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The relevance of multi-country input-output tables

in measuring emissions trade balance of

countries: the case of Spain

Teresa Sanz1,∗, Rocı́o Yñiguez1 and José Manuel Rueda-Cantuche2

Abstract

As part of national accounts, input-output tables are becoming crucial statistical tools to study the

economic, social and environmental impacts of globalization and international trade. In particular,

global input-output tables extend the national dimension to the international dimension by relating

individual countries’ input-output tables among each other, thus providing an opportunity to bal-

ance the global economy as a whole. Concerning emissions of greenhouse gases, the relative

position that countries hold among their main trade partners at the global level is a key issue in

terms of international climate negotiations. With this purpose, we show that (official) Multi-country

input-output tables are crucial to analyse the greenhouse gas emission trade balance of individual

countries. Spain has a negative trade emissions balance for all three gases analysed, being the

most negative balances those associated to the bilateral trade with China, Russia, United States

and the rest of the European Union as a whole.

MSC: 91F.
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1. Background and statistical context

The latest meeting of the Group of Experts on National Accounts of the United Nations

Economic Commission for Europe (UNECE, 7-9 July 2015), was devoted to data col-

lection and compilation methods in respect to global production activities. It was jointly
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organized with Eurostat and the Organization for Economic Co-operation and Devel-

opment (OECD). The meeting was attended by representatives from more than thirty

countries worldwide and representatives from the European Commission (EC), Inter-

national Monetary Fund (IMF), OECD, the United Nations Conference on Trade and

Development (UNCTAD), United Nations Statistics Division (UNSD) and World Trade

Organization (WTO), among others.

According to the experts at this UNECE meeting, in order to measure global produc-

tion and global value chains it is no longer sufficient to look only at what a firm does, but

to also to consider how the firm does its activities and with whom. For instance, linking

business statistics and trade statistics on a micro level should provide new dimensions

to the data as long as new balancing challenges at the macro level data (e.g. national

accounts). Indeed, statisticians have not always been able to keep up to date with busi-

ness practices and must find ways to be forward looking and provide the information

that meets future policy needs. Traditional measures of trade in goods and services have

to be progressively supplemented with information on income and financial flows. For-

eign direct investment statistics (FDI) should be further developed and complemented

with foreign affiliate statistics (FATS) in order to improve their clarity, usefulness and

coverage, and to provide better insights into global value chains.

In this respect, the UNECE Report emanating from this meeting supported new

global initiatives, such as the extensions to Trade in Value Added and Global Input-

Output Tables (OECD), the construction of the European Multi-Country Input-Output

Framework (EC and Eurostat) as well as the elaboration of a new Handbook on a System

of Extended International and Global Accounts (UNSD).

Hence, there is no doubt that globalization is currently affecting the way statisticians

are measuring national production of countries and international statistical organizations

are indeed very busy working on it in order to meet the policy needs at the worldwide

level. As national accounts and input-output tables became an integral part of the pro-

duction activities of national statistical institutes in the past, very soon multi-country and

international input-output tables will become a crucial statistical tool to measure global

production, trade in value added, environmental footprints and/or employment effects

of export activities with official statistics (e.g. carbon footprint estimated by Eurostat).

Bearing all this in mind, we would like to illustrate in this paper the usefulness of

global/world input-output tables in measuring the greenhouse gas footprints of individ-

ual countries and its external emission trade balance with respect to others. Hopefully,

these types of indicators will soon become regularly produced in the future by statisti-

cians using official global input-output tables instead of using other databases produced

as one-off projects (e.g. World Input-Output Database, WIOD – www.wiod.org).

This paper is structured in five sections. Following this background, there is an in-

troductory section on the related literature on greenhouse gases emissions footprints.

Next, the third section introduces the methodology and the database. The fourth section

presents the results obtained and discusses them. The fifth section concludes.
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2. Introduction to GHG footprints

Greenhouse gas emissions (GHG) are considered to be one of the main causes of climate

change. This is the reason why governments are increasingly making efforts to imple-

ment policies aiming to reduce GHG emissions. National climate policies are mainly

driven by international negotiations and these are strongly linked to the amount of emis-

sions produced within a country or the so called producer’s responsibility principle.

Within this context, exporting (producing) countries are responsible for their GHG emis-

sions, irrespective of where the demand for such products comes from.

On the other hand, the interest in the so called consumer’s responsibility principle

has been growing since Leontief (1970) described the environmental impacts of the final

consumer as a negative externality of the production process. This concept has been

endorsed by the OECD’s Green Growth Strategy (2011). According to this principle,

the GHG emissions are allocated according to countries’ domestic demand of goods and

services, irrespective of where they were produced. Different approaches have been used

to analyse this new concept of responsibility, such as general balance models, dynamic

models and the analysis of structural decomposition, i.e. Peters and Hertwich (2006),

Peters (2008) Peters et al. 2011), Druckman and Jackson (2009), Davis and Caldeira

(2010), Zhou and Imura (2011) and Edens et al. (2011), Kanemoto et al. (2012), among

others.

Among others, Rueda-Cantuche and Amores (2010) noted that developed countries

may reduce their emissions produced but at the same time, they may increase their

consumption-based emissions. This is due to the different technologies used in the pro-

duction processes of developing countries, generally less clean than those of the devel-

oped countries. In the end, some environmental policies might result in a global increase

in GHG emissions. At the national level, the difference between the production-based

emissions and the consumption-based emissions lead to the so called emission trade

balance (ETB) of a country or of a certain industry. This analysis will determine the

surplus/deficit that a country/industry has. It is expected that developing countries have

surpluses and developed countries, deficits.

Within this context, the aim of this paper is to calculate the Emission Trade Balance

(ETB) of Spain in 2008 at a worldwide level and bilaterally with respect to 39 countries,

35 industries and one additional region as the “rest of the world” for the three main

GHGs (CO2, N2O and CH4). In order to do so, we have used multi-regional input-output

analysis (MRIO) and the World Input-Output Database (WIOD) (Dietzenbacher et al.,

2013).

Input-output analysis (IOA) has been generally used to study environmental prob-

lems (Miller and Blair, 2009). Particularly, there are numerous related studies devoted

to the analysis of polluting GHG emissions, i.e. Minx et al., (2009), Su et al. (2010),

Chen et al., (2010), Liang et al. (2010), Chang et al. (2010), Zhu et al., (2012) and

Mattila et al. (2013), among others.
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Likewise, there are also many studies about GHG emissions associated with the in-

ternational trade of specific countries, such as China, (Liang et al., 2007, Liu et al., 2009,

Zhao et al., 2009, Xu et al., 2011, Hongtau et al., 2010, Chen et al., 2010 a, b, Chen and

Zhang 2010); Finland (Maenpaa and Siikavirta 2007); Ireland (Llop and Tol, 2012);

Italy (Cellura et al., 2013, Mongelli et al.,2006); Japan (Nansai et al., 2009); the United

Kingdom (Wiedman et al., 2010, Druckman and Jackson 2009)) and Turkey (Tunç et

al., 2007).

The work of Musksgaard and Pedersen (2001) for Denmark was the first one that

linked the input-output methodology to the consumer’s responsibility principle related

to GHG emissions. It was followed by Ahmad and Wyckoff (2003) for OECD countries

and Peters and Hertwich (2006) for the Norwegian economy and for three different gases

(CO2, NO2 and SO2).

IOA has also been applied to study GHG emissions associated to consumption in the

case of Spain. Tarancón and del Rio (2007) used a combination of IOA with sensitiv-

ity analyses; Cadarso et al. (2010) study the effect of international trade of the Spanish

emissions balace under DTA assumption; Sánchez-Choliz, and Duarte (2004), Serrano

and Roca (2008a, 2008b), Serrano and Dietzenbacher (2010) used IOA assuming do-

mestic technology in monetary terms while Arto (2009) and Arto et al., (2012) do the

same but in physical terms; Lopez et al. (2013) analyse the existence of pollution haven

hypothesis in a bi-regional input-output model and Cadarso et al. (2012) defined a shared

responsibility criterion to analyse the impact of international trade in CO2 emissions on

an industrial basis, such as the food industry in Lopez et al. (2015).

But none of them has used a homogeneous multi-country IO database such as WIOD

(Dietzenbacher et al., 2013), nor has the analysis been carried out with high industry res-

olution and bilateral trade flows as in the present study. This work covers 35 industries

and 41 different geographical areas for each of the three GHGs considered. Therefore,

the originality and interest of this work lies in the details and the extension of the re-

sults in terms of higher industry breakdown, homogeneity of the multi-country database,

country coverage and pollutants covered (CO2, CH4 and N2O) rather than the topic it-

self, which has already been addressed in the literature.

3. Methodology and database

3.1. Input-output analysis

Input-output analysis revolves around the so called input-output tables, which reflect the

supply and demand of the economy in terms of products, industries and final users. By

using the so called Leontief quantity model (Rueda-Cantuche, 2011), the total output of

an economy can be broken down into final and intermediate demand, as indicated in (1):

x = Ax+ y (1)
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where x is the total industry output vector for n industries (n× 1);Z = Ax is a matrix

describing the intermediate uses of industries; A is a matrix (n × n) of input-output

coefficients showing the inputs needed per unit of output by each industry; and y stands

for a final demand vector (n× 1) showing the sum of consumption, investment and

exports of all goods and services. Within this framework, we use industry by industry

IO tables from the WIOD database (Dietzenbacher et al., 2013) with the same number

of industries and commodities (n).

Reordering (1), it yields

x = (I−A)−1y (2)

where I is the identity matrix and (I−A)−1, the so called Leontief inverse matrix that

shows the total requirements of the economy for the production of goods and services to

satisfy a certain level of final demand. Moreover, with appropriate emission levels (s) per

unit of total industry outputs (x), c = sx̂−1 (where ˆ denotes diagonalization of the vector

x), the Leontief model can serve to estimate the absolute levels of emissions for the

production of a certain level of total output needed to satisfy changes in final demand,

e.g. emissions of the car industry to produce vehicles due to changes in households

demand. It is important to note that this paper is focused on the production phase of

emissions alone and it does not include those emissions derived from the use phase of a

product (e.g. households driving cars). That is:

s− ĉ(I−A)−1y (3)

3.2. Multi-regional input-output analysis

Multi-regional input-output analysis is based on a set of interconnected input-output

tables of various countries (Miller and Blair, 2009). While equation (3) refers to one

single country with n industries, we will express hereafter the same equation for a three-

region model with n industries in each region, namely: Spain (u), rest of the EU (r) and

rest of the world (w). The result is a fully fledged input-output table with three times n

industries and its main components are described below.

A =





Auu Aur Auw

Aru Arr Arw

Awu Awr Aww



 Y =





yuu yur yuw

yru yrr yrw

ywu ywr yww





L = (I−A)−1 =





Luu Lur Luw

Lru Lrr Lrw

Lwu Lwr Lww



 Ĉ =





ĉu 0 0

0 ĉr 0

0 0 ĉw
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Matrix A and vector y stand for input-output coefficients and final uses, respectively.

The subscript on the left corresponds to the exporting region and the subscript on the

right refers to the importing region. Doing so, these two elements include bilateral ex-

ports and bilateral imports of intermediate and final uses, too. Besides, each of the sub-

matrices of the A matrix has n rows and n columns, so the fully-fledged matrix A is of

order (3n×3n). For one single final demand category, the matrix Y is therefore of order

(3n×3).

Moreover, it is straightforward that the Leontief inverse is a square matrix of the same

dimension as A, being eventually matrix Ĉ a diagonal matrix with three diagonalized

vectors of n-dimension each. The latter corresponds to different emission coefficients

by country of origin (or region), which is quite relevant for our analysis. These emission

coefficients have been calculated as the total emissions of each country and industry over

their corresponding total output, both provided by the WIOD database (Dietzenbacher

et al., 2013).

With these new matrices, we re-define equation (3) but also allowing for a fully-

fledged decomposition of the final demand by region. Subsequently, equation (4) is split

up into as many components as number of regions the model has (i.e. three). As a matter

of fact, the sum of all the elements of each component is nothing else but the footprint

of each of the regions (e.g. carbon footprint). As in Lopez et al., (2013), Cadarso et al.,

(2012) or Skelton (2013), we have estimated matrices of emissions (see equation 5),

where the sum by rows allocate the responsibility to industries that supply intermediate

and final goods and the sum by columns allocate the responsibility to agents/industries

that consume them. More precisely, the focus of our analysis is based on the sum of the

elements of each row in each of the three fully-fledged matrices of equation (5), which

yields three vectors of emissions.

Ĉ(I−A)−1





yu 0 0

0 yr 0

0 0 yw



=

=





ĉu 0 0

0 ĉr 0

0 0 ĉw









Luu Lur Luw

Lru Lrr Lrw

Lwu Lwr Lww









yuu 0 0

0 yru 0

0 0 ywu





+





ĉu 0 0

0 ĉr 0

0 0 ĉw









Luu Lur Luw

Lru Lrr Lrw

Lwu Lwr Lww









yur 0 0

0 yrr 0

0 0 ywr





+





ĉu 0 0

0 ĉr 0

0 0 ĉw









Luu Lur Luw

Lru Lrr Lrw

Lwu Lwr Lww









yuw 0 0

0 yrw 0

0 0 yww





(4)
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Being:





yu 0 0

0 yr 0

0 0 yw



=





yuu + yur + yuw 0 0

0 yru + yrr + yrw 0

0 0 ywu + ywr + yww





Properly extended, equation (4) becomes into:





ĉuLuuyuu ĉuLuryru ĉuLuwywu

ĉrLruyuu ĉrLrryru ĉrLrwywu

ĉwLwuyuu ĉwLwryru ĉwLwwywu



+





ĉuLuuyur ĉuLuryrr ĉuLuwywr

ĉrLruyur ĉrLrryrr ĉrLrwywr

ĉwLwuyur ĉwLwryrr ĉwLwwywr



+





ĉuLuuyuw ĉuLuryrw ĉuLuwyww

ĉrLruyuw ĉrLrryrw ĉrLrwyww

ĉwLwuyuw ĉwLwryrw ĉwLwwyww





and summing row-wise:





gdom
uu

g
imp
ru

g
imp
wu



+





g
exp
ur

gdom
rr

g
exp
wr



+





g
exp
uw

g
exp
rw

gdom
ww



=

=





ĉuLuuyuu ĉuLuryru ĉuLuwywu

ĉrLruyuu ĉrLrryru ĉrLrwywu

ĉwLwuyuu ĉwLwryru ĉwLwwywu









1

1

1





+





ĉuLuuyur ĉuLuryrr ĉuLuwywr

ĉrLruyur ĉrLrryrr ĉrLrwywr

ĉwLwuyur ĉwLwryrr ĉwLwwywr









1

1

1





+





ĉuLuuyuw ĉuLuryrw ĉuLuwyww

ĉrLruyuw ĉrLrryrw ĉrLrwyww

ĉwLwuyuw ĉwLwryrw ĉwLwwyww









1

1

1





(5)

with the following definitions (only some of them are presented as illustrative purposes):

(a) ĉuLuuyuu stands for the emissions produced in Spain derived from the Spanish final

demand of domestically produced commodities (e.g. purchase of a Spanish car by

a Spanish resident);

(b) ĉuLuryru represents the emissions produced in Spain for the production of an ex-

ported commodity that will be used by the rest of the EU (r) to produce something

else that Spain will import (e.g. exports of Spanish electronic components for the

production of Czech cars that will be imported by Spain).
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(c) ĉuLuwywu shows the emissions produced in Spain for the production of an exported

commodity that will be used by the rest of the world (w) to produce something

else that Spain will import (e.g. exports of Spanish electronic components for the

production of American cars that will be imported by Spain).

(d) gdom
uu is the sum of (a), (b) and (c); the sum of emissions emitted in Spain coming

from the final demand of Spanish residents.

(e) ĉrLruyuu stands for the emissions produced in EU countries (r) derived from the

imported intermediate inputs needed to satisfy the Spanish final demand of domes-

tically produced commodities (e.g. purchase of a Spanish car by a Spanish resident

that involves imports of electronic components from the Czech Republic);

(f) ĉrLrryru shows the emissions produced in EU countries (r) to satisfy the Spanish

final demand of commodities produced in the EU (e.g. imports of German cars by

Spanish residents);

(g) ĉrLrwywu shows the emissions produced in EU countries (r) to produce an inter-

mediate export to a non-EU country that will serve as input to produce something

to be exported to Spain (e.g. purchase of a Japanese car by a Spanish resident that

involves imports of electronic components from the Czech Republic);

(h) g
imp
ru is the sum of (e), (f) and (g); the sum of emissions emitted in the rest of

Europe coming from the final demand of Spanish residents.

(i) g
imp
wu is, analogously, the sum of emissions emitted in the rest of the world coming

from the final demand of Spanish residents.

(j) ĉuLuuyur shows the emissions produced in Spain to satisfy the EU final demand of

Spanish commodities (e.g. imports of a Spanish car by a German resident);

(k) ĉuLuryrr shows the emissions produced in Spain derived from the imported inputs

of the rest of the EU needed to satisfy their own final demand of domestically

produced commodities (e.g. purchase of a German car by a German resident that

involves imports of electronic components from Spain);

(l) ĉuLuwywr shows the emissions produced in Spain derived from the imported in-

termediate inputs of the rest of the world needed to satisfy the final demand of

EU residents (e.g. purchase of a Japanese car by a German resident that involves

imports of electronic components from Spain);

(m) g
exp
ur is the sum of (j), (k) and (l); the sum of emissions emitted in Spain coming

from the final demand of EU residents.

(n) g
exp
uw is, similarly, the sum of emissions emitted in Spain coming from the final

demand of the rest of the world.

Therefore, the total emissions produced in the region u, is:

gdom
uu +gexp

ur +gexp
uw (6)
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and the total of emissions caused by the final demand of region u (carbon footprint), is:

gdom
uu +gimp

ru +gimp
wu (7)

The difference between the two is the so called Emission Trade Balance (ETB),

which can be calculated here by the difference between the emissions actually produced

in Spain (6) and the Spanish footprint (7).

In a bilateral model (i.e. dropping region w in equations 6 and 7), the ETB yields:

gexp
ur −gimp

ru

which is equal to (from equation 5):

ĉuLuuyur + ĉuLuryrr − ĉrLrryru − ĉrLruyuu

And therefore,

ĉu(Luuyur +Luryrr)− ĉr(Lrryru −Lruyuu)

where the expressions in parentheses are indeed the sum of intermediate and final ex-

ports and imports, respectively. Thus, the ETB (positive or negative) highly depends on

both the trade balance and the different pollution (emission) intensity of goods traded in

both regions (Rueda-Cantuche, 2011; López et al., 2013).

Furthermore, multi-country input-output tables also allow a detailed separate analy-

sis about trade on intermediate and final goods and services and thus, global value chains

in the emissions balance. For instance, the total emissions generated in the country of

reference due to Spanish imports of final goods and services (g
imp
ru ) can be decomposed

into:

(a) Emissions generated in the country of reference for the production of the final

goods and services exported to Spain (%) - ĉrLrryru;

(b) Emissions generated in the country of reference for the production of the interme-

diate inputs that will be exported to Spain for the domestic production of a final

good or service demanded by Spanish residents (%) - ĉrLruyuu;

(c) Emissions generated in the country of reference for the production of the interme-

diate inputs that will be exported to a third country for the domestic production of

a final good or service to be exported to Spain (%) - ĉrLrwywu;

And similarly, the total emissions produced in Spain due to imports of the country

of reference (g
exp
ur ) can be split up into:
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(a) Emissions produced in Spain for exports of final goods and services - ĉuLuuyur;

(b) Emissions produced in Spain for exports of intermediate goods and services to

the country of reference for the production of final goods in the same country -

ĉuLuryrr;

(c) Emissions produced in Spain for exports of intermediate goods and services to a

third country that will use them for the production of goods and services to be

exported to the country of reference - ĉuLuwywr;

Tables A.2, A.3 and A.4 in the Annex report all these results of the analysis for the

three gases, which are described and commented in Section 4.

3.3. Database

The data used in this paper come from the World Input-Output Database (WIOD), as de-

scribed in Dietzenbacher et al. (2013). This is a free database financed by the European

Union and developed with the aim to analyse the effects of globalization on trade pat-

terns, environmental pressures and the socioeconomic development of a large group of

countries. The data include world input-output tables for the 27 European Union coun-

tries and 13 other non-EU economies and also the corresponding national IO tables. The

WIOD database currently covers the period 1995-2011 and includes 35 industries and

59 commodities (see Table A.1 of the Annex I). However, data on energy and emis-

sions have not been updated up to 2011 yet so we had to carry out our analysis with

environmental data up to 2009. The selection of the year 2008 was eventually done in

order to avoid the use of a year where the economic crisis was hitting hard the European

economy.

4. Results and discussion

The description of the results is divided into three blocks. The first block reflects the

position of the Spanish emission trade balance (ETB) with the rest of the world for all

the three GHG considered. In a second step, the results are broken down into types of

gases, countries and polluting industries, describing the situation of Spain with respect

to the countries with the largest positive or negative ETB.

4.1. Emission Trade Balance of GHG in Spain: general overview

Spain produced 316.6 million tons of CO2 equivalents in 2008 (7 tons per capita) and

its final demand led to 494 million tons of CO2 equivalents elsewhere in the same year

(10.8 tons per capita). The emission trade balance of Spain of GHG resulted therefore in

-177.7 million tons of CO2 equivalents (3.9 tons per capita, a bit over the EU27 average,
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Table 1: Emission Trade Balance of GHG of Spain (thousand tonnes CO2-equivalent).

GHG produced from GHG footprint from Emission

Spanish exports of final Spanish final demand Trade Balance

goods and services of goods and services of GHG

FRA 10 943.0 8 558.1 2 384.9

PRT 6 244.9 4 417.3 1 827.6

GRC 1 123.0 283.2 839.8

GBR 7 513.9 6 692.0 822.0

SWE 1 141.8 863.7 278.1

CYP 131.7 29.5 102.2

SVN 246.5 150.2 96.3

LUX 123.0 69.9 53.1

MLT 60.9 28.1 32.8

LVA 76.5 53.9 22.5

ESP 225 484.1 225 484.1 0.0

EST 65.8 153.3 −87.5

AUT 771.1 860.7 −89.5

LTU 137.6 334.7 −197.1

MEX 1 471.8 1 699.5 −227.7

HUN 363.4 740.0 −376.6

IRL 575.0 977.3 −402.3

BGR 212.9 632.1 −419.2

SVK 182.9 604.5 −421.6

DNK 602.7 1 051.8 −449.0

FIN 421.2 894.0 −472.8

ROM 527.8 1 071.1 −543.3

CZE 590.4 1 272.6 −682.2

TUR 996.9 1 805.8 −808.9

AUS 613.3 1 471.7 −858.3

BEL 2 059.2 3 005.9 −946.7

ITA 5 963.5 7 289.4 −1 325.9

POL 1 446.0 2 990.5 −1 544.5

JPN 1 207.2 2 930.1 −1 723.0

CAN 1 122.8 2 870.1 −1 747.3

TWN 187.4 1 938.2 −1 750.7

IDN 200.4 2 078.1 −1 877.7

KOR 574.7 2 659.8 −2 085.1

NLD 1 733.8 4 044.6 −2 310.8

DEU 8 209.0 12 685.0 −4 476.0

BRA 892.1 5 810.3 −4 918.2

IND 582.6 6 947.2 −6 364.6

USA 6 766.3 13 686.8 −6 920.5

RUS 1 616.6 20 659.2 −19 042.6

RoW 21 055.7 79 113.2 −58 057.5

CHN 2 385.8 65 456.3 −63 070.4

Total EU27 276 951.8 285 237.5 −8 285.8

Total 316 625.3 494 363.6 −177 738.3

Source: Own elaboration based on data from WIOD (Dietzenbacher et al., 2013).
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i.e. 3.2 tons per capita). Spain is the fifth EU country with the largest negative emission

trade balance, behind Germany, France, United Kingdom and Italy.

Moreover, Spanish exports of final goods and services to France lead to around 11

million tons of CO2 equivalent of GHG while Spanish exports to Germany and UK

induce 8.2 million and 7.5 million tons of CO2 equivalents of GHG, respectively. On

the other hand, the final demand of Spanish residents (GHG footprint) leads to 65.5

million tons of CO2 equivalent of GHG in China; followed by Russia and US with 20.7

and 13.7 million tons of CO2 equivalents (see Table 1).

As a result, the largest positive balances are found in France (24 millions of tons

of CO2 equivalents) and Portugal (18.3 millions of tons of CO2 equivalents). With re-

spect to the largest negative emission trade balances of Spain, China presents the biggest

negative balance (63 million tons of CO2 equivalents) followed by Russia and US (19

million and 6.9 million of tons of CO2 equivalents, respectively).For further analysis

hereafter, we will limit the analysis to the countries with the largest negative/positive

emission trade balance of Spain.

This implies that the GHG emissions originated from the consumption of Spanish

residents is bigger than those generated in Spain as a consequence of the foreign de-

mand. As shown in Table 1 and in the Annex II (Figure A.1), China is the country with

the biggest negative emission trade balance with respect to Spain, even well above the

sum of the EU-27.

Figure 1: Comparison of GHG emissions per US dollar in Spain. (Kg CO2-equivalents/US dollar).

Source: Based on data from WIOD (Dietzenbacher et al., 2013).
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Figure 1 shows GHG emissions per dollar exported (A) and imported (B) by Spain,

and the difference between both values (A-B) across some relevant countries and the

EU-27 average. Generally speaking, Spanish exports generate less GHG emissions per

dollar than Spanish imports, except in the case of the EU-27 average (e.g. Germany).

Note that the value of GHG emissions per dollar caused by the production of Chinese

and Russian products exported to Spain (i.e. Spanish imports) are remarkably higher

than those originated in Spain due to the demand of Spanish products by China and

Russia.

4.2. Emission trade balance of GHG in Spain by country of destination

Table A.2 of the Annex I lists, on the one hand, the five countries that contribute most

to the negative Spanish ETB in CO2 emissions, i.e. China, Russia, Germany, the United

States and Indonesia. They amount to 47% of the total emissions originated outside

Spain due to the imports of Spanish residents. As in Lopez et al. (2013), China is also

the country that contributes most to the negative bilateral ETB of Spain. Spanish imports

from China account for 25% of the total CH4 and CO2 emissions associated with Span-

ish imports and 14% of N2O. On the other hand, we show the two countries – France

and Portugal – with the largest positive ETB. The emissions associated with the Spanish

exports to France and Portugal amounts to 18% of the total emissions produced in Spain

to satisfy the total final demand.

Figures A.2, A.3 and A.4 of the Annex II present the results of the bilateral trade

emissions of Spain with respect to the rest of the world for the three gases considered:

CO2, CH4 and N20, separately. The ETB for CO2 is positive for 11 countries, which are

all EU members. The most prominent positive balances are those of France and Portu-

gal. For CH4 the situation is similar. The balance is positive for 16 EU countries (e.g.

Germany, Italy and Great Britain) and Japan. Finally, in the case of N2O, the balance is

positive for 8 EU countries, Japan and Turkey. As a last remark, 7 EU countries have

positive ETB for the three gases, being Great Britain and Portugal the ones that con-

tribute most to the Spanish positive trade balance on GHG emissions (see Figures A.2,

A.3 and A.4 of the Annex II).

4.3. Emission trade balance of GHG in Spain by polluting industry

Hereafter, we identify the industries that contribute most to the GHG emissions pro-

duced in other countries different from Spain, particularly in those countries where the

Spanish carbon footprint is the largest. Analogously, we identify the industries (and

countries) that contribute most to the GHG emissions produced in Spain as a result of

its imports from other countries. Those GHG emissions are concentrated in seven indus-

tries, as it is shown in Tables A.2, A.3 and A.4 of the Annex I.

In Spain, it is interesting to highlight that Electricity is barely traded but nonetheless

it is one of the most important sectors in terms of virtual carbon in trade. The reason
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is that electricity is generally used to produce goods and services that are eventually

traded. In particular, emissions from the Electricity, Gas and Water Supply activities

amount to more than half (53.5%) of the CO2 footprint of Spain in China (column B1

in Table A.2), being 86.6% caused by Spanish imports of Chinese final goods (38.4%,

column C1 in Table A.2) and Chinese intermediate goods (48.2%, column D1 in Ta-

ble A.2). All other emissions (13.4%, column E1 in Table A.2) were due to emissions

generated in China for the production of intermediate goods that are exported to third

countries, which in turn produce final goods that are consumed by Spanish residents.

These results agree with those of Cadarso et al. (2008, 2012). The distribution of CO2

footprints between final and intermediate goods is similar to other polluting industries

(e.g. chemicals, non-metallic mineral and basic metals). However, they do not weight

the same as the electricity industry. Cadarso et al.’s results (2008, 2012) suggested that

this might be due to the reallocation of production between countries.

The same industry-wide distribution pattern is associated to the emissions of CH4

and N2O gases derived from the Spanish demand for final goods produced in China.

Particularly, Mining and Quarrying is responsible for almost half (48.1%) of the CH4

emissions and also the Electricity (38.4%) and Chemicals (36.9%) industries for N2O

emissions.

It is also remarkable that the Agriculture, Hunting, Forestry and Fishing industry is

responsible for 26.2% (column B1 of Table A.3) of the CH4 emissions and 75.6% of

the N2O emissions (column B1 of Table A.4). More than half of these emissions are in

both cases caused by the production of Chinese final goods demanded by residents in

Spain, being only one third intermediate imported inputs for the domestic production of

goods and services demanded by Spanish residents as final goods (columns C1 and D1

in Tables A.3 and A.4 of Annex I).

The second country with the largest negative bilateral ETB (with respect to Spain) is

Russia, both for CO2 and CH4, although their weight in the total emissions associated

with the Spanish imports is much lower than in the case of China: 7.5% for CO2 and

12.8% for CH4. In both cases more than 90% of the emissions are explained by a few in-

dustries. The most polluting industry in each case is the same as in China: the Electricity

industry for CO2 emissions and Mining and Quarrying activities for CH4 emissions. In-

cidentally, Mining and Quarrying is also the second most polluting industry in terms of

CO2 emissions. Although the pattern of types of goods associated with these emissions

is somewhat different to China, 70.5% of the emissions associated with the Spanish im-

ports from Russia are caused by the demand for intermediate goods. Besides, Inland

Transport industry is responsible for 14.7% and 28.5% of CO2 and CH4, respectively,

due to pipeline transport services. Differently from China, the relevance of the CO2 and

CH4 emissions generated in Russia for the production of intermediate goods that will be

used by a third country to produce other final goods that Spanish residents will consume,

is much higher (over 20%, column E1 in Tables A.2 and A.3).

The third country with the largest negative ETB for CO2 emissions is Germany,

which, however, has a very small but negative N2O ETB, and a positive CH4 ETB. The
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most polluting industries in terms of CO2 emissions are the same as those for China

plus air transportation services. The relative importance of the contribution of indus-

tries to the overall total of emissions is however more spread. The distribution between

intermediate and final goods is also similar to that of China.

The list of industries contributing to the United States’ (US) emissions associated

with Spanish imports is much longer than for the other countries mentioned so far

(China, Russia and Germany). Only six industries weight more than 5% in carbon diox-

ide emissions and they do not sum up even 30% of the overall total, being the most

polluting industry the Gas, Water and Electricity supply activities. The distribution pat-

tern between intermediate and final goods is similar to other countries except for Russia,

reaching for instance, 78% (sum of columns D1 and E1 in Table A.2) in intermediate

goods for Basic metals and fabricated metals. This value is much higher for Russia, i.e.

97%. For N2O and CH4 emissions the main source is the Agriculture industry. This in-

dustry generates 81.9% and 44.8% of the total emissions of N2O and CH4, respectively.

Moreover, imports of US final goods are bigger than those of intermediate goods in this

industry. As in China, Mining and Quarrying is another relevant emitter of CH4 gases in

the US exports to Spain.

In addition, Brazil is the most polluting country in terms of N2O and CH4 emissions

coming mainly from the imports of intermediate goods made by the Spanish agricultural

industry. France’s position is peculiar, since it has a positive ETB in CO2 and CH4 and

it has, on the other hand, the third largest negative ETB in N2O emissions; mainly due

to the imports of agricultural products (85%) and the imports of chemicals (12%).

Countries with the largest positive emission trade balance in their bilateral trade

with Spain are Portugal and France for CO2, Germany, Italy and United Kingdom (UK)

for CH4 and UK and Portugal for N2O. In terms of N2O and CH4 emissions, Spanish

has a surplus in the trade balance of mining and quarrying and agriculture industries.

This is mainly due to the fact that the Spanish economy is specialized in exporting

agricultural products, while at the same time it does not import large amounts of related

natural resources. Exported chemicals products play also a relevant role in terms of N2O

emissions. The same applies to Other Social Services for CH4 emissions.

CO2 emissions of Spanish exports (with positive emission trade balance) are spread

among several industries but mainly coming from the import demand of France and Por-

tugal (neighboring countries). This demand is concentrated on electricity and demand

for intermediate goods of basic and non-metallic minerals.

5. Conclusions

Many studies have addressed the calculation of the GHG footprint of Spain but to

our knowledge, none or very few of them has used a homogeneous multi-country IO

database, nor has the analysis been carried out with high industry resolution and bilat-

eral country flows as it is done in this paper. Therefore, the originality and interest of
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this work lies on the details and the extension of the results in terms of higher industry

breakdown, homogeneity of the multi-country database, country coverage and pollutants

covered (CO2, CH4 and N2O).

Spain produced 316.6 million tons of CO2 equivalents in 2008 and its final demand

led to 494 million tons of CO2 equivalents elsewhere in the same year. The emission

trade balance of Spain of GHG resulted therefore in -177.7 million tons of CO2 equiv-

alents. Spain is the fifth EU country with the largest negative emission trade balance,

behind Germany, France, United Kingdom and Italy.

Moreover, Spanish exports of final goods and services to France, Germany and UK

are those that contribute most to the GHG emissions produced by Spain. On the other

hand, the final demand of Spanish residents (GHG footprint) leads to 65.5 million tons

of CO2 equivalent of GHG in China; followed by Russia and US with 20.7 and 13.7

million tons of CO2 equivalents.

As a result, the largest positive balances are found in France (24 millions of tons

of CO2 equivalents) and Portugal (18.3 millions of tons of CO2 equivalents), while the

largest negative emission trade balances of Spain are found for China, Russia and US.

The analysis also gives some details by polluting industry.

Finally, special attention should be devoted to the emissions trade balance between

Spain and China. China is the country that produces more CO2, CH4 and N2O emis-

sions due to Spanish imports. In particular, Chinese GHG emissions due to intermediate

imported inputs by Spain are much more than those produced for exporting final goods

and services to Spain (as in López et al., 2013). This result could be explained by the re-

allocation of (less clean) production activities and international supply chains across the

world (Cadarso et al., 2012). Interestingly, future work might be focused on whether this

trend of re-allocation of production activities to less developed countries will continue

in time. Policy options like stimuli of technology transfers and the spread use of cleaner

technologies through standard regulations would also be worthwhile to investigate.

Reducing emissions of greenhouse gases (GHG) has become one of the main objec-

tives of the current climate policies of countries. The relative position that countries hold

among their main trade partners is also a key issue in terms of international climate nego-

tiations and this paper hopefully contributes to raise the awareness of national statistical

institutes and statistical international organizations about the necessary construction of

official global multi-country input-output tables that would pave the way for further de-

tailed studies on the economic, social and environmental impacts of globalization and

international trade.
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Annex I. Tables

Table A.1: WIOD Industries and Commodities.1

WIOD Sectors

1 Agriculture, Hunting, Forestry and Fishing

2 Mining and Quarrying

3 Food, Beverages and Tobacco

4 Textiles and Textile Products

5 Leather, Leather and Footwear

6 Wood and Products of Wood and Cork

7 Pulp, Paper, Paper , Printing and Publishing

8 Coke, Refined Petroleum and Nuclear Fuel

9 Chemicals and Chemical Products

10 Rubber and Plastics

11 Other Non-Metallic Mineral

12 Basic Metals and Fabricated Metal

13 Machinery, Nec

14 Electrical and Optical Equipment

15 Transport Equipment

16 Manufacturing, Nec; Recycling

17 Electricity, Gas and Water Supply

18 Construction

19 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel

20 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles

21 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods

22 Hotels and Restaurants

23 Inland Transport

24 Water Transport

25 Air Transport

26 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies

27 Post and Telecommunications

28 Financial Intermediation

29 Real Estate Activities

30 Renting of M&Eq and Other Business Activities

31 Public Admin and Defence; Compulsory Social Security

32 Education

33 Health and Social Work

34 Other Community, Social and Personal Services

35 Private Households with Employed Persons

1. Commodities and industries are the same provided that the World IOTs used are square.
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Legends to read Tables A.2, A.3 and A.4

A1: Total emissions generated in the country of reference due to Spanish im-

ports of final goods and services (GHG footprints) - g
imp
ru

B1: Cumulated share of A1 over the total amount of emissions (%)

C1: Share of emissions generated in the country of reference for the production

of the final goods and services exported to Spain (%) - ĉrLrryru

D1: Share of emissions generated in the country of reference for the production

of the intermediate inputs that will be exported to Spain for the domestic pro-

duction of a final good or service demanded by Spanish residents (%) - ĉrLruyuu

E1: Share of emissions generated in the country of reference for the production

of the intermediate inputs that will be exported to a third country for the domes-

tic production of a final good or service to be exported to Spain (%) - ĉrLrwywu

A2: Total emissions produced in Spain due to imports of the country of refer-

ence - g
exp
ur

B2: Cumulated share of A2 over the total amount of emissions (%)

C2: Share of emissions produced in Spain for exports of final goods and ser-

vices - ĉuLuuyur

D2: Share of emissions produced in Spain for exports of intermediate goods

and services to the country of reference for the production of final goods in the

same country - ĉuLuryrr

E2: Share of emissions produced in Spain for exports of intermediate goods

and services to a third country that will use them for the production of goods

and services to be exported to the country of reference - ĉuLuwywr
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Table A.2: Industries with larger CO2 footprints and commodities. Thousands of tons CO2, 2008.

COUNTRY TOP INDUSTRIES A1 B1 C1 D1 E1

OF WITH MORE (Th. tons) (%) (%) (%) (%)

REFERENCE CO2 EMISSIONS g
imp
ru Final Interm. Interm.

CHN (-)

TOTAL 50 135 100.0 37.2 49.6 13.2

TOTAL INDUSTRIES WITH MORE EMISSIONS 39 150 78.1 36.9 49.5 13.6

Electricity, Gas and Water Supply 26 815 53.5 38.4 48.2 13.4

Basic Metals and Fabricated Metal 5 826 11.6 32.9 51.7 15.5

Other Non-Metallic Mineral 3 301 6.6 31.5 58.3 10.2

Chemicals and Chemical Products 3 208 6.4 36.9 48.0 15.1

RUS (-)

TOTAL 14 450 100.0 4.4 69.7 25.9

TOTAL INDUSTRIES WITH MORE EMISSIONS 13 482 93.3 4.8 70.5 24.7

Electricity, Gas and Water Supply 5 850 40.5 5.5 69.2 25.2

Mining and Quarrying 2 798 19.4 1.6 75.2 23.2

Inland Transport 2 129 14.7 1.4 72.1 26.5

Basic Metals and Fabricated Metal 1 868 12.9 3.0 69.4 27.6

Coke, Refined Petroleum and Nuclear Fuel 836 5.8 22.9 59.7 17.5

DEU (-)

TOTAL 11 170 100.0 35.9 51.6 12.4

TOTAL INDUSTRIES WITH MORE EMISSIONS 8 779 78.6 33.5 53.6 12.9

Electricity, Gas and Water Supply 4 174 37.4 39.7 47.6 12.7

Basic Metals and Fabricated Metal 2 087 18.7 23.3 60.9 15.8

Chemicals and Chemical Products 1 160 10.4 33.3 53.3 13.4

Other Non-Metallic Mineral 710 6.4 23.2 67.5 9.3

Air Transport 647 5.8 38.3 54.1 7.6

USA (-)

TOTAL 10 084 100.0 29.7 50.8 19.5

TOTAL INDUSTRIES WITH MORE EMISSIONS 7 332 72.7 32.2 49.1 18.7

Electricity, Gas and Water Supply 2 981 29.6 31.5 47.8 20.8

Chemicals and Chemical Products 1 256 12.5 44.7 38.0 17.3

Air Transport 1 043 10.3 28.8 59.2 12.0

Coke, Refined Petroleum and Nuclear Fuel 843 8.4 35.2 51.1 13.7

Inland Transport 625 6.2 21.8 56.8 21.5

Basic Metals and Fabricated Metal 585 5.8 22.0 49.9 28.1

IND (-)

TOTAL 5 178 100.0 35.4 45.2 19.4

TOTAL INDUSTRIES WITH MORE EMISSIONS 4 095 79.1 68.5 47.7 −16.2

Electricity, Gas and Water Supply 2 550 49.2 40.7 41.3 17.9

Basic Metals and Fabricated Metal 687 13.3 56.5 22.8 20.8

Mining and Quarrying 573 11.1 64.5 10.8 24.7

Chemicals and Chemical Products 286 5.5 55.4 23.6 21.0

COUNTRY TOP INDUSTRIES A2 B2 C2 D2 E2

OF WITH MORE (Th. tons) (%) (%) (%) (%)

REFERENCE CO2 EMISSIONS g
exp
ur Final Interm. Interm.

FRA (+)

TOTAL 8 735 100.0 47.0 46.4 6.6

TOTAL INDUSTRIES WITH MORE EMISSIONS 7 162 82.0 45.0 48.3 6.8

Electricity, Gas and Water Supply 2 120 24.3 51.2 41.9 6.9

Other Non-Metallic Mineral 1 373 15.7 20.3 76.0 3.7

Coke, Refined Petroleum and Nuclear Fuel 906 10.4 43.7 49.3 7.0

Basic Metals and Fabricated Metal 905 10.4 37.8 51.9 10.3

Inland Transport 724 8.3 44.3 47.1 8.6

Agriculture, Hunting, Forestry and Fishing 608 7.0 86.8 10.0 3.3

Chemicals and Chemical Products 526 6.0 51.0 40.0 9.0

PRT (+)

TOTAL 4 970 100.0 49.8 48.9 1.3

TOTAL INDUSTRIES WITH MORE EMISSIONS 4 150 83.5 45.5 53.1 1.4

Electricity, Gas and Water Supply 1 185 23.8 55.4 43.1 1.5

Other Non-Metallic Mineral 720 14.5 22.8 76.3 0.9

Coke, Refined Petroleum and Nuclear Fuel 553 11.1 30.9 68.0 1.1

Basic Metals and Fabricated Metal 473 9.5 38.0 59.5 2.4

Agriculture, Hunting, Forestry and Fishing 340 6.8 72.7 26.8 0.5

Inland Transport 334 6.7 58.1 39.8 2.1

Chemicals and Chemical Products 288 5.8 42.1 56.1 1.8

Air Transport 256 5.1 60.2 38.8 1.0
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Table A.3: Industries with larger CH4 footprints and types of commodities. Tons CH4, 2008.

COUNTRY TOP INDUSTRIES A1 B1 C1 D1 E1

OF WITH MORE (tons) (%) (%) (%) (%)

REFERENCE CH4 EMISSIONS g
imp
ru Final Interm. Interm.

CHN (-)

TOTAL 542 790 100.0 40.0 48.3 11.7

TOTAL INDUSTRIES WITH MORE EMISSIONS 534 042 98.4 40.1 48.3 11.6

Mining and Quarrying 261 244 48.1 34.4 50.6 14.9

Agriculture, Hunting, Forestry and Fishing 142 116 26.2 56.5 33.0 10.5

Other Community, Social and Personal Services 130 682 24.1 33.4 60.3 6.2

RUS (-)

TOTAL 287 495 100.0 2.4 73.0 24.7

TOTAL INDUSTRIES WITH MORE EMISSIONS 274 574 95.5 2.2 73.3 24.5

Mining and Quarrying 146 779 51.1 1.6 75.2 23.2

Inland Transport 81 814 28.5 1.4 72.1 26.5

Electricity, Gas and Water Supply 45 980 16.0 5.5 69.2 25.2

BRA (-)

TOTAL 127 954 100.0 10.2 71.8 18.0

TOTAL INDUSTRIES WITH MORE EMISSIONS 126 645 99.0 10.2 71.9 17.9

Agriculture, Hunting, Forestry and Fishing 112 374 87.8 10.7 72.7 16.7

Mining and Quarrying 8 006 6.3 2.6 70.3 27.0

Other Community, Social and Personal Services 6 265 4.9 12.0 60.1 27.9

USA (-)

TOTAL 104 801 100.0 35.9 47.8 16.3

TOTAL INDUSTRIES WITH MORE EMISSIONS 101 962 97.3 36.0 47.8 16.2

Agriculture, Hunting, Forestry and Fishing 46 960 44.8 47.5 38.8 13.7

Mining and Quarrying 37 936 36.2 27.8 53.0 19.3

Other Community, Social and Personal Services 10 578 10.1 23.1 63.9 13.1

Inland Transport 6 489 6.2 21.8 56.8 21.5

IND (-)

TOTAL 59 613 100.0 33.5 42.0 24.5

TOTAL INDUSTRIES WITH MORE EMISSIONS 58 575 98.3 33.4 42.0 24.6

Agriculture, Hunting, Forestry and Fishing 28 941 48.5 44.1 31.1 24.8

Mining and Quarrying 16 850 28.3 10.8 64.5 24.7

Other Community, Social and Personal Services 12 784 21.4 39.1 37.0 23.9

COUNTRY TOP INDUSTRIES A2 B2 C2 D2 E2

OF WITH MORE (tons) (%) (%) (%) (%)

REFERENCE CH4 EMISSIONS g
exp
ur Final Interm. Interm.

DEU (+)

TOTAL 56 511 100.0 83.3 9.6 7.1

TOTAL INDUSTRIES WITH MORE EMISSIONS 53 102 94.0 85.7 7.8 6.4

Agriculture, Hunting, Forestry and Fishing 48 682 86.1 90.2 4.5 5.4

Other Community, Social and Personal Services 4 419 7.8 37.0 44.9 18.2

ITA (+)

TOTAL 34 812 100.0 70.0 25.0 4.9

TOTAL INDUSTRIES WITH MORE EMISSIONS 31 434 90.3 73.6 21.7 4.6

Agriculture, Hunting, Forestry and Fishing 26 808 77.0 80.6 15.2 4.2

Other Community, Social and Personal Services 4 626 13.3 33.1 59.5 7.4

GBR (+)

TOTAL 35 302 100.0 77.3 14.5 8.3

TOTAL INDUSTRIES WITH MORE EMISSIONS 32 730 92.7 80.3 11.8 7.9

Agriculture, Hunting, Forestry and Fishing 28 958 82.0 86.5 6.3 7.2

Other Community, Social and Personal Services 3 772 10.7 32.5 54.3 13.3
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Table A.4: Industries with larger N2O footprints and types of commodities. Tons N2O, 2008.

COUNTRY TOP INDUSTRIES A1 B1 C1 D1 E1

OF WITH MORE (tons) (%) (%) (%) (%)

REFERENCE N2O EMISSIONS g
imp
ru Final Interm. Interm.

CHN (-)

TOTAL 12 652 100.0 51.5 37.7 10.9

TOTAL INDUSTRIES WITH MORE EMISSIONS 12 268 97.0 52.0 37.2 10.8

Agriculture, Hunting, Forestry and Fishing 9 561 75.6 56.5 33.0 10.5

Chemicals and Chemical Products 1 183 9.3 36.9 48.0 15.1

Other Community, Social and Personal Services 857 6.8 33.4 60.3 6.2

Electricity, Gas and Water Supply 668 5.3 38.4 48.2 13.4

BRA (-)
TOTAL 6 326 100.0 10.7 72.5 16.8

TOTAL INDUSTRIES WITH MORE EMISSIONS 6 216 98.3 10.7 72.7 16.7

Agriculture, Hunting, Forestry and Fishing 6 216 98.3 10.7 72.7 16.7

FRA (-)

TOTAL 5 742 100.0 49.1 44.7 6.2

TOTAL INDUSTRIES WITH MORE EMISSIONS 5 598 97.5 49.3 44.5 6.2

Agriculture, Hunting, Forestry and Fishing 4 888 85.1 49.9 44.2 5.9

Chemicals and Chemical Products 710 12.4 45.1 46.7 8.2

USA (-)

TOTAL 4 523 100.0 45.8 39.7 14.4

TOTAL INDUSTRIES WITH MORE EMISSIONS 4 259 94.2 47.2 38.7 14.1

Agriculture, Hunting, Forestry and Fishing 3 704 81.9 47.5 38.8 13.7

Chemicals and Chemical Products 556 12.3 44.7 38.0 17.3

COUNTRY TOP INDUSTRIES A2 B2 C2 D2 E2

OF WITH MORE (tons) (%) (%) (%) (%)

REFERENCE N2O EMISSIONS g
exp
ur Final Interm. Interm.

GBR (+)

TOTAL 1 828 100.0 79.9 12.2 7.9

TOTAL INDUSTRIES WITH MORE EMISSIONS 1 682 92.0 82.7 9.6 7.7

Agriculture, Hunting, Forestry and Fishing 1 564 85.5 86.5 6.3 7.2

Chemicals and Chemical Products 118 6.5 32.5 52.8 14.7

PRT (+)

TOTAL 1 713 100.0 70.5 28.9 0.6

TOTAL INDUSTRIES WITH MORE EMISSIONS 1 589 92.8 69.0 30.4 0.6

Agriculture, Hunting, Forestry and Fishing 1 475 86.1 72.7 26.8 0.5

Chemicals and Chemical Products 115 6.7 42.1 56.1 1.8
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español. Revista de la Red Iberoamericana de Economı́a Ecológica, 18, 73–87.

