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Abstract

The simple assembly line balancing problem type E (abbreviated as SALBP-E) occurs when the

number of workstations and the cycle time are variables and the objective is to maximise the line

efficiency. In contrast with other types of SALBPs, SALBP-E has received little attention in the

literature. In order to solve optimally SALBP-E, we propose a mixed integer liner programming

model and an iterative procedure. Since SALBP-E is NP-hard, we also propose heuristics derived

from the aforementioned procedures for solving larger instances. An extensive experimentation is

carried out and its results show the improvement of the SALBP-E resolution.

MSC: 90C27 (Combinatorial Optimisation).

Keywords: Assembly line balancing, SALBP, manufacturing optimisation.

1. Introduction

Assembly line balancing problems (ALBPs) consist in assigning optimally (according to

a given objective function) the tasks of an assembly or production process to the ordered

workstations of an assembly line (or several assembly lines) such that some specific

conditions are satisfied. These NP-hard problems (Gutjahr and Nemhauser, 1964) have

an important relevance in many production systems such as in automotive and electronic

industries (Battaı̈a and Dolgui, 2013). Thus, ALBPs have been extensively studied in

the literature and several surveys have been published. Some recent surveys are Erel

and Sarin (1998), Rekiek et al. (2002), Becker and Scholl (2006), Scholl and Becker

(2006a,b), Boysen et al. (2008), Battaı̈a and Dolgui (2013).
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The most basic family of ALBPs is the simple assembly line balancing problem

(SALBP). SALBP is defined with the following assumptions (Baybars, 1986): 1) a task

cannot be split among workstations; 2) there are precedence relations between tasks; 3)

all tasks must be processed; 4) the task process times are independent of the workstation,

they are known with certainty, they are not sequence dependent and they are additive at

any workstation; 5) all workstations have the same associated costs; 6) any task can be

processed at any workstation; 7) the line is serial and without feeder or parallel sub-

assembly lines; 8) the line is designed for a unique model of a single product.

According to Baybars’ nomenclature, when the objective is to minimise the number

m of workstations for a given upper bound on the cycle time ct, the SALBP is called

SALBP-1; if the objective is to minimise ct for a given m, the problem is called SALBP-

2. On the other hand, SALBP-E is a more general version of SALBP which consists in

finding the combination of m and ct such that the line efficiency is maximised. The effi-

ciency is measured as the sum of task process times, tsum, divided by the product m · ct.

In practice SALBP-E has a lower bound on m (due to a desired degree of the division

of the labour) and/or an upper bound on ct (due to a minimum desired production rate);

otherwise, SALBP-E would be trivial since a line with m = 1 and ct = tsum has an effi-

ciency equal to 1. When the aim is to find a feasible line balance for a given combination

of m and ct, the problem is called SALBP-F.

SALBP-1 is the most studied problem in the ALBP literature and a lot of exact

and heuristic procedures have been designed for its resolution (see Scholl and Becker,

2006b). SALBP-2 has been also studied although there exist fewer procedures and most

of them are based on repeatedly solving SALBP-1 with different values (see Scholl and

Becker, 2006b, Uğurdağ et al., 1997). SALBP-F can be solved with modified SALBP-1

or SALBP-2 procedures (Scholl and Becker, 2006b).

In the last years researchers have intensified their efforts studying ALBPs with addi-

tional characteristics. For instance, among others: general assignment constraints (e.g.

Scholl et al., 2010), task times depending on the sequence (e.g. Capacho et al., 2009),

setup times between tasks (e.g. Martino and Pastor, 2010), uncertainty on task times

(e.g. Saif et al., 2014), task times dependent on the workers (e.g. Moreira et al., 2015),

space constraints (e.g. Chica et al., 2016), constrained resources (e.g. Corominas et al.,

2011), lengths of the workpieces larger than the accessibility windows of the worksta-

tions (e.g. Calleja et al., 2014), ergonomics considerations (e.g. Bautista et al., 2016),

mixed-model lines (e.g. Battaı̈a et al., 2015), robotic lines (Levitin et al., 2006, Gao et

al., 2009, Yoosefelahi et al., 2012), U-shaped lines (e.g. Ogan and Azizoglu, 2015), ma-

chining transfer lines (e.g. Battaı̈a and Dolgui, 2012) and parallel two-sided assembly

lines (e.g. Tapkan et al., 2016).

In contrast, to the best of our knowledge, very few procedures have been discussed

for SALBP-E. Plans and Corominas (1999) formulated a MILP model which solves

optimally SALBP-E. The model is tested only on seven instances and, thus, the com-

putational experiment is insufficient. Scholl and Becker (2006b) outlined the following

exact approach. All combinations of m and ct values are (implicitly) considered and
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SALBP-F is examined (that is, whether there is a feasible solution with m workstations

and a cycle time equal to ct). The feasible combination with best efficiency would be the

optimal SALBP-E solution. The drawback is that a lot of combinations may be consid-

ered and SALBP-F is itself NP-hard. Wei and Chao (2011) designed an exact procedure

based on solving optimally as many SALBP-2 as admissible values for m; each SALBP-

2 is solved by means of mixed integer linear programming (MILP). That work contains

some errors which are corrected in Garcı́a-Villoria and Pastor (2013). Additionally, the

computational experiment in Wei and Chao (2011) is limited to small instances that can

be solved optimally in a short computing time. An ALBP type-E considering stochastic

task times has been dealt in Gurevsky et al. (2012) and Zacharia and Nearchou (2013),

in which two heuristic procedures and a genetic algorithm are developed, respectively.

A genetic algorithm is also used in Al-Hawari et al. (2015) to solve a multi-objective

ALBP, which includes the maximization of the line efficiency. Esmaeilbeigi et al. (2015)

proposed mathematical programming for SALBP-E and different variants of a model

and redundant constraints are compared.

The aim of this study is to improve the resolution of SALBP-E. We propose a MILP

model together with an enhanced procedure based on the iterative one designed by Wei

and Chao (2011). A computational experiment shows that our proposal outperforms the

previously published methods.

The remaining paper is organised as follows. First, Section 2 presents the terminol-

ogy, bounds on the objective function and the cycle time, and the MILP model. The

enhanced iterative procedure and its derived heuristics are presented in Section 3. In

Section 4 the proposed procedures are tested on a well-known benchmark set of in-

stances; the procedures are compared and the results show that the SALBP-E resolution

is improved. We conclude with the final conclusions in Section 5.

2. Terminology, lower and upper bounds and MILP

The data that define a SALBP-E instance are the following:

n Number of tasks

ti Process time for task i (i = 1, . . . ,n)
IP Set of immediate precedence relations, such that (h, i) ∈ IP means that task h

must be performed before task i

mmin, mmax The minimum and maximum number of workstations allowed, respectively

The SALBP-E objective is to maximise the efficiency E of the line (recall that

E = tsum/(m · ct), where tsum =
∑

i=1...n ti). Note that this objective is equivalent to min-

imise the line capacity Z = m · ct. We propose the following bounds on the cycle time

and the line capacity, where ⌈x⌉ (⌊x⌋) is the operator that returns the smallest (greatest)

integer that is equal to or greater (smaller) than x:



230 Improving the resolution of the simple assembly line balancing problem type E

LBct Lower bound of cycle time: LBct = LBct
mmax

, where LBct
m = max(maxi=1...n ti,

⌈tsum/m⌉)
UBct Upper bound of cycle time: UBct =UBct

mmin
, where UBct

m = max(maxi=1...n ti, 2 ·

⌊tsum/m⌋)
LBZ Lower bound on the line capacity: LBZ = minm=mmin...mmax(m ·LBct

m)

UBZ Upper bound on the line capacity: UBZ = minm=mmin...mmax(m ·UBct
m)

LBct
m and UBct

m are a lower and upper bound, respectively, on the cycle time for a given

number of workstations m; that is, they are bounds of SALBP-2 (Scholl, 1999). Thus,

LBct
mmax

and UBct
mmin

are lower and upper bounds on the cycle time of SALBP-E, re-

spectively. With respect to the bounds on the line capacity, they are straightforwardly

deduced from the bounds on the efficiency formulated in Scholl (1999).

Moreover, we define the following additional data that are derived from the above

data and bounds:

Pi Set of all tasks which must precede task i (i = 1 . . .n):
Pi =

⋃
h=1...n|(h,i)∈IP({h}∪Ph)

Si Set of all tasks which must succeed task i (i = 1 . . .n):
Si =

⋃
h=1...n|(i,h)∈IP({h}∪Sh)

Ei Earliest workstation to which task i can be assigned (i = 1 . . .n):

Ei = ⌈(ti+
∑

h∈Pi
th)/UBct⌉

Li Latest workstation to which task i can be assigned (i = 1 . . .n):

Li = maxm=mmin...mmax(m+1−⌈(ti+
∑

h∈Si
th)/UBct

m⌉)
Wj Set of tasks that can be assigned to workstation j ( j = 1 . . .mmax):

Wj = {i = 1 . . .n : Ei ≤ j ≤ Li}

Formulations of SALBP-1 (also of SALBP-2) usually define the earliest and latest

workstation in which each task can be assigned based on the precedence relations (e.g.

Saltzman and Baybars, 1987). Analogously for SALBP-E, we define Ei and Li as the

earliest and latest workstation in which task i can be assigned, respectively. They are

used to reduce significantly the size of the MILP model of the problem.

The mathematical model is formulated as follows:

Variables

z Line capacity: LBZ ≤ z ≤UBZ

ct Cycle time: LBct ≤ ct ≤UBct

xi j ∈ {0,1} 1 if task i is assigned to station j; 0 otherwise (i = 1 . . .n; j = Ei . . .Li)

y j ∈ {0,1} 1 if station j exists; 0 otherwise ( j = mmin +1 . . .mmax)
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Model

[MIN] z (1)

∑Li
j=Ei

xi j = 1 i = 1 . . .n (2)

∑
i∈W j

ti · xi j ≤ ct j = 1 . . .mmax (3)

∑Lh
j=Eh

j · xh j ≤
∑Li

j=Ei
j · xi j ∀(h, i) ∈ IP (4)

∑
i∈W j

xi j ≤ ‖Wj‖ · y j j = mmin +1 . . .mmax (5)

z ≥ mmin · ct (6)

z ≥ j · ct −M j · (1− y j) j = mmin +1 . . .mmax

where M j = j ·UBct −min j−1
m=mmin

(m ·LBct
m) (7)

y j ≥ yk j = mmin +1 . . .mmax −1;k = j+1 . . .mmax (8)

Objective function (1) minimises the line capacity (recall that it is equivalent to max-

imise the line efficiency). Constraints (2) ensure that each task is assigned to one and

only one workstation. Constraints (3) imply that the cycle time is not lower than the to-

tal task process time assigned to any workstation. Constraints (4) impose the precedence

relations. Constraints (5) force a workstation to be open when some task is assigned to

it. Constraints (6) and (7) link the line capacity with the number of open workstations

and the cycle time. Finally, constraints (8) impose that the open workstations must be

contiguous (as it is done in Pastor et al., 2011) and break symmetries.

The main differences between our enhanced MILP model and the model proposed in

Plans and Corominas (1999) (let they be named Enh-MILP and CP-MILP, respectively)

are: (i) the addition of a lower bound on the cycle time and a lower and upper bound

on the line capacity; and (ii) the constraints that impose the contiguousness of the open

workstations.

3. Iterative procedures

First we explain in Section 3.1 the procedure proposed in Wei and Chao (2011) and

corrected in Garcı́a-Villoria and Pastor (2013); let it be named Iterative Procedure (IP).

Then we propose our enhanced iterative procedure in Section 3.2; let it be named En-

hanced Iterative Procedure (EIP). When non-small instances are solved, the above pro-

cedures may need a huge computational time to solve optimally them, so a maximum
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global time has to be set. Section 3.3 discuses several heuristics based on IP and EIP in

which the maximum time is shared among their iterations in different ways.

3.1. Iterative Procedure (IP)

The Wei and Chao’s iterative procedure (IP) consists in solving the corresponding SALBP-

2 for each value of m between mmin and mmax. Figure 1 shows its pseudocode.

Let CT(Sol) be the cycle time of solution Sol

Z∗ = ∞

For m = mmin . . .mmax do:

Sol = Solve SALBP-2 with m workstations

If m ·CT (Sol)≤ Z∗ then Sol∗ = Sol, Z∗ = m ·CT (Sol) End if

End for

Return Sol∗

Figure 1: Pseudocode of Iterative Procedure for SALBP-E.

The following MILP model is used to solve SALBP-2:

Additional data

m Number of workstations

E ′
i Earliest workstation to which task i (i = 1 . . .n) can be assigned:

E ′
i = ⌈(ti +

∑
h∈Pi

th)/UBct
m⌉

L′
i Latest workstation to which task i (i = 1 . . .n) can be assigned:

L′
i = m+1−⌈(ti+

∑
h∈Si

th)/UBct
m⌉

W ′
j Set of tasks that can be assigned to workstation j ( j = 1 . . .m):

W ′
j = {i = 1 . . .n : E ′

i ≤ j ≤ L′
i}

Variables

ct Cycle time: LBct
m ≤ ct ≤UBct

m

xi j ∈ {0,1} 1 if task i is assigned to station j; 0 otherwise (i = 1 . . .n; j = E ′
i . . .L

′
i)

Model

[MIN] ct 1(9)

∑L′i
j=E ′

i
xi j = 1 i = 1 . . .n (10)
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∑
i∈W ′

j
ti · xi j ≤ ct j = 1 . . .m (11)

∑L′h
j=E ′

h
j · xh j ≤

∑L′i
j=E ′

i
j · xi j ∀(h, i) ∈ IP (12)

3.2. Enhanced Iterative Procedure (EIP)

One drawback of IP is that each resolution of SALBP-2 does not use any information

of the previous SALBP-2 solutions. To improve the performance of IP we propose an

enhanced iterative procedure (EIP), which takes advantage of the best solution known

up to the current iteration.

Let ni = mmax −mmin + 1 be the number of iterations of the IP and let Z∗
p be the

best line capacity value found at the beginning of iteration p (p = 1 . . .ni); we consider

Z∗
1 =∞. The SALBP-2 to solve at iteration p has m= p+mmin−1 workstations; let Solm

be its optimum solution. The cycle time of Solm, CT (Solm), must fulfil the following

condition in order to have a better line capacity than the best SALBP-E solution known

at the moment:

m ·CT (Solm)< Z∗
p ≡CT (Solm)≤ ⌊(Z∗

p −1)/m⌋ (13)

Eq. 13 assumes, without loss of generality, that the process task times are integers,

restricting cycle times and line capacities to integer values.

EIP is an adaptation of IP in order to reduce the search space of each SALBP-2

thanks to the condition expressed in Eq. 13. Thus, each iteration of EIP may be more

efficient. The EIP pseudocode is very similar to the one shown in Figure 1. The differ-

ences are at each iteration p the Z∗
p value is available and the domain of variable ct of the

MILP model to solve SALBP-2 may be tighter. The ct domain is expressed in Eq. 14:

LBct
m ≤ ct ≤ min(UBct

m,⌊(Z
∗
p −1)/m⌋) (14)

Note that the SALBP-2 model used by EIP may be infeasible. Its infeasibility at

iteration p means that the optimum solution of SALBP-2 with m = p+mmin −1 work-

stations is not better than the best SALBP-E solution found up to iteration p−1. Thus,

EIP continues the search at the next iteration.

3.3. Heuristics derived from IP and EIP

Wei and Chao (2011) assumed that, at each iteration of IP, its corresponding SALBP-2

would be solved optimally. However, for non-small instances, the required time may be

huge in practice. Heuristics can be derived from IP and EIP limiting the maximum total
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computing time to D and returning the best solution found. In that case, one question

that arises is how to distribute the available time among the ni iterations. We propose

three ways similarly as it is done in the ALBP literature (see, for example,Pastor 2011):

T1 The maximum computing time for solving SALBP-2 at the first iteration is D, at

the second iteration is the remaining time (if any), and so on. That is, the time

limit at iteration p, TLp, is the following:

TLp = D−
∑

q=1...p−1 τq for p = 1 . . .ni, where τq is the time spent for solving

SALBP-2 at iteration q.

T2 The maximum computing time for solving SALBP-2 is half of the remaining time

(except for the last SALBP-2, which is all remaining time). That is:

TLp =(1/2) ·(D−
∑

q=1...p−1 τq) for p= 1 . . .ni−1, and TLni =D−
∑

q=1...ni−1 τq.

T3 The maximum computing time for solving SALBP-2 is the remaining time di-

vided by the number of the remaining iterations. That is:

TLp = (D−
∑

q=1...p−1 τq)/(ni− p+1) for p = 1 . . .ni.

Combining the two iterative procedures (IP and EIP) and the three ways of splitting

the available computing time (T1, T2 and T3) results in a total of six heuristics: IP-

T1, IP-T2, IP-T3, EIP-T1, EIP-T2 and EIP-T3. Note that two heuristics can also be

derived from the introduced mathematical models (Section 2) limiting their maximum

computing time to D.

Illustrative example of the heuristics mechanism

In order to clarify how the proposed heuristics work, we will show as example the

iterations of EIP-T1 when it is applied to solve the instance named Lutz3 with mmin = 12

and mmax = 15 with a total computing time D= 3600 s. Thus, EIP-T1 will iterate 4 times

(ni = mmax −mmin +1 = 4).

EIP-T1

Iteration p= 1. Z∗
1 =∞. TL1 =D= 3600. SALBP-2 is solved with m= 12 worksta-

tions and a solution is found; let it be called Sol12, with ct(Sol12)= 138. Let Sol∗ = Sol12

(whose line capacity is equal to 12 · 138 = 1656 ). The time spent in this iteration is

τ1 = 14.

Iteration p = 2. Z∗
2 = 1656. T L2 = D− τ1 = 3586. SALBP-2 is solved with m = 13

workstations and the model is infeasible (therefore, there is no solution with 13 worksta-

tions and a line capacity smaller than Z∗
2 , recall Eq. 14). The time spent in this iteration

is τ2 = 1.

Iteration p = 3. Z∗
3 = 1656. TL3 = D− τ1 − τ2 = 3585. SALBP-2 is solved with

m = 14 workstations and a solution is found; let it be called Sol14, with ct(Sol14) = 118.
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Let Sol∗ = Sol14 (whose line capacity is equal to 14 · 118 = 1652 ). The time spent in

this iteration is τ3 = 5.

Iteration p = 4. Z∗
4 = 1652. TL4 =D−τ1−τ2−τ3 = 3580. SALBP-2 is solved with

m = 15 workstations and a solution is found; let it be called Sol15, with ct(Sol15) = 110.

Let Sol∗ = Sol15 (whose line capacity is equal to 54 ·110 = 1650 ).

Return solution Sol∗

EIP-T2 and EIP-T3 would iterate in a similar way but the time limits at each iteration

would be the following. For EIP-T2: TL1 = D/2 = 1800, TL2 = (D− τ1)/2 = 1793,

TL3 = (D− τ1 − τ2)/2 = 1792 and TL4 = D− τ1 − τ2 − τ3 = 3580. And for EIP-T3:

TL1 =D/4= 900, TL2 = (D−τ1)/3= 1195, T L3 = (D−τ1−τ2)/2= 1792 and TL4 =

D− τ1 − τ2 − τ3 = 3580. Note that the results at each iteration would not be different

since τp < TLp for p = 1 . . .4.

4. Computational experiments

The MILP models are solved using the IBM ILOG CPLEX 12.2 Optimiser; the abso-

lute MIP gap tolerance is set to 0.9999 (since process task times are integer values). The

iterative procedures are implemented in Java SE 1.6.21. The experiments are run on a

PC 3.16 GHz Pentium Intel Core 2 Duo E8500 with 3.46 GB of RAM. The maximum

computing time D per instance and procedure is limited to 3,600 seconds. Note that in a

real application, when the design of the assembly line is a strategic problem, the compu-

tational time could be much greater; however, one hour seems a reasonable compromise

in order to use a variety of instances and, at the same time, make the computational

experiment affordable.

Section 4.1 presents the test instances used in the experiments. Section 4.2 shows

the obtained results and Section 4.3 compares the heuristic procedures between them.

Section 4.4 studies the quality of the proposed heuristics according to the characteristics

of the instances. Finally, Section 4.5 analyses how the distribution of the computing time

among the iterations affects the performance of the heuristics.

4.1. Description of the test instances

Our experiments are performed on the 256 benchmark SALBP-E instances that are

available in Scholl and Klein’s assembly line balancing research website (www.assembly-

line-balancing.de). Scholl (1993) generated these instances from twenty-four problems

varying the mmin and mmax values. Table 1 shows the problem name, its number of tasks,
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Table 1: Test problems.

Name Number Process time Order mmin mmax

of tasks Minimum Maximum Average strength range range

Arcus1 83 233 3691 912.1 59.09 3 to 19 9 to 21

Arcus2 111 10 5689 1354.9 40.38 3 to 22 7 to 27

Barthold 148 3 383 38.1 25.8 3 to 14 5 to 15

Barthol2 148 1 83 28.6 25.8 3 to 51 10 to 52

Bowman 8 3 17 9.4 75 3 to 4 5 to 5

Buxey 29 1 25 11.2 50.74 3 to 10 7 to 13

Gunther 35 1 40 13.8 59.5 3 to 12 8 to 13

Hahn 53 40 1775 264.6 83.82 3 to 7 4 to 8

Heskiaoff 28 1 108 36.6 22.49 3 to 9 10 to 10

Jackson 11 1 7 4.2 58.18 3 to 5 7 to 7

Jaeschke 9 1 6 4.1 83.33 3 to 6 7 to 7

Killbridge 45 3 55 12.3 44.55 3 to 10 11 to 11

Lutz1 32 100 1400 441.9 83.47 3 to 10 11 to 11

Lutz2 89 1 10 5.4 77.55 3 to 46 13 to 49

Lutz3 89 1 74 18.5 77.55 3 to 19 9 to 23

Mansoor 11 2 45 16.8 60 3 to 4 5 to 5

Mertens 7 1 6 4.1 52.38 3 to 4 5 to 5

Mitchell 21 1 13 5 70.95 3 to 7 9 to 9

Roszieg 25 1 13 5 71.67 3 to 9 10 to 10

Sawyer 30 1 25 10.8 44.83 3 to 10 7 to 13

Scholl 297 5 1386 234.5 58.16 3 to 50 4 to 51

Tonge 70 1 156 50.1 59.42 3 to 21 12 to 23

Warnecke 58 7 53 26.7 59.1 3 to 28 13 to 30

Wee-Mag 75 2 27 20 22.67 3 to 36 9 to 38

their minimum, maximum and average process times, the order strength of the prece-

dence graph and the ranges on the mmin and mmax values used to generate the instances.

4.2. Results of the procedures

When the objective function value of the obtained solution is equal to the lower bound,

LB, value (or, strictly speaking, when the difference between them is less than one),

then the solution optimality is demonstrated. In the case of the MILP procedures for

SALBP-E, LB is equal to the lower bound returned by CPLEX. In the case of the iter-

ative procedures, LB is calculated as follows. Let LBcplexct
m be the lower bound on the

cycle time returned by CPLEX when it solves SALBP-2 with workstations; thus, LB is
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equal to minm=mmin...mmax(m ·LBcplexct
m). Moreover, we consider that LBcplexct

m = LBct
m

when no lower bound is returned by CPLEX within the maximum time assigned and

LBcplexct
m = ∞ when the SALBP-2 model is infeasible.

Table 2 summarises the type of solutions obtained with each procedure. The follow-

ing information is given: the number of instances with a proved optimal solution (#Opt);

the number of instances with a feasible solution whose optimality is not proven (#Fea);

and the number of instances without finding a feasible solution (#Uns).

Table 2: Type of the obtained solutions.

CP-MILP Enh-MILP IP-T1 IP-T2 IP-T3 EIP-T1 EIP-T2 EIP-T3

#Opt 72 90 121 124 120 144 143 141

#Fea 175 156 135 132 135 112 113 114

#Uns 9 10 0 0 1 0 0 1

In terms of proved optimal solutions, our proposed MILP model, Enh-MILP, out-

performs the model proposed in Plans and Corominas (1999), CP-MILP. Nevertheless,

both approaches are clearly worse than any iterative procedure. Moreover, Enh-MILP

and CP-MILP cannot find a solution in 10 and 9 instances, respectively, whereas the

iterative procedures always find a solution (IP-T1, IP-T2, EIP-T1 and EIP-T2) or only

the same 1 instance remains unsolved (IP-T3 and EIP-T3).

4.3. Comparison between the heuristic procedures

We focus on the comparison of the heuristic pairs (IP-T1, EIP-T1), (IP-T2, EIP-T2) and

(IP-T3, EIP-T3). Table 3 shows, for each pair, the number of instances in which both

procedures guarantee the optimal solution (#Opt) and the average computational time,

in seconds, for solving these instances (Time). Table 3 also shows, for each pair, the

number of instances when none of the procedures guarantees the optimal solution in the

computing time allowed (#Fea) and the number of times that a procedure finds a better

solution than the another procedure (#Best).

Table 3: Results when both procedures guarantee the optimal solution or when neither procedure guaran-

tees the optimal solution.

Optimal solutions Feasible solutions

Time

distribution

#Opt
Time

#Fea
#Best

IP EIP IP EIP

T1 121 1057.1 201.39 112 0 24

T2 124 1189.39 180.38 113 0 42

T3 120 1045.42 191.94 114 0 32
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Results in Tables 2 and 3 confirm the effectiveness of the proposed improvements

regardless of how the global time is shared among the iterations of the procedures. EIP

heuristics are able to find around 15% more proven optimal solutions than the IP heuris-

tics and all instances solved optimally by one IP heuristic are also solved optimally by

its analogous EIP heuristic. Regarding the computational time, the average times spent

by EIP heuristics when an instance is solved optimally are at least five times less than

the IP average times. Furthermore, all feasible solutions reached by an EIP heuristic has

the same or better quality than the solutions reached by its analogous IP heuristic.

4.4. Quality of the proposed heuristics according to the instance
characteristics

We now focus on the comparison of the three EIP heuristics, which are the best heuris-

tics, taking into account the influence of the characteristics of the instances (as outlined

in Table 1) on the quality of the results. Specifically, we create subset of instances ac-

cording to the number of tasks and order strength. The number of tasks is respectively

classified as low, medium and high according to the ranges (7, 35), (45, 111) and (148,

297). Likewise, the order strength is respectively considered low, medium and high ac-

cording to the ranges (22.49, 25.80), (40.38, 60.00) and (70.95, 83.82).

Table 4: Number of proven optimal solutions for each combination of number of tasks and order strength.

Procedure
LL LM LH ML MM MH HL HM

(6) (30) (20) (22) (67) (40) (39) (32)

EIP-T1 6 30 20 14 25 31 15 3

EIP-T2 6 30 20 14 24 32 15 2

EIP-T3 6 30 20 14 22 31 15 3

Table 5: Quality of the solutions for each combination of number of tasks and order strength.

Procedure
LL LM LH ML MM MH HL HM

(6) (30) (20) (22) (67) (40) (39) (32)

= 6 30 20 20 32 30 19 2

EIP-T1 0 (0) 0 (0) 0 (0) 0 (2) 5 (9) 0 (1) 3 (4) 15 (2)

EIP-T2 0 (0) 0 (0) 0 (0) 0 (0) 12 (3) 1 (0) 4 (4) 7 (2)

EIP-T3 0 (0) 0 (0) 0 (0) 0 (0) 7 (15) 2 (7) 1 (8) 5 (23)

Tables 4 and 5 report the results obtained by each procedure for combinations of

order strength and number of tasks. The column headers use L, M and H for low, medium

and high, respectively. The first letter is for the number of tasks and the second letter

for the order strength. This is followed by the number of instances in the subset, which
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is shown between parentheses. Table 4 shows the number of instances with a proved

optimal solution. Table 5 contains the number of times that all procedure obtains the

same quality solution (”=”) and, for each procedure, the number of times that it obtains

a better solution (and a worst solution between parentheses) than the other two solutions

obtained with the other procedures; we consider the non-existent solution of the only

instance unsolved with EIP-T3 (see Table 2) worse than any feasible solution.

Results show that all EIP procedures are very similar with respect to the number

of optimal solutions regardless of the characteristics of the instances. However, with

respect to the quality of the solutions, we can see EIP-T3 that is, on average, worse than

EIP-T1 and EIP-T2. EIP-T2 tends to be better than EIP-T1 in terms of quantity of best

and worst solutions; the exception is in instances with high number of tasks and medium

order strength, in which EIP-T1 performs, on average, better.

4.5. Analysis of the proposed heuristics

Lastly, we investigate the different performances of the EIP heuristics. To do so, we

record for each instance the number of workstations of the best known solution, m∗ (i.e.

the best solution obtained with any of the eight procedures). If multiple best solutions

have been obtained, then the one with the lowest number of workstations is considered.

Table 6 reports the number of times (#Ins) that the difference between m∗ and mmin is 0,

1, 2, etc.

Table 6: Differences between the best number of workstations and mmin.

m∗−mmin = 0 = 1 = 2 = 3 = 4 ≥ 5

#Ins 168 44 26 11 3 4

We can observe that most of the number of workstations of the best found solutions

are equal to or close to the minimum value allowed. Thus, it seems reasonable that

EIP-T3, which tends to share equally the maximum global time among all SALBP-

2 resolutions, performs worse than EIP-T1 and EIP-T2, which tend to give priority to

SALBP-2 with fewer number of workstations. On the other hand, EIP-T1 might perform

slightly worse than EIP-T2 because in some cases the time spent by EIP-T1 in the first

SALBP-2 may be too much (potentially all time could be spent in it and no SALBP-2 is

solved with other numbers of workstations).

5. Conclusions and future research

SALBP is the type of assembly line balancing problems most studied in the literature.

However, most research efforts are reduced to SALBP-1 and SALBP-2. The resolution

of SALBP-E, in which the number of workstations and cycle time are variables, has
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not received enough attention in the literature with the notable exceptions of Plans and

Corominas (1999) and Wei and Chao (2011).

The special interest in our work has been the exact resolution of SALBP-E. We pro-

pose an enhanced MILP model, together with an iterative procedure (based on solving

SALBP-2 at each iteration) which improves the one proposed by Wei and Chao (2011).

Since we expected that large instances cannot be solved optimally in a practical time,

we proposed several heuristics based on limiting the maximum computing time and re-

turning the best solution found. Specifically, we propose three ways of distributing the

available time among the different SALBP-2 resolutions of the iterative procedures.

Through extensive experimentation, we have been able to determine the benefits

of adding the proposed improvements to the existing iterative procedure. On the other

hand, we have detected that a direct approach as the proposed MILP model performs

worse than any iterative procedure. Nevertheless, other direct approaches should not

be dismissed and a procedure based on, for instance, branch & bound will be studied.

Regarding the heuristic resolution of this problem, another line of search that we will

follow is the use of metaheuristics, which may obtain better results for large instances.
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Abstract

This article is directed at the problem of reliability estimation using ranked set sampling. A non-

parametric estimator based on kernel density estimation is developed. The estimator is shown to

be superior to its analog in simple random sampling. Monte Carlo simulations are employed to

assess performance of the proposed estimator. Two real data sets are analysed for illustration.
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1. Introduction

Ranked set sampling (RSS) is a cost-efficient alternative to simple random sampling

(SRS) in situations where exact measurements of sample units are difficult or expen-

sive to obtain but (judgment) ranking of them according to the variable of interest is

relatively easy and cheap. A variety of methods can be used to implement the ranking,

including visual inspection, expert opinion, or through the use of auxiliary variables, but

it cannot entail actual measurements on the selected units. The RSS was first introduced

by McIntyre (1952) in an agricultural experiment for estimating the mean pasture yield.

Since then, it has been well adopted to environmental, ecological and health studies. The

reader is referred to Chen (2007) for some novel applications in areas such as clinical

trials and genetic quantitative trait loci mappings.
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The RSS procedure can be described as follows. First, m2 units are collected as inde-

pendent and identically distributed draws from the population. These units are randomly

partitioned into m sets, each of size m. In the first set, the response judged to be small-

est is taken for full quantification; in the second set, the response judged to be second

smallest is taken; and so on, until in the last set, the response judged to be largest is

taken. These measured values, along with the associated ranks form a ranked set sample

of size m. The parameter m is called set size, which should be kept small to facilitate

the judgment ranking process. Let X[i] (i = 1, . . . ,m) be the ith judgement order statistic

from the ith set; then the resulting sample is denoted by X[1], . . . ,X[m]. Here, the square

bracket is used to indicate that the judgement ranks may not be correct. If our ranking

is accurate, then we replace the square brackets with the round ones, and X(i) becomes

the ith true order statistic from the ith set. If a larger sample size is needed the above

procedure may be repeated k times (cycles). So a ranked set sample, in its general setup,

may be represented by {X[i]r : i = 1, . . . ,m;r = 1, . . . ,k}, where X[i]r is the ith judgement

order statistic in the rth cycle.

A ranked set sample contains more information than a simple random sample of

comparable size because it contains not only information carried by quantified obser-

vations but also information provided by the ranking process. Thus, it is expected that

statistical procedures based on RSS tend to be superior to their SRS analogues. For a

good review of RSS and its applications, see Chen et el. (2004). The interested reader is

also referred to Wolfe (2004, 2010) and the references therein. Mahdizadeh and Arghami

(2013), and Tahmasebi and Jafari (2014) are examples of recently published papers on

RSS methods.

The stress-strength model, in its simplest form, defines the reliability of a component

as the probability that the strength of the unit (X ) is greater than the stress (Y ) imposed on

it. The quantity θ= P(X >Y ) is referred to as the reliability parameter. Although the use

of stress-strength models was originally motivated by problems in physics and engineer-

ing, it is not limited to these contexts. It is worth mentioning that θ provides a general

measure of the difference between two populations, and has found applications in differ-

ent fields such as economics, quality control, psychology, medicine and clinical trials.

For instance, if Y is the response of a control group, and X is that of a treatment group,

then θ is a measure of the treatment effect. This situation is exemplified in Section 5.

There has been continuous interest in the problem of estimating θ when X and Y are

independent variables, and belong to the same family of distributions. A comprehensive

account of this topic appears in Kotz et al. (2003). The reliability estimation under RSS

has also drawn some attention. Muttlak et al. (2010) derived estimators for θ using

RSS in the case of the exponential distribution. Sengupta and Mukhuti (2008) studied

unbiased estimation of θ using RSS in nonparametric setting based on the empirical

distribution function. They showed that the proposed estimator is more efficient than its

SRS counterpart, even in the presence of ranking errors. In this work, the kernel density

estimator is used to suggest a new estimator.
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Section 2 presents the estimator along with some notions and results which will be

used in the sequel. Theoretical properties are studied in Section 3. Results from simu-

lation experiments appear in Section 4. Two applications are provided in Section 5. A

summary and concluding remarks are given in Section 6. Proofs are postponed to an

appendix.

2. The proposed estimator

Let X1, . . . ,Xm and Y1, . . . ,Yn be independent random samples from two continuous pop-

ulations with density functions f and g, respectively. The corresponding distribution

functions are denoted by F and G. The standard nonparametric estimator of θ is

θ̃SRS =
1

mn

m∑

i=1

n∑

j=1

I(Xi >Yj). (1)

Under the assumptions of independence, it is possible to write

θ = P(X >Y ) = E (I(X >Y )) =
∫ ∫

I(u > v) f (u)g(v)dudv, (2)

where I(.) is the usual indicator function. An alternative estimator of θ can be made by

replacing f and g in (2) with some estimates. To this end, the kernel density estimators

may be utilized which are given by

f̂ (u) =
1

mh1

m∑

i=1

K

(
u−Xi

h1

)

and

ĝ(v) =
1

nh2

n∑

j=1

K

(
v−Yj

h2

)
,

where the kernel K is a symmetric probability density, and the smoothing parameters h1

and h2 are known as the bandwidths.



246 Kernel-based estimation of P(X > Y ) in ranked set sampling

Incorporating f̂ and ĝ in (2), we have

θ̂SRS =
∫ ∫

I(u > v) f̂ (u)ĝ(v)dudv

=
∫ ∫

I(u > v)

[
1

mh1

m∑

i=1

K

(
u−Xi

h1

)][
1

nh2

n∑

j=1

K

(
v−Yj

h2

)]
dudv

=
∫ ∫ ∫ ∫

I(u > v)

[
1

h1

K

(
u− x

h1

)][
1

h2

K

(
v− y

h2

)]
dudvdF̂(x)dĜ(y), (3)

where F̂ and Ĝ are the empirical distribution functions. Using the change of variables

r = (u− x)/h1 and s = (v− y)/h2 in (3), it follows that

θ̂SRS =
∫ ∫ [∫ ∫

I(h1r+ x > h2s+ y)K(r)K(s)dr ds

]
dF̂(x)dĜ(y)

=
∫ ∫

H(x− y)dF̂(x)dĜ(y),

where H is the distribution function of h2S− h1R and R and S are independent random

variables with common density K. If K is the standard normal density, then H is the

distribution function of a normal random variable with mean 0 and standard deviation

t =
√

h2
1 +h2

2. In this case, θ̂SRS takes the form

θ̂SRS =
1

mn

m∑

i=1

n∑

j=1

Φ

(
Xi −Yj

t

)
, (4)

where Φ(.) is the standard normal distribution function. Baklizi and Eidous (2006) used

the above estimator to construct confidence intervals for θ.

Proceeding in the same way, we arrive at the RSS analogue of (4) defined as

θ̂RSS =
1

mn

m∑

i=1

n∑

j=1

Φ

(
X[i]−Y[ j]

t

)
, (5)

where X[1], . . . ,X[m] and Y[1], . . . ,Y[n] are ranked set samples drawn from f and g (with a

single cycle), respectively. In the next section, properties of this estimator are studied.

The results can be extended for other choices of the kernel function.

The success of RSS procedures hinges on how well the within-set rankings to select

the units for measurement can be achieved. Although perfect rankings are the ideal case

for any RSS-based method, it is unlikely to be feasible. Thus it is worth in practice

to evaluate the effect of imperfect rankings on our procedures. The proper way to this

would be using statistical models designed to capture possible errors in the ranking
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process. A number of such imperfect ranking models can be found in the literature. We

build on a model introduced by Bohn and Wolfe (1994). They consider the distributions

of the judgment order statistics to be mixtures of distributions of the true order statistics.

The model is now set forth for our two-sample problem.

The density functions of the ith true and judgement order statistic of a random sample

of size m from f are denoted by f(i) and f[i], respectively. Similar notations are used for

a random sample of size n from G. We postulate an imperfect ranking model MX under

which X[i]’s are assumed to be independently distributed as

P
(
X[i] = X(r)

)
= p ir, (r = 1, . . . ,m),

where p ir is the probability that the rth order statistic is judged to have rank i, and

thus
∑m

r=1 p ir = 1. It is further assumed that
∑m

i=1 p ir = 1. Obviously, this is true in the

perfect ranking scenario, i.e. when p ii = 1 and p ir = 0(r 6= i). Similarly, we postulate

an imperfect ranking model MY under which Y[ j]’s are assumed to be independently

distributed as

P
(
Y[ j] =Y(s)

)
= q js, (s = 1, . . . ,n),

where q js is the probability that the sth order statistic is judged to have rank j, and there-

fore
∑n

s=1 q js = 1. Moreover, it is assumed that
∑n

j=1 q js = 1. The model considering

MX and MY together is referred to as M. Also, misplacement probability matrices are

denoted by P = [p ir]m×m and Q = [q js]n×n.

According to a basic identity in RSS, which simply follows from the binomial ex-

pansion, we have

1

m

m∑

i=1

f(i)(x) = f (x),
1

n

n∑

j=1

g( j)(y) = g(y). (6)

For details, see Chen et al. (2004, Chapter 2). It is easy to verify that these equations

also hold under the model M, i.e.

