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Editor’s Report 2014

It is a pleasure to present a new issue of SORT–Statistics and Operations Research

Transactions. I am sure that readers will enjoy all the articles in this number, as much as

they have enjoyed previous issues.

SORT–Statistics and Operations Research Transactions was indexed in the Web of Sci-

ence on January 1st, 2007. Since then, the journal has become more popular among

scientists and has gained reputation. Thomson Reuters regularly publishes impact fac-

tors of its indexed journals. In 2014, our journal will receive its best figure for impact

factor1, as it would be stated in the Journal Citation Reports, much above the average for

journals of similar origin. SORT holds an excellent position compared to the past and

has a very prominent rank as an academic journal in the field of Probability & Statistics.

I am enormously satisfied to see how our journal has grown up and how it succeeds every

day. SORT–Statistics and Operations Research Transactions has evolved over the past

from a local journal to a global publication, something that is reflected by the increasing

number of submissions and by the number of authors from all over the world.

SORT is now characterized by all the ingredients for excellence.

• The FECYT seal of maximum quality for publication provided by the Spanish

Ministry. This distinction is awarded every three years to top publications in

recognition of their high standard.
• Participation of an increasing number of Catalan universities as co-editors of

SORT who have now joined the original founders.
• An increasing number of submissions (88 in 2013).
• A reasonable review time of four months on average.
• Timely publication of two issues per year, where accepted articles are published

within less than 12 months and are available online soon after acceptance.
• An electronic system for managing manuscripts, which was established in 2013

and is now fully functional.

I would like to warmly thank the editors, reviewers, authors and readers of the journal

for their cooperation.

I do wish that the future will be as challenging and, at the same time, as rewarding as

these past eight years have been for me as Chief Editor of SORT.

Montserrat Guillén

Department of Econometrics

Riskcenter-IREA

Universitat de Barcelona

1. Unofficial impact factor in May 2014: 0,857.
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Improving parametric Clarke and Wright

algorithms by means of iterative empirically

adjusted greedy heuristics⋆

Albert Corominas1, Alberto Garcı́a-Villoria1,∗ and Rafael Pastor1

Abstract

Since Clarke and Wright proposed their well-known savings algorithm for solving the Capacitated

Vehicle Routing Problem, several enhancements to the original savings formula have been

recently proposed, in the form of parameterisations. In this paper we first propose to use

Empirically Adjusted Greedy Heuristics to run these parameterized heuristics and we also

consider the addition of new parameters. This approach is shown to improve the savings

algorithms proposed in the literature. Moreover, we propose a new procedure which leads to

even better solutions, based on what we call Iterative Empirically Adjusted Greedy Heuristics.

MSC: 90C27 (Combinatorial Optimisation).

Keywords: EAGH-1, greedy heuristics, Clarke and Wright savings algorithm, CVRP.

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is a well known variant of the NP-

hard Vehicle Routing Problem (VRP). Heuristic methods have been proposed to solve it.

Among them, the Clarke and Wright savings heuristic (CW) (Clarke and Wright, 1964)

is one of the most popular: CW is simple, easy to implement, very fast and obtains quite

good solutions (Altinel and Öncan, 2005).
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CW is based on merging tours according to a savings formula, which refers to the

distance or cost saved by the merged route instead of having the two original ones. Since

CW was introduced, several enhancements to the original savings formula have been

proposed (Gaskell, 1967; Yellow, 1970; Paessens, 1988; and recently Altinel and Öncan,

2005; Doyuran and Çatay, 2011). The best results achieved with a savings heuristic have

been obtained by the Doyran and Çatay’s CW version (let it be called CW-DC) and by

the Altinel and Öncan’s CW version (let it be called CW-AO).

All aforementioned enhanced savings formulae are parameterized. The performance

of these parametric savings heuristics depends on the parameter values. A common

practice in the literature is to set the parameter values and then run the algorithms

using these values, which remain fixed during the run (Adenso-Dı́az and Laguna, 2006).

This approach is followed by Battarra et al. (2008) and Corominas et al. (2010) to set

the parameter values of CW-AO. However, this approach has the drawback of needing

a sufficiently representative set of training instances to calibrate the algorithm so the

values of the parameters are suitable for any instance of the problem. On the other

hand, to solve an instance, Altinel and Öncan (2005), and Doyran and Çatay (2011)

run CW-AO and CW-DC, respectively, with a fixed set of 8,820 different combinations of

parameter values and select the best combination. This other approach has the advantage

that the parameters of the heuristics are specifically tuned for each instance and the

drawback that more computing time is needed to solve each instance.

In this paper we follow and focus on the second approach. The objective is to improve

the results obtained in the literature, by means of: i) considering to add new parameters,

ii) using a more sophisticated procedure in the literature to obtain suitable parameter

values according to the particular instance to be solved, which is known as EAGH-

1 (Empirically Adjusted Greedy Heuristics-1) (Corominas, 2005), and iii) designing a

new procedure based on EAGH-1 that we call Iterative EAGH-1 (IEAGH-1). IEAGH-1

always ensures solutions better than or equal to the solutions obtained by EAGH-1.

The remainder of the paper is organised as follows. Section 2 defines the CVRP and

describes the parametric algorithms based on CW proposed in the literature. Section 3

explains EAGH-1 and proposes the new IEAGH-1 procedure. Section 4 presents the

results of a computational experiment. Finally, the conclusions are given in Section 5.

2. Parametric Clarke and Wright algorithms to solve the CVRP

The VRP consists in finding the set of routes that minimises the total routing cost. The

routes are designed for a fleet of vehicles that has to serve a set of customers with

positive demand from one or several depots, subject to various constraints. The CVRP

is a VRP variant in which all the vehicles have the same capacity, C, and there is only

one depot. The formulation of the CVRP is as follows. Let G = (V,E) be an undirected

graph. V is the set of nodes {0,1, . . . ,n}, in which node 0 represents the depot and the

other n nodes represent the customers, and E is the set of edges. Each vehicle has a
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capacity C and each customer i has a demand 0 < di ≤ C (i = 1, . . . ,n). For each edge

(i, j) ∈ E (i = 0, . . . ,n; j = 0, . . . ,n), a traversing cost ci j is associated. The objective is

to find the routes that minimise the total cost so that each customer is visited only once

and each route starts and ends at the depot.

Clarke and Wright (1964) proposed a greedy heuristic (CW) which solves the CVRP.

Initially, this heuristic considers n routes to visit all customers, where each route includes

only one customer. Next, at each iteration the two routes that can be feasibly merged

with the largest saving are chosen to be merged. The saving si j = ci0 + c0 j − ci j is the

cost saved by the merge of the routes (0, . . . , i,0) and (0, j, . . . ,0).

Based on CW saving formula, Gaskell (1967) and Yellow (1970) proposed the

parameterised saving expression si j = ci0 + c0 j − λci j, where λ is a parameter that

weights the relative importance of ci j. Paessens (1988) proposed si j = ci0 +c0 j −λci j +

µ |c0i − c j0|, where µ is another weight parameter. Later, Altinel and Öncan (2005)

included the customer demands in their CW enhancement (CW-AO): si j = ci0 + c0 j −

λci j + µ |c0i − c j0|+υ
di+d j

d̄
, where d̄ is the average demand and υ is a new weight

parameter. To set the specific values of the three parameters when solving every instance,

the authors vary the values of λ between 0.1 and 2, and the values of µ and υ between

0 and 2, using a step size equal to 0.1. So, CW-AO is executed 8,820 times with all

combinations of the parameter values and the best solution obtained is chosen. This

method improves on the original CW but requires much more computing time.

Lately, Doyuran and Çatay (2011) proposed the following savings formula:

si j =
ci0 + c0 j −λci j

cmax
+µ

cosθi j

∣

∣cmax
− (c0i − c j0)

/

2
∣

∣

cmax
+υ

∣

∣d̄ − (di +d j)
/

2
∣

∣

dmax
,

where θi j is the angular distance between the customers i and j with respect to the depot,

cmax is the longest distance among all customer pairs and dmax is the maximum demand

among all customers. This savings function has the same 3 parameters that the Altinel

and Öncan function, and Doyuran and Çatay also propose to run CW-DC 8,820 times

with the combinations of the parameter values. But the variation of the parameter values

differs: λ between 0.1 and 2, µ between 0 and 2, and υ between −1 and 1, using a step

size equal to 0.1.

3. EAGH-1 and IEAGH-1 for the CVRP

3.1. EAGH-1

The main characteristic of a greedy heuristic is that at each iteration an irreversible

decision is taken according to an index value associated with each possible decision.

When two or more indices are considered in a greedy heuristic, infinite mix-indices
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can be generated by linear combination and, therefore, an infinite set H of heuristics

can be obtained. Regarding savings algorithms, the infinite set of heuristics H can be

defined by the following function h which depends on the set of attributes of the decision

(ai j =
{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄
}

) and a set of parameters (Π= {λ,µ,υ}) that weight

the elementary indices: h(ai j,Π) = ci0 + c0 j −λci j +µ |c0i − c j0|+υ
di+d j

d̄
.

The EAGH-1 procedure (Corominas, 2005) seeks the best heuristic function h ∈ H

for a given instance according to the objective function f (XΠ) to be minimised, where

XΠ is the solution obtained by h(ai j,Π). In the case of the CVRP, f is the total

route cost. Note that to find the best heuristic function h(ai j,Π) is equivalent to find

the Π parameter values that minimise f . Because the function f is not expected to

have any special or recognisable property, only a direct optimisation algorithm (i.e.

an optimisation algorithm that only uses the values of the function) may be used.

Corominas (2005) proposes to apply the Nelder and Mead algorithm (N&M), also

known as the flexible polyhedron algorithm (Corominas et al., 2010), as the optimisation

algorithm for minimising f .

N&M is based on q+ 1 points (q = |Π|) that are the vertices of a q-dimensional

simplex: V0,V1, . . . ,Vi, . . . ,Vq. The coordinates of the vertices represent the parameter

values (Π), and each vertex is evaluated using f , i.e., the value of the solution (according

to f ) obtained when the instance is solved using h(ai j,Π) and Π is defined by the

coordinates of the vertex. At each iteration of N&M, the vertices of the simplex are

moved over the q-dimensional space according to their evaluations. N&M starts from

an initial regular simplex. To build it, we have to provide N&M with an initial vertex

(V0) and the length of the edges of the initial simplex (δ). Thus, the N&M parameters

are f , V0 and δ. A more detailed description of N&M is provided in the Appendix.

We propose to solve the CVRP using four procedures based on EAGH-1, and the

CW-AO and CW-DC saving formulae. First define the following two sets of decision

attributes: aAO
i j =

{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄
}

and aDC
i j =

{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄,

θi j,c
max,dmax

}

, and define the following three sets of parameters: Π3 = {λ,µ,υ}, Π6 =

{λ,µ,υ,β1,β2,β3} and Π8 = {λ,µ,υ,β1,β2,β3,β4,β5}. Finally, define the following

four sets of heuristics:

hAO
3 (aAO

i j ,Π3) = ci0 + c0 j −λci j +µ |c0i − c j0|+υ
di+d j

d̄

hAO
8 (aAO

i j ,Π8) = c
β1
i0 + c

β2
0 j −λc

β3
i j +µ |c0i − c j0|

β4 +υ
(

di+d j

d̄

)β5

hDC
3 (aDC

i j ,Π3) =
ci0+c0 j−λci j

cmax +µ
cosθi j

∣

∣

∣

∣

∣

cmax
−

(c0i−c j0)
2

∣

∣

∣

∣

∣

cmax +υ

∣

∣

∣

∣

∣

d̄−
(di+d j)

2

∣

∣

∣

∣

∣

dmax

hDC
6 (aDC

i j ,Π6) =
(

ci0+c0 j−λci j

cmax

)β1

+µ







cosθi j

∣

∣

∣

∣

∣

cmax
−

(c0i−c j0)
2

∣

∣

∣

∣

∣

cmax







β2

+υ







∣

∣

∣

∣

∣

d̄−
(di+d j)

2

∣

∣

∣

∣

∣

dmax







β3
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The four procedures based on EAGH-1 that we propose, EAGH −1AO
3 , EAGH −1AO

3 ,

EAGH −1DC
3 and EAGH −1DC

6 , consist in applying EAGH-1 to the set of heuristics

defined by hAO
3 , hAO

8 , hDC
3 and hDC

6 , respectively. Regarding the initial vertex V0, we use a

point that corresponds to the original Clarke and Wright algorithm: λ= 1, µ= 0, υ= 0,

β1 = β2 = . . .= 1. Regarding the initial length of the edges δ, since different solutions

may be obtained according to its value, 20 δ values between 0.25 and 5 with a step size

equal to 0.25 have been considered. Thus, EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3

and EAGH −1DC
6 are run using the 20 δ values and the best found solution is returned.

Since the sets of heuristics defined by hAO
3 and hDC

3 are subsets of the sets defined by

hAO
8 and hDC

6 , respectively, we expect that better solutions are found by EAGH −1AO
3 and

EAGH −1DC
6 , although we also expected that the computing time will be larger since

the best heuristic will be sought in a larger search space.

3.2. IEAGH-1

We propose a new procedure that we call Iterative EAGH-1 (IEAGH-1). It takes

advantage of the two following properties of the optimisation algorithm that is used

by EAGH-1 (the N&M algorithm): i) it is recommended to use a good starting point V0,

and ii) N&M ensures that the best set of parameters found Π∗ is always better than or

equal to V0 (i.e, f (XΠ∗)≤ f (XV0
)).

IEAGH-1 is based on applying iteratively EAGH-1. It first apply EAGH-1. Let ∏
∗

0

be the set of parameters found. Then, at each iteration it (it = 1,2, . . .), it applies EAGH-

1 using the initial vertex ∏
∗

it−1, where ∏
∗

it is the set of parameters found by EAHG-1

at the iteration it. The stop condition of IEAGH-1 is that no improvement is achieved,

that is, f (XΠ∗

it−1
) = f (XΠ∗

it
). Note that IEAGH-1 always ensures solutions better than or

equal to EAGH-1 but the computing time will be, of course, larger.

Analogously to the EAGH-1 procedures proposed for the CVRP, we propose four

IEAGH-1 procedures for solving this problem: IEAGH −1AO
3 , IEAGH −1AO

8 , IEAGH−

1DC
3 and IEAGH −1DC

6 . First, EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3 and

EAGH −1DC
6 are run, respectively, using the 20 aforementioned δ values. Then, at each,

iteration, EAGH-1 is run using only 5 δ values around the δ value that returned the best

solution at previous iteration. That is, if at iteration it − 1 the best solution was found

using a δ value equal to δ∗, then the δ values δ∗ − 0.50, δ∗ − 0.25, δ∗, δ∗ + 0.25,

δ∗+0.50 are used at the iteration it.
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Table 1: Average percentage solution improvement over CW (average computing times, in seconds).

Global P A B CE CMT

Altinel and

Öncan

2.97

(6.96)

4.47

(3.96)

2.44

(4.69)

2.10

(4.79)

3.26

(7.11)

2.88

(32.15)

Doyuran and

Çatay

3.16

(7.43)

5.20

(4.85)

2.47

(5.14)

2.10

(5.24)

3.22

(7.21)

2.86

(31.80)

EAGH −1AO
3 3.22

(5.73)

4.98

(3.74)

2.62

(4.08)

2.21

(4.34)

3.34

(5.65)

3.18

(23.00)

EAGH −1AO
3 3.40

(37.73)

5.39

(24.19)

2.69

(26.90)

2.35

(26.91)

3.43

(37.11)

3.31

(158.31)

EAGH −1DC
3 3.17

(6.53)

5.04

(4.26)

2.54

(4.72)

2.20

(5.10)

3.12

(6.44)

2.97

(25.45)

EAGH −1DC
6 3.46

(24.25)

5.47

(15.42)

2.85

(17.42)

2.33

(18.96)

3.53

(23.58)

3.18

(96.47)

IEAGH −1AO
3 3.26

(12.60)

5.03

(8.30)

2.64

(9.16)

2.27

(9.84)

3.34

(12.16)

3.20

(48.99)

IEAGH −1AO
8 3.51

(88.85)

5.40

(51.15)

2.92

(64.49)

2.39

(64.03)

3.55

(83.34)

3.46

(389.21)

IEAGH −1DC
3 3.29

(22.71)

5.15

(14.04)

2.63

(16.77)

2.35

(18.22)

3.29

(21.56)

3.13

(88.90)

IEAGH −1DC
6 3.51

(30.83)

5.47

(18.71)

2.89

(21.63)

2.42

(24.36)

3.53

(30.18)

3.27

(126.46)

4. Computational experiment

The test instances used in the computational experiment are the same instances used in

Altinel and Öncan (2005), which were also used in Doyuran and Çatay (2011). Namely,

72 instances of Augerat et al. (1995) grouped in three sets (22 in set P, 27 in set A and

23 in set B), 8 instances of Christofides and Eilon (1969) (set CE) and 7 instances of

Christofides et al. (1979) (set CMT).

The algorithms were coded in Java and the computational experiment was carried out

using a 1.17 GHz Intel Core i7 with 3.0 GB of RAM. Because the Altinel and Öncan

(2005) and Doyuran and Çatay (2011) experiments were carried out on computers dif-

ferent from ours, we coded and ran again their experiments on our computer so the com-

parison of the computational times is fair. We found a slight variability in the numerical

results when we rerun their experiments. This phenomenon in savings algorithms have

been reported, for instance, in Laporte et al. (2000) and in Doyuran and Çatay (2011).

The reason that may cause this difference is the computer code (for instance, in savings
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algorithms it is not specified how to break the ties between pair of costumers with equal

savings). For the sake of consistency, all results reported here are the ones found with

our code.

As it is done in the literature, we consider the following two criteria when evaluating

the procedures: the average percentage solution improvement over the original CW and

the average computing time. Table 1 shows the obtained results, in which the grey rows

indicate dominated procedures (worse solutions, on average, are obtained in equal or

higher computing time or equal solutions, on average, are obtained in higher computing

time).

We can see in Table 1 that the results of Altinel and Öncan (2005) and Doyu-

ran and Çatay (2011) are dominated by EAGH −1AO
3 and EAGH −1DC

3 . Moreover,

EAGH −1DC
3 is dominated by EAGH −1AO

3 . Therefore, we compare EAGH −1AO
3 with

them. Specifically, the average improvement obtained with EAGH −1AO
3 over CW is

7.76%, 1.86% and 1.55% better than the improvement obtained in Altinel and Öncan

(2005), Doyuran and Çatay (2011) and by EAGH −1DC
3 , respectively, and the aver-

age computing time is 1.21, 1.30 and 1.14 times smaller, respectively. Other exist-

ing dominated procedures are EAGH −1AO
3 (by EAGH −1DC

6 ) and IEAGH −1AO
8 (by

IEAGH −1DC
6 ). On average, the best solutions obtained with EAGH are those that cor-

respond to EAGH −1DC
6 , whose improvement over CW is 14.16%, 8.67% and 6.94%

better than the improvement achieved by Altinel and Öncan, Doyuran and Çatay and

EAGH −1AO
3 , respectively.

As we expected, all IEAGH-1 procedures obtain better solutions than their respec-

tive EAGH-1 procedures, although the computing times are larger. The average im-

provements over CW obtained with IEAGH −1AO
3 , IEAGH −1AO

8 , IEAGH −1DC
3 and

IEAGH −1DC
6 are 1.23%, 3.13%, 3.65% and 1.42% better than the improvements ob-

tained with EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3 and EAGH −1DC

6 , respectively,

and the average computing times are 2.20, 2.35, 3.48 and 1.27 times larger, respectively.

The best solutions are obtained with IEAGH −1DC
6 , which dominates IEAGH −1AO

8

(they obtain the same average improvement but the computing time of IEAGH −1AO
8

is larger). Specifically, the IEAGH −1DC
6 improvement over CW is 15.38% and 9.97%

better than the improvement achieved by Altinel and Öncan, and Doyuran and Çatay,

respectively.

5. Conclusions

In this paper we have improved the resolution of the CRVP with parametric Clarke and

Wright savings heuristics. To achieve this objective, we have considered the addition of

new parameters in the parameterized savings formula.

We first propose to use EAGH-1 (Corominas, 2005) and the computational experi-

ment shows that better solutions, on average, can be found with less computing time.

Specifically, the EAGH −1AO
3 improvement over CW is, on average, 1.86% better than
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Doyuran and Çatay’s improvement whereas their average computing times are 5.73 s

and 7.43 s, respectively. With some more computing time (24.25 s), EAGH −1DC
6 is

able to obtain an improvement 8.67% better than the Doyuran and Çatay’s procedure

improvement.

Moreover, we propose a new procedure based on EAGH-1 that we call Iterative

EAGH-1 (IEAGH-1). It is shown that the solutions are improved with respect to the

ones obtained by EAGH-1 at the expense of a larger computing time. The best results

are obtained by IEAGH −1DC
6 , which slightly improves EAGH −1DC

6 but the average

computing time is gone up by 6.58 s.

Although we have proposed IEAGH-1 to solve the CRVP, this procedure can be also

applied to solve other combinatorial optimisation problems.

APPENDIX

The N&M algorithm is a direct search method for minimising f (x) where f : Rq
→ R is

the objective function and q the dimension. It is based on q+1 points that are the vertices

of a simplex in the q-dimensional space: x1,x2, . . . ,xq+1. N&M starts from an initial

simplex (usually regular) and iteratively moves the vertices over the q-dimensional space

according to their objective function values until the differences between the values of

the vertices are small enough and the simplex is small enough.

At each iteration of N&M, the vertices of the simplex are labelled and ordered such

that f (x1) ≤ f (x2) ≤ . . . ≤ f (xq+1). In the case of ties, the oldest vertex has priority.

Let xr = x̄ + α(x̄− xq+1) be the reflection of xq+1, where x̄ is the centroid of the q

best vertices (i.e., x̄ = ∑
q
i=1 xi

/

q) and α > 0 is a parameter. Four cases are considered

according to the f (xr) value:

1. Expansion. If f (xr) < f (x1) then calculate xe = x̄+ γ(xr − x̄), where γ > 1 is a

parameter. If f (xe)< f (x1), replace xq+1 with xe; otherwise, replace xq+1 with xr.

2. Reflection. If f (x1)≤ f (xr)< f (xq) then replace xq+1 with xr.

3. Outside contraction. If f (xq)≤ f (xr)< f (xq+1) then calculate xoc = x̄+η(xr − x̄),

where 0 < η < 1 is a parameter. If f (xoc) < f (xr), replace xq+1 with xoc; other-

wise, replace xq+1 with xr and shrink all vertices except x1: xi = x1 +δ (xi − x1)

i = 2, . . . ,q+1, where 0 < δ < 1 is a parameter.

4. Inside contraction. If f (xq+1) ≤ f (xr) then calculate xic = x̄ + η(xq+1 − x̄). If

f (xic) < f (xq+1), replace xq+1 with xic; otherwise, shrink all vertices except x1

as in 3).

The values of parameters α, γ, η and δ that we have adopted are 1, 2, 0.5 and 0.5,

respectively, which have been almost always used in the literature (Lagarias et al., 1998).

For more details of N&M, see Nelder and Mead (1965) or Corominas et al. (2010).
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Abstract

This paper compares the performance of nine time-varying beta estimates taken from three differ-

ent methodologies never previously compared: least-square estimators including nonparametric

weights, GARCH-based estimators and Kalman filter estimators. The analysis is applied to the

Mexican stock market (2003-2009) because of the high dispersion in betas. The comparison be-

tween estimators relies on their financial applications: asset pricing and portfolio management.

Results show that Kalman filter estimators with random coefficients outperform the others in cap-

turing both the time series of market risk and their cross-sectional relation with mean returns,

while more volatile estimators are better for diversification purposes.
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1. Introduction

Precise estimates for market betas are crucial in many financial applications, including

asset pricing, corporate finance and risk management. From a pricing perspective,

the empirical failure of the unconditional Capital Asset Pricing Model (CAPM) has

led to two possible ways of relaxing restrictive assumptions under the model being

considered: the first is the use of an intertemporal framework, as in Merton (1973),

that implies multiple sources of systematic risk. The ad-hoc three-factor model of
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Fama and French (1993) and the four-factor model of Carhart (1997) are successful

examples of multifactor models. The second is to eliminate the static context in the

relationship between expected return and risk by allowing time variation in both factors

and loadings. In that sense, Jagannathan and Wang (1996), Lettau and Ludvigson (2001)

and Petkova and Zhang (2005) find that betas of assets with different characteristics

move differently over the business cycle and Campbell and Vuolteenaho (2004), Fama

and French (1997) and Ferson and Harvey (1999) show that time-variation in betas

helps to explain anomalies such as value, industry and size. However, this conditional

time-varying framework does not seem to be enough to improve the weak fit of the

CAPM, as shown by Lewellen and Nagel (2006). The main problem in beta dynamics

literature is that the investor’s set of conditioning information is unobservable and

consequently some assumptions have to be made. There are two main alternatives:

making assumptions about the dynamics of the betas and making assumptions about

the conditional covariance matrix of the returns.

