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Ali Akbar Jafari∗,1 and Hojatollah Zakerzadeh1

Abstract

The Weibull distribution is a very applicable model for lifetime data. In this paper, we have

investigated inference on the parameters of Weibull distribution based on record values. We first

propose a simple and exact test and a confidence interval for the shape parameter. Then, in

addition to a generalized confidence interval, a generalized test variable is derived for the scale

parameter when the shape parameter is unknown. The paper presents a simple and exact joint

confidence region as well. In all cases, simulation studies show that the proposed approaches

are more satisfactory and reliable than previous methods. All proposed approaches are illustrated

using a real example.

MSC: 62F03, 62E15, 62-04.

Keywords: Coverage probability, generalized confidence interval, generalized p-value, records,

Weibull distribution.

1. Introduction

The Weibull distribution is a well-known distribution that is widely used for lifetime

models. It has numerous varieties of shapes and demonstrates considerable flexibil-

ity that enables it to have increasing and decreasing failure rates. Therefore, it is used

for many applications, for example in hydrology, industrial engineering, weather fore-

casting and insurance. The Weibull distribution with parameters α and β , denoted by

W (α,β), has a cumulative distribution function (cdf)

F (x) = 1− e−(
x
α)
β

, x > 0, α> 0, β > 0,
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4 Inference on the parameters of the Weibull distribution using records

and probability density function (pdf)

f (x) =
β

αβ
xβ−1e−(

x
α)
β

, x > 0.

The Weibull distribution is a generalization of the exponential distribution and

Rayleigh distribution. Also, Y = log(X) has the Gumbel distribution with parameters

b = 1
β

and a = log(α), when X has a Weibull distribution with parameters α and β .

Let X1,X2, . . . be an infinite sequence of independent identically distributed random

variables from a same population with the cdf Fθ , where θ is a parameter. An observa-

tion X j will be called an upper record value (or simply a record) if its value exceeds that

of all previous observations. Thus, X j is a record if X j > Xi for every i < j. An analogous

definition deals with lower record values. The record value sequence {Rn} is defined by

Rn = XTn , n = 0,1,2, . . . .

where Tn is called the record time of nth record and is defined as Tn =min{ j : X j > XTn−1
}

with T0 = 1.

Let R0, . . . ,Rn be the first n+1 upper record values from the cdf Fθ and the pdf fθ .

Then, the joint distribution of the first n+1 record values is given by

fR (r) = fθ (rn)
n−1

∏
i=0

fθ (ri)

1−Fθ (ri)
, r0 < r1 < · · ·< rn, (1.1)

where r = (r0,r1, . . . ,rn) and R = (R0,R1, . . . ,Rn) (for more details see Arnold et al.,

1998).

Chandler (1952) launched a statistical study of the record values, record times

and inter-record times. Record values and the associated statistics are of interest and

importance in the areas of meteorology, sports and economics. Ahsanullah (1995) and

Arnold et al. (1998) are two good references about records and their properties.

Some papers considered inference on the Weibull distribution based on record

values: Dallas (1982) discussed some distributional results based on upper record values.

Balakrishnan and Chan (1994) established some simple recurrence relations satisfied by

the single and the product moments, and derived the BLUE of the scale parameter when

the shape parameter is known. Chan (1998) provided a conditional method to derive

exact intervals for location and scale parameters of location-scale family that can be

used to derive exact intervals for the shape parameter. Wu and Tseng (2006) provided

some pivotal quantities to test and establish confidence interval of the shape parameter

based on the first n+ 1 observed upper record values. Soliman et al. (2006) derived

the Bayes estimates based on record values for the parameters with respect to squared

error loss function and LINEX loss function. Asgharzadeh and Abdi (2011b) proposed

joint confidence regions for the parameters. Teimouri and Gupta (2012) computed
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the coefficient of skewness of upper/lower record statistics. Teimouri and Nadarajah

(2013) derived exact expressions for constructing bias corrected maximum likelihood

estimators (MLEs) of the parameters for the Weibull distribution based on upper records.

Gouet et al. (2012) obtained the asymptotic properties for the counting process of δ-

records among the first n observations.

In this paper, we consider inference about the parameters of Weibull distribution

based on record values. First, we will propose a simple and exact method for construct-

ing confidence interval and testing the hypotheses about the shape parameter β . Then

using the concepts of generalized p-value and generalized confidence interval, a general-

ized approach for inference about the scale parameter α will be derived. Tsui and Weer-

ahandi (1989) introduced the concept of generalized p-value, and Weerahandi (1993)

introduced the concept of generalized confidence interval. These approaches have been

used successfully to address several complex problems (see Weerahandi, 1995) such

as confidence interval for the common mean of several log-normal distributions (Be-

hboodian and Jafari, 2006), confidence interval for the mean of Weibull distribution

(Krishnamoorthy et al., 2009), inference about the stress-strength reliability involving

two independent Weibull distributions (Krishnamoorthy and Lin, 2010), and comparing

two dependent generalized variances (Jafari, 2012).

We also present an exact joint confidence region for the parameters. Our simulation

studies show that the area of our joint confidence region is smaller than those provided

by other existing methods.

The rest of this article is organized as follows: A simple method for inference about

shape parameter and a generalized approach for inference about the scale parameter are

proposed in Section 2. Furthermore, a simulation study is performed and a real example

is proposed in this Section. We also present a joint confidence region for the parameters

α and β in Section 3.

2. Inference on the parameters

Suppose R0,R1, . . . ,Rn are the first n+1 upper record values from a Weibull distribution

with parameters α and β . In this section, we consider inference on the parameters α and

β . From (1.1), the joint distribution of these record values can be written as

fR (r) =
βn+1

αβ(n+1)
e−(

rn
α )
β n

∏
i=0

ri
β−1 0 < r0 < r1 < · · ·< rn. (2.1)

Therefore, (Rn,∑
n
i=0 log(Ri)) are sufficient statistics for (α,β). Moreover, it can be

easily shown that the MLE’s of the parameters α and β are

β̂ =
n+1

∑
n
i=0 log

(

Rn
Ri

) , α̂=
Rn

(n+1)
1

β̂

. (2.2)
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Theorem 2.1 Let R0,R1, . . . ,Rn be the first n+ 1 upper record values from a Weibull

distribution. Then

i. U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n degrees of freedom.

ii. V = 2
(

Rn
α

)β
has a chi-square distribution with 2n+2 degrees of freedom.

iii. U and V are independent.

Proof. i. Define

Qm =
Rm

Rm−1

, m = 1,2, . . . ,n. (2.3)

From Arnold et al. (1998) page 20, Qm’s are independent random variables with

P(Qm > q) = q−βm, q > 1,

and

2βmlog(Qm) = 2βmlog

(

Rm

Rm−1

)

∼ χ2
(2).

Therefore,

U = 2β
n

∑
i=0

log(
Rn

Ri

) = 2β
n−1

∑
i=0

log

(

Rn

Rn−1

.
Rn−1

Rn−2

. . .
Ri+1

Ri

)

= 2β
n−1

∑
i=0

n

∑
m=i+1

log

(

Rm

Rm−1

)

= 2β
n

∑
m=1

m−1

∑
i=0

log(Qm) =
n

∑
m=1

2βmlog(Qm),

has a chi-square distribution with 2n degrees of freedom.

ii. Define

Y =

(

X

α

)β

,

where X has a Weibull distribution with parameters α and β . Then, Y has an exponential

distribution with parameter one. Therefore, we can conclude that V has a chi-square

distribution with 2n+2 degrees of freedom (see Arnold et al., 1998, page 9).

iii. Let β be known. Then, it can be concluded from (2.1) that Rn is a complete sufficient

statistic for α. Also, Qm’s in (2.3) are ancillary statistics. Therefore, Rn and Qm’s are

independent, and the proof is completed.
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2.1. Inference on the shape parameter

Here, we consider inference on the shape parameter, β from a Weibull distribution

based on record values, and propose a simple and an exact method for constructing

a confidence interval and testing the one-sided hypotheses

H0 : β ≤ β0 vs. H1 : β > β0, (2.4)

and the two-sided hypotheses

H0 : β = β0 vs. H1 : β 6= β0, (2.5)

where β0 is a specified value.

Based on Theorem 2.1, U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n

degrees of freedom. Therefore, a 100(1−γ)% confidence interval for β can be obtained

as





χ2
(2n),γ/2

2∑
n
i=0 log

(

Rn
Ri

) ,
χ2
(2n),1−γ/2

2∑
n
i=0 log

(

Rn
Ri

)



 , (2.6)

where χ2
(k),γ is the γth percentile of the chi-square distribution with k degrees of freedom.

Also, for testing the hypotheses in (2.4) and (2.5), we can define the test statistic

U0 = 2β0

n

∑
i=0

log

(

Rn

Ri

)

,

and the null hypothesis in (2.4) is rejected at nominal level γ if

U0 > χ
2
(2n),1−γ,

and the null hypothesis in (2.5) is rejected if

U0 < χ
2
(2n),γ/2 or U0 > χ

2
(2n),1−γ/2.

Wu and Tseng (2006) proposed the random variable

W (β) =
∑

n
i=0 R

β
i

(n+1)(∏n
i=0 Ri)

β
n+1

,
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for inference about the shape parameter, and showed that W (β) is an increasing function

with respect to β . Also, its distribution does not depend on the parameters α and β . In

fact, W (β) is distributed as

W ∗ =
∑

n
i=0 R∗

i

(n+1)(∏n
i=0 R∗

i )
1

n+1

,

where R∗
i is the ith record from the exponential distribution with parameter one. How-

ever, its exact distribution is very complicated, and Wu and Tseng (2006) obtained the

percentiles of W (β) using Monte Carlo simulation. The confidence limits for β are

obtained by solving the following equations numerically as

W (β) =W ∗
1−γ/2, W (β) =W ∗

γ/2, (2.7)

where W ∗
δ is the δth percentile of the distribution of W ∗.

2.2. Inference on the scale parameter

Here, we consider inference about the scale parameter, α for a Weibull distribution based

on record values, and propose an approach for constructing a confidence interval and

testing the one-sided hypotheses

H0 : α≤ α0 vs. H1 : α> α0, (2.8)

and the two-sided hypotheses

H0 : α= α0 vs. H1 : α 6= α0, (2.9)

where α0 is a specified value.

We did not find any approach in literature for inference about α based on record

values when the shape parameter is unknown. Here, we use the concepts of generalized

p-value and generalized confidence interval introduced by Tsui and Weerahandi (1989),

and Weerahandi (1993), respectively. In the Appendix, we briefly review these concepts,

and refer readers to Weerahandi (1995) for more details.

Let

T = rn

(

2

V

)
2Cr
U

= rn

(

α

Rn

)
Cr

∑n
i=0

log(Rn
Ri

)
, (2.10)

where Cr =∑
n
i=0 log

(

rn
ri

)

, and ri, i= 0,1, . . . ,n is the observed value of Ri, i= 0,1, . . . ,n,

and U and V are independent random variables that are defined in Theorem 2.1. The
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observed value of T is α, and distribution of T does not depend on unknown parameters

α and β . Therefore, T is a generalized pivotal variable for α, and can be used to construct

a generalized confidence interval for α.

Let

T ∗ = T −α= rn

(

2

V

)
2Cr
U

−α.

Then, T ∗ is a generalized test variable for α, because i) the observed value of T ∗ does

not depend on any parameters, ii) the distribution function of T ∗ is free from nuisance

parameters and only depends on the parameter α, and iii) the distribution function of

T ∗ is an increasing function with respect to the parameter α, and so, the distribution of

T ∗ is stochastically decreasing in α. Therefore, the generalized p-value for testing the

hypotheses in (2.8) is given as

p = P(T ∗ < 0|H0) = P(T < α0) , (2.11)

and the generalized p-value for testing the hypotheses in (2.9) is given as

p = 2 min{P(T > α0) ,P(T < α0)}. (2.12)

The generalized confidence interval for α based on T , and the generalized p-values

in (2.11) and (2.12) can be computed using Monte Carlo simulation (Weerahandi, 1995;

Behboodian and Jafari, 2006) based on the following algorithm:

Algorithm 2.1 For given r0,r1, . . . ,rn,

1. Generate U ∼ χ2
(2n) and V ∼ χ2

(2n+2).

2. Compute T in (2.10).

3. Repeat steps 1 and 2 for a large number times, (say M = 10000), and obtain the

values T1, . . . ,TM.

4. Set Dl = 1 if Tl < α0 else Dl = 0, l = 1, ...,M.

The 100(1−γ)% generalized confidence interval for α is
[

T(γ/2),T(1−γ/2)

]

, where

T(δ) is the δth percentile of Tl’s. Also, the generalized p-value for testing the one-sided

hypotheses in (2.11) is obtained by 1
M ∑

M
l=1 Dl .

2.3. Real example

Roberts (1979) gave monthly and annual maximal of one-hour mean concentration of

sulfur dioxide (in pphm, parts per hundred million) from Long Beach, California, for

1956 to 1974. Chan (1998) showed that the Weibull distribution is a reasonable model
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for this data set. Wu and Tseng (2006) also study this data set. The upper record values

for the month of October from the data are

26,27,40,41.

The 95% confidence interval for the scale parameter α based on our generalized con-

fidence interval with M = 10000 is obtained as (5.4869,39.9734). The 95% confidence

interval for the shape parameter β in (2.6) is obtained as (0.6890,8.0462), and based on

Wu and Tseng’s method in (2.7) is obtained as (0.6352,7.7423). Also, the generalized

p-value is equal to 0.0227 for testing the hypotheses in (2.8) with α0 = 5. Therefore, the

null hypothesis is rejected.

2.4. Simulation study

We performed a simulation study in order to evaluate the accuracy of the proposed

methods for constructing confidence interval for the parameters of Weibull distribution.

For this purpose, we generated n + 1 record values from a Weibull distribution, and

considered α= 1,2. For the simulation with 10000 runs and different values of the shape

parameter β , the empirical coverage probabilities and expected lengths of the methods

with the confidence coefficient 0.95 were obtained. The results of our generalized

confidence interval for inference on α using the algorithm 2.1 with M = 10000 are

presented in Table 1, and the results of our exact method (E) and the Wu method (W)

for inference on β are given in Table 2. We can conclude that

Table 1: Empirical coverage probabilities and expected lengths of the generalized confidence interval for

the parameter α with confidence level 0.95.

β

α n 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Empirical 1.0 3 0.951 0.949 0.953 0.947 0.947 0.948 0.948

Coverage 7 0.952 0.949 0.950 0.950 0.951 0.953 0.952

9 0.951 0.948 0.953 0.951 0.948 0.949 0.950

14 0.945 0.949 0.950 0.950 0.954 0.952 0.952

2.0 3 0.949 0.952 0.947 0.949 0.951 0.950 0.953

7 0.948 0.953 0.950 0.946 0.954 0.948 0.951

9 0.952 0.948 0.953 0.950 0.952 0.953 0.954

14 0.950 0.946 0.949 0.951 0.951 0.952 0.955

Expected 1.0 3 16.740 3.581 2.804 2.155 1.653 1.211 0.847

Length 7 13.575 3.198 2.477 1.942 1.475 1.041 0.686

9 13.505 3.138 2.469 1.918 1.446 1.008 0.651

14 13.122 3.082 2.403 1.854 1.376 0.943 0.596

2.0 3 33.516 7.187 5.579 4.341 3.323 2.427 1.704

7 27.960 6.344 4.999 3.899 2.960 2.080 1.364

9 27.342 6.304 4.935 3.831 2.890 2.016 1.302

14 26.626 6.129 4.779 3.705 2.757 1.886 1.191
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Table 2: Empirical coverage probabilities and expected lengths of the methods for constructing confidence

interval for the parameter β with confidence level 0.95.

β

α n Method 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Empirical 1.0 3 W 0.950 0.952 0.952 0.949 0.949 0.953 0.947

Coverage E 0.949 0.953 0.953 0.950 0.948 0.953 0.946

7 W 0.951 0.949 0.950 0.948 0.949 0.949 0.953

E 0.951 0.950 0.948 0.950 0.953 0.953 0.950

9 W 0.949 0.949 0.945 0.949 0.947 0.949 0.950

E 0.948 0.950 0.948 0.948 0.949 0.952 0.949

14 W 0.946 0.949 0.951 0.951 0.953 0.949 0.951

E 0.947 0.948 0.950 0.951 0.953 0.952 0.952

2.0 3 W 0.954 0.955 0.948 0.950 0.950 0.952 0.949

E 0.953 0.953 0.947 0.949 0.949 0.952 0.950

7 W 0.950 0.955 0.947 0.948 0.952 0.947 0.948

E 0.949 0.952 0.951 0.948 0.952 0.947 0.950

9 W 0.953 0.948 0.956 0.950 0.953 0.951 0.952

E 0.952 0.948 0.951 0.951 0.953 0.951 0.953

14 W 0.948 0.947 0.949 0.950 0.951 0.951 0.952

E 0.950 0.947 0.949 0.949 0.953 0.951 0.955

Expected 1.0 3 W 1.704 3.431 4.194 5.279 6.913 10.396 17.479

Length E 1.630 3.285 4.013 5.041 6.611 9.937 16.722

7 W 0.932 1.879 2.224 2.808 3.752 5.578 9.276

E 0.853 1.716 2.038 2.574 3.437 5.115 8.499

9 W 0.806 1.603 1.928 2.412 3.222 4.797 8.024

E 0.730 1.450 1.748 2.185 2.928 4.352 7.267

14 W 0.625 1.262 1.509 1.888 2.505 3.766 6.263

E 0.558 1.125 1.343 1.685 2.236 3.353 5.590

2.0 3 W 1.713 3.458 4.156 5.277 6.856 10.307 16.998

E 1.638 3.306 3.967 5.053 6.560 9.859 16.266

7 W 0.934 1.866 2.208 2.822 3.738 5.629 9.392

E 0.854 1.710 2.026 2.589 3.419 5.151 8.581

9 W 0.808 1.600 1.923 2.418 3.189 4.798 8.032

E 0.733 1.451 1.743 2.193 2.890 4.347 7.276

W 0.628 1.260 1.496 1.888 2.523 3.768 6.302

E 0.560 1.124 1.338 1.688 2.250 3.366 5.624

i. The empirical coverage probabilities of all methods are close to the confidence

level 0.95.

ii. The expected lengths of E and W increase when the parameter β increases.

Additionally, the expected length of E is smaller than W especially when β is

large.
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iii. The expected length of our generalized confidence interval for α decreases when

the parameter β increases. Moreover, it is very large when β is small.

iv. The expected lengths of all methods decrease when the number of records in-

creases.

v. The empirical coverage probabilities and expected lengths of W and E do not

change when the parameter α changes.

3. Joint confidence regions for the parameters

Suppose R0,R1, . . . ,Rn are the first n+1 upper record values from a Weibull distribution

with parameters α and β . In this section, we presented a joint confidence region for

the parameters α and β . This is important because it can be used to find confidence

bounds for any function of the parameters such as the reliability function R(t) =

exp(−( t
α
)β). For more references about the joint confidence region based on records,

see Asgharzadeh and Abdi (2011a,b) and Asgharzadeh et al. (2011).

3.1. Asgharzadeh and Abdi method

Asgharzadeh and Abdi (2011b) present exact joint confidence regions for the parameters

of Weibull distribution based on the record values using the idea presented by Wu

and Tseng (2006). The following inequalities determine 100(1−γ)% joint confidence

regions for α and β :

A j =































log
((

n− j+1
j

)

k1 +1
)

log
(

Rn
R j−1

) < β <
log
((

n− j+1
j

)

k2 +1
)

log
(

Rn
R j−1

)

Rn

(

2

χ2
(2n+2),(1+

√
1−γ)/2

) 1
β

< α< Rn

(

2

χ2
(2n+2),(1−√

1−γ)/2

) 1
β

,

(3.1)

for j = 1, . . . ,n, where

k1 = F(2n−2 j+2,2 j),(1−√
1−γ)/2 k2 = F(2n−2 j+2,2 j),(1+

√
1−γ)/2,

and F(a,b),γ is the γth percentile of the F distribution with a and b degrees of freedom.

Note that for each j, we have a joint confidence region for α and β . Asgharzadeh

and Abdi (2011b) found that in most cases A⌊ n+1
5

⌋ and A⌊ n+1
5

+1⌋ provide the smallest

confidence areas, where ⌊x⌋ is the largest integer value smaller than x.
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3.2. A new joint confidence region

From Theorem 2.1, U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n degrees

of freedom and V = 2
(

Rn
α

)β
has a chi-square distribution with 2n+2 degrees of freedom,

and U and V are independent. Therefore, an exact joint confidence region for the

parameters α and β of Weibull distribution based on the record values can be given

as

B =



























χ2
(2n),(1−√

1−γ)/2

2∑
n
i=0 log

(

Rn
Ri

) < β <
χ2
(2n),(1+

√
1−γ)/2

2∑
n
i=0 log

(

Rn
Ri

)

Rn

(

2

χ2
(2n+2),(1+

√
1−γ)/2

) 1
β

< α< Rn

(

2

χ2
(2n+2),(1−√

1−γ)/2

) 1
β

.

(3.2)

Remark 3.1 All record values are used in the proposed joint confidence region in (3.2)

but not in the proposed joint confidence regions in (3.1).

3.3. Real example

Here, we consider the upper record values in the example given in Section 2.3. There-

fore, the 95% joint confidence regions for α and β based on Asgharzadeh and Abdi

(2011b) in (3.1) are

A1 =
{

(α,β) : 0.5826 < β < 11.9955, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

A2 =
{

(α,β) : 0.1646 < β < 6.4905, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

A3 =
{

(α,β) : 0.1720 < β < 58.9824, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

and the 95% joint confidence region for α and β in (3.2) is

B =
{

(α,β) : 0.5305 < β < 9.0277, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

.

The plot of all joint confidence regions are given in Figure 1. Also, the area of

the joint confidence regions A1, A2, A3, and B are 194.9723, 166.7113, 369.7654, and

172.5757, respectively.
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Figure 1: The plot of the joint confidence regions A1, A2, A3, and B.

3.4. Simulation study

We performed a similar simulation given in Section 2.4 with considering α= 1, in order

to compare the joint confidence regions proposed by Asgharzadeh and Abdi (2011b)

and our joint confidence region (B) in (3.2). Here, we consider the confidence areas

A⌊ n+1
5

⌋ and A⌊ n+1
5

+1⌋ because the coverage probabilities of all Ai’s are close to the

confidence coefficient and Asgharzadeh and Abdi (2011b) found that in most cases these

two confidence areas provide the smallest confidence areas. The empirical coverage

probabilities and expected areas of the methods for the confidence coefficient 95% are

given in Table 3. We can conclude that

1. The coverage probabilities of the all methods are close to the confidence coeffi-

cient 0.95.

2. The expected area of our method is smaller than the expected areas of the proposed

methods by Asgharzadeh and Abdi (2011b).

3. The expected areas of all methods decrease when the number of records increases.

4. The expected areas of all methods decrease when the parameter β increases.
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Table 3: Empirical coverage probabilities of the methods for constructing joint confidence region for the

parameters α and β with γ= 0.05.

β

n Region 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Coverage 4 A1 0.950 0.949 0.949 0.951 0.954 0.946 0.950

Probability A2 0.949 0.951 0.950 0.951 0.953 0.949 0.952

B 0.949 0.950 0.949 0.952 0.954 0.949 0.950

6 A1 0.951 0.951 0.952 0.952 0.954 0.949 0.949

A2 0.952 0.948 0.950 0.948 0.953 0.948 0.952

B 0.953 0.949 0.951 0.951 0.953 0.950 0.951

9 A2 0.953 0.949 0.950 0.955 0.949 0.948 0.953

A3 0.951 0.951 0.951 0.956 0.949 0.948 0.949

B 0.950 0.952 0.951 0.953 0.949 0.948 0.952

14 A3 0.947 0.950 0.954 0.948 0.954 0.951 0.952

A4 0.946 0.951 0.952 0.948 0.951 0.950 0.952

B 0.948 0.949 0.952 0.947 0.951 0.953 0.952

29 A6 0.951 0.953 0.950 0.950 0.948 0.948 0.950

A7 0.950 0.952 0.951 0.949 0.948 0.948 0.950

B 0.953 0.955 0.951 0.953 0.950 0.948 0.952

Expected 4 A1 27.787 8.548 7.339 6.331 5.725 5.330 5.203

Area A2 30.020 8.976 7.651 6.682 5.989 5.593 5.504

B 22.985 7.371 6.388 5.596 5.099 4.792 4.713

6 A1 21.062 6.036 5.213 4.576 4.102 3.783 3.701

A2 20.035 5.824 5.046 4.436 3.985 3.701 3.648

B 14.551 4.714 4.144 3.714 3.399 3.192 3.162

9 A2 14.631 4.081 3.533 3.059 2.756 2.574 2.510

A3 14.651 4.086 3.545 3.077 2.767 2.585 2.541

B 9.639 3.137 2.774 2.471 2.275 2.160 2.133

14 A3 9.436 2.702 2.320 2.035 1.816 1.701 1.661

A4 9.388 2.686 2.304 2.035 1.812 1.707 1.668

B 5.784 1.999 1.763 1.599 1.471 1.405 1.385

29 A6 4.244 1.298 1.124 0.988 0.905 0.849 0.828

A7 4.202 1.291 1.118 0.985 0.904 0.850 0.828

B 2.380 0.932 0.838 0.761 0.719 0.689 0.678

Appendix. Generalized p-value and generalized confidence interval

Let X be a random variable whose distribution depends on a parameter of interest θ ,

and a nuisance parameter λ. Let x denote the observed value of X. A generalized pivotal

quantity for θ is a random quantity denoted by T (X;x;θ ) that satisfies the following

conditions:

(i) The distribution of T (X;x;θ ) is free of any unknown parameters.
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(ii) The value of T (X;x;θ ) at X = x, i.e., T (x;x;θ ) is free of the nuisance parameter λ.

Appropriate percentiles of T (X;x;θ ) form a confidence interval for θ . Specifically, if

T (x;x;θ )= θ , and Tδ denotes the 100δ percentage point of T (X;x;θ ) then (Tγ/2, T1−γ/2)

is a 1−γ generalized confidence interval for θ . The percentiles can be found because,

for a given x, the distribution of T (X;x;θ ) does not depend on any unknown parameters.

In the above setup, suppose we are interested in testing the hypotheses

H0 : θ ≤ θ0 vs. H1 : θ > θ0, (A.1)

for a specified θ0. The generalized test variable, denoted by T ∗(X;x;θ ), is defined as

follows:

(i) The value of T ∗(X;x;θ ) at X = x is free of any unknown parameters.

(ii) The distribution of T ∗(X;x;θ ) is stochastically monotone (i.e., stochastically in-

creasing or stochastically decreasing) in θ for any fixed x and λ.

(iii) The distribution of T ∗(X;x;θ ) is free of any unknown parameters.

Let t∗ = T ∗ (x;x;θ0), the observed value of T ∗(X;x;θ ) at (X;θ ) = (x;θ0). When

the above conditions hold, the generalized p-value for testing the hypotheses in (A.1) is

defined as

p = P(T ∗ (X;x;θ0)≤ t∗) (A.2)

where T ∗(X;x;θ ) is stochastically decreasing in θ . The test based on the generalized

p-value rejects H0 when the generalized p-value is smaller than a nominal level γ.

However, the size and power of such a test may depend on the nuisance parameters.
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This paper deals with small area estimation of poverty indicators. Small area estimators of
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1. Introduction

In most European countries, the estimation of poverty is done by using the Living

Conditions Survey (LCS) data. The Spanish LCS (SLCS) uses a stratified two-stage

design within each Autonomous Community. As most provinces have a very small

sample size, the direct estimates at that level have a low accuracy. The problem is thus

that domain sample sizes are too small to carry out direct estimations. This situation

may be treated by using small area estimation techniques. Small Area Estimation (SAE)

is a part of the statistical science that combines survey sampling and finite population

inference with statistical models. See a description of this theory in the monograph of

Rao (2003), or in the reviews of Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002,

2012) and more recently Jiang and Lahiri (2006).
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This paper deals with the estimation of poverty indicators by using area-level models.

For this sake, Esteban et al. (2012a,b) proposed several area-level time models. They

argue that employing data from past periods produce a significant improvement of the

estimation process. Marhuenda et al. (2013) introduced some more complex area-level

linear mixed models that take into account for temporal and spatial correlation. The first

two papers gave empirical best linear unbiased prediction (EBLUP) estimates of poverty

estimators for Spanish provinces crossed by sex. The third one did not give estimates

by sex. Many socio-economic indicators, such as those related with poverty and labour,

behave differently in the subpopulations of men and women. This is why, we adapt

some of the temporal models appearing in Esteban et al. (20121,b) and Marhuenda et

al. (2013) to this situation.

In this paper we use four time-dependent area-level linear mixed models to obtain

small area estimates of poverty indicators. Two of them are specified with a partition

of the population in two groups. This fact allows modelling, for example, a different

behaviour of the target variable by sex, as it was done by Herrador et al. (2011). This

is an important modelling tool as many socioeconomic indicators behave differently for

men and women. Following Esteban et al. (2012b), the first partitioned model assumes

that time dependency is explained by the auxiliary variables and the second one contains

a correlation parameter in the distribution of the random intercept. The estimates of

the model parameters are obtained by using the residual maximum likelihood (REML)

estimation method. These estimates are then used to construct empirical best linear

unbiased predictors of poverty indicators by sex of the Spanish provinces. Estimation of

the mean squared error (MSE) of model-based estimators is an important issue that has

no easy solution. In this paper we follow Prasad and Rao (1990) and Das, Jiang and Rao

(2004) to introduce an approximation of the MSE and the corresponding MSE estimator.

The rest of the paper is organized as follows. Section 2 introduces the considered

area-level time models and the corresponding model-based estimators of poverty indi-

cators. Section 3 describes the estimation problem of interest and presents an application

to data from the SLCS. The target is to estimate poverty indicators by sex in the Spanish

provinces. Finally, Section 4 gives a discussion on the findings of this paper.

2. The area-level partitioned time models

2.1. The models

Let us consider a population partitioned in D domains. Assume that domains are classi-

fied in two groups of sizes DA and DB (DA+DB =D) that behave differently with respect

to some socioeconomic characteristic. For example, let us consider a country divided in

provinces. Assume that a statistical agency is interested in estimating some poverty in-

dicators of regions by sex. In that situation, they can define the domains as regions

crossed by sex, so that they have DA = DB and D = 2DA = 2DB. Another example is a
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state partitioned in DA urban-type counties and DB rural-type counties, where the interest

is the estimation of some labour indicators at the county level. In what follows, we will

introduce some models adapted to these kind of situations.

Let us consider the model (model 3)

ydt = xT
dt β+udt + edt , d = 1, . . . ,D = DA +DB, t = 1, . . . ,md, (1)

where ydt is a direct estimator of the indicator of interest for area d and time instant

t, and xT
dt is a row vector containing the aggregated (population) values of p auxiliary

variables. The index d is used for domains and the index t for time instants. We assume

that the random vectors (ud1, . . . ,udmd
), d ≤ DA, follow independent and identically dis-

tributed (i.i.d.) first order auto-regressive processes with variance and auto-correlation

parameters σ2
A and ρA respectively; in short, (ud1, . . . ,udmd

)∼iid AR1(σ2
A,ρA), d ≤ DA.

We further assume that (ud1, . . . ,udmd
) ∼iid AR1(σ2

B,ρB), d > DA, and that the errors

edt’s are independent N(0,σ2
dt) with known variances σ2

dt’s. Finally we assume that the

(ud1, . . . ,udmd
)’s and the edt’s are mutually independent.

The introduction of the partitioned model (1) is motivated by the observed different

behaviour by sex of poverty indicators in Spanish data. Further, we also consider the

models restricted to ρA = ρB (model 2), restricted to ρA = ρB = 0 (model 1) and

restricted to ρA = ρB = 0 and σ2
A = σ2

B (model 0). For the sake of brevity, we only

present the theoretical developments for the partitioned model 3.

In matrix notation the model is

y = Xβ+Zu+ e,

where y can be decomposed in the form y = (yT
A,y

T
B)

T, with yA = col
d≤DA

(yd), yB =

col
d>DA

(yd) and yd = col
1≤t≤md

(ydt), and similarly for u and e, X can be decomposed in

the form X = (XT
A,X

T
B)

T, with XA = col
d≤DA

(Xd), XB = col
d>DA

(Xd) and Xd = col
1≤t≤md

(xT
dt),

β = βp×1, Z = IM and M = ∑
D
d=1 md . We use the notation col(· · ·) to denote a column

vector, or set of column vectors, composed of the elements of the argument, which can

be scalars or vectors. In this notation, u ∼ N(0,Vu) and e ∼ N(0,Ve) are independent

with covariance matrices

Vu = var(u) = diag(σ2
AΩA,σ

2
BΩB), Ve = var(e) = diag

1≤d≤D

(Ved),

where ΩA = diag
d≤DA

(Ωd), ΩB = diag
d>DA

(Ωd), Ved = diag
1≤t≤md

(σ2
dt) and

Ωd = Ωd(ρ) =
1

1−ρ2



















1 ρ · · · ρmd−2 ρmd−1

ρ 1
. . . ρmd−2

...
. . .