Cadarso, M.A., Gómez, N., López, L.A. and Tobarra, M.A. (2008). The EU enlargement and the impact

of outsourcing on industrial employment in Spain, 1993-2003. Structural change and Economics

Dynamics, 19, 95–108.

Cadarso, M.A., López, L.A., Gómez, N., & Tobarra, M.A. (2010). CO2 emissions of international freight

transport and offshoring: Measurement and allocation. Ecological Economics, 69, 1682–1694.
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Abstract

In this paper two alternative estimation procedures based on the EM algorithm are proposed for

the flexible negative binomial cure rate model with a latent activation scheme. The Weibull model

as well as the log-normal and gamma distributions are also considered for the time-to-event data

for the non-destroyed cells. Simulation studies show the satisfactory performance of the proposed

methodology. The impact of misspecifying the survival function on both components of the model

(cured and susceptible) is also evaluated. The use of the new methodology is illustrated with a

real data set related to a clinical trial on Phase III cutaneous melanoma patients.
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1. Introduction

An implicit assumption with the ordinary survival model is that all individuals under

study are susceptible to the event of interest, which is not always true given the im-

provements in disease treatments experienced in the last decades. For some types of

cancer, for example, new treatments have significantly increased the probability that

an individual is considered with the disease under control (typically called cured). The

proportion of cured individuals after a treatment is usually known as the cure fraction.
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Berkson and Gage (1952) developed a model that became known in the literature

as the mixture model, which assumes that there is a proportion 1 − q0 of susceptible

individuals and, hence, a proportion q0 of cured individuals. An alternative route was

pursued by Yakovlev and Tsodikov (1996) and Chen et al. (1999). Their approach is

based on the assumption that each individual has an unobserved (latent) number M of

cells, each capable of triggering the event of interest. This model is known in the litera-

ture as the promotion time cure rate model and has been the subject of intense research

activity. Rodrigues et al. (2009) unify the two approaches considering the negative bi-

nomial distribution for the variable M, known in the literature as the negative binomial

cure rate model. Those models have a common element: both assume that the initial

cells will produce the event of interest. In order to relax this assumption, Rodrigues et

al. (2012) proposed the so-called destructive weighted Poisson cure rate model in which

it is assumed that each one of the initial cells has a probability p of being able to produce

the patient’s death, so that only D ≤ M cells (usually called activated or non-destroyed

cells) would remain in effect. Clearly, the case p = 1 (i.e., M = D) leads to the standard

models above. Both destructive and non-destructive models mentioned above assume

that one cell is sufficient to produce the event of interest, i.e., the time until the event

occurs is considered as the minimum of the times related to each activated cell. This

scheme is known as the first activation (FA) scheme.

R = 1

p = 1

φ→ 0

φ= 1

φ→−1

φ→ 0

φ= 1

Figure 1: Summary of some particular cases of the DNB model with a latent activation scheme.

Cooner et al. (2007) proposed a more general activation scheme in a non-destructive

context. This idea was used by Cancho et al. (2013) in the Destructive Negative Bino-
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mial (DNB) cure rate model, where the negative binomial distribution with mean θ and

variance θ(1+φθ) is used for the initial number of cells. Accordingly, φ > 0(φ < 0)

provides over-dispersion (sub-dispersion), including the Poisson model as particular

case for φ= 0. The idea is that the event of interest may be considered as the maximum

of the times related to each one of the concurrent cells, i.e., all cells must be activated to

produce the event of interest. This scheme is called last activation (LA) scheme. A third

activation scheme is proposed assuming that a random number of factors (R) is needed

to produce the event of interest, i.e., the time to the event of interest is defined as the

R-th order statistics from the times related to the activated cells. A simple specification

is to assume the discrete uniform distribution for R on the set {1, . . . ,D}. This scheme is

known as the random activation (RA) scheme. Figure 1 depicts a summary of the DNB

in Cancho et al. (2013) and some particular cases of the model.

The main focus of this work is to develop two different ways of applying the EM

algorithm for maximum likelihood estimation (MLE) for the DNB with different acti-

vation schemes. The first way is to compute directly the expected value of M and D,

the number of initial and activated cells, respectively, and the second way is to write the

model as a mixture model and to use the EM algorithm for this alternative version Lu

(2010).

The paper is organized as follows. In Section 2 we describe the cutaneous melanoma

data set. In Section 3, the DNB model with different activation schemes and some propo-

sitions about this model are stated. In Section 4, two estimation procedures based on the

EM algorithm are proposed for the model in Section 3. Section 5 reveals results of two

simulation studies aiming at investigating parameters recovery and assessing the time-

to-event for the non-destroyed cells. Section 6 presents an application to a real data set

referring to a clinical trial for patients with melanoma. Finally, in Section 7, the main

conclusions and results obtained in this work are presented.

2. Cutaneous melanoma data set

The data set is related to a clinical trial on a Phase III cutaneous melanoma patients

available at http://merlot.stat.uconn.edu/˜mhchen/survbook/, labeled as E1690

data. The clinical trial was conducted by the Eastern Cooperative Oncology Group (see

Ibrahim et al. (2001) for details). The incidence of melanoma is one of the highest among

most types of cancer, with a high mortality rate even with early detection. The objective

of this study was to evaluate a postoperative treatment performance with a high dose of

the drug Interferon alpha-2b, in order to prevent recurrence. The study included patients

between 1991 to 1995 and follow-up was conducted until 1998.

A characteristic of the disease (as in many other types of cancers) is the presence

of a proportion of patients that can lead a normal life, comparable to patients without

the disease. In other words, a proportion commonly known as “cured”. After deleting

patients with incomplete data and missing observation times, the data set is composed of
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Figure 2: Kaplan-Meier curves stratified by covariate Nodule.

n = 408 individuals. The collected variables were: Observed time (in years, average =
2.31, median = 1.64, standard deviation = 1.93), treatment (0: control and 1: interferon

alfa-2b with 198 and 210 patients respectively), age (in years, average= 48.1, median=
47.2 and standard deviation = 13.1), nodal category (categorical variable with levels

1-4 with 110, 131, 86 and 81 patients in each group, respectively, where 1 indicates

the lower risk patients and 4 the higher risk patients) and tumour thickness (in mm,

average = 3.98, median = 3.18 and standard deviation = 3.22).

Figure 2 depicts the Kaplan-Meier curves by nodule category, confirming a well

pronounced plateau in all nodule categories. In the next Section, we present the model

addressed for this particular problem.

3. Model specification

Following Cancho et al. (2013), let M be an unobservable random variable denoting the

initial number of competing causes related to the occurrence of the event of interest. For

the cutaneous melanoma data set, M represents the number of carcinogenic cells. As-

sume that M has negative binomial distribution with probability mass function (p.m.f.)

given by

P(M = m;θ,φ) =
Γ(φ−1 +m)

Γ(φ−1)m!

(
φθ

1+φθ

)m

(1+φθ)−1/φ, m = 0,1,2, . . . , (1)
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where θ > 0, φ ≥ −1 and 1+φθ > 0. The distribution in (1) is denoted as M ∼ NB(
φ, φθ

1+φθ

)
. Under this parametrization, E(M) = θ and Var(M) = θ(1+ φθ). For this

reason, φ > 0 (φ< 0) corresponds to over (under)-dispersion in relation to the Poisson

distribution. For φ→ 0, the p.m.f. in (1) is reduced to the p.m.f. of the Poisson distribu-

tion and φ= 1 corresponds to the geometric distribution with parameter 1/(1+ θ).

Let ζ j, j = 1, . . . ,M be (conditionally) independent random variables given M = m,

with Bernoulli distribution and success probability p indicating whether the j-th concur-

rent cause can produce or not the event. Contextualizing to the medical problem under

study, ζ j = 1 (ζ j = 0) indicates that the j-th carcinogenic cell was (was not) activated or

non-destroyed (destroyed), and each activated carcinogenic cell can produce the metas-

tasis process. The (unobservable) total damaged D is defined as

D =

{
ζ1 + . . .+ ζM , if M > 0,

0 , if M = 0.

Note that D represents the total number of activated carcinogenic cells (among the M

initials) which are activated. It is immediate that D | M = m ∼ Bin(m, p) for m > 0 and

P(D = 0 | M = 0) = 1. Moreover, it is possible to show that D ∼ NB

(
φ, φθp

1+φθp

)
Ro-

drigues et al. (2011). Define Wj, j = 1, . . . ,D as the time to event for the j-th activated

cell produces the metastasis process. Assume that Wj, j = 1, . . . ,D, are conditionally

independent and identically distributed (i.i.d.) given D with common cumulative distri-

bution function F(·;λ) and survival function S(·;λ) = 1−F(·;λ). Further, assume that

W1,W2, . . . , are independent of D and M. As discussed in Cooner et al. (2007), cure rate

models with latent activation schemes assume that the failure time T ∗ is generated by the

activation times of D latent factors. Thus, D = 0 implies T ∗ = ∞ and then the individual

is considered cured. If D > 0 and it is assumed that R among the D cells are required

to produce the event of interest, so the failure time to event is defined by T ∗ = W(R),

where R depends (or not) on D and W(R) denotes the R-th order statistics corresponding

to W1, . . . ,WD.

Assume that the data can be censored to the right. Thus, the observed data can be

represented by T = min(T ∗,C) and δ = I(T ∗ ≤C), with T ∗ and C denoting failure and

censoring times, respectively, and I(·) the indicator function. Under this scheme and

following similar arguments in Cooner et al. (2007), we can write the joint distribution

of (T,δ,R,M,D) as

f (t,δ,r,m,d;θ,φ, p,λ) = f (t,δ | D = d,R = r,λ)P(R = r | D = d)×

×P(D = d | M = m; p)P(M = m,φ,θ), (2)

where D | M = m; p ∼ Bin(m, p), P(M = m;θ,φ) is given in (1) and
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f (t,δ | D = d,R = r,λ) =
{

I(d = 0)+ I(m ≥ d ≥ r ≥ 1)IB(S(t;λ),d− r+1,r)
}1−δ

×
{

d

(
d −1

r−1

)
f (t;λ)S(t;λ)d−rF(t;λ)r−1

}δ

(3)

with IB(z,a,b) denoting the incomplete beta function defined as IB(z,a,b)=
∫ z

0
ua−1(1−

u)b−1du. The population survival and density functions can be computed as

Spop(t;θ,φ, p,λ) = P(D = 0;θ,φ, p)+

∞∑

m=1

m∑

d=1

d∑

r=1

f (t,δ = 0,r,m,d;θ,φ, p,λ)

fpop(t;θ,φ, p,λ) =

∞∑

m=1

m∑

d=1

d∑

r=1

f (t,δ = 1,r,m,d;θ,φ, p,λ)

It is immediate that q0 = Spop(∞;θ,φ, p,λ) = (1+φθp)−1/φ, so that the cure rate does

not depend on the choice of the (conditional) distribution of R | D = d.

Moreover, to contour the identifiability problems in the sense of Li et al. (2001)

and Hanin and Huang (2014) and discussed in Rodrigues et al. (2011) in the context of

the destructive weighted Poisson cure rate models, it is necessary to introduce a set of

covariates z1i (of dimension r1) associated with the initial number of cells and z2i (of

dimension r2) related to the activation probabilities for non-destroyed cells by

logθi = z⊤1iβ1 and log

(
pi

1− pi

)
= z⊤2iβ2, i = 1, . . . ,n. (4)

In addition, z1 and z2 shall not simultaneously include intercepts nor share common

elements. Henceforth, in order to simplify the notation, define ψ = (β1,β2,φ,λ) as the

vector of parameters to be estimated. Three typically used activation schemes are the

random activation scheme (RA), first activation scheme (FA) and last activation scheme

(LA), for which the p.m.f. for the conditional distribution P(R = r | D = d) and the

population survival function for DNB are given in Table 1. Those models are denoted

by DNB-FA, DNB-LA and DNB-RA, respectively.

Table 1: Conditional distribution of R given D = d for three activation schemes with DNB.

Activation scheme P(R = r | D = d) Spop(t;ψ)

RA 1
d

I(1 ≤ r ≤ d) q0 +{1−q0}S(t;λ).

FA I(r = 1) {1+φθpF(t;λ)}−1/φ

LA I(r = d) 1+q0 −{1+φθpS(t;λ)}−1/φ
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Under the usual assumptions in survival analysis and right censoring (see Williams

and Lagarkos, 1977), the contribution to the (observed) log-likelihood by the i-th indi-

vidual is given by

f (ti,δi;ψ) = fpop(ti;ψ)
δiSpop(ti;ψ)

1−δi . (5)

Based on (2) and (5), the following propositions are now stated.

Proposition 1 For combinations DNB-FA and DNB-LA it follows that, given Dobs, the

conditional distribution of Ri degenerates in the distribution of Ri = 1 and Ri = Di re-

spectively. For the combination DNB-RA, that distribution is

P(Ri = ri | Dobs;ψ) =





∑ri−1

k=0 (
ri−1

k )(−1)k
E

[
S(ti;λ)

Di−ri+k+1

Di(Di−ri+k+1)
I(Di≥ri)

]

q0i+(1−q0i)S(ti;λ)
, if δi = 0

F(ti;λ)
ri−1

E

[
(Di−1

ri−1)S(ti;λ)
Di−ri I(Di≥ri)

]

1−q0i
, if δi = 1,

where Di ∼ NB

(
φ, φθi pi

1+φθi pi

)
, and ri = 1,2, . . ..

Proof of proposition 1 is presented in the Appendix A.

Proposition 2 For DNB in (2) and FA and LA schemes in Table 1, P(Di = di | Dobs;ψ),
i = 1, . . . ,n, have a closed form. Moreover, for the model DNB-FA,

Di − δi | Dobs;ψ ∼ NB

(
(φ−1 + δi)

−1,
φθi piS(ti;λ)

1+φθi pi

)
,

and for the DNB-LA

Di − δi | Dobs;ψ ∼





NB

(
(φ−1 +1)−1, φθi piF(ti;λ)

1+φθi pi

)
, if δi = 1,

aiNB

(
φ, φθi pi

1+φθi pi

)
+(1−ai)NB

(
φ, φθi piF(ti;λ)

1+φθi pi

)
, if δi = 0.

where ai = [1+q0i − (1+φθipiS(ti;λ))
−φ−1

]−1. For the DNB-RA combination, the con-

ditional distribution is
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P(Di = di | Dobs;ψ) =





∑di
ri=1

∑ri
k=0

(−1)k(ri−1
k ) S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

1+[(1−q0i)/q0i]S(ti;λ)
, if δi = 0

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

I(di ≥ 1) , if δi = 1,

Proposition 2 is proved in Appendix B.

Proposition 3 For DNB in (2) and FA and LA schemes in Table 1, P(Mi = mi | Dobs;ψ),

i = 1, . . . ,n, have a closed form. Moreover, for the DNB-FA combination, we have

Mi − δi;Dobs,ψ ∼ NB

(
(φ−1 + δi)

−1,
φθi(1− piF(ti;λ))

1+φθi

)
,

and for the DNB-LA,

Mi − δi | Dobs;ψ ∼





NB

(
(φ−1 +1)−1, φθi(1−piS(ti;λ))

1+φθi

)
, if δi = 1,

aiNB
(
φ, φθi

1+φθi

)
+(1−ai)NB

(
φ, φθi(1−piS(ti;λ))

1+φθi

)
, if δi = 0.

where ai = [1+q0i − (1+φθi piS(ti;λ))
−φ−1

]−1. For the DNB-RA and δi = 0 this condi-

tional distribution is

P(Mi = mi | Dobs,ψ) =

∑mi
di=0

∑di
ri=1

∑ri
k=0 vi

(
pi

1−pi

)di
(
φθi(1−pi)

1+φθi

)mi

1+[(1−q0i)/q0i]S(ti;λ)
,

where vi = (−1)k
(

ri−1
k

)
S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+mi)

Γ(φ−1)di!(mi−di)!
. On the other hand, for δi = 1 we

have that

P(Mi = mi | Dobs,ψ) =
[1− (1− pi)

mi ]Γ(φ−1+mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−1/φI(mi ≥ 1)

1−q0i

,

Proof of proposition 3 is presented in Appendix C.

Propositions 1-3 are very useful because they allow predicting the initial number of

cells, the number of non-destroyed cells and the number of cells necessary to produce

the event of interest in each individual. Moreover, they are useful in implementing the

EM algorithm, to be discussed now.
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Note that the complete log-likelihood function is given by

ℓ(ψ | Dcomp) =
n∑

i=1

f (ti,δi,Ri,Mi,Di;ψ), (6)

with f (ti,δi,ri,mi,di;ψ) defined in (2). Specifically, for the DNB-FA the expression in

(6), unless to a constant, assumes the form

ℓ(ψ | Dcomp) =
n∑

i=1

[
(Di − δi) logS(ti;λ)+ δi log f (ti;λ)+Di log(pi)+Mi logθi

+(Mi−Di) log(1− pi)+(Mi−φ−1) log(1+φθi)

]
. (7)

From (7), it is simple to deduce that it is only necessary the expectations of Mi and Di

(given Dobs) to implement the E-step of the EM algorithm. Using Propositions 2 and 3,

these expectations are

E(Mi | Dobs;β1,β2,φ,λ) = δi +
(1+φδi)θi(1− piF(ti;λ))

1+φθi piF(ti;λ)
and (8)

E(Di | Dobs;β1,β2,φ,λ) = δi +
(1+φδi)θi piS(ti;λ)

1+φθi piF(ti;λ)
. (9)

On the other hand, the expression (6) for the DNB-LA assumes the form

ℓ(ψ | Dcomp) =

n∑

i=1

[
(1− δi) log

(
1− I(Di ≥ 1)F(ti;λ)

Di
)
+ δi

(
logDi + log f (ti;λ)

+(Di −1) logF(ti;λ)
)
+Di log pi +(Mi −Di) log(1− pi)

+Mi logθi +(Mi −φ−1) log(1+φθi)

]
. (10)

However, the expectation of log
(
1− I(Di ≥ 1)F(ti;λ)

Di
)

does not have a closed form,

hindering the application of the EM algorithm in this way. Finally, using a RA scheme

the log-likelihood function of the model is even more complex, making it difficult the

implementation of the EM algorithm in this form. For this reason, a second way is

proposed to perform the estimation procedure in those models.

Following Tsodikov et al. (2003) and Rodrigues et al. (2009), all cure rate models

can be expressed as a mixture model, i.e.,
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Spop(t;ψ) = q0 +(1−q0)S
∗(t;ψ), (11)

where S∗(t;ψ) represents the survival function for susceptible individuals and q0 is the

cure rate. Table 2 presents this function for the three activation schemes considered in

this work.

Table 2: Survival and hazard functions for susceptible individuals for the DNB mixture model

with three activation schemes.

Act. Scheme RA FA LA

S∗(t;ψ) S(t;λ)
(1+φθpF(t;λ))−1/φ−q0

1−q0

1− (1+φθpS(t;λ))−1/φ

1−q0

h∗(t;ψ) h(t;λ)
θp f (t;λ)(1+φθpF(t;λ))−1/φ−1

(1+φθpF(t;λ))−1/φ−q0

θp f (t;λ)(1+φθpS(t;λ))−1/φ−1

1− (1+φθpS(t;λ))−1/φ

Let Yi the binary variable that indicates whether the individual is susceptible or cured

(Yi = 1 and Yi = 0, respectively). Following Lu (2010), the complete log-likelihood func-

tion for this model is

ℓc(ψ) =
n∑

i=1

[
Yi log(1−q0i)+(1−Yi) logq0i +Yi logS∗(ti;ψ)+δiYi logh∗(ti;ψ)

]
, (12)

and the expected value for Yi given Dobs is

E(Yi | Dobs;ψ) = δi +(1− δi)
(1−q0i)S

∗(ti;ψ)

q0i +(1−q0i)S∗(ti;ψ)
. (13)

Equations (12) and (13) provides a second way to implement the EM algorithm in any

cure rate model, in particular, for the DNB with different activation schemes.

4. Estimation

In this Section it is discussed some inferential procedures for the parameters of the

DNB with the three activation schemes discussed in Section 3. Parameter estimation is

approached using the maximum likelihood method.

In Cancho et al. (2013), the estimation procedure was based on the direct maximiza-

tion of the observed likelihood function given by

ℓ(ψ | Dobs) =
n∑

i=1

[
logSpop(ti;ψ)+ δi loghpop(ti;ψ)

]
, (14)
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where Spop(·) and hpop(·) depend on the activation scheme used in Table 1. However,

maximization of (14) is not simple because it is a function that involves all parameters.

The EM algorithm Dempster et al. (1977) is a very popular maximization alternative

used to obtain the maximum likelihood estimators when the model has missing data. A

further discussion about the EM algorithm in comparison with the direct maximization

of the log-likelihood function is performed in MacDonald (2014). In the cure rate con-

text, we found many recent works using this algorithm. For instance, Balakrishnan and

Pal (2012, 2013, 2015) and Gallardo et al. (2016). Two different ways of applying this

algorithm in the model considered will be presented in next subsection.

4.1. EM algorithm: implementation 1

Consider initially only the combination DNB-FA, i.e., R = 1. Moreover, it is assumed

that φ is fixed. The first way to apply the EM algorithm in this model is to compute the

expected values for Mi and Di, i = 1, . . . ,n given Dobs and the parameters values in last

iteration, namely ψ(k−1). Those values are denoted by D̃
(k)
i and M̃

(k)
i , respectively, and

they can be computed using equations (8) and (9). Then, it is necessary to replace those

values in the complete log-likelihood function given in (7) and maximize it in relation

to ψ. The algorithm is summarized as follows.

• E-step: For i = 1, . . . ,n, compute

D̃
(k)
i = δi +

(1+φδi)θ
(k−1)
i p

(k−1)
i S(ti;λ

(k−1))

1+φθ
(k−1)
i p

(k−1)
i F(ti;λ(k−1))

and

M̃
(k)
i = δi +

(1+φδi)θ
(k−1)
i (1− p

(k−1)
i F(ti;λ

(k−1)))

1+φθ
(k−1)
i p

(k−1)
i F(ti;λ(k−1))

.

• M-step: Given D̃
(k)

= (D̃
(k)
1 , . . . ,D̃

(k)
n ) and M̃

(k)
= (M̃

(k)
1 , . . . ,M̃

(k)
n ), find β

(k)
1 , β

(k)
2

and λ(k) that maximize Q1(β1 |ψk), Q2(β2 |ψk) and Q3(λ |ψk) in relation to β1,β2

and λ, respectively, where

Q1(β1 | ψ(k)) =
n∑

i=1

{
M̃

(k)
i logθi − θi +

(
M̃

(k)
i −φ−1

)
log(1+φθi)

}
, (15)

Q2(β2 | ψ(k)) =
n∑

i=1

{
D̃

(k)
i log(pi)+

(
M̃

(k)
i − D̃

(k)
i

)
log(1− pi)

}
, (16)

Q3(λ | ψ(k)) =
n∑

i=1

{(
D̃

(k)
i − δi

)
logS(ti;λ)+ δi log f (ti;λ)

}
. (17)
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Then, define ψ(k) =
(
β
(k)
1 ,β

(k)
2 ,λ(k)

)
. The advantage of this approach is that func-

tions in (15), (16) and (17) can be maximized separately with respect to β1,β2 and λ, re-

spectively, instead of the joint maximization as occurs with the observed log-likelihood.

Steps M and E are repeated until a suitable convergence rule is satisfied. For instance,

||ψ(k)−ψ(k−1)|| < ǫ, where ||ψ(k)−ψ(k−1)|| represents the euclidian distance between

ψ(k) and ψ(k−1) and ǫ is a prefixed value. For instance, we use ǫ= 0.0001.

4.2. EM algorithm: implementation 2

For this approach, three activation schemes are considered in Table 1. As discussed in

Section 3, models DBN-FA, DBN-LA and DBN-RA can be expressed as the mixture

model with survival function for susceptible individuals given by S∗(· | ψ), according

to Table 2, and cure rate given by q0i = (1+φθi pi)
−1/φ that is common for the three

models.

Proceeding similarly as in the last procedure, the algorithm is summarized next.

• E-step: For i = 1, . . . ,n, compute

Ỹ
(k)

i = δi +(1− δi)
(1−q

(k−1)
0i )S∗ (ti;ψ(k−1)

)

q
(k−1)
0i +(1−q

(k−1)
0i )S∗ (ti;ψ(k−1)

) .

• M-step: Given Ỹ
(k)

= (Ỹ
(k)

1 , . . . ,Ỹ
(k)

n ), find ψ(k) that maximizes

Q(ψ) =
n∑

i=1

[
Ỹ
(k)

i log(1−q
(k)
0i )+(1− Ỹ

(k)
i ) logq

(k)
0i + Ỹ

(k)
i logS∗(ti;ψ

(k))

+ δiỸ
(k)
i logh∗(ti;ψ

(k))

]
.

Then, steps M and E are repeated until a suitable convergence rule is satisfied. The ad-

vantage of this approach in relation to directly maximizing the observed log-likelihood

in (14) is that the latent variables Yi are completely observed for individuals with failure

times because δi = 1 implies Yi = 1 (i.e., a failure time guarantees that the individual

is susceptible). This information is lost when an approach based on the observed log-

likelihood is used because the vector Y = (Y1, . . . ,Yn) is removed when summing over

{0,1}n. Consequently, implementing the M-step, for fixed β1 and β2, which consists in

maximizing the function Q(·) with respect to λ is easier than maximizing the observed

log-likelihood function in (14). Thus, it seems more advantageous to use the EM al-

gorithm over than a direct maximization of the observed log-likelihood function. Note
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Table 3: Distributions used for modelling the survival function of the non-destroyed cells.

Distribution S(w;λ) f (w;λ)

Weibull exp(−eαwν) νwν−1 exp(α−eαwν)

LN 1−Φ

(
log(w)−α

ν

)
1
νwφ

(
log(w)−α

ν

)

Gamma 1− γ(α,νw)
Γ(α)

να

Γ(α)
wα−1e−νw

NOTE: φ(·) and Φ(·) represent the density and the cumulative function of standard

normal distribution. γ(·, ·) represents the lower incomplete gamma function.

that the EM procedures does not depend on a specific survival function considered for

non-destroyed cells. In this work, it is used the Weibull, log-normal (LN) and gamma

distributions with parametrizations in Table 3, where λ= (α,ν).
Henceforth, the distribution of S(· | λ) will be specified jointly with the activation

mechanism. For instance, DNB-FA/Weibull, DNB-LA/LN, DNB-RA/gamma, etc. Note

that the asymptotic variances for the MLEs could be estimated using the inverse of

the Hessian matrix (matrix of second derivatives of the log-likelihood function). The

observed information matrix is then obtained from the Hessian matrix evaluated in the

MLEs. The elements of the Hessian matrix are presented in the Appendix of Cancho et

al. (2013) with the Weibull model considered for the times of the non-destroyed cells.

Expressions relatives for the LN and gamma models will not be presented because they

are slight modifications for the Weibull model.

Remark 1

1. In the first version of the EM algorithm, it is assumed that φ is fixed. However, it

is possible to relax this assumption by constructing a profile log-likelihood for φ

and picking the value that maximize that function. On the other hand, the standard

error for the estimator of φ can be estimated via Jackknife (Miller, 1974).

2. To avoid maximization problems with the constraint 1+φθ> 0 (presented after eq.

(1)), we use the same approach used by Cancho et al. (2013) considering φ ≥ 0,

i.e., the over-dispersed case.

3. The maximization involved in the M-steps can be performed using software R (R

Development Core Team, 2015), among others. The computational programs used

in this work are available from the authors upon request.

4. Differently from the direct maximization of the log-likelihood function, the EM

algorithm allows to obtain predictions for the number of initial cells and activated

cells for each individual (Mi and Di, i = 1, . . . ,n, respectively) in the version 1 and

to the chance for cure for each individual (Yi, i = 1, . . . ,n), in the version 2.
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5. Simulation studies

In this Section, two simulation studies are presented. The first study assess the perfor-

mance of the two procedures through different elements as bias and coverage proba-

bilities. The second study is designed to evaluate whether the AIC and BIC (Akaike’s

and Bayesian information) criteria are able to correctly pick the distribution for the non-

destroyed cells, given the correct activation scheme.

5.1. Parameters recovery

For simulation purposes, the covariates z1 and z2 were drawn from the Bernoulli distri-

bution with success probability 0.5. As discussed in Section 3, both vectors should not

Table 4: Average of parameter estimates, standard errors (se), root of mean squared errors (
√

MSE) and

coverage probability of 95% (CP) using the way 2 of defining the EM algorithm for DNB-FA, DNB-LA and

DNB-RA models considering Weibull distribution for time-to-event of the non-destroyed cells. (CA denotes

censoring average with their respective standard errors).

DNB-FA

n = 200 n = 400

Parameter True average se
√

MSE CP average se
√

MSE CP

β1 1.0 1.021 0.287 0.240 0.943 1.008 0.202 0.165 0.943

β20 −0.5 −0.473 0.453 0.381 0.954 −0.484 0.304 0.259 0.947

β21 0.5 0.577 0.519 0.489 0.970 0.524 0.386 0.309 0.961

φ 1.0 1.078 0.254 0.227 0.935 1.042 0.152 0.134 0.941

α −1.3 −1.333 0.177 0.167 0.905 −1.317 0.124 0.114 0.914

ν 1.5 1.530 0.191 0.125 0.986 1.517 0.133 0.086 0.986

CA 0.636 0.039 0.612 0.024

DNB-LA

β1 1.0 1.040 0.288 0.307 0.914 1.022 0.222 0.207 0.940

β20 −0.5 −0.460 0.514 0.446 0.931 −0.496 0.307 0.295 0.947

β21 0.5 0.646 0.801 0.694 0.923 0.542 0.420 0.402 0.950

φ 1.0 1.081 0.267 0.239 0.937 1.032 0.131 0.129 0.943

α −1.3 −1.308 0.226 0.189 0.938 −1.305 0.158 0.132 0.942

ν 1.5 1.523 0.222 0.152 0.975 1.513 0.155 0.105 0.971

CA 0.660 0.034 0.659 0.024

DNB-RA

β1 1.0 1.025 0.302 0.274 0.916 1.010 0.212 0.191 0.920

β20 −0.5 −0.469 0.491 0.418 0.946 −0.485 0.315 0.276 0.937

β21 0.5 0.615 0.654 0.590 0.960 0.530 0.429 0.360 0.950

φ 1.0 1.064 0.297 0.276 0.939 1.037 0.142 0.131 0.945

α −1.3 −1.320 0.187 0.158 0.940 −1.313 0.132 0.111 0.939

ν 1.5 1.526 0.202 0.134 0.984 1.513 0.142 0.092 0.985

CA 0.632 0.034 0.632 0.024
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incorporate intercept at the same time. Thus, only z2 has an intercept term. It is chosen

β1 = 1,β20 = −0.5 and β21 = 0.5, implying cure rates 0.73, 0.67, 0.49 and 0.42 for

profiles (0,0), (0,1), (1,0) and (1,1) respectively. Parameters related to the time-to-

event for non-destroyed cells where chosen as α=−1.3,ν = 1.5 for the Weibull model,

α= 0.8,ν = 0.4 for the Log-Normal model and α= 3.5,ν = 1.5 for the gamma model.

Those parameters were used with FA, LA and RA schemes. We assume φ = 1 in all

cases.

For scheme FA, the two methods exposed in Section 4 were used with sample sizes

n = 200 and n = 400. For schemes LA and RA, the second method exposed in Section

4 was used with sample sizes n = 200 and n = 400. In each case, 10,000 replicates were

considered. Tables 4 shows part of the results for the simulations. We report the average

of the estimates obtained (average), the mean of the asymptotic standard errors (se), the

root of the mean squared error (
√

MSE) and the asymptotic coverage probability with

95% (CP). Main conclusions are that the two ways of implementing the EM algorithm

provide close results relation to average, se,
√

MSE and CP for the three activation

schemes. Results also reveals that the estimates are closer to the true values and
√

MSE

is decreased as n increases, suggesting that estimators are consistent. On the other hand,

the se is greater than
√

MSE, suggesting that the standard errors are overestimated.

Despite this, the CP are closer to the nominal value.

5.2. Misspecification of the distribution for the non-destroyed

concurrent cells

In the survival analysis literature, it is common to consider the Weibull distribution

as the survival model for the time-to-event for the non-destroyed cells because of its

appropriateness in many medical and biological contexts. However, to the best of our

knowledge, we were unable to trace studies on the effects on both susceptible and cured

parts of the model, of an incorrect specification of the survival function for the time-to-

event for the non-destroyed cells.

Bearing this in mind, a simulation study is conducted using the same specification

for parameters used in the last subsection. The three activation schemes mentioned in

Section 3 and the Weibull, LN and gamma distributions for the time-to-event for non-

destroyed cells were used. For each activation scheme/distribution combination, 10,000

samples were simulated and, for each sample, parameter estimates were computed (in-

cluding S(· | λ)). Then, the mean and MSE of the estimates were computed for each

parameter and for the cure rate. Additionally, the mean and MSE for the expected times

for the non-destroyed cells were also computed. Furthermore, the AIC and BIC criteria

were computed for the three distribution and which was the model choice based on those

criteria. Since they provide similar results, data on AIC was presented. Results for FA

scheme are shown in Table 5. It is expected that a wrong choice for S(· | λ) increases

the bias and the MSE for the expected activation time for non-destroyed cells. However,
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Table 5: Estimated bias and MSE for cure rate and expected values for the non-destroyed cells in DNB-FA

with different activation schemes.

Cure rate E(W )

True First Activation Scheme

n Distribution Distribution bias MSE bias MSE % AIC

200 Weibull Weibull 0.001 0.004 −0.049 0.129 0.912

Log-Normal 0.087 0.014 −7.909 195.7 0.080

Gamma 0.008 0.902 0.689 0.902 0.008

Log-Normal Weibull 0.005 0.004 0.337 0.138 0.025

Log-Normal 0.000 0.004 0.294 0.118 0.932

Gamma 0.294 0.004 −24.1 689.0 0.043

Gamma Weibull 0.000 0.004 2.974 8.886 0.083

Log-Normal 0.019 0.005 2.321 5.857 0.086

Gamma 0.001 0.004 −0.722 6.089 0.831

400 Weibull Weibull 0.002 0.002 −0.030 0.084 0.920

Log-Normal 0.094 0.012 −6.908 88.6 0.038

Gamma 0.008 0.002 0.782 0.787 0.042

Log-Normal Weibull 0.005 0.002 0.336 0.125 0.001

Log-Normal 0.000 0.002 0.301 0.106 0.923

Gamma 0.000 0.002 −22.5 549.7 0.075

Gamma Weibull 0.000 0.002 2.974 8.865 0.074

Log-Normal 0.019 0.002 2.363 5.754 0.074

Gamma 0.000 0.002 −0.313 2.371 0.852

the wrong choice also impacts on the cure rate estimates. Except for the gamma model,

the AIC and BIC criteria chose the correct model for more than 90% of generate sam-

ples, suggesting that those criteria are appropriate to this purpose. For other activation

schemes, similar results are obtained.

6. Application

In this section we analyze the cutaneous melanoma data set described in Section 2.

Models DNB-FA, DNB-LA and DNB-RA were fitted to the data, with the survival func-

tions from the Weibull, LN and gamma distributions used as survival functions for the

time-to-event for the non-destroyed cells. To avoid identifiability problems, the covari-

ates treatment, age, nodule and thickness were incorporated into the model through the

θ and p parameters. All possible combinations of covariates preserving identifiability

were considered and the combination that provided the least AIC and BIC criteria was
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Table 6: AIC/BIC criteria for E1690 data set using the DNB with different activation schemes.

Activation Scheme

S(· | λ) FA LA RA

Weibull 827.6/863.7 854.3/890.4 842.7/878.8

LN 834.6/870.7 851.8/888.0 842.0/878.1

gamma 828.0/864.1 854.5/890.6 841.8/877.9

selected, leading to the one assigning nodule and tumour thickness to θ and treatment

to p (see equation (4)). Given that all considered patients have cutaneous melanoma, it

is reasonable to assume that the nodule category is related to the number of initial cells

(most advance stage, more initial cells) and the same with tumour thickness (greater

tumour, more initial cells). On the other hand, treatment can be interpreted as an element

that determines the chance of such cells be activated (patients receiving the treatment

have reduced their probability of initial activation of the initial cells). Table 6 shows

the AIC and BIC vales for those combinations of covariates. Based on those criteria, the

DNB-FA/Weibull model was chosen as the one presenting the best fit. On the other hand,

it makes sense to use this activation scheme in a biological context, because just one cell

can trigger the metastasis process. The estimates for this model are presented in Table 7.

Table 7: Parameter estimates for the DNB-FA/Weibull model.

Parameter est se |est|/se

β1,nodule1 0.4690 0.4565 1.03

β1,nodule2 1.5143 0.3661 4.14

β1,nodule3 2.1539 0.4044 5.32

β1,nodule4 3.0702 0.4210 7.29

β1,thickness 0.0858 0.0473 1.81

β2,treatment −0.7965 0.4064 1.96

φ 3.1807 0.0785

α −1.3142 0.1977

ν 1.5372 0.0273

The estimated means of the initial number of cells are 1.60× 1.09thickness (nodule

1), 4.55×1.09thickness (nodule 2), 8.62×1.09thickness (nodule 3) and 21.55×1.09thickness

(nodule 4) and the probability of activation of those cells is 0.5 for patients in control

group and 0.31 for patients in the treatment group.

Finally Figure 3 shows the estimated mean of non-destroyed cells (D) for each pa-

tients stratified by control and treatment group. Note that the estimated means of D vary

on both group, agreeing with the fact that the treatment is effective. On the other hand,

it is possible to conclude that patients with nodule 4 have more estimated non-destroyed
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Figure 3: Predicted means of the conditional distributions for all patients under the DNB-FA/Weibull

model for the number of activated cells (D), stratified by nodule categories and belonging to the control

group (left panel) and to the treatment group (right panel), respectively.

cells. This is expected because patients in this stage of disease are more susceptible to

die faster than patients in others stages of disease.

7. Final discussion

In this paper, an alternative estimation procedure based on the EM algorithm is pro-

posed for the destructive Negative Binomial cure rate model introduced in Cancho et

al. (2013). Two different ways of implementing the algorithm are investigated. Simula-

tion studies indicate that those procedures work satisfactorily. It also investigated other

alternatives (besides the Weibull distribution) for the survival function for the time for

non-destroyed cells S(· | λ), and through the use of simulation studies evaluating the

performances of the AIC/BIC criteria to correctly choose the model that provides the

best fit to the data. Using simulation studies we assess the performances of the AIC/BIC

criteria to correctly choose the model that provides the best fit to the data. However, a

wrong choice for S(· | λ) can lead to incorrect estimates in both, the parameters related

to the cure rate and the ones related to the survival function of the time-to-event for non-

destroyed cells. Thus, precision loss is incurred if the wrong model is selected, that is,

one has to be careful when selecting the working model. For this reason, it will be pro-

posed non-parametric frameworks to estimate S(· | λ). Finally, the proposed approach

was illustrated using real data related to a clinical trial on Phase III cutaneous melanoma

patients.
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8. Appendix: Proofs of propositions

8.1. Appendix A: Proposition 1

For DNB-FA and DNB-LA the result is trivial. On the other hand, note it is possible to

show that the marginal distribution of Di | θi, pi,φ is NB(θi pi,φ). Thus, for the DNB-RA

we have that for r1 ∈ {1,2, . . . ,}

P(Ri = ri | Dobs,ψ) =

∑
∞

di=ri
f (ti,δi | Di = di,Ri = ri)

[(1−q0i) f (ti;λ)]δi [q0i +(1−q0i)S(ti;λ)]1−δi
,

where f (ti,δi |Di = di,Ri = ri) is defined in (3). For δi = 1, the expression takes the form

P(Ri = ri | Dobs,ψ) =
1

(1−q0i)

∞∑

di=ri

di

(
di −1

ri −1

)
S(ti;λ)

di−riF(ti;λ)
ri−1P(Di = di;θi, pi,φ)

=
F(ti;λ)

ri−1

(1−q0i)
E

[
Di

(
Di −1

ri −1

)
S(ti;λ)

Di−riI(Di ≥ ri)

]
.

For δi = 0,

P(Ri = ri | Dobs,ψ) =

∑
∞

di=ri
IB(S(ti;λ),di − ri +1,ri)P(Di = di;θi, pi,φ)

q0i +(1−q0i)S(ti;λ)
.

On the other hand, by using the binomial theorem, it can be shown that IB(S(ti;λ),di −
ri +1,ri) =

∑ri−1
k=0

(
ri−1

k

)
(−1)k S(ti;λ)

di−ri+k+1

di−ri+k+1
. In other words,

P(Ri = ri | Dobs,ψ) =

∑ri−1
k=0

(
ri−1

k

)
(−1)k

E

[
S(ti;λ)

Di−ri+k+1

Di−ri+k+1
I(Di ≥ ri)

]

q0i +(1−q0i)S(ti;λ)
.
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8.2. Appendix B: proposition 2

Consider now the DNB-FA model (Ri = 1, i = 1, . . . ,n). Thus, by (2) and (5) the expres-

sion P(Di = di | Dobs,ψ) assumes the following form

P(Di = di | Dobs,ψ) =
S(ti;λ)

di−δi [di f (ti;λ)]
δi Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

(θi pi f (ti;λ))δi (1+φθi piF(ti;λ))
−(φ−1+δi)

=
Γ((φ−1 + δi)+di− δi)

Γ(φ−1 + δi)(di − δi)!
θdi−δi

1i (1− θ1i)
(φ−1+δi) ,

i.e., Di−δi | Dobs | ψ ∼ NB
(
(φ−1 + δi)

−1,θ1i

)
, where θ1i =

φθi piS(ti;λ)
1+φθi pi

. For the DNB-LA,

Ri = Di, i = 1, . . . ,n and then

P(Di = di | Dobs,ψ) =

{
diF(ti;λ)

di−1 f (ti;λ)
}δi

{
1−F(ti;λ)

di
}1−δi

{
θi pi f (ti;λ)(1+φθi piS(ti;λ))

−(φ−1+1)
}δi

×

×
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

{
1+q0i − (1+φθi piS(ti;λ))

−φ−1
}1−δi

.

For δi = 1, this expression takes the form

P(Di = di | Dobs,ψ) =
Γ((φ−1 +1)+(di−1))

Γ(φ−1 +1)(di−1)!
θdi−1

2i (1− θ2i)
−(φ−1+1) ,

i.e., (Di − 1) | Dobs,ψ ∼ NB
(
(φ−1 +1)−1,θ2i

)
, where θ2i =

φθi piF(ti;λ)
1+φθi pi

. For δi = 0, this

expression is reduced to

P(Di = di | Dobs,ψ) = ai

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθi pi)
−φ−1

+(1−ai)
Γ(φ−1 +di)

Γ(φ−1)di!
θdi

2i (1− θ2i)
φ−1

,

where ai = (1+q0i− (1+φθi piS(ti;λ))
−φ−1

)−1, i.e., Di | Dobs,ψ ∼ aiNB
(
φ, φθi pi

1+φθi pi

)
+

(1−ai)NB(φ,θ2i). Finally, for DNB-RA we have that
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P(Di = di | Dobs,ψ) =

∑di
ri=1

{
di

(
di−1
ri−1

)
f (ti;λ)S(ti;λ)

di−riF(ti;λ)
ri−1

}δi
1
di

[q0i f (ti;λ)]δi [q0i +(1−q0iS(ti;λ))]1−δi

×{IB(S(ti;λ),di − ri +1,ri)}1−δi

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

.

For δi = 1, it is immediate that

P(Di = di | Dobs,ψ) =
Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

I(di ≥ 1),

i.e., (Di −1) | Dobs,ψ ∼ NB(φ, φθi pi
1+φθi pi

). Finally, for δi = 0, using the binomial theorem,

the expression is reduced to

P(Di = di | Dobs,ψ) =

∑di
ri=1

∑ri
k=0(−1)k

(
ri−1

k

)
S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

1+[(1−q0i)/q0i]S(ti;λ)
.

8.3. Appendix C: proposition 3

Considering the DNB-FA model (Ri = 1, i = 1, . . . ,n), and by (2) and (5) the expression

P(Mi = mi | Dobs,ψ) assume the following form

P(Mi = mi | Dobs,ψ) =

∑mi

di=δi
S(ti;λ)

di−δi [di f (ti;λ)]
δi
(

mi
di

)
p

di
i (1− pi)

mi−di

(θi pi f (ti;λ))δi (1+φθi piF(ti;λ))
−(φ−1+δi)

×

× Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

=
Γ((φ−1 + δi)+mi− δi)

Γ(φ−1 + δi)(mi − δi)!
θmi−δi

3i (1− θ3i)
(φ−1+δi) ,

i.e., Mi−δi | Dobs |ψ ∼NB
(
(φ−1 + δi)

−1,θ3i

)
, where θ3i =

φθi(1−piF(ti;λ))
1+φθi

. For the DNB-

LA, Ri = Di, i = 1, . . . ,n and then
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P(Mi = mi | Dobs,ψ) =

mi∑

di=δi

[{
diF(ti;λ)

di−1 f (ti;λ)
}δi

{
1−F(ti;λ)

di
}1−δi

{
θi pi f (ti;λ)(1+φθi piS(ti;λ))

−(φ−1+1)
}δi

×

×
(

mi
di

)
p

di
i (1− pi)

mi−di Γ(φ−1+mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

{
1+q0i − (1+φθi piS(ti;λ))

−φ−1
}1−δi

]

For δi = 1, this expression is reduced to

P(Mi = mi | Dobs,ψ) =
Γ((φ−1 +1)+mi−1)

Γ(φ−1 +1)(mi−1)!
θmi−1

4i (1− θ4i)
(φ−1+1) ,

i.e., (Mi − 1) | Dobs,ψ ∼ NB
(
(φ−1 +1)−1,θ4i

)
, where θ4i =

φθi(1−piS(ti;λ))
1+φθi

. For δi = 0,

this expression takes the form

P(Mi = mi | Dobs,ψ) = ai

Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

+(1−ai)
Γ(φ−1 +mi)

Γ(φ−1)mi!
θmi

4i (1− θ4i)
φ−1

,

where ai = (1+ q0i − (1+φθipiS(ti;λ))
−φ−1

)−1, i.e., Mi | Dobs,ψ ∼ aiNB

(
φ, φθi

1+φθi

)
+

(1−ai)NB(φ,θ4i). Finally, for DNB-RA we have that

P(Mi = mi | Dobs,ψ) =

∑mi

di=δi

∑di
ri=1

{
di

(
di−1
ri−1

)
f (ti;λ)S(ti;λ)

di−riF(ti;λ)
ri−1

}δi × 1
di

[q0i f (ti;λ)]δi [q0i +(1−q0iS(ti;λ))]1−δi

×{IB(S(ti;λ),di − ri +1,ri)}1−δi ×

×
(

mi

di

)
p

di
i (1− pi)

mi−di
Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

.

For δi = 1, the expression is reduced to

P(Mi = mi | Dobs,ψ) = [1− (1− pi)
mi ]

Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

I(mi ≥ 1).
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Finally, for δi = 0,

P(Mi = mi | Dobs,ψ) =

∑mi
di=0

∑di
ri=1

∑ri
k=0 vi

(
pi

1−pi

)di
(
φθi(1−pi)

1+φθi

)mi

1+[(1−q0i)/q0i]S(ti;λ)
.
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Abstract

In this paper, a goodness-of-fit test for normality based on the comparison of the theoretical and

empirical distributions is proposed. Critical values are obtained via Monte Carlo for several sample

sizes and different significance levels. We study and compare the power of forty selected normality

tests for a wide collection of alternative distributions. The new proposal is compared to some tradi-

tional test statistics, such as Kolmogorov-Smirnov, Kuiper, Cramér-von Mises, Anderson-Darling,

Pearson Chi-square, Shapiro-Wilk, Shapiro-Francia, Jarque-Bera, SJ, Robust Jarque-Bera, and

also to entropy-based test statistics. From the simulation study results it is concluded that the best

performance against asymmetric alternatives with support on the whole real line and alternative

distributions with support on the positive real line is achieved by the new test. Other findings de-

rived from the simulation study are that SJ and Robust Jarque-Bera tests are the most powerful

ones for symmetric alternatives with support on the whole real line, whereas entropy-based tests

are preferable for alternatives with support on the unit interval.
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1. Introduction

Let X1, . . . ,Xn be a n independent an identically distributed (iid) random variables with

continuous cumulative distribution function (cdf) F(.) and probability density function

(pdf) f (.). All along the paper, we will denote the order statistic by (X(1), . . . ,X(n)).

Based on the observed sample x1, . . . ,xn, we are interested in the following goodness-

of-fit test for a location-scale family:
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{

H0 : F ∈ F

H1 : F /∈ F
(1)

where F =
{

F0(.;θθθ) = F0

(

x−µ
σ

)

| θθθ = (µ,σ) ∈ Θ
}

, Θ = R× (0,∞) and µ and σ are

unspecified. The family F is called location-scale family, where F0(.) is the standard

case for F0(.;θθθ) for θθθ = (0,1). Suppose that f0(x;θθθ) = 1
σ

f0

(

x−µ
σ

)

is the corresponding

pdf of F0(x;θθθ).

The goodness-of-fit test problem for location-scale family described in (1) has been

discussed by many authors. For instance, Zhao and Xu (2014) considered a random

distance between the sample order statistic and the quasi sample order statistic derived

from the null distribution as a measure of discrepancy. On the other hand, Alizadeh

and Arghami (2012) used a test based on the minimum Kullback-Leibler distance. The

Kullback-Leibler divergence measure is a special case of a φ-divergence measure (2)

for φ(x) = x log(x)− x+ 1 (see p. 5 of Pardo, 2006 for details). Also φ-divergence is a

special case of the φ-disparity measure. The φ-disparity measure between two pdf’s f0

and f is defined by

Dφ( f0, f ) =

∫

φ

(

f0(x;θθθ)

f (x)

)

f (x) dx, (2)

where φ : (0,∞)→ [0,∞) is assumed to be continuous, decreasing on (0,1) and increas-

ing on (1,∞), with φ(1) = 0 (see p. 29 of Pardo, 2006 for details). In φ-divergence, φ is

a convex function.

