly censored data based on maximum correlation

Table 2: Power study for Model 1 and Model 2.

Model 1, Alternative a)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 1.5 0.5277 0.7107 0.8040 0.5547 0.4760 0.7220 0.8190 0.5167 0.3957 0.7093 0.8260 0.4570
θ = 2 0.9847 0.9997 0.9997 0.9873 0.9997 1 1 1 0.9070 0.9980 0.9995 0.9520
θ = 2.5 1 1 1 1 0.9997 1 1 1 0.9237 0.9990 0.9997 0.9607

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 1.5 0.8410 0.9823 0.9887 0.8540 0.8020 0.9830 0.9893 0.8200 0.7057 0.9833 0.9910 0.7517
θ = 2 0.9997 1 1 0.9997 1 1 1 1 0.9950 1 1 0.9990
θ = 2.5 1 1 1 1 1 1 1 1 0.9983 1 1 0.9997

Model 1, Alternative b)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.05 0.5987 0.3897 0.2940 0.5473 0.5370 0.3027 0.2297 0.5440 0.4563 0.2530 0.1803 0.5037
θ = 0.1 1 0.9837 0.8510 0.9987 0.9957 0.9413 0.7163 0.9950 0.9410 0.9000 0.5910 0.9820
θ = 0.15 1 1 0.9963 1 1 1 0.9797 1 0.9940 1 0.9500 1

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.05 0.9133 0.7517 0.5820 0.8830 0.8560 0.6003 0.4250 0.8313 0.7683 0.4870 0.3287 0.7973
θ = 0.1 1 1 0.9933 1 1 1 0.9570 1 0.9977 0.9987 0.8977 1

θ = 0.15 1 1 1 1 1 1 1 1 1 1 0.9993 1

Model 1, Alternative c)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.75 0.6587 0.3623 0.3217 0.6803 0.5337 0.3410 0.2877 0.6117 0.3490 0.3167 0.2823 0.5133
θ = 1.25 0.4903 0.3090 0.3230 0.5347 0.4230 0.2667 0.2757 0.4957 0.3740 0.2323 0.2423 0.4720
θ = 1.5 0.9513 0.8050 0.7987 0.9643 0.8787 0.7287 0.7353 0.9333 0.7907 0.6720 0.6800 0.9110
n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.75 0.9337 0.7217 0.6167 0.9423 0.8933 0.6783 0.5860 0.9167 0.7307 0.6363 0.5423 0.8223
θ = 1.25 0.7920 0.5513 0.5537 0.8103 0.7280 0.4823 0.4993 0.7773 0.6243 0.4277 0.4437 0.7303
θ = 1.5 0.9993 0.9817 0.9750 0.9993 0.9980 0.9740 0.9623 0.9993 0.9613 0.9433 0.9233 0.9937

Model 2. Power study for θ = 1+Hn−0.5

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

H =−4 0.9720 0.9960 0.9872 0.9914 0.9346 0.9928 0.9754 0.9844 0.7752 0.9822 0.9564 0.9328
H =−2 0.5580 0.4828 0.4746 0.6094 0.4236 0.4118 0.3966 0.5528 0.2354 0.3684 0.3510 0.4364
H = 2 0.4784 0.3112 0.3118 0.4954 0.4278 0.2608 0.2736 0.4730 0.3910 0.2194 0.2302 0.4578
H = 4 0.9594 0.8464 0.8296 0.9598 0.9160 0.7564 0.7430 0.9412 0.8204 0.6572 0.6478 0.9056

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

H =−4 0.9876 0.9938 0.9856 0.9940 0.9704 0.9820 0.9604 0.9864 0.8664 0.9682 0.9306 0.9490
H =−2 0.5712 0.4390 0.4406 0.5976 0.4636 0.3870 0.3808 0.5312 0.2892 0.3370 0.3338 0.4268
H = 2 0.5108 0.3312 0.3354 0.5284 0.4562 0.2768 0.2818 0.4962 0.3998 0.2302 0.2410 0.4736
H = 4 0.9686 0.8946 0.8610 0.9676 0.9446 0.8216 0.7830 0.9550 0.8764 0.7330 0.7032 0.9316
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Moreover, the results on Table 2 are based on 5000 trials and show the power under

alternatives for two different sample sizes n= 100,200, censoring levels p= 0.1,0.2,0.3
and different values of parameter θ. In particular, for Model 2, we choose θ= 1+Hn−0.5

and H ∈ {−4,−2,2,4}. Both, tables and figures, include a comparison to the Pearson-

type test proposed by Akritas (1988). As before, we use the number of cells (nc) equal

to 2 and 5.

The goal here is to show the changes in power when varying both θ parameter and

the censoring rate p. In particular, Figure 2 is devoted to illustrate the changes in power

when considering a given range for θ ∈ Θ. That is, Figure 2 contains the power curves

of the statistic for all the alternatives, for n = 50 and a fixed moderate censoring rate of

p = 0.2. On the other hand, Table 2 is devoted to show the changes in power when con-

sidering different censoring rates. Therefore, Table 2 contains the power study for the

remaining sample sizes, n = 100,200, for three fixed values of θ and different censoring

rates p = 0.1,0.2,0.3.

Concerning the uniformity test (Model 1), it is clear that for alternatives (b) and (c)

our test outperforms that proposed by Akritas. Additionally, our test neither depends on

the number of cells nor on the choice of cell boundaries. The influence of the number

of cells in Akritas proposal is made obvious in panels (a1)–(c3) of Figure 2. While

A(2) gives better results than A(5) for alternative (a), the opposite can be observed for

alternatives (b) and (c). Unfortunatelly, the modification of the maximum correlation

coefficient exhibits also some weak points. That is, the alternative (a) for θ ∈ (0,1) does

not provide satisfactory results, since Q = 1 for θ = 0.5. Regarding the exponentiality

test (Model 2), we get better results than the competitive test of Akritas (1988) when the

alternative is Weibull with parameter θ > 1. For θ < 1, our test reaches the high power

of the Pearson-type test for big sample sizes. However, notice that in Model 2 and for all

the considered values of θ, the test statistic under the Koziol-Green model, T KG
n , gives

very good results independently on the sample size.

6. Further extensions and application

6.1. Composite null hypothesis

So far, our test Tn has been designed to test a fully specified null hypothesis. It does

strongly depend on the fact that the transformed lifetime F0(X) is [0,1] uniformly dis-

tributed under H0 : F = F0. In this section we consider a more general case, that is,

when the distribution function to be tested depends on an unknown parameter λ. Let

now consider the following null hypothesis

H0 : F ∈ {Fλ : λ ∈ R
d}.
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In this case, first we need to estimate the parameter λ using, e.g., a maximum-

likelihood estimator λ̂. Clearly, if Fλ is twice differentiable in λ and the estimator λ̂

is
√

n consistent, by the Taylor expansion we have that Fλ̂(X) =U +OP(n
−1/2), where

U = Fλ(X)∼U [0,1] under the null hypothesis H0. The test statistic Q̃n should still ad-

mit a normal limit but the error term enters the variance of our test statistic and hence the

asymptotic variance given in Theorem 1 is no longer valid. Even though the theoretical

properties of our test in the case of such a composite hypothesis are beyond the scope

of this paper, to test this kind of hypothesis we propose a modified test with a jackknife

estimator of the variance, which does take into account the estimation of the parameters

and works very well in practice. Preliminary simulation studies, as those given in Figure

3, confirm the normality of the statistic and adequacy of the variance. We proceed as

follows:

1. Based on the sample X1, . . . ,Xn, find the maximum-likelihood estimator (MLE) λ̂.

2. Define the pseudo-values X̃i = Fλ̂(Xi) for i = 1, . . . ,n.

3. Based on the sample X̃1, . . . , X̃n, compute the test statistic Q̃n defined in (7).

4. Compute the jackknife estimator of the variance following the steps:

• For every i = 1, . . . ,n, choose the subsample X1, . . . ,Xi−1,Xi+1, . . . ,Xn and

compute the MLE λ̂(−i).

