
Statistics and Operations Research Transactions, vol. 37, n. 2 (2013)

Locally adaptive density estimation on Riemannian manifolds......................... p. 111 - 130
Guillermo Henry, Andrés Muñoz and Daniela Rodriguez 

Selection and pattern mixture models for modelling longitudinal data with 
dropout: An application study......................................................................... p. 131 - 152
Ali Satty and H. Mwambi 

A nonparametric visual test of mixed hazard models ...................................... p. 153 - 174
Jaap Spreeuw, Jens Perch Nielsen and Søren Fiig Jarner 

Quantile estimation of the rejection distribution of food products 
integrating assessor values and interval-censored consumer data.................. p. 175 - 188
Klaus Langohr, Guadalupe Gómez and Guillermo Hough 

An alternative to Kim and Warde's mixed randomized response model............ p. 189 - 210
Housila P. Singh and Tanveer A. Tarray 

Double bounded Kumaraswamy-power series class of distributions ............... p. 211 - 230
Hamid Bidram and Vahid Nekoukhou 

Analysis of inequality in fertility curves fitted by Gamma distributions ........... p. 233 – 240
Héctor M. Ramos, Antonio Peinado, Jorge Ollero and María G. Ramos  



Statistics & Operations Research Transactions

SORT 37 (2) July-December 2013, 111-130

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Locally adaptive density estimation on

Riemannian manifolds

Guillermo Henry1,2, Andrés Muñoz1 and Daniela Rodriguez1,2

Abstract

In this paper, we consider kernel type estimator with variable bandwidth when the random vari-

ables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency

and the asymptotic distribution. A simulation study is also considered to evaluate the performance

of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we anal-

yse two real examples where two different manifolds are considered.
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1. Introduction

Let X1, . . . ,Xn be independent and identically distributed random variables taking values

in Rd and having density function f . A class of estimators of f which has been widely

studied since the work of Rosenblatt (1956) and Parzen (1962) has the form

fn(x) =
1

nhd

n

∑
j=1

K

(
x−X j

h

)
,

where K(u) is a bounded density on Rd and h is a sequence of positive number such that

h → 0 and nhd → ∞ as n → ∞.

If we apply this estimator to data coming from long tailed distributions, with a small

enough h to be appropriate for the central part of the distribution, a spurious noise ap-
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pears in the tails. With a large value of h for correctly handling the tails, we can

not see the details occurring in the main part of the distribution. To overcome these

defects, adaptive kernel estimators were introduced. For instance, a conceptually similar

estimator of f (x) was studied by Wagner (1975) who defined a general neighbour

density estimator by

f̂n(x) =
1

nHd
n (x)

n

∑
j=1

K

(
x−X j

Hn(x)

)
,

where Hn(x) is the distance between x and the k-nearest neighbour of x among X1, . . . ,Xn,

and k = kn is a sequence of non–random integers such that limn→∞ kn = ∞. Through this

adaptive bandwidth , the estimation in the point x has the guarantee that to be calculated

using at least k points of the sample.

However, in many applications, the variables X take values on different spaces than

R
d . Usually these spaces have a more complicated geometry than the Euclidean space

and this has to be taken into account in the analysis of the data. For example, if we study

the distribution of the stars with luminosity in a given range it is natural to think that the

variables belong to a spherical cylinder (S2 ×R) instead of R4. If we consider a region

of the planet M, then the direction and the velocity of the wind in this region are points

in the tangent bundle of M, that is a manifold of dimension 4. Other examples could be

found in image analysis, mechanics, geology and other fields. They include distributions

on spheres, Lie groups, among others, see for example Joshi et al. (2007), Goh and Vidal

(2008). For this reason, it is interesting to study an estimation procedure of the density

function that takes into account a more complex structure of the variables.

Nonparametric kernel methods for estimating densities of spherical data have been

studied by Hall et al. (1987) and Bai et al. (1988). Pelletier (2005) proposed a family

of nonparametric estimators for the density function based on kernel weighting when

the variables are random objects valued in a closed Riemannian manifold. Pelletier’s

estimators are consistent with the kernel density estimators in the Euclidean case

considered by Rosenblatt (1956) and Parzen (1962).

As we comment above, the importance of local adaptive bandwidth is well known in

nonparametric statistics and this is even more true with data taking values in complex

spaces. In this paper, we propose a kernel density estimator on a Riemannian manifold

with a variable bandwidth defined by k-nearest neighbours.

This paper is organized as follows. Section 2 contains a brief summary of the

necessary concepts of Riemannian geometry. In Section 2.1, we introduce the estimator.

Uniform consistency of the estimator is derived in Section 3.1, while in Section 3.2

the asymptotic distribution is obtained under regular assumptions. Section 4 contains

a Monte Carlo study designed to evaluate the proposed estimator. Finally, Section 5

presents two example using real data. Proofs are given in the Appendix.
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2. Preliminaries and the estimator

Let (M,g) be a d-dimensional Riemannian manifold without boundary. We denote by

dg the distance induced by the metric g. With Bs(p) we denote a normal ball with radius

s centred at p. The injectivity radius of (M,g) is given by in jgM = inf
p∈M

sup{s ∈ R> 0 :

Bs(p) is a normal ball}. It is easy to see that a compact Riemannian manifold has strictly

positive injectivity radius. For example, it is not difficult to see that the d-dimensional

sphere Sd endowed with the metric induced by the canonical metric g0 of Rd+1 has

injectivity radius equal to π. If N is a proper submanifold of the same dimension than

(M,g), then in jg|N N = 0. The Euclidean space or the hyperbolic space have infinite

injectivity radius. Moreover, a complete and simply connected Riemannian manifold

with non-positive sectional curvature has also this property.

Throughout this paper, we will assume that (M,g) is a complete Riemannian mani-

fold, i.e. (M,dg) is a complete metric space. Also we will consider that in jgM is strictly

positive. This restriction will be clear in the Section 2.1 when we define the estima-

tor. For standard result on differential and Riemannian geometry we refer to the reader

to Boothby (1975), Besse (1978), Do Carmo (1988) and Gallot, Hulin and Lafontaine

(2004).

Let p ∈ M, we denote with 0p and TpM the null tangent vector and the tangent space

of M at p. Let Bs(p) be a normal ball centred at p. Then Bs(0p) = exp−1
p (Bs(p)) is

an open neighbourhood of 0p in TpM and so it has a natural structure of differential

manifold. We are going to consider the Riemannian metrics g ′ and g ′ ′ in Bs(0p), where

g ′ = exp∗p(g) is the pullback of g by the exponential map and g ′ ′ is the canonical metric

induced by gp in Bs(0p). Let w∈Bs(0p), and (Ū ,ψ̄) be a chart of Bs(0p) such that w∈ Ū .

We note by {∂/∂ ψ̄1|w, . . . ,∂/∂ ψ̄d |w} the tangent vectors induced by (Ū ,ψ). Consider

the matricial function with entries (i, j) are given by g ′ ((∂/∂ ψ̄i|w
)
,

(
∂/∂ ψ̄ j|w

))
.

The volumes of the parallelepiped spanned by {
(
∂/∂ ψ̄1|w

)
, . . . ,

(
∂/∂ ψ̄d |w

)
} with

respect to the metrics g ′ and g ′ ′ are given by |detg ′ ((∂/∂ ψ̄i|w
)
,

(
∂/∂ ψ̄ j|w

))
|1/2

and |detg ′ ′ ((∂/∂ ψ̄i|w
)
,

(
∂/∂ ψ̄ j|w

))
|1/2 respectively. The quotient between these two

volumes is independent of the selected chart. So, given q ∈ Bs(p), if w = exp−1
p (q) ∈

Bs(0p) we can define the volume density function, θp(q), on (M,g) as

θp(q) =
|detg ′ ((∂/∂ ψ̄i|w

)
,

(
∂/∂ ψ̄ j|w

))
|1/2

|detg ′ ′ ((∂/∂ ψ̄i|w
)
,

(
∂/∂ ψ̄ j|w

))
|1/2

for any chart (Ū ,ψ̄) of Bs(0p) that contains w = exp−1
p (q). For instance, if we consider

a normal coordinate system (U,ψ) induced by an orthonormal basis {v1, . . . ,vd} of TpM

then θp(q) is the function of the volume element dνg in the local expression with respect

to chart (U,ψ) evaluated at q, i.e.

θp(q) =

∣∣∣∣detgq

(
∂

∂ψi

∣∣∣
q
,

∂

∂ψ j

∣∣∣
q

)∣∣∣∣
1
2

,
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where ∂
∂ψi

|q = Dαi(0)expp(α̇i(0)) with αi(t) = exp−1
p (q)+ tvi for q ∈ U . Note that the

volume density function θp(q) is not defined for all the pairs p and q in M, but it is if

dg(p,q)< in jgM.

We finish the section showing some examples of the density function:

i) In the case of (Rd
,g0) the density function is θp(q) = 1 for all (p,q) ∈ Rd ×Rd .

ii) In the 2-dimensional sphere of radius R, the volume density is

θp1
(p2) = R

|sin(dg(p1, p2)/R)|
dg(p1, p2)

if p2 6= p1,−p1 and θp1
(p1) = 1.

where dg induced is given by

dg(p1, p2) = Rarccos

(〈p1, p2〉
R2

)
.

iii) In the case of the cylinder of radius 1 C1 endowed with the metric induced by the

canonical metric of R3, θp1
(p2) = 1 for all (p1, p2) ∈C1 ×C1, and the distance

induced is given by dg(p1, p2) = d2((r1,s1),(r2,s2)) if d2((r1,s1),(r2,s2)) < π,

where d2 is the Euclidean distance of R2 and pi = (cos(ri),sin(ri),si) for i = 1,2.

See also Besse (1978) and Pennec (2006) for a discussion on the volume density

function.

2.1. The estimator

Consider a probability distribution with a density f on a d-dimensional Riemannian

manifold (M,g). Let X1, · · · ,Xn be i.i.d random object taking values on M with density

f . A natural extension of the estimator proposed by Wagner (1975) in the context of a

Riemannian manifold is to consider the following estimator

f̂n(p) =
1

nHd
n (p)

n

∑
j=1

1

θX j
(p)

K

(
dg(p,X j)

Hn(p)

)
,

where K : R→ R is a non-negative function with compact support, θp(q) denotes the

volume density function on (M,g) and Hn(p) is the distance dg between p and the

k-nearest neighbour of p among X1, . . . ,Xn, and k = kn is a sequence of non-random

integers such that limn→∞ kn = ∞.

As we mention above, the volume density function is not defined for all p and

q. Therefore, in order to guarantee the well definition of the estimator we consider a

modification of the proposed estimator. Using the fact that the kernel K has compact
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support, we consider as bandwidth ζn(p) = min{Hn(p), in jgM} instead of Hn(p). Thus,

the kernel only considers the points Xi such that dg(Xi, p)≤ ζn(p) that are smaller than

in jgM and for these points, the volume density function is well defined. Hence, the k-

nearest neighbour kernel type estimator is defined as follows,

f̂n(p) =
1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

K

(
dg(p,X j)

ζn(p)

)
, (1)

where ζn(p) = min{Hn(p), in jgM}.

Remark 2.1.1. If (M,g) is a compact Riemannian manifold and its sectional curvature

is not bigger than a > 0, then we know by the Lemma of Klingerberg (see Gallot, Hulin,

Lafontaine (2004)) that in jgM ≥ min{π/√a, l/2} where l is the length of the shortest

closed geodesic in (M,g).

3. Asymptotic results

Denote by Cℓ(U) the set of ℓ times continuously differentiable functions from U to R

where U is an open set of M. We assume that the measure induced by the probability P

and by X is absolutely continuous with respect to the Riemannian volume measure dνg,

and we denote by f its density on M with respect to dνg. More precisely, let B(M) be the

Borel σ−field of M (the σ−field generated by the class of open sets of M). The random

variable X has a probability density function f , i.e. if χ ∈B(M), P(X−1(χ)) =
∫
χ f dνg.

3.1. Uniform consistency

We will consider the following set of assumptions in order to derive the strong consis-

tency results of the estimate f̂n(p) defined in (1).

H1. Let M0 be a compact set on M such that:

i) f is a bounded function such that infp∈M0
f (p) = A > 0.

ii) infp,q∈M0
θp(q) = B > 0.

H2. For any open set U0 of M0 such that M0 ⊂U0, f is of class C2 on U0.

H3. The sequence kn is such that kn → ∞, kn

n
→ 0 and kn

logn
→ ∞ as n → ∞.

H4. K : R → R is a bounded nonnegative Lipschitz function of order one, with

compact support [0,1] satisfying:
∫
Rd K(‖u‖)du = 1,

∫
Rd uK(‖u‖)du = 0 and

0 <

∫
Rd ‖u‖2K(‖u‖)du < ∞.

H5. The kernel K(u) verifies K(uz)≥ K(z) for all u ∈ (0,1).
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Remark 3.1.1. The fact that θp(p) = 1 for all p ∈ M guarantees that H1 ii) holds. The

assumption H3 is usual when dealing with nearest neighbor and the assumption H4 is

standard when dealing with kernel estimators.

Theorem 3.1.2. Assume that H1 to H5 holds, then we have that

sup
p∈M0

| f̂n(p)− f (p)| a.s.−→ 0.

3.2. Asymptotic normality

To derive the asymptotic distribution of the regression parameter estimates we will

need two additional assumptions. We will denote with Vr the Euclidean ball of radius r

centered at the origin and with λ(Vr) its Lebesgue measure.

H5. f (p) > 0, f ∈ C2(V ) with V ⊂ M an open neighborhood of M and the second

derivative of f is bounded.

H6. The sequence kn is such that kn →∞, kn/n→ 0 as n→∞ and there exists 0≤β <∞

such that
√

knn−4/(d+4) → β as n → ∞.

H7. The kernel verifies

i)
∫

K1(‖u‖)‖u‖2du < ∞ as s → ∞ where K1(u) = K′(‖u‖)‖u‖.

ii) ‖u‖d+1K2(u)→ 0 as ‖u‖→ ∞ where K2(u) = K′′(‖u‖)‖u‖2 −K1(u)

Remark 3.2.1. Note that div(K(‖u‖)u) =K′(‖u‖)‖u‖+d K(‖u‖), then using the diver-

gence Theorem, we get that
∫

K′(‖u‖)‖u‖du =
∫
‖u‖=1 K(‖u‖)u u

‖u‖du−d
∫

K(‖u‖)du.

Thus, the fact that K has compact support in [0,1] implies that
∫

K1(u)du =−d.

On the other hand, note that ∇(K(‖u‖)‖u‖2) = K1(‖u‖)u+ 2K(‖u‖)u and by H4

we get that
∫

K1(‖u‖)udu = 0.

Theorem 3.2.2. Assume H4 to H7. Then we have that

√
kn( f̂n(p)− f (p))

D−→ N (b(p),σ2(p))

with

b(p) =
1

2

β
d+4

d

( f (p)λ(V1))
2
d

∫

V1

K(‖u‖)u2
1 du

d

∑
i=1

∂ f ◦ψ−1

∂ui∂ui

|u=0
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and

σ2(p) = λ(V1) f 2(p)
∫

V1

K2(‖u‖)du

where u = (u1, . . . ,ud) and (Bh(p),ψ) is any normal coordinate system.

In order to derive the asymptotic distribution of f̂n(p), we will study the asymptotic

behaviour of hd
n/ζ

d
n(p) where hd

n = kn/(n f (p)λ(V1)). Note that if we consider f̃n(p) =

kn/(nζ
d
n(p)λ(V1)), f̃n(p) is a consistent estimator of f (p) (see the proof of Theorem

3.1.2). The next Theorem states that this estimator is also asymptotically normally

distributed as in the Euclidean case.

Theorem 3.2.3. Assume H4 to H6, and let hd
n = kn/(n f (p)λ(V1)). Then we have that

√
kn

(
hd

n

ζd
n(p)

−1

)
D−→ N(b1(p),1)

with

b1(p) =

(
β

d+4
2

f (p)µ(V1)

) 2
d
{

τ

6d +12
+

∫
V1

u2
1 du L1(p)

f (p)µ(V1)

}

where u = (u1, . . . ,ud), τ is the scalar curvature of (M,g), i.e. the trace of the Ricci

tensor,

L1(p) =
d

∑
i=1

(
∂ 2 f ◦ψ−1

∂uiui

∣∣∣
u=0

+
∂ f ◦ψ−1

∂ui

∣∣∣
u=0

∂θp ◦ψ−1

∂ui

∣∣∣
u=0

)

and (Bh(p),ψ) is any normal coordinate system.

4. Simulations

This section contains the results of a simulation study designed to evaluate the perfor-

mance of the estimator defined in the Section 2.1. We consider three models in two

different Riemannian manifolds, the sphere and the cylinder endowed with the metric

induced by the canonical metric of R3. We performed 1000 replications of independent

samples of size n = 200 according to the following models:

Model 1 (in the sphere): The random variables Xi for 1 ≤ i ≤ n are i.i.d. Von

Mises distribution V M(µ,κ) i.e.
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fµ,κ(X) =
(κ

2

)1/2

I1/2(κ)exp{κXTµ},

with µ is the mean parameter, κ> 0 is the concentration parameter and I1/2(κ) =(
κπ
2

)
sinh(κ) stands for the modified Bessel function. This model has many

important applications, as described in Jammalamadaka and Sengupta (2001) and

Mardia and Jupp (2000). We generate a random sample following a Von Mises

distribution with mean (0,0,1) and concentration parameter 3.

Model 2 (in the sphere): We simulate i.i.d. random variables Zi for 1 ≤ i ≤ n

following a multivariate normal distribution of dimension 3, with mean (0,0,0)

and covariance matrix equal to the identity. We define Xi =
Zi

‖Zi‖ for 1 ≤ i ≤ n,

therefore the variables Xi follow a uniform distribution in the two-dimensional

sphere.

Model 3 (in the cylinder): We consider random variables Xi =(yi, ti) taking values

in the cylinder S1 ×R. We generated the model proposed by Mardia and Sutton

(1978) where,

yi = (cos(θi),sin(θi))∼V M((−1,0),5)

ti|yi ∼ N(1+2
√

5cos(θi),1).

Some examples of variables with this distribution can be found in Mardia and

Sutton (1978).

In all cases, for smoothing procedure, the kernel was taken as the quadratic kernel

K(t) = (15/16)(1− t2)2I(|x|< 1). We have considered a grid of equidistant values of k

between 5 and 150 of length 20.

To study the performance of the estimators of the density function f , denoted by f̂n,

we have considered the mean square error (MSE) and the median square error (MedSE),

i.e,

MSE( f̂n) =
1

n

n

∑
i=1

[ f̂n(Xi)− f (Xi)]
2
.

MedSE( f̂n) = median | f̂n(Xi)− f (Xi)|2 .

Figure 1 gives the values of the MSE and MedSE of f̂n in the sphere model considering

different numbers of neighbours, while Figure 2 shows the cylinder model. The simu-

lation study confirms the good behaviour of k-nearest neighbour estimators, under the
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different models considered. In all cases, the estimators are stable under large numbers

of neighbours. However, as expected, the estimators using a small number of neighbours

have a poor behaviour, because in the neighborhood of each point there is a small

number of samples.
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Figure 1: The nonparametric density estimator using different numbers of neighbours, a) the Von Mises

model and b) the uniform model.
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Figure 2: The nonparametric density estimator using different numbers of neighbours in the cylinder.
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Figure 3: The nonparametric density estimator using different numbers of neighbours, a) k = 75, b) k = 50,

c) k = 25 and d) k = 10.

a) b)

c) d)

5. Real Example

5.1. Paleomagnetic data

The need for statistical analysis of paleomagnetic data is well known. Since the work

developed by Fisher (1953), the study of parametric families was considered a principal

tools to analyse and quantify this type of data (see Cox and Doell (1960), Butler (1992)

and Love and Constable (2003)). In particular, our proposal allows to explore the nature

of directional dataset that include paleomagnetic data without making any parametric

assumptions.
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In order to illustrate the k-nearest neighbor kernel type estimator on the two-di-

mensional sphere, we illustrate the estimator using a paleomagnetic data set studied by

Fisher, Lewis, and Embleton (1987). The data set consists of n = 107 sites from speci-

mens of Precambrian volcanos with measurements of magnetic remanence. The data set

contains two variables corresponding to the directional component on a longitude scale,

and the directional component on a latitude scale. The original data set is available in

the package sm of R.

To calculate the estimators the volume density function and the geodesic distance

were taken as in Section 2 and we considered the quadratic kernel K(t) = (15/16)

(1− t2)2I(|x| < 1). In order to analyse the sensitivity of the results with respect to the

number of neighbours, we plot the estimator using different bandwidths. The results are

shown in Figure 3.

The real data were plotted in blue and with a large radius in order to obtain a better

visualization. The Equator line, the Greenwich meridian and a second meridian are

in gray while the north and south poles are denoted with the capital letters N and S

respectively. The levels of concentration of measurements of magnetic remanence are

shown in yellow for high levels and in red for lowest density levels. Also, the levels of

concentration of measurements of magnetic remanence were illustrated with relief on

the sphere, which emphasizes high density levels and the form of the density function.

As in the Euclidean case a large number of neighbours produces estimators with

small variance but high bias, while small values produce more wiggly estimators. This

fact shows the need of the implementation of a method to select the adequate bandwidth

for this estimator. However, this requires further careful investigation and is beyond the

scope of this paper.

5.2. Meteorological data

In this section we consider a real data set collected in the meteorological station

“Agüita de Perdiz”, located in Viedma, province of Rı́o Negro, Argentine. The data

set consists of wind directions and temperatures during January 2011 and contains 1326

observations that were registered with a frequency of thirty minutes. We note that the

considered variables belong to a cylinder with radius 1.

As in the previous section, we consider the quadratic kernel and we took the density

function and the geodesic distance as in Section 2. Figure 4 shows the result of the esti-

mation, the colour and form of the graphic was constructed as in the previous example.

It is important to remark that the measurement devices of wind direction do not

present a sufficient precision to avoid repeated data. Therefore, we consider the proposal

given in Garcı́a-Portugués et al. (2011) to solve this problem. The proposal consists in

perturbing the repeated data as follows r̃i = ri+ξǫi, where ri denotes the wind direction

measurements and ǫi, for i = 1, . . . ,n were independently generated from a von Mises

distribution with µ = (1,0) and κ = 1. The selection of the perturbation scale ξ was

taken as ξ= n−1/5, as in Garcı́a-Portugués et al. (2011) where in this case n = 1326.
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The work of Garcı́a-Portugués et al. (2011) contains other nice real example where

the proposed estimator can be applied. They considered a naive density estimator applied

to wind directions and SO2 concentrations, which allows one to explore high levels of

contamination.

Figure 4: The nonparametric density estimator using different numbers of neighbours, a) k = 75,

b) k = 150, c) k = 300 and d) k = 400.

a) b)

c) d)

In Figure 4 we can see that the lowest temperatures are more probable when the

wind comes from an easterly direction. However, the highest temperature does not seem

to have correlation with the wind direction. Also, note that in Figure 4 we can see two

modes corresponding to the minimum and maximum daily temperatures.

These examples show the usefulness of the proposed estimator for the analysis and

exploration of these type of data set.
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Appendix

Proof of Theorem 3.1.2.

Let

fn(p,δn) =
1

nδd
n

n

∑
i=1

1

θXi
(p)

K

(
dg(p,Xi)

δn

)
.

Note that if δn = δn(p) verifies δ1n ≤ δn(p) ≤ δ2n for all p ∈ M0 where δ1n and δ2n

satisfy δin → 0 and
nδd

in

logn
→ ∞ as n → ∞ for i = 1,2 then by Theorem 3.2 in Henry and

Rodriguez (2009) we have that

sup
p∈M0

| fn(p,δn)− f (p)| a.s.−→ 0 (2)

For each 0 < β < 1 we define,

f−n (p,β) =
1

nD+
n (β)

d

n

∑
i=1

1

θXi
(p)

K

(
dg(p,Xi)

D−
n (β)

)
= f−n (p,D−

n (β)
d)

D−
n (β)

d

D+
n (β)

d
.

f+n (p,β) =
1

nD−
n (β)

d

n

∑
i=1

1

θXi
(p)

K

(
dg(p,Xi)

D+
n (β)

)
= f+n (p,D+

n (β)
d)

D+
n (β)

d

D−
n (β)

d
.

where D−
n (β) = β

1/2dhn, D+
n (β) = β

−1/2dhn and hd
n = kn/(nλ(V1) f (p)) with λ(V1)

denote the Lebesgue measure of the ball in Rd with radius r centred at the origin. Note

that

sup
p∈M0

| f−n (p,β)−β f (p)| a.s.−→ 0 and sup
p∈M0

| f+n (p,β)−β−1 f (p)| a.s.−→ 0. (3)

For all 0 < β < 1 and ǫ > 0 we define

S−
n (β ,ǫ) = {w : sup

p∈M0

| f−n (p,β)− f (p)|< ǫ },

S+
n (β ,ǫ) = {w : sup

p∈M0

| f+n (p,β)− f (p)|< ǫ },

Sn(ǫ) = {w : sup
p∈M0

| f̂n(p)− f (p)|< ǫ },

An(β) = { f−n (p,β)≤ f̂n(p)≤ f+n (p,β)}
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Then, An(β)∩ S−
n (β ,ǫ)∩ S+

n (β ,ǫ) ⊂ Sn(ǫ). Let A = supp∈M0
f (p). For 0 < ǫ < 3A/2

and βǫ = 1− ǫ
3A

consider the following sets

Gn(ǫ) =
{

w : D−
n (βǫ)≤ ζn(p)≤ D+

n (βǫ) for all p ∈ M0

}

G−
n (ǫ) = { sup

p∈M0

| f−n (p,βǫ)−βǫ f (p)|< ǫ
3
}

G+
n (ǫ) =

{
sup
p∈M0

| f+n (p,βǫ)−β−1
ǫ f (p)|< ǫ

3

}
.

Then we have that Gn(ǫ)⊂ An(βǫ), G−
n (ǫ)⊂ S−

n (βǫ,ǫ) and G+
n (ǫ)⊂ S+

n (βǫ,ǫ). There-

fore, Gn(ǫ)∩G−
n (ǫ)∩G+

n (ǫ)⊂ Sn(ǫ).