For the first alternative, many different structures have been considered. There are

studies that estimate the dynamics of betas by Kalman filter assuming standard stochas-

tic processes such as random walk, autoregressive, mean reverting and switching models

driving those dynamics. Some examples can be found in Wells (1994), Moonis and Shah

(2003) and Mergner and Bulla (2008). Other studies use parametric approaches based

on Shanken (1990), in which betas are modelled as a function of state variables or firm

characteristics as in Jagannathan and Wang (1996) and in Lettau and Ludvigson (2001).

A nonparametric version of this approach can be found in Ferreira, Gil and Orbe (2011).

Betas have also been assumed as a function of time, with both linear and parabolic func-

tional forms, as in Lin, Chen and Boot (1992) and Lin and Lin (2000). Nonetheless

neither empirical estimation nor simulation results can produce a clear conclusion about

the best way to model betas. If no parametric functions are specified and no additional

conditions are assumed except that betas vary smoothly over time, then the seminal

work of Fama and MacBeth (1973) suggests the use of a rolling window ordinary least

squares (OLS) estimation of the market model. This data-driven approach has the ad-

vantage of no parameterization but requires prior selection of the window length. More

recently, other estimators from the family of rolling least squares have been considered.

In this sense, based on the nonparametric time-varying estimator proposed by Robin-

son (1989), time-varying conditional betas have been nonparametrically estimated by

Esteban and Orbe (2010), Li and Yang (2011) and Ang and Kristensen (2012) assum-

ing that betas vary smoothly over time and possibly nonlinearly. The flexibility of this

nonparametric setting avoids the problem of misspecification derived from selecting a

functional form but it also requires that window length be selected.

The second alternative, consisting of making assumptions about the conditional

covariance matrix of the returns, relies on the parametric approach of ARCH-class

models. In this context the assumptions under multivariate GARCH (MGARCH) models

make it possible to estimate time-varying betas. In fact, the transmission of volatility

between assets is captured by a time-varying conditional covariance matrix whose
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elements are used to calculate the beta as a ratio of covariance to variance. As the

conditional covariance matrix is time dependent, the beta obtained will also be time

dependent. There has been a great proliferation of multivariate models with GARCH

structures in the last few decades, see Bauwens, Laurent and Rombouts (2006) or

Silvennoinen and Teräsvirta (2009) for a survey. Some examples of the use of MGARCH

models to estimate time-varying betas can be found in Bollerslev, Engle and Wooldridge

(1988), Ng (1991), De Santis and Gérard (1998) and more recently in Choudhry (2005)

and Choudhry and Wu (2008), among others.

Given the wide variety of time-varying beta estimates, some papers compare differ-

ent approaches. The most common comparison is between GARCH-based estimators

and Kalman filter approaches. In general, results indicate that the latter class of esti-

mators performs better in terms of forecasting ability (Faff, Hillier and Hillier (2000)

and Choudhry and Wu (2008)). However, there is no agreement about the best pro-

cess assumption for beta dynamics. Moreover, when the Kalman filter is compared with

estimators in the class of least squares, as in Ebner and Neumann (2005), the latter

outperform the former.

In this paper three different methodologies for estimating time varying betas are

compared: least-squares-based estimators, including the well-known rolling window

OLS and the nonparametric time-varying estimator proposed in Esteban and Orbe

(2010), beta estimators based on GARCH processes for the conditional covariance

matrix of returns, including also asymmetric versions, and dynamic beta estimators

obtained by the Kalman filter method. The main theoretical difference between the

OLS and nonparametric estimators is that the latter have guaranteed consistency if

the bandwidth is optimally chosen. In practice, there is an advantage in using the

nonparametric estimator since there are many data-driven window selection criteria

while the OLS estimator uses the rule of the thumb. The GARCH-based beta estimator

does not rely on a smoothness assumption but has the advantage of taking into account

the potential conditional heteroscedasticity of the returns. Finally, the Kalman filter

method, unlike the other estimators, imposes assumptions about the specific functional

form of beta dynamics. To the best of our knowledge, this is the first paper to compare

these different methodologies simultaneously for the specific estimation of market risk.

Specifically, the OLS, the nonparametric estimator with both a uniform and a Gaus-

sian kernel, the bivariate BEKK (after Baba, Engle, Kraft and Kroner) and the bivari-

ate dynamic conditional correlation (DCC) structures together with their corresponding

asymmetric versions, and random walk and random coefficient structures for the dy-

namic of the betas under the Kalman filter estimation are considered. The analysis is

applied to daily returns for the Mexican stock market between 2003 and 2009. This

market is selected because of the high cross-sectional dispersion in the sensitivity of in-

dividual returns to market returns in terms of both level and variability. Thus, grouping

stocks into portfolios on the basis of trading volume provides high dispersion in time se-

ries and cross-sectionally which allows the performance of the beta estimates covering

very different patterns to be analysed. The sample period also contributes to the aim of
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the paper because it includes the recent financial and economic crisis, ensuring enough

time variation in betas potentially related, in this case, to the business cycle. Finally, the

data frequency selection seeks to exploit the benefits of using high-frequency data in

measuring systematic risk while avoiding problems of errors in variables that stem from

nonsynchronous trading effects.

A second distinctive feature of the paper is the way in which the different estimates

are compared. Instead of using only standard statistical measures based on the standard

errors of the estimates or on the fit of the simple market model, the accuracy of

the estimators is also determined by financial criteria. Specifically, the estimators

are compared in terms of their usefulness for asset pricing or portfolio management

purposes. On the one hand, the CAPM fit in both time series (pricing errors) and

cross-sectional (risk premia) frameworks is analysed. On the other hand, the power in

achieving the next period out of the sample minimum variance portfolio based on the

use of each estimate is also compared.

Interesting results are found. The time-series analysis reveals that the wide time fluc-

tuation combined with the moderate dispersion of the Kalman filter estimate assuming

a random coefficient makes this the best beta estimator for reducing the adjustment er-

rors in both the market model and the CAPM when daily frequency returns are used.

At the same time, this estimator also produces a positive and significant risk premium

in the cross-sectional estimation of the CAPM with monthly frequency data. This good

fit between betas and mean returns is also obtained when the two nonparametric beta

estimators are used. On the other hand, for the purpose of risk diversification, beta esti-

mators with high volatility are more appropriate. The Kalman filter with random walk

estimator and the GARCH-based beta estimators do a good job of estimating the com-

position of the portfolio with the minimum risk.

The rest of the paper is structured as follows. Section 2 presents the estimation

methodologies. Section 3 describes the data. Section 4 compares beta estimates descrip-

tively. Section 5 provides the empirical results for the comparison of the beta estimators

in two frameworks: asset pricing and mean-variance portfolio analysis. Section 6 con-

cludes and the Appendix contains the data information.

2. Methodology

The Capital Asset Pricing Model due to Sharpe (1964) and Lintner (1965) relates

the expected return on an asset to its systematic market risk or beta. This beta is the

sensitivity of the asset return to changes in the return on the market portfolio. That is,

the beta is the slope of the market model:

Rit = αi +βiRmt +uit , i = 1, . . . ,N, t = 1, . . . ,T, (1)
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where Rit and Rmt are the return on asset or portfolio i and on the market portfolio at

time t, respectively. Commonly, the unknown coefficients in (1) are estimated by OLS

applied to the linear regression for each portfolio.

If it is assumed that these coefficients vary with time, model (1) must be rewritten

as:

Rit = αit +βitRmt +uit , i = 1, . . . ,N, t = 1, . . . ,T (2)

2.1. Least-squares-based time-varying beta estimators

As proposed by Fama and MacBeth (1973), one simple way to obtain time series

estimates of betas is by a rolling OLS estimation of the market model. This consists

of minimising a local sum of squared residuals for each portfolio i:

min
(αit ,βit)

t−r

∑
j=t−1

(Ri j −αit −βitRm j)
2
, (3)

where r indicates the amount of past observations to be considered at each estimation

point. From the first order conditions of the optimisation problem (3), the rolling OLS

estimator is obtained as:

(α̂it β̂it)
′

ROLL =

(

t−r

∑
j=t−1

X jX
′

j

)

−1
t−r

∑
j=t−1

X jRi j, i = 1, . . . ,N,

where X j = (1 Rm j)
′ is the jth observation of the data matrix, the subscript ROLL

denotes the OLS rolling estimator and ′ denotes matrix and vector transpose.

In the empirical application of this estimator, a window of 120 observations for data

with daily frequency is used. The sampling frequency is selected based on the findings

of Bollerslev and Zhang (2003) and Ghysels and Jacquier (2006), who show that high-

frequency data result in a more effective measure of betas than the commonly used

monthly returns. Since, in general, stocks in the Mexican market are not continuously

traded, intraday data are discarded in order to avoid nonsynchronicity effects on beta

estimates. Regarding the window length, an alternative number of observations was also

considered but it did not alter the main conclusions of the paper.1

The nonparametric time-varying beta estimator can be considered within the family

of rolling least-squares estimators. It relies on the assumption that the unknown time-

varying coefficients, αit and βit , are smooth functions (linear or nonlinear) of the time

1. Specifically, windows of 90 and 400 days were analysed. Results are available upon request.
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index. It is derived from minimising a smoothed sum of squared residuals for a given

portfolio i and for a pre-selected smoothness degree hi:

min
(αit , βit)

t−Thi

∑
j=t−1

Khi, t j(Ri j −αit −βitRm j)
2
,

where Khi, t j = h−1
i K ((t/T − j/T )/hi) is a weight function and K(·) is a symmetric

second order kernel. The shape of this kernel determines how past observations are

to be weighted. If a uniform kernel is used all past observations selected are equally

weighted but if the Epanechnikov or Gaussian kernels are used, higher weights are

given to those observations closer to the estimation time point and lower weights to

those farther away in time. The parameter hi is the bandwidth that controls the amount

of smoothness imposed on the coefficients associated with the ith portfolio. Solving the

first-order conditions, the estimator has the following expression:

(α̂it β̂it)
′

NP =

(

t−Thi

∑
j=t−1

Khi, t jX jX
′

j

)

−1
t−Thi

∑
j=t−1

Khi, t jX jRi j, i = 1, . . . ,N,

where all elements are already defined and the subscript NP indicates the nonparametric

estimator.

Once the smoothness degree hi is set, the estimator obtained is consistent with the

standard rate of convergence in nonparametric settings and has a closed form. Since the

role of the bandwidth is to determine the amount of smoothness imposed on the betas

and therefore the number of relevant past observations to be taken into account when

estimating those betas, it is crucial to select it adequately in advance. If the bandwidth

is large, the sub-sample of significantly weighted observations is larger, that is, more

past observations are considered relevant in each local estimation. This results in a time

series of estimated betas with little variability due to the high degree of smoothness. But

if the bandwidth is small the estimation sub-sample is narrowed and the estimated betas

have more dispersion. Different bandwidths (hi) are allowed for the portfolios in order

to capture different possible variations and curvatures of the betas. In consequence, the

sub-sample size used at any estimation time point is the same when estimating the betas

for a given portfolio but may be different for betas from another portfolio.

In regard to the practical issues of choosing the kernel and the bandwidths, it is well

known that all kernels are asymptotically equivalent but that this is not the case for the

bandwidth value. An optimal bandwidth is such that it minimises an error criterion in

order to reach a tradeoff between the squared bias and the variance of the beta estimator.

In the context of conditional factor models Ang and Kristensen (2012) and Li and

Yang (2011) propose a bandwidth selection criterion for two-sided kernels, considering

symmetric sub-samples that take into account not only past observations but also future

observations. In this paper, only past observations are taken into account for estimating
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conditional betas and the data-driven method considered for selecting the bandwidths

simultaneously is based on the proposal of Esteban and Orbe (2010), where the sum of

squared residuals for all regressions is minimised together in order to take into account

any possible relationships between portfolios.

Finally, note that this nonparametric estimator generalises the rolling OLS estimator

since it can be derived as a particular case. If a uniform kernel that weights past

observations equally is considered and hi = r/T is imposed instead of the smoothness

degree being selected via a data-driven method, then the estimations obtained by the two

estimators match.

2.2. The time-varying beta estimator based on multivariate

GARCH models

The literature on financial econometric volatility has provided evidence of fluctuations

and high persistence in conditional variance of asset returns and conditional covari-

ance with the market return. Since market betas are ratios of estimated conditional

covariances and variances, β̂it = ĉovt(Ri,Rm)/v̂art(Rm), if these second moments are

adequately estimated by an MGARCH, then betas are also expected to be accurate esti-

mators.

The estimation procedure for MGARCH models involves maximising the following

log-likelihood function for each portfolio i:

lnL(θi) =−

1

2

T

∑
t=1

ln|Hit |−
1

2

T

∑
t=1

y′itH
−1
it yit ,

where θi is the vector of parameters to be estimated and yit = (Rit Rmt)
′ is the vector of

dependent variables in the mean equation, expressed as yit = δi+ǫit . δi = (δi1 δi2)
′ is a

bivariate vector of constants and ǫit is a bivariate vector given by ǫit = µit H
1/2
it , where

µit is a bidimensional i.i.d. normally distributed process with mean zero and identity

covariance matrix. The specification of the conditional covariance matrix (Hit) depends

on the MGARCH structure considered.

This analysis considers two different MGARCH structures widely used in financial

literature: BEKK and DCC. The former is the bivariate BEKK (1,1,1) due to Engle

and Kroner (1995), which has the advantage that the positive-definite constraint of the

conditional covariance matrix is guaranteed by construction. This matrix takes the form:

Hit = C′

iCi +A′

iǫit−1 ǫ
′

it−1Ai +B′

iHit−1Bi, (4)

where Ci is a (2 × 2) lower triangular coefficient matrix and Ai and Bi are (2 × 2)

coefficient matrices. The latter, DCC, is the bivariate dynamic conditional correlation
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specification proposed by Engle (2002), where the conditional covariance matrix is

decomposed into time-varying correlations and conditional standard deviations, ie.:

Hit = DitRitDit ,

where Dit is a (2× 2) diagonal matrix containing the conditional standard deviation of

each process ǫit , obtained from univariate GARCH(1,1) models, σ2
it = αi0 +αi1ǫ

2
it−1 +

αi2σ
2
it−1, and the conditional correlation matrix can be written as:

Rit = diag(q
−1/2

i11,t q
−1/2

i22,t )Qit diag(q
−1/2

i11,t q
−1/2

i22,t )

The (2×2) matrix Qit = (qi jk,t) is given by:

Qit = Si(1−φi1 −φi2)+φi1(µit−1µ
′

it−1)+φi2Qit−1,

where Si is the unconditional correlation matrix of µit .

The empirical evidence that negative shocks have a larger effect on the volatility of

returns than positive shocks is also taken into account in this paper by the estimation

of the asymmetric versions of the BEKK and DCC models, denoted by BEKK-A and

DCC-A, respectively. In the case of the BEKK-A, the conditional covariance matrix is

that of the BEKK model, equation (4), with the following term added:

E′

iνit−1ν
′

it−1Ei,

where νit−1 = ǫit−1⊙Iǫ−1, ⊙ denotes the Hadamard product, Ei is a (2× 2) coefficient

matrix, and Iǫ−1 is an indicator function which takes a value of one for negative

residuals, ǫt−1, and zero otherwise. In the case of the DCC-A model, the term eiǫ
2
it−1It−1,

with ei being a coefficient, is added to each of the univariate GARCH(1,1) models that

govern the variance of ǫit .

Once the conditional covariance matrix is estimated, the time-varying GARCH based

beta for portfolio i is calculated as β̂
l

it = Ĥ
l

i12t/Ĥ
l

i22t , where Ĥ
l

i12t is the estimated

conditional covariance between the ith portfolio returns and the market returns and Ĥ
l

i22t

is the estimated conditional variance of the market return for l = BEKK, DCC, BEKK-A,

DCC-A conditional covariance matrix structures.

2.3. The Kalman filter time-varying beta estimator

The state-space representation of the market model as in equation (2) enables time-

varying coefficients to be estimated through the Kalman filter. The measurement equa-

tion is the market model and the transition equations that complete the state-space repre-
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sentation determine the changes in the coefficients over time. Therefore, some assump-

tions about the stochastic behaviour of the conditional betas are needed. Two of the

most widely used characterisations of the dynamics of betas are used: the random walk

(KF-RW) and the random coefficient (KF-RC).

Under the random walk assumption, betas vary smoothly so their current value

is determined by their own previous value plus an error term: αit = αit−1 +η1it and

βit = βit−1+η2it . Large variances in the error terms indicate that there is no persistence,

so the current beta may be completely different from the previous one. As the variance

of the error term of the transition equations decreases less variability is allowed and the

betas become more stable. When the variances tend to zero constant betas are obtained.

In the random coefficient model, betas are assumed to vary randomly around a fixed

value with some variance: αit = αi +η1it and βit = βi +η2it . The smaller the variance

in the error terms of the transition equations, the lower the variations in the betas are,

and when the variances tend to zero constant betas are also obtained. As the variances

increase more jumps are permitted. In contrast to the random walk, level shifts are not

allowed.

The Kalman filter estimation method requires a distribution to be assumed for all

stochastic terms in the measurement and transition equations. All errors (uit ,η1it ,η2it)

involved in the estimation process are assumed to be normally distributed with zero

mean, to have constant variance and to be uncorrelated from one another. In order to

overcome the practical issues of selecting initial parameters, the OLS estimate for each

portfolio using the whole sample is chosen for the initial value of the coefficients. More-

over, large enough variances in the error terms in the transition equations are allowed.

3. Data

This analysis uses daily logarithms of returns on 42 stocks traded on the Mexican Stock

Exchange between January 2, 2003 and December 31, 2009. The data series have been

computed from close daily prices taking into account dividends and splits. The sample

is selected on the basis of representative criteria in terms of both market capitalisation

and trading volume. The sample basically coincides with the 35 firms included in the

reference index, “Índice de Precios y Cotizaciones” (IPC, hereafter). As the composition

of this market index is revised annually, this gives a total of 42 firms in the sample period.

The proxy for the risk-free asset is the 28-day maturity Treasury Certificate (TC) and

data for this proxy are collected from the Banco de Mexico.

To show the representativeness of the selected sample, the table in the Appendix pro-

vides the names of the firms selected, their industrial classifications and the percentage

of the total trading volume in pesos on the Mexican Stock Exchange at the end of 2009

accounted for by each stock. At that time the market comprised stocks issued by 85

firms, five of which were non domestic companies. Although the sample only contains

half of the firms extant, it accounts for 95% of the market in terms of trading volume in
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pesos in 2009, as can be seen by adding the weights in the last column of the table in the

Appendix.2 Moreover, the firms selected represent all the different industrial categories.

The individual stocks are sorted and grouped into portfolios. Since the aim of this

work is to analyse the appropriateness of alternative beta estimators, it is important

that the portfolios in the final sample produce different beta patterns. In that sense,

individual betas could be used for sorting and locating stocks in portfolios. However, this

would imply, on the one hand, selecting a beta estimation methodology first to analyse

the appropriateness of each estimator. On the other hand, in subsequent sections asset

pricing tests are used for comparing beta estimators and the results would be subject to

the concerns raised by Lewellen, Nagel and Shanken (2010). This is why stocks have

been sorted by individual money trading volume. This sorting produces sufficiently

different portfolio betas in terms of both level and volatility. The composition of the

portfolios is updated monthly by using the volume in pesos of the total trades for each

stock during the month and the return of the portfolio is computed daily as the equally

weighted average of the returns on stocks in the portfolio. Thus, Portfolio 1 contains the

least liquid stocks while the most frequently traded stocks are in Portfolio 6.3

Table 1 reports the summary statistics for the returns on the six portfolios, on the

market index and on the risk-free asset covering the whole sample period. The mean

and the standard deviation are expressed on an annual basis. The beta estimator for each

portfolio and its standard error come from the OLS estimation of the market model using

the full sample period. Finally, the last row reports the average in time and across stocks

within each portfolio of the monthly trading volume in millions of pesos. As can be

seen, major differences in trading volume are observed; Portfolio 6 concentrates a large

part of the market trading and its stocks have a trading volume 70 times greater than

those of Portfolio 1. These liquidity differences do not imply differences in portfolio

return volatilities, since standard deviation is similar for all six portfolios, but curiously

they do produce increasing mean returns ranging from 14% for Portfolio 1 to 29%

for Portfolio 6. Thus, this market seems to not show an illiquidity premium. More

importantly, betas are monotonously increasing from Portfolio 1 to Portfolio 6 and

also have different levels of standard errors. Therefore, the portfolio formation criterion

produces the desirable dispersion in portfolio betas. The distribution of the returns is

negatively skewed for the risk-free asset and all portfolios except the fifth and the market

index, for which the returns’ distributions are symmetric at the 5% significance level.

Regarding the kurtosis coefficient, there is a significant positive excess of kurtosis for

all cases except for the risk-free asset, for which the coefficient is negative.

2. The same calculation using trading volumes for other years in the sample period gives similar percentages of
representativeness.

3. The classification has also been drawn up using trading volume in terms of number of shares and the characteristics
of the resulting portfolios are very similar.
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Table 1: Summary Statistics of Returns.

Port. 1 Port. 2 Port. 3 Port. 4 Port. 5 Port. 6 IPC TC

Mean 0.1401 0.2062 0.3263 0.2053 0.2404 0.2914 0.2367 0.0498

Standard deviation 0.2634 0.2182 0.2370 0.2662 0.2579 0.2719 0.2310 0.0006

Skewness −0.5419 −0.5357 −0.1317 −1.4389 −0.0451 −0.1264 0.1024 −0.2892

Excess Kurtosis 5.2145 3.6191 7.5339 29.5636 5.6640 5.0603 5.3426 −0.4961

Beta 0.6523 0.6949 0.7958 0.9027 0.9667 1.1059

Standard error 0.0223 0.0152 0.0154 0.0171 0.0133 0.0096

Volume (millions) 119.87 298.96 497.89 817.24 1682.89 8280.50

4. Conditional beta estimates

In this section descriptive statistics regarding the nine time series beta estimates ob-

tained by the three methodologies considered are presented and compared. Rolling win-

dow OLS is obtained with subsamples of 120 previous observations for all portfolios

and denoted by ROLL. The nonparametric estimator uses two alternative kernels: the

uniform (NP-U) and the Gaussian (NP-G). The selected bandwidth is 0.1279 for Port-

folios 1, 2, 3 and 6 and 0.0896 for Portfolios 4 and 5 when the uniform kernel is used,

while for the Gaussian kernel the selected bandwidth is 0.0591 for all portfolios except

the fifth, for which is 0.0398. Therefore, although bandwidths are allowed to vary with

portfolios, the data-driven values selected indicate that betas have the same smoothness

degree for most portfolios and hence the number of relevant past observations is the

same. The alternative GARCH specifications produce time series of beta estimates that

are denoted as BEKK and DCC for the symmetric versions of the BEKK and DCC mod-

els, respectively, and BEKK-A and DCC-A for the corresponding asymmetric versions.

This estimation method does not weight the observations according to their temporal

neighbourhood but according to the conditional heteroscedasticity structure. Finally, the

Kalman filter method is applied with the assumption that the betas follow two alter-

native stochastic processes: random walk (KF-RW) and random coefficient (KF-RC).

In the GARCH and Kalman filter context the total sample information is used, so that

series of 1764 daily betas are produced. However, in order to provide a homogeneous,

comparable context, the sample of beta estimates is restricted to the period between 17th

October, 2003 and 31st December, 2009, with a total of 1564 daily beta estimates for

each estimator.

Table 2 presents the mean and the standard deviation of the time series of estimated

betas for each portfolio and for all the options considered. The general conclusion

is that all estimation methods produce conditional beta series that have very similar

mean values, smaller than the point beta estimate from the full sample (see Table 1).

If there is any point worth commenting on, it is that KF-RC produces slightly higher

mean betas for four out of the six portfolios. Differences between estimates are in
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standard deviations. The least volatile estimates are NP-U (for three portfolios) and KF-

RC (for two portfolios, including the portfolio 1) while the most volatile estimates are

KF-RW (for three portfolios) and BEKK (for two portfolios). The major difference in

the volatility pattern of the two Kalman filter beta estimates is therefore noteworthy.

Some differences are also found between the statistics of the symmetric and asymmetric

GARCH estimates. For example, BEKK-A and DCC-A estimates have slightly higher

means than the corresponding symmetric versions and BEKK-A estimates are less

volatile than BEKK estimates while DCC-A estimates are more volatile than DCC ones.

