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Improved entropy based test of uniformity

using ranked set samples
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Abstract

Ranked set sampling (RSS) is known to be superior to the traditional simple random sampling

(SRS) in the sense that it often leads to more efficient inference procedures. Basic version of RSS

has been extensively modified to come up with schemes resulting in more accurate estimators of

the population attributes. Multistage ranked set sampling (MSRSS) is such a variation surpassing

RSS. Entropy has been instrumental in constructing criteria for fitting of parametric models to the

data. The goal of this article is to develop tests of uniformity based on sample entropy under RSS

and MSRSS designs. A Monte Carlo simulation study is carried out to compare the power of the

proposed tests under several alternative distributions with the ordinary test based on SRS. The

results report that the new entropy tests have higher power than the original one for nearly all

sample sizes and under alternatives considered.

MSC: 62G30; 62F03

Keywords: Information theory, ranked set sampling, test of fit.

1. Introduction

When the sampling units are difficult to measure but are reasonably simple and cheap

to order according to the variable of interest, ranked set sampling (RSS) serves as an

appealing alternative to the usual simple random sampling (SRS). Examples of this

setup can be found in areas such as agriculture, environment and ecology. The RSS

design works by ranking randomly drawn sampling units and quantifying a selected

subset of them. McIntyre (1952) introduced this sampling technique while studying the

yield of pasture in Australia. He suggested that a fairly accurate ordering of a set of

adjacent plots by yield can be made using visual perception, although measuring the
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yield of each plot is expensive. As a similar situation, consider the following example

mentioned by Gulati (2004). Suppose it is of interest to count the number of specific

bacterial cells per unit volume in a cell suspension. A set of test tubes, containing the

cell suspension, can be ordered by concentration using an optical device without actual

measurement on them.

The RSS method can be elucidated as follows.

1. Draw k random samples, each of size k, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of the ith

(i = 1, . . . ,k) sample and identify the ith smallest unit.

3. Actually measure the k identified units in step 2.

4. Repeat steps 1-3, h times (cycles), if necessary, to obtain a ranked set sample of

size n = hk.

The set of measured observations makes up a ranked set sample of size n denoted by

{X[i] j : i = 1, . . . ,k ; j = 1, . . . ,h}, where X[i] j is the ith judgement order statistic from the

jth cycle. To have better understanding of difference between the ranked set sample and

simple ranked set sample of the same size, we consider the case of single cycle (h = 1)

and perfect judgement ranking. In this case, the ranked set sample observations are also

the respective order statistics. Let X1, . . . ,Xk be a simple random sample of size k from

a continuous population with probability density function (PDF) f (x) and cumulative

distribution function (CDF) F(x), and let X[1], . . . ,X[k] denote a ranked set sample of size

k obtained as described above.

In the SRS case, the k observations are independent and each of them represents

a typical value from the population. Letting X(1) ≤ . . . ≤ X(k) be the order statistics

associated with these SRS observations, we note that they are dependent random

variables with joint PDF given by

gSRS(x(1), . . . ,x(k)) = k!
k

∏
i=1

f (x(i)).

In the RSS settings, additional information and structure is provided by through the

judgement ranking process. The k measurements X[1], . . . ,X[k] are also order statistics but

in this case they are independent observations and each of them provides information

about a different aspect of the population. The joint PDF for X[1], . . . ,X[k] is given by

gRSS(x[1], . . . ,x[k]) =
k

∏
i=1

fi(x[i]),

where fi(.) is the PDF for the ith order statistic of a simple random sample of size k

from the target population. It is this extra structure provided by judgement ranking and
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the independence of the resulting order statistics that enables RSS-based procedures to

be more efficient than their RSS competitors with the same number of quantified units.

A detailed discussion on the theory and applications of RSS can be found in the recent

book by Chen et al. (2004).

Consider estimating the population mean under the aforesaid designs. Let X̄SRS =

∑
k
i=1 Xi/k and X̄RSS =∑

k
i=1 X[i]/k be the SRS and RSS sample mean, respectively. Hence,

we have

E(X̄RSS) =
1

k

k

∑
i=1

{

∫ ∞

−∞

kx

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i f (x)dx
}

=
∫ ∞

−∞

x f (x)
{ k

∑
i=1

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i
}

dx. (1)

Since the summation in equation (1) is just the sum over entire sample space of the

probabilities for a binomial random variable with parameters k−1 and F(x), it follows

that

E(X̄RSS) =
∫ ∞

−∞

x f (x)dx = µ.