1

m

m∑

i=1

f[i](x) = f (x),
1

n

n∑

j=1

g[ j](y) = g(y). (7)

These identities are repeatedly used in the sequel.
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3. Main results

Theoretical properties of the suggested estimator are studied in this section. It can be

seen that (4) and (5) are both biased and their expectations are E
{

Φ
(

X−Y
t

)}
. The next

proposition presents variance expression for the two estimators.

Proposition 1 The variances of θ̂SRS and θ̂RSS are given by

m2n2 Var(θ̂SRS) = mn(n−1)EE2

{
Φ

(
X −Y

t

)∣∣∣X
}
+nm(m−1)EE2

{
Φ

(
X −Y

t

)∣∣∣Y
}

+mnE

{
Φ

2

(
X −Y

t

)}
+
(
mn−m2n−n2m

)
E2

{
Φ

(
X −Y

t

)}
(8)

and

m2n2 Var(θ̂RSS) = mE

(
n2E2

{
Φ

(
X −Y

t

)∣∣∣X
}
−

n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

+E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2)

+mnE

{
Φ

2

(
X −Y

t

)}
−m2n2E2

{
Φ

(
X −Y

t

)}
. (9)

The variances of θ̂SRS and θ̂RSS are compared in the next proposition.

Proposition 2 Under model M, Var(θ̂RSS) ≤ Var(θ̂SRS), and the equality holds if f[i] =
f (i = 1, . . . ,m) and g[ j] = g( j = 1, . . . ,n). The latter happens when pir = 1/m(i,r =

1, . . . ,m) and q js = 1/n( j,s = 1, . . . ,n).

The RSS-based procedures tend to outperform their SRS analogues as long as the

judgment ranking is not random. In the case of estimating θ, this was formally shown

(under model M) in the previous proposition. The maximum efficiency is expected to

happen in the perfect ranking setup. We now give a result confirming this property. It

should be mentioned that the approach adopted in proof is distinctly different from that

of similar result in Sengupta and Mukhuti (2008).

Proposition 3 Under model M, the variance of θ̂RSS is minimized in the absence of

ranking errors.
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It is worth noting that the case of perfect rankings is not the only one where the min-

imum variance is achieved. It would also be attained in the case where model M holds,

and P and Q are permutation matrices. In addition, there are cases in the RSS literature

where an appropriately chosen imperfect rankings scheme can lead to more efficient es-

timation than is possible with perfect rankings. To put it another way, Proposition 3 may

not hold under other imperfect ranking models.

We close this section by some remarks on a general form of our proposed estimator.

The estimator (5) is defined for the case where RSS is done with a single cycle. The

ranked set sample size, however, is increased not by increasing the set size, but by in-

creasing the number of cycles. It is therefore important to study the multi-cycle case as

well. In this setup, the estimator is given by

θ̂RSS =
1

mknℓ

m∑

i=1

n∑

j=1

k∑

r=1

ℓ∑

s=1

Φ

(
X[i]r −Y[ j]s

t

)
, (10)

where {X[i]r : i = 1, . . . ,m;r = 1, . . . ,k} and {Y[ j]s : j = 1, . . . ,n;s = 1, . . . , ℓ} are ranked

set samples of size mk and nℓ drawn from f and g, respectively. The above estimator

can be represented as

θ̂RSS =
1

mn

m∑

i=1

n∑

j=1

h
(
X[i],Y[ j]

)
,

where

h
(
X[i],Y[ j]

)
=

1

kℓ

k∑

r=1

ℓ∑

s=1

Φ

(
X[i]r −Y[ j]s

t

)
.

Now, one can proceed with proving analogues of Propositions 1-3. The steps are similar

to current proofs in which

h
(
X[i],Y[ j]

)
= Φ

(
X[i]−Y[ j]

t

)
.

As a reviewer pointed out, the estimator (10) was also studied by Yin et al. (2016).

The authors, however, build on the theory of U-statistics in computing the variance

expression. Moreover, they only show that this estimator is asymptotically more efficient

than its counterpart in SRS. And last but not least, no theoretical result in the imperfect

ranking setup is provided in the aforesaid paper.

For simplicity, we consider the estimator (5) in the next section. But the data analysis

in Section 5 is based on the estimator (10).
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4. Simulation study

This section contains results of simulation studies performed to evaluate behaviours of

θ̂SRS and θ̂RSS. It is assumed that both populations follow normal, exponential or uniform

distribution. Suppose X and Y −µ are standard normal random variables. Then, it is

simply shown that

θ = Φ

(−µ√
2

)
,

where Φ(.) is the distribution function of X . Similarly, for standard exponential random

variables X and Y/α, we have

θ =
1

1+α
.

Finally, let X and Y/β be uniformly distributed on the unit interval. Then, it follows that

θ =

{
1−β/2 0 < β < 1

1/(2β) β ≥ 1
.

Under each parent distribution, five values were assigned to the associated parameter so

as to produce θ = 0.1,0.3,0.5,0.7,0.9. The appropriate parameter values are given in

Table 1. Also, set sizes (m,n) = (3,3),(3,7),(5,5),(10,10) were selected.

Table 1: Parameter values corresponding to different reliability parameters.

θ

Parameter 0.1 0.3 0.5 0.7 0.9

µ 1.812388 0.7416143 0 −0.7416143 −1.812388

α 9 7/3 1 3/7 1/9

β 5 5/3 1 3/5 1/5

We first consider the perfect ranking situation. For each combination of distributions

and sample sizes, 10,000 pairs of samples were generated in SRS and RSS settings.

The two estimators were computed from each pair of samples in the corresponding

designs, and their mean squared errors (MSEs) were determined. The relative efficiency

(RE) is defined as the ratio of M̂SE(θ̂SRS) to M̂SE(θ̂RSS). The RE values larger than

one indicate that θ̂RSS is more efficient than θ̂SRS. Tables 2 and 3 display the results (to

save space, tables for the uniform distribution are provided as supplementary material),

where RE1-RE4 are based on the following four methods for bandwidth selection, re-
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Table 2: Estimated REs under normal distribution (RE1, RE2, RE3 and RE4 are based on bandwidth

selection using AMISE, UCV, BCV and PI methods, respectively).

(m,n) θ RE1 RE2 RE3 RE4

(3,3) 0.1 1.00 (0.38) 1.02 (0.40) 1.00 (0.38) 1.56 (1.17)

0.3 1.48 (1.74) 1.53 (1.76) 1.48 (1.74) 1.95 (1.34)

0.5 2.38 (4.35) 2.36 (4.02) 2.38 (4.35) 2.04 (1.36)

0.7 1.44 (1.71) 1.49 (1.73) 1.44 (1.71) 1.91 (1.32)

0.9 0.99 (0.38) 1.00 (0.41) 0.99 (0.38) 1.51 (1.18)

(3,7) 0.1 1.00 (0.25) 1.04 (0.32) 1.00 (0.25) 1.68 (1.00)

0.3 1.45 (1.23) 1.64 (1.30) 1.45 (1.23) 2.23 (1.29)

0.5 2.71 (4.03) 2.72 (3.07) 2.71 (4.03) 2.42 (1.38)

0.7 1.43 (1.25) 1.61 (1.32) 1.43 (1.25) 2.18 (1.31)

0.9 0.99 (0.25) 1.01 (0.32) 0.99 (0.25) 1.59 (1.00)

(5,5) 0.1 1.01 (0.20) 1.09 (0.30) 1.01 (0.20) 1.81 (0.91)

0.3 1.46 (0.96) 1.83 (1.13) 1.46 (0.95) 2.73 (1.30)

0.5 3.51 (4.27) 3.52 (2.93) 3.51 (4.28) 3.14 (1.43)

0.7 1.48 (0.95) 1.87 (1.14) 1.48 (0.95) 2.77 (1.31)

0.9 1.02 (0.20) 1.11 (0.30) 1.02 (0.20) 1.84 (0.92)

(10,10) 0.1 1.02 (0.08) 1.19 (0.19) 1.02 (0.08) 2.14 (0.60)

0.3 1.43 (0.37) 2.30 (0.64) 1.43 (0.37) 4.13 (1.06)

0.5 5.78 (3.42) 6.12 (2.18) 5.78 (3.42) 5.81 (1.47)

0.7 1.44 (0.38) 2.28 (0.65) 1.44 (0.38) 4.09 (1.07)

0.9 1.02 (0.09) 1.18 (0.19) 1.02 (0.09) 2.11 (0.61)

spectively. Minimizing asymptotic mean integrated squared error (AMISE) of the kernel

density estimator is a basic scheme. Rudemo (1982) and Bowman (1984) proposed unbi-

ased (least-squares) cross-validation (UCV) method. Biased cross-validation (BCV) was

studied by Scott and George (1987). A plug-in (PI) method was suggested by Sheather

and Jones (1991). All these techniques are developed for SRS, and more details on them

can be found in Sheather (2004). The methods can be implemented in R statistical soft-

ware using the kedd and KernSmooth packages. In the RSS setup, we treat data as if

collected by SRS to choose bandwidth.

Sengupta and Mukhuti (2008) introduced the RSS competitor of (1) defined as

θ̃RSS =
1

mn

m∑

i=1

n∑

j=1

I(X[i] >Y[ j]). (11)

The entries of Tables 2–4 appearing in parentheses show efficiency of θ̂RSS relative to

θ̃RSS.
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Table 3: Estimated REs under exponential distribution (RE1, RE2, RE3 and RE4 are based on bandwidth

selection using AMISE, UCV, BCV and PI methods, respectively).

(m,n) θ RE1 RE2 RE3 RE4

(3,3) 0.1 0.96 (0.33) 0.97 (0.35) 0.96 (0.33) 1.37 (1.19)

0.3 1.51 (1.93) 1.56 (1.96) 1.51 (1.93) 1.99 (1.51)

0.5 2.23 (4.11) 2.21 (3.79) 2.23 (4.11) 2.04 (1.38)

0.7 1.50 (1.90) 1.55 (1.94) 1.50 (1.90) 2.00 (1.50)

0.9 0.97 (0.33) 0.97 (0.35) 0.97 (0.33) 1.35 (1.20)

(3,7) 0.1 0.93 (0.13) 1.04 (0.33) 0.93 (0.13) 1.27 (0.71)

0.3 1.39 (1.33) 1.88 (1.58) 1.39 (1.33) 2.44 (1.52)

0.5 2.45 (3.76) 2.43 (2.55) 2.45 (3.76) 2.41 (1.37)

0.7 1.45 (1.34) 1.64 (1.47) 1.45 (1.34) 2.21 (1.43)

0.9 0.93 (0.26) 0.93 (0.28) 0.93 (0.26) 1.26 (0.98)

(5,5) 0.1 0.92 (0.14) 1.02 (0.28) 0.92 (0.14) 1.32 (0.74)

0.3 1.44 (1.07) 2.13 (1.48) 1.44 (1.07) 2.83 (1.50)

0.5 2.94 (3.78) 3.00 (2.38) 2.94 (3.78) 2.96 (1.40)

0.7 1.43 (1.08) 2.07 (1.47) 1.43 (1.08) 2.78 (1.50)

0.9 0.93 (0.15) 1.01 (0.28) 0.93 (0.15) 1.31 (0.75)

(10,10) 0.1 0.93 (0.05) 1.05 (0.19) 0.93 (0.05) 1.22 (0.32)

0.3 1.30 (0.38) 3.42 (1.14) 1.30 (0.38) 4.33 (1.32)

0.5 4.77 (3.14) 5.33 (1.67) 4.77 (3.14) 5.50 (1.41)

0.7 1.27 (0.37) 3.34 (1.12) 1.27 (0.37) 4.30 (1.30)

0.9 0.93 (0.05) 1.04 (0.19) 0.93 (0.05) 1.23 (0.33)

It is observed that θ̂SRS is outperformed by θ̂RSS, using one of the bandwidths, at

least. Moreover, the results from AMISE and BCV methods are in close agreement.

For each pair of sample sizes, the RE values are generally larger when the reliability

parameter is 0.5. Also, the PI method works better than the others for θ 6= 0.5. It is to

be noted that in the case of θ = 0.1,0.9, only RE4 values exceed unity markedly. Given

a total sample size, the efficiency gain is generally larger for equal sample sizes setup.

Compare similar REs for (m,n) = (3,7),(5,5) under different parent distributions.

As to the comparison of the suggested estimator with its rival based on empirical

distribution function, the following conclusions can be made (based on entries given

in parentheses in Tables 2 and 3). Again, the RE values are generally larger for the

reliability parameter 0.5, given a pair of sample sizes. There are cases that θ̂RSS is less

efficient than θ̃RSS. For example, see the results when (m,n) = (5,5),(10,10) and θ =

0.1,0.9. Sometimes the REs from AMISE, UCV and BCV methods fall much below

unity. In such instances, the PI method is still the best one.
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Table 4: Estimated REs for (m,n) = (3,3) (upper panel) and (m,n) = (5,5) (lower panel) with imperfect

ranking (RE1, RE2, RE3 and RE4 are based on bandwidth selection using AMISE, UCV, BCV and PI

methods, respectively).

Dist. θ RE1 RE2 RE3 RE4

Normal 0.1 1.03 (0.42) 1.05 (0.45) 1.03 (0.42) 1.47 (1.18)

0.3 1.41 (1.89) 1.44 (1.90) 1.41 (1.89) 1.65 (1.31)

0.5 1.94 (4.10) 1.92 (3.78) 1.94 (4.10) 1.70 (1.31)

0.7 1.34 (1.82) 1.37 (1.82) 1.34 (1.82) 1.63 (1.29)

0.9 0.99 (0.43) 1.00 (0.46) 0.99 (0.43) 1.37 (1.18)

Exponential 0.1 0.98 (0.38) 0.98 (0.40) 0.98 (0.38) 1.30 (1.26)

0.3 1.40 (2.03) 1.43 (2.05) 1.40 (2.03) 1.71 (1.46)

0.5 1.82 (4.01) 1.81 (3.70) 1.82 (4.01) 1.69 (1.36)

0.7 1.36 (2.01) 1.39 (2.03) 1.36 (2.01) 1.66 (1.45)

0.9 0.96 (0.37) 0.96 (0.39) 0.96 (0.37) 1.21 (1.22)

Normal 0.1 1.02 (0.22) 1.10 (0.33) 1.02 (0.22) 1.65 (0.94)

0.3 1.42 (1.08) 1.70 (1.24) 1.42 (1.08) 2.31 (1.30)

0.5 2.81 (4.07) 2.80 (2.79) 2.81 (4.07) 2.58 (1.40)

0.7 1.39 (1.07) 1.70 (1.23) 1.39 (1.07) 2.33 (1.30)

0.9 1.00 (0.23) 1.07 (0.34) 1.00 (0.23) 1.60 (0.95)

Exponential 0.1 0.94 (0.16) 1.00 (0.30) 0.94 (0.16) 1.26 (0.79)

0.3 1.39 (1.19) 1.91 (1.55) 1.39 (1.19) 2.41 (1.49)

0.5 2.59 (3.82) 2.63 (2.38) 2.59 (3.82) 2.58 (1.39)

0.7 1.42 (1.16) 1.99 (1.52) 1.42 (1.16) 2.57 (1.49)

0.9 0.94 (0.16) 1.02 (0.30) 0.94 (0.16) 1.29 (0.78)

As mentioned before, although perfect rankings are ideal case for any RSS-based

method, it is unlikely to be feasible. Let P and Q be misplacement probability matrices

defined in Section 2. The perfect ranking setup corresponds to the case that P and Q

are the identity matrices. We conducted a partial simulation study to assess performance

of the suggested estimator in the presence of ranking errors. To do so, the REs were

estimated when (m,n) = (3,3),(5,5) and the matrices P and Q are selected to be

P = Q =




0.9 0.1 0

0.1 0.8 0.1

0 0.1 0.9




and

P = Q =




0.9 0.1 0 0 0

0.1 0.8 0.1 0 0

0 0.1 0.8 0.1 0

0 0 0.1 0.8 0.1

0 0 0 0.1 0.9



,
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respectively. The results are given in Table 4. The entries outside parentheses are gener-

ally smaller than similar entries in Tables 2 and 3. We note, however, that these REs still

exceed the unity, and this is consistent with our theoretical results. There is not a uni-

form trend for entries inside parentheses as compared with analogous ones under perfect

ranking assumption. It is to be mentioned that these REs are associated with θ̂RSS and

θ̃RSS that both are affected by ranking errors.

All simulation studies in this work are programmed using R statistical software, and

the corresponding code is available from the first author.

5. Application

The RSS is applicable in the following situations: (i) the ranking of a set of sampling

units can be done easily by judgment relating to their latent values of the variable of

interest through visual inspection, expert opinion, etc. (ii) there are certain easily acces-

sible concomitant variables. We now illustrate the proposed procedure using some real

data from two different fields.

5.1. Agriculture

Murray et al. (2000) conducted an experiment in which apple trees are sprayed with

chemical containing fluorescent tracer, Tinopal CBS-X, at 2% concentration level in wa-

ter. Two nine-tree plots were chosen for spraying. One plot was sprayed at high volume,

using coarse nozzles on the sprayer to give a large average droplet size. The other plot

was sprayed at low volume, using fine nozzles to give a small average droplet size. Fifty

sets of five leaves were identified from the central five trees of each plot, and used to

draw a ranked set sample with set size 5 and cycle size 10, from each plot. The variable

of interest is the percentage of area covered by the spray on the surface of the leaves. The

formal measurement entails chemical analysis of the solution collected from the surface

of the leaves, and thereby is a time-consuming and expensive process. The judgment

ranking within each set is based on the visual appearance of the spray deposits on the

leaf surfaces when viewed under ultraviolet light. Clearly, the latter method is cheap,

and fairly accurate if implemented by an expert observer.

The data are given in Table 5, where measurements obtained from the plot sprayed

at high (low) volume constitute the control (treatment) group. The interest centres on

knowing whether the sprayer settings affect the percentage area coverage. If X (Y ) de-

notes the response variable from treatment (control) group, then θ̂RSS and θ̃RSS can serve

as measures of the treatment effect.

Let θ̆ be either θ̂RSS or θ̃RSS. Then the bootstrap method, introduced by Efron (1979),

can be used to estimate the variance of θ̆, and to construct confidence interval. Modarres

et al. (2006) suggested three bootstrap algorithms in RSS design. Bootstrap ranked set

sampling (BRSS) and bootstrap RSS by rows (BRSSR) are the most efficient methods
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Table 5: Ranked set sample data for the percentage area covered on the surface of the leaves of apple

trees.

Group Cycle Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Control 1 0.003 0.028 0.244 0.057 0.143

2 0.039 0.119 0.126 0.105 0.565

3 0.034 0.118 0.130 0.218 0.296

4 0.051 0.104 0.193 0.210 0.150

5 0.032 0.141 0.130 0.250 0.229

6 0.069 0.070 0.260 0.225 0.285

7 0.100 0.091 0.244 0.130 0.347

8 0.012 0.096 0.069 0.373 0.133

9 0.046 0.117 0.126 0.223 0.273

10 0.028 0.083 0.108 0.212 0.261

Treatment 1 0.036 0.137 0.183 0.270 0.487

2 0.250 0.181 0.290 0.328 0.715

3 0.089 0.032 0.269 0.419 0.315

4 0.180 0.111 0.130 0.194 0.742

5 0.100 0.009 0.184 0.277 0.122

6 0.042 0.089 0.199 0.269 0.395

7 0.044 0.083 0.227 0.177 0.742

8 0.044 0.171 0.067 0.192 0.336

9 0.009 0.017 0.217 0.438 0.544

10 0.071 0.132 0.310 0.343 0.379

which are used here. Suppose B pairs of bootstrap samples are drawn from the two

ranked set samples by either of the algorithms. If θ̆b is value of the estimator based on

data in the b th (b = 1, . . . ,B) replication, then the bootstrap variance estimator is given

by

V̂arboot(θ̆) =
1

B−1

B∑

b=1

(
θ̆b − θ̄

)2
, (12)

where θ̄ =
∑B

b=1 θ̆b/B. An approximate (1−α) normal interval for θ is then constructed

as

(
θ̆− zα/2

√
V̂arboot(θ̆), θ̆+ zα/2

√
V̂arboot(θ̆)

)
, (13)

where zα/2 is the (1−α/2) quantile of the standard normal distribution. We may alter-

natively use (1−α) bootstrap percentile interval defined as

(
θ̆α/2, θ̆1−α/2

)
, (14)

where θ̆β is the β quantile of θ̆1, . . . , θ̆B.
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Table 6: Estimates of θ along with their estimated variances, and the corresponding 0.95 confidence

intervals.

Estimator Value Estimated variance Normal interval Bootstrap interval

θ̂RSS (AMISE) 0.5903 0.000456 (0.548, 0.632) (0.550, 0.633)

0.000468 (0.548, 0.633) (0.549, 0.634)

θ̂RSS (UCV) 0.6161 0.001021 (0.553, 0.679) (0.557, 0.680)

0.001052 (0.553, 0.680) (0.556, 0.684)

θ̂RSS (BCV) 0.6118 0.000748 (0.558, 0.665) (0.558, 0.664)

0.000789 (0.557, 0.667) (0.557, 0.667)

θ̂RSS (PI) 0.6168 0.000927 (0.557, 0.676) (0.559, 0.678)

0.000964 (0.556, 0.678) (0.558, 0.680)

θ̃RSS 0.6184 0.001163 (0.552, 0.685) (0.553, 0.685)

0.001224 (0.550, 0.687) (0.552, 0.688)

Table 6 displays the estimates along with their estimated variances computed using

(12). Two 0.95 intervals (13) and (14) are also reported. The number of bootstrap repli-

cations is chosen to be 5000, and entries associated with BRSSR method are in italic.

Clearly, the kernel-based estimators have smaller estimated variances as expected. It is

concluded that the treatment effect is significant at 0.05 level as none of the intervals

contain 0.5.

5.2. Medicine

The RSS can be used in studying certain medical measures, which usually involves

expensive laboratory tests. Samawi et al. (2009) employed this design in comparing

bilirubin level between male and female jaundice babies. To this end, blood sample

must be taken from the sampled babies and tested in a laboratory. But, on the other

hand, the ranking of the bilirubin levels of a small number of babies can be done by

observing whether their face, chest, lower parts of the body and the terminal parts of the

whole body are yellowish. The yellowish color goes from face to the terminal parts of

the whole body, the level of bilirubin in blood goes higher.

Table 7 shows the results of 15 measurements for male/female babies collected by

RSS with set size 3 and cycle size 5. Assume that X and Y represent the response vari-

able for male and female babies, respectively. Then θ̂RSS and θ̃RSS can be used to decide

whether male babies are more likely to experience jaundice. Table 8 displays the esti-

mates along with their estimated variances. The corresponding 0.95 confidence intervals

are also provided. Again, the kernel-based estimators have smaller estimated variances.

All the intervals contain 0.5, and the null hypothesis that male and female babies are

equally likely to experience jaundice is not rejected, at 0.05 level.
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Table 7: Ranked set sample data of bilirubin level in jaundice babies.

Group Cycle Rank 1 Rank 2 Rank 3

Male 1 7.50 10.50 7.30

2 7.50 15.00 8.60

3 8.90 14.60 13.53

4 7.00 11.90 15.70

5 10.24 13.18 18.47

Female 1 1.20 8.94 15.00

2 7.50 12.82 10.80

3 8.00 8.82 10.70

4 8.90 8.94 14.59

5 8.53 8.20 18.29

Table 8: Estimates of θ along with their estimated variances, and the corresponding 0.95 confidence inter-

vals.

Estimator Value Estimated variance Normal interval Bootstrap interval

θ̂RSS (AMISE) 0.5549 0.002183 (0.463, 0.646) (0.464, 0.649)

0.001813 (0.471, 0.638) (0.474, 0.638)

θ̂RSS (UCV) 0.5753 0.005465 (0.430, 0.720) (0.409, 0.704)

0.004715 (0.441, 0.710) (0.421, 0.687)

θ̂RSS (BCV) 0.5576 0.002398 (0.462, 0.654) (0.464, 0.657)

0.002016 (0.470, 0.646) (0.473, 0.647)

θ̂RSS (PI) 0.5774 0.005067 (0.438, 0.717) (0.434, 0.717)

0.004172 (0.451, 0.704) (0.450, 0.700)

θ̃RSS 0.5467 0.006564 (0.388, 0.705) (0.382, 0.707)

0.005709 (0.399, 0.695) (0.400, 0.689)

6. Conclusion

The RSS design employs ranking of the characteristic of interest via auxiliary infor-

mation to improve estimation of population attributes. The rankings can be performed

through subjective judgment, concomitant variable, or a combination of them. These

preparatory rankings are made before any actual measurements on the variable of in-

terest, and are utilized to select more informative units to include in our sample for

measurement.

In this article, a nonparametric reliability estimator based on kernel density estima-

tion is suggested. Some theoretical results are presented under an imperfect ranking

model. The perfect ranking setup is treated separately. Monte Carlo simulations are
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used to compare the estimator with its SRS competitor, and the RSS analogue based

on empirical distribution function. The results confirm preference of the new estimator

in many situations. In a subsequent work, we plan to study interval estimation of the

reliability parameter under the RSS scheme.
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Appendix

Proof of Proposition 1. It is easy to show that

m2n2E(θ̂2
SRS) = E(A1 +A2 +A3 +A4), (15)

where

E(A1) = E

{
m∑

i6=i′=1

n∑

j 6= j′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi′ −Yj′

t

)}

= m(m−1)n(n−1)E2

{
Φ

(
X −Y

t

)}
, (16)

E(A2) = E

{
m∑

i=1

n∑

j 6= j′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi −Yj′

t

)}

= mn(n−1)EE2

{
Φ

(
X −Y

t

)∣∣∣X
}
, (17)

E(A3) = E

{
n∑

j=1

m∑

i6=i′=1

Φ

(
Xi −Yj

t

)
Φ

(
Xi′ −Yj

t

)}

= nm(m−1)EE2

{
Φ

(
X −Y

t

)∣∣∣Y
}

(18)
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and

E(A4) = E

{
m∑

i=1

n∑

j=1

Φ
2

(
Xi −Yj

t

)}
= mnE

{
Φ

2

(
X −Y

t

)}
. (19)

From (15)-(19) and the expectation of θ̂SRS, the proof of the first part is complete. Simi-

larly,

m2n2E(θ̂2
RSS) = E(B1 +B2 +B3), (20)

where

E(B1) = E

{
m∑

i6=i′=1

n∑

j 6= j′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i′]−Y[ j′]

t

)

+
n∑

j=1

m∑

i6=i′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i′]−Y[ j]

t

)}

= E

(
m∑

i6=i′=1

n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i′]−Y[ j′]

t

)∣∣∣Y[ j′]
}

+
n∑

j=1

m∑

i6=i′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i′]−Y[ j]

t

)∣∣∣Y[ j]
})

= E

(


m∑

i=1

n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1

n∑

j=1

E2

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

−
m∑

i=1

n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i]−Y[ j′]

t

)∣∣∣Y[ j′]
})

= E

(


m∑

i=1

n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1

[
n∑

j=1

E2

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

+
n∑

j 6= j′=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}

E

{
Φ

(
X[i]−Y[ j′]

t

)∣∣∣Y[ j′]
}])

= E

(
m2




n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2

−
m∑

i=1




n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2)
,

(21)
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E(B2) = E

{
m∑

i=1

n∑

j 6= j′=1

Φ

(
X[i]−Y[ j]

t

)
Φ

(
X[i]−Y[ j′]

t

)}

= mE

{
n∑

j 6= j′=1

Φ

(
X −Y[ j]

t

)
Φ

(
X −Y[ j′]

t

)}

= mE

(
n∑

j 6= j′=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣X
}

E

{
Φ

(
X −Y[ j′]

t

)∣∣∣X
})

= mE

(


n∑

j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣X
}


2

−
n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

= mE

(
n2E2

{
Φ

(
X −Y

t

)∣∣∣X
}
−

n∑

j=1

E2

{
Φ

(
X −Y[ j]

t

)∣∣∣X
})

, (22)

and

E(B3) = E

{
m∑

i=1

n∑

j=1

Φ
2

(
X[i]−Y[ j]

t

)}
= mnE

{
Φ

2

(
X −Y

t

)}
. (23)

Now the second part follows from (20)-(23) and the expectation of θ̂RSS.

Proof of Proposition 2. Using equations (8) and (9), it can be shown

m2n2
[
Var(θ̂SRS)−Var(θ̂RSS)

]
= ∆1 +∆2 +∆3, (24)

where

∆1 = E

(
m∑

i=1




n∑

j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}


2
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j=1
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{
Φ

(
X −Y[ j]

t
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(
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i=1


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j=1

E

{
Φ

(
X[i]−Y[ j]

t

)∣∣∣Y[ j]
}
−
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j=1

E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
}


2)
, (25)
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∆2 = mn(n−1)EE2

{
Φ

(
X −Y

t

)∣∣∣X
}

−mE

(
n2E2

{
Φ

(
X −Y

t

)∣∣∣X
}
−

n∑

j=1

E2

{
Φ

(
X −Y[ j]
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E2
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{
Φ

(
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t

)∣∣∣X
}
−E

{
Φ

(
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t

)∣∣∣X
}]2)

(26)

and

∆3 = m(m−1)n(n−1)E2
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(
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= m(m−1)

[(
1− 1

n

)( n∑

j=1

E
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Φ
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t
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j 6= j′=1

E

{
Φ

(
X −Y[ j]

t

)}
E

{
Φ

(
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t

)}]
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E2
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{
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(
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)
−Φ

(
X −Y

t

)}
. (27)

Clearly, ∆i ≥ 0(i = 1,2,3), as was to be shown. Proof of the next part is straightforward,

and is omitted.
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The next lemma paves the way for Proposition 3.

Lemma 1 If ℓ =
∑n

j=1 E

{
Φ

(
X−Y( j)

t

)∣∣∣Y( j)

}
and L =

∑n
j=1 E

{
Φ

(
X−Y[ j]

t

)∣∣∣Y[ j]
}

, then

Var(ℓ)≤ Var(L).

Proof of Lemma 1. Using conditional variance formula, we have

Var(L) =

n∑

j=1

Var

(
E

{
Φ

(
X −Y[ j]

t

)∣∣∣Y[ j]
})

≥
n∑

j=1

n∑

k=1

q jkVar

(
E

{
Φ

(
X −Y(k)

t

)∣∣∣Y(k)
})

=
n∑

k=1

Var

(
E

{
Φ

(
X −Y(k)

t

)∣∣∣Y(k)
})

= Var(ℓ),

as was asserted.

Proof of Proposition 3. First, some necessary notions and results from matrix algebra

are provided.

The L1, L∞ and L2 norms for an r× c matrix A = [a i j] are defined as

‖A‖1 = max
j=1,...,c

r∑

i=1

a i j,

‖A‖∞ = max
i=1,...,r

c∑

j=1

a i j

and

‖A‖2 =
√

λmax(A′A),

where λmax(A
′A) is the largest eigenvalue of A′A matrix. If the product of matrices A

and B is defined, then

‖AB‖2 ≤ ‖A‖2‖B‖2 (28)

and

‖A‖2
2 ≤ ‖A‖1‖A‖∞. (29)

See Datta (2010) for more details.
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In view of (9), it suffices to show that

E

(
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

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j=1

E
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Φ

(
X −Y( j)

t

)∣∣∣Y( j)
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(
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)∣∣∣Y( j)
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(
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(30)

and

E
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(
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})

≤ E

(
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j=1

E2

{
Φ

(
X −Y( j)

t

)∣∣∣X
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. (31)

We begin with proving the first inequality. Assume that Z(i)=
∑n

j=1 E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}

and Z[i] =
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j=1 E
{

Φ

(
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t
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. Then one can write
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p ikE
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Φ

(
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=

m∑

k=1

p ikZ(k). (32)

Let ΩY be the sample space on whichY is defined. If P= [p ir]m×m and Z′=
(
Z(1)(ϑ), . . . ,Z(m)(ϑ)

)

given a fixed ϑ ∈ ΩY , then using (28), (29) and (32) it follows that
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The last equality holds because
∑m

i=1 p ik =
∑m

k=1 p ik = 1. Hence,
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Now, (30) is deduced if
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For i = 1, . . . ,m, suppose ℓ(i) =
∑n

j=1 E
{

Φ

(
X(i)−Y( j)

t

)∣∣∣Y( j)

}
and ℓ be as in Lemma

1. We note that ℓ(1) < · · ·< ℓ(m) are order statistics from a sample of size m. Therefore,

m∑

i=1

E(ℓ2
(i)) =

m∑

i=1

∫
t2 fℓ(i)(t)dt = m

∫
t2 fℓ(t)dt = mE(ℓ2), (34)

where fℓ(i) and fℓ denote the density function of ℓ(i) and ℓ, respectively. Similarly, one

can define L(i) =
∑n

j=1 E

{
Φ

(
X(i)−Y[ j]

t

)∣∣∣Y[ j]
}

, and conclude that

m∑

i=1

E(L2
(i)) = mE(L2), (35)

where L is as in Lemma 1. From (34) and (35), (33) reduces to E(ℓ2) ≤ E(L2). This is

equivalent to Var(ℓ)≤ Var(L) which holds thanks to Lemma 1.

Assume that W( j) = E
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t
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and W[ j] = E
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(
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t
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. Then, it can

be shown that W[ j] =
∑n

k=1 q jkW( j). Let ΩX be the sample space on which X is defined.

If Q = [q js]n×n and WT =
(
W(1)(η), . . . ,W(n)(η)

)
for each fixed η ∈ ΩX , then applying

(28) and (29) using Q and W yields
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This completes the proof of (31).
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Abstract

We present a construction of a family of continuous-time ARMA processes based on p iterations

of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The con-

struction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in

fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages,

including a smaller number of parameters. The resulting processes are linear combinations of

Ornstein-Uhlenbeck processes all driven by the same Lévy process. This provides a straightfor-

ward computation of covariances, a state-space model representation and methods for estimating

parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be

an ARMA(p, p− 1) process. We propose methods for estimating the parameters of the iterated

Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy

process, and show simulations and applications to real data.
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1. Introduction

The link between discrete time autoregressive moving average (ARMA) processes and

stationary processes with continuous-time has been of interest for many years, see for in-

stance, Doob (1944), Durbin (1961), Bergstrom (1984, 1996) and more recently Brock-

well (2009), Thornton and Chambers (2013). Continuous time ARMA processes are

better suited than their discrete counterparts for modelling irregularly spaced data, and

when the white noise is driven by a non-Gaussian process it becomes a more realistic

model in finance and other fields of application.
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A popular continuous-time representation of ARMA(p,q) process (known as

CARMA(p,q)) can be obtained via a state-space representation of the formal equation

a(D)Y (t) = σb(D)DΛ(t),

where σ > 0 is a scale parameter, D denotes differentiation with respect to t, Λ is a

second-order Lévy process, a(z) = zp+a1zp−1 + . . .+ap is a polynomial of order p and

b(z) = b0+b1z+ . . .+bqzq a polynomial of order q ≤ p−1 with coefficient bq 6= 0 (see,

e.g., Brockwell, 2004, 2009, Thornton and Chambers, 2013). The parameters of this

model are estimated by adjusting first an ARMA(p,q), q < p to regularly spaced data.

Then obtain the parameters of the continuous version whose values at the observation

times have the same distribution of the fitted ARMA. Hence, p+q+1 parameters have

to be estimated.

We propose in this work a parsimonious model for continuous autoregression, with

fewer parameters (as we shall see exactly p plus the variance). Our construction de-

parts from the observation that a Ornstein-Uhlenbeck (OU) process can be thought of as

continuous-time interpolation of an autoregressive process of order one (i.e. an AR(1)).

This is shown in Section 2, where we also review some well known facts on Lévy pro-

cesses, ARMA models and their representations. The model is obtained by a procedure

that resembles the one that allows to build an AR(p) from an AR(1). Departing from

this analogy, we define and analyse the result of iterating the application of the operator

that maps a Wiener process onto an OU process. This operator is defined in Section 3

and denoted OU, with subscripts denoting the parameters involved.

The p iterations of OU, for each positive integer p, give rise to a new family of

processes, the Ornstein-Uhlenbeck processes of order p, denoted OU(p). They can be

used as models for either stationary continuous-time processes or the series obtained

by observing these continuous processes at equally spaced instants. We show that an

OU(p) process can be expressed as a linear combination of ordinary OU processes, or

generalized OU processes, also defined in Section 3. This result resembles the aggrega-

tions of Gaussian (and non-Gaussian) processes studied with the idea of deconstructing

a complicated economic model into simpler constituents. In the extensive literature on

aggregations (or superpositions) of stochastic processes the aggregated processes are

driven by independent Lévy processes (see, e.g., Granger and Morris, 1976, Granger,

1980, Barndorff-Nielsen, 2001, Eliazar and Klafter, 2009, among many others). A dis-

tinctive point of our construction is that the stochastic processes obtained by convolution

of the OU operator result in a linear combination comprised of processes driven by the

same Lévy process.

Another consequence of writing the OU(p) process as the aggregation of simpler

ones is the derivation of a closed formula for its covariance. This has important practical

implications since it allows to easily estimate the parameters of a OU(p) process by

matching correlations (a procedure resembling the method of moments, to be described

in Section 6.2), and by maximum likelihood.



Argimiro Arratia, Alejandra Cabaña and Enrique M. Cabaña 269

In Section 4 we show how to write the discrete version of a OU(p) as a state-space

model, and from this representation we show in Section 5 that for p > 1, a OU(p) be-

haves like an aggregation of AR processes (in the manner considered in Granger and

Morris (1976)), that turns out to be an ARMA(p,q), with q ≤ p− 1. Consequently the

OU(p) processes are a subfamily of the CARMA(p,q) processes. Notwithstanding this

structural similarity, the family of discretized OU(p) processes is more parsimonious

than the family of ARMA(p, p− 1) processes, and we shall see empirically that it is

able to fit well the autocovariances for large lags. Hence, OU processes of higher order

appear as a new continuous model, competitive in a discrete time setting with higher

order autoregressive processes (AR or ARMA). The estimation of the parameters of

OU(p) processes is attempted in Section 6. Simulations and applications to real data are

provided in Section 6.5. Our concluding remarks are in Section 7.

2. Preliminaries

Let us recall that a Lévy process Λ(t) is a càdlàg function, with independent and station-

ary increments, that vanishes in t = 0. As a consequence, Λ(t) is, for each t, a random

variable with an infinitely divisible law (Sato, 1999). A Wiener process W is a cen-

tred Gaussian process, with independent increments and variance E(W (t)−W(s))2 =

σ2|t − s|. Wiener processes are the only Lévy processes with almost surely continu-

ous paths. For parameter λ > 0 the classical Ornstein-Uhlenbeck process is defined as
∫ t
−∞ e−λ(t−s)dW (s) (Uhlenbeck and Ornstein, 1930).

Wiener process can be replaced by a second order Lévy process Λ to define a Lévy

driven Ornstein-Uhlenbeck process as

x(t)(= xλ,Λ(t)) :=
∫ t

−∞

e−λ(t−s)dΛ(s) (1)

The previous equation can be formally written in differential form

dx(t) =−λx(t)dt+dΛ(t) (2)

We may think of x as the result of accumulating a random noise dΛ, with reversion to

the mean (that we assume to be 0) of exponential decay with rate λ.

When the Ornstein-Uhlenbeck process x is sampled at equally spaced times {hτ : h=
0,1,2, . . . ,n}, τ > 0, the series Xh = x(hτ) obeys an autoregressive model of order 1 (i.e.

an AR(1)), because Xh+1 = e−λτXh +Zh+1, where Zh+1 =
∫ (h+1)τ

hτ
e−λ((h+1)τ−s)dΛ(s),

is the stochastic innovation.