• Define the pseudo-values X̃ j = Fλ̂(−i)(X j) for j = 1, . . . , i−1, i+1, . . . ,n.

• Based on the the sample X̃1, . . . , X̃i−1, X̃i+1, . . . , X̃n, compute the test statistic

Q̃
(−i)
n .

• Set

nVn(Q̃n) = (n−1)
n

∑

i=1

(Q̃(−i)
n − Q̄n)

2,

where Q̄n =
1
n

∑n
i=1 Q̃

(−i)
n .

5. Define the test statistic

Jn :=

√
nQ̃n

√

nVn(Q̃n)
.

6. Reject H0 if

Jn ≤ Φ−1(α/2) or Jn ≥ Φ−1(1−α/2).

In order to check the behaviour of this new jackknife-test Jn, we study the hypothesis

H0 : F ∈ {exp(λ) : λ ∈ (0,∞)}, where the alternatives come from the Weibull distribu-

tion. Our simulated sample comes from exp(λ = 1) and λ is estimated using maxi-

mum likelihood. In Figure 3 we compare the test based in Tn, defined in equation (8)
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Figure 3: Power study: Jn (solid line) and Tn (dashed line), where n = 50 (left), n = 100 (middle) and

n = 200 (right), censoring rate p = 0.2

of Section 4, with that based on Jn. As expected, the new test based on Jn gives very good

results: The variance estimator adapted to the composite hypothesis is performing very

well, leading to a more powerful test. The differences in power between both statistics

seem to decrease with the sample size. Nevertheless, the theoretical properties of Jn are

out of scope of the present paper.

6.2. Real data example

We illustrate the use of our test on the head-and-neck cancer data from Nikulin and

Haghighi (2006). These authors fitted the Generalized-Power Weibull distribution

F(x,σ,v,γ) to the data. Motivated by the boxplot in Figure 4, we remove several ob-

servations which could be considered as outliers. This gives us 44 observations with

around 11% censoring rate. We perform a goodness-of-fit test for the before-mentioned

Generalized-Power Weibull distribution Fa
0 (x,σ,v,γ) = F(x,σ,v,γ). Additionally, we

also consider the Weibull distribution Fb
0 (x,σ,v) = F(x,σ,v,1) and the Exponential dis-

tribution Fc
0 (x,σ) = F(x,σ,1,1), where

F(x,σ,v,γ) = 1− exp
(

1− (1+(x/σ)v)1/γ
)

.

First, we fitted the parameters using MLE under random censoring obtaining the esti-

mators (σ̂, v̂, γ̂) and the following distributions Fa
0 (x,4.63,1.82,1.91), Fb

0 (x,1.44,8.45)

and Fc
0 (x,8.33). Then we applied our test Jn and obtained the following p-values:

pa = 0.86, pb = 0.88 and pc = 0.01 for the Generalized-Power Weibull, Weibull and

Exponential, respectively. Hence, the results of the test confirm what Figure 4 shows,

that both Generalized-Power Weibull and Weibull fit the data very well, whereas the

Exponential distribution is not adequate to describe the head-and-neck cancer data.
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Figure 4: Boxplot (left) and Kaplan-Meier estimator (right) together with Fa
0 (x, σ̂, v̂, γ̂) (dashed),

Fb
0 (x, σ̂, v̂) (dotted) and Fc

0 (x, σ̂) (dot-dashed) for the head-and-neck cancer data.

7. Conclusions

In this work we developed and studied a goodness-of-fit test based on maximum cor-

relation under random censoring. The advantage of our test over other goodness-of-fit

competitors, like χ2 test proposed by Akritas (1988), is its simplicity. Our test is asymp-

totically normally distributed and neither the number of classes nor the class boundaries

have to be chosen. The proposed test outperforms that by Akritas (1988) for most of

the alternatives studied. Even though the test was designed to check uniformity, with a

simple transformation it can be applied to any, fully specified, continuous distribution.

Finally, it can be extended to composite hypothesis, that is, when the distribution in the

null hypothesis is known up to a parameter. A jackknife modification for the asymptotic

variance has been proposed. A theoretical study of the test under the composite null

hypothesis is out of the scope of the present paper and purpose of further research.

8. Appendix

Proof of Theorem 1

In view of (7), we can write Q̃n in the following way

Q̃n =

∫ 1

0

∫ 1

0

h̃(x,y)Fn(dx)Fn(dy), (10)
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where

h̃(x,y) = (6x−2)1{y<x}−6x1{y>x}.

In the fist step of the proof we write Q̃n as a sum of four terms as follows

Q̃n = Q̃1 + Q̃2n + Q̃3n + Q̃4n,

where

Q̃1 =

∫ 1

0

∫ 1

0

h̃(x,y)F(dx)F(dy)

Q̃2n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dx)−F(dx))F(dy)

Q̃3n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dy)−F(dy))F(dx)

Q̃4n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dx)−F(dx))(Fn(dy)−F(dy)).

By (6) and since F is continuous, we have that Q̃1 = Q1. As to Q̃2n + Q̃3n, we obtain

Q̃2n + Q̃3n =

∫ 1

0

ϕ(x)(Fn(dx)−F(dx)),

where

ϕ(x) =

∫ 1

0

h̃(y,x)F(dy)+

∫ 1

0

h̃(x,y)F(dy)

= 12xF(x)−6x−2−12

∫ x

0

yF(dy)+6

∫ 1

0

yF(dy).

It remains to show that Q̃4n = oP(n
1/2). For this, set τH̃ = inf{t : H̃(t) = 1}, where

H̃(t) = P(X ≤ t) is the cdf of the observed sample. Since the support supp(F) ∈ [0,1]
and G fulfills assumption A1, we have that τH̃ = 1. Moreover, by definition of h̃(x,y),

we can show that

Q̃4n =−12

∫ 1

0

x(Fn(x)−F(x))(Fn(dx)−F(dx))−2(Fn(1)−F(1))2 =: Q̃a
4n + Q̃b

4n.

Now, we may consider the two terms, Q̃a
4n and Q̃b

4n, separately. According to Theo-

rem 2 (7) in Ying (1989) and under A1, the process
√

n(Fn −F) converges weakly to a

Brownian process. See, also equation (11) in Wellner (2007). More precisely,
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√
n(Fn −F)→ (1−F)B(C), in D[0,τH̃ ],

where B(C) is a Brownian process and D[0,τH̃ ] denotes the Skorohod space. Further-

more, since F is continuous and D0 is a set of uniformly bounded functions, we have

that
√

n(Fn −F) ∈ D0 with probability exceeding 1− ε for every ε > 0. Additionally,

x ∈ [0,1] and supx∈[0,τH̃ ] |Fn(x)−F(x)| → 0 almost surely. Hence, using Theorem 2.1 in

Rao (1962) with g(x) =
√

n(Fn(x)−F(x))x, we obtain

√
nQ̃a

4n =−12

∫ 1

0

g(x)(Fn(dx)−F(dx)) = oP(1).

Additionally, under A1, Fn(1)−F(1) = OP(
√

n) and hence
√

nQ̃b
4n = oP(1). No-

tice that, Fn(1)−F(1) =
∫ 1

0
1(Fn(dx)−F(dx)). Hence we apply the results from Stute

(1995) for ϕ(x) = 1.

Finally, we obtain the following representation

Q̃n = Q1 +

∫ 1

0

ϕ(x)(Fn(dx)−F(dx))+oP(n
1/2).

The asymptotic normality is now a direct consequence of Stute (1995). More pre-

cisely, under A1 and A2, we obtain

√
n

∫ 1

0

ϕ(x)(Fn(dx)−F(dx))→N(0,σ2).

This completes the proof.