The results in Table 2 are confirmed in Figure 1, which shows the time series beta

estimates for the two extreme portfolios. Subfigures (a.1) and (a.2) compare ROLL and

the two NP estimates, Subfigures (b.1) and (b.2) compare GARCH based estimates,

and Subfigures (c.1) and (c.2) compare the beta estimates based on the Kalman filter

methodology. All betas move around the same long term mean, the NP methods produce

the smoothest betas and changes in the short term are much more pronounced in

estimates from GARCH structures and from the Kalman filter method. Subfigures (c.1)

and (c.2) show the high short term fluctuation of the estimate from the Kalman filter with

random coefficient contrasting with the random walk assumption. However, the rank of

this short term dispersion is lower for KF-RC than for KF-RW or for GARCH-based

estimates, as the standard deviations in Table 2 indicate. In addition, independently

of the estimation methodology, mean betas increase and standard deviations of betas

decrease, almost monotonously, from the portfolio containing the least liquid stocks to

the portfolio containing the most liquid stocks. Since the most liquid stocks have the

highest correlation with the market index, a beta closer to one with lower variability is

expected.

Table 2: Summary Statistics of Beta Estimates.

Portfolio Statistic ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 Mean 0.6431 0.6442 0.6436 0.6321 0.6386 0.6389 0.6479 0.6403 0.6486

Std. Dv. 0.2154 0.1573 0.1733 0.2910 0.2275 0.2316 0.2453 0.2615 0.1386

2 Mean 0.6979 0.6872 0.6915 0.7115 0.7332 0.7170 0.7389 0.7113 0.7095

Std. Dv. 0.1379 0.0929 0.1053 0.1566 0.1340 0.1151 0.1399 0.1716 0.0983

3 Mean 0.7543 0.7591 0.7594 0.7492 0.7837 0.7597 0.7909 0.7626 0.7792

Std. Dv. 0.1179 0.0923 0.1017 0.1366 0.1207 0.1119 0.1272 0.1549 0.0975

4 Mean 0.8273 0.8288 0.8288 0.8058 0.8489 0.8181 0.8581 0.8229 0.8635

Std. Dv. 0.1518 0.1477 0.1386 0.1643 0.1555 0.1064 0.1634 0.1711 0.1239

5 Mean 0.9180 0.9195 0.9195 0.9108 0.9299 0.9085 0.9285 0.9184 0.9544

Std. Dv. 0.1125 0.1073 0.1130 0.1438 0.1233 0.1026 0.1200 0.1361 0.0850

6 Mean 1.0742 1.0752 1.0753 1.0722 1.0749 1.0779 1.0795 1.0720 1.1002

Std. Dv. 0.0671 0.0582 0.0602 0.0688 0.0804 0.0700 0.0882 0.0865 0.0625
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Figure 1: Beta Estimates from Alternative Methodologies.

A more formal comparison between the different beta estimates is carried out using

the Kruskal-Wallis test. This is a non-parametric test based on ranked data that returns

the p-value for the null hypothesis that two or more samples are drawn from the

same population. For each portfolio, the Kruskall-Wallis test is applied to compare the

different estimates all together on the one hand, and the estimates in each group on the

other hand. The results are consistent for all six portfolios and indicate that the null is

rejected when the nine estimates are compared simultaneously. The null is also rejected

when the four GARCH based estimates are compared and when the two Kalman filter

estimates are compared separately. Only for the group of least-squares-based estimates

can the null not be rejected.4

In order to gain insight into the similarities of different time-varying beta estimates

the correlations between pairs of conditional beta estimates are computed. Table 3 re-

ports the correlations for each portfolio.5 The results indicate that the pattern is very

similar for beta estimates based on minimising some kind of least squares on the one

hand, and for beta estimates from GARCH specifications on the other. However, the

correlation between any of the estimated betas from each of these groups is much

smaller. The different structures assumed for the beta dynamics in the Kalman filter

4. Results are available from the authors upon request.

5. Port.i/Port. j indicates that correlations for portfolio j are in the upper triangular panel while those for portfolio i

are in the lower triangular panel.
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method produce a lower correlation between the estimates. Moreover, the correlation

between KF-RW beta estimates and those based on minimising least squares or GARCH

structures are high, while the lowest correlations are those between KF-RC estimates

and any other. This finding shows that the beta estimation method selected affects the

resulting estimates.6

Table 3: Correlations of Alternative Beta Estimates.

ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

Port. 2/Port. 1

ROLL 0.7980 0.9628 0.4756 0.6081 0.4256 0.5783 0.7770 0.0712

NP-U 0.8213 0.8889 0.3434 0.4207 0.3194 0.4009 0.5228 0.0373

NP-G 0.9581 0.9130 0.5214 0.6395 0.4714 0.6098 0.7867 0.0694

BEKK 0.3530 0.2060 0.3670 0.9376 0.9186 0.9146 0.8242 0.1447

DCC 0.2889 0.1999 0.3073 0.6332 0.8476 0.9742 0.9118 0.1379

BEKK-A 0.3367 0.1932 0.3461 0.7234 0.8010 0.8580 0.7270 0.1568

DCC-A 0.4624 0.3214 0.4950 0.7171 0.8235 0.9069 0.8847 0.1341

KF-RW 0.7370 0.5139 0.7460 0.6349 0.4736 0.6158 0.7302 0.2548

KF-RC 0.0862 0.0345 0.0813 0.0950 0.0883 0.1223 0.1214 0.2773

Port. 4/Port. 3

ROLL 0.8323 0.9497 0.5399 0.5816 0.4781 0.5952 0.7330 0.0886

NP-U 0.9720 0.9279 0.4262 0.5287 0.4126 0.5713 0.6181 0.0760

NP-G 0.9686 0.9783 0.5716 0.6487 0.5174 0.6769 0.7781 0.1001

BEKK 0.5317 0.5251 0.5443 0.8092 0.9155 0.8032 0.8777 0.1427

DCC 0.5057 0.4960 0.5221 0.7944 0.7481 0.9119 0.8742 0.1244

BEKK-A 0.5329 0.5202 0.5444 0.8181 0.6872 0.7870 0.7905 0.1576

DCC-A 0.4746 0.4756 0.4981 0.7481 0.9626 0.6920 0.8397 0.1372

KF-RW 0.8193 0.7959 0.8279 0.7376 0.7652 0.6704 0.7181 0.2998

KF-RC 0.1254 0.1293 0.1265 0.1871 0.2005 0.1375 0.1858 0.3030

Port. 6/Port. 5

ROLL 0.9593 0.9481 0.3763 0.5037 0.1710 0.4689 0.6926 0.1094

NP-U 0.8479 0.9220 0.3526 0.4789 0.1486 0.4551 0.6634 0.1075

NP-G 0.9549 0.9481 0.4938 0.6416 0.2481 0.6130 0.8372 0.1196

BEKK 0.6086 0.5497 0.6526 0.9068 0.7574 0.8513 0.7485 0.1487

DCC 0.6181 0.5172 0.6485 0.9583 0.6078 0.9404 0.8867 0.1463

BEKK-A 0.5880 0.5646 0.6370 0.7525 0.7144 0.6077 0.4579 0.1575

DCC-A 0.5537 0.4307 0.5736 0.8740 0.9117 0.8211 0.8480 0.1523

KF-RW 0.7236 0.5766 0.7317 0.8807 0.9212 0.7320 0.8655 0.2908

KF-RC 0.1058 0.0942 0.1091 0.1352 0.1218 0.1421 0.1368 0.3031

6. Similar results are obtained in Faff, Hillier and Hillier (2000) when comparing Kalman filter and GARCH-based
beta estimators.
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Figure 2: Differences between Alternative Beta Estimates for Portfolios 1, 3 and 6.

Figure 2 illustrates the high or low correlation between different estimates by

showing the series of the differences between alternative pairs of beta estimates for

Portfolios 1, 3 and 6.7 As mentioned above, the volatility of beta estimates decreases

and the mean increases from Portfolios 1 to 6 for all the estimation methodologies,

so the largest differences are found between beta estimates in Portfolio 1. The most

similar patterns correspond to the rolling and nonparametric estimates (Subfigure (a))

on the one hand, and to the BEKK and DCC-A (Subfigure (d)) on the other. However,

major differences arise when beta estimates are obtained using methodologies based

on different assumptions. For instance, Subfigure (f) shows that the largest difference is

found when BEKK and KF-RC estimates are compared for Portfolio 1. These results are

consistent with the correlation coefficients shown in Table 3; the higher the correlation

between two beta estimate series the smaller the difference between them.

5. Beta estimator comparison

In this section the accuracy of the different estimators is compared in terms of the utility

of time-varying beta estimates for two important financial applications: asset pricing and

portfolio management.

7. The differences have been computed and plotted for all pairs of estimates and for all six portfolios. In order to save
space, we only provide the most noteworthy cases.
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5.1. The asset pricing perspective

This subsection analyses how systematic risk may be assessed more accurately through

the use of one beta estimation methodology or another. For this purpose the simplest

asset pricing framework is considered: the CAPM. It must be pointed out that this

exercise does not set out to test the CAPM and that the analysis presented here could

easily be extended to a multi-factor asset pricing model. However, this model offers

a simple way of looking at the expected positive relationship between returns and

systematic risk that any underlying investor’s preferences would imply. In that sense,

a beta estimate is more accurate if it is able to improve this relationship.

Next, two different settings for the comparison are considered. The first is based on

time series analysis and the second on cross-section analysis.

5.1.1. Time series analysis

The first comparison between beta estimates relies on the appropriateness of the factor

model representation. That is, for each portfolio the different beta estimates are com-

pared in terms of fit for the market model. Since time-varying coefficients are estimated,

R-squared statistics are not necessarily bounded and they cannot be comparable. Instead,

unconditional variance ratios are studied as in Harvey, Solnik and Zhou (2002), among

others. Specifically, the proportion of the unconditional variance of returns fitted by the

market model, V R1 = var(R̂i)/var(Ri), is used as a measure of goodness of fit, and

the proportion of the unconditional variance of returns that the model fails to explain,

V R2 = var(ûi)/var(Ri), as a measure of the estimation error. It must be pointed out that

computing R̂it and ûit requires estimates for parameter αit and GARCH models do not

provide them. In these cases, an estimation of αit is obtained from the average of the

market model where the time variation comes from each daily beta estimate:

α̂l
it = R̄i− β̂

l
itR̄m, i = 1, . . . ,N, t = 1, . . . ,T, l = BEKK, DCC, BEKK-A, DCC-A,

where R̄i and R̄m are the mean returns on portfolio i and on the market portfolio,

respectively.

Table 4 shows the values of the V R1 and V R2 criteria for each portfolio and each

estimator. The results for the two measures are very similar when the ROLL and NP

estimators are compared, since they are both based on the use of rolling least squares.

In general, ROLL estimates show a larger fit (larger V R1) but also a larger estimation

error (larger V R2). This could be due to the bandwidth sizes selected. Since the numbers

of relevant past observations selected by the data-driven method for the nonparametric

estimator are smaller than for the rolling OLS, the smoothness degree imposed is lower

and in consequence the estimated betas have a smaller bias but a larger variance.

However, all least squares-based methods produce mostly lower values for V R1 and

similar or higher values for V R2 than the rest of estimates. In general terms, according
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to the measure of variance explained, the market model is better adjusted when beta

estimates come from GARCH structures (especially the asymmetric versions) and only

slightly lower values are obtained when using the Kalman filter method with the random

coefficient assumption. Moreover, the estimate that produces the lowest adjustment

errors is clearly the Kalman filter with random coefficient for all portfolios. Therefore,

it seems that the high daily fluctuation of the beta series from this estimation method

benefits the time series adjustment of the market model.

Table 4: Model Fit Criteria.

Portfolio Criteria ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 VR1 0.3531 0.3207 0.3360 0.4107 0.3982 0.4208 0.4165 0.3900 0.4113

VR2 0.6492 0.6542 0.6465 0.6380 0.6368 0.6310 0.6374 0.5456 0.4462

2 VR1 0.5616 0.5110 0.5329 0.6160 0.5832 0.6184 0.6166 0.5696 0.6068

VR2 0.4464 0.4498 0.4437 0.4630 0.4592 0.4502 0.4539 0.3657 0.2923

3 VR1 0.6085 0.5730 0.5985 0.6370 0.6413 0.6332 0.6522 0.6392 0.6584

VR2 0.3848 0.3883 0.3828 0.3725 0.3761 0.3682 0.3739 0.3163 0.2602

4 VR1 0.6383 0.6349 0.6238 0.6651 0.7241 0.6093 0.7293 0.6471 0.6592

VR2 0.3758 0.3750 0.3740 0.3552 0.3689 0.3678 0.3726 0.3103 0.2334

5 VR1 0.7817 0.7734 0.7827 0.8059 0.7966 0.7634 0.7977 0.7734 0.7796

VR2 0.2456 0.2451 0.2441 0.2401 0.2391 0.2366 0.2390 0.2060 0.1713

6 VR1 0.8850 0.8729 0.8836 0.8899 0.8947 0.8884 0.9038 0.8967 0.8995

VR2 0.1109 0.1101 0.1103 0.1096 0.1111 0.1077 0.1101 0.0939 0.0739

The second comparison within this time-series framework employs Jensen’s alpha

as a measure of the error adjustment of the model: the difference between the observed

return and the estimated return. Assuming the CAPM, the Jensen’s alpha associated with

each beta estimator is computed for each portfolio and period as:

α̂J
it = (Rit −R f t)− ̂βit (Rmt −R f t) , i = 1, . . . ,N, t = 1, . . . ,T,

where R f t represents the risk-free rate.

The quadratic sum of these alphas is calculated as a measure of the model misspec-

ification, which allows a comparison to be made between different estimation methods.

A large value of the quadratic sum of alphas indicates a poor specification of the model

since the estimated returns differ greatly from the observed returns. Table 5 reports this

measure. The bottom row shows the total sum of alphas for all portfolios. As expected,

though with the exception of Portfolio 4, the quadratic sum of alphas decreases from

Portfolio 1 to Portfolio 6 whatever the method used in the estimation of betas. Compar-

ing the different estimates, the misspecification is similar for estimates based on least

squares and on GARCH assumptions. The lowest values are obtained for Kalman fil-
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ter methods and, specifically, for the case of random coefficient. The quadratic sum

of alphas is considerably lower for KF-RC than for the other estimates and for all six

portfolios. Consequently, the overall misspecification is also lower for this method.

Table 5: Quadratic Sum of Jensen’s Alphas.

Portfolio ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 0.2787 0.2801 0.2777 0.2740 0.2734 0.2707 0.2736 0.2478 0.1936

2 0.1381 0.1391 0.1375 0.1442 0.1428 0.1399 0.1410 0.1201 0.0920

3 0.1406 0.1415 0.1400 0.1370 0.1382 0.1354 0.1373 0.1229 0.0970

4 0.1775 0.1771 0.1774 0.1696 0.1763 0.1756 0.1779 0.1557 0.1124

5 0.1074 0.1074 0.1068 0.1063 0.1058 0.1047 0.1057 0.0957 0.0765

6 0.0542 0.0541 0.0540 0.0542 0.0549 0.0532 0.0544 0.0485 0.0369

Sum 0.8964 0.8993 0.8934 0.8854 0.8913 0.8795 0.8899 0.7907 0.6084

In order to learn whether the differences observed in Table 5 are relevant, a pairwise

comparison of Jensen’s alphas, in absolute values, associated with two beta estimators

is conducted using the Wilcoxon signed rank test. Table 6 reports the median difference

between the two series of alphas expressed on an annual basis. Each panel refers to

a different portfolio and reports the median difference between the absolute value of

alphas from the beta estimate indicated in the first column and the absolute value of

alphas from the beta estimate indicated in the first row. For example, in the comparison

of ROLL and NP-U for Portfolio 1, −0.0032 indicates that the pricing error is 0.32%

lower when the ROLL beta estimate is used. Asterisks indicate that the null that this

median difference is zero is rejected. Again, consistent with the evidence in Table 5, the

results indicate that lower Jensen’s alphas are obtained when betas are estimated by

the Kalman filter for all six portfolios. And these time series errors are still lower when

the random coefficient structure is assumed. Finally, although not for all the portfolios,

some degree of relevance of the asymmetric BEKK estimator is shown when it is

compared to the OLS or the non-parametric beta estimators.

Therefore, Tables 4, 5 and 6 provide a consistent conclusion: the lowest adjustment

errors for both the market model and the CAPM are obtained when betas are estimated

by the Kalman filter and a random coefficient model is assumed. It seems that the

variability due to the random coefficient together with the dynamics incorporated into

the estimation method are able to produce accurate beta estimates from the time series

perspective.

5.1.2. Cross-sectional analysis

In this subsection the estimators are compared in terms of the market risk premium

implied by the different estimated betas. Under rational expectations there should be a

positive relationship between expected returns and systematic risk. For this purpose, the
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Table 6: Comparison of Jensen’s Alphas in Absolute Values. Median Test.

Port. 1 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL −0.0032 −0.0001 0.0075 0.0115∗ 0.0114∗ 0.0087∗ 0.0258∗ 0.0813∗

NP-U 0.0046∗ 0.0075∗ 0.0113∗ 0.0163∗ 0.0066∗ 0.0270∗ 0.0899∗

NP-G 0.0045 0.0072∗ 0.0106 0.0054 0.0220∗ 0.0799∗

BEKK 0.0033∗ 0.0015 −0.0006 0.0181∗ 0.0634∗

DCC −0.0021 −0.0022∗ 0.0131∗ 0.0613∗

BEKK-A 0.0010 0.0146∗ 0.0623∗

DCC-A 0.0185∗ 0.0561∗

KF-RW 0.0439∗

Port. 2 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL −0.0013 0.0007 0.0055 0.0032 0.0076 0.0040 0.0202∗ 0.0578∗

NP-U 0.0023∗ 0.0074 0.0031 0.0057∗ 0.0014 0.0207∗ 0.0623∗

NP-G 0.0048 0.0037 0.0048 0.0024 0.0167∗ 0.0580∗

BEKK −0.0020 0.0015 −0.0036 0.0118∗ 0.0524∗

DCC 0.0029 −0.0009 0.0173∗ 0.0520∗

BEKK-A −0.0045 0.0113∗ 0.0522∗

DCC-A 0.0170∗ 0.0467∗

KF-RW 0.0397∗

Port. 3 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0030 0.0014∗ 0.0042∗ 0.0020 0.0055∗ 0.0025 0.0173∗ 0.0683∗

NP-U 0.0002 0.0036 0.0022 0.0055∗ 0.0008 0.0180∗ 0.0642∗

NP-G 0.0021 0.0007 0.0049∗ −0.0013 0.0157∗ 0.0598∗

BEKK 0.0005 0.0007 −0.0019 0.0121∗ 0.0541∗

DCC 0.0003 0.0000 0.0141∗ 0.0534∗

BEKK-A −0.0026 0.0077∗ 0.0627∗

DCC-A 0.0188∗ 0.0544∗

KF-RW 0.0408∗

Port. 4 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0009∗ 0.0012∗ −0.0009 −0.0016 0.0017 0.0005 0.0155∗ 0.0546∗

NP-U 0.0005 −0.0005 0.0008 0.0017 0.0007 0.0139∗ 0.0482∗

NP-G −0.0006 −0.0031 0.0011 0.0009 0.0135∗ 0.0480∗

BEKK 0.0021 0.0014 0.0008 0.0215∗ 0.0503∗

DCC 0.0006 0.0004 0.0197∗ 0.0490∗

BEKK-A −0.0022 0.0096∗ 0.0543∗

DCC-A 0.0183∗ 0.0421∗

KF-RW 0.0306∗
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Port. 5 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0003 0.0012∗ 0.0030 0.0074 0.0083∗ 0.0037 0.0179∗ 0.0591∗

NP-U 0.0002 0.0000 0.0045 0.0085∗ 0.0032 0.0165∗ 0.0574∗

NP-G 0.0000 0.0049 0.0045∗ 0.0035 0.0172∗ 0.0571∗

BEKK 0.0011 0.0031 0.0000 0.0144∗ 0.0521∗

DCC 0.0040 −0.0001 0.0132∗ 0.0524∗

BEKK-A −0.0030 0.0060∗ 0.0575∗

DCC-A 0.0101∗ 0.0534∗

KF-RW 0.0404∗

Port. 6 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0006 0.0000 −0.0037 −0.0026∗ −0.0009 −0.0031 0.0038∗ 0.0359∗

NP-U 0.0002 −0.0014 −0.0025 0.0006 −0.0010 0.0036∗ 0.0297∗

NP-G −0.0018 −0.0023∗ −0.0008 −0.0018 0.0037∗ 0.0331∗

BEKK −0.0019∗ 0.0002 −0.0005 0.0059∗ 0.0339∗

DCC 0.0021∗ 0.0005 0.0093∗ 0.0346∗

BEKK-A −0.0011∗ 0.0036∗ 0.0312∗

DCC-A 0.0086∗ 0.0318∗

KF-RW 0.0264∗

simple CAPM framework is used, which assumes only one source of systematic risk:

the market beta.

Using the Fama and MacBeth (1973) methodology, the following cross-sectional

regression is estimated for each day in the sample period:

Rit −R f t = γ0t +γ1t β̂it + eit , i = 1, . . . ,N, (5)

where the beta represents one of the nine alternative estimates. A reasonable beta

estimator should produce a positive and significant market risk premium and the more

precise the above cross-sectional relationship is, the more accurate the beta estimator

is. Additionally, since excess returns are used as dependent variable, an intercept

statistically equal to zero indicates a good model fit.

The results from the Fama-MacBeth estimation of the model are presented in

Table 7. This table reports the estimates of the intercept and the market risk premium

(×102), their t-statistics for individual significance and the corresponding Shanken

(1992) adjusted t-statistics. Asterisks indicate that the risk premium is significantly

different from zero using both t-statistics at the 5% level. The left panel of the table

shows the results when daily portfolio returns and betas are used in the estimation of (5)

and one regression is run each day. The right panel provides the results when monthly

returns and the beta estimator corresponding to the last day of the previous month are
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Table 7: Cross-Sectional Risk Premium Estimation.

Daily frequency Monthly frequency

γ0 γ1 γ0 γ1

Estimate 0.0101 0.0821 0.4088 1.6655

ROLL t-stat. 0.181 1.251 0.320 1.502

Adj. t-stat. 0.181 1.250 0.311 1.459

Estimate −0.0045 0.1012 −0.2203 2.3191∗

NP-U t-stat. −0.081 1.568 −0.181 2.210

Adj. t-stat. −0.081 1.566 −0.176 2.147

Estimate −0.0054 0.1045 −0.0950 2.2120∗

NP-G t-stat. −0.098 1.601 −0.075 1.988

Adj. t-stat. −0.098 1.599 −0.073 1.930

Estimate 0.0329 0.0566 0.9704 1.1540

BEKK t-stat. 0.615 0.891 0.847 1.196

Adj. t-stat. 0.614 0.890 0.823 1.161

Estimate 0.0462 0.0436 0.4642 1.6817

DCC t-stat. 0.852 0.671 0.410 1.682

Adj. t-stat. 0.851 0.670 0.398 1.634

Estimate −0.0495 0.1498∗ 0.9704 1.1540

BEKK-A t-stat. −0.911 2.242 0.729 1.054

Adj. t-stat. −0.910 2.239 0.708 1.024

Estimate 0.0400 0.0512 1.2932 0.6088

DCC-A t-stat. 0.735 0.788 1.101 0.564

Adj. t-stat. 0.734 0.787 1.069 0.548

Estimate 0.0283 0.0736 0.4793 1.6217

KF-RW t-stat. 0.571 1.097 0.429 1.782

Adj. t-stat. 0.570 1.096 0.417 1.730

Estimate 0.0155 0.1181 −0.2193 2.3126∗

KF-RC t-stat. 0.314 1.528 −0.155 2.000

Adj. t-stat. 0.314 1.526 −0.150 1.942

used to reduce the excessive noise that daily observations could introduce into this cross-

sectional analysis. In this case, the number of regressions is 75, which is the number of

months in the period analysed.
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The intercepts are non-statistically different from zero and market risk premia are

positive for all beta estimates and for the two data frequencies. However, differences in

the value and significance of the risk premia are observed for different beta estimators.

At daily frequency, market risk premia are not significant in general. Only for the beta

estimated from the asymmetric BEKK method is there a relevant cross-sectional rela-

tionship between returns and market betas. The results for the monthly frequency are

better and more conclusive. The risk premia associated with betas from GARCH struc-

tures are similar and not significant. The cross-sectional relationship clearly improves

when non-parametric betas or Kalman filter betas are employed. The risk premium esti-

mate and the t-statistic are very similar when the two NP beta estimators or the KF-RC

one are used. In these three cases risk premia are significant at the 5% level.

Thus, the results of this analysis indicate that the estimation of the risk premium

depends on the characteristics of the beta estimator. Specifically, the three estimators

with the lowest standard deviations are the ones that produce significant risk premia

in the relationship between betas and returns at monthly frequency. On the one hand,

comparing the standard OLS estimator with the non-parametric estimates, the results

suggest that a correct size of the window and the use of weights decaying in time

matter with a view to better capturing this cross-sectional relationship. Therefore, an

optimal mechanism for choosing the bandwidth is important. On the other hand, the

high variability that the Kalman filter produces (but with lower dispersion than GARCH-

based methods) is also a good characteristic for having betas more closely related to the

cross-section of returns.