On the other hand, using that limr→0 V (Br(p))/rdµ(V1) = 1, where V (Br(p)) de-

notes the volume of the geodesic ball centered at p with radius r (see Gray and Vanhecke

(1979)) and similar arguments those considered in Devroye and Wagner (1977), we get

that

sup
p∈M0

∣∣∣∣
kn

nλ(V1) f (p)Hd
n (p)

−1

∣∣∣∣
a.s.−→ 0.

Recall that in jgM > 0 and Hd
n (p)

a.s.−→ 0. Then for straightforward calculations we

obtained that supp∈M0

∣∣∣ kn

nλ(V1) f (p)ζd
n(p)

−1

∣∣∣ a.s.−→ 0. Thus, IGc
n(ǫ)

a.s.−→ 0 and (3) imply that

ISc
n(ǫ)

a.s.−→ 0. �

Proof of Theorem 3.2.2.

A Taylor expansion of second order gives

√
kn

{
1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

K

(
dg(p,X j)

ζn(p)

)
− f (p)

}
= An +Bn +Cn

where

An = (hd
n/ζ

d
n(p))

√
kn

{
1

nhd
n

n

∑
j=1

1

θX j
(p)

K

(
dg(p,X j)

hn

)
− f (p)

}
,

Bn =
√

kn((h
d
n/ζ

d
n(p))−1)

{
f (p)+

[(hn/ζn(p))−1]hd
n

[(hd
n/ζ

d
n(p))−1]ζd

n(p)

1

nhd
n

n

∑
j=1

1

θX j
(p)

K1

(
dg(p,X j)

ζn(p)

)}

and

Cn =
√

kn((h
d
n/ζ

d
n(p))−1)

[(hn/ζn(p))−1]2

2[(hd
n/ζ

d
n(p))−1]

1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

K2

(
dg(p,X j)

ξn

)
[ξn/hn]

2
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with hd
n = kn/n f (p)λ(V1) and min(hn,ζn) ≤ ξn ≤ max(hn,ζn). Note that H6 implies

that hn satisfies the necessary hypothesis given in Theorem 4.1 in Rodriguez and Henry

(2009), in particular

√
nhd+4

n → β
d+4

d ( f (p)λ(V1))
− d+4

2d
.

By the Theorem and the fact that hn/ζn(p)
p−→ 1, we obtain that An converges to a

normal distribution with mean b(p) and variance σ2(p). Therefore it is enough to show

that Bn and Cn converges to zero in probability.

Note that
(hn/Hn(p))−1

(hd
n/ζ

d
n(p))−1

p−→ d−1 and by similar arguments those considered in Theorem

3.1 in Pelletier (2005) and Remark 3.2.1 we get that

1

nhd
n

n

∑
j=1

1

θX j
(p)

K1

(
dg(p,X j)

ζn(p)

)
p−→
∫

K1(u)du f (p) =−d f (p).

Therefore, by Theorem 3.2.3, we obtain that Bn
p−→ 0. As ξn/hn converges to one in

probability, in order to concluded the proof, it remains to prove that

1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

|K2 (dg(p,X j)/ξn) |

is bounded in probability.

By H7, there exits r > 0 such that |t|d+1|K2(t)| ≤ 1 if |t| ≥ r. Let Cr = (−r,r), then

we have that

1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

∣∣∣∣K2

(
dg(p,X j)

ξn

)∣∣∣∣ ≤
sup|t|≤r |K2(t)|

nζd
n(p)

n

∑
j=1

1

θX j
(p)

ICr

(
dg(p,X j)

ξn

)

+
1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

ICc
r

(
dg(p,X j)

ξn

)∣∣∣∣
dg(p,X j)

ξn

∣∣∣∣
−(d+1)

As min(hn,ζn(p))≤ ξn ≤ max(hn,ζn(p)) = ξ̃n it follows that

1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

∣∣∣∣K2

(
dg(p,X j)

ξn

)∣∣∣∣≤

≤
(

hn

ζn(p)

)d

sup
|t|≤r

|K2(t)|
1

nhd
n

n

∑
j=1

1

θX j
(p)

ICr

(
dg(p,X j)

hn

)

+ sup
|t|≤r

|K2(t)|
1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

ICr

(
dg(p,X j)

ζn(p)

)
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+

(
hn

ζn(p)

)d
1

nhd
n

n

∑
j=1

1

θX j
(p)

ICc
r

(
dg(p,X j)

hn

)∣∣∣∣
dg(p,X j)

hn

∣∣∣∣
−(d+1)

∣∣∣∣∣
ξ̃n

hn

∣∣∣∣∣

(d+1)

+
1

nζd
n(p)

n

∑
j=1

1

θX j
(p)

ICc
r

(
dg(p,X j)

ζn(p)

)∣∣∣∣
dg(p,X j)

ζn(p)

∣∣∣∣
−(d+1)

∣∣∣∣∣
ξ̃n

ζn(p)

∣∣∣∣∣

(d+1)

= Cn1 +Cn2 +Cn3 +Cn4.

By similar arguments those considered in Theorem 3.1 in Pelletier (2005), we have that

Cn1
p−→ f (p)

∫
ICr(s)ds and Cn3

p−→ f (p)
∫

ICc
r
(s)|s|−(d+1)ds.

Finally, let Aǫn = {(1−ǫ)hn ≤ ζn ≤ (1+ǫ)hn} for 0≤ ǫ≤ 1. Then for n large enough

P(Aǫn)> 1− ǫ and in Aǫn we have that

ICr

(
dg(X j, p)

ζn(p)

)
≤ ICr

(
dg(X j, p)

(1+ ǫ)hn

)
,

ICc
r

(
dg(X j, p)

ζn(p)

)∣∣∣∣
dg(X j, p)

ζn(p)

∣∣∣∣
−(d+1)

≤ ICc
r

(
dg(X j, p)

(1− ǫ)hn

)∣∣∣∣
dg(X j, p)

(1− ǫ)hn

∣∣∣∣
−(d+1) ∣∣∣∣

ζn(p)

(1− ǫ)hn

∣∣∣∣
(d+1)

.

This fact and analogous arguments those considered in Theorem 3.1 in Pelletier (2005),

allow to conclude the proof. �

Proof of Theorem 3.2.3.

Denote bn = hd
n/(1+ zk

−1/2
n ), then

P(
√

kn(h
d
n/ζ

d
n −1)≤ z) = P(ζd

n ≥ bn) = P(Hd
n ≥ bn, in jgMd ≥ bn).

As bn → 0 and in jgM > 0, there exists n0 such that for all n ≥ n0 we have that

P(Hd
n ≥ bn, in jgMd ≥ bn) = P(Hd

n ≥ bn).

Let Zi such that Zi = 1 when dg(p,Xi) ≤ b
1/d
n and Zi = 0 elsewhere. Thus, we have

that P(Hd
n ≥ bn) = P(∑n

i=1 Zi ≤ kn). Let qn = P(dg(p,Xi)≤ b
1/d
n ). Note that qn → 0 and

nqn → ∞ as n → ∞, therefore

P

(
n

∑
i=1

Zi ≤ kn

)
= P

(
1√
nqn

n

∑
i=1

(Zi −E(Zi))≤
1√
nqn

(kn −nqn)

)
.
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Using the Lindeberg Central Limit Theorem we easily obtain that (nqn)
−1/2

∑
n
i=1(Zi − E(Zi)) is asymptotically normal with mean zero and variance one. Hence,

it is enough to show that (nqn)
−1/2(kn −nqn)

p−→ z+b1(p).

Denote by µn = n

∫

B
b

1/d
n

(p)
( f (q)− f (p))dνg(q). Note that µn = n qn − wn with

wn = n f (p)V (B
b

1/d
n

(p)). Thus,

1√
nqn

(kn −nqn) = w−1/2
n (kn −wn)

(
wn

wn +µn

)1/2

+
µn

w
1/2
n

(
wn

wn +µn

)1/2

.

Let (B
b

1/d
n

(p),ψ) be a coordinate normal system. Then, we note that

1

λ(V
b

1/d
n

)

∫

B
b

1/d
n

(p)
f (q)dνg(q) =

1

λ(V
b

1/d
n

)

∫

V
b

1/d
n

f ◦ψ−1(u)θp ◦ψ−1(u)du.

The Lebesgue’s Differentiation Theorem and the fact that
V (B

b
1/d
n

(p))

λ(V
b

1/d
n

)
→ 1 imply that

λn

wn

→ 0. On the other hand, from Gray and Vanhecke (1979), we have that

V (Br(p)) = rdλ(V1)(1−
τ

6d +12
r2 +O(r4)).

Hence, we obtain that

w−1/2
n (kn −wn) =

w
−1/2
n kn z k

−1/2
n

1+ zk
−1/2
n

+
w
−1/2
n τb

2/d
n kn

(6d+12)(1+ zk
−1/2
n )

+w−1/2
n kn O(b4/d

n )

= An +Bn +Cn.

It’s easy to see that An → z and w
−1/2
n b

2/d
n kn =

knn−1/2b
2/d−1/2
n

( f (p)λ(V1))
−2/d

(
bnλ(V1)

V (B
b

1/d
n

(p))

)1/2

, since H6

we obtain that Bn → τ β (d+4)/d
/(6d+12) ( f (p)µ(V1))

−2/d . A similar argument shows

that Cn → 0 and therefore we get that w
−1/2
n (kn−wn)→ z+β

d+4
d

τ
6d+12

( f (p)λ(V1))
−d/2.

In order to concluded the proof we will show that

µn

w
1/2
n

→ β
d+4

d

( f (p)λ(V1))(d+2)/d

∫

V1

u2
1 du L1(p).
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We use a second-order Taylor expansion that leads to,

∫

B
b

1/d
n

(p)
( f (q)− f (p))dνg(q) =

d

∑
i=1

∂ f ◦ψ−1

∂ui

|u=0b1+1/d
n

∫

V1

ui θp ◦ψ−1(b1/d
n u) du

+
d

∑
i, j=1

∂ 2 f ◦ψ−1

∂ui∂u j

|u=0b1+2/d
n

∫

V1

uiu j θp ◦ψ−1(b1/d
n u) du

+O(b1+3/d
n ).

Using again a Taylor expansion on θp ◦ψ−1(·) at 0 we have that

∫

B
b

1/d
n

(p)
( f (q)− f (p))dνg(q) = b1+2/d

n

∫

V1

u2
1 du L1(p)+O(b1+3/d

n )

and by H6 the theorem follows. �
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modelling longitudinal data with dropout:
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Abstract

Incomplete data are unavoidable in studies that involve data measured or observed longitudinally

on individuals, regardless of how well they are designed. Dropout can potentially cause serious

bias problems in the analysis of longitudinal data. In the presence of dropout, an appropriate

strategy for analyzing such data would require the definition of a joint model for dropout and

measurement processes. This paper is primarily concerned with selection and pattern mixture

models as modelling frameworks that could be used for sensitivity analysis to jointly model the

distribution for the dropout process and the longitudinal measurement process. We demonstrate

the application of these models for handling dropout in longitudinal data where the dependent

variable is missing across time. We restrict attention to the situation in which outcomes are

continuous. The primary objectives are to investigate the potential influence that dropout might

have or exert on the dependent measurement process based on the considered data as well as

to deal with incomplete sequences. We apply the methods to a data set arising from a serum

cholesterol study. The results obtained from these methods are then compared to help gain

additional insight into the serum cholesterol data and assess sensitivity of the assumptions made.

Results showed that additional confidence in the findings was gained as both models led to similar

results when assessing significant effects, such as marginal treatment effects.
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1. Introduction

In most longitudinal studies where data are collected over a sequence of time points,

missing data are caused by individuals dropping out of the study prior to the time
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at which the primary endpoint data would be collected. Missingness for longitudinal

data often occurs as dropout that is a particular case of missing data. Furthermore,

the resulting data obtained from such studies would have a particular type of missing

data pattern; that is, a monotone missingness pattern, in which if an individual has

missing values for a given time, no data can be obtained for all subsequent times for

that individual. In this paper, our focus will be on this type of missing data pattern.

Other types of missingness patterns are possible, such as intermittent missingness, but

we focus on dropout which occurs most often in longitudinal studies. The mechanisms

that lead to missing data are varied. Rubin (1976) and Little and Rubin (1987) classified

these mechanisms into three possible categories, namely data missing completely at

random, at random, or not at random. For longitudinal data, when data are missed

at random or completely at random, available cases analysis, such as mixed models

can be used. In contrast, when data are missed not at random, then using a standard

mixed model without accounting for the missingness may lead to biased and inconsistent

assessment of study results. Standard strategies of analysis currently assess non-random

dropout by performing sensitivity analysis using analytical methods that incorporate

non-random dropout in longitudinal data with and without a non-random component.

Common families of models for data that are subject to dropout are selection and pattern

mixture models.

Selection and pattern mixture models are two alternative and important approaches

for dealing with longitudinal data when there are dropouts. They make empirically un-

verifiable assumptions and require extra constraints to identify the parameter estimates.

Both models differ in the way the joint distribution of the measurement and dropout pro-

cesses are factorized. However, other models that drive both the measurement process

and dropout process, such shared-parameter models by Wu and Carrol (1988) and Wu

and Bailey (1988, 1989) are also available. We restrict ourselves to the selection and pat-

tern mixture models with dropout that falls under the monotone missing data pattern. A

selection model factors the joint distribution into the marginal measurement model that

describes the distribution of the complete measurements, and the dropout model that

describes the conditional distribution of the dropout indicators, given the observed and

unobserved measurements (Diggle and Kenward, 1994). However, in many discussions,

for example, Diggle and Kenward (1994), Verbeke and Molenberghs (2000) and Molen-

berghs and Verbeke (2005), the conclusions obtained from selection models depend on

the assumptions made some of which cannot be investigated from the data under anal-

ysis. Early reference to such models is found in Heckman (1976) in the econometrics

area. The use of pattern mixture models, on the other hand, was originally proposed by

Little (1993, 1994) as a viable alternative to selection models. In this approach, models

are under-identified; that is, for each dropout pattern the observed data does not provide

direct information to identify the distributions for the incomplete patterns. Therefore,

to overcome this problem, Little (1993, 1994) solves the under-identification problem

through the use of identifying restrictions. Early applications concerning selection and

pattern mixture models can be found in Marini et al. (1980) and Glynn et al. (1986).
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Selection and pattern mixture models are somewhat opposite to each other. That is,

these models exploit the conditional probability rule, but they do so in opposite ways.

The marginal estimates in selection models can be derived directly, while pattern mix-

ture models estimate the marginal parameters as a weighted average through pattern

specific estimates (Little, 1995).

There are several studies in the literature which provide a comprehensive review of

these models. The differences between selection models and pattern mixture models

have been discussed in many works, for example, Glynn et al. (1986) and Little (1993,

1994). Little (1995) also made an important distinction between selection and pattern

mixture models. A comparison of the conclusions based on the selection model with

those based on the pattern mixture models have been discussed in Verbeke et al. (2001)

and Michiels et al. (2002). Molenberghs et al. (1998a) contrast selection and pattern

mixture models. Further discussion of these models can be found in McArdle and

Hamagami (1992), Little and Wang (1996), Hedeker and Gibbons (1997), Hogan and

Laird (1997), Kenward and Molenberghs (1999), Verbeke and Molenberghs (2000),

Molenberghs and Verbeke (2005), Molenberghs and Kenward (2007) and Daniels and

Hogan (2008). However, the approach by Daniels and Hogan (2008) is Bayesian based,

which is not the focus of the current study.

This paper is primarily concerned with two attractive modelling frameworks to ac-

count for non-random dropout, namely selection and pattern mixture models. We demon-

strate the application of selection and pattern mixture models for handling dropout

in longitudinal data where the dependent variable is missing across time. In particu-

lar, we illustrate the application and results of analysis with these models. The under-

identification in pattern mixture models is addressed through identifying restrictions,

while the use of the selection model is based on Diggle and Kenward’s (1994) model.

We restrict our attention to the situation in which linear models are used and the out-

comes are continuous. The primary objectives are to investigate the potential influence

that dropout might exert on the dependent measurement on the considered data as well

as how to deal with incomplete sequences. We relate the identified restrictions estimates

using a pattern mixture model framework to their corresponding estimates using a se-

lection model framework. We apply the methods to a data set arising from a serum

cholesterol study. Section 2 describes the notation and general concepts based on the

selection and pattern mixture models. In Section 3, we give a discussion of the two

families of models that are used in the analysis, namely selection and pattern mixture

models. An application study is provided in Section 4 including the description of the

serum cholesterol data to which our methods will be applied. In addition, full analysis

and results of the application is also given. Section 5 presents concluding remarks and

discussion.
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2. Notation and concepts

We introduce modelling incompleteness notation which is largely due to Rubin (1976)

and Little and Rubin (1987). Let yi j be the response of interest, for the ith study subject,

where i = 1, . . . ,N, designed to be measured at occasion t j, where j = 1, . . . ,n. In other

words, the original intention was to have n observations per individual. However, due

to dropout some individuals end up contributing less than n intended observations.

Therefore, generally, we can assume that the ith individual is actually observed ni

times. For subject i and occasion j, define Ri j=1, if yi j is observed, and 0, if not. We

split yi j into two sub-vectors, yo
i and ym

i , representing those yi j for which Ri j=1, and

Ri j=0, respectively. In addition, suppose the missing data occur due to dropout, then the

measurements for each subject can be recorded up to a certain time point, after which all

data are unobserved. In this case, a dropout indicator can then be defined as Di, given by

Di = 1+∑
n
j=1 Ri j, denoting the occasion at which dropout first occurs. In modelling a

missing data process, it is often necessary to consider a joint model for the measurement

process together with the dropout process. Therefore, we assume the full data density is

given by

f (yi,ri | Xi,Zi,θ ,ψ), (1)

where Xi denotes the design matrix for fixed effects, Zi denotes the design matrix for

random effects, while θ and ψ represent the vectors of parametrization for the joint

distribution. In considering the above model in expression (1), we can factorize this

joint density function in two possible ways that can facilitate modelling. Specifically, the

selection and pattern mixture models mentioned earlier are defined by the conditional

factorizations of the joint distribution of Y and R, and both are discussed in more detail

in Little (1995) and stated briefly below. A selection model is based on the following

factorization

f (yi,ri | Xi,Zi,θ ,ψ) = f (yi | Xi,Zi,θ ) f (ri | yi,Xi,ψ), (2)

where the first factor in the above factorization represents the marginal density of the

measurement process, while the second factor represents the density of the dropout

process, conditional on the measurements. An alternative factorization based on the

pattern mixture models (Little 1993, 1994) is of the form

f (yi,ri | Xi,Zi,θ ,ψ) = f (yi | ri,Xi,Zi,θ ) f (ri | Xi,ψ). (3)

This factorized density (3) can be seen as a mixture of the conditional distributions,

and the model for the measurements depends on the particular missing data pattern.

An excellent review of these models is given in Glynn et al. (1986), Little and Rubin

(1987), Little (1993, 1994), Hogan and Laird (1997) and Ekholm and Skinner (1998).
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The missing data processes have been developed by Rubin (1976) and Little and Rubin

(1987) through the selection model framework. They make distinctions among different

missing data processes. These processes can be formulated based on the second factor

of model (2), i.e,

f (ri | yi,Xi,ψ) = f (ri | yo
i ,y

m
i ,Xi,ψ). (4)

Thus, if the distribution of missingness process is reduced to f (ri | yi,Xi,ψ)= f (ri,Xi,ψ),

i.e., the process is independent of the measurements, then the process is defined as

missing completely at random (MCAR). If the missingness probability depends on

the observed measurement yo
i , but not on the unobserved measurements ym

i , i.e, f (ri |
yi,Xi,ψ) = f (ri | yo

i ,Xi,ψ), then the process is termed missing at random (MAR). Fi-

nally, data are missing not at random (MNAR) or exhibiting an informative process,

when the missingness probability depends on the unobserved measurement, ym
i , and

possibly on the observed measurement, yo
i , i.e., f (ri | yi,Xi,ψ) = f (ri | yo

i ,y
m
i ,Xi,ψ). In

other words, an informative process in expression (4) cannot be reduced.

3. Selection and pattern mixture models for modelling dropout

We consider the comparison between the selection and pattern mixture models con-

cerning the significant characteristics, such as marginal treatment effects since such a

comparison is a useful form of a sensitivity analysis. Specifically, we are interested in

parametric selection and pattern-mixture models for modelling dropout. In the follow-

ing, we briefly review these models.

3.1. Selection model

As mentioned above, a selection model factors the joint distribution into two parts: the

marginal measurement model that describes the distribution of the complete measure-

ments and the missingness model that describes the conditional distribution of the re-

sponse indicators given the observed and unobserved measurements. In other words, in

a selection model, we first specify a distribution for the measurement, then propose a

manner in which the probability of being observed depends on the data. For continuous

outcomes, using a selection model formulation as in equation (2), Diggle and Kenward

(1994) combine the multivariate Gaussian linear model together with the dropout model.

Similarly, we consider the measurement model to be of the linear mixed effects model

(Laird and Ware, 1982). Recall that yi j is the response of interest for the ith study sub-

ject, where i = 1, . . . ,N, at time point j, where j = 1, . . . ,ni. More generally, the model

for yi the (ni ×1) vector of responses for the ith subject can be written as
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yi = Xiβ+Zibi + ǫi, (5)

where Xi and Zi are known (ni × p) and (ni × q) design matrices for fixed and random

effects, respectively, β is the (p×1) vector of fixed effects, bi is the (q×1) vector of the

random effects distributed as N(0,G), ǫi is the (ni×1) vector of the residual components

distributed independently as N(0,Σi), G is the general (q× q) covariance matrix with

(i, j)th element di j = d ji andΣi is the (ni×ni) error covariance matrix. Then, marginally,

the responses yi are distributed as independent normal yi ∼ N(Xiβ ,ZiGZT
i +Σi). Here,

Σi = σ
2Hi + τ

2I, where σ2 denotes the variance of the serially correlated process,

Hi = (h jk) = (ρ(t j, tk)) denotes the associated correlation matrix, τ2 pertains to the

measurement error variability and I is a (ni ×ni) identity matrix.

We assume the missingness is due to dropout only, and that the first measurement

yi1 is observed for each individual. Again, recall that Di was defined as the dropout

indicator which denote the occasion at which dropout first occurs. Now, let Di = di

identify the dropout time for subject i, where Di = n+1, if the sequence of measurement

is complete. Therefore, the selection models introduced in equation (2) arise when the

joint likelihood of the measurement and dropout processes is factorized as following

f (yi,Di | Xi,Zi,θ ,ψ) = f (yi,Di | Xi,Zi,θ ) f (di | yi,ψ).

The model for dropout process is based on a logistic regression for the probability of

dropout at occasion j, given the subject was still in the study at the previous occasion.

Let gi(yi j,hi j) denote this probability, where hi j represent the history of the measurement

process. Thus, one can assume that gi(yi j,hi j) satisfies the model

logit[g(hi j,yi j)] = logit[p(Di = j | Di ≥ j,hi j,yi j)] = η(hi j,yi j), (6)

where η(hi j,yi j) is the linear predictor depending on hi j and yi j. Modelling the dropout

mechanism may be simplified in the expression in equation (6) by assuming η(hi j,yi j)

depends only on the current measurement and the previous measurement yi j−1, but

not on future measurements or higher order history, with corresponding regression

coefficients, ψ1 and ψ2. Dependence on future unobserved measurements is not easy

to justify therefore it is not modelled here. Higher order history can be included, but we

assume first order history for simplicity. This leads to the following logistic expression

logit[g(yi, j−1,yi j)] = logit[p(Di = j | yi, j−1,yi j)] =ψ0 +ψ1yi, j−1 +ψ2yi j. (7)

Note that the linear predictor in equation (7) may depend on other covariates but in

the current model we only include the constant ψ0. According to Little and Rubin’s

(1987) terminology introduced in the previous section, and based on the expression in

equation (7), it is clear that when both parametersψ1 andψ2 are equal to 0, the dropout
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mechanism should be MCAR. However, when ψ1 is not equal to 0, but ψ2 equal to

0, the dropout mechanism is referred to as MAR, and finally, when ψ2 is not equal to

0, dropout mechanism is referred to as MNAR. Here, we note that a likelihood ratio

test (LRT) can be used to compare model fit under a model that assumes the missing

data due to dropout are MCAR versus MAR (Diggle and Kenward, 1994). The LRT

test statistic follows a null asymptotic χ2
1 distribution. See, Diggle and Kenward (1994)

and Molenberghs et al. (1997) for details on the derivation of this statistic. When the

LRT test statistic is significant, then it suggests that the least restrictive of the two

models is preferred; that is, the model that assumes the dropout is MAR. However,

based on the argument of Jansen et al. (2006), we restate that the test for MAR against

MNAR is not recommended using the LRT statistic via a model based on the Diggle

and Kenward’s (1994) type. This is because the behaviour of the LRT statistic for

the MNAR parameter ψ2 is non-standard since the availability of the information on

ψ2 is very rare and interwoven with other features of both measurement and dropout

models (Jansen et al., 2006). This is specially true when one considers the model

based on Diggle and Kenward type, but it is important to realize that their tests are

conditional on the alternative model holding. According to Kenward (1998), such a

distinction, between a MAR mechanism or a MNAR mechanism, can only be made

using untestable modeling assumptions, such as the distributional form. Molenberghs

and Kenward (2007) stated that the assumption giving arise to the dropout in a sample

cannot be verified by the observed measurements and any test regarding the dropout

process can be invalidated. This can be justified by the fact that parameters of the

dropout model are dependent in part on dropout. Furthermore, unless one puts a priori

belief in the posited MNAR model, the distinction (MAR/MNAR) is not possible, due

to the fact that for any dropout model that assumes dropout are MNAR, there is a MAR

model that provides exactly the same fit to the data, but the two models differ in the

prediction of what is unobserved (Molenberghs et al., 2008). This problem of model

identifiability poses a major complication when considering models for the dropout

mechanism. Thus, one recommendation is to conduct a sensitivity analysis of the

parameters of the measurement model across models that make different assumptions

about the dropout process (see, Molenberghs and Kenward, 2007). Therefore, although

the dropout process cannot be known via empirical examination, the analysis can be

carried out to study differences in parameters estimates of the measurement process

across varying assumptions about the dropout.