Proof of Lemma 1

Recall, that

σ2
n =

∫ 1

0

ϕ2
n(x)

1−Gn(x−)
Fn(dx)−

[
∫ 1

0

ϕn(x)Fn(dx)

]2

−

−
∫ 1

0

[
∫ 1

x

ϕn(y)Fn(dy)

]2
(1−Fn(x))Gn(dx)

(1−Hn(x))2

=: A1n −A2n −A3n.

where

ϕn(x) = 12xFn(x)−6x−2−12

∫ x

0

yFn(dy)+6

∫ 1

0

yFn(dy).
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By consistency of the Kaplan-Meier estimator, we have ϕn(x) → ϕ(x) in probability.

Let us consider the first term in the representation of σ2
n . Since |ϕn(x)| ≤ K1 = constant,

Gn(x)→ G(x) in probability,

max
i=1,...,n

1−G(Xi−)

1−Gn(Xi−)
= OP(1)

by Zhou (1991) and

1

1−Gn(x−)
=

1

1−G(x−)
+

Gn(x−)−G(x−)

(1−Gn(x−))(1−G(x−))

we have

A1n =

∫ 1

0

ϕ2(x)

1−G(x)
Fn(dx)+oP(1)

Finally, by Theorem 1.1. in Stute and Wang (1993),
∫

Φ(x)Fn(dx)→
∫

Φ(x)F(dx)

with probability 1 and hence in probability, provided that
∫

|Φ(x)|F(dx) < ∞. Hence,

by A3, we obtain

A1n
P→
∫ 1

0

ϕ2(x)

1−G(x)
F(dx).

Obviously, we have

A2n
P→
[
∫ 1

0

ϕ(x)F(dx)

]2

.

Finally, similarly as we have done for A1n, we may show that

A3n =

∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))Gn(dx)

(1−H(x))2
+oP(1)

By A3 and since |ϕ(y)| ≤ K2 = constant we obtain

∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2
≤ K2

2

∫ 1

0

[
∫ 1

x

F(dy)

(1−G(y))1+ε

]

G(dx)

(1−G(x))1−ε
< ∞.

Hence, by Theorem 1.1. in Stute and Wang (1993),

A3n →
∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2

in probability. This completes the proof.
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A Bayesian stochastic SIRS model with a

vaccination strategy for the analysis of respiratory

syncytial virus
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Abstract

Our objective in this paper is to model the dynamics of respiratory syncytial virus in the region of

Valencia (Spain) and analyse the effect of vaccination strategies from a health-economic point of

view. Compartmental mathematical models based on differential equations are commonly used in

epidemiology to both understand the underlying mechanisms that influence disease transmission

and analyse the impact of vaccination programs. However, a recently proposed Bayesian stochas-

tic susceptible-infected-recovered-susceptible model in discrete-time provided an improved and

more natural description of disease dynamics. In this work, we propose an extension of that

stochastic model that allows us to simulate and assess the effect of a vaccination strategy that

consists on vaccinating a proportion of newborns.
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1. Introduction

Effective surveillance and control measures are essential to protect public health by

rapidly detecting and responding to outbreaks of infectious diseases, which pose a grow-

ing threat to human health. Shortcomings in surveillance, vaccines and treatment can

result in rising morbidity and mortality. Innovative surveillance methods have been
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recently developed in an effort to improve outbreak detection capabilities. Numerous

epidemiological models have also been proposed to simulate and analyse the impact of

different vaccination strategies from an economic and sanitary point of view. Nowa-

days, the use of models is considered as an effective tool to both represent the evolution

of diseases and assess the impact of control interventions (World Health Organization,

2016).

Most of the approaches that are currently used to study the impact of vaccination

programs fall into one of the following two categories: compartmental mathematical

models (Acedo et al., 2010; Hogan et al., 2016; Van Hoek et al., 2011; Christensen

et al., 2013; Yu et al., 2016) or computer models defined through complex schemes

of interaction (Pérez-Breva et al., 2014; Vannia et al., 2012; Craig et al., 2014; Poletti

et al., 2015). Compartmental models divide the population being studied into a set

of distinct compartments according to the disease status (for instance, the susceptible-

infected-recovered model divides the population into three categories) and model the

evolution of infectious diseases through changes in the number of individuals in each

compartment. They are usually based on ordinary differential equations, which imply

a continuous-time deterministic model. Besides, they are defined assuming that all the

individuals in the population are equally likely to contact any other individual (Ma and

Li, 2009; Brauer, 2008). However, contact patterns in real populations are indeed more

heterogeneous. Therefore, models involving homogeneous mixing should be replaced

by models incorporating stochastic effects (Brauer, 2008). Stochastic models are able

to accommodate the stochasticity inherent in the transmission of infection by consid-

ering that the number of individuals in each compartment is a random variable with

its associated probability distribution (Allen, 2008). In addition, stochastic models can

be easily analysed from a Bayesian viewpoint (see, for example, Gibson and Renshaw,

1998; O’Neill, 2002; Boys and Giles, 2007; Weidemann et al., 2014).

A Bayesian stochastic susceptible-infected-recovered-susceptible (SIRS) model in

discrete time has been recently proposed to model respiratory syncytial virus (RSV)

dynamics in the region of Valencia, Spain (Corberán-Vallet and Santonja, 2014). The

proposed model, which can be seen as a discrete time Markov chain model (Allen,

2008), does not imply mass-action mixing of individuals in the population. In addition,

the probability of disease transmission depends on a transmission rate that is allowed

to vary stochastically over time. This feature is fundamental to provide an accurate

representation of the disease dynamics.

RSV is the most important cause of lower respiratory tract illness in infants and

children worldwide. It causes repeat infections throughout life and significant disease

in pediatric and elderly population. Due to the high burden of disease globally, RSV

has been a priority for vaccine development. However, efforts to develop a safe and

effective vaccine have yet to lead to a licensed product (Anderson et al., 2013; Jones et

al., 2014; Higgings, Trujillo and Keech, 2016; Roberts et al., 2016). The epidemiology

and burden of RSV disease point to several target populations for vaccines, which may

require different vaccination strategies according to the age. The highest priority tar-
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get population are infants < 6 months of age who are at highest risk of severe disease.

The enhanced disease observed after a formalin-inactivated RSV (FI-RSV) vaccine di-

rected development of RSV vaccines toward live virus vaccines. Yet these young infants

present challenges to vaccine development. They may not respond well to a vaccine be-

cause of immature immune system, suppression of the immune response by presence of

maternal antibody, and an elevated susceptibility to disease with live RSV infection. The

second target population are children ≥ 6 months of age, both to prevent their disease

and potential transmission to younger children. The third target population are pregnant

women, since high titers of maternally derived RSV antibody have been shown to cor-

relate inversely with the incidence and severity of RSV infection in the first six months

of life. This maternal vaccination strategy would protect newborns both by placental

transfer of antibodies and by blocking transmission (Dudas and Karron, 1998). How-

ever, it would not provide protection for children beyond 4–6 months of age, and so

this strategy would be followed by direct child vaccination as maternal antibody wanes.

The last target population are the elderly, who are also at risk for severe disease. See

Higgings et al., 2016 for a current summary of RSV vaccine research and development.

Taking into account recommendations for RSV vaccine development (Anderson et

al., 2013), we present here an extension of the model proposed in (Corberán-Vallet and

Santonja, 2014) that allows us to simulate and assess the impact of vaccination pro-

grams. Because most efforts are directed towards immunizing infants from birth to six

months (Beeler and Eichelberger, 2013), the simulated strategy consists on vaccinating

a proportion of newborns. This strategy is similar to the one implemented in (Acedo et

al., 2010).

2. Case study

Our study focuses on weekly hospitalizations for RSV-related illnesses among children

younger than two years of age in the Spanish region of Valencia. Children aged < 2

years are the target population most problematic by possible severe complications. On

some occasions, hospitalization may be necessary, especially for RSV bronchiolitis and

pneumonia.

In particular, we have data on the number of new hospitalizations per week from

week beginning January 1st 2001 to week beginning December 20th 2004 (see Figure

1). As can be seen, RSV activity presents a clear seasonal pattern: epidemics occur

yearly between late fall and early spring.