5.2. Portfolio management analysis

An important application of betas is their use in portfolio management. Since individual

betas are part of the variance of a portfolio, the power of prediction of the different beta

estimators can be studied by analysing whether the purpose indicated in the portfolio

construction criterion is achieved in the next period.

For each of the estimation methodologies considered, betas for all six portfolios are

taken in order to obtain an estimate of the next period covariance matrix, which can then

be used to obtain the composition of the overall minimum variance portfolio. Thus, the

beta estimators are compared by analysing the variance of the resulting portfolio.

Specifically, according to the market model, for a given month s the covariance

matrix of a set of N asset returns is:

Σs = σ
2
msBsB

′

s +Ds,

where σ2
ms is the variance of the market return, Bs is an N-vector of individual betas and

Ds is an N×N matrix of the idiosyncratic variance-covariances, all of them measured in

month s. The variance of the market return is estimated using daily returns within month
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s; beta estimates on the last day of month s−1 are used as predictors of elements of Bs;

and Ds is estimated as the residual covariance matrix from the market model consistent

with these beta estimates employing daily returns within month s:

̂Ds =
1

Td

̂U
′

s
̂Us,

Table 8: Out-of-Sample Comparison for the Prediction of the Global Minimum Variance Portfolio.

x/y NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 48 70.7 76 77.3 70.7 82.7 96 44

−0.963 2.166∗ 13.736∗ 12.074∗ 7.343∗ 12.968∗ 21.758∗ −1.731

NP-U 73.3 82.7 90.7 73.3 88 96 49.3

2.706∗ 18.189∗ 9.889∗ 10.984∗ 12.144∗ 20.717∗ −0.409

NP-G 78.7 78.7 70.7 82.7 97.3 37.3

10.860∗ 8.420∗ 7.666∗ 10.333∗ 19.290∗ −3.976∗

BEKK 42.7 33.3 45.3 62.7 17.3

−1.384 −4.339∗ −1.467 3.160∗ −17.213∗

DCC 44 57.3 74.7 18.7

−2.808∗ 0.342 5.541∗ −15.797∗

BEKK-A 65.3 80 17.3

3.353∗ 8.141∗ −16.040∗

DCC-A 77.3 13.3

4.362∗ −16.368∗

KF-RW 6.7

−23.543∗

where ̂Us is a Td ×N matrix containing the residuals ûisd = Risd − α̂is−1 −
̂βis−1Rmsd for

i = 1, . . . ,N, d = 1, . . .Td , where Td is the number of days in month s and s = 1, . . . ,S

with S being the number of months in the sample.

The portfolio formation criterion consists of investing in the minimum variance

portfolio, which implies choosing the portfolio weights (ωs) that solve the following

problem:
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Min ω′

sΣsωs

s.t. ω′

s1=1

This optimisation problem is solved for each month and each beta estimate, then the

daily return of the minimum variance portfolio is computed for all the days in the month

and its variance is recorded. The most successful beta estimator should lead to portfolios

with the lowest variance.

Table 8 provides the results for the comparisons of pairs of series of the variance

of the minimum variance portfolio conducted via the Wilcoxon median test. For each

comparison x/y, the first number is the percentage of cases in which beta estimation

method x produces higher variance than beta estimation method y. Below, the median

difference (×104) is reported and an asterisk indicates that the null of equal medians is

rejected at the 5% significance level.

The results are quite conclusive: the beta estimate that produces the lowest variance

for the next period minimum variance portfolio is the Kalman filter with the random

walk assumption. This is the case in the 96/97% of the out-of-sample predictions

when it is compared to any least-squares-based estimates and in between 62% and

80% of the predictions when it is compared to GARCH-based estimates. It is also

better than the other Kalman filter estimate in 6.7% of the predictions. Moreover, the

difference between medians is larger in the cases when the KF-RW estimates is one of

the beta estimates in the pair. By contrast, the beta estimated from the Kalman filter

with the random coefficient produces the highest variance. On the other hand, GARCH

beta estimators are superior to least-squares-based estimators for the purpose of risk

hedging in portfolio decisions. Finally, when ROLL and NP estimators are compared

the differences in the resulting variance portfolio are not so big but NP-G is significantly

better than rolling OLS with both the standard selection of the window size and the

optimal window size.

6. Conclusions

This paper compares the performances of three methodologies in estimating time-varying

market betas: dynamic estimators based on least squares, time-varying estimators com-

ing from GARCH structures for the conditional variance of the errors of the market

model, and Kalman filter estimators. These three methodologies have never previously

been compared with one another homogenously.

Specifically, three estimators in the group of least squares are selected: a rolling

window OLS and two nonparametric estimators that use uniform and Gaussian kernels,

respectively. The advantage of the nonparametric estimators is that they allow the

optimal window length to be chosen. In the group of GARCH-based estimators standard

DCC and BEKK models and their corresponding asymmetric versions are consid-
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ered. In this case the potential benefits of taking into account the returns’ conditional

heteroscedasticity are examined. Finally, the Kalman filter estimator considering two

different specifications for the transition equations is included in the comparison: one

imposing a random walk process and the other assuming a random coefficient structure

for the dynamics of the beta. Therefore, nine beta estimates are obtained for each of

the six portfolios of daily returns for the Mexican stock market in the period 2003-

2009. All the descriptive analyses indicate that the time pattern of these nine estimates

are substantially different. The distribution of the estimates shows different sample

moments for different estimates, especially regarding the standard deviation, and these

differences are corroborated by an analysis of the correlations between them and by

using the Kruskal-Wallis test.

The accuracy of the estimates is compared under two frameworks: an asset pric-

ing perspective that assumes the CAPM and the mean-variance space for returns for

portfolio management purposes. In the first case beta estimates are compared using dif-

ferent measures of the time-series fit of the model and looking at the cross-sectional

relationship between mean returns and market betas. In the mean-variance context, the

out-of-sample forecasting power of different beta estimates is obtained by comparing

the results of the minimum variance portfolio.

The time-series analysis clearly concludes that the Kalman filter estimator that as-

sumes a random coefficient is the best at reducing the adjustment errors in both the

market model and the CAPM; moreover this is true for all six portfolios analysed. This

estimate has the characteristic of presenting a very high time fluctuation, as GARCH-

based estimates do, but a low standard deviation, as the smoothed nonparametric esti-

mates do. This combination seems to be the reason for the good time series adjustment

in the daily frequency sample used here.

The Kalman filter with the random coefficient estimate also produces a good fit

for the CAPM cross-sectionally. In this case, this estimate and the two nonparametric

estimates are the ones for which the relationship between betas and returns are positive

and statistically significant. The high volatility in GARCH-based beta estimates has a

negative effect on the stability of the relationship between systematic risk and mean

returns. Consequently, in estimating the price of risk, dynamic methodologies that

produce low dispersion are more appropriate for the prior estimation of systematic risk.

However, highly volatile market betas are appropriate in terms of risk diversification.

The Kalman filter with a random walk estimate and the GARCH-based beta estimates

are both better than estimates with lower volatility for estimating the composition of the

portfolio with the minimum risk.

Given that different conclusions are obtained depending on whether betas or risk

premia are estimated, one possible improvement along these lines could be to propose a

new estimator that combines the advantages of these different estimators.
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Appendix: Individual stocks data information

Ticker Firm Name Sector Trading

Volume

(Pesos %)

AMX-L América Móvil Telecomunications/Services 23.22

TELMEX-L Teléfonos de Mexico Telecomunications/Services 3.49

TELINT-L Telmex Internacional Telecomunications/Services 2.09

TELECOM-A1 Carso Global Telecom Telecomunications/Services 1.89

AXTEL-CPO Axtel Telecomunications/Services 1.84

TLEVISA-CPO Grupo Televisa Telecomunications/Radio and Television 3.33

TVAZTCA-CPO TV Azteca Telecomunications/Radio and Television 1.07

ICH-B Industrias CH Materials/Steel 0.21

SIMEC-B Grupo Simec Materials/Steel 0.17

GMEXICO-B Grupo Mexico Materials/Metals and Mining 7.65

AUTLAND-B Compañı́a minera Autland Materials/Metals and Mining 0.12

CEMEX-CPO Cemex Materials/Construction 4.63

MEXCHEM Mexichem Materials/Chemical Products 0.93

ASUR-B Grupo Aeroportuario del Sureste Industrials/Transportation 0.87

GAP-B Grupo Aeroportuario del Pacı́fico Industrials/Transportation 0.50

OMA-B Grupo Aeroportuario del Centro Norte Industrials/Transportation 0.15

GEO-B Corporación Geo Industrials/Construction 1.73

URBI Urbi Desarrollos Urbanos Industrials/Construction 1.40

HOMEX Desarrolladora Homex Industrials/Construction 1.39

ICA Empresas ICA Industrials/Construction 1.33

IDEAL-B1 Impulsora del Desarrollo y el Empleo Industrials/Construction 1.11

ARA Consorcio Ara Industrials/Construction 1.10

SARE-B Sare Holding Industrials/Construction 0.06

ALFA-A Alfa Industrials/Capital Goods 1.43

GCARSO-A1 Grupo Carso Industrials/Capital Goods 1.02

LAB-B Genomma Lab Internacional Health/Medicine Distrib. 1.50

BOLSA-A Bolsa Mexicana de Valores Financial Services/Financial Markets 0.24

GFNORTE-O Grupo Financiero Banorte Financial Services/Financial Groups 2.04

GFINBUR-O Grupo Financiero Inbursa Financial Services/Financial Groups 1.07

COMPART-O Banco Compartamos Financial Services/Commercial Banks 0.79

WALMEX-V Wal-Mart de Mexico Consumer Staples/Hypermarkets 13.22

SORIANA-B Organización Soriana Consumer Staples/Hypermarkets 1.01

COMERCI-UBC Controladora Comercial Mexicana Consumer Staples/Hypermarkets 0.07

KIMBER-A Kimberly-Clark Mexico Consumer Staples/Household Products 1.06

BIMBO-A Grupo Bimbo Consumer Staples/Food 1.00

GRUMA-B Gruma Sab de C.V. Consumer Staples/Food 0.51

FEMSA-UBD Fomento Económico Mexicano Consumer Staples/Beverages 5.82

GMODELO-C Grupo Modelo Consumer Staples/Beverages 1.70

ARCA Embotelladoras Arcas Consumer Staples/Beverages 0.54

KOF-L Coca-cola Femsa Consumer Staples/Beverages 0.07

ELEKTRA Grupo Elektra Consumer Discret./Retails 1.28

GFAMSA-A Grupo Famsa Consumer Discret./Retails 0.50
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1. Introduction

The theory of order statistics and their concomitants plays an essential role in statistical

inference. An excellent review of development in this field is available in David and

Nagaraja (2003). There have been many studies with emphasis on distribution theory.

Tsukibayashi (1998) found the moments and the joint distribution of an extreme value

and its concomitant. Goel and Hall (1994) discussed the difference between concomi-

tants and order statistics. Yang (1981) studied the linear functions of concomitants of or-

der statistics. Arellano-Valle and Genton (2007) obtained the exact distribution of linear

combinations of order statistics from dependent random variables. Viana and Lee (2006)

studied the covariance structure of two random vectors X(n) and Y[n] in the presence of

a random variable Z where X(n) = (X(1), X(2), . . . ,X(n))
T is the vector of order statistics
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obtained from Xn×1 and Y[n] = (Y[1], Y[2], . . . ,Y[n])
T is the vector of concomitants. They

also discussed some regression equations between order statistics, concomitants and

the covariate variable Z, while Olkin and Viana (1995) studied the covariance structure

and several regression models when (X ,Y1,Y2)
T has a trivariate exchangeable normal

distribution. Loperfido (2008) determined the joint distribution of an auxiliary variable

X and the maximum of Y1 and Y2, i.e. (X , Y(2))
T. Sheikhi and Jamalizadeh (2011) found

the joint distribution of two linear combinations of order statistics in the presence of a

covariate random variable and presented some regression analyses.

We assume that the joint distribution of a covariate p-dimensional random vector

Z and two n-dimensional random vectors X and Y follows a 2n + p dimensional

multivariate normal vector with positive definite covariance matrix, i.e.





Z

X

Y



∼ N2n+p









µ=





µz

µx

µy



 ,∑ =









∑zz ∑
T
xz ∑

T
yz

∑xz ∑xx ∑
T
xy

∑yz ∑xy ∑yy

















(1)

where µx, µy and µz are the mean vectors of X, Y and Z respectively and ∑uv is

the covariance matrix of two random vectors U and V. We assume that all of these

covariance matrices are positive definite. The aim of this article is to derive the exact

joint distribution of a linear combination of order statistics (aTX(n)) and a linear

combination of their concomitants(bTY[n]) in the presence of a p-dimensional random

vector Z, where a = (a1,a2, . . . ,an)T and b = (b1,b2, . . . ,bn)T are arbitrary vectors in Rn.

We show that the joint distribution of
(

Z,aTX(n),b
TY[n]

)T
is a mixture of skew-normal

distributions. Furthermore, we may explore some regression equations using order

statistics, concomitants and covariate variables which generalizes those investigated in

Viana and Lee (2006).

Following Arellano Valle and Azzalini (2006), we say that the random vector X fol-

lows a multivariate skew-normal distribution, denoted by Y ∼ SUNd,m (ξ, δ,Ω, Γ,Λ),

if its density can be written as

fY (y) = φd (y;ξ,Ω)
Φm

(

δ+Λ
T
Ω

−1 (y−ξ) ; Γ−Λ
T
Ω

−1
Λ
)

Φm (δ; Γ)
y ∈ R

d (2)

where δ ∈ R
m, ξ ∈ R

d , Γ ∈ R
m×m, Λ ∈ R

m×d and Ω ∈ R
d×d is a positive definite

covariance matrix and ϕd(., ξ,Ω) is the density function of a d-dimensional normal

with mean vector ξ and covariance matrix Ω and Φm(.; ∑) is the multivariate normal

cumulative function with covariance matrix ∑.
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Let

(

U

V

)

∼ Nm+d

((

δ
ξ

)

,

(

Γ Λ
T

Λ Ω

))

A d-dimensional random vector Y is said to have a unified multivariate skew-normal,

Y ∼ SUNd,m (ξ,δ,Ω,Γ,Λ) say, if

Y
d
= V | U > 0. (3)

The density of this random vector can be written as (2).

For more information on multivariate skew-normal distributions and their applica-

tions we refer the reader to Azzalini and Dalla Valle (1996), González-Farı́as et al.

(2003), etc. An overview of which can be found in the book edited by Genton (2004)

and in the review paper by Azzalini (2005).

The remainder of this paper is organized as follows. In Section 2, we state and prove

the main theorem of the paper and deduce some useful corollaries in regression analysis.

Section 3 contains some numerical applications of our results.

2. Main results

Consider the following partition of Y and its corresponding parameters

Y =

(

Y1

Y2

)

, ξ=

(

ξ1

ξ2

)

, Ω=

(

Ω11 Ω
T
21

Ω21 Ω22

)

, Λ=

(

Λ1

Λ2

)

(4)

where Y1 is a vector of dimension d − 1 and Λ1 and Λ2 have dimensions (d − 1)×m

and 1×m respectively. The two following lemmas are generalizations of those presented

in Sheikhi and Jamalizadeh (2011).

Lemma 1 [9]. If Y =
(

Y
T
1 , Y2

)T
∼ SUNd,m(ξ,δ,Ω,Γ,Λ), then

a) YT
1 ∼ SUN(d−1),m(ξ1,δ,Ω11,γ,Λ1)

b) Y2|Y1 = y1 ∼ SUN1,m(ξ2.1,δ2.1,ω22.1,Γ2.1,Λ2.1)

c) MY2|Y1=y1
(t) = exp(ξ2.1t + 1

2
t2ω22.1)

Φm(δ2.1+Λ2.1t;Γ21.)
Φm(δ2.1;Γ2.1)

t ∈ R

where ξ2.1 =ξ2+Ω2.1Ω
−1
11 (y1−ξ1), δ2.1 = δ+Λ

T
1Ω

−1
11 (y1−ξ1),ω22.1 =ω22−Ω21Ω

−1
11

Ω
T
21, Γ2.1 = Γ−Λ

T
1Ω

−1
11 Λ1 and Λ2.1 =Λ2 −Ω21Ω

−1
11 Λ1.
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Lemma 2 [8]. If Y =
(

YT
1 ,Y2

)T
∼ SUNd,m(ξ,δ,Ω,Γ,Λ), then the conditional expecta-

tion of Y2 given Y1 = y1 in (4) is

E(Y2|Y1 = y1) = ξ2.1 +
Gm(0; δ2.1,Λ2.1,Γ2.1)

Φm(δ2.1;Γ2.1)
(5)

where Gm(0; A, B, Σ) = ∂
∂ t

Φm (At + B; Σ) |t = 0.

We now define S(X) to be the class of all permutations of components of the ran-

dom vector X, i.e. S(X)={X
(i) = PiX; i = 1,2, . . . ,n!} where Pi is an n×n permutation

matrix. We also define the matrix ∆ to be the difference matrix of dimension n− 1

by n such that its ith row is eT
n, i+1− eT

n, i, i = 1,2, . . . ,n− 1, where en,1, en,2, . . . ,en,n−1

are n-dimensional unit basis vectors, i.e. ∆X = (X2 −X1, X3 −X2, . . . ,Xn −Xn−1)
T. Fur-

ther, let X(i) be the ith permutation of the random vector X. We have P
(

∆X (i)
≥ 0

)

=

1−Φm(−(∆∑
(i)
xx ∆

T)−1/2
∆µ

(i)
x ) where µ

(i)
x and ∑

(i)
xx are the mean vector and covari-

ance matrix of the random vector X(i), respectively. Hereafter we adopt the notation

Gi(t,ξ,∑) for P
(

∆X (i)
≥ t

)

.

Theorem 1 Under the assumption of model (1) The cdf of random vector
(

Z,aTX(n),

bTY[n]

)T
is the mixture

F
Z,aTX(n),b

TY[n]
(z, x, y) = ∑

n!
i=1 FSUN(z, x, y ;ξi,δi,Γi,Ωi,Λi)Gi(t,ξ,σ)

where FSUN(. ; ξi,δi,Γi,Ωi,Λi) is the cdf of unified multivariate skew-normal with ξi =
(

µz,a
T µ(i)x ,bT µ(i)y

)T

,δi = ∆µ
(i)
x , Γi = ∆∑

(i)
xx ∆

T, Λi =
(

∆∑
(i)
xz ,∆∑

(i)
xx a,∆∑

(i)
yy b

)T

and ∑
(i)
ux is the covariance matrix of random vector U and the ith permutation of the

random vector X . Moreover, Ωi is the covariance matrix of
(

Z,aTX(i)
,bTY(i)

)T

.

Proof. We have

F
Z,aTX(2),b

TY[2]
(z, x, y) = P

(

Z ≤ z,aTX(n) ≤ x,bTY[n] ≤ y
)

=
n!

∑
i=1

P
(

Z ≤ z,aTX(i)
≤ x,bTY(i)

≤ y|∆X(i)
≥ 0

)

P
(

∆X(i)
≥ 0

)

=
n!

∑
i=1

P
(

Z ≤ z,aTX(i)
≤ x,bTY(i)

≤ y|∆X(i)
≥ 0

)

Gi(t,ξ,Σ).
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Furthermore,













∆X(i)

Z

aTX(i)

bTY(i)













∼Nn+p+1































∆µ
(i)
x

µz

aTµ(i)x

bTµ(i)y















,

















∆∑
(i)
xx ∆

T
∆∑

(i)
xz ∆∑

(i)
xx a ∆∑

(i)
yy b

∑zz ∑
(i)
zx a ∑

(i)
zy b

aT ∑
(i)
xx a aT ∑

(i)
xy b

bT
∑

(i)
yy b

































.

Now using (3) we immediately conclude that

(

Z,aTX(i)
,bTY(i)

)T

|∆X(i)
≥ 0 ∼ SUNp+2,n−1(ξi,δi,Γi,Ωi,Λi).

This establishes the theorem.

Using the previous theorem and lemma 1, we find the conditional distribution of

linear combinations of concomitants given linear combinations of order statistics and

covariates.

Corollary 1 Under the assumptions of model (1) the cdf of the random variable bTY[n]

condition on Z=z and aTX(n) = x is the mixture

F
bTY[n] |Z,a

TX(n)
(y|z,x) = ∑

n!
i=1 FSUN(y |z,x;ξi,δi,Γi,Ωi,Λi)Gi(t,ξ,∑)

where FSUN(y |z,x ;ξi,δi,Γi,Ωi,Λi) is the cdf of conditional unified skew-normal of

bTY(i) = y given Z=z and aTX(i) = x and the parameters are as in theorem 1.

The following corollary is obvious via lemma 2.

Corollary 2 Under the assumptions of model (1) the regression equation of bTY[n] on

Z and aTX(n) is

E(bTY[n] |Z=z,aTX(n) = x) = ∑
n!
i=1ξ

(i)
2.1 +

G
(i)
n−1(0;δ2.1,Λ2.1,Γ2.1)

Φn−1(δ2.1;Γ2.1)

where the superscript (i) denotes the parameters based on the ith permutation of X.

In the remainder of this section, we shall focus on a special case of the multivariate

normal distribution. Let the joint distribution of a p-dimensional random vector Z, and

two random vectors X and Y follow a 2n+ p dimensional exchangeable multivariate

normal random distribution, i.e. its covariance matrix is equicorrelated. Hence we have





Z

X

Y



∼ N2n+p



µ=





µz

µx

µy



 ,∑ =





∑zz ∑
T
xz ∑

T
yz

∑xz ∑x ∑
T
xy

∑yz ∑xy ∑y







 (6)
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where

µx = µx1n, µy = µy1n,∑xx = σ
2
x

[

ρx1n1T
n +(1−ρx)In

]

,

∑yy = σ
2
y

[

ρy1n1T
n +(1−ρy)In

]

,∑xy = ρxyσxσyJ,

where 1n=(1, . . . ,1)T
, In = diag(1, . . . ,1) and J = [1]n×n. This model is the generaliza-

tion of that assumed in Viana and Lee (2006).

Sheikhi and Jamalizadeh (2011) found the joint distribution of two linear combi-

nations of order statistics in the presence of a covariate random variable under the ex-

changeable assumption and presented some regression analyses.

Theorem 2 Under the assumption of model (5),

(

Z,aTX(n),b
TY[n]

)T
∼ SUNp+2,n−1 (ξ,δ,Ω,Γ,Λ)

where ξ=
(

µz,a
Tµx,b

Tµy

)T
,δ = 0, Γ=∆∑x∆

T,Λ=
(

∆∑xz,∆∑xx a, ∆∑yy b
)T

and Ω is the covariance matrix of
(

Z, aTX, bTY
)T

.

Proof. Since P
(

∆X(i)
≥ 0

)

= 1
n!
, i = 1, . . . ,n!, by exchangeability we have

F
Z,aTX(2),b

TY[2]
(t1, t2, t3) = P

(

Z ≤ t1,a
TX ≤ t2,b

TY ≤ t3|∆X > 0
)

.

Moreover,















∆X

Z

aTX

bTY















∼ Nn+p+1

























0

µz

aTµx

bTµy











,















∆∑xx∆
T

∆∑xz ∆∑xx a ∆∑xy b

∑zz ∑
T
xz a ∑

T
yz b

aT ∑xx a aT ∑xy b

bT
∑yy b





























.

So
(

Z,aTX,bTY
)T

|(∆X > 0) ∼ SUNp+2,n−1 (ξ,δ,Ω,Γ,Λ), where the parameters are

as given in theorem 2.

We may also interested in predicting the concomitants using order statistics and some

covariates. The following corollary provides such a regression equation.

Corollary 3 Under the assumptions of model (1) the regression equation of bTY[n] on

Z and aTX(n) is
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E(bTY[n] |Z=z,aTX(n) = x) = ξ2.1 +
Gn−1(0; A,Ω)

Φn−1 (δ; Γ)

where

ξ2.1 = bTµy+
1

bT
∑yy b

[

bT
∑yz(Z− z)+bT

∑xy a(aTX−aTµx)
]

and Gn−1(0; A,Ω) was defined in lemma 2.

The regression equation of Y[i] on Z and X(i) may be determined by letting the i-th

component of the random vectors a and b equal to 1 and other all components equal to

zero. Specifically, this regression equation and the regression equation of Y[i] on Z and

X coincide and expressed as

Y[i] = µy +
1

ρyσ2
y

[σyz(Z− z)+ρxyσxσy(X −µx)]+
Gn−1(0; A,Ω)

Φn−1 (δ;Γ)
(7)

where σyz = cov(Z, Y ).

Olkin and Viana (1995) discussed that the linear regression of a random variable Z

on X and Z on X(n) coincide.

