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Twenty years of P-splines

Paul H.C. Eilers1, Brian D. Marx2 and Maria Durbán3

Abstract

P-splines first appeared in the limelight twenty years ago. Since then they have become popular

in applications and in theoretical work. The combination of a rich B-spline basis and a simple dif-

ference penalty lends itself well to a variety of generalizations, because it is based on regression.

In effect, P-splines allow the building of a “backbone” for the “mixing and matching” of a variety

of additive smooth structure components, while inviting all sorts of extensions: varying-coefficient

effects, signal (functional) regressors, two-dimensional surfaces, non-normal responses, quantile

(expectile) modelling, among others. Strong connections with mixed models and Bayesian analy-

sis have been established. We give an overview of many of the central developments during the

first two decades of P-splines.

MSC: 41A15, 41A63, 62G05, 62G07, 62J07, 62J12.
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1. Introduction

Twenty years ago, Statistical Science published a discussion paper under the title “Flex-

ible smoothing with B-splines and penalties” (Eilers and Marx, 1996). The authors were

two statisticians with only a short track record, who finally got a manuscript published

that had been rejected by three other journals. They had been trying since 1992 to sell

their brainchild P-splines (Eilers and Marx, 1992). Apparently it did have some value,

because two decades later the paper has been cited over a thousand times (according

to the Web of Science, a conservative source), in both theoretical and applied work. By

now, P-splines have become an active area of research, so it will be useful, and hopefully

interesting, to look back and to sketch what might be ahead.
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P-splines simplify the work of O’Sullivan (1986). He noticed that if we model a

function as a sum of B-splines, the familiar measure of roughness, the integrated squared

second derivative, can be expressed as a quadratic function of the coefficients. P-splines

go one step further: they use equally-spaced B-splines and discard the derivative com-

pletely. Roughness is expressed as the sum of squares of differences of coefficients. Dif-

ferences are extremely easy to compute and generalization to higher orders is straight-

forward.

The plan of the paper is as follows. In Section 2 we start with a description of basic P-

splines, the combination of a B-spline basis and a penalty on differences of coefficients.

The penalty is the essential part, and in Section 3 we present many penalty variations

to enforce desired properties of fitted curves. The penalty is tuned by a smoothing pa-

rameter; it is attractive to have automatic and data-driven methods to set it. Section 4

presents model diagnostics that can be used for this purpose, emphasizing the important

role of the effective model dimension. We present the basics of P-splines in the context

of penalized least squares and errors with a normal distribution. For smoothing with

non-normal distributions, it is straight-forward to adapt ideas from generalized linear

models, as is done in Section 5. There we also lay connections to GAMLSS (generalized

additive models for location, scale and shape), where not only the means of conditional

distributions are modelled. We will see that P-splines are also attractive for quantile and

expectile smoothing. The first step towards multiple dimensions is the generalized addi-

tive model (Section 6). Not only can smoothing be used to estimate trends in expected

values (and other statistics), but it also can be used to find smooth estimates for regres-

sion coefficients that change with time or another additional variable. The prototypical

case is the varying-coefficient model (VCM). We discuss the VCM in Section 7, along

with other models like signal regression. In modern jargon these are examples of func-

tional data analysis. In Section 8, we take the step to full multidimensional smoothing,

using tensor products of B-splines and multiple penalties. In Section 9, we show how all

the models from the previous sections can be added to each other and so combined into

one structure. Here again the roots in regression pay off.

One can appreciate the penalty as just a powerful tool. Yet it is possible to give

it a deeper meaning. In Section 10, P-splines are connected to mixed models. This

leads to further insights, as well as to new algorithms for finding reasonable values

for the penalty parameters. From the mixed model perspective, it is just a small step

to a Bayesian approach, interpreting the penalty as (minus) the logarithm of the prior

distribution of the B-spline coefficients. This is the subject of Section 11.

Asymptotics and boosting do not have a natural place in other sections, so we put

them together in Section 12, while computational issues and availability of software are

discussed in Section 13. We close the paper with a discussion

As far as we know, this is the first review on P-splines. Earlier work by Ruppert et al.

(2009) took a broader perspective, on the first five years after appearance of their book

(Ruppert et al., 2003). We do not try to be exhaustive. That would be impossible (and

boring), given the large number of citations. With the availability of Google Scholar
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and commercial citation databases such as Scopus and the Web of Science, anyone can

follow the trail through history in detail.

We have done our best, in good faith, to give an overview of the field, but we do not

claim that our choice of papers is free from subjectivity. The advent of P-splines has led

to formidable developments in smoothing, and we have been actively shaping many of

them. We hope that we will not offend any reader by serious omissions.

2. P-spline basics

The two components of P-splines are B-splines and discrete penalties. In this section we

briefly review them, starting with the former. We do not go much into technical detail;

see Eilers and Marx (2010) for that.

2.1. B-splines

Figure 1 shows four triangles of the same height and width, the middle ones overlapping

with their two neighbours. These are linear B-splines, the non-zero parts consisting of

two linear segments. Imagine that we scale the triangles by different amounts and add

them all up. That would give us a piecewise-linear curve. We can generate many shapes

by changing the coefficients, and we can get more or less detail by using more or fewer

B-splines. If we indicate the triangles by B j(x) and if a1 to an are the scaling coefficients,

we have
∑n

j=1 a jB j(x) as the formula for the function. This opens the door to fitting data

pairs (xi,yi) for 1, . . . ,m. We minimize the sum of squares

S =
∑

i

(yi −
∑

j

a jB j(xi))
2 = ||y−Ba||2,
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Individual linear B−splines (offset vertically)

Figure 1: Linear B-splines illustrated. The individual splines are offset for clarity. In reality the horizontal

sections are zero.
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Figure 2: Quadratic B-splines illustrated. The individual splines are offset for clarity. In reality the hori-

zontal sections are zero.

where B = [bi j], the so-called basis matrix. This is a standard linear regression problem

and the solution is well known: â= (BTB)−1BTy. The flexibility can be tuned by changing

the width of the triangles (and hence their number).

A piecewise-linear fit to the data may not be pleasing to the eye, nor be suitable for

computing derivatives (which would be piecewise-constant). Figure 2 shows quadratic

B-splines, each formed by three quadratic segments. The segments join smoothly. In a

similar way cubic B-splines can be formed from four cubic segments. The recipe for

forming a curve and fitting the coefficients to data stays the same.

The positions at which the B-spline segments join are called the knots. In our illus-

trations the knots are equally-spaced and so all B-splines have identical shapes. This is

not mandatory for general B-splines, but rather it is a deliberate choice for P-splines, as

it makes the construction of penalties trivial.

One should take care when computing the B-splines. The upper panel of Figure

3 shows a basis using equally-spaced knots. Note the “incomplete” B-splines at both

ends, of which not all segments fall within the domain of x. The lower panel shows a

basis as computed by the R function bs(). It has so-called multiple knots at both ends

and therefore is unsuitable for P-splines. To avoid this, one should specify an enlarged

domain, and cut off the splines at both ends, by removing the corresponding columns

in the basis matrix. Alternatively, one can use the code that is presented by Eilers and

Marx (2010).

2.2. Discrete penalties

With the number of B-splines in the basis we can tune the smoothness of a curve to

the data at hand. A smaller number of splines gives a smoother result. However, this
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Cubic B−spline basis with incorrect multiple boundary knots

Figure 3: B-splines bases with different choices of knots. Top: equally spaced knots, the proper basis for

P-splines. Bottom: multiple knots at both ends of the domain, which is the result of the R function bs() and

is unsuitable for P-splines.

is not the only possibility. We can also use a large basis and additionally constrain the

coefficients of the B-splines, to achieve as much smoothness as desired. A properly

chosen penalty achieves this.

O’Sullivan (1986) had the brilliant idea to take a basis with many B-splines and to

use a discrete penalty. The latter was derived from the integrated square of the second

derivative of the curve. This was, and still is, an established way to measure roughness

of a curve f (x):

R =
∫ u

l
[ f ′′(x)]2dx, (1)

where l and u indicate the bounds of the domain of x. If f (x) =
∑

j a jB j(x), we can

derive a (banded) matrix P such that R = aTPa. The elements of P are computed as

integrals of products of second derivatives of neighbouring B-splines.

O’Sullivan proposed to minimize

Q = S+λR = S+λa
T
Pa = ||y−a||2 +λa

T
Pa, (2)
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where λ is the parameter that sets the influence of the penalty. The larger the λ, the

smoother the result. In the limit the second derivative is forced to be very close to zero

and a straight line fit will result. Note that we only have to compute P once. The system

to be solved is

(BT
B+λP)â = B

T
y. (3)

The computation of P is not trivial, and it becomes quite tedious when the third or

fourth order derivative is used to measure roughness. Wand and Ormerod (2008) have

extended O’Sullivan’s idea to higher orders of the derivative. They used a computer

algebra system to construct a table of formulas. P-splines circumvent the issue by drop-

ping derivatives and integrals completely. Instead they use a discrete penalty matrix

from the start. It is also simple to compute, as it is based on difference formulas. Let

∆a j = a j −a j−1, ∆2a j = ∆(∆a j) = a j −2a j−1 +a j−2 and in general ∆da j = ∆(∆d−1a j).
Let Dd be a matrix such that Dda = ∆da. If we replace the penalty by λ||Dda||2 =

λaTD
T

dDda = λaTPa, we get a similar construction as O’Sullivan’s, but with a minimal

amount of work. In modern languages like R and Matlab, Dd can be obtained mechani-

cally as the dth order difference of the identity matrix.

It is surprising that nothing is lost by using a simplified penalty. Eilers and Marx

(1996) showed how many many useful properties can be proved in a few lines of simple

mathematics. Wand and Ormerod (2008) motivate their work by claiming that extrapo-

lation by P-splines goes wrong. They recommended their “O-splines” as a better alter-

native; see also (Ruppert et al., 2009). In Appendix A we present a small study that lays

severe doubt on their conclusion.

2.3. The power of the penalty

A fruitful way of looking at P-splines is to give the coefficients a central position as a

skeleton, with the B-splines merely putting “the flesh on the bones.” This is illustrated

in Figure 4. A smoother sequence of coefficients leads to a smoother curve. The number

of splines and coefficients is immaterial, as long as the latter are smooth. The role of the

penalty is to make such happen.

The penalty makes interpolation easy (Currie et al., 2004; Eilers and Marx, 2010). At

the positions where interpolated values are desired one introduces pseudo-observations

with y = 0 (or any arbitrary number) and zero weights and solves the system. The true

observations get weight 1. One solves

(BT
WB+λP)â = B

T
Wy, (4)

where W is a diagonal matrix with the weights on the diagonal. Smooth interpolation

takes place automatically. Extrapolation can be implemented in the same way, by intro-

ducing pseudo-observations outside the domain of the data.
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Figure 4: Illustration of the role of the penalty. The number of B-splines is the same in both panels. In the

upper panel the fit to the data (the squares) is more wiggly than in the lower panel, because the penalty is

weaker there. The filled circles show the coefficients of the B-splines. Because of a stronger penalty they

form a smooth sequence in the lower panel, resulting in a smoother curve fit.

The number of B-splines can be (much) larger than the number of observations. The

penalty makes the fitting procedure well-conditioned. This should be taken literally:

even a thousand splines will fit ten observations without problems. Such is the power

of the penalty. Figure 5 illustrates this for simulated data. There are 10 data points and

40 (+3) cubic B-splines. Unfortunately, this property of P-splines (and other types of

penalized splines) is not generally appreciated. But one simply cannot have too many

B-splines. A wise choice is to use 100 of them, unless computational constraints (in

large models) come into sight.

We will return to this example in Section 4, after introducing the effective model

dimension, and further address this issue of many splines in Appendix B.

2.4. Historical notes

The name P-splines was coined by Eilers and Marx (1996) to cover the combination

of B-splines and a discrete difference penalty. It has not always been used with that

specific meaning. Ruppert and Carroll (2000) published a paper on smoothing that also

used the idea of a rich basis and a discrete penalty. Their basis consists of truncated

power functions (TPF), the knots are quantiles of x, and the penalty is on the size of the
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Figure 5: P-spline smoothing of 10 (simulated) data points with 43 cubic B-splines.

coefficients. This work has been extended in the book by Ruppert et al. (2003). Some

people have called the TPF approach P-splines too. This is confusing and unfortunate

because TPF are inferior to the original P-splines; Eilers and Marx (2010) documented

their poor numerical condition.

B-splines and TPF are strongly related (Greven, 2008; Eilers and Marx, 2010). Actu-

ally B-splines can be computed as differences of TPF, but in the age of single precision

floating point numbers it was avoided, for fear of large rounding errors. Eilers and Marx

(2010) showed that this no longer holds. P-splines allow to select the degree of the B-

splines and the order of the penalty independently. With TPF there is no choice: they

imply a difference penalty the order of which is determined by the degree of the TPF.

3. Penalty variations

Standard P-splines use a penalty that is based on repeated differences. Many variations

are possible. As stated, the B-spline coefficients form the skeleton of the fit, so if we can

find other useful discrete penalties, then we can get curve fits with a variety of desired

properties. Eilers and Marx (2010) called them “designer penalties” and they presented

several examples. We give a summary here:

• A circular penalty connects the first and last elements of the coefficient vector

using differences, making both ends connect smoothly. Combined with a circular
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B-spline basis, this is the right tool for fitting periodic data or circular observations,

like directions.

• With second order differences, a j−2a j−1+a j−2, in the penalty, the fit approaches

a straight line when λ is increased. If we change the equation to a j − 2φa j−1 +

a j−2, the limit is a (co)sine with period p such that φ = cos(2π/p). The phase

of the (co)sine is adjusted automatically to minimize the sum of squares of the

residuals. For smoothing (and interpolation) of seasonal data (with known period)

this harmonic penalty usually is more attractive than the standard one.

• Eilers and Goeman (2004) combined penalties of first and second order to elimi-

nate negative side lobes of the impulse response (as would be the case with only a

second order penalty). This guarantees that smoothing of positive data never can

lead to negative fitted values.

• As described, the P-spline penalty is quadratic: it uses a sum of squares norm. This

leads to a smooth result. Other norms have been used. The sum of absolute val-

ues (the L1 norm) of first order differences allows jumps (Eilers and de Menezes,

2005) between neighbouring coefficients, making it suitable for piecewise constant

smoothing. This norm is a natural choice when combined with an L1 norm on the

residuals; standard linear programming software can be used. See also Section 5

for quantile smoothing.

• The jumps that are obtained with the L1 norm are not really “crisp,” but slightly

rounded. The reason is that the L1 norm selects and shrinks. Much better results

are obtained with the L0 norm, the number of non-zero coefficients (Rippe et al.,

2012b). Although a non-convex objective function results, in practice it can be

optimized reliably and quickly by an iteratively updated quadratic penalty.

Other types of penalties can be used to enforce shape constraints. An example is

a monotonously increasing curve fit (Bollaerts et al., 2006). A second, asymmetric,

penalty κ
∑

j v j(∆a j) is introduced, with v j = 1 when ∆a j < 0 and v j = 0 otherwise.

The value of κ regulates the influence of the penalty. Iterative computation is needed,

as one needs to know v to do the smoothing and then to know the solution to determine

(update) v. In practice, starting from v = 0 works well.

Many variations are possible, to force sign constraints, to ensure (increasing or de-

creasing) monotonicity, or to require a convex or concave shape. One can also mix and

match the asymmetric penalties to implement multiple shape constraints. Eilers (2005)

used them for unimodal smoothing, while Eilers and Borgdorff (2007) used them to fit

mixtures of log-concave non-parametric densities. This scheme has been extended to

two dimensions by Rippe et al. (2012a) and applied to genotyping of SNPs (we discuss

multidimensional smoothing in Section 8).

Pya and Wood (2015) took a different approach. They write a =Σexp(βββ) and struc-

ture the matrix Σ in such a way that a has the desired shape, for any vector βββ. For
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example Σi j = I(i ≥ j), with the indicator function I(·), provides a monotonic increas-

ing function. Patterns for combinations of constraints on first and second derivative are

tabulated in their paper.

4. Diagnostics

In contrast to many other smoothers, like kernels, local likelihood, and wavelets, P-

splines use a regression model with clearly defined coefficients. Hence we can borrow

from regression theory to compute informative properties of the model. What we do not

learn is the selection of a good value for the penalty parameter λ. Classical theory only

considers the fit of a model to the data and as such is useless for this purpose. Instead

we need to measure prediction performance. In this section we look at standard errors,

cross-validation, effective dimension, and AIC.

The covariance matrix of the spline coefficients (for fixed λ) is given by

Ca = σ2(BT
WB+λD

T
D)−1, (5)

where σ is the variance of the observation noise ǫ in the model y = Ba+ ǫǫǫ. The covari-

ance of the fitted values follows as B̆CaB̆
T
, where B̆ contains the B-spline basis evaluated

at any chosen set of values of x.

As it stands, this Ca is not very useful, because we need to know σ. It could be

estimated from the residuals, but for that we would need to choose the right value of λ,

leading to the proper “degrees of freedom.”

Leave-one-out cross-validation (CV) provides a mechanism to determine the predic-

tive power of a P-spline model for any value of λ. Let one observation, yi, be left out and

let the predicted value be indicated by ŷ−i. By doing this for each observation in turn we

can compute the prediction error

CV =

√

∑

i

(yi− ŷ−i)2. (6)

As such, CV is a natural criterion to select λ, through its minimization. Using brute

force, the computation of CV is expensive, certainly when the number of observations

is large. Fortunately there is an exact shortcut. We have that

ŷ = B(BT
WB+λD

T
D)−1B

T
Wy = Hy. (7)

Commonly H is called the “hat” matrix. One can prove that

yi − ŷi−1 = (yi − ŷi)/(1−hii), (8)
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and the diagonal of H can be computed quickly. A derivation can be found in Appendix

B of Myers (1989). An informal proof goes as follows. Imagine that we change element

i of y to get a new vector y∗; then ŷ∗ = Hy∗. Now it holds that if we set y∗i = ŷ−i, then

ŷ∗i = ŷ−i. Hence we have that ŷ−i− ŷi = hii(y−i−yi), as ∆ŷi = hii∆yi. After adding yi−yi

to the right part of this equation and rearranging terms we arrive at (8).

The hat matrix also gives us the effective model dimension, if we follow Ye (1998),

who proposed

ED =
∑

i

∂ ŷi/∂yi =
∑

hii. (9)

In fact we can compute the trace of H without actually computing its diagonal, using

cyclic permutation:

ED = tr(H) = tr[(BT
WB+λD

T
D)−1B

T
WB]. (10)

A further simplification is possible by noting that

(BT
WB+P)−1B

T
WB = (BT

WB+P)−1(BT
WB+P−P) = I− (BT

WB+P)−1P, (11)

where P = λDTD. Harville (1977) presented a similar result for mixed models. In the

case of P-splines, the expression is very simple because there are no fixed effects.
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Figure 6: Changes in the effective model dimension for P-spline smoothing of 10 (simulated) data points

with 43 cubic B-splines, for different orders (d) of the differences in the penalty.
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The effective dimension is an excellent way to quantify the complexity of a P-spline

model. It summarizes the combined influences of the size of the B-spline basis, the order

of the penalty, and the value of the smoothing parameter. The last equation in (11) neatly

shows that the effective dimension will always be smaller than n. Actually the effective

dimension is always smaller than min(m,n). An illustration is presented by Figure 6,

showing how ED changes with λ for the example with 10 observations and 43 B-splines

in Figure 5. For small λ, ED approaches m, while for large λ it approaches d, the order

of the differences.

The fact that ED < n is obvious from the size of the system of penalized likelihood

equations. A heuristic argument for ED < m is that B(BTB+λDTD)−1B is an m by m

matrix. It is a hat matrix, having a trace smaller than m. A formal proof is given in

Appendix B.

Additionally, the fact that ED < m explains why smoothing with (many) more B-

splines than observations works without a problem, for any value of λ. In our experience,

many colleagues do not realize this fact. Maybe they fear singularities and stick to small

numbers of basis functions.

To estimate σ2, one divides the sum of squares of the residuals by their effective

degrees of freedom, which is the number of observations minus the the effective model

dimension: σ̂2 =
∑

i(yi − ŷi)
2/(m−ED).

Alternatively, one can use Akaike’s Information Criterion to choose λ, where AIC =
−2ℓ+ 2ED and ℓ is the log-likelihood. The beauty of this formula is that it shows the

balance between fidelity to the data and complexity of the model.

One should always be careful when using cross-validation or AIC to tune the smooth-

ing parameter. An implicit assumption is that the observations are independent, condi-

tional on their smooth expectations. If this is not the case, as for time series data, the

serial correlation will be picked up as a part of the smooth component and severe under-

smoothing can occur. One way to approach this problem is to explicitly model the cor-

relation structure of the noise. We return to this subject in Section 10 on mixed models.

A recent alternative strategy is the adaptation of the L-curve (Hansen, 1992). It was de-

veloped for ridge regression, but can be adapted to difference penalties. See Frasso and

Eilers (2015) for examples and a variation, called the V-curve, which is easier to use.

In Section 10 the tuning parameter for the penalty will appear as a ratio of variances,

and the effective dimension plays an essential role when estimating them.

5. Generalized linear smoothing and extensions

P-splines are based on linear regression, so it is routine to extend them for smooth-

ing non-normal observations, by borrowing the framework of generalized linear models

(GLM). Let y be observed and µµµ the vector of expected values. Then the linear predictor

ηηη = g(µµµ) = Ba is modelled by B-splines, and a suitable distribution is chosen for y,

given µµµ. The penalty is subtracted from the log-likelihood: ℓ∗ = ℓ−λD
T
D/2. The penal-
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ized likelihood equations result in BT(y−µµµ) = λDTDa. This is a small change from the

standard GLM, in which the right-hand side is zero (Dobson and Barnett, 2008).

The equations are non-linear, but penalized maximum likelihood leads to the iterative

solution of

ât+1 = (BT
Ŵt B+λD

T

d Dd)
−1B

T
Ŵt ẑt with zt = η̂ηηt + Ŵ

−1

t (y− µ̂µµt), (12)

where t denotes the iterate and Ŵt and η̂ηηt denote approximate solutions, while ẑt is

the so-called working variable. The weights in the diagonal matrix Ŵ depend on the

link function and the chosen distribution. For example, the Poisson distribution, with

η = log(µ) has ŵii = µ̂i.

A powerful application of generalized linear smoothing with P-splines is density

estimation (Eilers and Marx, 1996). A histogram with narrow bins is computed and the

counts are smoothed, using the Poisson distribution and the logarithmic link function.

There is no danger that bins are chosen too narrow: even if most of them contain only a

few counts or zeros good results are obtained. The amount of smoothing is tuned by AIC.

It is essential (for any smoother) that enough bins with zero counts are included at

the ends of the observed domain of the data, unless it is known to be bounded (as for

intrinsically positive variables).

P-splines conserve moments of distributions up to order d − 1, where d is the order

of the differences in the penalty. This means that, if d = 3, the sum, the mean, and the

variance of the smooth histogram are equal to those of the raw histogram, whatever the

amount of smoothing (Eilers and Marx, 1996). In contrast, kernel smoothers increase

variance.

Many variations on this theme have been published. We already mentioned one- and

two-dimensional log-concave densities in Section 3.. Kauermann et al. (2013) explored

flexible copula density estimation. They modelled the density directly as a sum of tensor

products of linear B-splines (we discuss tensor products in Section 8). To reduce the

number of coefficients, they used reduced splines, which are similar to nested B-splines

(Lee et al., 2013).

Another variation is not to model the logarithm of the counts by a sum of B-splines,

but rather the density itself, with constraints on the coefficients (Schellhase and Kauer-

mann, 2012).

Mortality or morbity smoothing is equivalent to discrete density estimation with an

offset for exposures. P-splines have found their way into this area, for both one- and two-

dimensional tables (Currie et al., 2004; Camarda, 2012); both papers illustrate automatic

extrapolation.

The palette of distributions that generalized linear smoothing can use is limited. A

very general approach is offered by GAMLSS: generalized additive models for location,

scale and shape (Rigby and Stasinopoulos, 2005). An example is the normal distribution

with smoothly varying mean and variance, combined with a (varying) Box-Cox trans-
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form of the response variable. Many continuous and discrete distributions can be fitted

by the GAMLSS algorithm, also in combination with mixtures, censoring and random

components.

Instead of using a parametric distribution, one can estimate smooth conditional quan-

tiles, minimizing an asymmetrically weighted sum of absolute values of the residuals.

Bollaerts et al. (2006) combined it with shape constraints to force monotonicity. To

avoid crossing of individually estimated smooth quantile curves, Schnabel and Eilers

(2013) introduced the quantile sheet, a surface on the domain formed by the explanatory

variable and the probability level.

Compared to the explicit solutions of (penalized, weighted) least squares problems,

quantile smoothing is a bit less attractive for numerical work as it leads to linear pro-

gramming or to quadratic programming if quadratic penalties are involved. In contrast,

expectiles use asymmetrically weighted sums of squares and lead to simple iterative

algorithms (Schnabel and Eilers, 2009). Sobotka and Kneib (2012) extended expectile

smoothing to the spatial context, while Sobotka et al. (2013) provide confidence in-

tervals. Schnabel and Eilers (2013) proposed a location-scale model for non-crossing

expectile curves.

When analysing counts with a generalized linear model, often the Poisson distribu-

tion is assumed, with µµµ = exp(ηηη) for the expected values. When counts are grouped or

aggregated, the composite link model (CLM) of Thompson and Baker (1981) is more

appropriate. It states that µµµ = Cexp(ηηη), where the matrix C encodes the aggregation

or mixing pattern. In the penalized CLM, a smooth structure for ηηη is modelled with P-

splines (Eilers, 2007). It is a powerful model for grouped counts (Lambert and Eilers,

2009; Lambert, 2011; Rizzi et al., 2015), but it has also found application in misclassi-

fication and digit preference (Camarda et al., 2008; Azmon et al., 2014). de Rooi et al.

(2014) used it to remove artifacts in X-ray diffraction scans.

6. Generalized additive models

The generalized additive model (GAM) constructs the linear predictor as a sum of

smooth terms, each based on a different covariate (Hastie and Tibshirani, 1990). The

model is ηηη =
∑

j f j(xj); it can be interpreted as a multidimensional smoother without

interactions.

The GAM with P-splines, or P-GAM, was proposed by Marx and Eilers (1998). We

illustrate the main idea in two dimensions. Let

ηηη = f1(x1)+ f2(x2) = [B1|B2]

[

a1

a2

]

= Ba. (13)

By combining the two bases into one matrix and chaining the coefficients in one vector

we are back in a standard regression setting.
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The roughness penalties are λ1||D1a1||2 and λ2||D2a2||2 (where the indices here re-

fer to the variables, not to the order of the differences), leading to two penalty matrices

P1 = λ1DT

1D1 and P2 = λ2DT

2D2, which can be combined in the block-diagonal matrix

P. The resulting penalized likelihood equations are BT(y−µµµ) = Pa, which have exactly

the same form as those for generalized linear smoothing. The weighted regression equa-

tions follow immediately. The same is true for the covariance matrix of the estimated

coefficients, cross-validation, and the effective dimension.

Originally, backfitting was used for GAMs (Hastie and Tibshirani, 1990), updating

each component function in turn, using any type of smoother. Convergence can be slow

and diagnostics are hard or impossible to obtain. Direct fitting by P-splines does not

have these disadvantages.

As presented the model is unidentifiable, because an arbitrary upward shift of f1(x1)

can be compensated by an equal shift downward of f2(x2). A solution is to introduce an

(unpenalized) intercept and to constrain each component to have a zero average.

The P-GAM has multiple smoothing parameters, so optimization of AIC, say, by a

simple grid search involves much work. Heim et al. (2007) proposed a searching strategy

that cycles over one-dimensional grid searches. As a more principled approach, Wood

(2004) presented algorithms for numerical optimization in cross-validation. His book

(Wood, 2006a) contains a wealth of material on GAMs. See also Section 13 for the

mgcv software.

In Section 10 we will present Schall’s algorithm for variance estimation. It is attrac-

tive for tuning multiple penalty parameters.

7. Smooth regression coefficients

In the preceding sections P-splines were used to model expected values of observations.

There is another class of models in which the goal is to model regression coefficients as

a curve or surface. In this section we discuss varying coefficient models (Hastie and Tib-

shirani, 1993), penalized signal regression (Marx and Eilers, 1999), and generalizations.

In modern jargon these are all cases of functional data analysis (Ramsay and Silverman,

2003).

Varying coefficient models (VCM) were first introduced by Hastie and Tibshirani

(1993). They allow regression coefficients to interact with another variable by varying

smoothly. The simplest form is E[y(t)] = µ(t) = β(t)x(t), where y and x are observed

and βββ is to be estimated and forced to change slowly with t. The model assumes that

y is proportional to x, with a varying slope of the regression line. If we introduce a B-

spline basis B and write βββ = Ba, we get µµµ= XBa, where X = diag(x). With a difference

penalty on a we have the familiar P-spline structure, with only a modified basis XB. A

varying offset can be added: E[y(t)] = µ(t) = β(t)x(t)+β0(t). This has the form of an

additive model. Building βββ0 with P-splines we effectively get a P-GAM.
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This simple VCM can be extended by adding more additive or varying-coefficient

terms. For non-normal data we model the linear predictor and choose a proper response

distribution.

VCM with P-splines were proposed by Eilers and Marx (2002). Lu et al. (2008)

studied them too and presented a Newton-Raphson procedure to minimize the cross-

validation error. Andriyana et al. (2014) brought quantile regression into VCMs using

P-splines. Kauermann (2005b) and Kauermann and Khomski (2006) developed P-spline

survival and hazard models, respectively, to accommodate varying-coefficients. Wang

et al. (2014) used VCMs for longitudinal data (with errors in variables) with Bayesian

P-splines. Heim et al. (2007) used a 3D VCM in brain imaging.

Modulation models for seasonal data are an interesting application of the VCM (Eil-

ers et al., 2008; Marx et al., 2010). The amplitude of a sinusoidal (or more complex)

waveform is made to vary slowly over time. This assumes that the period is known. If

that is not the case, or when it is not constant, it is possible to estimate both varying

amplitude and phase of a sine wave (Eilers, 2009).

In a VCM, y and x are parallel vectors given at the same sampling positions in time or

space. In penalized signal regression (PSR) we have a set of x vectors and corresponding

scalars in y and the goal is to predict the latter. If the x vectors form the rows of a matrix

X, we have linear regression E(y) = µµµ = Xβββ. The problem is ill-posed, because X has

many more columns then rows. Take for example optical spectra that have been mea-

sured with many hundreds of wavelengths. The elements of y are known concentrations

of a substance. Because the columns of X are ordered, it makes sense to force βββ to be

smooth, by putting a difference penalty on it, thereby making the problem well-posed

(Marx and Eilers, 1999).

In principle there is no need to introduce P-splines, by writing βββ = Ba and putting

the penalty on a, but it reduces the computational load when X has many columns. Ef-

fectively we get penalized regression on the basis U =XB. After this step the machinery

for cross-validation, standard errors and effective dimension becomes available. Notice

that a is forced to be smooth, but µµµ does not have to be smooth at all. Also not the rows

of X are smoothed, but the regression coefficients.

Li and Marx (2008) proposed signal sharpening to enhance external prediction by

incorporating PLS weights.

An extensive review of functional regression was presented by Morris (2015).

The standard PSR model implicitly assumes the identity link function. However, it

can be bent through µµµ = f (Xβββ) = f (Ua), where f (·) is unknown. We call this model

single-index signal regression (SISR), which is closely related to projection pursuit (Eil-

ers et al., 2009). To estimate f , a second B-spline basis and corresponding coefficients

are introduced. The domain is that of Ua, and a has to be standardized (e.g. mean zero

and variance 1) to make the model identifiable. For given coefficients, the derivative

of f (Ua) can be computed and inserted in a Taylor expansion. Using that, a and the

coefficients for f are updated in turn until convergence.



Paul H.C. Eilers, Brian D. Marx and Maria Durbán 165

P-splines have been implemented in other types of single-index models, e.g. see Yu

and Ruppert (2002) and Lu et al. (2006). Leitenstorfer and Tutz (2011) used boosting

and Antoniadis et al. (2004) used a Bayesian approach.

In the next section, we review the tensor product fundamentals that enable PSR ex-

tensions into two-dimensions. For example, Eilers and Marx (2003) and Marx and Eil-

ers (2005) extended PSR to allow interaction with a discrete variable and to the two-

dimensional case where each x is not a vector but a matrix. In these models there is

no notion of time. When each element of y is not a scalar but a time series, as is x,

the historical functional linear model (HFLM) assumes that in principle all previous

x can influence the elements of y (Malfait and Ramsay, 2003). Harezlak et al. (2007)

introduced P-spline technology for the HFLM.

A mirror image of the HFLM is the interest term structure, estimating the expected

future course of interest rates; see Jarrow et al. (2004) and Krivobokova et al. (2006).

Additionally, Marx et al. (2011) extended SISR to two dimensions, whereas Marx

(2015) presented a hybrid varying-coefficient single-index model. In SISR, a weighted

sum of x(t) is formed and transformed. McLean et al. (2014) went one step further:

E(yi) = µi =
∫

F(xi(t), t)dt. This can be interpreted as first transforming x (with a dif-

ferent function for each t) and then adding the results, or “transform and add” in contrast

to “add and transform”.

8. Multi-dimensional smoothing

A natural extension of P-splines to higher dimensions is to form tensor products of one-

dimensional B-spline bases and to add difference penalties along each dimension (Eilers

and Marx, 2003). Figure 7 illustrates this idea, showing one tensor product Tjk(x,y) =

B j(x)B̆k(y). Figure 8 illustrates a “thinned” section of a tensor product basis; for clarity

not all tensor products are shown. A matrix of coefficients determines the height of

each “mountain”: A = [akl], k = 1, . . . , n and l = 1, . . . , n̆. The situation is completely

analogous to Figure 4, but extended to two dimensions. The roughness of the elements

of A determines how smooth the surface will be. To tune roughness, each column and

each row of A is penalized.

One can choose to use one penalty parameter for both directions, (isotropic smooth-

ing), or separate ones (anisotropic smoothing). In the latter case optimizing the amount

of smoothing generates much more work. Many useful properties of one-dimensional

P-splines carry over to higher dimensions. Weighting of (missing) observations and

interpolation and extrapolation work well. Effective model dimension and fast cross-

validation are available. They can also be used as a building block in smooth structures

(see the next section).

Technically, multidimensional P-splines are challenging. The main issue is that, to

be able to estimate A with the usual matrix-vector operations, we need to write it as a
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vector and to put the tensor products in a proper basis matrix. With careful organization

of the computations this can be solved elegantly (Eilers et al., 2006).
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Figure 7: The tensor product building block.
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Figure 8: Sparse portion of a complete tensor product B-spline basis.
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A natural application of multidimensional P-splines is the smoothing of data on a

grid. For larger grids the demands on memory and computation time can become too

large and special algorithms are needed. See Section 13 for details.

Multi-dimensional P-splines are numerically well-behaved, in contrast to truncated

power functions. The poor numerical condition of the latter becomes almost insurmount-

able in higher dimensions. Proponents of TPF have avoided this issue by using radial

basis functions (Ruppert et al., 2003; Kammann and Wand, 2003). This is, however, not

an attractive scheme: a complicated algorithm is being used for placing the centres of

the basis functions.

We emphasize that the set of tensor products does not have to be rectangular, al-

though Figure 8 might give that impression. When dealing with, say, a ring-shaped data

domain, we can remove all tensor products that do not overlap with the ring, and reduce

the penalty matrix accordingly. This can save much computation, and in the case of a

ring also is more realistic, because it prevents the penalty from working across the inner

region.

As we showed for one-dimensional smoothing, the number of basis elements, here

the tensor products, can be larger than the number of observations without problems,

thanks to the penalties.

9. Additive smooth structures

As we have seen for the generalized additive and varying-coefficient model, the use of

P-splines leads to a set of (modified) B-spline basis matrices which can be combined

side-by-side into one large matrix. The penalties lead to a block-diagonal matrix. This

idea extends to other model components like signal regression and tensor products. Stan-

dard linear regression and factor terms can be added too. This leads to additive smooth

structures. Eilers and Marx (2002) proposed GLASS (generalized linear additive smooth

structures), while Brezger and Lang (2006), referring to Fahrmeir et al. (2004), proposed

STAR (structured additive regression). Belitz and Lang (2008) introduced simultaneous

selection of variables and smoothing parameters in structured additive models.

The geoadditive model has received much attention; it is formed by the addition

of one-dimensional smooth components and a two-dimensional spatial trend. Often the

spatial component is modelled as a conditional autoregressive model. Brezger and Lang

(2006) presented a Bayesian version of GLASS/STAR, also using 2D P-splines for mod-

elling spatial effects in a multinomial logit model for forest health. Fahrmeir and Kneib

(2009) further built on Bayesian STAR models by incorporating geoadditive features

and Markov random fields, while addressing improper prior distributions. Also consid-

ering geoadditive structure, Kneib et al. (2011) expanded and unified Bayesian STAR

models to further accommodate high-dimensional covariates.

Hierarchies of curves form a special type of additive smooth structures. For example,

in growth data for children we can introduce an overall mean curve and two additional
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curves that show the difference between boys and girls. Moreover, we can have a smooth

curve per individual child. Durbán et al. (2005) gave an example (using truncated power

functions), while Bugli and Lambert (2006) used proper P-splines in a Bayesian context.

10. P-splines as a mixed model

The connection between nonparametric regression and mixed models was first estab-

lished over 25 years ago by Green (1987) and Speed (1991), but it was not until the late

1990s before it became a “hot” research topic (Wang, 1998; Zhang et al., 1998; Ver-

byla et al., 1999), partly due to the developments in mixed model software. These initial

references were based on the use of smoothing splines. In the penalized spline context,

several authors quickly extended the model formulation into a mixed model (Brumback

et al., 1999; Coull et al., 2001; Wand, 2003). They used truncated power functions as

the regression basis, since these have an intuitive connection with a mixed model. How-

ever, as previously mentioned, the numerical properties of TPFs are poor, compared to

P-splines. In a short comment, that largely went unnoticed, Eilers (1999) showed how to

interpret P-splines as a mixed model. Currie and Durbán (2002) used this approach and

extended it to handle heteroscedastic or autocorrelated noise. Work on the general ap-

proach for a mixed model representation of smoothers with quadratic penalty was also

presented in Fahrmeir et al. (2004).

With λ= σ2/σ2
a , the minimization problem in (2) is equivalent to:

Q∗ = ||y−Ba||2/σ2 +a
T
Pa/σ2

a, (14)

with σ2
a denoting the variance of the random effects a and σ2 as the error variance. In

fact, this is the minimization criterion in a random effects model of the form:

y = Ba+ ǫǫǫ, a ∼ N(0,σ2
aP−1) ǫ∼ N(0,σ2I). (15)

As presented, difference penalties of order d do not penalize powers of x up to de-

gree d−1. Therefore, P is singular (d eigenvalues are zero), and thus a has a degenerate

distribution. One solution is to rewrite the model as Ba = Xβββ + Zu, such that the d

columns of X span the polynomial null space of P and the (n−d) columns of Z span its

complement. In this presentation, the random effects u have a non-degenerate distribu-

tion. This type of re-parametrization can be done in many ways. Eilers (1999) proposed

Z = BD
T(DD

T)−1 (where D is the differencing matrix). A more principled approach

(which can be used for any quadratic penalty) was introduced by Currie et al. (2006)

and is based on the singular value decomposition of D = UΣV
T
, yielding Z = BUΣ

−1.

In either case, the equivalent mixed model is
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y = Xβββ+Zu+ ǫǫǫ, u ∼ N(0,σ2
uI) ǫǫǫ∼ N(0,σ2I). (16)

Instead of one smoothing parameter, we now have two variances, and we can profit from

the stable and efficient algorithms and software that are available for mixed models. Es-

pecially in complex models with multiple smooth components, this approach can be

more attractive than optimizing cross-validation or AIC. Yet, which approach (based on

prediction error or maximum likelihood) is optimal for the selection of the smoothing

parameter? Several papers on this subject have appeared along the years, but no unified

opinion has been reached: Kauermann (2005a) showed that the ML estimate has the

tendency to under-smooth, and prediction error methods give better performance than

maximum likelihood based approaches, Gu (2002) also found that ML delivers rougher

estimates than GCV, while Ruppert et al. (2003) found, through simulation studies, that

REML will produce smoother fits than GCV (simular conclusion was also found in

Kohn et al., 1991). Also, Wood (2011) concluded that REML/ML estimation is prefer-

able to GCV for semiparametric GLMs due to its better resistance to over-fitting, less

variability in the estimated smoothing parameters, and reduced tendency to having mul-

tiple minima. So, it is clear that there is no unique answer to this question, since dif-

ferent scenarios, will yield different conclusions. Moreover, behind the criteria used to

select the smoothing parameter, there is, in our opinion, a deeper question: is it fair to

use mixed models methodology for estimation and inference, when the mixed model

representation of a P-spline could be considered just a “trick” to facilitate parameter

estimation? This is a question for which we have no answer; researchers have different

(and strong) opinions about the mixed model approach (even the authors of this paper

do not always agree on this matter), but the truth is that it has become a revolution that

has yielded incredible advances in a very short time. It certainly has helped to make

penalized splines “salonfähig”: nowadays they are acceptable and even attractive to a

large part of the statistical community.

The estimation of the fixed and random effects is based on the maximization of the

joint density of (y,u) for βββ and u which results in the well-known Henderson’s equations

(Henderson, 1975):

[

X
T
X X

T
Z

ZTX ZTZ+λI

][

βββ

u

]

=

[

X
T
y

ZTy

]

, (17)

where λ= σ2/σ2
u . The solution of these equations yields β̂ββ and û. The variance compo-

nents σ2 and σ2
u are, in general, estimated by REML (Restricted Maximum Likelihood),

see Patterson and Thompson (1971)), and the solutions are obtained by numerical opti-

mization.