Letting µ[i] = E(X[i]), for i = 1, . . . ,k, we note that

E(X[i]−µ)
2 = E(X[i]−µ[i]+µ[i]−µ)

2 = E(X[i]−µ[i])
2 +(µ[i]−µ)

2,

since the cross-product terms are zero. So

Var(X̄RSS) =
1

k2

{

k

∑
i=1

E(X[i]−µ)
2 −

k

∑
i=1

(µ[i]−µ)
2
}

. (2)

Now, proceeding as we did with E(X̄RSS), we see that

k

∑
i=1

E(X[i]−µ)
2 =

k

∑
i=1

∫ ∞

−∞

k(x−µ)2

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i f (x)dx

= k

∫ ∞

−∞

(x−µ)2 f (x)
{ k

∑
i=1

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i
}

dx.

Once again, using the binomial expansion, the interior sum is equal to 1 and we obtain

k

∑
i=1

E(X[i]−µ)
2 = k

∫ ∞

−∞

(x−µ)2 f (x)dx = kσ2. (3)



6 Improved entropy based test of uniformity using ranked set samples

Combining equations (2) and (3) yields

Var(X̄RSS) =
σ

2

k
−

1

k2

k

∑
i=1

(µ[i]−µ)
2 ≤ Var(X̄SRS).

Al-Saleh and Al-kadiri (2000) extended the usual concept of RSS to to double ranked

set sampling (DRSS) with the aim of constructing improved estimators of the population

as compared with those associated with RSS and SRS. Subsequently, Al-Saleh and Al-

Omari (2002) introduced multistage ranked set sampling (MSRSS), as a generalization

of DRSS, and showed that estimators based on MSRSS dominate those obtained by

DRSS. The MSRSS scheme can be summarized as follows.

1. Randomly identify kr+1 units from the population of interest, where r is the

number of stages.

2. Allot the kr+1 units randomly into kr−1 sets of k2 units each.

3. For each set in step 2, apply 1-2 of RSS procedure explained above, to get a

(judgement) ranked set of size k. This step gives kr−1 (judgement) ranked sets,

each of size k.

4. Without actual measuring of the ranked sets, apply step 3 on the kr−1 ranked set to

gain kr−2 second stage (judgement) ranked sets, of size k each.

5. Repeat step 3, without any actual measurement, until an rth stage (judgement)

ranked set of size k is acquired.

6. Actually measure the k identified units in step 5.

7. Repeat steps 1-6, h times, if necessary, to obtain an rth stage ranked set sample of

size n = hk.

In analogy with the previous notation, the rth stage ranked set sample will be denoted

by {X
(r)
[i] j : i = 1, . . . ,k ; j = 1, . . . ,h}. Two special cases of r = 1 and r = 2 in MSRSS

coincide with RSS and DRSS, respectively.

Goodness-of-fit tests are used to decide whether an observed sample can be consid-

ered as a set of independent realization from a given CDF F0. More precisely, they are

used to test the hypothesis H0 : F = F0, with F being the true CDF of the observations.

For a review of goodness-of-fit tests based on SRS refer to the book by D’Agostino and

Stephens (1986). Testing hypotheses on the parameters of classical distributions using

ranked set samples have been developed in a large number of papers. However, this is

not true in the case of test of fit, and a limited number of works are available on this

topic. Stokes and Sager (1988) exploited RSS in estimating CDF. They proposed RSS

analogue of Kolmogorov-Smirnov (KS) test and derived the null distribution of the test

statistic.

Some distributions like normal, exponential and uniform have received much atten-

tion in the literature because of their tractable mathematical form. This is true in the
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case of RSS and its variations. For example, estimation of parameters and quantiles of

uniform distribution using generalized ranked-set sampling have been investigated (e.g.,

Adatia, 2003; Adatia and Ehsanes Saleh, 2004). In practical situations, however, the dis-

tributional form of the population is rarely known. Thus, application of these customized

inferential methods is dependent on the availability of appropriate testing procedures for

the assumptions of uniformity. Given a sample size, relative precision (RP) of the RSS

estimator of the population mean with respect to its SRS counterpart (defined as the

variance of the SRS mean divided by the variance of the RSS mean) differs according to

the underlying distribution of the data, and is bounded above by (k+1)/2 for continu-

ous distributions (1 < RP < (k+1)/2) (where k is the set size with which the ranked set

sample is collected), with the upper bound achieved only for the uniform distribution.