3. Numerical results

Viana and Lee (2006) considered the data from a pilot study in which a number of

physiological parameters were measured at a specific site on the left and right brain

hemispheres of subjects participating in a study conducted at the sleep centre of the

University of Illinois at Chicago. They considered the following variables, jointly

observed in a sample of N = 30 subjects:

(Z) : age;

(Xs) : tissue oxygenation on the right site;

(Xd) : tissue oxygenation on the left site;

(Ys) : total hemoglobin on the right site;

(Yd) : total hemoglobin on the left site.

They explored their results by assuming XT = (Xs, Xd) and YT = (Ys, Yd). In par-

ticular, they estimated the covariance matrix of the random vector (Z, XT
(2), YT

[2])
T. In

this section we use these data to estimate the distributions obtained in the previous sec-

tion. We assume that (Z, XT
, YT)T follows a 5 dimensional exchangeable multivariate

normal distribution. The MLE of parameters are as follows:
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µ̂=













50.000

57.275

57.275

39.695

39.695













, Σ̂=













128.410 −28.110 −28.110 −35.996 −35.996

−28.110 40.016 26.090 42.909 42.909

−28.110 26.090 40.016 42.909 42.909

−35.996 42.909 42.909 159.58 113.06

−35.996 42.909 42.909 113.06 159.58













Hence, ρ̂x=0.651, ρ̂y=0.722, ρ̂xz = 0.392, ρ̂yz = 0.251, ρ̂xy = 0.536. By considering

a = b = (0, 1)T
, theorem 2 implies that (Z, X(2),Y[2])

T
∼ SUN3,1 (ξ,δ,Ω,Γ,Λ), where

ξ=





50.000

57.275

39.695



 , Ω=





128.410 −28.110 −35.996

−28.110 40.016 42.909

−35.996 42.909 159.58



 , Λ =





0

13.965

0



 ,

δ = 0, Γ= 27.931.

Furthermore, the estimated regression equation of Y[2] on X(2) and Z follows from

(6). We readily obtain

Y[2] =−16.685+0.054Z+1.034X(2) .

Also, the linear regression of Y[2] on Z is easily estimated as Y[2] = 59.909−0.287Z,

then as obtained by Viana and Lee (2006). In addition, the regression of Y[2] on X(2) can

be expressed as Y[2] = 24.294+0.269X(2) .

Similarly, we may obtain the joint distribution of (Z, X(1),Y[1]) as well as the regres-

sion equation of Y[1] on X(1) and Z by letting a = b = (1, 0)T.

4. Conclusion

In this work we find the joint distribution of a linear combination of order statistics and

a linear combination of their concomitants in the presence of some covariate random

variables as a member of the skew-normal distribution. Some useful special cases of

this distribution are investigated as well as some conditional distributions.

The application of our results in density estimation and regression analysis is illus-

trated by a numerical data set. We hope to extend our results to elliptical distributions in

the future.
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Abstract

In recent years, kidney paired donation has been extended to include living non-directed or

altruistic donors, in which an altruistic donor donates to the candidate of an incompatible donor-

candidate pair with the understanding that the donor in that pair will further donate to the candidate

of a second pair, and so on; such a process continues and thus forms an altruistic donor-initiated

chain. In this paper, we propose a novel strategy to sequentially allocate the altruistic donor (or

bridge donor) so as to maximize the expected utility; analogous to the way a computer plays chess,

the idea is to evaluate different allocations for each altruistic donor (or bridge donor) by looking

several moves ahead in a derived look-ahead search tree. Simulation studies are provided to

illustrate and evaluate our proposed method.
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1. Introduction

For patients with end stage renal disease (ESRD), kidney transplantation is a preferred

treatment as compared with dialysis for it provides not only a longer survival but also a

better quality of life (Evans et al., 1985; Russell et al., 1992; Wolfe et al., 1999). Accord-
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ing to the Organ Procurement and Transplantation Network (OPTN), about 16,760

kidney transplants were performed per year from 2009 to 2012 in the U.S., while during

that same period of time the yearly average number of patients added to the waiting list

for kidney transplant surpassed 34,100. Part of this gap between supply and demand

can be attributed to the unfortunate fact that many patients with kidney failure recruit

willing organ donors who, upon evaluation, prove to be ABO blood type and/or Human

Leukocyte Antigens (HLA) incompatible. With regard to blood type compatibility, A

and B donors can donate to candidates of the same blood type or of type AB; AB

donors can donate only to AB candidates; and O donors, known as universal donors,

can donate to candidates of any blood type. The HLA incompatibility, on the other

hand, is due to the candidate having antibodies against the HLA antigens of a potential

donor resulting from prior exposure to donor antigens through pregnancy, transfusion

or previous transplant. Both forms of incompatibility can lead to a rapid rejection of the

transplanted organ and thus prohibit transplantation.

An evolving strategy, known as kidney paired donation (KPD) (Rapaport, 1986)

matches one donor-candidate pair to another pair with a complementary incompatibility,

such that the donor of the first pair donates to the candidate of the second, and vice

versa; see Figure 1-A and Figure 1-B for illustrations of a two-way exchange and a

three-way exchange. Although three-way or higher exchange cycles increase the chance

of identifying compatible matches, most KPD programs restrict exchanges to at most

three ways for two primary reasons. First, all surgical operations in a cycle must be

performed simultaneously to avoid the possibility that one of the donors may renege.

This requirement creates substantial logistical difficulties of scheduling, for example,

eight surgeons and eight operating rooms at the same time for a four-way exchange.

Second, the greater the length of an exchange cycle, the less likely the potential

transplants involved will actually occur, for the whole exchange cycle collapses if any

of the proposed transplants cannot proceed.

A fundamental problem in managing KPD programs lies in selecting the “optimal”

set of kidney exchanges from among the many possible alternatives. This problem has

been modeled and analyzed by economists using a game-theoretic approach (Roth et al.,

2004). More general approaches have been developed to tackle such a problem via an

integer programming (IP) formulation, first proposed by Roth et al. (2007); In this, each

Figure 1: (A): A two-way exchange; (B): A three-way exchange; (C): A NEAD chain.
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potential transplant was assigned equal weight, resulting in an allocation strategy that

enables the greatest number of transplants to be potentially implemented. Abraham et al.

(2007) adopted a more flexible weight assignment in this IP-based formulation and

further developed an algorithm to reduce the computational complexity of managing

large KPD programs. Li et al. (2013) considered a general utility-based evaluation

of potential kidney transplants. Moreover, they explicitly took into account inherent

uncertainties in managing KPD programs and exploited possible fall-back or contingent

exchanges when the originally planned allocation cannot be fully executed. In a data-

driven simulation system, they demonstrate that taking such additional elements into

consideration would yield improved allocation strategies.

In recent years, KPD has also been extended to include living non-directed donors

(LNDs), or altruistic donors; these are donors who have no designated candidates and

decide to donate voluntarily to a stranger. In this context, an altruistic donor may

donate to the candidate of an incompatible pair with the understanding that the donor

of that pair will become a bridge donor, and further donate to the candidate of a

second pair, and so on; such a process continues and thus forms an LND-initiated

chain. One advantage to such chains as compared to two-way or higher order exchange

cycles is that transplants along the chain do not need to be performed simultaneously

(Montgomery et al., 2006; Roth et al., 2006). As a consequence, the donor whose

incompatible candidate has received another donor’s kidney but has yet to donate could

donate later to another candidate; such donors are hence called “bridge donors”. For

this reason, this LND-initiated chain is sometimes called a non-simultaneous extended

altruistic donor (NEAD) chain (Rees et al., 2009). Figure 1-C illustrates a NEAD chain.

Kidneys from altruistic donors used to be designated to patients with no living donors

and who have therefore been placed on a deceased-donor waiting list. A NEAD chain,

however, allows for passing the altruism beyond saving just one patient, to potentially

benefitting several patients in the chain; the final donor in an NEAD chain could still

donate to the deceased-donor waiting list. The advantage of such chains has already

been demonstrated via simulation studies by Gentry et al. (2009) and Ashlagi et al.

(2011). In clinical practice, the standard way of incorporating LND and bridge donors

into the optimization of a KPD is to consider chains up to a given length along with

cycles in the optimization for each match run. Thus, at regular intervals, the KPD pool

is examined and a set of chains segments and/or a set of cycles are chosen using the

integer programming approach, and those chosen are implemented if possible.

In this paper, we consider a different strategy for developing a NEAD chain under

uncertainties in a KPD program with one altruistic donor. We also discuss in general

some possible extensions of this strategy to incorporate multiple altruistic donors.

Analogous to the way a computer plays chess, we propose an approach to sequentially

allocating an altruistic donor (or a bridge donor) so as to maximize the expected utility

over a certain given number of moves. The idea is to evaluate different allocation options

available for each altruistic donor (or bridge donor) by looking several moves ahead

along a derived look-ahead search tree. With these options in mind, we proceed with the
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next allocation of the altruistic or bridge donor that has the highest evaluation. This is

the first step in developing an approach that would alternate between optimizing the use

of LND and bridge donors and assigning cycles, each in an optimum way. This approach

would then be compared with the standard simultaneous maximization over chains and

cycles as described above.

The rest of the paper is organized as follows: in Section 2, we introduce a graph

representation for a KPD program with altruistic donors. With this representation, we

define the optimal policy in the context of managing a KPD program with one altruistic

donor. This optimal policy can be obtained in general by following a standard decision-

tree analysis, which we briefly illustrate in Section 3. The computation associated with

this decision-tree based approach, however, is very expensive for large KPD programs.

To address this issue, we propose, in Section 4, a more efficient and practical approach

which sequentially extends a NEAD chain according to the utility calculated along a

look-ahead search tree. Section 5 provides simulation studies to illustrate and evaluate

our proposed strategy. In Section 6, we conclude with some discussion on possible

extensions to incorporate multiple altruistic donors.

2. Problem formulation

In this section, we describe a graph representation for KPD programs that includes

incompatible pairs as well as altruistic donors. We then define the optimal policy in

the management of a KPD program with a single altruistic donor.

2.1. Graph representation

We represent a KPD program as a directed graph, G =(V ,E ), where the vertex set, V ≡

V (G ) = {1,2, · · · ,m,m+1, · · · ,n}, consists of m altruistic donors and n−m incompat-

ible donor-candidate pairs, where m ≤ n. We denote by, Va ≡ Va(G ) = {1,2, · · · ,m},

the collection of altruistic donors, and Vp ≡ Vp(G ) = V \Va, the set of incompatible

pairs. The edge set, E ≡ E (G ), is a binary relation on V , consisting of ordered pairs

of vertices in V . An edge from i to j, denoted as (i, j), implies that the donor in pair

i (or the altruistic donor i) is predicted to be compatible with the candidate in pair j.

Such a prediction is based on a virtual crossmatch test, which involves computer cross-

checking for blood type compatibility as well as comparing preexisting candidate an-

tibodies against donor HLA antigens. Before a predicted compatible transplant can be

further considered for an actual surgical operation, the compatibility must be confirmed

by a more labour-intensive laboratory crossmatch test to assure histocompatibility; this

involves incubating the serum of a candidate with the white blood cells of a prospective

donor. Figure 2 illustrates a graph representation for a two-way exchange, a three-way

exchange, and a NEAD chain, corresponding respectively to scenarios (A)-(C) in Fig-

ure 1.
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Figure 2: (A): A graph representation of a KPD program with a two-way exchange cycle, where

Vp = {1,2} and E = {(1,2),(2,1)}; (B): A graph representation of a KPD program with a three-way ex-

change cycle, where Vp = {1,2,3} and E = {(1,2),(2,3),(3,1)}; (C): A graph representation of a NEAD

chain, where Va = {1}, Vp = {2,3} and E = {(1,2),(2,3)}; donor 3 at the end of the chain becomes a

bridge donor.

The virtual crossmatch test is necessary because in practice the laboratory cross-

match test cannot be undertaken on all possibly compatible donors and candidates due

to labour and resource limitations. Further, even if the laboratory crossmatch result is

negative (non-reactive), an actual transplant operation may not occur due to other fric-

tion including, for example, refusal or illness or death of the candidate or the donor. To

incorporate such stochastic features, we associate with each edge, e = (i, j), a probabil-

ity (denoted as pe or pi j) that e, if chosen, could result in an actual transplant operation

(Li et al., 2013). Throughout the rest of the paper, we use the term “is viable” to indicate

that an edge could lead to an actual transplant.

In addition, we associate with each edge (or potential transplant) a general utility

(Li et al., 2013). Such utilities are often rule-based and determined by various attributes

such as degree of sensitization of the candidate against the potential donor pool, or time

since enrolment in the KPD. These utilities could also be based on predicted medical

outcomes such as the estimated graft or patient survival, or the incremental years of

recipient life that would accrue with a kidney transplant as opposed to a candidate’s

remaining on dialysis; see Wolfe et al. (2008). For each potential transplant e = (i, j),

we denote such an assigned utility as ue or ui j.

In this paper, our attention is not on the estimation of edge utilities and probabilities.

It is worth noting though that research along this line is important and needed in the

practical management of a KPD program; see more discussion on this aspect in Wolfe

et al. (2008), Schaubel et al. (2009), and Li et al. (2013).

2.2. The optimal policy

One difficulty with selecting a long NEAD chain and then arranging transplants accord-

ingly is that in practice this long chain can rarely be fully implemented. This is because

the chain would break as soon as one transplant cannot proceed as planned. In this paper,
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we propose to extend a NEAD chain sequentially in a near optimal way by selecting one

potential transplant recipient at a time. In subsequent discussion, we note how this can

be used as the basis of more general approaches.

Consider a KPD program with only one altruistic donor, i.e. m = 1 and Va = {1}.

This naturally implies (i,1) /∈ E for all i ∈ V , as altruistic donors don’t have designated

candidates. For j ∈ V such that j = 1 or (1, j) ∈ E , let G ( j) ≡ (V j,E j) be a subgraph

of G = (V ,E ), where

V j = {v ∈ V : v is accessible from j},

E j = {(v1,v2) ∈ E : v1 ∈ V j,v2 ∈ V j,v2 6= j}.

In this paper, a vertex j is said to be accessible from a vertex i if i = j or if there exists

a set of edges in E , denoted as {(ik, ik+1),k = 0,1, · · · ,n} such that i0 = i and in+1 = j.

In general terms, G ( j) represents the resulting KPD graph if the transplant according to

(1, j) ∈ E is arranged and j becomes a bridge donor.

Managing a KPD program with one altruistic donor could then be viewed as a

sequential decision problem, in which we start with U = 0 and G = G (1), and then

repeat the following steps until |V (G )|= 1:

1. choose one edge from A≡ {(1, j) : (1, j) ∈ E }, say (1,b).

2. if (1,b) is viable, update

U ←U +u1b,

G ← G (b),

1← b;

if (1,b) is not viable, update the KPD pool

G ← G−b(1), where G−b = (V ,E \{(1,b)}) .

Step (i) is carried out to implement a policy that would be used to manage the KPD

program by specifying what action from A to take at each loop; two sample policies are,

b = argmax
j:(1, j)∈A

u1 j

b = argmax
j:(1, j)∈A

u1 j p1 j.

These correspond to greedy algorithms that look at the next step only and manage to

optimize the utility or the expected utility of that step. They may, of course, be very

poor strategies since they ignore any subsequent implications of possible next steps.



Yijiang Li, Peter X.-K. Song, Alan B. Leichtman, Michael A. Rees and John D. Kalbfleisch 59

Figure 3: (A): A KPD program G with one altruistic donor and four incompatible pairs as well as various

subgraphs of G ; (B): A standard decision tree analysis for a KPD program G as in (A), with squares

representing decision nodes and circles indicating chance nodes; the decision node G3 (which is shaded)

appears twice in the tree and hence is only drawn once.

For any given policy on G = (V ,E ), the value of U after the algorithm terminates

can be interpreted as the cumulative claimed utility. This value, which we denote by U∞,

is random; and its expectation could be used to evaluate the policy from which it arose.

Among all policies defined in the above way, the optimal policy refers to the one that

attains the highest value of E(U∞). This way of defining the optimal policy provides a

formal framework that will prove convenient in later discussions, even though in general

one can rarely follow this optimal policy through until the iterative procedure ends. This

is an important issue, arising due to various practical concerns, that we will revisit in

Section 4.2.

Figure 3-A provides an illustrative example, where G represents a KPD program

with four incompatible pairs (vertices 2, 3, 4 and 5) and one altruistic donor (vertex

1). Starting from G , the action space is A = {(1,2),(1,3)} and suppose we proceed by

selecting (1,2). If it is viable, this would lead to G (2), denoted as G9 in Figure 3-A,

and the resulting value of U∞ is u12; if (1,2) is not viable, we end up with G1, at which

the updated action space becomes A = {(1,3)}. We then continue by selecting (1,3),

and if it is not viable, we stop at G2; if (1,3) is viable, we then proceed to G3, at which

the updated action space becomes A = {(3,4),(3,5)}; and we continue this process by
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selecting one allocation from A. In this paper, we assume that edges in a KPD graph have

an independence relationship. Though this assumption can be relaxed, it is a reasonable

one when pair withdrawal (due to factors such as pregnancy, illness, or death) does not

occur frequently; see Li et al. (2013) for related discussion.

3. Decision tree analysis for KPD

The optimal policy introduced in the previous section can be obtained by conducting a

standard decision tree analysis, which we briefly illustrate below using a small example.

The computation associated with such an analysis, however, can be rather complicated

for large problems. We will return to this computational issue in Section 4, and present

an alternative and more efficient approach to analyzing policies and optimizing the

allocations. Note that a general mathematical framework derived from theories of

Markov decision processes (MDPs) can be used to rigorously formulate the problem

of managing KPD programs with altruistic donors (Li, 2012). However, solving for the

optimal policy is computationally dificult for large or even moderate KPD problems,

which poses a serious impediment to the development of practical algorithms based on

this MDP framework. We briefly describe the MDP formulation in this section by using

a particular example. In Section 4, we describe an alternative and more efficient way of

analyzing the KPD that takes account of the fall-back options.

The structure of G in Figure 3-A cannot be used directly for a standard decision

tree analysis due to the existence of various fall-back options; for example, if edge

(1,3) is selected but not viable, we could fall back to (1,2). The complete analysis

is instead provided by a derived decision tree (oriented from left to right) as shown in

Figure 3-B, where squares represent decision nodes and circles indicate chance nodes.

Each decision node is followed in this tree by a fixed number of chance nodes associated

with all actions available at that decision node. Each chance node is then followed by

two decision nodes corresponding to the two possible outcomes of choosing that chance

node: one outcome is that the chosen transplant e ∈ E is viable, resulting in a utility of

ue, whereas the other is that e is not viable, for which zero utility is generated. These two

utilities are associated with the edges from the chance node to the two corresponding

decision nodes. For example, in Figure 3-B, starting from the decision node G , two

actions are available, either arrange a transplant according to edge (1,2) leading to

chance node a or according to edge (1,3) leading to chance node e. In the case where

(1,2) is chosen, associated with the chance node a are two possible outcomes, G1 and

G9, which occur with probabilities 1− p12 and p12 respectively. If G9 occurs, we claim

a utility of u12, and zero utility is generated if G1 occurs, for which we continue on this

analysis from chance node b.

The expected value (EV) associated with a chance node or a decision node is

calculated alternately in a backward direction along the tree from the right to the left.

Precisely, (i) the EV at a leaf decision node is 0 (this could be set to some non-zero
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number to represent the potential value associated with the corresponding bridge donor;

see more discussion on this in Section 6); (ii) the EV at a chance node is computed by

taking a weighted average of the sums of the utilities along the edges originating at this

chance node and the EVs at the corresponding successor decision nodes; (iii) the EV at

a non-leaf decision node is calculated by taking the maximum of the EVs of its children

nodes.

For example, in Figure 3-B, the EVs at decision nodes G5 and G8 are EV [G5] =

EV [d] = p35u35 and EV [G8] = EV [h] = p34u34 respectively. The EVs at chance nodes

c and g are EV [c] = p34u34 +(1− p34)EV [G5] and EV [g] = p35u35 +(1− p35)EV [G8]

respectively. This indicates that EV [c] ≥ EV [g] if and only if u34 ≥ u35, and the action

taken at G3 is therefore (3,4) or (3,5) depending on which one has the larger edge utility.

The EV at node G3 is then calculated as

EV [G3] = max{EV [c],EV [g]}

= max{p34u34 +(1− p34)p35u35, p35u35 +(1− p35)p34u34}. (1)

After computing EVs associated with all decision and chance nodes in this way, the

optimal policy at each decision node is to adopt the action associated with the chance

node that has the maximum EV. This procedure starts from the root decision node, that

is from the altruistic donor.

4. A look-ahead search tree-based strategy

The structure of the derived decision tree in Figure 3-B is much more complicated than

the structure of G itself in Figure 3-A. As a result, the standard decision tree analysis as

introduced in Section 3 results in substantial computational difficulties when the KPD

graph is large. In this section, we address this issue by presenting a more efficient and

practical approach that relies on evaluating different allocations for each altruistic donor

(or bridge donor) according to a derived look-ahead search tree.

4.1. Identifying the optimal policy via a search tree

Consider first a KPD program, G = (V ,E ), where Va = {1},Vp = {2,3, · · · ,n}, and

E = {(1, i) : i = 2,3, · · · ,n}. Without loss of generality, assume u12 ≥ u13 ≥ ·· · ≥ u1n.

For this specific KPD program, the optimal policy to follow at G is to try transplant

(1,2), and if it fails then try (1,3), then (1,4) and so forth. The associated EV of this

policy is

EV [G ] =
n

∑
k=2

{

u1k p1k

k−1

∏
i=2

(1− p1i)

}

. (2)
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Based on this fact, we could then select the optimal action to take from G directly and

hence avoid explicitly constructing a decision tree and calculating the EV associated

with each node of the tree, as would be required for the standard decision analysis

in Section 3. This observation is very useful as we can see, for example, by applying

formula (2) at the decision node G3 in Figure 3-B. This would lead to the optimal action

of taking (3,4) or (3,5) depending on which one has the larger utility; and the EV at G3

is therefore computed as

EV [G3] = 1[u34≥u35] {p34u34 +(1− p34)p35u35}+1[u34<u35] {p35u35 +(1− p35)p34u34} .

(3)

Note that formula (3) is exactly equal to the one calculated via a standard decision

analysis as in formula (1), but this latter approach requires calculating EVs at additional

nodes G5 and G8.

Consider now a KPD program, G = (V ,E ), where Va = {1}, let A≡{(1, j) : (1, j)∈

E } and u∗1 j ≡ u1 j +EV [G ( j)], for all (1, j) ∈ A. Without loss of generality, we assume

A = {(1, j) : j = 2,3, · · · , l} and u∗12 ≥ u∗13 ≥ ·· · ≥ u∗1l . Then the optimal decision to take

at G is to attempt transplant (1,2); and if it fails, try (1,3) and then (1,4), and so on; the

associated EV is

EV [G ] =
l

∑
k=2

{

p1ku∗1k

k−1

∏
i=2

(1− p1i)

}

. (4)

Based on this result, we could evaluate various choices in A by u∗1 j and then proceed

with the one having the largest value. We repeatedly apply this procedure from terminal

nodes up to sequentially form a NEAD chain, with formula (4) evaluating the expected

utility in this process.

To identify the optimal action to take at G , we recursively apply formula (4), which

in fact does not require calculating EVs associated with all decision nodes and chance

nodes, but only a fraction of them. These required nodes can then be organized according

to their dependence relationship as in (4) to form a search tree. In this tree, the node on

the left hand side of (4) is the parent while the nodes on the right hand side denote

children; and edges connecting them represent the corresponding actions. The structure

of this tree therefore allows us to compute EVs associated with its nodes recursively in

a backward manner from the leaf nodes to the root.

Figure 4 provides an example of a search tree and illustrates calculating EVs

associated with its nodes; the search tree in this figure only involves 5 nodes, much

less than that of the decision tree in Figure 3-B. The optimal action to take at G in this

example is edge (1,3) if u∗12 = u12 is smaller than u∗13 = u13 +EV [G3] or edge (1,2) if

otherwise; the EV at G is therefore computed as

EV [G ] = 1[u∗13≥u∗12]
{p13u∗13 +(1− p13)p12u∗12}+1[u∗13<u∗12]

{p12u∗12 +(1− p12)p13u∗13} .
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Figure 4: A search tree-based analysis for a KPD program G .

Clearly, the decision analysis of this search tree is much simpler than that from a

standard decision tree as in Figure 3-B, although both lead to the same result.

In general, the search tree associated with a KPD program can be constructed by an

algorithm based on the classic depth-first search (DFS). We developed such an algorithm

that also computes the EVs while performing a DFS on the KPD graph. The optimal

policy is then determined by the following iterative algorithm:

1. for G = (V ,E ), construct the corresponding search tree by following a DFS-based

algorithm, and compute the EV associated with each node of this search tree; this

is done recursively from the terminal nodes up to the root node.

2. update the current action space A ≡ {(1, j) : (1, j) ∈ E (G )}, and calculate u∗1 j =

u1 j +EV [G ( j)] for (1, j) ∈ A.