Other approaches can be used, and among them, it is worth mentioning the algorithm

given by Schall (1991), which estimated random effects and dispersion parameters with-

out the need to specify their distribution. The key is that each variance component is

connected to an effective dimension. The sum of squares of the corresponding random
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coefficients is equal to their variance times their respective effective dimension. This

fact can be exploited in an iterative algorithm. After each cycle of smoothing, the sums

of squares and effective dimensions are recomputed, which then are used to update the

variances for the next round. See Marx (2010) and Rodriguez-Alvarez et al. (2015) for

details and for extensions to multidimensional smoothing.

It is important to note a fact about prediction. Although the fitted model is the same

regardless of parametrization (i.e. as mixed model or not), the standard errors for the pre-

dicted values are not invariant. This results because the variability of the random effects

is taken into account in the mixed model case (and not in the other). The confidence in-

terval obtained from the original parametrization is f̂ (x)±2σ̂
√

(HH)ii (where H is such

that ŷ = Hy). This confidence interval covers E[ f̂ (x)] rather than f (x), since f̂ (x) is not

an unbiased estimate of f (x). Whereas in the mixed model framework, f̂ (x) is unbiased

due to the random u, and the biased adjusted confidence interval is f̂ (x)± 2σ̂
√

(H)ii

(Ruppert et al., 2003).

Of course, the interest of the mixed model representation of P-splines has been mo-

tivated by the possibility of including smoothing in a larger class of models. In fact,

during the last 15 years, there has been an explosion of models: ranging from estimating

subject-specific curves in longitudinal data (Durbán et al., 2005), to extending classical

models in economics Basile et al. (2014), to playing a key role in the recent advances in

functional data analysis (Scheipl et al., 2015; Brockhaus et al., 2015), among others.

10.1. P-splines and correlated errors

Although the mixed model approach has allowed the generalization of many existing

models, there is an area in which it has played a key role: data with serial correlation.

For many years the main difficulty when fitting a smooth model in the presence of

correlation has been the joint estimation of the smoothing and correlation parameters.

It is well known that the standard methods for smoothing parameter selection (based on

minimization of the mean squared prediction error) generally under-smooth the data in

the presence of positive correlation, since a smooth trend plus correlated noise can be

seen as a less smooth trend plus white noise.

The solution is to take into account the correlation structure explicitly, i.e. Var(ǫǫǫ) =

σ2V, where V can depend on one or more correlation parameters. Durbán and Currie

(2003) presented a strategy to select the smoothing parameter and estimate the correla-

tion based on REML. Krivobokova and Kauermann (2007) showed that maximum like-

lihood estimation of the smoothing parameter is robust, even under moderately misspec-

ified correlation. This method has allowed the inclusion of temporal non-linear trends

and filtering of time series (Kauermann et al., 2011).

Recently, and motivated by the need to improve the speed and stability of forecasting

models, Wood et al. (2015) have developed efficient methods for fitting additive models

to large data sets with correlated errors.
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Correlation also appears in more complex situations, for example in the case of spa-

tial data. Lee and Durbán (2009) combined two-dimensional P-splines and random ef-

fects with a CAR (conditional auto-regressive) structure to estimate spatial trends when

data are geographically distributed over locations on a map. Other authors have taken

different approaches; they combined additive mixed models with spatial effects rep-

resented by Markov or Gaussian random fields (Kneib and Fahrmeir, 2006; Fahrmeir

et al., 2010).

10.2. Multidimensional P-splines as mixed models

Multidimensional P-splines can be handled as a mixed model too. A first attempt was

made by Ruppert et al. (2003) using radial basis functions. Currie et al. (2006) analysed

tensor product P-splines as mixed models. Here, the singular value decomposition of the

penalty matrix (as in the 1D case) is used to construct the mixed model matrices. This

approach works for any sum of quadratic penalties (Wood, 2006a). However, when the

penalty is expressed as the sum of Kronecker product of marginal bases (the Kronecker

sum of penalties), the representation as a mixed model is based on the reparametrization

of the marginal bases. An important by-product of this parametrization is that the trans-

formed penalty matrix (i.e. the covariance matrix of the random effects), and the mixed

model matrices lead to an interesting decomposition of the fitted values as the sum of

main effects and interactions (Lee and Durbán, 2011):

E(Y) = f1(x1)+ f2(x2)+ f3(x1,x2).

This decomposition is strongly related to the work proposed by Gu (2002) on smoothing

spline analysis of variance.

The model now has multiple smoothing parameters, which makes estimating them

less efficient, if numerical optimization were to be used. Several steps have been taken to

make computation efficient. Wood (2011) used a Laplace approximation to obtain an ap-

proximate REML suitable for efficient direct approximation. Lee et al. (2013) improved

computational efficiency by using nested B-spline bases, and modified the penalty so

that optimization could be carried out in standard statistical software. Wood and Scheipl

(2013) proposed an intermediate low-rank smoother. Recently, Schall’s algorithm has

been extended (Rodriguez-Alvarez et al., 2015) to the case of multidimensional smooth-

ing. This work also shows the fundamental role of the effective dimensions of the com-

ponents of the model.
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11. Bayesian P-splines

It is a small step to go from a latent distribution in a mixed model to a prior in a Bayesian

interpretation. Bayesian P-splines were proposed by Lang and Brezger (2004), and they

were made accessible by appropriate software (Brezger et al., 2005). Their approach

is based on Markov chain Monte Carlo (MCMC) simulation. As for the mixed model,

the penalty leads to a singular distribution. This is solved by simulation using a random

walk of the same order as that of the differences.

It is also possible to start from a mixed model representation. Crainiceanu et al.

(2007) did this in one dimension, using truncated power functions. They avoid tensor

products of TPFs and switch to radial basis functions for spatial smoothing. These au-

thors also allowed for varying (although isotropic) smoothness and for heteroscedastic-

ity. Jullion and Lambert (2007) proposed a Bayesian model for adaptive smoothing.

As an alternative to MCMC, integrated nested Laplace approximation (INLA) is

powerful and fast, and it is gaining in popularity (Rue et al., 2009). INLA avoids stochas-

tic simulation for precision parameters and uses numerical integration instead. Basically

INLA uses a parameter for each observation so a (B-spline) regression basis has to be

implemented in an indirect way, as a matrix of constraints (Fraaije et al., 2015).

INLA is an attractive choice for anisotropic smoothing. By working with a sum

of precision matrices it can handle the equivalent of a mixed model with overlapping

penalties (Rodriguez-Alvarez et al., 2015).

12. Varia

In this section we discuss some subjects that do not find a natural home in one of the

preceding sections. We take a look at asymptotic properties of P-splines and at boosting.

Several authors have studied the asymptotic behaviour of P-splines. See Li and Rup-

pert (2008); Claeskens et al. (2009); Kauermann et al. (2009); Wang et al. (2011). Al-

though we admire the technical level of these contributions, we do not fully see their

practical relevance. The problem is their very limited interpretation of increasing the

number of observations: it is all about more observations on the same domain. In that

case it is found that the number of knots should grow as a small power of the number

of observations. Yet, the whole idea of P-splines is to use far too many knots and let the

penalty do the work. Trying to optimize the number of knots, as Ruppert (2002) did, is

not worthwhile. He reports some cases where more knots increase the estimation error,

but the numbers are not dramatic. His analysis was based on truncated power functions,

which he confusingly calls P-splines, with knots at quantiles of the observed x. It is not

clear how this design influences the results. For a proper analysis equally-spaced knots

have to be used.

Most asymptotic analyses of penalized splines use the framework of truncated power

functions (TPF). There is an unpenalized part, a polynomial in x, of the same degree
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as that of the TPF. The penalty on the TPF is on the size of the coefficients, not on

differences thereof. This makes analytical work easier. In Section 10, we have presented

two alternative representations of P-splines that have a unpenalized polynomial part and

a size penalty on the other basis functions. We believe that such are more suitable than

TPF, if only because of the decoupling of the degree of the splines and the order of the

penalty. Boer (2015) recently presented a variant that keeps the basis sparse.

What is neglected in papers on asymptotic theory is that often we have to deal with

observation in time or space, where more observations bring about a proportional in-

crease in the size of the domain.

In Section 4, we have shown that there is no danger in using many splines even when

fitting only a few data points. Hence one is always free to use many splines and not

worry about optimization of their number. We therefore advise to use 100 B-splines, a

safe choice.

Boosting for smoothing basically works as follows (Tutz and Binder, 2006; Schmid

and Hothorn, 2008): (1) smooth with a very strong penalty and save the result, (2)

smooth the residuals and add (a fraction of) this result to the previous result, (3) re-

peat step (2) many times. The result gets more flexible with each iteration. So one has

to stop at some point, using AIC or another criterion. Boosting has many enthusiastic

proponents, and its use has been extended to non-normal data and additive models and

other smooth structures (Mayr et al., 2012). We find it difficult to see its advantages,

especially when we compare it to Schall’s algorithm for tuning multiple smoothing pa-

rameters, which we presented in Section 10. On the other hand, boosting allows to select

relevant variables in a model and the use of non-standard objective functions.

13. Computation and software

For many applications standard P-splines do not pose computational challenges. The

size of the B-spline basis will be moderate and many thousands of observations can be

handled with ease. If the data are observed on an equidistant grid and only smoothed

values on that grid are wanted, one can just as well use the identity matrix as a basis.

This leads to the Whittaker smoother (Whittaker, 1923; Eilers, 2003). The number of

coefficients will be equal to the number of observation, but in combination with sparse

matrix algorithms a very fast smoother is obtained.

Sparse matrices also are attractive when long data series have to be smoothed with a

large B-spline basis (de Rooi et al., 2014). Even though the basis matrix is sparse, one

has to take care to avoid computing dense matrices along the way, as is the case when

using truncated power functions. The key is to recognize that B j+k(x) = B j(x− sk),

where s is the distance between the knots. Each xi is shifted by −ski to a chosen sub-

domain , and a basis of only four (cubic) B-splines is computed on that domain. In a last

step a sparse matrix is constructed with the columns of row i shifted to the right by ki.

An added advantage is that numerical roundoff is minimized (Eilers and Marx, 2010).
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When the penalty parameter is large, forming BTB+ λDTD explicitly to solve the

penalized normal equations is not optimal and rounding problems can occur. It is better

to use an augmented version of B yielding B̄, where B̄ = [BT
√
λDT]T, and an augmented

y as ȳ = [yT
0

T]T and perform linear regression of ȳ on B̄ using the QR decomposition.

Here 0 stands for a vector of zeros with length equal to the number of rows of D. See

Wood (2006a) for advice on stable computation.

The demands of additive models on computer memory and computation time often

are modest. However, very large data sets need special treatment when they do not fit

in the working memory. Wood et al. (2015) described such an application, forecasting

electricity consumption in France. They developed a specialized algorithm, which is part

of the the R package (mgcv) as the function bam.

In two-dimensional smoothing of large grids, using tensor products, one can run

into yet another problem. The data and the one-dimensional bases may easily fit into

memory, but the (inner products of) Kronecker products cannot be handled. The two-

dimensional basis, B̆⊗B, has m1m2 rows and n1n2 columns. When smoothing a large

1000 by 1000 image using n1n2 ≈ 1000, the basis has one billion elements, taking 8

bytes each, and so will not fit into 8 Gb of main memory. Even if it would, the computa-

tion of the inner products will be extremely taxing. Note that in this case we have around

1000 coefficients, so it is not the size of the final system of penalized normal equa-

tions that is the problem. Fortunately, by rearranging the calculations, one can avoid the

explicit Kronecker products and gain orders of magnitudes in computation speed and

memory use (Currie et al., 2006; Eilers et al., 2006). This array algorithm, so-called

GLAM, allows arbitrary weights and so is suitable for generalized linear smoothing.

When no weights are involved, even larger improvements are possible, by using the

“sandwich smoother” (Xiao et al., 2013). The basic idea is that one can first apply one-

dimensional smoothing to the rows of a matrix and then to the columns (or the other way

around). The order is immaterial, as is easy to see from the explicit equation for A =
(BTB+ λDTD)−1BTYB̆(B̆

T
B̆+ λ̆D̆

T
D̆)−1, the matrix of coefficients. A similar approach

was followed by Eilers and Goeman (2004), using a modified Whittaker smoother.

Nowadays it is quite common to publish computer code on a website, or as supple-

mentary material, to accompany statistical papers. This is certainly true for the literature

on P-splines. We do not try to describe these individual efforts. Instead we point to some

packages for R (R Core Team, 2015) with a rather wide scope.

Originally designed for fitting generalized additive model, and accompanying Wood

(2006b), mgcv has grown into the Swiss army knife of smoothing. It offers a diversity of

basis functions and their tensor products for multidimensional smoothing. Furthermore,

it can fit varying-coefficient models and signal regression, and it can mix and match

components in an additive way. It offers a diversity of distributions to handle (over-

dispersed) non-normal data.

We described the GAMLSS model in Section 5. A very extensive package is avail-

able. Its core is aptly called gamlss; it can be extended with a suite of add-ons for

censored data, mixed models, and a variety of continuous and discrete distributions.
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The package MortalitySmooth focuses on smoothing of counts in one and two

dimensions (Camarda, 2012). It also is a nice source for mortality data from several

countries.

BayesX (Brezger et al., 2005) is a stand-alone program for Windows and Linux. It

covers all the models that fit in the generalized linear additive smooth structure (or struc-

tured additive regression) framework. The Bayesian algorithms are based on Markov

chain Monte Carlo. It also offers mixed model based algorithms. There are R packages

to install BayesX and to communicate with it.

It is also possible to use the R-INLA (Rue et al., 2009) package for fitting additive

models with P-splines. See Fraaije et al. (2015) and the accompanying software.

The package mboost offers boosting for a variety of models, including P-splines and

generalized additive models (Hofner et al., 2014). With the extension gamboostLSS, one

can apply boosting to models for location, scale and shape, similar to GAMLSS.

To estimate smooth expectile curves or surfaces, the package expectreg is available.

14. Discussion

The paper by Eilers and Marx (1996) that started it all contained a “consumer score

card”, comparing various smoothing algorithms. P-splines received the best marks and

their inventors concluded that they should be the smoother of choice. Two decades later,

it is gratifying to see that this opinion is being shared by many statisticians and other

scientists. Once prominent tools like kernel smoothers and local likelihood are gradually

fading into obscurity.

In twenty years, P-spline methodology has been extended in many directions. The

analogy with mixed models is being exploited to the fullest, as is the Bayesian ap-

proach, leading to new interpretations of penalties and powerful recipes for optimizing

the amount of smoothing. Multidimensional smoothing with tensor products has become

practical and fast, thanks to array algorithms. Regression on (multidimensional) signals

has also become practical. Smooth additive structures allow the combination of various

models. The key is the combination of rich B-spline regression and a simple roughness

penalty. Actually the penalties are the core and many variations have been developed,

while the B-spline basis did not change. We expect to see exciting developments in the

near future. For a start, we sketch some aspects that we hope will get much attention.

We wrote that the penalty forms the skeleton and that the B-splines put flesh on

the bones. That means that new ideas for penalties have to be developed. One promising

avenue is the application to differential equations. One can write the solution as a sum of

B-splines (the collocation method) and use the differential equation (DE) as the penalty

(Ramsay et al., 2007). In this light the usual penalty for smoothing splines is equivalent

to a differential equation that says that the second derivative of the solution is zero

everywhere. O’Sullivan (1986) took the step from a continuous penalty to a discrete one.

This can also be done with a DE-based penalty. However, if the coefficients of the DE are
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not fixed (e.g. estimated from the data), then this generates a significant computational

load. It will be useful to study (almost) equivalent discrete penalties, based on difference

equations.

It is remarkable that in one-dimensional smoothing, kriging is almost absent. Altman

(2000) compared splines and kriging and found that serial correlation is a key issue. If

it is present and ignored, splines do not perform well. There are ways to handle cor-

relation, as discussed in Section 10.. In spatial data analysis, kriging is still dominant.

We believe that for many applications, tensor product P-splines would be a much bet-

ter choice, especially if one is more interested in estimating a trend rather than doing

spatial interpolation. It may appear that attempting to estimate a covariance structure

from the data is a worthwhile effort, but in practice it often leads to unstable procedures.

Handling non-normal data with kriging is cumbersome. In contrast, P-splines impose a

relatively simple covariance structure, and in practice do the job in a very stable way,

as our experiences with the analysis of agricultural field trials has shown. Smoothing of

data on large grids is problematic for kriging, but P-splines and array algorithms handle

such data with ease. In some cases it might even be attractive to summarize the data (as

counts and sums) on a grid before analysis. Combined with the PS-ANOVA approach

(Lee et al., 2013), which avoids detailed modelling of higher-order interactions, power-

ful tools for large data sets can be developed.

In some applications extrapolation is very important. Mortality data are a prime ex-

ample. The order of the differences in the penalty determines the result: for first order

differences it is a constant, for second order a straight line and a weighted combination

of both gives an exponential curve. A challenge is to determine which penalty to use and

to set its tuning parameter(s) for optimal extrapolation. In one dimension extrapolation

does not influence the fit to the data. This is not true in two dimensions, for example with

life tables. The penalties for the age and the time dimension interact and the size of the

extrapolation region also has an influence. More research is needed to better understand

these issues.

In several places in this paper, we have encountered the effective dimension of (com-

ponents) of a model. It is an important parameter when optimizing penalties. Yet it de-

serves more attention on its own right. The definition, by Ye (1998), in (10) is very

powerful. The contribution to ED =
∑

i ∂ ŷi/∂yi by a component of an additive model

can be determined clearly by following a change in yi down the model to the coefficients,

and from there back up again to the corresponding change in ŷi. Partial effective dimen-

sions can be calculated this way; they are important summaries of the contributions of

the model components.

In this paper, we have tried to give a glimpse of the many landmarks created in

the last 20 years. It has been a collective achievement, the result of the work of many

researchers who believed in the power of P-splines. We see a great and exciting future

ahead, as there are many problems to solve, new complex data to model, and especially a

new generation of bright statisticians who are already showing that P-splines have much

more to contribute to this century, the century of data.



Paul H.C. Eilers, Brian D. Marx and Maria Durbán 177

Appendix A. O-splines or P-splines?

Wand and Ormerod (2008) introduced O’Sullivan splines, or O-splines for short. They

were not entirely pleased with the pure discrete penalty of P-splines and returned to the

integral of the squared second (or higher) derivative of the fitted function. This can be at-

tractive, especially when the knots of the B-spline basis are not evenly spaced. There are

cases when this can be very valuable. As an example, Whitehorn et al. (2013) presented

an example of high-dimensional smoothing with tensor products in high-energy physics

to model the response of a detector. In this case, more detail was needed in the centre

than near the boundaries. However, this was not the motivation of Wand and Ormerod.

They rather favour the use of quantiles of x for the knots.

The paper claims that P-splines do not extrapolate well, when compared to the

smoothing spline. Hence O-splines should be preferred. This claim was repeated by

Ruppert et al. (2009). The paper by Wand and Ormerod (2008) has been cited more than

50 times, so apparently the message did not get lost.

We were concerned about this analysis because a basis with multiple knots at the

domain boundaries had been used for the O-splines. If multiple knots had also been used

for the P-splines (similar to the one in the bottom panel of Figure 3), artifacts could have

occurred. So we decided to take the example data from their paper (dataset fossil in the

R package SemiPar) and re-analyse them. We downloaded the file WandOrmerod08.Rs

from Matt Wand’s personal web page. For fitting, we extracted the section that invokes

the function lme in the package nlme for estimating an equivalent mixed model. This

program was adapted for P-splines by changing the basis and the penalty matrix. For

comparison we use the function smooth.spline that is a standard part of R. It tunes the

amount of smoothing automatically to the data, using cross-validation.

Figure 9 shows the fits of P-splines and a smoothing spline. We used 40 B-splines

on the domain from 85 to 130. There is strong correspondence between the two splines.

This is also true for the estimated derivative, which was approximated by taking differ-

ences.

Surprisingly, the O-splines do not work as well as P-splines, as Figure 10 shows.

This especially can be seen in the derivatives. It appears that the O-spline fit struggles

near x = 100. The reason is that the knot density is low there, because the low local

data density. What is more worrying is that derivatives of the extrapolated part is not

constant, as they should be for a linear result.

We believe that the anomalous behaviour of the O-splines is caused by the choice of

basis. Multiple knots do not go together with a discrete penalty on the spline coefficients.

The root of all evil is the choice to use quantiles of x for the knots; there is absolutely

no need for it.
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Figure 9: Upper panel: P-spline and smoothing spline fit to the fossil data. On both sides the fit is extrap-

olated automatically. Lower panel: derivatives of both splines, as computed from first differences.

Appendix B. Proof that the effective dimension is smaller than m

A formal proof starts from a simplified case, with d = 0 and a general basis Z, where

the system of equations to solve is

(ZT
Z+λI)u = Z

T
y. (18)

The singular value decomposition of Z gives: Z = USVT, with UTU = Im and VTV = In.

Through substitution:

(VSU
T
USV

T+λI)u = (VS2V
T+λI)â = VSU

T
y (19)
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Figure 10: Upper panel: O-spline and smoothing spline fit to the fossil data. On both sides the fit is

extrapolated automatically. Lower panel: derivatives of both splines, as computed from first differences.

Now assume that u = Vγγγ. Fill in and multiply by VT:

V
T(VS2V

T+λI)Vγγγ = V
T
VSU

T
y. (20)

Hence

(S2 +λIm)γγγ = SU
T
y. (21)

This is a system with m equations in m unknowns. The system matrix is diagonal and

non-singular.

The penalty is a special case here, but in Section 10 it was shown that P-splines can

be transformed into a mixed model, specifically with Ba = Xβββ+Zu and with a ridge

penalty on u. The Henderson equations (17) contain a part for βββ. We now have

Z
T
Xβ̂ββ+(ZT

Z+λI)u = Z
T
y, (22)
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or

(S2 +λIm)u = SU
T(y−Z

T
Xβββ). (23)

Note that the value of βββ is immaterial, as it does not change the properties of the system

matrix and only the right-hand side of the equation changes.
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Abstract

In this paper we investigate an extension of the power-normal model, called the alpha-power

model and specialize it to linear and nonlinear regression models, with and without correlated

errors. Maximum likelihood estimation is considered with explicit derivation of the observed and

expected Fisher information matrices. Applications are considered for the Australian athletes
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proposed model can be a viable alternative in situations were the normal distribution is not the

most adequate model.
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1. Introduction

Linear and nonlinear regression models are statistical techniques typically used for mod-

eling and studying relationships between variables in several areas of human knowledge

such as biomedical and agricultural sciences, engineering, and many others, being ex-

tremely useful for data analysis. One important step in regression analysis is parameter

estimation, usually made under the assumption of normality. However, there are sit-

uations were the normal assumption is not realistic and several distributions have been

suggested as alternatives to the normal model. Among such models we have the Student-

t, logistic and exponential power distributions (Cordeiro et al., 2000 and Galea et al.,

2005), whereas for the asymmetric nonlinear model we have only the work of Cancho
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et al. (2008). In this paper we suggest an alternative asymmetric model, the alpha-power

model, for fitting linear and nonlinear regression models. The maximum likelihood

approach is used for parameter estimation and the normality assumption can be tested

using the likelihood ratio statistics since large sample properties are satisfied for the

maximum likelihood estimator (Pewsey et al., 2012). Real data applications reveal that

the model considered can be a viable alternative to existing asymmetric models in the

literature.

The paper is organized as follows. In Section 2 asymmetric models are reviewed

and some of their main properties discussed. Emphasis is placed on the alpha-power

model, a special case of which is the power-normal model (Gupta and Gupta, 2008).

In Section 3 a general definition of asymmetric regression models is presented and

previous works on linear and nonlinear versions are listed. Section 4 is devoted to the

study of the linear multiple regression model with power-normal errors. Inference via

maximum likelihood for this model is also considered. The nonlinear power-normal

model is considered in Section 5. Estimation is considered via maximum likelihood. The

autoregressive model is studied in Section 6, with inference via maximum likelihood.

A score type statistic is developed for testing null correlation. A small-scale Monte

Carlo study is conducted in Section 7, including a study on model robustness. The main

conclusion is that estimators under the regression model studied are fairly robust against

data contamination. Results of two real data applications are reported illustrating the

usefulness of the models considered in Section 8. In Section 9 (Appendix), we present

the elements for the observed information matrices for the models considered in the

previous Sections.

2. Skew distributions

Lehmann (1953) studied the family of distributions with a general distribution function

given by

FF(z;α) = {F(z)}α, z ∈ R, (1)

where F is a distribution function and α is a rational number.

Durrans (1992), in a hydrological context, extended Lehmann’s model by consid-

ering α real (and positive) for the special case F = Φ, the distribution function of the

normal distribution. We consider in this paper an extension of Lehmann’s model, which

we call the alpha-power model, with density function given by

ϕ f (z;α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R+, (2)

where F is an absolutely continuous distribution function with density function f = dF .

Properties for a particular case of this distribution (with F = Φ, the distribution function
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of the normal distribution), were studied in Gupta and Gupta (2008). We use the notation

Z ∼ PF(α). We refer to this model as the standard alpha-power distribution (see also

Pewsey et al., 2012). This is an alternative to asymmetric models with higher amounts

of asymmetry and kurtosis as is the case with the skew-normal distribution (Azzalini,

1985), see also Mudholkar and Hutson (2000) for some special cases. Parameter α is a

shape parameter that controls the amount of asymmetry in the distribution. Extensions

of the power-normal model are also considered in Rego et al. (2012).

In the particular case that F = Φ, the distribution function of the normal distribution,

Z is said to follow a power-normal distribution (denoted PN(α)) with density function

given by

ϕ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R. (3)

If Z is a random variable from a standard PF (α) distribution then the location-scale

extension of Z, X = ξ+ηZ, where ξ ∈ R and η ∈ R+, has probability density function

given by

ϕF(x;ξ,η,α) =
α

η
f

(

x−ξ
η

){

F

(

x−ξ
η

)}α−1

. (4)
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Figure 1: Density ϕZ(z;α) for α equals to 5 (solid line), 2 (dashed line), 1 (dotted line) and 0.5 (dashed

and dotted line).
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We will denote this extension by using the notation X ∼ PF(ξ,η,α). Notice that this

model can be further extended by considering ξi = x
T
i β replacing ξ, where β is an

unknown vector of regression coefficients and xi a vector of known regressors possibly

correlated with the response vector.

As can be deduced from Figure 1, parameter α controls also the distribution kurtosis.

Moreover, it can be noticed that for α> 1, the kurtosis is greater than that of the normal

distribution and, for 0 < α< 1, the opposite is observed.

Pewsey et al. (2012) derived the Fisher information matrix for the location-scale

version of the power-normal model and have shown that it is not singular for α = 1.

We recall that the Fisher information matrix for the skew-normal distribution (Azzalini,

1985) is singular under the symmetry hypothesis. Hence, with the power-normal model,

normality can be tested using ordinary large sample properties of the likelihood ratio

statistics. They also found the asymmetry and kurtosis ranges to be [−0.6115,0.9007]

and [1.7170,4.3556], respectively. This illustrates the fact that the model is more

flexible, respective to kurtosis, than the model skew-normal (Azzalini, 1985), for which

the kurtosis range is given by [3,3.8692).
A generalization for the PN(α) model is given in Eugene et al. (2002), by introduc-

ing the beta-normal distribution, denoted BN(α,β), with BN(α,1)=PN(α). Therefore,

model BN(α,β) is more flexible than model PN(α). However, model BN(α,β) contains

two parameters to be estimated and the asymmetry and kurtosis ranges for both mod-

els are the same, namely [−0.6115,0.9007] and [1.7170,4.3556], respectively. General

properties of the model BN where studied by Gupta and Nadarajah (2004) and Rego et

al. (2012).

3. The asymmetric regression model

The multiple regression model is typically represented by

yi = x
T
i β+εi, i = 1,2, . . . ,n, (5)

where β is a vector of unknown constants and xi are values of known explanatory vari-

ables. The error terms εi are independent random variables with N(0,σ2) distribution.

It may occur that the symmetry assumption is not an adequate assumption for the er-

ror term so that an asymmetric model may present a better fit for the data set under

study. As seen in the literature, some asymmetric distributions that can be considered are

the epsilon-skew-normal (ESN, Mudholkar and Hutson, 2000) distribution, the skew-

exponential power (SEP, see Azzalini, 1986) distribution and the Beta-Normal (BN)

distribution, among others. Hutson (2004) replaces in (5) the normal distribution by

the ESN distribution, DiCiccio and Monti (2004) consider that the error terms follow

model SEP while Razzaghi (2009) consider the BN distribution for fitting a quadratic
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dose-response modeling. Asymmetric nonlinear regression is studied in Cancho et al.

(2008) by considering that the error terms follow a skew-normal model distribution. Xie

et al. (2009) studied the case where the error term follows the skew-t-normal model (see

Gómez et al., 2007).

4. The multiple regression model with PN errors

In this section, we assume under the ordinary multiple regression model that the error

term follows a PN (denoted PNR) distribution with parameters 0, ηe and α, that is,

εi ∼ PN(0,ηe,α) for i = 1,2, . . . ,n.

Hence, it follows that the density function of εi is given by

ϕ(εi;β ,ηe,α) =
α

ηe

φ

(

yi −x
T
i β

ηe

){

Φ

(

yi −x
T
i β

ηe

)}α−1

, i = 1,2, . . . ,n, (6)

Therefore, it follows that yi given xi, (yi|xi), also follows a PN distribution, that is,

yi|xi ∼ PN(xT
i β ,ηe,α), i = 1,2, . . . ,n, (7)

with location parameter x
T
i β , i = 1,2, . . . ,n, scale parameter ηe and shape parameter α.

Under the PN model,

E(εi) = αηe

∫ 1

0
Φ

−1(z)zα−1dz 6= 0

so that the expected value of the error term is not null as is the case under normality.

Therefore, E(yi) 6= x
T
i β and we have to make the following correction to obtain the

regression line as the expected value of the response variable: β∗
0 = β0 + µε, where

µε = E(εi). Thus,

E(yi) = x
T
i β

∗ where β∗ = (β∗
0 ,β1, . . . ,βp)

T.

The next section discusses maximum likelihood estimation for the corrected model.

4.1. Inference for the multiple PNR model

We discuss in the following maximum likelihood estimation for the multiple power-

normal regression model. A detailed derivation of the Fisher information matrix is

considered, resulting that it is nonsingular at the vicinity of symmetry.
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4.2. Likelihood and score functions

Considering now a matrix notation where y denotes the vector with entries yi and

dimension (n×1) and X the (n× (p+1))-matrix with rows x
T
i , the likelihood function

for θ =(βT,ηe,α)
T given a random sample of size n, y=(y1,y2, . . . ,yn)

T, can be written

as

ℓ(θ ;y) = n log

(

α

ηe

)

− 1

2η2
e

(y−Xβ)T(y−Xβ)+(α−1)
n

∑
i=1

log

{

Φ

(

yi −x
T
i β

ηe

)}

,

with score function:

U(β) =
1

η2
e

X
T(y−Xβ)− α−1

ηe

X
T
Λ1, U(α) = n

(

1

α
+u

)

, (8)

U(ηe) =− n

ηe

+
1

η3
e

(y−Xβ)T(y−Xβ)− α−1

η2
e

(y−Xβ)T
Λ1 (9)

where

Λ1 = (w1, . . . ,wn)
T and ui = log

{

Φ

(

yi −x
T
i β

ηe

)}

,

with wi = φ
(

yi−x
T
i β

ηe

)

/Φ

(

yi−x
T
i β

ηe

)

, for i = 1,2, . . . ,n. After some algebraic manipula-

tions, maximum likelihood estimating equations are given by

β = β̂MQ − (α−1)η(XT
X)−1

X
T
Λ1, α=−1

u
, (10)

η=
(1−α)(y−Xβ)TΛ1

2n
+

√

(1−α)2(y−Xβ)TΛ1ΛT
1 (y−Xβ)+4n(y−Xβ)T(y−Xβ)

2n
, (11)

where β̂MQ = (XT
X)−1

X
T
y.

Hence, the maximum likelihood estimator for the parameter vector β is equal to the

least squares estimator for β plus the symmetry correcting term. No analytical solutions

are available for the likelihood equations and hence they have to be solved numerically.

For the simple linear regression model, namely p = 1, the following system of

equations results

β1 = ηe(α−1)
Sxw

S2
x

+
Sxy

S2
x

, β0 =−ηe(α−1)w+ y−β1x, α=−1

u
,
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and

ηe =
(1−α)(wy−β0w−β1wx)

2n
+

√

(1−α)2(wy−β0w−β1wx)2 +4n∑
n
i=1(yi −β0 −β1xi)2

2n

with

S2
x =

n

∑
i=1

(xi − x)2/n, Sxy =
n

∑
i=1

(xi − x)(yi− y)/n and Swx =
n

∑
i=1

(wi −w)(xi− x)/n,

where w=∑
n
i=1 wi/n, u=∑

n
i=1 ui/n, x=∑

n
i=1 xi/n, x2 =∑

n
i=1 x2

i /n, y=∑
n
i=1 yi/n, xy=

∑
n
i=1 xiyi/n, wx = ∑

n
i=1 wixi/n and wy = ∑

n
i=1 wiyi/n.

For α = 1, the model with normal error terms follow and the estimators reduce to the

well known β̂1 =
Sxy

S2
x
, β̂0 = y− β̂1x and η̂e =

√

1
n ∑

n
i=1(yi − β̂0 − β̂1xi)2. To initialize

the likelihood approach, we can take as initial values the vector β̂ and for parameter ηe

the ones obtained by the least squares approach. They can be computed as follows: for

ε∗i = εi−µε, we have that E(ε∗) = 0 and Var(ε∗) =η2
eΦ2(α), where Φ2 is the variance

of the random variable PN(0,1,α).

Hence, after minimizing the error sum of squares, namely,

n

∑
i=1

ε∗2
i =

n

∑
i=1

(

yi −x
T
i β

∗
)2

we obtain the least squares estimators of β∗ and ηe, which are given by:

β̂
∗
= (XT

X)−1
X

T
y and η̂2

e =
Φ

−1
2 (α̂)

n−2

n

∑
i=1

(

yi − β̂∗
0 − β̂1xi

)2

.

On the other hand, an initial value for α can be obtained by fitting the PN model for

the errors obtained or by using the elemental percentile approach of Castillo and Hadi

(1995), assuming β and ηe known (usually computed using the least-squares approach).

The elements needed to compute the observed information matrix are given in Ap-

pendix 10.1. The expected (Fisher) information matrix follows then by taking expecta-

tions of those components (multiplied by n−1).

Approximation Np+3(θ ,Σθ̂ ) can be used to construct confidence intervals for θr,

which are given by θ̂ r ∓ z1−δ/2

√

σ̂(θ̂ r), where σ̂(·) corresponds to the r-th diagonal

element of the matrix Σθ̂ and z1−δ/2 denotes 100(δ/2)-quantile of the standard normal

distribution.
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For the simple linear regression model, that is, p = 1, denoting the elements of the

observed information matrix by

iβ0β0
, iβ1β0

, iηeβ0
, iαβ0

, . . . , iηeηe , iαα,

and making a jk = E
(

W jY k
)

for k = 0,1,2,3 and j = 0,1,2, we obtain the expected

information matrix, the elements of which are given in the appendix.

5. The alpha-power nonlinear regression model

A more general model can be defined replacing the linearity assumption by a nonlinear

one. Therefore, we define the nonlinear alpha-power model as

yi = f (β ,xi)+εi, i = 1,2, . . . ,n,

where yi is the response variable, f is an injective continuous and twice differentiable

function with respect to the parameter β , xi is an explanatory variable vector and εi are

independent and identically distributed PF(0,η,α) random variables with

µε = αη
∫ 1

0
zα−1F−1(z)dz.

As in the linear case, E(Yi) = f (β ,xi)+µε, so that corrections are required so that the

error term is unbiased for zero, that is,

yi ∼ PF( f (β ,xi),η,α).

In the PN situation we have the density function

ϕ(yi;β ,α) =
α

η
φ

(

yi − f (β ,xi)

η

){

Φ

(

yi − f (β ,xi)

η

)}α−1

. (12)

which we denote by yi|xi ∼ PN( f (β ,xi),η,α). The log-likelihood function (disregard-

ing constants) for the parameter θ = (βT,η,α)T for a random sample of size n from yi

with distribution PN( f (β ,xi),η,α), is given by

ℓ(θ ;X,y)= n log

(

α

η

)

− 1

2η2

n

∑
i=1

(yi − f (β ,xi))
2+(α−1)

n

∑
i=1

log

{

Φ

(

yi − f (β ,xi)

η

)}

.
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The score function U(θ ) = (U(β),U(η),U(α))T is given by

U(βi) =
1

η2

n

∑
i=1

(yi − f (β ,xi))
∂ f (β ,xi)

∂βi

− α−1

η

n

∑
i=1

wi

∂ f (β ,xi)

∂βi

, U(α) = n

(

1

α
+u

)

,

U(η) =− n

η
+

1

η3

n

∑
i=1

(yi − f (β ,xi))
2 − α−1

η2

n

∑
i=1

(yi − f (β ,xi))wi,

with ui = Φ

(

yi− f (β ,xi)
η

)

and wi =
φ
(

yi− f (β ,xi)
η

)

Φ

(

yi− f (β ,xi)
η

) .

Differentiating the scores above, we arrive at the observed information matrix,

see appendix. Hence, the maximum likelihood estimator for θ , can be obtained by

implementing the following Newton-Raphson type iterative procedure:

θ̂
(k+1)

= θ̂ (k)+ [J(θ̂
(k)
)]−1U(θ̂

(k)
), (13)

where J(θ ) =− ∂ 2ℓ(θ )

∂θ∂θ T
.

6. Nonlinear autoregressive alpha-power-normal model

We consider now the extension of the nonlinear-normal model with autoregressive errors

to the PN distribution. Hence, the stochastic representation for the nonlinear PN model

with autoregressive errors is given by

yi = f (β ,xi)+εi, with εi = ρεi−1 +ai, i = 1,2, · · · ,n, (14)

where yi, i = 1, . . . ,n are the observed responses, the xi, i = 1, . . .n are known covariate

vectors with ρ as the autoregressive coefficient satisfying |ρ| < 1; β is an unknown p-

dimensional vector of real parameters, f is a known continuous and twice differentiable

function with respect to β , ai are independent random variables with ai ∼ PN(0,η2,α)
and ε0 = 0.

It then follows that the expectation of the random response is

E(Yi) = f (β ,xi)+E(ai)
i−1

∑
k=0

ρk, (15)
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i = 1, . . . ,n, where E(ai) is the expectation of a random variable with PN(0,η2,α)

distribution.

6.1. Maximum likelihood estimation

Given a random sample of size n from the above model, the log-likelihood function for

parameter vector θ = (ρ,βT,η2,α)T, can be written as

ℓn(θ ;y)= n

{

log(α)− log(η)− 1

2
log(2π)

}

−
n

∑
i=1

(εi −ρεi−1)
2

2η2
+(α−1)

n

∑
i=1

log{Φ(zi)},

with zi =
εi−ρεi−1

η
. Therefore, for wi =

φ(zi)
Φ(zi)

, Di = − ∂ f (β ,xi)
∂ β + ρ

∂ f (β ,xi−1)
∂ β and Qi =

−wi(zi +wi), i = 1,2, . . . ,n, the score function Uθ = (Uρ,U
T
β ,Uη2 ,Uα)

T has elements:

U(ρ) =
n

∑
i=1

[

ai

η2
− α−1

η
wi

]

εi−1, U(β) =
n

∑
i=1

[

ai

η2
− α−1

η
wi

]

Di,

U(η2) =
n

∑
i=1

[

− 1

2η2
+

a4
i

2η4
− α−1

2η3
aiwi

]

, U(α) =
n

α
+

n

∑
i=1

log{Φ(zi)},

where ai = εi−ρεi−1 and εi = yi− f (β ,xi). Hence, taking Gi =− ∂ 2 f (β,xi)
∂ β ∂ βT +ρ

∂ 2 f (β,xi−1)
∂ β ∂ βT ,

we obtain the Hessian matrix, see Appendix, from which the expected information can

be obtained.

Therefore, the maximum likelihood estimators can be obtained by iteratively solving

the equation:

θ̂
(k+1)

= θ̂
(k)

+[J(θ̂
(k)
)]−1U(θ̂

(k)
), (16)

where J(θ ) =− ∂ 2ℓ(θ )

∂θ∂θ T
.

6.2. Score statistics for testing ρ

In the particular case where ρ = 0, the autoregressive model (14) reduces to the

nonlinear PN regression model. Hence, it is important to verify whether this is the case

or not. Considering β , η2 and α as nuisance parameters, we want to test the hypotheses

H0 : ρ = 0 versus H1 : ρ 6= 0.
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It can be shown that the score statistics (Cox and Hinkley, 1974) for testing H0 is

given by :

SC1 = [U2
ρJρρ(θ)]

θ= ˆθ 0
, (17)

where Jρρ is the block of J−1 corresponding to ρ and θ̂ 0 is the maximum likelihood es-

timator of θ . Under H0, statistics (17) follows, asymptotically the chi-square distribution

(χ2
1 ) with one degree of freedom.