3.2. Pattern mixture model

Now, we shift our attention to the pattern mixture models that stratify subjects according

to their missingness pattern. Under these models, the thinking is that, a separate model

is fit for each pattern and then the results can be combined across the different patterns

in order to derive an average estimate of the model parameters. Thus, in these mod-
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els the joint distribution of the longitudinal measurements as well as the missing data

indicators is divided into response pattern so that the distribution of the longitudinal

measurements depends on the pattern of responses. As mentioned earlier, pattern mix-

ture models are under-identified, or possess non-estimable parameters. Therefore, some

identifying constraints are required. Little (1993, 1994) proposed the use of the identify-

ing restrictions in which inestimable parameters of the incomplete patterns are set equal

to (functions of) the parameters describing the distribution of the completers to deal

with under-identifiability of these models. In fact, there is an alternative major strategy

simplified to deal with the under-identifiability of pattern mixture models, called model

specification in which the different pattern allows for sharing of certain parameters so

that the missing pattern can borrow information from patterns with more data points

(Verbeke and Molenberghs, 2000). The advantage of this strategy is that the number of

parameters decreases which is in general an issue with pattern mixture models. Detailed

strategies of pattern mixture modelling are given in Verbeke and Moleberghs (2000),

Molenberghs et al. (2003) and Molenberghs and Kenward (2007).

Our primary concern in this study is to apply a pattern mixture model including the

identifying restriction strategy. In doing so, we follow Verbeke and Molenberghs (2000)

in illustrating the use of this strategy based on the results obtained by Molenberghs et al.

(1998b). We are restricting attention to dropout which is a special case of monotone

missingness. Let us assume that there are t = 1, . . . ,T dropout patterns, where the

dropout indicator, introduced in section 2, is d = t + 1. The complete data density, for

pattern t, can be expressed as

ft(y1, . . . ,yT ) = ft(y1, . . . ,yt) ft(yt+1, . . . ,yT | y1, . . . ,yt). (8)

It is clear from equation (8) that the first factor ft(y1, . . . ,yt) is identified from the

observed data assuming the first factor is known, and modeled using the observed

data. Whereas the second factor is not identifiable from the observed data. In order

to identify the second component, the identifying restriction can be applied (Verbeke

and Molenberghs, 2000). It is often necessary to base identification on all patterns for

which a given component is identified. We denote this component by ys. Thus, this can

be described as

ft(ys | y1, . . . ,ys−1) =
T

∑
j=s

ωs j f j(ys | y1, . . . ,ys−1), s = t +1, . . . ,T. (9)

We denote the set of ωs j used by the vector ωs, components of which are typically

non-negative. Everyωs that sums to 1 provides a valid identification scheme. Hence, by

incorporating equation (9) into (8), we have
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ft(y1, . . . ,yT ) = ft(y1, . . . ,yt)
T−t−1

∏
s=0

[
T

∑
j=T−s

ωT−s, j f j(yT−s | y1, . . . ,yT−s−1)

]
(10)

To establish the complete data density, it is clear in equation (10) whose information

can be used to complement the observed data density in pattern t. There are three sets

of identifying restrictions associated with such choices of ωs. Complete case missing

values (CCMV) that were proposed by Little (1993) use the following identification

ft(ys | y1, . . . ,ys−1) = fT (ys | y1, . . . ,ys−1), s = t +1, . . . ,T,

corresponding to ωsT = 1 and all others equal 0, which is to say that identification is

always done from the completers’s pattern. Alternative restrictions are based on so called

neighboring case missing values (NCMV). In these restrictions, the nearest identified

pattern can be used as follows

ft(ys | y1, . . . ,ys−1) = fs(ys | y1, . . . ,ys−1), s = t +1, . . . ,T.

The NCMV restriction follows from setting ωs = 1 and all others equal 0. Finally, the

third case for equation (10) is the available case missing values (ACMV). With regard

to the correspondingωs for ACMV, there always is a unique choice. Molenberghs et al.

(1998b) show that the corresponding ωs can have the following components

ωs j =
α j f j(y1, . . . ,ys−1)

∑
T
ℓ=sαℓ f

ℓ
(y1, . . . ,ys−1)

, j = s, . . . ,T, (11)

where α j is the fraction of observations in pattern j. Clearly, ωs j defined by (11)

contains positive components and sum to 1. That is, a valid density function is defined.

The selection and pattern mixture families can be connected using this MAR-ACMV

link. The ACMV is reserved for a counterpart of MAR in the pattern mixture setting.

A specific counterpart to MNAR selection models has been studied by Kenward et al.

(2003).

4. Application to the NCGS data

4.1. The data

In this section, we describe the application of the selection and pattern mixtures models

to data from the National Cooperative Gallstone Study (NCGS). Further background

details of this experiment are given in Schoenfield and Lachin (1981) and in its

accompanying discussion. In this study, 103 patients were randomly assigned to three
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treatment groups corresponding to two doses; that is, high-dose (750 mg per day), low-

dose (375 mg per day) and placebo, and were to be treated for four weeks. The current

analysis is based on a subset of the data on patients who had floating gallstones and

who were assigned to the high-dose and placebo groups. In the NCGS it was suggested

that chenodiol would dissolve gallstones but in doing so might increase levels of serum

cholesterol. As a result, serum cholesterol (mg/dL) was measured at baseline and at 6,

12, 20 and 24 weeks of follow-up. In this experiment, many cholesterol measurements

contain missing values because of missed visits, laboratory specimens were lost or

inadequate, or patient follow-up was terminated. In addition, all subjects have observed

values at time 6. One group of individuals received study treatment (drug and placebo),

but dropped out of the study before the scheduled post-baseline time. These individuals

dropped out of the study at time point 12. However, other individuals dropped out of the

study either at time point 20 or 24. Therefore, the data presents three possible dropout

patterns (dropout at time points 12, 20, or 24). All 103 patients are observed at the first

occasion, whereas there are 93, 78 and 67 patients seen at the second, third and fourth

weeks, respectively. The percentage of patients that are still in the study after each week

is tabulated in Table 1 by treatment arm. Figure 1 represents the means across weeks

by treatment group. A primary objective of this trial was to study the safety of the

drug chenodiol for the treatment of cholesterol gallstones. In what follows, we restrict

our attention to examination of more than just this association between treatment and

cholesterol. That is, we investigate the potential influence of dropout on the outcome

of interest, the serum cholesterol, as well as the interactive effect of dropout with week

and treatment-related influences on the serum cholesterol. The focus here will be on the

parameter estimates, standard errors and p-values.

Figure 1: Serum cholesterol data. Means across weeks by treatment (High dose “1” and Placebo “2”).
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Table 1: NCGS data: Percentage of

patients still in study, by treatment arm

(Drug = high-dose (750 mg per day)).

week drug placebo

6 100 100

12 45 62

20 57 63

24 46 69

4.2. Fitting selection model

First, we consider fitting the selection model. In line with Diggle and Kenward (1994),

we fit the selection models to the serum cholesterol data by combining the measurement

model with the logistic regression for dropout model. The combined model for mea-

surement/dropout will be fitted to the serum cholesterol by maximum likelihood using

a generic function maximization routine. We use the linear mixed effects model of the

form in equation (5) in order to obtain initial values for the parameters of the measure-

ment model. In the fitted model, we assume different intercepts and treatment effects

for each of the four time points, with a (4×4) unstructured variance-covariance matrix.

Specifically, we consider a multivariate normal model, with unconstrained time trend

under placebo and an occasion-specific treatment effect. Since serum cholesterol data

consist of 103 subjects (i = 1, . . . ,103) on four time points ( j = 6,12,20 and 24), the

model can be written as

Yi j = β j1 +β j2Gi + ǫi j, (12)

where Gi = 0 for placebo and G1 = 1 for active drug. In this way, the parameter estimates

and standard errors as well as p-values for the eight mean model parameters can be ob-

tained. To fit this model, we use SAS procedure MIXED with REPEATED statement.

Next, we consider the dropout model. The dropout will be allowed to be independent

of covariates. We fit the model with an intercept, an effect for previous outcome and

an effect for the current unobserved measurement, corresponding to MCAR, MAR and

MNAR, respectively. Dependence on future unobserved measurements is theoretically

possible, but for simplicity, we model dependence on the current unobserved measure-

ments. The probability of serum cholesterol is assumed to follow the logistic regression

model (a commonly used model for dropout process, see, Molenberghs and Kenward,

2007) in equation (7). Therefore, the logistic regression model consists of three param-

eters; that is, an intercept (ψ0), the effect of the measurement prior to dropout (ψ1) and

the effect of the measurement at the time of dropout (ψ2). Consequently, for the four

time points, the model can be expressed as follows
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logit[g(yi j−1,yi j)] = logit[p(Di = j | yi j−1,yi j)] =ψ0 +ψ1yi j−1 +ψ2yi j, j = 2,3,4,5.

(13)

Estimation of a selection model for MNAR can be seen as major complication

as the dropout indicators depend on the unobserved measurement. For example, in

the selection model mentioned above, the dropout indicators depend in part on the

unobserved longitudinal measurements at the time of dropout. This leads to complexity

in assessing the likelihood function, however, one that can be handled (Diggle and

Kenward, 1994). Virtually, the parameters were estimated using a code written in SAS

provided by Dmitrienko et al. (2005) that maximizes the log-likelihood for the model

using PROC IML.

Table 2 shows the parameter estimates, standard errors and p-values of the fixed ef-

fects for the selection model, including the eight mean model parameters, all into the

marginal measurement model as well as in the logistic dropout model. Interestingly, the

comparison of the MCAR and MAR produces the same results when compared to those

of the complete case analysis, except for negligible differences, as seen in the standard

errors. These results are in line with theoretical findings, see, for example, Molenberghs

and Kenward (2007). In the context of the assumed model, when examining the statisti-

cal significance of the results in the dropout model, the LRT test statistic for comparing

the MAR and MCAR models is 17.1. The corresponding tail probability from χ2 with

1 degree of freedom is p < 0.001 which is significant. This indicates that there is a sig-

nificant evidence for MAR. In other words, dropout completely at random can be ruled

out in the context of the assumed model. However, great care has to be taken with such

a conclusion (Molenberghs et al., 1997; Molenberghs and Verbeke, 2005). To assess the

mechanism that the dropout are MNAR, a problem occurs in that neither an LRT statistic

between the models that assume the dropout is MAR against MNAR nor an assessment

of ψ2 relative to its standard error is reliable (Jansen et al., 2006). Consequently, it is

not possible to verify the mechanism that the dropout is MNAR (see, Molenberghs, et

al., 2008). One of our interests lies in the marginal treatment effect. There is no overall

treatment effect and p-values between the three models do not vary too much.

However, the situation is different for the occasion-specific treatment effects con-

sidered here. For all weeks, all four p-values for the treatment effects indicate non-

significance, whereas for all cases the p-values are certainly highly significance

(p < 0.0001) for all intercepts. Now, we discuss factors which influence dropout. In

doing so, in the full selection models, the logistic regression for dropout is modeled

based on (13). As can be seen in Table 2, the maximum likelihood estimates for ψ1

(0.04) and ψ2 (-0.16) are not necessarily equal, however, their signs are different. This

finding is not surprising. It confirms the argument put forward by Molenberghs et al.

(2001a). They pointed out that since two subsequent measurements are usually posi-

tively correlated, the dropout model can depend on the increment, i.e., yi j − yi, j−1. The

dropout estimated from the MNAR model is as follows:
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logit[p(Di = j | yi j−1,yi j)] =−1.64−0.12yi, j−1 −0.16(yi j − yi, j−1). (14)

However, some insight into this fitted model can be obtained by the re-parameterizing

the dropout parameters with respect to increment and the sum of the successive mea-

surements. Therefore, we re-parameterize the dropout probabilities from the dropout

model as in equation (13) to obtain

logit[p(Di = j | yi j−1,yi j)] = ϑ0 +ϑ1(yi, j + yi, j−1)+ϑ2(yi j − yi, j−1), j = 2,3,4,5.

(15)

Here, ϑ1 = (ψ1+ψ2)/2 and ϑ2 = (ψ1−ψ2)/2. These parameters represent dependence

on level and increment in the serum cholesterol, and these quantities are likely to be

much less strongly correlated than are yi j and yi, j−1. Rewriting the fitted MNAR model

as in equation (15),

logit[p(Di = j | yi j−1,yi j)] =−1.64−0.06(yi, j + yi, j−1)+0.10(yi j − yi, j−1), (16)

suggests that the probability of dropout increases with larger negative increments. In

other words, those patients with a greater increase in the overall level of the serum

cholesterol from the previous week have a higher probability of dropping out of the

experiment.

4.3. Fitting pattern mixture models

Now, we turn our attention to fitting the pattern mixture models using the strategy

outlined in section 3, making CCMV, NCMV and ACMV identifying restrictions. To

fit pattern mixture models through identifying restrictions, three steps in the analysis

procedure are needed (For details of implementation, see Molenberghs and Kenward,

2007). First, fit the initial model to the observed data within each of the patterns

ft(y1, . . . ,yt), (17)

where t = 1, . . . ,T indicate the observed dropout times in the data set. In this step,

we fit a separate model within each pattern, then the resulting parameter estimates

and their estimated variance-covariance matrices were used to extrapolate the patterns.

Second, select an identification scheme to determine the conditional distributions of the

unobserved measurements, given the observed ones

ft(yt+1, . . . ,yT | y1, . . . ,yt). (18)
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As stated earlier, each of such conditional distributions is a mixture of known normal

densities for continuous repeated measures. According to the weights ws introduced in

equation (9), an easy way to simulate values from the mixture distribution is to randomly

select a component of the mixture and then draw from it. In this regard, we choose an

identifying restriction, mentioned earlier, to define the conditional distributions of the

unobserved measurements, conditional upon the observed ones. Third, fit a model to

the so-augmented data. Multiple imputation (MI) can be used to fit such models by

aiding to draw values for the unobserved components, conditional upon the observed

outcomes and correct pattern-specific density in model (18). Here, we notice that MI is

a simulation-based technique that imputes the missing values multiple times in order to

construct multiple complete data sets. For more detail of this technique, we recommend

Rubin’s (1987) book. Analytically, MI involves three steps, imputation, analysis and

combination. Thus, the identifying step corresponds to the so-called imputation step,

and the final model corresponds to the analysis step. Finally, the combination step, is

where the inferences from a number of imputations are drawn together and combined

into a single one. The goal being to pool the simplicity of imputation strategies, without

bias in both point estimates and measures of precision. After applying each of the three

identifying restrictions, as above introduced, the same model as before being fitted (12)

is analyzed. The model is parameterized as follows: different intercepts and treatment

effects for each of the four time points, with a 4× 4 unstructured covariance matrix

for each pattern. We draw multiple imputations five times. The choice of five times

imputations is considered adequate as the efficiency of a parameter estimate based on the

number of imputations is (1+ς/M)−1, where ς is the rate of missing data and M is the

number of imputations (Rubin, 1987). Rubin’s (1987) simulation studies indicate that

the number of imputations can generally be constrained to fewer than 10. Also, many

statistical practices tend to support Rubin’s heuristics of 3 to 10 imputations. In general,

Schafer and Olsen (1998) recommended the use of M=5 before the results are combined.

By this rationale, we achieve at least 97% efficiency as in our case the missing data rate

is almost 17%. In this way, we ended up with totally five multiply-imputed data sets

for each choice of identifying restriction strategy which can be analysed, using several

possible models. Once the imputations have been generated, the final analysis model

from each completed data sets is fitted and MI inference conducted. The parameter

and precision estimates can be obtained using classical MI machinery. In particular, the

asymptotic covariance matrix of the form

V =W +

(
M+1

M

)
B,

where W denotes the average within-imputation variance and B the between-imputation

variance (Rubin, 1987). The analysis of identifying restrictions, fitting of imputed data,

and a combination of the results into a single inference was implemented using the

SAS macro. This SAS macro dealt with the analysis of the three types of identifying
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restrictions as follows. First, fit the linear mixed model per pattern using PROCs SORT

and MIXED. Second, complete the data using ACMV, CCMV and NCMV restrictions

using PROCs IML and MI. Third, analyze the 5 complete data sets using a linear-mixed

model using PROC MIXED. Fourth, combine the results from the 5 analyzed models

using PROC MIANALYZE.

The results of the three types of identifying restrictions are listed in Table 3.

Examining these results we see that the estimates for the corresponding parameters

are comparable and their numerical values are indeed very close to each other under

the three possible restrictions, namely ACMV, CCMV and NCMV. It can be seen from

the analysis that the association p-values for the marginal effect assessments are all

nonsignificant, their p-values being all greater than 0.05. However, the association p-

values for the intercepts are highly significant (p < 0.0001), in line with the p-values

obtained from the selection model analysis. In summary, no significant treatment effect

is obtained. These findings confirm those obtained from the selection model formulation

which gives more weight to this conclusion. These results can be justified by the fact

that pattern mixture models using identifying restrictions play a very similar role to the

modelling assumptions in the selection model case (Michiels et al., 1999). Furthermore,

the parameter estimates and standard errors for the first marginal effect are equal for

all the three restrictions CCMV, NCMV and ACMV, see the effects for intercept6 and

treatment6. Such results should be expected considering the fact that the first outcome

contained observed data for all subjects that were considered in the analysis.

As shown in the results in Table 3, the model building using CCMV, NCMV

and ACMV restrictions in contrast to selection model did not allow an estimation of

whether the dropout process is MNAR or not, because of differences in the modelling

assumptions. This agrees with previous studies, see, for example, Molenberghs et al.

(1998b), in that the identifying restrictions in a pattern mixture models context can be

used only to relate the model to a MAR mechanism. Consequently, an important issue

is to equate results for both the ACMV and MAR to make a clear and useful connection

between the selection model and the pattern mixture model framework (Verbeke and

Molenberghs, 2000; Kenward et al., 2003). With this in mind, the same is true for the

selection model, MAR-based ACMV restrictions indicating non-significant treatment

effects at all weeks. This can be explained to mean that the treatment effect appear

to be independent of the ACMV (MAR) assumption. Although corresponding models

include the same effects, the estimates for ACMV are slightly different to those for

MAR. These slight differences are to be expected as argued in Kenward et al. (2003)

that both models are similar in spirit but not necessarily identical. On the other hand, the

parameter estimates and standard errors for the treatment effects obtained by applying

NCMV are smaller than those of CCMV and ACMV as seen in some cases. This is

to be expected as somewhat CCMV and ACMV pattern mixture models use data from

different patterns to multiply impute new values, whereas in NCMV, pattern mixture

models take information from the neighboring case patterns only. Further, ACMV and

CCMV estimates are closer to each other since many more completers are available than
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does NCMV. Therefore, additional variability may be introduced because, depending on

the nature of the conditional distributions sampled from, data have been borrowed from

more distant patterns.

5. Discussion

In this study, we demonstrated the application of two families of models for analysing

incomplete longitudinal data, where the dependent variable is missing across time. In

particular, we illustrated the application and compared results of analysis using these

models. We focused on the situation in which outcomes are continuous. The models

that were considered were the selection model and the pattern mixture model. Many

authors have recommended fitting both families of models to be able to gain extra

insight into the data to assess sensitivity to the modelling assumptions and to assess

the extent of agreement in results as well (see, Molenberghs and Verbeke, 2005). The

study focused on the specific cases of selection model and pattern mixture models;

that is, a Diggle and Kenward’s (1994) model and an identifying restrictions strategy

(Little, 1993, 1994), respectively. In applying the selection model, we used logistic

regression for modelling dropout, however, a number of other probabilities can be used,

for example, using survival analysis techniques, the length of duration on treatment

or placebo before dropout can also be modelled. However, in this study, the survival

model for dropout cannot be used because the time to event (dropout) is not exactly

determined by design. For example, if someone is not seen at week 12, the exact time

to dropout could theoretically be any time between week 6 and 12. The objective was

to investigate the potential influence that dropout might have or exert on the dependent

measurement on the considered data and to deal with incomplete sequences. The results

from the pattern mixture models were analogous to those from the selection model to

obtain additional insights into the serum cholesterol data. The application was based on

an example from a longitudinal clinical trial data.

Findings in general suggested that the conclusion obtained under both modelling

frameworks practically coincide. Thus, one can put more confidence in these results

as argued by many authors. For example, Michiels et al. (1999, 2002) have argued that

greater confidence in a conclusion can be reached when the analysis of joint applications

of these models leads to essentially similar inference. Both families of models were

compared and noticeable similarities in results were found. Hence, this begs the question

as how, depending on the scientific question of interest such as conditional measurement

probabilities, to choose between them. Michiels et al. (1999) argued that the selection

model can be recommended as a natural choice when the interest is in the population as a

whole, i.e., marginal effects. Whereas, pattern mixture models can be considered, when

investigating the differences between subgroups that are identified by their measurement

patterns, i.e., pattern-specific.
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The selection models suggested that the dropout mechanisms were not completely at

random. In other words, in the context of the assumed model, there was a lot of evidence

in favour of the prevalence of an MAR rather than an MCAR dropout process. However,

many authors, Diggle and Kenward (1994) and Molenberghs and Verbeke (2005) for

example, stated that careful consideration is necessary with such a conclusion when

using only the data under analysis. A problem arises for dealing with dropout that are

MNAR. Given this problem in a longitudinal study, it is important to realize that this

assumption gives rise to the dropout that is not likely to be known in the application

setting. Therefore, any of the different proposed application methods to address dropout

that are MNAR cannot easily be verified. For example, one often does not know if the

dropout process is accurately captured by a particular method used. Molenberghs and

Kenward (2007) suggested that one should apply several approaches to the same data

problem. This is the case when the sensitivity of parameters estimates to the different

mechanisms about the dropout process may be investigated, for example, by applying

models that allow for the dropout to be MNAR. According to Xu and Blozis (2011), if

parameter estimates are comparable under different methods, this can indicate that the

dropout process may be ignored. However, if different methods give different parameters

estimates of the longitudinal model, this can indicate that the dropout process is a vital

element for the description of the data in the analysis.

The structure of the selection dropout model adopted that dropout increases with a

unit change in the serum cholesterol; that is, the dropout is related to the larger negative

increments (yi j−yi, j−1) rather than to any actual observation (yi j+yi, j−1), which implies

that patients with a greater decrease in the overall level of the serum cholesterol from

the previous week have a higher probability of dropping out of the experiment. This

situation is very common in practice within a model of the Diggle and Kenward type,

and we refer to Molenberghs and Kenward (2007), Diggle and Kenward (1994) and

Molenberghs et al. (1997) as examples. Under the modeling scheme applied in this

study, it can be seen from the analysis that the treatment effects over all weeks under all

ACMV, CCMV and NCMV restrictions were non-significant, and the same is true for

the selection model analysis. Therefore, it is clear that there is a strong evidence for no

significant treatment in the context of serum cholesterol data. It appeared that the non-

significant treatment effects were not conditional upon any dropout mechanism holding.

As a results, the conclusions obtained from CCMV, NCMV and NCMV restrictions did

not differ considerably. As argued in Molenberghs et al. (2008), the choice between

them is not always clear. Although they fit the observed data equally well, the difference

between them only becomes clear with respect to estimation of the missing data,

conditional upon the observed data.

On the other hand, the use of different models in which the data were analysed,

can be considered as a sensitivity analysis. In particular, the use of pattern mixture

models including identifying restrictions can be seen as a first tool for assessing the

sensitivity of the assumptions made. Further, other more complex or flexible sensitivity

analysis are also possible, under new models for the probability of dropout. The
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analysis conducted here is a typical sensitivity analysis as the serum cholesterol data

were analyzed using different assumptions concerning the longitudinal measurements

and dropout mechanisms. In particular, both models compared well concerning some

aspects, for example, marginal treatment effects. Such comparisons as these can play a

vital role in sensitivity analysis by providing additional motivation, for example, when

considering the choice between selection and pattern mixture models. In conclusion,

because the true model and measurement process as well as dropout process are often

unverifiable, the recommendation that in many settings, multiple strategies or models

such as selection and pattern mixture models be applied to the same data set in order to

investigate the impact of assumption on dropout or missingness is supported.
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Abstract

We consider mixed hazard models and introduce a new visual inspection technique capable of

detecting the credibility of our model assumptions. Our technique is based on a transformed data

approach, where the density of the transformed data should be close to the uniform distribution

when our model assumptions are correct. To estimate the density on the transformed axis we take

advantage of a recently defined local linear density estimator based on filtered data. We apply the

method to national mortality data and show that it is capable of detecting signs of heterogeneity

even in small data sets with substantial variability in observed death rates.
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1. Introduction

There is an increasing use of mortality models to answer a number of pension related

questions. Mortality tables and their estimation have always been of importance while

calculating appropriate prices of risk products depending on individuals’ survival. More

recently, mortality models are being used in more complex models assessing the value

of financial products incorporating survival in a variety of ways. Financial users of

mortality models are therefore not only actuaries nowadays, but also investors looking

for opportunities in survival bonds and other packages of survival risks. Different

purposes of mortality models lead to different measures of quality.
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In this paper we develop a visualization technique that seems useful for the individual

assessment of the quality of a mortality model. One application we are thinking of

is forecasting of mortalities that is a basic building block for the financial pricing of

survival, but also a useful tool in asset liability management of pension portfolios.

Typically, relatively simple parametric mortality models including calendar effects

are used as starting point for mortality forecasts. The calendar effect is the explicit

tool for the forecast and is often isolated and estimated through standard time series

methodology. A perfect historical fit of the past is therefore not always what the

mortality modeller is looking for. Often it is more important to have an overall good fit,

without too systematic deviations giving reliable and meaningful forecasts. These latter

objectives are not easy to generalize to some quantitative model that can be tested. Often

simple mortality models are rejected, simply because mortality data often is nationwide

and sufficiently abundant to inform relatively complex underlying parametric structures.

Therefore, a test rejecting our simple model is often not what we want. We do know that

our simple model is not accurate, we do not want an excessive fit, what we want is a

good, intuitive and reliable forecast.