We may be interested to know whether the RSS has the highest efficiency over SRS in

estimating the population mean in a specific situation. This could be another reason for

developing uniformity test based on RSS.

As an information-theoretic measure of uncertainty, Shannon (1948) proposed en-

tropy of a distribution, and proved that the entropy of normal distribution exceeds that of

any other distribution with a density having the same variance. Vasicek (1976) used this

property to introduce a test of the composite hypothesis of normality, and impressed de-

velopment of tests of fit for other distributions. Such entropy-based tests of fit are avail-

able for some other distributions. See Dudewicz and van der Meulen (1981), Gokhale

(1983), Grzegorzewski and Wieczorkowski (1999), and Mudholkar and Tian (2002). In

this paper, we tackle the problem of testing uniformity, with an entropy-based approach,

when the researcher obtains data using RSS and MSRSS. Similar procedures for the

inverse Gaussian law was suggested by Mahdizadeh and Arghami (2010).

The paper proceeds as follows. In Section 2, some basic notions from information

theory are reviewed, entropy based tests of uniformity based on RSS and MSRSS are

suggested, and critical values of the respective test statistics are provided for some

sample sizes. Power properties of the new tests are assessed by means of simulations

whose results are reported in Section 3. A summary completes the paper in Section 4.

2. The tests

Entropy of a distribution F(x) with density function f (x) is defined as

H( f ) =−

∫ ∞

−∞

f (x) log f (x)dx. (4)

Vasicek (1976) presented a nonparametric entropy estimator for H( f ) based on spacings

of sample order statistics. The estimator called sample entropy is given by
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Vm,n( fX) =
1

n

n

∑
i=1

log
( n

2m
(X(i+m)−X(i−m))

)

, (5)

where X(1), . . . ,X(n) are the ordered values of a random sample of size n from F ,

X( j) = X(1), if j < 1, X( j) = X(n), if j > n and the window size m is a positive integer

such that m ≤ n/2. This estimator is derived by expressing (4) in the form

H( f ) =

∫ 1

0
log

( d

du
F−1(u)

)

du,

replacing the distribution F by the empirical distribution function, and using a difference

operator instead of the differential operator.

Since entropy estimator (5) is based on spacings, one would need ordered values of

the ranked set sample to estimate entropy in RSS. Imitating the SRS case, we first pool

the units in all cycles and then form the estimator based on the ordered pooled sample.

The MSRSS analogue of Vm,n( fX) turns out to be

V (r)
m,n( fX) =

1

n

n

∑
i=1

log
( n

2m
(X

(r)
(i+m)−X

(r)
(i−m))

)

,

where X
(r)
(a) is the ath (a = 1, . . . ,n) order statistic of the rth stage ranked set sample.

From now on, the estimator (5) will be denoted by V
(0)
m,n( fX).

A simulation study was undertaken to compare the proposed estimators of entropy

when the uniform U(0,1) is the underlying distribution. Table 1 displays simulated biases

and root mean square errors (RMSEs) of V
(r)

m,n for r = 0,1,2 based on 10,000 samples

with n = 10,20,30, and k = 10 in MSRSS design (this setup is retained throughout

the paper). It is seen that MSRSS improves entropy estimation with respect to SRS for

given m and n. Besides, as the stage number increases, the absolute bias, and RMSE of

the corresponding estimator diminishes.

Consider a random sample X1, . . . ,Xn from a population having a density function

f with the support (0,1) and suppose it is of interest to verify H0 : X ∼ U(0,1) versus

H1 :∼ H0. It is well-known that for an f concentrated on (0,1) we have H( f ) ≤ 0, and

the maximum value of H( f ) is uniquely attained by the U(0,1) density (see Ash, 1965).

Based on this result, Dudewicz and van der Meulen (1981) developed a test of H0. Their

test procedure is alternatively defined by the critical region

Tm,n( fX) = exp
(

Vm,n( fX)
)

≤ T ∗
m,n,α( fX),

where T ∗
m,n,α( fX) is the 100α percentile of the null distribution of Tm,n( fX). It can be

shown, using convexity and Jensen’s inequality, that Vm,n( fX) ≤ 0 for all f on (0,1).
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Table 1: Simulated biases and RMSEs of V
(r)
m,n( f ) (r = 0,1,2)

for the U(0,1) distribution with H( f ) = 0.