7. Simulation study

We report next results of a simulation study designed at investigating the performance

of the maximum likelihood estimators for parameters β0, β1 and ηe. We simulated 1000

samples of sizes n = 50, 75 and 100. Without loss of generality we took ηe = 1. Values

for X were generated from the U(0,1), the uniform distribution on the (0,1) interval and

p = 1, with β0 = 1.5 and β1 =−2.5. Moreover, we took εi ∼ PN(0,ηe,α). Estimators

performance were evaluated by computing the relative empirical bias (RB = empirical

bias/parameter value) and the square root of the empirical mean squared error (
√

MSE)

and the covering probability of the 95% large sample intervals (discussed above) or,

equivalently, the rejection rate for testing β1 = 0 at the 5% significance level. This study

was implemented using software R.

Table 1: Empirical RB and
√

MSE for the simple PNR model.

α= 0.75 α= 1.50 α= 2.25

n θ̂ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ
β̂0 7.96 1.25 0.66 4.06 1.26 0.70 5.93 1.32 0.74

β̂1 0.21 0.16 0.77 0.13 0.13 0.79 0.11 0.11 0.83

50 η̂ 15.58 0.52 0.85 12.08 0.46 0.83 12.05 0.46 0.84

α̂ 58.81 1.36 0.62 84.57 3.22 0.67 101.80 5.51 0.70

β̂0 5.07 1.11 0.66 2.19 1.12 0.76 3.89 1.12 0.82

β̂1 0.16 0.13 0.83 0.12 0.11 0.87 0.10 0.09 0.90

75 η̂ 10.85 0.44 0.82 5.53 0.38 0.83 4.29 0.36 0.88

α̂ 46.53 1.17 0.65 76.44 2.86 0.72 92.73 4.84 0.79

β̂0 1.10 0.47 0.80 1.01 0.51 0.92 2.64 0.53 0.93

β̂1 0.06 0.04 0.94 0.02 0.04 0.94 0.04 0.03 0.95

500 η̂ 0.56 0.16 0.80 0.46 0.16 0.92 0.47 0.15 0.93

α̂ 12.08 0.47 0.78 16.09 1.13 0.88 21.51 1.88 0.88
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Table 2: Empirical RB and
√

MSE for simple regression model with contaminated model.

α= 0.75 α= 1.50 α= 2.25

n θ̂ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ RB(%)
√

MSE 1−δ
β̂0 6.61 1.22 0.63 8.74 1.28 0.68 5.98 1.28 0.71

β̂1 0.24 0.16 0.75 0.21 0.13 0.80 0.15 0.12 0.83

50 η̂ 15.12 0.51 0.85 13.69 0.48 0.81 11.06 0.44 0.84

α̂ 56.72 1.32 0.59 75.31 3.12 0.64 92.29 5.29 0.67

β̂0 5.82 1.12 0.68 7.11 1.14 0.73 3.77 1.13 0.76

β̂1 0.16 0.13 0.82 0.16 0.10 0.86 0.18 0.08 0.85

75 η̂ 10.94 0.44 0.83 9.47 0.40 0.82 7.49 0.37 0.85

α̂ 47.76 1.22 0.65 60.14 2.72 0.70 70.91 4.39 0.72

β̂0 1.66 0.49 0.80 2.20 0.53 0.92 3.68 0.54 0.93

β̂1 0.06 0.04 0.93 0.06 0.04 0.94 0.04 0.03 0.94

500 η̂ 0.46 0.16 0.80 0.13 0.15 0.92 0.54 0.15 0.94

α̂ 13.70 0.50 0.78 19.67 1.22 0.89 24.79 2.01 0.89

Results in Table 1 show that the relative bias and
√

MSE for the maximum likelihood

estimators for parameters ηe, β0 and β1 decreases as the sample sizes increase which

is expected. It can also be noted that the relative bias can be large in small and

moderate sample sizes situations. As parameter α increases, relative bias also increases

for parameters ηe and β̂0 which is also expected. Relative bias for β̂1 is below 1.5%. To

reduce bias for β0 procedures such as bootstrap and jacknife could be implemented.

We also developed a simulation study designed at evaluating the robustness of

the estimation procedure under the PN regression model obtained by contaminating

the error terms with a skew-normal random variable. It was considered that the first

observation was generated according to the distribution SN(0,1,−1) + PN(0,1,α).
Maximum likelihood estimators were than computed for each generated sample, as

described above and Table 1 presents the results. It can be deduced from the table that

empirical RB and
√

MSE does not seem affected by changes in the model generating

the data.

8. Numerical illustrations

8.1. Linear model

The following illustration is based on the Australian athletes data set available for down-

loading at the directory http://azzalini.stat.unipd.it/SN/. The linear model considered is
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B f ati = β0 +β1Wti +β2sexi +εi, i = 1,2, . . . ,202,

where B f ati is the body fat percentage for the i-th athlete, and covariates Wti and sexi

the weight and sex, respectively, for the i-th athlete; variable sex is dichotomized with 1

for male and zero for female. A residual analysis has indicated that symmetric models

may not be the most adequate ones and that an asymmetric model can present a better

fit, see Table 3, where quantities
√

b1 and b2 indicate sample asymmetry and kurtosis

coefficients.

Table 3: Summary statistics for estimated residuals under normality.

n Mean Variance
√

b1 b2

202 0.0050 11.8431 0.6030 3.9321

We fitted linear regression models under the assumption that model errors follow

an asymmetric distribution, namely the the skew-normal (SNR), the skew-tν (StR), the

student con ν degrees of freedom and power-normal (PN) distributions. For estimating

under skew-normal and skew-Student-t R Development Core Team (2014) package is

used, which uses the centred parametrization (CP), namely E(Y) = x
Tβ and Var(Y ) =

η2 (see Chiogna (2005) and Pewsey (2000)), whereas for model PN we use the optim

program in the R package.

We use the AIC (Akaike, 1974), written as AIC = −2ℓ̂(·)+ 2k and BIC, written as

BIC=−2ℓ̂(·)+(log(n))k, where k is the number of unknown parameters, for comparing

the normal and power-normal which are nested models. The best model is the one with

the smallest AIC or BIC.

Moreover, the results in Table 4 present estimates for model parameters. It also

reveals that, according to the PN regression model, % of body fat depends on weight

and sex of the athlete. Estimating β∗
0 in the PN regression model leads to β̂∗

0 = 0.39.

Table 4: Estimates (standard error) for normal and PN linear models.

Parameters Normal model SNC model St14 model PN model

β0 1.62 (1.43) 2.91 (1.34) −0.52 (1.35) −5.97(2.00)

β1 0.24 (0.02) 0.21 (0.02) 0.21 (0.02) 0.24 (0.02)

β2 −12.25 (0.57) −11.10 (0.71) −11.09 (0.68) −11.25 (0.60)

η 3.43 (0.17) 3.43 (0.18) 4.47 (0.75) 5.29 (0.48)

α 0.57 (0.14) 2.07 (0.50) 5.38 (1.83)

The model εi ∼ PN(0,5.29,5.38) seems to present a good fit for the data set under

study. A more emphatic justification for using a PN type model comes from testing the

normality assumption, that is, the hypotheses
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H0 : α= 1 versus H1 : α 6= 1,

by using the likelihood ratio statistics,

Λ =
ℓN(̂θ )

ℓPN(̂θ )
,

which, for the data set under study, leads to −2log(Λ) = 4.97, so that p-value =

Prob(χ2
1 > 4.97)< 0.05. with strong indication against the null hypothesis.

Computing AIC and BIC for normal and PN regression models lead to AIC =

1079.54 and BIC = 1092.77 and AIC = 1076.56 and BIC = 1093.10, respectively.

According to the values obtained for AIC and BIC, the power-normal (PN) linear

regression model presents the better fit when compared with normal linear model.

We use Voung (1989) approach (generalized LR statistic) for comparing the skew-

normal (SNR), skew-Student-t (StR) and power-normal (PNR) linear non-nested models

fitted to the data. A description of the procedure is described next. Being Fθ and Gζ
two non-nested models and f (yi|xi,θ ) and g(yi|xi,ζ) the corresponding densities, the

likelihood ratio statistics to compare both models is given by

LR(̂θ ,̂ζ) =

{

1√
n

n

∑
i=1

log
f (yi|xi, ̂θ )

g(yi|xi,̂ζ)

}

,

which does not follow a chi-square distribution. To overcome this problem, Vuong

(1989) proposed an alternative approach based on the Kullback-Liebler divergence

criterion. Based on the divergence between each model and the true process generating

the data, namely the model h0(y|x), one arrives at the statistics

TLR,NN =
1√
n

LR(̂θ ,̂ζ)

ŵ
, (18)

where

ŵ2 =
1

n

n

∑
i=1

(

log
f (yi|xi, ̂θ )

g(yi|xi,̂ζ)

)2

−
(

1

n

n

∑
i=1

log
f (yi|xi, ̂θ )

g(yi|xi,̂ζ)

)2

.

For strictly non-nested models, it can be shown that the statistic TLR,NN converges in

distribution to a standard normal distribution under the null hypothesis. Thus, the null

hypothesis is not rejected if |TLR,NN| ≤ zp/2. On the other hand, we reject at significance

level p the null hypothesis of equivalence of the models in favor of model Fθ being

better (or worse) than model Gζ if TLR,NN > zp (or TLR,NN <−zp).
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For testing PNR versus SNR, we obtain TLR,NN = 22.59 (p-value < 0.05) and for the

PNR versus RSt14 model, TLR,NN = 0.61 (p-value > 0.05). Therefore, the PNR model is

significantly better than the SNR model according to the generalized LR statistic. In a

similar fashion it can be concludes that there is no significant difference between models

PNR and RSt14. However, favouring model PNR we have the fact that it involves one

less parameter. Authors Lange et al. (1989), Berkane et al. (1994), Fernández and Steel

(1999), Taylor and Verbyla (2004) and Leiva et al. (2008), all reported dificulties in

estimating the degrees of freedom parameter.

We also computed the scaled residuals ei = (yi − x
T
i β̂)/η̂ to investigate model fit.

Figures 2-(a), (b) and (c) and 3-(a), (b) and (c) depict the histograms and Q-Q plots for

the scaled residuals under normal, SNR and PNR models, which also indicate a good fit

for the PNR model.
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Figure 2: Graphs for residuals, of the fitted models. (a) Normal, (b) SN and (c) PN.
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Figure 3: Q-qplots for the scaled residuals Z, from the fitted models. (a) Normal, (b) SN and (c) PN.
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8.2. Nonlinear model with correlated errors

In the following we present an application of the PN model fitting to the palm oil

data set presented in Foong (1999) and studied in Xie et al. (2009) using a skew-

normal nonlinear model. This data set was previously analysed in Azme et al. (2005),

were parameter estimates are obtained under nonlinear growth curve models using

Marquardat’s iterative procedure. They found that the best fit is presented by the logistic

growth curve model (see, Ratkowsky, 1983), followed by the Gompertz model, which

was followed by the Morgan-Mercer-Flodin, Chapman-Richard model. Cancho et al.

(2008) also analysed the model using a nonlinear skew-normal model with logistic

growth. We focus now on analyzing the data set under a PN nonlinear regression model

with logistic growth. Therefore, the model considered can be written as

yi =
β1

1+β2 exp(−β3xi)
+εi (19)

with εi = ρεi−1 +ai, ai ∼ PN(0,η2,α), i = 1, . . . ,n.

We are now implementing the correlated nonlinear normal model with normally

distributed errors (NLCM) and the correlated nonlinear model with errors PN distributed

(NLCPN). As Table 5 reveals, according to both criteria (AIC and BIC), the nonlinear

PN model with correlated errors fits the data better.

Table 5: AIC and BIC for the oil palm data.

Statistics Log-likelihood AIC BIC

Normal −41.2656 92.5312 97.2534

PN −39.1004 90.2008 95.8674

Table 6: Parameter estimates (standard errors) for the following models: NLCN, NLCPN and NLPN.

NLCN NLCPN NLPN

Parameter estimate estimate estimate

ρ 0.3222(0.2757) 0.2574(0.2114) —

β1 37.5699(0.3038) 37.9163(0.4041) 38.8798(0.2485)

β2 11.4310(0.8327) 17.5880(1.2504) 17.5833(1.7888)

β3 0.5092(0.0227) 0.6140(0.0135) 0.6079(0.0172)

η2 5.5559(0.7392) 2.6815(0.3658) 1.2010(0.1550)

α — 0.7010(0.1564) 0.2547(0.0589)

We consider now testing the hypotheses H0 : α = 1 versus H1 : α 6= 1, that is,

a nonlinear normal model with correlated errors against a nonlinear PN model with

correlated errors. The likelihood ratio statistics for testing the above hypotheses, namely,

Λ = ℓNLCN(
ˆθ )

ℓNLCPN(
ˆθ )

, leads to −2log(Λ) = 4.3304, a value greater than the corresponding 5%
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chi-square critical values which is χ2
1,5% = 3.8414. Hence there is strong evidence that

the nonlinear PN model with correlated errors fit the oil palm data set far better than the

corresponding normal one.

Parameter estimates and standard errors for models NLPN, NLCN and NLCPN are

presented in Table 6.

Figure 4(a), presents the nonlinear fitted models graphs and (b), and the fitted

residuals for model PN, r̂i against r̂i−1 = r̂(1), under the assumption that ρ = 0; which

does not reveal presence of correlation. Therefore, we implement a nonlinear model

with errors PN(0,η,α), (NLPN) for which parameter estimates are given in Table 6.
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Figure 4: (a) Graphs for fitted models, NLCN (dashed line), NLCPN (solid line) and NLPN (mixed

(dashed-dotted) line); (b) graph for r̂i against r̂i−1.

9. Final discussion

In this paper we extended the power models in Pewsey et al. (2012) for the case of

regression models. Linear models were considered as well as a non-linear extension.

Emphasis was placed on the PN regression model situation. Estimation was performed

by implementing the maximum likelihood approach. Large sample point and interval

estimates were obtained by using the observed information (minus the inverse of the

Hessian matrix evaluated at the maximum likelihood estimates). The exact Fisher

information matrix is also derived and shown to be non-singular, so that large sample

distribution for the alternative likelihood ratio statistics is central chisquare. For some

comparisons, models are not nested so that an appropriate statistics with limiting normal

distribution is considered.

The methodology implemented presented satisfactory results when applied to real

data sets. Results of a small scale simulation indicate that the estimation approach leads
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to good parameter recovery and that for large sample sizes bias and mean square error

are significantly reduced. One of the applications is to a linear model applied to the

Australian athletes data set (available for downloading from the internet) previously

analysed by several other authors. It was seen that data present moderate to large

skewness so that the PN regression model can be a viable alternative. The second data

set that was analysed is the palm oil data set previously analysed by several authors.

It turned out that the non-linear model with PN errors fitted the data better than the

ordinary normal model.

10. Appendix

In this section we present in closed form the elements of the observed and expected

(Fisher) information matrices for the PNR type models considered in this. Their deriva-

tion (requiring extensive algebraic manipulations) extends results in Pewsey et al. (2012).

The relevance of the results rely on the fact one can conclude they are nonsingular so

that large sample properties of the maximum likelihood estimators hold for such models.

A similar discussion for skew-normal type models is considered in Azzalini (2013).

10.1. Observed information matrix for the PNR model

In this section we present the observed information matrix for the general PNR model.

jβTβ =
1

η2
e

X
T
X+

α−1

η2
e

X
T
Λ2X, jηeβ =

2

η3
e

X
T(y−Xβ)+

α−1

η2
e

X
T
Λ3,

jηeηe =− n

η2
e

+
3

η2
e

n

∑
i=1

(

yi −x
T
i β

ηe

)2

− 2(α−1)

η2
e

n

∑
i=1

(

yi −x
T
i β

ηe

)

wi

+
α−1

η2
e

n

∑
i=1

(

yi −x
T
i β

ηe

)3

wi +
α−1

η2
e

n

∑
i=1

(

yi −x
T
i β

ηe

)2

w2
i

jαβ =
1

ηe

X
T
Λ1, jαηe =

1

η2
e

(y−Xβ)T
Λ1, jαα = n/α2,

where

Λ2 = diag

{(

yi −x
T
i β

ηe

)

wi +w2
i

}

i=1,2,...,n
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and Λ3 = (a1,a2, . . . ,an)
T with

ai =

{

(

yi −x
T
i β

ηe

)2

wi +

(

yi −x
T
i β

ηe

)

w2
i −wi

}

i=1,2,...,n

.

10.2. Information matrix for the simple PNR model

The elements of the FIM for the case p = 1 are given by

iβ0β0
=

{

1+
α−1

ηe

[a11 −a10(β0 +β1x)]+ (α−1)a20

}

/η2
e,

iβ1β0
=

{

x+
α−1

ηe

[

x(a11 −β0a10)−β1a10x2

]

+(α−1)a20x

}

/η2
e,

iηeβ0
=

1−α
η2

e

a10 +
1

η3
e

[2a01 +(α−1)a21− (2+(α−1)a20)(β0 +β1x)]+

+
α−1

η4
e

{

a12 +a10(β
2
0 +β

2
1 x2 +2β0β1x)−2a11(β0 +β1x)

}

,

iβ1β1
=

{

x2(1+(α−1)a20)+
α−1

ηe

[

a11x2 −a10(β0x2 +β1x3)
]

}

/η2
e,

iηeβ1
=

1−α
η2

e

a10x+
1

η2
e

[

x(2(a01−β0)+(α−1)(a21−β0a20))−β1(2+(α−1)a20)x2

]

+
α−1

η4
e

[

a12x+a10(β
2
0 x+2β0β1x2 +β2

1 x3)−2a11(β0x+β1x2)
]

,

iηeηe =− 1

η2
e

+
1

η4
e

[3a02 +(α−1)a22−2(β0 +β1x)(3a01+(α−1)a21)]

+
1

η4
e

(3+(α−1)a20)(β
2
0 +2β0β1x+β2

1 x2)−2
α−1

η3
e

(a11 −a10(β0 +β1x))

+
α−1

η5
e

[

a13 −3a12(β0 +β1x)+3a11(β
2
0 +2β0β1x+β2

1 x2)
]

− α−1

η5
e

a10(β
3
0 +β

3
1 x3 +3β0β1x2 +3β2

0β1x),
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iαβ0
= a10/ηe, iαβ1

= a10x/ηe, iαηe = [a11 −a10(β0 +β1x)]/η2
e and iαα = 1/α2.

The above expressions can be computed numerically.

10.3. Observed information matrix for the nonlinear PNR model

The elements of the observed information matrix for the nonlinear PNR model are given

by

jβkβ j
=

1

η2

n

∑
i=1

[(yi − f (β ,xi))wi +w2
i +α−1]

∂ f (β ,xi)
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(
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(
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η
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η
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n

∑
i=1

(

yi − f (β ,xi)

η
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w2
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10.4. Hessian matrix for the nonlinear PNR model with correlated errors

For the case of the nonlinear model with correlated errors, we have the following

elements for the Hessian matrix:

∂ 2ℓ(θ )

∂ρ2
=

1

η2

n

∑
i=1

[−1+(α−1)Qi]ε
2
i−1,
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∂ 2ℓ(θ )

∂ βT
∂ρ

=
n
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wiDi,
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Abstract

The Sarmanov family of distributions can provide a good model for bivariate random variables

and it is used to model dependency in a multivariate setting with given marginals. In this

paper, we focus our attention on the bivariate Sarmanov distribution and copula with different

truncated extreme value marginal distributions. We compare a global estimation method based

on maximizing the full log-likelihood function with the estimation based on maximizing the pseudo-

log-likelihood function for copula (or partial estimation). Our aim is to estimate two statistics that

can be used to evaluate the risk of the sum exceeding a given value. Numerical results using a

real data set from the motor insurance sector are presented.
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1. Introduction

Modelling bivariate variables that represent economic losses is not a straightforward

task. To analyse such data, the usual approach involves fitting univariate distributions to

both marginals and then considering the corresponding theoretical bivariate distribution

for the entire data set. However, this procedure might not be successful if the marginals

present different distribution types or if the dependency structure of the theoretical

bivariate distribution is inappropriate for the real data. Furthermore, given the shape

of the likelihood function or moments, estimating the parameters can be challenging.
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On the other hand, when the marginals follow extreme value distributions, in some

cases we have infinite moments. In an economic context, this means that the loss amount

is unlimited. However, in practice, this is an unrealistic scenario.

In this paper, we limit ourselves to the Sarmanov family of distributions, originally

introduced in its bivariate form by Sarmanov (1966) to join given marginals. This dis-

tribution has also been proposed in a more general form in the field of physics by cohen

(1984), its multivariate version was suggested by Lee (1996) and generalised further by

Bairamov et al. (2001) and Bairamov et al. (2011). Recently, the Sarmanov distribution

has attracted interest in other fields (see, for example, Danaher, 2007; Gómez-Déniz

and Pérez-Rodrı́guez, 2015), including finance and insurance. Thus, Hernández-Bastida

et al. (2009) and Hernández-Bastida and Fernández-Sánchez (2013) used the bivariate

Sarmanov distribution for evaluating premiums in insurance compound models, while

further applications related to the theory of ruin were presented by Yang and Hashorva

(2013). Furthermore, Hashorva and Ratovomirija (2015) have analysed the Sarmanov

distribution with mixed Erlang marginal distributions and have used it for capital allo-

cation. In general, this family of distributions is useful for analysing multivariate loss

data, whose marginal distributions may be of the extreme value type or may present very

different behaviours. We propose a global estimation (GE) method for the parameters of

the Sarmanov distribution with right truncated extreme value marginal distributions.

The bivariate Sarmanov copula is derived from the bivariate Sarmanov distribution

and can be a good, quite simple alternative for representing dependency. A copula

is a function that relates a bivariate distribution function to its univariate marginal

distribution functions, thus allowing the structure of dependence between variables to

be fitted separately from the marginal distributions. Specifically, we focus our attention

on the bivariate Sarmanov distribution and copula with different log-types of truncated

marginal distributions: truncated log-normal, mixture of truncated log-normals and

truncated log-logistic. The proposed models may be useful for measuring the risk of

loss.

When analising data that represent univariate losses, the univariate distribution that

generates the observations is often an extreme value distribution and, therefore, the

mean or variance (first or second moment) of the corresponding random variable can

be infinite. In finance and insurance, for quantifying the risk it is useful to assume a

finite value for the first two moments of the distribution, leading to the right truncation

of the distribution of the random variable analised, which was the procedure adopted in

this paper. Furthermore, we use a bivariate Sarmanov distribution that requires marginal

distributions with finite first moment.

Using a real data set from the motor insurance sector, we compare the estimated risk

of loss evaluated for the bivariate Sarmanov distribution with truncated extreme value

marginal distributions whose parameters result by the GE method, with the estimation

of the same risk obtained after Monte Carlo simulation from the corresponding copula

(as examples of fitting alternative copulas and marginals on this data set see, Bolancé et

al., 2014; Bahraoui et al., 2014).
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The paper is structured as follows: in Section 2 we present two truncated log-normal-

type univariate distributions, plus the heavier-tailed truncated log-logistic (Champer-

nowne) distribution, for which we also obtained the first and second moments. In Sec-

tion 3 we introduce the bivariate Sarmanov distribution and its copula representation,

and discuss the parameters estimation. Some comments on the evaluation of two statis-

tics that are used to quantify the risk of loss (Value at Risk - VaR and Tail Value at Risk

- TVaR) are presented in Section 4. Finally, in Section 5 we present the results of the

proposed fits and risk estimations. Section 6 concludes.

2. Some univariate truncated distributions

We begin by introducing some notations and some univariate truncated distributions to

be used as marginals for the bivariate Sarmanov distribution and copula in Section 3.

Let X = (X1,X2) be a bivariate random vector that represents two dependent losses.

The random variable (r.v.) S=X1+X2 is the total loss and we are interested in measuring

the risk associated with the distribution of S; for this, we need to consider both the joint

distribution of X and the marginal distributions of X1,X2.

In this section, we analise the probability distribution function (pdf), the cumulative

distribution function (cdf) and the first two moments of three distributions that can be

useful to model losses: the truncated log-normal, the mixture of two truncated log-

normals and the truncated log-logistic, also known as the Champernowne distribution;

we let m and M be the truncation points1 on the left and right side, respectively.

2.1. Truncated log-normal distributions

Let ϕ (·) and Φ(·) denote the pdf and the cdf, respectively, of the standard normal

N (0,1) distribution. To denote the pdf of the general normal N
(

µ,σ2
)

,µ ∈ R,σ > 0

distribution, we use the same symbol ϕ emphasizing the parameters, i.e. ϕ
(

x;µ,σ2
)

=

1

σ
√

2π
e
− (x−µ)2

2σ2 ,x ∈R. The truncated normal distribution TN
(

µ,σ2;m,M
)

,µ ∈R,σ> 0,

with truncation points m < M, has the pdf

fT N (x) =
ϕ
(

x;µ,σ2
)

Φ(A)−Φ(a)
=

1

(Φ(A)−Φ(a))σ
√

2π
e
− (x−µ)2

2σ2 ,m ≤ x ≤ M,

where A = M−µ
σ

,a = m−µ
σ

. Its expected value and variance are given respectively, by

(see, for example, Kotz et al.,2000)

1. In our numerical application we assume m = 0.
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ξ= µ+
ϕ (a)−ϕ (A)
Φ(A)−Φ(a)

σ, δ2 =

(

1+
aϕ (a)−Aϕ (A)

Φ(A)−Φ(a)
−
(

ϕ (a)−ϕ (A)
Φ(A)−Φ(a)

)2
)

σ2.

We recall that a random variable (r.v.) X follows a log-normal distribution LN
(

µ,σ2
)

if lnX ∼ N
(

µ,σ2
)

, having hence the pdf fX (x) =
1
x
ϕ
(

lnx;µ,σ2
)

and cdf fX (x) =

Φ

(

lnx−µ
σ

)

,x > 0. Moreover, we say that X follows a truncated log-normal distribution

TLN
(

µ,σ2;m,M
)

with truncation points 0 < m < M, if lnX ∼ TN
(

µ,σ2; lnm, lnM
)

;

hence, its pdf is fX (x) =
1
x

ϕ(lnx;µ,σ2)
Φ(B)−Φ(b) , where B = lnM−µ

σ
,b = lnm−µ

σ
.

Proposition 1 If X ∼ TLN
(

µ,σ2;m,M
)

,0 < m < M, its first two moments are given

by

E [X ] = eµ+
σ2

2
Φ(C)−Φ(c)

Φ(B)−Φ(b)
, E
[

X2
]

= e2(µ+σ2)Φ(D)−Φ(d)

Φ(B)−Φ(b)
,

where C = B−σ,c = b−σ,D = B−2σ,d = b−2σ.

Proof Changing variable y = lnx, we obtain

E [X ] =
∫ M

m

x

x

ϕ
(

lnx;µ,σ2
)

Φ(B)−Φ(b)
dx =

∫ lnM

lnm

ϕ
(

y;µ,σ2
)

ey

Φ(B)−Φ(b)
dy

=
eµ+

σ2

2

Φ(B)−Φ(b)

∫ lnM

lnm
ϕ
(

y;µ+σ2,σ2
)

dy,

which immediately yields the stated formula of E [X ]. The formula of E
[

X2
]

results in

a similar way.

2.2. Mixtures of two truncated log-normal distributions

Consider two truncated normal distributions T N(µi,σ
2
i ;m,M),µi ∈ R,σi > 0, i = 1,2,

having the same truncation points m < M. Then, denoting their mixture by

TNmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m,M

)

,r ∈ (0,1), its pdf has the form

fT Nmixt
(x) = r

ϕ
(

x;µ1,σ
2
1

)

Φ(A1)−Φ(a1)
+(1− r)

ϕ
(

x;µ2,σ
2
2

)

Φ(A2)−Φ(a2)
,m ≤ x ≤ M,

where Ai =
M−µi
σi

,ai =
m−µi
σi

, i = 1,2, and r is the mixing parameter.
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Similarly, we say that the r.v. X follows a mixture of two truncated log-normal

distributions T LNmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m,M

)

,m > 0, if its pdf is

fTLNmixt
(x) = r

ϕ
(

lnx;µ1,σ
2
1

)

x(Φ(B1)−Φ(b1))
+(1− r)

ϕ
(

lnx;µ2,σ
2
2

)

x(Φ(B2)−Φ(b2))
,m ≤ x ≤ M,

with Bi =
lnM−µi
σi

,bi =
lnm−µi
σi

, i= 1,2. In this case, lnX ∼T Nmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m′,M′),

where m′ = lnm,M′ = lnM.

To obtain the moments of the above mixtures of truncated distributions, we note that

the pdf of such a mixture of distributions is of the form f (x) = r f1 (x)+ (1− r) f2 (x),
where f1 and f2 are themselves pdf’s. If we denote by Xi a r.v. having pdf fi and by X a

r.v. with pdf f , then the first two moments of the mixed distribution results as

E [X ] = rE [X1]+ (1− r)E [X2] , E
[

X2
]

= rE
[

X2
1

]

+(1− r)E
[

X2
2

]

,

from where a straightforward calculation yields the variance

Var[X ] = rVar [X1]+ (1− r)Var [X1]+ r (1− r)(E [X1]−E [X2])
2 .

Using these formulas, the first moments of the T Nmixt and TLNmixt distributions are

immediate.

Moreover, we also note that fitting a truncated log-normal distribution or a mixture

of two truncated log-normal distributions to a data set, is the same as fitting a truncated

normal distribution or, correspondingly, a mixture of two truncated normal distributions

to the log-data set.

2.3. Champernowne (log-logistic) distribution

Introduced by Champernowne in 1952 (see, Champernowne, 1952), the log-logistic

distribution is the distribution of a r.v. whose logarithm follows a logistic distribution.

In economics, where it is also known as the Fisk distribution (see, Fisk, 1961), it is used

to model the distribution of wealth or income. Its shape is similar to the log-normal

distribution, but it has heavier tails; moreover, as an asymptotic behaviour, it converges

towards a Pareto distribution in the tail (see, Buch-Larsen et al., 2005). Denoted by

Ch(α,H) ,α,H > 0, its pdf is defined by

fCh (x) =
αHαxα−1

(xα+Hα)2
,x ≥ 0,
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having cdf FCh (x) =
xα

xα+Hα
,x ≥ 0, expected value πH

α

(

sin π
α

)−1
, for α> 1, and variance

πH2

α2

(

sin π
α

)−1
(

(

cos π
α

)−1 −π
(

sin π
α

)−1
)

, for α > 2. Note that H is a scale parameter

and the median of the distribution, while α is a shape parameter.

We also consider the truncated form TCh(α,H;M) ,α,H,M > 0, having pdf2

fTCh (x) = α(M
α+Hα)

(

H

M

)α
xα−1

(xα+Hα)2
,0 ≤ x ≤ M. (1)

Its moments do not have a closed form, but they can be expressed in terms of the

hypergeometric function 2F1 defined for |z|< 1 by the following integral or power series

2F1 (a,b;c;z) =
1

B(b,c−b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a

dt =
∞

∑
k=0

(a)k (b)k

(c)k

zk

k!
,

where

(q)k =

{

1, k = 0

q(q+1) · · · (q+ k−1),k > 0
,c /∈ {0,−1,−2, ...} ,

and B(a,b) =
∫ 1

0 ta−1 (1− t)b−1
dt is the Beta function.

Proposition 2 Letting X ∼ TCh(α,H;M) , its first two moments are given by

E [X ] =
αM

α+1

(

1+

(

M

H

)α)

2F1

(

2,1+
1

α
;2+

1

α
;−
(

M

H

)α)

, (2)

E
[

X2
]

=
αM2

α+2

(

1+

(

M

H

)α)

2F1

(

2,1+
2

α
;2+

2

α
;−
(

M

H

)α)

. (3)

Proof We evaluate the expected value of X by changing variable x = My1/α in

E [X ] = α(Mα+Hα)

(

H

M

)α ∫ M

0

xα

(xα+Hα)2
dx

= α(Mα+Hα)

(

H

M

)α ∫ 1

0

(

My1/α
)α

((

My1/α
)α

+Hα
)2

My1/α−1

α
dy

2. Since in our application we assume m = 0, for the sake of simplicity, we only present the properties for M > 0.
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= M (Mα+Hα)

(

H

M

)α(
M

H2

)α ∫ 1

0

y1/α+1−1

(

1+
(

M
H

)α
y
)2

dy

= M

(

1+

(

M

H

)α)

B

(

1+
1

α
,1

)

2F1

(

2,1+
1

α
;2+

1

α
;−
(

M

H

)α)

,

with the last relation resulting from the definition of the function 2F1. Note that

B

(

1+
1

α
,1

)

=
Γ
(

1+ 1
α

)

Γ(1)

Γ
(

2+ 1
α

) =
1

1+ 1
α

=
α

1+α
,

where Γ(a) =
∫

∞

0 xa−1e−xdx denotes the Gamma function. Inserting this result into the

last expression of E [X ] immediately yields formula (2). Formula (3) results in a similar

way.

3. Bivariate Sarmanov distribution

3.1. The general distribution

We say that the random vector X = (X1,X2) follows a bivariate Sarmanov’s distribution

if its joint pdf is given by (see, Kotz et al., 2000).

fX (x1,x2) = f1 (x1) f2 (x2)(1+ωφ1 (x1)φ2 (x2)) , (4)

where ( fi)i=1,2 are the corresponding marginal pdf’s, (φi)i=1,2 are bounded non-constant

kernel functions andω is a real number such that

∫

∞

−∞

φi (xi) fi (xi)dxi = 0, i = 1,2, and (5)

1+ωφ1 (x1)φ2 (x2)≥ 0, for all (x1,x2) ∈ R2. (6)

If we denote νi =
∫

∞

−∞
xφi (x) fi (x)dx, i = 1,2, then the covariance and correlation

coefficient are given, respectively, by

cov(X1,X2) =ων1ν2,

corr(X1,X2) =
ων1ν2

√

Var [X1]Var [X2]
. (7)
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Note that whenω=0, X1 and X2 are independent. As to the choice of the kernel functions

φi, some particular cases satisfying (5) have already been discussed in the literature (see,

Lee, 1996), from which we recall:

• φi = 1− 2Fi, where Fi is the cdf of Xi. In this case, the Sarmanov distribution is

known as the Farlie-Gumbel-Morgenstern distribution (see Farlie, 1960), verifying

the restrictive condition that the correlation coefficient corr(X1,X2) cannot exceed

1/3 in absolute value. However, in general, the Sarmanov distribution is not

restricted by such a condition (see, for example, Shubina and Lee, 2004).

• φi (x) = e−αx −E
[

e−αXi
]

(we say no more about this form as it did not provide a

good fit to our data).

• φi (x) = xα− E [Xαi ] , assuming that E [Xαi ] < ∞. In this case, νi = E
[

Xα+1
i

]

−
E [Xαi ]E [Xi] , if it is finite.

Given its simplicity and better fit for our data, in our study we consider φi (x) =
xα−E [Xαi ] with α= 1, yielding from (7) the correlation

corr(X1,X2) =ω
√

Var [X1]Var [X2]. (8)

Therefore, assuming that E [Xi] < ∞, in the following we limit ourselves to the pdf

form

fX (x1,x2) = f1 (x1) f2 (x2)(1+ω (x1 −E [X1])(x2 −E [X2])) (9)

that requires the existence of a finite first moment for both marginals. In this case,

condition (6) obviously restricts the domain of fX. For simplicity, we preferred to work

with truncated marginals, which meant imposing restrictions on the coefficientω. More

precisely, if the support of Xi is [mi,Mi] , i = 1,2, then condition (6) yields l ≤ ω ≤ u,

where

l = max

{ −1

(M1 −E [X1])(M2 −E [X2])
,

−1

(m1 −E [X1])(m2 −E [X2])

}

, (10)

u = min

{ −1

(M1 −E [X1]) (m2 −E [X2])
,

−1

(m1 −E [X1])(M2 −E [X2])

}

. (11)

Because of the restriction imposed by condition (6), we used marginal distributions

with bounded support. Therefore, we considered the truncated distributions presented in

Section 2, their choice being driven by the real data to be studied in Section 5.
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3.2. Copula representation and simulation

A copula can be defined as a multivariate cdf with standard uniform [0,1] marginals.

Then the cdf of a random vector X = (X1, . . . ,Xm) can be written in terms of its marginal

cdf’s using a copula function C : [0,1]m → [0,1] , as follows FX (x) = C (F1 (x1) , . . . ,
Fm (xm)); for details on copulas see Nelsen (2006).

Since the Sarmanov bivariate distribution is defined directly from its marginal

distributions, its cdf can be immediately expressed as FX (x) =C (F1 (x1) ,F2 (x2)) using

the following copula function

C(u1,u2) = u1u2 +ω
∫ u1

0
φ1(F

−1
1 (t))dt

∫ u2

0
φ2(F

−1
2 (s))ds,0 ≤ u1,u2 ≤ 1, (12)

assuming that F−1
1 ,F−1

2 exist; the corresponding density is

c(u1,u2) = 1+ωφ1(F
−1
1 (u1))φ2(F

−1
2 (u2)). (13)

Working with the copula representation of the Sarmanov family of distributions has

some advantages. The copula representation is straightforward and its estimation proce-

dure is simple. Furthermore, this representation enables us to generate pseudo-random

samples from the Sarmanov bivariate distribution. To do this, we first generate values

from the Sarmanov copula (12) using the procedure described in Nelsen (2006), which

is based on the conditional distribution of a random vector (U1,U2) having uniform [0,1]

marginals and cdf C, i.e., on Cu1
(u2) = Pr(U2 ≤ u2|U1 = u1). Note that

Cu1
(u2) = lim

∆u1→0+

C(u1 +∆u1,u2)−C(u1,u2)

∆u1

=
∂C(u1,u2)

∂u1

.

The corresponding algorithm is implemented as follows:

1. Generate two independent random values u1 and z from the uniform U(0,1)

distribution.

2. Set u2 = C
(−1)
u1

(z), where C
(−1)
u1

denotes a quasi-inverse of Cu1
. The desired pair

from the Sarmanov copula is (u1,u2).

3. Solving now F1 (x1) = u1 for x1 and F2 (x2) = u2 for x2 yields the pseudo-random

pair (x1,x2) simulated from the corresponding bivariate Sarmanov’s distribution.

In our case, assuming that the inverses F−1
1 ,F−1

2 exist, the partial derivative of (12) is

Cu1
(u2) = u2 +ωφ1(F

−1
1 (u1))

∫ u2

0
φ2(F

−1
2 (s))ds.
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If, in particular, we take the kernel functions φi (z) = z−E [Xi] , i = 1,2, this gives

Cu1
(u2) = u2 +ω(F

−1
1 (u1)−E [X1])

∫ u2

0
(F−1

2 (s)−E [X2])ds.

3.3. Estimation of parameters

Let Θ denote the parameters set of the Sarmanov distribution. First, we estimate

the parameters using the maximum likelihood (ML) method, that we named global

estimation (GE), based on the random data sample {(x1 j,x2 j)}n

j=1
consisting of n

couples of observations. For estimating the Sarmanov copula, we use the maximum

pseudo-likelihood method that we named partial estimation (PE).

3.3.1. Global estimation (GE) method

From density (4), the log-likelihood function to be maximized is

lnL

(

{(x1 j,x2 j)}n

j=1
;Θ

)

=
n

∑
j=1

(ln f1 (x1 j)+ ln f2 (x2 j)+ ln(1+ωφ1 (x1 j)φ2 (x2 j))) .

(14)

The parameters to be estimated are ω, the parameters of fi, and, eventually, the

parameters ofφi. Let θ denote a generic parameter of fi. The corresponding ML system

is











































0 =
∂ lnL

∂θ
=

n

∑
j=1

(

∂ ln f1 (x1 j)

∂θ
+

∂ ln f2 (x2 j)

∂θ

)

+ω
n

∑
j=1

1

1+ωφ1 (x1 j)φ2 (x2 j)

×
(

φ1 (x1 j)
∂φ2 (x2 j)

∂θ
+φ2 (x2 j)

∂φ1 (x1 j)

∂θ

)

, θ ∈ Θ

0 =
∂ lnL

∂ω
=

n

∑
j=1

φ1 (x1 j)φ2 (x2 j)

1+ωφ1 (x1 j)φ2 (x2 j)
.

(15)

This system can become quite complex and, therefore, it must be solved using numerical

methods that require starting values for the unknown parameters. Such starting values

readily result from the method of moments (MM); for example, a value for ω can be

obtained from the empirical correlation coefficient,ρ. For more details on this procedure

see Pelican and Vernic (2013).

Alternatively, instead of solving the ML system, numerical methods can be used to

find the maximum of the log-likelihood function directly. Such an optimization problem



Zuhair Bahraoui, Catalina Bolancé, Elena Pelican and Raluca Vernic 219

can be solved using, for example, a variable neighborhood search (VNS) algorithm (see,

Mladenovic and Hansen, 1997).

3.3.2. Partial estimation (PE) method

As discussed above, the GE method can result in cumbersome calculations. For this

reason, we suggest comparing it with the alternative method based on maximizing

the pseudo-log-likelihood corresponding to the copula representation of the Sarmanov

distribution (see, for example, Joe, 1997):

– Using the ML method, we estimate the parameters of the univariate marginal

distributions of X1 and X2, starting from the corresponding data samples (x1 j)
n

j=1

and (x2 j)
n

j=1
, respectively.

– To obtain the parameter ω of the copula, we use again the ML method on (14),

after setting the marginal parameters at the values obtained in the previous step.

Note, that it is enough to maximize only the last part of (14), i.e.,

∑
n
j=1 ln(1+ωφ1 (x1 j)φ2 (x2 j)) , since the rest does not depend on ω; in fact, this

is reduced to applying the ML method to the copula density (13).

4. Evaluating the total risk of loss

Evaluating risk measures for aggregate losses is a challenging task. Let S denote an

insurance risk, that is, a non-negative random variable whose cdf is denoted by FS. A

risk measure is generally formulated as a functional from the space of insurance risks to

[0,∞], and its purpose is to provide a single value for the degree of risk associated with

the corresponding risk. Among the common risk measures, the Value-at-Risk (VaR) is

probably the most frequently adopted. To define it, let q ∈ (0,1) denote the confidence

level required by regulations; then

VaRq[S] := inf{x : FS(x)≥ q}.