. . .
. . .

...

ρmd−2 . . . 1 ρ

ρmd−1 ρmd−2 · · · ρ 1



















md×md

, ρ = ρA,ρB.
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The covariance matrix of vector y is V = V(θ ) = var(y) = diag(VA,VB), where VA =

diag
d≤DA

(Vd), VB = diag
d>DA

(Vd), Vd = σ2
AΩd +Ved if d ≤ DA, Vd = σ2

BΩd +Ved if d > DA

and θ = (θ1,θ2,θ3,θ4) = (σ2
A,ρA,σ

2
B,ρB). The residual loglikelihood is

lreml = lreml(θ ) =−M− p

2
log2π+

1

2
log |XTX|− 1

2
log |VA|−

1

2
log |VB|

− 1

2
log |XT

AV−1
A XA +XT

BV−1
B XB|−

1

2
yTPy,

where P = V−1 − V−1X(XTV−1X)−1XTV−1. The scores and the Fisher information

matrix components are

Sa =
∂ lreml

∂θa

, Fab =−E

[

∂ l2
reml

∂θa∂θb

]

, a,b = 1,2,3,4.

To calculate the residual maximum likelihood (REML) estimate, θ̂ , we apply the Fisher-

scoring algorithm with the updating formula

θ
k+1 = θ k+F−1(θ k)s(θ k),

where s and F are the column vector of scores and the Fisher information matrix

respectively. As seeds we use ρ
(0)
A = ρ

(0)
B = 0, and σ

2(0)
A = σ

2(0)
B = σ̂2

uH , where σ̂2
uH

is the Henderson 3 estimator under model with ρA = ρB = 0 and σ2
A = σ2

B. The REML

estimator of β and the REML empirical best linear unbiased predictor (EBLUP) of u

are

β̂ = (XTV̂
−1

X)−1XTV̂
−1

y, û = V̂uZTV̂
−1
(y−Xβ̂),

where V̂ = V(θ̂ ) and V̂u = Vu(θ̂ ).

2.2. Statistical inference on the model parameters

The asymptotic distributions of of the REML estimators of θ and β are

θ̂ ∼ N4(θ ,F
−1(θ )), β̂ ∼ Np(β ,(X

TV−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa and β j are

θ̂a ± zα/2ν
1/2
aa , a = 1,2,3,4, β̂ j ± zα/2 q

1/2
j j , j = 1, . . . , p,
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where θ̂ = θ κ, F−1(θ κ) = (νab)a,b=1,2,3,4, (XTV−1(θ κ)X)−1 = (qi j)i, j=1,...,p, κ is the

final iteration of the Fisher-scoring algorithm and zα is the α-quantile of the standard

normal distribution N(0,1). Observed β̂ j = β0, the p-value for testing the hypothesis

H0 : β j = 0 is

p = 2PH0
(β̂ j > |β0|) = 2P(N(0,1)> β0/

√
q j j ).

Let σ̂2
A, σ̂2

B, ρ̂A and ρ̂B be the unrestricted REML estimators of σ2
A and σ2

B, ρA and

ρB respectively. Let σ̃2
A, σ̃2

B and ρ̃ be the REML estimator ofσ2
A,σ2

B and of the common

value ρA = ρB under H0 (model 2). Under model 3, the REML likelihood ratio statistic

(LRS) for testing H0 : ρA = ρB is

λ=−2[lREML(σ̃
2
A, σ̃

2
B, ρ̃)− lREML(σ̂

2
A, σ̂

2
B, ρ̂A, ρ̂B)].

The asymptotic distribution of λ under H0 is χ2
1 . The null hypothesis is rejected at the

level α if λ> χ2
1,α.

Under model 2, the REML LRS for testing H0 : ρ = 0 is

λ=−2[lREML(σ̃
2
A, σ̃

2
B)− lREML(σ̂

2
A, σ̂

2
B, ρ̂)],

where σ̂2
A, σ̂2

B and ρ̂ are the unrestricted REML estimators ofσ2
A,σ2

B and ρ respectively,

σ̃2
A and σ̃2

B are the REML estimator of σ2
A and σ2

B under H0 (model 1). The asymptotic

distribution of λ under H0 is χ2
1 , so the null hypothesis is rejected at the level α if

λ> χ2
1,α.

2.3. The EBLUP and its mean squared error

We are interested in predicting the value of µdt = xT
dt β+udt by using the EBLUP

µ̂dt = xT
dtβ̂+ ûdt . If we do not take into account the error, edt , this is equivalent to predict

ydt = aTy, where a = col
1≤ℓ≤D

( col
1≤k≤mℓ

(δdℓδtk)) is a vector having one 1 in the position

t+∑
d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimate Y dt we use ̂Y

eblup

dt = µ̂dt . The mean

squared error of ̂Y
eblup

dt can be approximated by considering the formula established

by Prasad and Rao (1980) for moment-based estimators of model parameters in the

Fay-Herriot model. This formula was later extended by Datta and Lahiri (2000) and

Das, Jiang and Rao (2004) to a wide variety of linear mixed models when the model

parameters are estimated by the ML and REML method. By adapting the mean squared

error formula to model 3, we get

MSE(̂Y
eblup

dt ) = g1dt(θ )+g2dt(θ )+g3dt(θ ),
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where θ = (σ2
A,ρA,σ

2
B,ρB),

g1dt(θ ) = aTZTZTa,

g2dt(θ ) = [aTX−aTZTZTV−1
e X]Q[XTa−XTV−1

e ZTZTa],

g3dt(θ )≈ tr
{

∇bTV∇bE
[

(̂θ −θ )(̂θ −θ )T
]}

.

T=Vu−VuZTV−1ZVu, Q=(XTV−1X)−1, bT = aTZVuZTV−1, ∇bT =( ∂bT

∂σ2
A

, ∂bT

∂σ2
B

, ∂bT

∂ρA
, ∂bT

∂ρB
).

The estimator of MSE(̂Y
eblup

dt ) is

msedt(
̂Y

eblup

dt ) = g1dt(θ̂ )+g2dt(θ̂ )+2g3dt(θ̂ ).

3. Estimation of poverty indicators

3.1. The indicators and the data

Let zdt j be an income variable measured in all the units j of the population and let zt

be the poverty line, so that units from domain d with zdt j < zt are considered as poor

at time period t. Let Nt and Ndt , d = 1, . . . ,D, be the population size at time t and the

population size of each domain d at time t respectively. Foster et al. (1984) introduced

the family of poverty indicators

Yα,dt =
1

Ndt

Ndt

∑
j=1

yα,dt j, where yα,dt j =

(

zt − zdt j

zt

)α

I(zdt j < zt), (2)

I(zdt j < zt) = 1 if zdt j < zt and I(zdt j < zt) = 0 otherwise. The proportion of units under

poverty in the domain d and period t is thus Y 0,dt and the poverty gap is Y 1,dt .

The Spanish Statistical Office fixes the Poverty Threshold zt at the 60% of the median

of the normalized incomes in Spanish households. The aim of normalizing the household

income is to adjust for the varying size and composition of households. The definition

of the total number of normalized household members uses a scale giving a weight 1.0

to the first adult, 0.5 to the second and each subsequent person aged 14 and over and 0.3

to each child aged under 14 in the household. The normalized size of a household is the

sum of the weights assigned to each person. So for each household h in domain d and

time t, the total number of normalized members is

Hdth = 1+0.5(Hdth≥14 −1)+0.3Hdth<14,
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where Hdth≥14 is the number of people aged 14 and over and Hdth<14 is the number of

children aged under 14. The normalized net annual income of a household is obtained by

dividing its net annual income by its normalized size. The Spanish poverty thresholds (in

euros) in 2004-06 are z2004 = 6098.57, z2005 = 6160.00 and z2006 = 6556.60 respectively.

These are the zt-values used in the calculation of the direct estimates of the poverty

incidence and gap.

We use data from the Spanish Living Conditions Survey (SLCS) corresponding

to years 2004-2006. The SLCS started in 2004 with an annual periodicity and is the

Spanish version of the European Statistics on Income and Living Conditions (EU-SILC),

which is one of the statistical operations that have been harmonized for EU countries.

We consider D = 104 domains obtained by crossing 52 provinces with 2 sexes.

The direct estimator of the total, Ydt = ∑
Ndt
j=1 ydt j, is

Ŷ dir
dt = ∑

j∈Sdt

wdt j ydt j.

where Sdt is the domain sample at time period t and the wdt j’s are the official calibrated

sampling weights which take into account for non response. The estimated domain size

N̂dir
dt = ∑

j∈Sdt

wdt j.

Using these quantities, a direct estimator of the domain mean, Ȳdt , is ȳdt = Ŷ dir
dt /N̂dir

dt .

The design-based variances of these estimators can be approximated by

V̂π(Ŷ
dir
dt ) = ∑

j∈Sdt

wdt j(wdt j −1)(ydt j − ȳdt)
2

and V̂π(ȳdt) = V̂
(

Ŷ dir
dt

)

/N̂2
dt . (3)

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with the

simplifications wdt j = 1/πdt j, πdt j,dt j = πdt j and πdti,dt j = πdtiπdt j, i 6= j in the second

order inclusion probabilities.

As we are interested in the cases ydt j = yα,dt j, α= 0,1, we select the direct estimates

of the poverty incidence and poverty gap at domain d and time period t (i.e. ȳ0,dt and

ȳ1,dt respectively) as target variables for the time dependent area-level models.

The considered auxiliary variables are the known domain means of the category

indicators of the following variables. INTERCEPT: constant equal to 1. AGE: Age

groups are age1-age5 for the intervals ≤ 15, 16 − 24, 25 − 49, 50 − 64 and ≥ 65.

EDUCATION: Highest level of education completed, with 4 categories denoted by

edu0 for Less than primary education level, edu1 for Primary education level, edu2 for

Secondary education level and edu3 for University level. LABOUR: Labour situation

with 4 categories taking the values lab0 for Below 16 years, lab1 for Employed, lab2

for Unemployed and lab3 for Inactive.
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3.2. The application

In this section we present an application to real data of model 3 defined in (1).

We compare the obtained results with the corresponding ones under the same model

restricted to H0 : ρA = ρB (model 2), H0 : ρA = ρB = 0 (model 1) and H0 : ρA =

ρB = 0, σ2
A = σ2

B (model 0). Finally the main goal is to estimate the poverty incidence

(proportion of individuals under poverty) and the poverty gap in Spanish domains for

the three models.

The final selected models include only the auxiliary variables appearing in Table 1.

We have included three statistically significant variables that have a relevant meaning

in the socio-economic sense. We have selected the variables age4 (age group 50-65),

edu2 (secondary education completed) and lab2 (unemployed). Regression parameters

and their corresponding p-values are also presented in Table 1 for α= 0 and α= 1.

By observing the signs of the regression parameters for α= 0 (poverty proportion),

we interpret that there is an inverse relation between poverty proportion and the cate-

gories age4 and edu2 of explanatory variables. That is, poverty incidence tends to be

smaller in those domains with larger proportion of population in the subset defined by

age between 50 and 64, and by secondary education level completed. On the other hand,

poverty incidence tends to be larger in those domains with larger proportion of popu-

lation in the subset defined by lab2, i.e. in the category of unemployed people. All the

p-values are lower than 0.05 for all the considered auxiliary variables, except for lab2 in

model 3. By doing the same exercise with the signs of the regression parameters in the

case α = 1 (poverty gap), we can give the same interpretations as before. Again all the

p-values are lower than 0.05.

The asymptotic confidence intervals (CIs) for the β’s at the 90% confidence level

are presented in Table 2 (top) for α = 0 and in Table 2 (bottom) for α = 1. The

columns with labels INF and SUP contains the low and upper limits respectively. By

Table 1: β-parameters and p-values for α= 0 (left) and α= 1 (right).

α= 0 α= 1

model 3 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.622 −1.881 −0.272 0.260 0.215 −0.741 −0.100 0.320

p-value 0.000 0.000 0.000 0.284 0.000 0.000 0.002 0.004

model 2 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.778 −2.603 −0.425 0.772 0.237 −0.874 −0.115 0.413

p-value 0.000 0.000 0.000 0.026 0.000 0.000 0.002 0.002

model 1 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.713 −2.284 −0.445 1.264 0.232 −0.827 −0.123 0.472

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

model 0 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.730 −2.632 −0.411 1.829 0.198 −0.719 −0.107 0.667

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000
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Table 2: 90% confidence intervals for α= 0 (top) and for α= 1 (bottom).

model 3 model 2 model 1 model 0

ITEMS INF SUP INF SUP INF SUP INF SUP

constant 0.527 0.717 0.646 0.911 0.632 0.794 0.618 0.842

age4 −2.344 −1.418 −3.224 −1.982 −2.657 −1.912 −3.219 −2.045

edu2 −0.385 −0.159 −0.589 −0.262 −0.547 −0.342 −0.562 −0.260

lab2 −0.140 0.661 0.200 1.344 0.879 1.649 1.309 2.349

constant 0.173 0.257 0.188 0.286 0.199 0.264 0.154 0.242

age4 −0.941 −0.542 −1.102 −0.646 −0.978 −0.676 −0.952 −0.486

edu2 −0.152 −0.048 −0.177 −0.054 −0.166 −0.081 −0.169 −0.046

lab2 0.136 0.505 0.198 0.628 0.316 0.629 0.459 0.874

observing these confidence intervals, we conclude that all the regression parameters are

significantly different from zero in both cases. The only exception is lab2 in model 3 for

α= 0.

Table 3 presents the CIs for the variance components at the 90% confidence level,

under models 3-0, for α= 0 and α= 1. The columns with labels INF and SUP contains

the low and upper limits respectively. The column with label 0 ∈CI contains T (true) if 0

belongs to the CI and F (false) otherwise. Concerning model 3, we observe that the CIs

for ρA −ρB and σ2
A −σ2

B contain the 0. In the case of α = 0, the observed value of the

likelihood ratio statistics for testing H0 : ρA =ρB is λ= 0.5738 and the corresponding p-

value is 0.4487. In the case of α= 1, the observed value of the likelihood ratio statistics

for testing H0 : ρA = ρB is λ= 3.8195 and the corresponding p-value is 0.0506. These

facts suggest that model 3 is not the model fitting best to data.

Table 3: 90% confidence intervals for variances.

α= 0 α= 1

Model Parameter INF SUP 0 ∈CI INF SUP 0 ∈CI

3 σ2
A 0.0002 0.0008 F 0.0003 0.0005 F

σ2
B 0.0005 0.0014 F 0.0002 0.0004 F

σ2
A −σ2

B −0.0010 0.0001 T −0.0000 0.0003 T

ρA 0.8662 0.9957 F 0.5416 0.7484 F

ρB 0.8598 0.9344 F 0.6017 0.8843 F

ρA −ρB −0.0409 0.1087 T −0.2734 0.0774 T

2 σ2
A 0.0101 0.0154 F 0.0014 0.0019 F

σ2
B 0.0023 0.0038 F 0.0004 0.0005 F

σ2
A −σ2

B 0.0070 0.0124 F 0.0009 0.0015 F

ρ 0.4050 0.6108 F 0.3528 0.5756 F

1 σ2
A 0.0025 0.0040 F 0.0004 0.0004 F

σ2
B 0.0028 0.0045 F 0.0006 0.0007 F

0 σ2
u 0.0025 0.0040 F 0.0004 0.0006 F
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Table 4: Normalized Euclidean distances for α= 0,1.

Model 3 Model 2 Model 1 Model 0

α Men Women Men Women Men Women Men Women

0 0.0194 0.0255 0.0083 0.0421 0.0285 0.0486 0.0648 0.0673

1 0.0115 0.0116 0.0121 0.0221 0.0188 0.0229 0.0290 0.0303

For models 2-0 Table 3 shows that the CIs forσ2
A,σ2

B andσ2
u do not contain the origin

0 in any case, so the variances are significatively positive. Table 3 also presents the CIs

for the difference of variances σ2
A −σ2

B and the CIs for ρ under model 2. The variances

σ2
A andσ2

B can be considered as different at the 90% confidence level and the correlation

parameter ρ is significantly greater than zero in both cases (α = 0 and α = 1). In the

case α= 0 the REML likelihood ratio statistic (LRS) for testing H0 : σ2
A = σ2

B takes the

value 1210.06 and its corresponding p-value is 0.00. In the case of α = 1 the value of

the REML LRS for testing H0 : σ2
A = σ2

B is 1599.96 and the corresponding p-value is

0.00. In both cases we reject the null hypothesis of equality of variances. Therefore we

can recommend model 2 for both poverty indicators.

Table 4 presents the normalized Euclidean distances between the direct and the

EBLUPs estimates in both cases α= 0 and α= 1. We use the formula

D(y1,y2) =

(

1

M

D

∑
d=1

md

∑
t=1

(y1dt − y2dt)
2

)1/2

.

The obtained results are somehow expected. The models with more parameters present

the lower normalized Euclidean distances. The extreme case would be a saturated model

with as many parameters as observations, which has a perfect fit to data. As our target

is explaining the data relationships, instead of looking for the best way of predicting the

observed y-values, we do not modify our decision about model 3.

For being more confident about our decision of selecting model 2 as true generating

model, we still give some diagnostics for models 0-2. At this stage, we drop out Model

3 from the selection procedure because of the hypotheses tested in Table 3.

Residuals êdt = ȳdt − x̄T
dtβ̂ − ûdt of fitted models 2, 1 and 0 are plotted against the

observed values ȳdt in the Figure 1 for α = 0 (left) and α = 1 (right). The dispersion

graph shows a great difference in the pattern of the plots, passing from the basic model 0

to the more complex model 2. In particular, residuals of model 2 present a more flattened

shape than the ones of the other two models. Figure 2 presents the boxplots of residuals

of models 0-2 and also shows that partitioned models 1 and 2 fit much better to the data

than model 0. This conclusion coincides with the results appearing in Table 4, where

Euclidean distances decrease as moving from model 0 to model 2. So we conclude that

model 2 fits better to the direct estimates and therefore we can recommend it.
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Figure 1: Residuals versus direct estimates.
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Figure 2: Boxplots of residuals of models 0-2.
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Figure 3: Estimates of poverty proportion (top) and squared root of their estimated MSEs (bottom)

respectively for men (on the left) and women (on the right) in 2006.

The poverty proportion estimates, direct and EBLUP under model 2, are plotted in

the Figure 3 with respect to the partition of the domains in men (left) and women (right).

Figure 4 presents the same plots for the poverty gap. Concerning the root MSEs, these

figures show that the EBLUPs under model 2 have lower MSE than the direct estimator.

Therefore it is worthwhile using model-based estimators instead of the direct ones. As

the estimated root MSE of the direct estimate of domain 42 is too large, Figure 3 does

not plot the estimates of this domain and renumbers domains 43 to 52 as 42 to 51.

In the Figure 5 the Spanish provinces are plotted in 4 colored categories depending

on the values of the EBLUP2 estimates in % of the poverty proportions and the gaps, i.e.

pd = 100 · Ŷ
eblup2

0;d,2006 and gd = 100 · Ŷ
eblup2

1;d,2006. We observe that the Spanish regions where

the proportion of the population under the poverty line is smallest are those situated in

the north and east, like Cataluña, Aragón, Navarra, Paı́s Vasco, Cantabria and Baleares.

On the other hand the Spanish regions with higher poverty proportion are those situated

in the centre-south, like Andalucı́a, Extremadura, Murcia, Castilla La Mancha, Canarias,

Ceuta and Melilla. In an intermediate position we can find regions that are in the centre-

north of Spain, like Galicia, La Rioja, Castilla León, Asturias, Comunidad Valenciana

and Madrid. If we investigate how far the annual net incomes of population under the



Domingo Morales, Maria Chiara Pagliarella and Renato Salvatore 31

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Estimated poverty gap − MEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Dir
EBLUP 2

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root mean squared error of poverty gap − MEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root MSE Dir
Root MSE EBLUP 2

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Estimated poverty gap − WOMEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Dir
EBLUP 2

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root mean squared error of poverty gap − WOMEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root MSE Dir
Root MSE EBLUP 2

Figure 4: Estimates of poverty gap (top) and squared root of their estimated MSEs (bottom) respectively

for men (on the left) and women (on the right) in 2006.

Table 5: Estimated poverty proportions (α= 0) and RMSE’s in 2006.

Men Women

Province nd DIR EB2 RMSE⋆ RMSE2 nd DIR EB2 RMSE⋆ RMSE2

Soria 24 0.247 0.231 0.107 0.080 18 0.604 0.351 0.126 0.057

Segovia 60 0.234 0.231 0.061 0.055 60 0.438 0.360 0.071 0.046

Palencia 73 0.228 0.210 0.054 0.049 72 0.280 0.246 0.058 0.041

Álava 98 0.083 0.079 0.034 0.033 100 0.079 0.085 0.032 0.028

Zamora 109 0.332 0.317 0.048 0.045 100 0.268 0.259 0.046 0.037

Huelva 124 0.192 0.191 0.036 0.035 124 0.253 0.235 0.040 0.033

Burgos 169 0.127 0.127 0.029 0.028 167 0.124 0.129 0.028 0.025

Albacete 173 0.237 0.239 0.035 0.034 193 0.285 0.283 0.037 0.031

Granada 189 0.301 0.297 0.036 0.035 229 0.342 0.326 0.034 0.030

Crdoba 221 0.312 0.311 0.034 0.032 233 0.307 0.303 0.033 0.029

Cáceres 261 0.252 0.252 0.030 0.029 303 0.332 0.328 0.031 0.027

Tenerife 373 0.263 0.262 0.027 0.027 397 0.286 0.283 0.026 0.024

Sevilla 473 0.209 0.209 0.020 0.020 492 0.228 0.227 0.020 0.019

Zaragoza 556 0.101 0.101 0.014 0.014 577 0.136 0.139 0.017 0.016

Barcelona 1367 0.083 0.084 0.008 0.008 1494 0.108 0.109 0.008 0.008
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Table 6: Estimated poverty gapss (α= 1) and RMSE’s for men in 2006.

Men Women

Province nd DIR EB2 RMSE⋆ RMSE2 nd DIR EB2 RMSE⋆ RMSE2

Soria 24 0.153 0.074 0.088 0.038 18 0.235 0.091 0.111 0.023

Segovia 60 0.070 0.069 0.021 0.019 61 0.123 0.102 0.025 0.017

Palencia 73 0.056 0.053 0.017 0.016 78 0.052 0.053 0.020 0.015

lava 98 0.025 0.024 0.010 0.010 87 0.107 0.101 0.018 0.014

Zamora 109 0.126 0.112 0.024 0.021 100 0.099 0.087 0.022 0.016

Huelva 124 0.105 0.091 0.027 0.023 124 0.091 0.077 0.021 0.015

Burgos 169 0.042 0.042 0.015 0.014 165 0.089 0.085 0.014 0.012

Albacete 173 0.096 0.095 0.017 0.016 181 0.053 0.051 0.012 0.010

Granada 189 0.135 0.124 0.020 0.018 194 0.112 0.109 0.017 0.014

Crdoba 221 0.082 0.083 0.011 0.011 230 0.114 0.106 0.015 0.012

Cceres 261 0.075 0.076 0.011 0.011 247 0.207 0.171 0.023 0.016

Tenerife 373 0.081 0.081 0.010 0.010 397 0.093 0.092 0.011 0.010

Sevilla 473 0.034 0.034 0.004 0.004 501 0.043 0.044 0.005 0.005

Zaragoza 556 0.043 0.043 0.009 0.009 605 0.027 0.028 0.005 0.005

Barcelona 1367 0.031 0.031 0.003 0.003 1494 0.036 0.036 0.004 0.004
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Figure 5: EBLUP2 estimates of poverty proportions (top) and gaps (bottom) for men (left) and women

(right) in 2006.
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poverty line z2006 are from z2006, we observe that in the Spanish regions situated in the

centre-north there exist a distance that is generally lower than the 6% of z2006. However,

the cited distance is in general greater than 6% of z2006 in the centre-south.

Tables 5-6 present the direct and EBLUP estimates under model 2 of poverty

proportions (α= 0) and poverty gaps (α= 1) for some Spanish provinces. The provinces

were selected accordingly with the quantiles of the set of domain sample sizes nd . The

EBLUP estimates under the model 2 are labelled by EB2 and the direct estimates by

DIR. The squared root of MSEs are labelled by RMSE⋆ for the direct estimator and by

RMSE2 for the EBLUP under the model 2 respectively. Numerical results are sorted by

sex. Regarding the reduction of the MSE when passing from direct to EBLUP estimates,

we observe that model 2 performs better in domains with small sample size.

4. Discussion

As poverty indicators are nonlinear, unit-level model-based estimation approaches can-

not always be used. However, their direct estimators are weighted sums that can be

modelled by area-level models. Area-level models thus provide an easy-to-apply solu-

tion. These idea motivates the introduction of partitioned temporal models that borrow

strength from time. The use of information from past time instants, the greater avail-

ability of auxiliary variables at the domain level and the possibility of introducing mod-

elling differences by sex might compensate the loss of information when passing from

unit-level models to area-level models. We thus considered four area-level linear mixed

models and we applied the methodology to Spanish EU-SILC data.

We would also like to point out that model (1) and its particularizations have some

features of interest, from a methodological point of view. It is somewhat different from

the Rao-Yu model (Rao and Yu, 1994, and Rao, 2003), viewed as an extension of the

Fay-Herriot area-level model in the case of time-correlated data. As we can note, the

covariance matrix of the model does not contain the variance component connected with

the random-effect at the domains, as clusters of time-correlated data. This fact permits

to the random time-area effect to absorb completely the variation of the EBLUP due

to the correlated observation, without considering any cluster-oriented random-effect

components.

Another characteristic of main interest of the model (1), is that is a “partitioned”

model. This means that different variance components in the covariance matrix of the

random-area effects can accommodate different inputs of information, due to some

relevant issues related to the specific levels of auxiliary variables. In the case of the

application on the poverty indicators in Spain, the partitioning of the variance of the

random-effect is significative for the gender-based class of survey domains. In fact,

relevant differences in terms of the data in these classes of domains, as inputs in the

fixed-effects regression, seems to drive at the same time to different variations in the

related class of random-area effects.
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The R programming language has been employed for doing all the computations

in this paper. The deliverable D22 on software for small area estimation of the Euro-

pean SAMPLE project (http://www.sample-project.eu/) gives a primary version of the

employed R codes.
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Abstract

In this paper we study a new class of skew-Cauchy distributions inspired on the family extended

two-piece skew normal distribution. The new family of distributions encompasses three well known

families of distributions, the normal, the two-piece skew-normal and the skew-normal-Cauchy

distributions. Some properties of the new distribution are investigated, inference via maximum

likelihood estimation is implemented and results of a real data application, which reveal good

performance of the new model, are reported.
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1. Introduction

Arnold et al. (2009) introduced a random variable X ∼ ET N(α,β) with probability

density function given by:

fET N(x;α,β) = 2cαφ(x)Φ(α|x|)Φ(βx), −∞ < x < ∞, (1)

where α,β ∈R, cα= 2π/(π+2arctan(α)), andφ(·) and Φ(·) are the density and cumu-

lative distribution functions of the standard N(0,1) distribution, respectively.
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Notice that for the particular case α = 0 the well known skew-normal distribution

(Azzalini, 1985) with density function given by

fSN(x;β) = 2φ(x)Φ(βx), −∞ < x < ∞, (2)

is obtained. For β = 0, one obtains the so called two-piece skew-normal distribution

given by Kim (2005), denoted by {T N(α) : −∞ < α < ∞} with probability density

function given by

fT N(x;α) = cαφ(x)Φ(α|x|), −∞ < x < ∞, (3)

with cα as the normalizing constant. Another family of models studied in Nadarajah and

Kotz (2003), is generated by using the kernel of the normal distribution, that is,

h(x;λ) = 2φ(x)G(βx), −∞ < x < ∞, (4)

with β ∈ (−∞,∞) and G(·) is a symmetric distribution function. A particular case of this

class follows by taking G(·) as the CDF of the Cauchy distribution, which as shown by

Nadarajah and Kotz (2003), results in a model with the same range of asymmetry, but

with greater kurtosis than that of the skew-normal model. The pdf for a random variable

X with this distribution, which we denote by X ∼ SNC(β), can be written as

fSNC(x;β) = 2φ(x)

{

1

2
+

1

π
arctan(βx)

}

, −∞ < x < ∞. (5)

Arrué, Gómez, Varela and Bolfarine (2010) studied some properties, stochastic repre-

sentation and information matrix for the model given in (5). A random variable Z has

a extended skew-normal-Cauchy random variable with parameter α,β ∈ (−∞,∞), de-

noted Z ∼ ESNC(α,β), if its probability density function is

f (z;α,β) = 2cαφ(z)Φ(α|z|)
{

1

2
+

1

π
arctan(βz)

}

, −∞ < z < ∞. (6)

For the rest of the article, Z will denote a random variable with density (6). Figures 1

depicts shapes of density function (6) for different parameter values (continuous and

discontinuous lines).

This model is important because it contains strictly (not as limiting cases) the normal,

SNC and TN distributions. Moreover, this distribution inherits the bimodal nature of

the TN model which is controlled by parameter α, that is, when α > 0 the model is

bimodal and when α< 0 it is unimodal. Since it contains the Cauchy distribution, greater

flexibility in the kurtosis is earned and therefore could better fit data sets containing

outlying observations.
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Figure 1: Examples of the ESNC density.

One of the main focus of the paper is to develop a stochastic representation of the

ESNC model which allows moments derivation in a simpler way. We derive also the

Fisher information matrix for the ESNC model and show that it is singular for α =

β = 0. Using the approach in Rotnitzky, Cox, Bottai and Robins (2000), an alternative

parametrization is proposed which makes the Fisher information matrix nonsingular at

α= β = 0.

The paper is organized as follows. Section 2 presents properties of the ESNC

model. Section 3 presents a stochastic representation for this model which allows a

simple derivation for the moments generating function leading to simple expressions

for asymmetry and kurtosis coefficients. The Fisher information matrix is derived in

Section 4.2, which turns out to be singular for α = β = 0. A parametrization is studied
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which makes it nonsingular for α = β = 0 and allow an asymptotic study of the MLE

properties at this point. In Section 5 we use a data set to illustrate the flexibility of the

model ESNC, for this we use the maximum likelihood approach and compare it with the

TN and SNC models. The paper is concluded with a discussion section.

2. Distributional properties of the ESNC model

Clearly, density (6) is continuous at z= 0 for all α and β , However, it is not differentiable

at z = 0 for α 6= 0. In the following we present uni/bimodal properties possessed by

the ESNC family. Notice that this model contains the normal, two-piece skew-normal

and skew-normal-cauchy as special cases. The following properties follow immediately

from the (6).

Property 1 The ESNC(0,0) density is the N(0,1) density.

Property 2 The ESNC(0,β) density is the SNC(β) density.

Property 3 The ESNC(α,0) density is the T N(α) density.

Property 4 As α→ ∞, f (z;α,β) tends to the SNC(β) density. In contrast, as α→−∞,

f (z;α,β) degenerates at 0.

Property 5 As β → ∞, f (z;α,β) tends to the 2cαφ(z)Φ(αz)I(z ≥ 0) density. In con-

trast, as β →−∞, f (z;α,β) tends to the 2cαφ(z)Φ(−αz)I(z < 0) density.

Property 6 If Z ∼ ESNC(α,β) random variable, then −Z ∼ ESNC(α,−β) random

variable.

Property 7 For α> 0, the density (6) is bimodal, i.e. in each region of z ∈ (−∞,0] and

z ∈ [0,∞), log f (z;α,β) is a concave function of z.

Property 8 For α> 0, the two modes of (6) are located at z = z0 and z = z1 satisfying

z0 =−α φ(αz0)

Φ(−αz0)
+

β

π(1+β2z2
0)

and z1 = α
φ(αz1)

Φ(αz1)
+

β

π(1+β2z2
1)
,

where z0 < 0 and z1 > 0.

Property 9 For α< 0, the single mode of (6) is located at z = 0, because f ′(z;α,β)< 0

for z > 0 and f ′(z;α,β)> 0 for z < 0.
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3. A stochastic representation

The main result states that if Z ∼ ESNC(α,β) then the distribution of Z can be obtained

as a mixture in the asymmetry parameter between the extended two-piece skew-normal

and half-normal (HN) distributions. In the following I(A) denotes the indicator function

of the set A.

Proposition 1 If Z|Y = y ∼ ET N(α,βy) and Y ∼ HN(0,1) then Z ∼ ESNC(α,β).