SRS RSS DRSS

n m Bias RMSE Bias RMSE Bias RMSE

10 1 −0.5192 0.5709 −0.4007 0.4469 −0.3262 0.3692

2 −0.4112 0.4478 −0.3085 0.3348 −0.2598 0.2778

3 −0.4223 0.4532 −0.3272 0.3430 −0.2968 0.3067

4 −0.4580 0.4866 −0.3715 0.3831 −0.3477 0.3541

5 −0.5026 0.5282 −0.4256 0.4360 −0.4043 0.4101

20 1 −0.3955 0.4193 −0.3420 0.3646 −0.3088 0.3299

2 −0.2718 0.2903 −0.2194 0.2351 −0.1894 0.2027

3 −0.2547 0.2712 −0.2048 0.2160 −0.1826 0.1919

4 −0.2609 0.2751 −0.2153 0.2242 −0.1987 0.2054

5 −0.2783 0.2908 −0.2349 0.2420 −0.2212 0.2262

6 −0.2972 0.3080 −0.2592 0.2650 −0.2478 0.2518

7 −0.3230 0.3336 −0.2859 0.2908 −0.2755 0.2787

8 −0.3468 0.3567 −0.3141 0.3184 −0.3041 0.3068

9 −0.3772 0.3871 −0.3425 0.3468 −0.3344 0.3370

10 −0.4041 0.4133 −0.3708 0.3747 −0.3637 0.3661

30 1 −0.3539 0.3697 −0.3210 0.3360 −0.2978 0.3118

2 −0.2247 0.2373 −0.1917 0.2024 −0.1698 0.1795

3 −0.1980 0.2089 −0.1642 0.1725 −0.1464 0.1538

4 −0.1954 0.2049 −0.1639 0.1708 −0.1484 0.1542

5 −0.2016 0.2101 −0.1719 0.1776 −0.1605 0.1651

6 −0.2136 0.2211 −0.1850 0.1899 −0.1749 0.1788

7 −0.2273 0.2342 −0.2000 0.2041 −0.1922 0.1954

8 −0.2441 0.2509 −0.2179 0.2214 −0.2104 0.2131

9 −0.2596 0.2655 −0.2354 0.2385 −0.2286 0.2308

10 −0.2769 0.2826 −0.2543 0.2572 −0.2482 0.2501

11 −0.2948 0.3003 −0.2736 0.2762 −0.2681 0.2698

12 −0.3138 0.3191 −0.2921 0.2946 −0.2880 0.2897

13 −0.3329 0.3381 −0.3117 0.3142 −0.3070 0.3086

14 −0.3508 0.3559 −0.3323 0.3347 −0.3272 0.3287

15 −0.3702 0.3753 −0.3520 0.3544 −0.3473 0.3487

Thus, we used the exponential of the original test statistic in the above for mathematical

nicety.

In order to obtain the percentiles of the null distribution, Tm,n( fX) was calculated

using the estimators V
(r)
m,n( fX) for r = 0,1,2 based on 10,000 samples of size n generated

from the U(0,1) distribution. The values were then used to determine T ∗
m,n,0.1( fX) in

different designs and for different sample sizes. Table 2 displays 0.1 critical points for

the test statistics.
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Table 2: 0.1 critical points for the test statistics under SRS, RSS and DRSS designs.