Hence, we can consider the OU process as continuous-time interpolation of an AR(1)

process. Notice that both models are stationary. This link between AR(1) and OU(1)

suggests the definition of iterated OU processes introduced in Section 3.
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An ARMA(p,q) or autoregressive moving average process of order (p,q) has the

following form

xt = φ1xt−1 + · · ·+φpxt−p + θ0ǫt + θ1ǫt−1 + · · ·+ θqǫt−q

where φ1, . . . , φp are the autoregressive parameters, θ0, . . . , θq are the moving average

parameters, and the white-noise process ǫt has variance one. Denote by B the backshift

operator that carries xt into xt−1. By considering the polynomials in the backshift oper-

ator,

φ(B) = 1−φ1B−·· ·−φpBp and θ(B) = θ0 + θ1B+ · · ·+ θqBq

the ARMA(p,q) model can be written as

φ(B)xt = θ(B)ǫt (3)

This compact expression comes in handy for analysing structural properties of time

series. It also links to the representation of ARMA processes as a state-space model,

useful for simplifying maximum likelihood estimation and forecasting. A state-space

model has the general form

Yt = AYt−1 +ηηηt (4)

xt = K
T
Yt +Nt (5)

where (4) is the state equation and (5) is the observation equation, with Yt the m-

dimensional state vector, A and K are m×m and m× k coefficient matrices, K
T

denotes

the transpose of K, ηηη and N are m and k dimensional white noises. N would be present

only if the process xt is observed subject to additional noise (see Box, Jenkins, and Rein-

sel, 1994 for further details). We present in Section 4 a state-space model representation

of our generalized OU process.

3. Ornstein-Uhlenbeck processes of order ppp

The AR(1) process Xt = φXt−1 + ǫt , where ǫt , t ∈Z, is a white noise, can be written

as (1 − φB)Xt = ǫt using the back-shift operator B. Equivalently, Xt can be written

as Xt = MA1/ρǫt , where MA1/ρ is the moving average that maps ǫt onto MA1/ρǫt ,=
∑∞

j=0
1
ρ j ǫt− j , and ρ (= 1/φ) is the root of the characteristic polynomial 1−φz.
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Moreover, the AR(p) process Xt =

p
∑

j=1

φ jXt− j + ǫt ( or φ(B)Xt = ǫt), where φ(z) =

1−

p
∑

j=1

φ jz
j =

p

∏
j=1

(1−z/ρ j) has roots ρ j = eλ j , j = 1, . . . , p, can be obtained by applying

the composition of the moving averages MA1/ρ j
to the noise, that is:

Xt =
p

∏
j=1

MA1/ρ j
ǫt

Now consider the operator MAe−λ that maps ǫt onto

MAe−λǫt =
∑

l≤t,integer

e−λ(t−l)ǫl

A continuous version of this operator is OUλ that maps y(t), t ∈ R onto

OUλy(t) =
∫ t

−∞

e−λ(t−s)dy(s), (6)

whenever the integral can be defined. The definition of OUλ is extended to include

complex processes, by replacing λ by κ= λ+ iµ, λ> 0, µ∈R in (6). The set of complex

numbers with positive real part is denoted by C+, and the conjugate of κ is denoted by

κ̄.

For p ≥ 1 and parameters κκκ= (κ1, . . . ,κp), the previous argument suggests to define

the following process obtained as repeated compositions of operators OUκ j
, j = 1, . . . , p:

OUκκκy(t) := OUκ1
OUκ2

· · ·OUκpy(t) =
p

∏
j=1

OUκ j
y(t) (7)

This is called Ornstein-Uhlenbeck process of order p with parametersκκκ=(κ1, . . . ,κp)∈

(C+)p. The composition ∏
p
j=1OUκ j

is unambiguously defined because the application

of OUκ j
operators is commutative as shown in Theorem 1(i) below.

The particular case of interest where the underlying noise is a second order Lévy

process Λ, namely,

OUκκκΛ(t) := OUκ1
OUκ2

· · ·OUκpΛ(t) =
p

∏
j=1

OUκ j
Λ(t) (8)

is called the Lévy-driven Ornstein-Uhlenbeck process of order p with parameters κκκ =

(κ1, . . . ,κp) ∈ (C+)p.
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For technical reasons, it is convenient to introduce the Ornstein-Uhlenbeck operator

OU
(h)
κ of degree h with parameter κ that maps y onto

OU
(h)
κ y(t) =

∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dy(s) (9)

and Λ onto

ξ(h)κ (t) =
∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dΛ(s) (10)

We call the process (10) generalized Ornstein-Uhlenbeck process of order 1 and

degree h. For the remainder of the paper we restrict the underlying noise to a second

order Lévy Λ, but note that the general properties of the OUκ operator that we are going

to show hold for any random function y(t) for which the integral (6) is defined.

3.1. Properties of the operator OUκOUκOUκ

The following statements summarize some properties of products (compositions) of the

operators defined by (7) and (9), and correspondingly, of the stationary centred processes

ξ
(h)
κ , h ≥ 0. In particular, the Ornstein-Uhlenbeck processes of order 1 and degree 0,

ξ
(0)
κ = ξκ are the ordinary Ornstein-Uhlenbeck processes (1).

Theorem 1

(i) When κ1 6= κ2, the product OUκ2
OUκ1

can be computed as

κ1

κ1 −κ2

OUκ1
+

κ2

κ2 −κ1

OUκ2

and is therefore commutative.

(ii) The composition ∏
p
j=1OUκ j

constructed with pairwise different κ1, . . . ,κp is equal

to the linear combination

p

∏
j=1

OUκ j
=

p
∑

j=1

K j(κ1, . . . ,κp)OUκ j
, (11)

with coefficients

K j(κ1, . . . ,κp) =
1

∏κl 6=κ j
(1−κl/κ j)

. (12)
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(iii) For i = 1,2, . . . , OUκOU
(i)
κ = OU

(i)
κ −κOU(i+1)

κ .

(iv) For any positive integer p the p-th power of the Ornstein-Uhlenbeck operator has

the expansion

OU
p
κ =

p−1
∑

j=0

(

p−1

j

)

OU
( j)
κ . (13)

(v) Let κ1, . . . ,κq be pairwise different complex numbers with positive real parts, and

p1, . . . , pq positive integers, and let us denote by κκκ a complex vector in (C+)p with

components κh repeated ph times, ph ≥ 1, h = 1, . . . ,q,
∑q

h=1 ph = p. Then, with

Kh(κκκ) defined by (12),

q

∏
h=1

OU
ph
κh

=

q
∑

h=1

1

∏l 6=h(1−κl/κh)pl
OU

ph
κh

=

q
∑

h=1

Kh(κκκ)OU
ph
κh
.

An immediate consequence is that the operator OUκκκ with p-vector parameter κκκ can be

written as a linear combination of p operators OUκ or OU(h)
κ for suitable scalar values

κ and non-negative integer h. Therefore, the process OUκκκΛ can be written as a linear

combination of OU processes driven by the same Lévy process, as stated in the following

Corollary.

Corollary 1

(i) The process OUκκκ(Λ) =
q

∏
h=1

OU
ph
κh
(Λ) can be expressed as the linear combination

OUκκκ(Λ) =

q
∑

h=1

Kh(κκκ)

ph−1
∑

j=0

(

ph−1
j

)

ξ
( j)
κh

(14)

of the p processes {ξ
( j)
κh

: h = 1, . . . ,q, j = 0 . . . , ph −1} (see (10)).

(ii) Consequently,

OUκκκΛ(t) =

q
∑

h=1

Kh(κκκ)

ph−1
∑

j=0

(

ph−1
j

)
∫ t
−∞ e−κh(t−s) (−κh(t−s)) j

j!
dΛ(s)

Corollary 2 For real λ,µ, with λ > 0, the product OUλ+iµOUλ−iµ is real, that is, ap-

plied to a real process produces a real image.

The proofs of Theorem 1 and corollaries are in Appendix A.
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3.2. Computing the covariances

The representation

x := OUκκκ(Λ) =

q
∑

h=1

Kh(κ)

ph−1
∑

j=0

(

ph −1

j

)

OU
( j)
κh
(Λ)

of x as a linear combination of the processes ξ
(i)
κh

= OU
(i)
κh
(Λ) allows a direct compu-

tation of the covariances γ(t) = Ex(t)x̄(0) through a closed formula, in terms of the

covariances γ
(i1,i2)
κ1,κ2

(t) = Eξ
(i1)
κ1

(t)ξ̄
(i2)
κ2

(0):

γ(t)=

q
∑

h′=1

ph′−1
∑

i′=0

q
∑

h′′=1

ph′′−1
∑

i′′=0

Kh′(κκκ)K̄h′′(κκκ)

(

ph′ −1

i′

)(

ph′′ −1

i′′

)

γ(i
′,i′′)

κh′ ,κh′′
(t) (15)

with v2 = VarΛ(1),

γ(i1,i2)κ1,κ2
(t) = v2(−κ1)

i1(−κ̄2)
i2

∫ 0

−∞

e−κ1(t−s) (t − s)i1

i1!
e−κ̄2(−s) (−s)i2

i2!
ds

= v2(−κ1)
i1(−κ̄2)

i2e−κ1t

i1
∑

j=0

(

i1

j

)

t j

i1!i2!

∫ 0

−∞

e(κ1+κ̄2)s(−s)i1+i2− jds

=
v2(−κ1)

i1(−κ̄2)
i2e−κ1t

i2!

i1
∑

j=0

t j(i1 + i2 − j)!

j!(i1 − j)!(κ1 + κ̄2)(i1+i2− j+1)
(16)

A real expression for the covariance when the imaginary parameters appear as conjugate

pairs can be obtained but it is much more involved than this one.

4. The OU(ppp) process as a state-space model

Theorem 1 and its corollaries lead to express the OU(p) process by means of linear

state-space models. The state-space modelling provides a unified methodology for the

analysis of time series (see Durbin and Koopman, 2001).

In the simplest case, where the elements of κκκ are all different, the process x(t) =

OUκκκΛ(t) is a linear combination of the state vector ξξξκκκ(t) = (ξκ1
(t),ξκ2

(t), . . . ,ξκp(t))
T,

where ξκ j
= OUκ j

(Λ).
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More precisely, the vectorial process

ξξξκκκ(t) = (ξκ1
(t),ξκ2

(t), . . . ,ξκp(t))
T, ξκ j

= OUκ j
(Λ)

and x(t) = OUκκκΛ(t) satisfy the linear equations

ξξξκκκ(t) = diag(e−κ1τ ,e−κ2τ , . . . ,e−κpτ )ξξξκκκ(t − τ)+ηηηκκκ,τττ (t) (17)

and x(t) =KKK
T(κκκ)ξξξ(t), (18)

ηηηκκκ,τττ (t) = (ηκ1,τ (t),ηκ2,τ (t), . . . ,ηκp,τ (t))
T, ηκ j,τ (t) =

∫ t

t−τ
e−κ j(t−s)dΛ(s),

Var(ηηηκκκ,τττ (t)) = v2((v j,l)), v j,l =
∫ t

t−τ
e−(κ j+κ̄l)(t−s)ds =

1− e−(κ j+κ̄l)τ

κ j + κ̄l

(19)

and the coefficients from (12), KKK T(κκκ) = (K1(κκκ),K2(κκκ), . . . ,Kp(κκκ)).
The initial value ξξξ(0) is estimated by means of its conditional expectation ξ̂ξξ(0) =

E(ξ(0)|x(0)) =
KKK

T(κκκ)V x(0)
KKK T(κκκ)VKKK

, with V = Var(ξξξ(0)) =

((

1

κ j + κ̄l

))

.

An application of Kalman filter to this state-space model leads to compute the likeli-

hood of xxx = (x(0),x(τ), . . . ,x(nτ)). Some Kalman filter programs included in software

packages require the processes in the state-space to be real. That condition is not ful-

filled by the model described by equations (17) and (18). An equivalent description by

means of real processes can be obtained by ordering the parametersκκκwith the imaginary

components paired with their conjugates in such a way that κ2h = κ̄2h−1, h = 1,2, . . . ,c

and the imaginary component ℑ(κ j) = 0 if and only if 2c< j ≤ p.

Then the matrix M = ((M j,k)) with all elements equal to zero except M2h−1,2h−1 =

M2h−1,2h = 1, −M2h,2h−1 = M2h,2h = i, h = 1,2, . . . ,c and M j, j = 1, 2c< j ≤ p, induces

the linear transformation ξξξ 7→ Mξξξ that leads to the new state-space description

Mξξξ(t) = Mdiag(e−κ1τ ,e−κ2τ , . . . ,e−κpτ )M−1Mξξξ(t − τ)+Mηηη(t), (20)

x(t) =KKK
T
M−1Mξξξ(t), (21)

where the processes Mξξξ are real.
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Observe that there is no loss of generality in choosing the spacing τ between obser-

vations as unity for the derivation of the state-space equations. Hence, we set τ = 1 in

the sequel and, in addition, τ will be omitted from the notation.

When κ1, . . . ,κq are all different, p1, . . . , pq are positive integers,
∑q

h=1 ph = p and

κκκ is a p-vector with ph repeated components equal to κh, the OU(p) process x(t) =

OUκκκΛ(t) is a linear function of the state-space vector

(

ξ(0)κ1
,ξ(1)κ1

, . . . ,ξ(p1−1)
κ1

, . . . ,ξ(0)κq
,ξ(1)κq

, . . . ,ξ
(pq−1)
κq

)

where the components are given by (10), and the transition equation is no longer ex-

pressed by a diagonal matrix. In this case the state-space model has the following form

ξξξ(t) = Aξξξ(t −1)+ηηη(t)

x(t) =KKK
Tξξξ(t) (22)

We leave the technical details of this derivation to Appendix B. The terms ξξξ(t), A, ηηη(t)

and KKK are precisely defined in (36). The real version of (22), when the process ξξξ has

imaginary components is obtained by multiplying both equations by a block-diagonal

matrix C (which is defined precisely in the Appendix), giving us the real state-space

model

Cξξξ(t) = (CAC−1)(Cξξξ(t −1))+Cηηη(t), (23)

x(t) = (KKK T
C−1)(Cξξξ(t)). (24)

5. The OU(ppp) as an ARMA(ppp, p−1p−1p−1)

The studies of properties of linear transformations and aggregations of similar processes

have produced a great amount of work stemming from the seminal paper by Granger and

Morris (1976) on the invariance of MA and ARMA processes under these operations.

These results and extensions to vector autoregressive moving average (VARMA) pro-

cesses are compiled in the textbook by Lütkepohl (2005).

The description of the OU(p) process x = OUκκκ(Λ) with parameters κκκ as a linear

state-space model, given in the previous section, will allow us to show that the series

x(0), x(1), . . . , x(n) satisfies an ARMA(p,q) model with q smaller than p. We refer

the reader to (Lütkepohl, 2005, Ch. 11) for a presentation on VARMA processes and,

in particular, to the following result on the invariance property of VARMA processes

under linear transformations, which we quote with a minor change of notation:
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Theorem 2 (Lütkepohl, 2005, Cor. 11.1.2) Let y(t) be a d-dimensional, stable, invert-

ible VARMA(p̃,q̃) process and let F be an (m× d) matrix of rank m. Then the process

zt =Fyt has a VARMA(p̌, q̌) representation with p̌≤ (d−m+1) p̃ and q̌ ≤ (d−m) p̃+ q̃.

Equation (23) shows that Cξξξ(t) is a p-dimensional autoregressive vector (a p-dimen-

sional VARMA(1,0) process) and Equation (24) expresses x(t) as a linear transformation

of Cξξξ(t) by the (1× p) matrix F =KKK TC−1. Using Theorem 2 (with d = p, p̃ = 1, q̃ = 0,

m = 1) we conclude that (x(t) : t = 0,1, . . . ,n) is an ARMA(p̌,q̌) process with p̌ ≤ p and

q̌ ≤ p−1:

x(h) =

p
∑

j=1

φ jx(h− j)+

p−1
∑

l=0

θlǫh−l (25)

where ǫ is a Gaussian white noise with variance 1 and the parameters φφφ = (φ1, . . . ,φp)
T,

θθθ = (θ0, . . . ,θp−1)
T of the ARMA process are functions of the parameters κκκ of the OU

process. When the noise is any other second order Lévy process the corresponding

OU(p) process has the same covariances as the process (25).

By using the backshift operator B, and the polynomials φ(z)= 1−
∑p

j=1φ jz
j, θ(z)=

∑p−1
l=0 θlz

l , (25) is written as

φ(B)x = θ(B)ǫ. (26)

5.1. Identifying the ARMA(ppp, p−1p−1p−1) from a given OU(p)(p)(p) process

We proceed now to identify the coefficientsφφφ∈R
p and θθθ ∈R

p−1 of the ARMA(p, p−1)
model that has the same autocovariances as x = OUκκκ(Λ).

Case 1. Consider first that all components of κκκ are pairwise different, and hence x(t)

=
∑p

j=1 K jξκ j
(t) is a linear combination of the OU(1) processes

ξκ j
(t) =

∫ t

−∞

e−κ j(t−s)dΛ(s) = e−κ jξκ j
(t −1)+

∫ t

t−1
e−κ j(t−s)dΛ(s)

with innovations ηηηκκκ with components ηκ j
(t) =

∫ t
t−1 e−κ j(t−s)dΛ(s).

For each j, the series ξκ j
= (ξκ j

(h))h∈ZZZ satisfies the AR(1) model

(1− e−κ j B)ξκ j
= ηκ j
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(see (17)), and from (18) the series x = (x(h))h∈ZZZ follows the ARMA model

p

∏
j=1

(1− e−κ jB)x =

p
∑

j=1

K j(κκκ)∏
l 6= j

(1− e−κl B)ηκ j
.

The sum of moving averages in the right-hand term is distributed as the moving average

ζ =

p−1
∑

h=0

θhBhǫ

where ǫ is a white noise with variance one and the coefficients θh are suitably chosen.

It is readily verified that the autocovariances cl = Eζ(h)ζ̄(h− l) of this MA are the

coefficients in the sum of powers of z

(

p−1
∑

h=0

θhzh

)(

p−1
∑

k=0

θ̄kz−h

)

=

p−1
∑

l=−p+1

clz
l. (27)

A similar formula that takes into account the correlations (19) between the noises

ηκk
indicates that the same autocovariances are given by the identity

J(z) :=

p
∑

j=1

p
∑

l=1

K jK̄lG j(z)Ḡl(1/z)v j,l =

p−1
∑

l=−p+1

clz
l (28)

where G j(z) = ∏l 6= j(1− e−κl z) =
∑p−1

l=0 g j,lz
l .

The coefficients g j,l and the function J are completely determined from the parame-

ters of the OU process. In order to express the parameters of the ARMA(p,p−1) process

in terms ofκκκ and v2 =VarΛ(1) it remains to obtain the coefficients θh in the factorization

(27). The roots ρ j ( j = 1,2, . . . , p−1) of

θ(z) =

p−1
∑

h=0

θhzh = θ0

p−1

∏
j=1

(1− z/ρ j) (29)

are obtained by choosing the roots of the polynomial zp−1θ(z)θ̄(1/z) = zp−1J(z) with

modules greater than one (the remaining roots are their inverses). Then all θh are written

in terms of the ρh and the size factor θ0 by applying (29). The value of θ0 follows by

using an additional equation, namely, the equality of the terms of degree zero in J(z)
and θ(z)θ̄(1/z), thus obtaining
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p−1
∑

l=0

|θl|
2 =

p
∑

j=1

p
∑

l=1

K jK̄lv j,l

p−1
∑

h=0

g j,hḡl,h.

The general result, for arbitrary κκκ is much more involved and its derivation is de-

ferred to Appendix C.

6. Estimation of the parameters of OU(ppp)

6.1. Reparameterization by means of real parameters

Our purpose is to insert the expression (15) for the covariance γ(t) of the process

x(t) = OUκκκΛ(t) in a numeric optimization procedure in order to compute the maxi-

mum likelihood estimates of the parameters. Although γ(t) depends continuously on κκκ,

the same does not happen with each term in the expression (15), because of the lack of

boundedness of the coefficients of the linear combination when two different values of

the components of κκκ approach each other. Since we wish to consider real processes x

and the process itself and its covariance γ(t) depend only of the unordered set of the

components of κκκ, we shall reparameterize the process. For the sake of simplicity, but

without losing generality, consider the case where the components in κκκ are pairwise

different. Let K j,i =
1

(−κ j)i ∏l 6= j(1−κl/κ j)
(in particular, K j,0 is the same as K j). Then the

processes xi(t) =
∑p

j=1 K j,iξ j(t) and the coefficients βββ = (β1, . . . ,βp) of the polynomial

g(z) =
p

∏
j=1

(1+κ jz) = 1−

p
∑

j=1

β jz
j. (30)

satisfy

p
∑

i=1

βixi(t) = x(t).

The resulting process is real, because of Corollary 2. This works likewise for the general

case of κκκ with some repetitions. Therefore the new parameter βββ shall be adopted.

6.2. Matching correlations estimation (MCE)

From the closed formula (15) for the covariance γ and the relationship (30) between κκκ

and βββ, we have a mapping (βββ,v2) 7→ γ(t), for each t. Since

ρρρ(T ) := (ρ(1),ρ(2), . . . ,ρ(T ))T = (γ(1),γ(2), . . . ,γ(T ))T/γ(0)
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does not depend on v2, these equations determine a map C : (βββ,T ) 7→ ρρρ(T ) = C(βββ,T )

for each T . After choosing a value of T and obtaining an estimate ρρρ
(T )
e of ρρρ(T ) based on

the empirical covariances of x, we propose as a first estimate of βββ, the vector β̌ββT such

that all the components of the correspondingκκκ have positive real parts, and such that the

Euclidean norm ‖ρρρ
(T )
e −C(β̌ββT ,T )‖ reaches its minimum. The procedure resembles the

estimation by the method of moments. The components of ρρρ
(T )
e for the series (x j) j=1,2,...,n

are computed as

ρe,h = γe,h/γe,0, γe,h =
1

n

n−h
∑

j=1

x jx j+h.

6.3. Maximum likelihood estimation (MLE) in the Gaussian case

In this case x(t) = OUκκκσW (t), where W (t) is standard Wiener process. Assume that

x(t) is observed at times 0,τ ,2τ , . . . ,nτ . By choosing τ the time unit of measure, as in

Section 4, we assume without loss of generality that our observations are xxx= (x(0),x(1),

. . . ,x(n))T.

The likelihood L of the vector xxx is given by

logL(xxx;βββ,σ2) =− n
2

log(2π)− 1
2

log(det(ΓΓΓ(βββ,σ2))− 1
2
xxxT(ΓΓΓ(βββ,σ2))−1xxx

where ΓΓΓ has components Γh, j = γ(|h− j|) (h, j = 0,1, . . . ,n). The Kalman filter associ-

ated to the dinamical state-space model in Section 4 provides an efficient alternative to

compute the likelihood.

From these elements, a numerical optimization leads to obtain the maximum likeli-

hood estimators β̂ββ of βββ and σ̂2 of σ2. If required, the estimations κ̂κκ follow by solving the

analogue of the polynomial equation (30) written in terms of the estimators:

p

∏
j=1

(1+ κ̂ jz) = 1−

p
∑

j=1

β̂ jz
j.

The optimization for large n and the solution of the algebraic equation for large p re-

quire a considerable computation effort, but there are efficient programs to perform both

operations, such as optim and polyroot in R (R Core Team, 2015). An alternative when

the observed process is not assumed to be centred, is to maximize the log-likelihood of

∆xxx = (x(1)− x(0),x(2)− x(1), . . .,x(n)− x(n−1)) given by

logL(xxx;βββ,σ2) =− n
2

log(2π)− 1
2

log(det(V(βββ,σ2))− 1
2
∆xxxT(V(βββ,σ2))−1∆xxx
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with V(βββ,σ2) equal to the n×n matrix with components

Vh, j = 2γ(|h− j|)−γ(|h− j|+1)−γ(|h− j|−1)

that reduce to 2(γ(0)−γ(1)) at the diagonal h = j.

The optimization procedures require an initial guess about the value of the parame-

ter to be estimated. The estimators obtained by matching correlations described in the

previous section can be used for that purpose.

6.4. The Gaussian case: examples

When Λ is a Wiener process W , the OU process of order p belongs to a subclass with

p+1 parameters of the classical family of the 2p-parameters Gaussian ARMA(p, p−1)

xt = φ1xt−1 + · · ·+φpxt−p + θ0ǫt + θ1ǫt−1 + · · ·+ θp−1ǫt−p+1

where φ1, . . . , φp and θ0, . . . , θq are parameters and ǫt is a Gaussian noise with variance

1. The parametersκκκ,σ2 determine the Gaussian likelihood of OUκκκσW , and are estimated

by the values κ̂κκ and σ̂2 that maximize that likelihood.

We have observed in several examples that the covariances of the process with the

maximum likelihood estimators as parameters, follow closely the empirical covariances

of the series. We have simulated the sample paths for the Wiener-driven OU(p) for

different values of the parameters.

In the examples below we present simulated series x( j), j = 0,1,2, . . . ,n obtained

from an OU process x for n = 300 and three different values of the parameters and

computed the MC and ML estimators β̌ββT , and β̂ββ. The value of T for the MC estimation

has been arbitrarily set equal to the integral part of 0.9 ·n, but the graphs of β̌ββT for several

values of T show in each case that after T exceeds a moderate threshold, the estimates

remain practically constant. One of such graphs is included below (see Figure 2). It is

of interest to perform further comparisons of these two methodologies for parameter

estimation. A recent antecedent of this kind of comparisons and its importance can be

found in Nieto, Orbe and Zarraga (2014).

The simulations show that the correlations of the series with the estimated parameters

are fairly adapted to each other and to the empirical covariances. The departure from the

theoretical covariances of x can be ascribed to the simulation intrinsic randomness.

Our first two examples describe OU(3) processes with arbitrarily (and randomly)

chosen parameters and the third one imitates the behaviour of Series A that appears in

Section 6.5.
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Example 1. A series (xh)h=0,1,...,n of n= 300 observations of the OUκκκ process x of order

p= 3,κκκ= (0.9,0.2+0.4i,0.2−0.4i) and σ2 = 1 was simulated, and the parameters βββ =
(−1.30, −0.56, −0.18) and σ2 = 1 were estimated by means of matching correlations:

β̌ββT = (−1.9245,−0.6678,−0.3221),

with T = 270; and maximum likelihood:

β̂ββ = (−1.3546,−0.6707,−0.2355)

and σ̂2 = 0.8958. The corresponding estimators forκκκ are κ̌κκ=(1.6368, 0.1439+0.4196i,
0.14389 −0.4196i) and κ̂κκ = (0.9001, 0.2273+0.4582i, 0.2273−0.4582i).

The following table summarizes the different estimations of this OU(3) process.

original βββ −1.30 −0.56 −0.18 σ2 = 1

original κκκ 0.9 0.2+0.4i 0.2−0.4i σ2 = 1

MCE β̌ββT −1.9245 −0.6678 −0.3221

κ̌κκ 1.6368 0.1439+0.4196i 0.14389−0.4196i

MLE β̂ββ −1.3546 −0.6707 −0.2355 σ̂2 =

κ̂κκ 0.9001 0.2273+0.4582i 0.2273−0.4582i 0.8958
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Figure 1: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU models, for

p = 3, 2 and 4 corresponding to Example 1. The covariances of OUκκκ are indicated with a dotted line.

Figure 1 describes the theoretical, empirical and estimated covariances of x under the

assumption p = 3, that is, the actual order of x. The results obtained when the estimation

is performed for p = 2 and p = 4 are also shown. Figure 2 shows that the MC estimates

ofβββ become stable for T moderately large, and close to the already indicated estimations

for T = 270 (the horizontal lines).
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Figure 2: The MC estimations β̌1(◦), β̌2(▽) and β̌3(⋄) for different values of T , corresponding to Exam-

ple 1. The horizontal lines indicate the estimations for T = 270.

The coefficients φ1,φ2,φ3 of the ARMA(3,2) model (26) satisfied by the series

(x(h))h=0,1,...,300 are obtained by computing the product
3

∏
j=1

(1−e−κ jB) = 1 − φ1B −

φ2B2 −φ3B3 = 1−1.9148B+1.2835B2−0.2725B3.

As for the coefficients θ0,θ1,θ2, the first step is to compute the function

J(z) = 0.2995z−2 −1.1943z−1+1.7904−1.1943z+0.2995z2,

then obtain the roots ρ1 = 1.1443 − 0.1944i, ρ2 = 1.1443 + 0.1944i, ρ3 = 0.8494

− 0.1443i, ρ4 = 0.8494 + 0.1443i of the equation z2J(z) = 0, ordered by decreasing

moduli, discard the last two, and write the function θ(z) = θ0 + θ1z+ θ2z2 defined in

(29):

θ0

2

∏
j=1

(1−B/ρ j) = θ0(1−1.6988z+0.7423z2).

Solve θ2
0(1+(−1.6988)2+0.742292) = 1.7904 to have θ0 = 0.6352, and hence θ(B) =

0.6352−1.0791B+0.4715B2.

Example 2. The process x = OU(0.04,0.21,1.87) is analysed as in Example 1. The result-

ing estimators are β̌ββT = (−2.0611, −0.7459, −0.0553), T = 270, κ̌κκ= (1.6224, 0.3378,

0.1009), β̂ββ =(−1.8253,−0.7340,−0.0680), σ̂2 = 0.7842, κ̂κκ=(1.3015, 0.3897, 0.1342).
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Figure 3: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU models, for

p = 2, p = 4 and p = 3, the actual value of the parameter, corresponding to Example 3. The covariances of

OUκκκ are indicated with a dotted line.
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The associated ARMA(3,2) model is

(1−1.9255B+1.05185B2−0.1200B3)x = (0.4831−0.9044B+0.4230B2)ǫ.

Example 3. The parameter κκκ = (0.83,0.0041,0.0009) used in the simulation of the

OU process x treated in the present example is approximately equal to the parameter κ̂κκ

obtained by ML estimation with p = 3 for Series A in Section 6.5.1. A graphical pre-

sentation of the estimated covariances is given in Figure 3. The associated ARMA(3,2)

model is

(1−2.4311B+1.8649B2−0.4339B3)x = (0.6973−1.3935B+0.6962B2)ǫ

The description of the performance of the model is complemented by comparing in

Figure 4 the simulated values of the process in 400 equally spaced points filling the

interval (199,201) with the predicted values for the same interval, based on the OU(3)

model and the assumed observed data x(0),x(2),x(3), . . . ,x(200). Also a confidence

band limited by the predicted values plus and minus twice their standard deviation (2-

st.-dev. confidence band) is included in the graph, in order to describe the precision of

the predicted values.

199.0 199.5 200.0 200.5 201.0

-2
-1

0
1

2

Figure 4: Estimated interpolation and prediction of x(t) for 199< t < 200 and 200< t < 201, respectively

(- - -), 2-st.-dev. confidence bands based on (x(i))i=0,1,...,200 (· · · ), and a refinement of the simulation of x(t)

on 199 < t < 200.

6.5. Applications to real data

In this section we present experimental results on two real data sets. We fit OU(p)
processes for small values of p and also some ARMA processes. In each case we have

observed that we can find an adequate value of p for which the empirical covariances are

well approximated by the covariances of the adjusted OU(p) model. This is not the case
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for the ARMA models adjusted by maximum likelihood, in all examples. We present a

detailed comparison of both methodologies for the first example.

The first data set is taken from Box, Jenkins, and Reinsel (1994), and correspond to

equally spaced observations of continuous-time processes that might be assumed to be

stationary. The second one is a series obtained by choosing one in every 100 terms of

a high frequency recording of oxygen saturation in blood of a newborn child. The data

were obtained by a team of researchers of Pereira Rossell Children Hospital in Montev-

ideo, Uruguay, integrated by L. Chiapella, A. Criado and C. Scavone. Their permission

to analyse the data is gratefully acknowledged by the authors.

6.5.1. Box, Jenkins and Reinsel “Series A”

The Series A is a record of n = 197 chemical process concentration readings, taken

every two hours, introduced with that name and analysed in (Box, Jenkins, and Reinsel,

1994, Ch. 4)1. Box et al. suggest an ARMA(1,1) as a model for this data, and subsets

of AR(7) are proposed in (Cleveland, 1971) and (McLeod and Zhang, 2006). Figure 5

shows that these models fit fairly well the autocovariances for small lags, but fail to

capture the structure of autocorrelations for large lags present in the series. On the other

hand, the approximations obtained with the OU(p) processes, for p = 3,4 reflect both

the short and long dependences, as shown in Figure 6.
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Figure 5: Empirical covariances (◦) and covariances of the ML (—) fitted models ARMA(1,1) and AR(7)

for Series A.

1. see also http://rgm2.lab.nig.ac.jp/RGM2/tfunc.php?rd id=FitAR:SeriesA



Argimiro Arratia, Alejandra Cabaña and Enrique M. Cabaña 287

0 50 100 150

0
.0

0
0
.0

5
0
.1

0
0
.1

5
Covariances − = 3p Covariances − =p 4

co
v
ar

ia
n
ce

s

0 50 100 150

0
.0

0
0
.0

5
0
.1

0
0
.1

5

co
v
ar

ia
n
ce

s
Figure 6: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU(p) models,

for p = 3,4 corresponding to Series A.

It is interesting to consider jointly the ARMA(3,2) model (31) fitted to the origi-

nal data by maximum likelihood (computed also with the R function arima) and the

ARMA(3,2) model (32) obtained by the procedure described in Section 5, correspond-

ing to the OU(3) process also fitted to the data by maximum likelihood. The estimated

parameters of this OU process are

κ̂κκ= (0.8293,0.0018+0.0330i,0.0018−0.0330i) and ĉ = 0.4401

and the ARMA(3,2) processes are respectively

(1−0.7945B−0.3145B2+0.1553B3)x=0.3101(1−0.4269B−0.2959B2)ǫ (31)

and

(1−2.4316B+1.8670B2−0.4348B3)x=0.4401(1−1.9675B+0.9685B2)ǫ. (32)

The autocorrelations of both ARMA models, shown in Figure 7, together with the

empirical correlations of the series were computed by means of the R function ARMAacf,

although the ones corresponding to (32) could have been obtained as the restrictions

to integer lags of the covariance function for continuous-time described in Section 3.2.

It is worth to notice that the autocorrelations of (31) do not approach the empirical

correlations, indicated by circles, as much as the correlations of (32). The logarithms

of the likelihoods of (31) and (32) are ℓ′ =−49.23, and ℓ′′ =−50.95, respectively. But

since the number of parameters of the second model (which is four) is smaller than the

number of parameters of the complete family of ARMA(3,2) processes (six), the Akaike
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Figure 7: Empirical correlations (◦) of Series A, and autocorrelations of models (31) and (32) fitted by

maximum likelihood from the family of all ARMA(3,2) and the restricted family of ARMA(3,2) derived from

OU(3).
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Figure 8: Confidence bands for interpolated and extrapolated values of Series A for continuous domain.
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information criterion (AIC) of the parsimonious OU model is 8−2ℓ′′ = 109.90, slightly

better than the AIC of the unrestricted ARMA model, equal to 12−2ℓ′ = 110.46.

Finally we show in Figure 8 the predicted values of the continuous parameter process

x(t), for t between n− 7 and n+ 4 (190-201), obtained as the best linear predictions

based on the last 90 observed values, and on the correlations given by the fitted OU(3)

model. The upper and lower lines are two standard deviation confidence limits for each

value of the process.

6.5.2. Oxygen saturation in blood

The oxygen saturation in blood of a newborn child has been monitored during 17 hours,

and measures taken every two seconds. We assume that a series x0,x1, . . . ,x304 of mea-

sures taken at intervals of 200 seconds is observed, and fit OU processes of orders

p = 2,3,4 to that series.
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Figure 9: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU(p) models

for p = 2,3,4 corresponding to the series of oxygen saturation in blood.

Again the empirical covariances of the series and the covariances of the fitted OU(p)

models for p = 2,3,4 are plotted (see Figure 9) and the estimated interpolation and

extrapolation are shown in Figure 10. In the present case, the actual values of the series

for integer multiples of 1/100 of the unit measure of 200 seconds are known, and plotted

in the same figure.

6.6. Estimating the shape of the Lévy noise

There are various methods proposed in the literature to estimate the parameters of Lévy

driven Ornstein–Uhlenbeck processes; in particular, the Lévy-Khinchin triplet com-

prised of two real numbers and a measure. For example, Valdivieso, Schoutens, and

Tuerlinckx (2009) propose a maximum likelihood estimation methodology based on the

inversion of the characteristic function of the Lévy process and the use of the discrete

fast Fourier transform. Jongbloed, van der Meulen, and van der Vaart (2005) propose

a nonparametric estimation based on a preliminary estimator of the characteristic func-

tion. Both methods require a large amount of information and intensive computation.
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Figure 10: Partial graph showing the five last values of the series of O2 saturation in blood at integer

multiples of the 200 seconds unit of time (◦), interpolated and extrapolated predictions (—), 2-st.-dev.

confidence bands (· · · ), and actual values of the series.

We propose a naive method of estimating the parameters of the Lévy driven Ornstein–

Uhlenbeck process that works in general situations when the maximum likelihood func-

tion is not known or difficult to approximate. These estimators are easy to compute, but

also require a large amount of data to attain high accuracy.

Our method of estimation resembles the methods described in (Yu, 2004) consist-

ing on matching the characteristic function derived from the model and the empirical

characteristic function derived from the data.

Given a Lévy process Λ(t), the characteristic function of Λ(t) is EeiuΛ(t) =(EeiuΛ(1))t ,

and is usually written as EeiuΛ(1) = eψΛ(iu). The function ψΛ(iu) = logEeiuΛ(1) is called

characteristic exponent and has the form

ψΛ(iu) = aiu−
σ2

2
u2 +

∫

|x|<1
(eiux −1− iux)dν(x)+

∫

|x|≥1
(eiux −1)dν(x)

where ν({0}) = 0,
∫

|x|<1 x2dν(x) < ∞,
∫

|x|≥1 dν(x) < ∞. The Lévy-Khinchin triplet is

(σ2,a,ν).

Assume that the admissible exponents belong to a parametric class Ψ = {ψθ : θ ∈ Θ}
where Θ ⊂ R

d , and obtain the value of θ for which a chosen quadratic distance between

the exponential of ψθ(iu) and the empirical characteristic function of the residuals is

minimum.
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In order to ease notation, let us consider the case of an OU(p) model with parameter

κκκ of pairwise different components; either κκκ is known or it is estimated by maximum

likelihood or matching correlation methods. The innovation in each component ξ j is

η j(t) =
∫ t

t−1
e−κ j(t−s)dΛ(s),

so that the innovation of x
κ

is

η(t) =
∫ t

t−1
g(t − s)dΛ(s) where g(t) =

p
∑

j=1

K je
−κ jt .

Hence, if we denote η := η(1), we have

η ∼
∫ 1

0
g(1− s)dΛ(s)∼

∫ 1

0
g(s)dΛ(s)

and its characteristic exponent is therefore

ψη(iu) = logEeiuη = logEeiu
∫ 1

0 g(s)dΛ(s) =
∫ 1

0
ψΛ(iug(s))ds

Example 4. Consider the estimation of a noise sum of a Poisson process plus a Gaus-

sian term. Let us assume that the noise is given by

Λ(t) = σW (t)+a(N(t)−λt)

where W is a standard Wiener process and N is a Poisson process with intensity λ. The

family of possible noises depends on the three parameters (σ,λ,a). In this case, the

characteristic exponent has a simple form:

ψΛ(1)(iu) =−
σ2u2

2
+λ(eiua − iua−1),

hence

ψη(iu) =
∫ 1

0

(

−
σ2u2g2(s)

2
+λ(eiug(s)a − iug(s)a−1)

)

ds

Defining gh =
∫ 1

0 gh(s)ds, we have

ψη(iu) =−
σ2u2g2

2
+λ

(

−
u2g2a2

2
− i

u3g3a3

6
+

u4g4a4

24
+ . . .

)
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Then we propose to estimate the parameters by equating the coefficients of u2,u3,u4

in ψη(iu) with the corresponding ones in the logarithm of the empirical characteristic

function of the residuals.

Assuming that the mean of the residuals r1,r2, . . . ,rn is zero, their empirical charac-

teristic function is

1

n

n
∑

h=1

eiurh = 1−
1

2
u2R2 −

1

6
iu3R3 +

1

24
u4R4 + . . .

where Rm = 1
n

∑n
h=1 rm

h . Then the logarithm has the expansion

log
1

n

n
∑

h=1

eiurh =−
1

2
u2R2 −

1

6
iu3R3 +

1

24
u4R4 −

1

8
u4R2

2 + . . .