The Solvency II Accord drawn up by the EU Commission sets q = 0.995 over a one

year time horizon.

When heavy tails occur in risk management (see recent episodes of financial insta-

bility), a risk measure providing information above a given threshold is recommended.

In this respect, the Tail Value-at-Risk (TVaR, also known as the expected shortfall or

conditional tail expectation) measure is defined, for q ∈ (0,1), as

TVaRq[S] := E[S|S >VaRq[S]].
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TVaR is considered a coherent risk measure, see Artzner et al. (1999). In some countries,

TVaR has already replaced VaR in the regulatory requirements; the current practice is

q = 0.99 over a one year time horizon.

Let now S = X1+X2 be the sum of two possibly dependent insurance risks X1 and X2.

In this section, our goal is to show how to calculate VaR and TVaR for the risk S when

X = (X1,X2) follows the bivariate Sarmanov distribution. Vernic (2014) has analised a

closed form for the TVaR of the sum of random variables Sarmanov distributed with

exponential marginals. We approach this task in two ways: by direct evaluation and by

simulation based on the Sarmanov copula.

4.1. Direct evaluation

To obtain VaR, we must evaluate the cdf of S and then invert it. Letting fS denote the

pdf of S, its cdf results from

FS (s) =
∫ s

0
fS (x)dx =

∫ s

0

∫ x

0
fX (x− y,y)dydx

=
∫ s

0

∫ 1

0
x fX (x(1− t) ,xt)dtdx.

Similarly, for TVaR we need

E [S |S > sq ] =
1

1−FS (sq)

∫

∞

sq

x fS (x)dx

=
1

1−FS (sq)

∫

∞

sq

∫ 1

0
x2 fX (x(1− t) ,xt)dtdx,

where sq =VaRq[S]. As there are no closed formulas for these integrals, they have to be

calculated using mathematical software. To do this, we wrote Matlab procedures based

on Simpson’s composite rule for double integrals (see, for example, Bourden and Faires,

2001), paying special attention to the integrals limits since the marginals are truncated.

4.2. Simulation of the Sarmanov copula

Using the Monte Carlo method, the procedure is as follows:

1. We apply the PE method to the data sample {(x1 j,x2 j)}n

j=1
from which we obtain

the estimations of the marginals cdf’s, denoted F̂i, i = 1,2, and the estimated

parameter of the Sarmanov copula, ω̂.
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2. Using the algorithm described in Section 3.2, we generate the pseudo-random

sample {(x̂1 j, x̂2 j)}r

j=1
from the bivariate Sarmanov distribution with marginals

F̂1 and F̂2, where the sample volume r is large (we used r = 10000).

3. We calculate ŝ j = x̂1 j + x̂2 j, j = 1, . . . ,r, and we estimate VaRq[S] and TVaRq[S]

empirically from the generated pseudo-sample (ŝ j)
r

j=1
.

5. Numerical study

We used the bivariate Sarmanov distribution and copula to model a random sample

of motor insurance claims consisting of the costs of property damage and medical

expenses, kindly provided by a major insurer in Spain for the year 2000. Since the data

were collected two years later, in 2002, all the claims included in our sample had been

settled. The sample size is n = 518 and for each claim, X1 represents the cost of property

damage (including third-part liability), while X2 represents the cost of medical expenses

(i.e., treatments and hospitalization as a result of the accident).

Previously, several bivariate distributions were fitted to these data, the best global

fit being provided by the bivariate log-skew-normal distribution with a log-likelihood

value of −7323.50 and AIC = 14663.00 (see, Bolancé et al., 2008). In an attempt to

find a better model, in the numerical part of this paper we fitted the bivariate Sarmanov

distribution with different normal-type marginals to the bivariate log-data set. Note

that if we fit a bivariate Sarmanov distribution with pdf fY to the log-data, then the

distribution corresponding to the original data is the bivariate log-Sarmanov with pdf

fX (x1,x2) =
1

x1x2

fY (lnx1, lnx2) ,x1,x2 > 0.

This implies that the marginal distributions of the original data are the log-distributions

of the corresponding marginals of Y (in our case, they become of log-normal and log-

logistic types).

In the first attempt, we assumed that lnX1 follows a truncated normal (TN) distri-

bution and we varied the distribution of lnX2, but since the best fit was provided by the

mixture of two truncated normal distributions TNmixt for lnX2, we decided not to provide

details of the other distributions and we concentrated only on the best fit. This choice

was also motivated by the fact that when studying separately the marginal distributions

of our data set, we noticed that the normal distribution provided a good fit for lnX1, but

unfortunately, this was not the case with lnX2, which has a less regular histogram; hence,

we made use of the property of the Sarmanov distribution of joining different marginals.

Alternatively, we also fitted the bivariate Sarmanov distribution with the heavier-tailed

Champernowne marginal distributions to the original data.

In Table 1 we show the descriptive statistics for the original data and for the log-data.
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Table 1: Descriptive statistics.

Mean Std.Dev. Kurtosis Skewness Min Max Median

Original data

X1 1827.60 6867.81 297.10 15.65 13.00 137936.00 677.00

X2 283.92 863.17 82.02 8.04 1.00 11855.00 88.00

Correlation between X1 and X2 is 0.73

Log-data

ln X1 6.44 1.33 0.57 0.21 2.56 11.83 6.52

ln X2 4.38 1.52 0.45 0.12 0.00 9.38 4.48

Correlation between ln X1 and ln X2 is 0.59

Table 2: AIC obtained for different estimated models and methods.

Method Marginals max max×10 max×100

GE X1 ∼ T LN, X2 ∼ T LNmixt 14839.58 14863.04 14869.42

X1 ∼ TCh, X2 ∼ TCh 14849.26 14878.42 14883.74

PE X1 ∼ T LN, X2 ∼ T LNmixt 14854.79 14868.25 14873.40

X1 ∼ TCh, X2 ∼ TCh 14880.99 14884.31 14884.52

Since we decided to work with truncated distributions (as discussed in Section 3.1),

a key issue was the choice of the upper truncation limits, the lower ones being fixed at

m1 = m2 = 0. We started by taking the upper limits as being equal to the maximum

observed values, i.e., Mi = max
j=1,...,n

xi j, i = 1,2. However, this choice most probably

underestimates the real risk since it implies the assumption that the probability of a loss

greater than the maximum observed is zero, which is not true in practice. Hence, we

assumed that the upper truncation limits increase progressively, being equal to 10, 100

and 1000 times the maximum observed values (denoted in the following by max×10,

max×100 and max×1000, respectively). We found the results for the truncation limits

of max×100 and max×1000 to be similar, hence, we present here only the former, i.e.,

max×100, which is equivalent to almost eliminating the effect of truncation.

To estimate the parameters using the methods described in Section 3.3, we took the

main empirical characteristics as starting values. Then, to compare the different fits,

we calculated the corresponding log-likelihood and the Akaike information criterion

(AIC) values. AIC is defined by AIC = 2(s− lnL), where s is the number of estimated

parameters and L is the likelihood function. This criterion penalizes an increased number

of parameters, so that the preferred model is the one with the lowest AIC value. In Table

2 we show the AIC obtained for each estimation, while the estimated parameters and

their standard errors are shown in Tables 3-6 in the Appendix. It seems that GE yields a

slightly better fit than PE, although we observe that the difference between the AICs for

GE and PE is small. This is expected since the GE method maximizes the full likelihood,
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while the PE method maximizes separately the partial likelihoods corresponding to the

copula and the marginal distributions. Considering both methods (GE and PE) for all

upper truncation limits, it results that the best model is the Sarmanov distribution with

a truncated log-normal distribution for X1 and a mixture of two truncated log-normal

distributions for X2.

In Figures 1 and 2 we plot the VaR and TVaR curves as functions of the confidence

level q for q ≥ 0.98, for all the distributions estimated. In Tables 7-10 in Appendix

we also displayed the VaR and TVaR values obtained for the same distributions and

for some confidence levels q, compared with the empirical values resulting from data.

These values and plots clearly show that for q ≥ 0.95, the Sarmanov distributions with

log-normal-type marginals underestimate the empirical values. Although closer to the

empirical curve, this is also the case of the Sarmanov distribution with TCh marginals

and an upper truncation limit equal to max, while the other two distributions (i.e.,

max×10 and max×100) overestimate the empirical values. Therefore, from the point

of view of the insurer, only these two last distributions would be of interest.
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Figure 1: Estimated VaR and TVaR with GE.

Note that, the curves resulting from GE and PE methods look similar, although, from

Tables 7-10 in Appendix it seems that, in general, PE leads to higher values of VaR and

TVaR than those provided by GE.
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Figure 2: Estimated VaR and TVaR with PE.

On the other hand, note that the best globally fitted distribution (in our case,

according to AIC, the Sarmanov distributions with LTN and LTNmixt marginals) does

not necessarily provide the best model for the risk measures VaR and TVaR, which are

defined on the distribution tail – this is also the case with the previously fitted bivariate

log-skew-normal distribution, which strongly overestimates the empirical TVaR curve

(see Bolancé et al., 2008). For our data set the heavier-tailed Champernowne distribution

provides a better model for Sarmanov’s marginals when evaluating VaR and TVaR.

6. Conclusions

In this paper, we have proposed the Sarmanov bivariate distribution as a model for

bivariate insurance losses and we have illustrated its applicability using a real data set

from the motor insurance sector. The choice of this distribution was motivated by its

flexible structure that allowed us to join given marginals. From the numerical study, we

conclude that the distribution could be a good model for such bivariate insurance data,

but special attention should be paid to the choice of the marginal distributions. More

specifically, these distributions must fulfill the condition of a real pdf, see (5)-(6), so
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that truncated marginal distributions can be selected. Moreover, the upper truncation

limits have to be carefully fixed so that the real risk values (like VaR or TVaR) should

not be underestimated, but also not overestimated to an exaggerated degree.

It should also be noted that a better global fit does not necessarily mean a better fit

regarding the evaluation of some tail related risk measures.

As for the choice between GE and PE methods, it seems that GE yields a somewhat

better fit than PE, although the differences are very small. However, the application

of the GE method might be more time-consuming given the random search involved

in the ML solution. Clearly, the complexity of the calculation should be taken into

consideration when selecting the most suitable estimation method.

Appendix

Table 3: GE for lnX1 ∼ T N and lnX2 ∼ T Nmixt and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

µ1 6.4237 (0.0585) 6.4163 (0.0596) 6.4089 (0.0594)

µ21 4.3661 (0.0836) 4.3758 (0.0713) 4.2860 (0.1199)

µ22 4.3771 (0.5458) 4.0157 (0.4906) 4.4288 (0.2702)

σ1 1.3310 (0.0412) 1.3560 (0.0431) 1.3517 (0.0428)

σ21 1.2420 (0.0833) 1.2938 (0.0569) 1.1653 (0.1140)

σ22 2.9064 (0.8128) 3.0008 (0.3984) 2.0079 (0.2070)

r 0.8079 (0.0889) 0.8456 (0.0383) 0.6733 (0.1348)

ω 0.0404 (0.0210) 0.0214 (0.0188) 0.0162 (0.0180)

lnL −7411.79 −7423.52 −7426.71

AIC 14839.58 14863.04 14869.42

Table 4: PE for lnX1 ∼ T N and lnX2 ∼ T Nmixt and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

µ1 6.4439 (0.0587) 6.4437 (0.0553) 6.4437 (0.0587)

µ21 4.3115 (0.1274) 4.1975 (0.0801) 4.2743 (0.1560)

µ22 4.4105 (0.2229) 5.0547 (0.2746) 4.4769 (0.2594)

σ1 1.3351 (0.0416) 1.3350 (0.0415) 1.3350 (0.0415)

σ21 1.1476 (0.1184) 1.3346 (0.0671) 1.2315 (0.1508)

σ22 1.9488 (0.2144) 1.9550 (0.1994) 2.0372 (0.5330)

r 0.5899 (0.1580) 0.7770 (0.0587) 0.6396 (0.3122)

ω 0.0309 (0.0095) 0.0212 (0.0086) 0.0161 (0.0082)

lnL −7419.39 −7426.13 −7428.70

AIC 14854.79 14868.25 14873.40
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Table 5: GE for X1 ∼ TCh and X2 ∼ TCh and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

α1 1.3344 (0.0950) 1.3420 (0.0489) 1.3423 (0.0492)

α2 1.1767 (0.0444) 1.1771 (0.0431) 1.1706 (0.0427)

H1 631.1100 (36.2700) 623.2490 (35.6333) 619.3690 (35.1012)

H2 76.8340 (4.9617) 77.7100 (5.0423) 78.2220 (5.1128)

ω 3.0290×10−8 (1.4497×10−8) 2.3070×10−9 (2.6310×10−9) 1.9540×10−10 (8.773163×10−10)

lnL −7419.63 −7434.21 −7436.87

AIC 14849.26 14878.42 14883.74

Table 6: PE for X1 ∼ TCh and X2 ∼ TCh and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

α1 1.3362 (0.0497) 1.3409 (0.0492) 1.3407 (0.0492)

α2 1.1564 (0.0755) 1.1693 (0.0768) 1.1706 (0.0769)

H1 624.1119 (35.6350) 623.3819 (35.4695) 623.5835 (35.4896)

H2 78.9157 (6.2698) 78.3094 (6.2351) 78.2899 (6.2332)

ω 9.4918×10−9 (9.6420×10−9) 9.7283×10−10 (3.2613×10−9) 9.7508×10−11 (2.4705×10−9)

lnL −7435.49 −7437.15 −7437.26

AIC 14880.99 14884.31 14884.52

Table 7: VaR values for several truncated Sarmanov distributions

and different confidence levels using GE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
3484.592 11221.492 16469.954 34770.477

Log−Sarmanov

T N +T Nmixt(max×10)
6703.136 18043.612 26888.181 62829.676

Log−Sarmanov
T N +T Nmixt(max×100) 6363.582 15658.461 21929.474 44858.422

Sarmanov

TCh+TCh(max)
3307.784 16192.401 27588.607 71445.821

Sarmanov

TCh+TCh(max×10)
6399.348 20755.411 34073.251 113319.114

Sarmanov

TCh+TCh(max×100)
6405.983 20868.242 34416.052 106865.442

Empirical values 7905.600 24821.140 28420.870 92112.930
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Table 8: TVaR values for several truncated Sarmanov distributions

and different confidence levels using GE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
10722.435 23966.182 31500.887 55354.994

Log−Sarmanov

T N +T Nmixt(max×10)
15198.865 35093.589 48500.570 88741.558

Log−Sarmanov

T N +T Nmixt(max×100)
13184.039 28457.449 38574.933 75462.460

Sarmanov

TCh+TCh(max)
14236.400 40314.549 56765.029 103080.945

Sarmanov

TCh+TCh(max×10)
20317.585 59231.604 92295.169 244553.953

Sarmanov

TCh+TCh(max×100)
21255.717 63750.746 101169.957 284614.349

Empirical values 20836.960 49453.170 73078.330 149791.000

Table 9: VaR values for several truncated Sarmanov distributions

and different confidence levels using PE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
6146.651 15182.363 20345.663 36692.056

Log−Sarmanov

T N +T Nmixt(max×10)
6499.495 16546.371 22518.986 46979.657

Log−Sarmanov

T N +T Nmixt(max×100)
6485.068 16408.995 22269.078 36658.346

Sarmanov

TCh+TCh(max)
5943.208 19699.385 29599.685 77228.707

Sarmanov

TCh+TCh(max×10)
6229.109 23097.386 38009.139 116412.203

Sarmanov

TCh+TCh(max×100)
6237.787 23074.898 38462.701 141907.139

Empirical values 7905.600 24821.140 28420.870 92112.930
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Table 10: TVaR values for several truncated Sarmanov distributions

and different confidence levels using PE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
12100.52 24887.46 32197.80 57251.34

Log−Sarmanov

T N +T Nmixt(max×10)
14002.47 31249.10 42864.60 91912.35

Log−Sarmanov

T N +T Nmixt(max×100)
15727.76 39941.33 60676.94 190957.41

Sarmanov

TCh+TCh(max)
16015.06 40962.05 57834.45 95298.44

Sarmanov

TCh+TCh(max×10)
20355.52 58995.50 89891.05 191242.66

Sarmanov

TCh+TCh(max×100)
21601.87 64854.65 101058.90 222460.19

Empirical values 20836.960 49453.170 73078.330 149791.000
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Zuhair Bahraoui and Catalina Bolancé acknowledge the support received from Spanish

Ministry and FEDER grant ECO2013-48326-C2-1-P. We also thank the members and

affiliates of Riskcenter at the University of Barcelona. The authors gratefully acknowl-

edge the two anonymous referees for very helpful comments and recommendations.

References

Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance,

9, 203–228.
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Abstract

Social polices are designed using information collected in surveys; such as the Catalan Time

Use survey. Accurate comparisons of time use data among population groups are commonly

analysed using statistical methods. The total daily time expended on different activities by a

single person is equal to 24 hours. Because this type of data are compositional, its sample space

has particular properties that statistical methods should respect. The critical points required to

interpret differences between groups are provided and described in terms of log-ratio methods.

These techniques facilitate the interpretation of the relative differences detected in multivariate

and univariate analysis.
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1. Introduction

Statistical offices around the world (e.g., Eurostat) state that “a time use survey measures

the amount of time people spend doing various activities, such as paid work, household

and family care, personal care, voluntary work, social life, travel, and leisure activities”.

This type of survey offers exhaustive information concerning the social habits and the

everyday life of the population. The time use data are compiled by factors such as,

among others, sex, age group, household composition, level of education, professional

status, and day of the week. In consequence, the analysis of time use data across the

groups defined by these factors is of crucial importance because it supports the de-
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velopment of family and gender equality policies. When one has a preliminary look at

time use data, one states that they are closed data (Aitchison, 1986). That is, the total

daily time expended on different activities by anyone one person is always equal to 24

hours. In addition, the units (hours or minutes) are not relevant when one describes the

time spent on one activity. The interest then, is on the proportion of time, that is, the

part of the day that people do an activity. According to Aitchison (1986), time use data

is one example of compositional data.

Compositional data (CoDa) are quantitative descriptions of the parts or components

of a whole, conveying exclusively relative information. Typical examples of composi-

tions appear in geochemistry, environmetrics, chemometrics, budget expenses and data

from time use surveys. In this latter case, the compositions are closed. On the other hand,

if one were to analyse the solid waste composition in a household the CoDa would not be

closed because the kilograms of waste vary between the families. In such cases, for con-

venience, compositions are commonly expressed in terms of proportions, percentages or

parts per million (ppm) and to do this the closure operation is applied (Aitchison, 1986).

When an analyst decides to analyse a data set X (n × D) using compositional

methods, he or she is assuming that the information collected is relative rather than

absolute. In this sense, it holds that the information collected in any observation x is the

same as in αx, for any scalar α > 0, property known as scale invariance (Aitchison,

1986). However, in some cases the closure operation may be useful when the analyst is

interested in the interpretation of some univariate statistics, such as percentiles. As the

ratios rather than the absolute values are of interest, any function used to measure the

difference between two compositions should be expressed in terms of ratios between

variables. Indeed, let x1 and x2 be two compositions, the vector of ratios ( x11
x21

, . . . , x1D
x2D

)

should play an important role when one interprets the difference between x1 and x2

(Aitchison and Ng, 2005). These ideas for dealing with CoDa were introduced in the

early 1980s, when the use of logratios was proposed by Aitchison (1986). At the

beginning of the current century, the use of orthonormal log-ratio coordinates was

introduced in Egozcue et al. (2003). The critical concept of these approaches is that

compositions have a natural geometry, known as the Aitchison geometry (Egozcue and

Pawlowsky-Glahn, 2006), which is coherent with the relative scale of compositions.

Our interest is to compare the use of time between groups of people defined by

factors such as professional status, level of education or municipality size. When one

compares groups of data, descriptive techniques, models and the corresponding infer-

ential techniques are commonly used. All of these elements have to be appropriate for

the type of data collected. For example, some models consider that random multivariate

observations X from a group are generated by adding a random variation or noise ε

around a fixed centre µ. Although the typical model X = µ+ε can be appropriate for

interval scale data, this model would not be useful for ratio scale data such as CoDa.

For example, in the case of data from a time use survey, when the centre µ takes a small

value for some activity, the resulting composition x may take negative values. More-

over, most common parametric and non-parametric methods for analysing differences
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between groups deal with variability matrices: total, between and within. The critical

idea is how to compare the variability inside the groups with the variability between the

groups. For interval scale data these variabilities are measured using the typical sum of

squares matrices. However, for CoDa these elements should be appropriately defined in

terms of ratios (Aitchison, 1986). Multivariate analysis of variance (MANOVA) is the

conventional name for the contrast of the equality of means in several groups (Wilks,

1932; Smith et al., 1962). MANOVA and its related parametric methods include infer-

ential techniques based on the multivariate normal distribution. The approach known

as the principle of working on log-ratio coordinates (Mateu-Figueras et al., 2011) sug-

gested the definition of the normal distribution for CoDa (Mateu-Figueras et al., 2013).

With these elements at hand, the MANOVA contrast can be coherently defined to the

particular geometry of CoDa.

The main objective of this article is to provide the critical points required to inter-

pret differences between groups for CoDa. In Section 2, some descriptive statistics and

techniques for CoDa are presented. Section 3 provides the complete proposal of a com-

positional MANOVA contrast. The interpretation of multiple comparisons and related

techniques are also described. The example that motivated this article is presented in

Section 4, where all the elements introduced for interpreting differences are applied. Fi-

nally, in Section 5, some concluding remarks are provided. The programming of the data

analyses discussed in this article was carried out using the open source R statistical pro-

gramming language and software (R development core team, 2014) and the freeware Co-

DaPack (Comas-Cufı́ and Thió-Henestrosa, 2011). The computer routines implementing

the methods can be obtained from the website http://www.compositionaldata.com and

the R-package “zCompositions” (Palarea-Albaladejo and Martı́n-Fernández, 2014).

2. Compositional descriptive techniques

2.1. Logratio coordinates

According to the ratio scale nature of CoDa, any function f (·) applied to a composition

x must verify that f (x) = f (αx), for any α> 0. In particular,

f (x) = f (x1,x2, . . . ,xD) = f

(

xk

(

x1

xk

, . . . ,
x(k−1)

xk

,1,
x(k+1)

xk

, . . . ,
xD

xk

))

=

= f

(

x1

xk

, . . . ,
x(k−1)

xk

,
x(k+1)

xk

, . . . ,
xD

xk

)

, for k = 1, . . . ,D.

In other words, any function should be expressed in terms of ratios between variables.

Note that any ratio x j/xk is not symmetric and takes values in (0,+∞). However, a

logratio ln(x j/xk) takes values in the full real space and is symmetric with respect to
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the zero origin. Following Aitchison (1986), the general expression of a logratio is a

log-contrast

a1 ln(x1)+ . . .+aD ln(xD) = ln

(

D

∏
j=1

x
a j

j

)

, (1)

where ∑a j = 0, so as to verify the scale invariance property. A log-contrast is, in essence,

a logratio of parts because for a j > 0 the corresponding part x j appears in the numerator,

but if a j < 0 it appears in the denominator, and for those parts that do no contribute to

the logratio, then a j = 0 holds. Importantly, log-contrast (1) has the same role as linear

combinations of variables in classic statistics. Note that ratios and logratios can not be

calculated when one of the parts takes the value zero. The treatment of this difficulty,

also known as the zero problem, has recently been described in numerous articles. A

reader interested in this topic will find a general description in Palarea-Albaladejo et al.

(2014).

Using a log-contrast one can define new variables (e.g., latent variables or principal

components) where the information collected in the original variables is combined.

One example of the very useful new variables is the centred log-ratio (clr) defined in

Aitchison (1986) by clr(x)k = ln
xk

(∏x j)
1/D = lnxk− lnx, k = 1, . . . ,D. The log-contrast

expression (1) of a clr-variable verifies that ak j = −1/D for j 6= k and akk = 1− 1/D.

The clr variables, also known as clr coordinates, have another interesting interpretation:

they are the log-coordinates centred by rows. Therefore, it holds that ∑
D
k=1 clr(x)k = 0,

indicating that the dimension of the clr coordinates’ space is D−1. The critical element

of the Aitchison geometry is the scalar product defined via the log-ratio coordinates.

Indeed, let x1 and x2 be two compositions, then < x1,x2 >a=< clr(x1),clr(x2)>e. Here

the subscripts a and e represents respectively Aitchison and Euclidean metric elements.

As usual, one can derive a distance and norm from the scalar product and finally obtain

da(x1,x2) = de(clr(x1),clr(x2)), and ||x1||a = ||clr(x1)||e. Remarkably, the Aitchison

distance verifies that da(x1,x2) = ||( x11
x21

, . . . , x1D
x2D

)||a, providing information about the

relative difference between two compositions.

These metric elements are used to construct orthonormal basis and calculate the

corresponding orthonormal log-ratio coordinates (Egozcue et al., 2003). The expression

of these coordinates, known as isometric log-ratio coordinates (ilr), depends on the

basis selected. Following Egozcue and Pawlowsky-Glahn (2005) one can define a

particular ilr coordinates created through a sequential binary partition (SPB). According

to equation (1), to make any logratio consists of selecting which parts contribute to the

logratio and decide if these will appear in the numerator or in the denominator. In the

first step of an SBP, when the first ilr coordinate is created, the complete composition

x = (x1, . . . ,xD) is split into two groups of parts: one for the numerator and the other

for the denominator. In the following steps, to create the following ilr coordinates, each

group is in turn split into two groups. That is, in step k when the ilr(x)k coordinate
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is created, the r parts (xn1, . . . ,xnr) in the first group are coded as +1 and placed in

the numerator, and the s parts (xd1, . . . ,xds) in the second group will appear in the

denominator and coded as -1. As a result, the ilr(x)k is

ilr(x)k =

√

rk sk

rk + sk

ln
(xn1 · · ·xnr)

1/rk

(xd1 · · ·xds)1/sk
, k = 1, . . . ,D−1. (2)

where
√

rk sk
rk+sk

is the factor for normalizing the coordinate. The log-contrast expression

(1) of a ilr-variable verifies that ak j =
√

sk
rk (rk+sk)

if the part x j is placed in the numerator,

and ak j =−
√

rk
sk (rk+sk)

for parts that appear in the denominator.

The metric elements can be also expressed in terms of ilr coordinates (e.g., da(x1,x2)=

de(ilr(x1), ilr(x2))) as these coordinates are equal to the clr coordinates expressed on an

orthonormal basis (Egozcue et al., 2003). The most important point here is that, once an

orthonormal basis has been chosen, all standard statistical methods can be applied to the

log-ratio coordinates and transferred to the simplex preserving their properties (Mateu-

Figueras et al., 2011). The log-ratio approach proposed by Aitchison (1986) and the

proposal to work on log-ratio coordinates do not differ substantially. In fact, the only

distinction is the recommended use of orthonormal (or ilr) coordinates in the latter ap-

proach instead of the use of clr transformed vectors (see Mateu-Figueras et al. (2011) for

an in-depth discussion). Note that, when a statistical method is applied to the ilr coordi-

nates, one must analyse whether the results depend on the particular orthonormal basis

selected. In other words, one must assure oneself that the interpretations are invariant un-

der changes of basis. In this scenario, the advantage of the ilr coordinates created by an

SBP is the interpretation of results and the corresponding CoDa-dendrogram, described

in the following section.

2.2. Descriptive statistics and plots

Most of the multivariate methods for dealing with groups are based on location and

spread (shape) descriptive statistics. In this paper we focus on the common centre and

variability elements, accordingly modified to take into account the Aitchison geometry.

Let X be a random composition. In practical terms, Pawlowsky-Glahn and Egozcue

(2001) stated that the centre µ is the geometric mean of X, whose ilr coordinates

ilr(µ) are, respectively, equal to the arithmetic mean of ilr(X). The covariance of X

is cova [X] = Σ = cov[ilr(X)]. In consequence, a comparison of g groups with respect

to its location will be based on the comparison between the corresponding g centres

µ j, j = 1, . . . ,g. Indeed, for a data set with n compositions distributed in g groups, we

can use the matrices total (T), between-groups (B), and within-groups sums of squares

matrices (W). These matrices verify the variability decomposition property: T=B+W.

An important contribution of matrix B in this equality suggests that there are relevant
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differences between the groups with respect to its location. The approach used for

evaluating this importance means techniques differ from one another. In this article we

focus on the MANOVA contrast that evaluates this contribution using measures based

on the trace, determinant and eigenvalues of these matrices. To compare the spread of

the groups, for example to evaluate the homoscedasticity, one will compare the within-

groups sum of squares matrices. Besides the location case, there are few techniques for

evaluating differences with respect to the variability.

For example, we considered that a first group is the data set statistician’s time

budget (Aitchison, 1986) formed by 20 compositions with six parts (T,C,A,R,O,S),
corresponding to time spent on daily activities: Teaching, Consulting, Administration,

Research, Other, and Sleep. Next, we generated a second group perturbing the 20

samples multiplying them component-wise by the vector (1.2,1,1,1,1,1), that is,

increasing by 20% the first activity ratio against the other activities. Finally, we created

a third group perturbing the initial 20 samples by the vector (1,1,1,1.3,1,1) to increase

by 30% the fourth component ratio against the other components. Hereinafter, we refer

to the whole CoDa set as the ST3 data set. Note that the three groups have the same

covariance matrix because the second and third groups were created by perturbing the

first group (Aitchison, 1986). Table 1 shows the unitary representative of the centre

(µ) of the whole ST3 data set and the centres (µ j, j = 1,2,3) of the three groups. As

expected, the larger differences occur in parts T and R.

Table 1: Centres in ST3: for the whole data set (µ) and for the three groups (µ j).

Centre T C A R O S

µ 3.69 2.47 2.93 2.90 5.45 6.56

µ1 3.54 2.52 2.98 2.71 5.56 6.69

µ2 4.13 2.44 2.90 2.63 5.40 6.50

µ3 3.42 2.43 2.89 3.41 5.38 6.47

The geometric mean barplot (Figure 1) is an option for describing differences

between groups. Given a CoDa set, for each group, the logratio between the whole

geometric mean and the geometric mean of the group is calculated. Finally, each

component is represented in a barplot using a logarithmic scale. If the centre of the group

is equal to the whole centre, the ratio of each component is one and the corresponding

logarithm is zero. If one part of the centre of the group is greater or smaller than the

corresponding part of the whole centre, then the ratio is different than one and the

corresponding logarithm is respectively positive or negative. Indeed, large bars (positive

or negative) will indicate large differences in the means. Figure 1 shows that in the

parts C, A, O, and S, the differences between the groups and the whole data set are not

relevant. The samples from the second group have large values in part T , whereas they

take small values in the rest of the parts. A similar situation occurs in the third group
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Figure 1: Geometric mean barplot for ST3 data set: first group (black), second group (dark gray), third

group (light gray).

with respect to part R. Note that, for example, when a bar in one part is larger than 0.15,

one can interpret that, on average, the samples of this group are in this part 16.18%

(exp(0.15) = 1.1618) larger than the whole centre.

To complete the basic description of a grouped CoDa set, one can represent the data

using three specific plots: a biplot, a canonical variates plot and a coda-dendrogram.

Aitchison and Greenacre (2002) adapted the typical biplot for CoDa and in doing so

introduced the clr-biplot, that is, the biplot of clr coordinates. In other words, a clr-biplot

draws on the same plot a projection of scores in the first two clr principal components

together with the centred clr variables. Daunis-i-Estadella et al. (2011) described the

interpretation of clr-biplots and introduced an extension for including supplementary

elements. However, the statistical technique that underlies a biplot is not specially

designed for highlighting differences between groups. In some cases, despite the groups

being different, they appear mixed in the biplot. Figure 2(up) shows the clr-biplot of

the ST3 data set. This representation is of a medium quality because the two first axes

retain 61% of the variability. The samples of the first group are represented by circles.

The compositions of the second group are shown by the triangles and shifted slightly

to the positive part of the clr variable associated to the part T . On the other hand, as

expected, the squares representing the third group are shifted to the positive direction

of the clr-transformed part R. However, the samples from the different groups appear

mixed, suggesting that there are no relevant differences between the groups.

As an alternative to the biplot, one can consider the canonical variates plot. Broadly

speaking, a canonical variate is a new variable obtained as a linear combination of the

original variables, where the linear combination attemps to highlight any differences

between the g groups. For CoDa, we will use log-contrasts to create these new vari-

ables. Indeed, using ilr coordinates, a canonical variate y is equal to y = v
T ilr(x) =

∑
D−1
j=k vk ilr(x)k, that is, y is also a log-contrast. According to the general procedure, the

first canonical variate y1 is defined by the vector v1 which maximizes the F statistic
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Figure 2: Compositional plots for ST3 data set: clr-biplot (up) and canonical variates plot of ilr coordi-

nates (down). Samples of the three groups are respectively represented by circles, triangles and squares.

associated with the ANOVA test: H0 : v
T
1 µ1 = . . . = v

T
1 µg It could be proved that the

vector v1 is the eigenvector of matrix W
−1

B associated to its maximum eigenvalue.

Following this procedure iteratively, we can obtain the ordered D − 1 eigenvectors

that define the corresponding canonical variates. Importantly, if a change of basis is

applied and the new ilr coordinates are A ilr(x), with A an unitary matrix (AT
A =

I), then taking Av, the same canonical covariate is obtained. In other words, the

invariance under change of basis is guaranteed. Figure 2(down) shows the two first

canonical variates plot for the ST3 data set. In addition, the centres of each group are

represented by a filled symbol. The samples from different groups appear well separated,

suggesting that there are relevant differences between the groups. In this case, the first

eigenvector of matrix W
−1

B is v1 = (3.75,−0.37,10.31,3.57,0.31)T which, combined

with the coefficients of log-contrast in equation (2), produces the first canonical variate
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log-contrast with coefficients a = (6.33,1.03,4.13,−8.08,−3.13,−0.28)T. To perturb

only the first part of the samples of the first group by 1.2 is equivalent to adding

6.33 ln(1.2) = 1.15 to the first canonical variate. The perturbation of the fourth part

by 1.3 is equivalent to adding −8.08 ln(1.3) =−2.12 to the scores in the first canonical

variate.

A CoDa-dendrogram is a descriptive plot for visualizing some univariate statistics

of particular ilr coordinates created through a SPB (Pawlowsky-Glahn and Egozcue,

2011). Table 2 shows the complete SBP for the ST3 data set.

Table 2: Sequential Binary Partition for ST3 CoDa set.

ilr(x)k T C A R O S

ilr(x)1 1 1 1 1 −1 −1

ilr(x)2 1 −1 −1 1 0 0

ilr(x)3 1 0 0 −1 0 0

ilr(x)4 0 −1 1 0 0 0

ilr(x)5 0 0 0 0 1 −1

The SBP is represented by the dendrogram-type links between parts (Figure 3).

The variability of each ilr coordinate is represented by the length of the vertical bars.

Therefore, a short vertical bar, as in the case of ilr(x)3 and ilr(x)4 means that the ilr

coordinate has a small variance. Conversely, when the ilr coordinate has a large variance

its vertical bar is longer, as in ilr(x)2 which involves the parts T and R. The location

of the mean of an ilr coordinate is determined by the intersection of the horizontal

segment with the vertical segment (variance). When these intersections are not in the

middle, this indicates a major contribution of one of the groups of parts. This is the

case of ilr(x)1, where the intersection is close to parts O and S, according to its larger

values (Table 1) with respect to the values in the other parts. In addition, the box-plot

of the ilr coordinates is provided. Note that for the coordinate ilr(x)3, the box-plots

are ordered according to the perturbation applied to create the corresponding group.

One can analyse its symmetry and compare the median with the mean to interpret the

symmetry of the corresponding univariate distribution. Figure 3 shows these statistics of

the ilr coordinates for the three groups in ST3 data set. Note that there are no differences

between the variances between the groups but there are differences between the means in

the coordinates ilr(x)1, ilr(x)2, and ilr(x)3. For the coordinate ilr(x)3 there is a difference

between the mean of first group (black colour) and the mean of second group (dark

gray colour) and third group (light gray colour). This fact is consistent because ilr(x)3

evaluates the ratio between the parts T and R. The second group mean is close to part T

and the mean of third group is close to R. This interpretation agrees with the construction

of these groups by perturbing the first group.
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Figure 3: CoDa-dendrogram for ST3 data set using the SBP from Table 2. Elements of three groups 1, 2,

and 3 are distinguish by the colours black, dark gray and light gray, respectively.

3. Inferential techniques to compare CoDa groups

3.1. MANOVA contrast for CoDa

In the statistical literature there are many inferential methods for comparing groups of

data in the real space. Following Aitchison and Ng (2005), in this article we focus on

the most basic methods to show how to proceed when one wants to be coherent with the

Aitchison geometry. Other more sophisticated methods could be adapted accordingly to

the compositional geometry by using an analogous procedure.

Let Xk be a random composition corresponding to the group k for k = 1, . . . ,g.

The more basic model assumes that Xk is generated adding a random variability εk

around a centre µk in a multiplicative part-wise way: Xk = µk ⊙ εk. In this case, the

expected value of variability εk is the unit vector 1. Following Egozcue et al. (2003) and

according to the principle of working on coordinates (Mateu-Figueras et al., 2011), this

model is equivalent to ilr(Xk) = ilr(µk)+ ilr(εk), where ilr(εk) is centred at the origin of

coordinates (0). In other words, working on coordinates, one can assume the same model
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as for interval scale data in the real space. From the different approaches for dealing

with this type of model, in this article we focus on the MANOVA contrast (Wilks, 1932;

Smith et al., 1962) and related techniques. The technical details of these methods are

provided by the majority of books devoted to multivariate statistical techniques (e.g.,

Seber, 1984).

The critical assumption of the MANOVA contrast is that the ilr random variability

ilr(εk) is homocedastic and normally distributed, that is, ilr(εk)∼N (0,Σ);k = 1, . . . ,g.

Following Mateu-Figueras et al. (2013), this assumption is equivalent to assuming log-

ratio normality and homocedasticity for the compositional term εk. In addition, the orig-

inal null hypothesis H0 : µ1 = . . .= µg is equivalent to the null hypothesis H0 : ilr(µ1) =

. . .= ilr(µg). Therefore, the statistics of contrast will be based on the sum of square ma-

trices T, B, and W calculated on ilr coordinates. The most common contrast statistics

are: Wilks’ Λ (det(W)/det(T)), Pillai’s trace (trace(BT
−1))), Lawley-Hotelling trace

(trace(W−1
B)), and Roy’s largest root of matrix W

−1
B. Nowadays, the discussion over

the merits of each statistic continues and the common software routines allow the four

statistics to be calculated. In the case of two groups, the four statistics are equivalent and

the MANOVA contrast reduces to Hotelling’s T-square test. Importantly, the MANOVA

contrast is invariant under a change of log-ratio basis because the four statistics are in-

variant functions of the eigenvalues of matrix W
−1

B. This fact facilitates the use of the

contrast because one can work with the ilr coordinates obtained from an SBP.

When the assumptions are accomplished the four statistics are associated to a

value in an F probability distribution, permitting the calculation of a p-value for the

MANOVA contrast. The first assumption, the homogeneity of variances and covariances

(H0 :Σ1 = . . .=Σg), can be tested using the Box M test (Seber, 1984, p. 449). This test

has been severely criticized because it is very sensitive to lack of normality, so that a

significant value could indicate either unequal covariance matrices or non-normality

or both. The general recommendation is to take a significant level less than 0.005.

Nevertheless, if the number of subjects in each of the groups are approximately equal,

the robustness of the MANOVA test is guaranteed and the impact, if the assumption

of equal covariances is violated, is minimal (Johnson and Wichern, 2007). Noticeably,

because Box M statistic is a function of the covariance matrices determinant, it could

be proved that the results of the Box M test are invariant under changes of basis.

Moreover, the equality of covariances can be descriptively checked using the CoDa-

dendrogram. Because the vertical lines in the plot (Figure 3) represent the variance of

each ilr coordinate, then we can evaluate if there are differences in the variances of each

group. Figure 3 suggests that the variances of each ilr coordinate are equal because the

three lines are of similar length. However, a CoDa-dendrogram only allows the variances

of ilr coordinates to be compared, that is the diagonal of matrices Σk. Despite being

unusual, it could be that the random compositions Xk have equal variances but different

covariances. That is, the matrices Σk have equal diagonals but the rest of elements are

different. To investigate this case we propose to previously sphericize the data to plot

the CoDa-dendrogram. A spherification, similar to the standardization in the univariate
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case, consists of multiplying the residuals ilr(εk) of each group by the squared root of

W
−1, the inverse of covariance matrix. After this transformation, if the homocedasticity

is verified, the resulting covariances matrices in each group should be the identity matrix.

In consequence, in the CoDa-dendrogram of spherized data, the vertical lines of all the

groups for all the ilr coordinates should be equal.

The second assumption for the MANOVA contrast is the normality of the residuals

εk. One can apply to the their ilr coordinates any of the multivariate normality tests

that exist in the literature. For example, we can use the goodness-of-fit test suggested in

Aitchison (1986) for compositional data. This test is based on the idea that, under the

assumption of normality, the radii (or squared Mahalanobis distances) of the residuals

are approximately distributed as a chi-squared distribution. We can use some empirical

distribution function statistics, for instance Anderson-Darling or Cramer-von Mises,

to test significant departures from the chi-squared distribution. Importantly, because

Mahalanobis distances are invariant under change of basis, this normality test can be

calculated using any ilr coordinates obtained with an SBP. To complete the analysis

of this assumption, the normality can be explored using a typical Q-Q plot of the

radii against the theoretical quantiles of a chi-squared distribution. Finally, according

to Johnson and Wichern (2007), the assumption of normality in a MANOVA contrast

can be relaxed when the sample sizes are large due to the multivariate version of the

central limit theorem.