Proof. Let Z|Y = y ∼ ET N(α,βy) and Y ∼ 2φ(y)I(y ≥ 0), then

f (z;α,β) =

∫ ∞

0
2cαφ(z)Φ(α |z|)Φ(βyz)2φ(y)dy

= 2cαφ(z)Φ(α |z|)
∫ ∞

0
2Φ(βyz)φ(y)dy

= 4cαφ(z)Φ(α |z|)
∫ ∞

0

∫ βz

−∞

φ(t)φ(y)dtdy

= 4cαφ(z)Φ(α |z|)
[

∫ ∞

0

∫ 0

−∞

φ(t)φ(y)dtdy+

∫ ∞

0

∫ βz

0
φ(t)φ(y)dtdy

]

The terms

∫ ∞

0

∫ 0

−∞

φ(t)φ(y)dtdy and

∫ ∞

0

∫ βx

0
φ(t)φ(y)dtdy are the integrals of the

bivariate normal distribution. Then, making changes in variables t = r cosu and y =

r sinu we have

f (z;α,β) = 4cαφ(z)Φ(α |z|)
[

1

4
+

1

2π

∫ arctan(βz)

0

∫ π
2

0
e−r2/2rdrdu

]

= 2cαφ(z)Φ(α |z|)
{

1

2
+

1

π
arctan(βz)

}

,

which concludes the proof.

3.1. Location and scale extension

For applications it is convenient to add location and scale parameters to the ESNC

distribution. If Z ∼ ESNC(α,β) and if X = µ+σZ, where µ∈ (−∞,∞) and σ> 0, then

we can write X ∼ ESNC(µ,σ,α,β) or, at times, X ∼ESNC(θ) where θ = (µ,σ,α,β)’.

This leads to the following definition.

Definition 1 A random variable X has a distribution in the ESNC location and scale

family if the density is given by
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f (x;θ)=
2cα

σ
φ

(

x−µ
σ

)

Φ

(

α

∣

∣

∣

∣

x−µ
σ

∣

∣

∣

∣

){

1

2
+

1

π
arctan

(

β(x−µ)
σ

)}

, −∞< x<∞.

(7)

We write X ∼ ESNC(θ) or X ∼ ESNC(µ,σ,α,β).

3.2. Moments

In order to evaluate moments of the ESNC distribution, the following technical propo-

sitions will be useful. In these propositions, we use the notation

ar(α,λ) :=

∫ ∞

0
2cαtrφ(t)Φ(λt)dt, (8)

and

dr(α,β) :=

∫ ∞

0
2cαtrφ(t)Φ(αt)Φ(βt)dt, (9)

where α,β ,λ ∈ (−∞,∞).

We provide next the recursive formulation for computing the functions above for

a random variable with density given in (6) which will be fundamental for computing

moments of the random variable X ∼ ESNC(θ). The proof is presented in Arnold et al.

(2009).

Proposition 2 According to (8),

ar(α,λ) =



























π+2arctan(λ)
π+2arctan(α) , r = 0,

cα√
2π

(

1+ λ√
1+λ2

)

, r = 1,

(r−1)ar−2(α,λ)+
2r/2−1λcα
π(1+λ2)r/2 Γ

(

r
2

)

, r ≥ 2,

(10)

Proposition 3 Let U ∼ T SN(α), then

ar(α) := E(U r) =























1, r = 0,

cα√
2π

(

1+ α√
1+α2

)

, r = 1,

(r−1)ar−2(α)+
2r/2−1αcα
π(1+α2)r/2 Γ

(

r
2

)

, r ≥ 2.

(11)

This result is obtained for λ= α in Equation (10).
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Proposition 4 According to (9),

dr(α,β) =



















∫ ∞
0 2cαφ(t)Φ(αt)Φ(βt)dt, r = 0,

cα√
2π

[

1
2 +

α√
1+α2

Ψ

(

β√
1+α2

)

+ β√
1+β2

Ψ

(

α√
1+β2

)]

, r = 1,

(r−1)dr−2(α,β)+
α√

2π(1+α2)r/2
ar−1(α,λ1)+

β√
2π(1+β2)r/2

ar−1(α,λ2), r ≥ 2,

(12)

where Ψ(t) = 1/2+ arctan(t)/π is a CDF of the standard Cauchy distribution, λ1 =

β/
√

1+α2, λ2 = α/
√

1+β2 and d0(α,β) must be evaluated numerically.

Proposition 5 Let Z ∼ ESNC(α,β), Y ∼ 2φ(y)I(y ≥ 0) and X = µ+σZ ∼ ESNC(θ)

so that, for r = 1,2, . . ., we have:

E(Zr) = (1− (−1)r)E(dr(α,βY ))+(−1)rar(α) and E(X r) =
r

∑
k=0

(

r

k

)

µr−kσkE(Zk),

(13)

where ar(α) and dr(α, ·) are given in (11) and (12), respectively.

Proof. For computing moments of the random variable Z ∼ ESNC(α,β) we use con-

ditional expectations and the stochastic representation given in Proposition 1, leading

to

E(Zr) = E(E(Zr|Y )) =
∫ ∞

0
[(1− (−1)r)dr(α,βy)+(−1)rar(α)]2φ(y)dy

= (1− (−1)r)
∫ ∞

0
2dr(α,βy)φ(y)dy+(−1)rar(α)

∫ ∞

0
2φ(y)dy

= (1− (−1)r)

∫ ∞

0
2dr(α,βy)φ(y)dy+(−1)rar(α)

= (1− (−1)r)E(dr(α,βY ))+(−1)rar(α).

Corollary 1 If Z ∼ ESNC(α,β), then

E(Zr) =

{

ar(α), r even,

2kr(α,β)−ar(α), r odd,
(14)

where kr(α,β) := E(dr(α,βY )).

The even moments of the ESNC distribution coincide with the even moments of the

ETN distribution given by Arnold et al. (2009).

In the following we present expressions for computing kr(α,β) when r is odd. The

proofs for the results presented next follow directly from (10) and (12).
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Proposition 6 Under the conditions in Proposition 5, we have

kr(α,β)=



































2cα√
2π

[

1
4
+ α√

1+α2

∫ ∞

0
φ(y)Ψ

(

βy√
1+α2

)

dy r = 1,

+ β

∫ ∞

0

yφ(y)
√

1+β2y2
Ψ

(

α
√

1+β2y2

)

dy

]

,

(r−1)kr−2(α,β)+
α√

2π(1+α2)r/2 gr−1(α,β)+
β√
2π

jr−1(α,β), r = 3,5, . . .

(15)

where

gr(α,β)=



















2cα

∫ ∞

0
φ(y)Ψ

(

βy√
1+α2

)

dy, r = 0,

(r−1)gr−2(α,β)+
β1−rcαe

1+α2

2β2

√
2π3(1+α2)(1−r)/2

Γ
(

r
2

)

Γ

(

1− r
2
, 1+α2

2β2

)

, r = 2,4, . . .

(16)

where Γ(a,z) =
∫ ∞

z e−tta−1dt is the incomplete Gamma function.

jr(α,β)=























2cα

∫ ∞

0

yφ(y)

(1+β2y2)
Ψ

(

α
√

1+β2y2

)

dy, r = 0,

(r−1) jr−2(α,β)+
αcαΓ( r

2)
2−r/2π

∫ ∞

0

yφ(y)dy

(1+α2 +β2y2)r/2
√

1+β2y2
, r = 2,4, . . .

(17)

The terms kr(α,β), gr(α,β) and jr(α,β) can be calculated using numerical integration

for r, α and β . For reference we list the first four moments of the standard ESNC

distribution. If Z ∼ ESNC(α,β) then

E(Z) =
cα√
2π

(

− α√
1+α2

+
4α√

1+α2

∫ ∞

0
φ(y)Ψ

(

βy√
1+α2

)

dy (18)

+ 4β

∫ ∞

0

yφ(y)
√

1+β2y2
Ψ

(

α
√

1+β2y2

)

dy

)

,

E(Z2) = 1+
αcα

π(1+α2)
, (19)

E(Z3) = 2k3(α,β)−
cα√
2π

(

2+
2α√

1+α2
+

α
√

(1+α2)3

)

, (20)

E(Z4) = 3+
αcα(5+3α2)

π(1+α2)2
, (21)
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Standard expressions for kurtosis and skewness can then be obtained using Equations

(18)− (21).

4. ML estimation

4.1. Likelihood

Suppose that we have available a sample of size n, X1,X2, . . . ,Xn from an ESNC(θ) dis-

tribution. In principle, the representation Xi = µ+σZi and the four moment expressions

for Z given in Equations (18)− (21) could be used to obtain method of moments es-

timates of the four parameters. However, the approach is not pursued further. Instead,

we will discuss the implementation of the maximum likelihood approach for this dis-

tribution given that it is more efficient asymptotically. The log-likelihood function of a

random sample (X1,X2, . . . ,Xn) from an ESNC(θ) distribution takes the form

l(θ ;X1,X2, . . . ,Xn) ∝ n log
(cα

σ

)

− 1

2

n

∑
i=1

Z2
i +

n

∑
i=1

logΦ(α|Zi|)+
n

∑
i=1

logΨ(βZi), (22)

Table 2 (see Appendix) shows the average MLEs of µ, σ, α and β for 1000 random

of size n (SD: standard deviation for the 1000 estimates). We do not consider the

case of β < 0, since by the reflection property 2.6, if X ∼ ESNC(0,1,α,−β) then

−X ∼ ESNC(0,1,α,β). Several parameter values are considered and moderate and

large sample sizes are used. The table shows that for large values of α and β the,

MLEs tend to overestimate (if positive) the true values of α and β . This overestimation

decreases as the true parameter values decrease and as sample size increases. If one

wants to reduce the asymptotic bias of the MLEs one can apply the correction approach

in Firth (1993), which amounts to penalize the likelihood for a MLE with less bias value.

4.2. The Fisher information matrix

4.2.1. Special cases

In the special case where α= 0 and β = 0 the information matrix for the ESNC model

(see Appendix) is singular, that is,

∣

∣I(µ,σ,0,0)
∣

∣=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

σ2 0 0 2
πσ

0 2

σ2
2
πσ

0

0 2
πσ

2(π−2)

π2 0

2
πσ

0 0 4

π2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.
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Comparing the above information matrix with the Fisher information matrix corre-

sponding to model SNC(β) given in Arrué et al. (2010) we note that they differ only

in the row and column corresponding to the second derivative with respect to the param-

eter α. The columns corresponding to the parameters µ and β are linearly dependent,

so the information matrix is singular. This difficulty has been noticed and investigated

in Azzalini (1985) in the context of the skew-normal distribution and was later stud-

ied in Chiogna (2005) in some other contexts. DiCiccio and Monti (2004) studied this

singularity problem in the context of the skew-exponential power distribution and Sali-

nas, Arellano-Valle and Gómez (2007) studied it in the context of the extended skew-

exponential power distribution. In summary, for this special case when the parameters

α and β tend to zero, we could not perform asymptotic statistical inference on these

parameters, since the information matrix is singular. And to overcome this problem, we

will use a reparametrization given by Rotnitzky et al. (2000), which is to transform the

score function Sβ in one that is linearly independent from the other score functions of

score (for the other parameters). With this procedure we obtain a nonsingular informa-

tion matrix.

4.2.2. Nonsingular Fisher information matrix

As considered in Arrué et al. (2010), we consider next a parameter transformation that

makes the information matrix nonsingular. Indeed, after extensive algebraic manipula-

tions, by using the approach in Rotnitzky et al. (2000), it follows that the convenient

parametrization is the same as the one derived in Arrué et al. (2010) for the SNC model,

namely,

µ∗ = µ+
2

π
σβ , σ∗ = σ

(

1− 2

π2
β2

)

, α∗ = α, β∗ = β

and hence the score vector obtained is
(

Sµ,Sσ,Sα,S
3
β/3!

)

where

S3
β =

∂ 3l(θ ;X∗)

∂β3

∣

∣

∣

∣

α=β=0

.

Therefore, to obtain the transformed Fisher information matrix, we have to compute

E

(

Sµ
S3
β

3!

)

=
−2

πσ

E

(

Sσ
S3
β

3!

)

= 0



Jaime Arrué, Héctor W. Gómez, Hugo S. Salinas and Heleno Bolfarine 45

E

(

Sα
S3
β

3!

)

= 0

E





(

S3
β

3!

)2


 =
4

9π6

[

96+π2

(

1

σ2
−48

)

+15π4

]

leading to the nonsingular Fisher information matrix for the ESNC model

I(µ,σ,0,0)=















1

σ2 0 0 −2
πσ

0 2
σ2

2
πσ

0

0 2
πσ

2(π−2)

π2 0

−2
πσ

0 0 4

9π6

[

96+π2
(

1

σ2 −48
)

+15π4
]

.















Comparing this information matrix with the one in Arrué et al. (2010) for the SNC(β),

it follows that they differentiate only on the row and column corresponding to the

additional parameter α. Hence, computing the inverse (I∗)−1
we have the asymptotic

variance of the maximum likelihood estimators for the parameters µ, σ, α and β ,

respectively.

5. Illustration

To illustrate the estimation procedure discussed in the previous section we consider

the variable N-Cream available in the data base Creaminess of cream cheese (see

Urlhttp://www.models.kvl.dk/Cream) which was used by Arnold et al. (2009). The

corresponding descriptive statistics for this variable are given by the sample size n =

240, the mean x = 7.578 and the variance s2 = 2.964. Quantities
√

b1 = −0.551 and

b2 = 3.173 correspond to the sample asymmetry and kurtosis coefficients, respectively.

In Table 1, the five models Normal (N), SNC, mixture (MIX), ETN and ESNC with

additional location and scale parameters are fitted to the data. MIX is a mixture

of two normal distributions represented by fZ(z;µ,σ,µ1,σ1, p) = p 1
σ
φ
(

z−µ
σ

)

+ (1−
p) 1
σ1
φ
(

z−µ1
σ1

)

. Notice that the N and SNC models are nested within the ESNC model,

so that likelihood ratio tests will provide meaningful comparisons for these models.

In all cases, the parameters are estimated by maximum likelihood using the R-

package optim (2011). The standard errors of the maximum likelihood estimates are

calculated using the information matrix corresponding to each model.

The summaries provided by Table 1 illustrate a key feature of the ESNC model;

its flexibility and the wide range of coefficients of skewness and kurtosis that it can

adapt to, in contrast to the other models. For example, it is clear that the fit of the
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normal model is inadequate because of the high degree of skewness of the data. To

compare the ESNC model with the normal and SNC models, consider testing the

null hypothesis of a normal or a SNC distribution against an ESNC distribution using

the likelihood ratio statistics based on the ratios Λ1 = LN(µ̂, σ̂, α̂)/LESNC(µ̂, σ̂, α̂, ̂β)

and Λ2 = LSNC(µ̂, σ̂, α̂)/LESNC(µ̂, σ̂, α̂, ̂β). Substituting the estimated values, we obtain

−2log(Λ1) =−2(−469.5862+461.555) = 16.062 and −2log(Λ2) =−2(−466.036+

461.555) = 8.962 which, when compared with the 95% critical value of the χ2
1 = 3.84,

indicate that the null hypotheses are clearly rejected and there is strong indication that

the ESNC distribution presents a much better fit than either the N or the SNC distribution

to the data set under consideration. In particular, there are significant differences

between normal and ESNC models, so not for use reparametrization Rotnitzky et al.

(2000). The conclusion of these analysis is that the ESNC model appears to be more

appropriate for the particular data set analyzed here. Moreover, using the AIC criterion

to MIX, ETN and ESNC models, we can conclude that the ESNC distribution fits better

the data. Furthermore, using the delta-method to the information matrix (see Appendix)

we have calculated the population estimates of the mean and variance (and their standard

deviations), given by Ê(X) = 7.596(0.007) and V̂ (X) = 2.897(0.002). These points are

illustrated in more detail in Figure 2 where the histograms and the fitted curves for the

data sets are displayed.

6. Discussion

The paper introduced an extension of the SNC model in Arrué et al. (2010) based on

the model defined in Arnold et al. (2009). Some properties of the model are studied and

inference is implemented via the maximum likelihood approach. The Fisher information

matrix is derived and it is shown to be singular in the vicinity of symmetry. A parameter

transformation is presented which contours the singularity problem, and which turn out

to be exactly the one derived for the model studied in Arrué et al. (2010). A data set

illustration reveals the good performance of the model introduced.

7. Appendix

A. In the formula of Equation (16), use the following integral:

∫ ∞

0

yφ(y)dy

(1+α2 +β2y2)r/2
=

e
1+α2

2β2

2
(r+1)

2
√
π|β |r

Γ

(

1− r

2
,
1+α2

2β2

)

.

Proof. Using the Integrate[ ] of Mathematica (2008) we have the result.
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B. δk = E
(

sgn(Z)Zk
(

φ(αZ)
Φ(α|Z|)

))

= 4
√

2cα
π3/2

∫ ∞
0 zkφ(

√
1+α2z)arctan(βz)dz

C. The score functions are given by

∂ l(θ ;X)

∂µ
=

n

∑
i=1

Zi

σ
− α
σ

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
sgn(Zi)−

β

σ

n

∑
i=1

ψ(βZi)

Ψ(βZi)
,

∂ l(θ ;X)

∂σ
= − n

σ
+

1

σ

n

∑
i=1

Z2
i −

α

σ

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
|Zi|−

β

σ

n

∑
i=1

ψ(βZi)

Ψ(βZi)
Zi,

∂ l(θ ;X)

∂α
= − ncα

π(1+α2)
+

n

∑
i=1

φ(αZi)

Φ(α|Zi|)
|Zi|,

∂ l(θ ;X)

∂β
=

n

∑
i=1

ψ(βZi)

Ψ(βZi)
Zi.

where ψ(t) = 1/(π(1+ t2)) is a PDF of the standard Cauchy distribution.

D. For one observation X ∼ ESNC(θ), the i j-th element of the information matrix I

is given by

Iθiθ j
=−E

[

∂ 2l(θ ;X)

∂θi∂θ j

]

, (23)

Eventually, one obtains the following expressions for the elements of the informa-

tion matrix.

Iµµ =
1

σ2
+

α3cα

σ2π(1+α2)
− α

2

σ2
η0 +

β2

σ2
ρ0,

Iµσ =
2

σ2
E(Z)− 1

σ2
αδ0 +

1

σ2
α3δ2 +

α2

σ2
η1 −

β

σ2
ξ+

2πβ3

σ2
τ+

β2

σ2
ρ1,

Iµα =
1

σ
δ0 −

1

σ
α2δ2 −

α

σ
η1,

Iµβ =
ξ

σ
− 2πβ2

σ
τ− β

σ
ρ1,

Iσσ =
2

σ2
+
α(1+3α2)cα
σ2π(1+α2)2

+
α2

σ2
η2 +

β2

σ2
ρ2,

Iσα =
cα(1−α2)

σπ(1+α2)2
− α
σ
η2,

Iσβ = −β
σ
ρ2,

Iαα = − c2
α

π2(1+α2)2
+η2,
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Iαβ = 0,

Iββ = ρ2,

where ξ = E
(

ψ(βZ)
Ψ(βZ)

)

, τ = E
(

Z2ψ
2(βZ)

Ψ(βZ)

)

, ηk = E

(

Zk
(

φ(αZ)
Φ(α|Z|)

)2
)

, ρk =

= E

(

Zk
(

ψ(βZ)
Ψ(βZ)

)2
)

and δk = E
(

sgn(Z)Zk
(

φ(αZ)
Φ(α|Z|)

))

must be evaluated numer-

ically, with Z ∼ ESNC(α,β).

Table 1: Estimated parameters and log-likelihood values for the models N, SNC, MIX, ETN and ESNC for

the N-Cream variable. The corresponding standard errors are in parentheses.

MLE N SNC MIX ETN ESNC

µ 7.577(0.110) 9.142(0.161) 6.082(1.203) 6.712(0.117) 6.717(0.104)

σ 1.712(0.078) 2.320(0.152) 1.558(0.498) 1.783(0.096) 1.781(0.094)

α − −4.095(1.155) − 1.855(0.808) 1.863(0.810)

β − − − 0.590(0.122) 1.062(0.267)

µ1 − − 8.435(0.257) − −
σ1 − − 1.097(0.138) − −
p − − 0.364(0.245) − −

Log-lik −469.586 −466.036 −461.125 −463.671 −461.555

AIC 943.172 938.072 932.250 935.342 931.110
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Figure 2: Histogram for the N-Cream variable. The curves represent densities fitted by maximum likelihood.
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Table 2: MLEs for the ESNC distribution.

µ σ α β n µ̂(SD) σ̂(SD) α̂(SD) ̂β(SD)

0 1 4 4 100 0.014 (0.007) 0.983 (0.009) 5.155 (0.507) 4.312 (0.173)

0 1 4 4 300 0.005 (0.002) 0.992 (0.003) 4.830 (0.197) 4.114 (0.053)

0 1 4 4 500 0.006 (0.001) 0.995 (0.002) 4.698 (0.120) 4.038 (0.031)

0 1 4 2 100 0.007 (0.007) 0.991 (0.009) 5.061 (0.494) 2.175 (0.082)

0 1 4 2 300 0.001 (0.002) 0.996 (0.003) 4.886 (0.196) 2.053 (0.025)

0 1 4 2 500 0.001 (0.001) 0.997 (0.002) 4.690 (0.120) 2.033 (0.015)

0 1 4 0 100 -0.011 (0.008) 1.021 (0.008) 4.625 (0.422) 0.031 (0.026)

0 1 4 0 300 -0.005 (0.003) 1.006 (0.003) 5.000 (0.195) 0.015 (0.007)

0 1 4 0 500 -0.003 (0.002) 1.003 (0.002) 4.877 (0.122) 0.009 (0.004)

0 1 2 4 100 0.044 (0.009) 0.977 (0.009) 2.801 (0.268) 4.148 (0.184)

0 1 2 4 300 0.028 (0.003) 0.988 (0.003) 2.540 (0.100) 3.937 (0.056)

0 1 2 4 500 0.021 (0.002) 0.990 (0.002) 2.440 (0.063) 3.910 (0.033)

0 1 2 2 100 0.035 (0.010) 0.985 (0.009) 2.503 (0.222) 2.043 (0.083)

0 1 2 2 300 0.020 (0.003) 0.994 (0.003) 2.366 (0.087) 1.980 (0.026)

0 1 2 2 500 0.014 (0.002) 0.995 (0.002) 2.298 (0.054) 1.978 (0.016)

0 1 2 0 100 -0.006 (0.011) 1.020 (0.008) 2.149 (0.183) 0.016 (0.027)

0 1 2 0 300 -0.003 (0.004) 1.006 (0.003) 2.175 (0.077) 0.004 (0.008)

0 1 2 0 500 -0.002 (0.002) 1.004 (0.002) 2.156 (0.050) 0.002 (0.004)

0 1 0 4 100 0.008 (0.011) 1.207 (0.098) 0.376 (0.196) 5.713 (0.526)

0 1 0 4 300 -0.003 (0.005) 1.149 (0.025) 0.143 (0.056) 4.832 (0.128)

0 1 0 4 500 -0.004 (0.004) 1.118 (0.014) 0.077 (0.033) 4.591 (0.071)

0 1 0 2 100 0.035 (0.012) 1.164 (0.084) 0.283 (0.162) 2.479 (0.228)

0 1 0 2 300 0.031 (0.006) 1.089 (0.019) 0.099 (0.044) 2.139 (0.058)

0 1 0 2 500 0.027 (0.004) 1.068 (0.009) 0.040 (0.024) 2.063 (0.031)

0 1 0 0 100 -0.008 (0.014) 1.125 (0.048) 0.469 (0.123) 0.027 (0.054)

0 1 0 0 300 0.005 (0.007) 1.087 (0.014) 0.107 (0.032) -0.010 (0.017)

0 1 0 0 500 -0.001 (0.005) 1.062 (0.007) 0.036 (0.016) -0.001 (0.011)

0 1 -2 0 100 0.005 (0.003) 1.234 (0.348) -2.446 (0.805) 0.012 (0.352)

0 1 -2 0 300 0.002 (0.002) 1.258 (0.185) -2.502 (0.422) 0.010 (0.110)

0 1 -2 0 500 0.001 (0.001) 1.248 (0.124) -2.499 (0.285) 0.002 (0.067)

0 1 -4 0 100 0.002 (0.002) 0.902 (0.301) -3.539 (1.270) 0.077 (0.465)

0 1 -4 0 300 0.001 (0.001) 0.925 (0.139) -3.654 (0.587) 0.014 (0.154)

0 1 -4 0 500 0.000 (0.001) 0.938 (0.098) -3.714 (0.414) 0.003 (0.081)

0 1 -2 4 100 -0.012 (0.003) 1.007 (0.279) -1.937 (0.679) 5.233 (1.322)

0 1 -2 4 300 -0.010 (0.002) 0.970 (0.112) -1.858 (0.274) 4.417 (0.467)

0 1 -2 4 500 -0.007 (0.001) 0.969 (0.076) -1.871 (0.184) 4.171 (0.293)

0 1 -2 2 100 -0.017 (0.003) 1.116 (0.317) -2.175 (0.750) 3.057 (0.853)

0 1 -2 2 300 -0.015 (0.002) 1.057 (0.124) -2.036 (0.293) 2.609 (0.304)

0 1 -2 2 500 -0.013 (0.001) 1.074 (0.091) -2.083 (0.214) 2.489 (0.203)

0 1 -4 4 100 -0.007 (0.002) 0.904 (0.358) -3.549 (1.520) 4.468 (1.652)

0 1 -4 4 300 -0.005 (0.001) 0.921 (0.164) -3.629 (0.690) 4.114 (0.699)

0 1 -4 4 500 -0.003 (0.001) 0.939 (0.112) -3.712 (0.473) 4.052 (0.471)

0 1 -4 2 100 -0.007 (0.002) 0.958 (0.377) -3.783 (1.579) 2.662 (1.134)

0 1 -4 2 300 -0.005 (0.001) 0.973 (0.167) -3.847 (0.698) 2.331 (0.431)

0 1 -4 2 500 -0.003 (0.001) 0.965 (0.106) -3.821 (0.444) 2.168 (0.246)
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Diagnostic plot for the identification of high

leverage collinearity-influential observations
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Abstract

High leverage collinearity influential observations are those high leverage points that change

the multicollinearity pattern of a data. It is imperative to identify these points as they are

responsible for misleading inferences on the fitting of a regression model. Moreover, identifying

these observations may help statistics practitioners to solve the problem of multicollinearity,

which is caused by high leverage points. A diagnostic plot is very useful for practitioners to

quickly capture abnormalities in a data. In this paper, we propose new diagnostic plots to identify

high leverage collinearity influential observations. The merit of our proposed diagnostic plots is

confirmed by some well-known examples and Monte Carlo simulations.
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Keywords: Collinearity influential observation, diagnostic robust generalized potential, high lever-
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1. Introduction

Multicollinearity is an exact or a near linear relationship among regressors in a multiple

linear regression. According to Kamruzzaman and Imon (2002), high leverage points or

observations that fall far from the majority of independent variables in a data set, are

a prime source of multicollinearity. Hadi (1988) pointed out that this source of multi-

collinearity is a special case in collinearity-influential observations, which may change

the multicollinearity pattern of data. They are referred to as high leverage collinearity-

enhancing observations or high leverage collinearity-reducing observations (Habshah
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et al., 2010; Habshah et al., 2011; Bagheri et al., 2012).With their presence, multiple

linear regression models encounter serious problems (Habshah et al., 2009; Bagheri et

al., 2009; Bagheri and Habshah, 2008). Hence it is very important to detect them so

that appropriate steps can be taken to remedy such problems (Bagheri and Habshah,

2012-2011; Habshah et al., 2010).

Simple scatter plots are very useful in exploring the relationship between a response

and a single explanatory variable as well as in detecting outliers. They are, however, in-

effective in revealing the complex relationships or detecting the trend and data problems

in multiple regression models. Partial plots, on the other hand, may be better substitutes

for scatter plots in a multiple linear regression. This is because these plots illustrate the

partial effects or the effects of a given predictor variable after adjusting for all the other

predictor variables in a regression model.

There are two different kinds of partial plots, namely the partial residual and the par-

tial regression or added variable plot (See partial plots in Myers, 1990 and also leverage

plots in Sall, 1990; Leverage-Residual Plot of Gray, 1983) which are documented in the

literature (Belsley et al., 1980; Cook and Weisberg, 1982). However, partial residual and

partial regression plots are generally unable to detect multicollinearity. Overlaying both

the partial residual and partial regression plots on the same plot, with the centered xi

values on the x-axis, may in fact provide an alternative method to detect multicollinear-

ity (Stine, 1995) by highlighting the amount of shrinkage in partial regression residuals.

However, when high leverage points are the source of multicollinearity, these plots will

be affected and as a result they will no longer be useful for diagnosing multicollinearity

in a data set.

Unfortunately, to the best of our knowledge, we have not found any paper in the

literature that establishes graphical methods for the identification of multicollinearity

due to high leverage points. This gap in the literature has motivated us to propose

appropriate plots that are able to classify observations according to regular observations,

high leverage points, collinearity-influential observations and vertical outliers.

These plots will be examined in this paper which is organized into five sections.

The next section, Section 2, reviews High Leverage Collinearity-Influential Measure

(HLCIM) based on Diagnostic-Robust Generalized Potential (DRGP) which is referred

to in this paper as HLCIM(DRGP). Section 3 introduces the newly proposed high lever-

age collinearity-influential observation regression diagnostic plots. Section 4 discusses

both the performance of our proposed plots by using some real data sets and their merit

according to Monte Carlo simulations. Finally, some concluding remarks are presented

in Section 5.
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2. Literature review

In the following section, high leverage collinearity-influential measure based on DRGP

will be discussed. Firstly, the regression model can be defined as the following equation:

Y = Xβββ +ǫǫǫ (1)

where Y is an (n×1) vector of response or the dependent variable, X is an (n× p) matrix

of predictors (p× 1), βββ is (p× 1) vector of unknown finite parameters to be estimated

and ǫ is an (n× 1) vector of random errors. We allow X j to denote the jth column of

the X matrix; therefore, X = [X1,X2, . . . ,Xp]. Additionally, we define multicollinearity

in terms of the linear dependence of the columns of X; thus, the vectors of X1,X2, . . . ,Xp

are linearly dependent if there is a set of constants t1, t2, . . . , tp that are not all zero, such

as ∑
p
j=1 t jX j = 0. The problem of multicollinearity is said to exist when this equation

holds approximately ∑
p
j=1 t jX j ≈ 0.

Since multicollinearity is a problem that exists in a data set, there is no statistical

test for its presence. Nonetheless, a statistical test can be substituted by a diagnostic

method in order to indicate the existence and extent of multicollinearity in a data set.

Belsley et al. (1980) proposed an approach for diagnosing multicollinearity based on a

singular-value decomposition of a (n× p) X matrix as:

X = UVD′ (2)

where U is the (n× p) matrix in which the columns that are associated with the p non-

zero eigenvalue of (X′X) is (n× p), V (the matrix of eigenvectors of X′X) is (p× p),

U′U = I, V′V = I, and D is a (p × p) diagonal matrix with non-negative diagonal

elements, k j, j = 1,2, . . . , p, which is called the singular-values of X. The jth Condition

Index (CI) of the X matrix is defined as:

k j =
λmax

λi

, j = 1,2, . . . , p, (3)

where λ1,λ2, . . . ,λp are the singular values of the X matrix. The largest value of k j is

defined as the Condition Number (CN) of the X matrix. Belsley (1991) stated that an

X matrix between 10 and 30 indicates a moderate to strong multicollinearity, whereas a

value of more than 30 reflects severe multicollinearity.

As previously mentioned, high leverage collinearity-influential observations are

those observations that may disrupt the multicollinearity pattern of a data. Unfortunately,

not many studies relevant to these issues are found in the literature. Hadi(1988) noted

that not all high leverage points are collinearity-influential observations, but most

collinearity-influential observations are points with high leverages. He proposed a

measure for the identification of high leverage collinearity-influential observations based
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on the influence of the ith row of X matrix on the condition index as:

δi = log
k(i)− k

k
, i = 1,2, . . . ,n, (4)

where k(i) is the eigenvalue of X(i) when the ith row of X matrix has been deleted.

He pointed out that a large negative value of δi indicates that the ith observation

is a collinearity-enhancing observation, while a large positive δi value indicates a

collinearity-reducing observation. Sengupta and Behimasankaram(1997) suggested a

more preferable measure to Hadi’s measure (Hadi ,1988) which is defined as follows:

li = log
k(i)

k
, i = 1,2, . . . ,n, (5)

According to Bagheri et al. (2012), the performance of both δi and li is only

good for the detection of a single high leverage collinearity influential observation.

Moreover, there are some drawbacks in using δi or li because there are no given specific

cutoff points to indicate which observations are collinearity-enhancing and which are

collinearity-reducing. To rectify these problems, Bagheri et al. (2012) and Bagheri

and Habshah (2012) proposed a high leverage collinearity-influential measure, namely

HLCIM (DRGP), denoted as δ
(D)
i and which is defined as follows:

δ
(D)
i =



























log
k(D)

k(D−i)
if i ∈ D and 6= {D} 6= 1

log
k(i)

k
if 6= {D} and D = i, i =,2, ..,n

log
k(D+i)

k(D)
if i ∈ R

(6)

where D is the suspected group of multiple high leverage points and R is the remaining

good observations diagnosed by DRGP based on Minimum Volume Ellipsoid (MVE)

(Habshah et al., 2009). The number of elements in the D group is denoted as 6= {D}.

k(i) indicates the condition number of the X matrix without the ith high leverage points.

k(D−i) indicates the condition number of the X matrix without the entire D group minus

the ith high leverage points where i belongs to the suspected D group. k(D+i) refers to

the condition number of the X matrix without the entire D group of high leverage points

plus the ith additional observation of the remaining group (For more information on high

leverage diagnostic measures, please refer to Hadi, 1992 and Imon, 2002).