Consequently, the estimation equations are

(σ2 +λa2)g2 = R2,

λa3g3 = R3,

λa4g4 = R4 −3R2
2

from which the estimators follow:

ã =
R4 −3R2

2

R3

g3

g4

, λ̃=
R4

3

(R4 −3R2
2)

3

g3
4

g4
3

,

σ̃2 =
R2

g2

−
R2

3

(R4 −3R2
2)

g4

g2
3

.

Figure 11 shows the empirical c.d.f. of 90 estimators of the parameters obtained from

simulated series of 200 terms. The residuals were obtained by applying a Kalman filter

to the space state formulation, starting from the actual value of κκκ used at the simulation

(-·-), that in practical situations is unknown, and from matching correlations estimation

(– –) and by maximum likelihood estimation (–·–).

The estimators are not sharp at all, but the ones obtained by the same procedure

applied directly on the unfiltered noise Λ (– –) are equally rough. Larger series (of size

10000 and 1000000) produce sharper estimates, also shown in the figures by dotted

lines.
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c.d.f. of 90 estimators of σ c.d.f. of 90 estimators of λ c.d.f. of 90 estimators of c

Figure 11: Estimation of the parameters of the noise (σ –left panel–, λ –center–, a –right–) from 90

replications of {xκκκ(t) : t = 0,1, . . . ,200}, κκκ= (0.01±0.1i,0.2), driven by Λ(t) = 0.1W (t)+N0.3(t)−0.3t.

Normality is rejected in all cases.

7. Conclusions

We have proposed a family of continuous-time stationary processes, based on p itera-

tions of the linear operator that maps a second order Lévy process onto an Ornstein-

Uhlenbeck process. These operators have some nice properties, such as being commu-

tative, and their p-compositions decompose as a linear combination of simple operators

of the same kind. We remark that this result, stated in Theorem 1, is independent of the

process onto which the operators OUκκκ act on. We have reduced the present scope of

the applications envisaged by applying the operators only to Lévy processes, but other

choices deserve consideration, for example, the results of applying the same operators

to fractional Brownian motions.

An OU(p) process depends on p+1 parameters that can be easily estimated by either

maximum likelihood (ML) or matching correlations (MC) procedures. MC estimators

provide a fair estimation of the covariances of the data, even if the model is not well

specified. When sampled on equally spaced instants, the OU(p) family can be written

as a discrete time state-space model; i.e., a VARMA model in a space of dimension p.

As a consequence, the families of OU(p) models are a parsimonious subfamily of the

ARMA(p, p− 1) processes in the Gaussian case. Furthermore, the coefficients of the

ARMA can be deduced from those of the corresponding OU(p). We have shown exam-

ples for which the ML-estimated OU model is able to capture features of the empirical

autocorrelations at large lags that the ML-estimated ARMA model does not (see for in-

stance Figure 7). This leads to recommend the inclusion of OU models as candidates to

represent stationary series, either in discrete time or continuous-time.
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Appendix A: Proofs of Theorem 1 and its corollaries

Parts (i) and (iii) are obtained by direct computation of the integrals, (ii) follows from

(i) by finite induction, as well as (iv) from (iii).

From the continuity of the integrals with respect to the parameter κ, the power OUp
κ

satisfies

OU
p
κ = lim

δ↓0

p

∏
j=1

OUκ+ jδ = lim
δ↓0

p
∑

j=1

K′
j(δ,κ, p)OUκ+ jδ (33)

with

K′
j(δ,κ, p) =

1

∏1≤l≤p,l 6= j

(

1− κ+lδ
κ+ jδ

) .

On the other hand, by (i),

q

∏
h=1

OU
ph
κh

= lim
δδδ↓0

q

∏
h=1

ph

∏
j=1

OUκh+ jδh
= lim

δδδ↓0

q
∑

h=1

ph
∑

j=1

K′′
h, j(δδδ,κκκ)OUκh+ jδh

(34)

where δδδ = (δ1, . . . ,δq),

K′′
h, j(δδδ,κκκ) =

1

∏ 1≤h′≤q,1≤ j′≤ph,

(h′, j′) 6=(h, j)

(

1−
κh′+ j′δh′

κh+ jδh

) = K′′′
h, j(δδδ,κκκ)K

′
j(δh,κh, ph),

and

K′′′
h, j(δδδ,κκκ) =

1

∏ 1≤h′≤q,
h′ 6=h

∏
ph′

j′=1
(1− (κh′ + j′δh′)/(κh + jδh))

→ Kh(κκκ) as δδδ ↓ 0

For the h-th term in the right-hand side of (34), we compute

lim
δδδ↓0

ph
∑

j=1

K′′
h, j(δδδ,κκκ)OUκh+ jδh

= lim
δδδ↓0

ph
∑

j=1

K′′′
h, j(δδδ,κκκ)K

′
j(δh,κh, ph)OUκh+ jδh

= lim
δδδ↓0

ph
∑

j=1

(K′′′
h, j(δδδ,κκκ)−Kh(κκκ))K

′
j(δh,κh, ph)OUκh+ jδh

+ Kh(κκκ) lim
δδδ↓0

ph
∑

j=1

K′
j(δh,κh, ph)OUκh+ jδh

= Kh(κκκ)OU
ph
κh
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by Equation (33) since, in addition, each term in the first sum tends to zero. This ends

the verification of (v).
Corollary 1 is an immediate consequence of (iv) and (v), and Corollary 2 follows by

applying (i) to compute

OUλ+iµOUλ−iµ =
λ+ iµ

2iµ
OUλ+iµ−

λ− iµ

2iµ
OUλ−iµ

=
∫ t

−∞

e−λ(t−s)
[

λ+iµ
2iµ

(cos(µ(t − s))+ isin(µ(t− s)))

−λ−iµ
2iµ

(cos(µ(t− s))− isin(µ(t− s)))
]

dΛ(s)

=
∫ t

−∞

e−λ(t−s)(cos(µ(t − s))+ λ
µ

sin(µ(t − s)))dΛ(s).

Appendix B: Derivation of a state-space model

The form of equations (22) for a state-space representation of the OU(p) process in the

general case can be derived by considering three special cases:

1. When the components of κκκ are all different. This case is treated in Section 4.

2. When the components of κκκ are all equal. Let κ denote the common value of the

components of κκκ. The state of the system is described by the vector

ξξξκ,p = (ξ(0)κ ,ξ(1)κ , . . . ,ξ(p−1)
κ )T,

with components ξ(h)κ (t) =
∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dΛ(s).

Each of these terms can be written as the sum

ξ(h)κ (t) = e−κ
∫ t−1

−∞

e−κ(t−1−s) (−κ(t −1− s+1))h

h!
dΛ(s)+ηκ,h(t) (35)

where ηκ,h(t) =

∫ t

t−1
e−κ(t−s) (−κ(t − s))h

h!
dΛ(s).

The first term in the right-hand side of (35) is equal to

e−κ
h
∑

j=0

(−κ)h− j

(h− j)!

∫ t−1

−∞

e−κ(t−1−s) (−κ(t −1− s)) j

j!
dΛ(s)

= e−κ
h
∑

j=0

(−κ)h− j

(h− j)!
ξ( j)
κ (t −1)
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and therefore, by introducing the matrix

Aκ,p = e−κ





























1 0 0 . . . 0 0
(−κ)

1!
1 0 . . . 0 0

(−κ)2

2!

(−κ)
1!

1 . . . 0 0

...
...

...
. . .

...
...

(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)!
(−κ)p−4

(p−4)! . . . 1 0

(−κ)p−1

(p−1)!
(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)! . . . (−κ)
1!

1





























we may write

ξξξκ,p(t) = Aκ,pξξξκ,p(t −1)+ηηηκ,p

where ηηηκ,p(t) = (ηκ,0(t),ηκ,1(t), . . . ,ηκ,p−1(t))
T is a vector of centered inno-

vations (independent of the σ-algebra generated by {Λ(s) : s ≤ t−1}) with covari-

ance matrix Bκ,κ,p obtained with κ1 = κ2 and p1 = p2 from the general expression

of the p1 × p2 matrix Bκ1,κ2,p1,p2
= ((bκ1,κ2,h1,h2

))1≤h1≤p1,1≤h2≤p2
, where

bκ1,κ2,h1,h2
= Eηκ1,h1

(t)η̄κ2,h2
(t)

= v2

∫ t

t−1
e−(κ1+κ̄2)(t−s)(−κ1)

h1(−κ̄2)
h2(t − s)h1+h2ds

= v2

∫ 1

0
e−(κ1+κ̄2)y(−κ)h1(−κ̄)h2yh1+h2dy.

The equation x(t) =KKK T

pξξξκκκ,p(t), with KKK T

p = (
(

p−1
0

)

,
(

p−1
1

)

, . . . ,
(

p−1
p−1

)

) completes the

description of the system state dynamics.

3. The vector κ has components κ1 = λ+µi and κ2 = λ−µi, µ 6= 0, each repeated p1

times. A description involving imaginary processes is immediate from the previous

case. The equations

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

=

(

Aκ1,p1
0

0 Aκ2,p1

)(

ξξξκ1,p1
(t −1)

ξξξκ2,p1
(t −1)

)

+

(

ηηηκ1,p1

ηηηκ2,p1

)

x(t) = (KKK T

p1
,KKK T

p1
)

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

hold, and Var

(

ηηηκ1,p1

ηηηκ2,p1

)

=

(

Bκ1,κ1,p1,p1
Bκ1,κ2,p1,p1

Bκ2,κ1,p1,p1
Bκ1,κ1,p1,p1

)

.
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A description in terms of real processes is obtained by multiplying the first equa-

tion by the matrix

Cp1
=

(

Ip1
Ip1

−iIp1
iIp1

)

(Ip denotes the p× p identity matrix), because the vectorial process Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

has real components. The new equations are

Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

= Cp1

(

ηηηκ1,p1

ηηηκ2,p1

)

+

(

Cp1

(

Aκ1,p1
0

0 Aκ2,p1

)

C−1
p1

)

×

(

Cp1

(

ξξξκ1,p1
(t −1)

ξξξκ2,p1
(t −1)

))

and

x(t) =
(

(KKK T

p1
,KKK T

p1
)C−1

p1

)

×

(

Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

))

General case, real processes

Let us assume that κ1, . . . ,κq are distinct components of κκκ, each repeated p1, . . . , pq

times. We assume in addition that the imaginary components are κ1,κ2 = κ̄1, . . . ,κ2c−1,
κ2c = κ̄2c−1 and the remaining κ2c+1, . . . ,κq are real. With this notation, p2h−1 = p2h for

h = 1,2, . . . ,c. We make intensive use of the notations introduced in previous cases to

write

ξξξ(t) = Aξξξ(t −1)+ηηη(t), (36)

x(t) = K
Tξξξ(t)

with

ξξξ(t) =







































ξξξκ1,p2
(t)

ξξξκ2,p2
(t)

ξξξκ3,p4
(t)

ξξξκ4,p4
(t)

. . .

ξξξκ2c−1,p2c
(t)

ξξξκ2c,p2c
(t)

ξξξκ2c+1,p2c+1
(t)

ξξξκ2c+2,p2c+2
(t)

. . .

ξξξκq,pq(t)







































,ηηη(t) =







































ηηηκ1,p2
(t)

ηηηκ2,p2
(t)

ηηηκ3,p4
(t)

ηηηκ4,p4
(t)

. . .

ηηηκ2c−1,p2c
(t)

ηηηκ2c,p2c
(t)

ηηηκ2c+1,p2c+1
(t)

ηηηκ2c+2,p2c+2
(t)

. . .

ηηηκq,pq(t)







































,
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A =











Aκ1,p2
0 . . . 0

0 Aκ2,p2
. . . 0

...
...

. . .
...

0 0 . . . Aκq,pq











and

KKK
T = (K T

κ1,p1
,K T

κ2,p2
, . . . ,K T

κq,pq
).

The real version, when the process ξξξ has imaginary components is obtained by mul-

tiplying (36) by the matrix

C =















Cp2
0 . . . 0 0

0 Cp4
. . . 0 0

...
...

. . .
...

...

0 0 . . . Cp2c
0

0 0 . . . 0 Ip2c+1+···+pq















(37)

thus obtaining

Cξξξ(t) = (CAC−1)× (Cξξξ(t −1))+Cηηη(t), (38)

x(t) = (KKK T
C−1)× (Cξξξ(t)). (39)

Appendix C: Identification of the ARMA

In order to find the coefficients of the ARMA with the same autocovariances as x(t) in

the general case, we need the following technical results.

Lemma 1 For each positive integer p,
∑p

j=1 jp−1 ∏l 6= j
1

j−l
= 1 and for h = 0,1, . . . , p−

2,
∑p

j=1 jh ∏l 6= j
1

j−l
= 0.

Proof: The polynomial G(z) =
∑p

j=1

(

1
j

)p−1−h

∏l 6= j
1−lz

1−l/ j
has degree p− 1 and coin-

cides for p different values of the variable, namely z = 1/ j, j = 1,2, . . . , p, with the

polynomial zp−1−h, also of degree not greater than p− 1 for h = 0,1, . . . , p− 1. There-

fore, both polynomials are identical, and hence G(0) = 0 for h< p−1 and G(0) = 1 for

h = p−1.
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Lemma 2 The power series g(z,n) =
∑∞

h=0 zhhn, |z|< 1,n = 0,1,2, . . . has the sum

n
∑

h=0

αn,h(1− z)−h−1

with coefficients determined by α0,0 = 1 and the recurrence relations

αn+1,h = hαn,h−1 − (h+1)αn,h,h = 0,1, . . . ,n+1,n = 0,1,2, . . . ,αn,n+1 = 0.

In particular, αn,0 = (−1)n.

As an intermediate step from the case described in Section 5.1 and building to the

general case, let us approach the OU(p) process x with parameter equal to the p-vector

with equal components κκκ = (κ,κ, . . . ,κ)T as the limit of xδ = OUκκκ(δ)Λ, κκκ(δ) = (κ(1+

δ),κ(1+ 2δ), . . . ,κ(1+ pδ))T when δ tends to zero. From the results in Section 5.1 we

use the representation

xδ =

p
∑

j=1

K jξ j, K j =
(1+ jδ)p−1

δp−1 ∏
l 6= j

1

j− l
(40)

in terms of the vector

ξξξ = (ξ1,ξ2, . . . ,ξp)
T, ξ j(t) =

∫ t

−∞

e−κ(1+ jδ)(t−s)dΛ(s)

that satisfies ξξξ = diag(e−κ(1+ jδ))Bξξξ+ηηη where B is the backshift operator defined in

Section 2 and

η j(t) =
∫ t

t−1
e−κ(1+ jδ)(t−s)dΛ(s)

and introduce the power expansions

ξ j(t) =
∫ t

−∞

e−κ(t−s)
∞
∑

h=0

( jδ)h(−κ(t − s))h

h!
dΛ(s) =

∞
∑

h=0

( jδ)hξ(h)κ (t)

with ξ
(h)
κ (t) =

∫ t
−∞ e−κ(t−s) (−κ(t−s))h

h!
dΛ(s) and the similar expansion for the innovations

η j(t) =
∞
∑

h=0

( jδ)hη(h)κ (t) with η(h)κ (t) =
∫ t

t−1
e−κ(t−s) (−κ(t − s))h

h!
dΛ(s). (41)
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We write now the ARMA model

p

∏
j=1

(1− e−κ(1+ jδ)B)xδ =

p
∑

j=1

∏
l 6= j

(1− e−κ(1+lδ)B)K jη j

and notice that the limit when δ→ 0 of the left-hand side is (1− e−κB)px.

In order to take limits at the right-hand side, we replace K j by its expression in (40),

expand ∏l 6= j(1− e−κ(1+lδ)B) as the product of the series

p

∏
l=1

(1− e−κ(1+lδ)B) =
∞
∑

ν=0

aνδ
ν (42)

independent of j and

(1− e−κ(1+ jδ)B)−1 =
∞
∑

h=0

(e−κ(1+ jδ)B)h =
∞
∑

µ=0

bµ( jδ)µ (43)

with coefficients independent of j and substitute the expansion (41) for η j thus obtaining

the series

p
∑

j=1





∞
∑

ν=0

aνδ
ν ×

∞
∑

µ=0

bµ( jδ)µ× (1+ jδ)p−1
∏
l 6= j

1

j− l
×

∞
∑

h=0

( jδ)hη(h)κ





divided by δp−1. After ordering this series by increasing powers of δ, it may be noticed

that the terms in δ raised to a power smaller than p− 1 vanish, because their coeffi-

cient include a factor
∑p

j=1 jh ∏l 6= j
1

j−l
with h ∈ {0,1, . . . , p−2} that is equal to zero as

established in Lemma 1 below. Therefore, the limit when δ → 0 of the series divided

by δp−1 is the coefficient of δp−1 in the series. Unless the term a0 of the first factor is

taken, the power of j appearing in the coefficient of δp−1 will be smaller than p− 1

and again Lemma 1 leads to conclude that the coefficient vanishes. Therefore, since

the same lemma establishes that
∑p

j=1 jp−1 ∏l 6= j
1

j−l
= 1, the required limit is the linear

combination of moving averages

a0

∑

µ+i+h=p−1

(

p−1

i

)

bµη
(h)
κ (44)

where it remains to make explicit the dependence with respect to the backshift operator

B.
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From (42) it follows immediately that a0 = (1− e−κB)p, while from (43) we get

bµ jµµ! =
[

∂µ

∂δµ

∑∞
h=0 e−κhBhe−h jδ

]

δ=0
= (− j)µ

∑∞
h=0(e

−κB)hhµ and hence

bµ =
(−1)µ

µ!

∞
∑

ν=0

(e−κB)ννµ.

Now we apply Lemma 2 (stated at the end of this section) such that, with the coeffi-

cients αµ,ν there defined, leads us to write

∞
∑

ν=0

(e−κB)ννµ =

µ
∑

ν=0

αµ,ν(1− e−κB)−ν−1

and therefore (44) is equal to the moving average of order at most p−1

∑

µ+i+h=p−1

(

p−1

i

)

(−1)µ

µ!

µ
∑

ν=0

αµ,ν(1− e−κB)p−ν−1η(h)κ . (45)

Let us observe finally that the order of the moving average is actually p− 1. The

term in Bp−1 corresponds to ν = 0 and reduces to

∑

µ+i+h=p−1

(

p−1

i

)

(−1)µ

µ!
αµ,0(−1)p−1e−(p−1)κBp−1η(h)κ .

At least the term in Bp−1η
(p−1)
κ with coefficient (−1)p−1e−(p−1)κ does not vanish. On

the other hand, neither the term with lag zero in η
(p−1)
κ vanishes, because its coefficient

is α0,0 = 1.

General case. We now join the previous results for the general case with parameter κκκ,

a p-vector with p j components equal to κ j, j = 1,2, . . . ,q, with κ1, . . . ,κq all different

of each other and
∑q

j=1 p j = p. We use the result of Theorem 1(1) and conclude that

x = OUκκκ(Λ) has the same second-order moments as the ARMA(p, p−1) model

q

∏
j=1

(1− e−κ j B)p jx =

q
∑

j=1

K j ∏
l 6= j

(1− e−κl B)pl MA j (46)

with MA j the moving average of order p j −1 given by Equation (45).
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304 Modelling extreme values by the residual coefficient of variation

The Pickands–Balkema–DeHaan theorem, see Embrechts et al. (1997) and McNeil

et al. (2005), initiated a new way of studying extreme value theory via distributions

above a threshold, which use more information than the maximum data grouped into

blocks. This theorem is a very widely applicable result that essentially says that the

generalized Pareto distribution (GPD) is the canonical distribution for modelling excess

losses over high thresholds. The cumulative distribution function of GPD(ξ,ψ) is

F(x) = 1− (1+ ξx/ψ)−1/ξ, (1)

where ψ > 0 and ξ are scale and shape parameters. For ξ > 0 the range of x is x > 0,

being in this case the usual Pareto distribution. The limit case ξ = 0 corresponds to

the exponential distribution. For ξ < 0 the range of x is 0 < x < ψ/|ξ| and GPD has

bounded support. The GPD has mean ψ/(1 − ξ) and variance ψ2/[(1− ξ)2(1− 2ξ)]
provided ξ < 1/2.

Let X be a continuous non-negative r.v. with distribution function F(x). For any

threshold, t > 0, the r.v. of the conditional distribution of threshold excesses X − t given

X > t, denoted as Xt = {X − t | X > t}, is called the residual distribution of X over t.

The cumulative distribution function of Xt , Ft(x), is given by

1−Ft(x) = (1−F(x+ t))/(1−F(t)). (2)

The quantity M(t) = E(Xt) is called the residual mean and V (t) = Var(Xt) the resid-

ual variance. The residual coefficient of variation (CV) is given by

CV(t)≡ CV(Xt) =
√

V (t)/M(t), (3)

like the usual CV, the function CV(t) is independent of scale, that is, if λ is a positive

constant then CV(λXt) = CV(Xt).

The residual distribution of a GPD is again GPD and for any threshold t > 0, the

shape parameter ξ is invariant, in fact

GPDt(ξ,ψ) = GPD(ξ,ψ+ ξt). (4)

Note that the residual CV is independent of the threshold and the scale parameter,

since it is given by

CV(t) = cξ =
√

1/(1−2ξ). (5)

Gupta and Kirmani (2000) show that the residual CV characterizes the distribution

in univariate and bivariate cases, provided that a finite second moment exists. In the case

of GPD, the residual CV is constant and it is a one to one transformation of the extreme

value index suggesting its use to estimate this index.
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Castillo et al. (2014) suggest a new tool to identify the tail of a distribution based

on the residual CV, henceforth called CV-plot, as an alternative to the mean excess plot

(ME-plot), a commonly used diagnostic tool in risk analysis to justify fitting a GPD,

see Ghosh and Resnick (2010), Embrechts et al. (1997) and Davison and Smith (1990).

What is important here is the fact that for a GPD distribution with ξ < 1, the residual

mean function t → M(t) is linear with positive, negative or zero slope depending on

whether 0< ξ < 1, ξ < 0 or ξ = 0.

Given a sample {xk} of size n of positive numbers, we denote the ordered sam-

ple {x(k)}, so that x(1) ≤ x(2) ≤ ·· · ≤ x(n). The CV-plot is the function cv(t) of the sample

coefficient of variation of the threshold excesses (x j−t) for the exceedances {x j : x j > t}
given by

t → cv(t) =
sd{x j − t | x j > t}

mean{x j − t | x j > t} , (6)

in practice t = x(k) are the order statistics, where, k (1 ≤ k ≤ n) is the size of the sub-

sample removed. This tool has been applied to financial and environmental datasets, see

Castillo and Serra (2015).

The CV-plot has two advantages over ME-plot: first, ME-plot depends on a scale

parameter and CV-plot does not; second, linear functions are defined by two parameters

and the constants by only one. So the uncertainty is reduced from three to one single

parameter.

A unconscientious use of some measures of variation can lead to wrong conclusions,

see Albrecher et al. (2010). A serious problem with the residual coefficient of variation

is the fact that the proposed method only works when the extreme value index is smaller

than 0.25 (otherwise its variance is not finite). To fix this, some transformations that

relate light-heavy tails are introduced in Section 2.

Section 3 extends some results of Castillo et al. (2014) from the exponential dis-

tribution to all GPD when the extreme value index is below 0.25. Moreover, multiple

threshold tests together with a threshold selection algorithm, designed in a way that

avoids subjectivity, are also achieved. In Section 4, these techniques are applied first

to euro/dollar daily exchange rates and validated with out of sample observations. Sec-

ondly, the approach developed in Section 2, is illustrated using the Danish fire insurance

dataset, a highly heavy-tailed, infinite-variance model.

2. Transformations of heavy-light tails

The transformations introduced to this section make it possible to estimate the extreme

value index using methods based on moments in situations where moments are not finite.

A distribution function F is said to be in the maximum domain of attraction of Hξ ,

written F ∈ D(Hξ), if under appropriate normalization the block maxima of an iid se-
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quence of r.v. with distribution F converge to Hξ. For a r.v. X with distribution function F

is also written X ∈ D(Hξ). A positive function L on (0,∞) slowly varies at ∞ if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

Regularly varying functions can be represented by power functions multiplied by

slowly varying functions, i.e. h(x) ∈ RVρ if and only if h(x) = xρL(x).
Gnedenko proved, see McNeil et al. (2005, Theorems 7.8 and 7.10), that the max-

imum domain of attraction of a Fréchet distribution, with shape parameter ξ > 0, is

characterized in terms of the tail function, F(x) = 1−F(x), by

F ∈ D(Hξ)⇔ F ∈ RV−1/ξ (ξ > 0).

Similarly the maximum domain of attraction of a Weibull distribution, with shape

parameter ξ < 0, is characterized by

F ∈ D(Hξ)⇔ F(x+−1/x) ∈ RV1/ξ (ξ < 0),

where x+ = sup{x : F(x)< 1}.

The following result of practical importance is embedded in the previous characteri-

zations, and which to our knowledge it has not been pointed out.

Corollary 1 Let X be a continuous r.v. with cumulative distribution function F.

(1) If X ∈ D(Hξ),X > 0, with ξ > 0, then X∗ =−1/X ∈ D(H−ξ).

(2) If X ∈ D(Hξ) with ξ < 0, then X∗ = −1/(X − x+) ∈ D(H−ξ), where

x+ = sup{x : F(x)< 1}.

Proof. (1) The cumulative distribution function of X∗ is F∗(x) = F(−1/x) and x+ =
sup{x : F∗(x) < 1} = 0. By assumption F(x) = x−1/ξL(x) with L slowly varying at ∞,

hence F∗(x+−1/x) = F(x) = x1/(−ξ)L(x) and X∗ ∈ D(H−ξ).
(2) Since the translation of a v.a. does not alter the domain of attraction, we can

assume x+ = 0 without loss of generality. The tail function of X∗ is now F∗(x) =
F(−1/x) = x1/ξL(x). Hence, F∗(x) ∈ RV1/ξ and X∗ ∈ D(H−ξ).

Corollary 1 provides an asymptotic tool and it is related to an exact result in the GEV

model: X has Fréchet distribution if and only if −1/X has Weibull distribution with the

same extreme value index, but with the sign changed. However, the corresponding result

is not true in GPD, as we discuss below.

For a r.v. X , the Pickands–Balkema–DeHaan theorem shows that X ∈ D(Hξ) if and

only if the limiting behaviour of the residual distribution of X over t, Xt , is like a GPD
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with the same parameter ξ, see McNeil et al. (2005, Theorem 7.20). According to the

Pickands–Balkema–DeHaan theorem, Corollary 1 can be interpreted as follows.

Corollary 2 Let X be a continuous positive r.v. such that the limiting behaviour of the

residual distribution of X over a threshold is GPD with parameter ξ> 0 (ξ< 0), then the

limiting behaviour of the residual distribution of −1/X (−1/(X −x+)) over a threshold

is GPD with parameter −ξ.

Corollary 2 enables determination of the extreme value index for heavy tailed dis-

tributions using light tail models and vice versa. For instance ME-plot and CV-plot can

be used to determine the extreme value index in really heavy tailed distributions, see

the example 4.2 in Section 4. These asymptotic results can be improved on GPD for

practical aplications.

The GPD(ξ,ψ) distributions are standardized so that all their observations take pos-

itive values. The supports of the distributions are (0,σ), where σ = ∞ for ξ ≥ 0 and

σ = ψ/|ξ| for ξ < 0. The GPD distributions can be extended to include a location pa-

rameter by Y = X +µ. The behaviour of X near σ is the same as that of Y near σ+µ.

The transformation X∗ = −1/X is also associated with the origin at zero, but can be

generalized to Y = −1/(X + c), provided c ≥ 0, or c ≤ −σ, and the transformations is

monotonous increasing on (0,σ). The following result examines these transformations

on GPD.

Theorem 3 Let X be a r.v. with GPD(ξ,ψ) distribution in (0,σ) and c ≥ 0 or c ≤ −σ,

then Y = −1/(X + c) has distribution GPD with location parameter if and only if c =
ψ/ξ. Then Z =Y +1/c has GPD(−ξ,ξ2/ψ) distribution.

Proof: From (1) the distribution function of Y is

FY (y)=F(x(y))=1−
(

1− ξ

ψ

(

cy+1

y

))−1/ξ

=1−
(

ψy

y(ψ− ξc)− ξ

)1/ξ

, (7)

where −1/c< y<−1/(σ+c). The denominator of the right term of (7) is a constant if

and only if c = ψ/ξ. In this case the distribution function of Z is

FZ(z) = FY (y(z)) = 1− (1−ψz/ξ)1/ξ = 1− (1− ξz/(ξ2/ψ))1/ξ,

where 0< z< σz, σz = ξ/ψ for ξ> 0 and σz =∞ for ξ< 0. Hence, Z has GPD(−ξ,ξ2/ψ)
distribution and Y has GPD distribution with location parameter −1/c.

The following result establishes the essential content of the Theorem 3 avoiding the

location parameter.
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Corollary 4 Let ξ > 0, ψ > 0 and c = ψ/ξ, then a r.v. X has GPD(ξ,ψ) distribution if

and only if Z = X/(c(X+c)) has GPD(ξz,ψz) distribution with ξz =−ξ, ψz = ξ2/ψ and

the support (0,ξ/ψ).

Proof: In one sense, this is proved by Theorem 3, because c> 0 and Z =X/(c(X+c))=

−1/(X + c)+1/c.

The converse is also a consequence of Theorem 3, because the inverse of the above

transformation is

X = c2Z/(1− cZ) = Z/(c2(Z + c2)) =−1/(Z+ c2)+1/c2

where c2 = −1/c = −ξ/ψ. The support of Z is (0,ψz/|ξz|) = (0,ξ/ψ) and Z + c2 < 0

(equivalently c2 ≤−ξ/ψ), then X is a monotonous increasing function of Z and Theo-

rem 3 proves the result.

3. Multiple threshold test

In this Section, the asymptotic distribution of the residual coefficient of variation for

GPD is studied as a random process indexed by the threshold. This provides pointwise

error limits for CV-plot and the multiple thresholds test that really reduce the multiple

testing problem, hence, the p-values are clearly defined. These results generalize and

summarize some of those of Castillo et al. (2014) on the the exponential distribution.

Multiple test are often used on testing extreme value copulas, see Bahraoui et al. (2014).

Theorem 5 Let {X j} be a sample of size n of iid GPD(ξ,ψ) distributed r.v., with ξ<

1/4. Then
√

n(cv(t)− cξ), where cv(t) and cξ were respectively defined in (6) and (5),

converges in finite-dimensional distributions to a Gaussian process with zero mean and

covariance function given by

ρ0(s, t) = exp(min(s, t)/ψ),

for ξ = 0, and

ρξ(s, t) = (((ψ+ ξs)/ψ)1/ξ)(1− ξ)2(6ξ4t2 +12ψξ3t +8ξ3st −9ξ3t2 +6ψ2ξ2

+8ψξ2s−10ψξ2t −2ξ2st +3ξ2t2 −ψ2ξ−2ψξs+4ψξt +ψ2)

/((1−3ξ)(1−2ξ)2(1−4ξ)(ψ+ ξs)2)

for ξ 6= 0 and s ≤ t.

Proof: See Appendix A.
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Pointwise error limits of the CV-plot under GPD follow from the next result.

Corollary 6 Given a sample {X j} of a GPD(ξ,ψ) distribution (ξ < 1/4) and a fixed

threshold t, the asymptotic distribution of the residual CV is

√

n(t)(cv(t)− cξ)
d→ N(0,σ2

ξ). (8)

where cξ is in (5), n(t) =
∑n

j=1 1(X j>t) and

σ2
ξ =

(1− ξ)2(6ξ2 − ξ+1)

(1−2ξ)2(1−3ξ)(1−4ξ)
.

Proof: The proof follows directly from Corollary 2 in Castillo et al. (2014). The asymp-

totic variance is given by σ2
ξ = ρξ(0,0), where the covariance function is in Theorem 5.

The Theorem 5 can be applied to the threshold excesses {X j − t | X > t}, replacing n

with n(t) and cv(0) with cv(t). From (4) the threshold excesses are again GPD with the

same parameter ξ and the CV does not depend on ψ.

From the last result the asymptotic confidence intervals of the CV-plot for expo-

nential distribution are obtained taking c0 = 1 and σ2
0 = 1 and for uniform distribution

taking c−1 = 1/
√

3 and σ2
−1 = 8/45.

Corollary 6 needs a fixed value ξ and a fixed threshold t. However, in order to have a

consistent test in GPD, CV(t) = cξ must be checked for all of threshold t, in accordance

with the characterization by Gupta and Kirmani (2000). For instance, the absolute value

of the Student t4 distribution has CV equal to 1 and can not be distinguished from the

exponential distribution with a direct application of Corollary 6.

3.1. Exact null hypothesis test

In order to test whether a sample {x j} of size n of non-negative numbers, is distributed

as a GPD with parameter ξ, a set of thresholds th = {0 = t0 < t1 < · · · < tm} will be

selected to test the null hypothesis

H0 : CV(tk) = cξ, k = 0,1, . . . ,m.

Hence, if H0 is accepted and m is large enough, say 20 or 50, it will be more reasonable

to assume that the sample comes from a distribution GPD(ξ,ψ) than from applying

Corollary 6 to a single threshold.

Let us denote Dt(ξ)≡
√

n(t)(cv(t)−cξ), from Corollary 6, D2
t (ξ)/σ

2
ξ has asymptotic

distribution χ2
1 under the null hypothesis of GPD (ξ < 0.25). Let us denote

Tth(ξ) =
m
∑

k=0

D2
tk
.
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The distribution of Tth(ξ) is independent from the scale parameter ψ under the null

hypothesis of GPD. Then, its asymptotic expectation is (m+1)σ2
ξ and Tth(ξ)/(m+1) is

an estimator of the asymptotic variance σ2
ξ , when ξ is known or estimated.

Given a sample {x j} of size n of non-negative numbers, Qn(p) denotes the inverse

of the empirical distribution function,

Qn(p) = inf[x : Fn(x)≥ p]. (9)

From a set of probabilities {0 = p0 < p1 < · · ·< pm} let qu = {0 = q0 < q1 < · · ·< qm}
be the corresponding empirical quantiles of the sample, qk = Qn(pk), that will be used

like the previous thresholds. Let us denote

Tqu(ξ) =

m
∑

k=0

D2
qk
.

Tqu(ξ) is a multiple thresholds invariant statistic when the sample is multiplied by

a positive number while maintaining the set of probabilities, since the empirical CV is

invariant. This first condition ensures that the test results do not depend on units used

for the observations.

A second desirable condition is to select the set of probabilities that determine the

statistic Tqu(ξ) so that the corresponding thresholds are approximately equally spaced.

This can be achieved for the exponential distribution by taking 0< p < 1, pk = 1− pk,

(k = 0, . . . ,m) and qk as the corresponding quantiles. Since for a random variable X ,

distributed as an exponential with expected value µ, its quantile function is Q(p) =
µ log(1/p) and Pr{X> (µ log(1/p))k}= pk. Selecting the probabilities this way, qk =

Qn(pk)≈ x(n−npk), n(qk)≈ n pk and Tqu(ξ) becomes

Tm(ξ) = n

m
∑

k=0

pk(cv(qk)− cξ)
2. (10)

In applications, given the number of single tests that will be included in the multi-

variant test, m, we choose the value of p, which determines the distance between the

quantiles, such that n pm ≈ ns, where ns is the sample size such that for smaller sub-

samples CV is not accurate enough. Hence, given m, p = (ns/n)1/m is suggested. In this

paper ns ≈ 8 is used in numerical algorithms. Note that this way Tm(ξ) depends only

on ξ and m and the researcher chose only the number of thresholds used in the analy-

sis, essentially eliminating subjectivity. These multiple thresholds tests generalize those

developed by Castillo et al. (2014) for ξ = 0 and p = 1/2.

The asymptotic distribution of Tm(ξ) is easily calculated from Theorem 5, following

the steps suggested by Castillo et al. (2014), whenever ξ < 0.25. However, taking into
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account the different values of the extreme value index and the diverse small sample

sizes, it is easier in practice to calculate the p-value for Tm(ξ) using simulation methods,

which are especially simple in this case. Assuming GPD for simulations, only the sample

size, the number of thresholds, m, and ξ are needed. Since the distribution does not

depend on scale, parameter ψ = 1 will be used.

3.2. Composite null hypothesis test

In most cases the parameter ξ is unknown and its estimate should be incorporated in the

statistic Tm(ξ) (see the R code in Appendix B). The method for estimating ξ leads to

slight variations in the statistic, leading to essentially equivalent inference whenever we

use the same estimation method in simulations to obtain the p-value. The null hypothesis

is now that the sample comes from a distribution in which all (m+ 1) residual CV are

equal.

H0 : CV(q0) = · · · = CV(qm), k = 0,1, . . . ,m.

The alternative hypothesis is that the residual CV are equal from a threshold qr (0< r ≤
m) to the threshold qm.

The most recommended estimation method is maximum likelihood estimation (MLE),

although in GPD it is only asymptotically efficient provided −0.5< ξ, see Davison and

Smith (1990). For this distribution, the CV is a one-to-one transformation of ξ, see (5),

and the empirical CV of the residual sample, CV(t), provides an alternative method of

estimation. It is asymptotically normal whenever ξ < 0.25, see Corollary 6. The mul-

tiple thresholds tests (10) suggest estimating ξ as the value such that cξ achieves the

minimum Tm(ξ), namely

c̃ξ =
m
∑

k=0

pkcv(qk)/
m
∑

k=0

pk = (1− p)
m
∑

k=0

pkcv(qk)/(1− pm+1), (11)

and reversing (5) provides ξ̃; standard errors of this estimator are readily provided by

simulation. The main advantage of this method is that under the alternative hypothesis it

is a better estimator than CV or MLE, since the sample is only GPD over a threshold qr.

Since the main interest is in samples that are not GPD, but in the tail, and results are often

used in small samples with ξ < 0, the estimation method (11) is included in (10). Hence,

the statistics for composite null hypothesis, that only depends on m, is Tm = Tm(ξ̃) given

by

Tm = n

m
∑

k=0

pk(cv(qk)− c̃ξ)
2. (12)

The R code for Tm used in the algorithms is in Appendix B.
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3.3. Threshold Selection Algorithms

To select the number of extremes used in applying the peaks over a high threshold

method, threshold selection algorithms are developed in this section to estimate the point

above which the GPD distribution can be used to estimate the extreme value index for a

set of extreme events, {x j}, of size n. For this purpose the previous statistical tests will

be adapted.

Note that in the Tm calculation the number of thresholds m is the only parameter that

must be fixed by the researcher. This determines the thresholds (quantiles) where the

CV is calculated, {0 = q0 < q1 < · · · < qm}, which are fixed throughout the procedure.

Then, by simulation of GPD, the associated p-value is calculated (running 104 samples).

After that, we accept or reject the null hypothesis with the estimated shape parameter

using all the thresholds.

If the hypothesis is rejected, the threshold excesses {x j − q1} are calculated for the

sub-sample {x j ≥ q1}. The previous steps are repeated, but removing one threshold, to

accept or reject the null hypothesis that the sample comes from a GPD. At every stage

only statistics associated to thresholds k = r, . . . ,m, where 0 ≤ r ≤ m, are calculated:

T r
m(ξ̃) = n

m
∑

k=r

pk(cv(qk)− c̃ξ)
2. (13)

In summary, the steps of the general algorithm are

(1) Given m find p such that npm ≈ ns, where ns is the smaller sample size used to

calculate CV (here ns = 8 is used, but it can be modified).

(2) Calculate {0 = p0 < p1 < · · ·< pm}, where pk = 1− pk, and {0 = q0 < q1 < · · ·<
qm}, where qk = Qn(1− pk), k = 1, . . . ,m.