Acedo et al. (Acedo et al., 2010) proposed a compartmental model based on ordinary

differential equations to describe these data and perform a vaccination program analy-

sis. They assumed that the sizes of the susceptible, infected, removed and vaccinated

populations were large enough so that the mixing of individuals in the population was

homogeneous. However, that is not the case, specially at the beginning of epidemics. In
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Figure 1: Hospitalizations for respiratory syncytial virus (RSV) infection among children aged < 2 years

from week beginning January 1st 2001 to week beginning December 20th 2004 in the Spanish region of

Valencia.

addition, the transmission rate was modeled assuming the same seasonal pattern for all

the years, which is not a realistic description of the data.

Corberán-Vallet and Santonja (Corberán-Vallet and Santonja, 2014) proposed a sto-

chastic SIRS model in discrete time that provided a precise representation of the pattern

of disease. That model was also able to quite accurately identify the start of a new RSV

epidemic and its increase. However, vaccination strategies were not studied. Similar

to that study, we also confine our analysis to data collected from week beginning July

2nd, 2001 (week 27 in the time plot). Since no child was hospitalized the week before,

we can assume that the susceptible population at this time period is the population of

children aged < 2 in the region of Valencia.

It is important to emphasize here that the interest when simulating the effect of vac-

cination strategies may be to study the decrease in disease incidence. In this case study,

the available data refer to hospitalizations. Let it and yt be, respectively, the number

of infections and hospitalizations at time t. It is reasonably to assume the following

relationship:

yt ∼ Bin(it ,ρ)

where ρ is the probability of being hospitalized for RSV infection. Because informa-

tion regarding the number of newly infected children per week is not available, it is

not possible to make a statistical robust estimate of ρ. In Spain, the percentage of chil-

dren who require hospitalization for RSV is around 0.5% and 2% of the number of

infected children (Contreras, 2016; Parra et al., 2013). This percentage coincides with

the results obtained in Acedo et al. (2010). Hence, if the interest relies on analysing

the number of infections, we can assume that the number of infected children at week

t (t = 1,2, . . . ,T = 208) is given by the number of hospitalized children divided by the
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hospitalization rate:

it = yt/h

with h = 0.02 as proposed in Acedo et al. (2010).

3. Model formulation

3.1. Model formulation without vaccination

In this section we describe a Bayesian stochastic susceptible-infected-recovered-suscep-

tible (SIRS) model in discrete time that was proposed by Corberán-Vallet and Santonja

(2014) to study infectious disease dynamics. Let it denote the number of infected chil-

dren at week t, t = 1,2, . . . ,T . Because the population of children aged< 2 years in the

region of Valencia is finite, the observations are assumed to be Binomial distributed:

it ∼ Bin(St−1, pt) (1)

where St−1 represents the susceptible population at time t − 1; that is, the number of

individuals not yet infected with the disease at time t − 1; and pt is the probability of

becoming infected at time t.

In this discrete-time model, the number of individuals in each compartment is ex-

amined at discrete time steps. Using a fixed population, the number of susceptible (S),

infected (I), and recovered (R) individuals at time t are updated through the following

recursive equations:

St = St−1 − it +bRt−1 +nt −
St−1

N
nt

It = It−1 −aIt−1 + it −
It−1

N
nt

Rt = Rt−1 −bRt−1 +aIt−1 −
Rt−1

N
nt (2)

where a is the proportion of infected individuals that recover per unit time; b is the pro-

portion of recovered individuals who lose their immunity and become susceptible again

per unit time; nt is the number of births at time t; and N is the constant population size.

Taking into account that the average time to recover from RSV illness is 10 days and the

average time to lose immunity is 200 days, we can set a = 7 days (one week)

10 days (recover time)
= 0.7 and

b = 7 days (one week)
200 days (time to lose immunity)

= 0.035 (Acedo et al., 2010). Because the recovery time

and time to lose immunity for RSV are well-known, we have considered these values

as deterministic inputs. Otherwise, these quantities should be considered as additional

parameters of the model with their corresponding prior distribution. In addition, using

demographic data from the Spanish National Institute of Statistics (http://www.ine.es),
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the average weekly number of births in the region of Valencia for years 2001–2004 and

the population size can be set nt = 879 and N = 83,205. The flowchart diagram for the

model is described in Figure 2.

St

St−1
nt

N

St
nt It

It−1
nt

N

Rt

Rt−1
nt

N

it aIt−1

bRt−1

Figure 2: Flowchart of the SIRS model without vaccination. Boxes represent compartments and arrows

represent transitions between compartments, labelled by the parameters of the model.

The probability pt was modelled as:

pt = min

{

iαt−1 exp{rt}

1+ iαt−1 exp{rt}
+ c,1

}

(3)

where the mixing parameter α allows for heterogeneous mixing (homogeneous mix-

ing corresponds to α = 1 (Bjørnstad, Finkenstädt and Grenfell, 2002); c represents a

constant probability of becoming infected and so it accounts for the occurrence of new

cases after the disease has faded out; and exp{rt} represents the time-varying transmis-

sion rate. To accommodate the seasonal pattern observed in the dynamics of RSV, this

transmission rate is modelled by means of sine-cosine waves as:

rt = a0 +
K
∑

k=1

[

a2k−1 sin

(

2kπt

52

)

+a2k cos

(

2kπt

52

)]

+ ǫt (4)

where ǫt is a random effect that represents unspecified features of week t. Note that

this formulation ensures that the probability lies in the interval 0–1 and it also takes into

account the transmissible nature of the infection. The value of K depends on the data

under study and it is set as the highest value k∗ so that the corresponding parameters

a2k∗−1 and a2k∗ are significant.

The parameters of the model are α, c, {ak}
2K
k=0, and {ǫt}

T
t=1. The prior distribution

assumed for parameter α is the Uniform distribution in the interval 0–1. The Uniform

distribution in the interval 0–0.01 is assigned to parameter c. In this case study, this

range of variation for c is enough to capture the probability of infection the first week of

epidemic periods. However, a wider range may be necessary in the analysis of different

diseases. Parameters {ak} are assumed to have zero mean Gaussian distributions with

standard deviations σak
; and {ǫt} are Gaussian distributed random effects with zero

mean and standard deviations σǫ. All the standard deviations in the previous equations

are assigned the Uniform distribution in the interval 0–5 (Gelman, 2006).
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3.2. Model formulation with vaccination

We propose here an extension of the model previously described to accommodate a vac-

cination strategy that consists on vaccinating a proportion of newborns. As mentioned

in the introduction section, the planning of effective vaccine strategies to protect infants

from birth to six mounth are needed. Let ĩt be the number of infected children at time

t after implementation of the vaccination program for infants. It is important to empha-

size that in this section we are working with a hypothetical scenario (since there is not

a RSV vaccination strategy implemented in the Community of Valencia), and so data

corresponding to the number of new infections are not available. Let S̃t−1 represent the

susceptible population at time t −1 and p̃t the new probability of becoming infected at

time t after introducing the RSV vaccine. We can assume then that:

ĩt = S̃t−1 p̃t (5)

The number of individuals in each compartment is updated through the following

recursive equations:

S̃t = S̃t−1 − ĩt +bR̃t−1 +(1−ν)nt −
S̃t−1

N
nt

Ĩt = Ĩt−1 −aĨt−1 + ĩt −
Ĩt−1

N
nt

R̃t = R̃t−1 −bR̃t−1 +aĨt−1 −
R̃t−1

N
nt

Ṽt = Ṽt−1 +νnt −
Ṽt−1

N
nt (6)

Similar to Equations (2), a is the proportion of infected individuals that recover per

unit time; b is the proportion of recovered individuals who lose their immunity per

unit time; nt is the number of births at time t; and N is the constant population size.

Parameter ν represents the proportion of newborns that are vaccinated. We assume here

that infants receive additional booster doses if necessary to induce optimal levels of

RSV neutralizing antibody, and so vaccinated children do not evolve to the susceptible

population. Based on this assumption, there is not transition between the vaccinated

subpopulation (V ) and the susceptible one (S). The flowchart diagram for the model

with vaccination is described in Figure 3.