Bagheri et al. (2012) and Bagheri and Habshah(2012) proposed some cutoff points

for θi, i = 1,2, . . . ,n:

cut1(θ ) = Median(θi)− cMad(θi) (7)
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cut2(θ ) = Median(θi)+ cMad(θi) (8)

where cut1(θ ) is the cutoff point for collinearity-enhancing measure and cut1(θ ) is

the collinearity-reducing measure cutoff point. Median and Mean Absolute Deviation

(MAD) stand for robust measures of central tendency and dispersion, respectively. θi

can be δi , li , or δ
(D)
i and c is the chosen constant value of 3.|θi| ≥ |cut1(θ )| for θi < 0

and θi ≥ cut2(θ ) for θi > 0 is an indicator that the ith observation is a high leverage

collinearity-enhancing or -reducing observation, respectively.

Bagheri et al. (2012) pointed out that δ
(D)
i values which exceed the cutoff point and

belong to the D groups are called high leverage collinearity-influential observations.

On the other hand, those δ
(D)
i which exceed the cutoff point and belong to the R

group are called collinearity-influential observations. Since the existence of these points

have unduly effects on the parameter estimates, it is imperative to quickly identify

them by using diagnostic plots. In this regard, new diagnostic plots to separate high

leverage collinearity-influential observations from collinearity-influential observations

are proposed.

3. Proposed diagnostic plots

Identifying outliers and high leverage points is a fundamental step in the least squares

regression model building process. The usage of graphical tools is one of the easiest

ways to quickly capture abnormal points in a data set. Rousseeuw and Van Zomeren

(1990) proposed the usage of diagnostic plots and referred to them as an outlier map to

classify observations into four types of data points, namely regular observations, good

leverage points, vertical outliers and bad leverage points. The proposed outlier map plots

the standardized residual ( ri
σ̂i

,for i = 1,2, . . . ,n) versus Squared Robust Mahalanobis

Distance based on (MVE)(RMD2(MVE)) or Squared Robust Mahalanobis Distance

based on Minimum Covariance Determinant (RMD2(MCD)). The disadvantage of this

plot is that it uses robust distance which has the tendency to declare more observations

as high leverage points due to swamping effects (Habshah et al., 2009). Since robust

distance fails to accurately identify high leverage points correctly while the DRGP is

able to successfully identify their presence, in this paper we suggest the usage of DRGP

in the construction of our proposed diagnostic plots.

The first proposed plot is similar to the outlier map of Rousseeuw and Van Zomeren

(1990), except that the robust distance is substituted with the DRGP. As suggested

by Rousseeuwand Van Zomeren (1990), the standardized Least Trimmed Squares

Residuals (LTSR) residuals are plotted on the Y-axis. We name the first proposed

plot the LTSR-DRGP plot. First, each of the LTS residuals, ri for i = 1,2, ..,n, is

standardized by σ̂. The LTSR -DRGP plots the standardized LTS residuals against the

DRGP. In the LTSR -DRGP plot, any observation which exceeds the Y-axis boundaries
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(±
√

X2
1,0.975) is called a vertical outlier while any that exceeds the X-axis boundaries

(Median(p∗ii) + cMad(p∗ii) where p∗ii is the value of DRGP (Habshah et al., 2009) is

called a good leverage point. When an observation exceeds both the y-axis and the x-

axis boundaries, it is called a bad leverage point.

The second proposed plot is based on the newly developed diagnostic measure

for the identification of multiple high leverage collinearity-influential observations,

HLCIM(DRGP), denoted as δ
(D)
i as presented in Equation (6). We name this plot

the DRGP-HLCIM plot. It plots the DRGP against the High Leverage Collinearity-

influential Measure.

The third proposed plot is also based on HLCIM(DRGP). This plot is called the

LTSR -HLCIM plot. In this plot, the Standardized LTS Residuals are plotted against

the High Leverage Collinearity-influential Measure. Figures 1, 2 and 3 show the Venn

diagram or Ballentine view of the LTSR-DRGP, the DRGP-HLCIM, and the LTSR-

HLCIM plots, respectively. It is important to note that the proposed cutoff points are as

follows:

cut1(P∗
ii ) = Median(P∗

ii )+ cMad(P∗
ii ) (9)

where P∗
ii is the DRGP. If the proposed δ

(D)
i in Equation 6 is employed, then cut1

(

δ
(D)
i

)

and cut2
(

δ
(D)
i

)

from Equations 7 and 8 are the cutoff points for detecting high leverage

collinearity-enhancing and -reducing observations, respectively.

Figure 1 separates the data set into groups of regular observations, vertical (or

regression) outliers, and good or bad leverage points. The figure groups the data set

according to whether the observation is a high leverage point and/or a vertical outlier.

Nevertheless, it does not take into consideration the multicollinearity pattern of a data

set.

Figure 2 groups the data set according to whether the observation is a high leverage

point or a collinearity-influential observation. Hence, it classifies the data set into groups

Bad 

Leverage 

points 

Vertical 

Outliers 

(Regression 

Outliers) 

2

975.0,1c+  

 

S
ta

n
d
ar

d
iz

ed
 L

T
S

 R
es

id
u
al

s
  
  
  
  
  

 

Good 

Leverage 

points 

Regular 

Observations 

 

Bad 

Leverage 

points 

Vertical 

Outliers 

(Regression 

Outliers) 

2

975.0,1c-  

 

 
 

 

Figure 1: The Venn Diagram or Ballentine View of LTSR-DRGP Plot.
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Figure 2: The Venn Diagram or Ballentine View of DRGP-HLCIM Plot.
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Figure 3: The Venn Diagram or Ballentine View of LTRS-HLCIM Plot.

of regular observations, high leverage points, high leverage collinearity-enhancing/re-

ducing observations, and collinearity-enhancing/reducing observations.

This figure also does not take into consideration whether the observation is abnor-

mal in theY-direction. Finally, Figure 3 classifies the data as regular observations, ver-

tical outliers, good leverage collinearity-enhancing/reducing observations, collinearity-

enhancing/reducing observations, bad leverage collinearity-enhancing/reducing obser-

vations as well as collinearity-enhancing/reducing observations with large residuals.

One of the interesting features of this figure is that it takes into account the good leverage

points which are also collinearity-influential observations. Most statisticians believe that

good leverage points are not problematic since they are in the same fitted regression line

as the other data set and they decrease the standard error of the parameter estimations

because they increase the variability of X (see for instance Moller et al., 2005; Ander-

sen, 2008). However, these points maybe collinearity-influential observations and like
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bad leverage points, they may be destructive to the regression analysis. A joint DRGP-

HLCIM and LTSR-HLCIM plot can give a clearer view of the outlyingness of any points

in the X-direction or Y-direction as well as the multicollinearity pattern of a data set. In

the following section, the performance of our proposed diagnostic plots is measured by

applying these plots to influential cases with authentic and well-known data sets.

4. Results and discussion

Numerical and Monte Carlo simulation results will be discussed in the following sub

sections.

4.1. Numerical results

In this section, the performance of the proposed diagnostic plots, namely the LTSR-

DRGP, the DRGP-HLCIM, and the LTSR-HLCIM are investigated through the usage of

some commonly referred data sets such as the Hawkins-Bradu-Kass data, Commercial

Properties data and Body Fat data sets. The first data set is taken from Hawkins, Bradu,

and Kass(1984) while the second and third are taken from Kutner et al.(2005).

The Hawkins-Bradu-Kass data set is constructed to have ten bad leverage points

(cases 1− 10) and four good leverage points (cases 11− 14) (Rousseeuw and Leroy,

1987; Habshah et al., 2009; Bagheri et al., 2012). Figure 4 presents the proposed

diagnostic plots for the Hawkins-Bradu-Kass data set. According to parts (a) and (c)

of this figure, cases 11−14 are not only good leverage points but are also good leverage

collinearity-enhancing observations. Moreover, cases 1−10 are bad leverage points and

bad leverage collinearity-enhancing observations. It is important to mention that cases

1-14 are all high leverage collinearity-enhancing observations (Figure 4, part (b)). Also,

it is worth noting that even though cases 11− 14 are good leverage points, they are

collinearity-enhancing observations. Hence, more attention is needed in the estimation

of their parameters.

Figure 5 presents the diagnostic plots for the Hawkins-Bradu-Kass data set without

the first 14 observations. It can be observed from parts (a) and (b) of Figure 5 that this

data set does not have any vertical outliers nor any high leverage points. Nonetheless, it

has one collinearity-reducing observation (case 53) which was masked in the presence

of the first 14 observations.

Diagnostic plots for the original and modified Commercial Properties data set are

presented in Figures 6 and 7, respectively. The original data set has 19 high leverage

points (observations 1, 2, 3, 6, 7, 8, 17, 21, 26, 29, 37, 45, 53, 54, 58, 61, 62, 72 and

79) with only two (cases 6 and 62) bad leverage points (Figure 6 part (a)). Moreover,

cases 9, 63, 64, 65, and 68 are vertical outliers. There are no high leverage collinearity-

enhancing observations in this data set (Figure 6 part (b)). Parts(b) and (c) of Figure 6



Arezoo Bagheri and Habshah Midi 59

DRGP (MV E )

s
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e
s

id
u

a
ls

0 5 10 15 20 25

0
5

1
0

1
5

SR(LTS)-DRGP

HLCIM (DRGP )

D
R

G
P

(M
V

E
)

-0.4 -0.3 -0.2 -0.1 0.0

0
5

1
0

1
5

2
0

2
5

DRGP-HLCIM

HLCIM (DRGP )

s
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e
s

id
u

a
ls

-0.4 -0.3 -0.2 -0.1 0.0

0
5

1
0

1
5

SR(LTS)-HLCIM 

S
ta

n
d

ar
d

iz
ed

  
L

T
S

  
R

es
id

u
al

s 

D
R

G
P

(M
V

E
) 

S
ta

n
d

ar
d

iz
ed

  
L

T
S

  
R

es
id

u
al

s 

1-10 

11-14 

1-14 

1-10 

11-14 

DRGP(MVE) HLCIM(DRGP) HLCIM(DRGP) 

LTSR--HLCIM DRGP-HLCIM LTSR-DRGP 

 HLCIM(DRGP) HLCIM(DRGP) 

 

Figure 4: Diagnostic Plots of Hawkins-Bradu-Kass Data Set.
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Figure 6: Diagnostic Plots of Commercial Properties Data Set.

reveal that cases 8, 26, 53, and 61 are high leverage collinearity-reducing observations

and good leverage collinearity-reducing observations, respectively.

After modifying the Commercial Properties data set by replacing observations 1,

2, 3, 6, 7 and 8 in each of the explanatory variables by fixed values of 300, 200,

100, 300, 200, and 100, respectively, these observations became good leverage points

(Figure 7 part (a)). Figure 7 part (a) also indicates that case 8 is a bad leverage point.

All the modified cases of 1, 2, 3, 6, 7 and 8 are high leverage collinearity-enhancing

observations (Figure 7, part (b)). According to Figure 7, part (c), case 8 is a bad leverage

collinearity-enhancing observation while cases 1, 2 , 3, 6 and 7 are good leverage

collinearity-enhancing observations. Hence, cases 1, 2, 3, 6, and 7 require more attention

in order to prevent any misleading conclusions.

Figures 8 to 10 are diagnostic plots for the original and modified Body Fat data

set. Part (a) of Figure 8 shows that the original Body Fat data set has four good

leverage points (cases 5, 15, 1 and 3) and having zero vertical outliers. Only case

15 is a high leverage collinearity-reducing observation. It can be seen that case 13,

a non high leverage, is also a collinearity-reducing observation (Figure 8 part (b)).

Additionally, cases 15 and 13 are good leverage collinearity-reducing and collinearity-

reducing observations, respectively (Figure 8 part (c)).
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Figure 7: Diagnostic Plots of Modified Commercial Properties Data Set.
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Figure 8: Diagnostic Plots of Original Body Fat Data Set.
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Figure 9: Diagnostic Plots of Modified x1 Body Fat Data Set.

                    (c) (b)                  (a)    

DRGP (MV E )

s
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e
s

id
u

a
ls

0 50 100 150 200 250

-2
5

0
-2

0
0

-1
5

0
-1

0
0

-5
0

0

SR(LTS)-DRGP

HLCIM (DRGP )

D
R

G
P

(M
V

E
)

-0.15 -0.05 0.0 0.05

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

DRGP-HLCIM

HLCIM (DRGP )

s
ta

n
d

a
rd

iz
e

d
 L

T
S

 R
e
s

id
u

a
ls

-0.15 -0.05 0.0 0.05

-2
5

0
-2

0
0

-1
5

0
-1

0
0

-5
0

0

SR(LTS)-HLCIM 

 

Figure 10. Diagnostic Plots of Modified x and x in the Same Positions  

a

LTRS-DRGP DRGP-HLCIM 
LTRS-HLCIM 

HLCIM(DRGP) HLCIM(DRGP) DRGP(MVE) 

S
ta

n
d

ar
d

iz
ed

  
L

T
S

  
R

es
id

u
al

s 

S
ta

n
d

ar
d

iz
ed

  
L

T
S

  
R

es
id

u
al

s 

D
R

G
P

(M
V

E
) 

1

1

1

Figure 10: Diagnostic Plots of Modified x1 and x2 in the Same Positions Body Fat Data Set.
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Figure 9 and 10 illustrates the modified Body Fat data set when the first observation

of x1 is fixed to 300 and when the first observation of x1 and x2 is fixed to 300, respec-

tively. Figures 9 and 10, part (a), reveal that the added contaminated point is a bad lever-

age point. Moreover, according to Habshah et al. (2011) when the high leverage point

only exists in x1, case 1 becomes a high leverage collinearity-reducing observation (Fig-

ure 9 part (b)). Figure 10 part (b) however, shows case 1 as a high collinearity-enhancing

observation when modification is for x1 and x2 in the same position. Furthermore, part

(c) in Figure 9 shows that case 1 is a bad leverage collinearity-reducing observation

while in part (c) of Figure 10 it is a bad leverage collinearity-enhancing observation.

4.2. Monte Carlo simulation study

In this section, a Monte Carlo simulation study was designed to assess the merit of our

proposed diagnostic plots in terms of its ability to separate the data set according to regu-

lar observations, vertical outliers (regression outliers), collinearity-enhancing/reducing

observations with large residuals, bad leverage collinearity-enhancing/reducing obser-

vations, good leverage collinearity-enhancing/reducing observations and collinearity-

enhancing/reducing observations. To achieve this aim, non-collinear and collinear data

sets with three regressors were generated in such a way that different scenarios were

created, namely, high leverage collinearity-enhancing/reducing observations and verti-

cal outliers. It is important to mention here that although the proposed diagnostics plots

can detect collinearity-enhancing/reducing observations clearly, they were not explicitly

generated. In each scenario, four samples of size 40, 60, 100, and 300 and different lev-

els of high leverages of (the percentage of added contaminated cases) = 0.05,0.10, 0.15,

0.20 with unequal weights were considered.

In order to generate high leverage collinearity-enhancing observations, each variable

was firstly generated from Uniform (0,1) to produce non-collinear data sets. This

generated data is referred to as the regular observations. The last 100%α observations

of the regular observations of each regressor were then replaced with certain percentage

of high leverage points to create high leverage collinearity-enhancing observations. To

generate the high leverage points as collinearity-enhancing with unequal weights in

non-collinear data sets, the values corresponding to the first high leverage point were

kept fixed at 10 and those of the successive values were created by multiplying the

observations index, i, by 10.

As per Lawrence and Arthur (1990), high leverage collinearity-reducing observa-

tions were created by generating collinear regressors on the outset:

xi j = (1−ρ2)zi j +ρzi(t1) (10)

where the zi j, i= 1, . . . ,n; j = 1, . . . , t+1 ; t=3, are independent standard normal random

numbers. The value of ρ2 or the correlation between the two explanatory variables, was
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Table 1: The abbreviations used in Tables 2-6.

Abbreviations Meaning

CN the condition number of X matrix without high leverage points

CN∗ the condition number of X matrix with high leverage points

RO the number of simulated regular observations

VO the number of simulated vertical outliers

DCEO the number of detected collinearity-enhancing observations

set to be equal to 0.95 which causes high collinearity between regressors. High leverage

collinearity-reducing observations in collinear data sets were then created by replacing

the first 100(α
2
) percent observations of X1 and the last 100(α

2
) percent observations

of X2 with high leverage points. To create vertical outliers, a dependent variable from

a Uniform (0, 1) was firstly generated. For each sample size, a certain percentage of

outliers was generated by randomly deleting a certain percentage of ’good’ observations

and replacing them with ’bad’ data points. The first outlier is kept fixed at 100 (102) and

the successive values are created by multiplying the observations index, i, by 10.

The Good leverage Collinearity-Enhancing Observation (GLCEO) was created in

such a way that the High leverage Collinearity-Enhancing Observation (HLCEO) is

generated without any vertical outlier. On the other hand, Bad leverage Collinearity-

Enhancing Observation (BLCEO) was created when both HLCEO and vertical outliers

were generated. Similarly, Good leverage Collinearity-Reducing Observation (GLCRO)

was created only when High leverage Collinearity-Reducing Observation (HLCRO) was

generated, while the Bad leverage Collinearity-Reducing Observation (BLCRO) was

created when both HLCRO and vertical outliers were generated.

Table 1 shows the notations used in Tables 2-6 (D in the entire abbreviations indicates

the number of detected observations by the proposed plots). We ran 10,000 simulations.

The results based on their averages are presented in Tables 2 to 6. Due to space

constraints, only the results for n = 40 and 300 are included. The conclusions of other

results were consistent.

Let us first look at Table 2 when α= 0.00. It can be seen that when there is no vertical

outliers or high leverage points in the data, the value of CN=CN∗ and is less than 5.0,

indicating that there is no multicollinearity problem. It is also interesting to note that our

proposed plots can detect almost all observations as regular observations (on the average

of 96 percent). The results in Table 2 also indicate that in the presence of vertical outliers

and in the absence of high leverage points, the data sets do not have multicollinearity

problems (CN < 5.0). The results also suggest that the number of detected vertical

outliers is reasonably close to the number of generated vertical outliers.

As for the generated bad/good leverage collinearity-enhancing observations data (see

Tables 3-4), all the CN∗ values (> 30) drastically increased in the presence of high lever-

age points. This indicates that high leverage points are the cause of multicollinearity.
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Table 2: The number of detected abnormal observations in the simulated data sets with vertical outliers.

n 40 300

α 0.00 0.05 0.10 0.15 0.20 0.20 0.00 0.05 0.1 0.20

CN 3.54 3.54 3.39 3.39 3.39 3.29 3.29 3.29 3.29 3.29

CN∗ 3.54 3.54 3.39 3.39 3.39 3.29 3.29 3.29 3.29 3.29

RO 40.00 38.00 36.00 34.00 32.00 300.00 285.00 270.00 255.00 240.00

DRO 38.42 34.59 33.24 31.95 31.27 298.75 283.38 268.39 253.07 238.09

VO 0.24 2.00 4.00 6.00 8.00 0.00 15.00 30.00 45.00 60.00

DVO 0.00 1.85 3.87 5.88 7.89 0.00 14.30 29.47 44.60 59.74

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.13 0.17

DBLCEO 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.05 0.19 0.25 0.25 0.25 1.06 0.00 0.00 0.00 0.00

DCEO 0.00 0.05 0.01 0.00 0.00 0.00 1.03 1.00 0.93 0.90

DCRO-VO 0.00 0.05 0.00 0.00 0.00 0.00 0.67 0.96 1.17 1.00

DBLCRO 0.76 0.05 0.12 0.13 0.00 0.10 0.00 00.00 0.00 0.00

DGLCRO 0.34 0.72 0.27 0.25 31.00 0.09 0.10 0.10 0.10 0.10

DCRO 0.00 2.5 2.24 1.54 0.28 0.00 0.49 0.01 0.00 0.00

Table 3: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

enhancing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 3.56 3.41 3.38 3.64 3.29 3.30 3.29 3.27

CN∗ 23.68 60.09 107.56 166.13 131.70 375.29 704.68 1107.26

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 35.49 34.04 32.72 30.99 283.07 268.35 252.89 238.72

DVO 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCEO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCEO 1.74 3.91 5.95 8.00 14.87 30.00 45.00 60.00

DGLCEO 0.26 0.09 0.00 0.00 0.00 0.00 0.98 0.30

DCEO 0.44 0.18 0.00 0.00 0.00 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCRO 0.00 0.00 0.00 0.00 0.00 0.00 00.00 0.00

DGLCRO 0.15 0.18 0.15 0.00 0.56 0.50 0.02 0.00

DCRO 1.62 1.60 1.18 1.01 1.50 1.15 1.11 0.98

On the other hand, all the CN∗ values (< 5.00) for the generated bad/good leverage-

reducing observations (see Tables 5-6) dramatically reduced in the presence of high

leverage collinearity-reducing observations, suggesting that high leverage points con-

ceal the problem of multicollinearity. The large and small values of CN∗ confirm that

the generated data are collinear and non-collinear data sets, respectively. It can be ob-

served that the number of detected bad/good leverage collinearity-enhancing observa-

tions is fairly close to the simulated data. A similar conclusion can be made for the
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Table 4: The number of abnormal observations in the simulated data sets with good leverage collinearity-

enhancing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 3.46 3.50 3.13 3.64 3.29 3.30 3.29 3.27

CN∗ 23.69 61.92 107.60 166.05 132.15 377.64 704.52 1107.30

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 35.62 34.36 32.65 31.00 283.16 268.53 253.91 239.01

DVO 0.15 0.00 0.08 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCEO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCEO 1.74 4.00 5.95 8.00 14.91 30.00 45.00 60.00

DGLCEO 0.45 0.09 0.00 0.00 0.09 0.00 0.98 0.30

DCEO 0.44 0.18 0.00 0.00 0.00 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCRO 0.00 0.00 0.00 0.00 0.00 0.00 00.00 0.00

DGLCRO 0.15 0.09 0.10 0.00 0.55 0.31 0.02 0.00

DCRO 1.63 1.46 1.17 1.00 1.20 1.16 1.07 0.99

Table 5: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

reducing observations.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 39.40 38.91 36.33 41.17 36.80 37.13 38.34 38.97

CN∗ 13.12 4.46 1.06 1.13 1.02 1.01 1.01 1.00

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 36.45 35.48 33.67 32.00 284.02 269.78 255.00 240.00

DVO 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO 0.65 0.33 0.31 0.00 0.01 0.00 0.00 0.00

DCRO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCRO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCRO 1.85 3.96 5.98 8.00 15.00 30.00 45.00 60.00

DGLCRO 0.10 0.11 0.04 0.00 0.98 0.22 0.00 0.00

DCRO 0.80 0.10 0.00 0.00 0.00 0.00 0.00 0.00

case of detecting bad/good leverage collinearity-reducing observations. It is very im-

portant to note that as the value of alpha increases, the degree of multicollinearity also

increases/decreases.
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Table 6: The number of abnormal observations in the simulated data sets with bad leverage collinearity-

reducing observation.

n 40 300

α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

CN 38.39 40.70 36.33 40.13 36.76 37.16 38.34 37.28

CN∗ 1.84 2.49 1.06 1.04 1.02 1.01 1.01 1.00

RO 38.00 36.00 34.00 32.00 285.00 270.00 255.00 240.00

DRO 36.56 35.12 33.47 31.62 282.01 269.23 255.00 240.00

DVO 0.25 0.15 0.00 0.00 0.00 0.00 0.00 0.00

DCEO-VO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DBLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGLCEO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCEO 0.31 0.39 0.33 0.26 0.00 0.00 0.00 0.00

DCRO-VO 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLCRO 2.00 4.00 6.00 8.00 15.00 30.00 45.00 60.00

DBLCRO 1.85 3.96 5.98 8.00 15.00 30.00 45.00 60.00

DGLCRO 0.10 0.11 0.04 0.00 0.98 0.22 0.00 0.00

DCRO 0.66 0.34 0.20 0.12 2.99 0.77 0.00 0.00

5. Conclusions

Based on Rousseeuw and Van Zomeren (1990) and Rousseeuw and Van Driessen (1999)

and their development of Residual-Distance and Distance to Distance plots, three new

diagnostic plots are proposed; the LTSR-DRGP, DRGP-HLCIM, and LTSR-HLCIM.

The LTSR-DRGP plot was able to identify regular observations, good or bad leverage

points and vertical outliers. The DRGP-HLCIM plot was able to classify the observa-

tions as regular observations, high leverage points, high leverage collinearity-enhancing

or collinearity- reducing observations and collinearity-enhancing or collinearity-reducing

observations. Finally, the LTSR-HLCIM plot successfully distinguishes vertical outliers,

good leverage collinearity-enhancing/reducing observations, collinearity-enhancing/re-

ducing observations and bad leverage collinearity-enhancing/reducing observations and

collinearity-enhancing/re-

ducing observations with large residuals. Thus, the merits of our proposed diagnostic

plots are confirmed, as reflected in their application to different authentic data sets and

in the Monte Carlo simulation study.
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Discrete alpha-skew-Laplace distribution
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Abstract

Classical discrete distributions rarely support modelling data on the set of whole integers. In this

paper, we shall introduce a flexible discrete distribution on this set, which can, in addition, cover

bimodal as well as unimodal data sets. The proposed distribution can also be fitted to positive

and negative skewed data. The distribution is indeed a discrete counterpart of the continuous

alpha-skew-Laplace distribution recently introduced in the literature. The proposed distribution can

also be viewed as a weighted version of the discrete Laplace distribution. Several distributional

properties of this class such as cumulative distribution function, moment generating function,

moments, modality, infinite divisibility and its truncation are studied. A simulation study is also

performed. Finally, a real data set is used to show applicability of the new model comparing to

several rival models, such as the discrete normal and Skellam distributions.
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1. Introduction

The traditional discrete distributions (geometric, Poisson, etc.) have limited applicability

in modelling certain real situations such as data on the set of integersZ= {0,∓1,∓2, . . .}
or bimodal data sets. Thus, several researchers have attempted to develop new classes of

discrete distributions to cover such situations. Recall that any continuous distribution on

R with probability density function (pdf) f admits a discrete counterpart supported on

the set of integers Z= {0,∓1,∓2, . . .} whose probability mass function (pmf) is defined

as

P(X = x) =
f (x)

∑
∞
y=−∞ f (y)

, x ∈ Z . (1)
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For instance, Roy (2003) introduced a discrete version of normal distribution to cover

discrete data on the whole set of integers Z = {0,∓1,∓2, . . .} and, similarly, Inusah

and Kozubowski (2006) considered a discrete analogue of Laplace (DL) distribution.

Kozubowski and Inusah (2006) proposed a discrete version of the skew Laplace

(skewDL) distribution as a generalization of discrete Laplace distribution which is useful

for unimodal data sets. Also, Barbiero (2014) and Jayakumar and Jacob (2012) intro-

duced other discrete distributions based on skew Laplace and wrapped skew Laplace

distributions on the integers, respectively.

The aim of this paper is to propose a more flexible distribution on Z which can

cover unimodal as well as bimodal data. The new discrete distribution can also fit both

positively and negatively skewed data. In fact, using (1), we provide a discrete version of

the alpha-skew-Laplace distribution which was recently introduced by Shams Harandi

and Alamatsaz (2013). The probability density function of the alpha-skew-Laplace

distribution is

f (x;α,µ,σ) =
1

4σ(1+α2)
[1+(1− α

σ
(x−µ))2]e

−|x−µ|
σ , x ∈ R, (2)

where α ∈ R is the skewness parameter and µ ∈ R and σ > 0 are its location and

scale parameters, respectively. The discrete version of (2) which is considered here can

be fitted to unimodal as well as bimodal data sets having positive as well as negative

skewness.

The rest of the article is organized as follows. Section 2 introduces the discrete alpha-

skew-Laplace (DASL(p,γ)) distribution and discusses some of its important features and

properties. In Section 3, we shall provide some distributional properties such as moment

generating function and moments. Maximum likelihood estimations of parameters

involved will be discussed in section 4. Section 5 describes a simulation study. In Section

6, we shall consider some interesting modification of DASL distribution. In Section 7,

we attempt to fit the proposed model and its special cases to a real data set and compare

it with several rival models such as the discrete normal, DL, skewDL and Skellam

distributions.

2. The family of discrete alpha-skew-Laplace distributions

In this section, we present the pmf of our new class of discrete distributions on Z by

discretizing alpha-skew-Laplace distribution (2). We let µ = 0 and use relation (1) to

obtain

p(x; p,α) =C(p,α)[1+(1+αx log p)2]p|x|, x ∈ Z, (3)

where C(p,α) = 1
2

1−p

1+p
[1+α2(log p)2 p

(1−p)2 ]
−1, 0 < p = e−

1
σ < 1 and α ∈ R.
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Since σ = (− log p)−1, to simplify, we let γ= α
σ

. Then, we have

p(x; p,γ) =C(p,γ)[1+(1−γx)2]p|x|, x ∈ Z, p ∈ (0,1),γ ∈ R, (4)

where C(p,γ) = 1
2

1−p

1+p
[1+γ2 p

(1−p)2 ]
−1. We denote this distribution by X ∼ DASL(p,γ).

Remark 1 Recall that for a distribution with pdf (pmf) f , we can construct a new

distribution with pdf (pmf)

g(x;Θ1,Θ2) =
w(x;Θ1,Θ2)

EΘ1
[w(x;Θ1,Θ2)]

f (x;Θ1),

where Θ1 and Θ2 can be two vectors of parameters and w is called a weighted distribu-

tion of f . It is worth noting that pmf (4) can also be viewed as the weighted version of the

discrete Laplace distribution of Inusah and Kozubowski (2006). To see this, it is suffi-

cient to consider the weight function w(x;Θ1,Θ2) = (1+(1−γx)2) with Θ1 = p, Θ2 = γ

and f (x; p) = 1−p

1+p
p|x|.

Some special cases of this new class of discrete distributions are revealed below:

1. If α = 0 in (3), or equivalently γ = 0 in (4), we obtain the discrete Laplace (DL)

distribution.

2. If α→ ∞ in (3), or equivalently γ→ ∞ in (4), we have

p(x; p,γ)→ (1− p)3

2p(1+ p)
x2 p|x|, x ∈ Z

which is a symmetric and bimodal discrete distribution.

3. If X ∼ DASL(p,γ), then −X ∼ DASL(p,−γ).

4. By considering the continuous version of the alpha-skew-Laplace distribution

of Shams and Alamatsaz (2013), we can conclude that DASL(p,γ) is unimodal

for log p < γ < − log p and bimodal for γ ≥ − log p or γ ≤ log p, respectively.

Equivalently, if we consider the pmf in (3), then the distribution is unimodal for

−1 < α< 1 and bimodal for α≤−1 or α≥ 1, respectively.

Figure 1 below illustrates several plots of DASL(p,γ) distribution for selected values

of the parameters p and γ which confirms our result on modality of the distribution. We

note that for γ< 0, all plots are symmetric.
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Figure 1: Illustrations of pmf of DASL(p,γ) for different values of p and γ.

The cumulative distribution function (cdf) of the random variable X ∼DASL(p,γ) is

given by

F(x; p,γ) = P(X ≤ x)

=C(p,γ)































p−[x][ 2
1−p

+γ2 p2([x]+1)2−p(2[x]2+2[x]−1)+[x]2

(1−p)3

−2γ
(1−p)[x]−p

(1−p)2 ], x < 0

2(1+p)
1−p

+2γ2 p(1+p)

(1−p)3 − p[x]+1[γ2 (1−p)2([x]+1)2+2p(1−p)([x]+1)+p(1+p)

(1−p)3

−2γ
(1−p)([x]+1)+p

(1−p)2 + 2
1−p

], x ≥ 0.

3. Moments

The moment generating function of a random variable X ∼ DASL(p,γ) is given by

MX(t) = E(etX) =C(p,γ)

[

2p

et − p
+

2

1− pet
+2γ

pet

(et − p)2

−2γ
pet

(pet −1)2
+γ2 pet(p+ et)

(et − p)3
+γ2 pet(pet +1)

(1− pet)3

]

, |t|> log p.
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Replacing t in MX(t) by it, i =
√
−1, we can easily obtain the characteristic function of

DASL(p,γ).

To find the moments, using the combinatorial identity

∞

∑
x=1

xn px =
n

∑
x=1

S(n,x)
x!px

(1− p)x+1
,

(see, e.g., formula (7.46), p. 337, of Graham et al., 1989), where

S(n,x) =
1

x!

x−1

∑
k=0

(−1)k

(

x

k

)

(x− k)n

is the Stirling number of the second kind, we obtain the n-th moment of X ∼DASL(p,γ)

for n > 1 as

µn = E(Xn) =C(p,γ)
n

∑
x=1

x!px

(1− p)x+1

[

(

2S(n,x)+γ2S(n+2,x)
)

(5)

×
(

1+(−1)n
)

−2γS(n+1,x)
(

1+(−1)n+1
)

]

+C(p,γ)
pn+1(n+1)!