When modelling mortality of a population, there is a variety of potentially suitable

lifetime data models available. Potential models differ in levels of complexity and they

try to capture different features of data. Specific parametric life tables combined with

time series forecasts are omnipresent in the actuarial and demographic literature.

The literature about parametric mortality projection has been developing rapidly in

the last few years. Recent reviews of mainstream mortality forecasting models can be

found in Cairns et al. (2009), Cairns et al. (2011), Dowd et al. (2010a,b) and Haberman

and Renshaw (2011). Cairns et al. (2009) compare eight models on the basis of several

desirable ex post qualitative properties (like model parsimony, transparency, possibility

to generate sample paths, presence (or absence) of cohort effects and ability to achieve a

nontrivial correlation structure) and quantitative criteria (consistency with historical data

and robustness of parameter estimates). Six of these models are subject of subsequent

investigation by Dowd et al. (2010a,b) and Cairns et al. (2011). These include the

original Lee-Carter model (Lee and Carter, 1992), the basic age-period-cohort model

by Renshaw and Haberman (2006), an alternative age-period-cohort model by Currie

(2006), the original Cairns-Blake-Dowd model as launched in Cairns et al. (2006), and

two extensions thereof. The six models are the subject of formal goodness-of-fit tests in

Dowd et al. (2010a) and backtesting in Dowd et al. (2010b). Cairns et al. (2011) judges

these models on the basis of ex ante qualitative aspects like biological reasonableness,

plausibility of forecast levels of uncertainty in projections at several ages, and robustness

of forecasts. In all these papers, the mortality data applied was confined to those of

individuals aged 60 or above. Haberman and Renshaw (2011), concentrating on the key

factors of life expectancy and annuity values, first conduct a detailed comparison of the

several models at pensioner ages. Apart from the models in the above papers, they also

consider special cases of the Renshaw and Haberman (2006) model in their study. Later on,

they extend the age range and involve the model by Plat (2009) and several variants thereof.
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The stability of the forecast depends crucially on the choice of the parametric

form. Generally, a complex model with many parameters is not a good choice even

though such models might be selected from classical mathematical statistical model

selection designed for in-sample prediction. Models with many parameters generally

fit data better than models with fewer parameters. On the other hand, a large number

of parameters are harder to forecast than fewer parameters. Forecasting uncertainty

increases dramatically with the number of parameters. Thus, to obtain reliable forecasts

we want models which describe the key features of data with as few parameters as

possible.

The purpose of this paper is to introduce a visual diagnostic tool which can be

used to guide us when choosing a parametric model. A good parametric model is a

simple model without obvious systematic errors. That model could be chosen by the

well informed statistician working with the particular mortality forecast application in

mind. Our visual diagnostic tool will be just one helpful tool in the overall mathematical

statistical toolbox. Our method is inspired from recent developments in extreme value

estimation, where transformations of data give visual information on the quality of the

distributional fit in the tail. This recent methodology has found its way into insurance

pricing and also the related field of operational risk. For a comprehensive overview of

this new transformation methodology in the latter context, see Bolancé et al. (2012a).

The transformation based method can for example compare the performance of

several candidate models for a data set at hand. Assume we were told by an oracle

what the exact true distribution is, then we would transform our data using this oracle

information such that our transformed data would exactly originate from a uniform

distribution. Now we do not have access to any oracles. However, if we take some

estimated parametrically fitted survival distribution as defining our transformation,

then any detectable deviance on the transformed scale from the uniform distribution

implies deviances of the parametric distribution used in the transformation step from

the underlying true distribution. Our methodology uses a nonparametric smooth kernel

estimator on the transformed scale. One difficulty we meet here is that our data is

classical survival data that is not independent identically distributed. We therefore

use a recent local linear kernel density estimator – specifically the one of Nielsen et

al. (2009) – that is adjusted for the truncation and censoring pattern we meet in our

data. Comparison between different underlying suggested parametric models are carried

out by first estimating these parametric models and then to investigate through visual

inspection, whether the density of the transformed data indeed looks uniform.

If the underlying parametric model under investigation would be true, the estimated

density should be close to one over the unit interval. Therefore different underlying para-

metric models can be visualized and compared on the transformed scale. In principle,

the densities could also be estimated and compared on the original scale. However, there

are several visual and estimational advantages to working on the transformed scale. One

of these is that our method makes maximal use of sparse and volatile data and is thus

particularly well suited to explore how potential models describe the mortality at ad-
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vanced ages where exposure is invariably limited. We test our method using data from

nations of different size: USA, United Kingdom, Denmark and Iceland.

Although the main focus of our paper is to model human mortality, it is worth-

while mentioning that our methodology is applicable to any probability density model,

whether it concerns human survival or not.

1.1. Mixed hazard models

Frailty theory offers a possible explanation to the presence of an old-age mortality

plateau. According to this theory populations are heterogeneous with some people being

more frail, i.e. having a higher hazard rate, than other people. Since persons with high

hazard rates tend to die sooner than persons with low hazard rates old age groups will

be dominated by low frailty persons and this effect reduces the rate of increase at the

population level.

Frailty models were introduced in the demographic literature by Vaupel et al. (1979).

In a multiplicative frailty model, an individual’s hazard rate consists of two parts, namely

a certain standard intensity and a certain nonnegative random variable, the frailty, acting

multiplicatively on the standard intensity. A Gompertz or Makeham specification is

usually taken for the standard intensity, although sometimes a Weibull model can be

seen. Frailty is usually assumed to follow a Gamma distribution, which is known to be

mathematically very tractable.

A few publications about frailty modelling appeared in the actuarial literature. Wang

and Brown (1998) use the Gompertz-Gamma or Perks model to graduate mortality

improvement factors in a Society of Actuaries’ Life Table. Butt and Haberman (2004)

employ Generalized Linear Models to graduate mortality of insured lives. They consider

three mixture models, namely i) Perks; ii) modified Perks, and iii) Gompertz-Inverse

Gaussian. The authors conclude that the Perks model fits the data best. An overview of

heterogeneity models in life insurance is given in Olivieri (2006), while Jones (1998)

develops a multiple state model to measure the impact of frailty on the propensity to

lapse a policy. Finally, Li et al. (2009) extend the Lee-Carter model by allowing for

unobserved heterogeneity within a cell, determined by age and time.

In this paper we illustrate our methodology in the one dimensional case. Most

forecasting models operate with a multiplicative relationship between age effect and

time effect. To visualize the fit of the age effect, one would then have to divide out the

estimated time effect and vice versa to visualize the time effect only.

We are happy to say that our paper – diffused in preliminary versions – already has

inspired a number of other works in mathematical and computational statistics. It has

for example been cited in the three recent papers Gámiz-Pérez et al. (2013a,b,c).
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1.2. Outline

The set-up of this paper is as follows. In Section 2 we present the visual inspection

technique in detail. Both the continuous-time framework with transformed counting

processes and the implementation with discrete data is discussed. Section 3 discusses

frailty models in general and introduces the class of models we will be using. Section

4 presents the numerical application. For four countries varying significantly in size

(United States, United Kingdom, Denmark and Iceland), one data set per country

(female period 2006 from the Human Mortality Database) and three different frailty

specifications, namely Gamma, Inverse Gaussian, and degenerate (no frailty), we show

the estimates as well as the visual inspection technique. In particular, we give a thorough

analysis of the mortality at advanced ages that can be extracted from the continuous

graphs. Section 5 sets out a conclusion.

2. Visual inspection technique

2.1. Sampling scheme of the survival data

Consider a data set with mortality statistics of n lives. Let for each of these n individuals

Yi be an exposure process with value one when the i’th individual is alive and under

observation and let Ni be a counting process taking the value one if the i’th individual

has died while under observation. Both Yi and Ni are functions of the age x. Formally, we

assume that Ni is a one-dimensional counting process with respect to an increasing right

continuous complete filtration Fx, x∈R+, i.e. one that obeys les conditions habituelles,

see Andersen et al. (1993, p. 60). We model the intensity as

λc
i (x) = µθ (x)Yi(x),

where θ belongs to the parameter space Θ of the parameters determining the exact

mortality and frailty. The estimator θ̂ of θ is derived from minimizing the log likelihood

of Borgan (1984):

l(θ ) =
n

∑
i=1

∫
log{µθ (x)}dNi(x)−

n

∑
i=1

∫
µθ (x)Yi(x)dx,

that is maximized over the parameter space Θ.

2.2. Visual inspection by transformations

Assume that some oracle has given us the true underlying c.d.f. Fθ . Then consider the

transformed counting processes Ni = Ni ◦F−1
θ defined on [0,1]. If our oracle really had
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told us the truth, then N i would have stochastic intensity

λi(y) = α(y)Y i(y),

where Y i(y) =
{

Yi

(
F−1
θ (y)

)}
with α(y) = 1/(1− y) corresponding to the hazard of the

uniform distribution with density

f (y) = α(y)exp

(∫ y

0
−α(s)ds

)
= 1,

for y ∈ [0,1].

Another more statistical term for oracle information is prior information. It is that

type of information that is external to the data set at hand. In our application below our

prior information will always be some parametric specification of the model and our

oracle candidate for the true c.d.f will be F
θ̂
, where θ̂ is the estimated parameter in the

specified parametric model. If F
θ̂

really is a good description of the true c.d.f. F , then

our data should be uniformly distributed after a transformation by F
θ̂
.

To be able to inspect the credibility of our oracle information or prior information or

parametric assumptions, we estimate the density f based on the filtered survival data(
N1,Y 1

)
, . . . ,

(
Nn,Y n

)
on [0,1] and see whether it looks flat. This density estimator

should have good boundary correction because it is defined on the transformed axis

[0,1]. We suggest to use the natural weighted local linear density estimator of Nielsen

et al. (2009):

f̂ (y) =
n

∑
i=1

∫
Ky,b(y− s)Y i(s)Ŝ(s)dNi(s),

where

Ky,b(y− s) =
a2(y)−a1(y)(y− s)

a0(y)a2(y)−{a1(y)}2
Kb(y− s),

with

Kb(y− s) =
1

b
K(

y− s

b
), (1)

and

a j(y) =
n

∑
i=1

∫
Kb(y− s)(y− s) jY i(s)ds,



Jaap Spreeuw, Jens Perch Nielsen and Søren Fiig Jarner 159

and

Ŝ(s) = ∏
t≤s

{
1−dΛ̂(t)

}
,

being the Kaplan-Meier estimate of the survival function, with

Λ̂(s) =
n

∑
i=1

s∫

0

{
Y (n) (t)

}−1

dNi (t) ,

where Y (n) (t) = ∑
n
i=1 Y i(s).

2.3. Implementing with discrete data

In most real life applications we only have discretized versions of the stochastic

processes Yi and Ni available. First we need to define the relevant discretized time points

H1, . . . ,HK and the corresponding differences hk = Hk −Hk−1 for k ∈ {1, . . . ,K}, with

H0 = 0. We define HK = inf
(
t;F
θ̂
(t) = 1

)
for any plausible survival function Fθ .

Discretized data are often defined as occurrences and exposures. Let respectively

Ok =
n

∑
i=1

∫ Hk

Hk−1

dNi(x)

and

Ek =
n

∑
i=1

∫ Hk

Hk−1

Yi(x)dx.

Now assume that we only observe these discrete occurrences – the Ok’s – and expo-

sures – the Ek’s. Then a natural approximation of the log likelihood function l(θ ) above

to our discrete observations would be

ld(θ ) = ∑
k

{logµθ (H
∗
k )}Ok −∑

k

µθ (H
∗
k )Ek,

where H∗
k = (Hk−1 +Hk)/2 .

Now consider discretized time points on the axis transformed by F
θ̂
. Let Hk =

F∗
θ̂
(Hk). hk = Hk − Hk−1 and H

∗
k =

(
Hk−1 +Hk

)
/2 for k ∈ {1, . . . ,K} . Note that

HK = 1. Also note that often the discrete time points are equidistant before the time

transformation but not thereafter.
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On the transformed axis with time, the series H∗
1 , . . . ,H

∗
K is transformed into H

∗
1, . . . ,H

∗
K .

We will have occurrences

Ok = Ok

and exposures

Ek = Ek ∗hk/hk.

Assume that we were given the true c.d.f. with very large risk exposures Ek. Then on the

original axis Ok ∼µθ̂ (H∗
k )Ek hk while on the transformed axis Ok =Ok ∼αθ̂

(
H

∗
k

)
Ek hk.

If the model were the true one, the hazard rates Ok

/
Ek on the transformed axis would

be equal to 1
/(

1−H
∗
k

)
, and hence the density functions would be constant at 1.

The local linear density estimator on the transformed axis will in the discrete case be

defined as

f̂d(y) = ∑
k

Kd,y,b(y−H
∗
k)Ŝ

t
d(H

∗
k)Ok, (2)

where

Kd,y,b(y− s) =
a2,d(y)−a1,d(y)(y− s)

a0,d(y)a2,d(y)−{a1,d(y)}2
Kb (y− s) ,

a j,d(y) =
K

∑
k=1

Kb(y−H
∗
k)(y−H

∗
k)

jEk

and

Ŝt
d(H

∗
k) = 0.5

{
Ŝt

d(Hk−1)+ Ŝt
d(Hk)

}
= 0.5

[
exp

{
−

k−1

∑
i=1

hi

Oi

E i

}
+ exp

{
−

k

∑
i=1

hi

Oi

E i

}]
.

The choice of the bandwidth b depends on the availability of data. Large countries have

a large risk exposure; then most of the deviation between the density estimate and 1 can

be attributed to model uncertainty. In such cases, no or hardly any smoothing is required

and b can be small. For not so densely populated countries with small risk exposure, on

the other hand, proper smoothing – with a larger bandwidth – is needed to compensate

for parameter uncertainty.
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3. Mixed hazard models

In an individual frailty model the individual effect for a life’s mortality acts multiplica-

tively. Assume that a cohort consists of n individuals. Then for the ith person of the

cohort, the individual effect is represented by the random variable Zi and the conditional

force of mortality at age x, given Zi = zi, is given by

µ(x,zi) = ziµ(x) , i ∈ {1, . . . ,n} ,

with µ(x) denoting the standard force of mortality at age x – which is the force of

mortality of a life with frailty level 1 – and all Zi independent and identically distributed,

with a mean equal to 1.

In this paper we will assume that the individual hazard is of the form

µ(x) = exp(a0 +a1x+a2x2). (3)

In the notation of Forfar et al. (1988) this model is labelled GM(0,3). Note that the

special case a2 = 0 leads to the Gompertz model (GM(0,2)). The structure in (3) forms

the basis for national and international mortality modelling in Jarner and Kryger (2011).

We have dµ(x)/dx = µ(x)(a1 +2a2x). It is reasonable to assume that mortality

is increasing as a function of age. This would imply a1 ≥ 0 and a2 ≥ 0. Nonnegative

estimates of a1 and a2 are also obtained in Jarner and Kryger (2011). The relative

change of mortality as a function of age x – defined in Horiuchi and Coale (1990) as

k (x) = d lnµ(x)
/

dx – is a linear function of age: k (x) = a1 +2a2x.

The cohort mortality at age x is given as µθ (x) = E [Z |x ] · µ(x), where E [Z |x ]
denotes the mean frailty of lives surviving to age x. Let LZ denote the Laplace transform

of frailty at birth, i.e. LZ(s) = E [exp(−sZ)]. It can then be shown, see e.g. Hougaard

(1984), that

E [Z |x ] =−L′
Z [M (x)]

LZ [M (x)]

with

M (x) =

x∫

0

µ(s)ds.

Hence the cohort mortality can be easily calculated for all frailty specifications with

known Laplace transform. In the literature, the Gamma distribution has been by far

the most popular specification in the frailty model. This is partly due to its mathemat-

ical tractability. Abbring and Van den Berg (2007) show that, under mild conditions
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regarding regular variation, for several frailty distributions, Gamma is the limiting frailty

distribution of survivors. Therefore, Gamma frailty is in some sense a natural choice. We

will also be using Gamma frailty as one of the bases of our numerical illustrations in the

next section.

Since the model (3) contains a scaling parameter, a0, we will assume, without loss of

generality, that the distribution of frailty at birth has mean 1 and variance σ2. If frailty

is Gamma, then LZ (s) =
(
1+σ2s

)−1/σ2

, while E [Z |x ] =
(
1+σ2M (x)

)−1
.

Another common choice for frailty in the literature on survival models is the

Inverse Gaussian distribution. This specification has also been discussed by Butt and

Haberman (2004). Under the above assumption, LZ (s) = exp
[
σ−2

(
1−

√
1+2σ2s

)]

and E [Z |x ] =
{

1+2σ2M (x)
}− 1/2.

Disregarding heterogeneity implies LZ (s) = e−s and E [Z |x ] ≡ 1. This is a special

case of the Gamma distribution, obtained by taking the limit σ2 ↓ 0. Obviously, this

case of no frailty should give a worse fit than Gamma. In the numerical application we

will show how this transpires by comparing the resulting local linear density estimators

on the transformed scale.

4. Application to mortality data

We analyze the mortality data of four countries differing significantly in terms of

population size, namely United States (US), United Kingdom (UK), Denmark and

Iceland.

For each country, the data set consists of female period mortality data, obtained from

the Human Mortality Database, and concerning the calendar year 2006. Since we are

primarily interested in adult and old age mortality, only the ages from 40 to 110 are

included. The exposed to risk at age 40 (defined before as E1) are equal to 2,116,995.31

(US), 478,424.36 (UK), 43,463.83 (Denmark) and 2,193.00 (Iceland). So, roughly, the

largest country is about 1,000 times as large as the smallest country.

For Gamma frailty, Inverse Gaussian frailty and no frailty, we estimate the parame-

ters from maximum likelihood following Borgan (1984) and perform a visual inspection

of its fit based on the transformation approach. The parameter estimates are shown in

Table 1. As basic kernel function, we choose

K (x) =
3003

2048

(
1− x2

)6
I[−1,1] (x) . (4)

For further details about this specific kernel, consult Nielsen et al. (2009). We have

selected (4) for our example, but the actual choice of basic kernel function is not so

important.
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Table 1: Estimates of parameters.

Country/frailty model a0 a1 a2 σ2

United States

No frailty −9.0389 0.04975 0.0003014 −
Gamma −8.1373 0.02014 0.0005402 0.1193

Inverse Gaussian −9.0388 0.04975 0.0003014 2.3966e-11

United Kingdom

No frailty −10.1631 0.06766 0.0002594 −
Gamma −8.5070 0.01479 0.0006729 0.1632

Inverse Gaussian −8.5047 0.01374 0.0006914 0.2488

Denmark

No frailty −10.1153 0.07338 0.0001991 −
Gamma −9.7088 0.06034 0.0003021 0.04007

Inverse Gaussian −9.7390 0.06125 0.0002954 0.04062

Iceland

No frailty −10.1777 0.05911 0.0003532 −
Gamma −10.1136 0.05708 0.0003689 0.005556

Inverse Gaussian −10.1777 0.05911 0.0003532 4.2043e-08
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Figure 1: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b= 1/9, all on the transformed scale, using Gamma

frailty.
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Now we assume that Gamma frailty is suitable for the data at hand, and we

want to test that assumption through our visual inspection technique. We use the

UK as an illustrative example. Figure 1 displays the values of the density functions

of the 71 transformed observations on the transformed scale, using Gamma frailty.

For observation k, with k ∈ {1, . . . ,K}, the x-coordinate is equal to H
∗
k , while the

corresponding y-coordinate is equal to
(
1−H

∗
k

)
∗ Ok

/
Ek.

As explained before, if the model assumed were the true one and risk exposure

were infinite, these y-coordinates would all be equal to unity. Deviations from unity

essentially arise from two sources: the extent to which the assumed/estimated model

deviates from the true underlying model, and the noise in data caused by the stochastic

nature of death. We are interested in assessing the first kind of (systematic) deviations,

and for this purpose we want to reduce the second kind of (unsystematic) deviations.

Assume for a moment that all deviations could be taken at face value, i.e. that

there were no unsystematic deviations. How would model deviations then manifest

themselves on the transformed scale? Assume the model has density f with cdf F ,

while the true density is g. Then the density of transformed data is
(
g
/

f
)(

F−1 (u)
)

for 0 < u < 1. We are particularly interested in the behaviour in the right tail of the

distribution. There are three possibilities:

• If the model overestimates the density of dying old then the density of transformed

data will be below 1 in the right tail.

• If the model estimates the density of dying old correctly then the density of

transformed data will be close to 1 in the right tail.

• If the model underestimates the density of dying old then the density of trans-

formed data will be above 1 in the right tail.

Small risk exposure and consequently noisy data is a well known problem for very

high ages, even for large countries like the US. This is why the observed density points

start to deviate significantly from 1 when the x-coordinate approaches 1, bearing in

mind that the probability of death before attaining a very advanced age is close to 1. The

purpose of the density estimator is to reduce the noise in data to get a clearer picture of

the performance of the model. The reason for working on the transformed scale is that

the density can be more effectively estimated and with smaller bias on the unit interval

than on the original scale.

4.1. Effect of bandwidth

A non-smoothed density estimate is obtained by simply connecting these points, but this

will lead to an irregular pattern in all cases. The points are displayed together with the

local linear density estimator based on kernel smoothing as in equation (2). In Figu-

re 1, the value for the bandwidth b of 1/9 has been selected by eye-ball, according to

whatever looks best for this particular data set.
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Figure 2: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b = 1/24, all on the transformed scale, using

Gamma frailty.

The importance of choosing an appropriate value for the bandwidth is illustrated in

the next two diagrams. Figure 2 shows the same points alongside the density estimator

with smaller bandwidth b = 1/24. The lack of smoothness is evident: the estimator

seems to be a set of line segments connecting several points.

Figure 3, on the other hand, gives the density estimator with larger bandwidth

b = 1/3. This is an example of over-smoothing: features are displayed that do not reflect

the characteristics of the data.

However, regardless of the chosen bandwidth the estimated density is close to unity

in all three cases, and hence we would judge the model to provide a good description of

old age mortality for the UK data.

The bandwidth choices for the other countries are 1/12 (US), 1/6 (Denmark) and

1/2 (Iceland). Note that the bandwidths go up with decreasing population size for

reasons as stated above. Observe that the set of observed density points for Iceland

contains a lot of outliers, whence the choice of a large bandwidth.

While these bandwidths have been selected by eye-ball, we also reproduced au-

tomatic bandwidth selectors. The cross-validation procedure of Nielsen et al. (2009)

breaks down and undersmooths way too much in our case. However, we adapted the Do-

validation bandwidth selection procedure of Mammen et al. (2011) to our case. Except
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Figure 3: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b= 1/3, all on the transformed scale, using Gamma

frailty.

for Iceland, we got almost exactly the same bandwidths as our eye-ball bandwidths.

The automatic bandwidth selector for Iceland was somewhat higher than our eye-ball

bandwidth selector. We did, however, in the end like our eye-ball selector for Iceland

more and we therefore present that one here along with our other eye-ball selected

bandwidths.

4.2. Old age mortality

In Figures 4 to 7, the local linear density estimate for Gamma frailty is compared with

the one obtained in case of Inverse Gaussian and no frailty (with the same bandwidth,

of course). Note that for the US the curves of Inverse Gaussian and no frailty practically

coincide. Obviously this is due to the parameter estimates of a0, a1 and a2 which are

virtually the same for both models, while the estimate of the additional parameter σ2 in

Inverse Gaussian is very close to zero.

The overall impression regarding the four countries is best when it comes to the

Gamma frailty survival model. In the USA case, the Gamma frailty parametric density

is never more than two percent away from one on the transformed scale. This is not

bad at all and most forecasters could accept deviances at this scale. Also, the USA data

is quite abundant and we can allow ourself to work with a relatively small bandwidth.
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Figure 4: United States: Local linear density estimator as in (2), with b = 1/12, on the transformed scale:

Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 5: United Kingdom: Local linear density estimator as in (2), with b = 1/9, on the transformed

scale: Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 6: Denmark: Local linear density estimator as in (2), with b = 1/6, on the transformed scale:

Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 7: Iceland: Local linear density estimator as in (2), with b= 1/2, on the transformed scale: Gamma

frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Therefore, there is no reason to fear that we have smoothed too much and that should

be the reason for the small deviance. This USA study gives us some confidence that the

Gamma frailty survival model is working well also for smaller data sets, where bigger

fluctuations are to be expected. For the United Kingdom the Gamma frailty survival

model also fits relatively well, but now with deviances up to five percent. Surprisingly

the Danish Gamma frailty survival density has very small deviances with the biggest

being less than three percent. Iceland is another case, deviances up to 20% are found

and the two frailty models do not seem to improve the fit compared to having no frailty

at all. Overall the conclusion from the graphs is that the Gamma frailty makes the best

fit, the Inverse Gaussian less so, but with both frailty models being superior to having no

frailty at all. If we take a closer look at the tail of the three fitted Danish survival models

at the transformed scale, we can get some further insight into the question posed in the

introduction. It is indeed very clear that the flattening out of the Gamma frailty density

in the tail helps the fit. The Gamma frailty version is much closer to one around the

tail with about half the deviance from one compared to the no-frailty density version. In

general, the performance of Inverse Gaussian is somewhat between that of Gamma and

no frailty. For Iceland, the curves are almost identical, due to the small estimate of σ2

and very similar estimates of the other parameters. In other words, for Iceland, the cases

of Gamma frailty, Inverse Gaussian frailty and no frailty are nearly the same.

For US and UK the Gamma specification clearly provides the best description of

data of the candidates considered. Both the Inverse Gaussian and no frailty alternative

deviate substantially more in the right tail than Gamma frailty. These two specifications

both overestimate old age mortality substantially, while the Gamma frailty seems to

capture the old age mortality plateau evident in data. Moreover, the right tail deviations

of Gamma frailty is of the same magnitude as deviations for younger age segments,

while the right tail deviations for Inverse Gaussian and no frailty seems to diverge.

While the picture is less clear for Denmark, the frailty densities also here improve the

description of old age mortality. It also seems that without frailty the deviation diverges

in the right tail, but the magnitude of deviation is much smaller than for US and UK. In

contrast to US and UK, the Gamma and Inverse Gaussian essentially perform equally

well. Thus we conclude that there is enough information in data to indicate the presence

of heterogeneity, but not enough information to distinguish between the different kinds

of heterogeneity.