3. choose (1,b) ∈ A with b = argmax j:(1, j)∈A u∗1 j.

4. if (1,b) is viable, update

G ← G (b), i.e. update the KPD graph,

1← b, i.e. set the bridge donor b as the new altruistic donor;

if (1,b) is not viable, update the KPD pool

G ← G−b(1), where G−b = (V ,E \{(1,b)}) .

5. go back to (ii) until |V (G )|= 1.
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For completeness, we also briefly describe here a slightly more complicated example

in which the KPD itself is not a tree (as it is in Figure 3-A above). The KPD in this

example is obtained by adding edges (2,4) and (4,3) to the KPD graph G in Figure 3-

A. Note that vertex 4 can be reached in two distinct ways and gives rise to two distinct

subgraphs. Specifically, if (1,3) and (3,4) are transplanted, G (4) only has vertex 4; if

(1,2) and (2,4) are transplanted, G (4) has vertices 4 and 3 and also contains edge (4,3).

4.2. A depth-k search tree

Although the search tree-based approach allows for a much more efficient analysis than

does a standard decision tree analysis, constructing such a search tree is computationally

very expensive for a general large KPD graph; in fact, the computation is extensive even

without the effort entailed in computing EVs associated with nodes along that tree. This

unfortunate fact poses a substantial difficulty in identifying the optimal policy when the

KPD program is large.

Further, a more important issue is that the optimal policy (even if it could be

computed) would most likely not be implementable in practice. This is mainly because

the practical process of initiating and extending a NEAD chain would require a relatively

long period of time, during which the KPD pool would constantly be updated and

evolve as new pairs arrive and/or existing pairs withdraw or candidates die; in addition,

candidates in the pool may also be transplanted via exchanges among incompatible pairs

or deceased donor kidneys from the waiting list, since these would typically be arranged

in parallel with the NEAD chain mechanism. Thus, assessing strategies by looking a

long way down the tree from the root node is often not that useful in practice.

To address such problems, we propose to proceed by first deriving a subtree, which

we call a depth-k search tree, from the original search tree. Such a subtree can be readily

obtained by the same DFS-based algorithm as introduced in Section 4.1, by simply

restricting the depth of the search from the root node to k. We then follow the recursive

relationship as in formula (4) to calculate the EVs associated with corresponding nodes

in the subtree, beginning this calculation from the leaf nodes at depth k and working

up through the tree to the root node. The EV of a leaf node is set to zero or some

reasonable measurement of the value of the corresponding bridge donor (see Section 6

for more discussion). At this stage the iterative procedure presented in Section 4.1 can

be applied, but with one modification that – if the chosen action (1,b) is viable, we

regenerate a depth-k search tree rooted at G (b) and compute EVs associated with the

nodes of this new tree.

Instead of the optimality that exists only in a rather idealized scenario, the policy

obtained from the depth-k search tree provides a more practical evaluation of potential

bridge donors and a greatly reduced computational complexity. Further, our simulation

results (see Section 5) suggest that the allocation strategy derived from a search tree

performs reasonably well for a moderate depth of, say, 3 or 4. It is useful to note that
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this strategy is feasible in the context of the search tree approach of this section, but

would still be very complicated to implement using the standard decision tree analysis;

for example, the depth-1 search tree constructed according to formula (2) provides the

same analysis as the one via a standard decision tree of depth 2n+1.

5. Simulation studies

So far in this paper, we have explored a look-ahead search tree-based approach to

manage a KPD program with one altruistic donor. This approach sequentially extends a

NEAD chain by selecting one potential bridge donor at a time, taking into consideration

the operational uncertainties and the long-term consequences associated with various

possible selections. In this section, we provide simulation results of applying such an

allocation strategy to manage a simulated KPD program.

5.1. Simulating incompatible pairs and altruistic donors

We simulate incompatible pairs and altruistic donors as in Li et al. (2013). For an

incompatible pair, we simulate its candidate and donor separately from their own

population distributions. Candidates are sampled at random (with replacement) from a

database of incompatible pairs, which is derived from the University of Michigan KPD

program. This database currently consists of 115 transplant candidates, each having

at least one willing but incompatible donor. We are in the process of incorporating

additional databases from other KPD programs for the purpose of reflecting a broader

candidate variation. On the other hand, donors are simulated by sampling their blood

types and HLA haplotypes respectively. Blood type is drawn from its U.S. population

distribution: O, 44%; A, 42%; B, 10%; and AB, 4% (Stanford Blood Center, 2010), and

HLA haplotypes are sampled according to a population frequency table derived from a

public database on potential bone marrow donors (Maiers et al., 2007).

We consider a simulated donor-candidate pair as an incompatible pair, and hence

include it in the KPD pool, if either their blood types mismatch or the donor’s HLA

haplotypes overlap with some of the candidate’s antibody specificities. Finally, an

altruistic donor is generated in the same way as we have described above for generating

a donor in an incompatible pair.

5.2. Simulation setup

In Section 2.1, each potential transplant (which is predicted to be compatible by a

virtual crossmatch test) is assigned a probability to reflect the inherent uncertainty in

the system and a general utility to quantify the rule-based or outcome-based evaluation
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of that potential transplant. As we have mentioned, estimation of these probabilities

and utilities is an important aspect in the practical management of a KPD program.

This also forms an independent line of research in parallel with the work of developing

KPD allocation strategies. For illustrative purpose, our approach here is to obtain these

utilities and probabilities according to certain simplified probability distributions, and

then use them to study the method proposed in Section 4.2.

We perform a total of 3,000 simulations. In all simulations, edge probabilities are

generated from a uniform distribution, U(0.1,0.5), which suggests an average success

rate of 30% for a predicted compatible (by virtual crossmatch test) transplant. This rate

is in line with the early experience at the University of Michigan KPD program and the

Alliance for Paired Donation, though current success rate are somewhat higher. For edge

utilities, we fix them at 1 for 1,000 simulations, draw them from uniform U(10,20) and

U(10,30) respectively for the remaining 2,000 simulations (with 1,000 each). For each

simulation, we execute an allocation strategy based on a depth-k search tree for k equal

to 1, 2, 3, 4, and 5 respectively. We then record important performance measures such

as cumulative claimed utilities and cumulative number of transplants. Note that when k

is equal to 1, the allocation strategy simply corresponds to selecting, among all possible

choices available for the altruistic donor, the one that has the largest edge utility.

5.3. Simulation results

First, we report on the cumulative number of transplants achieved in simulated KPD

programs with one altruistic donor and 100 incompatible donor-candidate pairs. We

compare the average number of transplants across different values of k and under the

three utility generating distributions. Table 1 provides summary comparison, in which

we observe a consistent pattern where the number of transplants performed increases

with k. This is true regardless of which distribution is used to generate edge utilities.

Table 1: Summary of the average number of transplants performed (denoted by N) and the average

cumulative utilities claimed (denoted by U∞), by implementing a depth-k search tree-based allocation

strategy on a simulated KPD program with one altruistic donor and 100 incompatible pairs. Edge

utilities are generated from U(1,1), U(10,20), and U(10,30); and edge probabilities are generated from

U(0.1,0.5). The summary is calculated over 3,000 rounds of simulations, with 1,000 simulations for each

utility generating distribution. Note that for the choice U(1,1), the claimed utility equals the number of

completed transplants.

ue = 1 ue ∼U(10,20) ue ∼U(10,30)

depth-k mean N mean N mean U∞ mean N mean U∞

k = 1 3.16 3.18 55.99 3.18 80.22

k = 2 8.17 6.65 112.21 6.19 149.58

k = 3 8.70 7.87 128.93 7.63 176.78

k = 4 8.74 8.26 133.54 7.99 181.92

k = 5 8.89 8.41 134.45 8.29 185.43
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Table 2: Three correlation matrices for the total number of transplants performed in a depth-k search tree-

based allocation strategy across different values of k. The entry at the ith row and the jth column represents

the correlation between the total number of transplants when k = i and that when k = j when managing the

same simulated KPD program (with one altruistic donor and 100 incompatible pairs). Matrix on the left:

ue = 1; matrix in the middle: ue ∼U(10,20); matrix on the right: ue ∼U(10,30).

1 .34 .34 .33 .31

− 1 .67 .67 .66

− − 1 .79 .73

− − − 1 .81

− − − − 1

1 .27 .29 .26 .29

− 1 .50 .51 .48

− − 1 .66 .58

− − − 1 .72

− − − − 1

1 .29 .27 .29 .29

− 1 .46 .48 .48

− − 1 .58 .57

− − − 1 .72

− − − − 1

Another observation is that the extra benefit in the number of transplants through

increasing k is diminishing as k gets large. For example, when edge utilities are

generated from U(10,20), increasing the value of k from 1 to 4 would almost triple the

total number of transplants (on average from 3.18 to 8.26); however, further increasing

k (from 4 to 5) appears to have very limited effects.

In terms of comparing the cumulative claimed utility, Table 1 also demonstrates

similar patterns to those observed above for comparing the number of transplants. These

results suggest that k = 3 or 4 would provide a satisfactory solution in practice. Further

investigation, however, with data from more KPD programs would be useful. Notice

that when edge utilities are fixed at 1, the cumulative claimed utility is the same as the

cumulative number of transplants.

Finally, we take a look at the correlation matrix among five variables; each variable

represents the number of transplants performed when k is equal to each one of the five

values. We anticipate that the correlation between variable 4 (the number of transplants

achieved when k = 4) and variable 5 would be higher than the correlation between

variable 1 and variable 5. Table 2 exactly unveils such a pattern in three correlation

matrices (with each one corresponding to one utility generating distribution). Similar

observations are also noted in the correlation matrices for the cumulative claimed utility.

6. Concluding remarks

In this paper, we have studied the problem of managing a KPD program with one

altruistic donor. One important yet challenging part of this problem is to recognize

various friction (as discussed in Section 2.1) inherent in the system and to guide the

decision-making process by taking into account these uncertainties. Realizing the fact

that a long pre-specified NEAD chain in practice can almost never be implemented

as planned, we propose to initiate and extend such a chain in a sequential way by

selecting potential transplant recipients one at a time. Each selection is made keeping

in mind the associated long-term consequences so as to maximize the expected gain

over a certain given number of moves. In order to do this efficiently and practically, we
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construct a depth-k search tree for a KPD graph using a DFS-based algorithm. We then

evaluate various choices available for each altruistic donor (or bridge donor) according

to the calculation performed along that search tree, and recommend the choice with the

greatest expected utility.

In the process of extending a NEAD chain, the bridge donor at the end of the current

chain might be incompatible with a majority of the candidate population, which would

significantly prolong the waiting time for that bridge donor to be matched with a present

or future candidate. Furthermore, this long waiting time for the hard-to-match bridge

donor may make him/her more likely to withdraw from the KPD pool and so terminate

the NEAD chain. To partially avoid this unfortunate circumstance, some KPD programs

have not allowed a blood type AB donor to become a bridge donor. Actually, this

issue can be partially addressed in our proposed sequential allocation strategy, which

incorporates the long-term consequences associated with each pair choice, and would

in general tend to avoid choices that could lead to a hard-to-match bridge donor. As we

have briefly mentioned in Section 3 and Section 4.2, one way to further address this

issue is to assign each possible bridge donor a reasonable base utility. This base utility

represents the potential “contribution” from a bridge donor; a hard-to-match bridge

donor would be assigned a small base utility and an easy-to-match one would be given

a larger value.

Although this paper has focused on managing a KPD program with one altruistic

donor, the proposed approach can be generalized to incorporate multiple altruistic

donors. One way to achieve this is to construct a depth-k search tree for each altruistic

donor and use this tree to evaluate various allocations options available for that altruistic

donor according to the method in Section 4.2. Among all allocations possible for these

altruistic donors, we select a disjoint collection such that the overall expected utility

can be maximized. More specifically, let Va ≡ {1,2, · · · ,m} be m altruistic donors in a

general KPD program. We denote by A ≡ ∪m
i=1{(i, j) ∈ E } the possible allocations

available for these m altruistic donors. Each potential transplant, (i, j) ∈ A , can be

evaluated by its expected utility, which is calculated as u∗i j = ui j +EV [G[i]( j)], where

G[i] ≡ G (i). We then select from A a disjoint collection of edges (or transplants), in

the sense that no two edges can share a common vertex, so as to maximize the sum

of expected utilities. For those selected transplants, viable ones would result in actual

operations and generate new bridge donors, and altruistic donors and incompatible pairs

involved in non-viable transplants are recycled back to the KPD pool.

The above way of allocating multiple altruistic donors can be arranged in parallel

with the selection of exchange sets (or cycles) among incompatible pairs. Let Sr be

the collection of all exchange sets of size up to r among (n−m) incompatible pairs (Li

et al., 2013). Typically, in clinical KPD programs, one chooses r = 3, although larger

exchanges could be considered as well. For each S ∈Sr, let EUS represent its expected

utility and let YS be a decision variable equal to 1 if S is selected and 0 if not; for each

(i, j) ∈ A , Zi j is another decision variable whose value is 1 if (i, j) is chosen for a

transplant and 0 otherwise; the expected utility of this potential transplant (i, j) is given
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by u∗i j as discussed above. By adopting a formulation that is similar to the one proposed

in Li et al. (2013), we then manage such a KPD program by solving the following IP

problem:

max
{YS},{Zi j}

{

∑
S∈Sr

YSEUS + ∑
(i, j)∈A

Zi ju
∗

i j

}

, (5)

subject to ∑
S∈Sr(l)

YS + ∑
(i, j)∈A (l)

Zi j ≤ 1,∀l ∈ V , (6)

where, in (6), Sr(l) represents the exchange sets in Sr that contain l and A (l) similarly

denotes a subset of transplants in A that involve l. Various extensions of this approach

would be possible to allow fall back options for the exchanges and for the assignment of

the altruistic donors. Such approaches are discussed in Li et al. (2013). This approach,

and extensions of it, provide an alternative to the simultaneous selection of chains and

cycles as is traditionally done in the match runs of a KPD; see for example, Roth et al.

(2006), Gentry et al. (2009), and Ashlagi et al. (2011).

The mechanism of a NEAD chain allows the altruism from a single altruistic

donor to benefit a potentially large number of patients, but it does so exclusively for

patients recruiting a willing but incompatible living donor. This mechanism excludes

patients without a designated living donor and who are therefore placed on a deceased-

donor waiting list. Among those patients who would benefit from this NEAD chain,

approximately 73% of them are white; whereas those who would not benefit from this

mechanism form a 52% non-white population (Segev et al., 2008). On the other hand,

not all altruistic (or bridge) donors are well suited for initiating and extending chains

among a pool of incompatible pairs. For example, consider a KPD pool in which an

altruistic donor may not be in a good position (because of either incompatibility or

poor utility) to be matched up with any candidate. In this case, rather than placing this

altruistic donor in a waiting “mode” for a potentially long time, redirecting him/her to a

deceased-donor waiting list, where a compatible patient with potentially good transplant

outcomes might be identified rather easily, appears a more suitable alternative.

To decide whether an altruistic donor is better off initiating a NEAD chain or

donating directly to someone on a deceased-donor waiting list, we could evaluate an

altruistic donor by the utility expected to be achieved if this donor is chosen to initiate

a chain. To be precise, we may first perform the calculation according to formula

(4) as in Section 4.1 to evaluate the expected utility for each altruistic donor, i.e.

{EV [G (i)] : i ∈ Va}. The result from this evaluation could then be used to assess the

suitability of assigning each altruistic donor to a deceased-donor waiting list; a relatively

high value of EV [G (i)] would recommend reserving altruistic donor i for extending a

NEAD chain while a comparatively low value of EV [G (i)] would indicate a transplant

to someone waiting for a deceased-donor kidney. It is worth noting that different ways

of assigning edge utilities and probabilities could be adopted in calculating {EV [G (i)]



70 Decision making in kidney paired donation programs with altruistic donors

: i ∈ Va}. This would provide extra benefit in allowing more control over what kidneys

in general are distributed to a deceased-donor waiting list. For example, if each edge is

assigned an equal utility while the edge probability remains representing the likelihood

of that edge being viable, then altruistic (or bridge) donors who are less compatible with

candidates in the current KPD pool would be more likely to be directed to a deceased-

donor waiting list. In addition to evaluating an altruistic donor against the current KPD

pool, it is often rational in practice to perform the evaluation against the deceased-donor

waiting list. For example, Blood Type O or B candidates frequently wait a year or

more longer on the deceased-donor waiting list before receiving a kidney transplant

than do Blood Type A or AB candidates. Therefore a Blood Type O or B altruistic or

bridge donor might be argued to have higher utility. So might someone who matches

to a pediatric candidate. Similarly an altruistic or bridge donor that might match to a

sensitized wait-listed candidate might have a higher utility, but a lower probability of

progressing to transplant.
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1. Introduction

In clinical trials research, one of the most important issues that investigators have

to solve at the design stage of the study is the appropriate choice of the primary

endpoint. Composite endpoints (CE) consisting of the union of two or more outcomes

are commonly used as primary endpoints. For example, in the cardiovascular area the
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relevant endpoint of death is often combined with other additional endpoints such as

myocardial infarction, stroke or hospitalization. Pros and cons on the use of CE have

been extensively discussed (Freemantle et al., 2003; Ferreira-González et al., 2007,

among many others). One of the main advantages of using a CE relies in the fact that

by means of a CE the problem of multiplicity is adequately addressed and the bias

associated with competing risks (Wittkop et al., 2010) is avoided. Also, with a CE the

number of observed events will be higher and, hopefully, the power of the test will

increase. However, as it has been discussed (Montori et al., 2005) and shown in Gómez

and Lagakos (2013), adding inappropriate components to the relevant endpoint might

actually lead to a decrease in the power of the test statistic, consequently having a larger

chance to fail in detecting a real effect of the treatment under study.

Gómez and Lagakos (2013) developed a methodology to help to decide when it is

worthwhile to base the analysis on the composite endpoint E∗ = E1 ∪E2 where E1 and

E2 are two candidate relevant endpoints to evaluate the effect of a treatment instead of

sticking to one of them, E1, say. In order to do so, they compared how more efficient than

E1 would E∗ be to justify its use. Let H0 be the null hypothesis of no treatment effect

evaluated on E1 and denote by Ha an alternative hypothesis, for instance, claiming to

delay the event E1. Analogously, define H∗

0 and H∗

a the null and alternative hypotheses

if the treatment effect is to be evaluated on E∗. Since when comparing two treatment

groups based on time-to-event endpoints, the primary analysis would be based, very

commonly, on a logrank test, their method considers the logrank test Z to test H0 versus

Ha and the logrank test Z∗ to test H∗

0 versus H∗

a . The asymptotic relative efficiency

(ARE) of Z∗ versus Z is the measure proposed to choose between E1 and E∗, with

values larger than 1 in favour of E∗. This relative measure can be computed as (µ∗/µ)
2

where µ and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative

contiguous hypotheses to H0 and H∗

0 . The purpose of this paper is to prove that the usual

interpretation of the ARE, as the ratio of sample sizes, n and n∗, needed to attain the

same power for a given significance level, still holds even though two different sets of

hypothesis (H0 versus Ha and H∗

0 versus H∗

a ) are compared.

To clarify the purpose of our investigation consider the following. If we were to test

H0 versus Ha with two different test statistics Sn and Tm, Pitman’s relative efficiency

would be defined as the ratio m/n, where n and m are the required sample sizes for Sn

and Tm, respectively, to attain the same power for a given significance level. Furthermore,

if both Sn and Tm are asymptotically normal with unit variance and means µS and

µT , it can be proved that Pitman’s ARE corresponds to the square of the ratio of the

noncentrality parameters, that is (µS/µT )
2. Gómez and Lagakos’ method compares the

logrank statistics: Z and Z∗ derived for two different set of hypotheses H0 versus Ha

and H∗

0 versus H∗

a and do so using, as definition of the ARE, the ratio (µ∗/µ)
2 where µ

and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative contiguous

hypotheses to H0 and H∗

0 .

This paper is organized as follows. In Section 2 the notation, assumptions and

main results from Gómez and Lagakos’ paper are introduced. Section 3 establishes
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the limiting relationship between ARE and sample sizes and proves that the usual

interpretation of the ARE as the ratio of sample sizes holds. Section 4 presents a

simulation to study under which conditions and for finite sample sizes, the relationship

ARE(Z∗,Z) = (µ∗/µ)
2 = n/n∗ holds where n and n∗ are the needed sample sizes for Z

and Z∗, respectively, to attain the same power for a given significance level. Section 5

concludes the paper with a discussion.

2. Notation, the logrank test and the asymptotic relative efficiency

2.1. The logrank tests for the relevant and for the composite endpoints

Assume that we have a two-arm study involving random assignment to an active (X = 1)

or control treatment (X = 0) aiming to prove the efficacy of the new active treatment.

The effect of treatment is to be evaluated on the time T
( j)

1 to a relevant event E1, where

the superscript j indicates the treatment group ( j = 0 for the control group and j = 1 for

the treatment group). Let λ
( j)
1 (t) denote the hazard function of T

( j)
1 ( j = 0,1). The null

hypothesis of no effect is given by H0 : HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = 1 and the alternative

that the new treatment improves survival by Ha : HR1(t)< 1. The logrank test Z is used

to test that the new treatment improves survival.

Assume now that an additional endpoint E2 is considered as component of the

primary endpoint and the composite endpoint E∗ = E1 ∪ E2 is to be used, instead, to

prove the efficacy of the new treatment. The effect of treatment would then be evaluated

on the time T
( j)
∗ to E∗ where T

( j)
∗ = min{T

( j)
1 ,T

( j)
2 } and T

( j)
2 stands for the time to E2

( j = 0,1). Let λ
( j)
2 (t) and λ

( j)
∗ (t) denote, respectively, the hazard functions of T

( j)
2 and

T
( j)
∗ ( j = 0,1). The treatment effect on E∗ would then be tested with the logrank test Z∗

to compare H∗

0 : HR∗(t) = λ
(1)
∗ (t)/λ

(0)
∗ (t) = 1 versus H∗

a : HR∗(t)< 1.

Observation of endpoints E1 and E2 depends on whether or not they include a

terminating event and yield four different situations referred, in Gómez and Lagakos

(2013), as Cases 1, 2, 3 and 4. In this paper we assume that the additional endpoint does

not include a terminating event, which corresponds to Case 1 when neither the relevant

nor the additional endpoint includes a terminating event, and Case 3, when the relevant

endpoint includes a terminating event.

Schoenfeld (1981) studies the asymptotic behaviour of the logrank statistic and proves

that under the null hypothesis of no treatment difference, the logrank is asymptotically

N(0,1) and, under a sequence of alternatives contiguous to the null, the logrank is

asymptotically normal with unit variance and finite mean. Gómez and Lagakos apply

Schoenfeld’s results and proceed as follows. They consider λ
(0)
1 (t) as fixed and define a

sequence of alternatives Ha,n consisting of instantaneous hazard functions close enough

to λ
(0)
1 (t), for instance taking λ

(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√

n for some g(t) function. These

sequence of alternatives, formulated equivalently as HR1,n(t) = eg(t)/
√

n, include pro-



76 The asymptotic relative efficiency and the ratio of sample sizes when testing...

portional hazard alternatives, i.e, taking g(t) = β for a fixed real value β . Logrank Z

is asymptotically N(0,1) under the null hypothesis of no treatment difference (H0 :

HR1(t) = 1) and asymptotically normal with unit variance and mean µ given in equation

(1) under the sequence of alternatives Ha,n : HR1,n(t) = eg(t)/
√

n < 1. Analogously, fix

λ
(0)
∗ (t) and define H∗

0 : HR∗(t) = 1 and the sequence of alternatives H∗

a,n : HR∗,n(t) =

eg∗(t)/
√

n < 1 for a given function g∗(t). It follows that Z∗ is asymptotically N(0,1) under

H∗

0 and asymptotically normal with unit variance and mean µ∗ given in equation (2)

under the sequence H∗

a,n. The asymptotic means of Z and Z∗ are given by

µ=

∫ ∞
0 g(t)p(t)[1− p(t)]PrH0

{U ≥ t}λ
(0)
1 (t)dt

√

∫ ∞
0 p(t)[1− p(t)]PrH0

{U ≥ t}λ
(0)
1 (t)dt

, (1)

µ∗ =

∫ ∞
0 g∗(t))p∗(t)[1− p∗(t)]PrH∗

0
{U∗ ≥ t}λ

(0)
∗ (t)dt

√

∫ ∞
0 p∗(t)[1− p∗(t)]PrH∗

0
{U∗ ≥ t}λ

(0)
∗ (t)dt

, (2)

where U = min{T1,C} (in Cases 1 and 3) and U∗ = min{T∗,C} denote the observed out-

come; C denotes the censoring time; p(t) = PrH0
{X = 1|U ≥ t} and p∗(t) = PrH∗

0
{X =

1|U∗ ≥ t} are the null probabilities that someone at risk at time t is in treatment group 1;

PrH0
{U ≥ t} and PrH∗

0
{U∗ ≥ t} are the null probabilities that someone is still at risk at

time t and PrH0
{U ≥ t}λ

(0)
1 (t) and PrH∗

0
{U∗ ≥ t}λ

(0)
∗ (t) correspond to the probabilities,

under the null hypothesis, of observing events E1 and E∗, respectively, by time t.