(3) Estimate ξ̃ minimizing the value of Tm(ξ) with the specific values in the previous

steps.

(4) Calculate by simulation of GPD the p-value associated to the minimum Tm(ξ̃) and

accept or reject the null hypothesis with the estimated shape parameter using all

the thresholds (starting with q0 = 0).

(5) If the hypothesis is rejected, compute the threshold excesses {x j − q1} for the

sub-sample {x j ≥ q1} and repeat the previous steps with {p1 < · · · < pm} and

{q1 < · · · < qm}, to accept or reject the null hypothesis that the sample comes

from a GPD, but removing a threshold.

(6) Continue the process for the next value in the index of thresholds while the hy-

pothesis is rejected.



Joan del Castillo and Maria Padilla 313

Several authors recommend giving a prominent role to the exponential distribution in the

model GPD, see Castillo and Serra (2015). The usual method for doing this is to consider

the exponential models as the null hypothesis testing against GPD, see Kozubowski et

al. (2009). Alternatively, one can consider the Akaike or Bayesian information criteria

for model selection, see Clauset et al. (2009). The previous algorithm can be adapted to

the case when ξ = 0 (or any known parameter) skipping step-3.

4. Fitting GPD to empirical data

In this Section, the methods developed previously are applied to two classic examples.

The first one, the euro/dollar daily exchange rates between 1999 and 2005, is analyzed in

the literature using distributions with heavy tails, when these models are not appropriate.

Our methodology clearly shows this fact, see Figure 1. In addition, the analysis is val-

idated with out of sample observations between 2005 and 2014, including the financial

crisis of 2007-08.

For the second example, the Danish fire insurance dataset, the fitted model is a highly

heavy-tailed, infinite-variance model. Hence, the methodology developed in Section 2

is needed to avoid unconscientious use of measures of variation that can lead to wrong

connclusions Albrecher et al. (2010).

4.1. EUR/USD daily exchange rates

Gomes and Pestana (2007), introduce a new semi-parametric quantile estimation method

based on an adequate bias-corrected Hill estimator. To illustrate their method it is ap-

plied to the analysis of log-returns of the euro/dollar (EUSD) daily exchange rates, from

January 4, 1999 through November 17, 2005 (1,794 observations). The paper gives the

estimations of the tail index ξ̂ = 0.279 (Hill estimator) and ξ̂ = 0.247 (bias-corrected)

for the positive log returns of EUSD.

It should be mentioned that the Hill method always provide estimators with ξ > 0,

as in this case. Hence, previously, this hypothesis has to be checked. Figure 1 shows

the CV-plots (6) for the positive and negative (with the sign changed) log-returns of

EUSD. In both cases there is empirical evidence that the residual CV is lower than

1. Since in GPD CV < 1 is equivalent to ξ < 0, this suggests light tails where some

researchers assume heavy tails. This qualitative approach can be confirmed with the

multiple thresholds tests.

Applying Tm, where m = 20, to the 900 positive log-returns of EUSD, the estimate

of CV given by (11) is c̃ξ = 0.861, which corresponds to ξ̃ =−0.174 (0.031) assuming

GPD. The statistic is Tm = 6.435 with a p-value of 0.421. Hence, the null hypothesis of

GPD is not rejected for the entire sample and the previous estimation of ξ is validated

(in the first step of the algorithm). The result is similar for the 874 negative log-returns

and m = 20. Here c̃ξ = 0.868 is obtained, which corresponds to ξ̃ = −0.163 (0.032)
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Figure 1: Residual empirical CV for positive and negative tails of EUR/USD daily exchange rates from

January 4, 1999 through November 17, 2005. The dotted lines correspond to the asymptotic confidence

intervals (90%) under exponentially (CV = 1).

assuming GPD. The statistic is Tm = 6.120 with a p-value of 0.449. The null hypothesis

of GPD is not rejected for the entire sample and the previous estimation of ξ is also

validated. The results are fairly coincidental for m = 10, 20, 30 and 50, in both cases.

Despite the evidence of light tails on this previous sample, it is better to follow the

recommendation of testing exponentiality at the tails. This approach is also compatible

with the assumption of heavy tails in a wider sense (ξ ≥ 0) including the exponential as

a boundary point, see Castillo and Serra (2014). Applying Tm to all positive log-returns

of EUSD, with m = 20 and ξ = 0, the null hypothesis of exponentiality is rejected (p-

value 0.01). Taking p = (ns/n)1/m the sample is reduced by (1− p) = 21% in each

step, then for thresholds 0.134, 0.249 and 0.376, the null hypothesis is also rejected (p-

values 0.017,0.026, and 0.057). Finally, exponentiality is not rejected over the threshold

tp = 0.516 with a p-value 0.133. For negative log-returns with m = 20 and ξ = 0, the

exponentiality is rejected in the first three steps and not rejected over tn = 0.411 with a

p-value 0.126.

The main objective of statistics of extremes lies in the estimation of quantities related

to extreme events that may happen in the future. Hence, the real challenge is to compare

the results in out of sample observations. To this end, from the previous analysis, the

value at risk at a level α (VaRα), the quantile so that the chance of exceedance of that

value is equal to α, is estimated by the peak-over-threshold method, using the empirical

sample in the interval (0, t), up to the estimated threshold, and the exponential distribu-

tion over threshold t. For α= 0.05, 0.01 and 0.001, the quantiles of positive log-returns

of EUSD are 1.316, 1.937 and 2.824; for the negative log-returns they are 1.352, 2.010

and 2.950.
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Then, daily exchange rates, from November 18, 2005 through January, 14, 2014

(2,128 observations), including the financial crisis of 2007-08, are used as out of sample

observations to assessing the predictive ability of the estimation of quantiles under the

first dataset.

Using these 2,128 out of sample observations (the second dataset), the number of

empirical exceedances of the last VaRα estimations (under the first dataset, at 5%, 1%,

0.1%) are 42, 13, and 2, for the 1,080 positive log-returns (expected values 54.0, 10.8

and 1.1); and 47, 11 and 0, for the 1023 negative log-returns (expected values 51.2, 10.2

and 1.0). These results are fairly satisfactory and it can be concluded that the EUR /

USD exchange has daily log-returns with exponential tails, including the financial crisis

of 2007-08.

4.2. Danish fire insurance data

An interesting aspect of this article is the combination of the results of sections 2 and

3 when applying the peaks over threshold technique for tails in any maximum domain

of attraction, even without finite moments. This approach is illustrated here using a

classical example analyzed in several books and articles.

The Danish fire insurance data are a well-studied set of losses to illustrate the basic

ideas of extreme value theory. The dataset consists of 2,156 fire insurance losses over

one million Danish kroner from 1980 to 1990 inclusive, see Embrechts et al. (1997,

Example 6.2.9), Resnick (1997) and McNeil et al. (2005, Example 7.23).

In this example the authors agree to assume iid observations and a heavy tailed

model. They also agree to set the threshold at t = 10 million Danish kroner, the ex-

ceedances over the threshold, denoted {x j}, are n10 = 109. Fitting a GPD to {x j} by

MLE, the parameter estimates in McNeil et al. (2005) are ξ̂ = 0.50 and ψ̂ = 7.0 with

standard errors 0.14 and 1.1, respectively. Thus the fitted model is a very heavy-tailed,

infinite-variance model and the methods in Section 3 cannot be applied directly. How-

ever, they can be used through the results shown in Section 2.

First of all, let us suppose we want to use CV to check whether the above data cor-

respond to a GPD distribution with the estimated extreme value index. Applying The-

orem 3 with c = ψ̂/ξ̂ = 14, let z j = −1/(x j + c)+ 1/c be, then the set {z j} has light

tails and the same extreme value index with the sign changed, provided that the esti-

mated parameters are the true parameters. The CV of {z j} is cv = 0.697 which provides

a new estimation of ξ, solving (5) by ξz = (cv2 − 1)/(2cv2) = −0.530, then, according

to Theorem 3, ξ̃ = −ξz = 0.53, not far from the parameter estimation in McNeil et al.

(2005) , 0.50, since his standard error was 0.14. Alternatively, the multiple thresholds

statistic Tm, from (13), can be used to check ξ = 0.5. The corresponding CV under GPD

is cξ = 0.707. Taking m = 20, we get Tm = 4.89 with a p-value 0.421 (by simulation

with 104 samples), not rejecting the null hypothesis.

Now consider the problem of choosing the threshold to estimate the extreme value

index. In this example, most researchers use a visual observation of the ME-plot on
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Figure 2: Residual empirical CV for The Danish fire insurance losses under transformation of the data.

(a): Dataset, transformed by X∗ = −1/X . (b): Dataset, transformed by Z = −1/(X +ψ/ξ). The dotted

lines correspond to the asymptotic confidence intervals (90%) under the estimated parameter, the dashed

line is its CV.

the full Danish dataset. The algorithm in Section 3.3 with the transformations from

Section 2, comes to similar solutions automatically and opens up new perspectives.

Figure 2 shows the CV-plots of the full Danish dataset, transformed according to

the Corollary 2, plot (a), and Theorem 3, plot (b). The first, corresponding to the trans-

formation X∗ = −1/X , shows an increasing CV and the second, corresponding to Z =

−1/(X +c)+1/c, shows a stabilized CV close to a constant, indicating that the original

dataset is close to a GPD, which is also shown by ME-plot.

Applying the algorithm of Section 3.3 with m = 20 after transformation X∗, con-

stant residual CV is rejected in the first 11 steps (each one reduces the sample size by

(1− p) = 24%). Step 12, for the last 106 observations, accepts constant residual CV

(p-value = 0.269) with estimates c̃ξ = 0.673 and ξ̃ = 0.603. The estimated threshold

is approximately the same (t = 10.2 instead of 10), while the extreme value index is

different but within the confidence interval.

The algorithm in Section 3.3, with m = 20 after transformation Z with c =

= 0.932/0.611 = 1.524, rejects constant residual CV in the first three steps. Step 4,

for the last 951 observations, accepts constant residual CV (p-value = 0.167) with es-

timates c̃ξ = 0.675 and ξ̃ = 0.599. The number of observations is much higher, the

extreme value index being very close to that obtained with the transformation X∗ and

within the confidence interval. The p-value remains similar in the following steps up

until the 12th, where it jumps up to 0.474. The number of observations is again 106 and

the estimation ξ̃ = 0.548, close to 0.50.

The conclusions from using the new methodology to analyze this dataset are the

following. First, the results obtained by previous investigators are validated, in particular
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GPD can be accepted with parameter ξ= 0.5, for the 109 larger observations see McNeil

et al. (2005). This also shows the consistency of the presented methodology with other

common techniques.

Moreover, from examining the extreme value index it is now known that for the

951 larger observations GPD can also be accepted, where the MLE parameter estimate is

ξ̂ = 0.680, with standard error 0.055 (ξ̃ = 0.599 obtained by Tm is within the confidence

interval). The estimated extreme value index is now much more accurate because the

sample size is much larger. We also note that the tails are heavier than was assumed,

which means that higher risks should be considered.
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Appendix A: Proof of Theorem 5

The residual CV in (3) can be expressed in terms of the moments of the truncated dis-

tribution. Let X be a continuous non-negative r.v. with distribution function F(x), let

X1(X>t) denote the r.v. which is equal to X if X > t and equal to zero otherwise. Let

µ0(t) = Pr{X > t} and µk(t) = E[X k1(X>t)], k > 0. Throughout this paper we assume

that µ0(t)> 0 for all t. Note that

µk(t) = µ0(t)E(X k | X > t), (14)

hence, in particular, the residual mean and the residual variance are

M(t) = µ1(t)/µ0(t)− t, V (t) = µ2(t)/µ0(t)− (µ1(t)/µ0(t))
2,

and the residual CV

CV(t) =
√

µ2(t)µ0(t)−µ1(t)2/(µ1(t)− tµ0(t)).

Let {X j} be a sample of independent and identically distributed (iid) r.v.s of size n.

Let n(t) =
∑n

j=1 1(X j>t) be the number of exceedances over a threshold, t. By the law

of large numbers, n(t)/n converges to µ0(t). The empirical CV of the conditional ex-

ceedances is given by

cv(t) = cvn(t) =
n(t)

∑n
j=1(X j − t)1(X j>t)

×





∑n
j=1 X2

j 1(X j>t)

n(t)
−
(

∑n
j=1 X j1(X j>t)

n(t)

)2




1/2

, (15)

see (6) for a simpler expression when the r.v. are observed.
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Then cvn(t) is a consistent estimator of CV(t) by the law of large numbers, assuming

F has a finite second moment.

From Theorem 1 in Castillo et al. (2014),

√
n(cvn(t)− cξ) = a′(t)W (t)+Op(1/

√
n)

where

cov(W (s),W(t))≡ M(s, t) = (µi+ j(t)−µi(s)µ j(t))i, j=0,1,2,

and µk(t) are the moments of the truncated distribution (14).

a′(t) = (µ0(µ1 − tµ0),2µ0(tµ1 −µ2),(−2tµ2
1 + tµ0µ2 +µ1µ2))

/(2(µ1− tµ0)
2
√

µ2µ0 −µ2
1),

where for simplicity dependence on t is dropped for µk = µk(t) in the last expression.

Then, the covariance function is

ρξ(s, t) = a(s)′M(s, t) a(t),

using the conditional moments of GPD and some algebra, the result of the theorem

holds.

Appendix B: R code for TmTmTm

The following R code for Tm is used in the algorithms, see R Development Core Team

(2010). See Gilleland et al. (2013) for a review of the currently available software on the

generalized Pareto distribution and estimation of the extremal index.

#Statistic Tm of a sample given the number of thresholds m.

Tm<-function(m,sample){sam<-sample-min(sample);

n<-length(sam);ns<-8;

p<-round(exp(log(ns/n)/m),digits=2);

Ws<-Ps<-Qs<-Cs<-numeric(m+1);

for(k in 1:(m+1)){Ws[k]<-pˆ(k-1)};

Ps<-1-Ws;Qs<-as.vector(quantile(sam,Ps));

for(k in 1:(m+1))

{Cs[k]<-sd(sam[sam>=Qs[k]]-Qs[k])/mean(sam[sam>=Qs[k]]-Qs[k])};

cx<-(1-p)*sum(Ws*Cs)/(1-pˆ(m+1));xi<-(cxˆ2-1)/(2*cxˆ2);

tm<-n*sum(Ws*(Cs-cx)ˆ2);list(CV=cx,Tm=tm,Xi=xi)}
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ponent. The other obtains uncontaminated forecasts for each data set and determines that those

observations whose residuals have an unusually high norm are considered outliers. A simulation

study shows the performance of these proposed procedures and the need to take dependence

in the time series into account. Finally, the usefulness of our methodology is illustrated in two

real datasets from the electricity market: daily curves of electricity demand and price in mainland

Spain, for the year 2012.
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Keywords: Functional data analysis, functional principal component analysis, functional time se-

ries, outlier detection, electricity demand and price.

1. Introduction

Functional data analysis (FDA) is a branch of Statistics that analyses data providing

information about curves, surfaces or any other mathematical object varying over a con-

tinuum. The continuum is often time, but it may also be spatial location, wavelength,

etc. These curves are defined by a functional form and are called functional data.

Over the last two decades there has been growing research on FDA and most sta-

tistical techniques have been generalized to the functional context. This includes lin-

ear regression models (Cardot, Ferraty, and Sarda, 1999; Li and Hsing, 2007; Garcı́a-

Portugués, González-Manteiga, and Febrero-Bande, 2014), nonparametric smoothing
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methods (Ferraty and Vieu, 2002; Delsol, Ferraty, and Vieu, 2011; Shang, 2014), clas-

sification (Cuevas, Febrero, and Fraiman, 2007; Baı́llo, Cuesta-Albertos, and Cuevas,

2011; Sguera, Galeano, and Lillo, 2014), dimension reduction (Boente and Fraiman,

2000; Hall, Müller, and Wang, 2006) and bootstrap methods (González-Manteiga and

Martı́nez-Calvo, 2011; Ferraty, van Keilegom, and Vieu, 2012). In addition, FDA has

been successfully applied in a wide range of fields such as climatology (Besse, Car-

dot, and Stephenson, 2000), chemometrics (Ferraty and Vieu, 2002), environmetrics

(Aneiros-Pérez et al., 2004), demography (Hyndman and Ullah, 2007), social sciences

(Ocaña, Aguilera, and Escabias, 2007) and the electricity market (Aneiros et al., 2013

and 2016). Of course, the above references form a non-exhaustive list of recent method-

ological and practical presentations related to FDA. See the monographs by Ramsay and

Silverman (2005) and Ferraty and Vieu (2006) for parametric and nonparametric meth-

ods, respectively. For a recent state of the art on FDA, see Ferraty and Romain (2011),

Horváth and Kokoszka (2012) and Cuevas (2014).

Procedures for detecting functional outliers have also been proposed over recent

years despite the fact that the functional nature of the data makes outliers hard to de-

tect. As a matter of fact, a rigorous definition of functional outlier remains to be given.

Throughout this paper, we define a functional outlier as an observation (functional da-

tum) that has been generated by a stochastic process with a distribution different from

the vast majority of the remaining observations, which are assumed to be identically

distributed (note that this is the definition given in Febrero, Galeano, and González-

Manteiga, 2008; Hyndman and Shang, 2010). The first papers that have addressed out-

lier identification in the context of functional data are Hyndman and Ullah (2007) and

Febrero, Galeano, and González-Manteiga (2007, 2008). Hyndman and Ullah (2007)

proposed a method for robust estimation of functional principal components, which is

the basis of their methodology for forecasting functional time series. As a by-product,

they constructed a method for detecting outliers based on the integrated squared error

between each functional datum and its projection into a given number of robust prin-

cipal components. The procedure in Febrero, Galeano, and González-Manteiga (2007)

(Febrero, Galeano, and González-Manteiga, 2008) performs a distance-based (depth-

based) test statistic for each curve, where the critical value is obtained with a bootstrap

method. Several procedures for detecting outliers in functional data have been proposed

from these works. They are generally based on functional principal components anal-

ysis (Hyndman and Shang, 2010; Sawant, Billor, and Shin, 2012; Yu, Zou, and Wang,

2012), functional depths (Sun and Genton, 2011; Gervini, 2012; Arribas-Gil and Romo,

2014) or random projections (Fraiman and Svarc, 2013). All of these papers deal with

independent functional data.

This paper addresses the problem of outlier detection in functional time series com-

ing from a real-valued continuous time stochastic process. Specifically, to define the

functional time series, {χi}n
i=1, which are going to be used along this paper, we consider

a real-valued continuous time stochastic process {χ(t)}t∈R. Then, we assume that such

process is seasonal with seasonal length τ and we regard that it is observed on the in-
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terval (a,b] with b = a+ nτ . We define the functional time series {χi}n
i=1 in terms of

{χ(t)}t∈R as:

χi (t) = χ(a+(i−1)τ + t) with t ∈ [0,τ) .

As in the case of finite-dimensional data, dependence affects functional outlier detec-

tion (see Raña, Aneiros, and Vilar, 2015). This is clearly illustrated in Figure 1, which

shows the sequential graph of a simulated functional time series contaminated with four

outliers (left panel) and the corresponding curves (right panel). Looking closely at the

left panel in Figure 1, one may suspect the possible presence of such four outliers; how-

ever, the same may not be said when observing the right panel in Figure 1. Local trends

induced from the dependence structure could mask the presence of outliers; so, in func-

tional time series, an observation could be an outlier despite being inside the range of

the vast majority of the data. It therefore seems reasonable to believe that this kind of

outlier cannot be detected by applying outlier detection procedures designed for inde-

pendent data. To the best of our knowledge, the only paper that has addressed outlier

detection in functional time series is Raña, Aneiros, and Vilar (2015). These authors

suggested adapting the procedure in Febrero, Galeano, and González-Manteiga (2008)

to the functional time series setting by considering bootstrap techniques that take into

account the dependence between functional data (instead of standard bootstrap).
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Figure 1: Left panel: functional time series (i denotes the temporal index) contaminated with four outliers;

the vertical dashed lines indicate the positions where the outliers emerged. Right panel: the corresponding

curves χi(t) (the black curves are the outliers).
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This article proposes two procedures for detecting outliers in functional time series.

Both methods are based on robust functional principal component analysis and use ideas

developed by Hyndman and Ullah (2007) to forecast functional time series.

The remainder of this paper is organized as follows. Section 2 presents basic ideas on

principal component analysis. The proposed methodology is described in Section 3. Its

behavior is evaluated and compared with other approaches through a simulation study in

Section 4. In Section 5 our methods are applied to electricity demand and price curves.

Finally, Section 6 concludes with a discussion.

2. Functional principal component analysis

Since our proposed procedures for detecting functional outliers will be constructed

based on functional principal component analysis (FPCA), this section presents a brief

review on this topic. The interested reader can find a more complete review in Hall

(2011). Without loss of generality, we assume that the considered functional random

variable has zero mean.

Principal component analysis (PCA) is a standard approach to explore variability in

multivariate data, X ∈ R
d . This approach specifies the d directions, {vk}d

k=1 ∈ R
d , that

maximize the variance along each component, subject to the orthonormal condition. Re-

ducing the dimension is especially important when data belong to infinite dimensional

spaces, this being the case of functional data. In this article we focus on curves observed

in [a,b] (−∞< a < b<∞) and square integrable. Then, if χ denotes a functional random

variable, the aim of FPCA is to find the functions φk : [a,b]→ R such that the variance

of

βk =
∫ b

a
φk(t)χ(t)dt (1)

is maximized subject to the constraints

∫ b

a
φ2

k(t)dt = 1 and

∫ b

a
φk(t)φ j(t)dt = 0 (k 6= j). (2)

The functional principal components φk(·) can also be defined as the orthonormal

functions verifying

∫ b

a
C(t,s)φk(s)ds = λkφk(t) (t ∈ [a,b], k = 1,2, . . . ), (3)

where C(t,s) denotes the covariance between χ(t) and χ(s). Finally, dimension reduc-

tion is performed by considering the approximation
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χ(·)≈
K∑

k=1

βkφk(·), (4)

where K < ∞ and
∑K

k=1λk is close to
∑

∞

k=1λk (we have assumed that λk > λk+1, k =
1,2, . . .). For details, see e.g. Ramsay and Silverman (2005).

Functional principal components, φk(·), depend on the unknown covariance opera-

tor C(·, ·). Assuming that one has observations {χi}n
i=1 identically distributed from the

functional random variable χ, estimates for φk(·) can be obtained by using

Ĉ(t,s) =
1

n

n∑

i=1

(χi(t)−χ(t))(χi(s)−χ(s)), where χ(t) =
1

n

n∑

i=1

χi(t),

instead of C(t,s) in (3). See Horváth and Kokoszka (2012) for the consistency of Ĉ and

of the corresponding eigenfunctions and eigenvalues, under either independent curves

or weakly dependent functional time series.

It is worth noting that, apart being used for dimension reduction, FPCA can also be

used as a tool for outlier detection. Nevertheless, as noted in the previous paragraph,

the estimation of functional principal components is based on the estimated covariance

operator Ĉ(·, ·), which is known to be sensitive to outliers. Thus, if the goal is to con-

struct an approach based on principal components to identify functional outliers, robust

FPCA should be considered. In this way, Hyndman and Ullah (2007) propose estimating

the functional principal components by means of the functions φ̂k(·) that maximize the

variance of the scores

zi,k = wi

∫ b

a
φk(t)χi(t)dt (5)

subject to the constraints (2). The weights wi are computed as

wi =

{
1 if vi < S+λ

√
S

0 otherwise

where

vi =
∫ b

a
(χi(t)−

K∑

k=1

β̃i,kφ̃k(t))
2dt (6)

with φ̃k(·) being initial (highly robust) projection-pursuit estimates of φk(·) obtained

from the RAPCA algorithm (see Hubert, Rousseeuw, and Verboven, 2002) considering

equal weights wi in (5), while β̃i,k =
∫ b

a φ̃k(t)χi(t)dt. In addition, S is the median of
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{v1, . . . ,vn} and λ > 0 is a tuning parameter to control the degree of robustness. Once

the robust estimates φ̂k(·) are obtained, the coefficients corresponding to the curve χi

are constructed as

β̂i,k =
∫ b

a
φ̂k(t)χi(t)dt. (7)

As a by-product, Hyndman and Ullah (2007) proposed an outlier detection method

(the ISE method): the curve χi is detected as outlier if wi = 0. For other FPCA-based

procedures to identify outliers, see e.g. Hyndman and Shang (2010) and Sawant, Billor,

and Shin (2012).

3. Outlier detection in functional time series

As noted in Section 1, the dynamics in the data should be taken into account to detect

outliers in functional time series. In other words, methods based only on the set of curves

and not on the dependence structure among them, cannot detect the outliers that remain

hidden among all of the curves (note that these outliers make sense in time series).

We propose two procedures to detect outliers in functional time series. Both pro-

posals are based on the suggestions of Hyndman and Ullah (2007) for obtaining robust

forecasting in functional time series. We establish our methods in the following subsec-

tions.

3.1. Method based on projections

Our first proposal detects outliers on the first K robust principal component scores and

then map the detected outliers into the functional space.

Specifically, the method based on projections proposes to detect outliers in functional

time series with the following algorithm:

• Step 1. Perform robust FPCA and construct the corresponding time series of coef-

ficients {(β̂i,1, . . . , β̂i,K)}n
i=1.

• Step 2. Identify outliers in the series constructed in Step 1 by means of a time-

series outlier detection method.

• Step 3. Establish the set of outliers as O = {χi : i ∈ I }, where I = {i : (β̂i,1, . . . ,

β̂i,K) was detected as outlier in Step 2}.

The key points in this method are the use of robust FPCA together with procedures to

detect outliers in time series. Given that the estimated functional principal components

φ̂k are not affected by the outliers, the corresponding projections β̂i,k reflect the main
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features of the datum χi. Thus, we may expect that if a curve is an outlier, its projection

on the directions of maximum variance (the first principal components) will also be an

outlier.

In practice, both a robust FPCA and a time-series outlier detection method must be

fixed to implement our proposal. On the one hand, the robust FPCA proposed in Hynd-

man and Ullah (2007) could be considered (for a brief exposition, see last paragraph in

Section 2). On the other hand, it is worth being noted that the principal component scores

β̂i,k and β̂i,l are uncorrelated for k 6= l. Thus, as suggested in Hyndman and Ullah (2007),

each univariate time series {β̂i,k}n
i=1, k = 1, . . . ,K, can be studied independently. In this

way, we propose to use some univariate time-series outlier detection method to identify

outliers in each of such scalar time series, and, in Step 2, consider that (β̂i,1, . . . , β̂i,K)

is an outlier if some of its components was detected as outlier in the univariate study

(for the univariate time-series outlier detection method based on ARIMA models used

in this paper, see Section 11.2 in Cryer and Chan, 2008). Another alternative would be

to use a multivariate time-series outlier detection method (see, for instance, Tsay, Peña,

and Pankratz, 2000).

3.2. Method based on errors

Unlike the previous method, our second procedure takes the whole of each curve into

account. Using techniques for robust forecasting in functional time series, it constructs

a non-contaminated version for each curve, which is compared with the corresponding

original curve. A curve is considered an outlier if it is substantially different from its

uncontaminated version.

Specifically, this method proposes to detect outliers in functional time series with the

following algorithm:

• Step 1. Perform robust FPCA and construct the corresponding time series of coef-

ficients {(β̂i,1, . . . , β̂i,K)}n
i=1.

• Step 2. Fit a robust model to the time series constructed in Step 1.

• Step 3. Obtain the fitted values {(β̂∗
i,1, . . . , β̂

∗
i,K)}n

i=1 from the model constructed in

Step 2.

• Step 4. Construct the residual curves {χi− χ̂i}n
i=1 and compute some kind of norm

{ui}n
i=1 for such curves. We have denoted

χ̂i =

K∑

k=1

β̂∗
i,kφ̂k.

• Step 5. Identify “abnormally high values” in {ui}n
i=1, and set the functional outliers

as O = {χi : i ∈ J }, where J = {i : ui was identified as abnormally high}.
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As in the method based on projections, robust FPCA plays a main role (together

with robust modelling of nonfunctional time series). Note that, because the fitted values

obtained in Step 3 are not contaminated by the outliers, χ̂i can be seen as the “expected

value” of the functional time series at time i when no contamination is present. Thus, an

abnormally high value for ui suggests that χi is an outlier.

Note that our proposal can be seen as an extension in different ways of the ISE

method proposed in Hyndman and Ullah (2007) (for a brief exposition, see last para-

graph in Section 2). Clearly, our main contribution is related to the dependence in the

functional time series: our procedure takes the dependence among the sample into ac-

count (see Step 3) to construct the coefficients associated to each functional data χi (β̂∗
i,k

in Step 4 above), while the method in Hyndman and Ullah (2007) does not do so (see

β̃i,k in (6)). As it will be clearly shown in the simulation study to be presented in the

next Section 4, this seemingly minor modification will greatly improve the performance

of the method when applied on functional time series.

In practice, several choices must be done to implement our algorithm. As in the

method based on projections, we suggest to consider the robust FPCA proposed in

Hyndman and Ullah (2007) and construct univariate models instead of multivariate

ones (see Section 3.1). Specifically, we suggest to fit, for each series {β̂1,k, . . . , β̂n,k},

k = 1, . . . ,K, the univariate robust ARIMA models studied in Cryer and Chan (2008)

(for details, see Section 11.2 in the cited reference). As for the norm to be used to con-

struct the set {ui}n
i=1 in Step 4, one might consider, for instance, the L1-norm or the

L2-norm (or even the squared of the L2-norm, as in Hyndman and Ullah, 2007). Fi-

nally, we suggest to consider that ui is high enough to be considered as abnormally high

if ui > q0.75 + 1.32(q0.75 − q0.25)} (qp denotes the quantile of order p of {u1, . . . ,un}).

Actually, this is the rule given by the classical boxplot; that is, under normality, the prob-

ability of detecting no outliers is 0.993, when no outliers are actually present (note that

the usual constant factor 1.5 was changed to 1.32 because low values are not considered

outliers).

3.3. Tuning parameter

As common to all FDA procedures using FPCA, the proposed methods depend on the

number of principal components considered, K. In practice, the value of K must be

specified. Hyndman and Ullah (2007) suggest choosing K to minimize the integrated

squared forecast error (ISFE), while Hyndman and Booth (2008) find that the forecasts

are insensitive to the choice of K, provided K is large enough. Then, Hyndman and

Booth (2008) recommend using a value K that is apparently larger than actually required

by the components. In the cited works of Hyndman and Ullah (2007) and Hyndman and

Booth (2008), and also in Liebl (2013), in the study of different applications using this

technique they use a value of K which explains, at least, 98% of the variability.

We have carried out sensitivity studies for the values of K in our methods, using the

dependent simulated data considered in the next section (Models 1, 2 and 3). On the
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one hand, our findings agree with the general suggestion given in Hyndman and Booth

(2008): to consider a larger than necessary value K (for instance, a value explaining at

least 98% of the variability). On the other hand, to detect “shape outliers” (that arise

when they are within the range of the rest of the data but differ from them in shape;

see Hyndman and Shang, 2010) by means of the method based on projections (PB), the

recommendation is to select a value K even higher (for instance, explaining at least the

99.9% of variability). To justify this very high value we argue that (i) the PB method

only uses scores (and not the whole of the curve), (ii) the first scores inform about the

possible presence of “magnitude outliers” (that arise when they lie outside the range of

the majority of the data; see Hyndman and Shang, 2010) and (iii) the scores of higher

order inform about the possible presence of shape outliers.

4. Simulation study

A simulation study was conducted to compare the performance of our methods with

other methods available in the statistical literature.

On the one hand, three main models were constructed to generate functional time

series. They are the superposition of a deterministic signal and random noise. Noise

in main Models 1, 2, and 3 was the superposition of a scalar AR(1) process and func-

tional AR(1)-, MA(1)- and ARMA(1,1)-type processes, respectively. On the other hand,

another main model (Main Model 0) was constructed in the same way, but consider-

ing independent noise instead of dependent one. Note that main Models 1, 2 and 3

are favourable to methods that take dependence in the sample into account, while Main

Model 0 is favourable to methods designed for independent data. From each main model,

two contaminated models were constructed by randomly adding either three magnitude

outliers or three shape outliers.

More specifically, we considered the following main models:

• Main Model 0:

ζi(t) = cos(πt)(1− c)+ai(t) if −n+1 ≤ i ≤ n.

• Main Model 1:

ζi(t) =

{
cos(πt) if i =−n+1

cos(πt)(1− c)+ρζi−1(t)+ai(t)+bi if −n+1 < i ≤ n.

• Main Model 2:

ζi(t) = cos(πt)(1− c)+ θai−1(t)+ai(t)+bi if −n+1 ≤ i ≤ n.
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• Main Model 3:

ζi(t)=

{
cos(πt) if i =−n+1

cos(πt)(1− c)+ρζi−1(t)+ θai−1(t)+ai(t)+bi if −n+1 < i ≤ n.

In the processes above we have denoted ai(t) = Xi sin(πt) with Xi being i.i.d. Gaussian

variables with mean 0 and standard deviation 0.3, while {bi} is a scalar Gaussian AR(1)

process with correlation coefficient d = 0.8 and standard deviation (1−d2)−1/2. c = 0.8
and t ∈ [−0.5,1.5] were considered.

Values ρ and θ manage the dependence strength in the functional time series. We

consider two options, one with low dependence (LD, ρ = 0.5 and θ = −0.5) and other

with high dependence (HD, ρ= 0.8 and θ = 0.8).

Then, given each main model, ζi, methods were applied on the following contami-

nated models to detect outliers:

• Contaminated model with magnitude outliers:

χi(t) = ζi(t)+ k1{i∈{I j}}, 1 ≤ i ≤ n.

• Contaminated model with shape outliers:

χi(t) = ζi(t)+ k cos(3πt)1{i∈{I j}}, 1 ≤ i ≤ n.

Note that k is a contamination size while 1{·} and I j denote the indicator function and

i.i.d. random variables with discrete uniform distribution on {1, . . . ,n}, respectively. The

curves χi were discretized on a grid {t j} of 30 equispaced points in [−0.5,1.5]. Note

also that in the simulation process we generate curves corresponding to the double of

the sample size n. That is, we simulate the curves {ζi(t)}, where −n+ 1 ≤ i ≤ n, but

we use only the last half of the curves, {ζi(t) : 1 ≤ i ≤ n}, for the contaminated models.

The first n realizations are not used in order to avoid the impact of the initial values. The

number of outliers introduced in the models was j = 0.02n (that is, 2% of the curves).

Value of k was 0.75 for Contaminated Model 0, in which dependence does not affect,

and 5 for contaminated Models 1, 2 and 3. It is worth noting here that the contamination

size, k, considered in this study is low compared with other existing simulation studies

(see, e.g. Sun and Genton, 2011).

Figure 2 shows curves simulated from these four contaminated models. First row

corresponds to the Model 0 (no dependence), and the other three rows to the Models 1,

2 and 3 (functional time series), respectively. Last three models are shown for the HD

case. We can see in the figure the difference between the data simulated from Model 0

and from Models 1, 2 and 3: in the case of functional time series, outliers are almost

always hidden within the rest of the curves.
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Figure 2: Left panels: from top to bottom, curves (χi(t)) generated from contaminated Models 0, 1, 2 and

3, respectively (the black curves are magnitude outliers). Right panels: from top to bottom, curves (χi(t))

generated from contaminated Models 0, 1, 2 and 3, respectively (the black curves are shape outliers).

We applied the following four procedures on each generated sample in addition to

the proposed projections-based (PB) and errors-based (EB) methods.

• Functional highest density region boxplot (HDR). This graphical method is based

on the bivariate HDR boxplot (Hyndman, 1996) applied to the first two robust prin-

cipal component scores (for details, see Hyndman and Shang 2010). The coverage

probability (1−α0) of the outer region must be prespecified.
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• Integrated squared error (ISE). This is the method proposed in Hyndman and Ullah

(2007) (for a brief exposition, see last paragraph in Section 2). Both the parameter

that controls the degree of robustness (λ) and the quantity of principal components

(K) need to be prespecified.

• Depth-based trimming (DBT). Performs a test statistic. A curve is considered an

outlier if its depth is lower than a cutoff. The cutoff is determined by a boot-

strap method based on trimming the sample (for details, see Febrero, Galeano, and

González-Manteiga, 2008). The functional depth, the signification level (α1), the

proportion of potential outliers (α2), the parameter used to obtain smoothed boot-

strap samples (γ) and the number of bootstrap samples (B) must be prespecified.

• DBT for dependent data. Adapts the DBT procedure to the functional time se-

ries setting. For that, to determine the cutoff, bootstrap techniques for dependent

data are used instead of standard bootstrap. In addition, the functional boxplot of

Sun and Genton (2011) is used to trim the sample in the first stage (for details,

see Raña, Aneiros, and Vilar, 2015). The functional depth, the signification level

(α1), the bootstrap technique and the number of bootstrap samples (B) need to be

prespecified.

Note that the methods HDR, ISE and DBT are designed to detect outliers in samples of

independent curves, even if they were also applied to functional time series. Meanwhile,

DBT-MBB, PB and EB are specifically address to deal with the problem of outlier de-

tection in the context of functional time series. Along this simulation study, we will

compare the performance of the cited methods in situations of both independent and

dependent data.

M = 500 simulations were run for each model. The percentage of correctly identified

outliers pc (100 times the number of correctly identified outliers over the number of

outliers in the sample, or sensitivity) and the percentage of false positives p f (100 times

the number of wrongly identified outliers over the number of non-outlying curves in the

sample, or false detection percentage) were computed for each simulation and for each

method considered.

Routines fboxplot and foutliers, available in the R package rainbow, were used to

detect outliers from the HDR and ISE procedures, respectively. α0 = 0.01 was consid-

ered in the HDR method while values for λ and K in the ISE approach were chosen

following the suggestion given in Hyndman and Ullah (2007): λ = 3.29 and K being

the value minimizing the ISFE. The method DBT is implemented in the routine Out-

liers.fdata, available in the R package fda.usc. We considered α1 = α2 = 0.01, γ = 0.05

and B = 200, while the functional depth was the h-modal depth (Cuevas, Febrero, and

Fraiman, 2006), as recommended in Febrero, Galeano, and González-Manteiga (2008).

Moving blocks bootstrap (Künsch, 1989) was used in the DBT-for-dependent-data pro-

cedure (DBT-MBB) while α1 and B took the same values as in the DBT method. The

functional h-modal depth was also considered in this case.
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The choices related to the procedures PB and EB were done following the recom-

mendations given in Section 3.1 and 3.2, respectively. The tuning parameter K was cho-

sen as suggested in Section 3.3. Specifically, we chose K = 1 for magnitude outliers

(for both methods PB and EB). In the case of shape outliers, we chose K = 3 for the PB

method and K = 1 for the EB. This election explains more than 98% of the variability (in

some cases, even with only the first component, it explains around 99.5%), increasing

until 99.9% when we use PB method to detect shape outliers. This choice agrees with

the guidelines given in Section 3.3 about the requirement of more components when

dealing with shape outlier detection and the PB method. In the case of Model 0, due to

the simplest performance of the data, it is enough to take K = 1 for the EB and K = 2

for the PB method and both kind of outliers. The signification level used to detect scalar

outliers in the PB method (Step 2) was α3 = 0.01. In the case of the norm to be used in

Step 4 of the EB procedure, both the L1-norm and the L2-norm were considered. Because

similar results were obtained, we only show the corresponding ones to the L2-norm.

Our first simulation study employs n = 200 and the results are reported in tables

1, 2 and 3. These tables show the mean and standard deviation of the values of both

pc and p f obtained from the two proposed procedures (PB and EB) and the other four

considered methods (HDR, ISE, DBT and DBT-MBB) when they are applied to the

different contaminated models. In Table 1 the Model 0 is considered (independent data),

which is contaminated with magnitude or shape outliers. In Tables 2 and 3, the Models

1, 2 and 3 (dependent data) and the two cases of dependence (low and high dependence)

are considered (see Table 2 for contamination with magnitude outliers and Table 3 for

the case of shape outliers).