Inspired by this idea, in this paper we propose a goodness-of-fit statistic to test (1) by

considering a new proximity measure between two continuous cdf’s. The organization

of the paper is as follows. In Section 2 we define the new measure Hn and study its prop-

erties as a goodness-of-fit statistic. In Section 3 we propose a normality test based on

Hn and find its critical values for several sample sizes and different significance levels.

In Section 4 we review forty normality tests, including the most traditional ones such as

Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling, Shapiro-Wilk, Shapiro-

Francia, Pearson Chi-square, among others, and in Section 5 we compare their perfor-

mances to that of our proposal through a wide set of alternative distributions. We also

provide an application example where the Kolmogorov-Smirnov test fails to detect the

non normality of the sample.

2. A new discrepancy measure

In this section we define a discrepancy measure between two continuous cdf’s and study

its properties as a goodness-of-fit statistic.
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Definition 2.1 Let X and Y be two absolutely continuous random variables with cdf’s

F0 and F, respectively. We define

D(F0,F) =

∞
∫

−∞

h

(

1+F0(x;θθθ)

1+F(x)

)

dF(x) = EF

[

h

(

1+F0(X ;θθθ)

1+F(X)

)]

, (3)

where EF [.] is the expectation under F and h : (0,∞)→R
+ is assumed to be continuous,

decreasing on (0,1) and increasing on (1,∞) with an absolute minimum at x = 1 such

that h(1) = 0.

Lemma 2.2 D(F0,F)≥ 0 and equality holds if and only if F0 = F, almost everywhere.

Proof. Using the non-negativity of function h, we have D(F0,F)≥ 0. It is clear that F0 =
F implies D(F0,F) = 0. Conversely, if D(F0,F) = 0, since h has an absolute minimum

at x = 1, then F0 = F .

Let us return to the goodness-of-fit test problem for a location-scale family described

in (1). Firstly, we estimate µ and σ by their maximum likelihood estimators (MLEs), i.e.,

µ̂ and σ̂, respectively, and we take zi = (xi − µ̂)/σ̂, i = 1, . . . ,n. Note that in this family,

F0(xi; µ̂, σ̂) = F0 (zi). Secondly, consider the empirical distribution function (EDF) based

on data xi, that is

Fn(t) =
1

n

n
∑

j=1

I[x j≤t],

where IA denotes the indicator of an event A. Then, our proposal is based on the ratio

of the standard cdf under H0 and the EDF based on the xi’s. Using (3) with F = Fn,

D(F0,Fn) can be written as

Hn := D(F0,Fn) =

∞
∫

−∞

h

(

1+F0(x; µ̂, σ̂)

1+Fn(x)

)

dFn(x)

=
1

n

n
∑

i=1

h

(

1+F0(x(i); µ̂, σ̂)

1+Fn(x(i))

)

=
1

n

n
∑

i=1

h

(

1+F0(z(i))

1+ i/n

)

Under H0, we expect that F0(t; µ̂, σ̂) ≈ Fn(t), for every t ∈ R and 1+F0(t; µ̂, σ̂) ≈
1+Fn(t). Note that, since h(1) = 0, we expect that h

(

(1+F0(t))/(1+Fn(t))
)

≈ 0 and
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thus Hn will take values close to zero when H0 is true. Therefore, it seems justifiable

that H0 must be rejected for large values of Hn. Some standard choices for h are: h(x) =
(x−1)2/(x+1)2,x log(x)− x+1,(x−1) log(x), |x−1| or (x−1)2 (for more examples,

see p. 6 of Pardo, 2006 for details).

Proposition 2.3 The support of Hn is [0,max(h(1/2),h(2))].

Proof. Since F0(.) and Fn are cdf’s and take values in [0,1], we have that

1/2 ≤ 1+F0(y)

1+Fn(y)
≤ 2, y ∈ R.

Thus

0 ≤ h

(

1+F0(y)

1+Fn(y)

)

≤ max(h(1/2),h(2))

Finally, since Hn is the mean of h(.) over the transformed data, the result is obtained.

Proposition 2.4 The test statistic based on Hn is invariant under location-scale trans-

formations.

Proof. The location-scale family is invariant under the location-scale transformations of

the form gc,r(X1, . . . ,Xn) = (rX1 + c, . . . ,rXn + c), c ∈ R, r > 0, which induces similar

transformations on Θ : gc,r(θθθ)= (rµ+c,rσ) (See Shao, 2003). The estimator T0(X1, . . . ,Xn)
for µ is location-scale invariant if

T0(rX1 + c, . . . ,rXn + c) = rT0(X1, . . . ,Xn)+ c, ∀r > 0,c ∈ R,

and the estimator T1(X1, . . . ,Xn) for σ is location-scale invariant if

T1(rX1 + c, . . . ,rXn + c) = rT1(X1, . . . ,Xn), ∀r > 0,c ∈ R.

We know that MLE of µ and σ are location-scale invariant for µ and σ, respectively.

Therefore under H0, the distribution of Zi = (Xi − µ̂)/σ̂ does not depend on µ and σ.

If Gn is the EDF based on data zi, then

Gn(zi) =
1

n

n
∑

j=1

I[z j≤zi] =
1

n

n
∑

j=1

I[x j≤xi] = Fn(xi),
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therefore

Hn =
1

n

n
∑

i=1

h

(

1+F0(x(i); µ̂, σ̂)

1+Fn(x(i))

)

=
1

n

n
∑

i=1

h

(

1+F0(z(i))

1+Gn(z(i))

)

.

Since the statistic Hn is a function of zi, i = 1, . . . ,n, is location-scale invariant. As a

consequence, the null distribution of Hn does not depend on the parameters µ and σ.

Proposition 2.5 Let F1 be an arbitrary continuous cdf in H1. Then under the assumption

that the observed sample have cdf F1, the test based on Hn is consistent.

Proof. Based on Glivenko-Cantelli theorem, for n large enough, we have that Fn(x) ≃
F1(x), for all x ∈ R. Also µ̂ and σ̂ are MLEs of µ and σ, respectively, and hence are

consistent. Therefore

Hn =
1

n

n
∑

i=1

h

(

1+F0(x(i); µ̂, σ̂)

1+Fn(x(i))

)

=
1

n

n
∑

i=1

h

(

1+F0(xi; µ̂, σ̂)

1+Fn(xi)

)

≃ 1

n

n
∑

i=1

h

(

1+F0(xi; µ̂, σ̂)

1+F1(xi)

)

≃ 1

n

n
∑

i=1

h

(

1+F0(xi,µ,σ)

1+F1(xi)

)

→ EF1

[

h

(

1+F0(X ,µ,σ)

1+F1(X)

)]

=: D(F0,F1), as n → ∞,

where EF1
[.] is the expectation under F1, and µ and σ2 are, respectively, the expectation

and variance of F1. Note that the convergence holds by the law of large numbers and

D(F0,F1) is a divergence between F0 and F1. So the test based on Hn is consistent.

3. A normality test based on Hn

Many statistical procedures are based on the assumption that the observed data are nor-

mally distributed. Consequently, a variety of tests have been developed to check the

validity of this assumption. In this section, we propose a new normality test based on

Hn.

Consider again the goodness-of-fit testing problem described in (1), where now

f0(x;µ,σ) = 1/
√

2πσ2e−(x−µ)2/2σ2
, x ∈R, in which µ ∈R and σ> 0 are both unknown,

and F0(.;µ,σ) is the corresponding cdf, where F0(.) is the standard case for F0(.;0,1).
First we estimate µ and σ by their maximum likelihood estimators (MLEs), i.e., µ̂=

x̄ = 1/n
∑n

i=1 xi and σ̂2 = s2 = 1/(n−1)
∑n

i=1(xi− x̄)2, respectively. Let zi = (xi− x̄)/s,

i = 1, . . . ,n. Then, the test statistic for normality is:
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Hn =
1

n

n
∑

i=1

h

(

1+F0(x(i), x̄,s)

1+Fn(x(i))

)

=
1

n

n
∑

i=1

h

(

1+F0(z(i))

1+ i/n

)

, (4)

where

h(x) =

(

x−1

x+1

)2

. (5)

Note that h : (0,∞)→ R
+ is decreasing on (0,1) and increasing on (1,∞) with an ab-

solute minimum at x = 1 such that h(1) = 0 (see Figure 1). We selected this function

h, because based on simulation study, it is more powerful than other functions h. For

example, we considered h2(x) := x log(x)− x+ 1 for comparison with h1(x) :=
(

x−1
x+1

)2

(see Tables 6 and 7).

Corollary 3.1 The support of Hn is [0,0.11].

Proof. From Proposition 2.3 and Figure 1, max(h(1/2),h(2))= 0.11.

Table 1 contains the upper critical values of Hn, which have obtained by Monte Carlo

from 100000 simulated samples for different sample sizes n and significance levels

α= 0.01,0.05,0.1.

0.5 1.0 1.5 2.0 2.5

0
.0

0
.1

0
.2

0
.3

0
.4

x

h(x) =
(x − 1)2

(x + 1)2

h(x) = xlog(x) − x + 1

Figure 1: Plot of function h.
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Table 1: Critical values of Hn for α= 0.01,0.05,0.1.

n 5 6 7 8 9 10 15 20 25 30 40 50
α

0.01 .0039 .0035 .0030 .0026 .0023 .0021 .0014 .0011 .0008 .0007 .0005 .0004

0.05 .0030 .0026 .0022 .0019 .0017 .0016 .0010 .0007 .0006 .0005 .0004 .0003

0.10 .0026 .0022 .0019 .0016 .0015 .0013 .0009 .0006 .0005 .0004 .0003 .0002

Remember that, Hn is expected to take values close to zero when H0 is true. Hence,

H0 will be rejected for large values of Hn. Also Hn is invariant under location-scale

transformations and consistent under the assumption H1, respectively, from Propositions

2.4 and 2.5.

4. Normality tests under evaluation

Comparison of the normality tests has received attention in the literature The goodness-

of-fit tests have been discussed by many authors including Shapiro et al. (1968), Poitras

(2006), Yazici and Yolacan (2007), Krauczi (2009), Romao et al. (2010), Yap and Sim

(2010) and Alizadeh and Arghami (2011).

In this section we consider a large number (forty) of recent and classical statistics that

have been used to test normality and in Section 5 we compare their performances with

that of Hn. In the following we prefer to keep the original notation for each statistic. Con-

cerning the notation, let x1,x2, . . . ,xn be a random sample of size n and x(1),x(2), . . . ,x(n)
the corresponding order statistic. Also consider the sample mean, variance, skewness

and kurtosis, defined by

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2,
√

b1 =
m3

(m2)3/2
, b2 =

m4

(m2)2
,

respectively, where the j-th central moment m j is given by m j =
1
n

∑n
i=1(xi − x̄) j and

finally consider z(i) = (x(i)− x̄)/s, for i = 1, . . . ,n.

1. Vasicek’s entropy estimator (Vasicek, 1976):

KLmn =
exp{HVmn}

s

where

HVmn =
1

n

n
∑

i=1

ln
{ n

2m

(

X(i+m)−X(i−m)

)

}

, (6)
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m < n/2 is a positive integer and X(i) = X(1) if i < 1 and X(i) = X(n) if i > n. H0 is

rejected for small values of KL. Vasicek (1976) showed that the maximum power

for KL was typically attained by choosing m = 2 for n = 10, m = 3 for n = 20 and

m = 4 for n = 50. The lower-tail 5%-significance values of KL for n = 10,20 and

50 are 2.15, 2.77 and 3.34, respectively.

2. Ebrahimi’s entropy estimator (Ebrahimi, Pflughoeft and Soofi, 1994):

TEmn =
exp{HEmn}

s
,

where

HEmn =
1

n

n
∑

i=1

ln

{

n

cim

(

X(i+m)−X(i−m)

)

}

, (7)

and ci = (1+ i−1
m
)I[1,m](i)+ 2I[m+1,n−m](i)+ (1+ n−i

m
)I[n−m+1,n](i). Ebrahimi et al.

(1994) proved the linear relationship between their estimator and (6). Thus for

fixed values of n and m, the tests based on (6) and (7) have the same power.

3. Nonparametric distribution function of Vasicek’s estimator:

TVmn = log

√

2πσ̂2
v +0.5−HVmn,

where HVmn was defined in (6), σ̂2
v = Vargv(X), and

gv(x) =







0 x < ξ1 or x > ξn+1,

2m
n(x(i+m)−x(i−m))

ξi < x ≤ ξi+1 i = 1, . . . ,n,

where ξi =
(

x(i−m)+ · · ·+ x(i+m−1)

)

/2m. H0 is rejected for large values of TVmn.

(See Park, 2003).

4. Nonparametric distribution function of Ebrahimi estimator:

TEmn = log

√

2πσ̂2
e +0.5−HEmn,

where HEmn was defined in (7), σ̂2
e = Varge(X) and

ge(x) =

{

0 x < η1 or x > ηn+1

1
n(ηi+1−ηi)

ηi < x ≤ ηi+1 i = 1, . . . ,n,
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with

ηi =















ξm+1 − 1
m+k−1

∑m
k=i(x(m+k)− x(1)) 1 ≤ i ≤ m,

1
2m

(

x(i−m)+ · · ·+ x(i+m−1)

)

m+1 ≤ i ≤ n−m+1,

ξn−m+1 +
1

n+m−k+1

∑i
k=n−m+2(x(n)− x(k−m−1)) n−m+2 ≤ i ≤ n+1,

and ξi =
(

x(i−m)+ · · ·+ x(i+m−1)

)

/2m. H0 is rejected for large values of TEmn. (See

Park, 2003).

5. Nonparametric distribution function of Alizadeh and Arghami estimator (Alizadeh Noughabi

and Arghami, 2010, 2013):

TAmn = log

√

2πσ̂2
a +0.5−HAmn,

where

HAmn =
1

n

n
∑

i=1

ln

{

n

aim

(

X(i+m)−X(i−m)

)

}

,

with ai = I[1,m](i)+2I[m+1,n−m](i)+ I[n−m+1,n](i), σ̂
2
a = Varga(X) and

ga(x) =

{

0 x < η1 or x > ηn+1,

1
n(ηi+1−ηi)

ηi < x ≤ ηi+1 i = 1, . . . ,n,

with

ηi =















ξm+1 − 1
m

∑m
k=i(x(m+k)− x(1)) 1 ≤ i ≤ m,

1
2m

(

x(i−m)+ · · ·+ x(i+m−1)

)

m+1 ≤ i ≤ n−m+1,

ξn−m+1 +
1
m

∑i
k=n−m+2(x(n)− x(k−m−1)) n−m+2 ≤ i ≤ n+1,

and ξi =
(

x(i−m)+ · · ·+ x(i+m−1)

)

/2m. Also m = [
√

n+1]. H0 is rejected for large

values of TAmn. The upper-tail 5%-significance values of TA for n = 10,20 and 50

are 0.4422, 0.2805 and 0.1805, respectively.

6. Dimitriev and Tarasenko’s entropy estimator (Dimitriev and Tarasenko, 1973):

TDmn =
exp{HDmn}

s
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where

HDmn =−
∞
∫

−∞

ln( f̂ (x)) f̂ (x) dx,

where f̂ (x) is the kernel density estimation of f (x) given by

f̂ (Xi) =
1

nh

n
∑

j=1

k

(

Xi −X j

h

)

, (8)

where k is a kernel function satisfying
∫ ∞

−∞
k(x) dx = 1 and h is a bandwidth. The

kernel function k being the standard normal density function and the bandwidth

h = 1.06σ̂n−1/5. H0 is rejected for small values of TDmn.

7. Corea’s entropy estimator (Corea, 1995):

TCmn =
exp{HCmn}

s
,

where

HCmn =−1

n

n
∑

i=1

ln

{

∑i+m
j=i−m

(

X( j)− X̃(i)

)

( j− i)

n
∑i+m

j=i−m

(

X( j)− X̃(i)

)2

}

and X̃(i) =
∑i+m

j=i−m X( j)/(2m+1). H0 is rejected for small values of TCmn.

8. Van Es’s entropy estimator (Van Es, 1992):

TEsmn =
exp{HEsmn}

s
,

where

HEsmn =
1

n−m

n−m
∑

i=1

{

ln

(

n+1

m
(X(i+m)−X(i))

)}

+
n

∑

k=m

1

k
+ ln(m)− ln(n+1).

H0 is rejected for small values of TEsmn.

9. Zamanzade and Arghami’s entropy estimator (Zamanzade and Arghami, 2012):

TZ1mn =
exp{HZ1mn}

s
,



Hamzeh Torabi, Narges H. Montazeri and Aurea Grané 65

where HZ1mn =
1
n

∑n
i=1 ln(bi), with

bi =
X(i+m)−X(i−m)

∑k2(i)−1

j=k1(i)
( f̂ (X( j+1))+ f̂ (X( j)))(X( j+1)−X( j))/2

(9)

where f̂ is defined as in (8) with the kernel function k being the standard normal

density function and the bandwidth h = 1.06σ̂n−1/5. H0 is rejected for small values

of TZ1. For n = 10,20 and 50, the lower-tail 5%-significance critical values are

3.403, 3.648 and 3.867.

10. Zamanzade and Arghami’s entropy estimator (Zamanzade and Arghami, 2012):

TZ2mn =
exp{HZ2mn}

s
,

where HZ2mn =
∑n

i=1 wi ln(bi), being coefficients bi’s were defined in (9) and

wi =















(m+ i−1)/
∑n

i=1 wi 1 ≤ i ≤ m,

2m/
∑n

i=1 wi m+1 ≤ i ≤ n−m,

(n− i+m)/
∑n

i=1 wi n−m+1 ≤ i ≤ n,

i = 1, . . . ,n,

are weights proportional to the number of points used in computation of bi’s. H0

is rejected for small values of TZ2. For n = 10,20 and 50, the lower-tail 5%-

significance critical values are 3.321, 3.520 and 3.721.

11. Zhang and Wu’s statistics (Zhang and Wu, 2005):

ZK = max
1≤i≤n

[

(i−0.5) ln
i−0.5

nF0(Z(i))
+(n− i+0.5) ln

n− i+0.5

n(1−F0(Z(i)))

]

,

ZC =
n

∑

i=1

(

log
(1/F0(Z(i))−1)

(n−0.5)/(i−0.75)−1

)2

,

and

ZA =−
n

∑

i=1

(

logF0(Z(i))

n− i+0.5
+

log(1−F0(Z(i))

i−0.5

)

,

The null hypothesis H0 is rejected for large values of the three test statistics.
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12. Classical test statistics for normality based skewness and kurtosis from D’Agostino

and Pearson (D’Agostino and Pearson, 1973):

√

b1 =
m3

(m2)3/2
, b2 =

m4

(m2)2
,

The null hypothesis H0 is rejected for both small and large values of the two test

statistics.

13. Transformed skewness and kurtosis statistic from D’Agostino et al. (1990):

K2 =
[

Z(
√

b1)
]2

+[Z(b2)]
2 ,

where

Z(
√

b1) =
log(Y/c+

√

(Y/c)2 +1)
√

log(w)
,

Z(b2) =

[

(

1− 2

9A

)

− 3

√

1−2/A

1+ y
√

2/(A−4)

]

√

9A

2
,

where

c1 = 6+8/c2(2/c2 +
√

1+4/c2
2),

c2 = (6(n2 −5n+2)/(n+7)(n+9))
√

6(n+3)(n+5)/n(n−2)(n−3),

c3 = (b2 −3(n−1)/(n+1))/
√

24n(n−2)(n−3)/(n+1)2(n+3)(n+5).

and

Y =
√

b1

√

(n+1)(n+3)

6(n−2)
, w2 =

√

2β2 −1−1,

β2 =
3(n2 +27n−70)(n+1)(n+3)

(n−2)(n+5)(n+7)(n+9)
; c =

√

2

(w2 −1)
.

Transformed skewness Z(
√

b1) and transformed kurtosis Z(b2) is obtained by

D’Agostino (1970) and Anscombe and Glynn (1983), respectively. The null hy-

pothesis H0 is rejected for large values of K2.
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14. Transformed skewness and kurtosis statistic by Doornik and Hansen (1994):

DH =
[

Z(
√

b1)
]2

+ z2
2,

where

z2 =

[

(

ξ

2a

)1/3

−1+
1

9a

]

√
9a,

and

ξ = (b2 −1−b1)2k,

k =
(n+5)(n+7)(n3+37n2 +11n−313)

12(n−3)(n+1)(n2+15n−4)
,

a =
(n+5)(n+7)

(

(n−2)(n2+27n−70)+b1(n−7)(n2+2n−5)
)

6(n−3)(n+1)(n2+15n−4)
,

Transformed kurtosis z2 is obtained by Shenton and Bowman (1977). The null

hypothesis H0 is rejected for large values of DH.

15. Bonett and Seier’s statistic (Bonett and Seier, 2002):

Zw =

√
n+2(ŵ−3)

3.54
,

where ŵ = 13.29
(

ln
√

m2 − log
(

n−1
∑n

i=1 |xi − x̄|
))

. H0 is rejected for both small

and large values of Zw.

16. D’Agostino’s statistic (D’Agostino, 1971):

D =

∑n
i=1(i− (n+1)/2)X(i)

n2

√

∑n
i=1

(

x(i)− X̄
)2

,

H0 is rejected for both small and large values of D.

17. Chen and Shapiro’s statistic (Chen and Shapiro, 1995):

QH =
1

(n−1)s

n−1
∑

i=1

X(i+1)−X(i)

M(i+1)−M(i)
,
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where Mi = Φ−1((i−0.375)/(n+0.25)), where Φ is the cdf of a standard normal

random variable. H0 is rejected for small values of QH.

18. Filliben’s statistic (Filliben, 1975):

r =

∑n
i=1 x(i)M(i)

√

∑n
i=1 M2

(i)

√

(n−1)s2
,

where M(i)=Φ−1(m(i)) and m(1) = 1−0.51/n, m(n) = 0.51/n and m(i) =(i−0.3175)/(n+
0.365) for i = 2, . . . ,n−1. H0 is rejected for small values of r.

19. del Barrio et al.’s statistic (del Barrio et al., 1999):

Rn = 1−

(

∑n
k=1 X(k)

∫ k/n

(k−1)/n
F−1

0 (t) dt

)2

m2

,

where m2 is the sample standardized second moment. H0 is rejected for large val-

ues of Rn.

20. Epps and Pulley statistic (Epps and Pulley, 1983):

TEP =
1√
3
+

1

n2

n
∑

k=1

n
∑

j=1

exp

(−(X j −Xk)
2

2m2

)

−
√

2

n

n
∑

j=1

exp

(−(X j − X̄)2

4m2

)

,

where m2 is the sample standardized second moment. H0 is rejected for large val-

ues of TEP.

21. Martinez and Iglewicz’s statistic (Martinez and Iglewicz, 1981):

In =

∑n
i=1(Xi−M)2

(n−1)S2
b

,

where M is is the sample median and

S2
b =

n
∑

|Z̃i|<1(Xi −M)2(1− Z̃2
i )

4

(

∑

|Z̃i|<1(1− Z̃2
i )(1−5Z̃2

i )
)2

,

with Z̃i = (Xi−M)/(9A) for |Z̃i|< 1 and Z̃i = 0 otherwise, and A is the median of

|Xi −M|. H0 is rejected for large values of In.
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22. deWet and Venter statistic (de Wet and Venter, 1972):

En =
n

∑

i=1

(

X(i)− X̄ − sΦ−1

(

i

n+1

))2/

s2.

H0 is rejected for large values of En.

23. Optimal test (Csörgo and Révész, 1971):

Mn =
n

∑

i=1

(

X(i)− X̄ − sΦ−1

(

i

n+1

))2

φ

(

Φ−1

(

i

n+1

))[

Φ−1

(

i

n+1

)]λ−1

.

H0 is rejected for large values of Mn.

24. Pettitt statistic (Pettitt, 1977):

Qn =

n
∑

i=1

(

Φ

(

X(i)− X̄

s

)

− i

n+1

)2 [

φ

(

Φ−1

(

i

n+1

))]−2

.

H0 is rejected for large values of Qn.

25. Three test statistics from LaRiccia (1986):

T1n =C2
1n/(s

2B1n), T2n =C2
2n/(s

2B2n), T3n = T1n +T2n,

where

C1n =
1√
n

n
∑

i=1

[

W1

(

i

n+1

)

−A1n

]

X(i),

C2n =
1√
n

n
∑

i=1

[

W2

(

i

n+1

)

−A2nΦ−1

(

i

n+1

)]

X(i),

Also W1(u)= [Φ−1(u)]2−1 and W2(u)= [Φ−1(u)]3−3Φ−1(u). The constants A1n,

A2n, B1n and B2n are given in Table 1 from LaRiccia (1986). For all three statistics

H0 is rejected for large value.

26. Kolmogorov-Smirnov’s (Lilliefors) statistic (Kolmogorov, 1933):

KS = max

{

max
1≤ j≤n

[

j

n
−F0(Z( j))

]

, max
1≤ j≤n

[

F0(Z( j))−
j−1

n

]}

.
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Lilliefors (1967) computed estimated critical points for the Kolmogorov-Smirnov’s

test statistic for testing normality when mean and variance estimated.

27. Kuiper’s statistic (Kuiper, 1962):

V = max
1≤ j≤n

[

j

n
−F0(Z( j))

]

+ max
1≤ j≤n

[

F0(Z( j))−
j−1

n

]

.

Louter and Kort (1970) computed estimated critical points for the Kuiper test

statistic for testing normality when mean and variance estimated.

28. Cramér-von Mises’ statistic (Cramér, 1928 and von Mises, 1931):

W2 =
1

12n
+

n
∑

j=1

(

F0(Z( j))−
2 j−1

2n

)2

.

29. Watson’s statistic (Watson, 1961):

U2 = W2 −n





1

n

n
∑

j=1

F0(Z( j))−
1

2





2

.

30. Anderson-Darling’s statistic (Anderson, 1954):

A2 =−n− 1

n

n
∑

i=1

(2i−1)
(

log(F0(Z(i)))+ log
(

1−F0(Z(n−i+1))
))

.

These classical tests are based on the empirical distribution function and H0 is

rejected for large values of KS, V, W2, U2 and A2.

31. Pearson’s chi-square statistic (D’Agostino and Stephens, 1986):

P =
∑

i

(Ci −Ei)
2/Ei,

where Ci is the number of counted and Ei is the number of expected observations

(under H0) in class i. The classes are build is such a way that they are equiprobable

under the null hypothesis of normality. The number of classes used for the test is

⌈2n2/5⌉ where ⌈.⌉ is ceiling function.
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32. Shapiro-Wilk’s statistic (Shapiro and Wilk, 1965):

SW =

(

∑[n/2]
i=1 a(n−i+1)

(

X(n−i+1)−X(i)

)

)2

∑n
i=1

(

X(i)− X̄
)2

,

where coefficients ai’s are given by

(a1, . . . ,an) =
mTV−1

(mTV−1V−1m)1/2
, (10)

and mT = (m1, . . . ,mn) and V are, respectively, the vector of expected values and

the covariance matrix of the order statistic of n iid random variables sampled from

the standard normal distribution. H0 is rejected for small values of SW.

33. Shapiro-Francia’s statistic (Shapiro and Francia, 1972) is a modification of SW. It

is defined as

SF =

(
∑n

i=1 biX(i)

)2

∑n
i=1(X(i)− X̄)2

,

where

(b1, . . . ,bn) =
mT

(mT m)1/2

and m is defined as in (10). H0 is rejected for small values of SF.

34. SJ statistic discussed in Gel, Miao and Gastwirth (2007). It is based on the ratio

of the classical standard deviation σ̂ and the robust standard deviation Jn (average

absolute deviation from the median (MAAD)) of the sample data

SJ =
s

Jn

, (11)

where Jn =
√

π
2

1
n

∑n
i=1 |Xi −M| and M is the sample median. H0 is rejected for

large values of SJ.

35. Jarque-Bera’s statistic (Jarque and Bera, 1980, 1987):

JB =
n

6
b1 +

n

24
(b2 −3)2 ,
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where
√

b1 and b2 are the sample skewness and sample kurtosis, respectively. H0

is rejected for large values of JB.

36. Robust Jarque-Bera’s statistic (Gel and Gastwirth, 2008):

RJB =
n

C1

(

m3

J3
n

)2

+
n

C2

(

m4

J4
n

−3

)2

,

where Jn is defined as in (11), C1 and C2 are positive constants. For a 5%-significance

level, C1 = 6 and C2 = 64 according to Monte Carlo simulations. H0 is rejected for

large values of RJB.

5. Simulation study

In this section we study the power of the normality test based on Hn and compare it

with a large number of recent and classical normality tests. To facilitate comparisons of

the power of the present test with the powers of the mentioned tests, we select two sets

of alternative distributions:

Set 1. Alternatives listed in in Esteban et al. (2001).

Set 2. Alternatives listed in Gan and Koehler (1990) and Krauczi (2009).

Set 1 of alternative distributions

Following Esteban et al. (2001) we consider the following alternative distributions, that

can be classified in four groups:

Group I: Symmetric distributions with support on (−∞,∞):

• Standard Normal (N);

• Student’s t (t) with 1 and 3 degrees of freedoms;

• Double Exponential (DE) with parameters µ= 0 (location) and σ= 1 (scale);

• Logistic (L) with parameters µ= 0 (location) and σ = 1 (scale);

Group II: Asymmetric distributions with support on (−∞,∞):

• Gumbel (Gu) with parameters α= 0 (location) and β = 1 (scale);

• Skew Normal (SN) with with parameters µ= 0 (location), σ = 1 (scale) and

α= 2 (shape);



Hamzeh Torabi, Narges H. Montazeri and Aurea Grané 73

Group III: Distributions with support on (0,∞):

• Exponential (Exp) with mean 1;

• Gamma (G) with parameters β = 1 (scale) and α= .5,2 (shape);

• Lognormal (LN) with parameters µ= 0 and σ = .5,1,2;

• Weibull (W) with parameters β = 1 (scale) and α= .5,2 (shape);

Group IV: Distributions with support on (0,1):

• Uniform (Unif);

• Beta (B) with parameters (2,2), (.5,.5), (3,1.5) and (2,1).

Set 2 of alternative distributions

Gan and Koehler (1990) and Krauczi (2009) considered a battery of “difficult alterna-

tives” for comparing normality tests. We also consider them in order to evaluate the

sensitivity of the proposed test. Let U and Z denote a [0,1]-Uniform and a Standard

Normal random variable, respectively.

• Contaminated Normal distribution (CN) with parameters (λ,µ1,µ2,σ) given by

the cdf F(x) = (1−λ)F0(x,µ1,1)+λF0(x,µ2,σ);

• Half Normal (HN) distribution, that is, the distribution of |Z|.

• Bounded Johnson’s distribution (SB) with parameters (γ,δ) of the random variable

e(Z−γ)/δ/(1+ e(Z−γ)/δ);

• Unbounded Johnson’s distribution (UB) with parameters (γ,δ) of the random vari-

able sinh((Z−γ)/δ);

• Triangle type I (Tri) with density function f (x) = 1−|t|,−1 < t < 1;

• Truncated Standard Normal distribution at a and b (TN);

• Tukey’s distribution (Tu) with parameter λ of the random variable Uλ− (1−U)λ.

• Cauchy distribution with parameters µ= 0 (location), σ = 1 (scale).

• Chi-squared distribution χ2 with k degrees of freedom.

Tables 2-3 contain the skewness (
√
β1) and kurtosis (β2) of the previous sets of alter-

native distributions. Alternatives in Set 2 are roughly ordered and grouped in five groups

according to their skewness and kurtosis values in Table 3. These groups correspond

to: symmetric short tailed, symmetric closed to normal, asymmetric short tailed, asym-

metric long tailed. Figure 2 illustrates some of the possible shapes of the pdf’s of the

alternatives in Set 1 and Set 2.
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Figure 2: Plots of alternative distributions in Set 1 and Set 2.

Tables 4-5 contain the estimated value of Hn (for h(x) = (x−1)2/(x+1)2 and h(x) =

x log(x)−x+1, respectively), for each alternative distribution, computed as the average

value from 10000 simulated samples of sizes n = 10,20,50,100,1000. In the last row of

these tables (n = ∞)), we show the value of D(F0,F1) computed with the the command

integrate in R Software, with (µ) and (σ2) being the expectation and variance of F1,

respectively. These tables show consistency of the test statistic Hn.

Tables 6-7 report the power of the 5% significance level of forty normality tests based

on the statistics considered in Section 4 for the Set 1 of alternatives.

Tables 8-9 contain the power of the 5% significance level test of normality based on

the most powerful statistics and the alternatives listed in Set 2.
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T
a
b
le

6
:

P
o
w

er
co

m
p
a
ri

so
n
s

fo
r

th
e

n
o
rm

a
li

ty
te

st
fo

r
S

et
1

o
f

a
lt

er
n
a
ti

ve
d
is

tr
ib

u
ti

o
n
s,
α
=

0
.0

5
,

n
=

1
0
.

G
ro

u
p

I
II

II
I

IV

al
te

rn
.

N
t(

1
)

t(
3
)

L
D

E
G

u
S

N
E

x
p

G
(2

)
G

(.
5
)

L
N

(1
)

L
N

(2
)

L
N

(.
5
)

W
(.

5
)

W
(2

)
U

n
if

B
(2

,2
)

B
(.

5
,.

5
)

B
(3

,.
5
)

B
(2

,1
)

1
K

L
.0

4
8

.4
4
2

.0
9
1

.0
5
1

.0
9
1

.1
0
1

.0
5
8

.4
1
6

.1
7
9

.7
8
2

.5
5
2

.9
3
8

.1
8
1

.9
3
1

.0
7
5

.1
6
7

.0
8
2

.5
1
2

.1
0
8

.1
7
3

2
T

V
.0

4
8

.3
7
5

.0
8
2

.0
4
8

.0
5
3

.0
9
2

.0
5
5

.3
9
7

.1
5
1

.7
6
2

.5
1
9

.9
3
3

.1
4
4

.9
2
3

.0
7
3

.1
8
1

.0
8
4

.5
1
4

.6
5
6

.1
7
0

3
T

E
.0

5
2

.4
6
0

.1
1
2

.0
5
8

.0
7
7

.1
1
1

.0
5
9

.4
5
4

.1
8
5

.7
9
4

.5
8
1

.9
4
5

.1
8
1

.9
3
5

.0
7
4

.1
5
8

.0
7
1

.4
8
1

.6
8
6

.1
6
4

4
T

A
.0

5
3

.5
0
7

.1
3
4

.0
6
5

.0
9
4

.1
2
4

.0
6
2

.4
7
7

.2
1
3

.8
1
0

.6
1
6

.9
5
1

.2
0
8

.9
4
0

.0
8
0

.1
2
9

.0
6
4

.4
5
1

.7
0
4

.1
6
2

5
T

D
.0

5
1

.5
8
3

.2
0
1

.0
8
7

.1
6
3

.1
5
4

.0
7
1

.3
9
4

.2
2
2

.6
3
1

.5
6
5

.8
6
9

.2
4
9

.8
1
3

.0
7
6

.0
2
8

.0
2
5

.0
8
0

.0
6
5

.0
9
3

6
T

C
.0

5
4

.4
0
9

.0
8
3

.0
4
7

.0
5
7

.0
9
7

.0
5
3

.4
0
4

.1
7
3

.7
8
6

.5
4
2

.9
3
6

.1
7
1

.9
2
6

.0
7
1

.1
7
0

.0
8
6

.4
8
9

.1
1
0

.1
8
2

7
T

E
s

.0
4
9

.5
9
1

.1
6
7

.0
7
4

.1
4
0

.1
1
3

.0
6
2

.3
3
0

.1
5
8

.6
7
9

.4
8
5

.8
9
2

.1
7
6

.8
7
6

.0
6
4

.0
6
1

.0
3
7

.2
3
8

.0
6
4

.0
9
2

8
T

Z
1

.0
5
3

.6
3
2

.2
1
2

.0
8
9

.1
7
7

.1
4
5

.0
6
8

.3
5
9

.2
0
9

.5
8
1

.5
2
4

.8
4
6

.2
2
9

.7
8
4

.0
7
4

.0
3
0

.0
2
5

.0
7
8

.0
6
1

.0
8
1

9
T

Z
2

.0
5
1

.6
3
8

.2
1
6

.0
9
1

.1
8
1

.1
4
4

.0
6
6

.3
5
3

.2
0
5

.5
7
2

.5
1
6

.8
4
0

.2
2
8

.7
7
6

.0
7
3

.0
2
6

.0
2
3

.0
6
0

.0
5
8

.0
7
6

1
0

Z
K

.0
5
5

.5
8
7

.1
7
4

.0
7
5

.1
5
4

.1
2
6

.0
7
1

.3
5
2

.1
8
0

.6
3
6

.5
0
9

.8
8
5

.1
9
2

.8
4
2

.0
7
9

.0
7
8

.0
5
3

.2
2
1

.5
1
0

.1
0
9

1
1

Z
C

.0
5
3

.5
8
0

.1
8
3

.0
7
9

.1
5
4

.1
5
7

.0
7
4

.4
5
0

.2
4
5

.7
4
0

.6
0
6

.9
2
6

.2
4
8

.8
9
8

.0
8
9

.0
9
4

.0
4
4

.3
3
6

.6
2
1

.1
3
0

1
2

Z
A

.0
5
3

.6
0
8

.1
9
9

.0
8
3

.1
6
7

.1
6
2

.0
7
1

.4
5
7

.2
4
6

.7
4
4

.6
1
2

.9
2
8

.2
5
5

.9
0
1

.0
8
6

.0
5
0

.0
3
2

.2
0
4

.6
2
1

.1
1
5

1
3

√
b

1
.0

5
7

.5
8
7

.2
1
9

.0
9
6

.1
8
4

.1
6
5

.0
7
3

.3
7
2

.2
2
6

.5
5
7

.5
3
2

.9
2
8

.2
4
7

.7
5
1

.0
8
8

.0
1
9

.0
2
4

.0
3
5

.4
3
7

.0
8
3

1
4

b
2

.0
5
3

.5
3
6

.1
7
0

.0
7
3

.1
3
6

.1
1
3

.0
6
0

.2
2
7

.1
4
8

.3
4
0

.3
5
3

.9
0
7

.1
5
9

.5
0
8

.0
7
2

.1
1
5

.0
5
7

.2
7
0

.2
3
5

.0
9
2

1
5

K
2

.0
5
8

.5
9
2

.2
2
0

.0
9
6

.1
9
0

.1
5
4

.0
7
3

.3
1
4

.1
9
7

.4
6
7

.4
6
4

.7
5
4

.2
2
1

.6
6
2

.0
8
2

.0
2
0

.0
2
1

.0
6
5

.3
3
6

.0
6
7

1
6

D
H

.0
5
5

.6
2
5

.2
0
7

.0
8
4

.1
8
3

.1
3
0

.0
6
7

.3
4
4

.1
8
3

.5
9
0

.5
0
7

.8
6
0

.1
9
5

.7
9
7

.0
6
9

.0
7
1

.0
3
7

.2
3
8

.4
6
7

.0
9
3

1
7

Z
w

.0
5
5

.5
0
1

.1
5
0

.0
6
8

.1
3
0

.0
7
5

.0
8
8

.1
2
5

.0
9
1

.1
8
1

.2
1
0

.4
1
6

.0
9
7

.3
1
1

.0
5
5

.1
0
0

.0
5
6

.2
1
5

.1
2
3

.0
7
3

1
8

D
.0

5
1

.5
8
4

.1
7
5

.0
7
1

.1
4
2

.1
1
1

.0
6
0

.2
7
0

.1
4
6

.4
7
8

.4
3
4

.7
9
9

.1
6
8

.7
1
7

.0
6
4

.0
4
2

.0
4
4

.0
3
9

.3
3
5

.0
6
1

1
9

Q
H

.0
5
3

.5
9
8

.1
8
9

.0
8
1

.1
5
9

.1
6
0

.0
7
5

.4
5
5

.2
4
5

.7
4
2

.6
0
9

.9
2
8

.2
5
0

.9
0
1

.0
9
0

.0
9
4

.0
4
6

.3
2
1

.6
2
5

.1
3
5

2
0

r
.0

5
4

.6
3
5

.2
1
4

.0
8
8

.1
8
7

.1
6
0

.0
7
4

.4
2
1

.2
3
1

.6
9
2

.5
7
8

.9
0
7

.2
4
5

.8
6
8

.0
8
9

.0
4
2

.0
3
1

.1
6
4

.5
6
1

.0
9
9

2
1

R
n

.0
5
4

.6
0
9

.1
9
6

.0
8
3

.1
6
7

.1
6
2

.0
7
5

.4
4
8

.2
4
4

.7
3
3

.6
0
4

.9
2
4

.2
5
1

.8
9
4

.0
9
0

.0
7
7

.0
4
2

.2
7
6

.6
1
3

.1
2
5

2
2

T
E

P
.0

5
3

.6
0
2

.2
0
0

.0
8
8

.1
7
0

.1
6
7

.0
7
7

.4
2
7

.2
4
4

.6
6
3

.5
8
7

.8
9
1

.2
5
6

.8
4
2

.0
7
0

.0
5
4

.0
4
0

.1
5
2

.5
3
8

.1
1
5

2
3

I n
.0

5
5

.1
5
7

.1
5
1

.0
8
4

.1
5
1

.1
2
0

.0
6
6

.2
0
9

.1
4
9

.1
9
9

.2
1
5

.1
0
0

.1
5
1

.1
3
4

.0
7
0

.0
2
4

.0
2
5

.0
4
3

.2
0
7

.0
6
5

2
4

E
n

.0
5
5

.6
3
8

.2
1
8

.0
8
9

.1
9
3

.1
5
8

.0
7
3

.4
0
7

.2
2
6

.6
7
0

.5
6
7

.8
9
8

.2
4
0

.8
5
2

.0
8
2

.0
3
5

.0
2
8

.1
2
6

.5
3
6

.0
9
1

2
5

M
n

.0
5
4

.6
3
1

.2
2
6

.0
9
5

.1
9
8

.1
4
7

.0
7
1

.3
2
6

.1
8
9

.5
2
4

.4
8
4

.8
0
8

.2
1
4

.7
3
3

.0
7
3

.0
1
4

.0
2
0

.0
2
9

.3
8
5

.0
6
1

2
6

Q
n

.0
5
3

.6
0
4

.1
7
5

.0
7
4

.1
5
2

.1
4
1

.0
7
1

.4
2
6

.2
2
0

.7
2
8

.5
8
5

.9
2
3

.2
2
2

.8
9
4

.0
8
1

.0
9
4

.0
5
1

.2
8
5

.6
1
0

.1
3
0

2
7

T
1
n

.0
5
4

.5
1
6

.1
7
9

.0
8
3

.1
4
5

.1
7
3

.0
7
2

.4
7
5

.2
6
4

.7
2
6

.6
2
6

.9
1
8

.2
7
4

.8
8
4

.0
9
5

.0
3
6

.0
3
0

.0
9
3

.6
0
5

.1
1
4

2
8

T
2
n

.0
5
3

.5
5
5

.1
6
8

.0
7
2

.1
5
5

.0
7
5

.0
5
5

.1
0
6

.0
7
5

.1
6
7

.2
0
6

.4
5
3

.0
8
8

.3
2
6

.0
4
9

.0
9
0

.0
4
6

.2
8
4

.1
0
5

.0
6
0

2
9

T
3
n

.0
5
7

.6
4
7

.2
2
5

.0
9
3

.2
0
4

.1
4
6

.0
7
0

.3
6
0

.1
9
9

.6
2
5

.5
1
8

.8
8
2

.2
1
6

.8
3
1

.0
7
4

.0
3
9

.0
2
6

.2
0
3

.4
8
7

.0
7
6

3
0

K
S

.0
5
3

.5
8
1

.1
6
4

.0
7
3

.1
4
8

.1
2
4

.0
7
2

.3
1
2

.1
7
0

.5
4
5

.4
6
9

.8
2
8

.1
8
2

.7
6
1

.0
7
8

.0
6
6

.0
5
1

.1
6
3

.4
2
4

.1
0
3

3
1

V
.0

5
0

.5
9
3

.1
6
3

.0
7
1

.1
4
3

.1
1
9

.0
6
5

.3
6
5

.1
8
0

.6
6
2

.5
3
0

.8
9
4

.1
8
8

.8
5
6

.0
7
4

.0
8
7

.0
5
4

.2
4
0

.5
4
0

.1
0
8

3
2

W
2

.0
5
2

.6
2
4

.1
8
6

.0
8
0

.1
6
4

.1
4
3

.0
7
3

.3
9
6

.2
1
0

.6
7
4

.5
6
2

.8
9
8

.2
2
0

.8
6
0

.0
8
2

.0
8
3

.0
5
0

.2
3
6

.5
5
2

.1
1
6

3
3

U
2

.0
5
2

.6
1
8

.1
7
8

.0
7
6

.1
5
9

.1
3
5

.0
7
1

.3
8
2

.2
0
0

.6
6
1

.5
4
7

.8
9
3

.2
1
1

.8
5
3

.0
8
1

.0
9
1

.0
5
6

.2
6
0

.5
4
0

.1
2
0

3
4

A
2

.0
5
1

.6
1
9

.1
9
0

.0
8
3

.1
6
5

.1
4
7

.0
7
3

.4
1
7

.2
2
5

.6
7
0

.5
7
8

.9
1
1

.2
3
3

.8
7
7

.0
8
5

.0
8
6

.0
4
8

.2
6
8

.5
8
0

.1
2
6

3
5

P
.0

4
2

.5
3
1

.1
4
8

.0
8
3

.1
3
6

.1
2
7

.0
8
0

.3
9
7

.2
0
0

.7
0
4

.5
4
5

.9
0
3

.1
9
9

.8
7
8

.0
8
7

.0
8
6

.0
6
1

.2
2
9

.5
9
4

.1
3
6

3
6

S
W

.0
5
2

.5
9
7

.1
8
7

.0
8
2

.1
5
9

.1
5
9

.0
7
5

.4
5
1

.2
4
5

.7
4
0

.6
0
8

.9
2
7

.2
4
8

.8
9
9

.0
8
8

.0
9
0

.0
4
5

.3
1
2

.6
2
2

.1
3
3

3
7

S
F

.0
5
4

.6
3
1

.2
1
4

.0
8
8

.1
8
5

.1
6
1

.0
7
4

.4
2
6

.2
3
4

.7
0
1

.5
8
4

.9
1
2

.2
4
8

.8
7
2

.0
8
5

.0
4
7

.0
3
3

.1
8
3

.5
7
1

.1
0
4

3
8

S
J

.0
5
5

.6
5
5

.2
1
7

.0
9
6

.2
1
1

.1
2
1

.0
6
8

.2
5
3

.1
4
7

.4
2
9

.4
1
6

.7
5
6

.1
7
6

.6
6
0

.0
6
0

.0
1
2

.0
2
1

.0
2
2

.2
8
5

.0
4
6

3
9

JB
.0

5
9

.6
0
0

.2
2
3

.0
9
6

.1
9
2

.1
4
9

.0
7
5

.3
5
2

.2
1
9

.5
3
2

.5
1
1

.8
0
4

.2
4
2

.7
3
1

.0
8
7

.0
1
6

.0
2
1

.0
2
9

.3
9
6

.0
7
3

4
0

R
JB

.0
5
6

.6
4
4

.2
2
8

.0
9
7

.2
0
5

.1
6
5

.0
7
2

.4
8
5

.1
8
9

.5
0
4

.4
7
0

.7
8
4

.2
1
4

.7
0
0

.0
7
6

.0
1
5

.0
2
1

.0
2
5

.3
4
5

.0
6
1

h
2

H
n

.0
5
1

.5
9
6

.1
7
3

.0
7
4

.1
5
0

.1
9
0

.0
9
1

.5
0
4

.2
8
5

.7
8
0

.6
5
9

.9
4
0

.2
9
0

.9
1
8

.1
1
4

.0
7
4

.0
4
6

.2
1
8

.3
3
1

.0
5
4

h
1

H
n

.0
5
1

.5
8
7

.1
6
9

.0
7
3

.1
4
4

.1
9
9

.0
9
5

.5
1
6

.2
9
6

.7
8
4

.6
6
5

.9
4
2

.3
0
1

.9
2
0

.1
1
9

.0
7
9

.0
4
9

.2
2
0

.3
0
0

.0
4
7



78 A test for normality based on the empirical distribution function

T
a
b
le

7
:

P
o
w

er
co

m
p
a
ri

so
n
s

fo
r

th
e

n
o
rm

a
li

ty
te

st
fo

r
S

et
1

o
f

a
lt

er
n
a
ti

ve
d
is

tr
ib

u
ti

o
n
s,
α
=

0
.0

5
,

n
=

2
0
.

G
ro

u
p

I
II

II
I

IV

al
te

rn
.

N
t(

1
)

t(
3
)

L
D

E
G

u
S

N
E

x
p

G
(2

)
G

(.
5
)

L
N

(1
)

L
N

(2
)

L
N

(.
5
)

W
(.

5
)

W
(2

)
U

n
if

B
(2

,2
)

B
(.

5
,.