2.2. Asymptotic relative efficiency

Efficiency calculations throughout the paper will assume that end-of-study censoring at

time τ (τ = 1 without loss of generality) is the only non-informative censoring cause

for both groups; this assumption indirectly implies that the censoring mechanism is

the same for both groups. It is as well assumed that the hazard functions λ
( j)
1 (t) and

λ
( j)
2 (t) ( j = 0,1) are proportional, that is, HR1(t) = HR1 and HR2(t) = HR2, for all

t, where HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) and HR2(t) = λ

(1)
2 (t)/λ

(0)
2 (t) are the hazard ratios

between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 , respectively. Note that although we

are assuming that the hazard functions λ
( j)
1 (t) and λ

( j)
2 (t) ( j = 0,1) are proportional,

this does not imply the proportionality of hazards λ
(0)
∗ (t) and λ

(1)
∗ (t) for the composite

endpoint T∗ (see Figure 1).

To assess the difference in efficiency between using logrank test Z, based on the

relevant endpoint E1, and logrank test Z∗, based on the composite endpoint E∗, Gómez

and Lagakos base their strategy on the behaviour of the asymptotic relative efficiency

(ARE) of Z∗ versus Z. The ARE is a measure of the relative power of two tests that can
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0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

S1
(1)(t)

HR
1

S1
(0)(t)

S2
(1)(t)S2

(0)(t)

HR
2

t

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

HR
*

S*
(1) (t)S*

(0)(t)

t*

Pr(RE observed in group 0)=0.10

Pr(AE observed in group 0)=0.25
Pr(CE observed in group 0)=0.31

Figure 1: Survival and hazard ratio for the relevant endpoint (RE), T1, for the additional endpoint (AE),

T2 and for the composite endpoint (CE), T∗ = min{T1,T2}. T1 ∼ Weibull with shape parameter β1 = 2

(increasing hazard) for treatment groups 0 and 1 and T2 ∼ Weibull with shape parameter β2 = 1 (constant

hazard) for treatment groups 0 and 1. Scale parameters for T1 and T2 have been calculated such that Pr{T1

observed in group 0}=0.1, Pr{T2 observed in group 0}=0.25, HR1 = 0.5, HR2 = 0.9 and Spearman’s

ρ(T1,T2) = 0.45 assuming Frank’s copula between T1 and T2. Considering the RE as a terminating event

(case 3), in this setting ARE(Z∗,Z) = 0.21.

be interpreted, when the two tests are for the same null and alternative hypothesis, as

the ratio of the required sample sizes to detect a specific treatment effect to attain the

same power for a given significance level (Lehmann and Romano, 2005). In this case,

a value of ARE= 0.6 would mean that we only need 60% as many cases to reach a

given power if we use E1 as we would need if we used E∗. Whenever the tests under

consideration, Z and Z∗, are asymptotically N(0,1) under H0 and H∗

0 , respectively, and

asymptotically normal with variance 1 under a sequence of contiguous alternatives to

the null hypothesis, a different definition for Pitman’s relative efficiency as the square

of the ratio of the non-centrality parameters µ and µ∗ is appropriate

ARE(Z∗,Z) =

(

µ∗

µ

)2

, (3)

where µ and µ∗ are to be replaced by expressions (1) and (2).

Before providing the expression that is being used to evaluate the ARE, and for the

sake of clarity, we enumerate the assumptions that have been taken into account:

• End-of-study censoring at time τ is the only non-informative censoring cause for

both groups.

• The additional endpoint does not include a terminating event.
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• The hazard ratios between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 are propor-

tional, that is, HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = HR1 and

HR2(t) = λ
(1)
2 (t)/λ

(0)
2 (t) = HR2 for all t.

• Effect of treatment on E1 is tested establishing H0 : HR1 = 1 versus a sequence

of alternatives Ha,n : λ
(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√

n for some g(t) function. Note that

g(t)/
√

n = log{λ
(1)
1,n(t)/λ

(0)
1 (t)}.

• Effect of treatment on E∗ is tested establishing H∗

0 : HR∗(t) = 1 versus a sequence

of alternatives H∗

a,n : HR∗,n(t) = eg∗(t)/
√

n < 1 for a given function g∗(t). Note that

g∗(t)/
√

n = log{HR∗,n(t)}.

Under the above assumptions expression (3) becomes

ARE(Z∗,Z) =

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(

log
{

HR1

})2
(
∫ 1

0 f
(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

, (4)

where f
(0)
1 (t) and f

(0)
∗ (t) are the density functions of T

(0)
1 and T

(0)
∗ , respectively.

Remark The density function f
(0)
∗ (t) is the density of the T

(0)
∗ = min{T

(0)
1 ,T

(0)
2 },

computed from the joint density between T
(0)

1 and T
(0)

2 , which itself is built from the

marginals of T
(0)

1 and T
(0)

2 by means of a bivariate copula.

3. Relationship between ARE and sample sizes

We start establishing that if the hazard ratios for T
( j)

1 ( j = 0,1) and for T
( j)

2 ( j = 0,1)

approach the unity as n gets large, so does the hazard ratio of the minimum T
( j)
∗ between

T
( j)

1 and T
( j)

2 ( j = 0,1).

Lemma 1 Given two sequences of hazard ratios {HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} and

{HR2,n(t) = λ
(1)
2,n(t)/λ

(0)
2 (t)}, both converging uniformly to 1 as n → ∞, the sequence

corresponding to the hazard ratio of T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }, namely {HR∗,n(t) =

= λ
(1)
∗,n(t)/λ

(0)
∗ (t)}, tends to 1 as n → ∞. In particular, this lemma holds whenever

log(λ
(1)
k,n(t)/λ

(0)
k (t)}) = O(n−1/2), which in turn, is true if log(λ

(1)
k,n(t)/λ

(0)
k (t)}) =

= gk(t)/
√

n, for any bounded real function gk(t) (k = 1,2).

Proof 1 It follows immediately that for fixed t, limn→∞λ
(1)
1,n(t) = λ

(0)
1 (t) and

limn→∞λ
(1)
2,n(t) = λ

(0)
2 (t). Furthermore, it follows that the corresponding densities and



Guadalupe Gómez and Moisés Gómez-Mateu 79

survival functions f
(1)
1,n (t), f

(1)
2,n (t), S

(1)
1,n(t) and S

(1)
2,n(t), converge to f

(0)
1 (t), f

(0)
2 (t), S

(0)
1 (t)

and S
(0)
2 (t), respectively. Taking into account that the survival function of the minimum,

S
(1)
∗,n(t) is expressed in terms of the marginal survival functions S

(1)
1,n(t) and S

(1)
2,n(t) of T

(1)
1

and T
(1)

2 via a copula C, that is,

S
(1)
∗,n(t) =C(S

(1)
1,n(t),S

(1)
2,n(t)), it remains to prove that limn→∞ S

(1)
∗,n(t) = S

(0)
∗ (t). This result

will imply that

limn→∞ f
(1)
∗,n (t)= f

(0)
∗ (t), limn→∞λ

(1)
∗,n(t)=λ

(0)
∗ (t) and hence the sequence HR∗,n(t)→

1 as n → ∞, as we wanted to prove.

The convergence of S
(1)
∗,n(t) to S

(0)
∗ (t) is guaranteed by the convergence of S

(1)
1,n(t) and

S
(1)
2,n(t) to S

(0)
1 (t) and S

(0)
2 (t), respectively, together with the fact that bivariate copulas

C are bivariate distribution functions with uniform marginals. The reader is referred to

Lindner and Szimayer (2005) for the corresponding technical proofs. �

Proposition 1 Consider two test procedures φn and φ∗

n to test H0 : HR1(t) = 1 against

Ha,n : HR1,n(t)< 1 and H∗

0 : HR∗(t) = 1 against H∗

a,n : HR∗,n(t)< 1, respectively. Let n

and n∗ be the sample sizes required for φn and φ∗

n , respectively, to have power at least

Π at level α. Assume the sequences φ = {φn} and φ∗ = {φ∗

n} are based on the logrank

statistics Z and Z∗, respectively, converging, to Normal (µ,1) and Normal (µ∗,1) with

µ and µ∗ given in (1) and (2), under sequences of local alternatives HRk,n(t) (k = 1,2)

converging uniformly to 1 as n → ∞. Given 0 < α< Π < 1,

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
= ARE(Z∗,Z).

The usual interpretation of the ARE as the reciprocal ratio of the sample sizes holds even

when two different sets of hypotheses (H0 versus Ha,n and H∗

0 versus H∗

a,n) are tested.

As a consequence of this proposition, the interpretation of the ARE is the following. If

ARE(Z∗,Z) = 0.7, then, asymptotically, we only need 70% as many cases to attain a

given power if we use Z as we would need if we used Z∗.

Proof 2 By Lemma 1, uniform convergence to 1 of {HR1,n(t)} and {HR2,n(t)} imply

that limHR∗,n(t) → 1. Under the sequence of contiguous alternatives to the null Ha,n :

{HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} → 1 and H∗

a,n : {HR∗,n(t) = λ
(1)
∗,n(t)/λ

(0)
∗ (t)} → 1, both Z

and Z∗ are asymptotically N(µ,1) and N(µ∗,1), respectively. The power function for a

one-sided test with size α is therefore given, respectively, by

Π1 = lim
n→∞

Prob{Z < z1−α|Ha,n}= 1−Φ(−z1−α+µ)

Π∗ = lim
n→∞

Prob{Z∗ < z1−α|H
∗

a,n}= 1−Φ(−z1−α+µ∗) (5)
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where Φ is the distribution function of the standard normal and z1−α is the standard

normal quantile corresponding to the left tail probability α. It immediately follows that

Π1 = Π∗ is equivalent to µ= µ∗.

The equivalence of powers (Π1 = Π∗) implies that µ = µ∗, given by (1) and (2).

Equivalently

(

µ∗

µ

)2

= 1 ⇐⇒















∫ ∞
0 g(t)p(t)[1−p(t)]PrH0

{U≥t}λ
(0)
1 (t)dt

√

∫ ∞
0 p(t)[1−p(t)]PrH0

{U≥t}λ
(0)
1 (t)dt

∫ ∞
0 g∗(t)p∗(t)[1−p∗(t)]PrH∗

0
{U∗≥t}λ

(0)
∗

(t)dt
√

∫ ∞
0 p∗(t)[1−p∗(t)]PrH∗

0
{U∗≥t}λ

(0)
∗

(t)dt















2

= 1. (6)

Since

p(t) =
PrH0

{U ≥ t|X = 1}π

PrH0
{U ≥ t}

=
PrH0

{U ( j)
≥ t}π

PrH0
{U ≥ t}

where π= PrH0
{X = 1}, we have

p(t)(1− p(t))PrH0
{U ≥ t}=

PrH0
{U (1)

≥ t}πPrH0
{U (0)

≥ t}(1−π)

PrH0
{U (0)

≥ t}(1−π)+PrH0
{U (1)

≥ t}π
.

Based on the stated assumptions, because T
( j)

1 is right-censored by the end-of-study

at time τ, and under the null hypothesis of no effect (S
(0)
1 (t) = S

(1)
1 (t)), we have

PrH0
{U ( j)

≥ t} = S
(0)
1 (t)1{[0,1]}(t), for j = 0,1. Replacing in (1), the noncentrality

parameter µ becomes

µ=

√

π(1−π)
∫ 1

0 g(t)S
(0)
1 (t)λ

(0)
1 (t)dt

√

∫ 1
0 S

(0)
1 (t)λ

(0)
1 (t)dt

=

√

π(1−π)
∫ 1

0 g(t) f
(0)
1 (t)dt

√

∫ 1
0 f

(0)
1 (t)dt

where f
(0)
1 (t) is the marginal density function for T

(0)
1 . Analogously, it can be seen that

µ∗ =

√

π(1−π)
∫ 1

0 g∗(t) f
(0)
∗ (t)dt

√

∫ 1
0 f

(0)
∗ (t)dt

where f
(0)
∗ (t) is the density function for T

(0)
∗ . The reader is addressed to the online

supporting material of Gómez and Lagakos paper for other technical details.
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If we would replace g(t) and g∗(t) by
√

n log

(

λ
(1)
1,n(t)

λ
(0)
1 (t)

)

=
√

n log(HR1) and
√

n
∗

log

(

λ
(1)
∗,n(t)

λ
(0)
∗

(t)

)

,

respectively, equality (6), after cancelling π(1−π), becomes equal to

lim
HR1,n(t)→1

HR2,n(t)→1

√

n∗
√

n

∫ 1
0 log

{

λ
(1)
∗

(t)/λ
(0)
∗

(t)
}

f
(0)
∗

(t)dt
√

∫ 1
0 f

(0)
∗

(t)dt

log(HR1)

√

∫ 1
0 f

(0)
1 (t)dt

= 1

which in turn is equivalent to

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
=

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(log(HR1))
2 (

∫ 1
0 f

(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

(7)

and it follows that ARE(Z∗,Z) = lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
, as we wanted to prove. �

Note that (7) implies

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(log(HR1))
2
(

∫ 1
0 f

(0)
∗ (t)dt

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈

expected number E1

expected number E∗

and whenever λ
(1)
∗ (t)/λ

(0)
∗ (t) is approximately constant and equal to HR∗, we would

have

(

1
log(HR1)

)2

(

1
log(HR∗)

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈

expected number E1

expected number E∗

4. Simulation

4.1. Simulation

Our next aim is to simulate data to empirically check how close we are to the limiting

relationship n/n∗ = ARE(Z∗,Z) when Π1 = Π∗ for different finite sample sizes. To
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conduct the simulations we will assume, as Gómez and Lagakos did, that T
( j)

1 and

T
( j)

2 follow Weibull distributions. Weibull distributions are chosen for their wide use

in the field of survival analysis due to its flexibility, allowing decreasing, constant and

increasing hazard rates. The corresponding shape and scale parameters are denoted by

βk and b
( j)
k ( j = 0,1, k = 1,2) (shape parameters for both groups are taken equal so

that the assumption of the proportionality of the hazard ratios holds). To establish the

bivariate distribution of (T
(0)

1 ,T
(0)

2 ) we consider Frank’s Archimedean survival copula,

again as Gómez and Lagakos did. Other choices of copulas would be possible, although

main conclusions and recommendations will not differ (Plana-Ripoll and Gómez, 2014).

Frank’s copula depends on an association parameter θ between T
(0)

1 and T
(0)

2 which

is biunivocally related to Spearman’s rank correlation ρ. Different scenarios will be

simulated according to several choices of (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ) where p

(0)
1

and p
(0)
2 are the probability of observing events E1 and E2, respectively, for treatment

group 0, HR1 and HR2 are relative treatment hazard ratios for T
(1)
j versus T

(0)
j ( j = 1,2,

respectively) and ρ is Spearman’s rank correlation between T
(0)

1 and T
(0)

2 .

Given a set of values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), for a given power Π and a

significance level α, the simulation steps are the following:

1. Computations for the relevant endpoint E1. The scale parameters b
(0)
1 and b

(1)
1

and the probability p
(1)
1 of observing the relevant endpoint in group 1 are derived

as:

b
(0)
1 =

1

(− log(1− p
(0)
1 ))1/β1

b
(1)
1 =

b
(0)
1

HR
(1/β1)
1

p
(1)
1 = 1− e−(1/b

(1)
1 )β1

2. Computations for the additional endpoint E2. The scale parameters b
(0)
2 and b

(1)
2

and the probability p
(1)
2 of observing the additional endpoint in group 1 are derived

as:

b
(0)
2 =







1

(− log(1−p
(0)
2 ))1/β2

for Case 1

∗ for Case 3

b
(1)
2 =

b
(0)
2

HR
(1/β2)
2

p
(1)
2 = 1− e−(1/b

(1)
2 )β2
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∗ For Case 3, b
(0)
2 is found as the solution of equation p

(1)
2 =

∫ 1
0

∫ 1
u f

(0)
(1,2)(u,v;ρ)dvdu,

where f
(0)
(1,2)(·, ·;ρ) is the joint density between T

(0)
1 and T

(0)
2 and ρ is Spearman’s

ρ coefficient between T
(0)

1 and T
(0)

2 .

3. Computation of sample sizes n and n∗

(a) Compute n (per group) following Freedman (1982) formulas as follows

n =
E

p
(0)
1 + p

(1)
1

(8)

where

E =
(HR1 +1)2(z1−α+ zΠ)

2

(HR1 −1)2
(9)

(b) Compute ARE(Z∗,Z) based on (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ).

(c) Compute n∗ = n/ARE(Z∗,Z).

(d) Compute N = max{n,n∗}.

4. Simulation of T
(0)

1 ,T
(1)

1 ,T
(0)

2 ,T
(1)

2 ,T
(0)
∗ ,T

(1)
∗

Simulate 1000 samples of size N for the 4 endpoints T
( j)

k from Weibull (b
( j)
k ,βk)

( j = 0,1, k = 1,2). Compute T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }.

5. Computation of empirical powers Π̂1 and Π̂∗

For each sample of size n (n∗), compute the logrank statistic Z (Z∗) to compare the

treatment effect between T
(0)

1 and T
(1)

1 ( T
(0)
∗ and T

(1)
∗ ). For a given significance

level α, the rejection region comprises all observed Z (Z∗) such that Z < z1−α

(Z∗ < z1−α) where z1−α is the standard normal quantile corresponding to the left

tail probability α. The empirical powers, denoted by Π̂1 ( Π̂∗ ), are calculated as

the proportion of samples for which Z < z1−α (Z∗ < z1−α).

We note here that whenever n∗ < n, we only use, for each sample, the first n∗
simulated values to compute Π̂∗, while when n < n∗, we only use the first n

simulated values to compute Π̂1.

6. Comparison between Π̂1 and Π̂∗

For each scenario (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), we compare the differences

between the two empirical powers Π̂1 and Π̂∗ obtained from the 1000 simulations.



84 The asymptotic relative efficiency and the ratio of sample sizes when testing...

Table 1: Values of parameters β1, β2, p1, p2, HR1, HR2 and ρ used for the simulations. There are 624

different configurations, excluding those yielding sample sizes larger than 1100 and ARE(Z∗,Z)> 10.

Parameters

β1 = β2 0.5 1 2

(p1, p2) (0.05, 0.01) (0.05, 0.15) (0.05,0.35) (0.1, 0.01) (0.1, 0.15) (0.1,0.35)

(p1, p2) (0.15, 0.01) (0.15, 0.15) (0.15,0.35) (0.35, 0.01) (0.35, 0.15) (0.35,0.35)

ρ 0.15 0.45 0.75

(HR1,HR2) (0.5, 0.3) (0.5, 0.7) (0.5, 0.9) (0.6, 0.3) (0.6, 0.7) (0.6, 0.9)

(HR1,HR2) (0.7, 0.3) (0.7, 0.7) (0.7, 0.9) (0.8, 0.3) (0.8, 0.7)

Total number

of cases 624

4.2. Results

We have set Π = 0.9 and α= 0.05 (other values would not provide additional informa-

tion). We have chosen meaningful values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), based on

those arising in cardiovascular clinical trials (Gómez, Gómez-Mateu, Dafni, 2014) (see

Table 1). We restrict our simulation study to 624 scenarios corresponding to ARE(Z∗,Z)

≤ 10 and sample sizes smaller than 1100 patients per group. These scenarios yield

ARE(Z∗,Z) values between 0.20 and 9.93, sample sizes, n, for the relevant endpoint

between 142 and 1081, and, n∗, for the composite endpoint between 53 and 1077 (see

Table 2). Similar results were obtained for Case 1, when neither the relevant nor the

additional endpoint includes a terminating event, and for Case 3 when the relevant end-

point includes a terminating event, and we only discuss here Case 1.

Table 2: Computed values of n, n∗ and ARE(Z∗,Z) in step 3 of the simulation

based on the parameter values given in Table 1.

min median max

n 142 509 1081

n∗ 53 398 1077

ARE(Z∗,Z) 0.2 1.04 9.93

The empirical powers Π̂1 in our simulation study resulted in powers between 0.87

and 0.94, with a median of 0.91. A slightly higher median was found for scenarios with

low hazard ratios. This finding is acknowledged as well by Freedman (1982).

Table 3 provides the percentiles for the absolute value differences between Π̂∗ and

Π̂1. We observe that in 75% of the cases the difference is smaller than 2.3%, and among

cases with ARE as large as 3 the difference shrinks to 1.9%. There are, however, few

instances, where this difference can be as large as 6%, and they deserve a closer look.
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Table 3: Percentiles of |Π̂∗− Π̂1| as a function of ARE values,

where wi indicates the corresponding percentile.

min w0.1 w0.25 w0.5 w0.75 w0.9 max

For all ARE 0 0.002 0.004 0.010 0.023 0.036 0.062

ARE(Z∗,Z)≤ 3 0 0.002 0.004 0.008 0.019 0.033 0.062

ARE(Z∗,Z)> 3 0.001 0.009 0.016 0.026 0.038 0.046 0.062

Figure 2 plots the differences Π̂∗− Π̂1 as a function of the ARE(Z∗,Z) values. The

behaviour is remarkably different when ARE(Z∗,Z)≤ 3 or ARE(Z∗,Z)> 3. Whenever

ARE(Z∗,Z) ≤ 3, Π̂∗ fluctuates around Π̂1, within a range of 4%. However, when

ARE(Z∗,Z) > 3, corresponding mostly to scenarios where treatment has an stronger

effect on the additional endpoint than on the relevant endpoint (HR2 ≤ HR1 − 0.2)

and the anticipated number of events in the control group is larger for the additional

endpoint than for the relevant (p
(0)
2 ≥ p

(0)
1 ), the empirical power Π̂∗ of the logrank test

based on the CE never achieves the same power as the logrank test for the relevant

endpoint would get. In these cases the interpretation of the ARE(Z∗,Z) as the ratio of

the sample sizes, n/n∗, is not as straightforward. Nevertheless, this does not mean that

the recommendation of using the CE does not have to be followed since larger values

for n∗ needed to attain the same power as n does, would reduce the ARE value but not

as much as to cross the “1” border that would imply to use the relevant endpoint instead

of the CE.
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Figure 2: Differences between empirical powers Π̂∗ − Π̂1 as function of ARE(Z∗,Z) and in terms of

HR2 −HR1.
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If we analyze the differences between Π̂∗ and Π̂1 as a function of the differences

between the two hazard ratios (HR2 − HR1), we observe that when the two hazard

ratios are very close, the two empirical powers are as well very close. Whenever

HR2 −HR1 ≤ −0.2, not only ARE(Z∗,Z) values tend to be higher, but also Π̂∗ < Π̂1.

(see Figure 2).

Taking into account that absolute differences between powers smaller than 5% could

be considered irrelevant, we conclude that the asymptotic relationship ARE(Z∗,Z) =

n/n∗ is valid in the majority of scenarios.

All computations in this paper have been implemented in R and are available on

request to either author.

5. Discussion

Pitman’s relative efficiency is defined as the limiting ratio of sample sizes to give the

same asymptotic power under sequences of local alternatives. Given two asymptotically

standard normal tests Sn and Tm under the same null and alternative hypotheses, the

alternative definition ARE = (µS/µT )
2 where

√

nµS and
√

mµT are the respective

means under local alternatives, can be used because the equality of the powers holds

if m
n
= ( µS

µT
)2.

Gómez and Lagakos’ method uses the alternative definition of ARE to develop all

the computations for the two corresponding logrank tests. Our goal has been to check

that the relationship between (µS/µT )
2 and the ratio of sample sizes still held when the

two hypotheses under test were not the same (H0 versus Ha and H∗

0 versus H∗

a ).

It is important to keep in mind that these two hypotheses tests are by no means

equivalent, for instance, to check whether treatment has a beneficial effect, we might

use E1 or we might add endpoint E2 and use E∗. As it is shown in Gómez (2011), even if

we assume that the times to E1 and to E2 are independent, a beneficial effect on E∗ can

occur simultaneously with a beneficial effect on E1 and a harmful effect on E2 and not

finding a beneficial effect on the composite event E∗ is no guarantee of not having some

effect on the individual events E1 or E2.

The main result of this paper proves that ARE(Z∗,Z) coincides with n/n∗, being n

and n∗ the sample sizes needed to detect specific alternatives HR1 and HR2 to attain

power Π and for the same significance level α. Therefore, we can use and interpret ARE

in its usual way.