To estimate ĩt we need to know the value of S̃t−1 and p̃t . The first term is derived by

applying the previous recursive equations and the probability p̃t can be estimated using

the expression:

p̃t = min

{

ĩα
∗

t−1 exp{r∗t }

1+ ĩα
∗

t−1 exp{r∗t }
+ c∗,1

}

(7)
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where α∗, c∗, and {r∗t } represent the posterior mean estimates obtained when the model

without vaccination is fitted to real data. Note that these parameters represent features

of RSV dynamics that do not depend on the number of infected children, and so it is

sensible to use these estimates to calculate p̃t . Varying the value of ν, it is possible to

find out the effect of this vaccination strategy on the number of RSV infections.

S̃t

S̃t−1
nt

N

(1−ν) nt Ĩt

Ĩt−1
nt

N

R̃t

R̃t−1
nt

N

ĩt aĨt−1

bR̃t−1

Ṽt

Ṽt−1
nt

N

ν nt

Figure 3: Flowchart of the SIRS model with vaccination (vaccinated children do not evolve to the suscep-

tible population). Boxes represent compartments and arrows represent transitions between compartments,

labelled by the parameters of the model.

If booster doses are not planned, vaccinated children may evolve to the susceptible

population after an immunization period. In that case, the recursive equations would be

replaced by:

S̃t = S̃t−1 − ĩt +bR̃t−1 +b∗Ṽt−1 +(1−ν)nt −
S̃t−1

N
nt

Ĩt = Ĩt−1 −aĨt−1 + ĩt −
Ĩt−1

N
nt

R̃t = R̃t−1 −bR̃t−1 +aĨt−1 −
R̃t−1

N
nt

Ṽt = Ṽt−1 −b∗Ṽt−1 +νnt −
Ṽt−1

N
nt (8)

where b∗ represents the proportion of vaccinated children who lose their immunity and

become susceptible per unit time. In Acedo et al. (2010), the authors assumed an im-

munization period by vaccination equal to the immunization after infection. Taking into

account this consideration, a value of b∗ equal to 0.035 could be assumed. The flowchart

diagram for this new scenario is presented in Figure 4.
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S̃t

S̃t−1
nt

N

(1−ν) nt Ĩt

Ĩt−1
nt

N

R̃t

R̃t−1
nt

N

ĩt aĨt−1

bR̃t−1

Ṽt

Ṽt−1
nt

N

ν nt

b
∗
Vt−1

Figure 4: Flowchart of the SIRS model with vaccination (vaccinated children may evolve to the susceptible

population after an immunization period). Boxes represent compartments and arrows represent transitions

between compartments, labelled by the parameters of the model.

It is important to mention that the previously proposed model is also valid for a ma-

ternal vaccination strategy. In that case, ν would represent the proportion of newborns

whose mothers have been vaccinated and so they are protected from RSV. Since this

maternal immunization strategy does not provide complete protection, children in the

V compartment will evolve to the susceptible population after 4–6 months (Higgings et

al., 2016). The recursive equations given by (8) should then be used, with parameter b∗

adapted to this immunization period.

4. Results

In this section we describe the main results obtained in the analysis of RSV data. We

first show the results when the model without vaccines is fitted to the data. The Bayesian

analysis of the model allows us to calculate the posterior distribution of the model pa-

rameters. Because this posterior distribution is not analytically tractable, we approached

it by simulation. In particular, we obtained a random sample from it using Markov chain

Monte Carlo (MCMC) simulation techniques as implemented in the free statistical soft-

ware WinBUGS (Lunn et al., 2000). We fixed a burn-in period of 150000 iterations to

assess the convergence of MCMC chains. To reduce the correlation for the samples, we

kept one posterior sample in 25 iterations after the burn-in period until a set of 5000

iterations was obtained.

Similar to the study in Corberán-Vallet and Santonja (2014), we model directly the

weekly number of RSV hospitalizations as yt ∼ Bi(St−1, pt), and so pt represents the

probability of being hospitalized at time t. The posterior mean and 95% credible inter-

vals are displayed in Figure 5.



168 A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of...
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Figure 5: Hospitalizations for RSV (solid black line) together with posterior means and 95% credible

intervals (dotted gray lines) from week beginning July 2nd 2001 to week beginning December 20th 2004 in

the Spanish region of Valencia.

Figure 6 shows the estimated transmission rate exp{rt} together with its seasonal

component, which is defined by the sum of two harmonic waves (K = 2; higher-order

frequencies were no significant). As can be seen, even though seasonality plays an

important role in disease transmission, adding random effects in the transmission rate

model to account for overdispersion is fundamental to provide a more realistic descrip-

tion of the transmission pattern.

Figure 6: Estimated transmission rate together with its seasonal component from week beginning July 2nd

2001 to week beginning December 20th 2004.
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Table 1: Posterior means and 95% credible intervals for the parameters of the model.

Parameter Mean Credible interval

α 0.80 (0.66,0.95)

c 1.54e-05 (1.26e-05,1.84e-05)

a0 −11.73 (−12.28,−11.26)

a1 −0.61 (−0.94,−0.30)

a2 −1.55 (−2.11,−1.06)

a3 −0.44 (−0.73,−0.17)

a4 −0.14 (−0.42,0.10)

It is important to mention that these results are very similar to the ones presented in

Corberán-Vallet and Santonja (2014). The main difference is that here we are not inter-

ested in prediction, and so we do not keep the last weeks to measure the out-of-sample

forecast accuracy. Because the data set is not exactly the same, some minor differences

are observed in the posterior distribution of the model parameters. The posterior mean

and 95% credible intervals for the parameters of the model are shown in Table 1.

Once the posterior means of the parameters of the model without vaccines have been

estimated, we can analyse the effect of the newborn vaccination strategy. As explained

in Section 3.2, parameters α, c, and {rt} represent features of RSV dynamics that do

not depend on the number of infected children, and they are used to compute both the

new probability of hospitalization once the vaccine has been implemented and the new

number of infections. In our simulation of the vaccine implementation, we assume that

there were no vaccinations before July 2nd 2001; that is, vaccines are introduced the

first week of our time frame and so we set V0 = 0.

Week

R
S

V
 h

o
s
p
it
a
liz

a
ti
o
n
s

0
5
0

1
0
0

1
5
0

26 52 78 104 130 156 182

Figure 7: Number of real hospitalizations for RSV (solid line) and simulated numbers of hospitalizations

for two different coverage rates (percentages of vaccinated newborns), ν = 0.2 (dashed line) and ν = 0.8

(dotted line).



170 A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of...

Figure 7 shows the real number of hospitalizations from week beginning July 2nd

2001 to week beginning December 20th 2004 and the simulated numbers for two differ-

ent values of ν: ν = 0.2 and ν = 0.8. As expected, the number of RSV hospitalizations

decreases as the percentage of vaccinated newborns increases. Note that the value of ν

is decided by policymakers and we just set these values as an example.

Taking into account an average of 6.28 hospitalization days for every infected child

and e500 per day and child hospitalized (Acedo et al., 2010), we can estimate the total

cost of hospitalizations for the time period of study. If no child is vaccinated, the cost of

hospitalizations is approximately e13,213,120. This quantity decreases as ν increases.

The hospitalization cost for a value of ν equal to 0.2 would be around 8.5 millions of

euros, and if we set ν = 0.8, 2.5 millions of euros. Note that in order to complete the

economic analysis, we should also consider the vaccine price. For instance, (Acedo et

al., 2010) assumed a cost of e300 per child.