5
)

B
(3

,.
5
)

B
(2

,1
)

1
K

L
.0

4
5

.7
3
7

.1
6
5

.0
5
1

.0
9
1

.1
9
8

.0
7
3

.8
4
6

.4
5
7

.9
9
2

.9
2
7

.9
9
9

.4
0
4

1
.0

0
.1

3
2

.4
4
2

.1
3
1

.9
1
4

.2
2
4

.4
3
8

2
T

V
.0

4
7

.6
8
4

.1
2
1

.0
4
6

.0
6
2

.1
7
6

.0
6
7

.8
3
0

.4
2
9

.9
9
2

.9
1
0

1
.0

0
.3

6
4

1
.0

0
.1

2
6

.4
4
3

.1
3
6

.9
1
0

.9
8
0

.4
2
8

3
T

E
.0

4
7

.7
8
6

.2
0
5

.0
6
4

.1
2
9

.2
3
7

.0
7
9

.8
6
5

.5
0
8

.9
9
3

.9
3
4

1
.0

0
.4

4
5

1
.0

0
.1

4
3

.3
9
1

.1
1
2

.8
9
1

.9
8
4

.4
2
3

4
T

A
.0

4
8

.8
5
8

.3
0
1

.0
9
5

.2
2
9

.2
7
9

.1
0
1

.8
7
0

.5
3
3

.9
9
3

.9
3
7

1
.0

0
.4

8
5

1
.0

0
.1

4
5

.2
5
8

.0
6
4

.8
2
4

.9
8
3

.3
5
8

5
T

D
.0

4
9

.8
7
2

.3
7
1

.1
3
4

.3
0
4

.3
1
0

.1
0
2

.7
9
0

.5
0
7

.9
5
9

.9
0
9

.9
9
7

.5
1
7

.9
9
5

.1
4
8

.0
8
4

.0
2
8

.4
0
8

.1
2
9

.2
2
1

6
T

C
.0

4
7

.6
8
7

.1
3
8

.0
4
3

.0
7
0

.1
8
5

.0
7
6

.8
3
6

.4
4
3

.9
9
1

.9
1
9

.9
9
9

.3
8
6

.9
9
9

.1
3
3

.4
3
8

.1
3
5

.9
0
2

.2
2
5

.4
3
2

7
T

E
s

.0
5
4

.8
7
1

.3
3
0

.1
1
4

.2
7
1

.1
9
5

.0
7
3

.6
4
6

.3
2
2

.9
5
5

.8
2
5

.9
9
7

.3
6
0

.9
9
7

.0
8
9

.0
7
6

.0
2
7

.4
6
0

.0
6
9

.1
3
1

8
T

Z
1

.0
5
6

.8
8
5

.3
7
7

.1
3
3

.3
0
9

.2
9
4

.0
9
9

.7
4
5

.4
5
9

.9
4
7

.8
9
5

.9
9
6

.4
7
0

.9
9
4

.1
2
3

.0
9
9

.0
2
8

.4
4
2

.1
1
4

.2
0
0

9
T

Z
2

.0
6
2

.9
0
0

.4
0
2

.1
4
7

.3
4
4

.2
8
2

.0
9
6

.6
8
8

.4
1
6

.9
1
5

.8
6
5

.9
9
4

.4
4
5

.9
8
7

.1
1
0

.0
2
8

.0
1
3

.1
4
5

.0
7
9

.1
3
0

1
0

Z
K

.0
5
5

.8
6
1

.3
0
8

.1
0
9

.2
5
2

.2
5
1

.0
8
8

.7
9
7

.4
3
8

.9
8
3

.9
0
6

.9
9
2

.4
2
3

.9
9
9

.1
1
8

.1
3
2

.0
5
4

.5
1
2

.9
5
2

.2
5
3

1
1

Z
C

.0
5
0

.8
4
4

.3
3
3

.1
2
1

.2
4
9

.3
1
3

.1
0
4

.8
3
8

.5
2
9

.9
8
3

.9
3
1

.9
9
9

.5
2
0

.9
9
9

.1
5
9

.2
3
1

.0
5
2

.7
8
2

.9
5
3

.3
0
7

1
2

Z
A

.0
5
2

.8
6
4

.3
4
7

.1
2
4

.2
6
8

.3
2
3

.1
0
8

.8
6
6

.5
5
9

.9
8
9

.9
4
3

.9
9
9

.5
4
1

.9
9
9

.1
6
6

.1
4
2

.0
3
2

.6
7
4

.9
6
7

.3
1
8

1
3

√
b

1
.0

5
2

.7
7
5

.3
4
5

.1
3
5

.2
8
6

.3
2
4

.1
1
4

.7
0
8

.4
7
1

.8
9
1

.8
6
9

.9
9
0

.5
0
8

.9
7
9

.1
5
1

.0
0
6

.0
0
8

.0
1
3

.7
6
2

.1
2
5

1
4

b
2

.0
4
9

.8
3
2

.3
3
3

.1
1
1

.2
3
9

.1
8
1

.0
7
6

.3
6
5

.2
3
0

.5
4
4

.6
0
0

.8
7
7

.2
7
9

.7
8
7

.0
9
3

.3
2
4

.1
0
9

.6
8
3

.3
1
6

.1
2
2

1
5

K
2

.0
4
8

.8
4
9

.3
7
0

.1
3
9

.2
8
2

.2
6
7

.1
0
0

.5
7
0

.3
7
1

.7
7
7

.7
8
1

.9
6
7

.4
1
8

.9
3
6

.1
1
9

.1
3
3

.0
3
0

.4
9
1

.5
8
7

.0
9
3

1
6

D
H

.0
5
0

.8
7
1

.3
8
2

.1
4
1

.3
1
6

.2
5
8

.0
8
9

.7
3
0

.4
2
9

.9
4
1

.8
8
8

.9
9
7

.4
4
4

.9
9
4

.1
1
0

.1
0
1

.0
2
4

.4
9
4

.8
5
5

.1
8
6

1
7

Z
w

.0
4
9

.8
5
3

.3
2
6

.1
0
8

.2
8
0

.1
2
0

.0
6
2

.2
0
3

.1
3
5

.3
4
0

.4
2
7

.7
5
6

.1
7
3

.6
0
2

.0
5
9

.2
2
5

.0
8
9

.5
3
9

.1
6
0

.1
1
1

1
8

D
.0

5
1

.8
8
2

.3
4
7

.1
1
9

.2
7
6

.2
0
2

.0
7
5

.5
1
7

.2
8
0

.8
0
5

.7
5
8

.9
8
4

.3
3
0

.9
6
3

.0
8
6

.0
9
4

.0
7
5

.0
3
1

.6
0
7

.0
6
7

1
9

Q
H

.0
5
3

.8
6
2

.3
2
7

.1
1
5

.2
5
1

.3
1
3

.1
0
3

.8
4
1

.5
3
3

.9
8
3

.9
3
3

.9
9
9

.5
2
0

.9
9
9

.1
5
7

.2
2
9

.0
5
9

.7
6
1

.9
5
7

.3
2
6

2
0

r
.0

5
3

.8
9
5

.3
8
9

.1
4
5

.3
2
5

.3
1
1

.1
0
8

.7
9
4

.4
9
2

.9
7
0

.9
1
1

.9
9
8

.5
0
4

.9
9
9

.1
4
5

.0
7
3

.0
1
9

.4
6
0

.9
1
6

.2
0
7

2
1

R
n

.0
5
4

.8
7
5

.3
5
3

.1
2
8

.2
8
1

.3
2
0

.1
0
8

.8
3
3

.5
2
8

.9
8
1

.9
3
1

.9
9
9

.5
2
4

.9
9
9

.1
5
8

.1
7
6

.0
4
5

.6
8
3

.9
4
6

.2
9
2

2
2

T
E

P
.0

5
4

.8
6
8

.3
3
2

.1
1
5

.2
5
7

.3
0
9

.1
0
4

.7
7
8

.5
0
2

.9
5
4

.9
1
2

.9
9
8

.5
0
7

.9
9
5

.1
4
7

.1
3
0

.0
4
3

.4
7
8

.8
8
8

.2
6
6

2
3

I n
.0

5
3

.1
4
4

.2
6
8

.1
4
5

.2
8
6

.2
1
6

.0
9
1

.3
8
7

.2
8
9

.2
8
6

.3
1
0

.0
3
8

.3
1
3

.0
8
4

.0
9
5

.0
0
4

.0
0
6

.0
1
3

.3
8
2

.0
7
0

2
4

E
n

.0
5
3

.9
0
1

.3
9
8

.1
5
0

.3
3
7

.3
0
2

.1
0
5

.7
6
3

.4
6
7

.9
5
9

.8
9
9

.9
9
8

.4
8
8

.9
9
7

.1
3
5

.0
3
8

.0
1
3

.3
2
6

..
8
9
1

.1
6
9

2
5

M
n

.0
5
0

.8
9
4

.4
0
9

.1
5
3

.3
3
9

.2
7
4

.0
9
9

.6
6
1

.3
9
5

.8
9
7

.8
4
1

.9
9
2

.4
3
1

.9
8
4

.1
1
2

.0
0
5

.0
0
4

.0
2
5

.7
7
1

.0
8
7

2
6

Q
n

.0
5
3

.8
7
4

.3
1
1

.1
0
5

.2
5
7

.2
7
7

.0
9
2

.8
4
7

.5
0
8

.9
8
8

.9
3
2

.9
9
9

.4
8
6

.9
9
9

.1
4
2

.1
7
6

.0
5
1

.6
6
3

.9
6
3

.3
3
3

2
7

T
1
n

.0
5
0

.6
5
6

.2
5
5

.1
0
6

.1
7
9

.3
4
5

.1
1
1

.8
3
8

.5
6
9

.9
7
2

.9
3
8

.9
9
9

.5
6
5

.9
9
9

.1
7
8

.0
2
9

.0
1
8

.0
8
2

.9
2
4

.2
4
6

2
7

T
2
n

.0
4
9

.8
6
6

.3
4
3

.1
1
6

.2
9
6

.1
0
0

.0
5
9

.1
5
0

.1
0
1

.2
6
9

.3
6
2

.7
3
4

.1
4
1

.5
5
4

.0
4
9

.3
1
1

.0
7
9

.7
7
3

.1
0
9

.1
1
9

2
7

T
3
n

.0
5
0

.8
9
7

.3
8
7

.1
4
3

.3
3
0

.2
7
8

.0
9
6

.7
7
9

.4
5
3

.9
7
3

.9
0
5

.9
9
9

.4
6
6

.9
9
9

.1
2
1

.1
7
4

.0
3
2

.7
3
2

.9
2
6

.2
2
5

3
0

K
S

.0
5
6

.8
4
7

.2
6
8

.0
8
9

.2
2
7

.2
1
4

.0
8
4

.5
9
5

.3
3
8

.8
8
4

.7
9
9

.9
9
2

.3
4
9

.9
8
5

.1
0
9

.1
0
2

.0
5
6

.3
7
7

.7
6
1

.1
9
2

3
1

V
.0

5
2

.8
6
3

.2
7
3

.0
9
0

.2
3
6

.1
9
9

.0
7
3

.6
9
7

.3
5
2

.9
5
5

.8
5
9

.9
9
8

.3
4
8

.9
9
7

.0
9
3

.1
4
8

.0
6
3

.4
9
5

.8
8
5

.2
0
5

3
2

W
2

.0
5
6

.8
8
0

.3
0
8

.1
0
5

.2
6
5

.2
5
4

.0
9
1

.7
3
2

.4
2
0

.9
5
4

.8
8
3

.9
9
8

.4
2
9

.9
9
6

.1
2
3

.1
4
9

.0
5
6

.5
1
7

.8
8
2

.2
3
7

3
3

U
2

.0
5
5

.8
7
8

.2
9
7

.0
9
9

.2
6
1

.2
2
5

.0
8
3

.6
9
4

.3
8
1

.9
4
2

.8
6
2

.9
9
7

.3
9
1

.9
9
5

.1
1
3

.1
6
7

.0
6
4

.5
5
4

.8
6
3

.2
3
0

3
4

A
2

.0
5
4

.8
8
0

.3
2
4

.1
1
0

.2
6
8

.2
7
9

.0
9
4

.7
8
0

.4
6
3

.9
6
8

.9
0
6

.9
9
9

.4
6
7

.9
9
8

.1
3
3

.1
7
9

.0
5
6

.6
2
4

.9
1
7

.2
6
9

3
5

P
.0

4
9

.7
7
7

.1
8
2

.0
6
7

.1
4
4

.1
4
1

.0
6
3

.6
5
6

.2
8
2

.9
5
6

.8
2
7

.9
9
8

.2
6
7

.9
9
4

.0
7
4

.0
8
2

.0
5
3

.2
7
2

.8
8
0

.1
6
2

3
6

S
W

.0
5
4

.8
6
7

.3
3
7

.1
1
9

.2
6
6

.3
1
7

.1
0
5

.8
4
0

.5
3
4

.9
8
2

.9
3
3

.9
9
9

.5
2
6

.9
9
9

.1
6
0

.2
0
8

.0
5
3

.7
3
8

.9
5
4

.3
1
4

3
7

S
F

.0
5
3

.8
9
3

.3
8
3

.1
4
3

.3
1
8

.3
1
3

.1
0
7

.8
0
2

.4
9
8

.9
7
3

.9
1
5

.9
9
8

.5
0
7

.9
9
9

.1
4
8

.0
8
6

.0
2
2

.4
9
9

.9
2
2

.2
2
0

3
8

S
J

.0
5
3

.9
1
5

.4
0
4

.1
4
7

.3
7
7

.1
8
8

.0
7
8

.4
1
6

.2
3
4

.6
7
6

.6
9
5

.9
5
9

.3
0
1

.9
1
1

.0
6
4

.0
0
3

.0
0
6

.0
0
2

.4
3
5

.0
3
3

3
9

JB
.0

5
0

.8
6
4

.3
8
4

.1
4
6

.3
0
0

.2
8
5

.1
0
4

.6
3
0

.4
0
4

.8
4
0

.8
2
5

.9
8
4

.4
4
8

.9
6
4

.1
2
5

.0
0
3

.0
0
4

.0
0
6

.6
7
7

.0
8
0

4
0

R
JB

.0
5
4

.9
0
6

.4
1
0

.1
5
9

.3
5
4

.2
6
6

.0
9
9

.5
6
3

.3
5
7

.7
9
0

.7
8
7

.9
7
7

.4
1
0

.9
4
9

.1
0
6

.0
0
2

.0
0
4

.0
0
4

.5
9
4

.0
6
1

h
2

H
n

.0
5
5

.8
7
4

.3
0
2

.1
0
0

.2
5
4

.3
2
2

.1
1
6

.8
3
2

.5
4
0

.9
8
2

.9
3
3

.9
9
9

.5
2
5

.9
9
9

.1
7
6

.1
5
4

.0
6
1

.5
2
4

.7
3
4

.1
4
0

h
1

H
n

.0
5
3

.8
6
9

.2
9
3

.0
9
7

.2
4
4

.3
3
0

.1
2
0

.8
3
5

.5
4
6

.9
8
3

.9
3
4

.9
9
9

.5
3
2

.9
9
9

.1
8
1

.1
5
6

.0
6
2

.5
2
5

.7
0
9

.1
2
6



Hamzeh Torabi, Narges H. Montazeri and Aurea Grané 79
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Table 10: Ranking from first to the fifth of average powers computed from values in Tables 6-7 for

Set 1 of alternative distributions.

Group I Group II Group III Group IV

Symmetric (−∞,∞) Asymmetric (−∞,∞) Asymmetric(0,∞) (0,1)

Rank n = 10 n = 20 n = 10 n = 20 n = 10 n = 20 n = 10 n = 20

1 SJ SJ Hn T1n Hn ZA TV TV

2 RJB RJB T1n Hn TV T1n TE TE

3 T3n Mn TEP ZA A Hn TV TA

4 Mn TZ2
√

b1 Rn T1n SW ZC QH

5 En En Rn SW ZA QH QH ZC

Table 11: Ranking from first to the fifth of average powers computed from values in Tables 8-9 for

Set 2 of alternative distributions.

Symmetric Asymmetric

Rank Short tailed Close to Normal Long tailed Short tailed Long tailed

n = 10 n = 20 n = 10 n = 20 n = 10 n = 20 n = 10 n = 20 n = 10 n = 20

1 TV TV Mn RJB SJ SJ Hn Hn T1n T1n

2 TA TA SJ Mn RJB RJB TA TV SW SW

3 SW Rn RJB SJ A2 SF TV TA Rn Rn

4 Hn SW SF SF SF A2 SW SW Hn TA

5 A2 A2 SW T3n T3n Mn Rn Rn TA Hn

Tables 10-11 contain the ranking from first to the fifth of the average powers com-

puted from the values in Tables 6-7 and 8-9, respectively. By average powers we can

select the tests that are, on average, most powerful against the alternatives from the

given groups.

Power against an alternative distribution has been estimated by the relative frequency

of values of the corresponding statistic in the critical region for 10000 simulated sam-

ples of size n = 10, 20. The maximum reached power is indicated in bold. For computing

the estimated powers of the new test, R software is used. We also use R software for

computing Pearson chi-square and Shapiro-Francia tests by the package (nortest), com-

mand pearson.test and sf.test, respectively, and also the package (lawstat), com-

mand sj.test and rjb.test for SJ and Robast Jarque-Bera tests, respectively. For the

entropy-based test statistics, powers are taken from Zamanzadeh and Arghami (2012)

and Alizadeh and Arghami (2011, 2013). In the case of the test based on Hn, we also

consider h2(x) := x log(x)− x+1 for comparison with h1(x) :=
(

x−1
x+1

)2
.
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Results and recommendations

Based on these comparisons, the following recommendations can be formulated for the

application of the evaluated statistics for testing normality in practice.

Set 1 of alternative distributions (Tables 6-7 and 10): In Group I, for n = 10 and

20, it is seen that the tests based on SJ, RJB, T3n, TZ2, Mn and En are the most powerful

whereas the tests based on In, TV, TC and KL are the least powerful. The difference

of powers between KL and the others is substantial. In Group II, for n = 10 and 20,

it is seen that the tests based on Hn, T1n, TEP, Rn, ZA and
√

b1 are the most powerful

whereas those based on T2n, TV, TC, Kl and Zw are the least powerful. In Group III,

the most powerful tests for n = 10 are those based on Hn, TV, TA and T1n, and for

n = 20, those based on ZA, T1n, Hn and SW are the most powerful. On the other hand,

the least powerful tests are those based on In and Zw are the least powerful. Finally, in

group IV, the results are not in favour of the proposed tests. In this group, for n = 10 and

20, the most powerful tests are those based on TV, TE, TA, ZC, ZA and r, whereas the

tests based on TZ2, SJ and RJB are the least powerful. The SJ and RJB show very poor

sensitivity against symmetric distributions in [0,1] such as Unif, B(2,2) or B(.5, .5). For

example, for n = 20, in the case of the [0,1]-Unif alternative, the SJ test has a power

of .002 while even the Hn test has a power of .156. From Tables 6-7 one can see that

the proportion of times that the SJ and RJB statistics lie below the 5% point of the null

distribution are greater than those of the Hn statistic.

Note that for the proposed test, the maximum power in Group II and III was typically

attained by choosing h1.

From the simulation study implemented for Set 1 of alternative distributions we can

lead to different conclusions from that existing in the literature. New and existing results

are reported in Table 12.

Table 12: Comparison of most powerful tests in Groups I–IV, according to

Alizadeh and Arghami (2011, 2013) and Zamanzade and Arghami (2012) with new simulation results.

Alizadeh and Arghami (2011) JB SW KLaor SW KL

Alizadeh and Arghami (2013) A2 SW TA TVb

Zamanzadeh and Arghami (2012) TZ2 TZ2 or TD TZ1, KL or TD KL or TC

New simulation study SJ or RJB Hnor T1n Hn or ZA TV or TE

a Statistic based on Vasicek’s estimator
b Statistic using nonparametric distribution of Vasicek’s estimato

Set 2 of alternative distributions (Tables 8-9 and 11): For symmetric short-tailed

distributions, it is seen that the tests based on TV, TA and SW are the most powerful.

For symmetric close to normal and symmetric long tailed distributions, RJB, JB and Mn

are the most powerful. For asymmetric short tailed distributions, Hn, TV and TA are the
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Figure 3: Left panel: Probability density functions of Contaminated Normal distribution for several values

of the parameter λ. Right panel: Power of the tests based on Hn, KS, A2 and Rn as a function of λ against

alternative CN(λ,µ1 =−3,µ2 = 3,σ = 2).

most powerful. Finally, for asymmetric long tailed distributions, T1n, SW and Rn are the

most powerful. It is also worth mentioning that the differences between the power of

tests based on TV and Hn in T N(−3,3) alternative are not considerable.

In Figure 3 we compare the power of the tests based on Hn, KS, A2 and Rn against

a family of Contaminated Normal alternatives CN(λ,µ1 =−3,µ2 = 3,σ = 2). The left

panel of Figure 3 contains the probability density functions of Contaminated Normal

alternatives CN(λ,µ1 = −3,µ2 = 3,σ = 1), for λ = .2, .5, .8, whereas the right panel

contains the power comparisons for n = 20 and α = 0.05. We can see the good power

results of Hn for 0.2 < λ< 0.6.

In general, we can conclude that the proposed test Hn has good performance and

therefore can be used in practice.

Numerical example

Finally, we illustrate the performance of the new proposal through the analysis of a

real data set. One of the most famous tests of normality among practitioners is the

Kolmogorov-Smirnov test, mostly because it is available in any statistical software.

However, one of its drawbacks is the low power against several alternatives (see also

Grané and Fortiana, 2003; Grané, 2012; Grané and Tchirina, 2013).We would like to

emphasize this fact through a numerical example.

Armitage and Berry (1987) provided the weights in ounces of 32 newborn babies(see

also data set 3 of Henry, 2002, p. 342). The approximate ML estimators of µ̂= 111.75

and σ̂ =
√

331.03 = 18.19. Also sample skewness and kurtosis are
√

b1 = −.64 and
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Figure 4: Histogram and theoretical (normal) distribution for ounces of 32 newborn babies data.

b2 = 2.33, respectively. From the histogram of these data it can be observed that the

birth weights are skewed to the left and may be bimodal (see Figure 4).

When fitting the normal distribution to these data, we find that the KS (Kolmogorov-

Smirnov) test does not reject the null hypothesis providing a p-value of 0.093. How-

ever with the Hn statistic we are able to reject the null hypothesis of normality at a

5% significance level, since we obtain Hn = .0006 and the corresponding critical value

for n = 32 is .00047. Also associated p-values of the Hn, SW (Shapiro-Wilk) and SF

(Shapiro-Francia) tests are .015, .024 and .036, respectively. Thus, the non-normality is

more pronounced by the new test at 5% level. In Appendix, we provide an R software

program, to calculate the Hn statistics, the critical points and corresponding p-value.

6. Conclusions

In this paper we propose a statistic to test normality and compare its performance with

40 recent and classical tests for normality and a wide collection of alternative distribu-

tions. As expected (Janssen, 2000), the simulation study shows that none of the statistics

under evaluation can be considered to be the best one for all the alternative distributions

studied. However, the tests based on RJB or SJ have the best performance for symmetric

distributions with the support on (−∞,∞) and the same happens to TV or TA for distri-

butions with the support on (0,1). Regarding our proposal, Hn and also T1n are the most

powerful for asymmetric distributions with the support on (−∞,∞) and distributions

with the support on (0,∞), mainly for small sample sizes.
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Appendix

h=function(x) (x-1)ˆ2/(x+1)ˆ2

Hn=function(x) {x=sort(x);n=length(x);

F=pnorm(x, mean(x), sd(x)*sqrt(n/(n-1)))+1;

Fn=1:n/n+1; mean(h(F/Fn))}

##weights in ounces of 32 newborn babies,

data=c(72,80,81,84,86,87,92,94,103,106,107,111,112,115,116,118,

119,122,123,123,114,125,126,126,126,127,118,128,128,132,133,142)

Hn(data) ## statistics

n=length(data); B=10000; x=matrix(rnorm(n*B, 0, 1), nrow=B, ncol=n)

H0=apply(x, 1, Hn); Q=quantile(H0, .95); Q ## critical point

length(H0[H0>Hn(data)])/B ##p-value
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Grané, A. (2012). Exact goodness of fit tests for censored data. Annals of the Institute of Statistical Mathe-

matics, 64, 1187–1203.
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Abstract

In this paper, based on record data from the two-parameter logistic distribution, the maximum

likelihood and Bayes estimators for the two unknown parameters are derived. The maximum like-

lihood estimators and Bayes estimators can not be obtained in explicit forms. We present a simple

method of deriving explicit maximum likelihood estimators by approximating the likelihood func-

tion. Also, an approximation based on the Gibbs sampling procedure is used to obtain the Bayes

estimators. Asymptotic confidence intervals, bootstrap confidence intervals and credible intervals

are also proposed. Monte Carlo simulations are performed to compare the performances of the

different proposed methods. Finally, one real data set has been analysed for illustrative purposes.
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1. Background and statistical context

Let {Yi, i ≥ 1} be a sequence of independent and identically distributed (iid) random

variables with cumulative distribution function (cdf) G(y;θ) and probability density

function (pdf) g(y;θ), where θ is a vector of parameters. An observation Yj is called

an upper record value if Yj >Yi for all i = 1,2, . . . , j−1. An analogous definition can be

given for lower record values. Generally, if {U(n), n ≥ 1} is defined by

U(1) = 1, U(n) = min{ j : j >U(n−1), Yj >YU(n−1)},
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for n ≥ 2, then the sequence {YU(n), n ≥ 1} provides a sequence of upper record statis-

tics. The sequence {U(n), n ≥ 1} represents the record times.

Suppose we observe the first m upper record valuesYU(1) = y1,YU(2) = y2, · · · ,YU(m) =
ym from the cdf G(y;θ) and pdf g(y;θ). Then, the joint pdf of the first m upper record

values is given (see Ahsanullah, 1995) by

h(y;θ) = g(ym;θ)
m−1

∏
i=1

g(yi;θ)

1−G(yi;θ)
, −∞ < y1 < y2 < ... < ym < ∞, (1.1)

where y = (y1, . . . ,ym). The marginal pdf of the nth record YU(n) is

hn(y;θ) =
[− ln(1−G(y;θ))]n−1

(n−1)!
g(y;θ).

The definition of record statistics was formulated by Chandler (1952). These statis-

tics are of interest and important in many real life problems involving weather, eco-

nomics, sports data and life testing studies. In reliability and life testing experiments,

many products fail under stress. For example, an electronic component ceases to func-

tion in an environment of too high temperature, a wooden beam breaks when sufficient

perpendicular force is applied to it, and a battery dies under the stress of time. Hence, in

such experiments, measurements may be made sequentially and only the record values

(lower or upper) are observed. For more details and applications of record values, one

may refer to Arnold et al. (1998) and Nevzorov (2001).

The logistic distribution has been used for growth models in the biological sciences,

and is used in a certain type of regression known as the logistic regression. It has many

applications in technological problems including reliability, studies on income, gradua-

tion of mortality statistics, modeling agriculture production data, and analysis of cate-

gorical data. The shape of the logistic distribution is very similar to that of the normal

distribution, but it is more peaked in the center and has heavier tails than the normal

distribution. Because of the similarity of the two distributions, the logistic model has

often been selected as a substitute for the normal model. For more details and other

applications, see Balakrishnan (1992) and Johnson et al. (1995).

Although extensive work has been done on inferential procedures for logistic distri-

bution based on complete and censored data, but not much attention has been paid on

inference based on record data. In this article, we consider the point and interval estima-

tion of the unknown parameters of the logistic distribution based on record data. We first

consider the maximum likelihood estimators (MLEs) of the unknown parameters. It is

observed the MLEs can not be obtained in explicit forms. We present a simple method of

deriving explicit MLEs by approximating the likelihood function. We further consider

the Bayes estimators of the unknown parameters and it is observed the Bayes estimators

and the corresponding credible intervals can not be obtained in explicit forms. We use an
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approximation based on the Gibbs sampling procedure to compute the Bayes estimators

and the corresponding credible intervals.

The rest of the paper is organized as follows. In Section 2, we discuss the MLEs

of the unknown parameters of the logistic distribution. In Section 3, we provide the

approximate maximum likelihood estimators (AMLEs). Bayes estimators and the cor-

responding credible intervals are provided in Section 4. The Fisher information and

different confidence confidence intervals are presented in Section 5. Finally, in Section

4, one numerical example and a Monte Carlo simulation study are given to illustrate the

results.

2. Maximum likelihood estimation

Let the failure time distribution be a logistic distribution with probability density func-

tion (pdf)

g(y;µ,σ) =
e−(y−µ)/σ

σ(1+ e−(y−µ)/σ)2
, −∞ < y < ∞, µ ∈ R, σ > 0, (2.1)

and cumulative distribution function (cdf)

G(y;µ,σ) =
1

1+ e−(y−µ)/σ
, −∞ < y < ∞, µ ∈ R, σ > 0. (2.2)

Consider the random variable X = (Y − µ)/σ. Then, X has the standard logistic

distribution with pdf and cdf as

f (x) =
e−x

(1+ e−x)2
, −∞ < x < ∞, (2.3)

and

F(x) =
1

1+ e−x
, −∞ < x < ∞, (2.4)

respectively. Note that g(y;µ,σ) = 1
σ

f ((y− µ)/σ) and G(y;µ,σ) = F((y− µ)/σ). It

should also be noted that f (x) and F(x) satisfy the following relationships:

f (x) = F(x)[1−F(x)], f ′(x) = f (x)[1−2F(x)]. (2.5)

Suppose we observe the first m upper record valuesYU(1) = y1,YU(2) = y2, · · · ,YU(m) =

ym from the logistic distribution with pdf (2.1) and cdf (2.2). The likelihood function is
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given by

L(µ,σ) = g(ym,µ,σ)
m−1

∏
i=1

g(yi;µ,σ)

1−G(yi;µ,σ)
. (2.6)

By using Eqs. (2.3), (2.4) and (2.5), the likelihood function may be rewritten as

L(µ,σ) = σ−m f (xm)
m−1

∏
i=1

F(xi) , (2.7)

where xi = (yi −µ)/σ. Subsequently, the log-likelihood function is

lnL(µ,σ) =−m lnσ+ ln f (xm)+
m−1∑

i=1

lnF(xi). (2.8)

Again, by using Eq. (2.5), we derive the likelihood equations for µ and σ from (2.8), as

∂ lnL(µ,σ)

∂µ
=− 1

σ

[
m−F(xm)−

m∑

i=1

F(xi)

]
= 0, (2.9)

∂ lnL(µ,σ)

∂σ
=− 1

σ

[
m+

m∑

i=1

xi − xmF(xm)−
m∑

i=1

xiF(xi)

]
= 0. (2.10)

The MLES µ̂ and σ̂, respectively of µ and σ, are solution of the system of Eqs. (2.9) and

(2.10). They can not be obtained in closed forms and so some iterative methods such as

Newton’s method are required to compute these estimators.

3. Approximate maximum likelihood estimation

It is observed that the likelihood equations (2.9) and (2.10) do not yield explicit estima-

tors for the MLEs, because of the presence of the term F(xi), i = 1, . . . ,m, and they have

to be solved by some iterative methods. However, as mentioned by Tiku and Akkaya

(2004), solving the likelihood equations by iterative methods can be problematic for

reasons of (i) multiple roots, (ii) nonconvergence of iterations, or (iii) convergence to

wrong values. Moreover, these methods are usually very sensitive to their initiate values.

Here, we present a simple method to derive approximate MLEs for µ and σ by lineariz-

ing the term F(xi) using Taylor series expansion. Approximate solutions for MLEs have

been discussed in the book by Tiku and Akkaya (2004) for several specific distributions.
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Balakrishnan and Aggarwala (2000), Balakrishnan and Kannan (2000), Balakrishnan

and Asgharzadeh (2005), Agharzadeh (2006), Raqab et al. (2010) and Asgharzadeh et

al. (2011) used approximate solutions for the MLEs, when the data are progressively

censored.

We approximate the term F(xi) by expanding it in a Taylor series around E(Xi) = δi.

From Arnold et al. (1998), it is known that

F(Xi)
d
= Ui,

where Ui is the i-th record statistic from the uniform U(0,1) distribution. We then have

Xi
d
= F−1(Ui),

and hence

δi = E(Xi)≈ F−1(E(Ui)).

From Arnold et al. (1998), it is known that

E(Ui) = 1−
(

1

2

)i+1

, i = 1, . . . ,m.

Since, for the standard logistic distribution, we have

F−1(u) = ln

(
u

1−u

)
,

we can approximate δi by F−1[1− ( 1
2
)i+1] = ln(2i+1 −1).

Now, by expanding the function F(xi) around the point δi and keeping only the first

two terms, we have the following approximation

F(xi)≃ F(δi)+(xi− δi) f (δi)

= αi +βixi, (3.1)

where
αi = F(δi)− δi f (δi),

and
βi = f (δi)≥ 0,

for i = 1, · · · ,m.
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Using the expression in (3.1), we approximate the likelihood equations in (2.9) and

(2.10) by

∂ lnL∗(µ,σ)

∂µ
=− 1

σ

[
m− (αm +βmxm)−

m∑

i=1

(αi +βixi)

]
= 0, (3.2)

∂ lnL∗(µ,σ)

∂σ
=− 1

σ

[
m+

m∑

i=1

xi − xm(αm +βmxm)−
m∑

i=1

xi(αi +βixi)

]
= 0, (3.3)

which can be rewritten as

[
m−αm −

m∑

i=1

αi

]
− 1

σ

[
βmym +

m∑

i=1

βiyi

]
+

1

σ

[
βm +

m∑

i=1

βi

]
µ= 0, (3.4)

m+
1

σ

[
(

m∑

i=1

yi −αmym −
m∑

i=1

αiyi)+
(βmym +

∑m
i=1βiyi)(αm +

∑m
i=1αi −m)

βm +
∑m

i=1βi

]

+
1

σ2

[
−(βmy2

m +
m∑

i=1

βiy
2
i )+

(βmym +
∑m

i=1βiyi)
2

βm +
∑m

i=1βi

]
= 0, (3.5)

respectively. By solving the quadratic equation in (3.5) for σ, we obtain the approximate

MLE of σ as

σ̃ =
−A+

√
A2 −4mB

2m
, (3.6)

where

A = (

m∑

i=1

yi −αmym −
m∑

i=1

αiyi)+
(βmym +

∑m
i=1βiyi)(αm +

∑m
i=1αi −m)

βm +
∑m

i=1βi

, (3.7)

B =−(βmy2
m +

m∑

i=1

βiy
2
i )+

(βmym +
∑m

i=1βiyi)
2

βm +
∑m

i=1βi

. (3.8)

Now, by using (3.4), we obtain the approximate MLE of µ as

µ̃=C+Dσ̃, (3.9)
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where

C =
βmym +

∑m
i=1βiyi

βm +
∑m

i=1βi

, D =
αm +

∑m
i=1αi −m

βm +
∑m

i=1βi

. (3.10)

Note that Eq. (3.5) has two roots but since B ≤ 0, only one root in (3.6) is admissible.

The proof of B ≤ 0 is given in Appendix A.

Note that, the AMLE method has an advantage over the MLE method as the for-

mer provides explicit estimators. The AMLEs in (3.6) and (3.9) can be used as good

starting values for the iterative solution of the likelihood equations (2.9) and (2.10) to

obtain the MLEs. As mentioned in Tiku and Akkaya (2004), the AMLEs of the loca-

tion an scale parameters µ and σ are asymptotically equivalent to the corresponding

MLEs for any location-scale distribution. This is due to the asymptotic equivalence of

the approximate likelihood and the likelihood equations. The approximate MLEs have

all desirable asymptotic properties of MLEs. They are asymptotically unbiased and ef-

ficient. They have also robustness properties for all the three types distributions: skew,

short-tailed symmetric and long-tailed symmetric distributions. For more details, see

Tiku and Akkaya (2004).

4. Bayesian estimation and credible intervals

In this section, the Bayes estimators of the unknown parameters µ and σ are derived

under the squared error loss function. Further, the corresponding credible intervals of µ

and σ are also obtained. It is assumed that joint prior distribution for µ and σ is in the

form

π(µ,σ) = π1(µ|σ)π2(σ),

where σ has an inverse gamma prior IG(a,b), with the pdf

π2(σ) ∝ e−
b
σσ−(a+1), σ > 0, a,b > 0,

and µ given σ has the logistic prior with parameters µ0 and σ

π1(µ|σ) =
e−

µ−µ0
σ

σ
[
1+ e−

µ−µ0
σ

]2
,

This joint prior is suitable for deriving the posterior distribution in a location and

scale parameter estimation.
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From (2.6), for the logistic distribution, the likelihood function of µ and σ for the

given record sample y = (y1,y2, . . . ,ym) is given by

L(µ,σ|y) = e−
ym−µ

σ σ−m ∏
m
i=1(1+ e−

yi−µ

σ )−1

1+ e−
ym−µ

σ

. (4.1)

By combining the likelihood function in (4.1) and the joint prior distribution, we obtain

the joint posterior distribution of µ and σ as

π(µ,σ|y) ∝ e−
b+ym−µ0

σ σ−(m+a+2) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
. (4.2)

Therefore, the Bayes estimators of µ and σ are respectively obtained as

µ̂BS = E(µ|y) = k

∞∫

−∞

∞∫

0

µ e−
b+ym−µ0

σ σ−(m+a+2) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
dσdµ,

and

σ̂BS = E(σ|y) = k

∞∫

−∞

∞∫

0

e−
b+ym−µ0

σ σ−(m+a+1) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
dσdµ,

where k is the normalizing constant.

It is seen that the Bayes estimators can not be obtained in closed forms. In what

follows, similarly as in Kundu (2007, 2008), we provide the approximate Bayes estima-

tors using a rejection-sampling within the Gibbs sampling procedure. Note that the joint

posterior distribution of µ and σ given y in (4.2), can be written as

π(µ,σ|y) ∝ g1(σ|y)g2(µ|σ,y). (4.3)

Here g1(σ|y) is an inverse gamma density function with the shape and scale parameters

as m+ a+ 1 and b+ ym −µ0, respectively, and g2(µ|σ,y) is a proper density function

given by

g2(µ|σ,y) ∝
∏

m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
. (4.4)
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To obtain the Bayes estimates using the Gibbs sampling procedure, we need the

following result.

Theorem 1. The conditional distribution of µ given σ and y, g2(µ|σ,y), is log-concave.

Proof: See the Appendix B.

Thus, the samples of µ can be generated from (4.4) using the method proposed by

Devroye (1984). Now, using Theorem 1, and adopting the method of Devroye (1984),

we can generate the samples (µ,σ) from the posterior density function (4.3), using the

Gibbs sampling procedure as follows:

1. Generate σ1 from g1(.|y).

2. Generate µ1 from g2(.|σ1,y) using the method developed by Devroye (1984).

3. Repeat steps 1 and 2 N times and obtain (µ1,σ1), · · · ,(µN ,σN).

Note that in step 2, we use the Devroye algorithm as follows:

i) Compute c = g2(m|σ,y). ( m is the mode of g2(.|σ,y) ).

ii) Generate U uniform on [0,2], and V uniform on [0,1].

iii) If U ≤ 1 then µ=U and T =V , else µ= 1− ln(U −1) and T =V (U −1).

iv) Let µ= m+ µ

c
.

v) If T ≤ g2(µ|σ,y)
c

, then µ is a sample from g2(.|σ,y), else go to Step (ii).

Now, the Bayesian estimators of µ and σ under the squared error loss function are

obtained as

µ̂BS =

∑N
j=1µ j

N
, σ̂BS =

∑N
j=1σ j

N
. (4.5)

Now we obtain the credible intervals of µ and σ using the idea of Chen and Shao

(1999). To compute the credible intervals of µ and σ, we generateµ1, . . . ,µN and σ1, . . . ,σN

as described above. We then order µ1, . . . ,µN and σ1, . . . ,σN as µ(1), . . . ,µ(N) and σ(1), . . . ,σ(N).

Then, the 100(1−γ)% credible intervals µ and σ can be constructed as

(
µ( γ2 N), µ((1−γ

2 )N)

)
,

(
σ( γ2 N), σ((1−γ

2 )N)

)
. (4.6)
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5. Fisher information and different confidence intervals

In this section, we derive the Fisher information matrix based on the likelihood as well as

the approximate likelihood functions. Using the Fisher information matrix and based on

the asymptotic distribution of MLEs, we can obtain the asymptotic confidence intervals

of µ and σ. We further, propose two confidence intervals based on the bootstrap method.

5.1. Fisher information

From (2.9) and (2.10), the expected Fisher information matrix of θθθ = (µ,σ) is

I(θθθ) =−


 E( ∂ 2 lnL(µ,σ)

∂µ2 ) E( ∂ 2 lnL(µ,σ)
∂µ∂σ

)

E( ∂ 2 lnL(µ,σ)
∂σ∂µ

) E( ∂ 2 lnL(µ,σ)

∂σ2 )


=

(
I11 I12

I12 I22

)
, (5.1)

where

I11 =
1

σ2

[
E[ f (Xm)]+

m∑

i=1

E[ f (Xi)]

]
,

I12 =
1

σ2

[
m−E[F(Xm)]−

m∑

i=1

E[F(Xi)]−E[Xm f (Xm)]−
m∑

i=1

E[Xi f (Xi)]

]
,

I22 =− 1

σ2

[
m+2

m∑

i=1

E[Xi(1−F(Xi))]−2E[XmF(Xm)]

− E[X2
m f (Xm)]−

m∑

i=1

E[X2
i f (Xi)]

]
.

Similarly, the expected approximate Fisher information matrix of θθθ = (µ,σ) is ob-

tained to be

I∗(θθθ) =−


 E( ∂ 2 lnL∗(µ,σ)

∂µ2 ) E( ∂ 2 lnL∗(µ,σ)
∂µ∂σ

)

E( ∂ 2 lnL∗(µ,σ)
∂σ∂µ

) E( ∂ 2 lnL∗(µ,σ)
∂σ2 )


=

(
I∗11 I∗12

I∗12 I∗22

)
, (5.2)

where

I∗11 =
1

σ2

[
βm +

m∑

i=1

βi

]
,

I∗12 =− 1

σ2

[
m−αm −

m∑

i=1

αi −2βmE[Xm]−2

m∑

i=1

βiE[Xi]

]
,
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I∗22 =− 1

σ2

[
m+2

m∑

i=1

(1−αi)E[Xi]−2αmE[Xm]−3βmE[X2
m]−3

m∑

i=1

βiE[X2
i ]

]
.

From Ahsanullah (1995), since

E[X1] = 0, E[Xi] =
i∑

l=2

ζ(l), i ≥ 2,

and

E[X2
i ] = 2i

i+1∑

l=2

ζ(l)− i(i+1)+
∞∑

l=2

Bl

(l+1)i
,

where ζ(.) is Riemann zeta function ζ(n) =
∑∞

k=1 k−n and for n ≥ 2

Bn =
1

n
(1+

1

2
+ · · ·+ 1

n−1
),

we can derive the elements of Fisher information matrix in (5.2). Now, to derive the

elements of Fisher information matrix in (5.1), we need to calculate the expectations

E[ f (Xi)], E[F(Xi)], E[Xi(1−F(Xi))], E[Xi f (Xi)], E[XiF(Xi)] and E[X2
i f (Xi)]. We use

the following lemma to compute these expectations.

Lemma 1. Let X1 < X2 < · · · < Xm is the first m upper record values from the standard

logistics distribution with pdf (2.3). Then we have

E[ f (Xi)] =
1

2i
− 1

3i
, (5.3)

E[F(Xi)] = 1− 1

2i
, (5.4)

E[Xi f (Xi)] =
∞∑

l=1

[
1

l(l+3)i
− 1

l(l+2)i

]
+ i

[
1

2i
− 1

3i

]
, (5.5)

E [Xi(1−F(Xi))] =
i

2i+1
−

∞∑

l=1

1

l(l+2)i
, (5.6)
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and

E
[
X2

i f (Xi)
]
=

∞∑

l=1

[
1

l2(2l+2)i
− 1

l2(2l+3)i

]

+2
∑∑

1≤l<k<∞

[
1

lk(l+ k+2)i
− 1

lk(l+ k+3)i

]

+2i

∞∑

l=1

[
1

l(l+3)i+1
− 1

l(l+2)i+1

]

+ i(i+1)

[
1

2i+2
− 1

3i+2

]
. (5.7)

Proof. See the Appendix C.

Moreover, E[XiF(Xi)] can be obtained from the expression

E[XiF(Xi)] = E[Xi]−E[Xi(1−F(Xi))].

It should be mentioned here that the loss of information due to using record data in-

stead of the complete logistic data can be discussed by comparing the Fisher information

contained in record data with that of the Fisher information contained in the complete

data. Since θθθ = (µ,σ) is a vector parameter, the comparison is not a trivial issue. One

method is that to compare the Fisher information matrices for the two data using their

traces. Based on a given data, the trace of Fisher information matrix of θθθ = (µ,σ) is

the sum of the Fisher information measures of µ, when σ is known, and σ, when µ is

known. For the logistic distribution, the Fisher information matrix of θθθ = (µ,σ) based

on the first m record observations can be obtained from (5.1). On the other hand, the

Fisher information matrix based on the m complete logistic observations is (see Nadara-

jah (2004))

J(θθθ) =

(
J11 J12

J12 J22

)
,

where

J11 =
m

3σ2

(
π2

3
+1

)
,

J12 = J12 =− m

σ2
,

J22 =
m

3σ2
.



A. Asgharzadeh, R. Valiollahi and M. Abdi 101

Table 1: The trace of the Fisher information matrix based on

complete and record observations for different values of m.

Complete observations Record observations

m = 2 3.526 3.149

m = 3 5.289 4.502

m = 5 8.816 6.916

m = 10 17.633 12.131

m = 15 26.450 19.175

m = 20 35.265 27.917

We have computed the traces of the corresponding Fisher information matrices for

both data and the results are reported in Table 1. From Table 1, as expected, we see that

the Fisher information contained in the m complete observations is greater than that the

Fisher information contained in the m record observations.

5.2. Different confidence intervals

Now, the variances of the MLEs µ̂ and σ̂, can be approximated by inverting the Fisher

information matrix in (5.1), i.e,

(
Var(µ̂) Cov(µ̂, σ̂)

Cov(µ̂, σ̂) Var(σ̂)

)
≈
(

I11 I12

I12 I22

)−1

. (5.8)

The approximate asymptotic variance covariance matrices are valid only if asymptotic

normality holds. For the asymptotic normality, the certain regularity conditions must

be satisfied (see, for example, the conditions in Theorem 4.17 of Shao (2003)). These

conditions mainly relate to differentiability of the density and the ability to interchange

differentiation and integration. In most reasonable problems, the regularity conditions

are often satisfied. Since the logistic distribution satisfies all the the regularity condi-

tions (see Shao (2005), Pages 198-200), we can obtain the approximate 100(1− γ)%

confidence intervals of µ and σ using the asymptotic normality of MLEs as

(
µ̂− z1−γ/2

√
V̂ar(µ̂) , µ̂+ z1−γ/2

√
V̂ar(µ̂)

)
, (5.9)

and

(
σ̂− z1−γ/2

√
V̂ar(σ̂) , σ̂+ z1−γ/2

√
V̂ar(σ̂)

)
. (5.10)
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Similarly, the approximate confidence intervals can be obtained based on the AMLEs

also, by inverting the approximate Fisher information in (5.2).

Now, we present two confidence intervals based on the parametric bootstrap meth-

ods: (i) percentile bootstrap method (we call it Boot-p) based on the idea of Efron

(1982), (ii) bootstrap-t method (we refer to it as Boot-t) based on the idea of Hall (1988).

The algorithms for these two bootstrap procedures are briefly described as follows.

(i) Boot-p method:

1. Estimate µ and σ, say µ̂ and σ̂, from sample based on the MLE procedure.

2. Generate a bootstrap sample {X∗
1 , · · · ,X∗

m} , using µ̂ and σ̂. Obtain the bootstrap

estimates of µ and σ, say µ̂∗ and σ̂∗ using the bootstrap sample.

3. Repeat Step 2 NBOOT times.

4. Order µ̂∗
1, · · · , µ̂∗

NBOOT as µ̂∗
(1), · · · , µ̂∗

(NBOOT ) and σ̂∗
1, · · · , σ̂∗

NBOOT as σ̂∗
(1), · · · ,

σ̂∗
(NBOOT ) . Then, the approximate 100(1− γ)% confidence intervals for µ and σ

become, respectively, as

(
µ̂∗

Boot−p(
γ

2
) , µ̂∗

Boot−p(1−
γ

2
)
)
,

(
σ̂∗

Boot−p(
γ

2
) , σ̂∗

Boot−p(1−
γ

2
)
)
. (5.11)

(ii) Boot-t method:

1. Estimate µ and σ, say µ̂ and σ̂, from sample based on the MLE method.

2. Generate a bootstrap sample {X∗
1 , · · · ,X∗

m} , using µ̂ and σ̂ and obtain the bootstrap

estimates of µ and σ, say µ̂∗ and σ̂∗ using the bootstrap sample.

3. Determine

T ∗
µ
=

(µ̂∗− µ̂)√
V̂ar(µ̂∗)

, T ∗
σ
=

(σ̂∗− σ̂)√
V̂ar(σ̂∗)

,

where V̂ar(µ̂∗) and V̂ar(σ̂∗) are obtained using (5.8)

4. Repeat Steps 2 and 3 NBOOT times.

5. Define µ̂∗
Boot−t = µ̂+

√
V̂ar(µ̂∗)T ∗

µ
and σ̂∗

Boot−t = σ̂+

√
V̂ar(σ̂∗)T ∗

σ
. Order µ̂∗

1, · · · ,
µ̂∗

NBOOT as µ̂∗
(1), · · · , µ̂∗

(NBOOT ) and σ̂∗
1 , · · · , σ̂∗

NBOOT as σ̂∗
(1), · · · , σ̂∗

(NBOOT ). Then, the

approximate 100(1− γ)% confidence intervals for µ and σ become respectively

as

(
µ̂∗

Boot−t (
γ

2
) , µ̂∗

Boot−t(1−
γ

2
)
)
,

(
σ̂∗

Boot−t(
γ

2
) , σ̂∗

Boot−t(1−
γ

2
)
)
. (5.12)
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6. Data analysis and simulation

In this section, we analyze a real data set to illustrate the estimation methods presented in

the preceding sections. Further, a Monte Carlo simulation study is conducted to compare

the performance of proposed estimators.