The simulation study has been conducted in such a way that for fixed values n

and ARE(Z∗,Z), the sample size n∗ is calculated as n∗ = n/ARE(Z∗,Z). Hence an

approximate equality of the empirical powers Π̂1, of logrank test Z for H0 versus

Ha,n, and of Π̂∗ of logrank test Z∗ for H∗

0 versus H∗

a,n, indicates that the relationship

ARE(Z∗,Z) = n/n∗ holds. Main results from our simulations show that the absolute

differences between Π̂1 and Π̂∗ are most of the times less than 2.5%, hence the usual

interpretation between (n,n∗) and ARE(Z∗,Z) holds for finite sample sizes.
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For those scenarios under which ARE(Z∗,Z) > 3, we observe that the empirical

power of the test based on E∗ never achieves the empirical power that the logrank

test based on E1 would get. Consequently, larger values of n∗ would be needed to

attain the same power as n does. In these instances, even though the relationship

ARE(Z∗,Z) = n/n∗ is not necessarily true, the recommendation to use the composite

endpoint E∗ instead of the relevant endpoint E1 will still be valid because very rarely a

value of ARE(Z∗,Z)> 3 would go down to less than 1. However, caution will be needed

if one wants to use the relationship ARE(Z∗,Z) = n/n∗ to compute the required sample

size n∗ if ARE(Z∗,Z)> 3. In these cases, a different formulation should be seek.
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Abstract

We generalize the test proposed by Kojadinovic, Segers and Yan which is used for testing whether

the data belongs to the family of extreme value copulas. We prove that the generalized test can

be applied whatever the alternative hypothesis. We also study the effect of using different extreme

value copulas in the context of risk estimation. To measure the risk we use a quantile. Our results

have been motivated by a bivariate sample of losses from a real database of auto insurance

claims.
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1. Introduction

Let S be the sum of k dependent random variables X1, . . . ,Xk, i.e. S = X1 + · · ·+ Xk.

The distribution of S depends on the multivariate distribution, i.e. on the relationship

between the random variables X j, j = 1, . . . ,k (see Sarabia and Gómez-Déniz, 2008, for

a review about the methods of construction of multivariate distributions). Analyzing the

distribution of S is essential in finance and insurance for quantifying the risk of loss. In

this regard, there are studies that have analyzed the stochastic behaviour of the sum of

dependent risks and the way in which the dependency between these marginal risks may

affect the total risk of loss (see, Denuit et al., 1999; Kaas et al., 2000; Cossette et al.,

2002; Bolancé et al., 2008b). The aim of this paper is to analyze the test proposed by

Kojadinovic et al. (2011) that allows to test whether or not our data have been generated
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by an extreme value copula. We conclude that weak convergence of the test statistic is

true for any of the alternative hypothesis. Using a real data base, we have analyzed how

the error in the selection of the copula can affect the risk estimate. Throughout this paper

we simplify the notation to the bivariate case.

As noted by Fisher (2000), copulas are interesting for statisticians for two basic

reasons: firstly, because of their application in the study of nonparametric measures of

dependence and, secondly, as a starting point for constructing multivariate distributions

that capture dependency structures, even when the marginals follow extreme value

distributions (EVD). Also, we know that the choice of the marginals may be crucial

to model the dependency behaviour of variables. According to Nelsen (2006), when

coupling the marginals in the joint distribution, the copula captures the link between

the two behaviours. The relationship between the joint distribution and the marginals is

established in the fundamental theorem proposed by Sklar (1959). This theorem shows

that a bivariate cumulative distribution function (CDF) H of a random vector of variables

(X1,X2) with marginal cumulative distribution functions (CDFs) F1 and F2 includes a

copula C according to the following expression:

H(x1,x2) =C(F1(x1),F2(x2))∀x1,x2 ∈ R. (1)

Due to the fact that the joint distribution (and therefore the dependency structure) is

unknown, specific tests for choosing the best copula are necessary. This has been the

motivation for developing tests for the adequacy of copulas. It is worth mentioning the

paper by Genest and Rivest (1993) on inference for bivariate Archimedean copulas, the

test proposed in Scaillet (2005) on the positive quadrant dependence hypothesis and,

finally, the test of symmetry in bivariate copulas introduced in Quessy et al. (2012).

Regarding the inference for extreme value copulas, we can mention the test proposed

in Genest et al. (2011) based on a Cramér-von Mises statistic and the test analyzed

in Ghorbal et al. (2009) based on an U-statistic. However, Kojadinovic et al. (2011)

uses the max− stable property to test the adequacy of an extreme value copula that is

also based on the Cramér-von Mises statistic. In our study we find a similar result for

the bivariate case and we obtain the weak convergence of the statistic proposed in the

general case.

In Section 2, first, we present our main result and, second, we describe three

examples of copulas which are extreme value copulas: Gumbel, Galambos and Hüsler-

Reiss. In Section 3 we describe a real database of auto insurance claims which we use in

the empirical application. In Section 4 we report the results of our empirical study, firstly

we apply the test described in Section 2 and, secondly, we calculate the quantile using

different extreme value copulas and compare these results with those obtained when

using a widely known non extreme value copula, such as a Gaussian copula. We use two

alternative marginal distributions and we compare them: the log-normal, that is a EVD

Type I (Gumbel), and the Champernowne distribution, which converges to a Pareto in
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the tail and therefore is an EVD Type II (Frechet). We also note that the Champernowe

distribution looks more like a log-normal near 0. We conclude in Section 5.

2. Test for extreme value copulas

We know that the class of extreme value copulas corresponds to the class of max−stable

copulas (see, for example, Segers, 2012). A copula is max− stable if for every positive

real number r and all u1, u2 in [0,1], C(u1,u2) = Cr(u
1/r

1 ,u
1/r

2 ). Then we formulate the

null hypothesis and its alternative as:







Hr
0 : C(u1,u2) =Cr(u

1/r

1 ,u
1/r

2 ), ∀u1,u2 ∈ [0,1],∀r > 0

Hr
1 : C(u1,u2) 6=Cr(u

1/r

1 ,u
1/r

2 ), ∃u1,u2 ∈ [0,1],∃r > 0
.

Specifically we need to test the max− stable hypothesis,

{

H0 :
⋂

r>0 Hr
0

H1 :
⋃

r>0 Hr
1,

in practice we only can test Hr
0 for some values of r. From Kojadinovic et al. (2011), it

seems that r < 1 is not so good, so they consider only values of r greater than 1.

Let (Xi1,Xi2), ∀i = 1, . . . ,n be a bivariate sample of n independent and identically

distributed observations. We consider the functions:

D
r
n(u1,u2) =

√

n
(

Cn(u1,u2)−Cr
n(u

1/r

1 ,u
1/r

2 )
)

D
r(u1,u2) =

√

n
(

C(u1,u2)−Cr(u
1/r

1 ,u
1/r

2 )
)

,

where Cn(u1,u2) is the empirical copula defined as:

Cn(u1,u2) =
1

n

n

∑
i=1

I(F̂1n(Xi1)≤ u1, F̂2n(Xi2)≤ u2), u1,u2 ∈ [0,1]2, (2)

where I(·) is an indicator function that takes value 1 if the condition in brackets is

true and 0 otherwise. F̂1n and F̂2n are the empirical marginal cumulative distribution

functions. To test the max− stable property we need to analyze if we can use Dr
n(u1,u2)

as an estimator of Dr(u1,u2). Then we find the convergence to a Gaussian process of the

difference Dr
n(u1,u2)−D

r(u1,u2).

We use the result by Fermanian et al. (2004) for the weak convergence of the

empirical copula process Cn to a Gaussian process G in the space of all bounded real-
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valued functions on [0,1]2, i.e. l∞([0,1]2), which is expressed as follows:

√

n(Cn(u1,u2)−C(u1,u2)) G(u1,u2) (3)

= B(u1,u2)−∂1C(u1,u2)B(u1,1)−∂2C(u1,u2)B(1,u2), (4)

where ∂ jC(u1,u2), j = 1,2 are the partial derivatives of the function C respect to u j and

 indicates weak convergence and B is a Brownian bridge on [0,1]2 with covariance

functions:

E[B(u1,u2)B(u
′

1,u
′

2)] =C(u1 ∧u′1,u2 ∧u′2)−C(u1,u2)C(u′1,u
′

2),

where ∧ is the minimum.

Proposition 1 If the partial derivatives of a copula C(u1,u2) are continuous then for

any r > 0 we have:

D
r
n(u1,u2)−D

r(u1,u2) C
r(u1,u2) = G(u1,u2)− rCr−1(u

1/r

1 ,u
1/r

2 )G(u
1/r

1 ,u
1/r

2 ), (5)

in l∞([0,1]2). The result in (5) is true under Hr
0 and Hr

1 .

Kojadinovic et al. (2011) proved the weak convergence under Hr
0 of Dr

n(u1,u2)

towards the same process defined in Proposition 1. We have proved that the weak

convergence of the difference Dr
n(u1,u2)−D

r(u1,u2) is true under Hr
0 and Hr

1 .

Proof 1 In order to prove the result in Proposition 1 we consider the function:

Γ : C(u1,u2)−→ Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ),r > 0.

Γ is a differentiable function as defined by Hadamard (see, Ren, 1995). We use the Delta

functional method to analyze the weak convergence of Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ). To

find the Hadamard derivative of Γ that is denoted by Γ′, we consider the function:

h(t) = Γ((C+ t∆)(u1,u2))−Γ(C(u1,u2))

= (C+ t∆)r(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ),

where t∆ is a function representing a difference, namely, t is a real value and ∆ is a fixed

perturbation. Then we calculate Γ′ as the derivative of function h at t = 0. Namely, Γ′(∆)

if the first derivative of function Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ) with respect to t evaluated

at t = 0.
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Using the expression of the Pascal triangle:

(a+b)n =
n

∑
k=0

(

n

k

)

an−kbk
,

we obtain that:

h(t) =
r

∑
k=0

(

r

k

)

Cr−k(u
1/r

1 ,u
1/r

2 )tk∆k(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 )

=

(

r

0

)

Cr(u
1/r

1 ,u
1/r

2 )+

(

r

1

)

Cr−1(u
1/r

1 ,u
1/r

2 )t∆(u
1/r

1 ,u
1/r

2 )

+
r

∑
k=2

(

r

k

)

Cr−k(u
1/r

1 ,u
1/r

2 )tk∆k(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ).

If we differentiate at t = 0, we obtain:

∂h(t)

∂ t
|t=0 = Γ′(∆) = rCr−1(u

1/r

1 ,u
1/r

2 )∆(u
1/r

1 ,u
1/r

2 ).

The result in Proposition 1 is obtained by observing that:

D
r
n(u,v)−D

r(u,v) =
√

n
(

(Cn(u1,u2)−C(u1,u2))− (Cr
n(u

1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ))
)

.

Using the convergence of the empirical copula given by Fermanian et al. (see Fermanian

et al. (2004)) we obtain:

√

n(Cn(u1,u2)−C(u1,u2)) G(u1,u2),

and, finally, applying the Delta functional method, we obtain:

√

n
(

Cr
n(u

1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 )
)

 Γ′(G(u1,u2)).
�

Under the hypothesis H0 we have that Dr(u1,u2) = 0 and in this case Dr
n(u1,u2)

weakly converges to process (5).

For hypothesis testing given a fixed r, we use a Cramér-von Mises statistic:

Sr
n =

∫ 1

0

∫ 1

0
(Dr

n(u1,u2))
2

du1du2. (6)
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As proposed by Kojadinovic et al. (2011) for a range of values of r, r1, . . . ,rp, the

following statistic can be considered:

S
r1,...,rp
n =

p

∑
i=1

Sri
n . (7)

To calculate the critical values we use the method proposed by Van der Vaart (2000),

consisting on generating independent copies of Sr
n. The procedure is as follows:

1. If ∂ jC(u1,u2), j = 1,2 are continuous on [0,1]2 then N independent copies of Dr
n,

D
r,(1)
n , . . . ,D

r,(N)
n can be generated, such that

(Dr
n,D

r,(1)
n , . . .D

r,(N)
n ) (Dr

,D
r,(1)

, . . .D
r,(N)),

where Dr,(1), . . . ,Dr,(N) are independent copies of Dr.

2. If ∂ jC(u1,u2), j = 1,2 are continuous on [0,1]2 then, (S
r,(1)
n ,S

r,(2)
n , . . . ,S

r,(N)
n ) can be

calculated by using a numerical approximation of formula (6) (see, Kojadinovic

et al., 2011), then:

(Sr
n,S

r,(1)
n ,Sr,(2)

n , . . . ,Sr,(N)
n ) (Sr

,Sr,(1)
,Sr,(2)

, . . . ,Sr,(N)),

where (Sr,(1),Sr,(2), . . . ,Sr,(N)) are independent copies of Sr.

3. Obtain the p-value as:

1

N

N

∑
k=1

I(Sr,(k)
n ≥ Sr

n).

The Van der Vaart method is implemented in the software R with the function

evTestC() included in the package copula (see, Hofert et al., 2013).

2.1. Three examples of extreme value copulas

In the application presented in next section, we compare three examples of extreme value

copulas: Gumbel, Galambos and Hüsler-Reiss, which are described in this section.

The functional form of Gumbel copula (see, Gumbel, 1958) is given by:

Cθ (u1,u2) = exp

(

−

[

(− ln(u1))
θ +(− ln(u2))

θ
]1/θ

)

,
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where θ ∈ [1,+∞) is the parameter controlling the dependency structure. Note that, the

dependence is perfect when θ → ∞, while independence corresponds to the case when

θ = 1. For the Gumbel copula, it is well known that lower tail dependence is λL = 0 and

upper tail dependence is λU = 2−2
1
θ , i.e. the Gumbel copula has upper tail dependence.

The Galambos copula was proposed by Galambos (1975) and has the following

form:

C(u1,u2) = u1u2 exp

(

[

(− ln(u1))
−θ +(− ln(u2))

−θ
]

−1/θ
)

,

where the range of θ is [0,∞) and the upper tail dependence is λU = 2−2
1
θ .

Another example of extreme value copulas is the Hüsler-Reiss copula that was

developed by Hüsler and Reiss (1989). Its functional form is given by:

C(u1,u2) = exp

(

−û1Φ

[

1

θ
+

1

2
θ ln

(

û1

û2

)]

− û2Φ

[

1

θ
+

1

2
θ ln

(

û2

û1

)])

,

where the range of θ is [0,∞) and Φ is cdf of the standard Gaussian, u1 =− ln(û1) and

u2 =− ln(û2).

3. The data

Our example is motivated by a problem in the context of insurance. We assume that

when there is an accident, the total cost to be paid to a policyholder is the sum of

two components: (1) the material damage and (2) the bodily injury compensation. The

insurance company is interested in evaluating the risk of a given claim exceeding a

certain amount. So the right-tail quantiles are important to understand the risk that an

accident claim is very costly.

We work with a random sample of 518 observations containing two types of costs:

Cost1, representing property damages and compensation of the loss, and Cost2, which

corresponds to the expenses related to medical care and hospitalization. In general, the

cost of bodily injuries is covered by the National Institute of Health, however the insured

has to bear the cost of some medical expenses and rehabilitation, technical assistance,

drugs, etc., including compensation for pain, suffering and loss of income.

Bodily injury claims typically take years to be settled. Nevertheless, all the claims

in our sample were already settled in 2002, according to the company, (see, Bolancé

et al., 2008b). Finally, we should mention that the compensation may include payments

to third parties that have been damaged in one way or another.

In Table 1 we summarize the descriptive statistics of the sample for Cost1, Cost2

and the Total Cost. The variables Cost1 and Cost2 are always positive, and there is a big
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difference between the corresponding maximum and minimum values. Furthermore, we

observe that the variables described in Table 1 have right skewness. In Figure 1 we show

the histograms representing the shape of the distributions associated with the variables

Cost1 and Cost2.

The K-Plot (related to Kendall Plot, see, Genest and Boies, 2003) is a visual method

that allows us to analyze in a descriptive way if our bivariate data have been generated

by an extreme value copula. In Figure 2 we show the K-Plot, that compare the order

Table 1: Descriptive statistics.

Cost Average Std.Dev. Skewness Min Max Median

Cost1 182.80 686.80 15.65 13.00 137900.00 677.00

Cost2 283.92 863.17 8.04 1.00 11855.00 88.00

Total Cost 211.20 752.00 15.27 32.00 149800.00 789.00

Property damages

Cost1

F
re

q
u
e
n
c
y

0 20000 40000 60000 80000 100000 120000 140000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Medical care

Cost2

F
re

q
u
e
n
c
y

0 2000 4000 6000 8000 10000 12000

0
1
0
0

2
0
0

3
0
0

4
0
0

Figure 1: Histograms.
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Figure 2: K-Plot associated with to copula of (Cost1, Cost2).
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in real data (H, pseudo-observations generated by the bivariate empirical distribution)

with the order supposing that the data have been generated by the independence copula

(W , expected pseudo-observations). We note that costs have a positive association (as

shown in the values of the K-plot above the diagonal, which indicates independence).

Almost all points are between the straight line and the boundary curve indicating perfect

positive dependence. It seems that for larger values of W , the data are closed to the case

of a perfect positive dependence. This means that the higher the severity of the claim,

the higher is the correlation between the medical costs and compensation.

4. Results

In this section we report the results that we have obtained in an empirical application

of the methodology that we have presented. In order to estimate the total risk of loss,

our goal is to determine the dependency structure between the data corresponding to

a sample of claims provided by a major insurance company which operates in Spain.

To test if our data are generated by an extreme value copula we calculate the value

of the Cramér-Von Mises statistic in (7), firstly with r = 3,4,5. We have estimated the

significance level of the test statistic using the method proposed by Van der Vaart (2000).

In total, we generated 1000 independent copies of S3,4,5
n . The results are shown in Table

2 and allow us to conclude that the analyzed bivariate data are generated by an extreme

value copula.

Table 2: Cramér-Von Mises statistic.

Statistic Estimation p-value

S
3,4,5
n 0.2680 0.1773

Table 3: Copula estimation results.

Gaussian t-Student∗ Gumbel Galambos Hüsler-Reiss

Parameters 0.5905 0.5981 1.7397 1.0208 1.4946

Standard Errors 0.02485 0.02718 0.07538 0.07689 0.09059

AIC −212.3695 −217.0000 −246.3839 −243.3305 −237.8542

BIC −208.1195 −208.5000 −242.1339 −239.0805 −233.6042

CIC −208.1195 −208.5000 −242.1339 −239.0805 −233.6042

Kendall Tau = 0.4252. ∗d.f. = 9.6442

We estimate the parameters of the three extreme value copulas described in Sec-

tion 2.1: Gumbel, Galambos and Hüsler-Reiss.
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In Table 3 we show the estimated parameters for these three copulas together with

those obtained for the Gaussian and the t-Student copulas. To estimate the dependence

parameter of Gaussian, Gumbel, Galambos and Hüsler-Reiss copulas we have used the

inversion of Kendall’s tau method (Itau). To estimate the dependence parameter and the

degree of freedom of the t-Student copula we have used maximum likelihood estimation

(MLE). For selecting the copula we have used two known statistical information

criterion, the Akaike Information Criterion AIC = −2logL(θ )+ 2k and the Bayesian

Information Criterion BIC =−2lnL(θ )+k ln(n)k, where k is the number of parameters

to be estimated and L the value of the likelihood function. Also, we have used the copula

information criterion CIC propose by Gronneberg and Hjort (2014). The corresponding

results are presented in Table 3. We observe that BIC and CIC values are very similar

and we conclude that the Gumbel copula is the one that best reflects the dependence

structure of our data.

Once the dependency structure is estimated, the next step is to estimate the marginal

distribution functions. Considering the histograms in Figure 1, we chosed to use two

EVD. Namely, we compare the log-normal distribution, that is a EVD Type I (Gumbel),

with the modified Champernowne distribution1, which converges to a Pareto in the tail

and therefore it is an EVD Type II (Frechet); besides the Champernowe distribution

looks more like a log-normal near 0. Furthermore, the Champernowne distribution have

been analyzed in the context of semiparametric estimation of EVD (see, for example,

Bolancé, 2010; Bolancé et al., 2008a; Alemany et al., 2013). In Table 4 we show the

results for the maximum likelihood estimation of the marginal distributions. We can see

that for Cost1, Log-normal and Champernowne have similar AIC and BIC, however for

Cost2 Champernowne provides lower values of AIC and BIC.

Table 4: Maximum likelihood estimation of marginal distributions.

Log-normal Champernowne

CDFs

∫ logx

−∞

1
√

2πσ2
e
−

(t−µ)2

2σ2 dt, x ≥ 0
(x+ c)δ− cδ

(x+ c)δ+(H + c)δ−2cδ
, x ≥ 0

X1 = Cost1 µ= 6.4437,σ = 1.3349, δ = 1.3271,H = 677,c = 0

AIC = 8448.8950 and BIC = 8452.7190 AIC = 8448.163 and BIC = 8453.899

X2 = Cost2 µ= 4.3755,σ = 1.5189, δ = 1.1622,H = 88,c = 0

AIC = 9425.1340 and BIC = 9428.9590 AIC = 6443.7150 and BIC = 6449.4510

1. The cdf of the modified Champernowne distribution is:

F (x) =
(x+ c)δ− cδ

(x+ c)δ+(H + c)δ−2cδ
, x ≥ 0,

with parameters δ > 0, H > 0 and c ≥ 0. The estimation of transformation parameters is performed using the maximum
likelihood method described in Buch-Larsen et al. (2005).
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For evaluating the risk of total loss we estimate the quantile of S at confidence level

α (qα(S)). We use the Monte Carlo simulation method and the procedure is as follows:

1. We generate the pseudo-random sample
(

Û1i,Û2i

)

, ∀i= 1, . . . ,r, from the bivariate

copulas whose estimated parameters are shown in Table 3.

2. Using the inverse of the marginal CDFs we calculate
(

X̂1i = F−1
1 (Û1i), X̂2i =

= F−1
2 (Û2i)

)

, ∀i = 1, . . . , l, where the sample volume l is large.

3. We calculate Ŝi = X̂1i + X̂2i, ∀i = 1, . . . , l and we estimate qα(S) empirically from

the generated pseudo-sample. We generate l = 10,000 samples.

In Table 5 we show the results of the estimations of qα for α = 0.95,0.99,0.995,

0.999. On the first row of Table 5 we provide the empirical values of the qα(S) calculated

with the 518 observations in the sample of the aggregate loss S = X1 +X2 for different

confidence levels α; below we show the same qα(S) that have been estimated by the

Monte Carlo simulation method for the five copulas considered here. We note the

importance of using an extreme value copula and extreme value marginal distributions

when the data indicate this behaviour.

Table 5: Quantiles of total loss.

α 0.95 0.99 0.995 0.999

Empirical 7905.6000 24821.1400 28420.8700 92112.9300

Log-normal

Normal 6635.427 15628.804 20762.765 39733.894

t-Student 6547.524 16638.175 22521.175 39547.101

Gumbel 6432.017 15464.969 22011.382 40001.210

Galambos 6429.160 15471.400 22066.000 39925.670

Hüsler-Reiss 6421.028 15465.126 22122.110 39841.559

Champernowne

Normal 7237.591 25504.175 38682.444 110082.261

t-Student 7302.165 25740.933 42223.504 117447.015

Gumbel 7264.831 23944.798 41461.743 119401.409

Galambos 7253.166 24056.946 41409.717 118982.012

Hüsler-Reiss 7241.504 24103.038 41107.537 118539.744

In Table 5 we show that by using log-normal marginal distributions, the estimated

quantile is below the empirical quantile for the five copulas considered here. Therefore,

the risk is underestimated. We also note that the selected copula does not have much

influence on the risk estimation. However, if we use Champernowne marginal distribu-

tions, which has a heavier right tail than log-normal distribution, the influence of the

selected copula is not significant at lower confidence levels (0.95 and 0.99) but it is sig-
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nificant for extreme confidence levels (0.995 and 0.999). As indicated by the goodness

of fit measures for our data, the best selection is the Gumbel copula with Champernowne

marginal distributions.

5. Conclusions

The test we have introduced for the adequacy of extreme value copulas allows us to

determine the suitable copula, especially when the data have extreme values.

In our empirical application, the K-Plot identified a positive and increasing depen-

dence between variables related to automobile insurance claims, and the new test we

presented for extreme value copulas confirms that, in our case, we should use an ex-

treme value copula.

In the selection of the marginal distribution we have considered a modified Champer-

nowne distribution. It provides interesting results, due to its similarity to the log-normal

distribution for low values of the variable and, additionally, due to its convergence to a

Pareto distribution in the right tail.

When the marginal distributions have heavy right tail, as is the case with the

Champernowne distribution and if the aim is to estimate extreme quantiles, the results

show the importance of testing the adequacy of an extreme value copula to the data.
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Sarabia, J. and Gómez-Déniz, E. (2008). Construction of multivariate distributions: a review of some recent

results. SORT-Statistics and Operations Research Transactions, 32, 3–36.

Scaillet, O. (2005). A kolmogorov smirnov type test for positive quadrant dependence. The Canadian

Journal of Statistics, 33, 415–427.

Segers, J. (2012). Max-stable models for multivariate extremes. REVSTAT-Statistical Journal, 10, 61–82.
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