Lastly, Iceland has so little exposure and so much uncertainty in data that even with

the method derived in this paper we cannot distinguish between the models.

A critical part of the study concerns the performance of the estimator for advanced

ages. To this end, for each country we calculate the second largest and largest points

of intersection of the estimator with the horizontal line (i.e. the two largest roots

of the equation f̂d(y) = 1) and translate this back into the corresponding ages. For

comparability, we have left out in this investigation the late spike of no frailty and the

Inverse Gaussian in the USA case. The results are given in Table 2 below. It is quite clear

that Gamma frailty densities in all case are having the last crossing point. This indicates
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that the Gamma frailty density provides the best description of old age mortality among

the considered models. In the USA case, we get almost to the age of 100 before our

transformed density drops below one. The lowest last crossing for the gamma frailty is

still quite high, namely 93 years. Above this last crossing point on the transformed scale,

all the fitted parametric models seem to have too low densities. Thus, above the last

crossing point our parametric models are overstating the possibility of dying. In other

words, above the last crossing point all models seem to be on the safe side. In particular

the Gamma frailty seems well behaved for annuity purposes. The density of very old are

a bit too high, but rarely more than two percent, and these two percent are on the safe

side when calculating for example annuities. Most of the extra old age mass is taken

from the interval between the next last crossing point and the last crossing point, where

the underlying parametric densities are overestimated in all cases. Therefore, while none

of the densities are making a perfect fit, the Gamma frailty density is very close and with

good properties for the annuity forecaster. It is on the safe side for the very old ages, with

an overall annuity that seems to be close to the truth, overestimating the density in the

very old ages, but compensating for that overestimation in an interval leading up to those

old ages. Without frailty the deviations for old ages are substantially larger than with

(gamma) frailty. The transformed density is below 1 which indicates that the probability

of dying old is overestimated. At first glance this appears to be at odds with the fact

that without frailty the old-age hazard is overestimated, cf. Figure 1. The explanation is

that while the old-age hazard is overestimated the hazard is underestimated in the age

groups below and therefore too many attain the (high) age of 90, say, after which they

die too quickly. The model without frailty is on the safe when setting aside reserves for

annuities for 40 year-olds, but if we were to use the same model for older age groups it

would only be conservative up to a certain point. This clearly is not a desirable feature,

and it illustrates the point that overstating the probability of dying old for one cohort is

not necessarily a conservative assumption for other cohorts.

Notice that it would be hard to get this kind of detailed information from testing

the underlying densities or even from graphical visualization techniques on the original

scale. Therefore, our simple transformation technique has enabled us to comfort the

statistician forecasting mortality models based on simple underlying parametric survival

distributions.

Table 2: Second largest and largest crossing point of density estimator with horizontal line at 1.

Country Gamma Inverse Gaussian No frailty

Second largest Largest Second largest Largest Second largest Largest

crossing crossing crossing crossing crossing crossing

point point point point point point

US 92.37 98.68 92.14 95.21 92.14 95.21

UK 89.51 96.85 89.15 95.34 87.61 92.10

Denmark 85.53 94.77 85.47 94.67 84.91 93.63

Iceland 84.38 93.02 84.34 93.01 84.34 93.01
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5. Conclusions

We have developed a new visual inspection technique of survival models. It generalizes

developments of transformation techniques of i.i.d. data, see for example Bolancé

et al. (2008, 2012a, 2012b, 2013). The method seems useful in many versions of

follow-up studies, see for example Guillén et al. (2012) and Pinquet et al. (2011).

We imagine it to be useful when the applied statistician wants the data to guide

his intuition. The working methodology could be through running the knowledge

loop cycle: Data→Visualization→New Assumption a number of times until the final

assumptions seem intuitively reasonable and well behaved also according to more

standard statistical techniques.

All the mortality projection models discussed in the Introduction involve both an

age and a time dimension. As mentioned in the Introduction one can use our one-

dimensional visualization technique for the age effect after having adjusted for the time

effect and vice versa when visualizing the time effect. A full multidimensional version

of our methodology is also possible. One could use multidimensional density estimation

of filtered data to introduce a similar visual inspection technique to assessing the quality

of mortality depending on both age and time. See for example Buch-Kromann and

Nielsen (2012) for a recent multivariate density estimator that could be used in our

visual diagnostic step after having transformed our data with our favourite forecasting

mortality model.

Transformations and visual fitting as developed in this paper would also seem

relevant in other areas of actuarial science as, for example, reserving, see the recent

papers Martı́nez-Miranda et al. (2012) and Kuang et al. (2011).
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Abstract

Fitting parametric survival models with interval-censored data is a common task in survival

analysis and implemented in many statistical software packages. Here, we present a novel

approach to fit such models if the values on the scale of interest are measured with error. Random

effects ANOVA models are used to account for the measurement errors and the likelihood function

of the parametric survival model is maximized with numerical methods. An illustration is provided

with a real data set on the rejection of yogurt as a function of its acid taste.
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1. Introduction

Since the publication of the work of Hough et al. (2003), survival data methods

have become a common tool for the analysis of sensory shelf-life data of foods; see

applications, among others, in Curia et al. (2005), Araneda et al. (2008) and Østli

et al. (2013). The methodology has also been applied to determine consumer acceptance

limits of sensory defects (Hough et al., 2004), and to optimize the concentration of food

ingredients (Garitta et al., 2006).
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A typical shelf-life study consists of storing food samples for different lengths of

time. For each time, consumers evaluate the product and report their acceptance or

rejection. For example, for a yogurt study (Curia et al., 2005), samples were stored

for 0, 14, 28, 42, 56, 70, and 84 days. A typical consumer’s response would be: accept,

accept, accept, reject, reject, reject, and reject, for each one of the respective times. This

consumer’s data is interval-censored between 28 and 42 days. Another consumer might

accept all samples, and in this case the data would be right-censored at 84 days. A left-

censored consumer would be one who rejects the sample which has only been stored

for 14 days. Thus, data on the acceptance or rejection of a food product are generally

interval-censored – including both left and right censoring as particular cases – where

the intervals contain the real unknown values of rejection on the scale of interest; for the

yogurt example the scale of interest was storage time.

The methodology proposed by Hough et al. (2003) furnishes the estimation of

the rejection quantiles of interest for a given parametric model such as the Weibull,

loglogistic or lognormal distribution. It assumes that the endpoints of the observed

censoring intervals are all measured exactly without any error. Another instance of

the application of this methodology is found in Sosa et al. (2008) who estimated the

optimum concentration of salt in French-type bread from a consumer’s perspective.

They prepared samples of bread with 0.6, 1.2, 1.8, 2.4, 3.0, 3.6, and 4.2 g sodium

chloride per 100 g of flour. Since the weighing error of these salt quantities could be

considered negligible, the values could be taken as exact.

However, the values of the independent variable may not always be free of error.

Consider the case of a yogurt manufacturer who has applied survival analysis method-

ology to establish sensory shelf life of his product as described by Hough et al. (2003).

If this manufacturer, in the future, wants to test a formulation change and make sure

the sensory shelf life is still valid, he/she would have to assemble approximately 100

consumers (Hough et al., 2007). This is a costly and time-consuming experiment. If the

critical descriptor (Hough, 2010) of yogurt from a consumer’s perspective is acid taste,

it would be of interest to the manufacturer to know how much the acid taste can in-

crease before reaching 50% consumer rejection. If this acid taste cut-off value is known,

then for future shelf-life determinations of the yogurt, the manufacturer can assemble

a trained panel to measure acid taste instead of assembling the costly consumer panel.

In this case the independent variable of the survival analysis experiment would become

acid taste. These values are measured on a sensory scale by a sensory panel consisting

of trained assessors. Presented with the same stimulus (a sample of yogurt) different as-

sessors can produce different responses on the sensory scale; and the same assessor can

produce different responses to sample replicates; thus the measurements are with error.

The objective of this work is to estimate the quantiles of the rejection distribution

of a given food product integrating data from trained assessors and from consumers.

Trained assessors provide the value of a certain characteristic of the product, such as the

acid taste of yogurt. These values are random and subject to two sources of variability,

one inherent to the assessor and the other corresponding to the specific acid taste of
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the product. Consumers will evaluate the same products as the trained assessors, stating

their acceptance or rejection. Consumer data is interval-censored, where the endpoints

of the intervals are random variables corresponding to the trained panel’s measurements.

Unlike other works, the law of the censoring endpoints is taken into account.

The content of the remainder of this work is the following. After describing the data

of both trained assessors in Section 2 and consumers in Subsection 3.1, the likelihood

function of the model and data under study is derived in Subsection 3.2. In Section 4,

we give details on how to maximize this function in the framework of a parametric

model and how to estimate the parameters and quantiles of interest. Section 5 presents

the application of the estimation proposal to the motivating data set under study and in

Section 6 the main results of this work are discussed.

2. Trained assessors: data, model, and analysis

For the sake of a better understanding, throughout the following sections, we use the

data on the rejection of yogurt as a function of its acid taste. Yogurt samples were stored

different times so that they would develop different levels of acid taste. These samples

were given both to a panel of trained assessors and to consumers. Assessors received

three replicates of each sample and measured their level of acid taste on a common scale

from 0 to 100. Consumers received a single replicate of each sample and judged whether

or not they would accept it.

2.1. Data and Model

A panel of J trained assessors are given K replicates of I different samples of yogurt

which correspond to I different degrees of acid taste. Acid taste, denoted by Xi jk, was

measured on a sensory scale from 0 (minimum acid taste) to 100 (maximum value),

where k stands for replication (k = 1, . . . ,K), j for assessor ( j = 1, . . . ,J), and i for

sample (i = 1, . . . , I). In our motivating example, we have K = 3, J = 13, and I = 6. A

graphical representation of all trained assessors’ data is shown in Figure 1.

It is assumed that the data of a given sample i, i = 1, . . . , I, come from a one-way

random effects ANOVA model:

Xi jk = µi +αi j +εi jk, (1)

where αi j ∼ N (0,σ2
b;i) and εi jk ∼ N (0,σ2

w;i). For sample i, the grand mean µi, repre-

senting the unknown acid taste of sample i, is the parameter of interest, αi j is the random

effect corresponding to assessor j, j = 1, . . . ,J, and σ2
b;i and σ2

w;i denote, respectively,

the between and within-assessors variances. Note that σ2
b;i is equivalent to the covari-

ance between two observations on the same assessor (Vittinghoff et al., 2005, Chap. 8).
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Figure 1: Estimates of acid taste of yogurt given by 13 trained assessors on three replications of six

different samples. Acid taste was measured on a 0 (minimum) to 100 (maximum) sensory scale.

The model assumes independence among the assessors and between αi j and εi jk.

Hence, the overall variance of Xi jk is the sum of both variance components, that is,

Var(Xi jk) = σ
2
b;i +σ

2
w;i. In addition, and without loss of generality,

0 < µ1 < · · ·< µI < 100, (2)

where 100 may be substituted by any other value determined to be the maximum of the

scale of interest.

2.2. Estimation

The estimator of the grand mean µi, i = 1, . . . , I, is given by the overall mean of all J ·K
measurements given for each sample:

µ̂i = X̄i =
1

J

1

K

J

∑
j=1

K

∑
k=1

Xi jk,

and its variance is equal to

Var(X̄i) =
1

J ·K (σ2
w;i +K ·σ2

b;i).
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See Appendix A for further details.

Given the normal distribution assumption in model (1), the distribution of X̄i is

X̄i ∼ N
(
µi,

1

J ·K (σ2
w;i +K ·σ2

b;i)
)
, (3)

and for J = 13 and K = 3, the overall mean X̄i follows a normal distribution with mean

µi and variance 1
39
(σ2

w;i +3 ·σ2
b;i).

Several estimators exist for both variance components including the restricted max-

imum likelihood estimators shown in (4). They are based on the between and within-

assessors sum of squares (SSb;i and SSw;i):

σ̂2
w;i = min

( SSw;i

J(K −1)
,

SSw;i +SSb;i

J ·K −1

)
,

σ̂2
b;i = max

(
0,

1

K

(
SSb;i

J−1
− SSw;i

J(K −1)

))
,

(4)

where SSw;i = ∑
J
j=1 ∑

K
k=1(Xi jk − X̄i j)

2 and SSb;i = ∑
J
j=1 K · (X̄i j − X̄i)

2. Herein, X̄i j is the

mean of assessor j’s values for the ith sample. For a detailed discussion on these and

other possible estimators, see Chapter 2 in Sahai and Ojeda (2004). In Appendix B, we

give some details on computational aspects with R (The R Foundation for Statistical

Computing).

Applying the previous formulas to our data set, we obtain sample mean estimates,

the between and within-assessors standard deviations as well as the standard errors of X̄i

for all six samples which are shown in Table 1. We observe, for example, that the within-

assessors standard deviations for samples 1 and 6 are much smaller then the rest; this is

also reflected in Figure 1. When assessors measure samples with very low (sample 1)

or very high (sample 6) acidities, they are all in agreement as to how to score these

extreme samples. However, when intermediate acidities (samples 2 to 5) are presented,

assessors can differ in their scores due to different perceptions and responses. This can

be observed in the case of sample 3, where the estimated between-assessors variance is

virtually 0, indicating that the variability observed in the estimation of the acid taste of

this sample can be attributed entirely to the within-assessors variance.

Table 1: Estimation results for model (1) for all six samples.

Sample

1 2 3 4 5 6

µ̂µµi 4.2 39.2 46.2 62.7 85.8 93.4

σ̂σσw;i 5.9 17.7 23.4 17 8.6 5.6

σ̂σσb;i 3.9 8.5 0.0 11.4 15 8.3

σ̂σσX̄i
1.4 3.7 3.7 4.2 4.4 2.5
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Figure 2: Density functions of sample mean estimators X̄i, i = 1, . . . ,6.

In Figure 2, the density functions of all six mean estimators are represented assuming

σ2
b;i and σ2

w;i are equal to the estimates shown in Table 1. In the following section, we

will show how the uncertainty in the estimation of µi is taken into account in the analysis

of the consumers’ data.

3. Consumers: Data, rationale, and likelihood function

3.1. Data, rationale, and notation

In Section 1, the typical characteristics of a shelf-life study were presented. It was

mentioned that the resulting data from the consumers, who are given the food product

under study, are generally interval-censored containing the unknown value of rejection.

Note that survival analysis methods can be applied to any positive random variable, for

instance, yogurt’s acid taste, as it is applied in the study that motivated the present work.

A total of n = 74 subjects are presented with I = 6 yogurt samples of different acid

taste in a random order and have to answer the question whether they would normally

consume such a yogurt or not. Based on their answers (acceptance/rejection), intervals

of degrees of acid taste are determined that contain the acid taste from which a yo-

gurt would be rejected. The interval for subject m, m = 1, . . . ,n, is of either of the two

following types, where lm and rm indicate the sample number: (lm, rm] or, in case of

a right-censored observation, (lm, ∞). In case of a left-censored observation, we define

lm = 0. Hence, lm ∈{0, . . . , I},∀m, and rm ∈{1, . . . , I,∞},∀m. We denote the correspond-

ing (unknown) acid tastes on the sensory scale from 0 to 100 by (Xlm , Xrm ], m = 1, . . . ,n.

In Table 2, the frequency distribution of the intervals obtained is shown. It can be

seen that there are no left-censored and two right-censored data. That is, all subjects

accepted sample 1, and two subjects did not reject any of the six samples. The fact that

apart from the two right-censored observations not all of the remaining intervals are of

type (lm, lm + 1] is due to certain inconsistencies of the consumers’ answers such as a

sequence of “accept, reject, accept, reject”. In that particular case, the interval obtained
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Table 2: Frequency distribution of intervals that contain rejection value.

Interval n %

(1, 2] 5 6.8

(1, 4] 5 6.8

(1, 5] 7 9.4

(2, 3] 10 13.5

(2, 5] 7 9.4

(3, 4] 12 16.2

(3, 6] 1 1.4

(4, 5] 25 33.8

(6, ∞) 2 2.7

Total 74 100

is of type (lm, lm + 3], for example (1, 4]; see Hough et al. (2003) for a more detailed

discussion.

If the sample numbers were substituted by the corresponding estimated acid tastes

shown in Table 1 without taking into account the uncertainty of the estimation, one could

apply standard nonparametric methodology such as the Turnbull estimator (Turnbull,

1976) to estimate the quantiles of interest. The resulting graphical representation is

shown in Figure 3 indicating, for example, that, according to this estimation, the median

lies between 46.2 and 62.7.
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Figure 3: Turnbull estimator of F if acid tastes were estimated without error.

3.2. The likelihood function

In the following, we denote the distribution function of the random variable T , the acid

taste from which yogurts are rejected, by FT .
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Assuming non-informative censoring (Oller et al., 2004) and if the acid tastes were

measured without error, the contribution to the likelihood function of subject m, whose

rejection value lies in interval (xlm , xrm ], would be (Gómez et al., 2009)

Lm = FT (xrm)−FT (xlm). (5)

However, the exact acid tastes are unknown and estimates obtained from the panel of the

13 trained assessors are given instead. For this reason, we substitute the unknown acid

tastes by these estimates and account for the corresponding uncertainty by integrating

over the whole range of µ̂i, i = 1, . . . , I, which are all real-valued numbers in [0, 100]

restricted to xlm < xrm . Hence, the likelihood contribution in (5) converts into

Lm =

∫ 100

0

∫ r

0

(
FT (r)−FT (l)

)
dFX̄lm

(l)dFX̄rm
(r). (6)

Given a sample of size n, (lm, rm], m = 1, . . . ,n, and assuming independence among the

observations, the likelihood function is

L =
n

∏
m=1

∫ 100

0

∫ r

0

(
FT (r)−FT (l)

)
dFX̄lm

(l)dFX̄rm
(r). (7)

In case of left and right-censored observations, that is lm = 0 and rm = ∞, respectively,

the likelihood contribution in (6) reduces to the following respective single integrals:

Lm =
∫ 100

0 FT (r)dFX̄rm
(r) (left censoring) and Lm =

∫ 100
0

(
1 − FT (l)

)
dFX̄lm

(l) (right

censoring).

4. Maximization of the log-likelihood function

To maximize the logarithm of the likelihood function (7), following Wang (2010),

discrete supports for X̄i, i = 1, . . . , I, with corresponding probability masses have to be

chosen. We denote these by

S i = {si1 , . . . ,sipi
} and Πi = {πi1 , . . . ,πipi

}, i = 1, . . . , I, (8)

respectively. Different discrete supports of X̄i can be thought of. For example, using the

notation in (8), the first and last element of each support could be:

• si1 = 0 and sipi
= 100,

• si1 = x̄i−1 and sipi
= x̄i+1 with x̄0 = 0 and x̄I+1 = 100,

• si1 = max(0, x̄i − p · σ̂x̄i
) and sipi

= min(100, x̄i + p · σ̂x̄i
) for some p ∈ N.
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In either case, the mesh size h should be kept constant over the whole support,

choosing, for example, h = 0.1 or h = 0.5.

The resulting expression of the log-likelihood function for the likelihood function

given in (7) is as follows:

l =
n

∑
m=1

ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)
πlmw

πrmv
{slmw

< srmv
}
)
, (9)

where both indices, v and w, cover the ranges of the corresponding supports but are

restricted to slmw
< srmv

,∀v,w, because of (2).

Given that X̄i follows a normal distribution according to (3) and defining ∑Πi
=

∑
pi
l=1 fX̄i

(sil ), we propose the following probability masses Πi, which are proportional to

the density function of X̄i evaluated in each point of the support S i:

πiv = fX̄i
(siv)

/
∑Πi

, v = 1, . . . , pi,

where

fX̄i
(x) =

1√
2πσ̂X̄i

exp

(
−1

2
(
x− x̄i

σ̂X̄i

)2

)
.

Hence, the expression of the log-likelihood function (9) becomes:

l =
n

∑
m=1

ln

(( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(
− 1

2

(
(

slmw
− x̄lm

σ̂X̄lm

)2 +(
srmv

− x̄rm

σ̂X̄rm

)2
))

{slmw
< srmv

}
)/

∑Πlm
·∑Πrm

)

=
n

∑
m=1

(
ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(
− 1

2

(
(

slmw
− x̄lm

σ̂X̄lm

)2 +(
srmv

− x̄rm

σ̂X̄rm

)2
))

{slmw
< srmv

}
)
− ln

(
∑Πlm

·∑Πrm︸ ︷︷ ︸
�

))
.

and since � does not depend on F , the log-likelihood function to be maximized is

l =
n

∑
m=1

ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(
− 1

2

( (slmw
− x̄lm)

2

σ̂2
X̄lm

+
(srmv

− x̄rm
)2

σ̂2
X̄rm

))
{slmw

< srmv
}
)
. (10)
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In case of left and right-censored data, the contributions to the log-likelihood function

are, respectively:

lm = ln
( p1

∑
v=1

FT (s1v

) 1√
2πσ̂X̄1

exp
(
− 1

2
(
s1v − x̄1

σ̂X̄1

)2
))

,

lm = ln
( pI

∑
w=1

(
1−FT (sIw)

) 1√
2πσ̂X̄I

exp
(
− 1

2
(
sIw − x̄I

σ̂X̄I

)2
))

.

As pointed out in the introduction, our objective consists of estimating the quantiles of

the rejection distribution under different parametric models. That is, we will substitute

F by different expressions according to the parametric choices for T as shown in the

following section.

5. Quantile estimation for parametric models

Three parametric laws, which are commonly used for shelf-life studies of foods (Hough

et al., 2003), are considered for the random variable of interest T :

• Weibull with shape parameter k, scale parameter λ, distribution function given by

FT (t) = 1− exp(−(t/λ)k), and tα = λ · ln( 1
1−α)

1/k as the quantile α,

• loglogistic with shape parameter k, scale parameter λ, FT (t) = 1− 1

1+(t/λ)k , and

tα = λ(
α

1−α)
1/k,

• lognormal with parameters µ and σ, FT (t) = Φ
(

ln(t)−µ
σ

)
, and tα = exp

(
µ+σ ·

Φ−1(α)
)
.

For sample i, i = 1, . . . , I, we have chosen a discrete support with first element given

by si1 = max(0, x̄i −3 · σ̂x̄i
), last element given by sipi

= min(100, x̄i +3 · σ̂x̄i
), and with

mesh size equal to 0.1. These supports cover intervals on the domain of X̄i of probability

masses larger than 0.99 for each sample. With these choices, the computation time for

the maximization of the log-likelihood function takes about 25 seconds with the Intel i7

processor (1.73 GHz) under Windows 7. Technical details on the implementation in R

are given in Appendix B.

The maximization of function (10) yields the parameter estimates and five quantiles

as shown in Table 3. Whereas the standard errors are returned together with the

parameters’ estimates, the delta method is used in order to compute the standard errors

of the log-transformed quantiles. 95% confidence intervals are computed for ln(tα) and

the exponential transformation is applied to obtain the confidence intervals for tα. They

are, hence, not symmetric with respect to t̂α.
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Table 3: Estimates obtained under different parametric models: parameter estimates are shown together

with standard errors, quantile estimates together with 95% confidence intervals.

Weibull Loglogistic Lognormal

θ̂θθ (s.e.(θ̂θθ)) k̂ = 4.113 (0.467) k̂ = 6.510 (0.805) µ̂= 4.044 (0.036)

λ̂= 65.138 (2.292) λ̂= 57.426 (2.153) σ̂ = 0.263 (0.029)

Quantiles (95%-CI)

0.1 37.7 ([32.2, 44.2]) 41.0 ([36.5, 46.1]) 40.7 ([36.5, 45.4])

0.25 (Q1) 48.1 ([43.0, 53.8]) 48.5 ([44.4, 53.0]) 47.8 ([43.9, 52.1])

0.5 (Median) 59.6 ([55.1, 64.5]) 57.4 ([53.3, 61.9]) 57.0 ([53.0, 61.3])

0.75 (Q3) 70.5 ([65.9, 75.4]) 68.0 ([62.6, 73.8]) 68.1 ([63.0, 73.6])

0.9 79.8 ([74.3, 85.7]) 80.5 ([72.4, 89.5]) 79.9 ([72.5, 88.1])

We can see, for example, that the estimated median under the Weibull model is 59.6

and that the corresponding 95% confidence interval ranges from 55.1 to 64.5. That is,

under the Weibull model, 50% of all consumers are expected to reject yogurt with an

acid taste above 59.6 and this value would serve as the cut-off value for the yogurt

manufacturer if the objective is to produce yogurt whose acid taste is rejected by at most

50% of all consumers. Note that the median estimates are somewhat lower in case of the

two other parametric choices (57.4 and 57, respectively) and that all three estimates lie

in the interval obtained by the nonparametric estimation shown in Figure 3.

6. Conclusions and discussion

In this work, we have presented an approach to fit parametric models to interval-

censored data when the interval limits are not fixed values, but are rather measured with

certain error. As stated in the introduction, survival analysis methodology has so far

been used to estimate rejection probabilities in food products as a function of variables

of interest such as storage time which were measured exactly. However, there are other

situations in which the variable of interest is not error-free, such was the case of acid

taste in yogurt presented as an example in this work. We have developed a model to take

account of the variability in the measurement of the independent variable.

Since the maximization of the likelihood function with such data is not implemented

in statistical software, we have accomplished the parameter estimation in R with

different functions of contributed packages; see Appendix B. The R code used can be

provided on request from the authors.

The results obtained permit us to draw conclusions about the rejection distribution

of a given food product based on a scale whose values are estimated by a trained panel.

However, from a statistical point of view, our primary interest is the comparison of the

obtained results with the ones of the method that ignores the uncertainty of the sample

mean estimation. It could be expected that our approach would yield larger standard
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errors and confidence intervals, nonetheless, the results (not shown here) are fairly

similar. For example, the standard errors of both parameters of the Weibull distribution

do only differ in the second decimal place among both methods, whereas they are even

virtually the same considering the lognormal distribution. Therefore, the differences of

the quantiles obtained with both methods as well as the widths of the corresponding

confidence intervals are notably small. The same findings held when we used broader

discrete supports for X̄i, i = 1, . . . ,6.