3.2. Analysing differences between groups

When MANOVA contrast or another test suggest rejecting the null hypothesis of

equality of means, two questions immediately arise: (a) Which groups differ from

the rest and (b) which variables are responsible of these differences? One common

way to investigate the answer of these questions is by making the corresponding

g(g− 1)/2 comparisons between pairs of groups. Following the MANOVA approach,

these comparisons can be analysed through the Hotelling’s T -squared test, which is

the multivariate generalization of a typical t-test. In this procedure, there is a general

recommendation to avoid an artificial increase of the Type I Error rate: to adjust the

alpha level of each test by making some kind of correction. Although there is no general

agreement about the way to make this correction, a common technique is the Bonferroni

correction for simultaneous tests (Seber, 1984). Following this technique one should

modify the critical level α to α/(g(g− 1)/2). However, this procedure tends to be

conservative, especially when the number of comparisons is large. There are other more

sophisticated procedures, such as the Scheffe’s, the Tukey’s or the Student-Newman-

Keuls tests or another different approach provided by the FDR False Discovery Rate

controlling method (Benjamini and Hochberg, 1995; Benjamini, 2010). The techniques

for dealing with multiple comparisons are currently an open field whose development is

beyond the scope of this article.
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Regardless of this analysis, note that when using Hotteling’s T -squared test on

ilr coordinates the invariance under change of basis is guaranteed. In addition, these

differences can be explored using the canonical variates plot, where one may also draw

the corresponding confidence region for the mean and the predictive region for each

group. With this plot one has a complete picture of the differences between groups,

analysing if the corresponding regions overlap or not.

Once differences between two particular groups are detected, interest focuses on

discovering if there are ilr coordinates responsible for these differences. That is, if

the differences stated using multivariate techniques may be attributed to any separate

variable. Following the previous approach, these univariate comparisons will be done

through D − 1 simultaneous t-tests. Again, in this case it is accordingly necessary

to adjust the critical level or use a more complex technique. Remarkably, the results

of these comparisons strongly depend on the ilr coordinates selected because one is

making univariate t-test for a particular orthonormal basis. As a consequence, the

choice of an interpretable SBP turns out to be crucial. For this analysis, the geometric

mean barplot may be very useful for completing the interpretation of the univariate

log-ratio differences because this plot allows all the parts to be compared directly. In

addition, following Hesterberg et al. (2012), one can add the uncertainty associated to

the geometric mean barplot using a bootstrap technique for comparing two populations.

Let X1 and X2 be two groups with n1 and n2 compositions, respectively:

1. Draw a resample of size n1 with a replacement from the first group and a separate

resample of size n2 from the second group. Compute the centre of each group and

calculate its log-ratio part-wise vector.

2. Repeat this resampling process B times (common B is 1000).

3. Construct the bootstrap confidence interval for each part of the log-ratio vector.

Note that the critical level of confidence intervals should be appropriately corrected.

There are four common types of bootstrap confidence intervals: t, percentile, bias-

corrected, and tilting. The description of their properties is provided by Hesterberg et

al. (2012). For example, to calculate the α% bootstrap percentile confidence interval,

one should calculate the interval between the α/2th and (1−α/2)th percentiles of the

bootstrap distribution of the corresponding part in the log-ratio vector. Regardless of

which type of interval is calculated, if the interval for a part includes the value zero, it

indicates that there is no difference between these groups with respect to this part. Only

the parts with positive or negative intervals may be considered as responsible for the

difference between the groups.

For the ST3 CoDa set we obtained p-values below 0.001 for the four statistics in

the MANOVA contrast, indicating to us to reject the null hypothesis of equality of

means. The radii normality tests based on the Anderson-Darling, on the Cramer von-

Mises, and on the Watson statistic show p-values above 0.15, suggesting that the normal
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Figure 4: Bootstrap percentile confidence intervals for log-ratio difference between centres of second and

third group in CoDa set ST3. Filled circles are the log-ratio difference for the centres in ST3. Vertical dashed

lines are the percentile intervals.

probability distribution fits the data well. In this case, the Box M test is not necessary

because by construction the three groups have the same covariance matrix. Figure

2(down) suggests that there are differences between the three groups, later confirmed by

the three Hotelling T -squared simultaneous tests (p-value< 0.05/((3×2)/2)= 0.0167,

Bonferroni correction). According to the construction of groups, the SBP in Table 2

suggests that the groups are equal in ilr(x)4 and ilr(x)5. They could only have relevant

differences in the three first ilr coordinates. When the univariate ilr coordinates are

analysed through simultaneous t-test, only ilr(x)3 confirms the differences between the

three groups because the larger p-value, obtained when comparing 1 and 2, was lower

than the corrected alpha level (p-value = 0.0034 < 0.0167/4 = 0.0042, Bonferroni

correction). These differences are associated to large values in activities T or R, or both.

For example, we detected that the difference is on both parts when groups 2 and 3 were

compared using the bootstrap percentile confidence intervals (B= 1000). Figure 4 shows

these intervals for the corresponding corrected critical value. The filled circles represent

the difference between the centres in the CoDa set ST3. The dashed vertical lines are

the bootstrap percentile confidence intervals, whose extremes are the corresponding

percentiles. Only the T and R intervals do not have the value zero (horizontal line),

indicating that the univariate differences are confirmed.

4. Example

We used a data set kindly provided by the Statistical Institute of Catalonia (Idescat) in

Catalonia, Spain. It consists of information collected using a face to face survey of 6471

persons aged 10 and over. Household participants were randomly selected according to
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a double stratified sampling design to guarantee that the selected sample is a reflection

of the general population. The survey provides information on the main activity the

individual does during each of the 144 10-minute slots, which make up a day. On a

primary level, the survey considers a list of 34 different possible activities. However,

to better interpret the results, Idescat’s official reports aggregate these activities into

a minimum set of 5 main activities: personal care and sleep (CS), paid work and

study (WS), household and family care (HF), social activities (SA), and commuting

and others (CO). Moreover, the survey collected additional information related to

many other aspects such as geographical area, municipality size, day of the week,

household composition, sex, age, nationality or professional status. In consequence, any

appropriate statistical analysis of the whole data set requires more general and complex

methods. Because this type of analysis is beyond the scope of this article, we focused

on a simple comparison between groups of data. In particular, to illustrate the CoDa

techniques we attempted to solve the question: As regards to municipality size, are there

any differences between time use composition of working people in a usual working

day? Despite the fact that there are many other similar questions that might be analysed,

this one is the most interesting to design regional polices. Note that, any other similar

question may be analysed using an analogous procedure.

A preliminary inspection of data shows that the participant #1606 has a zero in

the activity personal care and sleep. This participant is considered as an anomalous

composition and it is removed accordingly from the data set. To obtain more realistic

results we also removed those participants who’s sampled day was an unusual day.

That is, 668 participants who, for some unforeseen reason (illness, accident, or public

holiday), did not carry out their usual activities and so were not included in the

analysis. According to Idescat’s reports, we considered that working days were from

Monday to Thursday and working people, the participants that self-declared being in

paid employment or studying. After the aforementioned steps, the sample size of the

data set included in the analysis was reduced to 1051 participants. Only 253 from

these compositions contain at least one zero, which represents an overall 5.2% of

the values in the data set. The parts CS and WS have no zeros. The parts HF, SA

and CO have respectively 18.55%, 4.28%, and 3.14% of their values equal to zero.

According to the nature of these three parts, these zeros are considered as censored

values consequence of the sampling design. Because of the data correspond to the main

activity during a 10-minute slot, we assumed a threshold equal to 10 minutes for the

censored values. These values were imputed using the log-ratio robust method based

on a modified Expectation-Maximization algorithm (Palarea-Albaladejo et al., 2014;

Palarea-Albaladejo and Martı́n-Fernández, 2014).

As regards to the size of the municipality, Idescat classified the participants into three

groups: small, medium and large. Table 3 shows the number of inhabitants that define

these sizes and the number of participants of each group. Remarkably, the three groups

have comparable sample sizes.
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Table 3: Time Use data set: groups defined by municipality size.

Size Group numbering Inhabitants limit Participants

Small 1 <20000 369

Medium 2 [20000,100000] 311

Large 3 >100000 371

Figure 5 shows the ilr canonical variates, where the first one retains 77.93% of the

variability. The participants who live in a small municipality (Group 1) are represented

by circles. The triangles and squares represent participants of Groups 2 and 3, respec-

tively. Participants appear mixed and no evidence of large differences between groups

is detected. We used numbered circles to show the position of the geometric centre of

each group. Apparently, Groups 1 and 2 have similar average values and the centre of

Group 3 appears slightly separated.

Figure 5: Canonical variates plot of ilr coordinates for Time Use data set. Samples of the small (1),

medium (2) and large (3) municipalities are respectively represented by circles, triangles and squares. The

geometric centres of each group are accordingly represented by numbered circles.

Using equation (2) the log-contrast coefficients of the first canonical variate are

a = (−0.50,−0.83,−0.28,0.34,1.27). We can interpret the slight differences between

Group 3 and the other groups in terms of an opposition between the three first parts (CS,

WS, HF) and the parts (SA, CO). The largest weights correspond to WS and CO parts.

This interpretation is coherent with the values shown in Table 4. The largest values

the SA and CO parts are taken from the group from the large municipalities. To the

contrary, Groups 1 and 2 take largest values in WS part. In summary, people from large
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Table 4: Centres of groups in Time Use data set: personal care and sleep (CS), paid work and study (WS),

household and family care (HF), social activities (SA), and commuting and others (CO).

Group CS WS HF SA CO

1 10.97 8.72 1.15 1.89 1.28

2 10.66 8.74 1.19 2.11 1.31

3 10.80 8.50 1.02 2.13 1.55

municipalities expend more time on SA and CO, this time is subtracted to parts WS and

HF.

These differences are illustrated in Figure 6. When compared with the whole geo-

metric centre, the largest differences appear in HF, SA and CO. On the other hand, the

barplot suggests that the values in CS and WS are very similar.

Figure 6: Geometric mean barplot for Time Use data set: Group 1 (black), Group 2 (dark gray), and

Group 3 (light gray).

The MANOVA contrast confirms these differences because all the p-values provided

by the common contrast statistics are lower than 0.05, where the largest p-value was

0.0001969, the value for the Wilks’ Λ. When the groups were compared by pairs,

the behaviour suggested in Figure 5 was confirmed. For Groups 1 and 2, the p-value

was equal to 0.107. On the other hand, for Groups 1 and 3 was 0.000255 and for

Groups 2 and 3, 0.003079, both lower than the Bonferroni correction level 0.05/3 =

0.0166. For these cases, we investigated which log-ratio coordinate was contributing

to these significant differences between groups. The alpha level was provided by the

corresponding Bonferroni correction 0.05/(3× 4) = 0.0042. After applying the t-test

to the four coordinates for the data from Groups 1 and 3, we only obtained significant

differences for the fourth coordinate (p-value = 0.0006). This behaviour was repeated

when the data involved were from Groups 2 and 3 (p-value = 0.0004). According to the

equation (2), the fourth coordinate provides information about the ratio of part CO over
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Figure 7: Time Use data set. Bootstrap percentile confidence intervals for log-ratio difference between

centres of: first and third group (up); second and third group (down). Filled circles are the log-ratio

difference for the corresponding centres. Vertical dashed lines are the percentile intervals.

the geometric mean of the other parts. Following this result, we investigated if the CO

part was responsible of these differences. Figure 7(up) shows the bootstrap percentile

confidence intervals when first and third groups are compared. The alpha level was

provided by the corresponding Bonferroni correction 0.05/(3×5)= 0.0033. The picture

for the comparison between Groups 2 and 3 is shown in Figure 7(down). Both figures

suggest the same behaviour, that is, the only significant difference appears in part CO.

The percentile interval in both cases appears above the reference line. Because the log-

ratio comparison uses the data from the third group in the numerator, this position means

that participants in the third group take greater values than in the other two groups. In

other words, people from large municipalities expend significantly more time on the

Commuting and Others activities.

When the homogeneity of log-ratio variances and covariances was checked using the

Box M test, we obtained a p-value equal to 0.8244. That is, we assumed that covariance

matrices were not significantly different. On the other hand, when we applied the radii

test to check the log-ratio normality of residuals, the p-value was lower than 0.01.
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Figure 8: Time Use data set. Chi-square plot of Manova contrast residuals.

Figure 8 suggests that this lack of normality is caused by samples taking extreme values.

This typical pattern is also evident in the histogram of the residuals shown in Figure 9.

Despite the Gaussian shape of these histograms, the presence of extreme values may

cause the lack of normality. In this case, due to our large sample size, the multivariate

version of the central limit theorem guarantees the robustness of MANOVA results even

the lack of normality. As indicated in Section 3.1, the non-normality could also affect

the Box M test and a lower p-value could be obtained. However, this effect was not

appreciated in our case because a large Box M test p-value was obtained.

Figure 9: Time Use data set. Histograms of Manova contrast residuals.
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5. Final remarks

Because time use data are compositional, any statistical analysis has to take into account

their relative nature. This article fills the gap for basic methods for comparing groups of

CoDa. We introduced descriptive techniques (log-ratio canonical variates and geometric

mean barplots) for an initial exploration into the differences between groups. These

differences can be confirmed by the typical inferential tools (MANOVA contrast). We

introduced the bootstrap log-ratio percentiles to improve the interpretation of univariate

differences and to complete the analysis of the log-ratio coordinates. Because most

of these techniques are based on the principle of working on log-ratio coordinates, a

detailed discussion of its invariance under change of basis was provided. The methods

described assume normality and homocedasticity. When these assumptions are violated,

another family of techniques should be explored, such as robust methods or distance

based methods. These techniques should be applied accordingly to log-ratio coordinates

to assure an appropriate analysis of the relative information collected in CoDa.

The Time Use data set provided by Idescat, is a complex data set that requires more

sophisticated and general methods. However, we realised that no literature deals with

these type of data using recent advances in CoDa analysis. The log-contrast approach

provided in this article will be helpful to develop more complex methods, such as

structural equation modelling. In addition, any general models for time use data have

to include the presence of essential or structural zeros. These types of zeros represent

absolute zeros, that is, it makes no sense to replace them by small values because they are

not a consequence of the sampling design. The analysts should use their prior knowledge

to decide what type of zero is present in a part. For example, survey participants that

do not work or study have an essential zero in this part. On the other hand, in our

example, after an appropriate amalgamation the zeros were considered as a consequence

of sampling design. Because the greater the number of different activities are considered,

the more zeros are collected, the appropriate amalgamation of parts is recommended.

The development of these types of models is one of the more interesting challenges in

current compositional data analysis.
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Comas-Cufı́, M. and Thió-Henestrosa, S. (2011). CoDaPack 2.0: a stand-alone, multi-platform composi-

tional software. In: Egozcue, J. J., Tolosana-Delgado, R., Ortego, M. I., eds. CoDaWork’11: 4th

International Workshop on Compositional Data Analysis. Sant Feliu de Guı́xols, Spain.
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Abstract

Recent years have seen an increase in the development of robust approaches for stochastic

project management methodologies such as PERT (Program Evaluation and Review Technique).

These robust approaches allow for elevated likelihoods of outlying events, thereby widening

interval estimates of project completion times. However, little attention has been paid to the fact

that outlying events and/or expert judgments may be asymmetric. We propose the tilted beta

distribution which permits both elevated likelihoods of outlying events as well as an asymmetric

representation of these events. We examine the use of the tilted beta distribution in PERT with

respect to other project management distributions.
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1. Introduction

In project management it is important to be able to assess the total time for a project’s

completion. Since projects can be very complex, methodologies such as the Program

Evaluation and Review Technique (PERT) (Malcolm et al., 1959) have been developed

to assist in these assessments. PERT has been used for many decades but in recent years

academics, managers, and policy makers have increasingly realized that conventional

modeling approaches and tools may not be well-equipped to deal with extreme events.

For example, few lenders would have predicted that the rise of lending to the sub-prime
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market in the United States would cost them their own jobs, and fewer still would have

predicted that it would have global repercussions. Hence there is a growing appreciation

of the need for more robust models that assign greater probability to more extreme

events.

Recent research by authors such as Hahn (2008) and López Martı́n et al. (2012)

has described some ways for increasing the amount of distributional uncertainty in the

context of project management tools such as PERT. The goal of this research stream

has been to extend the PERT framework to accommodate greater likelihood to extreme

tail-area outcomes. This has led to the ability to provide wider confidence intervals

for activity and project duration times and hence more conservative results, while still

retaining the classic PERT results as an important special case. The ability to increase

distributional uncertainty is an important first step towards robust project management

estimation; however, one consideration that has been underexplored is that one extreme

may be more likely or more important than another. For example, as documented below,

project managers tend to provide positively biased time estimates. Accordingly, project

management tools which depend on these biased estimates are likely to underpredict the

overall project time. In the current paper, we describe a new distribution that can be used

by an independent agent (such as a risk manager) to differentially weight high versus

low extremes. This can be used to help counteract some biased estimates.

This paper is structured as follows. Firstly, we review the literature about alternative

distributions used in the area of PERT methodology. In Section 3 we present the tilting

distribution, as a particular case of generalized Topp and Leone distribution; the tilted

beta distribution, as a mixture between the tilting and beta distributions, and some

stochastic characteristics. The elicitation for the distribution is presented in Section 4.

The results are illustrated with an example in Section 5. Finally, Section 6 summarizes

the main conclusions.

2. Literature

Projects often fail to meet various financial and scheduling targets despite management’s

best efforts to ensure success. For example, Bevilacqua et al. (2009) report on bud-

get overruns and non-completion of tasks in projects undertaken with the use of PERT

methodologies in the energy sector. Hence, there have been numerous studies which

have tried to understand the sources of the persistent problem of project management

overestimates or underestimates. Boulding et al. (1997) find that senior level executive

subjects tended to ignore negative information or distort the information to fit precon-

ceived notions and decisions. Hill et al. (2000) find that expert project managers some-

times overestimate and sometimes underestimate project durations, but that the under-

estimates were greater in magnitude leading on average to underestimation. Keil et al.

(2007) conducted a laboratory experiment which revealed that failure to recognize prob-

lems early also leads to over-optimistic assessments regarding information technology
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projects. Snow et al. (2007) describe an in-depth research program on the assessment

of biases among software development project managers. The most commonly reported

reason for giving optimistic judgments was to avoid being the bearer of bad news. Of the

56 surveyed project managers, 22% mentioned providing optimistic judgments because

of a belief that senior management “shoots the messenger” while another 22% indicated

that optimistic judgments were provided so as to make the project manager look good.

Project managers were also two times more likely to be optimistically biased than they

were to be pessimistically biased. Snow et al. (2007) conclude “optimistic bias leads

to status reports that are very different from reality, while pessimistically biased status

reports tend to be accurate because bias offsets error”. Iacovou et al. (2009) also found

that optimistically-biased reports were more prevalent than pessimistically biased ones

in a sample of 390 information systems project managers, a finding consistent with work

by Smith et al. (2001) and Gillard (2005). In a related vein, project managers who are

able to accurately assess the risks of a troubled project are more likely to discontinue the

project (Keil et al., 2000). Sengupta et al. (2008) conducted research on several hundred

project managers and found that managers seem to strongly anchor on the initial risk

assessment, and find it difficult to update their opinion with new information that should

have prompted a re-assessment. One of the mitigation strategies identified by Sengupta

et al. (2008) was better calibration of forecasting tools to project particulars.

Given the large volume of research which indicates project managers may tend

toward having an optimistic bias, one possible solution is to provide a system whereby

a third party (such as a risk manager) can provide an outside independent review to

help remove bias in estimates. Öztaş and Ökmen (2005) describe a project management

methodology called the judgmental risk analysis process that is explicitly pessimistic

in nature. This is implemented by assessing a separate risk factor for each activity

and assigning a probability distribution to the risk factor. The minimum and maximum

activity times are then modified by including additive and subtractive offsets based on

the activity risk factor to these activity times. Here we observe that if managers or other

experts tend to overemphasize optimistic information, then counteracting this is a matter

of de-emphasizing or downweighting optimistic information. In the current paper, we

provide a probabilistic approach that permits a risk manager to introduce a negative (or

positive) weighting across the range that nonetheless retains the usual PERT framework

as a special case. This is accomplished by the introduction of a new distribution called

the tilted beta distribution. In the following section, we present this distribution and

explore some of its main properties which are relevant for project management. We then

present an application of this distribution and conclude with discussion.

3. Distributions for project activity times

Malcolm et al. (1959) were the first to use the beta distribution to describe project man-

agement activity times. The beta distribution is the most prevalent distribution used in
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stochastic project management due to its useful properties and appearance in the seminal

work of Malcolm et al. (1959). Other widely used continuous probability models within

the PERT methodology are the triangular distribution (Clark, 1962; MacCrimmon and

Ryavec, 1964; Moder and Rodgeres, 1968; Vãduva, 1971; Megill, 1984; Williams,

1992; Keefer and Verdini, 1993; Johnson, 1997), the trapezoidal distribution (Pouliquen,

1970; Herrerı́as and Calvete, 1987; Herrerı́as, 1989; Powell and Wilson, 1997; Garvey,

2000), the doubly truncated normal distribution (Kotiah and Wallace, 1973), the uniform

distribution (Suárez, 1980; Romero, 1991), the generalized biparabolic distribution

(Garcı́a et al., 2010) and the Parkinson distribution (Trietsch et al., 2012).

More recently, the literature on distributions for project management activity times

has emphasized the importance of accounting for heavy tails and assigning more proba-

bility density to extreme values (Mohan et al., 2007). In addition, the research emphasis

has moved away from using ‘off the shelf’ statistical distributions and instead has sought

to engineer new distributions that are tailored to satisfy PERT desiderata. For example

Hahn (2008) proposed the beta rectangular distribution which is a bounded distribution

like the beta but assigns greater density to extreme values and can accommodate very

heavy tails. Similarly, Garcı́a et al. (2010) presented the generalized biparabolic distri-

bution and demonstrated its capacity to have larger variances than the beta distribution.

Our motivation in writing this paper is to engineer a distribution to address the docu-

mented optimistic bias discussed above while also addressing the need for heavy tails

and large variances which has been identified previously.

3.1. Beta distribution

We begin with a brief review of the beta distribution given its importance in both the

current work and in the project management literature. The standard beta distribution

defined on [0,1] has the following probability density function (pdf)

p(x|α,β) =











Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1 if 0 ≤ x ≤ 1,

0 otherwise.

(1)

It is necessary that both α > 0 and β > 0 for (1) to be a valid pdf. The mean of (1) is

α/(α+β) while the variance is (αβ)/
(

(α+β)2(α+β+1)
)

.

The beta distribution is capable of a variety of shapes (see distributions having dotted

lines in Figure 3). Unfortunately the beta distribution does not provide a great deal of

flexibility when it is of interest to preserve the typically-preferred unimodal shapes but

assign higher probability to extremal (or ‘tail area’) events. This observation led Hahn

(2008) to propose the beta rectangular distribution, which is a mixture of the beta and

rectangular distributions, for project management activity times and it is defined by
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p(x|α,β ,θ) =











θ
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1+(1−θ) if 0 ≤ x ≤ 1,

0 otherwise.

(2)

where θ is a mixing parameter such that 0 ≤ θ ≤ 1.

Under the PERT conditions (to be discussed in Section 4), the beta rectangular

distribution permits larger variances than the beta distribution and allows for elevated

tail-area density (see Figure 1. The beta rectangular also has the beta distribution as a

special case; hence, the classic PERT activity time parameters can be easily obtained as

a particular case.
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α= 2 and β = 4 α= 3 and β = 3

Figure 1: Examples of beta rectangular distribution for θ = 1 (solid), θ = 0.8 (dotted), θ = 0.6 (dashed)

and θ = 0.4 (dash-dotted).

However, the previous discussion of Section 2 indicates that project managers may

have an optimistic bias and the beta rectangular does not provide a way for addressing

this issue. The remainder of this section is dedicated to formulating a distribution that

addresses this issue. Accordingly next we describe the tilting distribution which allows

for a straightforward way of expressing an optimistic (or pessimistic) bias. This will in

turn allow us to construct the tilted beta distribution whereupon we will study in depth

the characteristics of this distribution.

3.2. Tilting distribution

Topp and Leone (1955) present a distribution with probability density function (pdf)

defined by f (x,β) = β(2−2x)(2x− x2)β−1, where x ∈ [0,1] and β > 0. Depending on

the values of β the distribution either has a J-shaped form (0 < β < 1); is unimodal

(β > 1); or is left-triangular (β = 1). Kotz and van Dorp (2004) present a generalization

of the Topp and Leone distribution by considering a slightly more general generating

pdf, whose expression is
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g(x|α) = α−2(α−1)x, (3)

where α defined on the interval [0,2]. The authors define the slope distributions as the

distributions with pdf of the form (3).

Taking the reparametrization α = 2v, we introduce a distribution, called the tilting

distribution, which has the following density function:

p(x|v) =
{

2v−2(2v−1)x if 0 ≤ x ≤ 1,

0 otherwise.
(4)

As 0 ≤ α ≤ 2, the parameter v is defined on the interval [0,1]. The reparameterization

considered here leads to a parameter range consistency for the tilted beta, as shown later.

The cumulative density function (CDF) of (4) is

F(x|v) =











0 if x < 0,

2vx− (2v−1)x2 if 0 ≤ x ≤ 1,

1 if x > 1.

(5)

Graphical examples of density and cumulative density function of the tilting distribution

are shown in Figure 2. Figure 2 reveals that when v = 1/2 the uniform distribution is

obtained and when v = 0 or v = 1, a triangular distribution with mode v is obtained.
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Figure 2: Examples of PDF and CDF of tilting distributions.

The mean, variance and coefficient of skewness of the tilting distribution are respec-

tively

E(X) =
2− v

3
, var(X) =

2v(1− v)+1

18
, β1 =

2
√

2
(

1+3v−15v2+10v3
)

5(1+2v−2v2)3/2
. (6)
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Taking the first derivative of var(X) with respect to v the variance of the distribution is

maximized for v = 1/2. When v = 0 or v= 1 the variance of the distribution is minimum

whilst the coefficient of skewness is maximum.

In some contexts it can be necessary to work with a variable defined over the more

general support [a,b] instead of [0,1]. For cases where the variable may take on an

arbitrary location and scale, we describe the variable Y = a+(b−a)X with b > a. The

inverse function is X = y−a

b−a
with Jacobian ∂X/∂y = 1

b−a
. Then, the density function of

(4) with to support [a,b] is

p(y|w,a,b) = 2

b−a







w−a

b−a
−
(

2
w−a

b−a
−1

)(

y−a

b−a

)

if a ≤ y ≤ b,

0 otherwise,

(7)

where w = a+(b−a)v. The quantile function of Y is

P−1(q|w) =











a(2b−w)−bw+(b−a)
√

a2(1−q)+b2q−2aw(1−q)−2bwq+w2

a−2w+b
if w 6= a+b

2
,

a+(b−a)q if w = a+b
2
,

(8)

with 0 < q < 1.

Although the introduction of additional parameters is associated with an increased

complexity for the distributional expressions, the increase in flexibility makes it worth-

while to briefly summarize a few key expressions. In this case, the mean and variance

of the tilting distribution are

E[Y ] =
2a−w+2b

3
, var[Y ] =

a2 +2(a+b)w+b2

6
− (a+w+b)2

9
. (9)

3.3. Tilted beta distribution

Having presented a few key properties of (4), we now introduce the tilted beta distribu-

tion. The density function of a random variable X having the tilted beta distribution with

α> 0, β > 0, v ∈ [0,1], and θ ∈ [0,1] is

p(x|v,α,β ,θ)=







(1−θ)
[

2v−2(2v−1)x
]

+θ
[

Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1
]

if 0 ≤ x ≤ 1,

0 otherwise.

(10)

This distribution can be seen as a mixture of the tilting and beta distribution. The

parameter θ indicates the relative proportionality of the tilting distribution to the beta

distribution and v can be interpreted as the relative tilt proportionality. When θ = 1
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the beta distribution is obtained, for θ = 0 we obtain the tilting distribution of (4) and

θ = 1/2 indicates a balance between the two distributions. With respect to the parameter

v, v = 0 indicates the maximum downward tilt, v = 1 indicates maximum upward tilt,

and v = 1/2 indicates a balance of upward and downward tilt. Figure 3 shows that the

beta distribution, the uniform distribution, and the beta rectangular (Hahn, 2008) are

all special cases of the distribution (10). Indeed, the density of the resulting tilted beta

keeps the property of smoothness possessed by the beta distribution. This property can

be contrasted with discontinuous or ‘sharp’ distributions that have been proposed for

PERT such as the triangular (Johnson, 1997) and its extensions in the two-sided power

distribution family (Garcı́a Pérez et al., 2005; Herrerı́as et al., 2009).
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Figure 3: Examples of tilted beta distributions for: α= 2,β = 3,v = 0 (A); α= 2,β = 3,v = 0.5 (B),

α= 2,β = 3,v = 1 (C), α= 3,β = 2,v = 0 (D); α= 3,β = 2,v = 0.5 (E), α= 3,β = 2,v = 1 (F).

The moment generating function of (10) is defined by

Mx(t) = 2
et (t −1+(2− t)v)+1− (2+ t)v

t2
(1−θ)+ 1F1[α,α+β , t]θ (11)

where 1F1 indicates the Kummer confluent hypergeometric function. From (11) one can

obtain the mean and the second moment of the tilted beta distribution

E(X) = (1−θ)2− v

3
+θ

α

α+β
, (12)

E(X2) = (1−θ)3−2v

6
+θ

α(α+1)

(α+β)(α+β+1)
. (13)
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We can consider the density of the pdf (10) at the endpoints making the usual

assumption that α and β are both greater than or equal to 1. When x = 0, it can be

shown that p(x|v,α,β ,θ) = (1−θ)2v. When x = 1, p(x|v,α,β ,θ) = (1−θ)(2− 2v).

Observe that the density at the endpoints will be different as long as v 6= 0.5 and θ 6= 1.

As will be mentioned later, very few distributions applied in the PERT methodology

have this property.

In the existing literature on this issue, few distributions exhibit a shape similar to

that of the tilted beta. One such distribution is the elevated two-sided power distribution

introducing by Garcı́a et al. (2011). However, here we respectfully note that the elevated

two-sided power distribution requires an additional parameter and possesses more com-

plex expressions (cf. the simplicity of (13) above versus equation (23) of Garcı́a et al.

(2011)). In contrast, the current distribution is a mixture of two tractable distributions

and hence it is straightforward to implement in any environment where the beta distri-

bution of PERT has been previously applied. The reflected generalized Topp and Leone

distribution (Van Dorp and Kotz, 2006) can achieve somewhat similar shapes but it does

not seem possible for this distribution to have appreciable density at both extremes si-

multaneously. Thus, this distribution is not well-suited for circumstances where tail-area

events have appreciable likelihood at both high and low extremes. Moreover, Van Dorp

and Kotz (2006) indicate that this distribution does not have closed-form moment ex-

pressions except for special cases (cf. with (13) above), again adding computational

cost for applications-oriented Monte Carlo simulation. Finally, Pham-Gia and Turkkan

(1993) presented an explicit expression for the distribution of the difference of two beta

distributions. This distribution can also take on many flexible shapes (Nadarajah and

Gupta, 2004, see pp. 71–84). However, it also has a complex specification and, for ex-

ample, its moments can only be analytically approximated.

Note that the procedure to raise any bounded continuous distribution by the tilting

distribution is equivalent to the procedure of raising the density of the distribution

linearly, and then re-normalizing.

4. Elicitation of the tilted beta distribution’s parameters

In many project management applications, it is necessary to consider parameter elic-

itation for distributions. Direct elicitation of the beta distribution’s α and β is always

an option (e.g., Chaloner and Duncan, 1983). Historically however project management

applications have used the classic PERT parameters: a (lower bound), m (most likely)

and b (upper bound). The classic PERT formulas are then

E(Y ) =
a+4m+b

6
, (14)

V(Y ) =
(b−a)2

36
. (15)
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A wide literature has been dedicated to examining the necessary conditions linking

(14) and (15) to the parameters of the beta distribution (Malcolm et al., 1959; Clark,

1962; Grubbs, 1962; Sasieni, 1986; Gallagher, 1987; Littlefield and Randolph, 1987;

Kamburowski, 1997). To summarize, (14) holds exactly when k = α+β = 6 and α 6= β .

We may call this the Type I beta condition. Further, (14) and (15) simultaneously hold

when: α = β = 4; α = 3+
√

2, β = 3−
√

2; and α = 3−
√

2, β = 3+
√

2 (Grubbs,

1962). We may call this the Type II beta condition. Clearly the Type II condition is

more restrictive than the Type I condition. In this case, all that is required is to select

whether a symmetric, positively skewed, or negatively skewed distribution is required.

Then the values of α and β are given as above. For the Type I condition, note that

the mean and mode of the beta distribution are α/k and (α− 1)/(k− 2), respectively.

Hence, solving simultaneous equations for the mean and the mode we find in the case

of a standardized beta (a = 0 and b = 1) that the values of α and β under the Type I

condition are α= 4m+1 and β = 5−4m.

Having addressed the elicitation of α and β , we turn to the elicitation of the

remaining parameters of (10). The elicitation of the mixture parameter θ has been

considered by Hahn (2008) and López Martı́n et al. (2012) using the parameter λ. Hence

it remains to discuss v. Eliciting v can be accomplished by the following procedure. We

assume the expert believes there is a linear increase or decrease in the probability density

across time in accordance with the shape of the tilting distribution. Let A j represent the

event that a particular activity is completed on day j. Then we ask the expert to provide

the probability of the event of activity completion in day j. This is denoted by p(A j).

Next we ask her to give the probability of the event of activity completion in day j+1,

which is denoted by p(A j+1). Suppose a discrete approximation to the tilting distribution

is used. The slope is (see Figure 4)

p(A j+1)− p(A j)

( j+1)− j
(16)

j0 1j+1

2v−2(2v−1)x

p(A j)

p(A j+1)

Figure 4: Cumulative distribution function of a discrete variable with support [0,1].
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by the definition of the slope as
y2−y1
x2−x1

. Since there are b − a conceivable activity

completion days, we may normalize the cumulative activity time until A j+1 as x2 =
j+1

b−a
. Similarly we may normalize the cumulative activity time until A j as x1 =

j

b−a
.

Since A j+1 and A j differ by one day out of the b− a total activity days, we substitute

into the slope formula to define the rate of change as

r =
p(A j+1)− p(A j)

1/(b−a)
. (17)

Note that other time units besides days may be alternatively used. Once we have

obtained r, we can solve for the value of v by making r equal to the slope of the density

function −2(2v−1) and solving in terms of v, yielding

v =
2− r

4
. (18)

If v 6∈ [0,1], then a re-examination will be required. Discussion with the expert can

be undertaken to reveal whether, for example, the judgment task can be made easier

by considering months instead of days. Alternatively, it may be that a linearly-sloped

distribution does not correspond to the expert beliefs and if so the process would need to

be terminated. Assuming a valid value of v, conversion to w is given by w= a+(b−a)v.

Alternatively, we ask the expert the probability of the event of activity completion

in day j+1, j+2, . . . , j+ k, where the period j+1 is the following day of the first day

after the start of the project and j+ k is the day before the end of the project. For each

probability, and using the expression (18), we elicit the parameter v for each different

day. For example we obtain v1,v2, . . . ,vk. We can then find v as the arithmetic mean

v = 1
k ∑

k
i=1 vi.

Another more informal approach to elicitation of v can be contemplated by analogy

with the elicitation of θ . Note in the beta rectangular distribution that θ = 0 corresponds

to the case of no (or 0%) additional uncertainty above and beyond that of the beta.

Further, θ = 1 corresponds to the case of complete (or 100%) uncertainty. So v = 1

would correspond to a 100% linear pessimistic belief or worst-case linear belief about

the project activity completion time. In contrast, v = 0 would correspond to a 0% linear

pessimistic belief (100% linear optimistic belief) or a best-case linear belief about the

project activity completion time. More moderate values of v would represent various

compromises between these extremes, with v = 1/2 representing neither pessimism nor

optimism. In the event that we would want to counteract an elicited value v, we simply

invert the slope by using (1− v) in the place of v.
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5. Application

Figure 5 shows 29 activities in a real-world electronic module development project from

Moder et al. (1983). The critical path is marked by a heavy line.
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Figure 5: Reproduction of PERT network of an electronic module development project (Moder et al.,

1983).

The distribution for the total project time can be found using Monte Carlo simulation

and accounting for the diagram’s precedence relationships. To obtain our results, we

simulated from the activity times using the beta distribution information from Figure 5

and the listed values of θ and v appearing in our results. The results are based on 10000

Monte Carlo simulations from the distributions of interest. Please observe that we report

results arising from use of the beta rectangular distribution and, for completeness, use

of the tilted beta distribution with v = 1/2 which is equivalent to the beta rectangular.

Results for the two equivalent distributions are equivalent up to Monte Carlo error at

the third significant digit with a few exceptions that are slightly larger such as the upper

95% confidence interval for θ = 1/4 in Table 1 (62.34 versus 62.13).

With increasing θ , the distributions approach the beta distribution and they equal the

beta when θ = 1. Therefore we see in Table 1 that the standard deviation declines with
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Table 1: Stochastic characteristics of the total project time variable obtained by Monte Carlo simulations

where Beta-R is the beta rectangular distribution and T-Beta is the tilted beta distribution.

θ Distribution Mean Stand. Dev. Skewness Kurtosis 95% C.I.

θ = 1/4

Beta-R 51.50 5.55 0.23 2.26 (42.21, 62.34)

T-Beta (v = 0) 56.56 5.42 -0.17 2.15 (46.41, 65.49)

T-Beta (v = 1/4) 54.08 5.65 0.02 2.11 (44.13, 64.10)

T-Beta (v = 1/2) 51.51 5.56 0.20 2.22 (42.12, 62.13)

T-Beta (v = 3/4) 48.85 5.14 0.46 2.58 (40.64, 59.80)

θ = 1/2

Beta-R 50.15 5.09 0.47 2.54 (42.05, 60.96)

T-Beta (v = 0) 53.54 5.49 0.21 2.14 (44.38, 63.92)

T-Beta (v = 1/4) 51.86 5.38 0.36 2.30 (43.17, 62.59)

T-Beta (v = 1/2) 50.11 5.10 0.48 2.54 (42.18, 60.88)

T-Beta (v = 3/4) 48.54 4.78 0.54 2.77 (41.03, 59.12)

θ = 3/4

Beta-R 48.88 4.48 0.67 3.10 (41.96, 59.33)

T-Beta (v = 0) 50.56 4.90 0.60 2.74 (43.09, 61.51)

T-Beta (v = 1/4) 49.82 4.70 0.65 2.93 (42.63, 60.57)

T-Beta (v = 1/2) 48.87 4.44 0.69 3.17 (41.95, 59.23

T-Beta (v = 3/4) 48.09 4.21 0.60 3.07 (41.44, 57.72)

increasing θ . This is because when the tilting distribution predominates, the dispersion

is increased which makes estimates wider and more conservative. For v, higher values

correspond to assigning more weight to shorter, more optimistic outcomes. Accordingly

the means in Table 1 are monotonically decreasing in v. It is also somewhat surprising

to note that the standard deviations also are decreasing in v (except for the case when

v = 0 and θ = 1/4). Inspection of Figure 5 indicates that the judgments rendered tend

to be optimistic or neutral at worst (coincidentally, this is consistent with our review in

Section 2). Hence a value of v = 1/4 further concentrates the optimistic nature of the

judgments into the shorter times, reducing the standard deviation. Larger values of v

counteract this, especially when θ is low.

Graphical displays of the distributions of total project times appear in Figure 6. The

most conservative results for the distribution of total project time can be seen when

v = 1/4 and θ = 1/4. This distribution is the least skewed of all those displayed, and

appears approximately uniform across the middle third of its range. We observe that

the distribution in the centre of the top row for the beta rectangular when θ = 1/2 is

equivalent to the distribution for the tilted beta with θ = 1/2,v = 1/2 in the centre of

the third row, and these coincide as we would expect.

Figure 7 provides another way of viewing the changes in project times as a function

of distributional parameters. It plots the CDF for the simulated project times under

selected values of θ and v. On the left side where θ = 1/4, the tilting portion of the

mixture is predominant. We see there that the optimistic assessment of v = 3/4 leads to
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Beta rectangular θ = 1/4. Beta rectangular θ = 1/2. Beta rectangular θ = 3/4.

Tilted beta θ = 1/4,v = 1/4. Tilted beta θ = 1/2,v = 1/4. Tilted beta θ = 3/4,v = 1/4.

Tilted beta θ = 1/4,v = 1/2. Tilted beta θ = 1/2,v = 1/2. Tilted beta θ = 3/4,v = 1/2.

Tilted beta θ = 1/4,v = 3/4. Tilted beta θ = 1/2,v = 3/4. Tilted beta θ = 3/4,v = 3/4.