Table 1: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Model 0 contaminated with magnitude or shape outliers.

Model 0

Magnitude outliers Shape outliers

Method p̂c p̂ f p̂c p̂ f

HDR 40.60 (14.21) 0.19 (0.29) 40.50 (14.24) 0.19 (0.29)

ISE 100.00 (0.00) 0.00 (0.02) 100.00 (0.00) 0.00 (0.00)

DBT 87.00 (26.12) 0.64 (0.48) 84.15 (27.46) 0.61 (0.47)

DBT-MBB 99.80 (4.47) 2.83 (1.44) 99.80 (4.47) 2.83 (1.44)

PB 95.40 (10.44) 0.02 (0.10) 95.15 (10.98) 0.02 (0.10)

EB 100.00 (0.00) 2.14 (1.23) 95.75 (15.61) 2.10 (1.22)



334 Using robust FPCA to identify outliers in functional time series, with applications...

Table 2: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Models 1, 2 and 3 (with low or high dependence) contaminated with magnitude outliers.

Model 1

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 16.50 (15.91) 0.68 (0.32) 9.85 (14.04) 0.82 (0.29)

ISE 22.00 (22.01) 15.33 (2.69) 25.25 (22.74) 21.07 (3.65)

DBT 26.30 (23.28) 1.19 (0.87) 10.55 (15.67) 1.14 (1.17)

DBT-MBB 30.45 (24.04) 2.07 (1.78) 13.10 (16.93) 2.38 (2.24)

PB 70.65 (35.95) 0.31 (0.45) 62.05 (38.65) 0.56 (0.59)

EB 88.55 (17.12) 3.71 (1.24) 84.10 (20.81) 4.07 (1.26)

Model 2

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 28.25 (16.92) 0.44 (0.35) 30.25 (17.08) 0.40 (0.35)

ISE 24.30 (23.73) 14.60 (2.51) 27.00 (23.39) 16.64 (2.79)

DBT 66.75 (25.49) 0.81 (0.69) 67.60 (24.83) 0.76 (0.69)

DBT-MBB 73.15 (24.58) 1.60 (1.17) 73.40 (24.00) 1.55 (1.24)

PB 67.60 (37.26) 0.07 (0.20) 68.40 (37.24) 0.07 (0.18)

EB 91.60 (14.83) 3.17 (1.29) 91.60 (15.08) 3.23 (1.28)

Model 3

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 14.70 (15.31) 0.72 (0.31) 10.75 (14.27) 0.80 (0.29)

ISE 19.60 (21.78) 13.31 (2.72) 30.65 (24.04) 28.96 (3.40)

DBT 26.30 (23.55) 1.20 (0.86) 10.65 (15.44) 1.13 (1.15)

DBT-MBB 30.30 (24.35) 2.08 (1.67) 12.85 (16.78) 2.35 (2.03)

PB 69.30 (36.30) 0.33 (0.47) 60.95 (38.36) 0.61 (0.64)

EB 88.45 (16.76) 3.63 (1.24) 84.20 (20.28) 3.81 (1.17)
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Table 3: Mean and standard deviation (in parentheses) of the percentage of correctly and falsely identified

outliers in Models 1, 2 and 3 (with low or high dependence) contaminated with shape outliers.

Model 1

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 16.15 (19.20) 0.69 (0.39) 13.90 (18.77) 0.74 (0.38)

ISE 100.00 (0.00) 14.58 (2.74) 100.00 (0.00) 20.15 (3.59)

DBT 95.75 (16.47) 0.21 (0.41) 64.25 (38.55) 0.61 (0.91)

DBT-MBB 99.40 (6.69) 0.70 (1.16) 56.05 (37.45) 0.58 (1.06)

PB 95.20 (10.71) 0.04 (0.17) 95.00 (11.19) 0.04 (0.24)

EB 100.00 (0.00) 2.58 (1.26) 100.00 (0.00) 2.59 (1.29)

Model 2

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 10.75 (15.20) 0.80 (0.31) 9.10 (14.23) 0.83 (0.23)

ISE 100.00 (0.00) 13.85 (2.51) 100.00 (0.00) 15.95 (2.67)

DBT 96.40 (15.57) 0.38 (0.45) 98.30 (11.06) 0.33 (0.42)

DBT-MBB 100.00 (0.00) 1.81 (1.36) 100.00 (0.00) 1.67 (1.35)

PB 95.20 (10.71) 0.03 (0.16) 95.15 (10.63) 0.04 (0.16)

EB 100.00 (0.00) 2.61 (1.38) 100.00 (0.00) 2.64 (1.34)

Model 3

Low dependence High dependence

Method p̂c p̂ f p̂c p̂ f

HDR 17.35 (19.26) 0.67 (0.39) 4.65 (11.40) 0.93 (0.23)

ISE 100.00 (0.00) 12.52 (2.62) 100.00 (0.00) 27.86 (3.23)

DBT 94.40 (19.15) 0.22 (0.42) 49.60 (38.54) 0.79 (1.04)

DBT-MBB 99.40 (6.69) 0.47 (1.23) 41.80 (34.50) 0.94 (1.32)

PB 95.05 (10.82) 0.05 (0.20) 94.95 (11.45) 0.14 (0.31)

EB 100.00 (0.00) 2.51 (1.26) 100.00 (0.00) 2.06 (1.19)
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Several conclusions can be drawn from these results. First of all, we look at Con-

taminated Model 0 in Table 1, which considers independent data. Under that situation,

ISE method gets the best result for both kind of outliers. On the contrary, HDR presents

poor results with the lowest sensitivity, but also its false detection rate is low. Looking

at the pair of DBT and DBT-MBB method, we can see an improvement with the second

option, even if dependence is not affecting this data. pc is much better for the DBT-MBB

method, compared to the DBT, but also the p f is higher. Note that DBT-MBB not only

adapts DBT to work with functional time series (by taking dependence into account),

but also improves the method itself by changing some other aspects. This is why we can

see different results even when they are applied to independent data. Our both proposals,

PB and EB, are very competitive in this situation, even compared to methods designed

to work with independent data. They maintain high and low values for pc and p f , re-

spectively. Their sensitivity is greater than 95% and there is no big difference between

magnitude and shape outliers. We can see that PB detects less outliers than EB but also

its false detection rate is lower.

Now, we focus on the simulated models that include dependence structure; that is,

contaminated Models 1, 2 and 3. The role of this analysis is two-fold: to illustrate the

performance of the two proposed procedures and to show the need to take into account

the dependence in the functional time series. We restrict first to the magnitude outliers

under both situations of low dependence (LD) and high dependence (HD), which results

are given in Table 2. In general we do not observe major differences in the behaviour

of the proposed methods (PB and EB) when the dependence scenario changes (LD or

HD), and we can see that the best results are achieved by the methods that take into

account dependence (DBT-MBB, PB and EB). Results are analysed below in a deeper

way. HDR and ISE methods lose their effectiveness in detecting outliers when dealing

with dependent data. We may highlight the large p f (around 20%) of the ISE method,

indicating a high volatility in its behaviour. We look now at the pair DBT and DBT-

MBB methods (remember that DBT-MBB adapts DBT to work with functional time

series). It is true that DBT-MBB gets always higher pc, which clearly indicates that

taking dependence in the data into account is outstanding. Both methods are also better

than HDR and ISE in most of the cases. Despite of getting worse pc than ISE when

dealing with Models 1 and 3 under high dependence, they get significantly lower p f .

Both methods (DBT and DBT-MBB) also show a sharp difference between dependence

scenarios for the Models 1 and 3, in which the outlier detection rate decreases as the

dependence structure becomes more relevant.

All the methods analysed above are overcome by our two proposals PB and EB.

Both options achieve high sensitivity, greater than DBT-MBB (excepting Model 2 in

which DBT-MBB overcomes PB) and far away from the other considered methods that

not take into account dependence. PB method holds lower sensitivity than EB, but also

lower false detection rate. To obtain a trade-off between high sensitivity and low false

detection rate, in general, the proposed EB seems to be a good choice for magnitude

outlier detection under the considered dependence scenarios.
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Table 3 shows the results when the models are contaminated with shape outliers.

HDR still performance very similar to the magnitude outliers case, however ISE meth-

ods shows an improvement by detecting all the shape outliers (at the expense of a large

false detection rate). DBT and DBT-MBB behaves also similarly to the magnitude out-

liers case, with a remarkable difference in the levels of pc. They achieve now very high

sensitivity with low dependence (around 95− 100%) but under high dependence they

provide low values, around 40−60% for Models 1 and 3.

Proposed methods PB and EB show high sensitivity (95% and 100%, respectively)

and low false detection rate (0.05% and 2.5%), being very stable for the three simulated

models. As in Table 2 for magnitude outliers, also with shape outliers there is no ma-

jor differences between both dependence scenarios (LD and HD). In summary, even if

both methods obtain very good results for shape outlier detection under dependence, EB

seems to be a better choice due its great success detecting all the outliers.

A second simulation study is developed in order to study the influence of the sample

size (n) over the analysed methods for outlier detection. In this case we restrict to Mod-

els 1, 2 and 3 (simulated functional time series) contaminated with magnitude outliers.

Table 4 shows the mean of the percentage of correctly and falsely identified outliers (pc

and p f , respectively) when the sample size varies within the values n = 100,200,300

and 400. These results are obtained under the scenario of high dependence (HD) and

the number of outliers introduced in each sample follows the same rule as the previous

results (including j = 0.02n outliers; that is, 2% of the curves).

Results given by the two proposed methods (PB and EB) in Table 4 clearly overcome

the rest of the methods included in the comparison (HDR, ISE, DBT and DBT-MBB) in

almost all the situations (except when one considers n = 100 in Model 2). That is, for

the three contaminated models and the different values of the sample size n (except the

combination Model 2, n = 100), PB and EB get the best performing. On the one hand,

HDR, ISE, DBT and DBT-MBB show poor results with very low pc and also, in the

case of ISE method, very high false detection rate. DBT-MBB gets always better results

than DBT, showing again the importance of taking dependence in the data into account.

Actually, both DBT and DBT-MBB are very competitive for the Model 2, specially with

the lowest sample size n = 100, but they are overcome by PB and EB as n increases.

On the other hand, also HDR, ISE, DBT and DBT-MBB remains stable when the

sample size varies. Indeed, we can see a slight decrease in the pc and increase in p f as

long as the sample size n increases. On the opposite, for the three contaminated models,

proposed methods PB and EB clearly improve the sensitivity (pc) meanwhile the false

detection rate (p f ) decreases slightly as n increases. The reason for this is that PB and EB

methods are based on fitting univariate time series (of the coefficients given by FPCA)

as a previous step to the outlier detection. Therefore, by increasing the sample size n the

fit of the univariate time series is improved and, accordingly, also the outlier detection

with PB and EB methods improves.
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Table 4: Mean of the percentage of correctly and falsely identified outliers in Models 1, 2 and 3, with high

dependence, contaminated with magnitude outliers and for n = 100,200,300 and 400.

Model 1

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 12.30 0.77 9.85 0.82 7.43 0.87 7.28 0.87

ISE 26.10 22.44 25.25 21.07 22.57 21.10 23.13 20.94

DBT 12.10 0.34 10.55 1.14 9.23 1.60 9.63 1.86

DBT-MBB 12.80 1.13 13.10 2.38 11.80 2.99 12.03 2.98

PB 29.20 0.56 62.05 0.56 80.23 0.42 87.90 0.28

EB 58.80 4.52 84.10 4.07 90.83 3.99 93.60 4.00

Model 2

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 34.20 0.33 30.25 0.40 28.57 0.44 26.50 0.48

ISE 32.60 17.10 27.00 16.64 22.50 16.51 21.50 16.45

DBT 63.70 0.47 67.60 0.76 68.63 0.90 68.87 1.01

DBT-MBB 73.60 1.66 73.40 1.55 72.30 1.52 72.08 1.54

PB 34.50 0.10 68.40 0.07 84.93 0.04 89.43 0.04

EB 73.70 3.60 91.60 3.23 95.70 3.35 96.25 3.27

Model 3

n=100 n=200 n=300 n=400

Method p̂c p̂ f p̂c p̂ f p̂c p̂ f p̂c p̂ f

HDR 15.80 0.70 10.75 0.80 8.70 0.84 8.40 0.85

ISE 31.90 29.08 30.65 28.96 30.10 28.74 29.80 28.84

DBT 12.00 0.32 10.65 1.13 9.37 1.61 9.58 1.85

DBT-MBB 12.70 1.18 12.85 2.35 11.17 2.78 11.40 2.77

PB 29.80 0.60 60.95 0.61 81.10 0.40 87.00 0.29

EB 54.90 3.68 84.20 3.81 90.67 3.78 93.18 3.81
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5. Applications in the electricity market

Nowadays, in many countries all over the world, the production and sale of electricity

is traded under competitive rules in free markets. The agents involved in this market

(namely, system operators, regulatory agencies, producers and consumers) are greatly

interested in the study of electricity load and price. Since electricity cannot be stored,

the demand must be satisfied instantaneously and producers need to anticipate future

demands to avoid overproduction. So good forecasting of electricity demand is very

important for the agents in the market. On the other hand, if reliable predictions of elec-

tricity price are available to producers and consumers, they can develop their bidding

strategies and establish a pool-bidding technique to achieve a maximum benefit. Conse-

quently, the prediction of electricity demand and price pose significant concerns to this

sector. In recent years, these concerns have been addressed from a functional perspec-

tive. Regression models with functional covariates (and even functional response) have

been used to forecast electricity demand and price. Some related papers are Antoniadis,

Paparoditis, and Sapatinas (2006), Antoch et al. (2010), Vilar, Cao, and Aneiros (2012),

Cho et al. (2013), Lielb (2013) and Aneiros et al. (2016). It is well known that the pres-

ence of outliers affects the accuracy of forecasts obtained from regression models. Thus,

outlier detection represents a first step in any descriptive analysis of a dataset, prior to

any type of modelling or prediction method. In that sense, depending on the objective

of the study, one of the following strategies can be used once the outliers are identified:

if outliers come from gross errors, they are subsequently removed from the sample. In

another case, robust prediction methods or complex models that take into account the

existence of outliers (for instance, introducing dummy variables) can be used.

In the next two sections, the proposed methods for detecting outliers in functional

time series, projections-based (PB) and errors-based (EB) methods, are applied on daily

curves of electricity demand and price. The corresponding tuning parameters were se-

lected in a similar way as in the simulation study.

5.1. Case study: electricity demand

We are interested in outlier detection in time series of electricity demand curves. Data

collect hourly electricity demand in the Spanish mainland electricity market on Mon-

days, . . . , Fridays in the year 2012. They are available at http://www.omie.es, the official

website of Operador del Mercado Ibérico de Energı́a. These hourly data present a trend.

Thus, by subtracting the trend (estimated by means of a kernel regression) we obtained

the corresponding detrended hourly series. The functional dataset under analysis is com-

posed of the n = 261 daily demand curves obtained from this detrended hourly series,

measured in Megawatt-hour (MWh). The quantity of functional principal components

considered was K = 9. These K principal components explained, at least, 98% of the

variance.
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Figure 3: Left panel: time series of electricity demand. Right panel: daily electricity demand curves.

The functional time series and the corresponding daily curves are shown in Figure 3.

Higher demands are observed in the interval 10:00h–22:00h while lower ones corre-

spond to the interval 3:00h–5:00h.

The outliers identified from the proposed procedures PB and EB are listed in Table 5.

Methods PB and EB detect 11 and 15 outliers, respectively, resulting in 20 different

curves.

We can find possible causes for most of these abnormal curves. For example, April

16 and 19, November 1 and 2 and also December 24 correspond to days with zero price

hours. During some hours in these days, the overproduction of wind power decreases

the electricity price fixed by daily market. This have to do with the different taxations

of this “green energies” because, as the wind power production increases, the electricity

price decreases. As a result, if the wind power production covers and abnormally high

percentage of the electricity demand, the price can drop even until zero during a period

of time (this being the case of the cited days). We find also as outliers some previous

or posterior days to these “zero price days”, such as April 24 and 26, which are also

affected by the disturbance in the price. Some of the outliers correspond to nonworking

days in which the people usually behaves in a different way than the rest of the regular

days (simply because most of the economical and industrial activities stop during these

days), affecting the electrical consumption and, as a consequence, also the demand.

This is the case of May 1 (Labour Day), August 15 (Assumption Day), October 12
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Table 5: Outliers detected in the demand data from proposed procedures PB and EB.

Method Method

Day PB EB Day PB EB

February 14 X November 2 X

April 16 X X November 7 X

April 19 X X November 14 X X

April 24 X December 3 X

April 26 X December 6 X X

May 1 X X December 10 X

May 4 X December 21 X

August 15 X X December 24 X

October 12 X December 25 X

November 1 X December 28 X

(National holiday in Spain), November 1 (All Saints Day), December 6 (Constitution

Day in Spain) and 25 (Christmas). December 24 (Christmas Eve) is also a special day,

even if it is not officially a holiday. Friday, November 2, besides being a zero-price day,

is situated also in the middle of a long weekend caused by All Saints Day, in which a lot

of people take some holidays. Finally, November 14 was a strike day in Spain, which

clearly affects electrical consumption as it can be considered in some sense as a holiday.

Finally, it is worth pointing out that electricity demand curves observed at days April

16, November 14 and December 6 are detected as outliers simultaneously with the two

proposed methods, but no one of these curves is identified as an outlier from either the

HDR or DBT procedures (remember that neither HDR nor DBT take dependence in the

data into account). Actually, as can be seen in Figure 4, these three curves have features

that can, to say the least, be considered suspicious: demand curve observed at April

16 takes high values throughout the first hours (possibly because the electricity price

at 3:00h–6:00h was zero); demand curve corresponding to November 14 (strike day)

maintains low values from 7:00h, this being the typical behaviour of demand curves

corresponding to nonworking days; December 6 is a holiday.

5.2. Case study: electricity price

A similar study is conducted in this section for electricity price. Prices were available

for the same period as demands, and they were obtained from the same source. The units

were cents (euro) per kilowatt-hour (cents/kWh). Unlike the previous case, there was no
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Figure 4: Outliers simultaneously detected in the demand curves with both of the proposed procedures,

but not detected when a method designed for independent data is applied.

trend. The number of functional principal components considered was K = 8. These K

principal components explained, at least, 98% of the variance.

Figure 5 displays the functional time series of electricity prices and the associated

daily curves. Note that periods of low and high prices roughly correspond with periods

of low and high demand, respectively. Greater variability is observed in the time series

of prices, taking into account the different scale with respect to the electricity demand. It

is easy to distinguish some of the zero-price days present in some points along the year,

caused by the overproduction of wind power, and also in the daily curves (specially

between 3:00h–6:00h).

The outliers identified by the proposed procedures PB and EB are listed in Table 5.

Note that a total of 20 observations are detected as abnormal curves (13 from the PB

method and 15 from the EB method). In addition, 7 of the 20 days corresponding to

such outliers were days when demand curves were also identified as outliers (compare

Tables 4 and 5). Following the classical rules of any kind of market, it is usual that

demand and price are very interconnected, this being also the case of electricity markets

and the reason why some of the outlying curves in demand are repeated as outliers in

the electricity price. As in the previous application, one can argue causes for most of

the abnormal curves of electricity price, being most of them already cited in the study

of outliers in electricity demand. Some of the outliers correspond to zero-price days, as
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Figure 5: Left panel: time series of electricity price. Right panel: daily electricity demand curves.

Table 6: Outliers detected in the price data from proposed procedures PB and EB.

Method Method

Day PB EB Day PB EB

February 13 X August 15 X X

February 21 X August 16 X

April 6 X September 24 X

April 10 X X October 1 X

April 11 X X October 24 X

April 19 X November 1 X X

April 25 X X November 2 X

May 1 X X December 14 X

May 8 X December 24 X X

June 11 X December 25 X X

April 19 and 25, September 24, November 1 and 2 or December 24 or days with a

period close to zero price (February 13). Holidays have also some kind of influence

over electricity prices, as April 6 (Good Friday) or May 1, August 15, November 1 and
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Figure 6: Outliers in the price curves simultaneously detected using both proposed procedures, but not

detected when applying a method designed for independent data.

December 25. Finally, we find also some special days related to other holidays or linked

to holidays, this being the case of February 21 (Carnival, holiday in part of Spain), Au-

gust 16 (posterior to a nonworking day), November 2 (in the middle of a long weekend)

or December 24 (Christmas Eve).

Finally, again as in the case of the demand, three price curves are detected as outliers

simultaneously by the two proposed methods, but none of these curves is identified as

an outlier with either the HDR or DBT procedure; we refer to the curves corresponding

to April 10 and 11, and August 15, see Figure 6. It seems to make sense to consider

them as outliers: the price was very low in the second half of the day on April 10 and

the first half of the following day, April 11; August 15 is a holiday, and the pattern of

the corresponding price curve of this day is different from the working days pattern.

6. Conclusions

This article proposes two methods to detect outliers in functional time series, the pro-

jections-based (PB) and the errors-based (EB) methods. These methods take dependence

in the data into account and use robust functional principal component analysis (FPCA).

Our simulation studies have shown that the proposed methods present good per-

formance when they are applied either on independent curves or dependent curves.
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However, procedures designed for independent data, such as the functional HDR box-

plot (Hyndman and Shang, 2010), the depth-based trimming (Febrero, Galeano, and

González-Manteiga, 2008) or the integrated squared error (Hyndman and Ullah, 2007)

methods, fail to detect outliers in functional time series. Thus, it has also been shown

the need to take dependence in the time series into account. The PB method has very

low false detection rate (p f ) while the sensitivity (pc) of the EB approach is very high.

Although in our simulation study small contamination sizes have been considered, both

methods show acceptable trade-off between pc and p f . In fact, they improve the trade-

off corresponding to the DBT for dependent data (Raña, Aneiros, and Vilar, 2015), this

being (to the best of our knowledge) the only method in the statistical literature that

includes the effect of dependence in the detection of outliers. Both PB and EB have also

shown good performance in different situations, considering the kind of outlier (magni-

tude or shape outliers) and also de dependence scenario (low or high dependence). Their

output is generally better than the other methods included in the comparison. Regarding

sensitivity (pc), EB seems to be the best option for both magnitude or shape outliers.

Furthermore, PB is also very accurate and, although its pc is lower than the EB, its false

detection rate is the lowest of all the methods. We have also shown that both proposals

improve their results as long as the sample size increases. The practical usefulness of our

methodology has been illustrated on the daily curves of electricity demand and price.

Finally, it is worth pointing out that, as in all procedures based on FPCA, the pro-

posed methods depend on the quantity of principal components considered, K. In this

article, K was selected by imposing a lower bound to the cumulative percentage of vari-

ance explained from the first K principal components (cumulative percentage variance

(CVA) approach). As in Hyndman and Booth (2008), we find that a general recommen-

dation is to use a larger than necessary K (for instance, a K explaining at least 98%

or, even, 99.9% of the variability). Alternatives to the CVA approach are, for instance,

methods based on the cross-validation score (Yao, Müller, and Wang, 2005a) or the

Akaike information criterion (Yao, Müller, and Wang, 2005b).
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Abstract

When traditional methods are applied to compositional data misleading and incoherent results

could be obtained. Finite mixtures of multivariate distributions are becoming increasingly impor-

tant nowadays. In this paper, traditional strategies to fit a mixture model into compositional data

sets are revisited and the major difficulties are detailed. A new proposal using a mixture of dis-
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1. Introduction

A finite mixture distribution is a probability distribution with probability density func-

tion (pdf) given by the expression

π1 f1( · ;θθθ1)+ · · ·+πk fk( · ;θθθk), (1)

where f1, . . . , fk are pdf’s of distributions with parameters θθθ1, . . . ,θθθk respectively, and

π1, . . . ,πk are positive numbers with
∑k

i=1πi = 1 (McLachlan and Peel, 2000). The pdfs

f1, . . . , fk are typically called mixtures components. In this paper we assume the most

common case where all the mixture components, fi, in a mixture belong to a unique

family (Gaussian, skew-normal, etc) with pdf, f , and parameters θθθ1, . . . ,θθθk belonging to

a unique set Θ.

According to Scott and Symons (1971) and McLachlan and Peel (2000), finite mix-

ture models provide reasonable results in several multivariate techniques, for instance,
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discriminant analysis, density estimation and model-based clustering (Banfield and Raf-

tery, 1993), even for high-dimensional data (Bouveyron and Brunet-Saumard, 2014).

The Gaussian mixture is the most common model thanks to its theoretical and computa-

tional simplicity (McLachlan and Peel, 2000). However, because of its simplicity, Gaus-

sian mixtures have some significant limitations which triggered the proposal of alterna-

tive models. For example, Student t mixtures were introduced to fit distributions with

heavier tails (Andrews and McNicholas, 2012, Lee and McLachlan, 2014, Lin, 2010);

and skew-normal and skew-t (Azzalini and Capitanio, 1999, 2003) mixtures were pro-

posed to fit asymmetrical distributions (Lee and McLachlan, 2011). Moreover, Browne

and McNicholas (2013) introduced the Generalized Hyperbolic mixture, a more gen-

eral mixture model which includes, either asymptotically or explicitly, different types of

well-known families of mixture models. A crucial point to note is that all these mixture

models were designed for data in real space. For data in a different sample space, there

is a general agreement that other distributions should be used. For example, Bickel and

Scheffer (2004) used multinomial mixture distributions for discrete data in text clas-

sification, and Bouguila (2011) proposed other extensions of multinomial mixture dis-

tributions for count data. Another example is circular data, whose sample space is the

sphere. Banerjee et al. (2005) and Mardia et al. (2007) proposed mixtures of Von Mises

probability distributions, defined for random vectors in the sphere.

Finite mixture modelling for compositional data (CoDa) also needs its own proba-

bility distributions because the CoDa sample space, the simplex S D, has a particular

algebraic-geometric structure, different from the one in real space (Pawlowsky-Glahn

and Egozcue, 2001). CoDa, also called D-part compositions, are vectors x = (x1, ...,xD)
with all its parts strictly positive and carrying only relative information. A D-part com-

position is usually restricted to sum to a fixed constant κ, i.e.

D∑

i=1

xi = κ. (2)

As a convention, it is usual to assume κ= 1 for proportions and κ= 100 for percentages.

Because the value of κ is irrelevant, in this paper we will assume that κ= 100 for sim-

plicity. Typical examples of CoDa are frequent in economics (income and expenditure

distributions), medicine (body composition: fat, bone, muscle), the food industry (food

composition: fat, sugar, etc), geochemistry and chemometrics (chemical composition),

ecology (abundance of different species), sociology (time-use surveys), and genetics

(genotype frequency). When a problem is compositional, one assumes that the absolute

value of each part is irrelevant and the interest is focused on the ratios of the parts. Fol-

lowing this idea, Aitchison (1986) introduced the log-ratio methodology to deal with

compositional data. According to this methodology, the compositions are expressed in

terms of log-ratio coordinates and traditional techniques are applied to them. This log-

ratio methodology is coherent with the algebraic-geometric structure of the simplex
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introduced later by Pawlowsky-Glahn and Egozcue (2001). In the literature we find a

large number of papers where a specific methodology for CoDa is developed following

the log-ratio approach (e.g., Martı́n-Fernández et al., 2015, Vives-Mestres et al., 2014,

Palarea-Albaladejo et al., 2012).

As in many other statistical methods, log-ratio methodology requires complete data

sets. When measuring concentrations, some elements are often not present in sufficient

concentrations and measuring instruments report them as values below detection limits.

In the literature this issue is also known as the rounded zero problem. The data matrix is

completed by using imputation strategies, replacing non-detected values with reasonable

estimates, and by allowing the computation of log-ratios for applying to any multivariate

data analysis. The interested reader can refer to Palarea-Albaladejo et al. (2014), whose

work encompasses the recent advances in this area.

Another approach to the zero problem consists in transforming the data from the

simplex into the real space using a transformation defined on the zero, for example the

hyperspherical transformation (Neocleous et al., 2011, Wang et al., 2007). Scealy et al.

(2015) recommend the square root transformation because it handles zero components.

While these possibilities can exhibit good results, in practice they lack of geometric

structure (see discussion in Aitchison, 1982). In this work we consider the log-ratio

methodology, which can be seen as a transformation but it also provides a geometry to

the simplex with its own operations.

It is difficult to find in the literature finite mixture models for CoDa that consider

distributions restricted to the simplex. The exception are a few studies (e.g., Albert and

Gupta, 1982, Bouguila et al., 2004, Calif et al., 2011) where finite mixture models us-

ing Dirichlet distributions, a traditional probability distribution in the simplex, are used.

Nevertheless, it is more frequent to ignore the compositional nature of the CoDa data

and to use mixtures models of distributions on real space (e.g., Papageorgiou et al.,

2001). Recently, in practical works, the log-ratio methodology had been considered to

fit a mixture model (e.g., Ferrer-Rosell et al., in press) without theoretical and method-

ological considerations. As a consequence, there is a methodological gap in the anal-

ysis of CoDa where the latest advances in log-ratio methods can contribute to mixture

modelling. In the present work, we introduce a new technique to model CoDa using

mixtures of distributions well-defined on the simplex using orthonormal log-ratio coor-

dinates and consequently coherent with its algebraic-geometric structure. In particular

we use the normal and the skew-normal distributions on the simplex (Mateu-Figueras

and Pawlowsky-Glahn, 2007, Mateu-Figueras et al., 2013).

This paper is organized as follows: in Section 2 a brief introduction of CoDa analy-

sis is provided. Section 3 describes the pros and cons of each of the traditional mixture

models when applied to CoDa. Section 4 is devoted to introducing log-ratio mixture

models and two real data sets are analysed in Sections 5 and 6 to compare the tra-

ditional and log-ratio approaches. Finally, Section 7 contains conclusions and final re-

marks. The programming of the data analyses discussed in this work has been conducted

using the open-source R statistical environment (R Core Team, 2014). Computer rou-
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tines implementing the methods can be obtained from the R packages Mclust, Rmixmod,

EMMIXuskew and also from the website www.compositionaldata.com. As an accompani-

ment to this article, the data and the programs used to fit the mixtures in Sections 5 and

6 are provided as supplementary material.

2. Compositional data analysis

Aitchison (1986) stated that there are two basic operations in the simplex S D: pertur-

bation (⊕) and powering (⊙). Perturbation is defined between two compositions x and

y, and powering is defined between a composition x and a scalar value α as:

x⊕y =C(x1y1, . . . ,xDyD), α⊙x =C(x1
α, . . . ,xD

α), (3)

where C(x) = κ∑
xk
(x1, . . . ,xD) is the closure operation for rescaling a vector.

These operations respectively play analogous roles to translation and scalar multi-

plication in R
D, and provide a vector space structure of dimension D−1 to the simplex.

Pawlowsky-Glahn and Egozcue (2001) stated that the inner product

< x,y >a=
1

D

∑

i< j

ln
xi

x j

ln
yi

y j

(4)

provides S D with the structure of an Euclidean space of dimension D− 1. Note that a

norm and a distance can be derived from the inner product given by Equation 4. This

Euclidean space structure allows us to establish the principle of working on coordinates

(Mateu-Figueras et al., 2011). The idea is to express compositions in terms of their

coordinates with respect to an orthonormal basis on S
D and apply traditional statis-

tical methods to these coordinates. These coordinates are formed by log-ratios, there-

fore we use the log-ratio methodology mentioned above. Once an orthonormal basis

B = {v1, . . . ,vD−1} is fixed, any D-part composition x can be expressed as the linear

combination

x = (h1 ⊙v1) ⊕·· ·⊕ (hD−1 ⊙vD−1).

The elements of vector hB(x) = (h1, . . . ,hD−1) are the orthonormal log-ratio coordi-

nates of composition x with respect to the basis B. Egozcue et al. (2003) introduced an

example of these coordinates where

hi =

√

i

i+1
ln

i

√

∏
i
j=1 x j

xi+1

, i = 1, . . . ,D−1, (5)
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whose corresponding basis is B = {v1, . . . ,vD−1} with

vi =C

(

e1/
√

i(i+1), . . . ,e1/
√

i(i+1)

︸ ︷︷ ︸

i

,1/e
√

i/(i+1),1, . . . ,1
︸ ︷︷ ︸

D−(i+1)

)

.

In this paper we use the coordinates in Equation 5 but any other orthonormal basis

can also be considered. Determining which basis or coordinates are the most appropriate

to solve a specific problem, is not straightforward. Nevertheless, the sequential binary

partition introduced by Egozcue and Pawlowsky (2005) is a very useful tool to construct

a particular basis to increase the interpretability of the corresponding coordinates.

One can define a pdf on the simplex by a pdf over the vector of orthonormal log-ratio

coordinates. Indeed, let f ∗(· ;θθθ) :RD−1 →R
+ be a pdf defined on real space with param-

eters θθθ. Then, fB(x ;θθθ) = f ∗(hB(x) ;θθθ) defines a pdf on the simplex, fB( · ;θθθ) : S D →
R

+, with respect to the Aitchison measure on S D. For example, fixing an orthonormal

basis B, the log-ratio normal distribution with parameters µ and Σ is defined as

fB(x ;µµµ,Σ) =
1

(2π)(D−1)/2|Σ|1/2
e−

1
2 (hB(x)−µµµ)′Σ−1(hB(x)−µµµ). (6)

Note that it is a density on the simplex with respect to the Aitchison measure. The

Aitchison measure, dλa, is a natural measure on S D, compatible with its Euclidean

vector space structure (see Mateu-Figueras et al., 2013, for an in-depth discussion). This

measure is absolutely continuous with respect to the Lebesgue measure on real space,

dλ, and the relationship between them is |dλa/dλ|= (
√

Dx1x2 · · ·xD)
−1.

Figure 1 (left) shows the contour lines of three normal distributions in the simplex

S 3. Note that the distribution in the centre of the ternary diagram is similar to the cir-
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Figure 1: Contour lines of typical log-ratio normal distribution on the simplex: (left) in the ternary dia-

gram; (right) in log-ratio coordinates.
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cular contour lines in real space. However, note that, the farther the distribution from

the centre is, the more different the contours from the traditional Gaussian shape are.

These shapes are frequent in real data sets from industrial and scientific applications

(Buccianti, 2011, Vives-Mestres et al., 2014). When these distributions are plotted us-

ing their orthonormal log-ratio coordinates (Figure 1 (right)) the traditional Gaussian

contour lines are obtained. This idea can be applied by using other distributions on real

space as, for example, the skew-normal (Mateu-Figueras and Pawlowsky-Glahn, 2007).

The well-known additive log-ratio vector (Aitchison, 1986) can be interpreted as

the coordinates of a composition with respect to a non-orthogonal basis. Although the

expression of the corresponding pdf is similar to Equation 6, the distances are not pre-

served among the additive log-ratio components and the principle of working on coordi-

nates cannot always be applied (Mateu-Figueras et al., 2011). The equally well-known

centred log-ratio vector (Aitchison, 1986) can be interpreted as the coordinates of a

composition with respect to a generating system, not a basis. Despite the distances be-

ing preserved in this case, we do not recommend its use in a mixture model context

because the fitted densities will be degenerate (Mateu-Figueras et al., 2011).

3. Modelling compositional data using traditional mixtures

When the goal is to fit a finite mixture model, the researcher can encounter different

difficulties such as unbounded likelihood function, different local maximum, etc. The

reader interested in knowing how to deal with these difficulties can consult McLach-

lan and Peel (2000) for an in-depth exposition. In this article we will indicate all the

decisions taken in the process of fitting the finite mixtures.

3.1. Finite mixtures using traditional distributions defined on the real space

This approach assumes that S D is a subset of RD and its particular Euclidean space

structure described in Section 2 is ignored. It is assumed that compositions are generated

from a finite mixture distributions with pdf given by Equation 1 where f ( · ;θθθi) : RD →
R

+ is a pdf defined on the real space and with respect to the Lebesgue measure (e.g., a

multivariate normal distribution or a t-student distribution). The main reason for using

this approach is the simplicity of working without having to consider any restriction.

However, this strategy exhibits some significant limitations and misleading results could

be obtained.

When one uses traditional distributions defined on the real space, the mixture pdf

is strictly positive in all the space, giving positive probability to impossible events. For

example, the impossible event of having the i-th part negative has positive probability,

i.e P({x ∈ S D|xi < 0}) > 0. This difficulty is similar to the traditional confidence in-

terval of a very small or very large proportion, i.e. it may provide lower or upper limit

respectively beyond the restricted space.
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Table 1: CoDa set with three parts (a,b,c) from 20 compositions. (h1, h2) are its log-ratio coordinates. Two

categorical covariates were considered: site and condition.

a b c h1 h2 site condition

54.73 34.37 10.90 0.329 1.128 S1 C1

64.75 25.08 10.18 0.671 1.123 S1 C1

64.18 24.91 10.91 0.669 1.060 S1 C1

83.53 11.85 4.61 1.381 1.568 S1 C1

62.72 28.15 9.13 0.566 1.246 S1 C1

62.10 27.73 10.17 0.570 1.148 S1 C1

69.46 22.53 8.00 0.796 1.305 S1 C1

68.25 26.43 5.32 0.671 1.696 S1 C1

66.88 26.16 6.96 0.664 1.464 S1 C1

61.62 28.38 9.99 0.548 1.169 S1 C1

31.65 55.23 13.12 −0.394 0.946 S2 C1

24.32 61.47 14.21 −0.656 0.817 S2 C1

24.47 59.49 16.04 −0.628 0.708 S2 C1

18.75 68.00 13.25 −0.911 0.809 S2 C1

15.72 72.96 11.32 −1.085 0.895 S2 C1

18.83 32.85 48.32 −0.394 −0.542 S2 C2

12.11 30.61 57.27 −0.656 −0.890 S2 C2

10.75 26.14 63.10 −0.628 −1.082 S2 C2

10.31 37.38 52.31 −0.911 −0.800 S2 C2

8.15 37.81 54.05 −1.085 −0.918 S2 C2

In addition, this approach defined on the real space also ignores the constant sum

constraint. Therefore, a further limitation is the collinearity that appears between parts

after restricting the parts to sum a constant (Equation 2). This collinearity implies that

the covariance matrix is singular, and therefore some methods can not be directly ap-

plied. Frequently, mixture models are estimated using the Expectation–Maximization

(EM) algorithm (Dempster et al., 1977). In the E-step of the EM-algorithm a pdf com-

puted from the sample is evaluated. Because most pdf depend on the inverse of the

covariance matrix (e.g., multivariate normal and skew-normal), the common solution

consists of removing one part of the composition for the rest of the analysis (e.g., Papa-

georgiou et al., 2001). However, this strategy may produce misleading results. For ex-

ample, let X be the CoDa set recorded in Table 1. It is a simulated 3-part compositional

data set representing proportions of 3 different elements, denoted a, b and c. Assume

that the compositions come from two different locations, S1 and S2; and that they were

collected under two possible weather conditions, C1 and C2. In addition, assume that it

is well known that these weather conditions only affect part c: in condition C1 the level

of element c is lower than in condition C2 (for example, element c is water and condi-

tion C1 is a sunny day while condition C2 is a rainy day). In this way, the compositions

from row numbers 16 to 20 (Table 1) are the perturbed corresponding counterparts of
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Figure 2: CoDa set X in the ternary diagram. Filled and empty symbols are respectively used for data

from location S1 and S2. Circles and triangles respectively correspond to condition C1 and C2.

compositions from row numbers 11 to 15 after the perturbation (1,1,r), where r is a

random number depending on condition C2. In this example we have modelled r as a

lognormal random variable with parameters µ = 2 and σ = 0.25. We have considered

that condition C1 and C2 were an effect of the component c regardless of the magnitude

of components a and b. Therefore, the effect of condition C1 and C2 could be modelled

by means of a perturbation (Equation 3), which is a movement in the simplex with the

Aitchison geometry.