n m SRS RSS DRSS n m SRS RSS DRSS

10 1 0.4329 0.5186 0.5730 30 1 0.6089 0.6374 0.6557

2 0.5213 0.6197 0.6765 2 0.7215 0.7575 0.7801

3 0.5267 0.6272 0.6725 3 0.7508 0.7894 0.8129

4 0.5119 0.6084 0.6458 4 0.7569 0.7982 0.8143

5 0.4881 0.5769 0.6091 5 0.7553 0.7940 0.8094

20 1 0.5576 0.6003 0.6325 6 0.7491 0.7852 0.7980

2 0.6642 0.7185 0.7518 7 0.7387 0.7748 0.7892

3 0.6871 0.7432 0.7706 8 0.7276 0.7631 0.7758

4 0.6865 0.7425 0.7667 9 0.7153 0.7506 0.7624

5 0.6783 0.7317 0.7532 10 0.7039 0.7380 0.7485

6 0.6645 0.7178 0.7365 11 0.6914 0.7235 0.7346

7 0.6490 0.7005 0.7173 12 0.6767 0.7098 0.7211

8 0.6324 0.6811 0.6980 13 0.6640 0.6955 0.7071

9 0.6141 0.6613 0.6768 14 0.6501 0.6816 0.6912

10 0.5968 0.6416 0.6574 15 0.6379 0.6671 0.6758

The test statistics use the entropy estimators and there is no criteria to select the

optimal window size associated with a given sample size in order to calculate these

estimators. As a guide mentioned by some authors, the window size producing the

largest critical value for a given n is apt to yield the highest power. In this sense, the

optimal window size, denoted by m∗, at the significance level 0.1 for sample sizes 10,

20 and 30 are approximately 3, 3 and 4, respectively. Figure 1 shows a comparison of

Figure 1: This figures compares the CDF of null distribution of T3,10 under SRS, RSS and DRSS designs.
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CDF of the test statistics in differen designs. It is observed that the null distribution of

T3,10 under SRS (RSS) is stochastically smaller than that under RSS (DRSS) (a similar

trend is observed for sample sizes n = 20,30). Thus, we expect the entropy test based

on RSS (DRSS) to be more powerful than that based on SRS (RSS).

3. Simulation results

A Monte Carlo simulation experiment is carried out to compare power of the entropy

tests. We considered three classes of alternatives presented by Stephens (1974) which

have been used by many authors. These alternatives specified by their distribution

functions are

A(k) : F(z) = 1− (1− z)k 0 ≤ z ≤ 1 (k = 1.5,1.75,2),

B(k) : F(z) =

{

2k−1zk

1−2k−1(1− z)k

0 ≤ z ≤ 0.5

0.5 ≤ z ≤ 1
(k = 1.5,1.75),

and

C(k) : F(z) =

{

0.5−2k−1(0.5− z)k

0.5+2k−1(z−0.5)k

0 ≤ z ≤ 0.5

0.5 ≤ z ≤ 1
(k = 2,2.5).

As compared with uniform, the first and second family give points closer to 0 and 0.5,

respectively. And the third family gives points clustered at 0 and 1. We also considered

Beta(2,2) as a symmetric distribution.

Under each design, 10,000 samples of sizes n = 10,20,30 were generated from each

alternative distribution and the power of the tests were estimated by proportion of the

samples falling into the corresponding critical region. Tables 3–6 exhibit the estimated

power of the tests.

The results manifest that given a sample size, the entropy tests based on RSS

and DRSS are more powerful than that based on SRS irrespective of the alternative

distribution. Moreover, improved tests are obtained by increasing the sampling effort.

That is DRSS has the best performance among three considered designs as is the case of

entropy estimation. This could be traced to the fact that the test statistic in each design

is constructed based on the corresponding entropy estimator. It is notable that RSS and

DRSS do not have much to offer when power of SRS design is less than 0.1. We observe

that for n = 10, the value m = 4 is best (in the sense that it yields the highest power)

for the tests under most alternatives except C (for which m = 1 is best). For n = 20,

best m for alternatives A, B and C are respectively 7, 10 and 2, while for n = 30 these

are 10, 15 and 3. Given a sample size, best m is different according to the alternative
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Table 3: Power comparison for the entropy tests

of size 0.1 against alternatives A(1.5) and A(1.75).

A(1.5) A(1.75)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.1745 0.1879 0.1924 0.2431 0.2716 0.2887