6.1. Data analysis

The following data are the total annual rainfall (in inches) during March recorded at

Los Angeles Civic Center from 1973 to 2006 (see the website of Los Angeles Almanac:

www.laalman-ac.com/weather/we08aa.htm).

2.70 3.78 4.83 1.81 1.89 8.02 5.85 4.79 4.10 3.54

8.37 0.28 1.29 5.27 0.95 0.26 0.81 0.17 5.92 7.12

2.74 1.86 6.98 2.16 0.00 4.06 1.24 2.82 1.17 0.32

4.31 1.17 2.14 2.87

The Los Angeles rainfall data have been used earlier by some authors. See for exam-

ple, Raqab (2006), Madi and Raqab (2007) and Raqab et al. (2010).

We analyzed the above rainfall data by using the logistic distribution with µ= 2.905

and σ = 1.367. It is observed that the Kolmogorov-Smirnov (KS) distance and the cor-

responding p-value are respectively

KS = 0.1066, and p-value = 0.8120.

Hence the logistic model (2.1) fits quite well to the above data.

For the above data, we observe the following five upper record values

2.70 3.78 4.83 8.02 8.37

We shall use the above rainfall records to obtain the different estimators discussed in

this paper. Here, we have m = 5,A =−3.644,B =−1.436,C = 4.089 and D =−0.742.

From (3.6), we obtain the AMLE of σ as

σ̃ =
−A+

√
A2 −4mB

2m
= 1.012.

Now, by using (3.9), the AMLE of µ becomes

µ̃=C+Dσ̃ = 3.338.
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The MLEs of µ and σ are then respectively as µ̂ = 2.929 and σ̂ = 0.998. Note that

the MLEs were obtained by solving the nonlinear equations (2.9) and (2.10) using the

Maple package, in which the AMLEs were used as starting values for the iterations. To

ensure that the solution (µ̂ = 2.929, σ̂ = 0.998) of the likelihood equations (2.9) and

(2.10) is indeed a maximum, it must be shown that the matrix of second-order partial

derivatives (Hessian matrix)

H =




∂ 2 lnL(µ,σ)

∂µ2

∂ 2 lnL(µ,σ)
∂µ∂σ

∂ 2 lnL(µ,σ)
∂σ∂µ

∂ 2 lnL(µ,σ)

∂σ2


 ,

is a negative definite when µ= µ̂ and σ= σ̂. Based on the above rainfall records and for

µ̂= 2.929 and σ̂ = 0.998, the Hessian matrix is

H =

(
−0.5857 0.4156

0.4156 −5.0194

)
,

which can be shown that is negative definite. Therefore, we have indeed found a maxi-

mum. On the other hand, we have also plotted the likelihood function of µ and σ for the

given record data in Figure 1. From Figure 1, one can observe that the likelihood surface

has curvature in both µ and σ directions. This leads to the interpretation that MLEs of µ

and σ are exist and unique.

Figure 1: Likelihood function of µ and σ.
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Table 2: Point and interval estimators of µ and σ.

Point estimators 95% Confidence intervals

MLE AMLE Bayes MLE AMLE p-boot t-boot Bayes

µ 2.929 3.338 3.649 (2.059,3.798) (1.785,4.889) (0.643,5.554) (1.501,3.641) (2.831,4.239)

σ 0.998 1.012 1.370 (0.625,1.371) (0.689,1.335) (0.251,0.936) (0.719,0.992) (0.592,1.604)
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Figure 2: Trace and autocorrelation plots of µ and σ.

We also computed the Bayes estimators of µ and σ using Gibbs sampling procedure.

To compute the Bayes estimators, since we do not have any prior information, we have

used very small (close to zero) values of the hyper-parameters on σ, i.e. a= b= 0.00001.

In this case, the prior on σ is a proper prior but it is almost improper. Since µ0 is a loca-

tion parameter for the logistic prior of µ given σ, without loss of generality, we assumed

that µ0 = 0. For Gibbs sampling procedure we use N = 5000 and we have checked the

convergence of generated samples of µ and σ. We have used the graphical diagnostics

tools like trace plots and autocorrelation function (ACF) plots for this purpose. Figure

2 shows the trace plots and ACF plots for the parameters. The trace plots look like a

random scatter and show the fine mixing of the chains for both parameters µ and σ.

ACF plots show that chains have very low autocorrelations. Based on these plots, we

can fairly conclude that convergence has been attained.

We also computed different confidence intervals namely the approximate confidence

intervals based MLEs and AMLEs, p-boot and t-boot confidence intervals and credible

intervals. All results are reported in Table 2.
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6.2. Simulation study

In this section, a Monte Carlo simulation is conducted to compare the performance of the

different estimators. In this simulation, we have randomly generated 1000 upper record

sample X1,X2, . . . ,Xm from the standard logistic distribution (i.e., µ= 0 and σ = 1) and

then computed the MLEs, AMLEs and Bayes estimators of µ and σ. We then compared

the performances of these estimators in terms of biases, and mean square errors (MSEs).

For computing Bayes estimators, we take µ0 = 0. We use both non-informative and

informative priors for the scale parameter σ. In case of non-informative prior, we take

a = b = 0. We call it as Prior 1. For the informative prior, we chose a = 3 and b = 1. We

call it as Prior 2. Clearly Prior 2 is more informative than the non-informative Prior 1.

In Table 3, for different values of m, we reported the average biases, and MSEs of

the MLEs, AMLEs and Bayes estimators over 1000 replications. All the computations

are performed using Visual Maple (V16) package.

Table 3: Biases and MSEs of the MLEs, AMLEs and Bayes estimators for different values of m.

Estimation of µ Estimation of σ

MLE AMLE Bayes MLE AMLE Bayes

Prior 1 Prior 2 Prior 1 Prior 2

m = 2 Bias −0.732 −0.749 −0.635 −0.608 0.362 0.386 0.310 0.286

MSE 2.619 2.654 2.574 2.543 0.510 0.538 0.497 0.467

m = 3 Bias −0.653 −0.681 −0.568 −0.534 0.284 0.297 0.261 0.242

MSE 2.468 2.492 2.419 2.397 0.451 0.468 0.416 0.402

m = 5 Bias −0.558 −0.579 −0.488 −0.443 0.142 0.166 0.123 0.107

MSE 2.129 2.171 1.938 1.903 0.109 0.139 0.087 0.073

m = 10 Bias −0.313 −0.366 −0.265 −0.244 0.067 0.084 0.041 0.016

MSE 1.567 1.636 1.510 1.482 0.059 0.067 0.049 0.041

m = 15 Bias −0.238 −0.250 −0.197 −0.170 0.059 0.063 0.053 0.048

MSE 1.148 1.176 1.125 1.107 0.043 0.051 0.034 0.027

m = 20 Bias −0.150 −0.177 −0.121 −0.104 0.033 0.045 0.021 0.018

MSE 0.999 1.024 0.956 0.937 0.024 0.033 0.018 0.011

From Table 3, we observe that the AMLEs and the MLEs are almost identical in

terms of both bias and MSEs. The AMLEs are almost as efficient as the MLEs for

all sample sizes. Comparing the two Bayes estimators based on two priors 1 and 2, it

is observed that the Bayes estimators based on prior 2 perform better than the Bayes

estimators based on non-informative prior 1. In addition, the Bayes estimators perform

better than the classical estimators MLEs and AMLEs. It is also noted as m increases,

the performances of all estimators better in terms of biases and MSEs.

We also computed the 95% confidence/credible intervals for µ and σ based on the

asymptotic distributions of the MLEs and AMLEs. We further computed Boot-p, and
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Table 4: Average confidence/credible lengths and coverage probabilities for different values of m.

MLE AMLE p-boot t-boot Bayes

Prior 1 Prior 2

E
st

im
at

io
n

o
f
µ

m = 2 Length 1.964 1.972 1.937 1.925 1.916 1.892

Cov. Prob. 0.937 0.936 0.938 0.939 0.939 0.940

m = 3 Length 1.729 1.741 1.709 1.686 1.681 1.669

Cov. Prob. 0.938 0.937 0.940 0.941 0.940 0.941

m = 5 Length 1.411 1.424 1.384 1.377 1.358 1.345

Cov. Prob. 0.939 0.937 0.941 0.942 0.941 0.943

m = 10 Length 1.097 1.110 1.068 1.046 1.028 1.009

Cov. Prob. 0.941 0.940 0.943 0.943 0.943 0.944

m = 15 Length 0.804 0.811 0.794 0.783 0.752 0.739

Cov. Prob. 0.943 0.942 0.944 0.945 0.945 0.946

m = 20 Length 0.653 0.673 0.634 0.625 0.605 0.590

Cov. Prob. 0.945 0.943 0.945 0.947 0.947 0.948

E
st

im
at

io
n

o
f
σ

m = 2 Length 1.310 1.328 1.286 1.279 1.271 1.260

Cov. Prob. 0.939 0.936 0.939 0.940 0.939 0.941

m = 3 Length 1.186 1.197 1.172 1.164 1.152 1.140

Cov. Prob. 0.941 0.939 0.941 0.941 0.942 0.943

m = 5 Length 0.924 0.931 0.907 0.902 0.894 0.887

Cov. Prob. 0.942 0.940 0.943 0.944 0.944 0.945

m = 10 Length 0.716 0.724 0.701 0.694 0.680 0.671

Cov. Prob. 0.943 0.941 0.943 0.944 0.945 0.946

m = 15 Length 0.543 0.560 0.530 0.522 0.516 0.505

Cov. Prob. 0.944 0.942 0.944 0.945 0.946 0.948

m = 20 Length 0.375 0.383 0.366 0.359 0.352 0.345

Cov. Prob. 0.946 0.945 0.945 0.947 0.948 0.949

Boot-t confidence intervals, and the credible intervals. Table 4 presents the average con-

fidence/credible lengths and the corresponding coverage probability over 1000 replica-

tions. The nominal level for the confidence intervals is 0.95 in each case.

From Table 4, the length of the 95% confidence interval based on the asymptotic

distribution of the MLE, is slightly smaller than the corresponding length of the interval

based on the asymptotic distribution of the AMLE. We also observe that the Bayesian

credible intervals work slightly better than the bootstrap and asymptotic confidence in-

tervals in terms of both confidence length and coverage probability. Also, Boot-t confi-

dence intervals perform very similarly to the Bayesian credible intervals. The bootstrap

confidence intervals work better than the asymptotic confidence intervals. The Boot-t

confidence intervals perform better than the Boot-p confidence intervals. Also, it is ob-

served that all the simulated coverage probabilities are very close to the nominal level
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95%. Also, for all interval estimators, the confidence lengths and the simulated coverage

percentages decrease as m increases.

Overall speaking, from Tables 3 and 4, we would recommend the use of Bayesian

method for point and interval estimation, especially when reliable prior information

about the logistic parameters is available.

Appendix A

To prove B ≤ 0, we need to show that

(βmym +
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i=1βiyi)
2
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2
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We can rewrite (A.1) as
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Now, since y2
i + y2

j ≥ 2yiy j, we have

βm

(
m∑

i=1

βi[2ymyi]

)
≤ βm

(
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βi[y
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)
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and

(
m∑

i=1

βiyi

)2

≤
(

m∑

i=1

βi

)(
m∑

i=1

βiy
2
i

)
. (A.4)

Now by using (A.3) and (A.4), (A.2) is true and the proof is thus obtained.
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Appendix B (Proof of Theorem 1)

The log-likelihood function of g2(µ|σ) is

lng2(µ|σ,y) ∝ −
m∑

i=1

ln(1+ e−(yi−µ)/σ)− ln(1+ e−(ym−µ)/σ)−2ln(1+ e−(µ−µ0)/σ).

The second derivative of lng2(µ|σ,y) is obtained as

− 1

σ2

[
m∑

i=1

e−(yi−µ)/σ

(1+ e−(yi−µ)/σ)2
+

e−(ym−µ)/σ

(1+ e−(ym−µ)/σ)2
+

2 e−(µ−µ0)/σ

(1+ e−(µ−µ0)/σ)2

]
,

which is negative. So, the result follows.

Appendix C (Proof of Lemma 1)

Using the relation (2.5), we have

E [ f (Xi)] = E [F(Xi)(1−F(Xi))]

=

∞∫

−∞

F(x)[1−F(x)]
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

u(1−u)
[− ln(1−u)]i−1

(i−1)!
du

=

∞∫

0

(1− e−t)e−2t t i−1

(i−1)!
dt =

1

2i
− 1

3i
,

and

E [F(Xi)] =

∞∫

−∞

F(x)
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

u
[− ln(1−u)]i−1

(i−1)!
du

=

∞∫

0

(1− e−t)e−t t i−1

(i−1)!
dt = 1− 1

2i
.
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We also have

E [Xi f (Xi)] = E [XiF(Xi)(1−F(Xi))]

=

∞∫

−∞

xF(x)[1−F(x)]
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

[lnu− ln(1−u)]u(1−u)
[− ln(1−u)]i−1

(i−1)!
du,

since F−1(u) = lnu− ln(1−u). Setting t =− ln(1−u), we get

E [Xi f (Xi)] =

∞∫

0

ln(1− e−t)e−2t(1− e−t)
t i−1

(i−1)!
dt +

∞∫

0

e−2t(1− e−t)
t i

(i−1)!
dt

=
∞∑

l=1

[
1

l(l +3)i
− 1

l(l+2)i

]
+ i

[
1

2i
− 1

3i

]
.

The two other expectations E [Xi(1−F(Xi))] and E[X2
i f (Xi)], can be obtained in the

same manner using the binomial expansion and writing ln(1− e−t) =−∑∞
l=1

e−lt

l
.
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Abstract

Bivariate count data arise in several different disciplines and the bivariate Poisson distribution is

commonly used to model them. This paper proposes and studies a computationally convenient

goodness-of-fit test for this distribution, which is based on an empirical counterpart of a system of

equations. The test is consistent against fixed alternatives. The null distribution of the test can be

consistently approximated by a parametric bootstrap and by a weighted bootstrap. The goodness

of these bootstrap estimators and the power for finite sample sizes are numerically studied. It is

shown that the proposed test can be naturally extended to the multivariate Poisson distribution.
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1. Introduction

Univariate count data appear in many real life situations and the univariate Poisson dis-

tribution is frequently used to model this kind of data (see for example Haight, 1967;

Johnson and Kotz 1969; Sahai and Khurshid, 1993). Gürtler and Henze (2000) present

a wide variety of procedures for testing goodness-of-fit (gof) for the univariate Poisson

distribution.

In practice, bivariate count data appear in different areas of knowledge and the bi-

variate Poisson distribution (BPD), being a generalization of the Poisson distribution,

plays a key role in modelling them, provided that such data present a positive correlation.
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Different authors have given a definition for the BPD (see for example Kocherlakota and

Kocherlakota, 1992). In this article we will work with the one that has received more

attention (see for example Holgate, 1964; Johnson, Kotz and Balakrishnan, 1997). Let

X1 = Y1 +Y3 and X2 =Y2 +Y3,

where Y1,Y2 and Y3 are mutually independent Poisson random variables with means

θ′1 = θ1 − θ3 > 0, θ′2 = θ2 − θ3 > 0 and θ3 > 0, respectively. The joint distribution of

the vector (X1,X2) is called BPD with parameter θ = (θ1,θ2,θ3), (X1,X2) ∼ BP(θ) for

short. In the statistical literature on gof tests for the BPD, which is not so rich as in the

univariate case, we found the following: the tests given by Crockett (1979), Loukas and

Kemp (1986), Rayner and Best (1995) – these three tests are not consistent against all

fixed alternatives – and, more recently, the tests in Novoa-Muñoz and Jiménez-Gamero

(2014) (hereafter abbreviated to NJ).

The two tests in NJ are consistent against all fixed alternatives. The results in Janssen

(2000) assert that the global power function of any nonparametric test is flat on balls of

alternatives except for alternatives coming from a finite dimensional subspace. Because

of this reason, it is interesting to propose new gof tests able to detect different sets of

alternatives.

This paper presents a consistent gof test for the BPD. It is based on the following:

since the probability generating function (pgf) of the BPD is the unique pgf satisfying

certain system of partial differential equations, and the empirical probability generat-

ing function (epgf) consistently estimates the pgf, the epgf should approximately satisfy

such system. The proposed test statistic is a function of the coefficients of the polyno-

mials of an empirical version of that system. The asymptotic behaviour of the proposed

test under alternatives is shared with the ones in NJ. An advantage of the test proposed

in this paper over those in NJ is that its application does not entail the choice of a weight

function, which is rather arbitrary.

The null distribution of the test statistic can be consistently approximated by a para-

metric bootstrap as well as by means of a weighted bootstrap. The finite sample perfor-

mance of the proposed test is investigated by means of a simulation study, where the

goodness of the proposed approximations is numerically studied and the test is com-

pared, in terms of power, to the tests cited above. The numerical power study reveals

that, as expected from the results in Janssen (2000), there is no test yielding the highest

power against all considered alternatives. In most cases, the power of the proposed test

is quite close to the highest one; in other cases, the proposed test is the most powerful.

In addition, from a computational point of view, the test proposed in this paper is more

efficient than its competitors.

The work is organized as follows. Section 2 introduces the test statistic and derives

its asymptotic null distribution. Since the asymptotic null distribution does not provide

a useful means of approximating the null distribution of the test statistic, Section 3 stud-
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ies two bootstrap estimators. Specifically, it is shown that the parametric bootstrap and

a conveniently defined weighted bootstrap estimators produce consistent null distribu-

tion estimators. This Section also studies the power of the resulting tests against fixed

alternatives. Section 4 deals with the practical implementation of the bootstrap null dis-

tribution estimators as well as other related issues. Section 5 reports a summary of the

results of a simulation study carried out to examine the finite sample performance of the

tests and to compare them with the existing ones. All stated results are valid for θ3 > 0.

Section 6 deals with the case θ3 = 0. Section 7 shows how the proposed technique can

be applied to the general multivariate case. All proofs are relegated to the last section.

Hereinafter we shall use the following notation: all vectors are row vectors and vT

is the transposed of the row vector v; for any vector v, vk denotes its kth coordinate,

and ‖v‖ its Euclidean norm; N0 = {0,1,2,3, . . .}; I{A} denotes the indicator function

of the set A; Pθ denotes the probability law of the BPD with parameter θ; P denotes

the probability law of the data; Eθ denotes expectation with respect to the probability

function Pθ; E denotes expectation with respect to the true probability function of the

data; P∗ denote the probability law, given the data; all limits in this work are taken as n→
∞;

L−→ denotes convergence in distribution;
P−→ denotes convergence in probability;

a.s.−→ denotes almost sure (a.s.) convergence; for any function h : S ⊂R
m →R, for some

fixed m ∈ N, we will denote

Da1···amh(u) =
∂ k

∂u
a1
1 · · ·∂u

am
m

h(u),

∀a1, . . . ,am ∈ N0 such that k = a1 + · · ·+am.

2. The test statistic and its asymptotic null distribution

Let X1 = (X11,X12),X2 = (X21,X22), . . . ,Xn = (Xn1,Xn2) be independent identically dis-

tributed (iid) from a random vector X =(X1,X2)∈N
2
0. Based on the sample X1,X2, . . . ,Xn,

the objective is to test the hypothesis

H0 : (X1,X2)∼ BP(θ1,θ2,θ3), for some (θ1,θ2,θ3) ∈ Θ,

against the alternative

H1 : (X1,X2)≁ BP(θ1,θ2,θ3), ∀(θ1,θ2,θ3) ∈ Θ,
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where Θ =
{

(θ1,θ2,θ3) ∈ R
3 : θ1 > θ3, θ2 > θ3, θ3 > 0

}

. Since the distribution of a

random vector X = (X1,X2) ∈ N
2
0 is determined by its pgf g(u) = E

(

u
X1
1 u

X2
2

)

, u =

(u1,u2) ∈ [0,1]2, and the joint pgf of a random vector X ∼ BP(θ) is

g(u;θ) = Eθ(u
X1
1 u

X2
2 ) = exp

{

θ1(u1 −1)+ θ2(u2 −1)+ θ3(u1 −1)(u2−1)
}

, (1)

testing H0 vs H1 is equivalent to testing

H0 : g(u) = g(u;θ), ∀u ∈ [0,1]2, for some (θ1,θ2,θ3) ∈ Θ,

versus

H1 : g(u) 6= g(u;θ), for some u ∈ [0,1]2, ∀(θ1,θ2,θ3) ∈ Θ.

Proposition 2 in NJ shows that g(u1,u2;θ) is the only pgf in G2 = {g : [0,1]2 → R,

such that g is a pgf and ∂
∂u1

g(u1,u2) and ∂
∂u2

g(u1,u2) exist ∀(u1,u2) ∈ [0,1]2} satisfying

the following system,

Di(u;θ) = 0, i = 1,2, ∀u ∈ [0,1]2,

where

D1(u;θ) =
∂

∂u1

g(u1,u2)−
{

θ1 + θ3(u2 −1)
}

g(u1,u2),

D2(u;θ) =
∂

∂u2

g(u1,u2)−
{

θ2 + θ3(u1 −1)
}

g(u1,u2).

Now we consider the following empirical versions of the functions Di(u;θ), i = 1,2,

D1n(u; θ̂) =
∂

∂u1

gn(u1,u2)−
{

θ̂1 + θ̂3(u2 −1)
}

gn(u1,u2),

D2n(u; θ̂) =
∂

∂u2

gn(u1,u2)−
{

θ̂2 + θ̂3(u1 −1)
}

gn(u1,u2),

where θ̂ = (θ̂1, θ̂2, θ̂3) is a consistent estimator of θ and gn(u1,u2) is the epgf associated

to the data,

gn(u1,u2) =
1

n

n
∑

i=1

u
Xi1
1 u

Xi2
2 .
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Proposition 1 in NJ shows that g(u) and its derivatives can be consistently estimated by

the epgf and the derivatives of the epgf, respectively. Thus, if H0 is true then D1n(u; θ̂)
and D2n(u; θ̂) should be close to 0, ∀u ∈ [0,1]2. This proximity to 0 can be interpreted in

several ways. For example, NJ interpreted this proximity as

Sn,w(θ̂) = n

∫

{D1n(u; θ̂)2 +D2n(u; θ̂)2}w(u)du ≈ 0, (2)

where w(u) is a non-negative function on [0,1]2.

Here we present another interpretation, reasoning as in Nakamura and Pérez-Abreu

(1993) for the univariate case. With this aim, observe that

Din(u; θ̂) =
∑

r≥0

∑

s≥0

di(r,s; θ̂)ur
1us

2, i = 1,2, (3)

where

d1(r,s; θ̂) = (r+1)pn(r+1,s)− (θ̂1− θ̂3)pn(r,s)− θ̂3pn(r,s−1),

d2(r,s; θ̂) = (s+1)pn(r,s+1)− (θ̂2− θ̂3)pn(r,s)− θ̂3pn(r−1,s),

and

pn(r,s) =
1

n

n
∑

k=1

I(Xk1 = r,Xk2 = s)

is the relative frequency of the pair (r,s). Thus, Din(u; θ̂) = 0, ∀u ∈ [0,1]2, i = 1,2, if and

only if the coefficient of ur
1us

2 in the right hand side of (3) is null, ∀r,s ≥ 0, i = 1,2. This

leads us to consider the following statistic for testing H0,

Wn(θ̂) =
∑

r≥0

∑

s≥0

{d1(r,s; θ̂)2 +d2(r,s; θ̂)2}=
M
∑

r,s=0

{d1(r,s; θ̂)2 +d2(r,s; θ̂)2}, (4)

where M = max{X(n)1,X(n)2}, X(n)k = max1≤i≤n Xik, k = 1,2.

Taking into account that

dk(r,s; θ̂) =
1

n

n
∑

i=1

φkrs(Xi; θ̂), k = 1,2,
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with

φ1rs(x;θ) = (r+1)I(x1 = r+1,x2 = s)− (θ1− θ3)I(x1 = r,x2 = s)− θ3I(x1 = r,x2 = s−1),

φ2rs(x;θ) = (s+1)I(x1 = r,x2 = s+1)− (θ2− θ3)I(x1 = r,x2 = s)− θ3I(x1 = r−1,x2 = s),

where x = (x1,x2), the statistic Wn(θ̂) can be expressed as follows,

Wn(θ̂) =
1

n2

n
∑

i, j=1

h(Xi,X j; θ̂),

with

h(x,y;θ)= h1(x,y;θ)+h2(x,y;θ),

h1(x,y;θ)=
∑

r≥0

∑

s≥0φ1rs(x;θ)φ1rs(y;θ)

= {x2
1 +(θ1 − θ3)

2 + θ2
3}I(x1 = y1,x2 = y2)− (θ1− θ3)x1I(x1 = y1 +1,x2 = y2)

−θ3x1I(x1 = y1 +1,x2 = y2 +1)+(θ1− θ3)θ3I(x1 = y1,x2 = y2 +1)

−(θ1 − θ3)y1I(y1 = x1 +1,y2 = x2)− θ3y1I(y1 = x1 +1,y2 = x2 +1)

+(θ1 − θ3)θ3I(y1 = x1,y2 = x2 +1),

h2(x,y;θ)=
∑

r≥0

∑

s≥0φ2rs(x;θ)φ2rs(y;θ)

= {x2
2 +(θ2 − θ3)

2 + θ2
3}I(x1 = y1,x2 = y2)− (θ2− θ3)x2I(x1 = y1,x2 = y2 +1)

−θ3x2I(x1 = y1 +1,x2 = y2 +1)+(θ2− θ3)θ3I(x1 = y1 +1,x2 = y2)

−(θ2 − θ3)y2I(y1 = x1,y2 = x2 +1)− θ3y2I(y1 = x1 +1,y2 = x2 +1)

+(θ2 − θ3)θ3I(y1 = x1 +1,y2 = x2),

where x = (x1,x2) and y = (y1,y2).

In order to give a sound justification of Wn(θ̂) as a test statistic for testing H0 we next

derive its a.s. limit.

Theorem 1 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈ N
2
0 with E(X2

k ) < ∞, k = 1,2.

Let p(r,s) = P(X1 = r,X2 = s). If θ̂
a.s.−→θ, for some θ ∈ R

3, then

Wn(θ̂)
a.s.−→
∑

r,s≥0

{

a1(r,s;θ)2+a2(r,s;θ)2
}

= η(P;θ),

where
a1(r,s;θ) = (r+1)p(r+1,s)− (θ1− θ3)p(r,s)− θ3p(r,s−1),

a2(r,s;θ) = (s+1)p(r,s+1)− (θ2− θ3)p(r,s)− θ3p(r−1,s).
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Note that η(P;θ)≥ 0 and, taking into account that

Dk(u;θ) =
∑

r≥0

∑

s≥0

ak(r,s;θ)ur
1us

2, k = 1,2,

it follows that η(P;θ) = 0 if and only if H0 is true. Thus, a reasonable test for testing H0

should reject the null hypothesis for large values of Wn(θ̂). Now, to determine what are

large values we must calculate its null distribution, or at least an approximation to it.

We first try to estimate the null distribution of Wn(θ̂) by means of its asymptotic null

distribution. In order to derive it, it will be assumed that the estimator θ̂ is asymptotically

linear, as expressed in the next assumption.

Assumption 1 Under H0, if θ = (θ1,θ2,θ3) ∈ Θ denotes the true parameter value, then

√
n
(

θ̂− θ
)

=
1√
n

n
∑

i=1

ℓ(Xi;θ)+oP(1),

where ℓ :N2
0×Θ−→R

3 is such that Eθ {ℓ(X1;θ)}= 0 and J(θ)=Eθ

{

ℓ(X1;θ)
T
ℓ(X1;θ)

}

< ∞.

Assumption 1 is not restrictive at all since it is fulfilled by some commonly used

estimators such as the moment estimator, the maximum likelihood estimator, the double

zero estimator, the even points estimator and the conditional even points estimator (see

Kocherlakota and Kocherlakota, 1992, and Papageorgiou and Loukas, 1988).

The next result gives the asymptotic null distribution of Wn(θ̂).

Theorem 2 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∼ BP(θ1,θ2,θ3). Suppose that

Assumption 1 holds. Then

nWn(θ̂)
L−→
∑

j≥1

λ jχ
2
1 j,

where χ2
11,χ

2
12, . . . are independent χ2 variates with one degree of freedom and the set

{λ j} are the non-null eigenvalues of the operator C(θ) defined on the function space

{τ : N2
0 → R, such that Eθ

[

τ 2(X)
]

< ∞,∀θ ∈ Θ}, as follows

C(θ)τ(x) = Eθ{K(x,X;θ)τ(X)},

with K(x,y;θ)= h(x,y;θ)+ℓ(x;θ)µ(y;θ)T+ℓ(y;θ)µ(x;θ)T+ℓ(x;θ)S(θ)ℓ(y;θ)T, µ(x;θ)=
(µ1(x;θ),µ2(x;θ),µ3(x;θ)),
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µ1(x;θ) = −x1Pθ(x1 −1,x2)+ θ3Pθ(x1,x2 +1)+(θ1− θ3)Pθ(x1,x2),

µ2(x;θ) = −x2Pθ(x1,x2 −1)+ θ3Pθ(x1 +1,x2)+(θ2− θ3)Pθ(x1,x2),

µ3(x;θ) = −µ1(x;θ)− x1Pθ(x1 −1,x2 −1)+ θ3Pθ(x1,x2)+(θ1 − θ3)Pθ(x1,x2 −1)

−µ2(x;θ)− x2Pθ(x1 −1,x2 −1)+ θ3Pθ(x1,x2)+(θ2 − θ3)Pθ(x1 −1,x2),

S(θ) =
∑

r,s≥0 Srs(θ),

Srs(θ) =





a2 0 a(b−a)

0 a2 a(c−a)
a(b−a) a(c−a) (b−a)2+(c−a)2



 ,

a = Pθ(r,s), b = Pθ(r,s−1), c = Pθ(r−1,s),

The asymptotic null distribution of Wn(θ̂) does not provide a useful approximation

to its null distribution since it depends on the unknown true value of θ. Even if θ were

known or replaced by an appropriate estimator, to determine the eigenvalues of an oper-

ator is a rather hard problem.

So, we next study two further ways of approximating it: a parametric bootstrap (PB)

estimator and a weighted bootstrap (WB) estimator.

3. Approximating the null distribution

3.1. Parametric bootstrap

Let X1,X2, . . . ,Xn be iid taking values in N
2
0 such that θ̂ = θ̂(X1,X2, . . . ,Xn) ∈ Θ. Let

X
∗
1,X

∗
2, . . . ,X

∗
n be iid from a population with distribution BP

(

θ̂
)

, given X1,X2, . . . ,Xn,

and let W ∗
n (θ̂

∗) be the bootstrap version of Wn(θ̂) obtained by replacing X1,X2, . . . ,Xn

and θ̂ = θ̂
(

X1,X2, . . . ,Xn

)

by X
∗
1,X

∗
2, . . . ,X

∗
n and θ̂ ∗ = θ̂

(

X
∗
1,X

∗
2, . . . ,X

∗
n

)

, respectively,

in the expression of Wn(θ̂). To prove that the PB can be used to consistently approximate

the null distribution of Wn(θ̂), we will assume the following, which is a bit stronger than

Assumption 1.

Assumption 2 Assumption 1 holds and the functions ℓ and J satisfy

(1) supϑ∈Θ0
Eϑ

[

‖ℓ(X;ϑ)‖2I{‖ℓ(X;ϑ)‖> γ}
]

→ 0, as γ → ∞, where Θ0 ⊆ Θ is an

open neighborhood of θ.

(2) ℓ(X;ϑ) and J(ϑ) are continuous as functions of ϑ at ϑ = θ and J(ϑ) is finite

∀ϑ ∈ Θ0.
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Theorem 3 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈N
2
0. Suppose that Assumption

2 holds and that θ̂
a.s.−→θ, for some θ ∈ Θ. Then

sup
x∈R

∣

∣P∗
{

nW ∗
n (θ̂

∗)≤ x
}

−Pθ
{

nWn(θ̂)≤ x
}∣

∣

a.s.−→ 0.

Let w∗
n,α = inf{x : P∗(W ∗

n (θ̂
∗) ≥ x) ≤ α} be the α upper percentile of the PB distri-

bution of Wn(θ̂) and let Wobs be the observed value of the test statistic. From Theorem 3,

the test function

Ψ∗
PB =

{

1, if Wn(θ̂)≥ w∗
n,α ,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗
(

W ∗
n (θ̂

∗)≥Wobs

)

≤ α, is asymptot-

ically correct in the sense that Pθ(Ψ
∗
PB = 1)→ α.

3.2. Weighted bootstrap

From the proof of Theorem 2, when H0 is true, we have that nWn(θ̂) = nW1n(θ)+oP(1),

where

nW1n(θ) =
1

n

n
∑

i, j=1

K(Xi,X j;θ),

which converges in law to W0 =
∑

j≥1λ jχ
2
1 j. As observed before, the greatest difficulty

with W0 is to determine the set {λ j}. Nevertheless, Delhing and Mikosch (1994) have

shown that the eigenvalues {λ j} can be consistently (a.s.) approximated by the eigen-

values of the matrix

Hn =

(

1

n
K(Xi,X j;θ)

)

1≤i, j≤n

,

say λ̂1, . . . , λ̂n. Therefore, we could approximate the null distribution of nW1n(θ̂) (and

thus that of nWn(θ̂)) through the conditional distribution, given X1, . . . ,Xn, of

nW ∗
1n =

n
∑

j=1

λ̂ jχ
2
1 j.

This is tantamount to approximate the null distribution of nW1n(θ̂) by means of the

conditional distribution, given X1, . . . ,Xn, of
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W ∗
1 =

1

n

n
∑

i, j=1

K(Xi,X j;θ)ξiξ j,

where ξ1, . . . ,ξn are iid from a standard normal distribution, N(0,1), independent of

X1, . . . ,Xn, that is, by means of the WB distribution of nW1n(θ̂), in the sense of Burke

(2000). The main problem with this approach is that K(x,y;θ) is unknown because it

depends on θ, which is unknown, and because it also depends on ℓ(x;θ), which is usually

unknown. To overcome this problem we replace θ by θ̂ and ℓ(x;θ) by ℓ̂(x; θ̂) which is

assumed to satisfy

1

n

n
∑

j=1

‖ℓ1(X j;θ)− ℓ̂(X j; θ̂)‖2 P−→ 0,

with E{‖ℓ1(X;θ)‖2}< ∞ and ℓ1(x;θ) = ℓ(x;θ) if H0 is true.

(5)

So, instead of nW ∗
1n(θ̂) we consider

nW ∗
2n(θ̂) =

n
∑

j=1

λ̃ jχ
2
1 j,

where λ̃1, . . . , λ̃n are the eigenvalues of the matrix

Ĥn =

(

1

n
K̂(Xi,X j;θ)

)

1≤i, j≤n

,

with K̂(x,y;θ)= h(x,y;θ)+ ℓ̂(x;θ)µ(y;θ)T+ ℓ̂(y;θ)µ(x;θ)T+ ℓ̂(x;θ)S(θ)ℓ̂(y;θ)T. The next

theorem gives the limit of the conditional distribution of nW ∗
2n(θ̂), given X1, . . . ,Xn.

Theorem 4 Let X1,X2, . . . ,Xn be iid from X = (X1,X2) ∈ N
2
0 with E(X2

k )< ∞, k = 1,2.

Suppose that θ̂
P−→θ, for some θ ∈ Θ and that (5) holds. Then,

sup
x

∣

∣P∗
{

nW ∗
2n(θ̂)≤ x

}

−P{W1 ≤ x}
∣

∣

P−→ 0, (6)

where W1 =
∑

j≥1λ1 jχ
2
1 j, {λ1 j} are the non-null eigenvalues of the operator C1(θ) de-

fined on the function space {τ : N2
0 → R, such that E

[

τ 2(X)
]

< ∞}, as follows

C1(θ)τ(x) = E{K1(x,X;θ)τ(X)},

with K1(x,y;θ) = h(x,y;θ)+ ℓ1(x;θ)µ(y;θ)T+ ℓ1(y;θ)µ(x;θ)T+ ℓ1(x;θ)S(θ)ℓ1(y;θ)T.
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Remark 1 If in addition to the assumptions in Theorem 4 we assume that θ̂
a.s.−→θ and

that the limit in (5) is a.s., then the convergence in (6) is a.s.

Remark 2 The result in Theorem 4 keeps on being true if instead of using the raw

multipliers, ξ1, . . . ,ξn, we use the centered multipliers, ξ1 − ξ̄, . . . ,ξn − ξ̄, as suggested in

Burke (2000) and Kojadinovic and Yan (2012).

Let w∗
2,n,α = inf{x : P∗(W ∗

2n(θ̂)≥ x)≤ α} be the α upper percentile of the WB distri-

bution of Wn(θ̂). From Theorems 2 and 4, the test function

Ψ∗
WB =

{

1, if Wn(θ̂)≥ w∗
2,n,α ,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗
(

W ∗
2n(θ̂)≥Wobs

)

≤ α, is asymptot-

ically correct.

3.3. Behaviour against alternatives

This subsections shows that, in contrast to the tests given by Crockett (1979), Loukas

and Kemp (1986) and Rayner and Best (1995), the tests Ψ∗
PB and Ψ∗

WB are consistent,

that is, they are able to detect any fixed alternative.

As an immediate consequence of Theorems 1 and 3 (Theorems 1 and 4) the next

result gives the asymptotic power of the test Ψ∗
PB (Ψ∗

WB) against fixed alternatives.

Corollary 1 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0 with pgf g(u). Suppose that assump-

tions in Theorems 1 and 3 hold. If η(P;θ)> 0, then P(Ψ∗
PB = 1)→ 1.

Corollary 2 Let X1,X2, . . . ,Xn be iid from X ∈ N
2
0 with pgf g(u). Suppose that assump-

tions in Theorems 1 and 4 hold. If η(P;θ)> 0, then P(Ψ∗
WB = 1)→ 1.

It can be shown that the proposed tests are also able to detect local alternatives con-

verging to the null at the rate n−1/2. The statement and the proof of this result are quite

similar to those of Theorem 4 in NJ, for the PB, and of Theorem 4 in Jiménez-Gamero

and Kim (2015), for the WB. So, in order to save space, we omit it.

Although the tests Ψ∗
PB and Ψ∗

WB both asymptotically correct and consistent, their

power for finite sample sizes differ. This point will be numerically studied by simulation

in Section 5.
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4. Some practical considerations

4.1. Bootstrap algorithms

In practice, the exact bootstrap estimator of the null distribution of Wn(θ̂) cannot be

calculated. As usual, we approximate it by simulation as follows:

PB algorithm

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. For some large integer B, repeat for every b ∈ {1, . . . ,B}:

(a) Generate X
∗b = (X∗b

1 ,X∗b
2 , . . . ,X∗b

n ), where X
∗b
1 ,X∗b

2 , . . . ,X∗b
n are iid from a

BP
(

θ̂
)

.

(b) Calculate the test statistic evaluated at X
∗b, obtaining W ∗b

n (θ̂∗b).

3. Approximate the p-value by p̂ = 1
B

∑B
b=1 I{W ∗b

n (θ̂∗b)>Wobs}.

In contrast to the PB distribution, the exact WB estimator of the null distribution of

Wn(θ̂) can be calculated by using some numerical approximation method, as for example

Imhof’s (1961) method. Thus, to calculate the WB distribution of Wn(θ̂) we can proceed

as follows:

WB algorithm 1

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. Calculate mi j = K̂(Xi,X j; θ̂), 1 ≤ i ≤ j ≤ n. Note that m ji = mi j.

3. Calculate the eigenvalues of Ĥn, λ̃1, . . . , λ̃n.

4. Approximate the p-value by p̂ = P∗
(

∑n
j=1 λ̃ jχ

2
1 j >Wobs

)

.

The WB estimator can be also approximated by simulation as follows:

WB algorithm 2

1. Estimate θ through θ̂ and compute the observed value of the test statistic Wobs.

2. Calculate mi j = K̂(Xi,X j; θ̂), 1 ≤ i ≤ j ≤ n. Note that m ji = mi j.

3. For some large integer B, repeat for every b ∈ {1, . . . ,B}:

(a) Generate n iid N(0,1) variates ξ1, . . . ,ξn.

(b) Calculate W ∗b
2n (θ̂) =

1

n2

∑

i, j ξiξ jmi j (or W ∗b
2n (θ̂) =

1

n2

∑

i, j(ξi − ξ̄)(ξ j − ξ̄)mi j,

as observed in Remark 2).

4. Approximate the p-value by p̂ = 1
B

∑B
b=1 I{W ∗b

2n (θ̂)>Wobs}.
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4.2. Point estimators

All above theory assumes that the considered estimator θ̂ satisfies Assumption 1. Com-

monly used estimators such as maximum likelihood estimators (MLE) and method of

moment estimators (MME) satisfy it. Lemmas 1 and 3 in Jiménez-Gamero and Kim

(2015) show that the functions ℓ associated to MLEs and MMEs can be approximated

by ℓ̂ satisfying (5), and give the expressions of such approximations. Specifically, if θ is

estimated by means of its MLE, then a choice for ℓ̂= ℓ̂ML satisfying (5) is

ℓ̂ML((x1,x2);θ) =

(

x1 − θ1,x2 − θ2,θ3

(

Pθ(x1 −1,x2)

Pθ(x1,x2)
+

Pθ(x1,x2 −1)

Pθ(x1,x2)
−2

)

+ f (θ)

(

Pθ(x1 −1,x2 −1)

Pθ(x1,x2)
− Pθ(x1 −1,x2)

Pθ(x1,x2)
− Pθ(x1,x2 −1)

Pθ(x1,x2)
+1

))

,

where

f (θ) =
θ2

3(θ1 + θ2 −2θ3)(Q−1)− θ2
3 +(θ1 −2θ3)(θ2 −2θ3)

(θ1θ2 − θ2
3)(Q−1)− θ1− θ2 +2θ3

,

Q =
∑

i, j∈N0

Pθ(i−1, j−1)2

Pθ(i, j)
.

If θ is estimated by means of its MME, then a choice for ℓ̂= ℓ̂MM satisfying (5) is

ℓ̂MM((x1,x2);θ) = (x1 − θ1,x2 − θ2,−θ2(x1 − θ1)− θ1(x2 − θ2)+ x1x2 − θ3 − θ1θ2).

5. Finite sample performance

The properties so far studied are asymptotic. To study the finite sample performance

of the proposed tests, we conducted a simulation experiment. In this section we briefly

describe it and display a summary of the results obtained. All computations in this paper

were performed by using programs written in the R language (R Development Core

Team, 2015).

We started by comparing the proposed approximations to the null distribution of the

test statistic Wn(θ̂) from the point of view of the required time to get a p-value. Several

values of θ1, θ2 and θ3 were considered. We observed that the value of θ3 has almost no

influence in the required computation time. In contrast, the values of θ1 and θ2 have a

high impact. We also tried two methods to estimate the parameters: maximum likelihood

(ML) and the method of moments (MM), and observed that the choice of the method

has little mark on the consumed time. The method used to estimate the null distribution

has a high repercussion on the consumed time. In order to value some of these facts,
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Table 1: CPU time (in seconds) to get a p-value with B = 1000.

ML n = 50 n = 100 n = 200

θ1 θ2 PB WB2 WB1 PB WB2 WB1 PB WB2 WB1

1 1 8.37 0.11 0.07 9.31 0.25 0.15 10.25 0.72 0.46

1 3 13.15 0.14 0.09 17.20 0.27 0.18 19.72 0.74 0.49

3 3 23.57 0.14 0.10 30.12 0.27 0.17 41.15 0.74 0.46

3 10 57.27 0.22 0.22 60.90 0.36 0.29 87.06 0.82 0.59

10 10 132.32 0.28 0.22 187.57 0.36 0.30 277.43 0.86 0.60

10 50 188.64 2.08 2.17 317.47 2.34 2.42 449.14 3.29 2.89

50 50 621.02 2.29 2.40 1160.52 2.48 2.43 2340.78 3.45 3.03

MM n = 50 n = 100 n = 200

θ1 θ2 PB WB2 WB1 PB WB2 WB1 PB WB2 WB1

1 1 7.69 0.11 0.07 9.82 0.25 0.15 10.53 0.72 0.45

1 3 11.62 0.13 0.10 14.89 0.26 0.17 21.18 0.73 0.47

3 3 25.73 0.14 0.10 31.81 0.28 0.17 43.13 0.74 0.46

3 10 69.31 0.22 0.20 60.15 0.36 0.28 79.80 0.81 0.57

10 10 88.90 0.27 0.22 195.39 0.38 0.31 278.02 0.85 0.58

10 50 174.27 2.07 2.17 280.04 2.31 2.43 462.41 3.26 2.91

50 50 717.87 2.28 2.24 1172.18 2.48 2.38 2402.07 3.43 2.89

Table 1 displays the CPU consumed time (in seconds) to get a p-value for several values

of θ1 and θ2. The value of θ3 was set so that the correlation coefficient between the

variables, ρ = θ3/
√
θ1 θ2, is equal to 0.5. To calculate the PB approximation and the

approximation in WB algorithm 2 we took B = 1000. There is almost no difference in

using the raw multipliers and the centered multipliers in WB algorithm 2. To calculate

the p-value of the approximation in WB algorithm 1 we used the function imhof of

the package CompQuadForm of the R language (Duchesne and Lafaye De Micheaux,

2010). From the results in this table it becomes evident that the PB is much more time

consuming than the WB, specially for large values of θ1, θ2 and the sample size. There

are small differences between WB algorithm 1 and WB algorithm 2.

We then studied the goodness of the proposed bootstrap approximations to the null

distribution of the test statistic for finite sample sizes. With this aim, we generated 1000

samples of size n = 50,100,200,300 from a BP(θ1,θ2,θ3), for several values of θ1 and

θ2, with θ3 such that ρ equals to 0.25 and 0.75, in order to examine the approximations

for low and high correlated data, respectively, when θ1 = θ2, and ρ = 0.25 for θ1 6=
θ2 (ρ = 0.75 was not considered because it gives values of θ3 out of the parametric

space for the tried values of θ1 6= θ2). Because of the results in Table 1, for θ1 = θ2 =

50, the PB was only tried for n = 50,100. For θ1 = θ2 = 50 the WB was also tried

for greater sample sizes. For each sample, the p-values were calculated with B = 500.

The p-values obtained with the WB approximation calculated by means of simulation

(WB algorithm 2 with raw and centered multipliers) and numerical approximation (WB
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algorithm 1 with Imhof’s method) were, as expected, quite close. As for raw multipliers

versus centered multipliers, a bit better results are obtained when using the centered

multipliers. Table 2 displays the fraction of estimated p-values less than or equal to

0.05 and 0.10, which are the estimated type I error probabilities for α = 0.05 and 0.10,

respectively by using PB and WB with centered multipliers. From the results in this table

it can be concluded that both approximations give rise to conservative tests for small

sample sizes. As the values of θ1 and θ2 increase, the tests become more conservative,

specially the one based on the WB approximation. For example, when θ1 = θ2 = 50 and

ρ= 0.25, the sample size required to get empirical levels close to the nominal values is

n = 4000. For θ1 = θ2 = 50 and ρ= 0.75, n = 3000 is enough. In general, better results

(in the sense of closeness to the nominal values) are obtained for ρ = 0.75 than for

ρ= 0.25. Finally, it is also observed a bit better results when the parameter is estimated

by the maximum likelihood estimator.

To study the power we repeated the above experiment for samples with size n =

50 from the following alternatives: bivariate binomial distribution BB(m; p1, p2, p3),

where p1 + p2 − p3 ≤ 1, p1 ≥ p3, p2 ≥ p3 and p3 > 0; bivariate Hermite distribution

BH(µ,σ2;λ1,λ2,λ3), where µ> σ2(λ1+λ2 +λ3); bivariate logarithmic series distribu-

tion BLS(λ1,λ2,λ3), where 0 < λ1 +λ2 +λ3 < 1; bivariate Neyman type A distribution

BNTA(λ;λ1,λ2,λ3), where 0< λ1+λ2+λ3 ≤ 1; bivariate Poisson distribution mixtures

of the form pBP(θ)+ (1− p)BP(λ),0 < p < 1, denoted by BPP(p;θ,λ); and (X1,X2)
with X1 = max{Y1,Y3} and X2 = |Y1 −Y3| (type 1), X1 = max{Y2,Y3} and X2 = |Y2 −Y3|
(type 2), X1 = max{Y1,Y3} and X2 = min{Y2,Y3} (type 3), X1 = max{Y2,Y3} and X2 =

min{Y1,Y3} (type 4), X1 = max{Y1,Y3} and X2 = max{Y2,Y3} (type 5), where Y1,Y2,Y3

are independent variables taking values in N0 whose distribution are binomial B(m; p),

negative binomial BN(m; p), Poisson P(λ) and uniform on 1,2, . . . ,m, U(m). The val-

ues of the parameters were chosen so that the expectations E(X1) and E(X2) are small

for the PB and the WB not to be excessively conservative. In this part of the simulation

experiment we only considered the maximum likelihood estimator of the parameter.

In addition to the tests proposed in this paper, Ψ∗
PB and Ψ∗

WB, we also considered the

tests given in Crockett (1979) (denoted by T ), Loukas and Kemp (1986) (denoted by IB),

Rayner and Best (1995) (denoted by NIB) and NJ (denoted by Rn and Sn, with weight

function w(u) = 1). Table 3 displays the alternatives considered and the estimated power

for nominal significance level α= 0.05. Looking at this table we conclude that the tests

Ψ∗
PB, Ψ∗

WB, Rn and Sn are able to detect all considered alternatives while, as expected,

the other tests cannot, specially the tests based on IB and NIB. For the alternatives in the

first half of Table 3 we see that the powers of the new tests, Rn and Sn are quite close;

while for the other alternatives the tests proposed in this paper are more powerful than

Rn and Sn. We also compared these tests from a computational point of view. From the

results in Table 1 we saw that, in this respect, Ψ∗
WB is more efficient than Ψ∗

PB. Since Rn

and Sn are both based on a PB, for the comparisons to be fair, we compared Ψ∗
PB, Rn and

Sn. Table 4 reports the ratio of the average CPU to get a p-value. Clearly, regarding the

required computing time, Ψ∗
PB is more efficient than Rn and Sn.
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Table 4: Ratio of average CPU time (in seconds).

n = 30 n = 50 n = 70 n = 100 n = 200 n = 300

Rn/Ψ∗
PB 73.50 75.71 77.44 80.19 79.69 79.20

Sn/Ψ∗
PB 5.01 11.07 20.20 43.73 145.28 303.92

Table 5: Results for the real data sets.