(1− p)n+2

{

[γ2(1+(−1)n)(S(n+2,n+1)

+ p
n+2

1− p
S(n+2,n+2))−2γ(1+(−1)n+1)S(n+1,n+1)]

}

.

We can easily observe that for even n,

µn = 2C(p,γ)

{

n

∑
x=1

x!px

(1− p)x+1

[

2S(n,x)+γ2S(n+2,x)
]

+
pn+1(n+1)!

(1− p)n+2

[

γ2(S(n+2,n+1)+ p
n+2

1− p
S(n+2,n+2))

]}

.

and for odd n,

µn =−4γC(p,γ)

{

n

∑
x=1

x!px

(1− p)x+1
S(n+1,x)

+
pn+1(n+1)!

(1− p)n+2
S(n+1,n+1)

}
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In particular, we have

E(X) =−2γ
p

(1− p)2
[1+γ2 p

(1− p)2
]−1,

E(X2) = p
[ 2

(1− p)2
+γ2 (p2 +10p+1)

(1− p)4

]

[1+γ2 p

(1− p)2
]−1,

E(X3) =−2γp
p2 +10p+1

(1− p)4
[1+γ2 p

(1− p)2
]−1,

E(X4) =
p

(1− p)4

[

2(p2 +10p+1)+
γ2(p4 +56p3 +246p2 +56p+1)

(1− p)2

]

[1+γ2 p

(1− p)2
]−1

and thus

Var(X) =
p

(1− p)2

[

2+γ2 p2 +10p+1

(1− p)2
−4γ2 p

(1− p)2 +γ2 p

]

[1+γ2 p

(1− p)2
]−1.

Skewness and kurtosis of our distribution can be evaluated easily. But since their

formulas are too long, they are omitted and we only show their behaviour by their graphs

in Figure 2.
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Figure 2: Illustrations of the skewness and kurtosis as functions of p and γ.
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4. Maximum likelihood estimation

To apply maximum likelihood for estimating p and γ, assume that x1,x2, . . . ,xn are the

observed values of a random sample of size n from a DASL(p,γ) distribution. The log-

likelihood function becomes

ℓ(p,γ) =−n log2+n log(1− p)−n log(1+ p)−n log(1+γ2 p

(1− p)2
)

+
n

∑
i=1

log(1+(1−γxi)
2)+

n

∑
i=1

|xi| log p.

Then, the likelihood equations for p and γ are given by

∂ℓ(p,γ)

∂ p
=

∑
n
i=1 |xi|

p
− 2n

1− p2
−nγ2 1+ p

(1− p)3 + pγ2(1− p)
= 0 (6)

and

∂ℓ(p,γ)

∂γ
=− 2nγp

(1− p)2 + pγ2
−2

n

∑
i=1

xi

(1−γxi)

1+(1−γxi)2
= 0. (7)

The solutions of likelihood equations (7) and (8) provide the maximum likelihood

estimators (MLEs) of p and γ, which can be obtained by a numerical method such

as the Newton-Raphson type procedure.

Since the MLEs of the unknown parameters (p,γ) can not be obtained in closed

forms, it is not easy to derive the exact distributions of MLEs. One can show that the

DASL family satisfies the regularity conditions which are fulfilled for parameters in the

interior of the parameter space but not on the boundary (see, e.g., Ferguson, 1996, pp.

121). Hence, by using the simplest large sample approach, the MLE vector (p̂, γ̂) is

consistent and asymptotically normal, i.e.,

(p̂− p, γ̂−γ)→ N2(0, I
−1(p̂, γ̂)),

where I−1 is the variance covariance matrix of the unknown parameters (p,γ) and the

covariance matrix I−1, as the Fisher information matrix, can be obtained by

I−1(p,γ) =











−E

(

∂ 2ℓ

∂ p2

)

−E

(

∂ 2ℓ

∂ p∂γ

)

−E

(

∂ 2ℓ

∂γ∂ p

)

−E

(

∂ 2ℓ

∂γ2

)











−1

=

[

Var(p̂) Cov(p̂, γ̂)

Cov(p̂, γ̂) Var(γ̂)

]

,
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whose elements are evaluated by using the following expressions:

∂ 2ℓ

∂ p2
=−∑

n
i=1 |xi|
p2

−4n
p

(1− p2)2
−nγ2 2(1− p)2(2− p)+γ2(p2 +2p−1)

[(1− p)3 + pγ2(1− p)]2
,

∂ 2ℓ

∂ p∂γ
=−2nγ

1− p2

[(1− p)2 +γ2 p]2

and

∂ 2ℓ

∂γ2
= 2n

p

(1− p)2 +γ2 p
[
(1− p)2 −γ2 p

(1− p)2 +γ2 p
]−2

n

∑
i=1

x2
i

1− (1−γxi)
2

[1+(1−γxi)2]2
.

To find expectations of the above expressions, we need to compute E|X | and

E{X2 1−(1−γX)2

[1+(1−γX)2]2
}. The Fisher’s information matrix can be computed using the approx-

imation

I(p̂, γ̂) =−











∂ 2ℓ

∂ p2
|p̂,γ̂

∂ 2ℓ

∂ p∂γ
|p̂,γ̂

∂ 2ℓ

∂γ∂ p
|p̂,γ̂

∂ 2ℓ

∂γ2
|p̂,γ̂











,

as the observed Fisher’s information matrix.

The normal approximation can then be used to construct confidence intervals for p

and q to test hypothesis of the kind H0 : p = p0 and H0 : γ= γ0, respectively, as

(p̂− zα/2I(p̂), p̂+ zα/2I(p̂))

and

(γ̂− zα/2I(γ̂), γ̂+ zα/2I(γ̂)).

where I(p̂) and I(γ̂) refer to the roots of diagonal elements of the inverse Fisher’s

information matrix.

5. Simulation

Here, we assess the performance of the maximum-likelihood estimate given by Equa-

tions (7) and (8) with respect to the sample size n. The simulation study assessment is

based on the inversion method with 1000 iterations.
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Table 1: MLEs of p and γ in DASL(p,γ) for different values of n.

γ −2

p 0.25 0.6

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2521 −2.0304 0.0009 0.1699 0.5994 −2.3095 0.0004 1.3711

200 0.2499 −2.0199 0.0004 0.0796 0.5997 −2.0784 0.0002 0.2564

400 0.2501 −2.0081 0.0002 0.0324 0.5999 −2.0431 0.0001 0.1072

γ −0.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2411 −0.5797 0.0023 0.1270 0.5974 −0.5193 0.0023 0.0413

200 0.2451 −0.5363 0.0011 0.0467 0.6002 −0.5046 0.0005 0.0069

400 0.2481 −0.5126 0.0004 0.0121 0.5999 −0.5031 0.0002 0.0034

γ 0.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2434 0.5697 0.0020 0.0935 0.5994 0.5160 0.0010 0.0165

200 0.2461 0.5378 0.0011 0.0458 0.5997 0.5083 0.0004 0.0069

400 0.2475 0.5106 0.0005 0.0125 0.5998 0.5048 0.0002 0.0032

γ 1.5

n p̂ γ̂ ˆVar(p̂) ˆVar(γ̂) p̂ γ̂ ˆVar(p̂) ˆVar(γ̂)

100 0.2523 1.5352 0.0014 0.1430 0.6002 1.6370 0.0004 0.3117

200 0.2512 1.5146 0.0006 0.0599 0.6001 1.5402 0.0002 0.0845

400 0.2507 1.5079 0.0003 0.0293 0.6001 1.5231 0.0001 0.0356

These results are presented in Table 1 accompanied by their estimated variances

( ˆVar), for different values of n. Table 1 shows how the MLEs and estimated variances

of parameters vary with respect to n. The difference between real and estimated values

of the parameters are not too large and, thus, the method works well.

6. Some special cases

In this section, we consider the distribution of the random variable X ∼ DASL(p,γ)

truncated at zero. This distribution is an important case, because it is a weighted version

of geometric distribution and may be useful in fitting count or time data sets.

Let Y = X |X ≥ 0, then the pmf of Y is given by

pY (y; p,γ) =C∗(p,γ)(1+(1−γy)2)py, y = 0,1,2, . . . ,

where C∗−1
(p,γ) = 2

1−p
− 2γ p

(1−p)2 +γ
2 p(1+p)

(1−p)3 , 0 < p < 1 and γ ∈ R. This distribution

is called weighted geometric distribution and is denoted by Y ∼WGD(p,γ).
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This can be used as a discrete lifetime distribution which contains geometric distri-

bution by setting γ = 0. The survival and failure rate functions of this random variable

are given by

RY (y; p,γ) = P(Y > y) =C∗(p,γ)
py+1

1− p
[2+2γ

yp− y−1

1− p

+γ2 y2 p2 +(−2y2 −2y+1)p+(y+1)2

(1− p)2
], y = 0,1, . . .

and

HY (y; p,γ) = (1− p)
1+(1−γy)2

2p+2pγ yp−y−1
1−p

+γ2 p
y2 p2+(−2y2−2y+1)p+(y+1)2

(1−p)2

, y = 0,1, . . . ,

respectively. The behaviour of the failure rate function of X ∼WGD(p,γ) is described in

Figure 3. As we can see the failure rate function of WGD distribution can be increasing

or U-shaped. Further, we note that if γ = 0, WGD distribution will reduce to the

geometric distribution with constant failure rate function which depends only on p.

Another important structural property of a distribution, both in theory and applica-

tion, is its infinite divisibility. We refer, for example, to the monograph of Steutel and

Van Harn (2004) for a good and complete introduction of the subject. Since most of the

well-known distributions possess this property, one has to be concerned with the infi-

nite divisibility or non-infinite divisibility property of any distribution newly introduced.

Here, we note that WGD(p,γ) distribution is not infinitely divisible. To see this, we first

recall the following interesting result from the above-mentioned monograph (page 56).

Lemma 1 If pk , k ∈ Z+ is infinitely divisible, then we have pk ≤ 1/e, for all k ∈ N.

Now, we can show that pY (y; p,γ) > 1/e for some values of y ∈ N, p and γ. For

instance, take y = 1, p = 0.1 and γ = 10. Then, we see that pY (1;0.1,10) ≃ 0.5525 >

1/e ≃ 0.3679. Thus, a WGD(p,γ) distribution is not infinitely divisible in general. In

the case γ= 0, however, we have the geometric distribution, with probability of success

p, which is obviously infinitely divisible.

It is also worth noting that, we can describe the distribution of the random variable

Z = |X | as a new distribution on the set of non-negative integers as follows:

p∗(z; p,γ) = P(|X |= z) = 2C(p,γ)

{

1, z = 0

{2+γ2z2}pz, z = 1,2, . . . .

where p and γ are given as before. This distribution is called a generalized geometric dis-

tribution and denoted by Z ∼ GGD(p,γ). It is worth mentioning that if Z ∼ GGD(p,γ),
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Figure 3: Illustrations of the failure rate function of X ∼WGD(p,γ) for some selected values of p and γ.

then we have

1. If γ = 0, Z ∼
1−p

1+p

{

1, z = 0

2pz, z = 1,2, . . .
, whose truncation at zero is a geometric

distribution with parameter p and support on {1,2, . . .}.

2. GGD(p,γ)∼= GGD(p,−γ).

3. If γ−→∓∞, then p∗(z; p,γ)−→ (1−p)3

p(1+p)z
2 pz, z = 1,2, . . . .

7. Application and comparison

In this section, we attempt to examine application and advantage of DASL(p,γ) and

WGD(p,γ) distributions comparing to several rival models using some real data sets.

Example. The following data set is obtained1 based on a recent local research carried

out on the extent of success of Iranian universities in transferring technology to industry

and their effective factors. Out of 500 questionaries distributed, 111 were returned. The

data below show the difference between the desired and the existing state values on

each sample; a positive number shows the extent of positive improvement and a negative

number shows the extent of negative improvement.

1. The data is part of an unpublished research by A. Rafiei, an MSc student.
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−1, 1, 3, 3, 1, 1, −20, −14, −15, −14, −5, −6, 0, 7, 4, 1, 9, 13, 5, 4, 1, 1, 1, 14, 5, −2,

4, 5, 3, 3, 12, 3, 4, 4, 5, −1, 5, 3, 4, 3, 4, 6, 6, 7, 0, 0, 0, 13, 0, 10, 15, 2, 2, 5, 11, 2, 2,

−16, 2, 8, −7, −7, 2, −2, 9, 6, 11, −5, −5, 13, 13, 1, 14, 0, 8, −5, −2, 10, 2, 10, 8, −3,

10, 12, 14, 12, 11, 11, 8, 0, −2, 4, 6, 0, 0, 7, 8, 1, 9, −1, 9, 6, 11, 0, 7, 7, 10, 4, 7, 9, 28.

Thus, it is logical to compare our distribution with some similar distributions such

as SkewDL and ADSLaplace distributions. SkewDL distribution was introduced by

Kozubowski and Inusah (2006) and has the following pmf

p(x; p,q) =
(1− p)(1−q)

1− pq

{

q−x, x = . . . ,−2,−1

px, x = 0,1, . . . .

ADSLaplace distribution of Barbiero (2014) has pmf

p(x; p,q) =
1

log(pq)

{

log(p)[q−(x+1)(1−q)], x = . . . ,−2,−1

log(q)[px(1− p)], x = 0,1, . . . .

Furthermore, we shall also consider the Skellam (Skellam, 1946) with pmf

p(x;µ1,µ2) = e−µ1−µ2(µ1/µ2)Ix(2
√
µ1µ2), x ∈ Z .

where Ix(2
√
µ1µ2) is modified Bessel function of the first kind, and discrete normal

(Roy, 2003) distribution with pmf:

p(x;µ,σ) = Φ(x+1,µ,σ)−Φ(x,µ,σ), x ∈ Z .

where Φ(.,µ,σ) is the cdf of normal distribution with mean µ and variance σ2,

respectively.

The results of comparison are illustrated in Table 2. We have also obtained maximum

likelihood estimates and their estimation of standard errors for the parameters involved.

We note that under regularity conditions, the standard error of the parameter estimators

can be asymptotically computed by root square of the diagonal elements of the inverted

Fisher’s matrix. The Kolomogrov-Smirnov (K-S) statistic and Akaike information cri-

terion as AIC=−2logL+ 2k, where k, the number of parameters in the model, n, the

sample size, and L, the maximized value of the likelihood function for the estimated

model, are used to compare the estimated models.

Since DASL(p,γ) distribution is an extension of DL distribution, in our iterative

algorithm of Newton-Raphson, we have used γ = 0 and the MLE of parameters of

DL distribution as initial values to find the MLEs of the parameters. As one can see

from Table 2, our model is preferable comparing to other models. Also, Figure 4 shows

distribution plots of the data and the models in question.
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Table 2: Comparing criterions for the rival distributions.

Model Parameter estimaties k K −S logL AIC

DL p̂ = 0.8496, S.E( p̂) = 0.0108 1 0.3605 −389.054 780.107

ADSLaplace p̂ = 0.8787, S.E( p̂) = 0.0085 2 0.2162 −379.864 763.728

q̂ = 0.7530, S.E(q̂) = 0.0394

SkewDL p̂ = 0.8732, S.E( p̂) = 0.0092 2 0.1973 −377.098 758.196

q̂ = 0.7605, S.E(q̂) = 0.0368

dnormal µ̂= 4.2048, S.E(µ̂) = 0.2271 2 0.1423 −373.189 750.378

σ̂ = 6.9769, S.E(σ̂) = 0.1607

DASL p̂ = 0.7258, S.E( p̂) = 0.0225 2 0.1193 −366.131 736.262

γ̂=−0.3120, S.E(γ̂) = 0.0785

Skellam µ̂1 = 26.0389, S.E(µ̂1) = 0.3599 2 0.1421 −373.102 750.204

µ̂2 = 22.3355, S.E(µ̂2) = 0.3087
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Figure 4: Plots of empirical distribution functions for the data set and the fitted distributions.
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In addition, we can use the likelihood ratio (LR) test statistic to confirm our claim.

To do this, we consider the following test of hypotheses

H0 : γ= 0(DL(p)) v.s H1 : γ 6= 0(DASL(p,γ)).

Observed value of the likelihood ratio (LR) test statistic is 43.845 while its tabulated

value equals χ2
1 = 3.84. Thus the null hypothesis is rejected.

On the other hand, Figure 4 shows our different fitted distribution functions and the

empirical distribution of the data set. From these plots, we can see that our distribution

function better fits the data set.
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Abstract

The analysis of markets with indivisible goods and fixed exogenous prices has played an impor-

tant role in economic models, especially in relation to wage rigidity and unemployment. This paper

provides a novel mathematical programming based approach to study pure exchange economies

where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consist-

ing in sequences of elementary reallocations of couple of commodities among couples of agents,

are formalized as local searches converging to equilibrium allocations. A direct application of the

analysed processes in the context of computational economics is provided, along with a Java

implementation of the described approaches.
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1. Introduction

Since the very beginning of the Economic Theory (Edgeworth, 1881; Jevons, 1888), the

bargaining problem has generally be adopted as the basic mathematical framework for

the study of markets of excludable and rivalrous goods. It concerns the allocation of

a fixed quantity among a set of self-interested agents. The characterizing element of a

bargaining problem is that many allocations might be simultaneously suitable for all the

agents.

Definition 1 Let V ⊂ Rn be the space of allocations of an n agents bargaining prob-

lem. Points in V can be compared by saying that v∗ ∈ V strictly dominates v ∈ V if

each component of v∗ is not less than the corresponding component of v and at least
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Received: January 2014

Accepted: September 2014



86 A mathematical programming approach for different scenarios of bilateral bartering

one component is strictly greater, that is, vi ≤ v∗i for each i and vi < v∗i for some i. This

is written as v ≺ v∗. Then, the Pareto frontier is the set of points of V that are not strictly

dominated by others.

A long-standing line of research focused on axiomatic approaches for the determi-

nation of a uniquely allocation, satisfying agents’ interests (Nash, 1951; Rubinstein,

1983).

More recently, an increasing attention has been devoted to the cases where the quan-

tity to be allocated is not infinitesimally divisible. The technical difficulties associated to

those markets have been often pointed (Kaneko, 1982; Quinzii, 1984; Scarf, 1994) and

the equilibria of markets of indivisible goods have been characterized only under strong

assumptions (Shapley and Shubik, 1972). In the general case, main focus was to address

the question of existence of market clearing prices in the cases of not infinitesimally

divisible allocations (Danilov, Koshevoy and Murota, 2001; Caplin and Leahy, 2010).

Another subclass of the family of bargaining problems is associated to markets with

fixed prices (Dreze, 1975; Auman and Dreze, 1986), which have played an important

role in macroeconomic models, especially on those models related to wage rigidities and

unemployment. Dreze described price rigidity as inequality constraints on individual

prices (Dreze, 1975).

Efficient algorithms to find non-dominated Pareto allocations of bargaining problems

associated to markets with not infinitesimally divisible goods and fixed exogenous

prices have been recently studied (Vazirani et al., 2007; Ozlen, Azizoglu and Burton,

2012). Our goal is to provide novel mathematical-programming based approaches to

analyse barter processes, which are commonly used in everyday life by economic

agents to solve bargaining problems associated to n-consumer-m-commodity markets

of not infinitesimally divisible goods and fixed exogenous prices. These processes

are based on elementary reallocations (ER) of two commodities among two agents,

sequentially selected from the m(m−1)n(n−1)/4 possible combinations. Under fixed

prices, markets do not clear and the imbalance between supply and demand is resolved

by some kind of quantity rationing (Dreze, 1975). In our analysis this quantity rationing

is implicit in the process and not explicitly taken into account.

Based on this multi-agent approach, many economical systems might be simulated

(Wooldridge, 2002). For instance, some studies (Bell, 1998; Wilhite, 2001) have taken

into account the effect of network structures on the performance of a barter process,

for the case of endogenous prices and continuous commodity space, showing that

centralized network structures, such as a stars, exhibit a faster convergence to an

equilibrium allocation. Our multi-agent approach is instead devoted to the analysis of

the network structures generated by the sequences of bilateral trades, namely the set of

couples of agents interacting along the processes. Such a structure might be statistically

analysed in term of its topological properties, as it is done in Section 5.

Section 2 illustrates the fundamental properties of the allocation space, associated

to n-consumer-m-commodity markets of not infinitesimally divisible goods and fixed
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exogenous prices. Section 3 provides a general mathematical programming formulation

and derives an analytical expression for the Pareto frontier of the elementary reallo-

cation problem (ERP). It will be shown that the sequence of elementary reallocations

(SER) (the chain of ERP performed by agents along the interaction process) follows the

algorithmic steps of a local search in the integer allocation space with exogenous prices.

Section 4 introduce the case of network structures restricting agents interactions to be

performed only among adjacent agents. In Section 5 the performance of these barter

processes is compared with the one of a global optimization algorithm (branch and cut).

2. The integer allocation space with exogenous prices

The key characteristic of an economy is: a collection A of n agents, a collection C of

m types of commodities, a commodity space X (usually represented by the nonnegative

orthant in Rm), the initial endowments ei
j ∈ X for i ∈ A, j ∈ C (representing a budget

of initial amount of commodities owned by each agent), a preference relation �i on

X for each agent i ∈ A. It has been shown (Arrow and Debreu, 1983) that if the set

{(x,y) ∈ X × X : x �i y} is closed relative to X × X the preference relation can be

represented by a real-valued function ui : X 7−→ R, such that, for each a and b belonging

to X, ui(a)6 ui(b) if and only if a � b.

When agents attempt to simultaneously maximize their respective utilities, condi-

tioned to balance constraints, the resulting problems are maxui(x) s.to ∑i∈A xi
j =∑i∈A ei

j

for j ∈ C, where xi
j ∈ X , is the amount of commodity j demanded by agent i (from now

on the superindex shall denote the agent and the subindex shall denote the commodity).

Under certain economic conditions (convex preferences, perfect competition and

demand independence) there must be a vector of prices ̂P = (p̂1, p̂2, p̂3, . . . , p̂m)
T, such

that aggregate supplies will equal aggregate demands for every commodity in the

economy (Arrow and Debreu, 1983).

As studied by Dreze (1975) and by Auman and Dreze (1986), when prices are re-

garded as fixed, markets do not clear and the imbalance between supply and demand

is resolved by some kind of quantity rationing. The system of linear constraints asso-

ciated to a n-consumer-m-commodity market with fixed prices exhibits a block angular

structure with rank m+n−1:















p1 p2 . . . pm

p1 p2 . . . pm

. . .

p1 p2 . . . pm

I I . . . I















x =





















p1e1
1 + · · ·+ pme1

m

p1e2
1 + · · ·+ pme2

m

...

p1en
1 + · · ·+ pmen

m

e1 + · · ·+ en





















, (1)
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where p1, . . . , pm are relative prices between commodities, ei = (ei
1, . . . ,e

i
m)

T, and x =

(x1
1, . . . , x1

m, . . . ,x
n
1, . . . ,x

n
m)

T. The constraints matrix of (1) could also be written as
(

I ⊗P

1⊗ I

)

, where P = (p1, p2, p3, . . . , pm) and ⊗ is the Kronecker product between

two matrices. Note that the linking constrains (i.e., the conservation of commodities

(1⊗ I)x = e1 + · · ·+ en) are implied by the balance equations of a network flow among

the agents. This fact will be analysed in Section 5, where we introduced costs associated

to the flow.

All the feasible allocations lay in a (m+ n− 1) dimensional hyperplane defined by

the prices (always containing at least one solution, which is represented by the vector of

initial endowments e), and restricted to the fact that agents are rational: ui(x) ≥ ui(e),

for i ∈A.

Proposition 1 below shows that an asymptotic approximation of an upper bound of

the number of nonnegative solutions of (1) is O( n(mb)

bm ), where b is the average amount of

commodities available, i.e., b =
∑m

j=1(∑
n
h=1

eh
j )

m
.

Proposition 1 Let Λ be the set of nonnegative solutions of (1), i.e., the allocation space

of a problem of bargaining integer amounts of m commodities among n agents with fixed

prices. If the allocation space satisfies the mild conditions b j = ∑
n
h=1 eh

j ≥ n (where b j

is the overall amount of commodity j in the system, which is a fix quantity, associated to

the rhs of (1)), then |Λ| ∈ O( n(mb)

bm ).

Proof. The set of nonnegative solutions of (1) is a subset of the union of bounded sets,

as Λ ⊂ ⋃m
j=1{(x1

j . . .x
n
j) ∈ Rn : x1

j + · · ·+ xn
j = e1

j + · · ·+ en
j ;x1

j . . .x
n
j ≥ 0}. Therefore,

Λ is a finite set, as it is the intersection between Z and a bounded subset of Rmn. Let

Λ′ be the set of nonnegative solutions of (1), without considering the price constraints,

i.e., the n diagonal blocks p1xh
1 + p2xh

2 + · · ·+ pmxh
m = p1eh

1 + p2eh
2 + · · ·+ pmeh

m, for

h = 1, . . . ,n. We know that |Λ′| ≥ |Λ|. However, |Λ′| can be easily calculated, as the

number of solutions of m independent Diophantine equations with unitary coefficients.

The number of nonnegative integer solutions of any equation of the form ∑
n
h=1 xh

j =

b j, j = 1, . . . ,m, might be seen as the number of distributions of b j balls among m

boxes:
(n+b j−1)!

(n−1)!b j!
. Since we have m independent Diophantine equations of this form,

then the number of possible solutions for all of them is ∏
m
j=1

(n+b j−1)!

(n−1)!b j!
. Thus, we know

that |Λ| ≤ ∏
m
j=1

(n+b j−1)(n+b j−2)...n

b j!
≤ ∏

m
j=1

(n+b j−1)
b j

b j!
≤ ∏m

j=1(n+b j−1)
b j

bm , where the last

inequality holds because b j ≥ n ≥ 2. Finally, we conclude that

∏
m
j=1(n+b j −1)b j

bm
≤ O(n)bm

bm
≤ O(

n(mb)

bm
).
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In the next section we define a barter process of integer quantities of m commodities

among n agents as a local search in the allocation space Λ (obtained as a sequence

of elementary reallocations) and show that the Pareto frontier of the ERP might be

analytically obtained without the use of any iterative procedure.

3. The sequence of elementary reallocations

As previously seen, the linear system characterizing the space of possible allocations is

(1). Here the conservation of commodity (i.e., the overall amount of commodity of each

type must be preserved) is generalized to include arbitrary weights in the last m rows of

(1). Based on this observation consider the following multi-objective integer non-linear

optimization problem (MINOP)

max{ui(x), i = 1, . . . ,n} (2a)

subject to

















P

P

. . .

P

d1I d2I . . . dnI

















x =



















b1

b2

...

bn

b0



















(2b)

ui(x)≥ ui(e) i = 1 . . . ,n

x ∈ Zmn ≥ 0,
(2c)

where ui : Rmn → R, P ∈ Q1×m, di ∈ Q, bi ∈ Q, i = 1, . . . ,n, and b0 ∈ Qm. The con-

ditions ui(x) ≥ ui(e), i = 1, . . . ,n, guarantee that no agent gets worse under a feasi-

ble reallocation, which is known in general bargaining literature as the disagreement

point. The constraint matrix has a primal block-angular structure with n identical diag-

onal blocks involving m decision variables. Problem (1) is a particular case of (2) for

di = 1, i = 1, . . . ,n.

From a multi-objective optimization point of view, a suitable technique to generate

the Pareto frontier of (2) is the ǫ-constraint method (Haimes et al., 1971). Recently, a

general approach to generate all nondominated objective vectors has been developed

(Ozlen and Azizoglu, 2009), by recursively identifying upper bounds on individual

objectives using problems with fewer objectives.
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3.1. The elementary reallocation problem

In everyday life, barter processes among people tend to achieve the Pareto frontier of

problem (2) by a sequence of reallocations. We consider a process based on a sequence

of two-commodity-two-agent reallocations, denoted as SER. Any step of this sequence

requires the solution of a MINOP involving 4 variables and 4 constraints of problem (2).

Let e be a feasible solution of (2b) and (2c) and suppose we want to produce a

feasible change of 4 variables, such that 2 of them belong to the ith and jth position

of the diagonal block h and the other belong to the ith and jth position of the diagonal

block k.

It can be easily shown that a feasibility condition of any affine change of these 4

variables eh
i +∆h

i ,e
k
i +∆k

i ,e
h
j +∆h

j ,e
k
j+∆k

j is that ∆h
i ,∆

k
i ,∆

h
j ,∆

k
j must be an integer solution

of the following system of equations











pi p j 0 0

0 0 pi p j

dh 0 dk 0

0 dh 0 dk





















∆h
i

∆h
j

∆k
i

∆k
j











=











0

0

0

0











. (3)

The solution set are the integer points in the null space of the matrix of system (3),

which will be named A. A is a two-agent-two-commodity constraint matrix, and its rank

is three (just note that the first column is a linear combination of the other three using

coefficients α2 =
pi
p j

, α3 =
dh

dk and α4 =− pid
h

p jd
k ). Therefore the null space has dimension

one, and its integer solutions are found on the line











∆h
i

∆h
j

∆k
i

∆k
j











= q











p jd
k

−pid
k

−p jd
h

pid
h











, (4)

for some q = αF(pi, p j,d
k,dh), where α ∈ Z and F : Q4 → Q provides a factor

which transforms the null space direction into the nonzero integer null space direction

of smallest norm. We note that this factor can be computed as F(pi, p j,d
k,dh) =

G(p jd
k, pid

k, p jd
h, pid

h), where

G(vi =
ri

qi

, i = 1, . . . , l) =
lcm(qi, i = 1, . . . , l)

gcd(lcm(qi, i = 1, . . . , l) · vi, i = 1, . . . , l)
, (5)

ri and qi being the numerator and denominator of vi (qi = 1 if vi is integer), and lcm

and gcd being, respectively, the least common multiple and greatest common divisor

functions.
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Hence, given a feasible point e, one can choose 4 variables, such that 2 of them

belong to the ith and jth position of a diagonal block h and the others belong to

the ith and jth position of a diagonal block k, in m(m − 1)n(n − 1)/4 ways. Each

of them constitutes an ERP, whose Pareto frontier is in e + null(A). The SER is a

local search, which repeatedly explores a neighbourhood and chooses both a locally

improving direction among the m(m− 1)n(n− 1)/4 possible ERPs and a feasible step

length q = αF(pi, p j,d
k,dh), α ∈ Z. For problems of the form of (2) the SER might be

written as follows:

xt+1 = xt +αF(pi, p j,d
k,dh)


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
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




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
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...

h, i
...

h, j
...

k, i
...

k, j
...

= xt +αF(pi, p j,d
k,dh)∆kh

i j , (6)

t being the iteration counter. In shorter notation, we write (6) as xt+1 = xt +αSkh
i j , where

Skh
i j = F(pi, p j,d

k,dh)∆kh
i j (7)

is a direction of integer components. Since the nonnegativity of x has to be kept along

the iterations, then we have that

−
max

{

xh
i /(p jd

k),xk
j/(pid

h)
}

F(pi, p j,dk,dh)
≤ α≤

min
{

xh
j/(pid

k),xk
i /(p jd

h)
}

F(pi, p j,dk,dh)
, (8)

or, equivalently,

−max
{

xh
i /(p jd

k),xk
j/(pid

h)
}

≤ q ≤ min
{

xh
j/(pid

k),xk
i /(p jd

h)
}

. (9)

(The step length is forced to be nonnegative when the direction is both feasible and

a descent direction; in our case the direction is only known to be feasible, and then

negative step lengths are also considered.)

An important property of an elementary reallocation is that under the assumptions

that
∂uk(x)

∂xk
i

: Rmn → R is (i) non increasing, (ii) nonnegative and (iii)
∂uk(x)

∂
x

j
i

= 0



92 A mathematical programming approach for different scenarios of bilateral bartering

for j 6= k (i.e., uk only depends on xk ), which are quite reasonable requirements for

consumer utilities, then uk(x+αSkh
i j ) is a unimodal function with respect to α, as shown

by the next proposition.

Proposition 2 Under the definition of uk and Skh
i j , for every feasible point x ∈ Rmn,

uk(x+αSkh
i j ) is either a unimodal function with respect to α or locally constant beyond

a certain value of α in the interval defined by (8).

Proof. Let us define g(α) = uk(x+αSkh
i j ), differentiable with respect to α. It will be

shown that for all α in the interval (8), and 0 < τ ∈ R, g′(α)< 0 implies g′(α+τ)< 0,

which is a sufficient condition for the unimodality of g(α). By the chain rule, and using

(6) and (7), the derivative of g(α) can be written as

g′(α) = ∇xuk(x+αSkh
i j )S

kh
i j

= F(pi, p j,d
k,dh)

(

∂uk(x+αSkh
i j )

∂xk
i

(−p jd
h)+

∂uk(x+αSkh
i j )

∂xk
j

pid
h

)

.
(10)

If g′(α)< 0 then, from (10) and since F(pi, p j,d
k,dh)> 0, we have that

∂uk(x+αSkh
i j )

∂xk
i

p jd
h >

∂uk(x+αSkh
i j )

∂xk
j

pid
h. (11)

Since from (6) the component (k, i) of Skh
i j is F(pi, p j,d

k,dh)(−p jd
h) < 0, and

∂uk(x)

∂xk
i

is non increasing, we have that for τ> 0

∂uk(x+(α+τ)Skh
i j )

∂xk
i

≥
∂uk(x+αSkh

i j )

∂xk
i

. (12)

Similarly, since the component (k, j) of Skh
i j is F(pi, p j,d

k,dh)(pid
h)> 0, we have

∂uk(x+αSkh
i j )

∂xk
j

≥
∂uk(x+(α+τ)Skh

i j )

∂xk
j

. (13)

Multiplying both sides of (12) and (13) by, respectively, p jd
h and pid

h, and connecting

the resulting inequalities with (11) we have that
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∂uk(x+(α+τ)Skh
i j )

∂xk
i

p jd
h >

∂uk(x+(α+τ)Skh
i j )

∂xk
j

pid
h,

which proofs that g′(α+τ)< 0.