The ternary diagram in Figure 2 shows that X is formed by three groups: the first

group consists of the observations collected in site S1 (filled circles), all of them col-

lected under condition C1; the second group with observations collected in site S2 under

condition C1 (empty circles) and the third group with observations collected in site S2

under condition C2 (empty triangles). Suppose that an analyst, who is interested in fit-

ting a traditional mixture model to X, is not informed about the two different weather

conditions and he or she only knows the information about the location. Because of the

collinearity he/she decides to eliminate part c for the rest of the analysis. After elimi-

nating part c, the researcher is working with the data set represented in Figure 3. This

plot suggests that the analyst might conclude that X is formed by three mixture com-

ponents as a result of the information collected in only the first two elements. This is a

misleading conclusion because, by construction, we know that exclusively attending to

the raw information provided by the first two elements the CoDa set X is formed by only

two groups (one group for each location). But, when we work with proportions (a,b,c),

despite part c having been eliminated, its effect (weather condition) is still present and

interpretations about the nature of the groups based only on parts (a,b) may be mislead-

ing. An interested reader could find other examples about the misleadings conclusions

and problems resulting from applying standard analysis to compositional data in Aitchi-

son (1999, 2002).
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Figure 3: Scatterplot of parts (a,b) of CoDa set X. Filled and empty symbols are respectively used for

data from location S1 and S2. Circles and triangles respectively correspond to condition C1 and C2.

3.2. Finite mixtures using traditional distributions defined on the simplex

A finite mixture of distributions defined on the simplex is a probability distribution with

pdf given by Equation 1 where f ( · ;θθθ) : S D →R
+, is a pdf defined on the simplex. The

Dirichlet distribution has been traditionally used as the probability distribution on S D.

It can be obtained by the projection on the simplex of a random vector formed by inde-

pendent and equally scaled gamma distributed parts. Despite its simplicity and its good

mathematical properties, it has a very strong independence structure (Aitchison, 1986).

In particular, any ratio xi/x j of two parts have to be independent from another ratio xk/xm

formed from other two parts. In practice, such an independence structure cannot be as-

sumed for most real data sets and consequently it heavily restricts the Dirichlet potential

modelling application (Aitchison, 1986). To solve this difficulty, many generalizations

of the Dirichlet distribution with less independence structure have been proposed: the

Connor and Mosimann’s distribution (Connor and Mosimann, 1969), the scaled Dirich-

let distribution (Aitchison, 1986). In addition, Rayens and Srinivasan (1994) extend

the Liouville distribution further to the generalized Liouville family. Later Smith and

Rayens (2002), due to the limited applicability of the Liouville family of distributions,

propose a generalization called Conditional Liouville distribution. Ongaro and Miglio-

rati (2013) present the Flexible distribution, a generalization of the Dirichlet that exhibits

greather flexibility in terms of dependence/independence structure and shape of the den-

sity. Finally, Monti et al. (2011) introduce the shifted-scaled Dirichlet distribution. This
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generalized distribution is defined by adding the perturbation and powering operations

(Equation 3) to the standard Dirichlet distribution. Unfortunately, all of these attempts

have had limited success in fitting the general dependence structure of CoDa. Note that

all these distributions are usually expressed through their density function with respect

to the Lebesgue measure on S D but the density with respect to the Aitchison measure

could be easily obtained using the relationship between them (see Monti et al. (2011)

for a detailed analysis of the implications of changing the measure).

In the literature different methods are found to estimate the parameters of a Dirich-

let distribution. As it is an exponential family, the log-likelihood function is globally

concave and a global optimum can be obtained. However, there is no closed form so-

lution for the ML equations and numerical methods must be employed. According to

Ng et al. (2011), the MLE via Newton-Raphson algorithm converges to the global opti-

mum. Narayanan (1991) provides a Fortran subroutine with three different possibilities

to estimate the initial parameter required. We can also obtain MLE estimates via the EM

gradient methods (Ng et al., 2011). Recently the performance of different algorithms

and starting value strategies to obtain the MLE of the Dirichlet parameters have been

compared by Giordan and Wehrens (2015) using high-dimensional data. Nevertheless,

the main problem is that final estimates can be outside the correct range for the pa-

rameters. Also, a large amount of iterations could be required to reach convergence. In

practice, given a CoDa set, there is no straightforward method to fit a Dirichlet mixture

or any of its generalizations. However, to obtain an approximation of the MLE estimator

of a Dirichlet mixture, it is possible to apply the classification EM-algorithm (Celeux

and Govaert, 1992) using any of the mentioned approaches to fit a Dirichlet model (see

example in Section 5).

4. Modelling compositional data using a mixture of log-ratio

distributions

To model CoDa using a finite mixture of log-ratio distributions, we consider

π1 fB( · ;θθθ1)+ · · ·+πk fB( · ;θθθk) (7)

where fB(x;θθθi) are pdf’s defined on the simplex with parameters θθθi, that is, they are

densities defined considering the particular algebraic-geometric structure of the simplex

defined in Section 2 and consequently are expressed with respect to the Aitchison mea-

sure. As indicated before and according to the principle of working on coordinates, we

have

fB(x;θθθ) = f ∗(hB(x);θθθ)
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where f ∗( · ;θθθ) are pdf on R
D−1 for the orthonormal log-ratio coordinates vectors hB(x).

Let X = {x1, . . . ,xn} be a CoDa set. Thus fitting the parameters π1, . . . ,πk and θθθ1, . . . ,θθθk

of Equation 7 using maximum likelihood estimators is equivalent to fitting the parame-

ters in

π1 f ∗( · ;θθθ1)+ · · ·+πk f ∗( · ;θθθk) (8)

using the data set XT = {hB(x1), . . . ,hB(xn)}, that is, the log-ratio coordinates of the

data set with respect to a selected orthonormal basis B.

Indeed, the likelihood function evaluated for the CoDa set X is

n

∏
i=1

k∑

j=1

π j fB(xi;θθθ j) =
n

∏
i=1

k∑

j=1

π j f ∗(hB(xi);θθθ j). (9)

Because the likelihood functions are the same, the maximum likelihood estimators

π̂1, . . . , π̂k, θ̂θθ1, . . . , θ̂θθk are also the same

(

π̂1, . . . , π̂k, θ̂θθ1, . . . , θ̂θθk

)

= argmax
π1,...,πk,θθθ1,...,θθθk

n

∏
i=1

k∑

j=1

π j fB(xi;θθθ j) = (10)

= argmax
π1,...,πk,θθθ1,...,θθθk

n

∏
i=1

k∑

j=1

π j f ∗(hB(xi);θθθ j). (11)

Following this approach, we cannot obtain the misleading results shown in Sec-

tion 3.1.. Taking the example from Section 3.1, we were interested in fitting a mixture

to a sample X formed by parts a, b and c (Table 1). Instead of eliminating one part, now

the analyst decides to express parts a, b and c in log-ratio coordinates. Before starting

the analysis, a basis B of S 3 is selected, for example

B =
{

C

(

e1/
√

2,1/e
√

1/2,1
)

, C

(

e1/
√

6,e1/
√

6,1/e
√

2/3
)}

, (12)

and the compositions of X are expressed in terms of their coordinates XT (h1 =
√

1/2

ln(a/b) and h2 =
√

2/3ln(
√

ab/c)) (see Table 1). Figure 4 shows the plot of these

coordinates where the different effect of the location (parts a and b) and the weather

conditions (part c) are highlighted. Note that the compositions from S2 under condition

C1 take the same value in the first coordinate as their counterparts under condition C2.

In this case the interpretations based only in terms of parts a and b will not be mis-

leading. In fact, if the analyst also decides to remove part c, a basis B′ of S 2 is selected

as:
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B
′ =

{

C
(

e1/
√

2,1/e
√

1/2
)}

.

In this way, the corresponding coordinate h1 is the same as before. Figure 5 shows the

histograms of coordinate h1 separated by weather conditions in two stratas. Note that,

regardless of the condition, all the data collected in S2 take the same value, forming one

cluster (between −1 and 0). On the other hand, the compositions collected in S1 are

close to one.
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Figure 5: Histograms of first log-ratio coordinate for CoDa set X. Two stratas correspond to weather

conditions.
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In Equations 9 and 10, we fit the mixture using the coordinates hB(x) with respect

to a specific basis B but any other orthonormal basis could have been chosen as well.

Thus, in any compositional analysis involving coordinates, it is important to check the

invariance of the results under changes of basis. When fitting a mixture of log-ratio

distributions, it is enough to check that the family of distributions used to fit the mixture

is basis invariant, that is, it satisfies the following definition.

Definition 1 Let B1 and B2 be two basis on S D. Let Θ be a parameter space for a

probability density function f ∗ : RD−1 → R
+. A probability density function f ∗ is basis

invariant if for any two different basis B1, B2, for any parameters θθθ1 ∈ Θ, there are

parameters θθθ2 ∈Θ such that

f ∗(hB1
(x);θθθ1) = f ∗(hB2

(x);θθθ2).

Most common distributions are basis invariant when we do not restrict the parame-

ters. For example, the log-ratio normal distribution (Equation 6) is formulated in terms

of Mahalanobis distance and of covariance matrix determinant, that are both invariant

elements under change of basis (Barceló-Vidal et al., 1999). Moreover, using the linear

transformation property (Azzalini and Capitanio, 1999), it can easily be proved that the

multivariate log-ratio skew-normal distribution is also invariant under change of basis.

5. A real data set: Forensic Glass

To illustrate and compare the different described approaches, we analysed the USA

Forensic Science Service data set, also known as the Forensic Glass data set. This data

is available from the UCI Machine Learning Repository (Bache and Lichman, 2013).

The data set is composed of 214 fragments of glass samples where the percentages of

eight chemical elements were measured. The fragments of glass were originally come

from seven types of glass. In order to easily display the results using ternary diagrams

and bivariant plots, we only consider three chemical elements: Calcium (Ca), Silica (Si)

and Aluminium (Al). For simplicity, we only consider three types of glass (containers,

vehicle headlamps and vehicle windows) but all types of glass could be considered and

lead to similar conclusions. We call this data set the Reduced Forensic Glass data set (Ta-

ble 2). Figure 6 shows this data set formed by 59 glass samples in the ternary diagram.

We can see that the types of glass do not form well-separated groups and consequently

there will be a weak relation between the components of the mixture and the types of

glass. This was already observed by Venables and Ripley (2002) in a discriminant con-

text.

We fit a mixture model using the normal distribution on real space, the Dirichlet

distribution and the log-ratio normal and skew-normal distributions on the simplex. For

all cases the index BIC indicates that k = 3 are the optimal number of components
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Table 2: Reduced Forensic Glass data set: parts (Ca, Si, Al) and its log-ratio coordinates. The categorical

covariate (type) shows the provenance of glass.

Ca Si Al h1 h2 type

10.43 88.23 1.35 −1.510 2.541 Veh

10.12 88.26 1.63 −1.531 2.375 Veh

10.23 88.10 1.67 −1.523 2.359 Veh

10.31 88.06 1.63 −1.517 2.382 Veh

10.14 87.73 2.13 −1.526 2.155 Veh

11.60 87.39 1.01 −1.428 2.818 Veh

10.81 88.40 0.79 −1.486 2.994 Veh

10.12 88.40 1.48 −1.533 2.455 Veh

10.63 87.79 1.58 −1.493 2.418 Veh

10.36 88.12 1.52 −1.514 2.441 Veh

10.48 87.97 1.55 −1.504 2.429 Veh

11.77 87.53 0.71 −1.419 3.112 Veh

10.67 87.48 1.85 −1.488 2.290 Veh

10.69 87.33 1.98 −1.485 2.234 Veh

10.87 87.26 1.86 −1.473 2.292 Veh

10.80 88.29 0.91 −1.486 2.878 Veh

11.23 87.66 1.12 −1.453 2.721 Veh

7.41 88.18 4.42 −1.751 1.433 Con

11.92 85.88 2.20 −1.396 2.186 Con

13.29 84.89 1.82 −1.311 2.380 Con

13.41 84.78 1.80 −1.304 2.393 Con

13.26 84.84 1.90 −1.312 2.344 Con

11.84 86.03 2.13 −1.402 2.210 Con

13.15 84.81 2.04 −1.318 2.282 Con

14.23 83.94 1.84 −1.255 2.395 Con

8.65 87.57 3.78 −1.637 1.621 Con

8.59 87.66 3.74 −1.643 1.627 Con

14.51 83.87 1.63 −1.241 2.501 Con

11.54 85.88 2.58 −1.419 2.043 Con

13.08 85.17 1.75 −1.325 2.407 Con

6.78 90.96 2.26 −1.836 1.957 Head

7.31 89.89 2.80 −1.774 1.808 Head

10.71 87.80 1.49 −1.488 2.469 Head

11.89 85.60 2.51 −1.396 2.076 Head

10.72 87.65 1.63 −1.486 2.396 Head

10.38 87.48 2.14 −1.507 2.160 Head

10.38 86.80 2.82 −1.502 1.931 Head

10.60 86.13 3.27 −1.481 1.816 Head

10.21 87.40 2.39 −1.518 2.062 Head

10.17 87.47 2.36 −1.522 2.071 Head

10.65 86.20 3.15 −1.479 1.848 Head
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Table 2 (cont.)

Ca Si Al h1 h2 type

11.05 85.97 2.98 −1.451 1.908 Head

10.58 86.65 2.77 −1.487 1.953 Head

10.70 86.16 3.14 −1.475 1.853 Head

10.46 86.56 2.97 −1.494 1.891 Head

9.92 87.41 2.68 −1.539 1.957 Head

10.47 88.14 1.40 −1.506 2.513 Head

9.93 87.21 2.86 −1.536 1.903 Head

9.93 87.68 2.39 −1.540 2.052 Head

10.33 86.97 2.69 −1.506 1.968 Head

10.32 87.52 2.16 −1.512 2.150 Head

10.36 87.40 2.24 −1.508 2.121 Head

7.97 89.78 2.24 −1.712 2.025 Head

11.11 85.67 3.22 −1.444 1.845 Head

10.84 85.76 3.40 −1.463 1.791 Head

10.07 87.55 2.38 −1.529 2.061 Head

10.06 87.53 2.41 −1.530 2.050 Head

10.09 87.60 2.31 −1.528 2.086 Head

10.25 87.27 2.47 −1.514 2.036 Head

except for the Dirichlet distribution whose optimal value is for k = 5. For illustration

purposes and in order to easily compare all described approaches, we will use k = 3

for all different cases. For each mixture approach, we fit the mixture 100 times using

different starting points to avoid local maximums.
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Figure 6: Reduced Forensic Glass data set in ternary diagram: Calcium (Ca), Silica (Si) and Aluminium

(Al) chemical elements. Three groups of glass: containers (circles), headlamps (triangles) and vehicle win-

dows (squares). The large ternary diagram is a zoom of the shadow area seen in the smaller initial ternary

diagram.
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Using the traditional approach introduced in Section 3.1 we fit a mixture of distri-

butions on real space with three mixture components. In particular we choose a tradi-

tional Gaussian mixture. As mentioned, we need to eliminate one part to avoid the con-

stant sum constraint. For example, when we removed the Calcium (Ca) part, the corre-

sponding mixture model (BIC = −763.4) obtained is π1 f ( · ;µµµ1,Σ1)+π2 f ( · ;µµµ2,Σ2)+

π3 f ( · ;µµµ3,Σ3) with estimates

π̂1 = 0.12, µ̂µµ1 = (88.76,1.65) , Σ̂1 =

(
1.66 0.81

0.81 0.52

)

,

π̂2 = 0.38, µ̂µµ2 = (85.85,2.68) , Σ̂2 =

(
1.17 0.72

0.72 0.58

)

,

π̂3 = 0.5, µ̂µµ3 = (87.67,1.97) and Σ̂3 =

(
0.16 −0.18

−0.18 0.27

)

.

Figure 7 (top-left) shows the isodensity curves for the fitted mixture of Gaussian

distributions. Figure 7 (top-right and bottom-left) also shows the isodensity curves of the

finite mixture when the parts removed were Aluminium (Al) and Silica (Si), respectively.

The dashed lines represent the limit of the simplex, i.e. the region were restrictions

given by Equation 2 are held. In Figure 7 (bottom-right) the isodensity curves have been

completed to be represented in the ternary diagram. Note that the distribution is giving

positive probability to impossible regions.

Despite the fact that in Gaussian mixtures the maximum likelihood function is in-

variant whatever part is removed, we stated that in practice the numerical algorithm gets

stuck in a local optimum. That is, the invariance of the results is not guaranteed, and

different mixtures may be obtained depending on the part removed.

A Dirichlet probability distribution is specified by the parameters ααα=
(
α1, . . . ,αD

)
.

Therefore, to fit a mixture of K Dirichlet distributions the parameters π1, . . . , πK and

ααα1, . . . ,αααK need to be estimated. To make this estimation we approximated the MLE es-

timator of a Dirichlet mixture using the EM-algorithm proposed by Celeux and Govaert

(1992). The mixture of Dirichlet distributions obtained (BIC =−732.9) was π1 f ( · ;ααα1)+

π2 f ( · ααα2)+π3 f ( · ;ααα3) with estimates

π̂1 = 0.37, α̂αα1 = (281.2,2343.1,71.6) ,

π̂2 = 0.15, α̂αα2 = (272.9,1777.2,41.2) ,

π̂3 = 0.48 and α̂αα3 = (34.6,304.3,6.3) .
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Figure 7: Reduced Forensic Glass data set. On the top-left, top-right and bottom-left isodensity curves

for mixtures of Gaussian distributions in R2 after removing the Ca, the Al and the Si part respectively. On

bottom-right the isodensity curves transformed into the simplex.

Note that for k = 3 the Dirichlet BIC value is worse than the value for the normal dis-

tribution. Using the Dirichlet parameter estimates we can, respectively, obtain the centre

of each mixture component in the simplex: (10.43,86.91,2.66), (13.05, 84.98,1.97) and

(10.02,88.15,1.83), expressed in percentages.

Figure 8 shows how the Dirichlet mixture fits the data set. Due to the strong inde-

pendence structure of the Dirichlet model (noted above in Section 3.2), the density can

only take nearly elliptical shapes. Consequently, the mixture obtained cannot capture

non-elliptical forms of variability.

Finally, we use the log-ratio approach introduced in Section 4. To fit a mixture of

log-ratio distributions it is necessary first to express each composition with respect to a
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Figure 8: Reduced Forensic Glass data set: classification given by a standard Dirichlet mixture model.

basis of S
3. Consider the same basis B defined in Equation 12. Table 2 contains the data

set expressed in log-ratio coordinates with respect to basis B, resulting in coordinates

h1 =
√

1/2ln(Ca/Si) and h2 =
√

2/3ln(
√

Ca ·Si/Al).
Fitting a Gaussian mixture to the log-ratio coordinates (BIC = −84.3) results in

mixture model π1 fB(· ;µµµ1,Σ1)+π2 fB(· ;µµµ2,Σ2)+π3 fB(· ;µµµ3,Σ3) with estimates

π̂1 = 0.59, µ̂µµ1 = (−1.5,2.31) , Σ̂1 =

(
8e−04 0.0059

0.0059 0.0949

)

,

π̂2 = 0.1, µ̂µµ2 = (−1.73,1.75) , Σ̂2 =

(
0.005 −0.0059

−0.0059 0.0422

)

,

π̂3 = 0.31, µ̂µµ3 = (−1.39,2.12) and Σ̂3 =

(
0.0065 0.0186

0.0186 0.0581

)

.

Note that the difference between the BIC value for the log-ratio normal distribution

and the previous distributions seems to be unusually large. However, these values can

not be directly comparable because the latter is calculated using log-ratio coordinates.

In Figure 9 the isodensity curves of the log-ratio normal distribution are represented in
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Figure 9: Log-ratio Gaussian mixtures for Forensic Glass data set: (left) in log-ratio coordinates; (right)

in the ternary diagram.

the space of coordinates (left) and in the ternary diagram (right). Looking at the co-

ordinate space, we see that this mixture can model elliptical forms of variability and

consequently, on the simplex the estimated mixture is able to model those typical arc

shaped forms (Figure 9 (right)). Because multivariate log-ratio normal is basis invariant

(Section 4), working with another orthonormal log-ratio basis results in the same mix-

ture as that represented in the ternary diagram (Figure 9 (right)). As noted above, there is

low similarity between mixture components and types of glass. In this case the adjusted

Rand index (Hubert and Arabie, 1985) is equal to 0.219.

Note that the parameters of the mixture are expressed with respect to coordinates h1

and h2. To better interpret the parameters of the mixture, we back-transformed the pa-

rameters µµµi into the simplex: (10.46,87.75,1.79), (7.77,89.13,3.10) and (12.02,

85.59,2.39), into percentages. Note that only the centre of the first log-ratio normal

mixture component is similar to the centre of the first Dirichlet mixture component.

To better interpret the covariance parameter Σi, Aitchison (1986) proposes using the

variation matrix, that is, the variance of each log-ratio. In this case, the corresponding

log-ratio variances are shown in Table 3.

The first mixture component is characterised by the highest relative variability of the

ratio between the Calcium and Aluminium parts and lowest between the Calcium and

Table 3: Forensic Glass data set: log-ratio variances for each mixture component fitted by a log-ratio

Gaussian mixture.

Mixture component var(ln(Ca/Si)) var(ln(Ca/Al)) var(ln(Si/Al))

1 0.0016 0.1530 0.1324

2 0.0101 0.0556 0.0760

3 0.0131 0.1226 0.0582
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Figure 10: Log-ratio skew normal mixture adjusted for Forensic Glass data set: (left) in log-ratio coordi-

nates; (right) in the ternary diagram.

Silica elements. Due to var(ln(Ca/Si)) being close to zero, the concentration of these ele-

ments are nearly proportional ( Martı́n-Fernández et al., 2015). Note that this behaviour

is common across the three mixture components. All the variances take small values for

the second mixture component, while the third mixture component differs from the first

due to the small value in the variance of ln(Si/Al).

Following an analogous approach, it is possible to fit other non-Gaussian mod-

els. For example, in Figure 10 the data set is modelled with a mixture of multivariate

log-ratio skew-normal distributions using the package provided by Prates et al. (2013)

(BIC = −62.3). The log-ratio skew-normal model extends the modelling possibilities

because it contains the log-ratio normal model as a particular case. Nevertheless, the

final model is more complex because a skew parameter is added for each density in

the mixture. This complexity also contributes to the BIC value which is worse than the

value for the log-ratio normal distribution. For the sake of brevity, we prefer not to give

the estimated parameters here. The multivariate log-ratio skew-normal model is also ba-

sis invariant, thus working with another orthonormal log-ratio basis results in the same

mixture as that represented in the ternary diagram (Figure 10 (right)). Although the ad-

justed Rand index increased slightly to 0.348, there is low similarity between mixture

components and types of glass.

6. A second real data set: C-horizon of the Kola data set

To illustrate how to proceed when the number of parts is greater than three, we analysed

a reduced data set of the C-horizon of the Kola data set (Reimann, Filzmoser). We

selected a subsample formed by 69 observations belonging to three groups: Alkaline

(7), Sediments (39) and Granite (23). For these samples we created the subcomposition
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Figure 11: Mixtures adjusted to the reduced C-horizon of Kola data set: (top) compositional biplot; (mid-

dle) marginal of the log-ratio Gaussian mixture for the two first coordinates: h1 and h2; (bottom) marginal

of the log-ratio skew normal mixture for the two first coordinates.
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formed by the chemical elements: Calcium (Ca), Copper (Cu), Magnesium (Mg), Sodium

(Na), Strontium (Sr) and Zinc (Zn).

Figure 11 (top) shows the compositional biplot, which consists of a principal com-

ponent plot applied to the centred log-ratio coordinates. The two principal components

explain a 90.6% variance, which is a high percentage of the total variance of the sample.

The first principal axis (PC1) is associated to the relative variation in parts Na and Sr

as opposed to Mg and Cu. On the other hand, the axis of the PC2 is associated to the

relative variation of element Ca versus Zn. The group of Alkaline observations has a

high concentration of elements Na and Sr with respect to the proportion in the groups

Granite and Sediments that have a high concentration of Mg and Cu elements. The main

differences between the groups Granite and Sediments is that the former has a higher

proportion of the element Ca, whilst the latter has high concentration in the Zn part.

We fit a mixture model using the normal and the skew-normal distributions on log-

ratio coordinates. For the sake of brevity, the estimated parameters are not provided. In

both cases the BIC index indicates that k = 3 is the optimal number of components.

To avoid local maximums we recalculated the parameters for each mixture until no im-

provement was obtained in the likelihood function during 100 simulations. To calculate

the orthonormal log-ratio coordinates in this example we considered the orthonormal

basis B formed by the directions of the principal components.

Figure 11 (middle) shows the marginal of the adjusted log-ratio normal mixture with

respect to the first (h1) and second (h2) orthonormal log-ratio coordinates. For the log-

ratio normal distributions the Rand index was 0.580, with 29 observations misclassified.

In Figure 11 (bottom) the marginal (h1, h2) of the adjusted log-ratio skew normal mixture

is shown. In this case the Rand index is better (0.760) and the misclassification rate is

also improved because only 5 observations were misclassified.

7. Final remarks

Traditional distributions in finite mixtures for compositional data sets show significant

difficulties. If densities for real data are used, probabilities of impossible events are ob-

tained. Additionally, as a part of a composition is often removed to estimate the model,

the results depend on that part. Dirichlet density and some generalizations on the sim-

plex can not capture the variability of many compositional data sets due to their strong

independence structure. The proposed log-ratio models are defined on the simplex using

its particular algebraic-geometric structure. Consequently probabilities for impossible

events are not obtained and there is no need to eliminate any part. The log-ratio normal

model is a flexible model that can describe different forms of variability and depen-

dence structures. It is a simple model and provides a rich enough parametric class of

distributions on the appropriate sample space. Certainly, the model has the equivalent

limitations as the traditional Gaussian mixtures in real space. Nevertheless, the pro-

posed methodology allows different and alternative models. Indeed, any mixture model
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defined on the real space can be considered to model data on the simplex space using

the principle of working on coordinates. In this paper we have proposed a mixture of

normal and skew-normal distributions to the log-ratio coordinates of a compositional

sample. These two options extend the range of possibilities we have had up to now with

the Dirichlet model or its generalizations. Interestingly, both proposed log-ratio models

are invariant with respect to the orthonormal basis chosen to compute the log-ratios. The

proposed log-ratio methodology could be extended by studying the possibilities of other

known distributions on real space, like Student-t and skewed-t mixtures. Furthermore,

in a non-parametric context, an analogy of these models with the P-spline methodology

for CoDa should be explored Eilers et al. (2015).
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transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

Egozcue, J. J. and Pawlowsky-Glahn, V. (2005). Groups of Parts and Their Balances in Compositional Data

Analysis. Mathematical Geology, 37, 795–828.

Eilers, P.H.C., Marx, B.D. and Durban, M. (2015). Twenty years of P-splines. SORT, 39, 149–186.

Ferrer-Rosell, B., Coenders, G., and Martı́nez-Garcı́a, E. (in press). Segmentation by tourist expenditure

composition. An approach with compositional data analysis and latentclasses. Tourism Analysis.

Giordan, M. and Wehrens, R. (2015). A comparison of computational approaches for maximum likelihood

estimation of the Dirichlet parameters on high-dimensional data. SORT, 39, 109–126.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica,

50, 1029–1054.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

Lee, S. X. and McLachlan, G. J. (2011). On the fitting of mixtures of multivariate skew t-distributions via

the EM algorithm. ArXiv e-prints arXiv:1109.4706

Lee, S. X. and McLachlan, G. J. (2014). Finite mixtures of multivariate skew t-distributions: some recent

and new results. Statistics and Computing, 24, 181–202.

Lin, T. I. (2010). Robust mixture modeling using multivariate skew t distributions. Statistics and Computing,

20, 343–356.



M. Comas-Cufı́, J.A. Martı́n-Fernández and G. Mateu-Figueras 373

Mardia, K. V., Taylor, C. C. and Subramaniam, G. K. (2007). Protein bioinformatics and mixtures of bivari-

ate von Mises distributions for angular data. Biometrics, 63.

Martı́n-Fernández, J. A., Daunis-i-Estadella, J. and Mateu-Figueras, G. (2015). On the interpretation of

differences between groups for compositional data. SORT, 39, 231–252.

Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2007). The skew-normal distribution on the simplex. Com-

munications in Statistics-Theory and Methods, 36, 1787–1802.

Mateu-Figueras, G., Pawlowsky-Glahn, V. and Egozcue, J. J. (2011). The principle of working on coordi-

nates. In Compositional Data Analysis, 29–42. John Wiley and Sons, Ltd.

Mateu-Figueras, G., Pawlowsky-Glahn, V. and Egozcue, J. J. (2013). The normal distribution in some con-

strained sample spaces. SORT, 37, 29–56.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Willey Series in Probability and Statistics.

John Wiley and Sons, New York.

Monti, G. S., Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2011). Notes on the scaled Dirichlet distribu-

tion. In Compositional Data Analysis, 128–138. John Wiley and Sons, Ltd.

Monti, G. S., Mateu-Figueras, G., Pawlowsky-Glahn, V., and Egozcue, J. J. (2011). The shifted-scaled

Dirichlet distribution in the simplex. In Egozcue, J. J., Tolosana-Delgado, R. and Ortego, M. I.,

editors, CoDaWork 2011, the 4th International Workshop on Compositional Data Analysis, Sant

Feliu de Guı́xols. CIMNE.

Narayanan, A. (1991). Algorithm AS 266: maximum likelihood estimation of the parameters of the Dirich-

let distribution. Journal of the Royal Statistical Society: Series C (Applied Statistics), 40, 365–374.

Ng, K. W., Tian, G.-L. and Tang, M.-L. (2011). Dirichlet and Related Distributions: Theory, Methods and

Applications. John Wiley and Sons.

Neocleous, T., Aitken, C. and Zadora, G. (2011). Transformations for compositional data with zeros with

an application to forensic evidence evaluation. Chemometrics and Intelligent Laboratory Systems,

109, 77–85.

Ongaro, A. and Migliorati, S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate

Analysis, 114, 412–426.

Palarea-Albaladejo, J., Martı́n-Fernández, J. A., and Buccianti, A. (2014). Compositional methods for es-

timating elemental concentrations below the limit of detection in practice using R. Journal of Geo-

chemical Exploration, 141, 71–77.

Palarea-Albaladejo, J., Martı́n-Fernández, J. A., and Soto, J. A. (2012). Dealing with distances and transfor-

mations for fuzzy C-means clustering of compositional data. Journal of Classification, 29, 144–169.

Papageorgiou, I., Baxter, M. J. and Cau, M. A. (2001). Model-based cluster analysis of artefact composi-

tional data. Archaeometry, 43, 571–588.

Pawlowsky-Glahn, V. and Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex.

Stochastic Environmental Research and Risk Assessment, 15, 384–398.

Prates, M. O., Lachos, V. H. and Cabral, C. R. B. (2013). mixsmsn: Fitting finite mixture of scale mixture

of skew-normal distributions. Journal of Statistical Software, 54.

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for statistical

computing, Vienna, Austria.

Rayens, W. S. and Srinivasan, C. (1994). Dependence properties of generalized Liouville distributions on

the Simplex. Journal of the American Statistical Association, 89, 1465–1470.

Reimann, C., Filzmoser, P., Garrett, R., and Dutter, R. (2011). Statistical Data Analysis Explained: Applied

Environmental Statistics with R. John Wiley and Sons Ltd, Chichester (UK).

Scealy, J. L., Patrice de Caritat, Grunsky, E. C., Tsagris, M. T and Welsh, A. H. (2015). Robust principal

component analysis for power transformed compositional data. Journal of the American Statistical

Association, 136–148, DOI: 10.1080/01621459.2014.990563.



374 Log-ratio methods in mixture models for compositional data sets

Scott, A. and Symons, M. (1971). Clustering methods based on likelihood ratio criteria. Biometrics, 27,

387–397.

Smith, B. and Rayens, W. (2002). Conditional generalized Liouville distributions on the simplex. Statistics,

36, 185–194.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer-Verlag, New York.
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Abstract

One important goal in clinical applications of multi-state models is the estimation of transition

probabilities. Recently, landmark estimators were proposed to estimate these quantities, and their

superiority with respect to the competing estimators has been proved in situations in which the

Markov condition is violated. As a weakness, it provides large standard errors in estimation in

some circumstances. In this article, we propose two approaches that can be used to reduce the
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1. Introduction

The analysis of survival data may be described by the Markov process considering the

transition from an initial ‘alive’ state to a single ultimate state or endpoint ‘dead’. How-

ever, in most longitudinal medical studies more than one endpoint can be defined. In

breast cancer trials, for instance, several endpoints, such as disease-free survival, local

recurrence, distant metastasis or death are possible. Multi-state models are a useful way

of describing such a process in which an individual moves through a number of finite

states in continuous time. A wide range of medical situations have been modeled using

multi-state methods, for example, HIV infection and AIDS (Gentleman et al., 1994),

liver cirrhosis (Andersen et al., 2002), breast cancer (Pérez-Ocón et al., 2001; Putter et

al., 2007) and problems following heart transplantation (Meira-Machado et al., 2009). A

commonly-used model is the illness-death model, with three states representing health,

illness and death (Figure 1). Individuals start in the healthy state and subsequently move
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1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead

Figure 1: Illness-death model.

either to the diseased state or to the dead absorbing state. In the irreversible version

of this model, individuals in the diseased state will eventually move to the dead state

without any possibility of recovery. Methods developed for the progressive illness-death

model have a wide range of applications in longitudinal medical studies.

One important feature of multi-state models is their ability to obtain predictions of

the clinical prognosis of a patient at a certain point in his/her recovery or illness process.

Various aspects of the model dynamics can be captured through the transition prob-

abilities. Traditionally, the transition probabilities are estimated using Aalen-Johansen

estimator (Aalen and Johansen, 1978) which assumes the process to be Markovian. Sub-

stitute estimators for the Aalen-Johansen estimator for a general non-Markov illness-

death process without recovery were introduced by Meira-Machado et al. (2006). These

authors showed that the new estimators may behave much more efficiently than the

Aalen-Johansen when the Markov assumption does not hold. This work has been re-

visited by Allignol et al. (2014), who proposed a closely related non-Markov estimator

too. However, both of the proposed non-Markov estimators have the drawback of re-

quiring that the support of the censoring distribution contains the support of the lifetime

distribution, which is not often the case. To avoid this problem, de Uña-Álvarez and

Meira-Machado (2015) propose new estimation methods which are consistent regard-

less the Markov condition and the referred assumption about the censoring support. The

idea behind the proposed methods is to use specific subsamples or portions of data at

hand (namely, those observed to be in a given state at a pre-specified time point). Such

an approach is known in the literature as the landmark methodology (van Houwelin-

gen, 2007). Simulations reported in the paper by de Uña-Álvarez and Meira-Machado

(2015) reveal significant improvements on the behaviour of the new method. For small

sample sizes and/or large proportion of censored data the landmark approach may re-

sult in a wiggly estimator with fewer jump points. This will be more prominent is some

transition probabilities. To avoid this problem, we propose two approaches that can be

used to reduce the variability of the landmark estimator. A simple approach is based on

spline smoothing. Another valid approach is to consider a modification of the landmark

estimator based on presmoothing (Dikta, 1998). Simulation studies reported in Section

3 show that the proposed estimators may be much more efficient than the completely

nonparametric estimator. In addition, we introduce nonparametric estimators based on

the landmark approach that account for the influence of covariates in the transition prob-

abilities.
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The organization of the paper is as follows. In Section 2, we introduce the notation

and revisit the estimator proposed by de Uña-Álvarez and Meira-Machado (2015). New

smoothed estimators are also introduced. The performance of the three sets of estimators

is investigated through simulations in Section 3, while in Section 4 the methods are

compared through the analysis of medical data from a clinical trial on breast cancer

from Germany. In Section 5 we give a brief overview of the R package developed by the

authors. Main conclusions are reported in Section 6.

2. Transition probabilities

2.1. Notation and preliminaries

A multi-state model is a stochastic process (Y (t), t ∈ T ) with a finite state space in

continuous time. These models are a useful way of describing a process in which an

individual moves through a series of states. In this paper, we consider the progressive

illness-death model depicted in Figure 1 and we assume that all the subjects are in State

1 at time t = 0. Extensions to progressive processes beyond the three-state illness-death

model can also be considered following the ideas given in the paper by de Uña-Álvarez

and Meira-Machado (2015) (Section 5).

The progressive illness-death model is characterized by the three random variables

Ti j, 1 ≤ i < j ≤ 3, that represent the potential transition times from State i to State j.

According to this notation, subjects not visiting State 2 will reach State 3 at time T13.

This time will be T12 +T23 if he/she passes through State 2 before, where the variables

T12 and T23 are recorded successively, rather than simultaneously. In this model we have

two competing transitions leaving State 1. Therefore, we denote by ρ= I(T12 ≤ T13) the

indicator of visiting State 2 at some time, Z = min(T12,T13) the sojourn time in State 1,

and T = Z +ρT23 the total survival time of the process. This means that ρ= I(Z < T ).
As usual, assume that these event times are subject to univariate right-censoring

denoted by C, which we assume to be independent of (Z,T). Define Z̃ = min(Z,C)
and T̃ = min(T,C) for the censored versions of Z and T . Then, put ∆1 = I(Z ≤ C)

and ∆ = I(T ≤ C) for the respective censoring indicators. Finally, the available data is

(Z̃i, T̃i,∆1i,∆i), 1 ≤ i ≤ n, iid copies of (Z̃, T̃ ,∆1,∆).
In the illness-death model, the target is each of the five transition probabilities

pi j(s, t) = P(Y (t) = j|Y (s)= i), where 1≤ i ≤ j ≤ 3 and s≤ t are two pre-specified time

points. However, since we have two obvious relations, p12(s, t) = 1− p11(s, t)− p13(s, t)

and p22(s, t) = 1− p23(s, t), in practice one only need to estimate three of these quanti-

ties. According to our notations, the transition probabilities are written as

p11(s, t) = P(Z > t | Z > s) , p12(s, t) = P(Z ≤ t,T > t | Z > s) ,
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p13(s, t) = P(T ≤ t | Z > s) , p22(s, t) = P(Z ≤ s,T > t | Z ≤ s,T > s) ,

p23(s, t) = P(T ≤ t | Z ≤ s,T > s) . (1)

2.2. Landmark estimators

According to the landmark approach (van Houwelingen, 2007) nonparametric estima-

tors for the transition probabilities can be introduced by considering specific subsam-

ples or portions of the data. For example, given the time point s, to estimate p1 j(s, t) for

j = 1,2,3 the analysis can be restricted to the individuals observed in State 1 at time s.

This set is just S1 =
{

i : Z̃i > s

}
. As explained in de Uña-Álvarez and Meira-Machado

(2015) as long as C is independent of Z, a subject in S1 is representative of those in-

dividuals for which Z exceeds s. On the other hand, for the subpopulation Z̃ > s, the

censoring time C is still independent of the pair (Z,T ) and, therefore, Kaplan-Meier-

based estimation will be consistent. The same applies to the analysis restricted to the

individuals observed in State 2 at time s, say S2 =
{

i : Z̃i ≤ s< T̃i

}
, which serves to

introduce landmark estimators for p2 j(s, t), j = 2,3.

The transition probability p11(s, t) is defined as the survival function at time t, among

the individuals observed in State 1 at time s, which can be estimated by the ordinary

Kaplan-Meier estimator (Kaplan and Meier, 1958) of the sojourn time distribution in

State 1, based on the pairs (Z̃i,∆1i)’s in the subsample S1. Similarly, the transition prob-

ability p13(s, t) is defined as one minus the survival function (of the total time) at time

t in the same subset S1. The transition probability p23(s, t) is defined as one minus the

survival function (of the total time) at time t in the subset S2. The landmark estima-

tors given in the paper by de Uña-Álvarez and Meira-Machado (2015) are defined in

terms of multivariate ‘Kaplan-Meier integrals’ with respect to the marginal distribution

of the first time, for the transition probability p11(s, t), and with respect to the marginal

distribution of the total time T in the remaining transitions.