Plants Health

Rn,(0,0) 0.003 0.000

Rn,(1,0) 0.005 0.000

Rn,(0,1) 0.010 0.000

Sn,(0,0) 0.005 0.002

Sn,(1,0) 0.009 0.000

Sn,(0,1) 0.011 0.000

Ψ∗
PB 0.049 0.000

θ̂n (0.64000, 0.94000, 0.19852) (0.30173, 1.21830, 0.12518)

To end this section, Ψ∗
PB is applied to two real data sets. The first one were first given

and analysed by Holgate (1966), and refers to the number of plants of the species Lacis-

tema aggregatum and Protium guianense in each of 100 contiguous quadrats. Crock-

ett (1979), Loukas and Kemp (1986), Rayner and Best (1995) and NJ tested the data

for agreement with the bivariate Poisson model, they all concluded the data were not

well modelled by a BPD. The second data set were analysed in Karlis and Tsiamyrtzis

(2008), who used two variables, the number of consultations with a doctor or a specialist

(X1) and the total number of prescribed and non-prescribed medications used in past 2

days (X2), from the Australian Health survey for 1977–1978. The sample size was quite

large (n = 5190). These authors assumed that (X1,X2) has a BPD. NJ tested these data

sets for agreement with the bivariate Poisson model, concluding that they were not well

modelled by a BPD. The p-values obtained by applying the test proposed in this paper to

these two real data sets are 0.049 and 0.000, respectively, in agreement with the previous

analyses.

Table 6: Simulations results for the type I error probabilities when θ3 = 0.

θ1 = θ2 = 1 θ1 = θ2 = 3 θ1 = θ2 = 10

ML MM ML MM ML MM

n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

100 3.4 7.4 3.5 7.9 3.1 7.3 3.0 7.3 1.0 3.4 0.9 3.4

200 4.2 8.0 4.3 9.1 3.4 8.0 3.3 7.9 2.2 6.6 2.3 6.6

300 4.4 8.7 4.6 9.4 3.7 8.5 3.7 8.5 3.7 7.9 3.7 8.0
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6. Case θ3 = 0θ3 = 0θ3 = 0

The case θ3 = 0 has been excluded from H0 because it is a boundary point. It is well-

known (see, for example Andrews, 1999, Self and Liang, 1987, and the references

therein) that in such a case the MLE is not asymptotically normally distributed and thus

Assumption 1 is not satisfied. Moreover, Andrews (2000) have proven that the bootstrap

does not provides a consistent estimator of the distribution. Therefore, the theory so far

developed is not valid for θ3 = 0.

Next we give two possible ways of dealing with this case. A first way consist in

applying the method in Feng and McCulloch (1992), which proposed to enlarge the

parametric space to θ ∈ R
3, so that negative values for θ̂3 are allowed. With this ap-

proach all required assumptions in our theory are satisfied. The only problem with this

solution is how to apply in practice the PB approximation because it implies the gen-

eration of samples from a BP(θ1,θ2,θ3) distribution with θ3 < 0. Nevertheless, the WB

approximation can be applied. Table 6 gives the result of a small simulation that studies

the goodness of this solution. Observe that the results are quite close to those obtained

for θ3 > 0.

Another possible way of dealing with this case is to adapt the alternatives to the usual

bootstrap proposed in Andrews (2000). Two of them consists in subsampling, while the

other two are based on testing if the parameter is in the boundary. For the later methods

we could calculate a confidence interval for θ3 and look if it contains 0 by applying, for

example, the method in Feng and McCulloch (1992) but, as recognized by the authors,

it requires rather large sample sizes. Note that testing for θ3 = 0 is tantamount to having

two independent Poisson variables. Another way of investigating the independence of

the marginal distributions is by applying the classical χ2-test. Nevertheless, such test re-

quires the data to be grouped in classes, and the decision could depend on the grouping.

In our view, there is a need of a test for independence of variables taking values on N0,

which will be the topic of a future research.

If it can be reasonably assumed that the variables are independent, then by using

Raikov’s theorem (which states that the sum of two independent non-negative random

variables has a Poisson distribution if and only if both random variables have the Poisson

distribution), testing gof for an independent Poisson model is equivalent to testing gof

to the sum of the components to a univariate Poisson model. In the statistical literature

there is a variety of test for testing gof to a univariate Poisson model (see, for example,

the review in Gürtler and Henze, 2000).
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7. The general mmm-variate case

This section shows that the proposed test can be extended to the general m-variate case,

for any m ≥ 2. Let

X1 =Y1 +Ym+1, X2 =Y2 +Ym+1, . . . , Xm = Ym +Ym+1,

where Y1,Y2, . . . ,Ym+1 are mutually independent Poisson random variables with means

θ′1 = θ1 − θm+1 > 0, . . . ,θ′m = θm − θm+1 > 0 and θm+1 > 0, respectively. The joint dis-

tribution of the vector (X1,X2, . . . ,Xm) is called a m-variate Poisson distribution with

parameter θ = (θ1,θ2, . . . ,θm+1) (see Johnson, Kotz and Balakrishnan, 1997). The joint

pgf of (X1,X2, . . . ,Xm) is

g(u;θ) = exp

{

m
∑

i=1

θi (ui −1)+ θm+1

(

m

∏
i=1

ui −
m
∑

i=1

ui +m−1

)}

, ∀u ∈ R
m. (7)

Now, the objective is to test the hypothesis

H0m : (X1,X2, . . . ,Xm) has a m-variate Poisson distribution.

In order to extend the proposed test to the general m-variate case we will use the

following result in Proposition 3 in NJ which states that g(u;θ) is the only pgf in Gm =

{g : [0,1]m →R, such that g is a pgf and ∂
∂ui

g(u1,u2, . . . ,um) exists ∀u ∈ [0,1]m, 1 ≤ i ≤
m} satisfying the following system,

Di(u;θ) = 0, 1 ≤ i ≤ m, (8)

∀u ∈ [0,1]m, where Di(u;θ) =
∂

∂ui

g(u)−
{

θi + θm+1

(

∏
j 6=i

u j −1

)}

g(u), 1 ≤ i ≤ m.

Let (X1,X2, . . . ,Xm)∈N
m
0 be a random vector and let g(u1,u2, . . . ,um)=E

(

u
X1
1 u

X2
2 · · ·uXm

m

)

its pgf. Then, taking into account that

g(u) =
∑

r1,r2,...,rm≥0

u
r1
1 u

r2
2 · · ·urm

m p(r1,r2, . . . ,rm),

where p(r1,r2, . . . ,rm) = P(X1 = r1,X2 = r2, . . . ,Xm = rm), we can write

Di(u;θ) =
∑

r1,r2,...,rm≥0

{

(ri+1)p(r1, . . . ,ri−1,ri +1,ri+1, . . . ,rm)− (θi− θm+1)p(r1,r2, . . . ,rm)

−θm+1 p(r1−1, . . . ,ri−1 −1,ri,ri+1 −1, . . . ,rm −1)
}

u
r1
1 u

r2
2 · · ·urm

m , 1 ≤ i ≤ m.
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Let Din(u; θ̂) denote the empirical counterpart of Di(u;θ) obtained by replacing the pgf

g by the epgf gn and θ by a consistent estimator θ̂, 1 ≤ i ≤ m. If H0m is true then the

functions Din(u; θ̂), 1 ≤ i ≤ m, should be close to 0, ∀u ∈ [0,1]m. This proximity to zero

can be interpreted as we did in Section 2, for the bivariate case. Observe that

Din(u; θ̂) =
∑

r1,r2,...,rm≥0

di(r1,r2, . . . ,rm; θ̂)ur1
1 u

r2
2 · · ·urm

m , 1 ≤ i ≤ m,

where

di(r1,r2, . . . ,rm; θ̂) = (ri+1)pn(r1, . . . ,ri−1,ri +1,ri+1, . . . ,rm)

− (θ̂i − θ̂m+1)pn(r1,r2, . . . ,rm)

− θ̂m+1 pn(r1 −1, . . . ,ri−1 −1,ri,ri+1 −1, . . . ,rm −1), 1 ≤ i ≤ m,

and pn(r1,r2, . . . ,rm) =
1
n

∑n
k=1 I(Xk1 = r1,Xk2 = r2, . . . ,Xkm = rm) is the relative fre-

quency of (r1,r2, . . . ,rm). Therefore, Din(u; θ̂) = 0, ∀u ∈ [0,1]m, 1 ≤ i ≤ m, if and only

if the coefficients of u
r1
1 u

r2
2 · · ·urm

m in the previous expansions are null, ∀r1,r2, . . . ,rm ≥ 0.

This leads us to consider the following statistic for testing H0m,

Wm,n(θ̂)=
∑

r1,r2,...,rm≥0

{

m
∑

i=1

di(r1,r2, . . . ,rm; θ̂)2

}

=
M
∑

r1,r2,...,rm=0

{

m
∑

i=1

di(r1,r2, . . . ,rm; θ̂)2

}

,

where M = max{X(n)1,X(n)2, . . . ,X(n)m}, X(n)k = max1≤i≤n Xik, 1 ≤ k ≤ m. Similar results

to those stated in Sections 2 and 3 for the bivariate case can be established for Wm,n(θ̂).

8. Proofs

Here we give a sketch of the proofs of the results in Sections 2 and 3. A detailed deriva-

tion of the results can be obtained from the authors upon request.

Proof of Theorem 1 Observe that

d1(r,s; θ̂) = d1(r,s;θ)− (θ̂1− θ1)pn(r,s)+(θ̂3− θ3){pn(r,s)− pn(r,s−1)}

and

∑

r,s≥0

d1(r,s;θ)2 =
1

n2

∑

i6= j

h1(Xi,X j;θ)+
1

n2

n
∑

i=1

h1(Xi,Xi;θ).
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By the SLLN,

1

n

n
∑

i=1

h1(Xi,Xi;θ)
a.s.−→E







∑

r,s≥0

φ1rs(X1;θ)2







< ∞.

By the SLLN for U-statistics (Theorem 5.4 in Serfling, 1980),

1

n2

∑

i6= j

h1(Xi,X j;θ)
a.s.−→E{h1(X1,X2;θ)}=

∑

r,s≥0

a1(r,s;θ)2.

Therefore,

∑

r,s≥0

d1(r,s;θ)2 a.s.−→
∑

r,s≥0

a1(r,s;θ)2.

Since pn(r,s)
2 ≤ pn(r,s), ∀r,s ≥ 0, and

∑

r,s≥0 pn(r,s) = 1, we have

(θ̂1 − θ1)
2
∑

r,s≥0

pn(r,s)
2 ≤ (θ̂1 − θ1)

2 = o(1),

and analogously,

(θ̂3 − θ3)
2
∑

r,s≥0

{pn(r,s)− pn(r,s−1)}2 = o(1).

Thus,

∑

r,s≥0

d1(r,s; θ̂)2 a.s.−→
∑

r,s≥0

a1(r,s;θ)2. (9)

Following similar steps we get

∑

r,s≥0

d2(r,s; θ̂)2 a.s.−→
∑

r,s≥0

a2(r,s;θ)2. (10)

Finally, the result is obtained from (9) and (10).

Proof of Theorem 2 Let us consider the separable Hilbert space of functions H = {g :

N0 → R, so that‖g‖2
H

=
∑

r≥0

∑

s≥0 g(r,s)2 < ∞}. We have that
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√
ndk(r,s; θ̂) =

1√
n

n
∑

i=1

φkrs(Xi;θ)+
√

n(θ̂− θ)v̂k(r,s)
T, k = 1,2,

with v̂1(r,s) = (−pn(r,s),0, pn(r,s)− pn(r,s−1)) and v̂2(r,s) = (0,−pn(r,s), pn(r,s)−
pn(r−1,s)). From Assumption 1 and the SLLN, we get that

√
ndk(r,s; θ̂) =

√
nd1k(r,s;θ)+Rk(r,s), k = 1,2,

with

d1k(r,s;θ) =
1

n

n
∑

i=1

{

φkrs(Xi;θ)+ ℓ(Xi;θ)vk(r,s;θ)T
}

, k = 1,2,

v1(r,s;θ) = (−Pθ(r,s),0,Pθ(r,s)−Pθ(r,s−1)),

v2(r,s;θ) = (0,−Pθ(r,s),Pθ(r,s)−Pθ(r−1,s)),

and ‖Rk‖H = oP(1), k = 1,2. From the CLT in Hilbert spaces (see, for example, van

der Vaart and Wellner, 1996, pp. 50–51), it follows that ‖√nd1k‖2
H

= OP(1), k = 1,2,

and therefore

nWn(θ̂) = ‖
√

nd1k‖2
H +‖

√
nd12‖2

H +oP(1).

Routine calculations show that

‖
√

nd1k‖2
H +‖

√
nd12‖2

H =
1

n

n
∑

i, j=1

K(Xi,X j;θ).

The result is achieved by applying Theorem 6.4.1.B in Serfling (1980) to
1
n

∑n
i, j=1 K(Xi,X j;θ).

Proof of Theorem 3 Following similar steps to those given in the proof of Theorem 2

but instead of applying the CLT for iid random elements taking values in H , we apply

a CLT for triangular arrays, such as Theorem 1.1 in Kundu et al. (2000).

Proof of Theorem 4 nW ∗
2n(θ̂) can be expressed as nW ∗

2n(θ̂) = W ∗
1 +W ∗

2 + 2W ∗
3 +W ∗

4 ,

where

W ∗
1 =

1

n

n
∑

i, j=1

K(Xi,X j;θ)ξiξ j,
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W ∗
2 =

1

n

n
∑

i, j=1

{h(Xi,X j; θ̂)−h(Xi,X j;θ)}ξiξ j,

W ∗
3 =

1

n

n
∑

i, j=1

{ℓ̂(Xi; θ̂)µ(X j; θ̂)
T− ℓ1(Xi;θ)µ(X j;θ)

T}ξiξ j,

W ∗
4 =

1

n

n
∑

i, j=1

{ℓ̂(Xi; θ̂)S(θ̂)ℓ̂(X j; θ̂)
T− ℓ1(Xi;θ)S(θ)ℓ1(X j;θ)

T}ξiξ j.

From the results in Delhing and Mikosch (1994),

sup
x

|P∗{W ∗
1 ≤ x}−P{W1 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that W ∗
k = oP∗(1) in probability, k = 2,3,4. We

first deal with W ∗
2 . Observe that

E∗(W
∗2
2 )≤ M

1

n2

n
∑

i, j=1

{h(Xi,X j; θ̂)−h(Xi,X j;θ)}2,

for some positive M > 0. From the assumptions made, the right-hand side of the above

expression is oP(1). Therefore, W ∗
2 = oP∗(1) in probability. As for W ∗

3 , we have that

W ∗
3 =W ∗

31W
∗⊤

32 +W ∗
33W

∗⊤
34 , with

W ∗
31 =

1√
n

n
∑

i=1

{ℓ̂(Xi; θ̂)− ℓ1(Xi;θ)}ξi,

W ∗
32 =

1√
n

n
∑

i=1

µ(Xi; θ̂)ξi,

W ∗
33 =

1√
n

n
∑

i=1

ℓ1(Xi;θ)ξi,

W ∗
34 =

1√
n

n
∑

i=1

{µ(Xi; θ̂)−µ(Xi;θ)}ξi.

From the assumptions made, E∗(W ∗2
31 ) = oP(1), E∗(W ∗2

32 ) is bounded in probability and

E∗(W ∗2
33 ) is bounded a.s.. Now taking into account that
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∂

∂θ1

Pθ(r,s) = Pθ(r−1,s)−Pθ(r,s),

∂

∂θ2

Pθ(r,s) = Pθ(r,s−1)−Pθ(r,s),

∂

∂θ3

Pθ(r,s) = Pθ(r−1,s−1)−Pθ(r−1,s)−Pθ(r,s−1)+Pθ(r,s),

it follows that

sup
r,s∈N0

|Pθ̂(r,s)−Pθ(r,s)| ≤ M‖θ̂− θ‖, (11)

for some positive M > 0. This implies that E∗(W ∗2
34 ) = oP(1). Therefore, W ∗

3 = oP∗(1) in

probability. By using (11) and the assumptions made, it readily follows that W ∗
4 = oP∗(1)

in probability. This concludes the proof.
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doctorate studies possible. M.D. Jiménez-Gamero acknowledges financial support from

grant MTM2014-55966-P of the Spanish Ministry of Economy and Competitiveness.

References

Andrews, D.W.K. (1999) Estimation when a parameter is on a boundary. Econometrica, 67, 1341–1383.

Andrews, D.W.K. (2000) Inconsistency of the bootstrap when a parameter is on the boundary of the param-

eter space. Econometrica, 68, 399–405.

Burke, M.D. (2000). Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap.

Statistics & Probability Letters, 46, 13–20.

Crockett, N. G. (1979). A quick test of fit of a bivariate distribution. In Interactive Statistics, D. McNeil

(ed.), 185–191. Amsterdam: North-Holland.

Delhing, H. and Mikosch, T. (1994). Random quadratic forms and the bootstrap for U-statistics. Journal of

Multivariate Analysis, 51, 392–413.

Duchesne, P. and Lafaye De Micheaux, P. (2010). Computing the distribution of quadratic forms: Further

comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statis-

tics and Data Analysis, 54, 858–862.



138 A goodness-of-fit test for the multivariate Poisson distribution

Feng, Z., McCulloch, C.E. (1992). Statistical inference using maximum likelihood estimation and the gen-

eralized likelihood ratio when the true parameter is on the boundary of the parameter space. Statistics

& Probability Letters, 13, 325–332.
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Abstract

Tigernut tubers are the main ingredient in the production of orxata in Valencia, a white soft sweet

popular drink. In recent years, the appearance of black spots in the skin of tigernuts has led

to important economic losses in orxata production because severely diseased tubers must be

discarded. In this paper, we discuss three complementary statistical models to assess the dis-

ease incidence of harvested tubers from selected or treated seeds, and propose a measure of

effectiveness for different treatments against the disease based on the probability of germina-

tion and the incidence of the disease. Statistical methods for these studies are approached from

Bayesian reasoning and include mixed-effects models, Dirichlet-multinomial inferential processes

and mixed-effects logistic regression models. Statistical analyses provide relevant information to

carry out measures to palliate the black spot disease and achieve a high-quality production. For

instance, the study shows that avoiding affected seeds increases the probability of harvesting

asymptomatic tubers. It is also revealed that the best chemical treatment, when prioritizing ger-

mination, is disinfection with hydrochloric acid while sodium hypochlorite performs better if the

priority is to have a reduced disease incidence. The reduction of the incidence of the black spots

syndrome by disinfection with chemical agents supports the hypothesis that the causal agent is a

pathogenic organism.
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Keywords: Dirichlet-multinomial model, logistic regression, measures of effectiveness, tigernuts

tubers.

1. Introduction

Tigernuts growing has become an important sector of agribusiness in Valencia (Spain).

Tigernut tubers are mostly used for the production of orxata, a white soft sweet drink
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highly appreciated in Spain (Morell and Barber, 1983). The trade around orxata has

expanded over the past few years but it has been also strongly affected by the appearance

of black spots in the skin of tigernuts, making it crucial to figure out how to palliate its

negative effects.

Epidemiological data and some greenhouse experiments (unpublished) suggest that

the syndrome of black spots could be a disease caused by an unidentified pathogenic

organism, which prevent to devise specific strategies to eradicate or control the dis-

ease. This lack of information and the difficulties in identifying the aetiology of the

disease suggest assaying several general methods of disease control based on select-

ing pathogen-free seeds or removing the pathogens from seeds by thermal or chemi-

cal treatments which have been successfully applied to known pathogenic species of

viruses, bacteria and fungi and different crops (Shepard and Claftin, 1975; Sauer and

Burroughs, 1986; Grondeau et al., 1994), including tigernuts (Garcı́a-Jiménez et al.,

2004). Moreover, the possible adverse effects in humans are not known so severely dis-

eased tubers are automatically discarded, and only asymptomatic and mildly affected

tubers are marketable.

Chemical or thermal treatments can have a detrimental effect on seed germination,

which causes yield reduction. Thus, the effectiveness of these methods must be assessed

not only by considering the effect on the disease incidence but also on the germination.

We evaluated two methods of disease control: i) selection of non-infected tubers used as

seeds, and ii) chemical or/and thermal treatments (alone or combined) of infected seeds

in order to remove or kill the pathogen. However, for method i), since the pathogen

cannot be properly identified and it is not possible to detect pathogen-free seeds, the

selection is based on the use of asymptomatic (without black spots) tubers. These seeds

could contain the pathogen, although in lower quantities than those severely affected

(with black spots covering the whole surface).

The aim of this paper is to gain insight into the transmission of the disease from the

tubers used as seed to the progeny of tubers, as well as the procedures for disease control.

To the best of our knowledge, this is the first paper devoted to study the black spot dis-

ease in tigernuts from a statistical point of view. The structure of this paper is as follows.

Section 2 presents two experimental studies specifically designed for the problem. Sec-

tion 3 discusses the statistical modelling of the data. In particular, Subsections 3.1 and

3.2 analyse the weight of tubers harvested from symptomatic and asymptomatic seeds,

and the disease transmission through a mixed-effects model based on the lognormal dis-

tribution and the Dirichlet-multinomial inferential process, respectively. Subsection 3.3

deals with effectiveness of different treatments against disease in terms of mixed-effects

logistic regression models and a measure of effectiveness which takes into account the

germination process and the level of affection of the disease. Conclusions and further

remarks are given in Section 4.
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2. Experiments and data

Two different greenhouse experiments were designed and carried out with the objective

of learning about the black spot disease in tigernuts. Experiment 1 was aimed at studying

the transmission of the disease from seed to the harvested tubers, and Experiment 2 at

analysing the consequences of different treatments against disease.

Experiment 1: Asymptomatic and severely affected seeds were selected and sowed

in seven separated pots with five seeds per pot. Five months later, sowing tubers were

harvested. The average weight of a tuber (in grams) and the number of asymptomatic

tubers (no black spots), with mild symptoms (few small black spots), and severe symp-

toms (tuber almost completely covered by black spots) in each pot were recorded (see

Figure 1).

Experiment 2: Chemical and thermal treatments were applied to severely affected

seeds following a balanced two-factor factorial design. The specific combination of both

types of treatments is denoted by Tqt , where subscripts q and t represent chemical and

thermal treatment, respectively. Chemical treatments tested were: no treatment (q = 1);

disinfection with sodium hypochlorite (q = 2); disinfection with hydrochloric acid (q =
3); treatment with trifloxystrobin, an active fungicide against a wide range of fungal

plant pathogens (q = 4); application of a plant defence activator (q= 5); and disinfection

with trisodium phosphate (q= 6). In the case of thermal treatments: no treatment (t = 1);

incubation in water at 55◦C for 30 min (t = 2); and 60◦C for 30 min (t = 3). Eight pots

were sowed with five seeds each for every Tqt treatment. Germination rate was estimated

from the number of seedlings emerged in each pot during the next two weeks. About

five months later tubers were harvested and the number of marketable (asymptomatic

and mildly diseased) and severely diseased tubers in each pot were registered.

Table 1 summarizes the data from Experiment 1 together with those from Experi-

ment 2 corresponding to the absence of chemical and thermal treatment. We joined the

data from both experiments because they were independent and shared a common sce-

nario. There seems to be no great differences in the mean and standard deviation of the

unit weight of tubers of both groups. However, there are considerable differences in the

proportion of tubers in each level of disease infection. It is important to emphasise the

strong relationship between tubers and seeds severely affected.

Figure 1: Tigernuts tubers with different levels of symptoms: asymptomatic, mild, and severe.
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Table 1: Mean and standard deviation of the unit weight of tubers (in grams) and proportion

of asymptomatic tubers, with mild and severe symptoms from asymptomatic and severely affected seeds.

Tubers

Seeds Unit-weight Asymptomatic Mild Severe

Mean Sd Proportion

Asymptomatic 0.424 0.0846 0.698 0.228 0.074

Severe 0.409 0.0689 0.003 0.176 0.821

Table 2 shows the proportion of marketable tubers harvested and of germinated seeds

with regard to each particular chemical and thermal treatment. The thermal treatment at

60◦C for 30 min, independently of the chemical treatment, dramatically reduced the

germination rate. Notice that no data were collected for T33 since no seeds germinated.

Table 2: Proportion of marketable harvested tubers and of germinated seeds (in brackets)

for each treatment.

Chemical treatment
Thermal treatment

No treatment 55◦C for 30 min 60◦C for 30 min

No treatment 0.151 (0.425) 0.423 (0.275) 0.474 (0.025)

Disinf. with sodium hypochlorite 0.403 (0.450) 0.373 (0.275) 0.552 (0.075)

Disinf. hydrochloric acid 0.228 (0.625) 0.136 (0.225) —

Fungicide 0.209 (0.475) 0.148 (0.275) 0.552 (0.050)

Activator plant defense 0.388 (0.375) 0.359 (0.375) 0.191 (0.025)

Disinf. with trisodium phosphate 0.257 (0.325) 0.404 (0.150) 0.123 (0.050)

3. Statistical modelling

Bayesian inference always expresses uncertainty about the quantities of interest and ex-

perimental results in probabilistic terms. Bayes’ theorem combines the prior distribution

and the likelihood function of the data to obtain the posterior distribution, which con-

tains all relevant information of the problem. This distribution was not analytical in all

studies of the paper except for the analysis in Subsection 3.2. In those studies the subse-

quent posterior distribution was approximated by Markov chain Monte Carlo (MCMC)

methods (Gelman et al., 2013) using the software WinBUGS (Lunn et al., 2000). In all

these inferences, the MCMC algorithm was run for three Markov chains with 100000

iterations each after a burn-in period of 1000. The chains were thinned by only storing

every 5th iteration in order to reduce auto-correlation in the saved sample. Trace plots

of the simulated values of the three chains always appeared overlapping one another

indicating stabilization. Convergence of the chains to the posterior distribution was as-

sessed trough the potential scale reduction factor, Rhat, and the effective sample size,

neff (Kass et al., 1998). In all cases, the Rhat values were equal to or near 1 and neff

> 100, thus indicating that the distributions of the simulated values between and within
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the three chains were practically identical, and also that sufficient MCMC samples had

been obtained, respectively.

3.1. Weight of tubers

The average unit-weight, in grams, of tubers harvested in each pot from asymptomatic

and from severely affected seeds is a positive and continuous variable. It would be better

for the statistical analysis to have known the individual weight of each tuber of each pot,

but this information was not recorded in the experiment.

That variable (Y from now on) can be approached by several simple models (Nt-

zoufras, 2009) which share the common structure (Y | θθθ) ∼ fy(θθθ), where fy can vary

among different distributions – chi-squared, exponential, gamma, inverse-gamma, log-

normal, and Weibull – with parametric vector θθθ that may depend on both covariates or

factors, as for example the treatment group in our study, and random effects for assessing

the specific pot individual effect.

We used the deviance information criterion (DIC) for selecting the most appropriate

model, the smaller the DIC the better the fit. Table 3 shows the DIC value for each model

pointing out the lognormal (LN) model as slightly better than the rest.

Table 3: Deviance information criterion values of various models for the mean tuber-weight.

Model Chi-squared Exponential Gamma Inverse-Gamma Lognormal Weibull

DIC 36.49 12.22 −48.19 23.45 −50.83 −49.40

The selected mixed-effects model was (Yi j | µi j,σ
2)∼ LN(µi j,σ

2), defined as

Yi j = exp(µi j +σZi j) , i = 1, . . . ,7
µi j = α+βISD(i)+bi j

Zi j ∼ N(0,1),

(1)

where Yi j is the average unit-weight of the tubers harvested in pot i of the seed group j,

where j = 1 stands for asymptomatic seeds and j = 2 for severe diseased seeds; α is the

common term in µi j corresponding to asymptomatic seeds and β the additional effect

for severely diseased tubers. The indicator function ISD(i) is 1 when tubers from pot i are

harvested from severely diseased seeds, and 0 otherwise. Random effects bi j are con-

ditional i.i.d. random variables normally distributed with mean zero and variance σ2
j ,

j = 1,2. To complete the Bayesian model we needed to elicit a prior distribution for the

parameters and hyperparameters of the model, (α,β,σ,σ1,σ2). We assumed prior inde-

pendence among all them as a default scenario, and considered flat prior distributions

N(0.0, 10000) for α and β, where variability in this normal distribution is expressed in

terms of the variance, and a gamma distribution, Ga(0.01, 0.01), for σ, as well as the

hyperprior distribution for σ j.



144 Exploring Bayesian models to evaluate control procedures for plant disease

0.30 0.60 0.90

mean unit-weight

Figure 2: Posterior distribution for the mean of the average unit-weight of tubers harvested

from asymptomatic (blue) and severely diseased seeds (dark gray).

The approximated posterior mean of the regression coefficients α and β are negative,

in particular −0.877 and −0.031 respectively, with P(β > 0 |D) = 0.3701. In addition,

the posterior mean for the standard deviations σ, σ1 and σ2 were E(σ | D) = 0.144,

E(σ1 | D) = 0.194, and E(σ2 | D) = 0.151, with 95% credible intervals (0.070, 0.238),

(0.069, 0.421) and (0.072, 0.273), respectively. Figure 2 shows the posterior distribu-

tion for the mean of the average unit-weight, in grams, of tubers harvested from asymp-

tomatic and severely diseased seeds. Notice that a great part of both posterior distri-

butions overlap, which could indicate a non-substantial difference in the weight of the

tubers harvested from asymptomatic and affected seeds.

3.2. Seed transmission of the disease

We continue with the analysis of the data from Experiment 1 together with the ones

from Experiment 2 corresponding to the absence of chemical and thermal treatment. We

focused on the probability of obtaining tubers with severe, mild or no symptoms of the

disease in each pot with regard to the type of seed, asymptomatic or severely affected,

planted. For each type of seed, the response variable was the number of harvested tubers

in each level of affection in the different pots harvested, which was modelled in terms of

a multinomial distribution. Of course, other modelling would be acceptable, for instance

the proportional odds models (Liu and Agresti, 2005) to explore the ordinality of the

variable of interest. However, we opted to follow a simplified approach that also captures

the experimental goals.

The multinomial distribution, Multin(n,θ1, . . . ,θK) (Agresti, 2013) is the probabil-

ity distribution of the outcomes from a multinomial experiment based on n indepen-

dent trials, in which each of them can result in one of K mutually exclusive and ex-

haustive categories. The probability θk for each category k does not vary with the data
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and
∑K

k=1 θk = 1. In the same way that the multinomial distribution is a generalization

of the binomial distribution, the conjugate prior distribution for θθθ = (θ1, . . . ,θK)
T is a

multivariate generalization of the beta distribution, known as the Dirichlet distribution,

Dirichlet(α1, . . . ,αK), with joint density function

f (θθθ | ααα) =
Γ(α1 + . . .+αK)

Γ(α1) · · ·Γ(αK)
θ
(α1−1)
1 · · · θ

(αK−1)
K , αk > 0, k = 1, . . . ,K, (2)

where ααα = (α1, . . . ,αK)
T is the subsequent parametric vector. The combination of a

multinomial model and a Dirichlet prior distribution (known as the Dirichlet-multinomial

model) was proposed by Lindley (1964) and Good (1965) and results on a Dirichlet pos-

terior distribution for θθθ with updated hyper-parameters αk + yk, k = 1, . . . ,K, where yk

is the number of trials in category k.

The literature on Bayesian statistics includes various proposals for prior distributions

of ααα with minimum information (Alvares, 2015). Our choice here is αk = 1/K because it

has been shown to be an objective prior (Berger et al., 2015) with the reference distance

approach (see also Perks, 1947).

Figure 3 shows the 95% posterior credible intervals for the probability associated to

asymptomatic, mild and severe symptoms tubers depending on the health of the seed

from which have grown. Notice that for asymptomatic seeds the probability of har-

vesting asymptomatic tubers (posterior mean 0.698) is greater than the probabilities

of collecting tubers with mild (posterior mean 0.228) or severe symptoms (posterior

mean 0.074). However, in the group of diseased seeds the situation is the opposite, and

the probability of harvesting tubers with severe symptoms (posterior mean 0.821) is

greater than the probabilities corresponding to tubers with mild symptoms (posterior

mean 0.176) and no symptoms (posterior mean 0.003). It was clear that the selection

s

m

a

s

m

a

0.0 0.2 0.4 0.6 0.8

asymptomatic seeds

seeds with severe symptoms black spots

Figure 3: 95% credible interval for the probability associated to asymptomatic (a), mild (m) and severe (s)

symptoms tubers harvested from asymptomatic seeds and from seeds with severe symptoms black spots.



146 Exploring Bayesian models to evaluate control procedures for plant disease

of asymptomatic seeds seemed to be beneficial to reduce the prevalence of tubers with

black spots.

As an alternative modelling, we have also examined the three-stage hierarchical

multinomial model proposed by (Nandram, 1998). It added as a new level in the model

the assumption that the hyperparameters from the prior distribution are unknown and

come from a general Dirichlet hyperdistribution, formulated in terms of a parametriza-

tion based on the marginal mean of each probability and a common weight. As results

were practically equal as those obtained from the reference distance approach prior dis-

tribution (the only relevant differences occurred in the fourth decimal place), the most

simple Dirichlet-multinomial model was preferable to its hierarchical modelling coun-

terpart.

3.3. Comparison of treatments

We discuss the possible benefits of applying a specific treatment to affected tubers before

using them as seeds. We used data from Experiment 2 for analysing the number of mar-

ketable tubers harvested and of germinated seeds from each pot through two marginal

mixed-effects logistic regression models for each combination of chemical and thermal

treatment. Next, we combined both results into a single measure that quantifies the ef-

fectiveness of each treatment.

3.3.1. Germination and disease

Let Y
(qt)

1i the binomial variable that describes for pot i, i = 1, . . . ,8, the number of mar-

ketable tubers from a total of N
(qt)
1i collected from severely affected seeds previously

treated with chemical treatment q and thermal treatment t, and represent by θ
(qt)
1 the

subsequent binomial probability. This probability is modelled through the mixed-effects

logistic regression model

Y
(qt)
1i ∼ Bin(N

(qt)
1i ,θ

(qt)
1 ),

logit(θ
(qt)
1i ) = α1 +β

(q)
1 +λ

(t)
1 +φ

(qt)
1 +b1i,

(3)

where parameter α1 indicates the effect of neither chemical nor thermal treatment and

β
(q)
1 , λ

(t)
1 , and φ

(qt)
1 include the marginal effect of each treatment, chemical or thermal,

and its interaction, respectively. Random effects, b1i, associated to pot i are conditional

i.i.d. random variables, (b1i | σb1) ∼ N(0,σ2
1b). It is worth mentioning that the number

of tubers collected in the different pots have a great level of variability: from 8 to 466,

mean 201, median 193.5, and standard deviation 77.36 tubers.

The probability of germination with regard to each treatment Tqt considered is also

analysed through the mixed-effects logistic regression model
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Y
(qt)
2i ∼ Bin(N

(qt)
2i ,θ

(qt)
2 ),

logit(θ
(qt)
2i ) = α2 +β

(q)
2 +λ

(t)
2 +φ

(qt)
2 +b2i,

(4)

where now Y
(qt)

2i is the number of germinated seeds in the ith pot from a total N
(qt)
2i =

5 sowed, θ
(qt)
2 the probability of germination, parameters α2, β

(q)
2 , λ

(t)
2 and φ

(qt)
2 , and

random effects b2i with the same interpretation as in (3) and standard deviation σ2b.
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Figure 4: Posterior mean and 95% credible interval for the probability of harvesting asymptomatic

tubers from diseased seeds (on top) and for the probability of germination (below) with regard to

the previous seed treatment.
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We assume prior independence and non-informative normal distributions for the sub-

sequent marginal priors. In particular, we choose N(0, 10000) prior distributions for the

α’s, β’s, λ’s, and φ’s, and Ga(0.01, 0.01) as the hyperprior for the standard deviation

of the random effects. Posterior mean for the standard deviation of the random effects

are 2.845 (model 3) and 0.236 (model 4). Figure 4 shows the posterior mean and a 95%

credible interval for the probability of harvesting asymptomatic tubers from severely

affected seeds (on top) and for the probability of germination (below). Information in

both figures is with regard to the different chemical and thermal treatments considered.

Treatments T23 and T43, both based on a temperature of 60◦C, achieve the best results

with regard to the probability of harvesting asymptomatic tubers. Treatment T31 and, to

a lesser extent, T11, T21, and T41 achieve the greatest values for the probability of seed

germination. None of them included thermal treatment. It is important to note the great

difference between the precision of both types of intervals, as a result of the different

number of trials in the binomial variables defined in models 3 and 4.

Table 4: Posterior mean of the measure of effectiveness θeqt for thermal and chemical treatments

and some given values of v (values for the best and worst treatments are in blue and red, respectively).

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1−v 0.8 0.7 0.6 0.5 0.4 0.3 0.2

T11 0.370 0.344 0.318 0.292 0.266 0.239 0.213

T12 0.309 0.327 0.344 0.362 0.379 0.397 0.414

T13 0.116 0.161 0.206 0.251 0.296 0.341 0.386

T21 0.455 0.460 0.465 0.470 0.475 0.480 0.485

T22 0.300 0.314 0.328 0.341 0.355 0.369 0.382

T23 0.176 0.226 0.277 0.327 0.378 0.428 0.479

T31 0.549 0.509 0.470 0.431 0.392 0.352 0.313

T32 0.205 0.194 0.183 0.172 0.161 0.151 0.140

T41 0.430 0.406 0.383 0.360 0.337 0.314 0.291

T42 0.254 0.245 0.236 0.227 0.218 0.209 0.201

T43 0.156 0.208 0.261 0.313 0.366 0.418 0.471

T51 0.374 0.375 0.375 0.376 0.377 0.378 0.378

T52 0.362 0.357 0.352 0.348 0.343 0.338 0.333

T53 0.059 0.075 0.092 0.108 0.125 0.141 0.158

T61 0.317 0.312 0.308 0.304 0.299 0.295 0.291

T62 0.188 0.206 0.225 0.243 0.262 0.280 0.299

T63 0.087 0.105 0.123 0.142 0.160 0.178 0.196

3.3.2. Dealing with effectiveness

Chemical and thermal treatments provide antagonistic outputs. Thermal treatments pro-

duce good results regarding the incidence of the disease in exchange for a considerable

reduction of the probability of germination. Chemical results are not so evident. Follow-
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ing the spirit of mixture models (Marin et al., 2005), we define a measure of effectiveness

associated to a given combination of treatments (q, t) that weights the incidence of the

disease θ
(qt)
1 and the probability of germination θ

(qt)
2

θ
(qt)
e = vθ

(qt)
1 +(1− v)θ

(qt)
2 , (5)

where v, 0 ≤ v ≤ 1, is the weighting constant. This measure of effectiveness θ
(qt)
e is

simple, sensible, easy to understand, and apply to take decisions in disease management

programs.

Table 4 shows the posterior mean of θ
(qt)
e for each treatment and some elicited values

of v. When priority is germination (v ≤ 0.5), the most effective treatment is T31. If prior-

ity is achieving a great proportion of asymptomatic tubers (v ≥ 0.5), the best option will

be T21. The worst results (no matter the value of v) are for T53. Another important infor-

mation is that thermal treatments, at 55 ◦C and 60 ◦C, drastically reduced germination.

In the case of a balanced decision (v = 0.5), the best and worst options are treatments

T21 and T53, respectively.

4. Conclusions

We have used data from two experimental studies designed to analyse the transmission

of black spot disease in tigernuts and the effectiveness of different chemical and thermal

treatments to control its incidence. Statistical methods include linear mixed models,

Dirichlet-multinomial inferential processes and logistic mixed regression models.

The disease seems not to affect the size of the harvested tubers. In addition, it seems

practically impossible to harvest asymptomatic tubers from severely affected seeds and

highly likely to obtain severely affected tubers. In the case of asymptomatic seeds, about

70% of the tubers remained symptomless, whereas the rest were distributed between

mild and severe symptoms with 23% and 7% approximately. It seems important to select

asymptomatic seeds to minimize the disease incidence.

Germination and transmission of the disease from seeds to tubers have been dis-

cussed for several procedures which combine chemical and thermal treatments in seeds

before they are sown. We propose a measure of effectiveness for treatments which al-

low to balance probability of germination and disease incidence. The results indicate the

bad performance of thermal treatments for germination. This is probably due to the high

temperature levels considered, thus suggesting the need to perform other experiments

with a larger range of temperature levels.

The study also showed that the best chemical treatments when prioritizing germi-

nation is hydrochloric acid while sodium hypochlorite performs better if the priority is

to have a reduced disease incidence. The low efficacy of the broad-spectrum fungicide

treatment suggests that the causal agent of the black spot disease is not a fungus (al-
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though some fungi can be resistant to this fungicide). However, the hypothesis that the

syndrome of black spots is caused by a pathogenic organism is supported by the dis-

ease incidence reduction after seed disinfection with several chemical agents. This is an

interesting result that could address future experimental studies about the subject.
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1. Introduction

A random variable (rv) X follows the geometric distribution with parameter q, denoted

by G D(q) (see Johnson et al., 2005), pp. 210, equation (5.8)) if its probability mass

function(pmf) is given by

P(X = t) = pqt , t = 0,1,2, · · · ,0 < q < 1, p = 1−q (1)
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For the geometric distribution in (1) the cumulative distribution function (cdf) and sur-

vival function (sf) are respectively given by

FX(t) = 1−qt+1 and SX(t) = P(X ≥ t) = qt .

In last few decades, many generalizations of geometric distribution were attempted by

researchers by using different methods, for example, see Jain and Consul (1971), Philip-

pou et al. (1983), Tripathi et al. (1987), Makc̆utek (2008), Gómez (2010), Chakraborty

and Gupta (2015), Sastry et al. (2014) and references therein.

The transmutation, in particular the quadratic rank transmutation(QRT) method first

introduced by Shaw and Buckley in 2007 has been used by many researchers to generate

a large number of new distributions staring with suitable continuous baseline distribu-

tions (see Owoloko et al., 2015, Oguntunde and Adejumo, 2015 and Yousof et al., 2015

for details). It is an interesting way of generating a new and more flexible distribution

by adding an additional parameter (α) to a baseline distribution. The QRT method pro-

duces a new family distribution that can be seen as a mixture of the maximum and

minimum order statistics for a sample of size two from the baseline distribution and

also as a mixture of the baseline distribution and its exponentiated version with power

parameter two. The new family allows a continuum of distributions in the range of the

additional parameter (−1 < α < 1). This method is applicable to any type of baseline

distribution like symmetric, centred, and defined over Z; provides explicit expression of

the cdf, moments for new distribution through those of baseline distribution; and is suit-

able for simulation through the quantile function of the baseline distribution. Because of

the many properties possessed by the method a significant amount of work to develop

new flexible continuous distributions by transmutation method has been published in

the last few years. The motivation of the present article is to derive a more flexible ex-

tension of the geometric distribution by application of the QRT method. The choice of

QRT method is not just for its many attractive properties but also due to the fact that

so far there is no evidence of any attempt to use transmutation method to generate new

discrete distribution.

Accordingly, in this article an attempt is made to derive a new generalization of ge-

ometric distribution with two parameters 0 < q < 1 and −1 < α < 1 by using the QRT

method of Shaw and Buckley (2007), which is presented in Section 2. Some distribu-

tional properties like unimodality, generating function, moments, quantile function are

discussed in Section 3. A discussion on the maximum likelihood estimation (MLE) of

parameters is presented in Section 4. Finally, in Section 5, applications of the proposed

distribution in modelling aggregate claim size data, claim frequency data and in count

data regression are presented.
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2. A new generalization of geometric distribution

Here we first briefly discuss the QRT method and then propose the new transmuted

geometric distributon.

2.1. Quadratic rank transmutation

The general rank transmutation mapping proposed by Shaw and Buckley (2007) for

given pair of cdfs F1 and F2 having same support is defined as GR12(u) = F2

(

F−1
1 (u)

)

and GR21(u) = F1

(

F−1
2 (u)

)

where F−1(u) is the quantile function corresponding to the

cdf F(u). Both GR12(u) and GR21(u) map the unit interval in to itself. In particular, the

quadratic rank transmutation (QRT) mapping is defined by GR12(u) = u+αu(1− u).
This implies

F2

(

F−1
1 (u)

)

= u+αu(1−u) = (1+α)u−αu2 ⇒ F2(x) = (1+α)F1(x)−αF1(x)
2

A discrete rv Y with cdf FY (.) and pmf P(Y = y) is said to be constructed by the QRT

method of Shaw and Buckley (2007) by transmuting another discrete rv X with cdf FX(.)

and pmf P(X = x), if

FY (y) = (1+α)FX(y)−αFX(y)
2and (2)

P(Y = y) = (1+α−2αFX(y))P(X = y)+α(P(X = y))2

The distribution FY is then refereed to as the transmuted-FX . In particular, for α = 0 it

gives the parent distribution function FX(y), for α = −1, FX(y)
2 the distribution of the

maximum of two iid rvs with cdf FX(x), and for α= 1, 2FX(y)−FX(y)
2 the distribution

of the minimum of two iid rvs with cdf FX(x).

Mirhossaini and Dolati (2008), expressing the cdf in (2) as FY (y) = FX(y)(1+
+αF̄X(y)) where F̄X(y) = 1−FX(y), viewed it as a univariate counterpart of the Farlie-

Gumbel-Morgenstern family (see Drouet-Mari and Kotz (2001)) of bivariate cdf

HXY (x,y) generated from two independent univariate cdfs FX(x) and FY (y) by the for-

mula HXY (x,y) = FX(x)FY (y)(1+αF̄X(x)F̄Y(y)) ,−1 < α< 1.

Kozubowski and Podgórski (2016) in a very recent paper have shown that the trans-

muted-FX distribution can be seen as the distribution of maxima(or minima) of a ran-

dom number N of iid rvs with the base distribution FX(x), where N has a Bernoulli

distribution shifted up by one.
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More over by rewriting the cdf in (2) as

FY (y) =
1+α

2

(

2FX(y)−FX(y)
2
)

+
1−α

2
(FX(y))

2

it can be seen as a convex combination (finite mixture) of the cdfs of the maximum

and minimum of two iid rv following FX(.). This implies (FX(y))
2 ≤ FX(y)≤ 2FX(y)−

(FX(y))
2 since (FX(y))

2 ≤ 2FX(y)− (FX(y))
2. Therefore the transmuted-FX family pro-

vides a continuum of distributions over the range of the additional parameterα∈ (−1,1).

2.2. Transmuted geometric distribution

Suppose an rv X has G D(q) in (1). Then the cdf of the transmuted geometric rv Y will

be constructed as

FY (y) = (1+α)
(

1−qy+1
)

−α
(

1−qy+1
)2

= 1− (1−α)qy+1−αq2(y+1), y = 0,1,2, · · · ;0 < q < 1,−1 < α< 1.

and the corresponding pmf will then be given by

py = P(Y = y) = (1−α)qy(1−q)+α(1−q2)q2y, y = 0,1,2, · · · . (3)

where 0 < q < 1,−1 < α < 1. The distribution in (3) will henceforth be referred to as

the transmuted geometric distribution (T G D) with two parameters q and α. In short,

T G D(q,α).

Particular cases:

1. For α= 0, (3) reduces to G D(q) in (1).

2. For α=−1, (3) reduces to a special case of the exponentiated geometric distribu-

tion of Chakraborty and Gupta (2015) with power parameter equal to 2. This is

the distribution of the maximum of two iid G D(q) rvs.

3. For α = 1, (3) reduces to G D(q2) with pmf (1−q2)q2y, which is the distribution

of the minimum of two iid G D(q) rvs.

Remark 1 T G D(q,α) forms a continuous bridge between the distributions of the min-

imum to maximum in a sample of size two from G D(q).
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Figure 1: PMF plot of T GD(q,α) for different value of parameter.

3. Distributional properties

3.1. Shape of the T G D(q,α)T G D(q,α)T G D(q,α)

The graphs of the pmf of T G D(q,α) are plotted for various combinations of the values

of the two parameters q and α in Figure 1. When −1 < α< 0, the pmf is unimodal with

either zero or non-zero mode, while for 0 ≤ α< 1, the pmf is always a decreasing func-

tion with unique mode at Y = 0. The above assertions are mathematically established

later in Section 3.3. Moreover, the spread of T G D(q,α) increases with q and decreases

with α.

Furthermore, T G D(q,α) has at most a tail as long as G D(q) can be seen from the

pmf plots in the Figure 1 and also from the monotonicity of the ratio of the successive

probabilities(see theorem 1). The shortest tail occurs when α= 1.

3.2. Monotonicity

Here we briefly discuss some useful monotonic properties of T G D(q,α) and its direct

consequences.

Theorem 1 For 0 < α< 1 the T G D(q,α) distribution with pmf given in (3), the ratio

py/py−1, y = 1,2, · · · , forms a monotone increasing sequence.