4.1. Comparison with a deterministic continuous-time model

In Corberán-Vallet and Santonja (2014), the authors compared the model described in

Section 3.1 with four alternative formulations of the SIRS model in discrete time: a

stochastic model with a deterministic seasonal transmission rate, a stochastic model

where the transmission rate was assumed to be constant over time, and the equiva-

lent deterministic formulations. The results showed that the proposed Bayesian SIRS

model in discrete-time lead to an improved goodness of fit. We compare here the re-

sults obtained with our model with those provided by a deterministic continuous-time

formulation similar to the one implemented in Acedo et al. (2010). As mentioned in the

Introduction, deterministic compartmental models in continuous-time are widely used

to assess the effect of vaccination programs. By considering only one age-group and a

constant population size, the deterministic continuous-time model without vaccines can

be formulated as:

dS

dt
=−β(t)SI+bR+µ−µS

dI

dt
=−aI +β(t)SI−µI

dR

dt
=−bR+aI−µR (9)

where β(t) is defined as b0 + b1cos(2πt +ψ) to account for seasonality. The flowchart

of this model is shown in Figure 8.

Similar to Acedo et al. (2010), we have assumed that 1% of infants are infected in

January 1999 while the remaining 99% of infants are susceptible. We have also set

µ= 0.01074, b = 1.59, and a = 36.5. In order to estimate parameters b0, b1 and ψ, we

have used the dsolve package (Soetaert, Petzoldt and Setzer, 2010) in R (R Core Team,

2017) together with the optim function.
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Figure 8: Flowchart of the deterministic continuous-time SIRS model without vaccination.

Figure 9 compares the estimates of RSV hospitalizations obtained with both the

Bayesian stochastic SIRS model in discrete-time and its deterministic counterpart. As

can be seen, the deterministic continuous-time approach is not able to properly describe

epidemic peaks. The seasonal pattern is constant over time and it does not explain

particular features of annual epidemics. The fitting RMSE are, respectively, 2.52 and

19.09. These results highlight the importance of taking into account the stochasticity

inherent in the transmission dynamics.
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Figure 9: Real hospitalizations for RSV (solid points) and the estimates obtained with both the Bayesian

stochastic model in discrete-time (solid line) and the deterministic continuous-time model (dashed line).

If we assume that a proportion of newborns are vaccinated, the deterministic model

can be reformulated as:

dS

dt
=−β(t)SI+bR+(1−ν)µ−µS

dI

dt
=−aI +β(t)SI−µI

dR

dt
=−bR+aI−µR

dV

dt
= νµ−µV (10)
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Figure 10 displays the real number of hospitalizations from week beginning July 2nd

2001 to week beginning December 20th 2004 and the numbers simulated by the deter-

ministic continuous-time model for a coverage rate ν = 0.2. For comparative purposes,

we have also included the results provided by our model. As expected, the deterministic

model does not explain properly epidemic peaks. Nevertheless, we can conclude that

both strategies show a similar decreasing trend in the number of RSV hospitalizations

after the introduction of the vaccine.
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Figure 10: Real hospitalizations for RSV (solid line) and simulated numbers of hospitalizations provided

by both the Bayesian stochastic SIRS model (dashed line) and the deterministic continuous-time model

(dotted line) for a coverage rate ν = 0.2.

5. Conclusion

In this paper, we have described a stochastic compartmental model in discrete-time to

describe RSV dynamics in the region of Valencia. However, the model can be adapted

for other infectious diseases with (or without) a seasonal pattern and temporary (or per-

manent) immunity, replacing the transmission rate and the immunity rate according to

the nature of disease. Unlike standard formulations, this compartmental model does

not assume mass-action mixing of individuals in the population. In addition, the model

considers the stochasticity inherent in the transmission of disease and, consequently, it

provides a more realistic and accurate description of the progression of infections.

The extended model proposed in this paper provides a useful framework to address

one of the important needs in RSV incidence control: the implementation of an efficient

vaccination strategy. In particular, we have studied the effects of a vaccination strategy

that consists on vaccinating a proportion of newborns, which are the highest priority

target population. Additionally, we have pointed out how to adapt the model to simulate

a vaccination strategy targeted to pregnant women.

Nevertheless, the model has some limitations. We have assumed that the number

of births equals the number of deaths so that the total population size is constant. In
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addition, we do not consider an age structure into the formulation of the compartmental

model. It would be valuable to extend the proposed model to allow for different age

groups, for instance infants < 6 months of age and children ≥ 6 months of age, which

are considered as distinct target populations for RSV vaccines. An age-structured model

would provide an important tool to study the effects of alternative vaccination strategies.

It could demonstrate how immunization of a target population may protect others. Be-

sides, this formulation could be used to simulate the benefits of implementing a mater-

nal vaccination strategy followed by direct older infant vaccination as maternal antibody

wanes.

Note that we have only implemented a control strategy based on vaccination. How-

ever there are other possibilities such as isolation of infected individuals. This alternative

control strategy could be straightforwardly incorporated into the model by adapting the

probability of becoming infected. Under this scenario, the probability of infection at a

particular time point would depend only on a proportion of infected individuals at the

previous time point (the ones that have not been isolated). It would also be interesting

to assess the impact of both control strategies simultaneously.

Another very fruitful area for further research is the extension of the proposed model

to the spatial domain. Space can play a significant role in RSV transmission. In addition,

a spatio-temporal model may be useful to detect high-risk areas in need of more strong

intervention strategies to reduce the burden of disease.

Finally, it is worth emphasizing that we have focused here on models that have been

previously proposed to analyse the impact of vaccination strategies; in particular, we

have focused on compartmental models. However, the literature on models for the anal-

ysis of infectious disease data is vast and can be found in both statistical as well as

epidemiological journals. Comprehensive coverage of statistical models for the analy-

sis of infectious diseases in a single paper is not possible and it is beyond the scope of

this paper. Nevetheless, it would be interesting to extend common approaches to model

count time series (such as INAR models (Rao and McCabe, 2016) or p-splines (Eil-

ers, Marx and Durban, 2016)) to incorporate the impact of vaccination programs and

compare the performance of these different approaches.
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Statistical modelling of warm-spell duration series

using hurdle models

Jesper Rydén∗

Abstract

Regression models for counts could be applied to the earth sciences, for instance when studying

trends of extremes of climatological quantities. Hurdle models are modified count models which

can be regarded as mixtures of distributions. In this paper, hurdle models are applied to model

the sums of lengths of periods of high temperatures. A modification to the common versions

presented in the literature is presented, as left truncation as well as a particular treatment of

zeros is needed for the problem. The outcome of the model is compared to those of simpler count

models.
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1. Introduction

Regression models for counts arise when the response variable is a count, i.e. a non-

negative random number. Often a distribution is specified for the response variable and

likelihood-based inference can be performed, with maybe the most common choice for

the response being the Poisson distribution, leading to Poisson regression. However,

the simpler models are not able to successfully model situations with, for example,

excess zeros or truncated observations. Models have been developed in the literature,

see Cameron and Trivedi (2013) for a review.

Some statistical problems in the earth sciences are linked to count data. In particular,

regression models for count data could be of interest, when facing series of so-called

climate indicators (occasionally called climate indices). These are often numbers relat-

ing to extreme phenomena, for instance heat waves or warm spells, loosely described
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as periods of unusually hot weather. In the literature, the notion of a heat wave is often

reserved for periods of great severity, for instance causing deaths among people. For

typical Swedish conditions, analysed in the sequel, the notion warm spell is therefore

preferred. In climatology, interest concerns changes in frequency, intensity or duration

of such quantities.

From a data-analytic point of view, a warm spell is a run, i.e. a period of consecutive

days when the maximum is above a specified high value. In this paper, we examine

statistical modelling of the indicator warm-spell duration index (WSDI), defined as the

annual count of days with at least 6 consecutive days when the daily maximum temper-

ature is exceeding a predefined threshold (see exact definition in the sequel). However,

the statistical modelling of such sequences imply several challenges. In this paper, we

focus on the fact that observations are truncated, but in addition, an annual count of zero

might also be observed depending on the location and its occasionally cold climate. In

fact, such models for count data seem not to have been studied in the applied literature,

either in climate research or other applications.