Another approach to estimate the parameters is to use multiple imputations as

described in Rubin (1987). For each of B runs, sample mean values would be generated

from the normal distributions (3) and the parametric models would be fitted assuming

these values were measured error-free. The parameters estimates are then obtained

as means over the B estimates obtained. We did this for B = 1000 obtaining similar

parameter estimates (results not shown) but with larger standard errors (between 18%

and 44% larger) reflecting both sources of variances: between and within-imputation

variances. We, therefore, do not recommend this approach.

Two aspects of interest, which were not addressed in this work, are the nonparametric

estimation of F and methods to judge the goodness-of-fit of a given parametric choice.

These are relevant topics for further research.

In summary, final results showed small differences in quantile estimations between

our model and the ad hoc calculations that did not consider variability. Whether these

small differences will hold for most practical applications is difficult to predict. Our

recommendation is for researchers to apply the complete model presented in this work

in order to be sure that their quantile estimations are correct.
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de la Supervivència (GRASS) for the fruitful discussions. This research was partially

supported by Grant MTM2012-38067-C02-01 of the Ministerio de Economı́a y Com-

petitividad (Spain). We also thank the reviewers of this paper for their useful comments

and suggestions resulting in an improvement of the manuscript.

A. Variance of the sample mean estimator X̄iX̄iX̄i

In the following, the variance of the sample mean estimators X̄i, i = 1, . . . , I, is derived.

Remember that independence is assumed among assessors and that the covariance

between two observations on the same assessor is equal to the between-assessors

variance:
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Var(X̄i) = (
1

J

1

K
)2Var

( J

∑
j=1

K

∑
k=1

Xi jk

)
=

1

(J ·K)2

J

∑
j=1

Var
( K

∑
k=1

Xi jk

)

=
1

(J ·K)2
· J ·Var

( K

∑
k=1

Xi jk

)

=
J

(J ·K)2

( K

∑
k=1

Var(Xi jk)+2 ·
K

∑
k=2

k−1

∑
k∗=1

Cov(Xi jk,Xi jk∗)
)

=
J

(J ·K)2

(
K · (σ2

b;i +σ
2
w;i)+2 · 1

2
· (K −1) ·K ·σ2

b;i

)

=
1

J ·K (σ2
w;i +K ·σ2

b;i).

B. Computational Issues

All computations of this work were carried out with R (The R Foundation for Statistical

Computing), version 3.0.1. Following, we give some details on the functions used.

The estimates of the one-way random effects ANOVA model shown in Table 1 are

obtained by fitting model (1) with function lme of package nlme (Pinheiro et al., 2013).

This function, which uses the restricted maximum likelihood estimators in (4) for the

variance components by default, could also handle unbalanced designs with different

numbers of replicates among assessors.

The maximization of the log-likelihood function (10) under different parametric

models was accomplished with function mle2 of the contributed package bbmle (Bolker

and R Development Core Team, 2012). This function returns both the maximum like-

lihood estimates and their standard errors. As initial values for the parameters to be

estimated, which are required by the maximization algorithm, one can choose the pa-

rameter estimates that are obtained by fitting the corresponding parametric model under

the assumption that sample means were measured error-free.
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Abstract

When open or direct surveys are about sensitive matters (e.g. gambling habits, addiction to drug

and others intoxicants, alcoholism, proneness to tax invasion, induced abortions, drunken driving,

history of past involvement in crimes, and homosexuality), non-response bias and response bias

become serious problems because people oftentimes do not wish to give correct information. To

reduce non-response and response bias, various alternative approaches have been proposed,

for example a randomized response survey technique, or a mixed randomized response model

using simple random sampling with a replacement sampling scheme that improves the privacy

of respondents, proposed by authors Kim and Warde. In this paper we have suggested an

alternative to Kim and Warde’s mixed randomized response model to estimate the proportion

of qualitative sensitive variable under the conditions presented in both the cases of completely

truthful reporting and less than completely truthful reporting by the respondents. Properties of

the proposed randomized response model have been studied along with recommendations. We

have also extended the proposed model to stratified random sampling. Numerical illustrations and

graphs are also given in support of the present study.

MSC: 62D05.

Keywords: Randomized response technique, Dichotomous population, Estimation of proportion,

Privacy of respondents, Sensitive characteristics.

1. Introduction

Warner (1965) was first to introduce a randomized response (RR) model to estimate the

proportion for sensitive attributes including homosexuality, drug addiction or abortion.

Greenberg et al. (1969) proposed the unrelated question RR model that is a variation

of Warner’s (1965) RR model. Since the work by Warner (1965), a huge literature
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has emerged on the use and formulation of different randomization device to estimate

the population proportion of a sensitive attribute in survey sampling. Mention may be

made of the work of Tracy and Mangat (1996), Chudhuari and Mukherjee (1988), Ryu

et al. (1993), Fox and Tracy (1986), Singh (2003), Singh and Tarray (2012, 2013a, b, c)

and the references cited there in.

Mangat et al. (1997) and Singh et al. (2000) pointed out the privacy problem with the

Moors (1971) model. Mangat et al. (1997) and Singh et al. (2000) have presented several

strategies as an alternative to Moors model, but their models may lose a large portion of

data information and require a high cost to obtain confidentiality of the respondents. Kim

and Warde (2005) have suggested a mixed randomized response model using simple

random sampling which rectifies the privacy problem.

In this paper we have suggested an alternative to Kim and Warde’s (2005) mixed ran-

domized response model and its properties are studied in simple random sampling with

replacement (SRSWR) and Stratified random sampling in both the cases of completely

truthful reporting and less than completely truthful reporting. Numerically we show that

the proposed mixed randomized response model is better than Kim and Warde’s (2005)

estimator.

2. The suggested model

Let a random sample of size n be selected using simple random sampling with replace-

ment (SRSWR). Each respondent from the sample is instructed to answer the direct

question “I am a member of the innocuous group”. If a respondent answers “Yes” to the

direct question, then she or he is instructed to go to randomization device R1 consisting

of the statements (i) “I am the member of the sensitive trait group” and (ii) “I am a

member of the innocuous trait group” with respective probabilities P1 and (1−P1). If a

respondent answers “No” to the direct question, then the respondent is instructed to use

the randomization device R2 consisting of the statements: (i) I belong to the sensitive

group, (ii) “Yes” and (iii) “No” with known probabilities P, (1−P)/2 and (1−P)/2

respectively. For the second and third statements, the respondent is simply to report

“Yes” or “No” as observed on the random device R2 and it has no relevance to his ac-

tual status. It is to be mentioned that the randomization device R2 is due to Tracy and

Osahan (1999). The survey procedures are performed under the assumption that both

the sensitive and innocuous questions are unrelated and independent in a randomization

device R1. To protect the respondent’s privacy, the respondents should not disclose to

the interviewer the question they answered from either R1 or R2.

Let n be the sample size confronted with a direct question and n1 and n2

(= n−n1) denote the number of “Yes” and “No” answers from the sample. Note that the

respondents coming to R1 have reported a “Yes” to the initial direct question, therefore

π1 = 1 in R1, where π1 is the proportion of “Yes” answers from the innocuous question.
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Denote by ‘Y ’ the probability of “Yes” from the respondents using R1. Then

Y = P1πS +(1−P1)π1 = P1πS +(1−P1), (2.1)

where πS is the proportion of “Yes” answers from the sensitive trait.

An unbiased estimator of πS, in terms of the sample proportion of “Yes” responses

Ŷ , becomes

π̂a1 =
Ŷ − (1−P1)

P1

. (2.2)

The variance of π̂a1 is

V (π̂a1) =
Y (1−Y )

n1P2
1

=
(1−πS) [ P1πS +(1−P1)]

n1P1

=
1

n1

[
πS(1−πS)+

(1−πS)(1−P1)

P1

]
. (2.3)

The proportion of “Yes” answers from the respondents using randomization device R2

follows:

X = PπS +
(1−P)

2
(2.4)

An unbiased estimator of πS, in terms of the sample proportion of “Yes” responses X̂ ,

becomes

π̂b1 =
X̂ − (1−P)/2

P
. (2.5)

The variance of π̂b1 is given by

V (π̂b1) =
X(1−X)

n2P2
=

[
πS(1−πS)

n2

+
(1−P2)

4n2P2

]
. (2.6)

The estimator of πS, in terms of the sample proportions of “Yes” responses Ŷ and X̂ , is

π̂t =
n1

n
π̂a1 +

n2

n
π̂b1

=
n1

n
π̂a1 +

(n−n1)

n
π̂b1, for 0 <

n1

n
< 1. (2.7)
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As both π̂a1 and π̂b1 are unbiased estimators, the expected value of π̂t is

E(π̂t) = E
[n1

n
π̂a1 +

n2

n
π̂b1

]
=

n1

n
πS +

(n−n1)

n
πS = πS.

Thus the proposed estimator π̂t is an unbiased estimator πS.

Now the variance of π̂t is given by

V (π̂t) =
(n1

n

)2

V (π̂a1)+
(n2

n

)2

V (π̂b1)

=
(n1

n

)2 1

n1

[
πS(1−πS)+

(1−πS)(1−P1)

P1

]

+
(n2

n

)2 1

n2

[
πS(1−πS)+

(1−P2)

4P2

]

=
n1

n2

[
πS(1−πS)+

(1−πS)(1−P1)

P1

]
+

n2

n2

[
πS(1−πS)+

(1−P2)

4P2

]
. (2.8)

Since our mixed RR model also uses Simmon’s (1967) method when π1 = 1, we can

apply Lanke’s (1976) idea to our suggested model. Thus using Lanke’s (1976) result for

P with π1 = 1, we get

P =
1

2−P1

. (2.9)

Putting P = (2−P1)
−1 in (2.6), we get

V (π̂b1) =
πS(1−πS)

(n−n1)
+

(1−P1) (3−P1)

4(n−n1)

=
1

(n−n1)

[
πS(1−πS)+

(1−P1)(3−P1)

4

]
. (2.10)

Thus we established the following theorem.

Theorem 2.1 The variance of π̂t is given by

V (π̂t) =
πS(1−πS)

n
+

(1−P1) [ 4 λ(1−πS)+(1−λ)P1(3−P1)]

4nP1

(2.11)

for n = n1 +n2 and λ=
n1

n
.
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3. Efficiency comparisons

An efficiency comparison of the suggested model, under completely truthful reporting

case, has been done with Kim and Warde’s (2005) model.

From Kim and Warde’s (2005) model, we have

V (π̂kw) =
πS(1−πS)

n
+

(1−P1) [ λP1(1−πS)+(1−λ)]
nP2

1

. (2.12)

From (2.11) and (2.12) we have V (π̂t)<V (π̂kw) if

[4λ(1−πS)+(1−λ)P1(3−P1)]

4
<

[λP1(1−πS)+(1−λ)]
P1

i.e. if 4−3P2
1 +P3

1 > 0 which is always true.

Thus the proposed model is always better than Kim and Warde’s (2005) model.

An efficiency comparison of the proposed mixed randomized response technique

to that of Kim and Warde’s, we have computed the percent relative efficiency of

the proposed estimator π̂t with respect to Kim and Warde’s estimator π̂kw by using the

formula:

PRE(π̂t , π̂kw) =
V (π̂kw)

V (π̂t)
×100

=
4
[
πS(1−πS)+{(1−P1)/P2

1 }{λP1(1−πS)+(1−λ)}
]
πS(1−πS)

[4πS(1−πS)+{(1−P1)/P1}{4λ(1−πS)+(1−λ)P1(3−P1)}]
×100

for different values of P1, n and n1.

We have obtained the values of the percent relative efficiencies PRE(π̂t , π̂kw) for

λ= 0.3,0.5,0.7 and for different cases of πS, n, n1 and P1. Findings are shown in Table

1 and its diagrammatic representation is given in Figure 1.

It is observed from Table 1 and Figure 1 that: The values of percent relative

efficiencies PRE(π̂t , π̂kw) are more than 100. We can say that the envisaged estimator

π̂t is always efficient than Kim and Warde’s (2005) estimator π̂kw. Figure 1 shows results

for πS = 0.1 and 0.6, λ= 0.3,0.5,0.7 and different values of P1, n, n1.

We note from Table 1 that the values of the percent relative efficiencies PRE(π̂t , π̂kw)

decrease as the value of P1 increases. Also the values of the percent relative efficiencies

PRE(π̂t , π̂kw) increase as the value of λ decrease for fixed values of πS and P1.

We further note from the results of Figure 1 that there is large gain in efficiency

by using the suggested estimator π̂t over the estimator π̂kw when the proportion of

stigmatizing attribute is moderately large.
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Figure 1: Percent relative efficiency of the proposed estimator π̂t

with respect to Kim and Warde’s (2005) estimator π̂kw.

4. Less than completely truthful reporting

The problem of “Less than completely truthful reporting” in randomized response model

has been tackled by several authors including Singh (1993), Mangat (1994 a,b), Tracy

and Osahan (1999), Chang and Huang (2001), Kim and Warde (2004), Kim and Elam

(2005), Nazuk and Shabbir (2010) and others. We write the proportion of “Yes” answers

from the two randomization devices R1 and R2, incorporating the probability of truthful

reporting. Let T1 and T2 be the probabilities of telling the truth regarding the stigmatizing

question in the randomization device R1 and R2 respectively. The respondents in the

innocuous trait have no reason to tell a lie, they may lie for the sensitive trait.

Note that the respondents coming to R1 have reported a “Yes” to the initial direct

question therefore π1 = 1 in R1. The probability of “Yes” answers from the respondents

using R1 is given by

Y ∗ = P1πST1 +(1−P1). (4.1)

An estimator for the true population proportion πS of the sensitive trait is given by

π̂a(1) =
Ŷ ∗− (1−P1)

P1

, (4.2)

where Ŷ ∗ is the sample proportion of “Yes” response from the randomization device R1.

Since Ŷ ∗ follows Binomial distribution B(n1, Y ∗), therefore the bias and variance of

the estimator π̂a(1) are respectively given by

B(π̂a(1)) = πS(T1 −1) (4.3)
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and

V (π̂a(1)) =
Y ∗(1−Y ∗)

n1P2
1

=
(1−πST1)[1−P1(1−πST1)]

n1P1

. (4.4)

So the mean square error (MSE) of the estimator π̂a(1) is given by

MSE(π̂a(1)) =

{
(1−πST1)[1−P1(1−πST1)]

n1P1

+π2
S(T1 −1)2

}
. (4.5)

The proportion of “Yes” answers from the respondents using randomization device R2

is

X∗ = PπST2 +
(1−P)

2
. (4.6)

Thus an estimator of πS is given by

π̂b(1) =
X̂∗− (1−P)/2

P
, (4.7)

where X̂∗ is the sample proportion of “Yes” responses from the randomization device

R2.

Since X̂∗ follows Binomial distribution B(n1, X∗), therefore the bias and variance of

the estimator π̂b(1) are respectively given by

B(π̂b(1)) = πS(T2 −1) (4.8)

and

V (π̂b(1)) =
X∗(1−X∗)

n2P2
=

[1−P2(1−2πST2)
2]

4n2P2
, (4.9)

where n1 +n2 = n.

Thus the mean square error (MSE) of the estimator π̂b(1) is given by

MSE(π̂b(1)) =

{
[1−P2(1−2πST2)

2]

4n2P2
+π2

S(T2 −1)2

}
. (4.10)

Now we propose the weighted estimator of πS as

π̂∗
t =

[(n1

n

)
π̂a(1)+

(n2

n

)
π̂b(1)

]
. (4.11)
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Since the two randomization devices are independent, we can derive the bias and MSE

of π̂∗
t respectively as

B(π̂∗
t ) = πS

[(n1

n

)
(T1 −1)+

(
n−n1

n

)
(T2 −1)

]
(4.12)

and

MSE(π̂∗
t ) =

{
λ(1−πST1)[1−P1(1−πST1)]

nP1

+
(1−λ)[1−P2(1−2πST2)

2]

4nP2

+π2
S[λ(T1 −1)+(1−λ)(T2 −1)]2

}
. (4.13)

Putting P = (2−P1)
−1 [see Lanke (1976)] in (4.13), we get the MSE of π̂∗

t as

MSE(π̂∗
t ) =

{
πS{λT1(1−πST1)+(1−λ)T2(1−πST2)}

n

+
(1−P1) [ 4 λ(1−πST1)+(1−λ)P1(3−P1)]

4nP1

+π2
S[λ(T1 −1)+(1−λ)(T2 −1)]2

}
. (4.14)

Proceeding as above in a situation of “Less than completely truthful reporting” one can

easily derive the following bias and MSE of Kim and Warde’s estimator π̂∗
kw (say):

B(π̂∗
kw) = πS

[(n1

n

)
(T1 −1)+

(
n−n1

n

)
(T2 −1)

]
(4.15)

MSE(π̂∗
kw) =

{
πS{λT1(1−πST1)+(1−λ)T2(1−πST2)}

n

+
(1−P1) [ λP1(1−πST1)+(1−λ)]

nP2
1

+π2
S[λ(T1 −1)+(1−λ)(T2 −1)]2

}
. (4.16)

From (4.14) and (4.16) we have

MSE(π̂∗
kw)−MSE(π̂∗

t ) =
(1−P1) (1−λ)(4−3P2

1 +P3
1 )

4nP2
1

(4.17)

which is always positive.
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Figure 2: Percent relative efficiency of the proposed estimator π̂∗t
with respect to Kim and Warde’s (2005) estimator π̂∗kw.

Thus in the situation of “Less than completely truthful reporting” the proposed

estimator π̂∗
t is more efficient than Kim and Warde’s estimator π̂∗

kw.

To have tangible idea about the performance of the proposed estimator π̂∗
t compared

to estimator π̂∗
kw, we have computed the percent relative efficiency of the proposed

estimator π̂∗
t with respect to π̂∗

kw by using the formula:

PRE(π̂∗
t , π̂

∗
kw) =

MSE(π̂∗
kw)

MSE(π̂∗
t )

×100

We have obtained the values of the percent relative efficiencies PRE(π̂∗
t , π̂

∗
kw) for

λ = 0.2,0.3,0.4,0.5, n = 1000 and for different cases of πS, T1, T2 and P1. Findings

are shown in Table 2 and its diagrammatic representation is also demonstrated in

Figure 2.

It is observed from Table 2 that the values of percent relative efficiencies PRE

(π̂∗
t , π̂

∗
kw) are more than 100. We can say that the proposed estimator π̂∗

t is more efficient

than Kim and Warde’s estimator π̂∗
kw. Figure 2 shows results forπS = 0.1,0.2,0.3,0.4,0.5

and P = 0.4,0.5,0.6,0.7, for T1 = 0.6, T2 = 0.5, and n = 1000.

Table 2 conceals that the values of the percent relative efficiency of the proposed

estimator π̂∗
t with respect to Kim and Warde’s (2005) estimator π̂∗

kw decrease as the

value of P1 increases. Higher gain in efficiency is seen when the sample size n and πS are

small. However, the percent relative efficiency is more than 100 for all parametric values

considered here; therefore the proposed estimator π̂∗
t is better than Kim and Warde’s

estimator π̂∗
kw.
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5. An alternative mixed randomized response model

using stratification

5.1. An alternative to Kim and Warde’s (2005) mixed stratified
randomized response model

Stratified random sampling is usually obtained by partitioning the population into non-

overlapping groups called strata and selecting a simple random sample from each

stratum. A randomized response (RR) technique using a stratified random sampling

yields the group characteristics associated to each stratum estimator. We also note

that stratified sampling protects a researcher from the possibility of obtaining a poor

sample. Hong et al. (1994) suggested a stratified RR technique using a proportional

allocation. Kim and Warde (2004) suggested a stratified Warner’s RR model using an

optimal allocation which is more efficient than that using a proportional allocation. Kim

and Elam (2005) have applied Kim and Warde’s (2004) stratified Warner’s RR model

to Mangat and Singh’s (1990) two-stage RR model. Further Kim and Elam (2007)

have given a RR model that combines Kim and Warde’s (2004) stratified Warner’s RR

technique using optimal allocation with the unrelated question randomized response

model. Kim and Warde (2005) have suggested a mixed stratified RR model.

In the proposed model, the population is partitioned into strata, and a sample is

selected by simple random sampling with replacement in each stratum. To get the

full benefit from stratification, we assume that the number of units in each stratum is

known. An individual respondent in a sample from each stratum is instructed to answer

a direct question “I am a member of the innocuous trait group”. Respondents reply

the direct question by “Yes” or “No”. If a respondent answers “Yes”, then she or he

is instructed to go to the randomization device R j1 consisting of the statements: (i)

“I belong to the sensitive trait group” and (ii) “I belong to the innocuous trait group”

with pre-assigned probabilities Q j and (1−Q j), respectively. If a respondent answers

“No”, then the respondent is instructed to use the randomization device R j2 uses three

statements: (i) “ I belong to the stigmatizing group”, (ii) “ Yes” and (iii) “No” with

known probabilities Pj, (1 − Pj)/2 and (1 − Pj)/2, respectively. For the second and

third statements, the respondent is simply to report “Yes” or “No” as observed on the

randomization device R j2, and it has no relevance to his actual status. Let m j denote

the number of units in the sample from stratum j and n as the total number of units

in samples from all strata. Let m j1 be the number of people answering “Yes” when

respondents in a sample m j were asked the direct question and m j2 be the number of

people answering “No’ when respondents in a sample m j were asked the direct question

so that n =
L

∑
j=1

m j =
L

∑
j=1

(m j1 +m j2). Under the supposition that these “Yes” or “No”

reports are made truthfully, and Q j and Pj are set by the researcher, then the proportion

of “Yes” answers from the respondents using the randomization device R j1 will be
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Yj = Q jπS j +(1−Q j)π1 j
for j = 1,2, . . . ,L, (5.1)

where Yj the probability of “Yes” response in stratum j, πS j is the proportion of

respondents with the sensitive traits in stratum j, π1 j is the proportion of respondents

with the innocuous trait in stratum j, and Q j is the probability that a respondent in the

sample stratum j is asked a sensitive question.

Since the respondent performing a randomization device R j1 answered “Yes” to the

direct question of the innocuous trait, if he or she selects the same innocuous question

from R j1, then π1 j = 1, see Kim and Warde (2005, p. 217). Thus (5.1) reduces to

Yj = Q jπS j
+(1−Q j) for j = 1,2, . . . ,L. (5.2)

An unbiased estimator of πS j is given by

π̂a j
=

Ŷj − (1−Q j)

Q j

for j = 1,2, . . . ,L, (5.3)

where Ŷj is the proportion of “Yes” answers in a sample in stratum j and π̂a j
is the

proportion of respondents with the sensitive trait in a sample from stratum j. The

variance of π̂a j is given by

V (π̂a j
) =

(1−πS j) [1−Q j(1−πS j
)]

m j1Q j

for j = 1,2, . . . ,L. (5.4)

The proportion of “Yes” responses from the respondents using randomization device R j2

will be

X j = PjπS j
+(1−Pj)/2 for j = 1,2, . . . ,L, (5.5)

where X j is the probability of “Yes” responses in stratum j. Thus an unbiased estimator

of πS j is given by

π̂b j
=

X̂ j − (1−Pj)/2

Pj

for j = 1,2, . . . ,L, (5.6)

where X̂ j is the proportion of “Yes” responses in a sample from a stratum j and π̂b j is

the proportion of respondents with the sensitive trait in a sample from stratum j.
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The variance of π̂b j is given by

V (π̂b j
) =
πS j

(1−πS j
)

(m j −m j1)
+

(1−P2
j )

4(m j −m j1)P2
j

for j = 1,2, . . . ,L. (5.7)

Putting Pj = (2−Q j)
−1 [see Lanke (1976)] for j = 1,2, . . . ,L in (5.7) we get

V (π̂b j
) =
πS j

(1−πS j
)

(m j −m j1)
+

(1−Q j)(3−Q j)

4(m j −m j1)
for j = 1,2, . . . ,L. (5.8)

Now we develop the unbiased estimator of πS j, in terms of sample proportion of “Yes”

responses Ŷj and X̂ j,

π̂mS j
=

m j1

m j

π̂a j
+

m j −m j1

m j

π̂b j
for 0 <

m j1

m j

< 1. (5.9)

The variance of π̂mS j is given by

V (π̂mS j
) =
πS j

(1−πS j
)

m j

+
(1−Q j)[4λ j(1−πS j)+(1−λ j)Q j(3−Q j)]

4m jQ j

, (5.10)

where m j = m j1 +m j2 and λ j = m j1/m j.

The unbiased estimator of πS =
L

∑
j=1

w jπS j is given by

π̂S =
L

∑
j=1

w jπ̂mS j
=

L

∑
j=1

w j

{
m j1

m j

π̂a j +
m j −m j1

m j

π̂b j

}
(5.11)

where N is the number of units in the whole population, N j is the total number of units

in stratum j, and w j = N j/N for j = 1,2, . . . ,L, so that w =
L

∑
j=1

w j = 1.

The variance of the estimator π̂S is given by

V (π̂S) =
L

∑
j=1

w2
j

m j

{
πS j

(1−πS j
)+

(1−Q j)[4λ j(1−πS j)+(1−λ j)Q j(3−Q j)]

4Q j

}

(5.12)

Here, the requirement of doing the optimal allocation of a sample size n, is to know

λ j = m j1/m j and πS j. In practice it is difficult to have information on λ j = m j1/m j and

πS j. However if prior information about λ j = m j1/m j and πS j is available from past

experience, it assists to derive the following optimal allocation formula.
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Theorem 5.1 The optimal allocation of n to n1, n2, ... , nL−1 and nL to derive the

minimum variance of the π̂S subject to n =
L

∑
j=1

m j is approximately given by

m j

n
=

w j

{
πS j

(1−πS j)+
(1−Q j)[4λ j(1−πS j)+(1−λ j)Q j(3−Q j)]

4Q j

}1/2

L

∑
j=1

w j

{
πS j

(1−πS j)+
(1−Q j)[4λ j(1−πS j)+(1−λ j)Q j(3−Q j)]

4Q j

}1/2
, (5.13)

where m j = m j1 +m j2 and λ j = m j1/m j.