Using Proposition 2 and the characterization of the space of integer solutions of (3),

we are able to derive a closed expression of the Pareto frontier of the ERP, based on the

behaviour of u(x+αSkh
i j ) (see Corollary 1 below), as it is shown in this example:

Example 1 Consider the following ERP with initial endowments [40, 188, 142, 66].

max{2− e−0.051x1
1 − e−0.011x1

2 ,2− e−0.1x2
1 − e−0.031x2

2}

subject to

5x1
1 +10x1

2 = 2080

5x2
1 +10x2

2 = 1370

5x1
1 +6x2

1 = 1052

5x1
2 +6x2

2 = 1336

2− e−0.05x1
1 − e−0.01x1

2 ≥ 1.68

2− e−0.1x2
1 − e−0.031x2

2 ≥ 1.50

xi
j ≥ 0 ∈ Z i = 1,2; j = 1,2;

(14)

The utility functions g1(α) = u1(x+αS12
12) and g2(α) = u2(x+αS12

12) are

g1(α) = u1(x+αS12
12) = u1

















40

188

142

66









+α








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−6

−10

5

















=

= 2− e−0.051(40+12α)− e−0.011(188−6α)

g2(α) = u2(x+αS12
12) = u2

















40

188

142

66









+α









12

−6

−10

5

















=

= 2− e−0.1(142−10α)− e−0.031(66+5α),
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Figure 1: Plots of g1(α) and g2(α), and interval of α associated to the Pareto frontier. The disagreement

point corresponds to g1(0) and g2(0), the utilities in the current iterate.

which are plotted in Fig. 1. The continuous optimal step lengths for the two respective

agents are argmax g1(α) = 3.33 and argmax g2(α) = 8.94. Due to the unimodality

of uk(x + αShk
i j ), all efficient solutions of (14) are given by integer step lengths α ∈

[3.33, 8.94] (see Fig. 1), i.e., for α ∈ {4,5,6,7,8} we have

g1(4) = 1.82412 g1(5) = 1.81803 g1(6) = 1.80882 g1(7) = 1.79752 g1(8) = 1.78465,

g2(4) = 1.93043 g2(5) = 1.94035 g2(6) = 1.94873 g2(7) = 1.95558 g2(8) = 1.96057.

Due to the unimodality of both utility functions with respect to α, no efficient solution

exists for an α outside the segment [3.33, 8.94].

The above example illustrates a case where the segment between argmax uh(x +

αSkh
i j ) and argmax uk(x+ Skh

i j ) contains five integer points, associated with the feasible

step lengths.

The following statements give a constructive characterization of the Pareto frontier of

an ERP for the case of a concave utility function and linear utility functions respectively.

Corollary 1 Let Γ be the set of integer points in the interval [adown,aup], where adown =

min{argmaxαuk(x+αSkh
i j ), argmaxαuh(x+αSkh

i j )} and aup =max{argmaxαuk(x+αSkh
i j ),

argmaxαuh(x+αSkh
i j )}, and let[αdown,αup] be the interval of feasible step lengths defined

in (8). Then, due to Proposition 2, the set V∗ of Pareto efficient solutions of an ERP can

be obtained as follows:

1. V∗ = {[uh(x+αSkh
i j ),u

k(x+αSkh
i j )] : α ∈ Γ} if Γ ⊆ [αdown,αup] is not empty and

does not contain the zero.
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2. If Γ is empty and there exists an integer point between 0 and adown but no

integer point between aup and αup then V
∗ contains the unique point given by

[uh(x+αSkh
i j , uk(x+αSkh

i j )]such that α is the greatest integer between 0 and adown.

3. If Γ is empty and there exists an integer point between aup and αup but no integer

point between 0 and adown then V
∗ contains either the unique point given by

[uh(x+αSkh
i j , uk(x+αSkh

i j )] such that α is the smallest integer between aup and

αup, or α= 0, or both of them if they do not dominate each other. (In this case the

three possibilities must be checked, since if for only one of the utilities —let it be

h, for instance— uh(x) > uh(x+ ᾱSkh
i j ), ᾱ being the smallest integer between aup

and αup, then both values 0 and ᾱ are Pareto efficient.)

4. If Γ is empty and there are integer points both between aup and αup and between

0 and adown then V ∗ contains the points given by [uh(x+αSkh
i j , uk(x+αSkh

i j )] such

that α is either the smallest integer between aup and αup, or the greatest integer

between 0 and adown, or both points if they do not dominate each other.

5. In the case that Γ contains the zero, then no point dominates the initial endowment

x, so that the only point in the Pareto frontier is x.

Corollary 2 Consider the case of an economy where agents have linear utility func-

tions with gradients c1, . . . ,cn and let again Γ be the set of integer points in the inter-

val [adown,aup], where adown = min{argmaxααckSkh
i j , argmaxααchSkh

i j } and aup = max

{argmaxααckSkh
i j , argmaxααchSkh

i j }, and let [αdown,αup] be the interval of feasible step

lengths defined in (8). It might be easily seen that either Γ =Q or Γ = ∅. The set Γ =Q

in the case (ch
i p jd

k−ch
j pid

k) and (ck
j pid

h−ck
i p jd

h) have opposite signs, whereas Γ =∅

if (ch
i p jd

k −ch
j pid

k) and (ck
j pid

h−ck
i p jd

h) have the same sign. Then, due to Proposition

2, the set V∗ of Pareto efficient solutions of an ERP may contain at most one point:

1. if there is at least one non-null integer between −max{xh
i /(p jd

k), xk
j/(pid

h)}/
F(pi, p j,d

k,dh) and min{xh
j/(pid

k), xk
i /(p jd

h)}/F(pi, p j,d
k,dh) and Γ = ∅, then

V
∗ only contains the unique point corresponding to the allocation xt+1 = xt +

αSkh
i j for a step-length α which is either equal to −max{xh

i /(p jd
k), xk

j/(pid
h)}/

F(pi, p j,d
k,dh) (if (ch

i p jd
k - ch

j pid
k) and (ck

j pid
h - ck

i p jd
h) are negative) or equal

to min{xh
j/(pid

k), xk
i /(p jd

h)}/F(pi, p j,d
k,dh) (if (ch

i p jd
k - ch

j pid
k) and (ck

j pid
h -

ck
i p jd

h) are positive).

2. V
∗ only contains the disagreement point in the opposite case.

Having a characterization of the Pareto frontier for any ERP in the sequence allows

not just a higher efficiency in simulating the process but also the possibility of measuring

the number of non dominated endowments of each of the m(m− 1)n(n− 1)/4 ERPs,

which might be used as a measure of uncertainty of the process. Indeed, the uncertainty
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of a barter process of this type might come from different sides: i) how to choose the

couple of agents and commodities in each step? ii) which Pareto efficient solution of

each ERP to use to update the endowments of the system? In the next subsection we

shall study different criteria for answering these two questions.

Note that the set of non-dominated solutions of the ERP, obtained by the local search

movement (6) might give rise to imbalances between supply and demand (Dreze, 1975).

To resolve this imbalance Dreze introduced a quantity rationing, which can be also

extended to the ERP.

Consider a rationing scheme for the ERP as a pair of vectors l ∈ Zm, L ∈ Zm, with

L ≥ 0 ≥ l, such that the tth and (t +1)th ER verifies li ≤ xt+1
i −xt

i ≤ Li, for i = 1, . . . ,n,

where li and Li are the ith components of l and L respectively. Thus, for two given agents

h and k and two given commodities i and j we have

li ≤ αF(pi, p j,d
k,dh)



















...

p jd
k

...

−p jd
h

...



















≤ Li, and l j ≤ αF(pi, p j,d
k,dh)



















...

−pid
k

...

pid
h

...



















≤ L j.

An open problem, which is not investigated in this paper, is the formulation of equi-

librium conditions for this rationing scheme. One possibility might be the construction

of two intervals for l and L which minimize the overall imbalances, under the conditions

that (3.1) is verified in each ERP, as long as l and L are inside the respected intervals.

The integrality of the allocation space Λ forbids a straightforward application of the

equilibrium criteria proposed by Dreze to the markets we are considering in this work.

3.2. Taking a unique direction of movement

The sequence of elementary reallocations formalized in (3) requires the iterative choice

of couples of agents (h,k) and couples of commodities (i, j), i.e., directions of move-

ment among the m(m− 1)n(n− 1)/4 in the neighbourhood of the current solution. If

this choice is based on a welfare function (summarizing the utility functions of all the

agents), the selection of couples of agents and couples of commodities can be made

mainly in two different ways: first improving and best improving directions of move-

ment.

Noting that each direction of movement in the current neighbourhood constitutes

a particular ERP, a welfare criterion might be a norm of the objective vector (e.g.,

Euclidean, L1 or L∞ norms).
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The best improving direction requires an exhaustive exploration of the neighbour-

hood, whereas the first improving direction stops the exploration of when an improving

ERP has been found.

If at iteration t an improving direction exists the respective endowments are updated

in accordance with the solution of the selected ERP: for each couple of commodities

(i, j) and each couple of agents (h,k), agent k gives αF(pi, p j,d
k,dh)p jd

k units of i to

agent h and in return he/she gets αF(pi, p j,d
k,dh)pid

k units of j, for some α ∈ Z. At

iteration t +1, a second couple of commodities and agents is considered in accordance

with the defined criterion. If we use a first improving criterion, the process stops

when the endowments keep in status quo continuously during m(m − 1)n(n − 1)/4

explorations, i.e., when no improving direction is found in the current neighbourhood.

3.3. Observing the paths of all improving directions of movement

When simulating social systems it might be interesting to enumerate all possible stories

which are likely to be obtained starting from the known initial point. In this subsection

we introduce a method to enumerate possible paths exclusively based on the Pareto

efficiency of each elementary reallocation.

The idea is to solve m(m− 1)n(n− 1)/4 ERPs and keep all the efficient solutions

generated. If in a given iteration we have r non-dominated solutions, and observe li ≤
m(m−1)n(n−1)/4, for i = 1, . . . ,r, Pareto improving directions, with fi, j for j = 1 . . . li
efficient solutions for each of them, we would expect some of the r + ∑

r
i=1 ∑

li
j=1 fi, j

solutions to be non-dominated by some others and the incumbent should be updated

by adding to the r previous solutions those which are non-dominated and removing

those which are dominated by some other. From the point of view of a local search, the

incumbent solution of this process is not a unique point in the allocation space but a

collection of points which Pareto-dominate the initial endowment and do not dominate

each other.

This procedure requires a method to find Pareto-optimal vectors each time

m(m−1)n(n−1)/4 ERPs are solved. An efficient algorithms to find the set V∗ of Pareto

vectors among r given vectors V = {v1,v2, . . . ,vr}, where vi = (vi1,vi2, . . . ,vin) ∈ Rn,

i= 1,2, . . . ,r, has been described (Corley and Moon, 1985; Sastry and Mohideen, 1999).

In our implementation of the the best-improving barter process, we use the modified

Corley and Moon algorithm, shown below.

Step 0. Set V∗ = Ø.

Step 1. Set i = 1, j = 2.

Step 2. If i = r− 1, goto Step 6. For k = 1,2, . . . ,n, if v jk ≥ vik for some k, then go to

Step 3; else, if vik ≥ v jk for all k, then go to Step 4; otherwise, go to Step 5.

Step 3. Set i = i+1, j = i+1; go to Step 2.
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Step 4. If j = r, set V∗ = V
∗∪{vi} and v j = {∞,∞, . . . ,∞} go to Step 3; otherwise, set

v jk = vrk, where k = 1,2, . . . ,n. Set r = r−1 and go to Step 2.

Step 5. If j = r, set V∗ = V∗∪{vi} go to Step 3; otherwise, set j = j+1 and go to Step

2.

Step 6. For k = 1,2, . . . ,n, if v jk ≥ vik, then set V∗ =V∗∪{v j} and stop; else, if vik ≥ v jk,

then set V∗ = V
∗∪{vi} and stop. Otherwise, let V∗ = V

∗∪{vi,v j}. Return V
∗.

The nice property of the modified Corley and Moon algorithm is that it doesn’t

necessarily compare each of the r(r − 1)/2 couples of vectors for each of the n

components. This is actually what the algorithm does in the worst case, so that the

complexity could be written as O(nr2), which is linear with respect of the dimension of

the vectors and quadratic with respect to the number of vectors. For the case of linear

utilities, the next subsection provides a small numerical example and the pseudo-code

of the procedure used to enumerate the paths of all possible stories.

3.4. Linear utilities

In microeconomic theory the utility functions are rarely linear, however the case of

linear objectives appears particularly suitable from an optimization point of view and

allows a remarkable reduction of operations, as the ERPs cannot have more than one

Pareto-efficient solution (see Corollary 1).

Consider a given direction of movement Skh
i j . We know that a feasible step length

α belongs to the interval defined by (8). Since in the case of one linear objective the

gradient is constant, for any direction of movement (i, j,k,h) the best Pareto improve-

ment (if there exists one) must happen in the endpoints of the feasible range of α (let

αdown(i, j,k,h) and αup(i, j,k,h) denote the left and right endpoints of the feasible range

of α, when the direction of movement is (i, j,k,h)). Therefore, the line search reduces to

decide either αdown(i, j,k,h), αup(i, j,k,h) or none of them. Then for every given point

x, we have a neighbourhood of at most m(m−1)n(n−1)/2 candidate solutions. The

pseudo-code to generate all sequences of elementary reallocations for n linear agents,

keeping the Pareto-improvement in each interaction, is shown in Algorithm 1.

The function CorleyMoon() applies the modified Corley and Moon algorithm to a

set of utility vectors and allocation vectors and returns the Pareto-efficient utility vectors

with the associated allocations.

Despite the idea behind the SER of a process among self-interested agents, which

are by definition local optimizers, this algorithm could also be applied to any integer

linear programming problem of the form of (2) with one linear objective: u(x) = cTx.

In this case however the branch and cut algorithm is much more efficient even for big

instances, as we will show in the next section.



Stefano Nasini, Jordi Castro and Pau Fonseca 99

Algorithm 1 Generating paths of all improving directions of movement

1: Initialize the endowments E =< e1, . . . ,en > and utilities U =< u1, . . . ,un >.

2: Initialize the incumbent allocations ˜Et = {E} and the incumbent utilities ˜U t = {U}.
3: repeat

4: for x ∈ ˜Et do
5: Let < Sx,Gx > be the set of movements and utilities {(x+αSkh

i j , cT(x+αSkh
i j ))} for each couple

of commodities and agents (i, j,k,h) and α ∈ {αdown(i, j,k,h),αup(i, j,k,h)}
6: end for
7: Let < S,G >=

⋃

x∈˜E < Sx,Ux >

8: Let < S,G >=CorleyMoon(< S,G >)

9: Let ˜Et+1 = ˜Et ∪S and ˜U t+1 = ˜U t ∪G

10: until ˜Et = ˜Et−1

If a first-improve method is applied, an order of commodities and agents is required

when exploring the neighbourhood and the equilibrium allocation might be highly

affected by this order (path-dependence). The pseudocode of algorithm 2 describes the

first improve search of the barter algorithm applied to the case of one linear objective

function.

Note that if the nonnegativity constraints are not taken into account, problem (2) is

unbounded for linear utility functions. This corresponds to the fact that without lower

bounds the linear version of this problem would make people infinitely get into debt.

As a consequence, the only possible stopping criterion, when the objective function

is linear, is the fulfillment of nonnegativity constraints, i.e. a given point x is a final

endowment (an equilibrium of the barter process) if we have that for any direction

of movement and for any given integer α if cT(x + αSkh
i j ) > cTx then x + αSkh

i j has

some negative component. In some sense the optimality condition is now only based

on feasibility.

Algorithm 2 First-improve SER with linear utility function

1: Initialize the endowments E =< e1, . . . ,en > and utilities U =< u1, . . . ,un >.
2: Let t = 0;
3: Let (i, j,k,h) be the tth direction in the order set of directions;

4: if cT(x+αdown(i, j,k,h)Skh
i j )> cT(x+αup(i, j,k,h)Skh

i j ) and cT(x+αdown(i, j,k,h)Skh
i j )> cT(x) then

5: Update the incumbent x = x+αdown(i, j,k,h)Skh
i j and GOTO 3;

6: else if cT(x+αup(i, j,k,h)Skh
i j )> cT(x+αdown(i, j,k,h)Skh

i j ) and cT(x+αup(i, j,k,h)Skh
i j )> cT(x) then

7: Update the incumbent x = x+αup(i, j,k,h)Skh
i j ) and GOTO 3;

8: else
9: t = t +1;

10: if t < m(m−1)n(n−1) then
11: GOTO 4;
12: else
13: RETURN
14: end if

15: end if
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3.5. The final allocation

For the case of a continuous commodity space and exogenous prices, pairwise optimality

implies global optimality, as long as all agents are initially endowed with some positive

amount of a commodity (Feldman, 1973). Unfortunately, the SER described in this

paper does not necessarily lead to Pareto efficient endowments. Let Tx(α) = x +

∑k 6=h ∑i6= jα(i, j,k,h)Skh
i j , representing a simultaneous reallocation of m commodities

among n agents, with step length αkh
i j for each couple of commodities i j and agents

hk, starting from x ∈ Λ. Whereas a SER is required to keep feasibility along the

process, a simultaneous reallocation Tx(α) of m commodities among n agents does not

consider the particular path and any feasibility condition on the paths leading from x

to Tx(α). Hence, remembering that all SERs described in this section stop when no

improving elementary reallocation exists in the current neighbourhood, we can conclude

that the non-existence of a feasible improving ER does not entail the non-existence

of an improving simultaneous reallocation of m commodities among n agents. In this

sense a SER provides a lower bound of any sequence of reallocations of more than two

commodities and two agents at a time.

4. Bartering on networks

An important extension of the problem of bargaining integer amounts of m commodities

among n agents with fixed prices is to define a network structure such that trades among

agents are allowed only for some couples of agents who are linked in this network. In this

case the conservation of commodities d1x1+d2x2+ · · ·+dnxn = d1e1+d2e2+ · · ·+dnen

is replaced by balance equations on a network, so that the final allocation of commodity

i must verify Ayi = D(xi − ei), where yi is the flow of commodity i in the system, A

is the incidence matrix, and D is a n× n diagonal matrix containing the weights of the

conservation of commodity i, that is D = diag(d1 . . .dn) (for more details on network

flows problems see Ahuja, Magnanti and Orlin (1991)).

It is also possible for the final allocation to have a given maximum capacity, that is,

an upper bound of the amount of commodity i that agent h may hold: xh
i ≤ x̄h

i .

The variables of the problem are now xh
i , which again represent the amount of

commodity i held by agent h, sh
i which are the slack variables for the upper bounds,

and y
h,k
i which denote the flow of commodity i from agent h to agent k.

The objective functions ũi(x,y) , i = 1 . . .n, might depend on both the final allocation

x and the interactions y, since the network topology could represent a structure of

geographical proximity and reachability.

The resulting mathematical programming formulation of the problem of bargaining

integer commodities with fixed prices among agents on a network with upper bounds on

the final allocations is as follows:
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max{ũi(x,y), i = 1, . . . ,n} (15a)

subject to
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(15b)

ui(x,y)≥ ui(e,0) i = 1 . . . ,n

x ∈ Zmn ≥ 0, y ∈ Zmn(n−1) ≥ 0, (15c)

where ũi : Rmn → R, P ∈ Q1×m, D ∈ Qmn×mn, bi ∈ Q, i = 1, . . . ,n, A ∈ Qn×n(n−1), and

b0 ∈ Qnm. Matrix D is an appropriate permutation of the diagonal matrix made of m

copies of the matrix D with the weights of the conservation of commodity and ũi(e,0)

is the utility function of agent i evaluated in the initial endowments e with null flow.

Problem (2) had mn variables and m + n constraints, whereas problem (15) has

mn(n+ 1) variables and n(1+ 2m) constraints. When a SER is applied, the definition

of a network structure and the application of upper bounds to the final allocation reduce

the number of feasible directions of movement in each iteration and the bound of the

interval of feasible step length, as for any incumbent allocation x, the step length αmust

be such that 0 ≤ x+αSkh
i j ≤ x̃.

An application of this problem is the transfer of workers among plants of the same

franchising company or chain store. When a change of demand requires a reorganization

of the production, laying workers off and contracting new workers might be costly

both for the company (severance pays and taxes) and for the workers (finding a new

job and experiencing a possible period of unemployment). Suppose that each plant is

independent and led by a different director, whose interest is to maximize the utility of

his/her particular plant and suppose the price per hour is fixed by law or the collective

labour agreement for each category of worker. In this case prices are exogenous and

each plant is interested in maximizing its benefit separately. The objective functions

ũi(x,y) , i = 1 . . .n, might depend on both the final allocation x and the interactions y,
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since the network structure could represent a structure of geographic proximity and

plants could wish to minimize the distance of displacement of their workers. The upper

bounds on the final endowments might be used to model the maximum capacity that

each plant has to accommodate and to employ a given type of worker. Also in this

particular application, the bargaining nature of the problem lays on the assumption that

the commodities we are considering are private goods, as the labour of one worker is

excludable and rivalrous.

The formulation (15) also allows the definition of arbitrary network structures, whose

topology is given in A. However, despite the absence of any prior definition of A, any

sequence of bilateral trades intrinsically gives rise to a network structure generated by

the set of couples of agents interacting along the process. Such a structure might be

statistically analysed in term of its topological properties, as it is done in the next section

with a battery of problems of different sizes. We shall study the assortativity of networks

generated by the set of couples of agents interacting along the SER. The assortativity is

the preference for an agent to interact with others that are similar or different in some

way, it is often operationalized as a correlation between adjacent node’s properties.

Two kinds of assortativities emerges in the best-improve barter algorithm: 1) couples

of agents with highly different marginal utilities are more often commercial partners, 2)

and also agents who are more sociable (trade more often) interact frequently with agents

who are not sociable. These results suggest that when the interactions are restricted to

be performed only among adjacent agents on a network, highly dissortative structure

would allow better performance of the process.

The effect of network structures on the performance of a barter process has been

already studied (Bell, 1998; Wilhite, 2001), for the case of endogenous prices and

continuous commodity space. In this case the process takes into account how agents

update prices each time they perform a bilateral trade. Reasonably, prices should be

updated based either on the current state of the only two interacting agents or on the

state of the overall population or also on the history of the system, such as previous

prices. Bell showed that centralized network structures, such as a stars, exhibit a faster

convergence to an equilibrium allocation.

5. Computational results

We have already seen that a SER can also be applied to any integer linear programming

problem of the form (2), where the individual utilities are aggregated in a single welfare

function. If this aggregated welfare is defined as a linear function of the endowments

of the form u(x) = cTx, the comparison of the SERs with the standard branch and

cut algorithm is easily carried out. Considering the ERP as the basic operation of a

SER and the simplex iteration as the basic operation of the branch and cut algorithm,

the comparison between the two methods is numerically shown in Table 1 for three

replications of 11 problems with the same number of agents and commodities, which
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Table 1: Numerical results of the SER and Branch and Cut for different instances of problem (2). The first

column shows the number of agents and commodities of the problem. Columns ’ERPs’ provide the number

of elementary reallocations and column ’neighbourhood’ shows the proportion of neighbourhood which

has been explored. Columns ’solution’ give the maximum total utility found. Column ’simplex’ gives the

number of simplex iterations performed by branch and cut.

size initial welfare
first-improve best-improve branch and cut

neighbourhood ERPs solution ERPs solution simplex solution

10 75.134 0.66 267 353.269 91 365.126 87 394.630

10 147.958 0.84 271 763.188 91 767.371 12 769.861

10 1.205.972 0.77 375 3.925.921 74 3.844.165 70 4.060.685

15 297.713 0.70 1.343 1.455.839 215 1.471.387 49 1.488.149

15 326.996 0.71 1.090 2.544.271 237 2.554.755 63 2.614.435

15 625.800 0.71 806 2.640.317 224 2.644.008 76 2.684.016

20 183.573 0.67 2.759 3.432.832 378 3.425.665 110 3.525.421

20 1.064.023 0.81 1.582 4.197.757 361 4.194.187 94 4.331.940

20 201.377 0.78 2.629 1.017.906 351 1.089.860 80 1.180.977

25 228.365 0.89 4.358 2.221.790 648 2.226.152 237 2.271.552

25 687.492 0.65 2.806 3.416.982 572 3.403.937 113 3.462.043

25 323.495 0.61 4.706 2.262.657 666 2.245.817 50 2.474.429

30 973.955 0.79 6.648 5.428.473 975 5.427.207 101 5.377.843

30 1.811.905 0.82 13.126 8.945.605 1.084 8.953.611 127 9.080.651

30 1.302.404 0.85 12.089 7.583.841 957 7.573.400 132 7.605.525

35 653.739 0.87 13.201 3.456.918 1.310 3.458.570 112 3.474.126

35 564.905 0.80 8.772 3.579.713 1.308 3.585.815 77 3.599.639

35 753.056 0.83 14.199 5.132.226 1.290 5.107.933 67 5.333.123

40 482.570 0.87 16.307 2.429.707 1.608 2.428.731 145 2.446.953

40 430.174 0.68 7.885 5.281.060 1.640 5.229.740 90 5.279.631

40 2.795.862 0.79 14.240 19.175.278 1.578 14.503.963 186 19.276.444

45 3.392.010 0.98 62.398 22.681.229 2.300 22.664.443 162 22.728.195

45 842.645 0.92 12.900 6.606.875 2.137 6.642.397 204 6.755.016

45 1.909.859 0.97 48.688 15.979.841 2.173 15.865.744 180 16.071.407

50 839.559 0.93 20.615 4.822.082 2.105 4.859.830 137 4.895.655

50 718.282 0.97 20.744 3.586.560 2.459 3.588.633 160 3.610.194

50 1.570.652 0.99 58.165 18.872.864 2.530 19.018.519 180 19.069.868

55 351.051 0.98 20.344 2.761.203 2.935 2.748.862 1.242 2.799.187

55 413.656 0.96 26.780 4.566.394 2.922 4.569.975 336 4.585.475

55 551.355 0.99 32.053 5.136.295 3.139 5.135.647 253 5.157.444

60 468.575 0.99 27.208 1.941.409 3.568 1.949.786 271 1.995.930

60 501.366 0.99 34.323 5.051.429 3.521 5.051.836 313 5.067.154

60 575.950 0.98 43.227 4.751.072 3.589 4.747.097 273 4.801.179

amounts to 33 instances. The branch and cut implementation of the state-of-the-art

optimization solver Cplex was used.

In the special case of a unique linear utility function a system of many local

optimizers (agents) could be highly inefficient if compared with a global optimizer,

who acts for the “goodness” of the system, as in the case of branch and cut. Also the

increase of elementary operations of the barter process is much higher than the one of
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the branch and cut, particularly when the direction of movement is selected in a best-

improve way, as it is shown in Table 1. Each point is averaged over the three instances

for each size (m,n). The economical interpretation suggests that if the time taken to

reach an equilibrium is too long, it is possible that this equilibrium is eventually never

achieved since in the meanwhile many perturbing events might happen.

5.1. Application in computational economics

From the point of view of computational economics, sequences of k-lateral trades of

fractional amounts of commodities with local Walrasian prices have also been studied

(Axtell, 2005), along with the convergence rate to the equilibrium. Some studies have

also taken into account the performance of the process under a variety of network

structures restricting the interactions to be performed only among adjacent agents (Bell,

1998; Wilhite, 2001). Populations of Cobb-Douglas’ agents trading continuous amount

of two commodities with local Walrasian prices have been considered, with the aim

of analysing the speed of convergence to an equilibrium price and allocation: more

centralized networks converged with fewer trades and had less residual price variation

than more diverse networks.

An important question when sequences of elementary reallocations in markets with

fixed prices are studied is to find factors which affect the number of non dominated

allocations related to improving paths of algorithm 1 and the number of neighbourhoods

explored. We consider a theoretical case where 2 agents with linear utility functions have

to trade 9 commodities. The following three factors are taken into account:

• Fact1: the variability of prices;
• Fact2: association between the initial endowment and the marginal utility of the

same agent;
• Fact3: association between the initial endowment and the marginal utility of the

other agent.

The aforementioned factors are measured at three levels and four randomized repli-

cates have been simulated for each combination of factors. A multivariate analysis of

variance (MANOVA) is performed, considering the two following response variables

• Resp1: the number of non dominated allocations related to improving paths of

algorithm 1;
• Resp2: the number of neighbourhoods explored.

The MANOVA table in Table 2 illustrates the effects and the significance of two

factors to the bivariate response: Fact1 and Fact3. The interaction between Fact2 and

Fact3 is significant, suggesting a higher increase in the response variables when they
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Table 2: MANOVA analysis of the paths of all improving directions

Pillai F p-value

Fact1 0.135084 2.9336 0.022435

Fact2 0.050411 1.0472 0.384650

Fact3 0.162063 3.5712 0.008055

Fact1 ×Fact2 0.057542 0.5999 0.777027

Fact1 ×Fact3 0.063816 0.6674 0.719612

Fact2 ×Fact3 0.195534 2.1943 0.030408

Fact1 ×Fact2 ×Fact3 0.291627 1.7284 0.046013

are both low. The correlation between the amounts of the initial endowments and the

coefficients of the objective function of the same agent does not appear by itself to have

a significant effect on the response variables.

The results of the MANOVA should be interpreted in accordance with the analysis of

the assortativity behaviour of the economical interaction network. Any SER intrinsically

gives rise to a network structure generated by the set of couples of agents interacting

along the process. Such a structure might be statistically analysed in term of its

topological properties. We consider two kind of assortativity measure (the preference

for an agent to interact with others that are similar or different in some way, often

operationalized as a correlation between adjacent node’s properties):

• Type1: couples of agents with highly different marginal utilities are more of-

ten commercial partners – Pearson correlation between the Euclidean distance

of marginal utilities and the number of interactions of each couple of agents,

cor(dist(ch, ck), interactions(h,k));

• Type2: agents who are more sociable (trade more often) interact frequently with

agents who are not sociable –Pearson correlation between the Euclidean distance

of couples of agents with respect to their number of interactions and the number

of joint interactions of each couple, cor(dist(degreeh, degreek),degree(h,k));

• Type3: the more two agents are different with respect to their marginal utilities,

the more they are different with respect to their number of interactions –Pearson

correlation between the Euclidean distance of marginal utilities and the Euclidean

distance of the number of interactions of each couple of agents, cor(dist(ch, ck),

dist(degreeh, degreek)).

The numerical values in Table 3 corresponds to the aforementioned assortativities,

associated to the same instances of Table 1.

The significant effect of Fact3 (the association between the initial endowment and the

marginal utility of the other agent) in the MANOVA of Table 2 seems coherent with the

Type1 and Type3 assortativity reported in Table 3, in the vague sense that assortativity

between nodes relates with the number of interactions.
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Table 3: Three types of network assortativity.

Size
First-improve Best-improve

Type1 Type2 Type3 Type1 Type2 Type3

10 0.40 0.48 0.63 0.70 0.67 0.74

10 0.46 0.66 0.61 0.85 0.63 0.74

10 0.60 0.48 0.75 0.71 0.70 0.75

15 0.49 0.28 0.64 0.74 0.48 0.56

15 0.44 0.52 0.59 0.58 0.44 0.67

15 0.37 0.60 0.54 0.56 0.74 0.66

20 0.22 0.36 0.49 0.39 0.62 0.54

20 0.33 0.53 0.48 0.54 0.48 0.55

20 0.053 0.30 0.47 0.48 0.45 0.42

25 0.37 0.53 0.56 0.55 0.66 0.53

25 0.33 0.63 0.40 0.65 0.56 0.66

25 0.32 0.43 0.56 0.48 0.70 0.49

30 0.10 0.28 0.33 0.42 0.55 0.53

30 0.07 0.30 0.39 0.56 0.62 0.68

30 0.33 0.42 0.59 0.61 0.63 0.65

35 0.27 0.41 0.43 0.44 0.59 0.43

35 0.26 0.33 0.56 0.46 0.55 0.48

35 0.13 0.40 0.47 0.46 0.58 0.53

40 0.20 0.37 0.36 0.44 0.64 0.38

40 0.48 0.48 0.52 0.68 0.52 0.64

40 0.40 0.44 0.59 0.64 0.64 0.60

45 0.10 0.13 0.45 0.62 0.60 0.54

45 0.29 0.45 0.51 0.57 0.59 0.58

45 0.20 0.23 0.52 0.58 0.57 0.68

50 0.17 0.26 0.37 0.35 0.55 0.32

50 0.21 0.28 0.50 0.45 0.62 0.42

50 0.15 0.30 0.42 0.51 0.50 0.65

55 0.14 0.53 0.17 0.39 0.52 0.38

55 0.17 0.33 0.38 0.29 0.53 0.44

55 0.19 0.37 0.38 0.47 0.56 0.43

60 0.35 0.45 0.60 0.54 0.57 0.62

60 0.20 0.30 0.43 0.34 0.50 0.52

60 0.16 0.38 0.29 0.39 0.51 0.48

What clearly emerges from these results is an interaction pattern which is far from

random. In the case the SER is forced to be performed only among agents adjacent

in a network, it suggests that highly dissortative structure match pretty well with the

best-improve directions of movement, so that no improving direction is penalized by

the presence of a predefined network structure.
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6. Summary and future directions

We studied the use of barter processes for solving problems of bargaining on a dis-

crete set, representing markets with indivisible goods and fixed exogenous prices. We

showed that the allocation space is characterized by a block diagonal system of linear

constraints, whose structural properties might be exploited in the construction and anal-

ysis of barter processes. Using Proposition 2 and the characterization of the space of

integer solutions of the ERP, we were able to derive a constructive procedure to approx-

imate its Pareto frontier, as shown by Corollary 1 and Corollary 2.