Figure 6: Distributions of the total project time (Electronic Module Development Project).

a relatively high cumulative probability of completion by 55 days. For less optimistic

values of v, the cumulative probability of completion by 55 days (or other values we

might select) falls off considerably. The right side of Figure 7 shows the CDF when the

beta portion of the mixture predominates. The CDFs have some variability due to v but

in general the CDFs are closer together and rise more steeply since they preserve more

of the classic PERT beta influence. For completeness, we also observe that the CDF for

the beta rectangular and the tilted beta with v = 1/2 again gives essentially the same

result, as we would expect, since the solid beta rectangular line and the dashed tilted

beta v = 1/2 line are essentially superimposed.
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Figure 7: Cumulative distribution function of beta rectangular distribution and tilted beta distribution for

θ = 1/4 (A) and θ = 3/4 (B)

Finally, Table 2 shows an example of what would constitute a rare or tail-area event

under the different distributions. Here the 95% value of the CDF is obtained for v and

θ taking on the values 0, 1/4, 1/2 and 3/4. With the introduction of the parameter v, the

CDF of the tilted beta distribution may provide project time-to-completion estimates that

can be either higher or lower than the beta rectangular distribution. The most striking

comparison involves in the case when θ = 1 which is the classic PERT beta case. We

observe the classic PERT result would say there is a 95% chance of the project being

completed by approximately 53.9 days, excluding some Monte Carlo error visible for

the four values of v in the plot. Compare this results with the case of θ = 3/4 where

a small amount of extra-beta variability has been mixed in but the beta distribution

still predominates at θ = 3/4. Here even under the most optimistic case (v = 3/4) the

95% completion time has increased by 2 days to about 55.9 days. Hence, this example

‘worst-case scenario’ is two days worse than that given by the classic PERT beta. With

less optimistic values of v, the time increases further. For example, with v = 3/4 and

θ = 1/2 we approach 57.7, i.e. approximately four days more than PERT.

Table 2: The maximum time needed to complete the 95% the project for beta rectangular (Beta-R) and

tilted beta (T-Beta) with v = 0, v = 1/4, v = 1/2 and v = 3/4.

θ Beta-R T-Beta (v = 0) T-Beta (v = 1/4) T-Beta (v = 1/2) T-Beta (v = 3/4)

0.25 60.98 64.68 63.06 60.95 58.39

0.50 59.58 62.80 61.45 59.60 57.69

0.75 57.75 60.03 59.22 57.68 55.98

1.00 53.90 53.92 53.69 53.78 53.83

In most cases, when the parameter v is higher than 1/2, the tilted beta distribution

will be by construction more optimistic than the beta rectangular distribution and as a
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consequence its estimates will indicate that a lower time will be needed to complete the

project. Conversely, when v is lower than 1/2, the tilted beta distribution provides more

conservative estimations.

6. Conclusion

The introduction of different activity distributions has played an important part in the

PERT methodology. However, this issue divides the researchers of this field. Some

authors argue against the introduction of new probability distributions into PERT (see

Clark, 1962; Hajdu, 2013; Hajdu and Bokor, 2014). Conversely as shown in Section 3

other authors have applied new distributions. Regarding the current paper, this debate

has parallels in statistical practice. Some authors use robust statistical methods to handle

outliers while other authors adopt less formal techniques or may even naively do nothing

at all.

This paper introduced the tilted beta distribution and shown how it can be used in

project management. Since the classic PERT results can be reproduced, it is simple to

adopt in any environment where PERT is utilized. We can easily explain to executives

and decision makers that incorporating additional uncertainty can help us to arrive

at new insights. Elicitation of parameters is straightforward or one could perform

sensitivity analysis using several parameter values as we have done here. The tilted beta

has a number of attractive computational properties such as being easy to simulate from

and having closed-form moment expressions. In summary, the tilted beta distribution

provides project managers with a flexible and easy to work with distribution that allows

for the extensive representation of optimistic or pessimistic beliefs regarding activity

times.

Past work has pointed out the need to describe a more flexible distribution which al-

lows for varying amounts of dispersion and greater likelihoods of more extreme tail-area

events (Hahn, 2008). The construction of beta rectangular distribution is characterized

by greater flexibility in the variance. However, this distribution assigns the same prob-

ability density at both the high and low extreme values. With the introduction of tilted

beta distribution, we have expanded the set of continuous type distributions defined on

a bounded domain, with the advantage of accommodating different relative likelihoods

of high versus low extreme tail-area events and, as opposed to other distributions ap-

plied in this methodology, the tilted beta has an expression of the expected value where

the extreme values have different weight. As a consequence, this distribution will be

more relevant for modeling a broader range of heavy tailed phenomena. In a closely re-

lated work, the elevated two-sided power distribution (Garcı́a et al., 2011) also permits

different relative likelihoods of high versus low extreme tail-area events; however, as

described above, the current distribution is simpler to use in practice. Furthermore, note

that the procedure to induce tilting can be applied to any bounded continuous distribu-

tion.
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We have compared the results of the tilted beta distribution with the results of beta

rectangular distribution for different values of the parameter θ and v. The results of

the application show that this probabilistic model permits a risk manager to incorporate

more optimistic and pessimistic scenarios than the beta rectangular distribution due to

the flexibility of the tilted beta. Our literature review suggests that experts may tend to

be too optimistic, and the beta distribution gives little weight to outliers in the standard

PERT Type I and Type II beta conditions. The current methodology redresses these

issues.

The distributions presented in this paper will be closer to the uniform since they

give more weight to the tails. We think this gives some evidence that the distribution

chosen is relevant by considering a recent paper by Hajdu and Bokor (2014). For larger

projects, 10% can be the difference between a project being on time or late and the

authors show that the uniform distribution is similar to PERT-beta + 10%. Furthermore,

for small projects the authors state that it may not matter much. However, the incentive

to use PERT with smaller projects is probably smaller.

There are at least two areas in which this research can be extended: first, the use of

heavy-tailed distributions in the context of different activity calendars (Hajdu, 2013);

second, to find more applications of these distributions fitting extreme tail-area events

which are present in a great variety of fields such us finance, groundwater hydrology

and atmospheric science among others.
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1. Introduction

Bidram and Nekoukhou (2013), referred to as BN from now, present a novel class of

distributions referred to as double bounded Kumaraswamy-power series distributions.

They derive various mathematical properties of the distributions, including their den-

sity functions, survival functions, hazard rate functions, quantiles, moment generating

functions, moments, order statistic properties and stress strength parameter. They also

discuss maximum likelihood estimation of the parameters of the distributions and pro-

vide a real data application.

Several of the expressions given in BN involve single infinite sums or double infinite

sums. This is the case with the moment generating functions given in BN, Table 2; the

moments given in BN, Table 2; the density of the ith order statistic given in BN, page

221; the rth moment of the ith order statistic given in BN, page 221; the stress-strength
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parameter given in BN, page 222; and others. This is not very convenient for practical

implementation of the mathematical properties. The aim of this note is to show that

many of the infinite sums and so the mathematical properties given in BN can be reduced

to known special functions, functions for which in-built routines are widely available.

LetN= {1,2,3, . . .},N0 =N∪{0}, Z−0 = {0,−1,−2, . . .}, R the set of real numbers,

R
+ the set of positive real numbers and C the set of complex numbers.

The closed form expressions in Section 2 involve several special functions. First

is the gamma function defined by Γ(a) =
∫

∞

0
ta−1e−tdt for a ∈ R+. The second is

the polylogarithm function defined by Liν(z) = ∑
n≥1

n−ν zn for |z| < 1. The third is the

generalized hypergeometric function pFq[·] defined by

pFq[z] = pFq

[

a1, . . . ,ap

b1, . . . ,bq

;z

]

=
∞

∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (1)

where (λ)µ denotes the Pochhammer symbol defined by

(λ)µ :=
Γ(λ+µ)

Γ(λ)
=











1,
(

µ= 0; λ ∈ C\{0}
)

,

λ(λ+1) · · ·(λ+n−1),
(

µ= n ∈ N; λ ∈ C
)

(2)

with the convention that (0)0 := 1. The Gauss hypergeometric function 2F1(a,b : c;z) is

the particular case of (1) for p = 2, q = 1. In the case a,b ∈ Z−0 are negative integers,

2F1(a,b : c;z) becomes a polynomial PN(z) of degree deg(PN) = N = min(−a,−b).
The fourth is the Fox Wright generalized hypergeometric function pΨ∗

q[·] with p

numerator parameters a1, . . . ,ap and q denominator parameters b1, . . . ,bq, defined by

(Kilbas et al., 2006, page 56)

pΨ
∗
q

[

(a1,ρ1) , . . . ,(ap,ρp)

(b1,σ1) , . . . ,(bq,σq)
;z

]

=
∞

∑
n=0

p

∏
j=1

(a j)ρ jn

q

∏
j=1

(b j)σ jn

zn

n!
(3)

for a j ∈ C, j = 1,2, . . . , p, bk ∈ C, k = 1,2, . . . ,q, ρ j ∈ R+, j = 1,2, . . . , p and σk ∈ R+,

k = 1,2, . . . ,q. The series in (3) converges in the whole complex z-plane when

∆ := 1+
q

∑
j=1

σ j −
p

∑
j=1

ρ j > 0.
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If ∆ = 0, then the series in (3) converges for |z|< ∇, where

∇ :=

(

p

∏
j=1

ρ
−ρ j

j

)(

q

∏
j=1

σ
σ j

j

)

.

The particular case of (3) for ρ1 = · · ·=ρp = 1 andσ1 = · · ·=σq = 1 is the generalized

hypergeometric function in (1).

In-built routines for computing these special functions are widely available in

packages like Maple, Matlab and Mathematica. Gamma[z] in Mathematica computes the

gamma function, PolyLog[ν,z] in Mathematica computes the polylogarithm function,

HypergeometricPFQ[{a1,. . . ,ap}, {b1,. . . ,bq},z] in Mathematica computes

the generalized hypergeometric function, and so on. The routines allow for arbitrary

precision, so computational accuracy is not an issue.

2. Closed form expressions

The closed form expressions are given by Propositions 2.1 to 2.3. Proposition 2.1

expresses Fi:n(x), the cumulative distribution function of the ith order statistic given in

BN, page 217, equation (12), in terms of the Gauss hypergeometric function. Proposition

2.2 expresses the moments given in BN, page 220, Table 2 in terms of the Fox Wright

generalized hypergeometric function. These moments are to any real order, the ones

given in BN were for integer orders only. Proposition 2.3 expresses R, the stress-strength

parameter given in BN, page 222, in terms of the polylogarithm function.

Proposition 2.1 For all 1 ≤ i ≤ n and for all x ∈ (0,1),

Fi:n(x) =

(

n

i

)

Ai
2F1 (−n+ i, i; i+1;A) = Pn(A)

is a polynomial in A, where

A = 1−
C

(

θ (1− xa)b
)

C(θ)
.

Moreover, Fn:n(x) = An.

Proof: Follows by noting

Fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(

n− i

k

)

(−1)k

k+ i
Ak+i
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=
Ai

B(i,n− i+1)

n−i

∑
k=0

(−n+ i)kΓ(k+ i)

Γ(k+ i+1)

Ak

k!

=
Ai

i B(i,n− i+1)

n−i

∑
k=0

(−n+ i)k(i)k

(i+1)k

Ak

k!

=
Ai

Γ(n+1)

Γ(i+1) Γ(i,n− i+1)
2F1(−n+ i, i; i+1;A)

=
Ai n!

i! (n− i)!
2F1(−n+ i, i; i+1;A).

The hypergeometric function reduces to 1 when i = n, so Fn:n(x) = An.

Proposition 2.2 Let XKG, XKP, XKL and XKB be random variables following, respec-

tively, the Kumaraswamy geometric, Kumaraswamy Poisson, Kumaraswamy logarith-

mic and Kumaraswamy binomial distributions defined in BN. Then, for all real r >−a

and b > 0, we have

E
(

X r
KG

)

= b(1−θ)B
(

1+
r

a
,b
)

2Ψ
∗
1

[

(1+b,b), (1,1)
(

1+b+
r

a
,b
)

;θ

]

, (4)

E
(

X r
KP

)

=
b θ

eθ −1
B
(

1+
r

a
,b
)

1Ψ
∗
1

[

(b,b)
(

1+b+
r

a
,b
)

;θ

]

, (5)

E
(

X r
KL

)

=− bθ

log(1−θ)B
(

1+
r

a
,b
)

2Ψ
∗
1

[

(b,b), (1,1)
(

1+b+
r

a
,b
)

;θ

]

(6)

and

E
(

X r
KB

)

=− bmθ

(1+θ)m−1
B
(

1+
r

a
,b
)

2Ψ
∗
1

[

(b,b), (1−m,1)
(

1+b+
r

a
,b
)

;−θ
]

. (7)

Each of these expressions is valid for all |θ |< 1.
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Proof: (4) follows by noting that

E
(

X r
KG

)

= b(1−θ)∑
n≥1

n B
(

1+
r

a
,nb

)

θ n−1

= b(1−θ)Γ
(

1+
r

a

)

∑
n≥1

n Γ(nb) θ n−1

Γ

(

1+
r

a
+nb

)

= (1−θ)Γ
(

1+
r

a

)

∑
n≥1

Γ(nb+1) θ n−1

Γ

(

1+
r

a
+nb

)

= (1−θ)Γ
(

1+
r

a

)

∑
m≥0

Γ(1+b+mb) θm

Γ

(

1+b+
r

a
+mb

)

= (1−θ)
Γ

(

1+
r

a

)

Γ(1+b)

Γ

(

1+b+
r

a

) ∑
m≥0

(1+b)mb (1)m
(

1+b+
r

a

)

mb

θm

m!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 0, ∇ = 1.

(5) follows by noting that

E
(

X r
KP

)

=
b

eθ −1
∑
n≥1

B
(

1+
r

a
,nb
) θ n

(n−1)!

=
b Γ

(

1+
r

a

)

θ

eθ −1
∑

m≥0

Γ(b+mb)

Γ

(

1+b+
r

a
+mb

)

θm

m!

=
b Γ(b) Γ

(

1+
r

a

)

θ
(

eθ −1
)

Γ

(

1+
r

a
+b

) ∑
m≥0

(b)mb
(

1+b+
r

a

)

mb

θm

m!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 1.

The proof of (6) is similar to the proof of (4).
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(7) follows by noting that

E
(

X r
KB

)

=
bθ

(1+θ)m−1
∑
n≥1

n

(

m

n

)

B
(

1+
r

a
,nb
)

θ n−1

=
bθm

(1+θ)m−1
Γ

(

1+
r

a

)

∑
n−1≥0

(−1)n−1(1−m)n−1Γ(b+(n−1)b)

Γ

(

1+b+
r

a
+(n−1)b

)

θ n−1

(n−1)!

=
bθm

(1+θ)m−1

Γ(b)Γ
(

1+
r

a

)

Γ

(

1+b+
r

a

) ∑
k≥0

(−1)k(1−m)k(b)kb
(

1+b+
r

a

)

kb

θ k

k!

and that the infinite sum in the last step corresponds to a Fox Wright generalized

hypergeometric function with ∆ = 0, ∇ = 1.

Proposition 2.3 For all |θ1|< 1 and |θ2|< 1,

R(θ1,θ2) = ∑
k≥0

∑
j≥0

(k+1)θ k
1θ

j
2

(k+ j+1)2(k+ j+2)

=
1

(θ2 −θ1)
2

[

Li2 (θ1)−Li2 (θ2)+θ1 −θ2

+(2−θ2/θ1 −θ2) log(1−θ1)− (1−θ2) log(1−θ2)
]

. (8)

Proof: The double series for R(θ1,θ2) converges for all |θ1| < 1, |θ2| < 1, where it is

term-wise differentiable with respect both θ1, θ2. To obtain a closed form expression for

R, we define

R(θ1,θ2) = ∑
k≥0

∑
j≥0

θ k
1θ

j
2

(k+ j+1)2(k+ j+2)
.

By the differentiability property,

R =
d

dθ1

(θ1 ·R(θ1,θ2)) . (9)
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By partial fractions,

R(θ1,θ2) = ∑
k≥0

∑
j≥0

(

1

k+ j+2
− 1

k+ j+1
+

1

(k+ j+1)2

)

θ k
1 θ

j
2 =: S1 −S2 +S3. (10)

By legitimate integration-summation order exchange and the definition of gamma

function,

S1 =
∫

∞

0
e−2t

∑
k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫

∞

0

e−2t dt
(

1−θ1e−t
)(

1−θ2e−t
) ,

S2 =
∫

∞

0
e−t

∑
k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫

∞

0

e−t dt
(

1−θ1e−t
)(

1−θ2e−t
) ,

S3 =
∫

∞

0
te−t

∑
k≥0

(

θ1e−t
)k

∑
j≥0

(

θ2e−t
) j

dt =
∫

∞

0

t e−t dt
(

1−θ1e−t
)(

1−θ2e−t
) .

Routine but lengthy calculations show that

S1 =
θ1 log(1−θ2)−θ2 log(1−θ1)

θ1θ2 (θ1 −θ2)
,

S2 =
log(1−θ2)− log(1−θ1)

θ1 −θ2

.

Using the fact

∫

∞

0

t e−t dt

1−ae−t =
1

a
Li2(a),

we can reduce

S3 =
1

θ2 −θ1

∫

∞

0

t e−t dt

1−θ1e−t −
1

θ2 −θ1

∫

∞

0

t e−t dt

1−θ2e−t =

=
1

θ2 −θ1

[

1

θ1

Li2 (θ1)−
1

θ2

Li2 (θ2)

]

.
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Collecting S j, j = 1,2,3, we obtain by virtue of (10) that

R(θ1,θ2) =
θ2 (1−θ1) log(1−θ1)−θ1 (1−θ2) log(1−θ2)

θ1θ2 (θ2 −θ1)

+
1

θ2 −θ1

[

1

θ1

Li2 (θ1)−
1

θ2

Li2 (θ2)

]

=
(1−θ1) log(1−θ1)+Li2 (θ1)

θ1 (θ2 −θ1)
− (1−θ2) log(1−θ2)+Li2 (θ2)

θ2 (θ2 −θ1)
.

The result follows by applying (9).
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Abstract

Generalized linear mixed models are flexible tools for modeling non-normal data and are use-

ful for accommodating overdispersion in Poisson regression models with random effects. Their

main difficulty resides in the parameter estimation because there is no analytic solution for the

maximization of the marginal likelihood. Many methods have been proposed for this purpose and

many of them are implemented in software packages. The purpose of this study is to compare

the performance of three different statistical principles – marginal likelihood, extended likelihood,

Bayesian analysis – via simulation studies. Real data on contact wrestling are used for illustration.
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1. Introduction

One of the methodologies used to study disease incidence in medicine or injuries in sport

research is the generalized linear model (GLM). This methodology is able to model

counts and proportions besides normally distributed variables (McCullagh and Nelder,

1989). Furthermore, GLMs assume that the observations conditioned on the predictors
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are independent and identically distributed. However, these assumptions may be violated

in some situations, such as longitudinal studies, where there are repeated measures and,

hence, correlated data. Ignoring correlation of data when fitting the model may lead to

biased estimates and misinterpretation of results (Bolker et al., 2009).

Generalized linear mixed models (GLMMs) are an extension of GLMs adding ran-

dom effects in the linear predictor term in a regression setting (Breslow and Clayton,

1993). The GLMM is a more flexible analysis approach for analyzing non-normal data

and it is known to be useful for accommodating the overdispersion in Binomial or Pois-

son regression models, and modelling the dependence structure among outcome vari-

ables for longitudinal or repeated measures data (Williams, 1982; Breslow, 1984).

The main difficulty of these models is the estimation of their parameters, as it is often

not viable to obtain an analytic solution that allows maximizing the marginal likelihood

of the data. Due to this fact, different estimation methods based on approximation or

simulation have been developed in recent years. One approximation using numerical in-

tegration is the Gauss-Hermite quadrature (GHQ) (McCulloch and Searle, 2001). How-

ever, there are alternatives to the marginal likelihood principle including Bayesian statis-

tics and the extended likelihood principle. For example, the Integrated Nested Laplace

Approximation (INLA) (Rue et al., 2009) is a Bayesian implementation and the hierar-

chical (h-)likelihood is an implementation of the extended likelihood principle (Lee and

Nelder, 1996, 2001). It is worth mentioning that the comparison between Bayesian and

non-Bayesian methods is difficult to perform given that they are different principles.

Nowadays, GLMMs are implemented in most statistical software packages and sev-

eral researchers have published and updated different guides and reviews of different

software packages for fitting a GLMM. West et al. (2014) introduce the fitting and inter-

pretation of several types of linear mixed models using the statistical software packages

SAS, SPSS, Stata, R, and HLM. Dean and Nielsen (2007) review the theoretical back-

ground of generalized linear mixed models and the inferential techniques that have been

developed for SAS, S-Plus, and contributed R packages. Bolker et al. (2009) describe the

use of generalized linear mixed models for ecology and evolution and give information

on available functions and packages in SAS or R. For further comparisons of statistical

software for GLMMs for binary responses and frailty models, see, for instance, Zhang

et al. (2011); Li et al. (2011); Hirsch and Wienke (2012); Kim et al. (2013); or Grilli

et al. (2014).

The aim of this work is to compare three different statistical principles – marginal

likelihood, extended likelihood, and Bayesian analysis; see, Table 1 – to estimate the

parameters of a Poisson Mixed Model in R using both real and simulated data. It is struc-

tured as follows: in Section 2, we briefly review the definition of the GLMM and high-

light the problem of deriving and maximizing the likelihood. In Sections 3 and 4, we give

a theoretical description according to the statistical principle used. Several contributed

R packages for the fit of GLMMs are presented in Section 5 and three of them are used

in Section 6 for the analysis of the motivating real data set on Leonese Wrestling. These

data are then used to define the settings of the simulation study presented in Section 7.



Martı́ Casals, Klaus Langohr, Josep Lluı́s Carrasco and Lars Rönnegård 283

In Sections 8 and 9, the results of the simulation are presented and discussed, and rec-

ommendations are given on which statistical principle is, preferably, to be used in each

of the settings under study.

2. Generalized linear mixed models

The GLMM extends the GLM by adding normally distributed random effects to the

linear predictor. As Bolker et al. (2009) point out, GLMMs combine the properties of

linear mixed models (LMMs) and GLMs by using link functions and exponential family

distributions such as Binomial or Poisson distributions.

Let Yi = (Yi1, . . . ,Yim)
′ be a vector of m observations of the response variable of

interest corresponding to subject i, i = 1, . . . ,n and ui, i = 1, . . . ,n, be the random effects

vector of the same subject. Conditional on ui, the distribution of Yi is assumed to be from

the exponential family type with density function f (Yi|ui; ·) and with conditional mean

µµµi = E(Yi|ui) and conditional variance Var(Yi|ui) = ΦV (µµµi), where Φ is the dispersion

parameter and V (µµµi) is the variance function of the GLMM.

The definition of the GLMM is completed by introducing a monotone and differ-

entiable function g(·) known as the link function (McCullagh and Nelder, 1989) and a

linear predictor ηηη as follows:

ηηηi = g(µµµi) = Xiβββ+Ziui, i = 1, . . . ,n

where Xi (of dimension m× k) and Zi (m× l) are subject i’s design matrices associated

with fixed and random effects, respectively. Vector βββ (k× 1) is the fixed effects vector

and u (l × 1) is the random effects vector assumed to follow a multivariate Gaussian

distribution with mean vector 0 and unknown positive definite covariance matrix Σ. Its

density function is denoted by f (u;Σ).

Estimation in the GLMM and theoretical description of the likelihood

principle

By the local independence assumption, the conditional density of Y given u has the form

f (Y|u;βββ) =
n

∏
i=1

f (Yi|ui;βββ)

and the multivariate density function of u is given by

f (u;Σ) =
n

∏
i=1

f (ui;Σ).
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The likelihood principle involves two kinds of objects: observed random variables

(the data) and (unknown) fixed parameters. In the case of models with random effects,

the estimation is based on the marginal likelihood where the random effects are inte-

grated out (Birnbaum, 1962; Pawitan, 2001). Hence, the following likelihood function

needs to be maximized in order to obtain the maximum likelihood (ML) estimates for βββ

and the variance components in Σ:

l(βββ,Σ|Y) = f (Y;βββ) =

∫

f (Y|u;βββ) f (u;Σ)du. (1)

The classical method that uses ML estimation and in which u is integrated out does

not present problems with linear mixed models. The problem exists with GLMMs be-

cause of the more complicated integral (McCulloch and Searle, 2001). For this reason,

one of the main interests of the research on the GLMM is to develop more efficient

estimation methods for the fixed effects vector and the variance components.

Several ways to solve the integration in (1) and to obtain the marginal likelihood

to estimate the parameters of a GLMM have been proposed. The Laplace method for

integral approximation is considered to be a possible solution, which can be used to

estimate the parameters of interests (Breslow and Clayton, 1993). Alternatives are the

GHQ method or pseudo and penalized quasilikelihood methods (Aitkin, 1996). The

GHQ method presents better estimation properties than the other methods because the

GHQ estimates are maximum likelihood estimates. However, it is not feasible for analy-

ses with more than two or three random effects because the speed of the GHQ decreases

rapidly when increasing the number of random effects (Bolker et al., 2009).

3. Theoretical description of the extended likelihood principle

Lee and Nelder (1996, 2001) extended generalized linear models to include random ef-

fects by using their hierarchical (h-)likelihood method. This method is based on the ex-

tended likelihood principle (Bjørnstad, 1996) and is an implementation of the extended

likelihood restricted by a weak canonical link for the random effects (Lee et al., 2006).

The h-likelihood is given by the log joint likelihood, that is, the extended likelihood

LE :

h = log
(

LE(y;β,v)
)

= log
(

f (y;β|v)
)

+ log
(

f (v)
)

where log( f (y;β|v) denotes the log of the density function with β as parameter and con-

ditional on v = v(u), where u is a vector of random effects and ν(·) is an appropriate

link function defining the h-likelihood. Unlike the GLMMs, the random effect is not res-

tricted to be normal and can follow other distributions (e.g., gamma, beta, or inverse gamma).
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A fundamental difference compared to classical marginal likelihood theory is that

estimation and inference based on the h-likelihood includes random effects, whereas in

classical likelihood theory the random effects are integrated out and a marginal likeli-

hood is used. Hence, the use of the h-likelihood avoids the integration required for a

classical marginal likelihood.

To estimate parameters (β,ν), the fixed and random effects are estimated from the

score functions of the h-likelihood:

∂h

∂β
= 0,

∂h

∂ν
= 0.

The variance components are estimated by maximizing the adjusted profile h-likelihood

defined as

pβ,u =
(

h+
1

2
log(2πH−1)

)
∣

∣

β=β̂,u=û
,

where H is a Hessian matrix of the h-likelihood.

The estimates can be obtained by using iterative weighted least squares (IRWLS) as

implemented in the hglm package (Rönnegård et al., 2010). The variance components

are then estimated iteratively by applying a gamma GLM to the estimated deviances

and with an intercept term included in the linear predictor and appropriate weights (Lee

et al., 2006).

4. Theoretical description of the Bayesian principle

The Bayesian methods differ from the likelihood and extended likelihood principles in

their philosophy as well as in the specific procedures used.

In order to implement a Bayesian principle, prior distributions are required for all

parameters in the model, since under the Bayesian paradigm, all parameters are treated

as random variables rather than fixed unknowns.

The Bayesian principle is based on assigning prior distributions to the parameters of

the model. Thus, following the model defined in Section 2, the following prior distribu-

tions must be specified: f (βββ|·), f (u|·), and f (Σ|·). These prior distributions express the

beliefs on the parameters and these beliefs are modified by the data to obtain the poste-

rior distribution of the parameters, f (βββ,u,Σ|Y), which is defined as to be proportional

to the product of the prior distributions and the likelihood of the data. The posterior

distribution is therefore used for inference purposes.

Here, a non-informative normal distribution is assumed as prior distribution for βββ,

that is, a normal distribution with a huge variance. Let γγγ = (u,βββ)T denote the G× 1

vector of Gaussian parameters. Concerning the random effects, we assume u to follow

a multivariate normal distribution, u|Γ ∼ N (0,Γ−1), where the precision matrix Γ =
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Γ(φφφ) depends on parameters φφφ. Let φφφ also be the vector of the variance components for

which the prior Π(φφφ) is assigned. However, often it is not possible to obtain an explicit

expression of the posterior distribution and algorithms such as Markov chain Monte

Carlo (MCMC) methods are used to generate the posterior distribution by simulation.

The Bayesian principle is attractive because it offers several advantages over the like-

lihood principle (e.g., it can increase the stability in small samples or in clustered binary

data), but it has the difficulty of specifying prior distributions with variance components

(Fong et al., 2010).

The use of MCMC methods for GLMMs is the most popular approach, but has prob-

lems in terms of convergence and computational time. These problems with Bayesian

estimation have been greatly improved by Integrated Nested Laplace Approximations

(Rue et al., 2009).

Integrated Nested Laplace Approximation (INLA)

INLA is a new tool for Bayesian inference based on latent Gaussian models introduced

by Rue et al. (2009). The method combines Laplace approximations and numerical in-

tegration in a very efficient manner. For the GLMM described in Section 2 and using γγγ

and φφφ as defined in the previous paragraphs, the posterior density is given by

π(γγγ,φφφ|Y) ∝ π(γγγ|φφφ)π(φφφ)
m

∏
i=1

p(Yi|γγγ,φφφ).

It is computed via numerical integration as

π(γγγ|Y) =
∫

π(γγγ|φφφ,Y)π(φφφ|Y)dφφφ,

where Laplace approximation is applied to carry out the integrations required for the

evaluation of π(γγγ|φφφ,Y). For more details we refer the readers to Rue et al. (2009).

5. Contributed R packages for GLMMs

For the likelihood principle, there exist different packages in R such as glmmML (Broström

and Holmberg, 2013), lme4 (Bates et al., 2015), or the function glmmPQL in the MASS

package (Venables and Ripley, 2002). One of the most popular and stable functions for

fitting GLMMs is called glmer and is found within the package lme4. This package

implements the GHQ to approximate the log-likelihood using numerical integration. By

default, it uses the Laplace approximation with one quadrature point.
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For the extended likelihood principle, two packages are available for fitting Hierar-

chical Generalized Linear Models with random effects: hglm (Rönnegård et al., 2010)

and HGLMMM (Molas and Lesaffre, 2011).

Concerning packages for performing Bayesian inference on GLMM, general pack-

ages such as glmmBUGS (Brown and Zhou, 2010) and R2WinBugs (Sturtz et al., 2005), and

specialized packages such as glmmAK (Komárek and Lesaffre, 2008), MCMCglmm (Had-

field, 2010), and INLA (Lindgren and Rue, 2015) exist. INLA substitutes MCMC simu-

lations with accuracy and the quality of such approximations is extremely high.

For both the analysis of the wrestling data (Section 6) and the simulation (Section 7),

the R packages lme4, hglm, and INLA were used. Note that the lme4 package does not

report standard errors for variance components. The reason is provided by the developer

of the package in his book (Bates, 2010) stating that the sampling distribution of the

variance is highly skewed, which makes the standard error nonsensical (Li et al., 2011).

Regarding the GHQ method, we used 5 quadrature points since it was indicated that this

method can give a poor approximation to the integrated likelihood when the number

of quadrature points is low (Lesaffre and Spiessens, 2001). This method can be made

arbitrarily accurate by increasing the number of quadrature points. We adopted a strategy

of increasing the number of quadrature points until there was a negligible difference in

the values of the estimators (Ormerod and Wand, 2012).

Recent changes of the packages used

The three packages studied in this paper have implemented some new features in their

latest versions.

Regarding the lme4 package, the authors of the package have been discussing new

features and new versions of the package through the forum “R-sig-mixed models”

(https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models) since its version

0.99 (better known and used as lme4.0). Currently, the present version is 1.1-7, which

offers some advantages with respect to the version 0.99, especially in terms of con-

vergence and optimization. These developments can be found at the following link:

https://github.com/lme4/lme4.

Concerning the hglm package, since version 2.0 it is possible to fit several random

effects from different distributions (e.g., gamma or Gaussian), to fit a linear predic-

tor for the dispersion of the random effects, to fit spatial conditional autoregressive

(CAR) and spatial autoregressive (SAR) models for the random effects, and to per-

form a likelihood-ratio test for the dispersion parameter of the random effects (Alam

et al., 2014). The method options have also been extended to include the EQL1 method

which is a “HL(1,1) correction” (Lee and Lee, 2012; Noh and Lee, 2007) applied

on the default EQL method. These developments can be found at the following link:

http://cran.r-project.org/web/packages/hglm/vignettes/hglm.pdf.
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Regarding the INLA package, this analytical framework includes normally distribut-

ed latent variables and thus allows for hierarchical data structure, but it is targeted to-

wards complex applications involving temporal and spatial smoothing where MCMC

estimation may be too difficult to apply (requiring specialized MCMC samplers) or pro-

hibitively slow. On the one hand, now there is an increase of articles using this package

in several application fields such as fishering (Cosandey-Godin et al., 2014) or ecology

(Quiroz et al., 2014). Few applications of the INLA methodology in injury epidemiology

or sport science have been published (Cervone et al., 2014), and it would be of interest

to study in more detail the medical impact in terms of understanding sport injuries with

this methodology. On the other hand, one of the most recent papers of Martins et al.

(2014) shows a new perspective on the selection of default priors.

6. Real data example: folk wrestling data

Leonese Wrestling (LW) or Aluche is a traditional and popular sport of the province

of León, in Northwestern Spain. It is registered with and recognized by three interna-

tional associations: Fédération Internationale des Luttes Associées (FILA), Asociacion

Española de luchas tradicionales (AELT), and International Belt Wrestling Associa-

tion (IBWA), respectively. Like with all styles of wrestling, the risk of injury is always

present.

The main variable of interest in epidemiological investigation of sports injuries is the

incidence of injury, which is generally expressed as the proportion of injuries per fight

(Ayán et al., 2010; Hägglund et al., 2010). There are few studies in the international

scientific literature about the incidence of injury in combat sports and its associated

factors (Klügl et al., 2010; Hewett et al., 2005). Nonetheless, in published papers, it

has been found that the incidence of injury in these sports is higher than in other sports

activities (Hägglund et al., 2005; Junge et al., 2009).

Concerning factors associated with the incidence of injury, it is known that this in-

cidence is higher during wrestling matches than in training. However, there is not much

information on the frequency of injuries, their incidence, and their causes to carry out

prevention and control programs in this sport. This lack of knowledge has motivated this

analysis of the impact and risk factors of injuries.

Data on matches and injuries of the LW summer seasons were available for 213

wrestlers during the summer seasons from 2005 through 2010. The response variable

of interest was the frequency of injuries which was assumed to follow a Poisson distri-

bution. The study design was unbalanced with different numbers of repeated measures

given that not all wrestlers participated in official competitions in each of the six years

from 2005 to 2010. The possible risk factors for injuries considered were: i) Winner:

This variable is defined as a function of the falls during a match. It is set to ‘Yes’ if the

wrestler had more falls in his favor than against him; otherwise, the value of Winner is

set to ‘No’; and ii) Weight category: a categorical variable with levels Light, Medium
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(chosen as reference), Semi-heavy, and Heavy. It has been taken into account that these

variables could change from one season to another.

6.1. The model under study

Let Yi, i = 1, . . . ,n, be the vector of the number of injuries per season of wrestler i.

The length of Yi depends on the number of seasons the wrestler took part in official

competitions. It is assumed that the distribution of Yi follows a Poisson distribution:

Yi ∼ Po(µµµi). Usually, the counts are considered in relation to some differential or offset

(λ) in order to obtain rates. Here, the offset is the number of the wrestler’s matches

per season. The Poisson generalized linear mixed model used to analyze the data links

the mean of Yi with both covariates Xi of interest —Winner and Weight category— by

means of the following equation

log(µµµi) = log(λλλi)+Xiβββ+ui, i = 1, . . . ,n, (2)

where the vector βββ contains the fixed effects parameters and ui stands for the random

effect intercept for wrestler i. Random effects are assumed to be independent and nor-

mally distributed with mean 0 and variance σ2. Random effects for the slope parameters

were not considered in order to keep the model simpler. In addition, posterior model

fits including such random effects did not improve the model fit significantly at a 0.05

significance level.

The model’s marginal variance (over subjects) can be expressed as

Var(Yi) = Φ ·µµµi, i = 1, . . . ,n,

where Φ is the dispersion parameter. The Poisson distribution assumes Φ = 1 and if

Φ> 1, overdispersion is present. In that case, the data have larger variance than expected

under the assumption of a Poisson distribution.

The dispersion parameter can be estimated based on the χ2 approximation of the

residual deviance or Pearson residuals. The dispersion parameter is estimated by divid-

ing the χ2 statistic by the residual degrees of freedom, n− r:

Φ̂ =
1

n− r

n

∑
i=1

(Yi − µ̂µµi)
2

µ̂µµi

. (3)

If there is high overdispersion, the negative binomial distribution is an alternative

to the Poisson distribution for count data because the negative binomial distribution

allows for a variance greater than mean. Apparent overdispersion is normally due to

missing covariates or interactions, outliers in the response variable, non-linear effects of

covariates entered as linear terms in the systematic part of the model, or the choice of
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a wrong link function. These are mainly model misspecifications. Real overdispersion

exists when none of the previous causes can be identified. The reason for this might

be that the variation in the data is, actually, larger than the mean. Or, there may be

many zero observations, clustering of observations, or correlation between observations

(Hardin and Hilbe, 2007; Zuur et al., 2009).

6.2. Results

We fitted Model (2) with packages lme4, hglm, and INLA, and for the sake of compari-

son, we also analysed the data as if they were not correlated. That is, we fitted a GLM

using function glm of the R package stats. All analyses were carried out with R, ver-

sion 3.1.1, and the estimates obtained, together with the 95% confidence and (in the case

of the INLA package) credible intervals, are presented in Table 2. The confidence inter-

vals of the lme4 package were calculated using the function confint.merMod, which

computes a likelihood profile and finds the appropriate cutoffs based on the likelihood

ratio test (by choosing method = "profile").

We calculated the dispersion term based on the Pearson residuals using Equation (3)

for function glm and packages lme4 and hglm. In addition, we checked the possible

overdispersion using an individual-level random variable (translating to a lognormal-

Poisson model, which is qualitatively similar to a negative binomial (Elston et al.,

2001)).

According to the results obtained, the estimates of the coefficients of the linear pre-

dictor are quite similar with only slight differences in the second decimal digit. The same

is true for the confidence and credible intervals obtained with packages lme4, hglm, and

INLA, whereas function glm provides smaller confidence intervals because it treats the

data as if they were independent observations. Moreover, it can be seen that the estimate

of the random effect variance and the dispersion term differ a little from each other.

Concerning both variables of interest, the positive signs of the parameter estimates

corresponding to the weight category indicate a higher risk for injuries among all three

weight categories as compared with the medium weight category. Nonetheless, all 95%

confidence and credible intervals include 0, that is, the differences are not statistically

significant at a 0.05 significance level. In the case of variable Winner, the model indi-

cates a lower injury risk – β̂ < 0 and the 95% confidence and credible intervals do not

include 0 – among wrestlers with more falls in their favor.

7. Simulation study

In this section, we present the simulation study designed to assess the performance of

the three statistical principles using different scenarios based on the wrestling data. The

aim is to compare the three methods in different settings defined by overdispersion or

sample size with respect to measures of model accuracy, precision, empirical bias, and
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empirical coverage of the estimators as well as computation time and possible prob-

lems of convergence. A total of 40 different simulation settings were used that can be

classified into two main simulation scenarios.

7.1. Simulation scenario 1

For the first simulation scenario, we used the structure of the real data set introduced in

Section 6. The values of the response variable – number of injuries – were generated as a

function of the observed values of the independent variables and the number of matches

of each wrestler in each of the years under study following the model expression in (2).

The aim of this scenario was to closely represent the structure of this real data set.

We simulated the number of injuries using the parameter values given in Table 2

obtained with the lme4 package (β1 = 0.24,β2 = 0.1,β3 = 0.4,β4 =−0.46). Concern-

ing the model intercept (β0) and the variance of the random effects (σ2
u), we used

combinations of both parameters that lead to three different values of overdispersion

(Φ ∈ {1.5,3,10}) that we identify as low, moderate, and high overdispersion settings;

see McCulloch and Searle (2001) for technical details. Furthermore, we added the value

of Φ= 1, i.e., no overdispersion, to also assess how the GLMM behaves in this situation.

In addition, the values of β0 were chosen such that two different marginal means of the

injury numbers were obtained (µ = 1 and µ= 10). As can be seen in the R code of the

first simulation study in the Supplemental Material, the values of β0 ranged from −4.8

to −1.7, those of σ2
u from 0 to 2.12 = 4.41.

In total, with four different values of dispersion and two of the marginal mean, the

number of simulation settings for the Simulation scenario 1 was 4 ·2 = 8.

7.2. Simulation scenario 2

The second simulation scenario was motivated by the goal to study the effect of dif-

ferent sample sizes on the parameter estimation. For this purpose, we considered two

different sample sizes of n = 30 and n = 100 wrestlers and for each wrestler, a random

number of seasons was generated using a discrete uniform distribution ranging from 1

through 6. In the sequel, the match numbers for each wrestler and season were generated

using a Poisson distribution with parameters 60 and 100, respectively. These were the

offset terms λλλi in Model (2). The remaining parameters were chosen similar to the first

simulation scenario resulting in four dispersion parameters (Φ ∈ {1,1.5,3,10}) and two

marginal means for the number of injuries (µ = 1 and µ = 10) so that the number of

simulation settings was 2 ·2 ·4 ·2 = 32 for Simulation scenario 2.

The values of both independent variables – weight category and winner – were gen-

erated using equal probabilities for all categories and, as in Simulation scenario 1, the

injury numbers were generated using the expression of the model in (2).
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7.3. Evaluation criteria

For each of the 8+32= 40 simulation settings, we simulated 1000 data sets of the model

under study and used the three methods to estimate the model parameters (Marginal

Likelihood, Extended Likelihood, and Bayesian Analysis). In addition, we used R func-

tion glm treating the data as if we dealt with a GLM. Measures for the comparison of

the different estimation methods were the empirical mean squared error (MSE) as a

measure of model accuracy, the ratio of precision, the empirical bias, and the empirical

coverage of the confidence and credible intervals, respectively. Moreover, we recorded

the computation times and studied possible problems of convergence.