To formally present the estimators, we need to introduce the expressions for the

Kaplan-Meier weights: w
(s)
i - the Kaplan-Meier weights attached to Z̃i when estimating

the marginal distribution of Z from the (Z̃i,∆1i)’s in subset S1, W
(s)

i - the Kaplan-Meier

weights attached to T̃i when estimating the marginal distribution of T from the (T̃i,∆i)’s

in subset S1, and W
[s]

i - the Kaplan-Meier weights attached to T̃i when estimating the

marginal distribution of T from the (T̃i,∆i)’s in subset S2. Let
(

Z̃
(s)
(i) ,∆

(s)
1[i]

)
, i = 1, ...,n1s,

be the
(

Z̃,∆1

)
-sample in S1 ordered with respect to Z̃, and

(
T̃
(s)
(i) ,∆

(s)
[i]

)
, i = 1, ...,n1s,

be the
(

T̃ ,∆
)

-sample in S1 ordered with respect to T̃ . Then,

p̂ldm
11 (s, t) = 1−

n1s∑

i=1

w
(s)
i I(Z̃

(s)
(i) ≤ t), (2)
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p̂ldm
13 (s, t) =

n1s∑

i=1

W
(s)
i I(T̃

(s)
(i) ≤ t), (3)

where

w
(s)
i =

∆
(s)
1[i]

n1s − i+1

i−1

∏
j=1


1−

∆
(s)
1[ j]

n1s − j+1


 , 1 ≤ i ≤ n1s;

and

W
(s)

i =
∆
(s)
[i]

n1s − i+1

i−1

∏
j=1


1−

∆
(s)
[ j]

n1s − j+1


 , 1 ≤ i ≤ n1s.

Similarly, one can introduce the corresponding estimator for p23(s, t). Let
(

T̃
[s]
(i) ,∆

[s]
[i]

)
,

i = 1, ...,n2s, is the
(

T̃ ,∆
)

-sample in S2 ordered with respect to T̃ . Then,

p̂ldm
23 (s, t) =

n2s∑

i=1

W
[s]

i I(T̃
[s]
(i) ≤ t), (4)

where

W
[s]

i =
∆
[s]
[i]

n2s − i+1

i−1

∏
j=1


1−

∆
[s]
[ j]

n2s − j+1


 , 1 ≤ i ≤ n2s.

The estimators p̂ldm
i j (s, t) have the simple form of a Kaplan-Meier estimator, based

on a certain subsample which is determined by the time point s. Thus, they can also

be expressed in the form of inverse of probability censoring weighted average (IPCW)

(Satten and Datta, 2001),

p̂ldm
11 (s, t) = 1− 1

n1s

n1s∑

i=1

I(Z̃
(s)
(i) ≤ t)∆

(s)
1[i]

Ĝ(Z̃
(s)
(i) )

,

p̂ldm
13 (s, t) =

1

n1s

n1s∑

i=1

I(T̃
(s)
(i) ≤ t)∆

(s)
[i]

K̂1(T̃
(s)
(i) )

,
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and

p̂ldm
23 (s, t) =

1

n2s

n2s∑

i=1

I(T̃
[s]
(i) ≤ t)∆

[s]
[i]

K̂2(T̃
[s]
(i) )

,

where G, K1 and K2 are the survival functions of the censoring variable C, which can be

consistently estimated by the Kaplan-Meier approach considering events as ‘censored’

observations and censored observations as ‘events’. Here, Ĝ stands for the Kaplan-Meier

estimator (of the censoring survival function) based on the (Z̃i,1−∆1i)’s in subset S1;

whereas, K̂1 and K̂2 stand for the Kaplan-Meier estimator (of the censoring survival

function) based on the (T̃i,1−∆i)’s in subset S1 and S2, respectively.

It is important to mention that p̂ldm
11 (s, t) is equivalent to the estimator given by Meira-

Machado et al. (2006) and the so-called Aalen-Johansen estimator (Aalen and Johansen,

1978) of p11(s, t), which is consistent regardless of the Markov assumption. In addition,

for s = 0, the landmark estimators are known as the occupation probabilities and they

are equivalent to those provided by Meira-Machado et al. (2006).

2.3. Smooth landmark estimators

The standard error of the landmark estimators introduced in the previous subsection

may be large when the censoring is heavy, particularly with a small sample size. This

problem may be more obvious when estimating the transition probabilities pi j(s, t) for

large values of s. In this section, we propose two smoothed versions of the nonparametric

landmark estimators given in the previous subsection. One simple approach is based on

the use of constrained penalized regression splines (Meyer, 2008, 2012; Wood, 2006).

We also introduce a semiparametric estimator which uses a presmoothed version of the

Kaplan-Meier estimator (Dikta, 1998; Jácome and Iglesias, 2008; López-de-Ullibarri

and Jácome, 2013) pertaining to the distribution of the survival times to weight the data.

2.3.1. Constrained penalized splines

Constrained penalized regression splines can be used as a simple approach which pro-

vides smooth estimation of the transition probabilities. These methods can be used under

some constraints of shape, such as monotonicity (required for the transition probabili-

ties p11(s, t), p13(s, t), p22(s, t) and p23(s, t)) and to force a fit curve to go through a

particular point. The later constraint is also important since for s = t obvious conditions

are required (p11(s,s) = p22(s,s) = 1 and p12(s,s) = p13(s,s) = p23(s,s) = 0). To obtain

spline-based landmark estimators, p̂crs
i j (s, t), we propose the use of the cubic regression

splines.

The key assumption underlying regression spline smoothing is that, for a fixed value

of s, the unknown functions pi j(s, t) can be approximated by polynomial splines, defined
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on a set of knots (join points) within the domain of A = [s,τT ] where τT is the upper

bound of the support of T . For a fixed value of s, we first obtain the (landmark) estimates

of the transition probabilities over all possible time values t with s< t, and then, define

a cubic spline basis defined by a modest sized set of knots spread evenly through the

interval A = [s,τT ]. For each transition probability pi j(s, t) the use of regression splines

provide one approach that allows flexible relationships between a covariate X (time

values in A) and the average response (i.e., the landmark estimates of the transition

probabilities) as a function of the variable X .

Cubic spline functions are piecewise continuous curves defined by polynomial func-

tions of degree 3. These functions are built joining the piecewise functions on equally

spaced join points (also known as knots) so that they are continuous in value, as well

as its first two derivatives. This is done by choosing a cubic regression spline basis for

which many alternatives can be found (see for example Durrleman and Simon (1989)

or Wood (2006)). One approach is to parameterize the spline terms of its values at the

knots (Wood, 2006). Specifically, we can write the spline function as a function of u ∈ A

f (u) =

q∑

i=1

δibi(u)

where q is the number of knots, the bi are the basis functions of at least second order for

representing smooth functions over a given interval, and the δi are the spline coefficients.

Constraints forcing the curve to pass through a specific point can be imposed. This can

be done by creating a regression spline basis, making sure there is a knot at the constraint

point. Monotonicity constraints can also be imposed. Penalization is achieved by the

conventional integrated square second derivative cubic spline penalty. In practice, we

use the gam function in the R package mgcv (Wood, 2006) to obtain the transition

probability curves as well for obtaining the predicted values of the smooth curves at

the new values. The mgcv implementation of gam, by default uses basis functions for

these splines that are designed to be optimal, given the number basis functions used. For

details about these methods, see for example Wood (2006) or Pya and Wood (2015).

2.3.2. Presmoothed estimators

The variance of the landmark estimators may also be reduced by presmoothing. Suc-

cessful applications of presmoothed estimators include estimation of the survival func-

tion (Dikta, 1998; Meira-Machado et al., 2016), nonparametric curve estimation (Cao

and Jácome, 2004), regression analysis (de Uña-Álvarez and Rodrı́guez-Campos, 2004;

Jácome and Iglesias, 2010), estimation of the bivariate distribution of censored gap times

(de Uña-Álvarez and Amorim, 2011), and the estimation of the transition probabilities

(Amorim et al., 2011; Moreira et al., 2013). All these references concluded that the

presmoothed estimators have improved variance when compared to purely nonparamet-
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ric estimators. In this paper, we show that presmoothing is also useful to improve ef-

ficiency of the landmark estimators introduced in a previous section. This ‘presmooth-

ing’ is obtained by replacing the censoring indicator variables in the expression of the

Kaplan-Meier weights by a smooth fit. This preliminary smoothing may be based on a

certain parametric family such as the logistic, or on a nonparametric estimator of the

binary regression curve. When the parametric family is the right one, parametric pres-

moothing (Dikta, 1998) leads to more efficient estimation than that associated to the un-

smoothed estimator. Nonparametric presmoothing (Cao et al., 2005) is useful when there

is a clear risk of a miss-specification of the parametric model. The validity of a given

parametric model for presmoothing can be checked graphically or formally, by apply-

ing a goodness-of-fit test. In this paper we consider estimators obtained using standard

logistic regression. The corresponding (semiparametric) presmoothed landmark estima-

tors of the transition probabilities are given by

p̂
prs
11 (s, t) = 1−

n1s∑

i=1

pw
(s)
i I(Z̃

(s)
(i) ≤ t), (5)

p̂
prs
13 (s, t) =

n1s∑

i=1

PW
(s)

i I(T̃
(s)
(i) ≤ t), (6)

and

p̂
prs
23 (s, t) =

n2s∑

i=1

PW
[s]

i I(T̃
[s]
(i) ≤ t) (7)

where the presmoothed Kaplan-Meier weights are defined as follow:

pw
(s)
i =

m0n(Z̃
(s)
(i) )

n1s − i+1

i−1

∏
j=1


1−

m0n(Z̃
(s)
(i) )

n1s − j+1


 , 1 ≤ i ≤ n1s,

PW
(s)
i =

mn(Z̃
(s)
[i] , T̃

(s)
(i) )

n1s − i+1

i−1

∏
j=1


1−

mn(Z̃
(s)
[i] , T̃

(s)
(i) )

n1s − j+1


 , 1 ≤ i ≤ n1s,

and

PW
[s]

i =
mn(Z̃

[s]
[i] , T̃

[s]
(i) )

n2s − i+1

i−1

∏
j=1


1−

mn(Z̃
[s]
[i] , T̃

[s]
(i) )

n2s − j+1


 , 1 ≤ i ≤ n2s,
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where
(

Z̃
(s)
[i] , T̃

(s)
(i) ,∆

(s)
[i]

)
, i = 1, ...,n1s, is the

(
Z̃, T̃ ,∆

)
-sample in S1 ordered with re-

spect to T̃ , and
(

Z̃
[s]
[i] , T̃

[s]
(i) ,∆

[s]
[i]

)
, i = 1, ...,n2s, is the

(
Z̃, T̃ ,∆

)
-sample in S2 ordered with

respect to T̃ . Here, m0n(u) and mn(u,v) stand for estimators of the binary regression

functions m0(u)= P(∆
(s)
1 = 1 | Z̃(s) = u) and m(u,v)= P(∆(s) = 1 | Z̃(s) = u, T̃ (s) = v), re-

spectively. In this work we assume that these functions belong to a parametric (smooth)

family of binary logistic regression curves. For example for m0n(u), we assume that

m0n(u) = m(u;β) where β is a vector of parameters which typically will be computed

by maximizing the conditional likelihood of the ∆
(s)
1 ’s given Z̃(s).

As discussed in Amorim et al. (2011) the function m(u,v) will typically be discon-

tinuous along the line v = u, that is, for those covariate values (Z̃, T̃ ) corresponding to

individuals who are censored while being in state 1 or who suffer a direct transition to

the absorbing state. In order to construct mn(u,v) we use the ideas proposed by Amorim

et al. (2011).

Note that, unlike the unsmoothed landmark estimators, the presmoothed estimators

can attach positive mass to pair of event times with censored total time. The presmoothed

estimators p
prs
i j (s, t) are step functions, with jumps at the observed (censored or un-

censored) times. In this aspect they differ from landmark estimators (pldm
i j (s, t)) whose

jumps are restricted to the uncensored times. In the limit case of no presmoothing, the

Presmoothed Landmark estimator reduces to the landmark estimator.

In practice, estimation of the variance is needed for inference purposes. To this end,

resampling techniques such as the bootstrap can be used. These methods can be used to

construct confidence limits based on the bootstrap (e.g., using the basic or the percentile

method) and thus to confirm if the proposed methods lead to a reduction in the variability

of the estimators proposed in this section. These resampling techniques can be easily

implemented using the R package described in Section 5.

Simulations reported in Section 3 reveal that the proposed estimators are virtually

unbiased and that they may achieve good efficiency levels when compared to the un-

smoothed landmark estimators.

2.4. Including covariates

In this section, we will explain how to introduce covariate information in the unsmoothed

landmark estimators, p̂ldm
i j (s, t). In particular, we are interested in estimating the condi-

tional transition probabilities pi j(s, t|X = x) that can be computed for any times s and t,

s < t, but conditional to a given continuous covariate X that could either be a baseline

covariate or a current covariate that is observed for an individual before the individual

makes a particular transition of interest. Discrete covariates can be also included by split-

ting the sample for each level of the covariate and repeating the described procedures

for each subsample.
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To account for the covariate effect, one standard method is to consider estimators

based on a Cox’s model (Cox, 1972), with the corresponding baseline hazard function

estimated by the Breslow’s method (Breslow, 1972). Flexible effects of the covariates

on the transition probabilities as those depicted in Figure 5 can be obtained using an al-

ternative approach which introduces local smoothing by means of kernel weights based

on local constant (Nadaraya-Watson) regression (Nadaraya 1965; Watson 1964).

Nonparametric estimators of the conditional transition probabilities have been re-

cently proposed by Meira-Machado et al. (2015). These authors propose to estimate

pi j(s, t |X = x) via estimation of the conditional expectations such as E[ψ(Z,T ) |X = x],
where ψ is a general function defined over Z and T . Following the ideas described in

Meira-Machado et al. (2015), the conditional transition probabilities are defined as fol-

lows:

p11(s, t | X = x) =
1−P(Z ≤ t | X = x)

1−P(Z ≤ s | X = x)
,

p13(s, t | X = x) =
P(Z > s,T ≤ t | X = x)

1−P(Z ≤ s | X = x)

p23(s, t | X = x) =
P(Z ≤ s,s< T ≤ t | X = x)

P(Z ≤ s | X = x)−P(T ≤ s | X = x)
.

(8)

The conditional transition probability p11(s, t | X = x), the denominator of p13(s, t |
X = x) and the denominator of p23(s, t | X = x) involve the estimation of the conditional

distribution/survival function of the response, given the covariate under random right

censoring. This topic was introduced by Beran (1981) and was further studied by several

authors (see e.g. papers by Akritas, 1994; van Keilegom et al., 2001; Akritas and van

Keilegom, 2003). Their proposals can be used to estimate for instances the conditional

distribution function of Z | X = x, that is, FX=x(u) = P(Z ≤ u | X = x) which we denote

by F̂X=x or simply by F̂x. This can be done using the estimator introduced by Beran

(1981),

F̂X=x(u) = 1− ∏
Z̃i≤u,∆1i=1

[
1− NW (x,Xi,h)∑n

j=1 I(Z̃ j ≥ Z̃i)NW(x,X j,h)

]
, (9)

where NW (x,Xi,h) are the Nadaraya-Watson (NW) weights (Nadaraya, 1965; Watson,

1964)

NW (x,Xi,h) =
D((x−Xi)/h)∑n
j=1 D((x−X j)/h)

where D is a known probability density function (the kernel function) and h is a band-

width.
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The remaining quantities in the computation of the conditional transition probabil-

ities involve conditional expectations of particular transformations of the pair (Z,T)
given X , E[ψ(Z,T ) | X = x] which can not be estimated so simply.

In the absence of censoring, to estimate the conditional expectations E[ψ(Z,T ) |
X = x] we may use kernel smoothing techniques by calculating a local average of the

ψ(Z,T ), that is, as follows:

Ê[ψ(Z,T ) | X = x] =
n∑

i=1

NW (x,Xi,h)ψ(Z̃i, T̃i),

where NW (x,Xi,h) are the Nadaraya-Watson (NW) weights.

To handle right censoring Meira-Machado et al. (2015) propose the use of inverse

of probability censoring weighting. Assuming that ∀x, P(Z̃ > s, T̃ ≤ t | X = x)> 0 and

P(Z̃ ≤ s,s< T̃ ≤ t | X = x)> 0, we have the following:

E[I(Z > s,T ≤ t) | X = x] = E[I(Z̃ > s,s< T̃ ≤ t)∆/KX(T̃ ) | X = x],

E[I(Z ≤ s,T > s) | X = x] = E[I(Z̃ ≤ s, T̃ ≤ t)∆/KX(T̃ ) | X = x]

where KX denotes the conditional survival function of the censoring variable C given the

covariate X , that is KX=x(u) = P(C > u | X = x). Let K̂X=x denote Beran’s estimator of

KX . Based on this, the following nonparametric estimators of the conditional transition

probabilities can be introduced:

p̂11(s, t | X = x) =
1− F̂x(t)

1− F̂x(s)
, (10)

p̂13(s, t | X = x) =
1

1− F̂x(s)

n∑

i=1

NW (x,Xi,h1)I(Z̃i > s, T̃i ≤ t)∆i

K̂Xi
(T̃i)

, (11)

and

p̂23(s, t | X = x) =

∑n
i=1 NW (x,Xi,h1)I(Z̃i ≤ s,s< T̃i ≤ t)∆i/K̂Xi

(T̃i)

F̂x(s)− Ĥx(s)
, (12)

where Ĥx denote Beran’s estimator of the conditional distribution of T | X = x.

Similar ideas as those explained above can be used to introduce nonparametric es-

timators for the conditional transition probabilities based on landmark. For example,

given the time point s, the estimation of the conditional transition probabilities p11(s, t |
X = x) and p13(s, t | X = x) are restricted to the individuals in State 1 at time s. Thus,

the landmark estimators for these quantities are given as follows:
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p̃11(s, t | X = x) = 1−
n1s∑

i=1

NW (x,X
(s)
(i) ,h1)

I(Z̃
(s)
(i) ≤ t)∆

(s)
1[i]

ĜXi
(Z̃

(s)
(i) )

, (13)

and

p̃13(s, t | X = x) =

n1s∑

i=1

NW (x,X
(s)
(i) ,h1)

I(T̃
(s)
(i) ≤ t)∆

(s)
[i]

K̂1,Xi
(T̃

(s)
(i) )

, (14)

where ĜX and K̂1,X are Beran’s estimators for the conditional survival function of the

censoring variable of the sojourn time in State 1 (respectively, total time) given X in

subset S1.

Similarly, the built of the landmark estimator of the conditional transition probability

p23(s, t | X = x) is restricted to the individuals in State 2 at time s:

p̃23(s, t | X = x) =

n2s∑

i=1

NW (x,X
[s]
(i),h2)

I(T̃
[s]
(i) ≤ t)∆

[s]
[i]

K̂2,Xi
(T̃

[s]
(i) )

, (15)

where K̂2,X is Beran’s estimator of the conditional survival function of the censoring

variable of the total time given X in subset S2.

Simulation results (not reported here) reveal that the landmark based estimators

p̃12(s, t |X = x) and p̃13(s, t |X = x) perform favourably when compared to p̂12(s, t | X =
x) and p̂13(s, t | X = x), respectively. In contrast, the landmark estimator p̃23(s, t | X = x)

have a worst performance when compared to p̂23(s, t | X = x) particularly when com-

puted at time points s for which few individuals are observed in State 2.

3. Simulation study

In this section, we report the results of a simulation study carried out to investigate the

empirical behaviour of the estimators, introduced in Section 2, for finite sample sizes.

More specifically, the landmark unsmoothed estimators, p̃ldm
i j (s, t), with the smoothed

estimators, p̃crs
i j (s, t), based on cubic regression splines and the semiparametric pres-

moothed estimators, p̃
prs
i j (s, t).

To simulate the data in the illness-death model, we use the same scenario as that

described in Amorim et al. (2011) and de Uña-Álvarez and Meira-Machado (2015). We

separately consider the subjects passing through State 2 at some time, and those who

directly go to the absorbing State 3. For the first subgroup of individuals (ρ = 1), the

successive gap times (Z,T −Z) are simulated according to the bivariate exponential

distribution
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F12(u,v) = F1(u)F2(v) [1+γ {1−F1(u)}{1−F2(v)}]

with exponential marginal distribution functions with rate parameter 1. The single pa-

rameter γ controls the amount of dependency between the gap times. The parameter γ

was set to 0 for simulating independent gap times, and also to 1, corresponding to 0.25

correlation between Z and T −Z. The simulation procedure is as follows:

Step 1. Draw ρ∼ Ber(p) where p is the proportion of subjects passing through State 2.

Step 2. If ρ= 1 then:

(2.1) V1 ∼U (0,1) ,V2 ∼U (0,1) are independently generated;

(2.2) U1 =V1,A = γ (2U1 −1)−1,B = (1−γ (2U1 −1))2 +4γV2 (2U1 −1)

(2.3) U2 = 2V2/
(√

B−A
)

(2.4) Z = ln(1/(1−U1)) ,T = ln (1/(1−U2))+Z

If ρ= 0 then Z = ln(1/(1−U(0,1))).

Situations with p = 1 corresponds to the three-state progressive model, in which a

direct transition to State 3 is not allowed. In our simulation we consider p = 0.7. An

independent uniform censoring time C is generated, according to models U [0,4] and

U [0,3]. The first model results in 24% of censoring on the first gap time Z, and in 47%

of censoring on the second gap time T −Z, for those individuals with ρ= 1. The second

model increases these censoring levels to 32% and about 57%, respectively.

For each simulated setting we derived the analytic expression of pi j(s, t) for six dif-

ferent points (s, t) (s < t), corresponding to combinations of the percentiles 20%, 40%,

60% and 80% of the marginal distributions of the gap times. Sample sizes of 100, 250

and 500 were considered. In each simulation, 1000 samples were generated and for each

of the three estimators we obtain the mean bias, the standard deviation (SD), and the

mean square error (MSE) based on the 1000 Monte Carlo replicates. Table 1 reports the

results for the transition probabilities p12(s, t) and p23(s, t) for the case with dependent

gap times; the results for independent gap times (not shown) are similar.

As would be expected, results reported in Table 1 reveal that the performance of all

methods is poorer at the right tail (i.e., larger values of s and t) where the censoring

effects are stronger. At these points the SD is in most cases higher. The SD decreases

with an increase in the sample size and with a decrease of the censoring percentage. All

methods proposed in this article obtain in all settings a small bias.

Results reported in Table 1 reveal that the SD clearly dominates the performance

of the proposed estimators in most cases. This is particularly clear when comparing the

semiparametric estimators with the unsmoothed landmark estimators. The semiparamet-
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Table 1: Bias and standard deviation (SD) for the three estimators of pi j(s, t). The MSE of p̂
prs
i j (s, t) and

p̂crs
i j (s, t) relative to p̂ldm

i j (s, t) are also given. Scenario of correlated exponential gap times with three sample

sizes and two censoring levels.

p̂ldm
12 (s, t) p̂

prs
12 (s, t) p̂crs

12 (s, t)

bias SD bias SD bias SD MSE ldm/MSE prs MSE ldm/MSEcrs

(s, t) = (.2231,.5108)

n = 100 C ∼U [0,4] −0.0017 0.0408 −0.0013 0.0368 0.0046 0.0377 1.2086 1.1532

C ∼U [0,3] −0.0017 0.0415 −0.0011 0.0375 0.0026 0.0385 1.2279 1.1586

n = 250 C ∼U [0,4] 0.0006 0.0263 0.0015 0.0235 0.0040 0.0249 1.2468 1.0882

C ∼U [0,3] 0.0006 0.0268 0.0017 0.0240 0.0022 0.0250 1.2388 1.1410

n = 500 C ∼U [0,4] 0.0017 0.0188 0.0024 0.0170 0.0039 0.0170 1.2075 1.1718

C ∼U [0,3] 0.0016 0.0189 0.0027 0.0169 0.0022 0.0171 1.2325 1.2100

(s, t) = (.2231,.9163)

n = 100 C ∼U [0,4] −0.0028 0.0518 −0.0025 0.0473 0.0017 0.0497 1.2034 1.0881

C ∼U [0,3] −0.0030 0.0530 −0.0035 0.0487 0.0003 0.0525 1.1845 1.0221

n = 250 C ∼U [0,4] <0.0001 0.0338 0.0027 0.0311 0.0006 0.0320 1.1855 1.1153

C ∼U [0,3] −0.0001 0.0352 −0.0007 0.0320 0.0007 0.0328 1.2078 1.1512

n = 500 C ∼U [0,4] 0.0010 0.0235 0.0008 0.0215 0.0002 0.0221 1.1970 1.1326

C ∼U [0,3] 0.0007 0.0243 −0.0003 0.0219 0.0017 0.0239 1.2333 1.0295

(s, t) = (.5108,1.6094)

n = 100 C ∼U [0,4] 0.0051 0.0704 0.0025 0.0642 0.0024 0.0691 1.2084 1.0422

C ∼U [0,3] 0.0047 0.0780 −0.0004 0.0695 0.0029 0.0774 1.2647 1.0175

n = 250 C ∼U [0,4] 0.0022 0.0438 −0.0007 0.0397 0.0011 0.0444 1.2176 0.9763

C ∼U [0,3] 0.0019 0.0489 −0.0028 0.0435 0.0007 0.0487 1.2607 1.0097

n = 500 C ∼U [0,4] 0.0005 0.0301 −0.0015 0.0273 0.0015 0.0301 1.2112 0.9979

C ∼U [0,3] 0.0008 0.0337 −0.0036 0.0296 0.0015 0.0333 1.2745 1.0227

(s, t) = (.9163,1.6094)

n = 100 C ∼U [0,4] 0.0055 0.0848 0.0022 0.0775 0.0007 0.0883 1.2015 0.9261

C ∼U [0,3] 0.0053 0.0956 0.0008 0.0873 −0.0070 0.0978 1.2019 0.9537

n = 250 C ∼U [0,4] 0.0029 0.0547 −0.0005 0.0492 0.0027 0.0543 1.2362 1.0152

C ∼U [0,3] 0.0026 0.0610 −0.0020 0.0539 0.0021 0.0589 1.2820 1.0733

n = 500 C ∼U [0,4] <0.0001 0.0383 −0.0032 0.0346 0.0022 0.0367 1.2123 1.0862

C ∼U [0,3] 0.0008 0.0417 −0.0040 0.0371 0.0014 0.0408 1.2491 1.0440

p̂ldm
23 (s, t) p̂

prs
23 (s, t) p̂crs

23 (s, t)

(s, t) = (.2231,.5108)

n = 100 C ∼U [0,4] 0.0016 0.1687 −0.0028 0.1693 0.0042 0.1475 0.9937 1.3054

C ∼U [0,3] 0.0024 0.1722 −0.0006 0.1706 0.0040 0.1535 1.0203 1.2570

n = 250 C ∼U [0,4] −0.0068 0.0967 −0.0087 0.0946 0.0028 0.0965 1.0422 1.0088

C ∼U [0,3] −0.0068 0.0971 −0.0063 0.0957 0.0020 0.0974 1.0294 0.9983

n = 500 C ∼U [0,4] −0.0017 0.0692 −0.0014 0.0677 0.0033 0.0661 1.0463 1.0932

C ∼U [0,3] −0.0015 0.0704 <0.0001 0.0685 0.0025 0.0658 1.0559 1.1409

(s, t) = (.2231,.9163)

n = 100 C ∼U [0,4] 0.0015 0.1615 −0.0003 0.1566 <0.0001 0.1456 1.0633 1.2259

C ∼U [0,3] 0.0009 0.1671 −0.0005 0.1579 −0.0034 0.1550 1.1205 1.1612

n = 250 C ∼U [0,4] 0.0021 0.0939 0.0018 0.0921 0.0003 0.0910 1.0405 1.0653

C ∼U [0,3] 0.0024 0.0972 0.0008 0.0943 0.0023 0.0962 1.0632 1.0209

n = 500 C ∼U [0,4] 0.0031 0.0657 0.0021 0.0647 <0.0001 0.0626 1.0323 1.1039

C ∼U [0,3] 0.0033 0.0691 0.0021 0.0666 0.0001 0.0651 1.0794 1.1282

(s, t) = (.5108,1.6094)

n = 100 C ∼U [0,4] −0.0006 0.1247 −0.0053 0.1169 0.0019 0.1229 1.1352 1.0293

C ∼U [0,3] −0.0058 0.1358 −0.0137 0.1268 0.0020 0.1329 1.1344 1.0456

n = 250 C ∼U [0,4] 0.0005 0.0768 −0.0013 0.0731 0.0012 0.0738 1.1035 1.0828

C ∼U [0,3] 0.0020 0.0835 −0.0068 0.0779 0.0012 0.0807 1.1388 1.0702

n = 500 C ∼U [0,4] 0.0019 0.0540 0.0006 0.0517 0.0007 0.0522 1.0902 1.0711

C ∼U [0,3] 0.0006 0.0604 −0.0038 0.0563 0.0001 0.0573 1.1445 1.1110

(s, t) = (.9163,1.6094)

n = 100 C ∼U [0,4] −0.0085 0.1391 −0.0111 0.1335 0.0023 0.1388 1.0816 1.0078

C ∼U [0,3] −0.0086 0.1525 −0.0122 0.1422 0.0070 0.1460 1.1448 1.0920

n = 250 C ∼U [0,4] −0.0031 0.0870 −0.0040 0.0828 0.0024 0.0836 1.1041 1.0841

C ∼U [0,3] −0.0042 0.0979 −0.0057 0.0904 0.0019 0.0922 1.1690 1.1290

n = 500 C ∼U [0,4] −0.0009 0.0593 −0.0004 0.0564 −0.0006 0.0590 1.1056 1.0121

C ∼U [0,3] −0.0022 0.0665 −0.0034 0.0616 −0.0012 0.0647 1.1635 1.0572
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Figure 2: Boxplots of the M = 1000 estimates of the transition probabilities of the three estimators, with

three different sample sizes and correlated exponential gap times. Censoring times were generated from

an uniform distribution on [0,3]. Horizontal solid red line corresponds to the true value of the transition

probability.
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Figure 3: Boxplots of the M = 1000 estimates of the transition probabilities of the three estimators, with

three different sample sizes and uncorrelated exponential gap times. Censoring times were generated from

an uniform distribution on [0,3]. Horizontal solid red line corresponds to the true value of the transition

probability.
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ric estimator achieve better results with less SD and less MSE. This can be seen by the

relative efficiency between the semiparametric estimator and the unsmoothed landmark

estimator that was measured by the ratio between their corresponding MSEs. The semi-

parametric estimators reported a smaller MSE in most cases. It can also be observed that

the relative advantages of the semiparametric estimator is greater for higher censoring

percentages. This advantage is also apparently greater when estimating the transition

probability p12(s, t).

For completeness purposes we show in Figures 2 and 3 the boxplots of the estimates

of the transition probabilities based on the 1000 Monte Carlo replicates for the three

estimators, with different sample sizes, for correlated exponential gap times (Figure 2)

and independent gap times (Figure 3). Plots shown in these figures were obtained for the

higher censoring levels (C ∼U [0,3]). In addition to the transition probabilities reported

in Table 1 this figure also show the performance of the transition probability p11(s, t)
for all methods. The boxplots shown in Figures 2 and 3 reveal some results which are

in agree with our findings reported in Table 1. From these plots it can be seen that all

methods have small bias and confirm the less variability of the semiparametric estima-

tors.

Despite of offering a small bias, the bias associated to presmoothed estimators is in

general larger than that of the unsmoothed landmark estimator. This bias component

may be larger when there is some miss-specification in the chosen parametric model.

Importantly, the validity of a given model for presmoothing can be checked graphically

or formally, by applying a goodness-of-fit tests (e.g. Hosmer and Lemeshow (1989)).

This implies that the risk of introducing a large bias through a miss-specified model can

be controlled in practice.

4. German breast cancer study

Breast cancer is one of the most commonly diagnosed cancers in women. Prognosis

of this carcinoma is related to a large variety of clinical and pathological factors such

as age, tumor size, histological grade, lymph node involvement, and hormone receptor

status. Another significant prognostic factor for these patients in overall survival is the

presence of a recurrence. Traditionally, the effect of these time-dependent covariates is

studied using extensions of the Cox proportional hazards model (Cox, 1972; Genser and

Wernecke, 2005). The analysis of such studies can also be successfully performed using

a multi-state model (Pérez-Ocón et al., 2001; Putter et al., 2007; Meira-Machado et al.,

2009).

Several studies have been developed over the last decades regarding breast cancer.

Between 1983 and 1989, four clinical trials were conducted by the German Breast Can-

cer Study Group (GBSG) including 2746 patients with primary node positive breast can-

cer. Details about these studies can be found in the paper by Schumacher et al. (1994).
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Among other papers, these data were used by Schmoor et al. (2000) and Meier-Hirmer

and Schumacher (2013). In both cases the main goal was to evaluate the effect on future

prognosis of an isolated locoregional recurrence (ILRR). While Schmoor et al. (2000)

used a Cox proportional hazards model, Meier-Hirmer and Schumacher (2013) used an

illness-death model to investigate the influence of the time-dependent covariate ‘recur-

rence’. Both studies conclude, among other things, that the increased risk after ILRR

decreased significantly with increasing time since ILRR. In this paper we use data from

the second trial in which a total of 720 women with primary node positive breast cancer

is recruited in the period between July 1984 and December 1989. The data is available

at the University of Massachusetts website for statistical software information as well

as part of the R packages mfp, TH.data and flexsurv. The data which was also used by

Sauerbrei and Royston (1999) considers 686 patients who had complete data for the two

event times (time to recurrence and time to death). In this study, patients were followed

from the date of breast cancer diagnosis until censoring or dying from breast cancer.

From the total of 686 women, 299 developed a recurrence and 171 died. Besides the

two event times and the corresponding indicator statuses a vector of covariates includ-

ing age at acceptance tumor size, number of positive lymph nodes, progesterone and

estrogen receptor status, menopausal status and tumor grade are also available. The co-

variate ‘recurrence’ is the only time-dependent covariate, while the other covariates in-

cluded are fixed. This covariate can be considered as an intermediate transient state and

modeled using an illness-death model with states ‘Alive and disease-free’, ‘Alive with

Recurrence’ and ‘Dead’. In this section, we present plots for the three different methods

to estimate the transition probabilities described in Section 2. Figure 4 reports estimated

transition probabilities for p11(s, t), p12(s, t) and p23(s, t), for fixed values s = 365 and

s = 730 (days), along time t (corresponding to 1 and 2 years after surgery). Plots shown

in these figure also show the pointwise bootstrap confidence bands of the unsmoothed

method. Estimators for all three methods shown in these plots report roughly the same

estimates. Minor differences are appreciated when comparing the nonparametric un-

smoothed method with their counterparts (the semiparametric presmoothed approach

and the method based on cubic regression splines) which is in agree with our findings in

the simulation study.

Plots shown at the top of Figure 4 provide the probabilities of being alive and without

recurrence for the individuals who are disease free 1 year (Figure 4, top left) and 2

years (Figure 4, top right) after surgery (i.e. p11(s, t)). These are monotonous decreasing

curves. The curve do not decrease to zero due to a (disease free) censoring rate of about

56.4% (387 woman remain alive and disease free until the end of study). In addition,

one can observe that these probabilities increase with an increase of the value of s.

Similar conclusions can be obtained from the plots shown at the bottom of Figure 4, in

which the transition probability p23(s, t) is estimated through the three methods. These

plots report one minus the survival fraction along time, among the individuals in the

recurrence state 1 year (Figure 4, bottom left) and 2 years (Figure 4, bottom right) after

surgery. It can be observed from these plots that the survivorship is smaller for the first
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Figure 4: Estimates of the transition probabilities p11(s, t), p12(s, t) and p23(s, t) for s = 365 (left) and

s = 730 (right) using the three methods (landmark, presmoothing and cubic regression splines). Pointwise

confidence intervals of the landmark method is also shown. Breast cancer data.
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Figure 5: Landmark estimates of the conditional transition probabilities p12(s= 365, t = 1500 | size) (left)

and p12(365, t | size) (right). Breast cancer data.

group for lower values of t, suggesting a negative impact of an earlier recurrence time. In

contrast to these plots, curves for the transition probability p12(s, t) are not necessarily

monotonous. Plots shown for this transition probability allows for an inspection along

time of the probability of being alive with recurrence for the individuals who are disease

free at 1 and 2 years after surgery. Since the recurrence state is transient, in general,

this curve is first increasing and then decreasing. However, in this case, for s = 365, the

curve has a rapid increase at lower times and afterwards remain roughly constant. The

increase is more gradual for s = 730. The reason why the curve does not decreases can

be explained by the percentage of about 46% of woman that remain in the recurrence

state at the end of study. Departures between estimated curves can be more appreciated

for larger time values where the censoring effects are stronger.

Figure 5 depict the landmark estimates of the conditional transition probability on

the recurrence transition. Plot shown at the left depicts the estimates of the transition

probability p12(size;365,1500) as functions of the covariate tumor size together with a

95% pointwise confidence bands based on simple bootstrap which resamples each datum

with probability 1/n. Plot at the right depicts the estimates of the transition probability

p12(365, t) conditional on the covariate tumor size. The effects of tumor size according

to three groups depicted in these plots, which are purely nonparametric, indicate the real

influence of this covariate in the recurrence transition. Both plots are in agreement and

indicate that patients with higher tumor sizes have a larger probability of recurrence.

To compute the conditional transition probabilities shown in this figure we have used a

common bandwidth selector and Gaussian kernels. To this end we have used the dpik

function which is available from the R KernSmooth package.
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5. Software development

To provide the biomedical researchers with an easy-to-use tool for obtaining estimates

of the transition probabilities we develop an R package called tprob. This package can

be used to implement all nonparametric and semiparametric estimators for the transition

probabilities discussed in Section 2. In addition, estimators are also implemented that

account for the influence of covariates. Bootstrap confidence bands are provided for

all methods. This package is composed by several functions that allow users to obtain

estimates and plots of the transition probabilities. Details on the usage of these functions

can be obtained with the corresponding help pages. The CPU time needed for running

some of the proposed methodologies varies according to whether bootstrap confidence

bands are requested or not, the sample size, and the type of processor in the computer. To

minimize these problems the most computationally demanding parts of the code were

developed and implemented in the C programming language. This software is available

at the author web site http://w3.math.uminho.pt/˜lmachado/R/tprob.

6. Discussion

There have been several recent contributions for the estimation of the transition proba-

bilities in the context of non-Markov multi-state models. Meira-Machado et al. (2006)

introduced a substitute for the Aalen-Johansen estimator in the case of a non-Markov

illness-death model. They showed that the new estimator may behave much more effi-

ciently than the Aalen-Johansen when the Markov assumption does not hold. However,

the proposal of Meira-Machado et al. (2006) has the drawback of requiring that the sup-

port of the censoring distribution contains the support of the lifetime distribution, other-

wise they only report valid estimators for truncated transition probabilities. Recently, the

problem of estimating the transition probabilities in a non-Markov illness-death model

has been reviewed, and new estimators have been proposed which are consistent regard-

less the Markov condition and the referred assumption on the censoring support. These

estimators are built by considering specific subsets of individuals (namely, those ob-

served to be in a given state at a prespecified time point s for which the ordinary Kaplan-

Meier survival function leads to a consistent estimator of the target. As a weakness, it

provides large standard errors for large values of s and higher censoring percentages.

In this article we propose two approaches that can be used to reduce the variability of

the proposed estimator. A simple approach is based on spline smoothing (cubic regres-

sion splines). Another valid approach is to consider a semiparametric estimator based on

a presmoothed version of the Kaplan-Meier estimator. The provided simulations suggest

that both approaches are preferable to the original nonparametric estimator, since they

often have less variance while providing more reliable curves. Between the two new

methods, the one based on presmoothing is recommended.
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sition probabilities in a non-Markov illness-death model. Lifetime Data Analysis, 12, 325–344.
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