Further research on this topic should include the characterization of the integer points

in the null space of a general reallocation problem with fixed prices to obtain a closed

form solution of a general problem of reallocating integer amounts of m commodities

among n agents with fixed prices.

An open problem, which has not been investigated in this paper, is the formulation

of equilibrium conditions for this rationing scheme proposed in Section 3, as suggested

by Dreze (1975) for the case of continuous allocation space.

In Section 4 we proposed a mathematical programming model for the problem of

reallocating integer amounts of m commodities among n agents with fixed prices on

a sparse network structure with nodal capacities. Further research on this issue should

include the study of mathematical properties of a SER in dealing with markets with

sparsely connected agents, as formulated in (15).
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Abstract

Likelihood estimates of the Dirichlet distribution parameters can be obtained only through numer-

ical algorithms. Such algorithms can provide estimates outside the correct range for the parame-
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1. Introduction

The Dirichlet distribution has multiple applications. It is well known for being the con-

jugate prior of the multinomial distribution and can be therefore used to get Bayesian

estimates of the multinomial parameters. It is the basis for complicated models such

as Dirichlet Processes and mixture distributions based on the Dirichlet distribution. In

addition, it is interesting in its own right. It can be used to analyse positive continuous

data that sum up to one, i.e. compositional data. Such kinds of data can arise in many

situations. For example, when the data in each unit are represented by an intensity signal

it can be of interest to normalize them through the total intensity of that unit. In this way
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the data from different units are comparable and the final data can be analysed using

the Dirichlet distribution. Another possible application is in the analysis of taxonomic

assignements. For each unit the percentages of the microbial composition of the unit

are assigned to the specific taxonomies. These data can be easily produced with Next

Generation Sequencing (NGS) technologies. Many other examples of the use of the

Dirichlet distribution are provided in the paper of Wicker et al. (2008).

The use of the Dirichlet distribution has been criticized due to the strong indepen-

dence properties associated to this distribution (Aitchison, 1986). In the literature some

generalizations have been proposed to overcome these limits, see for example Con-

nor and Mosiman (1969) and Rayens and Srinivasan (1994). In this paper we only

marginally discuss this point giving a case where the application of the Dirichlet distri-

bution to high-dimensional compositional data leads to reliable conclusions. The focus

of paper is related to the comparison of the computational performances of different

methods to get maximum likelihood estimates of the Dirichlet distribution. There is no

closed form solution of the maximum likelihood equations, therefore numerical methods

must be employed. At the moment, commonly adopted methods are rather unstable. Fi-

nal estimates can be outside the correct range for the parameters and the algorithms can

fail to reach convergence in a reasonable amount of time. Wicker et al. (2008) reported

many convergence failures in their simulation studies. Strategies to improve stability

have been studied by many authors. Many proposals are focused on the choice of good

starting values for the optimization algorithms. Useful references for these problems

and the study of Dirichlet maximum likelihood estimation are the papers of Dishon and

Weiss (1980), Ronning (1989), Narayanan (1991a), and Narayanan (1991b).

In this work we compare eight different algorithms and four different initialisation

methods on real and simulated data. As an application, we consider the analysis

of metabolomics data. We consider the Newton-Raphson algorithm as the reference

algorithm. A fixed-point algorithm, shown in literature to have very good performance,

is taken into account as well. Moreover, a novel and more stable algorithm based on

Levenberg-Marquardt ideas (Levenberg, 1944; Marquardt, 1963) will be employed to

get the final maximum likelihood estimates. In the appendix we give a proof of the

convergence to the optimum for this algorithm. Finally, to avoid the problem of estimates

outside the admissible parameter space, a simple re-parametrization of the Dirichlet

parameters and an algorithm with box constraints are considered. The re-parametrization

will be used together with the Newton-Raphson algorithm and the Levenberg-Marquardt

algorithm, but not with the FPI algorithm because this does not suffer from the problem

of a constrained parameter space (see Huang, 2005). The re-parametrization and the

algorithm with box-constraints are straightforward but have not been considered in the

literature before.
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2. Dirichlet likelihood

In this section we introduce notation and we summarize useful results from literature

(see Minka, 2000). If y = (y1, . . . ,yK)
T is Dirichlet distributed with vector parameter

α= (α1, . . . ,αK)
T then its density is

Γ(∑kαk)

ΠkΓ(αk)
Πky

αk−1

k

where αk > 0, yk > 0, k = 1, . . . ,K and ∑k yk = 1.

The log-likelihood for N independent observations can be written as

f (α) = N lnΓ

(

∑
k

αk

)

−N ∑
k

lnΓ(αk)+N ∑
k

(αk −1)
1

N
∑

i

lnyik. (1)

The gradient of the log-likelihood with respect to one αk is:

[∇ f (α)]k = N

(

Ψ(∑
k

αk)−Ψ(αk)+
1

N
∑

i

lnyik

)

(2)

where Ψ denotes the digamma function. In what follows the arguments of a function

(e.g. the parameters α for the function f (·) in equation (2)) can be suppressed in the

notation when this does not generate confusion. The Hessian can be written in matrix

form as

H = Q+11Tz (3)

q jk =−NΨ′(αk)δ( j− k) (4)

z = NΨ′(∑
k

αk) (5)

where Ψ′ denotes the trigamma function and δ is the Dirac function (zero on the real

line, except at the origin where it is one). Let us note that the diagonal form of Q assures

the existence of its inverse when the diagonal elements are different from zero. This

is exactly the present case because the trigamma function is positive for positive real

arguments.

2.1. Some preliminary considerations

The number of available algorithms to maximize a function is huge and its impossible

to summarize all of them in a meaningful way. In this work we have focused our
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attention on algorithms suggested by the literature about the Dirichlet distribution and on

a modification of the Levenberg-Marquardt algorithm for which we are able to provide

a theoretical result related to the properties of the Dirichlet distribution.

In the literature the algorithms studied and suggested are mainly two: the Newton-

Raphson algorithm and the Fixed Point Iteration algorithm (see Minka, 2000; Huang,

2005). We include them in our comparison and we describe them briefly in the following

sections. Other algorithms, like BFGS (Ronning, 1989) or Gradient Ascent (Huang,

2005), had a poor performance in the literature and are therefore disregarded here.

The Levenberg-Marquardt algorithm is an algorithm to find least-squares estimates.

In the appendix we give a theoretical result of convergence for a modification of the

Levenberg-Marquardt algorithm with a fixed damping parameter when we apply its

adaptation to find maximum likelihood estimates. We study its performance in the paper

through simulations and real data. Finally, to avoid the problem of estimates outside

the allowed space, we consider a re-parametrization of the Dirichlet distribution and an

implementation of the BFGS algorithm with bounding box constraints, L-BFGS-B (see

Byrd et al., 1995).

In this work the efficiency of the algorithms will be compared essentially by the

number of iterations required to reach convergence. This number does not depend on

the implementation of the code and in this sense it is objective. We will see that the

Levenberg-Marquardt approach can be thought as a penalized version of the Newton-

Raphson algorithm and therefore it is expected to be slightly slower. However in general

the iteration time for different algorithms can vary substantially and the algorithm with

fewest iterations for convergence can require the largest amount of time. This can be the

case when we want to compare Levenberg-Marquard, FPI and L-BFGS-B, therefore for

these algorithms we provide also a comparison on time.

2.2. Newton-Raphson algorithm

The Newton-Raphson (NR) algorithm is used to solve the maximum likelihood equa-

tions [∇ f (α)] = 0. It can be summarized by the following equations:

αnew = αold −H−1∇ f (αold) (6)

H−1 = Q−1 − Q−111TQ−1

1
z
+1TQ−11

(7)

[

H−1∇ f (α)
]

k
=

[∇ f (α)]k −b

qkk

(8)

b =
1TQ−1∇ f (α)

1
z
+1TQ−11

=
∑ j [∇ f (α)] j /q j j

1/z+∑ j 1/q j j

. (9)
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When Q is invertible the inversion of the matrix H is always guaranteed by the use of

the Sherman-Morrison formula. However the equations (8) and (9) highlight that the

algorithm does not require the storage and the computation of the inverse of H. This is

a great advantage, especially when the number of variables is high.

The Newton-Raphson algorithm is expected to converge to the global optimum

because the Dirichlet distribution belongs to the exponential family and is therefore

concave. However, the convergence can be very slow and the final estimates can be

outside the admissible range for the parameters. Good starting values for the algorithm

can partially avoid these problems.

Finally let us note that using the relationship (7) is easy to build marginal confidence

intervals based on the observed Fisher information at the maximum-likelihood estimate.

2.3. Fixed Point Iteration algorithm

A fixed point iteration (FPI) scheme was considered initially by Minka (2000) and later

by Huang (2005) to get the maximum likelihood estimates of the Dirichlet distribution.

It is based upon minorize maximize (MM) algorithms (see Lange, 2010) and in our

case the minorizing function of the log-likelihood employs an inequality of the gamma

function. Specifically the log-likelihood can be bounded as follows

1

N
f

(

α)≥ (∑
k

αk

)

Ψ

(

∑
k

αold
k

)

−∑
k

lnΓ(αk)+∑
k

(αk −1)
1

N
∑

i

lnyik +C

where C is a constant. This leads to the following equation that must be solved:

Ψ(αnew
k ) = Ψ(∑

k

αold
k )+

1

N
∑

i

lnyik. (10)

To get αnew
k we need to invert the digamma function and this is done using another

iterative algorithm; therefore the whole procedure can be slow.

2.4. Starting values

The Newton-Raphson method is based upon a Taylor approximation and therefore

good convergence properties are guaranteed only if the initial starting value is in a

neighbourhood of the true parameter. In the literature there are many suggestions to find

good starting values. We review four of them that will be used throughout the paper.

We use the following notation: ȳk =
1
N ∑

N
i=1 yik, ȳ

(2)
k = 1

N ∑
N
i=1 y2

ik and s2
k = ȳ2

k − (ȳk)
2. The

four initialisations will be indicated as:
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moments. Matching the first two moments of the Dirichlet with the empirical

moments provides the useful initialisation:

[αstart]k = ȳk

ȳk − ȳ
(2)
k

s2
k

. (11)

Such initialisation employs only the marginal distributions and therefore its use of

the information can be inefficient.

Ronning. Ronning (1989) proposed an initialisation to guarantee parameters in

the correct range after the first iteration of the Newton-Raphson algorithm. There

is however no warranty that the final estimates are in the correct range. Such

initialisation gives the same value to all the parameters and unlike the moments

method uses all the available data for initialising each parameter:

[αstart]k = min
i∈1,...,N, k∈1,...,K

yik. (12)

Dishon. Following a suggestion of Dishon and Weiss (1980), Ronning (1989)

proposed a modification to the method of moments using information from all

the marginals. Each parameter is estimated through:

[αstart]k = α̂0ȳk (13)

α̂0 =

{

ΠK−1
k=1 (

ȳk(1− ȳk)

s2
k

−1)

}1/(K−1)

. (14)

This initialisation can give parameters outside the admissible region.

Wicker. Recently Wicker et al. (2008) proposed an initialisation based on an

asymptotic approximation of the likelihood. This approximation uses the limiting

behaviour of the digamma function when its real argument goes to zero or infinity.

Such situations are met when the number of parameters goes to infinity, i.e. for

high-dimensional data. However in their simulation study Wicker et al. (2008)

considered only a five-dimensional setting. Their initialisation is given by

[αstart]k = α̂0ȳk (15)

α̂0 =
N(K −1)Ψ(1)

N ∑
K
k=1 ȳk ln ȳk −∑

K
k=1 ȳk ∑

N
i=1 lnyik

. (16)
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3. A re-parametrization

An algorithm producing estimates outside the correct range is useless. In the case of the

Dirichlet distribution this problem can be avoided using a simple re-parametrization.

The idea is to see the parameters α as functions of other parameters free to vary on

the real line: in the log-likelihood we replace αk with exp(βk). In what follows we will

indicate with expNR the use of the NR algorithm applied to this re-parametrization.

This way, the range of βk is the real line and exp(βk) is in the correct range for

αk. With these replacements the log-likelihood f (β) is f (α) with α = exp(β) =

(exp(β1), . . . ,exp(βK))
T. The gradient can now be expressed as:

[∇ f (β)]k = [∇ f (α)]k

∣

∣

∣

∣

exp(β)

exp(βk).

The Hessian has a form similar to the original one:

H = Q+ exp(β)exp(β)Tz (17)

q jk = ([∇ f (β)]k − exp(βk +β j)Ψ
′(exp(βk)))δ( j− k)N (18)

z = NΨ′
(

∑
k

exp(βk)

)

(19)

As before, the diagonal form of the square matrix Q and the Sherman-Morrison formula

are sufficient to guarantee that the inverse of H exists if the diagonal elements of Q are

non zero. However, after the re-parametrization the problem is not necessarily concave

in the new parameters. Therefore we cannot say that the inequalities of the previous

section hold true also now. For the re-parametrization the elements in the diagonal of

Q are strictly negative in a neighbourhood of the point of maximum. Indeed at the

maximum the gradient is zero and therefore qkk =−exp(2βk)Ψ
′(exp(βk))N < 0. Within

such neighbourhood we have:

H−1 = Q−1 − Q−1 exp(β)exp(β)TQ−1

1
z
+ exp(β)TQ−1 exp(β)

(20)

[

H−1∇ f (β)
]

k
=

1

qkk

([∇ f (β)]k − exp(βk)b) (21)

b =
exp(β)TQ−1∇ f (β)

1
z
+ exp(β)TQ−1 exp(β)

(22)

=
∑ j exp(β j) [∇ f (β)] j /q j j

1/z+∑ j exp(2β j)/q j j

. (23)
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Equations (21), (22) and (23) assure an easy way to implement the Newton-Raphson

algorithm avoiding explicit matrix inversion. With these new quantities the Newton-

Raphson iteration is again:

βnew = βold −H−1∇ f (βold).

As starting values for the algorithm we can consider the logarithms of the starting values

previously described.

4. A stable algorithm

The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) was origi-

nally proposed to solve non-linear least-squares minimization problems. The idea is to

use a function of H instead of H itself. With an appropriate choice the iterations of the

algorithm can take into account the curvature of the function being optimized. For the

optimization of the Dirichlet log-likelihood we propose an iteration algorithm similar to

the Levenberg-Marquardt one (LM):

αnew = αold −{H+γdiagH}−1
∇ f (αold) (24)

where γ is a positive constant or a positive function not depending on the parameters.

The effect of the damping parameter γ is that of shortening the steps of NR algorithm,

providing in this way prudent steps in the iterations. The same algorithm can be applied

to the re-parametrization (expLM):

βnew = βold −{H+γdiagH}−1
∇ f (βold). (25)

Let us note that a similar approach is backtracking. In backtracking the matrix approxi-

mating the Hessian is multiplied by a damping parameter that is eventually shrunken to

assure an ascent step. The damping parameter influences the step length. The rational

of this approach is related to the Taylor expansion of the gradient calculated at the new

parameter. We prefer instead the Levenberg-Marquardt approach because the damping

parameter can influence both the direction and the size of the step (Madsen et al., 2004).

Let us denote with x the parameters of interest (α or β in the previous cases); working

on the iteration map M(x) defined by

M(x) = x−{H(x)+γdiagH(x)}−1
∇ f (x) (26)

we show in the appendix that both algorithms (24) and (25) converge to the maximum.



Marco Giordan and Ron Wehrens 117

Similarly to what we have seen in the previous sections for the Newton-Raphson

algorithm, we show how to rearrange the quantities involved in this version of the

Levenberg-Marquardt algorithm using expressions without an explicit use of inverse

matrices. Equations (24) and (25) can be rewritten with the following quantities

{H(x)+γdiagH(x)}−1 = D−L (27)

D = {Q(x)+γdiagH(x)}−1
(28)

where for the original parametrization

L =
D11TD

1
z
+1TD1

(29)

[(D−L)∇ f (α)]k =
[∇ f (α)]k −b

qkk(1+γ)+γz
(30)

b =
1TD∇ f (α)

1
z
+1TD1

(31)

=
∑k [∇ f (α)]k /(qkk(1+γ)+γz)

1/z+∑k 1/(qkk(1+γ)+γz)
(32)

while for the re-parametrization

L =
Dexp(β)exp(β)TD

1
z
+ exp(β)TDexp(β)

(33)

[(D−L)∇ f (β)]k =
[∇ f (β)]k − exp(βk)b

qkk(1+γ)+γzexp(2βk)
(34)

b =
exp(β)TD∇ f (β)

1
z
+ exp(β)TDexp(β)

(35)

=
∑k

exp(βk)[∇ f (β)]k
(qkk(1+γ)+γzexp(2βk))

1
z
+∑k

exp(2βk)
(qkk(1+γ)+γzexp(2βk))

. (36)

All the equalities are valid when we can apply the Sherman-Morrison formula, see

Sections 2 and 3. In such cases, as for the described Newton-Raphson algorithms, there

is no need to store and invert the Hessian matrix.
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4.1. Damping parameter and stopping criteria

The damping parameter γ influences the step size in the LM iterations. A very small

value of γ leads to an algorithm that is very close to the NR algorithm. This behaviour is

good when we are close to the maximum because we are close to quadratic convergence.

However, larger values of γ can be good if the actual value is far from the optimum. In

this case, a larger γ produces shorter steps in the iterations. Nielsen (1998) proposed

to use values very close to zero or related to the diagonal element of the matrix,

approximating the Hessian in the Levenberg-Marquardt original algorithm. Similarly,

we propose to use 1/K as a value close to zero, or 1 which is the diagonal element of

the Hessian when rescaled by its diagonal elements, [diag(D)]−1D (this form is similar

to that of the Levenberg-Marquardt algorithm). Contrary to the Levenberg-Marquardt

algorithm our damping parameter is not adaptive. However, we prove in the appendix a

convergence property of our algorithm and we show its performance in simulations and

on real data.

We stop the algorithm as soon as one of these three criteria is satisfied: if the norm of

the gradient is very close to zero: ‖ ∇ f ‖< ε1; if the relative changes of the parameters

are very small: ‖ xnew −x ‖< ε2(‖ x ‖+ε2); if the number of iterations is greater than a

pre-established threshold.

5. Simulated data

To compare the different proposals in an high-dimensional setting we have implemented

a simulation with 1000 variables and 20 units. With a huge number of parameters there

is an high chance that an element of a simulated unity is so close to zero to be considered

zero due to machine precision. This problem almost disappears when all the parameters

have values far from zero. To investigate the consequences of such choices we consider

a range of values for the sum of the parameters ∑αk from 10000 to 50000 with step

size of 2000. Each parameter is drawn from a uniform distribution between ∑αk/K −2

and ∑αk/K + 2 where K = 1000. Let us remark that the final sum of the simulated

parameters is not necessarily equal to the pre-established values in the sequence.

We consider that a method has reached convergence when it is stopped before the

number of iterations reaches 1000 and the estimated vector is in the correct range. The

tolerance parameters ε1 and ε2 are both set to 10−8 and for the damping parameter γ we

use the values considered in the previous section. The number of simulations is 2000.

The results are reported in Figure 1. In the upper panel we report the convergence rate

for each combination of starting values/methods. In the lower panel the mean number

of iterations required for convergence is shown. FPI and LM methods with γ = 1 have

a similar performance, reaching convergence very often and for every starting value. L-

BFGS-B shows a good range of convergence when coupled with Wicker or the method

of moments but not with the other two initialisation methods. The starting values of
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Figure 1: Results from the simulation study. In the upper panel we show how many times we reached

convergence for each combination of starting value and algorithm. Below we show instead the number of

iterations used to reach convergence in the upper panel. ∑
K
k=1αk indicates approximatively the sum of the

parameters to be estimated.
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Figure 2: Time comparison of the algorithms LM, FPI and L-BFGS-B over 100 simulations. Time is

expressed in seconds.

Wicker et al. (2008) are the only ones able to guarantee convergence for all the methods.

The algorithms using the re-parametrization show poor performance, probably due to

the possible lack of concavity and the fact that only the starting values of Wicker et al.

(2008) seem to be often in a neighbourhood of the maximum. However, the price to pay

for the highest stability is the high number of iterations required to reach convergence

for both FPI and LM with γ = 1. NR was instead the fastest method. As expected, see

Section 4.1, LM with γ= 1/K and expLM with with γ= 1/K have a performance close

to those of NR and expNR, respectively.

The efficiency of the algorithms LM, FPI and L-BFGS-B cannot be compared

only looking for differences in the number of iterations because their corresponding

iteration times can be totally different. For these algorithms we therefore implemented

also a comparison on the total time required to reach convergence. The settings for

this simulation were similar to the ones used above with a range for the sum of

the parameters going from 10000 to 30000 with step size of 2000 and a number of

simulations equal to 2000. The results are reported in Figure 2. On average LM requires

only half of the time employed by FPI. L-BFGS-B is clearly much slower than the other

two competitors.
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6. Apple data set

We have seen in the introduction that the Dirichlet distribution has strong independence

properties that are often unrealistic for real data. However, for high-dimensional data

once we focus on a single variable we expect that this is correlated only with a limited

number of the other variables and uncorrelated with the rest. In this case it can be

of interest to see the fit of a simple model as the Dirichlet distribution, that can be

thought of as a raw approximation of the reality. We are going to consider a spike-

in experiment that has been already investigated in the literature with the appropriate

statistical tools. If we make the corresponding data compositional and we investigate

them through the Dirichlet distribution we can judge if there is a discrepancy or an

agreement between what is already known and what we can learn with the Dirichlet

distribution. Since a spike-in experiment is a controlled experiment where we know

the thruth, this comparison can indirectly tell us if the Dirichlet distribution can be

used for high-dimensional data. This is not intended to be a proof to say that the

Dirichlet distribution can safely be used for high-dimensional compositional data. For

a stronger result, comparisons must be done with other distributions. Here we focus on

the computational performance of different algorithms to get the maximum likelihood

estimates and we offer a brief look at the possibilities of using the Dirichlet distribution

to analyse high-dimensional data.

Specifically we apply the previous algorithms to a data set from the field of meta-

bolomics, available in the R package BioMark (Wehrens and Franceschi, 2012). The

data set consists of mass spectrometric measurements on apples and is fully described

in Franceschi et al. (2012). We consider the positive ionization data for the 10 control

samples, and the first group of 10 spiked-in samples. There are 1632 variables in total.

We delete the variables with missing values and normalize the data to give 1 as the sum

of the elements of each unit. This corresponds to have a total intensity for each unit that

is redistributed through the variables. The final data set has 1602 variables. The results

are summarised in Table 1.

For these data, the initialisation of Wicker and co-workers is able to give convergence

in the correct range of the parameters for five methods. In two cases (LM with γ= 1/K,

NR) the result is outside the correct range. The other initialisations fail for expLM

(γ = 1), expLM (γ = 1/K) and expNR. The initialisation based on the method of

moments fails also for LM (γ = 1). L-BFGS-B is not able to reach convergence with

any initialisation method. The only method that is always able to reach convergence in

the correct range is FPI. LM (γ = 1) and LM (γ = 1/K) reach convergence in three

out of four cases, while NR converges in two out of four cases. Using the exponential

parametrization the other methods reach convergence only with the Wicker initialisation,

but in these cases very few iterations are needed.
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Table 1: Number of iterations required for convergence in the Apple data set. We report with a bar the

cases where convergence is not reached or the result is outside the correct range for the parameters.

NR FPI LM LM(γ= 1
K ) L-BFGS-B expNR expLM expLM(γ= 1

K )

moments — 543 — — — — — —

Ronning 30 495 543 32 — — — —

Dishon 21 494 529 23 — — — —

Wicker — 434 447 — — 7 411 8
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Figure 3: Each pair in the figure represents the confidence intervals for control and treatment respectively,

for 22 biomarkers.

While FPI is very stable, it also requires a large number of iterations to reach con-

vergence with each initialisation (mean for the four initialisations = 491.5). The same

is true for LM (γ = 1) where the mean for three initialisations that reach convergence

is 506.3 and for the initialisation with the method of moments we do not have conver-

gence because we reach the maximum number of iteration allowed (1000 in our setting).

However FPI can require a longer time than LM because FPI requires for each iteration a

second inner iterative algorithm. For example, comparing FPI and LM (γ= 1) using the

Wicker initialisation we have an elapsed time of 2.259 and 0.678 seconds respectively.

With Wicker initialisation expLM (γ = 1) requires 411 iterations to reach conver-

gence while expLM (γ = 1/K) requires only 8 steps; similarly expNR requires only
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7 steps. LM (γ = 1/K) and NR also required a low number of iterations when they

reached convergence.

Fitting different Dirichlet distributions to control and treatment data it is possible

to compare them. We report the confidence intervals for 22 biomarkers in Figure 3.

These biomarkers are known to correspond to spike-in compounds (see Franceschi et

al., 2012). Since these confidence intervals are not simultaneous we cannot use them for

identifying ’directly’ statistically significant biomarkers. We use them for ranking these

biomarkers, visualizing the order of magnitude of the differences between control and

treatment. There are several cases where the differences are clear. This is in agreement

with the previous findings in Franceschi et al. (2012).

7. Conclusions

In this paper we have compared the computational performance of eight different algo-

rithms and four different starting value strategies to estimate the Dirichlet distribution

through maximum likelihood. Such a comparison provides indications about the meth-

ods to use in order to analyse high-dimensional compositional data with the Dirichlet

distribution.

The Newton-Raphson algorithm is very fast, but can lead to estimated parameters

outside the allowed region. On the other hand, the FPI algorithm has a slow convergence

but is very stable. The other algorithms have a performance between these two extremes.

To have parameters always in the correct range we considered a re-parametrization

and a box-constraints algorithm, L-BFGS-B. The re-parametrization allows us to have

parameters always in the correct range but possibly loses the characteristic of being a

concave function. This means that good convergence is assured only in a neighbourhood

of the maximum and that convergence cannot be guaranteed. In practice from our study

we can see that the re-parametrization is useful only if coupled with the initialisation

method of Wicker et al. (2008). L-BFGS-B is more stable than the re-parametrization

but less than FPI and moreover its iteration time is huge.

The proposed modifications to the Levenberg-Marquardt algorithm consider a pru-

dent step compared to the Newton-Raphson algorithm and therefore can offer a good

trade-off between speed and stability. Newton-Raphson and the proposed algorithms

have local convergence characteristics and therefore the starting values are very impor-

tant even if the function to be optimized is concave. These features are particularly rel-

evant in a high-dimensional setting where the number of parameters largely exceed the

number of units. From the simulations and the real study only the Wicker et al. (2008)

approach seems able to provide convergence for high-dimensional data.

Considering both simulations and the real data example the combination of the

Levenberg-Marquardt methods or fixed point iteration method with the starting values of

Wicker appear to be the most promising. However, the Levenberg-Marquardt methods

leave room for improvements. In this paper we have been able to prove convergence
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properties for a fixed damping parameter γ. If this parameter can be made adaptive, as

in the original Levenberg-Marquardt algorithm, it is not unreasonable to expect a higher

stability and a lower mean number of iterations for convergence.

Appendix

In what follows the notation refers to the quantities previously introduced in the paper.

Lemma 1 At the point of maximum, x̂, the differential of the iteration map (26) is given

by

dM(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂).

Proof. We treat γ as a positive constant, but the proof holds even if γ is a positive

function that does not depend on x.

Let us denote by G(x) the matrix {H(x)+γdiagH(x)}−1
. We know from Section

4 that G(x) is well defined for every x in the original parametrization and at least in a

neighbourhood of the maximum for the re-parametrization. For such cases the elements

of G(x)∇ f (x) can be written as ∑ j gi j(x)∇ f j(x). To prove the lemma we have to show

that the partial derivatives of this expression are well defined. Using the product rule it is

patent that the difficult part is to prove that the partial derivatives of the elements gi j(x)

are well defined. If we are able to prove that the li j and the elements of the diagonal

matrix D are derivable it follows that also the gi j are derivable and therefore the lemma

easily follows. Using standard rules for derivation we see that these terms are derivable

if the trigamma function is derivable. For positive reals the trigamma function can be

expressed as a positive series dominated by ∑n−2. Therefore by the Weierstrass M-test

there is uniform convergence and the trigamma function is derivable. Moreover, the

series form assures that the trigamma function is strictly decreasing for positive reals.

We can summarize the results in matrix form. At the point of maximum ∇ f (x̂) = 0

and therefore we get dM(x̂) = I−G(x̂)H(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂).

Theorem 1 The proposed Levenberg-Marquardt algorithms based upon equations (24)

and (25) are locally attracted to the maximum x̂ at a linear rate equal to the spectral

radius of

I−{H(x̂)+γdiagH(x̂)}−1
H(x̂)

or at a better rate.

Proof. The point of maximum for f (x) is a fixed point for M(x). According to Propo-

sition 15.3.1 in Lange (2010), it suffices to show that all eigenvalues of the differential
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dM(x̂) lie on the open interval (0,1). By Lemma 1 the following equalities hold:

dM(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂)

= {H(x̂)+γdiagH(x̂)}−1 {H(x̂)+γdiagH(x̂)−H(x̂)}

= {H(x̂)+γdiagH(x̂)}−1 {γdiagH(x̂)} .

The maximum and minimum eigenvalues of dM(x̂) are determined by the maximum

and minimum values of the Rayleigh quotient (v 6= 0):

R(v) =
vT [γdiagH(x̂)]v

vT [H(x̂)+γdiagH(x̂)]v

= 1− vTH(x̂)v

vT [H(x̂)+γdiagH(x̂)]v
.

If the quantities H(x̂) and γdiagH(x̂) are definite negative then also H(x̂)+γdiagH(x̂)

is definite negative and it follows that 0 < R(v)< 1.

For the original parametrization we can show that γdiagH(x) is always definite

negative. We use the parametric form of H for the Dirichlet distribution. We have

vTγdiagH(x)v = γ∑v2
i hii where hii = N(Ψ′(∑α j)−Ψ′(αi)).We have seen that for pos-

itive reals the trigamma function is strictly decreasing and therefore hii < 0. Therefore

vTγdiagH(x)v < 0. Being f (·) concave H is semi-definite negative, but H is also invert-

ible and therefore is definite negative.

For the re-parametrization we cannot assure that the Hessian matrix is negative

definite for every x. However, to apply Proposition 15.3.1 in Lange (2010) we need

only to prove that this is true at x̂. For the diagonal matrix we observe that:

[λdiagH(x̂)]kk = λqkk +λexp(2βk)NΨ′
(

∑
k

exp(βk)

)

(37)

= λN [∇ f (β)]k (38)

+λexp(2βk)N

[

Ψ′(∑
k

exp(βk))−Ψ′(exp(βk))

]

. (39)

By the properties of the trigamma function Ψ′(∑k exp(βk))− Ψ′(exp(βk)) < 0 and

therefore at x̂ the matrix λdiagH is negative definite. Moreover at x̂ the Hessian of

the re-parametrization is semi-definite negative and invertible and therefore is definite

negative.
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The exponentiated discrete Weibull distribution
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Abstract

In this paper, the exponentiated discrete Weibull distribution is introduced. This new generalization

of the discrete Weibull distribution can also be considered as a discrete analog of the exponenti-

ated Weibull distribution. A special case of this exponentiated discrete Weibull distribution defines

a new generalization of the discrete Rayleigh distribution for the first time in the literature. In ad-

dition, discrete generalized exponential and geometric distributions are some special sub-models

of the new distribution. Here, some basic distributional properties, moments, and order statistics

of this new discrete distribution are studied. We will see that the hazard rate function can be in-

creasing, decreasing, bathtub, and upside-down bathtub shaped. Estimation of the parameters is

illustrated using the maximum likelihood method. The model with a real data set is also examined.