Proof. Firstly, we have p0 6= 0, p1 6= 0 and 0 < α< 1. Now

Q(y) = py/py−1 =
(1−α)(1−q)qy+α(1−q2)q2y

(1−α)(1−q)qy−1+α(1−q2)q2(y−1)

= q

(

1+
α(1+q)qy

(1−α)

/

1+
α(1+q)qy−1

(1−α)

)
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further,

△Q(y) = Q(y+1)−Q(y) =
(1−q)2qy+1(1+q)(1−α)α

(q2(1−α)+α(1+q)qy)(q(1−α)+α(1+q)qy)

Since, for 0 < α < 1, Q(y) > 0, therefore py/py−1 forms a monotone increasing se-

quence for 0 < α< 1.

The following results follow as a consequence of Theorem 1. For 0 < α < 1,

T G D(q,α)

i. is infinitely divisible (see Warde and Katti, 1971).

ii. pmf is a decreasing sequence (see Johnson and Kotz, 2005 p.75), which in turn

indicates that, T G D has a zero vertex (see Warde and Katti, 1971). This fact was

also mentioned in Remark 3.

iii. is DFR(decreasing failure rate), which in turn implies IMRL(increasing mean

residual life).

iv. an upper bound for the variance of the T G D(q,α) can be obtained for 0 < α< 1

as

Var(Y )≥ p1

p0

=
q(1−α)+αq2(1+q)

1−α+α(1+q)

Corollary 1 For −1 < α < 0, T G D(q,α) distribution with pmf given in (3) is log-

concave.

Proof. The result follows from that fact that py/py−1, y = 1,2, . . . , forms a monotone

decreasing sequence for −1 < α< 0 that is py+1/py < py/py−1 ⇒ p2
y > py−1 py+1 ∀y.

The following results follow as a consequence of corollary 1: For −1 < α < 0,

T G D(q,α) distribution is

i. IFR (increasing failure rate), which in turn implies DMRL (decreasing mean resid-

ual life).

ii. Strongly unimodal.

iii. At most has a geometric tail.
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3.3. Mode

Theorem 2 T G D(q,α) is unimodal with a nonzero mode for −1<α<−(q(2+q))−1

provided that q > 0.414.

Proof. A pmf P(Y = y) with support y = 0,1,2, · · · , is uni modal if there exists a unique

point M( 6= 0), in the support of Y such that P(Y = y) is increasing on (0,1, . . . ,M) and

decreasing on (M,M+1, . . . ). M is then the unique mode of P(Y = y). Thus T G D(q,α)

will have a non zero mode if,

P(Y = 1)> P(Y = 0)

⇒ (1−α)(1−q)q+αq2(1−q2)> (1−α)(1−q)+α(1−q2)

⇒ (1−α)(1−q)2+α(1−q2)(1−q2)< 0

⇒ α<−(1−q)2/
(

(1−q2)2 − (1−q)2
)

=−1/(q(2+q)

But the condition −1 < α < −(q(2+q)−1
makes sense only if q(2+ q) > 1 which

implies q >
√

2−1 ∼= 0.414.

For example, with q = 0.8 non zero modes occur when −1 < α < −0.4464 as can be

clearly seen in the third plot of the pmfs in the Figure 1.

Remark 2 For q < 0.414, the condition of non-zero unimodality leads to α outside its

permissible range of −1 < α

Remark 3 For 0 ≤ α ≤ 1, the pmf is decreasing, and the mode occurs at the point 0.

This indicates the suitability of the proposed distribution for count data which feature,

relatively, a large number of zeros. Moreover the proportion of zeros in T G D(q,α) is

more(less) than that of G D(q) depending on α> (<)0.

3.4. An alternative derivation of the T G D(q,α)T G D(q,α)T G D(q,α)

Theorem 3 T G D(q,α) is the discrete analogue of the skew exponential distribution

of Shaw and Buckley (2007).

Proof. The pdf and cdf of the skew exponential distribution derived using the quadratic

rank transmutation (Shaw and Buckley, 2007) are respectively given by

fX(x) = (1−α)βe−βx+2αβe−2βx, x > 0,β > 0,−1 < α< 1

and

FX(x) = (1+α)(1− e−βx)−α(1− e−2βx)2, x > 0,β > 0,−1 < α< 1.
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Hence, the pmf of the discrete analogue (see Chakraborty, 2015, for a detail review

of various methods of construction of discrete analogues of continuous distributions.)

of X , Y = ⌊X⌋, where ⌊X⌋ is the floor function, is given by the formula P(Y = y) =

SX(y)− SX(y+ 1) = FX(y+ 1)−FX(y). On simplification, this reduces to the pmf of

T G D(q = e−β,α).

3.5. Generating functions

Theorem 4 The probability generating function (PGF) of T G D(q,α) is given by

GY (z) =
(1−q)(1−αq(1− z)−q2z)

(1−qz)(1−q2z)
, |q2z|< 1

Proof. It is known that the pgf E(zX) of X ∼G D(q) is equal to 1−q

1−qz
(see p. 215, Johnson

et al., 2005).

Therefore pgf of Y ∼ T G D(q,α) is given by

GY (z) = E(zY ) =
∞
∑

y=0

zyP(Y = y) =
∞
∑

y=0

zy
(

(1−α)(1−q)qy+α(1−q2)q2y
)

=
(1−q)(1−α)

1−qz
+

α(1−q2)

1−q2z

The result follows on simplification.

Remark 4 The other generating functions like characteristic function, moment gener-

ating function and cumulant generating function can be easily derived from the PGF by

using the results ΦY (z) = GY (e
iz), MY (z) = GY (e

z) and KY (z) = log(GY (e
z)) respec-

tively.

3.6. Moments and related measures

Here we derive various moments and related measures of T G D(q,α).

Theorem 5 The rth factorial moment of Y ∼ T G D(q,α) is given by

E
(

Y(r)
)

= (1−α)r!

(

q

1−q

)r

+αr!

(

q2

1−q2

)r

.

where Y(r) = Y (Y −1) · · · (Y − r+1)
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Table 1: Expressions for various measures of T G D(α,q).

S.No. Measures Expression

1 Mean E(Y )
q(1−α)+q2

1−q2

2 Variance V(Y )
q
(

1−α2 +q(1−α2 +q(1−α)+2)
)

(1−q2)2

3 Index of Dispersion (ID)
q
(

1−α2 +q(1−α2 +q(1−α)+2)
)

(1−q2)(q(1−α)+q2)

4 γthquantile (yγ)

⌊

log
(

α−1+
√

α2−2α(1−2γ)+1
)

−log(2α)

logq

⌋

−1

5 Median (y0.5)

⌊

log(α−1+
√
α2+1)−log(2α)
logq

⌋

−1

Proof. It is known that the rth factorial moment E(X(r)) of X ∼ G D(q) is given by

E
(

X(r)

)

= r!

(

q

1−q

)r

(4)

Therefore the rth factorial moment of Y ∼ T G D(q,α) using equation (3) is given by

E
(

Y(r)
)

= (1−α)(1−q)

∞
∑

y=r

y(r)q
y +α(1−q2)

∞
∑

y=r

y(r)q
2y (5)

The result then follows upon using (4).

Note 1. Alternatively, the above theorem can also be proved using the result E(Y(r)) =
dr

dzr GY (z)|z=1.

By using Theorem 5, the descriptive statistics mean, variance, index of dispersion quan-

tile functions as well as median are given in Table 1. However, we do not present the

expressions for skewness as well as kurtosis as they are quite gigantic, instead we present

3-D surface plot of these two measures in Figure 2(a) and 2(b). In Figure 2(a), the q-α

surface cuts the skewness surface at zero indicated in blue, hence T G D(α,q) possess

positive skewness above q-α surface and negative skewness below q-α surface. More-

over, if we look in Figure 2(b) horizontal q-α surface drawn at value 3 which never

intersect the kurtosis surface, indicating leptokurtic nature of T G D(α,q). Further, Fig-

ure 2(c) shows that the horizontal q-α surface cuts the ID surface at 1 indicating under or
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Figure 2: q-α surface plot of 2(a) Skewness, 2(b) Kurtosis and 2(c) Index of Dispersion of T GD(q,α).

over-dispersion for α ∈ (−1,0) or (0,1) respectively (see Remark 3). Finally skewness

and kurtosis of G D(q) is depicted in red curve on respective surfaces.

Remark 5 A random number Y ∼ T G D(q,α) can be drawn by first generating a uni-

form random number U in (0,1) and then using the method of inversion to get a sampled

observation Y by using result 4 of Table 1.

4. Maximum likelihood estimator

In this section, we focus on the maximum likelihood estimator (MLE), though other

estimators can also be derived easily, such as (i) sample proportion of 1’s and 0’s, (ii)

sample quantiles, (iii) method of moments.

For a sample (y1,y2, · · · ,yn) of size n drawn from T G D(q,α), the likelihood func-

tion is given by L =
n

∏
i=1

(

(1−α)qyi(1−q)+αq2yi(1−q2)
)

. Taking logarithms on both

sides gives the log-likelihood function as

l = logL = n log(1−q)+nȳlog(q)+
n
∑

i=1

log((1−α)+αqyi(1+q)) (6)

By differentiating (6) with respect to q and α and equating to 0, the following likelihood

equations are obtained.

∂ l

∂q
=− n

1−q
+

nȳ

q
+

n
∑

i=1

αqyi +αyi(1+q)qyi−1

1−α+α(1+q)qyi
= 0

∂ l

∂α
=

n
∑

i=1

(1+q)qyi −1

1−α+α(1+q)qyi
= 0
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Since the likelihood equations have no closed form solution, the MLEs q̂ and α̂ of the

parameters q and α can be obtained by maximizing the log-likelihood function using

global numerical maximization techniques. Further, the second order partial derivatives

of the log-likelihood function are given by

∂ 2l

∂q2
=− n

(1−q)2
− nȳ

q2
−

n
∑

i=1

(

α(1+q)(yi−1)yiq
yi−2 +2αyiq

yi−1

1−α+α(1+q)qyi

−
(

α(1+q)yiq
yi−1 +αqyi

1−α+α(1+q)qyi

)2
)

∂ 2l

∂q∂α
=

n
∑

i=1

(

(1+q)yiq
yi−1 +qyi

1−α+α(1+q)qyi
−
(

α(1+q)yiq
yi−1 +αqyi

)

((1+q)qyi −1)

(1−α+α(1+q)qyi)2

)

∂ 2l

∂α2
=−

n
∑

i=1

(

((1+q)qyi −1)2

1−α+α(1+q)qyi

)

The approximate Fisher information matrix can then be obtained as







∂ 2l

∂q2

∂ 2l

∂q∂α

∂ 2l

∂q∂α

∂ 2l

∂α2







q=q̂,α=α̂

(7)

where q̂ and α̂ are the MLEs of q and α respectively.

5. Application and data analysis

5.1. An actuarial application

In an actuarial context, non-life insurance companies are often interested in modelling

the aggregate claim of a portfolio of policies. Let Z j, j = 1,2, · · · be the rv denoting the

size or amount of the jth claim and Y be the rv denoting the number of claims. Then

the aggregate claim of that portfolio is defined as S =
Y
∑

j=1

Z j. Assuming that the claim

amounts Z j to be identically and independently distributed among themselves as well as

with claim frequency Y , the pdf of S can be obtained as gS(s) =
∞
∑

j=1

p j f ∗ j(s) where p j

denotes the probability of the jth claim (called the primary distribution) and f ∗ j(s) is

the j-fold convolution of f (s), the pdf of the claim amount (the secondary distribution).

For more details one can see Rolski et al. (1999), Antzoulakos and Chadjiconstantinidis

(2004), Klugman et al. (2008)) and the references therein.
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In the following theorem, we present the distribution of aggregate claim when the

primary distribution is T G D(q,α) and the secondary distribution is exponential with

mean (1/θ).

Theorem 6 If T G D(q,α) distribution is the primary distribution and the exponential

distribution with parameter θ > 0 is the secondary distribution, then the pdf of rv S =
Y
∑

j=1

Z j is given by

gS(s) =

{

(1−α)(1−q)+α
(

1−q2
)

for s = 0

(1−q)qθ
(

(1−α)e−(1−q)sθ+q(1+q)αe−(1−q2)sθ
)

for s > 0
(8)

Proof. Since the claim severity distribution follows an exponential distribution with pa-

rameter θ > 0, the j-fold convolution of the exponential distribution is a gamma distri-

bution with parameter j and θ, having density function

f ∗ j(z) =
θ j

( j−1)!
z j−1e−θz, j = 1,2, · · · ,

Hence, the pdf of the rv S is given by

gS(s) =
∞
∑

j=1

p j f ∗ j(s) =
∞
∑

j=1

θ j

( j−1)!
s j−1e−θs

(

(1−α)(1−q)q j+α
(

1−q2
)

q2 j
)

= (1−q)qθ
(

(1−α)e−(1−q)sθ+q(1+q)αe−(1−q2)sθ
)

where gS(s) has a jump at s = 0 with probability (1−α)(1−q)+α(1−q2).

Henceforth, we denote the distribution of S with T G D(q,α) as primary and expo-

nential as secondary distribution as C T G -E D(q,α,θ). Further, it is also well-known

that the mean of the aggregate rv is the product of the respective means of the primary

and secondary rvs, hence in our proposed model

E(S) =
q(1−α)+q2

1−q2

1

θ

We now compare the aggregate loss model as defined in (8) with the aggregate loss

model obtained by considering the geometric distribution as the primary distribution

and exponential as the secondary distribution for claim severity, hence the density of
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the compound geometric-exponential distribution CG -E D (see pp.152 of Tse, 2009) is

given as

gS(s) =

{

1−q1 for s = 0

(1−q1)q1θe−(1−q1)sθ for s > 0
(9)

with mean E(X) = 1−q1
q1

1
θ
.

It is a well known that in the case of reinsurance, the reinsurance company will be

interested in those aggregate claim models that are suitable for modelling extreme value.

In the following theorem we show that with the same mean and different parameter

values, C T G -E D(q,α,θ) captures heavy tail values as compared to C G -E D(q1,θ).

Theorem 7 With the same mean, C T G -E D(q,α,θ) has thinner (thicker) tail as com-

pared to C G -E D(q1,θ) for −1 < α< 0(0 < α< 1).

Proof. Without loss of generality, we consider θ = 1. By equating the means of C T G -

E D with C G -E D , we get

q(1−α)+q2

1−q2
=

1−q1

q1

which gives q1 =
1−q2

1+q(1−α)
.

We now compare the tail behaviour of two distributions by taking the limiting ratio (LR)

of their sf (see pp. 60, Tse, 2009):

LR = lim
t→∞

ḠCTG-ED(t)

H̄CG-ED(t)

where ḠCTG-ED(t) = q
(

(1−α)e−(1−q)t +αqe−(1−q2)t
)

and H̄CG-ED(t) = q(q+1−α)
1+q(1−α)

exp[− (1−q2)t
1+q(1−α) ] are respectively the sf of C T G -E D(q,α,θ) and C G -E D(q1,θ).

Substituting these values in LR, we obtain

LR = lim
t→∞

(

(1−α)e
αq(1−q)t
1+q(1−α) +αqe

− (1−α)q(1−q2)t
1+q(1−α)

)

Now observe that for −1 < α< 0, LR = lim
t→∞

ḠCTG-ED(t)
H̄CG-ED(t)

= 0.

⇒ C T G -E D has thinner tail then C G -E D .

whereas for 0 < α< 1, LR = lim
t→∞

ḠCTG-ED(t)
H̄CG-ED(t)

= ∞.

⇒ C T G -E D has thicker tail then C G -E D .
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CT G -E D

C G -E D

Figure 3: PDF of aggregate loss rv (compound geometric-exponential distribution in red dashed lines and

compound transmuted geometric-exponential distribution in blue lines) for different values of parameter q

and α.

Tail behaviour of C T G -E D and C G -E D distributions for different parameter val-

ues are presented in Figure 3.

5.1.1. Illustration: aggregate loss modelling

To illustrate the applicability and superiority of the proposed aggregate model compared

to other existing aggregate models such as Poisson-exponential, negative binomial-

exponential and geometric-exponential, in short X -exponential models having densities

indicated in Table 2, we consider a vehicle insurance data set of one-year vehicle insur-

ance policies taken out in 2004 or 2005. There are 67856 policies of which 4624 (6.8%)

had at least one claim. Table 3 gives some in-depth information about the claims fre-

quency (X ) and total claim(S) for the data set. Full access to this dataset is available on

the webiste of the Faculty of Business and Economics, Macquarie University, Australia

– see also Jong and Heller (2008). As the variability in total claim data is very high, we

scale these observations by scale factor 0.001, remembering the fact that scaling will not

effect the comparison, and apply the maximum likelihood method to estimate the param-

eters of aggregate model. The log-likelihood function for proposed C T G -E D(q,α,θ)

model is given as
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l =(n−m) log(θ(1−q)q)+m log
(

α
(

1−q2
)

+(1−α)(1−q)
)

+
∑

si>0

log
(

(1−α)e−θ(1−q)si +αq(q+1)e−θ(1−q2)si

)

where m is the number of policies having no claim, (n−m) is the number of policies

having at least one claim and n be the total number of policies. As we can see the

log-likelihood equations obtained from the log-likelihood function cannot help in deter-

mining the estimates of parameter, hence we make use of numerical techniques to search

global maximum of log-likelihood surface. We make use of FindMaximum function of

Mathematica software package v.10.0. The estimates and other comparative measures

such as log-likelihood value(LL), Akaike Information Criteria(AIC) are shown in Table

4. Based on the AIC value it can be claimed that the proposed C T G -E D(q,α,θ) model

gives the best fit for the vehicle insurance data among all the models considered.

Table 2: Density of X-exponential models.

S.No. distribution of X Density of aggregate rv.

1 Poisson gS(s) =















e−λ for s = 0

√

θλ
s

e−θs−λJ1

(

2
√
λθs
)

for s > 0

where, J1(.) is the modified Bessel function of first kind

2 Negative binomial gS(s) =















(1−q)r for s = 0

qθr(1−q)re−θs
1F1(r+1;2;θqs) for s > 0

where 1F1(.; .; .) is the confluent hypergeometric function

3 Geometric gS(s) =















1−q for s = 0

(1−q)qθe−(1−q)sθ for s > 0

Table 3: Descriptive statistics of the vehicle insurance dataset.

Number of claims Total claim amount

Mean 0.072 137.27

variance 0.077 1115769.69

Index of Dispersion 1.0734 8128.29

min 0 0

max 4 55922.1
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Table 4: Estimated value of parameters of X-exponential models.

S.No. Distribution of X Estimated parameter LL AIC

1 Poisson λ̂= 0.12057, θ̂ = 0.87832 −25699.3 51402.6

2 Negative binomial r̂ = 0.51168, q̂ = 0.1291, θ̂ = 0.55250 −24740.6 49487.2

3 Geometric q̂ = 0.06814, θ̂ = 0.53273 −24745.7 49495.4

4 Transmuted Geometric q̂ = 0.2313, α̂= 0.9147, θ̂ = 0.5693 −24702.0 49410.0

5.2. Count data modelling

In this section we demonstrate the utility of T G D(q,α) in count data modelling con-

sidering a real data set on the number of automobile insurance claims per policy in port-

folios from Great Britain and Zaire (Willmot, 1987). This data set contain 87% of zeros

as well as with variance to mean ratio 1.051 indicating the presence of over-dispersion

in the data set. Hence the proposed model is expected to provide adequate fit. Here

T G D(q,α) is compared with the following existing ones.

i. Negative binomial (N B) (Johnson et al., 2005).

ii. Poisson inverse Gaussian (Willmot, 1987) (P −I G ) with pmf defined as

P(X = x) =
1

x!

√

2φ

π
eφ/µφ− 1

4+
x
2

(

2+
φ

µ2

)
1−2x

4

K1
2−x

(
√

2φ+
φ2

µ2

)

where x = 0,1,2, . . . , φ,µ > 0 and Ka(.) is modified Bessel function of the third

kind.

iii. New discrete distribution (Gómez et al., 2011) (N D) with pmf

P(X = x) =
log(1−αθx)− log(1−αθx+1)

log(1−α)

where x = 0,1,2, . . . , α< 1,0 < θ < 1, and

iv. Zero distorted generalized geometric (Sastry et al., 2014) (Z DG G D) with pmf

P(X = x) =

{

1−qα+1 if x = 0

(1−q)qα+x+1 if x > 0

where 0 < q < 1,−1 < α< 1.
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Table 5: Fit of automobile claim data in Great Britain, 1968 (Willmot, 1987).

# claims Observed Expected frequency

Frequency N B P −I G N D Z DGG D T G D

0 370412 370438.99 370435 370413 370412 370412

1 46545 46451.28 46476.4 46538.3 46555.16 46546.7

2 3935 4030.50 3995.76 3942.39 3913.70 3929.19

3 317 297.82 307.67 318.57 329.00 323.23

4 28 20.09 23.12 25.64 27.76 26.53

5 3 1.28 1.74 2.06 2.38 2.38

Total 421240 421240 421240 421240 421240 421240

estimated p̂ = 0.338 φ̂= 0.338 α̂=−1.349 q̂ = 0.0845 q̂ = 0.0821

parameter r̂ = 0.131 µ̂= 0.131 θ̂ = 0.080 α̂=−0.146 α̂=−0.5121

χ2-statistic 9.15 2.74 0.71 0.72 0.31

df 3 3 3 3 3

p-value 0.03 0.43 0.87 0.87 0.96

lmax –171136.9 –171134.4 –171133.0 –171134.1 –171133.0

Table 6: SE, CI, and CL of estimated parameters for the data sets in Table 5.

Models Parameters ML Estimate S.E. CI CL

N B
r̂ 0.131 0.5684 (–0.983, 1.255) 0.2228

p̂ 0.338 0.0011 (0.336, 0.340) 0.0039

P −I G
φ̂ 0.338 0.0188 (0.3017, 0.3756) 0.0739

ν̂ 0.131 0.0005 (0.1306,0.1328) 0.0022

N D
α̂ –1.349 0.1120 (–1.5686, –1.1295) 0.4390

θ̂ 0.080 0.0018 (0.0768, 0.0840) 0.0071

Z DGG D
q̂ 0.0845 0.0011 (0.0817, 0.0863) 0.0046

α̂ –0.146 0.0051 (–0.1160, –0.1359) 0.0200

T G D
q̂ 0.0821 0.0011 (0.079, 0.0844) 0.0046

α̂ –0.5121 0.0236 (–0.558, –0.465) 0.0920

The data fitting results for the above four distributions in (i) to (iv) presented in

Table 5 are taken from the respective papers. From the findings of the data fitting pre-

sented in Table 5, to assess the fit of the competing models we first compare the expected

frequencies with the observed one for each model, which reveals that the T G D(q,α)

predicts most of the observed counts more closely than the other models. The χ2 statis-

tics and its p-values implies lack of fit for NB and also for PIG. The rest of the models

provides good fit, with T G D(q,α) being the best among the lot with highest with p-

value of 0.96. Moreover, we also compute standard error (SE), confidence interval (CI)

and confidence length (CL) for the parameter estimates. It can be clearly seen from

Table 6, that the SE of the estimates of proposed distribution is smaller compared to
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other distributions. Hence, it is envisaged that the proposed distribution may serve as

an alternative model for modelling data with a large proportion of zeros and over-

dispersion.

5.3. Count regression modelling including covariates

In this section, we present the count regression modelling assuming the discrete re-

sponse variable (Y ) as a function of a set of independent (exogenous) variables. Fur-

thermore, we also consider that the mean (θ) of response variable is related with the

set of exogenous variables by the positive valued function θ = θ(x). There are several

possible choices for the selection of function θ(x) and thus to ensure the non-negativity

of the mean of the response variable, we consider the log-link function as θi(x) = ex
T
iβββ ,

where xT

i = (xi1,xi2, · · · ,xip) and βββT = (β1,β2, · · · ,βp) be the set of covariates and their

coefficients. This selection of log-link function includes both random and fixed effects

on the same exponential scale. Further, to estimate the parameters, we use following

reparametrization

ν = 1−α and q =
(

−ν+
√

4θ+4θ2 +ν2

)

/2(1+ θ)

where θi(x) = exT
iβββ . The above re parametrization enable us to bring the regression co-

efficients (βββ) and parameters of the response variable into the log-likelihood functions.

The log-likelihood function for a random sample (yi,xi) of size n with count yi and a

vector xi of covariates for i = 1,2, · · · ,n can be written as

l (ν,θ|y,x) =
∑n

i=1 log

(

ν

(

1− −ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)yi

+(1−ν)



1−
(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)2




(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)2yi





The parameters (ν,β1,β2, · · · ,βp) in the above log-likelihood function can be esti-

mated by maximizing the log-likelihood function for a given data set using the optim()

function in R (for more details one can browse https://stat.ethz.ch/R-manual/

R-devel/library/stats/html/optim.html), where the initial values of the parameters were

chosen from Poisson regression model.

In the next section we present an application of the proposed count regression model

to a real life data set and compare its performance with following popular regression

models:
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i. Poisson regression model

P(Yi = yi|µi) =
e−µiµyi

i

yi!
, yi = 0,1,2, ... (10)

where µi > 0. The regression model is obtained by putting µi = ex
T
iβββ .

ii. Generalized Poisson model (G P-2): The pmf of a generalized Poisson (G P-2)

regression model (Consul and Famoye , 1992, Yang et al., 2009) is given as

P(Yi = yi|θi,νi) =
µi (µi +φµiyi)

yi−1

(1+φµi) yiyi!
e

(

−µi+φµiyi
1+φµi

)

, yi = 0,1,2, ... (11)

where φ > 0 is dispersion parameter and µi = exT
iβββ in (11). For more details refer

Yang et al. (2009) and finally with

iii. Generalized Negative Binomial (N B-2) (Greene, 2008): The pmf of a general-

ized negative binomial (N B-2) regression model is given as

P(Yi = yi|θ,ri) =
Γ(θ+ yi)r

θ
i (1− ri)

yi

yi!Γ(θ)
(12)

where yi = 0,1,2, . . . and ri = θ/(θ+λi) and λi = ex
T
iβββ.

Table 7: Exploratory data description.

Variable Nature Measurement Mean Variance

of variable

OFP Response Number of physician visits 6.046 57.169

HOSP

E
x
p
la

n
at

o
ry

Number of days of hospital stays 0.297 0.513

POORHLTH Self-perceived health status, 0.13 0.113

poor =1, else =0.

EXCLHLTH Self-perceived health status, 0.071 0.066

excellent =1, else 0

NUMCHRON Number of chronic conditions 1.533 1.788

MALE Gender; male = 1, else =0 0.408 0.241

SCHOOL Number of year of education 10.355 13.25

PRIVINS Private insurance indicator, 0.794 0.164

yes =1, no = 0
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5.3.1. A numerical illustration of count regression

We examine the US National Medical Expenditure Survey 1987/88 (NMES) data ob-

tained from Journal of Applied Econometrics 1997 Data Archive at http://qed.econ.

queensu.ca/jae/1997-v12.3/ deb-trivedi/, which were originally employed by Deb and

Trivedi (1997) in their analysis of various measures of health-care utilization. For illus-

tration purpose we consider the first 2000 observations for fitting the regression model.

The exploratory data description of the response variable as well as the set of explana-

tory variables is given in Table 7, from where it can be seen that the mean and variance

of the number of physician visit (OFP) variable indicates presence of the over-dispersion

as well as existence of large number of zeros. Hence it seems appropriate to apply our

model for the present data set with the number of physician visits (OFP) as the response

variable and remaining seven as explanatory variables.

Table 8 presents the maximum likelihood estimates of the parameters of the models

Poisson(P), negative binomial(N B-2), generalized Poisson (G P-2), and transmuted

geometric (T G M ), their standard errors, t-statistics and p−values.

For comparison between the different fitted models, we have used the value of the

maximum of the log-likelihood function (lmax) and the Akaike information criterion

(AIC). The model with the lowest AIC value is considered to be the best. It can be ob-

served that the estimates of all parameters except the parameters of POORHLTH, MALE

and dispersion parameter are found significant at 5% level of significance. Unlike the

other models considered here the number of physician visit has not been influenced by

the gender profile and poor health status of the patient. Most of the estimated parameters

values under the T G M model differs in values obtained under other competitive mod-

els. The estimate of dispersion parameter for T G M found significant at 5% level of

significance as opposed to G P-2 and N B-2 models which gives an indication of cap-

turing dispersion of data. Moreover, with respect to the values of lmax and consequently

AIC, our proposed model turns out to be the best. Hence, we conclude that proposed

T G M regression model gives satisfactory fit and can be considered suitable for count

data regression analysis.

Since the models under consideration namely P , N B-2, G P-2, are not nested

within T G M , it may of interest to employ the Vuong test (see Vuong (1989)) for non-

nested models to discriminate among these models. The Vuong statistic is given by

V =
1

ζ
√

n

(

lT G M (Θ̂1)− lg(Θ̂2)
)

(13)

where

ζ2 =
1

n

n
∑

i=1

(

log

(

fT G M (Θ̂1|yi,xi)

g(Θ̂2|yi,xi)

))2

−
(

1

n

n
∑

i=1

log

(

fT G M (Θ̂1|yi,xi)

g(Θ̂2|yi,xi)

)

)2

where fT G M and g represent T G M and the other competing model respectively.
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As statistic V ia asymptotically standard normal, the rejection of test in favour of

T G M occurs if V > 1.96, at the 5% level of significance . From our findings in Table

8, it is seen that the proposed T G M regression model is preferred over Poisson (since

V > 1.96), but do not distinguish between G P-2 model (since −1.96 < V < 1.96).

However the test rejects the T G M model when compared with N B-2 (since V <

−1.96).

6. Concluding remarks

In this paper the transmutation technique is used to offer a new flexible generalization

of the geometric distribution as a viable alternative to some existing models. Different

distributional properties of the distribution are found to be simple and attractive. The

theoretical result regarding possibility of applying this new distribution to model aggre-

gate claim in the actuarial context is presented and its suitability for modelling large

aggregate claims is established and complimented with a real life data set. Illustrative

data fitting with the proposed model for a popular data set from automobile insurance

sector having over-dispersion turned out to be very useful. Finally, a count regression

model based on the proposed distribution provided best fit in terms of the AIC value

when compared with some existing models for analysing a data set from the health sec-

tor. Based on these findings, it is envisaged that the transmuted geometric distribution

with two parameters can be very useful in modelling and analysis of count data of dif-

ferent types. Further, this idea of applying transmutation to discrete distribution may be

applied to construct new generalizations of other distributions.
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Abstract

Motivated by three failure data sets (lifetime of patients, failure time of hard drives and failure time

of a product), we introduce three different three-parameter distributions, study basic mathematical

properties, address estimation by the method of maximum likelihood and investigate finite sample

performance of the estimators. We show that one of the new distributions provides a better fit to

each data set than eight other distributions each having three parameters and three distributions
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1. Introduction

Systems or components having linear failure rates are common in real life. Examples

include concrete under multiaxial states of stress (Donida and Mentrasti, 1982), com-

posite laminates with transverse shear (Reddy and Reddy, 1992) and load-sharing sys-

tems (Sutar and Naik-Nimbalkar, 2014). There are also many real data sets that exhibit

approximately linear failure rates at least in the upper tails. We present three examples.

The first data set, due to Dispenzieri et al. (2012), consists of the number of days from

visit to clinic until death of 100 patients. The data result from a study of the relationship

between serum free light chain and mortality. The 100 patients were selected randomly

from a total of 7874 patients, including patients who had not died. The patients who had

died were diagnosed with monoclonal gammapothy.
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Table 1: Summary statistics of the three data sets.

Statistic Data set 1 Data set 2 Data set 3

minimum 0.0054 0.0053 0.0035

first quartile 0.3368 0.3977 0.318

median 0.4774 0.7770 0.4211

third quartile 0.7412 0.9304 0.5581

maximum 0.9514 1.4040 0.6878
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Figure 1: Kaplan-Meier estimate of the failure rate function of the patient data

of Dispenzieri et al. (2012).

The second data set from https://www.backblaze.com/hard-drive-test-data.html is one hun-

dred failure times in days of hard drives. The data were selected randomly from a total

of 52422 hard drives, which included hard drives which had not failed. The data were

collected by a large backup storage provider over two years. On each day, the Self-

Monitoring, Analysis, and Reporting Technology (SMART) statistics of operational

drives were recorded. When a hard drive was no longer operational, it was marked as a

failure and removed.

The third data set due to Hong and Meeker (2013) is one hundred failure data in

weeks of a product called Product D2 that is used in offices or residences. Product D2

is “similar to a high-end copying machine connected to the Internet and installed with a
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Figure 2: Kaplan-Meier estimate of the failure rate function of the hard drive failure data.

smart chip to record the number of pages that have been printed, as a function of time”

(Hong and Meeker, 2013, page 136). The one hundred data were selected randomly

from a total of 1800 observations.

All three data sets are presented in the appendix.

Kaplan-Meier estimates of the failure rate function (FRF) of the three data sets are

shown in Figures 1, 2 and 3. We can see that the FRFs are approximately linear at least

in the upper tails. The histogram of the three data sets are shown in Figures 8, 9 and 10.

Some summary statistics of the three data sets are shown in Table 1.

We suppose that the patient’s body or the hard drive or the product D2 is made of a

number of components say N working independently in series. The assumption of the

series structure is more reasonable than a parallel structure because it is unlikely that

a patient’s body will fail if and only if all its components fail or that a hard drive will

break if and only if all its components break or that a product will fail if and only if all

its components fail. It is more likely that a patient’s body will fail if and only if any of

its components fails or that a hard drive will break if and only if any of its components

breaks or that a product will fail if and only if any of its components fails. However,

in practice the components may not work independently. The distribution of the failure
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Figure 3: Kaplan-Meier estimate of the failure rate function of the failure data

of Hong and Meeker (2013).

time may not have a closed form if we assume that the components are dependent, see

(2) below and its discussion. We shall suppose independence for simplicity.

The number N may vary from one patient to another or one hard drive to another or

one product to another. It may depend on the type of hard drive, type of patient, type of

product, weight, length, and so on. So, we may take N as a random variable. The failure

time can be written as X = min(Y1,Y2, . . . ,YN), where Y1,Y2, . . . ,YN denote the failure

times of the N components.

Standard models for N are the geometric, zero truncated Poisson, logarithmic, zero

truncated negative binomial and zero truncated binomial distributions. For simplicity,

we shall consider only the first three since each of them has one parameter. The last two

distributions have two parameters each. That is, we take N to have one of the following

probability mass functions (PMFs):

Pr(N = n) = (1−λ)λn−1

for 0 < λ< 1 and n = 1,2, . . .;

Pr(N = n) =
λn

(eλ−1)n!
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for λ> 0 and n = 1,2, . . .; or

Pr(N = n) =− 1

ln(1−λ)

λn

n

for 0 < λ< 1 and n = 1,2, . . ..
Since the failure rate for the three data sets is approximately linear at least in the

upper tail (see Figures 1, 2 and 3), we shall suppose Y1,Y2, . . . too follow a distribution

that has a linear FRF. The distribution characterized by a linear failure rate is actually

known as the linear failure rate (LFR) distribution due to Bain (1974). Its probability

density function (PDF) and cumulative distribution function (CDF) are specified by

fY (y;γ,β) = (β+γy)exp
(
−βy− γ

2
y2
)

and

FY (y;γ,β) = 1− exp
(
−βy− γ

2
y2
)
,

respectively, for y > 0, β ≥ 0, γ ≥ 0 and β+ γ > 0. It is easy to see that the FRF is

hY (y;γ,β) = β+γy, a linear function of y. Both parameters, β and γ, are referred to as

scale parameters.

The distribution of X =min (Y1,Y2, . . . ,YN) can now be derived given the assumptions

that N is either geometric, Poisson or logarithmic and Y1,Y2, . . . are independent LFR

random variables independent of N. In the general case, the CDF and the PDF of X can

be derived as

FX(x) = Pr [min (Y1,Y2, . . . ,YN)< x] = 1−Pr [min(Y1,Y2, . . . ,YN)> x]

= 1−
∞∑

n=1

Pr [min (Y1,Y2, . . . ,Yn)> x | N = n]Pr(N = n)

= 1−
∞∑

n=1

Pr [Y1 > x,Y2 > x, . . . ,Yn > x]Pr(N = n)

= 1−
∞∑

n=1

Prn [Y > x]Pr(N = n) = 1−
∞∑

n=1

[1−FY (x)]
n

Pr(N = n)

and

fX(x) = fY (x)
∞∑

n=1

n [1−FY(x)]
n−1

Pr(N = n),
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respectively. In the case N is geometric, we obtain

fX(x;λ,γ,β) =
(1−λ)(β+γx)exp

(
−βx− γ

2
x2
)

[
1−λexp

(
−βx− γ

2
x2
)]2

,

which we shall refer to as the linear failure rate geometric (LFRG) distribution and write

X ∼ LFRG(λ,γ,β) for 0 < λ < 1, β ≥ 0, γ ≥ 0 and β+ γ > 0. In the case N is zero

truncated Poisson, we obtain

fX(x;λ,γ,β)=λ
(

1− e−λ
)−1

(β+γx)exp
(
−λ−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

,

(1)

which we shall refer to as the linear failure rate Poisson (LFRP) distribution and write

X ∼ LFRP(λ,γ,β) for λ> 0, β ≥ 0, γ ≥ 0 and β+γ > 0. In the case N is logarithmic,

we obtain

fX(x;λ,γ,β) =−
λ(β+γx)exp

(
−βx− γ

2
x2
)

ln(1−λ)
[
1−λexp

(
−βx− γ

2
x2
)] ,

which we shall refer to as the linear failure rate logarithmic (LFRL) distribution and

write X ∼ LFRL(λ,γ,β) for 0 < λ< 1, β ≥ 0, γ ≥ 0 and β+γ > 0. These distributions

do not have linear failure rates. But hX(y;λ,γ,β) ∼ hY (y;γ,β) ∼ γy as y → ∞. So, the

assumption of linear failure rate for Y1,Y2, . . . guarantees that linear failure rate holds for

X too at least in the upper tail.

The limiting cases of the LFRG, LFRP and LFRL distributions as λ ↓ 0 is the LFR

distribution. The LFRG and LFRL distributions limit to a degenerate distribution as

λ ↑ 1.

If Y1,Y2, . . . are dependent random variables then the CDF of X can only be expressed

as

FX(x) = 1−
∞∑

n=1

Pr [Y1 > x,Y2 > x, . . . ,Yn > x]Pr(N = n). (2)

This cannot be reduced to a closed form unless the joint dependence of (Y1,Y2, . . . ,Yn)

takes a very simple form.

In the rest of this section, Section 2 and Section 3, we shall focus on the LFRP

distribution. The details for the LRFG and LRFL distributions can be derived similarly.

One of the most popular models for counts is the zero truncated Poisson distribution.

Some of its recent applications can be found in van der Heijden et al. (2003), Elhai et

al. (2008), Ginebra and Puig (2010) and Xu and Hu (2011).
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Figure 4: Probability density function of the LFRP distribution for (a) γ = 0.5 and β = 1,

(b) γ = 1 and β = 0.5, (c) β = 0.05 and λ= 3, (d) γ = 2 and λ= 1.

Possible shapes of (1) are shown in Figure 4. We see that both monotonically de-

creasing and unimodal shapes are possible. The mode of (1) is the root of

γ

β+γx
−β−γx = λ(β+γx)exp

(
−βx− γ

2
x2
)
.

Furthermore, fX(0) = λβ/
(
1− e−λ

)
and

fX (x)∼ λγ
(

1− e−λ
)−1

xexp
(
−λ−βx− γ

2
x2
)

as x → ∞. The lower tail of the PDF has a fixed point while its upper tail decays expo-

nentially.

The CDF and FRF of X ∼ LFRP(λ,γ,β) are

FX(x) =
1

eλ−1

{
eλ− exp

[
λexp

(
−βx− γ

2
x2
)]}

and

hX(x) =
(β+γx)λexp

(
−βx− γ

2
x2
)

1− exp
[
−λexp

(
−βx− γ

2
x2
)] , (3)
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Figure 5: Failure rate function of the LFRP distribution for (a) γ = 0.5 and β = 1,

(b) γ = 1 and β = 0.5, (c) β = 0.05 and λ= 3, (d) λ= 3 and γ = 0.5.

respectively, for x> 0, λ> 0, β≥ 0, γ≥ 0 and β+γ> 0. Figure 5 shows possible shapes

of (3) for different parameter values. We see that the LFRP distribution can exhibit

increasing, decreasing and upside down bathtub shapes for the failure rate. The LFR

distribution can exhibit only increasing or constant failure rates.

Reliability and survival analysis often encounter upside down bathtub failure rates.

Examples can be found in redundancy allocations in systems (Singh and Misra, 1994)

and mortality modelling (Silva et al., 2010).

The mode or the anti-mode of (3) is the root of

γ

β+γx
−β−γx =−λ(β+γx)exp

(
−βx− γ

2
x2
){

exp
[
λexp

(
−βx− γ

2
x2
)]

−1
}−1

.

Furthermore, hX(0)=λβ/
(
1− e−λ

)
and hX(x)∼ γx as x→∞. The lower tail of the FRF

has a fixed point. As already noted, the upper tail of the FRF of the LFRP distribution

behaves in the same manner as that of the LFR distribution. Yet the former does exhibit

upside down bathtub failure rates while the latter does not.

The qth quantile of X ∼ LFRP(λ,γ,β) say xq defined by FX (xq) = q is

xq =−β

γ
+

√
β2

γ2
− 2

γ
ln
{

ln [eλ−q(eλ−1)]
1
λ

}
.
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In particular, the median of X is

Median(X) =−β

γ
+

√√√√β2

γ2
− 2

γ
ln

{
ln

[
eλ− 1

2
(eλ−1)

] 1
λ

}
.

Quantiles are useful for estimation and simulation.

Several other distributions have been introduced in the literature by taking X =
min(Y1,Y2, . . . ,YN), where N is a geometric, zero truncated Poisson or a logarithmic

random variable: By taking N to be a geometric random variable and Y1,Y2, . . . to be

independent and identical Weibull random variables, Barreto-Souza et al. (2011) intro-

duced the three-parameter Weibull geometric (WG) distribution given by the PDF

f (x) =
(1−λ)βγ−βxβ−1 exp

[
−(x/γ)β

]

{
1−λexp

[
−(x/γ)β

]}2

for x> 0, 0< λ< 1, β> 0 and γ > 0; By taking N to be a zero truncated Poisson random

variable and Y1,Y2, . . . to be independent and identical Weibull random variables, Lu and

Shi (2012) introduced the three-parameter Weibull Poisson (WP) distribution given by

the PDF

f (x) =
λβγ−βxβ−1 exp

{
−(x/γ)β+λexp

[
−(x/γ)β

]}

exp(λ)−1

for x > 0, λ> 0, β > 0 and γ > 0; By taking N to be a logarithmic random variable and

Y1,Y2, . . . to be independent and identical Weibull random variables, Ciumara and Preda

(2009) introduced the three-parameter Weibull logarithmic (WL) distribution given by

the PDF

f (x) =−
(1−λ)βγ−βxβ−1 exp

[
−(x/γ)β

]

lnλ
{

1− (1−λ)exp
[
−(x/γ)β

]}

for x > 0, 0 < λ< 1, β > 0 and γ > 0; By taking N to be a geometric random variable

and Y1,Y2, . . . to be independent and identical generalized exponential random variables,

Mahmoudi and Jafari (2012) introduced the three-parameter generalized exponential

geometric (GEG) distribution given by the PDF

f (x) =
(1−λ)βγ exp(−γx) [1− exp(−γx)]β−1

{
λ [1− exp(−γx)]β −1

}2
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for x > 0, 0 < λ < 1, β > 0 and γ > 0; By taking N to be a zero truncated Poisson

random variable and Y1,Y2, . . . to be independent and identical generalized exponential

random variables, Mahmoudi and Jafari (2012) introduced the three-parameter general-

ized exponential Poisson (GEP) distribution given by the PDF

f (x) =
λβγ exp(−γx) [1− exp(−γx)]β−1

exp
{
[1− exp(−γx)]β

}

exp(λ)−1

for x > 0, λ > 0, β > 0 and γ > 0; By taking N to be a logarithmic random variable

and Y1,Y2, . . . to be independent and identical generalized exponential random variables,

Mahmoudi and Jafari (2012) introduced the three-parameter generalized exponential

logarithmic (GEL) distribution given by the PDF

f (x) =
λβγ exp(−γx) [1− exp(−γx)]β−1

ln(1−λ)
{
λ [1− exp(−γx)]β −1

}

for x > 0, 0 < λ< 1, β > 0 and γ > 0.

A final motivation for the LFRP distribution is that it provides better fits for the three

data sets than at least eight other distributions each having three parameters and at least

three distributions each having two parameters. The eight distributions are the LFRG,

LFRL, WG, WP, WL, GEG, GEP and GEL distributions.

The rest of this paper is organized as follows: estimation of the parameters of the

LFRP distribution by the method of maximum likelihood is considered in Section 2;

finite sample performance of the maximum likelihood estimators is assessed by simula-

tion in Section 3; application of the LFRP distribution to the three data sets is illustrated

in Section 4; some conclusions are noted in Section 5.

We have given above simple expressions for the PDF, its shape, FRF, its shape, quan-

tiles and median of X ∼ LFRP(λ,γ,β). Simple expressions for further mathematical

properties of X ∼ LFRP(λ,γ,β) do not appear to be possible; for example, using the

series expansions

(1− z)−2 =
∞∑

k=0

(−2

k

)
(−z)k,

exp(z) =

∞∑

k=0

zk

k!
,

(1− z)−1 =
∞∑

k=0

zk,
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and equation (2.3.15.3) in Prudnikov et al. (1986), one can express the nth moments of

LFRG, LFRP and LFRL distributions as

E (Xn) = (1−λ)
∞∑

k=0

(−2

k

)
(−λ)kA(n,k),

E (Xn) =
λe−λ

1− e−λ

∞∑

k=0

λk

k!
A(n,k)

and

E (Xn) =− 1

ln(1−λ)

∞∑

k=0

λk+1A(n,k),

respectively, where

A(n,k) =
n!exp

[
(k+1)β2

4γ

]

γ
n+1

2 (k+1)
n+2

2

[
β
√

k+1D−n−1

(
β
√

k+1√
γ

)
+(n+1)

√
γD−n−2

(
β
√

k+1√
γ

)]
,

where Dν(·) denotes the parabolic cylinder function of order ν. These expressions are

not simple. They are infinite sums of terms involving a special function which is de-

fined in terms of an integral. So, the moments could be computed more efficiently by

numerical integration, i.e., by

E (Xn) =

∞∫

0

xn
(β+γx)exp

(
−βx− γ

2
x2
)

[
1− (1−λ)exp

(
−βx− γ

2
x2
)]2

dx,

E (Xn) = λe−λ
(

1− e−λ
)−1

∞∫

0

xn(β+γx)exp
(
−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

dx

and

E (Xn) =− 1

ln(1−λ)

∞∫

0

xn
(β+γx)exp

(
−βx− γ

2
x2
)

1− (1−λ)exp
(
−βx− γ

2
x2
)dx.

Hence, we shall not consider further mathematical properties.
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2. Estimation

We suppose x1,x2, . . . ,xn is a random sample from LFRP(β,γ,λ) with β,γ,λ unknown.

Then the log-likelihood function of β,γ,λ can be expressed as

lnL = n lnλ−n ln
(

eλ−1
)
+

n∑

i=1

ln(β+γxi)−β

n∑

i=1

xi +
γ

2

n∑

i=1

x2
i +

+λ

n∑

i=1

exp
(
−βxi −

γ

2
x2

i

)
. (4)

The associated normal equations are

∂ lnL

∂λ
=

n

λ
− neλ

eλ−1
+

n∑

i=1

exp
(
−βxi −

γ

2
x2

i

)
,

∂ lnL

∂γ
=

n∑

i=1

xi

β+γxi

− 1

2

n∑

i=1

x2
i −λ

n∑

i=1

x2
i

2
exp

(
−βxi −

γ

2
x2

i

)
,

∂ lnL

∂β
=

n∑

i=1

1

β+γxi

−
n∑

i=1

xi +λ

n∑

i=1

xi exp
(
−βxi −

γ

2
x2

i

)
.

The maximum likelihood estimates of (λ,γ,β) say
(
λ̂, γ̂, β̂

)
are the simultaneous so-

lutions of ∂ lnL/∂λ= 0, ∂ lnL/∂γ = 0 and ∂ lnL/∂β = 0. These equations being non-

linear, some quasi-Newton algorithm will be needed to solve them simultaneously. An

alternative is to obtain
(
λ̂, γ̂, β̂

)
by direct numerical maximization of (4). We shall pur-

sue this simpler approach. Numerical maximization of (4) was performed by using op-

tim in R (R Development Core Team, 2014). Extensive numerical calculations showed

that the surface of (4) was reasonably smooth. optim was able to locate the maximum

for a wide range of starting values. The solution returned by optim was unique for all

starting values.

Reasonable starting values for the parameters are useful to ease optimization. The

method of moments can be used to obtain them. Equating the sample moments m1 =

(1/n)
n∑

i=1

xi, m2 = (1/n)
n∑

i=1

x2
i and m3 = (1/n)

n∑

i=1

x3
i with the theoretical versions given

by

E
(
X i
)
= λ

(
1− e−λ

)−1
∞∫

0

xi(β+γx)exp
(
−λ−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

dx,

we have m1 = E(X), m2 = E
(
X2

)
and m3 = E

(
X3

)
. These equations were solved using

a quasi-Newton algorithm.
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The distribution of
(
λ̂, γ̂, β̂

)
as n → ∞, under certain regularity conditions (see, for

example, Ferguson, 1996 and pages 461-463 in Lehmann and Casella, 1998), is trivariate

normal with mean (λ,β,γ) and covariance given by the inverse of

I =




I11 I12 I13

I21 I22 I23

I31 I32 I33


=




E

(
−∂ 2 lnL

∂λ2

)
E

(
−∂ 2 lnL

∂λ∂γ

)
E

(
−∂ 2 lnL

∂λ∂β

)

E

(
−∂ 2 lnL

∂γ∂λ

)
E

(
−∂ 2 lnL

∂γ2

)
E

(
−∂ 2 lnL

∂γ∂β

)

E

(
−∂ 2 lnL

∂β∂λ

)
E

(
−∂ 2 lnL

∂β∂γ

)
E

(
−∂ 2 lnL

∂β2

)




.