A key issue in climatology research is investigation of trends. A methodology for

count data could be to check independence, and if possible, use time as a covariate in

a regression model. Generalised linear models and their extensions are then natural

candidates for modelling. As stated by Chandler and Scott (2011), applications of such

models in environmental trend analysis have so far been relatively limited. Examples

are rare, but similar statistical concepts are found for instance in Frei and Schär (2001),

a recent study on extreme precipitation was made by Hertig et al (2014), and trends

of flash counts are discussed by Bates, Chandler and Dowdy (2015). Concerning an

indicator related to the annual number of warm spells, Rydén (2015) investigated a

possible trend for the city of Uppsala, Sweden. Then the elements of the time series were

simply non-negative integers, and the Poisson distribution was found to be a reasonable

description. Moreover, the sequence was considered independent, and hence Poisson

regression was applied.

The paper is organised as follows. In the next section, the indicator WSDI is de-

fined and discussed, along with a presentation of the source of the data. In Section 3,

the framework of hurdle models is introduced, including the modification needed for

modelling of the WSDI. In Section 4, data are introduced and the results of applying

the hurdle models are presented, and finally in Section 5, a summary and discussion is

given.

2. Warm-spell duration index

Several indicators, also labelled indices, have been suggested for monitoring change in

climatic extremes (see e.g. Frich et al 2002), but as pointed out by Perkins and Alexan-

der (2013) concerning heat waves: “Clear and common definitions, at least for some
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types of extreme events, remain rare and nonexistent”. Climate indices may relate to

temperatures as well as precipitation, they may be based on absolute thresholds or per-

centile based. Thus, definitions have to be clearly stated in research work. An overview

of indices, as well as results from an analysis of trends at a global level, is given by

Alexander et al (2006).

Data were retrieved online from the website of the European Climate Assessment &

Dataset (ECA&D) project1. Definitions of indices are found at the webpage of the joint

CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices

(ETCCDI)2.

The indicator WSDI, warm-spell duration index, belongs to the category of duration

indices. Such indices define periods of excessive warmth, cold, wetness or dryness.

WSDI is defined as the annual count of days with at least 6 consecutive days when the

daily maximum temperature is exceeding the threshold T90. To be more precise: Let

T (i, j) be the daily maximum temperature on day i in year j and let T90 be the calendar

day 90th percentile, centred on a five-day window for the base period 1961-1990. Then

the number of days per year j is summed where, in intervals of at least 6 consecutive

days, T (i, j)> T90.

Note that the annual count, the annual observation of WSDI is a sum of all days

belonging to a warm-spell period. The number of warm spells is not taken into account,

so a year with two spells of lengths 6 and 8 days, respectively, would result in a value

of WSDI equal to 14, the same value as a year with a single long spell of 14 days.

3. Hurdle models for count data

In this section we review hurdle models for count data (cf. Winkelmann 2008, Cameron

and Trivedi 2013), and discuss implications for the application introduced previously

and possible alternatives for the modelling.

3.1. Structure of the hurdle-count model

We commence by recalling the notion of a truncated random variable. Consider a ran-

dom variable Y , defined on 0,1,2, . . . . Now assume that only values y > a are observed.

The truncated distribution Ỹ then has the probability-mass function

p
Ỹ
(ỹ) =

1

1−FY (a)
pY (ỹ), ỹ = a+1, a+2, . . . .

1. http://www.ecad.eu/

2. http://etccdi.pacificclimate.org/list 27 indices.shtml
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With two-part models for counts, a model is introduced where the probabilistic prop-

erties of zero counts differ from other (positive) counts. Such models were proposed

by Mullahy (1986). For a random variable Y , suppose that we observe either Y = 0

or Y > a. For the zero component, we introduce the probability-mass function p1(y)
and for the positive outcomes, we consider the (unrestricted) probability-mass function

p2(y); related distribution functions are F1(y) and F2(y). A hurdle model is then defined

by

P(Y = j) =

{
p1(0) if j = 0

1−p1(0)
1−F2(a)

p2( j) if j > a
(1)

(For 0 < j ≤ a, the probability-mass function takes the value zero.) Defining a binary,

censoring indicator

d =

{
1, if y > a

0, if y = 0

the probability-mass function for an outcome y with indicator d can then be written as

p(y) = p1(0)
1−d

[
1− p1(0)

1−F2(a)
p2(y)

]d

=
[
p1(0)

1−d(1− p1(0))
d
][ p2(y)

1−F2(a)

]d

.

3.2. Estimation

We now turn to estimation. In a regression context, suppose we have a covariate x. Intro-

ducing parameter vectors θθθ1 and θθθ2, the probability functions can be notated p1(y; x,θθθ1)
and p2(y;x,θθθ2).

The log-likelihood function then follows, with observations (x1,y1), . . . ,(xn,yn), as

ℓ(θθθ1,θθθ2) = ℓ1(θθθ1)+ ℓ2(θθθ2)

=
n∑

i=1

[
(1−di) ln p1(0; xi,θθθ1)+di ln(1− p1(0; xi,θθθ1))

]

+
n∑

i=1

di

[
ln p2(yi; xi,θθθ2)− ln(1−F2(a; xi,θθθ2))

]
.

(2)

Thus, the log-likelihood function can be maximised by separately maximising each

component, which certainly simplifies the numerical treatment.
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3.3. Specification of count distributions

Many options obviously exist for choosing the distributions p1(.) and p2(.). In the orig-

inal paper by Mullahy (1986), these were specified to be of the same family. Common

practice now is to specify different processes for p1(.) and p2(.). The binary process,

p1(.), is often modelled as a logit model, while p2(.) is chosen as a Poisson or nega-

tive binomial distribution. After preliminary analysis of data, overdispersion was found

present and truly significant (p value 1.6 · 10−4, test by Cameron and Trivedi (1990),

as implemented in the routine dispersiontest in the R package AER, see Kleiber and

Zeileis, 2008). Thus a negative binomial distribution was applied, and will be discussed

next.

Several characterisations of the negative binomial distribution exist, in terms of pa-

rameterisation, and we chose in this work to employ the distribution with probability-

mass function as follows, the so-called Negbin II:

p(z;µ,α) =
Γ(α−1 + z)

Γ(α−1)Γ(z+1)

(
α−1

α−1 +µ

)1/α(
µ

α−1 +µ

)z

, z = 0,1,2, . . . (3)

where in a regression context with a covariate x,

µ= exp(β0 +β1x)

and α is a dispersion parameter. When α→ 0, the Poisson distribution is obtained as a

limit. Moreover,

E[Z] = µ, V[Z] = µ(1+αµ).

In summary; with regards to the likelihood estimation in our problem, we have the

parameter vector θθθ2 = (β0, β1, α). For the binary part,

p1(y,xi,θθθ1) =
exp(β′

0 +β′
1xi)

1+ exp(β′
0 +β′

1xi)

and thus θθθ1 = (β′
0, β

′
1).

Remark. In most texts, and computer implementations (in R, e.g. Zeileis, Kleiber and

Jackman, 2008), hurdle models with a = 0 in Eq. (1) are considered; that is, the hurdle

separates zeros from positive observations. In our application, we have the possible

outcomes 0,6,7,8, . . ., and hence a = 5 in Eq. (1); to the author’s knowledge, this is

a situation rarely met in applications considered in the literature. In Stata, modelling

with truncated hurdle models is implemented. An example with a truncated Poisson

distribution for the non-zero counts is given by McDowell (2003).
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3.4. Mean for the hurdle-count model

For the hurdle model in Eq. (1), for the sake of notation, introduce

b =
1− p1(0)

1−F2(a)
. (4)

Moments about the origin then follow as

E[Y k] = 0k p1(0)+
∞∑

y=a+1

ykb p2(y) = b

∞∑

y=a+1

yk p2(y). (5)

Cameron and Trivedi (2013), Section 4.12, give the corresponding derivation for the

case where a = 0, and the resulting formula can then be expressed in terms of the ex-

pected value for the distribution F2(y).
For model diagnostics (in our application, see Section 4.3), we may use E[Y ] follow-

ing Eq. (5), plugging in estimates. Then assuming a logit model for the binary part, we

find estimates for the quantities in the factor b in Eq. (4):

p̂1(0) = p1(0;xi,θ̂θθ1) =
exp(β̂′

0 + β̂′
1xi)

1+ exp(β̂′
0 + β̂′

1xi)

and F̂2(a) = F2(a,xi,θ̂θθ2), where F2(.) is the related distribution for the Negbin II distri-

bution.