MSC: 60E05, 62E10

Keywords: Discrete generalized exponential distribution, exponentiated discrete Weibull distribu-

tion, exponentiated Weibull distribution, geometric distribution, infinite divisibility, order statistics,

resilience parameter family, stress-strength parameter.

1. Introduction

It is sometimes impossible or inconvenient to measure the life length of a device on a

continuous scale. In practice, we come across situations where lifetimes are recorded on

a discrete scale. For example, on/off switching devices, bulb of photocopier machine,

to and fro motion of spring devices, etc. (cf. Krishna and Singh, 2009) are some typical

situations.

The failure rate function of an object, when the failures are reported on a discrete

scale, may be bathtub-shaped or unimodal. Jiang (2010) investigated some discrete dis-
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tributions and used the exponentiated Poisson distribution and the two-fold competing

risk model exhibiting bathtub-shaped or increasing failure rate functions to introduce

a model for bus-motor failure data. Nooghabi et al. (2011) introduced the discrete

modified Weibull distribution with increasing and bathtub-shaped failure rate function.

However, in application areas, the absence of a suitable discrete model whose hazard

rate function covers and contains different possible shapes, i.e., bathtub-shaped, upside-

down bathtub and monotonically increasing and decreasing, is perceived. On the other

hand, the traditional discrete distributions have limited applicability as models for

reliability, failure times, counts, etc.

In the last two decades some papers dealing with discrete distributions obtained

by discretizing a continuous distribution have appeared in the literature. Lisman and

van Zuylen (1972) proposed and Kemp (1997) studied the discrete normal distribu-

tion which is characterized by maximum entropy for specified mean and variance; see

also Dasgupta (1993) and Szablowski (2001). Roy (2003) introduced another discrete

analog of normal distribution. Kemp (2008) also considered the discrete half-normal

distribution as a maximum entropy distribution for given mean and variance. Inusah

and Kozubowski (2006) and Kozubowski and Inusah (2006) introduced Laplace and

skew-Laplace distributions on the lattice of integers, respectively. Barbiero (2014) con-

sidered an alternative discrete skew Laplace distribution. Krishna and Pundir (2007)

introduced the discrete Maxwell distribution. Krishna and Pundir (2009) introduced

the discrete Burr distribution and studied a special case of the distribution which led

to perform the discrete Pareto distribution. Jazi et al. (2010) studied the discrete in-

verse Weibull distribution and proposed some important properties of their discrete

model. Gómez-Déniz (2010) obtained a generalization of the geometric distribution

from a member of the Marshall and Olkin (1997) family of distributions. Gómez-Déniz

and Calderin-Ojeda (2011) considered the discrete Lindley distribution and investigated

some properties and applications of the model. Chakraborty and Chakravarty (2012)

studied discrete gamma distributions and discussed estimation of the parameters. In

addition, Chakraborty (2013) introduced a new discrete distribution related to gener-

alized gamma distribution. Chakraborty and Chakravarty (2013) introduced a new dis-

crete probability distribution on the lattice of integers. Nekoukhou et al. (2013a) stud-

ied the discrete beta exponential (DBE) distribution and illustrated that the hazard rate

function of this discrete analogue of the beta exponential distribution of Nadarajah and

Kotz (2006) is monotone. Moreover, Hussain and Ahmad (2014) and Chakraborty and

Chakravarty (2014) introduced the discrete inverse Rayleigh and discrete Gumbel dis-

tributions, respectively.

Recently, Nekoukhou et al. (2012) and (2013b) introduced two different discrete

counterparts of the well-known two-parameter generalized exponential (GE) distribu-

tion of Gupta and Kundu (1999, 2001 and 2007). The probability mass functions (pmfs)

of these distributions are

px = f (x; p,γ) = cpx−1(1− px)γ−1, x ∈ N= {1,2,3, . . .}, (1)
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where c is the norming constant, and

px = f (x; p,γ) = (1− px+1)γ− (1− px)γ, x ∈ N0 = {0,1,2, . . .}, (2)

respectively. Nekoukhou et al. (2012) and (2013b) introduced these discrete analogues

by using relations

px =
f (x)

∑
∞
x=1 f (x)

, x ∈ N (3)

and

px = S(x)−S(x+1), x ∈ N0, (4)

respectively, where f (.) and S(.) are the probability density function (pdf) and survival

function of the GE distribution. Discrete generalized exponential (DGE) distribution and

discrete generalized exponential distribution of a second type (DGE2) are introduced in

the literature via Eq.’s (1) and (2), respectively. The last authors denoted these two-

parameter discrete distributions by DGE(γ, p) and DGE2(γ, p). Eq. (2) yields that the

cumulative distribution function (cdf) of the DGE2(γ, p) distribution is given by

F(x; p,γ) = (1− p[x]+1)γ, x ≥ 0. (5)

It is interesting to note that the above cdf coincides with the exponentiated geometric

distribution which was mentioned in Jiang (2010), and investigated by Chakraborty and

Gupta (2012).

In this paper we will introduce the exponentiated discrete Weibull (EDW) distribu-

tion, which is really a generalization of the discrete Weibull (DW) distribution of Naka-

gawa and Osaki (1975) and also DGE2 distribution, and illustrate its important features

and properties. The failure rate function of the new model is found to be bathtub-shaped,

unimodal and also increasing and decreasing. In the application section we will see that

the new model provides a satisfactory fit and that is competitive with traditional and

also newly developed discrete models. The new discrete distribution also contains a

generalization of the discrete Rayleigh distribution of Roy (2004) which has not been

introduced in the literature yet.

The paper is organized as follows. Section 2 introduces the three-parameter EDW

distribution and discusses some of its important features and properties such as cumu-

lative distribution and hazard rate functions, moments, infinite divisibility and the order

statistics. In Section 3, the researchers will consider the maximum likelihood method

to estimate the parameters of EDW distribution. In addition, in this section, estimation

of the stress-strength parameter is discussed. Section 4 describes fitting of the proposed

model to a real data set. Finally, in Section 5 some concluding remarks are given.
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2. Three-parameter EDW distribution

When the cdf of the DW distribution, denoted by DW (p,α), of Nakagawa and Osaki

(1975), i.e.,

G(x; p,α) = 1− p([x]+1)α , x ≥ 0, (6)

where 0 < p < 1 and α > 0 are the model parameters, is inserted into the resilience

parameter family of distributions, the cdf of the resulting discrete distribution is given

by

F(x; p,α,γ) = {1− p([x]+1)α}γ, x ≥ 0 (7)

in which γ> 0 is the resilience parameter.

We call such a random variable X , with cdf (7), an exponentiated discrete Weibull

distribution with parameters 0 < p < 1, α> 0 and γ> 0 and denote it by EDW (p,α,γ).

It is evident that when γ> 0 is an integer value, the cdf given by (7) agrees with the

cdf of the maximum of γ independent and identical DW (p,α) random variables.

2.1. Probability mass, survival and hazard rate functions

The corresponding pmf of a random variable X following an EDW (p,α,γ) distribution

for x ∈ N0 is given by

px = P(X = x) = f (x; p,α,γ) = {1− p(x+1)α}γ−{1− pxα}γ (8)

=
∞

∑
j=1

(−1) j+1

(

γ

j

)

{p jxα− p j(x+1)α}, (9)

where
(

γ
j

)

= Γ(γ+1)
Γ(γ+1− j) j!

. For integer γ> 0, the sum in Eq. (9) stops at γ.

Nekoukhou et al. (2013b) indicated that ∑
∞
j=1(−1) j+1

(

γ
j

)

= 1. Hence, if 0 < γ < 1

the pmf (9) can be viewed as an infinite mixture of DW (p j,α) distributions, j = 1,2, . . .

It is interesting to note that the EDW distribution with pmf (8) or (9) may also

be viewed as a discrete analog of the exponentiated Weibull (EW) distribution of

Mudholkar and Srivastava (1993) via Eq. (4) and doing reparametrization 0 < e−β
α
=

p < 1 in the structure of EW distribution.

Nassar and Eissa (2003) obtained expressions for the mode of the EW pdf. They

stated that EW distribution is monotone decreasing for αγ ≤ 1 and for αγ > 1, it is

unimodal. Naturally, it follows that EDW (p,α,γ) distributions are also unimodal for all

values of parameters. Figure 1 illustrates the pmf of an EDW (p,α,γ) distribution for

different values of parameters.
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Figure 1: Illustrations of the pmf of EDW (p,α,γ) for possible values of p, α and γ.

The survival and hazard rate functions of EDW (p,α,γ) distribution are given by

S(x; p,α,γ) = 1−{1− p([x]+1)α}γ, x ≥ 0 (10)

and

h(x; p,α,γ) =
{1− p(x+1)α}γ−{1− pxα}γ

1−{1− p(x+1)α}γ , x ∈ N0, (11)

respectively.

Discrete hazard rates arise in several common situations in reliability theory where

clock time is not the best scale on which to describe lifetime. For example, in weapons

reliability, the number of rounds fired until failure is more important than age in failure.

This is the case also when a piece of equipment operates in cycles and the observation is

the number of cycles successfully completed prior to failure. In other situations a device

is monitored only once per time period and the observation then is the number of time

periods successfully completed prior to the failure of the device (cf. Shaked et al., 1995).

Figure 2 illustrates the hazard rate function of EDW (p,α,γ) distribution for different

values of p, α and γ. As we see from the figure, a characteristic of the EDW distribution

is that its hazard rate function can be decreasing, increasing, bathtub-shaped, and upside-

down bathtub depending on its parameters values. Hence, EDW distributions are more

flexible than other discrete distributions such as the geometric, DGE, DGE2 and DBE

distributions, whose hazard rate functions are constant and monotone.
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Figure 2: Illustrations of the hazard rate function of EDW (p,α,γ) for possible values of p, α and γ.

2.2. Special sub-models

Some special discrete distributions are achieved from EDW distribution as follows:

(1) Discrete Weibull distribution of Nakagawa and Osaki (1975), with pmf

px = (1− p(x+1)α)− (1− pxα), (12)

is obtained when γ= 1. If, in addition,α= 1, the geometric distribution is achieved.

The discrete Weibull distribution is used for estimation of replicative senescence

via population dynamics models (Wein and Wu, 2001), stress-strength reliability

(Roy, 2002), evaluation of reliability of complex systems (Roy, 2002), wafer probe

operation in semiconductor manufacturing (e.g., Wang, 2009), minimal availabil-

ity variation design of repairable systems (e.g., Wang et al., 2010) and microbial

counts in water (Englehardt and Li, 2011). Since the EDW distribution is an ex-

tension of DW distribution, one may expect from EDW model to be more flexible

in such application areas.

(2) If α = 1, then the discrete generalized exponential distribution of a second type

(DGE2(γ, p)) of Nekoukhou et al. (2013b) with pmf given by Eq. (2) is obtained.

If, in addition, γ = 1, the geometric distribution will be obtained again from a

different point of view.
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(3) If α= 2, then the pmf of EDW (p,α,γ) distribution reduces to

px = f (x; p,γ) = {1− p(x+1)2}γ−{1− px2}γ (13)

=
∞

∑
j=1

(−1) j+1

(

γ

j

)

p jx2

(1− p j(2x+1)), (14)

which defines a generalized discrete Rayleigh distribution GDR(γ, p) for the first

time in the literature. Moreover, for γ = 1 in Eq. (13) the discrete Rayleigh (DR)

distribution of Roy (2004) is obtained.

2.3. Quantiles, mean and variance

The m-th quantile of an EDW distribution is obtained by solving the equation

F(qm; p,α,γ) = m,

where F(.) is the cdf of an EDW (p,α,γ) distribution and qm denotes the corresponding

quantile function which is given by

qm =

{

log(1−m)1/γ

log p

}1/α

−1. (15)

Particularly, the median is immediately achieved by setting m = 0.5 in the above

equation.

The mean and variance of a random variable X following an EDW (p,α,γ) distribu-

tion are given, respectively, by

E(X) =
∞

∑
j=1

(

γ

j

)

(−1) j+1 pα j

1− pα j
(16)

and

Var(X) = 2
∞

∑
j=1

(

γ

j

)

(−1) j+1 pα j

(1− pα j)2
+E(X)−{E(X)}2. (17)

Remark 2.1 For an integer value of γ > 0, ∑
∞
j=1 should be replaced by ∑

γ
j=1 in the

above equations.
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Remark 2.2 For α= 1, Eq. (16) reduces to

E(X) =
∞

∑
j=1

(

γ

j

)

(−1) j+1 p j

1− p j
, (18)

which is the mean of the DGE2(γ, p) distribution obtained by Nekoukhou et al. (2013b).

In addition, in this case, it is easy to show that the variance of an EDW distribution

reduces to the variance of a DGE2 distribution.

The mean and variance of an EDW (p,α,γ) distribution for different values of p,

α and γ, using Eq.’s (16) and (17), are calculated in Table 1 below. It appears that

depending on the values of the parameters, the mean of the distribution can be smaller

or greater than its variance. Hence, EDW models are appropriate for modeling both over

and under dispersed data since, in these models, the variance can be larger or smaller

than the mean which is not the case with some standard classical discrete distributions.

Table 1: Mean (Variance) of EDW (p,α,γ) for different values of p, α and γ.

γ= 0.50

α/p 0.25 0.5 0.75

0.50 0.3938 (2.6970) 2.0105 (46.7602) 12.7288 (1517.5424)

0.75 0.2253 (0.5441) 0.8322 (3.9644) 3.2749 (44.2522)

1.00 0.1761 (0.2573) 0.5546 (1.2777) 1.7437 (8.2081)

2.00 0.1359 (0.1213) 0.3256 (0.2856) 0.7168 (0.7357)

3.50 0.1339 (0.1160) 0.2930 (0.2075) 0.5194 (0.2885)

γ= 1.00

α/p 0.25 0.5 0.75

0.50 0.7598 (5.0596) 3.7882 (85.6990) 23.5837 (2743.1543)

0.75 0.4296 (0.9364) 1.5272 (6.6530) 5.8068 (71.5589)

1.00 0.3333 (0.4444) 1.0000 (1.9999) 2.9999 (11.9999)

2.00 0.2539 (0.1972) 0.5644 (0.3787) 1.1522 (0.8241)

3.50 0.2500 (0.1875) 0.5003 (0.2507) 0.7885 (0.2439)

γ= 3.00

α/p 0.25 0.5 0.75

0.50 2.0009 (12.1856) 9.3360 (197.0330) 56.1430 (6147.2083)

0.75 1.0828 (1.8981) 3.4610 (11.9090) 12.2932 (123.5352)

1.00 0.8158 (0.7907) 2.1428 (2.9251) 5.8725 (16.5319)

2.00 0.5898 (0.2653) 1.0569 (0.3155) 1.9058 (0.6676)

3.50 0.5781 (0.2438) 0.8761 (0.1108) 1.0957 (0.1178)

Remark 2.3 Remember that a random variable X with cdf G is stochastically smaller

than Y with cdf F , denoted by X ≤st Y , if for all x, G(x)≥ F(x). This is the most basic

and oldest stochastic order in Probability and Statistics. In this case, if G is simpler than

F , G(x) may provide a useful lower bound for F(x) (see, e.g., Shaked and Shanthikumar
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(2007) for more details). Now, let G and F denote the cdfs of the DW and EDW

distributions which are defined via Eq.’s (6) and (7), respectively. It is obvious that for

γ> 1, we have X ≤st Y because [G(x)]γ ≤ G(x) and if 0 < γ< 1, it follows that X ≥st Y .

Hence, For γ ≥ 1 it follows that E(X) ≤ E(Y ) and corresponding result holds if X is

stochastically larger than Y . One can consider the results of Table 1 again.

2.4. Infinite divisibility

The researchers here make the following note in regards to the famous structural

property of infinite divisibility of the distribution in question. Such a characteristic has

a close relation to the Central Limit Theorem and waiting time distributions. Thus, it

is a desirable question in modeling to know whether a given distribution is infinitely

divisible or not. To settle this question, we recall that according to Steutel and van Harn

(2004, pp. 56), if px, x ∈N0, is infinitely divisible, then px ≤ e−1 for all x ∈N. However,

e.g., in an EDW (0.9,3,1) distribution we see that p2 = 0.372 > e−1 = 0.367. Therefore,

in general, EDW (p,α,γ) distributions are not infinitely divisible. In addition, since the

classes of self-decomposable and stable distributions, in their discrete concepts, are

subclasses of infinitely divisible distributions, we conclude that an EDW distribution

can be neither self-decomposable nor stable in general.

2.5. Order statistics

Order statistics are among the most fundamental tools in non-parametric statistics and

inference. They enter the problems of estimation and hypothesis testing in a variety of

ways. The aim of the present section is to establish some general relations regarding the

EDW distributions. More precisely, let Fi(x; p,α,γ) and fi(x; p,α,γ) be the cdf and pmf

of the i-th order statistic of a random sample of size n from EDW (p,α,γ) distribution.

Since,

Fi(x; p,α,γ) =
n

∑
k=i

(

n

k

)

[F(x; p,α,γ)]k[1−F(x; p,α,γ)]n−k, (19)

using the binomial expansion for [1−F(x; p,α,γ)]n−k, we obtain the following result:

Fi(x; p,α,γ) =
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j[F(x; p,α,γ)]k+ j

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j[{1− p([x]+1)α}γ]k+ j

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) jFEDW (x; p,α,γ(k+ j)), (20)
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where FEDW denotes the cdf of an EDW distribution. The corresponding pmf of the i-th

order statistic, fi(x; p,α,γ) = Fi(x; p,α,γ)−Fi(x− 1; p,α,γ) for an integer value of x,

then is given by

fi(x; p,α,γ) =
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j fEDW (x; p,α,γ(k+ j)), (21)

where fEDW denotes the pmf of an EDW distribution.

Remark 2.4 In view of the fact that fi(x; p,α,γ) is a linear combination of a finite

number of EDW (p,α,γ(k+ j)) distributions, we may obtain some properties of order

statistics, such as their moments, from the corresponding EDW distribution. For exam-

ple, the mean of the i-th order statistic is given by

µi:n =
∞

∑
t=1

n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)(

γ(k+ j)

t

)

(−1) j+t+1 pαt

1− pαt
. (22)

3. Estimation

To apply the method of maximum likelihood for estimating the parameter vector

θθθ = (p,α,γ)T of EDW distribution, assume that x = (x1,x2, ...,xn)
T is a random sample

of size n from an EDW (p,α,γ) distribution. The log-likelihood function becomes

ℓ=
n

∑
i=1

log[(1− p(xi+1)α)γ− (1− pxαi )γ]. (23)

Hence, the likelihood equations are

∂ℓ

∂ p
=

n

∑
i=1

vα,γ(xi +1)− vα,γ(xi)

mα,γ(xi)
, (24)

∂ℓ

∂α
=

n

∑
i=1

γ log p[uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)]

mα,γ(xi)
(25)

and

∂ℓ

∂γ
=

n

∑
i=1

γ[uα,γ(xi)−uα,γ(xi +1)]

pmα,γ(xi)
, (26)
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where

mα,γ(x) = {1− p(x+1)α}γ−{1− pxα}γ,

vα,γ(x) = (1− pxα)γ log(1− pxα)

and

uα,γ(x) = (1− pxα)γ−1 pxαxα.

The solutions of likelihood equations (24)-(26) provide the maximum likelihood

estimators (MLEs) of θθθ = (p,α,γ)T, say θ̂θθ = (p̂, α̂, γ̂)T, which can be obtained by a

numerical method such as the three variable Newton-Raphson type procedure.

For interval estimation and hypothesis tests on the model parameters, we require the

information matrix. The 3×3 observed information matrix is

In(θ̂θθ ) =





















− ∂ 2ℓ

∂ p2
− ∂ 2ℓ

∂ p∂α
− ∂ 2ℓ

∂ p∂γ

− ∂ 2ℓ

∂α∂ p
− ∂ 2ℓ

∂α2
− ∂ 2ℓ

∂α∂γ

− ∂ 2ℓ

∂γ∂ p
− ∂ 2ℓ

∂γ∂α
− ∂ 2ℓ

∂γ2





















, (27)

whose elements are given in the Appendix.

One can show that the EDW family satisfies the regularity conditions which are ful-

filled for parameters in the interior of the parameter space but not on the boundary (see,

e.g., Cox and Hinkley, 1974). Hence, the MLE vector θ̂θθ is consistent and asymptoti-

cally normal. That is, I
1
2

n (θθθ )(θ̂θθ −θθθ) converges in distribution to trivariate normal with

the (vector) mean zero and the identity covariance matrix.

One can use the normal distribution of θ̂θθ to construct approximate confidence regions

for some parameters. Indeed, an asymptotic 100(1− ξ) confidence interval for each

parameter θi, is given by

(θ̂i − zξ/2

√

Ĵii, θ̂i + zξ/2

√

Ĵii), i = 1,2,3,

where Ĵii denotes the (i, i) diagonal element of I−1
n (θ̂θθ) and zξ/2 is the (1 − ξ/2)-th

quantile of the standard normal distribution.
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3.1. Simulation study

Let X be a random variable that follows an EW distribution with cdf

F(x;α,β ,γ) = {1− e−(βx)α}γ, x > 0,

where α > 0, β > 0 and γ > 0 (two shapes and one scale) are the model parameters. It

is easy to show that [X ] has an EDW (p,α,γ) distribution in which 0 < p = e−β
α
< 1.

Therefore, we can simulate an EDW random variable from the corresponding contin-

uous EW distribution. Table 2 below presents the maximum likelihood estimates of

θθθ = (p,α,γ)T of an EDW distribution and also contains their standard errors for differ-

ent values of n as a simulation study. Standard errors are attained by means of the asymp-

totic covariance matrix of the MLEs of EDW parameters when the Newton-Raphson

procedure converges in, e.g., MATLAB software.

Table 2: MLEs of EDW parameters for different values of n.

n α̂( ˆSE(α̂)) γ̂( ˆSE(γ̂)) p̂( ˆSE(p̂)) α̂( ˆSE(α̂)) γ̂( ˆSE(γ̂)) p̂( ˆSE(p̂))

(α,γ) (0.5,0.75) (0.75,0.5)

p 0.25 0.75

40 0.525(0.563) 1.113(2.987) 0.221(0.657) 0.822(0.427) 0.591(0.431) 0.784(0.322)

100 0.492(0.477) 0.984(2.764) 0.213(0.527) 0.812(0.396) 0.442(0.393) 0.753(0.297)

200 0.511(0.323) 0.788(1.347) 0.288(0.410) 0.730(0.268) 0.551(0.379) 0.719(0.237)

500 0.501(0.242) 0.792(1.099) 0.217(0.264) 0.745(0.158) 0.526(0.204) 0.751(0.129)

1000 0.568(0.175) 0.799(0.675) 0.257(0.185) 0.743(0.108) 0.534(0.144) 0.745(0.090)

(α,γ) (2,3) (3,2)

p 0.5 0.9

40 2.197(1.083) 2.536(2.931) 0.542(0.410) 2.857(1.453) 1.903(1.879) 0.927(0.194)

100 2.077(0.951) 2.656(2.652) 0.564(0.349) 2.912(1.197) 1.872(1.542) 0.897(0.156)

200 1.904(0.663) 2.941(2.352) 0.494(0.289) 2.937(0.818) 2.022(1.163) 0.888(0.113)

500 1.915(0.465) 3.290(1.880) 0.462(0.187) 3.153(0.605) 1.980(0.781) 0.914(0.065)

1000 2.004(0.321) 2.950(1.068) 0.511(0.124) 2.918(0.306) 1.981(0.427) 0.895(0.041)

(α,γ) (1,1) (1.5,0.5)

p 0.5 0.95

40 1.202(0.996) 1.183(1.210) 0.717(0.712) 1.139(0.611) 0.733(0.693) 0.896(0.206)

100 1.278(0.723) 0.864(1.005) 0.601(0.416) 1.257(0.436) 0.808(0.494) 0.867(0.150)

200 0.933(0.363) 0.974(0.850) 0.488(0.293) 1.443(0.393) 0.471(0.198) 0.947(0.060)

500 0.982(0.230) 1.043(0.553) 0.484(0.177) 1.521(0.233) 0.522(0.125) 0.957(0.023)

1000 1.058(0.172) 0.909(0.318) 0.542(0.122) 1.507(0.177) 0.481(0.087) 0.955(0.012)
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3.2. Stress-strength parameter

The stress-strength parameter R = P(X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified common

distribution has been discussed widely in the literature. Suppose that the random variable

X is the strength of a component which is subjected to a random stress Y . Estimation of

R when X and Y are independent and identically distributed following a well-known

distribution has been considered in the literature. Many applications of the stress-

strength model, for its own nature, are related to engineering or military problems. There

are also natural applications in Medicine or Psychology, which involve the comparison

of two random variables, representing for example the effect of a specific drug or

treatment administered to two groups, control and test. Almost all of these studies

consider continuous distributions for X and Y , because many practical applications of

the stress-strength model in engineering fields presuppose continuous quantitative data.

A complete review is available in Kotz et al. (2003). However, in this regard, a relatively

small amount of work is devoted to discrete or categorical data. Data may be discrete by

nature. For example, the stress pattern in a step-stress accelerated life test can be treated

as a discrete random variable of which the possible values can be obtained from all stress

levels, and the corresponding probabilities can be obtained from the acting times of each

stress levels. Moreover, the stress state of a component can be categorized based on the

characteristic of external loads. For instance, the stress state of a mechanical component

can be simply classified as state 1, state 2 and state 3, which correspond to low load,

moderate load and heavy load, respectively. More generally, according to the change of

external loads, the stress of a component can be categorized into arbitrary finite state:

state 1, state 2, . . . , state m.

The stress-strength parameter, in discrete case, is defined as

R = P(X > Y ) =
∞

∑
x=0

fX(x)FY (x),

where fX and FY denote the pmf and cdf of the independent discrete random variables

X and Y , respectively. Now, let X ∼ EDW (θθθ1) and Y ∼ EDW (θθθ2), where θθθ1 =

(p1,α1,γ1)
T and θθθ2 = (p2,α2,γ2)

T. Using Equations (7) and (8), we obtain

R =
∞

∑
x=0

[{1− p
(x+1)α1

1 }γ1 −{1− pxα1

1 }γ1 ]{1− p
(x+1)α2

2 }γ2 .

Using the binomial expansion, it is easy to show that

R =
∞

∑
j=1

∞

∑
t=1

∞

∑
x=0

(−1) j+t+1

(

γ1

j

)(

γ2

t

)

p
t(x+1)α2

2 {p
jxα1

1 − p
j(x+1)α1

1 }. (28)
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Now, assume that x1,x2, . . . ,xn and y1,y2, . . . ,ym are independent observations from

X ∼ EDW (θθθ1) and Y ∼ EDW (θθθ2), respectively. The total likelihood function is

ℓR(θθθ
∗) = ℓn(θθθ1)ℓm(θθθ2), where θθθ

∗ = (θθθ1,θθθ2). The score vector is given by

UR(θθθ
∗) = (∂ℓR/∂ p1,∂ℓR/∂α1,∂ℓR/∂γ1,∂ℓR/∂ p2,∂ℓR/∂α2,∂ℓR/∂γ2),

and the MLE of θθθ
∗

, say θ̂θθ
∗

, may be attained from the nonlinear equation UR(θ̂θθ
∗

) = 0.

Thus, by inserting the MLEs in equation (28) the stress-strength parameter R will be

estimated.

4. Application

In this section, the EDW model will be examined for a real data set which is given by

Karlis and Xekalaki (2001) on the numbers of fires in Greece for the period from 1 July

1998 to 31 August of the same year. This data set consists of 123 observation and are

presented in Table 3. Only fires in forest districts are considered. Bakouch et al. (2014)

considered these data to indicate the potentiality of discrete Lindley (DL) distribution

in data modeling and compared it with Poisson, geometric and discrete gamma (DG)

distributions. The pmf of the DG distribution, which has been used first by Yang (1994)

and recently considered by Chakraborty and Chakravarty (2012), for x ∈N0, is given by

px =
γ(α,β(x+1))−γ(α,βx)

Γ(α)
, α> 0, β > 0,

where γ(a,x) =
∫ x

0 ta−1e−tdt denotes the incomplete gamma function. Additionally, the

pmf of the DL distribution for x ∈ N0 is given by

px =
px

1+θ
{θ (1−2p)+(1− p)(1+θx)}, 0 < p < 1, θ > 0.

Here, we compare the EDW and GDR models with these discrete distributions. In

addition, because of the over dispersion phenomena in the data set, x = 5.3984 and

s2 = 30.0449, the negative binomial (NB) distribution is also compared with the others.

Maximum likelihood method is used to obtain the estimates of the parameters of the

proposed new distributions (EDW and GDR). Comparing the EDW model with its rival

models is performed by using the Akaike information criterion (AIC) and Kolmogrov-

Smirnov (K-S) test statistic. Table 4 indicates the MLEs, AICs and the values of the K-S

test statistics determined by the fitted models. The MLEs and K-S test statistic values of

the DL and DG distributions, given in this table, are directly reported from Table 7 of

Bakouch et al. (2014).
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Table 3: Numbers of fires in Greece.

Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43

Frequency 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

Table 4: Summary.

Models MLEs AIC K-S statistic

EDW (α̂, γ̂, p̂) = (1.0809,1.0923,0.8599) 685.5859 0.1254

GDR (γ̂, p̂) = (0.3934,0.9924) 694.6178 0.1467

DGE2 (γ̂, p̂) = (1.2548,0.8225) 683.7049 0.1301

NB (r̂, p̂) = (1.3360,0.1984) 683.2989 0.3350

DL (θ̂ , p̂) = (0.3090,0.7343) 685.8067 0.1122

DG (α̂, β̂) = (0.7525,0.1543) 749.7162 0.2683

According to the values of the K-S test statistics and AICs in Table 4, it seems that

EDW model gives a satisfactory fit to this real data set.

To construct approximate confidence intervals for the parameters of EDW model

and also for evaluating accuracy of the estimated parameters, we use the corresponding

estimated standard errors. For instance, 95% asymptotic confidence intervals for EDW

parameters are obtained as α ∈ (1.081 ∓ 0.4531), γ ∈ (1.0923 ∓ 0.8554) and p ∈
(0.8599∓0.1895).

5. Conclusions and comments

In this paper, a new three-parameter generalization of the discrete Weibull distribution is

proposed, so-called exponentiated discrete Weibull (EDW) distribution which is, indeed,

a member of resilience parameter family of distributions. The hazard rate function of

the new model can be increasing, decreasing, upside-down bathtub and also bathtub-

shaped and hence presents a very flexible behavior. Fitting the EDW model to a real data

set indicates the flexibility and capacity of the proposed distribution in data modeling.

In addition, a special sub-model of EDW distribution, i.e., the generalized discrete

Rayleigh distribution is introduced for the first time in the literature.
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Appendix

The elements of the 3×3 information matrix in Eq. (27) are given by

∂ 2ℓ

∂ p2
=

n

∑
i=1

{ γ

p2mα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α

−uα,γ(xi +1)[(xi +1)α−1]

− (γ−1)uα,γ−1(xi)pxαi xαi +uα,γ(xi)(x
α
i −1) }− γ

2[uα,γ(xi)−uα,γ(xi +1)]2

p2m2
α,γ(xi)

},

∂ 2ℓ

∂α2
=

n

∑
i=1

{ γ

mα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α log2(xi +1) log2 p

− (γ−1)uα,γ−1(xi)pxαi xαi log2 xi log2 p+uα,γ(xi) log2 xi log p[xαi log p+1]

−uα,γ(xi +1) log2(xi +1) log p[(xi +1)α log p+1] }

− {γ log p[uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)]}2

m2
α,γ(xi)

},

∂ 2ℓ

∂γ2
=

n

∑
i=1

{vα,γ(xi +1) log(1− p(xi+1)α)− vα,γ(xi) log(1− pxαi )

mα,γ(xi)

− {vα,γ(xi +1)− vα,γ(xi)}2

m2
α,γ(xi)

},

∂ 2ℓ

∂ p∂α
=

n

∑
i=1

{ γ

pmα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α log(xi +1) log p

− (γ−1)uα,γ−1(xi)pxαi xαi logxi log p+uα,γ(xi) logxi[x
α
i log p+1]

−uα,γ(xi +1) log(xi +1)[(xi +1)α log p+1] }

− γ2 log p

pm2
α,γ(xi)

{[uα,γ(xi) logxi −uα,γ(xi) log(xi +1)][uα,γ(xi)−uα,γ(xi +1)]}},

∂ 2ℓ

∂ p∂γ
=

n

∑
i=1

{uα,γ(xi)[γ log(1− pxαi )+1]−uα,γ(xi +1)[γ log(1− p(xi+1)α)+1]

pmα,γ(xi)

− γ[uα,γ(xi)−uα,γ(xi +1)][vα,γ(xi +1)− vα,γ(xi)]

pm2
α,γ(xi)

}
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and

∂ 2ℓ

∂α∂γ
=

n

∑
i=1

{ log p

mα,γ(xi)
{ uα,γ(xi) logxi[γ log(1− pxαi )+1]

−uα,γ(xi +1) log(xi +1)[γ log(1− p(xi+1)α)+1] }

− γ log p{uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)}{vα,γ(xi +1)− vα,γ(xi)}
m2
α,γ(xi)

}.
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