For each simulation setting and estimation method, the empirical bias was calculated

as the mean bias over the 1000 data sets and its squared value was used together with the

empirical variance to compute the empirical MSE. The rate of precision was computed

as the ratio between the estimator’s empirical variance and the mean of the squared

standard errors. In order to calculate and compare the empirical bias and the empirical

MSE in the case of the INLA package, the distribution of the parameters provided by

INLA were reduced to only one value (the posterior mean).

For the likelihood and the extended likelihood principles, we used the 95% con-

fidence interval and for the Bayesian principle, we used the 95% credible interval of

parameter given by the 0.025 and 0.975 sample quantiles of the posterior parameter

distributions. In the case of the lme4 package, we used 5 quadrature points for the

GHQ method and non-informative priors were assumed for the Bayesian analysis. More-

over, the random intercepts were assumed to have a normal distribution. Regarding the

prior distribution for the precision, a half-normal distribution with mean 0 and precision

0.0001 was assigned to the standard deviations (Gelman et al., 2006).

The comparison was done for the two main parameters of interest: the parameter β4,

which corresponds to the variable Winner, and the variance of the random effects (σ2
u).

The former was chosen, since the analysis of the wrestling data showed a statistically

significant association between the number of injuries and this variable. Whereas the

value of σ2
u varied across the simulation settings, the value of β4 was kept constant in all

settings.

8. Results of the simulation study

For the simulation scenarios, results are presented only for the intercept (β0), the slope

(parameter β4, corresponding to the covariate Winner), and variance of the random effect

(σ2
u). The performance of the estimation methods in terms of empirical bias, empirical

MSE, precision ratio, and empirical coverage of β̂4 and σ̂2
u is summarized in Figures 1a,

1b, 2a, and 2b. The corresponding figures for β̂0 are provided in the Supplemental Ma-

terial.

In order not to mix up statistical principles, methods, and algorithms as presented

in Table 1, following, we only refer to these by the names of the R packages used.
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Note that the results are yielded by package INLA with the prior distribution selected, a

half-normal distribution with mean 0 and precision 0.0001.

Concerning the percentage of convergence of the estimation methods, a model was

considered as “not convergent” if either the estimation process did not converge or if

the estimate or its standard error was not provided. For example, in some cases the pa-

rameter can be estimated but the estimation process may be unable to provide a positive

definite variance-covariance matrix of the parameters (for problems with the Hessian

matrix), mainly due to the instability of the model. Convergence was checked and ob-

tained using the criteria offered in each software package. In the case of the first simu-

lation scenario, the convergence percentages were always equal to 100% with only one

exception: package hglm achieved convergence in 99.2% of all data sets in the case of

µ= 1 and Φ = 10. The results for Simulation scenario 2 are shown in Table 3. The rate

of convergence of all estimation methods was close to 100% for most of the settings.

However, in the case of packages hglm and lme4, the percentage of convergence slightly

decreased in some settings with µ= 1 and n = 30 as overdispersion increased.

Regarding the empirical bias of the slope, all packages provided mostly unbiased

and similar estimates. In terms of accuracy, the highest empirical MSE for the slope for

all GLMM packages is given when Φ = 10, µ= 1, and n = 30. In this case, function glm

is the one that presents highest values. The empirical MSE value obtained with INLA is

higher than with hglm and lme4, which are both similar; see Figure 1a.

In terms of precision (upper panel of Figure 1b), we calculated the ratio of the es-

timator’s empirical variance and the mean of the squared standard errors as a precision

measure. In general, we found that almost all estimation methods presented an under-

estimation in the case of Φ = 1 and Φ = 1.5 together with µ = 10. More differences

between the packages were observed with sample size equal to 30. In the case of the

lme4 package, the ratio was slightly larger than 1 (equivalent to 100%) especially with

moderate and high overdispersion. By contrast, the values of the hglm and INLA pack-

ages were close to 100% for that sample size independently of the offset, the marginal

mean, and the dispersion term. The function glm, in general, showed values far larger

than 100% (and, hence, out of the range of the corresponding plots) from Φ = 1.5.

The empirical coverage of the confidence intervals for the GLMM packages were

close to 95% in all settings; see the lower panel of Figure 1b. The GLM appeared to

have bad coverage, only acceptable for those combinations with low overdispersion.

It suffered from substantial undercoverage (down to 75%) when Φ = 3 and Φ = 10.

This result may be expected for the GLM since it does not include random effects and

therefore can not assume any overdispersion. As overdispersion increased, the empirical

coverage behavior became worse.

Regarding the empirical bias of the variance component (upper panel of Figure 2a),

the three packages performed similarly for Φ = 1 and Φ = 1.5. For Φ = 3, the INLA

package showed the largest empirical bias with n = 30, whereas with n = 100, the dif-

ferences among the packages were small for Φ = 3. For Φ = 10 and n = 30, package

lme4 had the smallest empirical bias in terms of the absolute value, INLA the largest
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Figure 1a: Empirical bias (upper panel) and empirical MSE of the slope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size.
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Figure 1b: Precision (upper panel) and empirical coverage of the slope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size. Precision is measured as the ratio of the estimator’s

empirical variance divided by the average of the squared standard errors.ope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size.
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Figure 2a: Empirical bias (upper panel) and empirical MSE of the variance component estimate (σ̂2
u) as

a function of overdispersion, marginal mean, offset, and sample size.
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Figure 2b: Precision of the variance component estimate ((σ̂2
u)) as a function of overdispersion, marginal

mean, offset, and sample size. Precision is measured as the ratio of the estimator’s empirical variance

divided by the average of the squared standard errors.

(with values out of the range of the plot). By contrast, for Φ = 10 and n = 100 the

absolute values of the empirical bias of lme4 and INLA were roughly the same. It was

largest for hglm in that setting. Values for function glm do not appear in that figure since

a GLM does not consider any random effects.

In terms of the accuracy of the variance component (lower panel of Figure 2a), the

empirical MSEs were very similar except when Φ > 1.5 and µ = 1. The INLA package

had the largest empirical MSE when Φ = 3, µ= 1, and n = 30. By contrast, in this same

setting, the lme4 and hglm packages had very similar values. None of the packages

showed a satisfactory behavior when Φ = 10, µ= 1, and n = 30: all empirical MSEs are

excessively high and, hence, out of the range of the corresponding plot. With n = 100,

the empirical MSE of package hglm was still out of the plot’s range, whereas that of

lme4 and INLA were close to 1.

Concerning the precision of the estimation of the variance component (Figure 2b),

the ratio obtained with hglm and INLA was close to zero when Φ 6= 10 and µ= 10. For

n = 30, in INLA, the values were close to 150 when µ = 10, and they were close to

100 when Φ > 1.5 and µ = 1. For hglm and when Φ > 1 and µ = 1, the values were

excessively high in most of the simulation settings. It could not be computed with lme4

since this package does not provide the standard error of the estimation of the random

effect’s variance.
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Contrary to overdispersion, sample size, and marginal mean, the choice of the offset

did not seem to have any effect on the estimators’ performance.

Finally, we also compared the computational times measured with R function

system.time. Among the three packages that consider random effects, the average com-

puting times of packages lme4 and hglm were very similar in each setting. On average,

they were four times faster than package INLA.

In summary, the approaches involving a random effect (lme4, INLA, and hglm) showed

good performance on estimating the model parameters except for the estimation of the

random effect’s variance in the case of combinations of huge overdispersion, a small

marginal mean, and a small sample size. Given that the empirical MSE and the empir-

ical bias of the lme4 package are close to zero for most of the simulation settings, it

seems that this package, generally, outperforms the other packages, even though often

only slightly.

9. Discussion

An overview of statistical principles for GLMMs is presented in this paper. The prob-

lem of selecting the best approach for estimation and inference within Poisson Mixed

Models is very complex and too difficult to solve analytically. For this reason, we have

carried out a simulation study that has evaluated the impact of overdispersion, marginal

mean, offset, and sample size assuming Poisson Mixed Models using different statistical

principles.

The fact that the bias and mean square error improve with larger sample size can

be interpreted as that the estimators are consistent when overdispersion is taken into

account in the model by means of random effects. By contrast, the empirical bias and

MSE were larger with the GLM since this type of model does not include random effects

and, hence, ignores overdispersion (Bolker et al., 2009; Milanzi et al., 2012). The results

for INLA, in general, did hardly differ with the values obtained with both lme4 and hglm;

at least not with the prior distribution used.

We have found that for small sample sizes, the random effects variances are difficult

to estimate, which has also been described in other studies (Li et al., 2011). In addition,

the results are worse in the case of a moderate dispersion term (Φ = 3) and especially

with high overdispersion (Φ = 10), in which none of the methods provide satisfactory

results. As Zuur et al. (2009) explain, with a dispersion term up to 1.5 there are no im-

portant overdispersion problems. To solve overdispersion problems, other methods and

distributions may be used, for instance, the Poisson-lognormal distribution, GEE mod-

els, or quasi-Poisson distributions (Booth et al., 2003; Bolker et al., 2009). In the case

of high overdispersion with real data, it would be more reasonable to change the Pois-

son distribution for another distribution that does not have the restriction of the variance

equalling the mean, for instance, the Negative Binomial distribution (Czado et al., 2007).

Recently, Aregay et al. (2013) suggested a Hierarchical Poisson-Normal overdispersed
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model (HPNOD) as an alternative using the Bayesian principle. The HPNOD performs

better than a Hierarchical Poisson-Normal model for data with low, moderate, and high

overdispersion.

In the simulation study, for most combinations, we observed similar performance in

terms of the empirical bias and the empirical MSE whatever was the package applied.

On the other hand, differences arise with respect to the precision of estimates. This fact

may indicate a problem of underestimation because the methods do not capture well

all the variability present in data. A bootstrap approach may be a solution to solve the

standard error problem.

Regarding computational time and convergence, the glm function requires less time

because it does not capture the presence of the random effect. The hglm and lme4 pack-

ages need similar computational times, whereas the INLA package takes more time.

Nonetheless, at least for the simulation settings under study, computation time was not

excessive and results were obtained in less than 5 seconds in most of the cases. In some

combinations of the simulation with small sample size (n = 30), huge overdispersion

(Φ = 10), and small marginal mean (µ = 1), we found problems of convergence in the

hglm package. To solve a convergence problem we recommend specifying other starting

values.

Several studies carried out until now have compared estimation methods only for

the Bayesian principle, the marginal likelihood principle or both in the GLMMs (Zhang

et al., 2011; Ormerod and Wand, 2012; Li et al., 2011; Kim et al., 2013). For example, Li

et al. (2011) recommend the use of the lme4 package. The authors highlight that in case

a Bayesian package is chosen, the parameter estimates might be influenced by the priors

for the variances of the random effects. They also mention that when the data set is small,

the random effects’ variances are difficult to estimate with both frequentist and Bayesian

methods. Kim et al. (2013) recommend the use of the GHQ method given that it per-

forms well in terms of accuracy, precision, convergence rates, and computing speed.

According to the authors, this is also valid with small sample sizes and for longitudinal

studies with a few time points. On the other hand, there are some studies that com-

pare the extended likelihood approach with the Bayesian principle (Pan and Thompson,

2007; Collins, 2008). However, they do not take into account the INLA method, which

is a recently proposed approximate Bayesian approach for latent Gaussian models. Ac-

cording to Collins (2008), in some case studies both Bayesian and extended likelihood

approach estimators of the variance component were positively biased, whereas GHQ

method based estimators were not.

Our work is different from these previous studies given that we have focused our

work on different estimation methods, principles, and more commonly used free soft-

ware packages. Regarding the real data example, most GLMMs are used in applications

of ecology, epidemiology, genetics, clinical medicine, and other applications but these

models are now gaining attention in sports sciences, too (Avalos et al., 2003; Bullock

and Hopkins, 2009; Sampaio et al., 2010; Casals and Martı́nez, 2013; Casals et al.,

2014). However, there are only a few studies in epidemiology of sports injuries.
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Concerning the Bayesian principle, when the sample size is small, the posterior dis-

tribution may be more influenced by the choice of prior distributions than when the

sample size is moderate or large. Note that the posterior means depend on the choice

of the non-informative prior of the variance component (Li et al., 2011). Bayesian al-

gorithms such as MCMC offer different advantages over frequentist algorithms but they

have problems in terms of convergence and computational time. These aspects have

improved with INLA. However, for some combinations, the default initial value is not

adequate for the data because of the use of very weak priors. For example, it is known

that the inverse Gamma(0.001, 0.001) prior is not always a good choice (Fong et al.,

2010). Frühwirth-Schnatter and Wagner (2010b) and Frühwirth-Schnatter and Wagner

(2010a) demonstrate overfitting due to Gamma-priors and suggest using a (half) Gaus-

sian prior for the standard deviation to overcome this problem, as suggested by Gelman

et al. (2006). Another interesting possibility that could be considered in the future is the

use of Penalized Complexity (PC) priors that have heavier tails than the half Gaussian,

but lighter tails than the half-Cauchy (Martins et al., 2014). According to the devel-

opers of the INLA package, the use of PC priors works pretty much identically to the

half-Cauchy in practice.

There are some limitations of the present work. First, in this study we have worked

with a Poisson mixed model with a random intercept, but we have not considered models

with random slopes. The reasons for this decision were twofold: On one hand, the inclu-

sion of random slopes in the real data example did not significantly improve the model

fit at a 0.05 significance level. On the other hand, to study the impact of overdispersion,

marginal mean, sample size, and offset, we preferred to analyze a Poisson mixed model

with a random intercept due to its frequency in sports medicine research. Given the

importance of more complex mixed models, future research should investigate the per-

formances of these principles in mixed Poisson models including random slopes, cross-

classified random effects and multiple membership structures that may be analyzed in

future simulation studies. Second, we only examined three packages corresponding to

the three estimation methods and principles. There are other R packages such as glmmML

and MCMCglmm as well as the function glmmPQL of the MASS package that could be in-

cluded in further simulation studies. In addition, such simulation studies could include

other software packages such as SAS, STATA, or SPSS, which were not considered for

the present work. We decided to focus our work on R because of its great popularity

among statisticians (Muenchen, 2015) and the constant development of new packages

and functions to deal with GLMMs.

In addition to the two limitations mentioned, the simulation study could have also

studied other parameters of interest such as the cluster size, which, in the real data ex-

ample in Section 6, is equivalent to the number of seasons of a wrestler. Indeed, several

simulation studies point out that for binary responses, the performance of the estimators

is influenced by the cluster size, e.g., that clusters of size two usually entail problems

(Breslow and Clayton, 1993; Diaz, 2007; Kim et al., 2013; Grilli et al., 2014). Following

the suggestion of one of the reviewers, we decided to assess the role of the cluster size
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on empirical bias and MSE with a small additional simulation study with eight different

settings defined by two values of cluster size (m ∈ {2, 5}), two values of overdispersion

(Φ ∈ {1.5, 10}), and two different marginal means (µ ∈ {1, 10}). The offset (λ = 60),

the sample size (n = 100), and the slope parameter (β4 = −0.46) were kept constant.

Regarding the results of the empirical bias and the MSE, which are shown in Tables 4

and 5 in the Supplemental Material, there were hardly any differences between cluster

sizes two and five. However, the estimates obtained by the three packages had larger em-

pirical bias and MSE when Φ= 10 and µ= 1. Under this scenario, the values of package

hglm were larger than those of the lme4 and INLA packages. Moreover, with respect to

computing time under the settings of this additional simulation study, the hglm package

was somewhat faster than lme4. The computing times of the INLA package were, again,

much larger. Problems of convergence were not detected.

It is important to highlight that the concepts of estimation and standard error are

different in the three statistical principles used. In the case of the marginal likelihood,

estimation is the value that maximizes the likelihood and the standard error reflects

the sample variation of the estimator. In Bayesian analysis, estimation is a summary of

the posterior distribution and the standard error is a measure of the variability of this

distribution. As for the classical likelihood, the extended likelihood advocates the use of

standard errors computed from the Fisher information matrix of the marginal likelihood.

In practice, the standard errors are computed from the matrix of second derivatives for

the adjusted profile h-likelihood, which is an approximation of the marginal likelihood

(Lee et al., 2006).

Parameter estimation of GLMM is nowadays possible using different statistical prin-

ciples, though estimation methods as well as statistical packages are still under devel-

opment (Bolker et al., 2009). The problem of selecting the most adequate approach for

the estimation and inference within GLMM is very complex. In addition, the software

implementations can differ considerably in flexibility, computation time and usability

(Austin, 2010; Li et al., 2011). A strategy could be to carry out a simulation study that

emulated the data design and to apply the different estimation methods. Although one

may think that this strategy is not very practical, it would be indeed worse to use an

estimation method that could provide biased and inefficient estimates.

We have shown through simulations that ignoring overdispersion in Poisson Mixed

Models can have serious consequences on the parameter estimates. Available R pack-

ages can handle this problem very satisfactorily; however, care must be taken in situ-

ations with small sample size, large overdispersion, and small marginal mean. In such

situations, the lme4 package seems to have a slightly better performance than packages

hglm and the INLA, which also depends on the choice of the prior (Grilli et al., 2014),

especially concerning the estimation of the random effect’s variance (Figure 2a). This

observation coincides with the recommendation of Kim et al. (2013) to use the GHQ

method under such settings and the active discussions of the package’s authors (Douglas

Bates, Martin Maechler, and Ben Bolker) and members of the R sig-mixed-models mail-

ing list (https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models).All pack-
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ages under study have recently been improved in terms of convergence and optimization.

Appendix

Table 1: Overview of statistical principles.

Principle Method Algorithms

Marginal Likelihood Maximum likelihood

Newton-Raphson (N-R), Fisher scoring,

Penalized iteratively reweighted

least squares (PIRLS)

Adaptative Gauss Hermite Quadrature (GHQ)

Extended likelihood h-likelihood N-R, Iterative weighted least squares (IRWLS)

Bayesian Posterior mean

MCMC,

Integrated Nested Laplace

Approximations (INLA)

Table 2: Results from the Poisson mixed model applied to the folk wrestling data. CI stands for confidence

interval and credible interval (in the case of INLA), respectively.

Function glm Package lme4 Package hglm Package INLA

β̂ 95% CI β̂ 95% CI β̂ 95% CI β̂ 95% CI

Intercept −4.34 [−4.73,−4.0] −4.37 [−4.82,−3.99] −4.37 [−4.79,−3.95] −4.41 [−4.85,−4.01]

Weight category1

Light −0.25 [−0.2, 0.71] −0.24 [−0.26, 0.76] −0.25 [−0.28, 0.78] −0.25 [−0.26, 0.76]

Semiheavy −0.10 [−0.36, 0.57] −0.10 [−0.41, 0.63] −0.11 [−0.43, 0.65] −0.12 [−0.4, 0.64]

Heavy −0.39 [−0.1, 0.87] −0.40 [−0.14, 0.96] −0.40 [−0.16, 0.97] −0.41 [−0.14, 0.97]

Winner −0.48 [−0.82,−0.15] −0.46 [−0.82,−0.07] −0.46 [−0.85,−0.07] −0.44 [−0.82,−0.06]

σ2
u – −0.08 [0.0, 0.39] −0.08 [0.0, 0.22] −0.12 [0.01, 0.31]

Dispersion (Φ)2 1.45 1.29 1.35 –

1 The reference category is Medium

2 Obtained by means of equation (3)
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Table 3: Percentages of convergence in Simulation scenario 2 as a function of the marginal mean (µ), the

average match number per season (Offset), overdispersion (OD), and the sample size.

glm lme4 hglm INLA

Offset OD n = 30 n = 100 n = 30 n = 100 n = 30 n = 100 n = 30 n = 100

µ= 1 060 Φ = 1 100 100 99.7 100 99.7 100 100 100

Φ = 1.5 100 100 99.4 100 99.7 100 100 100

Φ = 3 100 100 99.4 100 99.6 100 100 100

Φ = 10 100 100 98.1 99.9 98 99.8 100 100

100 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 99.8 99.9 99.9 100 100 100

Φ = 3 100 100 99.4 100 99.7 100 100 100

Φ = 10 100 100 97.2 100 97.9 99.9 100 100

µ= 10 060 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 100 100 100 100 100 100

Φ = 3 100 100 100 100 100 100 100 100

Φ = 10 100 100 100 100 100 100 100 100

100 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 100 100 100 100 100 100

Φ = 3 100 100 100 100 100 100 100 100

Φ = 10 100 100 100 100 100 100 100 100
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Abstract

We consider estimation techniques from dual frame surveys in the case of estimation of propor-

tions when the variable of interest has multinomial outcomes. We propose to describe the joint

distribution of the class indicators by a multinomial logistic model. Logistic generalized regression

estimators and model calibration estimators are introduced for class frequencies in a population.

Theoretical asymptotic properties of the proposed estimators are shown and discussed. Monte

Carlo experiments are also carried out to compare the efficiency of the proposed procedures

for finite size samples and in the presence of different sets of auxiliary variables. The simulation

studies indicate that the multinomial logistic formulation yields better results than the classical es-

timators that implicitly assume individual linear models for the variables. The proposed methods

are also applied in an attitude survey.
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1. Introduction

Sampling theory for finite populations usually assumes the existence of one sampling

frame containing all population units. Then, a probability sample is drawn according

to a sampling design and information collected is used for estimation and inference

purposes. To ensure quality of the results obtained, the sampling frame must contain

every single unit of population of interest (that is, it must be complete) and it must be

updated as well. Otherwise, estimates could be affected by a serious bias due to the non-

representativeness of the frame and, therefore, of the selected sample. Unfortunately,
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this is not an easy task: populations are constantly changing, with new units entering

and exiting the population frequently, so getting a good sampling frame can be difficult.

The dual frame approach tries to solve the aforementioned problems. This approach

assumes that two frames are available for sampling and that, overall, they cover the en-

tire target population. A sample is selected from each frame using a, possibly different,

sampling design. Much attention has been devoted to the introduction of different ways

of combining estimates coming from the different frames – see the seminal papers by

Hartley (1962), Fuller and Burmeister (1972), Bankier (1986) and Kalton and Ander-

son (1986). However, these techniques were originally proposed to estimate means and

totals of quantitative variables, and although their extension to the estimation of pro-

portions in multinomial response variables is possible, it requires further investigation.

Questionnaire items with multinomial outcomes are quite common in public opinion

research, marketing research, and official surveys: estimating the proportion of voters

in favour of each political party, based on a political opinion survey, is just one practi-

cal example of this procedure. Items where respondents must select one in a series of

options can be modeled by a multinomial distribution. Lehtonen and Veijanen (1998)

present estimators for a proportion which use logistic regression.

This paper focuses on the estimation of proportions for multinomial response vari-

ables when data come from two sampling frames. The proposed approach is motivated

by a study on immigration. After describing the survey of opinions and attitudes of the

Andalusian population regarding immigration, in Section 2, alternative estimators for

the proportions are proposed following different approaches and their main theoretical

properties are studied. A simulation study is also carried out to study their finite size

sample properties. The results from the application to this dual frame attitude survey are

then presented in Section 9.

2. Study background: the 2013 survey on opinions and attitudes of

the Andalusian population regarding immigration

The 2013 survey on opinions and attitudes of the Andalusian population regarding im-

migration (OPIA) is a population-based survey conducted by the Instituto de Estudios

Sociales Avanzados (IESA), a public scientific research institute for social sciences. The

aim of the survey is to reflect the opinion of the Andalusian population with regard to

various aspects of immigration and refugee policies in Spain and towards immigrants

as a group. This survey is based on telephone interviews on a sample of adults drawn

from both landline and mobile phone frames. Taking into account the time and budget

available, 2402 interviews were performed by professional interviewers. The number

of interviews to be conducted via landline and via mobile phone was determined by

calculating the optimal proportion (in the sense of minimum variance) for each frame,

taking into account costs and the percentage of possession of each type of device (fol-

lowing Hartley (1962)). As a result, final sample sizes were 1919 for landline and 483
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Table 1: Sample sizes for the OPIA survey. Landline and Mobile in the columns refer

to the frame the interview comes from, while in the rows, they refer to the domain

in which the units actually reside (type of user).

Landline Mobile

Domain Sample Sample Total

Both 1 727 237 1 964

Mobile 246 246

Landline 192 192

Total 1 919 483 2 402

for mobile. Interviews were carried out by the Statistics and Surveys sections of IESA

from April, 22 to May, 13, 2013, using Computer Assisted Telephone Interviewing

(CATI) data input techniques. Sample sizes are reported in Table 1. The landline sample

was also stratified by provinces in the region of Andalusia, as shown in Table 2. Cell-

phone interviews were carried out with no control over the distribution by provinces ow-

ing to the difficulty of determining the location of this type of telephone. Hence, more

interviews were performed in the most populated provinces than in the less populated

ones.

Table 2: Stratification in land-phone sample.

Province Almerı́a Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

Population(*) 353 787 767 370 508 258 558 087 308 941 423 548 872 011 1 190 918

Sample 262 210 252 256 275 263 207 194

(*) Those estimates can be found on the INE website: http://www.ine.es/

At the time of data collection, frame sizes of landline and mobile were 4 982 920 and

5 707 655, respectively, and the total population size was 6 350 916 (source ICT-H 2012,

Survey on the Equipment and Use of Information and Communication Technologies in

Households, INE, National Statistical Institute, Spain). Auxiliary information about the

user’s sex and age is also available from the ICT-H 2012 survey. The total number of

individuals in each domain (landline, mobile and both users) for every possible com-

bination of values of the auxiliary variables is therefore known. The information about

these auxiliary variables is displayed in Table 3.

One of the most important response variables in this study is related to the “attitude

towards immigration”. The variable is the answer to the following question: And in

relation to the number of immigrants currently living in Andalusia, do you think there

are ...?: Too many, A reasonable number, Too few, No reply. In the following sections

we review approaches available in the literature to address the issue of estimating the

distribution of a multiple choice type of variable in the population using a dual frame

survey. We then illustrate our proposal to fully account for the nature of the response

variable and the auxiliary information available.
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Table 3: Population data for variables sex and age.

Both Landline Mobile Total

Males

18 - 29 428 750 0 188 172 616 922

30 - 44 724 435 4 259 298 416 1027 110

45 - 59 603 338 59 385 135 981 798 704

≥ 60 396 626 206 410 94 729 697 765

Females

18 - 29 480 151 0 115 472 595 623

30 - 44 658 984 17 673 289 106 965 763

45 - 59 601 478 39 362 141 553 782 393

≥ 60 445 897 316 172 104 567 866 636

(*) Source: Survey of Information Technologies in Households (INE)

3. Existing approaches to estimation of class frequencies

in dual frame surveys

We employ the notation considered in Rao and Wu (2010). Let U denote a finite popu-

lation with N units, U = {1, . . . ,k, . . . ,N} and let A and B be two sampling-frames. Let

A be the set of population units in frame A and B the set of population units in frame

B. The population of interest, U , may be divided into three mutually exclusive domains,

a = A ∩Bc,b = A c ∩B and ab = A ∩B. Because the population units in the overlap

domain ab can be sampled in either survey or both surveys, it is convenient to create a

duplicate domain ba = B∩A , which is identical to ab = A ∩B, to denote the domain

in the overlapping area coming from frame B. Let N, NA, NB, Na, Nb, Nab, Nba be the

number of population units in U , A, B, a, b, ab, ba, respectively. We assume that NA,

NB and Nab are known, so the population size N = NA +NB −Nab is also known. This is

also the situation in our motivating dataset.

We consider the estimation of class frequencies of a discrete response variable. As-

sume that we collect data from respondents who provide a single choice from a list

of alternatives. We code these alternatives 1,2, . . . ,m. Therefore, consider a discrete m-

valued survey variable y. The objective is to estimate the frequency distribution of y in

the population U . To estimate this frequency distribution, we define a class of indicators

zi (i = 1, . . . ,m) such that, for each unit k ∈ U , zki = 1 if yk = i and zki = 0 otherwise.

Our problem thus, is to estimate the proportions Pi = N−1
∑

k∈U zki, for i = 1,2, . . . ,m.

These proportions are such that

Pi = N−1(Zai +ηZabi +(1−η)Zbai +Zbi), (1)

where 0≤ η≤ 1 and Zai =
∑

k∈a zki, Zabi =
∑

k∈ab zki, Zbai =
∑

k∈ba zki and Zbi =
∑

k∈b zki.

Two probability samples sA and sB are drawn independently from frame A and frame

B of sizes nA and nB, respectively. Each design induces first-order inclusion probabilities
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πAk and πBk, respectively, and sampling weights dAk = 1/πAk and dBk = 1/πBk. The

sample sA can be post-stratified as sA = sa ∪ sab, where sa = sA ∩a and sab = sA ∩ (ab).

Similarly, sB = sb ∪ sba, where sb = sB ∩b and sba = sB ∩ (ba). Note that sab and sba are

both from the same domain ab, but sab is part of the frame A sample and sba is part of the

frame B sample. Then, assuming that duplicated units (i.e. sA ∩ sB) cannot be identified

and that this event has a negligible chance to happen, we let s = sA ∪ sB. Note that this

is a reasonable assumption in the OPIA survey at hand.

The Hartley (1962) estimator of Pi, for i = 1,2, . . . ,m, is given by

P̂Hi(η) = N−1(Ẑai +ηẐabi +(1−η)Ẑbai + Ẑbi), (2)

where Ẑai =
∑

k∈sa
dAkzki is the expansion estimator for the population count of category

i in domain a and similarly for the other domains. If we let

d◦
k =















dAk if k ∈ sa

ηdAk if k ∈ sab

(1−η)dBk if k ∈ sba

dBk if k ∈ sb

, (3)

then P̂Hi(η) = N−1(
∑

k∈sA
d◦

k zki+
∑

k∈sB
d◦

k zki) = N−1(
∑

k∈s d◦
k zki). Since the population

count in each domain is estimated by its expansion estimator, P̂Hi(η) is an unbiased

estimator of Pi for a given η.

Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by incorpo-

rating additional information regarding estimation of the overlap domain. The resulting

estimator is:

P̂FBi(β1,β2) = N−1(Ẑai +β1Ẑabi +(1−β1)Ẑbai + Ẑbi +β2(N̂ab − N̂ba)) (4)

where N̂ab =
∑

k∈sab
dAk and N̂ba =

∑

k∈sba
dBk. Coefficients β1 and β2 are selected to

minimize V (P̂FBi(β1,β2)). In this case, and as with Hartley’s estimator, a new set of

weights must be calculated for each response variable. This leads to possible inconsis-

tencies among the estimated proportions, which is particularly relevant when dealing

with multinomial outcomes. In addition, optimal values depend on covariances among

Horvitz-Thompson estimators, which may be difficult to compute in practice and, fi-

nally, it is also possible to obtain values of β1 outside the range [0,1].

Skinner and Rao (1996) propose a modification of the estimator proposed by Fuller

and Burmeister (1972) for simple random sampling to handle complex designs. They in-

troduce a pseudo maximum likelihood (PML) estimator that does not achieve optimality

like the FB estimator, but it can be written as a linear combination of the observations

and the same set of weights can be used for all variables of interest:
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P̂PMLi(θ) = N−1

(

NA − N̂PML
ab (θ)

N̂a

Ẑai +
N̂PML

ab (θ)

N̂ab(θ)
Ẑabi(θ)+

NB − N̂PML
ab (θ)

N̂b

Ẑbi

)

(5)

where Ẑabi(θ) = θẐabi + (1 − θ)Ẑbai, N̂ab(θ) = θN̂ab + (1 − θ)N̂ba and N̂PML
ab (θ) is the

smallest root of the quadratic equation

[θ/NB +(1−θ)/NA]x
2 −
[

1+θN̂ab/NB +(1−θ)N̂ba/NA

]

x+ N̂ab = 0.

Recently, Rao and Wu (2010) extended the Pseudo-Empirical-Likelihood approach

(PEL) proposed by Wu and Rao (2006) from one-frame surveys to dual-frame surveys

following a stratification approach. In particular,

P̂PELi(θ) = (Na/N) ˆ̄Zaip +θ(Nab/N) ˆ̄Zabip +(1−θ)(Nba/N) ˆ̄Zbaip +(Nb/N) ˆ̄Zbip, (6)

where θ ∈ (0,1) is a fixed constant to be specified and ˆ̄Zaip =
∑

k∈sa
p̂akzki,

ˆ̄Zbip =
∑

k∈sb
p̂bkzki and ˆ̄Zabip =

∑

k∈sab
p̂abkzki =

ˆ̄Zbaip. The p-weights maximize the pseudo em-

pirical likelihood and verify
∑

k∈sa
p̂ak = 1,

∑

k∈sab
p̂abk = 1,

∑

k∈sba
p̂bak = 1,

∑

k∈sb
p̂bk =

1, and the additional constraint induced by the common domain mean ˆ̄Zabip =
ˆ̄Zbaip (see

Rao and Wu (2010) for more details). Note that (6) can be rewritten as:

P̂PELi = (Na/N) ˆ̄Zaip +(Nab/N) ˆ̄Zabip +(Nb/N) ˆ̄Zbip, (7)

so the estimator does not depend on explicitly on θ and its value only affects the estima-

tor ˆ̄Zabip for the population mean of the overlapping domain.

Ranalli et al. (2015) used calibration procedures for estimation from dual frame

sampling assuming that some kind of auxiliary information is available. For example,

assuming that there are p auxiliary variables, xk = (x1k, ...,xpk) is the value taken by

such auxiliary variables on unit k. It is assumed that the vector of population totals

of the auxiliary variables, tx =
∑

k∈U xk is also known. In this context, the dual frame

calibration estimator can be defined as follows,

P̂CalDFi = N−1(
∑

k∈s

dDF
k zki) (8)

where weights dDF
k are chosen to be as close as possible to basic design weights and,

at the same time, satisfy benchmark constraints on the auxiliary variables, i.e. they are

such that

min
dDF

k

∑

k∈s

G(dDF
k ,d◦

k ), subject to
∑

k∈s

dDF
k xk = tx,

with G(·, ·) a given distance measure.
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When inclusion probabilities in domain ab are known for both frames, and not just

for the frame from which the unit is selected, single-frame methods (Bankier (1986),

Kalton and Anderson (1986)), which combine the observations into a single dataset and

adjust the weights in the intersection domain for multiplicity, can also be used. To adjust

for multiplicity, the weights are defined as follows for all units in frame A and in frame

B,

d̃k =







dAk if k ∈ a

(1/dAk +1/dBk)
−1 if k ∈ ab

dBk if k ∈ b

.

In this context, BKA single frame estimator (Bankier (1986) and Kalton and Anderson

(1986)) is given by

P̂BKAi = N−1





∑

k∈sA

d̃kzki +
∑

k∈sB

d̃kzki



= N−1

(

∑

k∈s

d̃kzki

)

. (9)

Single frame weights are the same for all response variables, and so estimators are in-

ternally consistent.

A calibration estimator under the single-frame approach can be defined as follows:

P̂CalSFi = N−1

(

∑

k∈s

dSF
k zki

)

(10)

with weights dSF
k verifying that min

∑

k∈s G(dSF
k , d̃k) subject to

∑

k∈s dSF
k xk = tx.

The single-frame approach requires the knowledge of the design weight of a unit

for both frames, not just for the one in which the unit was selected. Given this infor-

mation, multiplicity can be adjusted for using sampling weights only. Therefore, unlike

the dual frame methods, they do not require calculation of η. Single-frame estimators

are usually more efficient than dual-frame estimators, and this can be explained by the

extra-information they incorporate in the estimation process. The estimators presented

in this Section can be computed using the R-package Frames2 (Arcos et al., 2015).

4. Estimation of class frequencies using multinomial

logistic regression

Auxiliary information is often available in survey sampling. This information, which

may come from past censuses or from other administrative sources, can be used to obtain

more accurate estimators. Then, other than the values of the variables of interest and of
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the auxiliary variables for k ∈ s, assume we also know the distribution or at least some

summary statistics of the auxiliary variables in the population. We consider that the

population under study y = (y1, ...,yN)
T is the determination of a set of super-population

random variables Y = (Y1, ...,YN)
T s.t.

µki = P(Yk = i|xk) = E(Zki|xk) =
exp(xT

kβββi)
∑

r=1,...,m exp(xT

kβββr)
, i = 1, . . . ,m,

that is, we use the multinomial logistic model to relate y and x. Let βββ be the parameter

vector (βββ
T

1, . . . ,βββ
T

m)
T. In the following sections we introduce new estimators for the pop-

ulation proportions Pi. To this end, as a first step, we need to consider estimation of the

superpopulation parameter βββ using the sample s.

4.1. Case I: The same set of auxiliary variables is available
for all population units

Suppose that for each unit in the population we have information about one vector of

auxiliary variables x. In this case, for each unit k ∈ U we know the value of xk. In

addition, for each unit k ∈ s, we observe the value of the main variable yk and we denote

by (zk1,zk2, ...,zkm) the multinomial trial observed for this unit k.

We can estimate βββ by maximizing the π-weighted log-likelihood (Godambe and

Thompson (1986), Särndal et al. (1992)) given by

ℓd◦(βββ) =
∑

i=1,...,m





∑

k∈sA

d◦
k zki lnµki +

∑

k∈sB

d◦
k zki lnµki



 . (11)

This approach is usually motivated by first defining a census-level parameter βββU ,

obtained by maximizing the likelihood over all units in the population, i.e. ℓU(βββ) =
∑

i=1,...,m

∑

k∈U zki lnµki. Then, ̂βββ◦
obtained using the the π-weighted likelihood (11) is

its design based estimate. Computing ̂βββ◦
usually requires numerical procedures, and

Fisher scoring or Newton-Raphson often work rather well. Most statistical packages

include a multinomial logit procedure that can handle weights.

Given the estimate ̂βββ◦
of βββ, we consider the following auxiliary variable

p◦ki = µ̂◦
ki =

exp(xT

k
̂βββ◦

i )
∑

r=1,...,m exp(xT

k
̂βββ◦

r)
. (12)

Please note that these p values are different from those involved in the definition of

estimator (6). Since the vector xk is known for all units of the population U , the values
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p◦ki are available for all k ∈U and we propose to use such values to define a new estimator

for Pi,

̂PDW
MLi = N−1

(

∑

k∈U

p◦ki +
∑

k∈sA

d◦
k (zki − p◦ki)+

∑

k∈sB

d◦
k (zki − p◦ki)

)

(13)

= N−1

(

∑

k∈U

p◦ki +
∑

k∈s

d◦
k (zki − p◦ki)

)

.

We observe that this estimator takes the same model-assisted form as the MLGREG

estimator proposed in Lehtonen and Veijanen (1998), but here it is adjusted to account

for the dual frame sampling setting. The subscript ML stands for Multinomial-Logistic

and the superscript DW stands Dual frame setting and auxiliary information available

from the Whole population.

Note that we cannot compute
∑

k∈U p◦ki in (13) without knowing xk for each k ∈ U ,

i.e. we need the value of the auxiliary variables for each individual in the population.

This assumption can be quite restrictive; nonetheless, it can be relaxed. For example, if

we have two discrete or categorical variables, we only need the population counts in the

two-way contingency table. In human populations, sizes of certain demographic groups

are known and are used often as auxiliary information. This is also the case in the OPIA

survey and this information can be retrieved from the last column in Table 3.

An important way to incorporate available auxiliary information is given by calibra-

tion estimation (Deville and Särndal (1992)), that seeks for new weights that are close

(in some sense) to the basic design weights and that, at the same time, match benchmark

constraints on auxiliary information. We have reviewed in the previous section extension

of linear calibration to the dual frame setting. Here, using the idea of model calibra-

tion introduced by Wu and Sitter (2001a), we propose the following model calibration

estimator (the subscript MLC stands for Multinomial-Logistic and Calibration, and the

superscript DW stands Dual frame setting and auxiliary information available from the

Whole population), given by

̂PDW
MLCi = N−1(

∑

k∈sA

w◦
kzki +

∑

k∈sB

w◦
kzki) = N−1(

∑

k∈s

w◦
kzki),

where w◦
k minimizes

∑

k∈sA
G(w◦

k ,d
◦
k ) +

∑

k∈sB
G(w◦

k ,d
◦
k ) =

∑

k∈s G(w◦
k ,d

◦
k ) for a dis-

tance measure G(·, ·) as those considered in Deville and Särndal (1992), subject to:

∑

k∈s

w◦
k p◦ki =

∑

k∈U

p◦ki,
∑

k∈sa

w◦
k = Na,

∑

k∈sb

w◦
k = Nb,
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∑

k∈sab

w◦
k = ηNab and

∑

k∈sba

w◦
k = (1−η)Nab.

Suppose, now, that for each unit in the population inclusion probabilities in domain

ab are known for both frames, and not just for the frame from which the unit is selected.

In this situation, the single-frame approach can also be used to propose new multinomial

logistic estimators. First, we calculate β̃ββ by maximizing the π-weighted log-likelihood

given by

ℓd̃(βββ) =
∑

i=1,...,m

∑

k∈s

d̃kzki lnµki. (14)

We use the new auxiliary variable p̃ki = µ̃ki =
exp(xT

kβ̃ββi)
∑

r=1,...,m exp(xT

kβ̃ββr)
to define a

new estimator (the subscript ML stands for Multinomial-Logistic and the superscript

SW stands Single frame setting and auxiliary information available from the Whole

population):

̂PSW
MLi = N−1

(

∑

k∈U

p̃ki +
∑

k∈sA

d̃k(zki − p̃ki)+
∑

k∈sB

d̃k(zki − p̃ki)

)

(15)

= N−1

(

∑

k∈U

p̃ki +
∑

k∈s

d̃k(zki − p̃ki)

)

.

Note that d̃k weights are used in the formulation of the estimator (15) and also in the

likelihood function (14).