4. Modelling warm-spell duration index

We have chosen to investigate time series of annual observations of WSDI from three

locations and periods in Sweden: Falun (60°37′N, 15°37′E), 1914-2010, Stockholm

(59°21′N, 18°03′E), 1914-2014, and Uppsala (59°51′N, 17°37′E), 1914-2011. This ini-

tial choice was made based on data quality (quite long series without gaps, though miss-

ing data for 2006 at Falun) and we have, moreover, two locations quite close in distance

(Stockholm and Uppsala, less than 10 km).

4.1. Dependence issues

In order to apply regression models for counts using time as a covariate, dependence

in each of the sequences was first investigated, by checking plots of autocorrelation

functions and performing the Ljung–Box test of independence in time series (Ljung and

Box, 1978). Consider a time series x1, . . . ,xN . The null hypothesis is here that the first
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m autocorrelations are jointly zero:

H0 : ρ1 = ρ2 = · · ·= ρm = 0.

Let rk be the sample autocorrelation function at lag k and m the number of lags being

tested. The test statistic is given by

Q = N(N+2)
m∑

k=1

r2
k

N − k

which under the null hypothesis is distributed as Q ∼ χ2(m). A choice of m has to

be made; in the literature, it has been suggested that m ≈ lnN (Tsay, 2010). For our

locations we find Falun (p = 0.85), Stockholm (p = 4.3 · 10−10), Uppsala (p = 6.2 ·
10−8). For the two last locations, we thus reject the null hypothesis about independence.

Plots of empirical autocorrelation functions strengthen this result. Thus, a more evolved

time-series model for counts would have to be introduced for these two locations. One

option for further modelling could be to introduce a time-series model for counts, for

instance, of the class INAR (Al-Osh and Alzaid, 1987; Alzaid and Al-Osh, 1990; for a

recent review, see Scotto, Weiss and Gouveia, 2015).
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Figure 1: Top: Time series of WSDI at Falun. Bottom: Sample autocorrelation function of WSDI at Falun.
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For the location of Falun, we choose to continue, using time as a covariate in a

regression model. The original time series3 at that location is shown in Figure 1, top

panel. The proportion of zeros is found to be 0.35. The sample autocorrelation function

is displayed in Figure 1, bottom panel, and we conclude that data could be considered a

sequence of independent observations.

4.2. Likelihood inference

For the zero part, i.e. maximisation of the function ℓ1(θθθ1) in Eq. (2), a logistic regression

was performed with a binary response variable π(x) and the related model

g(x) = β′
0 +β′

1x

where g(x) = ln(π(x)/(1−π(x))) and the covariate x indicates time. Hence, the vector

θθθ1 = (β′
0 β′

1). The routine glm in the statistical software package R (R Core Team

2016) was employed. The estimation procedure resulted in estimates β̂′
0 = −0.25 and

β̂′
1 = 0.018 with related p-values 0.56 and 0.025, respectively. The covariate time is thus

significant.

For the maximisation of the log-likelihood function ℓ2(θθθ2), a Negbin II was assumed

(see Eq. (3)). The optimisation was carried out by the routine optim, using the procedure

by Nelder and Mead (1965). The following point estimates, with related standard errors

within parentheses as obtained from the inverted observed Fisher information matrix,

were obtained:

β̂0 = 1.01 (1.70), β̂1 = 0.0053 (0.0062), α= 2.84 (5.98)

with p-values 0.56, 0.39 and 0.64 respectively. With the climate application in focus,

we note that the slope is slightly positive in magnitude, and not statistically significant.

4.3. Model checking and comparison

In Figure 2, the original time series is plotted along with the mean of the fitted model,

following Eq. (5).

We deduced earlier that the original time series could be considered an independent

sequence (cf. Figure 1, bottom panel). In Figure 3, the sample autocorrelation function

of the raw residuals is shown. We note that dependence is still not a concern.

3. The high observed value 40 at the beginning of the series belongs to year 1914, the summer of which is known for
historians as being unusually warm and pleasant, right before the outburst of World War I, end of July 1914.
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Figure 2: Original time series and fitted model.
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Figure 3: Sample autocorrelation function for the residuals.

One might contemplate a simpler statistical model, though not taking into account

the particular structure of data. A negative binomial distribution with meanµ= exp(β0+

β1x), say, could then be directly fitted to all outcomes of WSDI in a regression model

(using the routine glm.nb in the package MASS in R). Such a model results in an esti-

mate β̂1 = 0.0092 for the slope (standard error 0.0055) with the related p-value 0.092,

which could be compared to the corresponding estimate for the hurdle model.

For model comparison, values of AIC (Akaike’s Information Criterion, Akaike 1973)

are useful:

AIC = 2k−2lnL

where k is the number of parameters and L the value at the optimum of the likelihood

function. These were computed for the two considered models. For the hurdle model,

AIC = 505.7, while for the approach with negative binomial, AIC = 597.8. A model

with as small AIC as possible is preferable, and there is hence some merit of the hurdle

model in this respect.
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5. Discussion

Regression models for counts find applications in many scientific fields. Typically, a

Poisson distribution is assumed for count data, but the original models have to be mod-

ified in order to model e.g. overdispersion or excesses of zeros. One special model is

the so-called hurdle model, attributed to Mullahy (1986). As a further, quite recent, de-

velopment of the hurdle model could be mentioned Saffari, Adnan and Greene (2012),

where a framework with hurdle models adopted to right-censored data was presented

(application to counts of fish).

In this paper, a hurdle model for the case of left-truncated data was presented, moti-

vated by an application from climatology where data is either zero or an integer at least

six. Estimation was carried out by likelihood techniques. The obtained results were

compared with estimates from a simpler model, fitting a negative binomial distribution

directly to the counts. Point estimates of trend (coefficient for slope) became of roughly

the same magnitude. Comparison of AIC indicates that the hurdle model is preferable.

However, for all estimated parameters, uncertainties are considerably high, as can be

reflected from related p-values.

The meaning of the quantity WSDI as an additive measure of days may have in-

fluences on the distribution over possible integers. For instance, a WSDI of 11 can be

obtained only as a single period of 11 days, while an observed count of 14 can result

in three ways: a single period of 14, adding 6 and 8 or adding 7 and 7. Thus, in addi-

tion to natural variability, results could vary due to combinatoric reasons. For the data

sets, the following table of counts for various WSDI can be compiled (for Falun, also

cf. Figure 1, top panel):

WSDI 7 8 9 10 11 12 13 14 15

Counts, Falun 10 3 5 1 1 2 1 3 3

Counts, Uppsala 6 4 3 1 2 4 6 6 2

Count, Stockholm 6 5 4 1 0 2 3 2 4

We note that for WSDI equal to 10 and 11, few counts are found (not likely com-

binations to occur). Thus, to model WSDI with a probability distribution, possibly this

phenomenon could be taken into account.

For all types of regression models, model assessment is an important objective. A

review for the common cases of regression with count data is given by Cameron and

Trivedi (2013), where it is also stated in Chapter 5 (Model Validation and Testing) that

there is “. . . considerable scope for generalization and application to a broader range of

count data models.” In this paper, we made a simple investigation (see Figures 2 and 3).

Further research would be to, for instance, develop and examine goodness-of-fit tests

for the hurdle model with truncated observations for the non-zero part.

In this paper, regression models for counts were modelled using time as a covariate.

It could be mentioned that a non-parametric regression methodology based on P-splines
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might be a useful approach, see the recent paper by Eilers, Marx and Durbán (2015) in

this journal.
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