I is referred to as the expected information matrix.

In practice, n is finite. Cox and Hinkley (1979) recommended that the distribution

of
(
λ̂, γ̂, β̂

)
be approximated by a trivariate normal distribution with mean (λ,β,γ) and

covariance taken to be the inverse of

J =




J11 J12 J13

J21 J22 J23

J31 J32 J33


=




−∂ 2 lnL

∂λ2
−∂ 2 lnL

∂λ∂γ
−∂ 2 lnL

∂λ∂β

−∂ 2 lnL

∂γ∂λ
−∂ 2 lnL

∂γ2
−∂ 2 lnL

∂γ∂β

−∂ 2 lnL

∂β∂λ
−∂ 2 lnL

∂β∂γ
−∂ 2 lnL

∂β2




∣∣∣∣∣∣∣∣∣∣∣∣∣
λ=λ̂,γ=γ̂,β=β̂

.

J is referred to as the observed information matrix. Cox and Hinkley (1979)’s approxi-

mation is known to be a better approximation than one based on the expected informa-

tion matrix.

The elements of the observed information matrix are

J11 =
n

λ̂2
− neλ̂

(
eλ̂−1

)2
,

J22 =
n∑

i=1

x2
i(

β̂+ γ̂xi

)2
− λ̂

4

n∑

i=1

x4
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J33 =
n∑

i=1

1
(
β̂+ γ̂xi

)2
− λ̂

n∑

i=1

x2
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J12 = J21 =
1

2

n∑

i=1

x2
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,
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J13 = J31 =
n∑

i=1

xi exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J23 = J32 =

n∑

i=1

xi(
β̂+ γ̂xi

)2
− λ̂

2

n∑

i=1

x3
i exp

(
−β̂xi −

γ̂

2
x2

i

)
.

The regularity conditions referred to hold as n → ∞. In practice, n is finite. So, it is

natural to ask: how large n should be for the maximum likelihood estimates to perform

well? We answer this question in Section 3.

3. Simulation

Here, we assess the performance of the maximum likelihood estimates with respect to

sample size n. The assessment is based on a simulation study:

1. generate ten thousand samples of size n from (1). The inversion method was used

to generate samples.

2. compute the maximum likelihood estimates for the ten thousand samples, say(
λ̂i, β̂i, γ̂i

)
for i = 1,2, . . . ,10000.

3. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑

i=1

(
ĥi −h

)
,

and

MSEh(n) =
1

10000

10000∑

i=1

(
ĥi −h

)2

for h = λ,β,γ.

We repeated these steps for n = 10,11, . . . ,100 with λ = 1, β = 1 and γ = 1, so

computing biasλ(n), biasβ(n), biasγ(n) and MSEλ(n), MSEβ(n), MSEγ(n) for n =

10,11, . . . ,100.

Figures 6 and 7 show how the three biases and the three mean squared errors vary

with respect to n. The broken lines in Figure 6 correspond to the biases being zero.

The broken lines in Figure 7 correspond to the mean squared errors being zero. The

following observations can be made:
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Figure 6: From top to bottom and from left to right:

biasλ(n), biasβ(n) and biasγ(n) versus n = 10,11, . . . ,100.

20 40 60 80 100

0
.0

1
.0

2
.0

n

M
S

E
 o

f 
M

L
E

 (
la

m
b
d
a
)

20 40 60 80 100

0
1

2
3

4
5

6

n

M
S

E
 o

f 
M

L
E

 (
b
e
ta

)

20 40 60 80 100

0
.0

1
.0

2
.0

3
.0

n

M
S

E
 o

f 
M

L
E

 (
g
a
m

m
a
)

Figure 7: From top to bottom and from left to right:

MSEλ(n), MSEβ(n) and MSEγ(n) versus n = 10,11, . . . ,100.
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1. the biases for each parameter are generally positive;

2. the biases for each parameter decrease to zero as n → ∞;

3. the biases appear smallest for the parameter, λ;

4. the mean squared errors for each parameter decrease to zero as n → ∞;

5. the mean squared errors appear smallest for the parameter, λ;

6. the mean squared errors appear largest for the parameter, β;

7. the biases and mean squared errors for each parameter appear reasonably small for

all n ≥ 60.

We have presented results for only one choice for (λ,β,γ), namely that (λ,β,γ) =

(1,1,1). But the results were similar for a wide range of other choices. In particular, the

biases and mean squared errors for each parameter appeared reasonably small for all

n ≥ 60.

The three real data sets in Section 4 each has a sample size greater than or equal to

sixty. So, we can expect the estimates in Section 4 to be reasonable.

4. Real data applications

Here, we return to the three data sets to illustrate the applicability of the LFRP distribu-

tion. The following distributions were fitted to each data: the LFR, LFRG, LFRP, LFRL,

WG, WP, WL, GEG, GEP and GEL distributions. We also fitted the Weibull and gamma

distributions given by the PDFs

f (x) =
βxβ−1

γβ
exp

[
−
(

x

γ

)β
]

and

f (x) =
xβ−1

γβΓ(β)
exp

(
− x

γ

)
,

respectively, for x > 0, α > 0 and β > 0. Each distribution was fitted by the method

of maximum likelihood. The parameter estimates, standard errors, − lnL, AIC values

and BIC values are given in Tables 2, 3 and 4. The standard errors were computed by

inverted the observed information matrices.

We see that the LFRP distribution yields the smallest − lnL, the smallest AIC and

the smallest BIC for each data set. It provides a significantly better fit than the LFR

distribution for each data set, as judged by the likelihood ratio test. The standard errors

for the LFRP distribution appear reasonable, as they are smaller than the parameter

estimates.
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Table 2: Parameter estimates, standard errors, log-likelihood,

AIC and BIC for the twelve distributions fitted to the patient data of Dispenzieri et al. (2012).

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.348 0.176 5.071 0.739 7.747 19.494 24.704

LFRG 0.001 0.000 0.348 0.176 5.069 0.738 7.751 21.503 29.318

LFRP 1.894 0.851 1.132 0.661 5.591 1.212 4.960 15.921 23.736

LFRL 0.001 0.000 0.342 0.173 5.063 0.734 7.750 21.500 29.315

WG 0.999 0.000 1.839 0.156 0.561 0.032 11.838 29.676 37.491

WP 2.230 0.910 1.434 0.204 0.394 0.065 8.818 23.637 31.452

WL 0.001 0.000 1.848 0.157 0.563 0.032 11.841 29.682 37.498

GEG 0.999 0.000 2.012 0.285 2.925 0.307 21.182 48.365 56.180

GEP 3.850 1.032 1.095 0.326 3.947 0.377 11.689 29.377 37.193

GEL 0.001 0.000 2.011 0.285 2.923 0.307 21.184 48.368 56.183

Weibull 1.839 0.156 0.561 0.032 11.837 27.674 32.885

Gamma 2.068 0.272 0.245 0.036 19.387 42.774 47.985

Table 3: Parameter estimates, standard errors, log-likelihood, AIC and BIC for the

twelve distributions fitted to the hard drive failure data.

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.296 0.138 2.530 0.393 42.043 88.087 93.297

LFRG 0.000 0.000 0.292 0.135 2.465 0.384 42.072 90.143 97.959

LFRP 1.753 0.691 0.776 0.375 2.841 0.572 38.849 83.698 91.514

LFRL 0.000 0.000 0.296 0.138 2.530 0.393 42.044 90.088 97.904

WG 0.999 0.000 1.751 0.152 0.774 0.046 46.993 99.986 107.801

WP 1.831 0.738 1.484 0.189 0.584 0.079 43.848 93.695 101.511

WL 0.001 0.000 1.772 0.154 0.774 0.045 46.984 99.967 107.783

GEG 0.999 0.000 1.842 0.257 2.017 0.216 55.885 117.769 125.585

GEP 3.569 1.080 1.016 0.327 2.664 0.256 47.407 100.814 108.629

GEL 0.000 0.000 1.876 0.263 2.035 0.217 55.887 117.774 125.589

Weibull 1.772 0.154 0.775 0.045 46.982 97.964 103.174

Gamma 1.902 0.249 0.369 0.055 54.304 112.608 117.818

The parameter estimates and the log-likelihood values of the LFRG and LFRL dis-

tributions are very close for all three data sets. This suggests that the likelihood surfaces

for the LFRG and LFRL distributions attain their maximum points along the border cor-

responding to λ= 0. We noted earlier LFRG and LFRL distributions reduce to the LFR

distribution as λ ↓ 0. So, the fits of LFRG and LFRL distributions do not improve on the

fit of the LFR distribution for the three data sets.
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Table 4: Parameter estimates, standard errors, log-likelihood, AIC and BIC for the

twelve distributions fitted to the failure data of Hong and Meeker (2013).

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.028 0.061 9.349 0.968 −32.148 −60.296 −55.086

LFRG 0.000 0.000 0.047 0.081 9.523 1.000 −32.069 −58.138 −50.323

LFRP 5.023 1.719 1.361 1.458 15.188 3.681 −48.555 −91.111 −83.295

LFRL 0.000 0.000 0.019 0.052 9.389 0.967 −32.133 −58.267 −50.451

WG 0.999 0.000 3.149 0.256 0.482 0.016 −44.743 −83.485 −75.670

WP 4.940 1.837 1.703 0.313 0.287 0.054 −46.938 −87.876 −80.061

WL 0.000 0.000 3.146 0.255 0.483 0.016 −44.745 −83.489 −75.674

GEG 0.003 0.000 4.552 0.476 0.753 0.133 −29.354 −52.708 −44.893

GEP 8.160 1.966 1.859 0.584 7.352 0.588 −42.532 −79.064 −71.249

GEL 2.082×10−5 0.000 5.546 0.918 5.304 0.442 −25.126 −44.253 −36.437

Weibull 3.146 0.255 0.483 0.016 −44.745 −85.489 −80.279

Gamma 5.371 0.735 0.081 0.012 −31.814 −59.629 −54.418
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Figure 8: Density plots for the twelve distributions fitted to the patient data of Dispenzieri et al. (2012).
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Figure 9: Density plots for the twelve distributions fitted to the hard drive failure data.

The density plots for the fit of the distributions for the three data sets are shown

in Figures 8 to 10. The fitted PDFs of the LFRP distribution captures the observed

histograms better than others. Hence, we can say that the LFRP distribution provides

the best fit for at least three real data sets.

The parameter estimates of the best fitting LFRP distribution for the three data sets

can be interpreted as follows:

• the patient’s body can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 2.2 components with the 95 percent confidence interval (0.37,4.09),

where the failure rate of each component is linear with an intercept of 1.132 and

a slope of 5.591. That is, the failure rate of each component at time zero is 1.132

and the failure rate increases by 5.591 for every unit increase in time;

• the hard drive can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 2.1 components with the 95 percent confidence interval (1.26,2.98),

where the failure rate of each component is linear with an intercept of 0.776 and
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a slope of 2.841. That is, the failure rate of each component at time zero is 0.776

and the failure rate increases by 2.841 for every unit increase in time;

• the product D2 can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 5.1 components with the 95 percent confidence interval (−1.97,12.08),

where the failure rate of each component is linear with an intercept of 1.361 and a

slope of 15.188. That is, the failure rate of each component at time zero is 1.361

and the failure rate increases by 15.188 for every unit increase in time.

Note that λ/
[
1− e−λ

]
is the expected value of a zero truncated Poisson random

variable. The stated confidence intervals were obtained by the delta method.

Failure time / 100

F
it
te

d
 P

D
F

s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

LFR

LFRG

LFRP

LFRL

WG

WP

WL

GEG

GEP

GEL

Weibull

Gamma

Figure 10: Density plots for the twelve distributions fitted to the failure data of Hong and Meeker (2013).

5. Conclusions

We have proposed three distributions motivated by three failure data sets: the linear

failure rate geometric, linear failure rate Poisson and linear failure rate logarithmic dis-

tributions. Each of these distributions has three parameters.
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We have studied mathematical properties and estimation issues for the linear failure

rate Poisson distribution. We have shown in particular that its failure rate function can

be decreasing, increasing and upside down bathtub shaped, more varied than the failure

rate function of the linear failure rate distribution.

Among the twelve distributions fitted to the three data sets, the linear failure rate

Poisson distribution gave the best fit. The adequacy of fits was assessed in terms AIC

values, BIC values and density plots.

A future work is to estimate the parameters of the linear failure rate Poisson dis-

tribution by the method of percentiles, the method of probability weighted moments,

the method of least squares, the method of weighted least squares, the method of gen-

eralized moments, and other methods. Another future work is to propose bivariate and

multivariate generalizations of the linear failure rate Poisson distribution.

Appendix: Three data sets

The first data is

0.1102 0.2390 0.4598 0.7146 0.2608 0.0838 0.8746 0.1578

0.3358 0.0198 0.7192 0.7916 0.4486 0.4080 0.6048 0.3686

0.4686 0.5418 0.3760 0.8684 0.1572 0.4860 0.0118 0.4732

0.5450 0.8982 0.5674 0.2602 0.4330 0.3608 0.3648 0.5124

0.1360 0.7548 0.8960 0.4816 0.0818 0.3268 0.9514 0.8650

0.3372 0.5438 0.5392 0.5750 0.3672 0.6694 0.3068 0.2536

0.3756 0.3962 0.4690 0.3416 0.6430 0.9104 0.4426 0.7280

0.7370 0.7666 0.6420 0.2000 0.3588 0.6632 0.8752 0.8934

0.6526 0.1370 0.5222 0.7746 0.9230 0.6422 0.3298 0.7286

0.0054 0.3754 0.2448 0.9466 0.3256 0.3726 0.0516 0.4496

0.7850 0.8670 0.0758 0.5174 0.7742 0.5464 0.6152 0.7594

0.8310 0.4036 0.8954 0.7970 0.3638 0.0142 0.7998 0.1658

0.4572 0.7540 0.9220 0.3688

For computational stability with fitting distributions, we have divided each observation

by 5000.

The second data is

1.293458333 0.251375000 1.265458333 1.404000000

1.280416667 1.201500000 1.193458333 0.340333333

1.101166667 1.059250000 1.360541667 1.245125000

1.098041667 1.049875000 1.167875000 1.271500000

1.182000000 0.925916667 0.963333333 1.119666667

0.867791667 0.845375000 0.803416667 0.323500000

1.165083333 1.065958333 1.103583333 1.035583333

1.173958333 0.886916667 0.789958333 0.671791667

0.782666667 0.534125000 0.691000000 0.813750000

0.773416667 0.629291667 0.520291667 0.635000000
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0.695041667 0.712625000 0.428000000 0.423208333

0.615541667 0.254416667 0.160791667 0.125083333

0.416791667 0.215416667 0.214958333 0.185375000

0.228458333 0.206958333 0.228833333 0.190083333

0.205000000 0.007458333 0.192750000 0.227666667

0.155916667 0.179791667 0.018625000 0.169458333

0.066416667 0.005333333 0.115416667 0.080375000

0.495833333 0.854916667 0.498750000 0.902875000

0.967958333 0.786916667 0.920583333 0.943875000

0.807666667 0.761708333 0.733583333 1.043833333

0.893583333 0.746500000 0.736583333 0.880500000

0.889708333 0.780666667 0.668041667 0.861291667

0.711916667 0.718500000 0.863041667 0.908000000

0.833791667 0.671416667 0.826083333 0.823000000

0.784375000 0.667833333 0.669750000 0.835750000

For computational stability with fitting distributions, we have divided each observation

by 1000.

The third data is

0.222673061 0.257639905 0.328155859 0.515672484

0.583401130 0.642256077 0.621521735 0.587506929

0.594755485 0.316753044 0.550884304 0.312962380

0.516646945 0.546445582 0.600493703 0.297813235

0.332441913 0.333245894 0.364800151 0.429097225

0.627439232 0.313363071 0.579554283 0.391397547

0.125167305 0.541816854 0.665764686 0.398880874

0.402492151 0.423982077 0.428143776 0.341767913

0.514537781 0.686683383 0.333088363 0.249962985

0.226748439 0.286643595 0.645490088 0.584664074

0.397377064 0.609634794 0.353187577 0.536304985

0.406031202 0.586163204 0.648786836 0.516497130

0.318475607 0.494774308 0.436782434 0.245923132

0.618409876 0.255245760 0.464312202 0.454133994

0.387982016 0.218311879 0.526363495 0.418258490

0.272839591 0.151997829 0.492728139 0.290973052

0.471553883 0.363069573 0.668371780 0.501805967

0.600306622 0.477109810 0.515188714 0.283784543

0.600625759 0.299420135 0.368553098 0.653382502

0.687845701 0.379423961 0.279504337 0.407995757

0.685695223 0.259685231 0.514854899 0.501119729

0.003522425 0.672089253 0.630145059 0.310811342

0.384073475 0.388312955 0.268080935 0.437408445

0.634243302 0.239656858 0.391844012 0.347107733

0.499160234 0.325770026 0.290634387 0.371908794

For computational stability with fitting distributions, we have divided each observation

by 100.
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Abstract

Metaheuristics are approximation methods used to solve combinatorial optimization problems.

Their performance usually depends on a set of parameters that need to be adjusted. The selection

of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced
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1. Introduction

Mathematical optimization plays an important role both in research and in our everyday

lives. Management of portfolios, vehicle routing or DNA sequence assembly, are only

some of the fields in which optimization techniques are employed.

Most of the existing proposals to solve optimization problems can be classified into

exact methods or heuristic/metaheuristic approaches (Talbi, 2009). The former guaran-

tee the optimality of the solution found. Unfortunately, a number of relevant problems

are particularly complex, and tackling them with state-of-the-art exact methods would
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require substantial computer memory and time. Problems of this kind are known to be

NP-hard (Bovet and Crescenzi, 1994). The Facility Location Problem, the Knapsack

Problem and the Multi-Depot Vehicle Routing Problem (MDVRP) are some examples

of NP-hard problems. In these cases, heuristics present some experience-based tech-

niques that implement strategies to obtain a sufficiently good solution in a reasonable

amount of time. Although they do not provide any theoretical guarantee, they are a

popular choice when solving NP-hard problems. Owing to its nature, any heuristic is

problem-dependent, which restricts its application to one particular class of problems.

Also, heuristics usually provide sub-optimal solutions. These factors have led to the

introduction of metaheuristics.

Birattari and Kacprzyk (2009) defines metaheuristics as “general algorithmic tem-

plates that can be easily adapted to solve the most different optimization problems”.

A number of them are nature-inspired, include stochastic components and have several

parameters (Boussaı̈d et al., 2013). They are present in a large number of research areas

such as telecommunications (Martins and Ribeiro, 2006), machine learning (Carvalho

et al., 2011), and vehicle routing (Gendreau et al., 2008), among others.

Although the performance of metaheuristics is known to depend on its parameter val-

ues, the scientific community has not formally addressed the so-called Parameter Setting

Problem (PSP) until the end of the last century. According to Eiben et al. (1999), dur-

ing the first decades of metaheuristics research, many scientists based their choices on

tuning the parameters “by hand”, i.e. experimenting with different values and select-

ing the ones that provide the best outputs, or “by analogy”, applying settings that have

been proven successful for similar problems. More recently, the need for a systematic

approach towards setting of metaheuristic parameters has been increasingly outlined in

the literature (Hooker, 1995; Johnson, 2002). Subsequently, researchers employ a sci-

entific approach to tackle the PSP more frequently. It is important to highlight that the

selection of a systematic methodology leads to a gain of efficiency, as in general, less

time is required to fine-tune the parameters while the performance of the metaheuristic

is the same if not improved. However, there is no methodology commonly accepted by

the scientific community and there is also a lack of publications that compare, in an

exhaustive and objective manner, the main approaches and the techniques used so far.

Moreover, some of the proposed methodologies are not easily reproducible or are highly

metaheuristic and problem dependent. These are some of the reasons why, in spite of

the amount of parameter fine-tuning works, many practitioners go on tuning by hand or

designing algorithms without parameters (or with a very low number of them), even in

the case when more parameterized algorithms could lead to better performances.

This article aims to contribute to the literature by proposing a general and auto-

mated statistical learning based procedure to tackle the PSP. It is accompanied by some

methodological guidelines to validate the results. In order to test the methodology and

illustrate its application, the approach is employed to fine-tune a hybrid algorithm im-

plemented to solve the MDVRP.
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The remainder of this article is organized as follows. Section 2 presents a formal def-

inition of the PSP, the existing approaches, and their main contributions. Our method-

ology is outlined in Section 3, followed by Section 4, which shows its application on a

hybrid algorithm. A discussion of the results is reported in Section 5. Finally, Section 6

presents concluding remarks.

2. Related work on the Parameter Setting Problem

Ries et al. (2012) define the PSP as the search for a set of parameter values θ∗ in the

parameter space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation of preference),

for a given metaheuristic m in the metaheuristic space M, and a given instance x or

group of them X in the instance space I. In practice, the amount of time available for

experimenting T may be a restriction. In this case, the solution is approximate (θ̂). With

regards to the difficulty of this problem, Montero et al. (2014) states that: (a) it is time

consuming; (b) the best set of parameter values depends on the problem at hand; and

(c) the parameters can be interrelated.

During the last decades, a large number of methodologies have been put forward to

solve the PSP. These proposals can be classified in two groups (Birattari and Kacprzyk,

2009): Parameter Control Strategies (PCS), and Parameter Tuning Strategies (PTS).

This classification is extended by Instance-specific Parameter Tuning Strategies (IPTS),

which include features of the aforementioned groups.

This section provides a brief description of each approach and some of the most cited

works. We refer the interested reader to more specific publications such as Eiben et al.

(1999), De Jong (2007) and Battiti and Brunato (2010) for an expanded review of PCS,

Birattari and Kacprzyk (2009) in the case of PTS, and Ries (2009) for IPTS.

2.1. Parameter Control Strategies (PCS)

These methodologies aim for a dynamic fine-tuning of the parameters by controlling

and adapting their values while solving a problem instance. They follow two basic steps:

firstly, an initial set of parameter values is chosen; secondly, an adaptation mechanism

is integrated which changes relevant parameter values. Most of these strategies apply

Adaptive Parameter Control, which means that their adaptation mechanism is based

on the assessment of particular information that is stored during the iterative process

of a metaheuristic. This information is usually related to the goodness of intermediate

solutions. Figure 1 outlines the main instructions of a PCS based on Adaptive Parameter

Control. The main drawbacks of this approach are the potentially high computational

effort required and the lack of acquired understanding about good parameter values

each time an instance is solved.
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Figure 1: Scheme of PCS applying an Adaptive Parameter Control.

Eiben et al. (1999) addressed the PSP in Evolutionary Algorithms (EAs). Three cate-

gories were defined to classify the PCS. The first one, Deterministic Parameter Control,

alters the value of a parameter by some deterministic rule, which is usually time based.

The second category, Adaptive Parameter Control, does employ feedback to determine

the direction and/or magnitude of a parameter change. This is the most used kind of

control. Consequently, we will focus on it. The third, Self-Adaptive Parameter Control

(Smith, 2008), encodes the parameters to be adapted into the chromosomes of an EA. De

Jong (2007) described the main motivations to use dynamic parameter setting strategies

in EAs: first, as the running proceeds, information about the fitness landscape is gener-

ated, which may be used to improve the performance; also, changing the parameters is

needed as an EA “evolves from a more diffuse global search process to a more focused

converging local search process”.

Table 1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization problem

Battiti and Tecchiolli

(1994) and Battiti and

Brunato (2005)

Reactive Scheme Tabu Search (TS) Quadratic Assignment

Problem (QAP), and

Maximum Clique

Problem

Zennaki and

Ech-Cherif (2010)

Support Vector

Machines

TS TSP

Lessmann et al. (2011) Regression Models Particle Swarm

Optimization (PSO)

Water Supply Network

Planning Problem
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Figure 2: Scheme of PTS.

Table 1 gathers a few representative works following this approach. Nowadays, it

constitutes a popular choice, mostly in EAs. From the literature, it can be concluded

that the parameter fine-tuning is a difficult task, partly due to the potential interactions

between parameters (Eiben et al., 1999; De Jong, 2007 and Smith, 2008). The worth of

applying PCS is sometimes doubted (Beasley et al., 1993) or not recommended for static

optimization problems (De Jong, 2007). However, most authors agree that this approach

has a long way to go.

2.2. Parameter Tuning Strategies (PTS)

This approach relies on the concept of robustness (Viana et al., 2005). A robust algorithm

provides good results for a given set of instances of a problem using a fixed set of

parameter values. The basic procedure (Figure 2) involves finding a set of parameter

values providing satisfactory results for a set of instances, usually using statistical and/or

optimization techniques. Some authors analyse only a representative subset of instances

and apply the set of parameter values found to solve all the instances. This approach

also includes the case of solving one instance.

The work of Czarn et al. (2004) is an outstanding contribution from a statistical point

of view. It addresses the issues of blocking when using design of experiments (DOE)

for variation or noise due to seed, testing individual parameters and interactions, and

performing power analyses, among others.

Table 2 shows some works relying on this approach. Many authors focus on min-

imizing the number of runs, presenting simple models without interactions (e.g., Coy

et al., 2001; Pongcharoen et al. 2007 and Xu et al., 1998). DOE and regression analy-

sis are the most employed techniques. The main criticism these works may receive is

that most need an initialization of methodology-specific parameters that in some cases

is not fully reported. Fortunately, the number of papers that report applications of their

methodology in more than one problem or in real-world problems is increasing.
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Table 2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Park and Kim (1998) Simplex method SA Graph Partitioning

Problem, Permutation

Flow Shop Scheduling

Problem, and

Short-term Production

Scheduling Problem

Xu et al. (1998) Tree growing and

pruning method based

on statistical tests

TS Steiner Tree-Star

Problem

Coy et al. (2001) DOE and Linear

Regression

Routing heuristics Vehicle Routing

Problem

Bartz-Beielstein et al.

(2004)

DOE, Classification

and Regression Trees,

and Design and

Analysis of Computer

Experiments

PSO and Nelder-Mead

Simplex Algorithm

Elevator Group

Controller Problem

Ramos et al. (2005) Logistic Regression EA TSP

Birattari and Kacprzyk

(2009), Birattari et al.

(2010)

Racing Algorithm

(Maron and Moore,

1993) and the

Friedman’s two-way

analysis of variance by

ranks (Conover, 1999)

Iterated Local Search

(ILS) and Ant Colony

Optimization (ACO)

QAP and TSP

Adenso-Dı́az and

Laguna (2006)

DOE and Local Search Neighbourhood

structure, TS, SA, TS,

Heuristic based on the

SA and the TS, and TS

Steiner Problem,

Part-Machine

Grouping Problem,

Part-Machine

Grouping Problem,

Single-Machine

Scheduling,

Proportionate

Flowshops, and

Bandwidth Packing

Pongcharoen et al.

(2007)

DOE GA TSP

Ridge and Kudenko

(2007)

DOE and Desirability

Functions

ACO TSP

Gunawan et al. (2013) DOE, Response

Surface Methodology

and ParamILS (Hutter

et al., 2009)

SA Industry Spares

Inventory Optimization

Problem
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2.3. Instance-specific Parameter Tuning Strategies (IPTS)

As in the case of PCS, IPTS aim for an instance-specific tailoring of the parameters. At

the same time, these strategies use a fixed set of parameter values, as the PTS, avoiding

the need of modifying the metaheuristic algorithm and reducing the potential compu-

tational effort required to adapt parameter values during the algorithmic run. In order

to implement these strategies the relation between the parameter values and the perfor-

mance of the metaheuristic has to be analysed, taking into account instance features.

The next step consists in developing a mechanism able to use the features of a new

instance to recommend a set of parameter values. The key element is the selection of

instance features that are easy and fast to compute, and good at discriminating instances

on the shape of their fitness landscapes. These landscapes represent the relationship

between the objective function values and the parameters. This learning may take a

non-negligible amount of time, but it is assumed that this approach requires less com-

putational time than the PCS approach does. The procedure is shown in Figure 3.

Optimization 

Root Identification 

 Learning 

process 

 

 

 

Functions / 
rules 

Subset of instances 

 

Metaheuristic 

 

Sets of parameter values 

 

 

Subset of 
instances 

 

 Solutions  

Figure 3: Scheme of IPTS.

Some contributions are included in Table 3. The number of works is low since it is

relatively new. As in the previous cases, they employ a variety of techniques and analyse

several problems.

Table 3: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Ries (2009) DOE and Fuzzy Logic Guided Local Search

and GA

TSP

Pavón et al. (2009) Case-Based Reasoning

and Bayesian Networks

GA Root Identification

Problem

Dobslaw (2010) DOE and Artificial

Neural Networks

PSO TSP
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It has been seen that the literature on the PSP is relatively diverse. However, more

research is needed to fully explore and compare the performance of different techniques

from statistics and operations research (OR), and to achieve that researchers and prac-

titioners become aware of the relevant effect that an adequate parameter-fine tuning

may have. In this paper we mainly focus on the parameter fine-tuning of metaheuristic

algorithms from an OR perspective. Notice, however, that the literature on parameter

fine-tuning of general algorithms is much more extensive, and it has been mainly devel-

oped by the computer science community. This community addresses a larger variety

of problems (not only of optimization nature), and tends to employ algorithms with a

larger number of parameters and to consider more complex and/or time-consuming ap-

proaches for setting the parameters of different types of algorithms, including searching

and classification algorithms, etc. Thus, for example, Ansótegui et al. (2015) or Hutter

et al. (2011) describe general but complex methods that can be used in the fine-tuning

process of several types of algorithms. These general approaches are rarely considered

by the OR community. Accordingly, one of the main contributions of this paper is to

provide the OR community with an alternative methodology, which is easier to use and

faster, and that can be employed to simplify and make more agile the fine-tuning process

of metaheuristic algorithms.

2.4. Approaches comparison

All approaches have different advantages. The dynamic adaptation of the parameter val-

ues that characterizes PCS usually provides better results. However, the computational

effort tends to be higher. On the other hand, the PTS approach is the easiest and fastest

to use, once a set of parameter values is selected. Although the code of the algorithm

is not changed, finding an adequate set may be also time-consuming. The last group of

strategies represents a compromise solution: it takes less computational time than the

PCS approach, but requires implementing a learning mechanism, for which statistical

learning skills are needed.

Therefore, there is no approach that stands out from the others. Probably, the most

adequate depends on the specific problem to tackle, the instances to solve, the avail-

able time and the skills of the researcher. Despite this fact, some general guidelines can

be formulated. PTS can be considered as the best option when working with robust al-

gorithms. Regarding IPTS, they are more complex than PTS but provide better results

when the algorithm is not robust. In case of prioritizing the algorithm performance, PCS

usually constitute the most recommendable approach.
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3. Our approach

We propose a methodology that follows the PTS approach. There are several reasons for

choosing it. Firstly, it is not computationally intensive, since it may focus on a subset

of instances. The inference from a representative sample of benchmark instances to the

whole set usually provides good results, specifically if the analysed algorithm is robust.

There are two conditions that imply robustness. First, the algorithm has to be little sen-

sitive to small changes in the parameter values, and second, the fitness landscapes for

different instances have to be similar. These conditions guarantee that the best set of

parameter values for one instance will probably provide good results for the others. The

high number of works following this approach, which cover several metaheuristics and

optimization problems, shows that many metaheuristic algorithms can be considered ro-

bust. Another reason for focusing on PTS is that there is no methodology based on this

approach and widely employed, but at the same time, there are plenty of techniques that

can be used. Some of them have been intensively tested as DOE and regression analysis.

However, others remain to be investigated.

Our methodology is based on clustering (Hastie et al., 2009) and DOE (Montgomery,

2012). These are two well-established techniques that can be easily implemented using

free statistical software. Clustering groups instances that have a similar fitness land-

scape. It facilitates the selection of representative instances and also provides informa-

tion that can be used to perform a more flexible fine-tuning if each group is treated

independently, i.e. exploring the fitness landscape of an instance to find a good set of

parameter values and applying it to solve the instances assigned to the same group. Re-

garding DOE, it enables experimenters to identify and quantify the effects of several

parameters and their interactions on the objective function value.

The remainder of this section presents a statistical learning based methodology to

obtain a list of sets of parameter values, and a more global procedure to validate and

assess its goodness.

3.1. General methodology

A four-step procedure is exposed herein. It is assumed that the experimenter has de-

scribed and modelled a problem, and has chosen the metaheuristic to tackle it and a set

of benchmark instances.

• The first step involves choosing a subset of the instances. Their fitness landscapes

will be analysed in order to obtain sets of parameter values that provide good re-

sults for them. The subset has to be representative as these sets of parameter values

will be used to solve the whole set of instances. An approach to select a representa-

tive subset is, firstly, to determine the instance features that have a major influence

on which set of parameter values is the most adequate, and then, choose the in-

stances in such a way that the feature values of the subset are representative of
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those of the entire set of instances. For example, if we have a parameter for which

its optimum value is known to depend on the instance size, a representative subset

of the instances will present the same proportion of instances of a given size that

the whole set does. This approach can be particularly difficult when there are sev-

eral non-independent parameters. A possible simplification for feature selection

consists of choosing those that are commonly used to discriminate instances of a

specific problem. Several examples can be found in the literature. Coy et al. (2001)

considered, when addressing the Capacitated Vehicle Routing Problem (CVRP),

the distribution of customers, the distribution of demand and the location of the

depot. Ries et al. (2012) studied the size, the distance metric, a ratio to describe

the shape of the area within which a set of cities is distributed and a measure of

clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially, for a

given number of randomly generated sets of parameter values, each instance is

solved several times using different seeds for the random number generator of

the algorithm (or only once if the algorithm is deterministic). Alternatively, the

sets could also be generated using more advanced statistical techniques such as

DOE. We consider the median of the objective function values found with the

same parameter values but different seeds. The median is a robust measure to

aggregate data, but many others could be employed. It is essential to remark the

importance that a seed may have in the performance of an algorithm (Juan et al.,

2015 and Czarn et al., 2004). Afterwards, feature scaling is applied to the values

obtained for each instance. Then, this data is used to cluster instances and select a

representative one from each cluster. These instances form the subset to analyse.

Although it is a computationally intensive approach, we think it is effective to

assess which instances show a similar relation between parameter values and the

performance of an algorithm.

For each instance of the subset, the steps ranging from the second to the fourth are

implemented as follows.

• The second step requires selecting the range over which each parameter can be set.

Some experience or knowledge about the problem and the metaheuristic may be

highly valuable. The ranges should be large enough to cover at least one set of pa-

rameter values that can provide a sufficiently good solution with a high probability.

On the other hand, a smaller range would allow the experimenter to describe more

accurately, with the same resources, the relationship between the parameter values

and the objective function value. If there is no a priori information about which

are the best regions of the parameter space, a suitable procedure is to perform a

rough and fast landscape analysis. Specifically, some possible combinations of pa-

rameter values can be selected and utilised to run the algorithm. The best results

will identify promising regions. There are several ways of choosing the combina-
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tions, as equally-spaced or randomly generated sets. This analysis holds a trade-off

between the computational time required and the reliability of the conclusions.

• The third step consists of designing an experiment. A Central Composite Design

is studied. Each metaheuristic parameter is considered a factor and the extreme

values of its range define the levels. According to this design, the algorithm is

executed also several times for each combination of factor values, each one with a

different seed.

• In the fourth step, a procedure is developed to search the neighbourhood of the

best set of parameter values found. Specifically, another Central Composite Design

centred on this set is applied.

Finally, the upshot is a list of recommended sets of parameter values, one per cluster;

in particular, those that reported the best results on the last step. The procedure is shown

in Figure 4.
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Figure 4: Outline of the procedure for parameter fine-tuning.

An extended proceeding (Figure 5) is described below in order to validate the list of

sets of parameter values obtained and analyse the results provided by it.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where K is the

number of clusters, is chosen as has been explained in the precedent section. Later on,

each instance of the subset used to select θ̂ is solved with the corresponding set of θ̂, and

with different sets, θ̄ j ( j = 1,2, . . . ,J) (equally spaced, randomly selected or relatively

close to the set of θ̂ according to some distance measure). To assess the performance

of a set of θ̂ in a specific instance regarding the other sets, the associated solutions

are compared. Given a decision level parameter r (1 ≤ r ≤ J + 1), if the rank of the

objective function value provided by the proposed set is equal or lower than r, then it is

considered a good set for that instance. Once all the instances of the subset are examined,

the proportion of them in which the corresponding set has been classified as good can

be calculated. θ̂ is validated by comparing this proportion with a predefined parameter
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p (0 < p < 1); if the proportion is higher, then the experimenter has enough evidence of

the quality of θ̂ to go on to test it with other instances in the next step.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart representing the proposed methodology. 
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Figure 5: Flowchart representing the proposed methodology.
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If θ̂ is not validated, the process has to be readjusted and restarted. This readjustment

may be done in several ways, some options are: checking the robustness and the ade-

quacy of the clustering, adapting the ranges, dedicating more resources to the search,

etc. The best strategy is problem-dependent. As a consequence, the choice should rely

on the opinion of the experimenter, who will have acquired valuable information from

the outputs observed.

Once the list of sets of parameter values has been labelled as valid, it is applied

for solving the other instances (each one with the set proposed for the representative

instance of the cluster where it has been assigned). To examine the effectiveness of the

procedure, it is desirable to compare the solutions with others reported in the literature

for the same instances, by performing the t-test for paired samples if data are normal,

or the Wilcoxon signed rank test otherwise. If the means (or the mean ranks if data are

not normal) do not differ significantly, it may be classified as a satisfactory outcome as

it will mean that the proposed methodology, automated and general, has been proven to

be competitive. If the results are unsatisfactory, the procedure should be modified and

reinitiated.

It is useful to consider that, since the available resources are usually limited, the

possible readjustments should be also limited (T represents this limit). Consequently,

the process may end without a satisfactory list of sets of parameter values. In this case,

the list which provides on average the best solutions will be accepted.

4. Experimental results

4.1. Case study: Biased randomization and ILS for solving the Multi-Depot

Vehicle Routing Problem (MDVRP)

In order to test our methodology, it was implemented to fine-tune the parameters of the

hybrid algorithm described in Juan et al. (2015), which combines biased randomiza-

tion and the ILS metaheuristic to address the MDVRP. A brief introduction to both the

problem and the algorithm are presented in this subsection.

The MDVRP is a variant of the well-known CVRP that consists in planning routes

to service a number of customers with a homogeneous fleet of vehicles that have a max-

imum capacity. All routes begin and end at one depot, where all resources are initially

located. The objective is to find a solution (Figure 6) that minimizes the total cost while

satisfying the associated constraints. Typically, these constraints imply that a single ve-

hicle supplies each customer and it cannot stop twice at the same customer. The MDVRP

integrates an allocation problem, in which the customers are assigned to one depot, with

several CVRPs, one per depot. In the test case, there is also a maximum number of ve-

hicles per depot and a maximum route length. It is considered a challenging problem as

allocation and routing issues are interrelated.
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Figure 6: Solution for a medium-size MDVRP with 4 depots (cylinders).

The algorithm follows several steps. Initially, a priority list of potentially eligible

customers is computed for each depot. The lists are sorted according to a distance-

based criterion. Then, they are randomized based on a geometric distribution and used

to allocate customers to depots. Afterwards, an initial solution is built by solving each

routing problem independently with a version of the Clarke & Wright’s Savings (CWS)

heuristic (Clarke and Wright, 1964). In short, CWS starts building an initial solution in

which each route includes just one customer. Following that, the heuristic considers the

possibility of merging two routes if the total cost is reduced. This operation is repeated

until no more merges are possible. For this project, the authors developed a biased-

randomized version (Juan et al., 2011); while the original seeks always the best possible

merging, this version applies biased randomization to select one merging (i.e., multiple

solutions can be obtained). In the next phase, an ILS procedure is implemented. A new

solution is computed by perturbing the current solution, which implies the reallocation

of a given percentage of customers. The new solution replaces the current solution if

the former is better. If it is also better than the best solution found so far, the latter

is updated. On the other hand, if the new solution is worse than the current one, an

acceptance criterion is applied and, consequently, the current base solution can still be

modified. This phase ends after a fixed number of iterations. Finally, a post-optimization

process is applied to the five best solutions.

This algorithm has three main parameters:

• bM: the parameter of the distribution assigning nodes to depots.

• bR: the parameter of the distribution selecting edges in the CWS heuristic.

• p∗: the percentage of nodes that are reallocated in the ILS phase.

Note that these parameters take values between 0 and 1.
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5. Implementation details

The first step is the selection of a representative subset of instances. Initially, 10 ran-

domly generated sets of parameter values, 7 seeds and the 33 benchmark instances

solved in Juan et al. (2015) were selected. Therefore, information from 2310 runs was

stored. Data from different seeds was aggregated by computing the median; then fea-

ture scaling was applied. The instances that were considered easy-to-solve, those that

presented no variation in the results, were separated. This was done to focus the analy-

sis on the instances for which results could be improved by fine-tuning the parameters.

Afterwards, a clustering using the k-medoids algorithm (Theodoridis and Koutroumbas,

2009) was performed. The range of values considered for setting the value of k was 2-

12. The final value was selected employing the average silhouette criteria (Rousseeuw,

1987). The composition of the clusters and the representative instances (or medoids) can

be observed in Table 4.

Table 4: Clustering of the benchmark instances.

Medoids Clusters

p01 p01

p07 p04, p07, p11, p18, pr02, pr05, pr09

p09 p03, p09, pr04, pr10

p17 p17

p19 p19

p22 p22

p23 p20, p23

pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

Once the subset of instances was formed, the second step, setting the ranges of the

parameters, was carried out. After a statistical analysis, it was concluded that just two

parameters, bM and bR, did significantly affect the performance of the algorithm. There-

fore, only those two parameters were studied. Five equally spaced values ranging from

0 to 1 were analysed for each parameter. Each instance was solved seven times (consid-

ering different seeds) for each possible combination of parameter values. The objective

function values were aggregated as before. Then, the values for other possible combina-

tions were estimated by linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter space

that included the lowest objective function values. In particular, the values labelled as

the lowest were those meeting the following condition:

Objective solution ≤ minimum value+β · (maximum value−minimum value)
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The value of β was set at a different value for each instance. More precisely, it was

the minimum value that encompassed, at least, 5% of the search space. Figure 7 shows

the contour plot and the area in which the search was intensified for each instance.

Figure 7: Contour plots of the medoids sorted from left to right, and top to bottom.
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Figure 8: Scheme of the FCC Design applied to the instance p01.

The next step was applying a design for each instance of the subset. It was performed

to better analyse the relation between the metaheuristic performance and the parameter

values. A Face-Centred Central Composite (FCC) Design was selected, as in most of the

cases the space parameter could not be expanded (since all parameters could only take

values between 0 and 1). Figure 8 displays the scheme for instance p01. The objective

function values for the same instance are represented in Figure 9.

Figure 9: Solutions of the instance p01.

Then, the neighbourhood of each set that provided the best solution for an instance

was explored applying another FCC Design, centred on that set and covering half of

the area analysed with the previous design. The sets that finally presented the best per-

formance were stored. They are outlined in Table 5. Random values were assigned to

the instances that did not present variations in the results when changing the parameter

values.
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Table 5: Proposed list of sets of parameter values.

Medoids Clusters bM bR

p01 p01 0.513 0.501

p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372

p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random

p19 p19 0.443 0.378

p22 p22 0.001 0.231

p23 p20, p23 0.449 0.250

pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07,

pr08

0.500 0.231

p02, p12, p13, p14, p16, p21 random random

5.1. Results

The following parameters were chosen to validate the list of sets: J = 10, T = 3, α =
0.05, r = 6, p = 0.7. The number of sets randomly generated was fixed considering

the trade-off between the reliability of our comparisons and the computational time

required. The number of iterations was set considering only the time available. The

significance level is the one most commonly used in the literature. The value of the

fourth parameter is the mean rank that could be expected due to randomness with 11

solutions (1 set proposed and 10 randomly generated). The last parameter was calibrated

to force the algorithm to provide good results at most of the instances.

The algorithm was run 7 times with different seeds for each combination of param-

eter values, the medians and the minimum values were stored. The ranks of the results

obtained are detailed in Table 6. Ties receive a rank equal to the average of the ranks

they span, shown inside the parentheses.

Table 6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)

p01 1 3.5 (1-6)

p07 5 3.5 (1-6)

p09 2 2

p17 2 (1-3) 1

p19 6.5 (2-11) 10.5 (10-11)

p22 11 11

p23 1.5 (1-2) 1

pr06 5 1.5 (1-2)

Valid instances 0.75 0.75
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Table 7: Sets of parameter values for comparison.

bM bR p*

Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

Table 8: Instances experimental results.

Inst.
OR medians

(1)

OR, minimum

values (2)

JR, medians

(3)

JR, minimum

values (4)

% Gap

(1)-(3)

% Gap

(2)-(4)

p01 585.000 576.866 593.829 576.866 −1.509 0.000

p02 480.261 476.660 480.261 476.660 0.000 0.000

p03 644.464 641.186 649.229 641.186 −0.739 0.000

p04 1022.085 1019.570 1024.473 1024.062 −0.234 −0.441

p05 760.341 756.281 764.325 754.882 −0.524 0.185

p06 882.827 879.072 880.418 879.763 0.273 −0.079

p07 899.709 897.974 906.395 897.974 −0.743 0.000

p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176

p09 3920.743 3906.561 3923.248 3900.274 −0.064 0.161

p10 3706.763 3667.344 3705.012 3687.054 0.047 −0.537

p11 3598.972 3584.691 3592.891 3585.690 0.169 −0.028

p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000

p15 2573.393 2556.846 2573.393 2557.528 0.000 −0.027

p16 2605.565 2585.373 2605.565 2600.099 0.000 −0.570

p17 2720.231 2714.663 2725.799 2725.799 −0.205 −0.410

p18 3831.996 3806.783 3835.388 3806.783 −0.089 0.000

p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058

p20 4080.348 4074.779 4091.482 4091.482 −0.273 −0.410

p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000

p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346

p23 6134.441 6128.873 6145.576 6123.306 −0.182 0.091

pr01 861.319 861.318 861.319 861.318 0.000 0.000

pr02 1330.495 1310.679 1331.543 1314.364 −0.079 −0.281

pr03 1813.634 1813.634 1814.452 1813.634 −0.045 0.000

pr04 2084.843 2077.582 2089.785 2079.832 −0.237 −0.108

pr05 2379.075 2359.947 2379.797 2368.525 −0.030 −0.363

pr06 2709.792 2693.680 2713.593 2696.504 −0.140 −0.105

pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000

pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020

pr09 2148.216 2147.192 2153.317 2142.650 −0.237 0.212

pr10 3016.255 3008.129 3028.606 3014.874 −0.409 −0.224
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According to our methodology, the list of sets can be considered valid as it presents

a rank equal to or below 6 in 75% of the analysed instances, both considering medians

and minimum values. In order to test our results, the algorithm was executed with the

parameter values suggested in Juan et al. (2015). Both series of results are comparable

as were obtained using the same computer and stopping criteria based on the number of

iterations. Table 7 presents the parameter values used in the aforementioned paper. In-

stead of setting fixed values, the authors introduced randomness by employing uniform

distributions. The lower and upper bounds were selected after some tests.

Table 8 shows the results obtained solving all instances with the proposed list of sets

(our results, OR), and with the set proposed in Juan et al. (2015) (indicated as JR in the

table).

6. Discussion of the results

The comparison of the solutions shows that our procedure achieves better results in

most of the instances. Table 9 presents the average and the standard deviation of the

differences, and the p-values of the test to compare the mean ranks of the results. It is a

non-parametric test as the null hypothesis of the Shapiro-Wilk test, a test of normality,

was rejected in all cases. The means are negatives, indicating that our methodology

provides better solutions. The p-values reveal that the differences of the mean ranks are

not statistically significant. Even though, the magnitude of the mean difference can be

considered relevant in the context of the MDVRP.

Table 9: Means and standard deviations of the differences and statistical tests.

Mean of the

differences

Standard deviation

of the

differences

P-value of

the comparison

of mean ranks

All instances
Medians −0.149 0.330 0.954

Minimum values −0.070 0.219 0.980

All instances except

the studied subset and

those not analysed

Medians −0.117 0.247 0.942

Minimum

values
−0.100 0.217 0.942

Results on all instances except the subset of representative instances selected ini-

tially and those not analysed because of the null variation of their results allow us to

demonstrate the good performance of our methodology, which is not directly attributed

to the instances deeply studied but to their representativeness, without considering the

changes in the instances that where discarded, which are due to randomness.
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7. Conclusions

This paper has addressed the Parameter Setting Problem which, due to the relevance of

metaheuristics in a number of fields, is increasingly getting more attention.

We have presented an overview of the main approaches: Parameter Control Strate-

gies (PCS), Parameter Tuning Strategies (PTS), and Instance-specific Parameter Tun-

ing Strategies (IPTS). While PCS dynamically adapt the parameter values during the

resolution of an instance, PTS leave the parameter values fixed and employ them to

solve several instances. IPTS represent a compromise solution, the parameter values are

not modified during the search but they can be different for each instance, depending

on its features. The benefits and pitfalls of each approach have been discussed. In ad-

dition, a new methodology which stands out for being automated and, problem- and

metaheuristic-independent, has been presented. It incorporates techniques of clustering,

which allows splitting the set of instances and, as a consequence, gives more flexibility

to the fine-tuning by analysing each subset independently, and design of experiments.

As a result, we have developed a methodology that avoids the strictness of common

PTS, which present only a set of parameter values, and the need of modifying the main

algorithm and spending more time on the resolution of instances that characterizes PCS.

At the same time, our methodology is simpler than IPTS as it does not require a learning

procedure able to recommend an instance-specific set of parameter values. In order to

illustrate and test our methodology, it has been applied to a hybrid algorithm. The case

study provides promising results.
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