Thus the minimal variance of the estimator π̂S is given by

V (π̂S)=
1

n

{
L

∑
j=1

w j

[
πS j

(1−πS j
)+

(1−Q j)[4λ j(1−πS j)+(1−λ j)Q j(3−Q j)]

4Q j

]1/2
}2

,

(5.14)

where n =
L

∑
j=1

m j, m j = m j1 +m j2 and λ j = m j1/m j.

5.2. Efficiency comparison

In this section we have made the comparison of proposed estimator π̂S with the proposed

mixed randomized estimator π̂t , Kim and Warde’s (2005) mixed randomized response

estimator π̂m and Kim and Warde’s (2005) stratified mixed randomized response esti-

mator π̂mS. The comparisons are given in the form of following theorems.

Theorem 5.2 Assume that there are two strata in the population (i.e. L = 2) and

λ j = m j1/m j. The proposed estimator π̂S of a stratified mixed RR is more efficient than

the estimator π̂t of a mixed model, where P1 = Q1 = Q2 and λ= λ1 = λ2.

Proof. We denote by

a1 = πS1(1−πS1), a2 = πS2(1−πS2),

b1 =
λ(1−P1)(1−πS1)

P1

, b2 =
λ(1−P1)(1−πS2)

P1

, c =
(1−λ)(1−P1)(3−P1)

4

Then for L = 2, P1 = Q1 = Q2, λ= λ1 = λ2 and from (2.11) and (5.14) we have

V (π̂t)=
1

n

{
w1πS1 +w2πS2)(1−w1πS1 −w2πS2)+

λ(1−P1)(1−w1πS1 −w2πS2)

P1

+ c

}

(5.15)
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and

V (π̂S) =
1

n
{w1(a1 +b1 + c)1/2 +w2(a2 +b1 + c)1/2}2 (5.16)

Now subtracting (5.16) from (5.15) we have

n[V (π̂t)−V (π̂S) = w1w2

{
(πS1 −πS2)

2 +
(√

(a1 +b1 + c)−
√
(a2 +b2 + c)

)2
}

which is always positive.

Thus the proposed estimator π̂S of stratified mixed RR is more efficient than the

proposed estimator π̂t (with L = 2) of a mixed model.

This proves Theorem 5.2.

Theorem 5.3 Suppose there are two strata in the population and λ j = m j1/m j. The

proposed estimator π̂S of a stratified mixed RR is more efficient than Kim and Warde’s

(2005) estimator π̂kw of a mixed model, where P1 = Q1 = Q2 and λ= λ1 = λ2.

Proof. For L = 2, πS = w1πS1 +w2πS2, P1 = Q1 = Q2, λ= λ1 = λ2 and from Kim and

Warde (2005, Eq (2.10), p. 213) we have

V (π̂m) =
1

n
{w1πS1 +w2πS2)(1−w1πS1 −w2πS2)

+
λ(1−P1)(1−w1πS1 −w2πS2)

P1

+
(1−λ)(1−P1)

P2
1

}
. (5.17)

From (5.16) and (5.17) we have

n[V (π̂m)−V (π̂S) =

[
w1w2

{
(πS1 −πS2)

2 +
(√

(a1 +b1 + c)−
√
(a2 +b2 + c)

)2
}

+
(1−λ)(1−P1)(4−3P2

1 +P3
1 )

4P2
1

]
(5.18)

which is always positive.

Thus the proposed estimator π̂S of a stratified mixed RR is more efficient than Kim

and Warde’s estimator π̂m of a mixed model.

This proves the theorem.

Theorem 5.4 Assume that there are two strata in the population (i.e. L = 2) and

λ j = m j1/m j. The proposed estimator π̂S of a stratified mixed RR is more efficient than

Kim and Warde’s (2005) estimator π̂mS, P1 = Q1 = Q2 and λ= λ1 = λ2.
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Proof. For L= 2, P1 =Q1 =Q2, λ=λ1 =λ2 and from Kim and Warde (2005, Eq (4.12),

p. 218) we have

V (π̂mS) =
1

n

{
w1(a1 +b1 + c1)

1/2 +w2(a2 +b2 + c1)
1/2

}
, (5.19)

where c1 = (1−λ)(1−P1)/P2
1 .

From (5.16) and (5.19) we have

n[V (π̂mS)−V (π̂S) = (c1 − c)

[
(w2

1 +w2
2)+

2w1w2(A1 +A∗
2)√

A1A2 +
√

A∗
1A∗

2

]
(5.20)

where

A1 = (a1 +b1 +c1), A2 = (a2 +b2 +c1),A
∗
1 = (a1 +b1 +c) and A∗

2 = (a2 +b2 +c),

Since

(c1 − c) =
(1−λ)(1−P1)(4−3P2

1 +P3
1 )

4P2
1

> 0,

therefore n[V (π̂mS)−V (π̂S)> 0.

It follows that the proposed estimator π̂S of stratified mixed RR is more efficient than

Kim and Warde’s estimator π̂mS.

Thus the theorem 5.4 is proved.

If prior information on πS1, πS2, w1, w2, πS and λ can be obtained and a researcher

set Q j, j = 1,2 then we can compute the percent relative efficiency of the proposed

estimator π̂S with respect to Kim and Warde’s estimator π̂mS (for L = 2, λ1 = λ2 = λ)

by using the formula:

PRE(π̂S, π̂mS) =
V (π̂mS)

V (π̂S)
×100

=

(
w1

√
B1 +w2

√
B2

)2

(
w1

√
B∗

1 +w2

√
B∗

2

)2
×100,

where

B1 =

[
πS1

(1−πS1)+
(1−Q1)[λQ1(1−πS1)+(1−λ)]

Q2
1

]
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B2 =

[
πS2(1−πS2)+

(1−Q2)[λQ2(1−πS2)+(1−λ)]
Q2

2

]

B∗
1 =

[
πS1(1−πS1

)+
(1−Q1)[4λ(1−πS1)+(1−λ)Q1(3−Q1)]

4Q1

]

B∗
2 =

[
πS2(1−πS2

)+
(1−Q2)[4λ(1−πS2)+(1−λ)Q2(3−Q2)]

4Q2

]

We have computed PRE(π̂S, π̂mS) for n = 1000, λ = 0.2,0.4,0.6,0.8 and different

values of w1, w2, Q1, Q2 , πS1 and πS2. Findings are depicted in Table 3. Pictorial

representation of PRE(π̂S, π̂mS) is also given in Figure 3.

We have set eight different values of Q j ( j = 1,2) and four different values of λ to

verify the percent relative efficiency of the suggested estimator π̂S with respect to Kim

and Warde’s (2005) estimator π̂mS. Table 3 and Figure 3 show that the value of percent

relative efficiency PRE(π̂S, π̂mS) decreases as the values of Q j ( j = 1,2) and λ increase.

The values of PRE(π̂S, π̂mS) are greater than 100 for all values of πS1, πS2, w1, w2,

Q1,Q2 and λ considered here. So we can say that the envisaged estimator π̂S is more

efficient than Kim and Warde’s (2005) estimator π̂mS.

Figure 3 exhibits results from Tables 3 for Q1 = 0.1,0.3,0.5,0.7, Q2 = 0.2,0.4,0.6,0.8

and πS = 0.1,0.2,0.3,0.4,0.5.

Remark 5.1. Proceeding as in Section 4 and the procedure adopted in Kim and Warde

(2004) and Kim and Elam (2005, sec.4, p.4) the problem of “Less than completely

truthful reporting” can be studied for the proposed mixed stratified RR model.
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6. Discussion

In this article, we have proposed an alternative to Kim and Warde’s (2005) mixed ran-

domized response model to estimate the proportion of a qualitative sensitive character-

istic under the conditions presented in both the cases of completely truthful reporting

and less than completely truthful reporting by the respondents. We have also developed

the proposed model to stratified sampling. It has been shown that the proposed mixed

randomized response model is more efficient than Kim and Warde’s (2005) mixed ran-

domized response model.
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Abstract

In this paper, we will introduce the new Kumaraswamy-power series class of distributions. This

new class is obtained by compounding the Kumaraswamy distribution of Kumaraswamy (1980)

and the family of power series distributions. The new class contains some new double bounded

distributions such as the Kumaraswamy-geometric, -Poisson, -logarithmic and -binomial, which

are used widely in hydrology and related areas. In addition, the corresponding hazard rate function

of the new class can be increasing, decreasing, bathtub and upside-down bathtub. Some basic

properties of this class of distributions such as the moment generating function, moments and

order statistics are studied. Some special members of the class are also investigated in detail.

The maximum likelihood method is used for estimating the unknown parameters of the members

of the new class. Finally, an application of the proposed class is illustrated using a real data set.
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1. Introduction

Many times, the data are modelled by the finite range distributions. For many years,

the beta distribution has been used as one of the most basic and useful distributions

supported on finite range (0,1) which has been utilized widely in both practical and

theoretical aspects of Statistics. This distribution is very flexible to model data which

are restricted to any finite interval in view of the fact that it can take an amazingly great
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variety of forms depending on the values of the index parameters (cf. Lemonte and

Barreto-Souza, 2013). In econometrics, hydrological processes and related areas several

types of data can be modelled by the beta distribution.

An alternative distribution like the beta distribution, which is easier to work with it, is

the K distribution proposed by Kumaraswamy (1980). Unlike the beta distribution, the K

distribution has a simple closed form of cumulative distribution function (cdf) given by

G(x) = 1− (1− xa)b; 0 < x < 1, (1)

where a > 0 and b > 0 are the shape parameters. The K distribution, similar to the

beta distribution, can be unimodal, uniantimodal, increasing, decreasing or constant

depending on the values of its parameters. In addition, one can easily show that the

K distribution has the same basic shape properties of the beta distribution. But, because

of the cdf of the K distribution, which has a simple closed form, it has received much

attention in simulating hydrological data and related areas. For more detailed properties

of the K distribution see Kumaraswamy (1980) and Jones (2009).

To model data with the finite range on (0,1), we can only address a few distribu-

tions in the literature. Here, we attempt to introduce a new family of distributions in

this connection. Indeed, to obtain some new double bounded distributions, we com-

pound the K distribution with the family of power series distributions and construct the

Kumaraswamy-power series (KPS) class of distributions. Compounding a continuous

distribution with a discrete one is a known method to introduce new continuous distri-

butions. In recent years, many authors have been interested using this method for con-

structing new models. For example, the four compound classes proposed by Chahkandi

and Ganjali (2009), Morais and Barreto-Souza (2011), Mahmoudi and Jafari (2012) and

Silva et al. (2013) are some researches in this regard.

The rest of the paper is organized as follows. In Section 2, we introduce the KPS class

of distributions. The density, survival, hazard rate and moment generating functions as

well as the moments, quantiles and order statistics are given in this section. In Section 3,

we obtain some special distributions and study some of their distributional properties in

detail. In addition, the stress-strength parameter is obtained for a special member of the

family of KPS distributions in this section. Estimation of the parameters involved using

the maximum likelihood method and some related inferences are discussed in Section 4.

An application of the new class, using a real data set, is illustrated in Section 5. Finally,

some concluding remarks are given in Section 6.

2. The KPS class of distributions

Given N, let X1,X2, . . . ,XN be independent and identically distributed (iid) random

variables following a K distribution with cdf (1). Here, N is independent of Xi’s and
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it is a member of the family of power series distributions, truncated at zero, with the

probability mass function

πn = P(N = n) =
anθ

n

C(θ )
; n = 1,2, . . . ,

where an ≥ 0 depends only on n, C(θ ) = ∑
∞
n=1 anθ

n and θ ∈ (0,s) (s can be +∞).

C(θ ) is finite and C′(.), C′′(.) and C′′′(.) denote its first, second and third derivatives,

respectively. Useful quantities of some power series distributions, truncated at zero, such

as geometric, Poisson, logarithmic and binomial (with m being the number of replicates)

distributions are shown in Table 1. For more detailed properties of the power series class

of distributions, see Noack (1950).

Table 1: Useful quantities for some power series distributions.

Model an C(θ) C′(θ) C′′(θ) C′′′(θ) s

Geometric 1 θ(1−θ)−1 (1−θ)−2 2(1−θ)−3 3(1−θ)−4 1

Poisson n!−1 eθ −1 eθ eθ eθ +∞

Logarithmic n−1 − log(1−θ) (1−θ)−1 (1−θ)−2 2(1−θ)−3 1

Binomial
(

m
n

)
(θ +1)m −1

m

(θ +1)1−m

m(m−1)

(1+θ)2−m

m(m−1)(m−2)

(1+θ)3−m
1

Now, let X(1) = min{Xi}N
i=1. Then, the conditional cdf of X(1)|N = n is given by

GX(1)|N=n(x) = 1− [G(x)]n = 1− (1− xa)nb; 0 < x < 1,

where G(.) is the survival function of K distribution associated to cdf (1). As we see,

X(1)|N = n follows a K distribution with parameters a and nb. The marginal cdf of X(1),

that is,

F(x) =
n

∑
n=1

anθ
n

C(θ )
{1− [G(x)]n}= 1− C(θG(x))

C(θ )

= 1− C(θ (1− xa)b)

C(θ )
; 0 < x < 1, (2)

defines the cdf of the family of KPS distributions. We denote a random variable X

following the KPS distribution with parameters a, b, and θ by KPS(a,b,θ ).
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2.1. Density, survival and hazard rate functions

The probability density function (pdf) of a random variable X following a KPS(a,b,θ )

distribution is given by

f (x) = θabxa−1(1− xa)b−1C′(θ (1− xa)b)

C(θ )
; 0 < x < 1. (3)

Proposition 2.1 The pdf of KPS distributions has at least a mode, for a > 1 and b > 1.

It is increasing, for a > 1 and b < 1, and decreasing or bathtub elsewhere.

Proof. See Appendix A.

Proposition 2.2 The K distribution with parameters a and bc is a limiting distribution

of the KPS distribution when θ → 0+, where c = min{n ∈ N : an > 0}.

Proof. See Appendix B.

Proposition 2.3 The pdf of KPS distributions can be written as a mixture of the K

distribution with parameters a and nb.

Proof. Using a conditional argument on N, the proof is completed.

The survival and hazard rate functions of KPS distributions are given by

F(x) =
C(θ (1− xa)b)

C(θ )
(4)

and

h(x) = θabxa−1(1− xa)b−1C′(θ (1− xa)b)

C(θ (1− xa)b)
, (5)

respectively. To see the density and hazard rate functions shapes of KPS distributions,

let C(θ ) = θ + θ 20 (see also Mahmoudi and Jafari, 2012; Morais and Barreto-Souza,

2011). Then, for θ = 1, we have f (x) = ab
2

xa−1(1−xa)b−1[1+20(1−xa)19b] and h(x) =

abxa−1(1 − xa)b−1 1+20(1−xa)19b

(1−xa)b+(1−xa)20b . The plots of this density and the corresponding

hazard rate function are given in Figure 1 for some selected values of parameters.
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Figure 1: Plots of density and hazard rate functions of KPS(a,b,1) distribution with C(θ) = θ +θ20.

2.2. Quantiles and median

The q-th quantile, say xq, of the KPS distributions is given by

xq = {1− [
1

θ
C−1((1−q)C(θ ))]1/b}1/a

,

where C−1(.) is the inverse function of C(.). In particular, the median is immediately

obtained by

m = {1− [
1

θ
C−1(

C(θ )

2
)]1/b}1/a

.

2.3. Moment generating function and moments

Let Y be a random variable following the K distribution with parameters a and b.

Lemonte and Barreto-Souza (2013) obtained the moment generating function (mgf) of

the random variable Y as follows:
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MY (t) = b
∞

∑
s=0

Γ(b)(−1)s

Γ(b− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t), (6)

where 1F1 denotes the confluent hypergeometric function defined by

1F1(a,b; t) =
∞

∑
m=0

a(m)

b(m)m!
tm

in which a(m) =
Γ(a+m)

Γ(a) = a(a+ 1)...(a+m− 1) is the ascending factorial. Combining

Eq. (6) and Prop. 2.3 yields the mgf of the random variable X ∼ KPS(a,b,θ ) as follows:

MX(t) = b
∞

∑
n=1

∞

∑
s=0

nΓ(nb)(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t)πn. (7)

The r-th moment of the K distribution is given by bB(1+ r
a
,b) (see Jones, 2009), where

B(α,β) =
∫ 1

0 xα−1(1 − x)β−1dx denotes the beta function. Thus, the r-th moment of

X ∼ KPS(a,b,θ ) is given by

E(X r) = b
∞

∑
n=1

nB(1+
r

a
,nb)πn, r = 1,2, ... . (8)

2.4. Order statistics

Let X1,X2, . . . ,Xn be a random sample from a KPS distribution and Xi:n, i = 1,2, ...,n,

denote its i-th order statistic. The pdf of Xi:n is given by

fi:n(x) =
1

B(i,n− i+1)
f (x)[F(x)]i−1[1−F(x)]n−i

, (9)

where F and f are the cdf and pdf of KPS distributions given by (2) and (3), respectively.

Eq. (9) can be written as the following forms

fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(
n− i

k

)
(−1)k f (x)[F(x)]k+i−1 (10)

or

fi:n(x) =
1

B(i,n− i+1)

i−1

∑
k=0

(
i−1

k

)
(−1)k f (x)[1−F(x)]k+n−i

. (11)
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In view of the fact that

f (x)[F(x)]k+i−1 =
1

k+ i

d

dx
[F(x)]k+i

,

the corresponding cdf of fi:n(x), denoted by Fi:n(x), becomes

Fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(
n−i

k

)
(−1)k

k+ i
[F(x)]k+i

=
1

B(i,n− i+1)

n−i

∑
k=0

(
n−i

k

)
(−1)k

k+ i
[1− C(θ (1− xa)b)

C(θ )
]k+i (12)

=
1

B(i,n− i+1)

n−i

∑
k=0

(
n−i

k

)
(−1)k

k+ i
FW (x;a,b,θ ,k+ i),

where W follows an exponentiated KPS (EKPS) distribution with parameters a, b, θ

and k+ i. For more details of exponentiated F distributions or, equivalently, resilience

parameter families, see Marshall and Olkin (2007).

An alternative expression for Fi:n(x), using Eq. (11), is

Fi:n(x) = 1− 1

B(i,n− i+1)

i−1

∑
k=0

(
i−1

k

)
(−1)k

k+n− i+1
[1−F(x)]k+n−i+1

= 1− 1

B(i,n− i+1)

i−1

∑
k=0

(
i−1

k

)
(−1)k

k+n− i+1
[
C(θ (1− xa)b)

C(θ )
]k+n−i+1

.

Expressions for moments of the i-th order statistic Xi:n, i = 1,2, ...,n, with cdf (12), can

be obtained using a result of Barakat and Abdelkader (2004) as follows:

E(X r
i:n) = r

n

∑
k=n−i+1

(−1)k−n+i−1

(
k−1

n− i

)(
n

k

)∫ ∞

0
xr−1[F(x)]kdx

= r
n

∑
k=n−i+1

(−1)k−n+i−1

C(θ )k

(
k−1

n− i

)(
n

k

)∫ ∞

0
xr−1[C(θ (1− xa)b)]kdx,

for r = 1,2, . . . and i = 1,2, . . . ,n, where F(x) is the survival function given by (4); see

also Morais and Barreto-Souza (2011). An application of the first moments of order

statistics can be considered in calculating the L-moments which are in fact the linear

combinations of the expected order statistics. See Hosking (1990) for details.
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Figure 2: Plots of KG(a,b,θ) density and hazard rate functions for some parameter values.

3. Special cases of the KPS family

In this section, we study basic distributional properties of the Kumaraswamy-geometric

(KG), Kumaraswamy-Poisson (KP), Kumaraswamy-logarithmic (KL) and Kumaraswa-

my-binomial (KB) distributions as special cases of KPS family. In addition, expressions

for the pdf and moments of order statistics as well as the stress-strength parameter of the

KG distribution are obtained. First, to illustrate the flexibility of the distributions, plots

of the density and hazard rate functions are presented in Figures 2, 3, 4 and 5 for some

selected values of the parameters.

3.1. Basic distributional properties

Using Table 1 and Eqs. (4-8) given in Section 2, basic distributional properties of the

four special distributions of KPS family are immediately obtained. Table 2 contains the

survival function, pdf, hazard rate function, mgf and the moments of KG, KP, KL and

KB distributions.
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Figure 3: Plots of KP(a,b,θ) density and hazard rate functions for some parameters values.
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Figure 4: Plots of KL(a,b,θ) density and hazard rate functions for some parameter values.
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Figure 5: Plots of KB(a,b,θ) density and hazard rate functions for some values of (a,b,θ) and m = 5.

Table 2: Survival function, pdf, hazard rate function, mgf and moments of KG, KP, KL and KB dists.

Model survival function pdf hazard rate function

KG 1− 1− (1− xa)b

1−θ(1− xa)b

(1−θ)abxa−1(1− xa)b−1

{1−θ(1− xa)b}2

abxa−1(1− xa)b−1

{1−θ(1− xa)b}(1− xa)

KP
eθ (1−xa)b −1

eθ −1

θabxa−1(1− xa)b−1eθ (1−xa)b

eθ −1

θabxa−1(1− xa)b−1eθ (1−xa)b

eθ (1−xa)b −1

KL
log(1−θ(1− xa)b)

log(1−θ) − θabxa−1(1− xa)b−1

log(1−θ)(1−θ(1− xa)b)
− θabxa−1(1− xa)b−1

log(1−θ(1− xa)b)(1−θ(1− xa)b)

KB
(θ(1− xa)b +1)m −1

(θ +1)m −1

mθabxa−1(1− xa)b−1(θ(1− xa)b +1)m−1

(θ +1)m −1

mθabxa−1(1− xa)b−1(θ(1− xa)b +1)m−1

(θ(1− xa)b +1)m −1

mgf moments

b(1−θ)∑
∞
n=1 ∑

∞
s=0

nΓ(nb)(−1)sθn−1

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t) b(1−θ)∑

∞
n=1 nB(1+

r

a
,nb)θn−1

b

eθ −1
∑

∞
n=1 ∑

∞
s=0

Γ(nb)θn(−1)s

Γ(nb− s)(s+1)!(n−1)!
1F1(a(s+1),a(s+1)+1; t)

b

eθ −1
∑

∞
n=1 B(1+

r

a
,nb)

θn

(n−1)!

−b

log(1−θ) ∑
∞
n=1 ∑

∞
s=0

Γ(nb)θn(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t) − b

log(1−θ) ∑
∞
n=1 B(1+

r

a
,nb)θn

b

(θ +1)m −1
∑

∞
n=1 ∑

∞
s=0

nΓ(nb)
(

m
n

)
θn(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t)

b

(θ +1)m −1
∑

∞
n=1 n

(
m
n

)
θnB(1+

r

a
,nb)
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3.2. Order statistics of the KG distribution

By inserting the pdf and cdf of KG distribution into Eq. (10), we obtain the pdf of the

i-th order statistic of KG distribution as follows:

fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(
n−i

k

)
(−1)k(1−θ )abxa−1(1− xa)b−1{1− (1− xa)b}k+i−1

{1−θ (1− xa)b}k+i+1
.

Expanding the binomial term {1−θ (1− xa)b}k+i+1 by the series representation

(1− z)−k =
∞

∑
i=0

Γ(k+ i)

Γ(k)i!
zi; k > 0, |z|< 1, (13)

the pdf of the i-th order statistic can be rewritten as

fi:n(x) =
1−θ

B(i,n− i+1)

∞

∑
j=0

n−i

∑
k=0

(
n−i

k

)
(−1)kθ j

k+ i
fBK(x;k+ i, j+1,a,b),

where

fBK(x;α,β ,a,b) =
1

B(α,β)
abxa−1(1− xa)bβ−1{1− (1− xa)b}α−1 (14)

is the density function of beta-Kumaraswamy (BK) distribution of Carrasco et al. (2012).

An alternative expression for the pdf of the i-th order statistic of KG distribution can

be obtained by Eq. (11). Hence,

fi:n(x) =
∞

∑
j=0

i−1

∑
k=0

(
i−1

k

)
(−1)k

(
k+n−i+ j

j

)
θ j(1−θ )k+n−i+1

(k+n− i+1)B(i,n− i+1)
fK(x;a,b(k+n− i+ j+1)), (15)

where fK is the density function of K distribution. As we see, the pdf of order statistics

of KG distribution can be expressed as a linear combination of the pdf of BK or K

distributions. Therefore, some properties of the i-th order statistic, such as the mgf and

moments, can be obtained directly from those of BK or K distributions. For example,

from Eq. (15), the moments of the i-th order statistic of KG distribution are given by

E(X r
i:n) =

∞

∑
j=0

i−1

∑
k=0

(
i−1

k

)
(−1)k

(
k+n−i+ j

j

)
θ j(1−θ )k+n−i+1

(k+n− i+1)B(i,n− i+1)

×b(k+n− i+ j+1)B(1+ r/a,b(k+n− i+ j+1)), r = 1,2, . . . .
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3.3. Stress-strength parameter of the KG distribution

The stress-strength parameter R = P(X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified distribution

has been discussed widely in the literature. Let X be the random variable of the strength

of a component which is subjected to a random stress Y . The component fails whenever

X < Y and there is no failure when X > Y . Here, we obtain an expression for the stress-

strength parameter of the KG distribution.

Let X ∼ KG(a,b,θ1) and Y ∼ KG(a,b,θ2) be independent random variables. The

stress-strength parameter is defined as

R = P(X > Y ) =

∫ 1

0
fX(x)FY (x)dx

=

∫ 1

0

(1−θ1)abxa−1(1− xa)b−1{1− (1− xa)b}
{1−θ1(1− xa)b}2{1−θ2(1− xa)b} dx.

Expanding the binomial terms {1−θ1(1− xa)b}2 and {1−θ2(1− xa)b} as in Eq. (13),

we obtain

R = (1−θ1)
∞

∑
i=0

∞

∑
j=0

θ i
1θ

j
2 (i+1)

(i+ j+1)2(i+ j+2)

∫ 1

0
fBK(x;2, i+ j+1,a,b)dx

=
∞

∑
i=0

∞

∑
j=0

θ i
1θ

j
2 (i+1)

(i+ j+1)2(i+ j+2)
,

where fBK has been already defined by Eq. (14). It is clear that R can be estimated when

the parameters θ1 and θ2 are estimated by the maximum likelihood method.