Model calibration can be also used to define a single-frame estimator (the subscript

MLC stands for Multinomial-Logistic and Calibration, and the superscript SW stands

Single frame setting and auxiliary information available from the Whole population):

̂PSW
MLCi = N−1(

∑

k∈sA

w̃kzki +
∑

k∈sB

w̃kzki) = N−1(
∑

k∈s

w̃kzki),

where w̃k minimizes
∑

k∈sA
G(w̃k, d̃k)+

∑

k∈sB
G(w̃k, d̃k) =

∑

k∈s G(w̃k, d̃k) for a distance

measure G(·, ·) satisfying the usual conditions specified in the calibration paradigm

subject to:

∑

k∈s

w̃k p̃ki =
∑

k∈U

p̃ki,
∑

k∈sa

w̃k = Na,
∑

k∈sb

w̃k = Nb and
∑

k∈sab
⋃

sba

w̃k = Nab.
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Note that when inclusion probabilities are known for both frames, it is possible to cal-

culate single and dual frame type estimators.

4.2. Case II: Two different sets of auxiliary variables are available
according the frame considered

Now we consider a different situation: the auxiliary information is available separately

in each frame. In this case, for each unit k ∈ A we have an auxiliary vector xAk and

for each unit k ∈ B we have another auxiliary vector xBk where the components of xA

and xB can be different. Indeed in the OPIA survey the two sets of auxiliary variables

coincide. Nonetheless, we will leave the treatment general and provide two proposals

based on the dual frame approach to handle this situation as well.

In this case, we can use the available auxiliary information to fit a multinomial logis-

tic model separately in each frame. For each k ∈A , using data from sA we can compute

pA
ki =

exp(xT

Ak
̂βββ

A

i )
∑

r=1,...,m exp(xT

Ak
̂βββ

A

r )
(16)

where we estimate βββA by maximizing ℓdA
(βββA) =

∑

i=1,...,m

∑

k∈sA
dAkzki lnµki. Similarly

we obtain pB
ki for k ∈ B, and define for each i = 1, ...,m the following regression esti-

mator:

̂PDF
MLi = N−1

(

∑

a

pA
ki +η

∑

ab

pA
ki +(1−η)

∑

ba

pB
ki +

∑

b

pB
ki+

+
∑

sa

(zki − pA
ki)dAk +η

∑

sab

(zki − pA
ki)dAk+

+(1−η)
∑

sba

(zki − pB
ki)dBk +

∑

sb

(zki − pB
ki)dBk



 .

As in the previous section, the subscript ML stands for Multinomial-Logistic, while the

superscript DF stands now for Dual frame setting and auxiliary information available

from the Frames. To compute ̂PDF
MLi we only need to know the total number of individuals

in each domain (a, b and ab) for every possible combination of values of the auxiliary

variables in the cases where discrete variables have been used as auxiliary information.

In the OPIA survey this information is obtained from Table 3.

A calibration estimator in this setting can be defined under the dual frame approach

as follows,

̂PDF
MLCi = N−1(

∑

k∈sA

w⋆
kzki +

∑

k∈sB

w⋆
kzki) = N−1(

∑

k∈s

w⋆
kzki), (17)
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where the subscript MLC stands for Multinomial-Logistic and Calibration, and the su-

perscript DF stands Dual frame setting and auxiliary information available from the

Frames. Weights w⋆
k are such that

min
∑

k∈sA

G(w⋆
k ,dAk)+

∑

k∈sB

G(w⋆
k ,dBk) s.t.

∑

k∈sA

w⋆
k pA

ki =
∑

k∈a

pA
ki +η

∑

k∈ab

pA
ki,

∑

k∈sB

w⋆
k pB

ki = (1−η)
∑

k∈ba

pB
ki +

∑

k∈b

pB
ki,

∑

k∈sa

w⋆
k = Na,

∑

k∈sb

w⋆
k = Nb,

∑

k∈sab

w⋆
k = ηNab and

∑

k∈sba

w⋆
k = (1−η)Nab,

where pA
ki are the estimated probabilities defined in (16) and pB

ki are their analogous in

frame B.

5. Properties of proposed estimators

To show the asymptotic properties of the proposed estimators P̂DW
ML , P̂DW

MLC, P̂SW
ML , P̂SW

MLC,

P̂DF
ML, P̂DF

MLC, we adapt and place ourselves in the asymptotic framework of Isaki and

Fuller (1982), in which the dual-frame finite population U and the sampling designs

pA(·) and pB(·) are embedded into a sequence of such populations and designs indexed

by N, {UN , pAN
(·), pBN

(·)}, with N → ∞. We will assume therefore, that NAN
and NBN

tend to infinity and that also nAN
and nBN

tend to infinity as N → ∞. We will further

assume that Na > 0 and Nb > 0. In addition nAN
/nN → c1 ∈ (0,1), where nN = nAN

+nBN
,

Na/NA → c2 ∈ (0,1), Nb/NB → c3 ∈ (0,1) as N → ∞. Subscript N may be dropped for

ease of notation, although all limiting processes are understood as N → ∞. Stochastic

orders Op(·) and op(·) are with respect to the aforementioned sequences of designs. The

constant η ∈ (0,1) is kept fixed over repeated sampling.

We first discuss the theoretical properties of P̂DW
MLC and then move to the other esti-

mators, because these can be dealt with using slight modifications of this more general

setting. Let µ(xk,θθθi) = exp(xT

kθθθi)/
∑

r=1,...,m exp(xT

kθθθr), for i= 1, . . . ,m. In order to prove

our results, we make the following technical assumptions.

A1 Let βββU be census level parameter estimate obtained by maximizing the likelihood

ℓU(βββ) =
∑

i=1,...,m

∑

k∈U zki lnµki. Assume that βββ = limN→∞βββU exists and that β̂ββ◦ =

βββU +Op(n
−1/2
N ).
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A2 For each xk, |∂µ(xk,θθθi)/∂θθθi| ≤ f1(xk,βββi) for θθθi in a neighborhood of βββi and f1(xk,βββi)=

O(1), for i = 1, . . . ,m.

A3 For each xk, max j, j′ |∂ 2µ(xk,θθθi)/∂θ jθ j′ | ≤ f2(xk,βββi) for θθθi in a neighborhood of βββi

and f2(xk,βββi) = O(1), for i = 1, . . . ,m.

A4 The auxiliary variables x have bounded fourth moments.

A5 For any study variable ξ with bounded fourth moment, the sampling designs are such

that for the normalized Hartley estimators of ξ̄ = N−1
∑

k∈U ξk a central limit theorem

holds, i.e.

√
nN(

ˆ̄ξH − ξ̄)→L N(0,V ( ˆ̄ξH)),

where ˆ̄ξH = N−1
∑

k∈s d◦
k ξk and V ( ˆ̄ξH) = V ( ˆ̄ξa + η ˆ̄ξab)+V ((1− η) ˆ̄ξba +

ˆ̄ξb). The latter

can be consistently estimated by v( ˆ̄ξH) = v( ˆ̄ξa +η ˆ̄ξab)+ v((1−η) ˆ̄ξba +
ˆ̄ξb).

Assumption A1 requires consistency of parameter estimates defined by weighted es-

timating equations to their census level counterpart. See e.g. Binder (1983). We will first

state the properties of P̂DW
MLC for the Euclidean distance. In fact, in this case an analytic

solution to the constrained distance minimization problem exists and is given by

̂PGDW
MLCi = N−1

{

∑

k∈s

d◦
k zki +

(

∑

k∈U

p̃◦ki −
∑

k∈s

d◦
k p̃◦ki

)T

α̂αα◦
i

}

,

where p̃◦ki = (δk(a),δk(ab),δk(ba),δk(b), p◦ki)
T is a vector that contains p◦ki defined in

(12) and a set of indicator variables – δk(a),δk(ab),δk(ba),δk(b) – implicitly used in the

benchmark constraints. In particular, δk(a) takes value 1 if unit k ∈U belongs to domain

a and 0 otherwise. Then
∑

k∈U δk(a) = Na. The other indicator variables are defined

similarly. In addition, α̂αα◦
i = (

∑

k∈s d◦
k p̃◦ki p̃

◦T
ki )

−1(
∑

k∈s d◦
k p̃◦kizki), i.e. it is the vector of co-

efficients of the generalized regression of zki on p̃◦ki similar to the case of classical model

calibration for one frame only (see Wu and Sitter (2001a)). Then from calibration theory

(see Deville and Särndal (1992)), it is well known that all other calibration estimators

that use different distance functions are equivalent to ̂PGDW
MLCi , under additional regularity

conditions on the shape of the distance function itself.

Theorem 1 Under assumptions A1–A5, ̂PGDW
MLCi is design

√
nN-consistent for Pi in the

sense that

̂PGDW
MLCi −Pi = Op(n

−1/2
N ),
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and has the following asymptotic distribution

̂PGDW
MLCi −Pi

√

V∞(̂P
GDW
MLCi)

→L N(0,1)

where V∞(̂P
GDW
MLCi) = N−2V (t̂eiH) and t̂eiH =

∑

k∈s d◦
k eki is the Hartley estimator of the

population total of the census-level residuals eki = zki − µ̃µµ◦T
ki ααα

◦
i , and ααα◦

i =

= (
∑

k∈U µ̃µµ◦
kiµ̃µµ

◦T
ki )

−1(
∑

k∈U µ̃µµ◦
kizki), where µ̃µµ◦

ki is like p̃◦ki but with p◦ki replaced by its pop-

ulation counterpart

µ◦
ki =

exp(xT

kβββUi)
∑

r=1,...,m exp(xT

kβββUr)
. (18)

In addition, let êki = zki − p̃◦T
ki α̂αα

◦
i . Then, V (t̂eiH) can be consistently estimated by

v(̂PGDW
MLCi) = N−2v(t̂êiH)

= N−2
{

v
(

∑

k∈sa
dAkêki +η

∑

k∈sab
dAkêki

)

+

+ v
(

(1−η)
∑

k∈sba
dBkêki +

∑

k∈sb
dBkêki

)}

.

(19)

Proof. Using the same approach developed in Montanari and Ranalli (2005) and sim-

ilarly to Wu and Sitter (2001b), it is easy to show that by assumptions A1–A2 and

A4–A5,

N−1(
∑

k∈s

d◦
k p◦ki −

∑

k∈U

p◦ki) = Op(n
−1/2
N ),

using a first order Taylor expansion of µ(xk, β̂ββ
◦
i ) at β̂ββ◦

i = βββUi, and that α̂αα◦
i − ααα◦

i =

Op(n
−1/2
N ) because α̂αα◦

i is just a function of population means of variables with finite

fourth moments, that can be consistently estimated by their Hartley counterparts. Using

A1–A5 and a second order Taylor expansion of µ(xk, β̂ββ
◦
i ) at β̂ββ◦

i = βββUi,

N−1(
∑

k∈s

d◦
k p◦ki −

∑

k∈U

p◦ki) = N−1(
∑

k∈s

d◦
kµ

◦
ki −

∑

k∈U

µ◦
ki)+Op(n

−1
N ).

Then,

̂PGDW
MLCi = N−1

∑

k∈s

d◦
k zki +N−1

(

∑

k∈U

µ̃µµ◦
ki −

∑

k∈s

d◦
k µ̃µµ

◦
ki

)T

ααα◦
i +Op(n

−1
N )

and the first part of the result is proven.
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Now, from assumption A5, v(t̂eiH) =V (t̂eiH)+op(n
−1
N ). Since p◦ki = µ◦

ki+Op(n
−1/2
N ),

êki = eki +Op(n
−1/2
N ) and v(t̂êiH) = v(t̂eiH)+op(n

−3/2
N ), then the argument follows.

Note that, given the asymptotic equivalence of calibration and generalized regression

estimation, analytic variance estimator in (19) can be used to estimate the variance of

P̂DW
MLC also when using different distance functions.

Now, P̂DW
ML can be seen as a particular case of ̂PGDF

MLCi in which p̃◦ki includes only p◦ki,

and α̂αα◦
i is only a scalar and is set exactly equal to 1. Therefore, P̂DW

ML is consistent for

Pi and asymptotically normal with V∞(P̂
DW
ML ) = N−2V (t̂eiH), where census-level residuals

are given here by eki = zki−µ◦
ki. Variance estimation can again be conducted by plugging

sample level estimated residuals in (19) given in this case by êki = zki − p◦ki.

Estimator P̂DF
MLC is in all similar to P̂DW

MLC, the only difference is in the fact that coeffi-

cient estimates for the multinomial model are obtained separately from the two frames

and, therefore, we have two separate model calibration constraints. In this case the vec-

tor of auxiliary variables used in the calibration procedure can be written as p̃
A,B
ki and

contains pA
ki, pB

ki and the other indicator variables used in the benchmark constraints: for

example p̃
A,B
ki = (δk(a),δk(ab),δk(ba),δk(b), [δk(a)+ δk(ab)]pA

ki, [δk(b)+ δk(ba)]pB
ki)

T.

To encompass this situation, it is enough to change assumption A1 accordingly and

assume that the two sets of population parameters βββA and βββB are consistently estimated

by β̂ββ
A

and β̂ββ
B

and that these samples fits and the finite population fits share a common

finite limit. Then, it is easy to show that P̂DF
MLC is design consistent and the variance of its

asymptotic normal distribution can again be written in terms of the variance of the pop-

ulation total of residuals. In particular, V∞(̂P
GDF
MLCi) = N−2V (t̂eiH) and t̂eiH =

∑

k∈s d◦
k eki is

the Hartley estimator of the population total of the census-level residuals given here by

eki = zki−(µ̃µµA,B)T

kiαααi, where µ̃µµA,B
ki is like p̃

A,B
ki but with pA

ki and pB
ki replaced by their popu-

lation counterparts, similarly to (18). Analytic variance estimation can be conducted by

using sample level estimates of the residuals. In particular, by using êki = zki − (p̃
A,B
ki )Tα̂ααi

in formula (19).

Now, similarly as for P̂DW
ML and P̂DW

MLC, P̂DF
ML can be seen as a particular case of ̂PGDF

MLCi in

which p̃◦ki includes only p
A,B
ki , with p

A,B
ki = pA

ki if k ∈ sA and p
A,B
ki = pB

ki if k ∈ sB, and α̂αα◦
i is

again a scalar here and its value is set exactly equal to 1. Therefore, it is consistent for

Pi and asymptotically normal with V∞(P̂
DF
ML) = N−2V (t̂eiH), where census-level residuals

are given here by eki = zki −µA,B
ki , and µA,B

ki is the census level fit corresponding to p
A,B
ki .

Variance estimation can again be conducted by using sample level estimated residuals

in equation (19) given by êki = zki − pA
ki if k ∈ sA and êki = zki − pB

ki if k ∈ sB.

The calibration estimator P̂SW
MLC is very similar to P̂DW

MLC, the only differences are (i)

in the set of basic design weights employed in the calibration procedure: for P̂SW
MLC we

use d̃k, and (ii) p◦ki is replaced by p̃ki in the definition of the vector p̃◦ki. Once these

changes are incorporated across assumption A1, and assumption A5 reflects the fact that

we are now dealing with Bankier-Kalton-Anderson type estimators, instead of Hartley

estimators, then all the results can be proven. The variance of the asymptotic distribution
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of P̂SW
MLC is given by V∞(̂P

GSW
MLCi) = N−2V (t̂ei) and t̂ei =

∑

k∈s d̃keki is the single-frame

estimator of the population total of the census-level residuals eki = zki− µ̃µµT

kiαααi, and where

µ̃µµki is like p̃ki but with pki replaced by its population counterpart

µki =
exp(xT

kβββUi)
∑

r=1,...,m exp(xT

kβββUr)
.

In addition, let êki = zki − p̃T
kiα̂ααi. Then, V (t̂ei) can be consistently estimated so that

v(̂PGSW
MLCi) = N−2v(t̂êi).

6. Selection of the optimal weight

In the previous sections we have considered a fixed value 0 < η < 1. Selection of pa-

rameter η is an important issue in dual frame estimators, because the efficiency of the

estimator relies heavily on this value (see Lohr (2009) for a review). Hartley (1962) pro-

posed choosing η to minimize the variance of the estimator in (2). Using the same idea,

we can derive the optimal value of η for each proposed multinomial logistic estimator by

minimizing its asymptotic variance with respect to η. However, as the optimal value for

the Hartley estimator, such optimal values would depend on unknown population quan-

tities, such as variances and covariances that, when estimated from sample data, would

make the final estimator depend on the values of the variable of interest. This implies a

need to recompute an optimal η for each value i = 1, ...,m and for each variable of inter-

est y, which will be inconvenient in practice for statistical agencies conducting surveys

with several variables, other than introducing a lack in coherence among estimates that

is particularly relevant when dealing with multinomial outcomes (namely,
∑

i
̂Pi can be

6= 1).

Skinner and Rao (1996) suggested choosing

ηSR =
NaNBV (N̂ba)

NaNBV (N̂ba)+NbNAV (N̂ab)
,

or alternatively

ηSR2 =
V (N̂ba)

V (N̂ba)+V (N̂ab)
,

being V (N̂ab) and V (N̂ba) the variances of the estimated sizes of domain ab based on

samples sA and sB respectively. These two proposals provide a value for η that does not

depend on the sample values of y. In this way, resulting estimator uses the same η for

all variables of interest, even if variances V (N̂ab) and V (N̂ba) are unknown and must be

estimated from the data.
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Brick et al. (2006) propose using the simple value η = 1/2 in their dual-frame study

in which frame A was a landline telephone frame and frame B was a cell-phone frame.

For this purpose, the value of η = 1/2 is frequently recommended (see, for example,

Mecatti (2007)). Another simple choice for η is given by
NB/nB

NA/nA+NB/nB
(see Skinner and

Rao (1996) or Lohr and Rao (2000)).

7. Jackknife variance estimation

In this section we explore the possibility of using jackknife methods to estimate the

variance of the proposed estimators as an alternative to the analytic variance estimators

considered in Section 5. The jackknife approach is a common replication method for

variance estimation that can be used in complex surveys for different types of estimators

(see e.g. Wolter (2003) for an introduction to jackknife). For the sake of brevity, in this

section all estimators are denoted by P̂i, i = 1, · · · ,m.

If we consider a non clustered and non stratified design, the jackknife estimator for

the variance of P̂i may be given by

vJ(P̂i) =V A
J +V B

J =
nA −1

nA

∑

g∈sA

(P̂A
i (g)−P

A

i )
2 +

nB −1

nB

∑

j∈sB

(P̂B
i ( j)−P

B

i )
2 (20)

where P̂A
i (g) is the value taken by estimator P̂i after dropping unit g from sA and P

A

i is

the average of P̂A
i (g) values. Each value P̂A

i (g) is computed by fitting a new model that

does not consider the g− th sample unit. P̂B
i ( j) and P

B

i are defined similarly.

In the case of a stratified design in both frames, let frame A be divided into H strata

and let stratum h has NAh observation units of which nAh are sampled. Similarly, frame

B has L strata, stratum l has NBl observation units of which nBl are sampled. Then, a

jackknife variance estimator of P̂i is given by

vst
J (P̂i) =V stA

J +V stB
J =

=

H
∑

h=1

nAh −1

nAh

∑

g∈sAh

(P̂A
i (hg)−P

Ah

i )2 +

L
∑

l=1

nBl −1

nBl

∑

j∈sBl

(P̂B
i (l j)−P

Bl

i )2, (21)

where P̂A
i (hg) is the value taken by estimator P̂i after dropping unit g of stratum h from

sample sAh, P
Ah

i is the average of these nAh values; P̂B
i (l j) and P

Bl

i are defined similarly.

In case of a non stratified design in one frame and a stratified design in the other one,

previous methods can be combined to obtain the corresponding jackknife estimator of

the variance.

Alternatively, a finite-population correction can be considered, as described in Ranalli

et al. (2015), resulting in the following jackknife variance estimators:
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vJc(P̂i) =
nA −1

nA

(1−πA)
∑

g∈sA

(P̂A
i (g)−P

A

i )
2 +

nB −1

nB

(1−πB)
∑

j∈sB

(P̂B
i ( j)−P

B

i )
2 (22)

for non stratified designs in frames, where πA = 1
nA

∑

k∈sA
πAk and similarly for πB, and

vst
Jc(P̂i) =

H
∑

h=1

nAh −1

nAh

(1−πAh)
∑

g∈sAh

(P̂A
i (hg)−P

Ah

i )2

+
L
∑

l=1

nBl −1

nBl

(1−πBl)
∑

j∈sBl

(P̂B
i (l j)−P

Bl

i )2 (23)

for a stratified design in each frame, where πAh =
1

nAh

∑

k∈sAh
πAk and similarly for πBl .

A non clustered sampling design is assumed subsequently. No new principles are

involved in the application of jackknife methodology to clustered samples. We simply

work with the ultimate cluster rather than elementary units (see e.g. Wolter (2003)).

8. Monte Carlo simulation experiments

For our simulation study we use the hsbdemo data set (http://www.ats.ucla.edu/

stat/data/hsbdemo.dta). The data set contains variables on 200 students. The out-

come variable is prog, program type, a three-level categorical variable whose categories

are academic, general, vocation. The predictor variables are social economic status,

ses, a three-level categorical variable and a mathematical score, math, a continuous

variable. We estimate a multinomial logistic regression model. We create a new data set

with 50 copies of the predictor variables ses and math and with the predicted values for

the variable prog (the category with highest probability). The simulated populations,

namely POP1, have, therefore, dimension N = 10000.

Units are randomly assigned to the two frames, A and B, according to three different

scenarios depending on the overlap domain size Nab. We first generate N normal random

numbers, εk,k = 1, . . . ,N and data is sorted by such random numbers. Then, the first Na

records of the ordered dataset are considered as the values of the domain a, the Nb

subsequent records as the values belonging to domain b and the last Nab records as the

values of the domain ab. The first scenario has a small overlap domain size Nab=1 000

and the resulting sizes of the two frames are NA=6 000 and NB=5 000. The second and the

third scenario have respectively medium and large overlap domain size. The resulting

frame sizes in the second scenario are given by NA=6 000 and NB=7 000 and the overlap

domain size is Nab=3 000, while for the third scenario we have NA=8 000, NB=7 000 and

Nab=5 000. In POP1, we compute all estimators using as auxiliary information ses and

math.

On the other hand, POP2 is built first by assigning units to the frames and second by

fitting a multinomial logistic regression model separately in each frame. In frame A, ses
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and math have been considered as auxiliary variables and in frame B the auxiliary vari-

ables are ses and write (a score in writing). To be able to fit a separated model in each

frame we consider that the units composing the overlap domain can be equally divided

into two groups, each one coming from a frame. So half of the overlap domain units are

used to fit a multinomial logistic regression model in frame A and the remaining ones

are considered when fitting the multinomial logistic model in frame B. POP2 is built

with the predicted values from the two multinomial logistic model. In this population,

we compute P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC estimators using as x-variable ses (Case I), and

P̂DF
ML and P̂DF

MLC estimators using as xA-variables ses and math and as xB-variables ses

and write (Case II).

Samples of schools from frame A are selected by means of Midzuno sampling, with

inclusion probabilities proportional to the size of the school the student belongs to.

All students in the selected schools are included in the sample. The variable cid is an

indicator of school. Samples from frame B are selected by means of simple random

sampling. For each scenario, we draw a combination of sample sizes for frame A and

frame B, as follows: nA = 180 and nB = 232.

We have two populations, three sizes of the overlap domain and different sets of

auxiliary variables.

We compute the BKA estimator in (9), for the purpose of comparison. The Pseudo

Empirical Likelihood estimator (PEL) proposed in Rao and Wu (2010) and the dual

frame and the single frame calibration estimator (P̂CalDF and P̂CalSF) proposed in Ranalli

et al. (2015) are also computed using the auxiliary information as previously mentioned

(in POP1 ses and math for both estimators and in POP2 as xA-variable ses and math and

as xB-variable ses and write for P̂CalDF estimator and as x-variable ses for P̂CalSF esti-

mator). When needed (and for comparative purposes) the value of η has been estimated

using η = v(N̂ba)/(v(N̂ab)+ v(N̂ba)) (see for example Rao and Wu (2010)) for all com-

pared estimators, where v(N̂ab) is an estimate of the variance of the Horvitz-Thompson

estimator N̂ab for the size of overlap domain, and similarly for v(N̂ba).

For each estimator, we compute the percent relative bias RB% = 100 ∗ EMC(Ŷ −
Y )/Y , the percent relative mean squared error RMSE%= 100∗EMC[(Ŷ −Y )2]/Y 2, based

on 1000 simulation runs, for each category of the main variable prog.

The percent relative biases are negligible in all cases (the results on RB are not

included for brevity), so efficiency comparisons can be based on variances. Table 4

displays the relative efficiency of proposed estimators with respect to BKA estimator.

From this table we can see that, consistently with theoretical findings, the performance

in terms of efficiency of the estimators is essentially driven by the model employed.

When the auxiliary varibles are used in a calibration process using a linear model (P̂CalSF,

P̂CalDF) or through a pseudo-empirical likelihood method (PEL), the efficiency increases

with respect to the BKA estimator, which does not use auxiliary information or any

model. As expected, a most effective situation arises when the auxiliary variables are

also used through a multinomial model (P̂DW
ML , P̂DW

MLC, P̂SW
ML , P̂DW

MLC, P̂DF
ML and P̂DF

MLC).
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Table 4: Relative efficiency (respect to the BKA estimator)

of compared estimators. POP1 and POP2.

POP1 POP2

acad. gen. voc. acad. gen. voc.

Medium

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 149.94 142.21 132.30 152.77 145.10 129.26

P̂PEL 217.89 135.87 177.26 175.94 146.75 148.75

P̂CalDF 213.91 134.83 175.14 175.03 146.84 147.59

P̂DW
ML 347.02 181.43 252.42 204.46 194.97 148.32

P̂DW
MLC 356.87 181.05 258.60 209.29 192.64 153.29

P̂SW
ML 348.12 181.25 252.44 205.63 194.71 148.82

P̂SW
MLC 358.10 180.97 258.85 210.22 192.32 153.70

P̂DF
ML 350.18 187.65 257.22 207.83 251.93 147.44

P̂DF
MLC 358.93 186.31 263.52 214.76 250.13 153.44

Small

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 155.30 137.56 140.60 152.77 142.46 137.70

P̂PEL 232.55 147.36 198.25 179.24 149.26 158.30

P̂CalDF 210.50 134.54 179.08 182.73 150.09 160.65

P̂DW
ML 331.43 163.16 247.64 165.45 146.32 157.70

P̂DW
MLC 353.76 163.06 265.66 176.59 146.83 166.11

P̂SW
ML 331.75 163.33 248.08 166.09 146.83 157.60

P̂SW
MLC 353.77 163.17 265.85 176.78 146.99 165.93

P̂DF
ML 343.94 164.70 257.75 170.24 150.15 154.31

P̂DF
MLC 365.15 163.94 275.28 184.50 150.24 164.51

Large

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 147.60 130.53 138.13 152.25 121.61 125.29

P̂PEL 193.48 124.99 173.21 163.71 142.12 149.74

P̂CalDF 192.10 125.72 170.56 165.55 153.62 161.09

P̂DW
ML 354.00 161.79 256.45 303.59 118.57 269.38

P̂DW
MLC 371.74 161.23 266.64 307.98 123.76 282.16

P̂SW
ML 356.73 161.87 257.40 302.59 119.33 269.14

P̂SW
MLC 375.21 161.38 267.54 306.81 124.75 281.93

P̂DF
ML 362.07 168.39 265.88 344.86 130.46 370.90

P̂DF
MLC 376.11 167.22 274.78 348.03 137.80 379.38
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Table 5: Length reduction (in percent, %) of proposed estimator with respect to

linear calibration estimators using the same amount of auxiliary information

(P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC have been compared with P̂CalSF and

P̂DF
ML and P̂DF

MLC have been compared with P̂CalDF).

Coverage (in percent, %) of jackknife confidence intervals. POP1.

Length reduction Cov

acad. gen. voc. acad. gen. voc.

Medium

P̂DW
ML 10.31 25.44 30.91 94.5 93.9 94.9

P̂DW
MLC 9.90 28.28 32.78 95.2 93.9 94.5

P̂SW
ML 10.59 25.73 31.18 94.8 94.1 95.0

P̂SW
MLC 9.95 28.34 32.82 95.0 93.8 94.5

P̂DF
ML 8.83 33.04 16.41 95.8 96.0 95.5

P̂DF
MLC 8.11 35.23 18.24 95.9 95.3 95.1

Small

P̂DW
ML 9.14 23.76 28.25 95.0 93.2 95.2

P̂DW
MLC 8.78 26.86 30.41 94.1 93.4 93.6

P̂SW
ML 9.43 24.04 28.52 94.5 93.5 94.0

P̂SW
MLC 8.81 26.89 30.43 94.8 92.5 94.2

P̂DF
ML 6.98 24.64 13.09 96.3 95.0 95.9

P̂DF
MLC 6.30 27.15 15.32 96.6 94.6 95.1

Large

P̂DW
ML 10.11 25.45 30.71 94.2 93.5 93.9

P̂DW
MLC 9.34 28.24 32.38 94.1 93.4 93.6

P̂SW
ML 10.64 25.94 31.14 94.5 93.5 94.0

P̂SW
MLC 9.71 28.51 32.62 94.8 92.5 94.2

P̂DF
ML 10.18 35.37 17.96 96.3 95.0 95.9

P̂DF
MLC 9.29 37.39 19.45 96.6 94.6 95.1

In general, the best results in efficiency are achieved by the P̂DF
MLC estimator and the

efficiency increases as the size of the overlap domain increases, particularly for POP2.

As a consequence of the ignorability of the frames the units belong to when modelling

the relation between the response and the auxiliary variables, there is not a relevant

difference in efficiency between estimators using a multinomial model in the whole

population and estimators using a multinomial model in each frame.

We now turn to the evaluation of the precision of the proposed estimators by means

of confidence intervals. We obtain the 95% confidence intervals based on a normal distri-

bution and the jackknife variance estimator proposed in Section 7 with finite-population

correction. Table 5 shows the average length reduction of 95% confidence intervals and
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Table 6: Relative efficiency (respect to the BKA estimator) of compared estimator

for η̂SR2 = v(N̂ba)/(v(N̂ab)+ v(N̂ba)), η̂SR = NaNBv(N̂ba)/(NbNAv(N̂ab)+NaNBv(N̂ba))

and η1/2 =
1
2 . Overlap domain size Medium.

POP1 POP2

acad. gen. voc. acad. gen. voc.

P̂DW
ML η̂SR2 347.02 181.43 252.42 204.46 194.97 148.32

η̂SR 348.45 181.32 252.88 205.14 194.69 148.71

η1/2 347.27 181.30 252.57 204.69 194.91 148.32

P̂DW
MLC η̂SR2 356.87 181.05 258.60 209.29 192.64 153.29

η̂SR 358.65 181.01 259.21 209.78 192.36 153.62

η1/2 357.11 180.91 258.76 209.48 192.54 153.26

P̂DF
ML η̂SR2 350.18 187.65 257.22 207.83 251.93 147.44

η̂SR 351.57 187.70 257.90 207.85 249.31 147.45

η1/2 350.34 187.45 257.33 208.03 251.91 147.50

P̂DF
MLC η̂SR2 358.93 186.31 263.52 214.76 250.13 153.44

η̂SR 360.76 186.46 264.35 214.57 247.50 153.26

η1/2 215.02 250.07 153.52 182.44 148.19 163.36

the empirical coverage probability over 1000 simulation runs in each category of the

main variable. The confidence interval lengths of proposed estimators have been com-

pared with the confidence interval lengths of their linear calibration counterparts using

the same amount of auxiliary information. That is, P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC have been

compared with P̂CalSF and P̂DF
ML and P̂DF

MLC have been compared with P̂CalDF.

From Table 5 we conclude that all the proposed estimators considerably reduce the

length of the confidence intervals obtained, with respect to the linear calibration estima-

tors. The empirical coverage is very close to the nominal level. It is observed that the

estimates based on the joint estimation of the parameter βββ (P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC)

have a somewhat lower coverage than the others.

Looking at the effect of the choice of η (in relative bias and relative mean squared

error), we have repeated the simulation study (for all populations and scenarios) using

alternative values for η. In particular, other than that used previously, i.e.

ηSR2 =
v(N̂ba)

v(N̂ba)+ v(N̂ab)
,

we have considered a fixed value η = 1
2

and one estimated following Skinner and Rao

(1996)

ηSR =
NaNBv(N̂ba)

NaNBv(N̂ba)+NbNAv(N̂ab)
.
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See Section 6. for details and guidelines on choosing a value for η. Table 6 shows (only

when the overlap domain size is Medium, for space reason) that there is a little effect of

these three different estimates for η on the behaviour of the considered estimators. We

can conclude that the available auxiliary information and the way in which it is included

in the estimation procedure play a much more relevant role than the choice of a value

for η.

9. Application to the survey on opinions and attitudes of the

Andalusian population regarding immigration (OPIA) 2013

To examine the performance of the proposed estimation methods in practice, we have

applied them to the dataset from the OPIA survey. The main variable in this study is

related to the “attitude towards immigration”. The variable is the answer to the following

question: And in relation to the number of immigrants currently living in Andalusia, do

you think there are ...?: Too many, A reasonable number, Too few, No reply.

We have considered the same set of auxiliary variables (sex and age) in the two

frames. To incorporate information about sex into estimation process two indicator vari-

ables (one for males and another one for females) were created. Similarly, four age

classes were established and each respondent was assigned to one of them. Correspond-

ing indicator variables were used, then, for the analysis. Necessary population informa-

tion about these variables for calculating proposed estimators is displayed in Table 3.

Note that both auxiliary variables sex and age are available from the two frames. In this

case, the population counts in the two-way contingence table are known in each domain.

Table 7 shows point and jackknife confidence estimation for proposed estimators.

Length reduction in jackknife confidence interval for each estimator regarding same

interval for BKA estimator is also displayed. In keeping with results obtained from

simulation experiments, reduction is quite significative for all estimators whatever the

category of the main variable. The calibration approach achieves most important reduc-

tions in length, with single frame calibration presenting the best results. On the other

hand, using P̂DW
ML , P̂SW

ML and P̂DF
ML estimators the length reduction is less noticeable.

Table 8 shows point estimation for proposed estimators by sex and age. Analyzing

results by gender, it is noticeable that there are more males than females thinking that

there are too many immigrants in Andalusia and that females are more reticent to answer

the question than males.

On the other hand, it is worth noting that perception that there are too many im-

migrants in Andalusia increases together with age. So, while most of the people in the

18-29 age group think that the number of immigrants in Andalusia is reasonable, most

part of people aged 45 years or over think that there are too many. The age group where

the non-response is higher is the one including people aged 60 years or over.
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Table 7: Point and 95% confidence level estimation of proportions using several

methods for Jackknife variance estimation. Length reduction (in percent, %) respect to the

BKA estimator. Main variable: “Amount of immigration”.

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Length

Estimator PROP LB UB LEN reduction

Too many

P̂DW
ML 42.75 39.76 45.74 5.98 14.33

P̂DW
MLC 41.23 38.78 43.68 4.90 29.80

P̂SW
ML 42.89 39.94 45.84 5.90 15.47

P̂SW
MLC 41.41 39.03 43.79 4.76 31.81

P̂DF
ML 42.61 39.64 45.58 5.94 14.90

P̂DF
MLC 41.16 38.67 43.65 4.98 28.65

A reasonable number

P̂DW
ML 45.24 42.27 48.20 5.93 12.28

P̂DW
MLC 46.57 44.11 49.03 4.92 27.22

P̂SW
ML 45.09 42.17 48.01 5.84 13.61

P̂SW
MLC 46.40 44.02 48.78 4.76 29.59

P̂DF
ML 45.45 42.49 48.41 5.92 12.43

P̂DF
MLC 46.68 44.17 49.18 5.01 25.89

Too few

P̂DW
ML 6.06 4.55 7.58 3.03 15.36

P̂DW
MLC 5.77 4.58 6.97 2.39 33.24

P̂SW
ML 6.05 4.56 7.54 2.98 16.76

P̂SW
MLC 5.76 4.61 6.91 2.30 35.75

P̂DF
ML 6.13 4.62 7.64 3.02 15.64

P̂DF
MLC 5.63 4.46 6.80 2.34 34.64

No reply

P̂DW
ML 5.95 4.65 7.25 2.60 12.75

P̂DW
MLC 6.43 5.27 7.58 2.31 22.48

P̂SW
ML 5.96 4.67 7.25 2.58 13.42

P̂SW
MLC 6.43 5.30 7.56 2.26 24.16

P̂DF
ML 5.80 4.51 7.10 2.59 13.09

P̂DF
MLC 6.54 5.33 7.74 2.41 19.13
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Table 8: Point estimation of proportions by sex and age. Main variable: “Amount of immigration”.

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Estimator ALL MALES FEMALES 18-29 30-44 45-59 ≥ 60

Too many

P̂DW
ML 42.75 46.46 39.15 32.46 44.29 46.03 45.14

P̂DW
MLC 41.23 43.64 38.97 30.97 42.07 43.31 46.58

P̂SW
ML 42.89 46.74 39.11 32.76 43.89 46.44 45.85

P̂SW
MLC 41.41 43.79 39.19 31.55 41.61 43.87 45.77

P̂DF
ML 42.61 44.45 39.16 31.99 41.69 43.56 48.13

P̂DF
MLC 41.16 43.55 38.96 30.01 42.14 43.28 48.56

A reasonable number

P̂DW
ML 45.24 42.31 48.10 59.82 40.71 40.72 44.47

P̂DW
MLC 46.57 44.39 48.74 61.97 44.44 42.72 43.25

P̂SW
ML 45.09 42.04 48.11 59.62 40.90 40.68 43.70

P̂SW
MLC 46.40 44.14 48.63 61.49 44.67 42.64 43.61

P̂DF
ML 45.45 44.02 48.35 60.42 43.98 42.81 42.11

P̂DF
MLC 46.68 44.59 48.78 63.21 44.46 42.56 41.65

Too few

P̂DW
ML 6.06 6.75 5.35 3.77 9.84 6.18 2.82

P̂DW
MLC 5.77 6.68 4.92 3.29 7.58 6.73 2.80

P̂SW
ML 6.05 6.64 5.47 3.79 9.89 6.12 2.83

P̂SW
MLC 5.76 6.67 4.92 3.39 7.62 6.66 2.95

P̂DF
ML 6.13 6.58 5.11 3.50 8.17 6.37 2.39

P̂DF
MLC 5.63 6.46 4.81 2.92 7.46 6.77 2.35

No reply

P̂DW
ML 5.95 4.47 7.39 3.95 5.16 7.06 7.56

P̂DW
MLC 6.43 5.28 7.37 3.76 5.91 7.24 7.37

P̂SW
ML 5.96 4.58 7.31 3.83 5.32 6.76 7.62

P̂SW
MLC 6.43 5.41 7.26 3.57 6.10 6.84 7.67

P̂DF
ML 5.80 4.95 7.38 4.09 6.15 7.25 7.36

P̂DF
MLC 6.54 5.39 7.45 3.86 5.93 7.39 7.44
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10. Conclusions

Data collected from surveys are often organized into discrete categories. Analyzing such

categorical data from a complex survey often requires specialized techniques. To im-

prove the accuracy of estimation procedures, a survey statistician often makes use of the

auxiliary data available from administrative registers and other sources.

Generalized regression is a popular design-based method used in the production of

descriptive statistics from survey data. Although the generalized regression estimator is

design-consistent regardless of the form of the assisting model, a linear model is not the

best choice for multinomial response variables. For such variables we introduce a class

of multinomial logistic generalized regression estimators when data are obtained from

samples from different frames.

We introduce a new approach to the model-assisted estimation of population class

of frequencies in dual frame surveys. We propose a class of logistic estimators based on

multinomial logistic models describing the joint distribution of the category indicators

in the total population or in each frame separately. We also consider different ways of

combining estimates coming from the two frames.

The type of sample design used in practice drives the user to choose between Dual-

Frame or Single-Frame approaches. The Single-Frame approach requires additional in-

formation in the overlapping domain that is not always easy to take in practical applica-

tions.

As for calibration, it seems clear that the better for efficiency is to incorporate it,

regardless of whether or not a logistics model is used. As for the model, apart from the

advantage provided by the fact that the estimates of proportions for each category add

to one, our simulation study suggests that it is preferable to use it. As for the type of

model, in most practical applications it will be almost entirely forced, depending on the

auxiliary information available and, more specifically, on the availability of auxiliary

variable totals for domains, for frames or for the entire population.

To compute the proposed estimators, we have assumed to know the values of aux-

iliary variables for each individual in the population, which can be quite a restrictive

assumption. Indeed, to compute the proposed estimators we need to know the count of

each value of the auxiliary variable vector in the population. This is a very frequent

situation that arises, for example, when categorical variables (as the gender or the pro-

fessional status of the individual) or quantitative categorized variables (as the age of

the individual, grouped in classes) are used as auxiliary information in a survey. In this

context, we do not have a complete list of individuals but still the proposed estimators

can be computed since the population information needed can be found in databases of

national statistical organisms. In fact, in this case, we only need to know the population

count in the multi-way contingency table. This is also the situation in the application to

data from the survey on opinions and attitudes of the Andalusian population regarding

immigration explored in Section 9.
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Here we have considered two frames. The extension to more than two frames is under

study as well. One important issue when dealing with more than two frames is that of

using a proper notation (see Lohr and Rao (2006) and Singh and Mecatti (2011)). A

first simple way around is the one, also considered in Rao and Wu (2010), in which

weights from the multiplicity estimator of Mecatti (2007) are used as starting weights

and calibration is applied straightforwardly. More complicated is the issue of accounting

for different levels of frame information, although we believe that Singh and Mecatti

(2011) may provide a good starting point.
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