Remark 3.1 If a = 1 [b = 1] in a KPS(a,b,θ ) distribution, then we obtain the beta-

PS(1,b,θ ) [beta-PS(a,1,θ )] distribution. In addition, KPS(a,b,θ ) distribution reduces

to a standard uniform-PS distribution, when a= b= 1. All properties of KPS distribution

are valid for these special distributions.

4. Estimation and inference

Let x1,x2, . . . ,xn be n observations of a random sample from a KPS(a,b,θ ) distribution

and θθθ = (a,b,θ )T be the unknown parameter vector in the rest of the paper. The log-

likelihood function is given by
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ℓn = ℓn(θθθ ;x1,x2, . . . ,xn) = n logθ +n loga+n logb+(a−1)
n

∑
i=1

logxi

+(b−1)
n

∑
i=1

log(1− xa
i )+

n

∑
i=1

logC′(θ (1− xa
i )

b)−n log(C(θ )).

The associated score function is given by Un(θθθ ) = (∂ℓn/∂a,∂ℓn/∂b,∂ℓn/∂θ )T , where

∂ℓn

∂a
=

n

a
+

n

∑
i=1

logxi − (b−1)
n

∑
i=1

xa
i logxi

1− xa
i

−
n

∑
i=1

θbxa
i logxi(1− xa

i )
b−1C′′(θ (1− xa

i )
b)

C′(θ (1− xa
i )

b)
,

∂ℓn

∂b
=

n

b
+

n

∑
i=1

log(1− xa
i )+

n

∑
i=1

θ (1− xa
i )

b log(1− xa
i )C

′′(θ (1− xa
i )

b)

C′(θ (1− xa
i )

b)

and

∂ℓn

∂θ
=

n

θ
+

n

∑
i=1

(1− xa
i )

bC′′(θ (1− xa
i )

b)

C′(θ (1− xa
i )

b)
−n

C′(θ )

C(θ )
.

The maximum likelihood estimation (MLE) of θθθ , say θ̂θθ , is obtained by solving the

nonlinear system Un(θ̂θθ ) = 0. The solution of this nonlinear system of equations can be

found by using a numerical method. We need the Fisher information matrix for interval

estimation and hypotheses testing on the model parameters. The 3×3 Fisher information

matrix is given by

In(θθθ ) =−




Iaa Iab Iaθ

Iba Ibb Ibθ

Iθa Iθb Iθθ



,

whose elements are obtained by the relationship Iθiθ j
= E[ ∂ 2

ℓn

∂θi∂θ j
]; i, j = 1,2,3 (see

Appendix C). However, for usual large sample, the Fisher information matrix can be

approximated by its observed matrix. That is,

In(θ̂θθ )≈−[
∂ 2

ℓn

∂θiθ j

|
θθθ=θ̂θθ ]; i, j = 1,2,3,

where θ̂θθ is the MLE of θ . See, for example, Cox and Hinkley (1974) for more

discussions of MLEs properties.
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Table 3: Phosphorus concentration in leaves data set.

0.22 0.17 0.11 0.10 0.15 0.06 0.05 0.07 0.12 0.09 0.23 0.25 0.23 0.24 0.20 0.08

0.11 0.12 0.10 0.06 0.20 0.17 0.20 0.11 0.16 0.09 0.10 0.12 0.12 0.10 0.09 0.17

0.19 0.21 0.18 0.26 0.19 0.17 0.18 0.20 0.24 0.19 0.21 0.22 0.17 0.08 0.08 0.06

0.09 0.22 0.23 0.22 0.19 0.27 0.16 0.28 0.11 0.10 0.20 0.12 0.15 0.08 0.12 0.09

0.14 0.07 0.09 0.05 0.06 0.11 0.16 0.20 0.25 0.16 0.13 0.11 0.11 0.11 0.08 0.22

0.11 0.13 0.12 0.15 0.12 0.11 0.11 0.15 0.10 0.15 0.17 0.14 0.12 0.18 0.14 0.18

0.13 0.12 0.14 0.09 0.10 0.13 0.09 0.11 0.11 0.14 0.07 0.07 0.19 0.17 0.18 0.16

0.19 0.15 0.07 0.09 0.17 0.10 0.08 0.15 0.21 0.16 0.08 0.10 0.06 0.08 0.12 0.13

5. Application of the KPS distributions

Fonseca and Franca (2007) studied the soil fertility in influence and the characterization

of the biologic fixation of N2 for the Dimorphandra wilsonii rizz growth. For 128 plants,

they made measures of the phosphorus concentration in the leaves. The data, which have

also been analyzed by Silva et al. (2013), are listed in Table 3.

We fit the KG, KP, KL and K models to the data to show the capability and

potentiality of the new class of distributions in data modelling. In addition, we fit the

Weibull-geometric (WG) distribution of Barreto-Souza et al. (2011), which is also a

member of the proposed class of Silva et el. (2013), and compare it with our models.

We first estimate unknown parameters of the models by the maximum likelihood method

and, then, we obtain the values of Akaike information criterion (AIC) and Bayesian

information criterion (BIC) as well as Kolmogorov-Smirnov (K-S) statistic and their

corresponding p-values. A summary of computations is given in Table 4.

Table 4: MLE, maximized log-likelihood, AIC, BIC and K-S statistic (p-value) for fitted models.

Model MLEs of parameters logL AIC BIC K-S (p-value)

KG (â, b̂, θ̂ ) = (3.5909,318.2081,0.7338) 196.7994 −387.5989 −380.0127 0.0944 (0.1911)

KP (â, b̂, θ̂ ) = (3.1424,73.3827,5.1828) 194.4806 −382.9613 −374.4052 0.1110 (0.0792)

KL (â, b̂, θ̂ ) = (2.6380,130.8358,0.0327) 194.3899 −382.7797 −374.2236 0.0943 (0.1927)

K (â, b̂) = (2.8104,176.3491) 194.8007 −385.6015 −379.8974 0.1181 (0.0517)

WG (α̂, γ̂, θ̂ ) = (2.4471,4.2041,0.9995) 192.2505 −378.5125 −370.0125 0.1208 (0.0461)

As we see from the results presented in Table 4, the KG model with the minimum

values of AIC and BIC gives a better fit than the other rival models. However, the KG,

KP and KL models (even K model with the two parameters) have better fits than the WG

model of Silva et al. (2013). Further, Figures 6 and 7 also confirm these conclusions.
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Figure 6: Plots of the fitted KG, KP, KL, K and WG densities.
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Figure 7: Empirical cdf plots of the fitted KG, KP, KL, K and WG models.
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6. Concluding remarks

A new compound class of distributions with a finite range on (0,1) is defined by the

stochastic representation X(1) = min{Xi}N
i=1, where Xi’s have a Kumaraswamy distri-

bution and N is a member of the family of the power series distributions, independent

of Xi’s. The new class, namely KPS, contains four new distributions with applications

to hydrological areas. We had a comprehensive study on this class of distributions and

investigated some their important distributional properties. In the application section,

we fitted some special members of the KPS class to a real data set to indicate the

potential of the new class in data modelling. As a new family of distributions in this

connection, one can establish a new class by considering the stochastic representation

X(n) = max{Xi}N
i=1. In the context of reliability, the stochastic representations X(1) and

X(n) have important roles in the series and parallel systems, respectively, which appear

in many industrial applications and biological organisms.
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Appendix A

Here, we examine the density shapes of KPS distributions. For this purpose, for all b> 0,

we have

lim
x→0+

f (x) =





∞, a < 1

θb
C′(θ )

C(θ )
, a = 1

0, a > 1

and, for all a > 0,

lim
x→1−

f (x) =





∞, b < 1

θa
C′(θ )

C(θ )
, b = 1

0, b > 1.

Therefore, as wee see, for a > 1 and b > 1, the pdf of KPS distributions has at least a

mode and for a > 1 and b < 1, the pdf is increasing.
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Appendix B

Below, we give a proof for Proposition 2.2:

lim
θ→0+

F(x) = lim
θ→0+

{1− C(θG(x))

C(θ )
}= 1− lim

θ→0+

∑
∞
n=1 anθ

n[G(x)]n

∑
∞
n=1 anθ n

= 1− lim
θ→0+

ac[G(x)]c +∑
∞
n=c+1 anθ

n−c[G(x)]n

ac +∑
∞
n=c+1 anθ n−c

= 1− [G(x)]c = 1− (1− xa)bc
.

Appendix C

Let pi = (1− xa
i ). Then, the elements of In(θθθ) are given by

Ia,a =
∂ 2

ℓn

∂a2
=− n

a2
− (b−1)

n

∑
i=1

xa
i [

logxi

pi

]2 +
n

∑
i=1

z′′(aa)i,

Ia,b = Ib,a =
∂ 2

ℓn

∂a∂b
=−

n

∑
i=1

xa
i logxi

pi

+
n

∑
i=1

z′′(ab)i,

Ia,θ = Iθ ,a =
∂ 2

ℓn

∂a∂θ
=

n

∑
i=1

z′′(aθ )i, Ib,b =
∂ 2

ℓn

∂b2
=− n

b2
+

n

∑
i=1

z′′(bb)i,

Ib,θ = Iθ ,b =
∂ 2

ℓn

∂b∂θ
=

n

∑
i=1

z′′(bθ )i

and

Iθ ,θ =
∂ 2

ℓn

∂θ 2
=− n

θ 2
−n

C′′(θ )C(θ )− [C′(θ )]2

[C(θ )]2
+

n

∑
i=1

z′′(θθ )i,

where

z′′(aa)i =
∂ 2

∂a2
logC′(θ pb

i )

=
−bθ (logxi)

2xa
i

[C′(θ pb
i )]

2
{[pb−1

i C′′(θ pb
i )− (b−1)pb−2

i C′′(θ pb
i )−θbxa

i p2b−2
i C′′′(θ pb

i )]C
′(θ pb

i )

+θbxa
i p2b−2

i [C′′(θ pb
i )]

2},
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z′′(ab)i =
∂ 2

∂a∂b
logC′(θ pb

i )

=
−θ pb−1

i xa
i logxi{[b log piC

′′(θ pb
i )−C′′(θ pb

i )−θC′′′(pb
i )]C

′(θ pb
i )−θbpb

i [C
′′(θ pb

i )]
2}

[C′(θ pb
i )]

2
,

z′′(aθ )i =−bxa
i pb−1

i logxi{[C′′(θ pb
i )+θ pb

i C
′′′(θ pb

i )]C
′(θ pb

i )−θ pb
i [C

′(θ pb
i )]

2}
[C′(θ pb

i )]
2

,

z′′(bb)i =
θ log pi{[pb

i log piC
′′(θ pb

i )+θ p2b
i log piC

′′′(θ pb
i )]C

′(θ pb
i )}

[C′(θ pb
i )]

2

− θ
2 p2b

i (log pi)
2[C′′(θ pi)]

2

[C′(θ pi)]2
,

z′′(bθ )i =
pb

i log pi{[C′′(θ pb
i )+θ pb

i C
′′′(θ pb

i )]C
′(θ pb

i )−θ pb
i [C

′′(θ pb
i )]

2}
[C′(θ pb

i )]
2

,

z′′(θθ )i =
p2b

i C′′′(θ pb
i )C

′(θ pb
i )− p2b

i [C′′(θ pb
i )]

2

[C′(θ pb
i )]

2
.
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Abstract

The aim of this paper is to analyse fertility curves from a novel viewpoint, that of inequality.

Through sufficient conditions that can be easily verified, we compare inequality, in the Lorenz and

Generalized Lorenz sense, in fertility curves fitted by gamma distributions, thus achieving a useful
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1. Introduction

The basic concept of inequality arises in many and diverse fields, and so it is difficult

to provide a brief definition that will command universal acceptance. More specific

contexts give rise to different versions of the concept that can be defined indirectly if we

assume certain comparative criteria. Roughly speaking, inequality is a particular aspect

of variability when the variables considered are nonnegative and represent quantities that

can be transferred from one unit to another. Champernowne and Cowell (1998) provide

a convenient reference on this topic. Several studies have approached the problem

of ranking distributions by seeking a dominance relationship between concentration

curves. In this context, the Lorenz curve and the Generalized Lorenz curve have been

used to compare two income distributions in terms of inequality.

The purpose of this paper is to show that the partial orderings of distributions

induced by such curves can provide a useful instrument for the demographic analysis

of fertility curves. Therefore, our particular interest lies in the concepts of inequality
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underlying the comparison of probability distributions using the Lorenz curve and the

Generalized Lorenz curve. The first of these, strictly speaking, is an order of inequality

(concentration), whereas the second, when the variables being compared represent

incomes, is considered a welfare ordering (see Arnold et al. (1987) and Lambert

(2001)). Furthermore, Ramos and Sordo (2002) showed that the Generalized Lorenz

order is equivalent to the increasing concave order (Stoyan, 1983). The main results for

stochastic orders can be found in Shaked and Shanthikumar (2007).

The aim of this study is to consider and analyze fertility curves from a new viewpoint,

that of inequality. Through sufficient conditions that can be easily verified, we compare

inequality, in the Lorenz and Generalized Lorenz sense, in fertility curves fitted by

gamma distributions. The age-specific fertility rates f t
x for each maternal age (X) and

each year (t) are conventionally defined as the ratio of the number of births to women

(x) years of age and the population of women of the same age at the midpoint of year (t).

For each year, the observed series of age-specific fertility rates can be fitted (Duchêne

and Gillet de Stefano, 1974) using the following curve:

g(x) =
aβ−α(x−θ )α−1

exp[−(x−θ )/β ]
Γ(α)

(1)

where Γ(·) denotes the complete gamma function and where a = SFI(t) = ∑
49
x=15 f t

x

is the Synthetic Fertility Index (SFI), in which the summation extends from 15 to 49

years, the bounds being the woman’s fertile period, with the value of 15 assigned when

the mother is aged 15 years or younger and 49 when aged 49 years or older. Then,

(x−θ ) is the class mark of the age interval considered less the minimum fertile age;

that is, x− θ = x+ 0.5− 15 = x− 14.5. Expression (1) enables us to compare series

corresponding to different years and to analyze behaviour over a broader time span.

Abad et al. (2006) used this approach to fit fertility curves in the Andalusia region in

southern Spain.

In the present study, we are not interested in the values of age-specific fertility

rates, rather in analyzing the inequality present in the corresponding vectors. Neither

are we interested in numerically quantifying inequality, which could be done using

various standard measures, such as those associated with the Lorenz curve. On the

contrary, our interest lies in comparing in absolute terms (whatever the specific measure

applied) the inequality corresponding to two different years within a given population

and the inequality corresponding to two different populations in a single period of time.

To fulfill this aim, we do not consider age-specific fertility rates, rather the quotients

gt
x = f t

x(SFI)−1. In this way, the corresponding fitting curve g(x) is the density function

of a Gamma distribution (α,β ,θ ), with θ = 14.5:

g(x) =
β−α(x−θ )α−1

exp[−(x−θ )/β ]
Γ(α)

, x > θ , α> 0, β > 0, θ = 14.5 . (2)
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2. Results

The study of the distribution of fertility according to mothers’ age is a scenario that can

be easily transferred to the context of income distributions. Thus, it is only necessary

to consider specific rates of fertility as the “income” contribution of a given age group

of women to the “wealth” of the community in terms of the birth of new population

members. This similarity enables us to approach the study of fertility curves from a new

perspective. For the analysis and comparison of inequality, let us first employ the Lorenz

order.

The Lorenz curve of any income distribution is the graph of the fraction of the total

income owned by the lowest p–th fraction (0 ≤ p ≤ 1) of the population as a function

of p. If a nonnegative random variable X represents the income of a community, with

distribution function FX(x) and finite expectation µX , then the Lorenz curve LX(p) is

given by (Gastwirth, 1971):

LX(p) = µ−1

∫ p

0
F−1

X (t)dt, 0 ≤ p ≤ 1,

where F−1
X denotes the inverse of FX :

F−1
X (a) = inf{x : FX(x)≥ a}, a ∈ [0,1].

The Lorenz curve can be used to define a partial ordering as:

X≤LY ⇔ LX(p)≥ LY (p) for every 0 ≤ p ≤ 1.

In this case, we can say that X does not show more inequality than Y (in the Lorenz

sense). While for any finite population there is no problem in evaluating Lorenz curves,

for a continuous distribution, a simple closed form for these curves is rarely available.

In our case, the analytical difficulties involved in comparing two gamma distributions

by means of the Lorenz order are overcome by taking into account that this order is

invariant to scale transformation (i.e., it does not depend on β) and by applying the

following sufficient condition (Arnold et al., 1987):

Let X1 ∼ gamma(θ ,α1) and X1 ∼ gamma(θ ,α2) (θ fixed) . Then,

α1 ≤ α2 =⇒ X2 ≤L X1.

(3)

The definition of the Generalized Lorenz curve GLX (p) corresponding to the non-

negative random variable X with distribution function FX defined by Shorrocks (1983)

is:
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GLX(p) =
∫ p

0
F−1

X (t)dt, p ∈ [0,1]. (4)

Consequently, scaling up the Lorenz curves to form the Generalized Lorenz curves will

often reveal a dominance relationship that is not apparent from an examination of the

means and Lorenz curves on their own. The Generalized Lorenz curve can be used to

define a partial ordering on the class of nonnegative random variables as:

X≤GLY ⇔ GLX(p)≥ GLY (p) for all p ∈ [0,1]. (5)

We then say that X exhibits less inequality than Y in the Shorrocks (or Generalized

Lorenz) sense. Generalized Lorenz ordering reflects a desire for both greater equality

and higher mean values. Kleiber and Krämer (2003) made a detailed study of the

decomposition of the Generalized Lorenz order for both components. Some results on

this ordering can be found in Ramos et al. (2000). Once again, the analytical difficulties

arising from comparing two gamma distributions by means of the Generalized Lorenz

order are overcome by using the following result (Ramos et al., 2000):

Let Xi ∼ gamma(αi,βi) (i : 1,2) . If α1 ≤ α2 and α1β1 ≤ α2β2, then X2 ≤GL X1. (6)

These sufficient conditions enable us to readily compare, from the standpoint of in-

equality in the Generalized Lorenz sense, distributions of age-specific fertility rates,

normalized and fitted by gamma distributions.

In the following section as a practical application, we study the behaviour of

inequality in the distributions of normalized specific fertility rates in Spain from 1975 to

2009. The analysis of fertility curves from the standpoint of inequality provides a tool

that usefully complements demographic analysis based solely on the behaviour of the

SFI, as the latter sometimes fails to detect certain situations of interest, as shown in the

Conclusions section.

3. Application to Spanish data

Using official data (INE, 2010) for age-specific fertility rates in Spain for each maternal

age and year from 1975 until 2009, we fitted the corresponding normalized rates by

gamma (α,β ,θ ) distributions, with θ = 14.5 using the maximum likelihood method to

estimate the parameters. As shown in Table 1 and Figure 1, the α parameter decreases up

until 1980, increases from 1980 to 1996 and then decreases again after 1996. According

to the sufficient condition (3) (Arnold et al., 1987), we show that inequality (in the

Lorenz sense) correspondingly increases in the first and third periods and decreases in

the second period.
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Table 1: SFI and estimated α,β parameters, 1975–2009.

Year SFI α β α ·β

1975 2.799 5.059 2.728 13.800

1976 2.799 4.850 2.786 13.512

1977 2.671 4.745 2.830 13.427

1978 2.550 4.658 2.865 13.349

1979 2.370 4.524 2.926 13.238

1980 2.213 4.457 2.962 13.202

1981 2.035 4.565 2.897 13.225

1982 1.940 4.643 2.870 13.323

1983 1.797 4.690 2.851 13.370

1984 1.726 4.742 2.831 13.424

1985 1.640 4.803 2.801 13.454

1986 1.556 5.019 2.695 13.528

1987 1.495 5.107 2.656 13.562

1988 1.449 5.191 2.615 13.574

1989 1.398 5.468 2.509 13.718

1990 1.361 5.715 2.425 13.857

1991 1.328 5.905 2.377 14.036

1992 1.316 6.178 2.306 14.247

Year SFI α β α ·β

1993 1.266 6.448 2.242 14.459

1994 1.202 6.646 2.215 14.722

1995 1.173 6.838 2.188 14.963

1996 1.160 7.020 2.163 15.186

1997 1.173 6.969 2.206 15.375

1998 1.153 6.895 2.254 15.541

1999 1.191 6.695 2.339 15.658

2000 1.231 6.570 2.394 15.725

2001 1.241 6.239 2.526 15.758

2002 1.259 6.115 2.582 15.792

2003 1.306 5.975 2.652 15.844

2004 1.325 5.890 2.694 15.871

2005 1.341 5.735 2.774 15.912

2006 1.377 5.549 2.865 15.896

2007 1.392 5.312 2.982 15.838

2008 1.459 5.252 3.015 15.833

2009 1.394 5.404 2.969 16.046
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Figure 1: Estimated α parameters, 1975–2009.

We can account for the decrease in inequality from 1980 as a consequence of greater

birth control and the increased entry of women into the workplace. This meant that the

maternal age increased and therefore became less concentrated. This trend was inter-

rupted after 1996. We could explain this with the impact of major immigration into Spain

during the previous decade, a population movement that contributed a substantial num-

ber of young women, most of whom arrived from countries with cultural backgrounds

tending to favour maternity at a younger age. This means that a greater contribution to
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births was concentrated in younger age groups (in the case of migrants), and in older

groups within the native population, thus increasing inequality in accordance with the

concept implicit in the Lorenz order.

From 2002 onward, the Spanish Institute of Statistics (INE, 2010) provides data

broken down into the Spanish population and the foreign population. Thus, we can

obtain the corresponding values for the estimated parameters (Table 2). Note that, for

each year, the value of the α parameter is clearly higher for the population of Spanish

origin. According to the sufficient condition of Arnold et al. (1987), the inequality in

the distribution of fertility by age groups can then be said to be higher among foreign

women. Once again, we can account for this by the higher concentration of fertility

among younger age groups within the foreign (mainly immigrant) population. However,

in this population and by taking into account the SFI values, the fertility rate appears

to be decreasing. We could interpret this as the gradual assimilation of the cultural

references of the host country with respect to birth rates.

Table 2: SFI and estimated values of α,β parameters for Spanish and foreign populations.

Spanish

Year SFI α β

2002 1.209 6.852 2.350

2003 1.256 6.883 2.356

2004 1.275 6.862 2.376

2005 1.296 6.824 2.402

2006 1.331 6.656 2.472

2007 1.328 6.501 2.540

2008 1.382 6.441 2.571

2009 1.331 6.528 2.563

Foreign

Year SFI α β

2002 2.047 3.028 4.229

2003 1.901 2.949 4.363

2004 1.792 3.095 4.178

2005 1.703 2.997 4.338

2006 1.696 3.070 4.208

2007 1.750 3.103 4.160

2008 1.813 3.233 4.045

2009 1.671 3.422 3.930
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Figure 2: Estimated α parameters and αβ mean values, 1975–2009.
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Otherwise, our analysis of fertility curves could be approached from the standpoint

of inequality in the sense of the Generalized Lorenz order. To do this, we employ

sufficient condition (6) (Ramos et al., 2000). In this case, we must take into account

not only the α values but also the αβ mean values of the distributions being compared

(Table 1). We can see that during the periods 1975–80 and 1980–96, the inequality

behaviour was the same as the Lorenz sense. The abovementioned sufficient condition,

however, was not attained during the period 1996–2005, during which the αβ value

increased while α decreased (Fig. 2).

In this case, we could resort to numerical procedures to determine whether any domi-

nance exists between the corresponding Generalized Lorenz curves. As the expectations

αβ increased during this period, if there were a monotonic pattern of inequality in the

Generalized Lorenz sense, then the inequality would necessarily be decreasing. This is

shown immediately from (4) and (5) by taking account of the fact that when p = 1,

expression (4) corresponds to the expression of the mean of the random variable X .

4. Conclusions

The analysis of fertility curves from the standpoint of inequality provides a tool that

usefully complements demographic analysis based solely on the behaviour of the SFI,

as the latter sometimes fails to detect certain situations of interest, as described below.

It appears reasonable to believe that a sustained rise in birth rates would arise

naturally from higher fertility rates among younger women. In such a situation, the

concentration of birth rates and, therefore, the degree of inequality must increase.

Conversely, a sustained decline in birth rates over a given period would be associated

with a decrease in inequality. However, it can be seen in Table 1 that a particular situation

occurred in the period 1975–80 that could remain unnoticed if only the SFI values

were considered. Although the latter index decreased during 1975–1996, inequality,

according to both the Lorenz and the generalized Lorenz curves, did not fall during

the period 1975–80, as would have been expected; on the contrary, it increased during

this period. Thus, a detailed analysis of the age-specific fertility rates for the period

1975–80 (Table 3) reveals an anomalous behaviour pattern of the birth rate among

younger women, in relation to the overall fertility rate. Indeed, SFI values indicate

that the fertility rate decreased during this period while the age-specific fertility rates

increased. This unexpected birth rate pattern among young women gave rise to a higher

concentration of the birth rate and thus greater inequality in the distribution of fertility

among age groups, despite the decrease in the SFI.

The sociological reasons for the above lie in the specificity of this particular historical

period in Spain. It was a time of great social change, of transition from a dictatorship

to a democracy. Society evolved from a situation of severe restrictions on individual

freedoms affecting, among other aspects, sexual customs and behaviour, to a democratic

context in which these freedoms were guaranteed. This, together with the fact that
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birth control and family planning were less well established at the outset, provides a

plausible explanation for the specificity of the period 1975–80 that was detected by

simple inequality analysis.

Table 3: Age-specific fertility rates, 1975–2009.

Year

Age 1975 1976 1977 1978 1979 1980

15 3.323 4.059 4.205 4.644 5.182 5.151

16 8.168 9.633 9.643 10.21 10.912 11.259

17 17.574 20.783 21.23 21.64 22.29 22.175

18 33.238 37.494 37.955 38.887 38.182 36.832

19 50.679 56.712 59.153 59.226 59.573 55.133

20 76.447 85.061 85.313 83.838 80.556 78.252
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