2 0.2182 0.2668 0.3360 0.3147 0.4198 0.5609

3 0.2325 0.3306 0.4635 0.3451 0.5276 0.7142

4 0.2397 0.3814 0.5285 0.3570 0.5766 0.7628

5 0.2436 0.3794 0.5017 0.3503 0.5728 0.7396

20 1 0.2298 0.2367 0.2620 0.3474 0.3843 0.4356

2 0.3052 0.3530 0.4098 0.4786 0.6022 0.7178

3 0.3292 0.4351 0.5174 0.5342 0.7264 0.8413

4 0.3704 0.5064 0.6030 0.5760 0.7956 0.9032

5 0.3728 0.5301 0.6386 0.5817 0.8207 0.9186

6 0.3846 0.5693 0.6962 0.5932 0.8494 0.9451

7 0.3817 0.5867 0.7092 0.5870 0.8575 0.9482

8 0.3754 0.5801 0.7126 0.5821 0.8490 0.9436

9 0.3720 0.5718 0.6996 0.5713 0.8358 0.9322

10 0.3681 0.5536 0.6812 0.5608 0.8114 0.9156

30 1 0.2737 0.2871 0.2890 0.4554 0.4962 0.5216

2 0.3795 0.4287 0.4882 0.6026 0.7538 0.8430

3 0.4260 0.5468 0.6324 0.6748 0.8710 0.9406

4 0.4556 0.6195 0.6958 0.7106 0.9175 0.9748

5 0.4821 0.6536 0.7476 0.7382 0.9387 0.9824

6 0.4926 0.6783 0.7662 0.7512 0.9435 0.9870

7 0.5016 0.6985 0.8210 0.7533 0.9516 0.9936

8 0.5137 0.7245 0.8344 0.7642 0.9578 0.9945

9 0.5068 0.7352 0.8490 0.7618 0.9622 0.9934

10 0.5184 0.7510 0.8538 0.7723 0.9651 0.9927

11 0.5170 0.7486 0.8612 0.7674 0.9601 0.9954

12 0.4996 0.7442 0.8569 0.7505 0.9570 0.9932

13 0.4954 0.7355 0.8556 0.7410 0.9513 0.9942

14 0.4825 0.7190 0.8230 0.7295 0.9372 0.9900

15 0.4768 0.6925 0.7942 0.7153 0.9241 0.9786
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Table 4: Power comparison for the entropy tests

of size 0.1 against alternatives A(2) and B(1.5).

A(2) B(1.5)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.3181 0.3742 0.4107 0.1948 0.2245 0.2310

2 0.4254 0.5969 0.7821 0.2716 0.3520 0.4633

3 0.4635 0.7208 0.8913 0.3188 0.4795 0.6490

4 0.4674 0.7648 0.9134 0.3425 0.5734 0.7572

5 0.4612 0.7430 0.8882 0.3609 0.6026 0.7698

20 1 0.4983 0.5712 0.6344 0.2417 0.2672 0.2856

2 0.6541 0.8348 0.9318 0.3458 0.4236 0.4978

3 0.7103 0.9221 0.9830 0.3973 0.5324 0.6206

4 0.7472 0.9532 0.9926 0.4564 0.6213 0.7230

5 0.7624 0.9608 0.9952 0.4900 0.6792 0.7844

6 0.7718 0.9680 0.9964 0.5140 0.7328 0.8465

7 0.7697 0.9735 0.9972 0.5406 0.7760 0.8751

8 0.7562 0.9658 0.9948 0.5510 0.8035 0.8924

9 0.7445 0.9567 0.9931 0.5636 0.8142 0.9172

10 0.7320 0.9453 0.9876 0.5727 0.8210 0.9204

30 1 0.6324 0.7255 0.7740 0.2911 0.3128 0.3397

2 0.8009 0.9472 0.9872 0.4085 0.4939 0.5516

3 0.8613 0.9861 0.9986 0.4821 0.6174 0.7050

4 0.8870 0.9934 0.9998 0.5349 0.6960 0.7812

5 0.9010 0.9963 1.0000 0.5719 0.7486 0.8305

6 0.9084 0.9968 1.0000 0.6034 0.7764 0.8570

7 0.9142 0.9980 0.9998 0.6170 0.8123 0.8996

8 0.9175 0.9985 1.0000 0.6452 0.8375 0.9230

9 0.9151 0.9984 0.9998 0.6636 0.8681 0.9408

10 0.9182 0.9992 1.0000 0.6901 0.8894 0.9562

11 0.9135 0.9981 1.0000 0.7004 0.9045 0.9636

12 0.9064 0.9977 1.0000 0.7088 0.9173 0.9748

13 0.8998 0.9964 1.0000 0.7190 0.9257 0.9782

14 0.8890 0.9932 1.0000 0.7201 0.9212 0.9718

15 0.8756 0.9925 0.9996 0.7236 0.9220 0.9706
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Table 5: Power comparison for the entropy tests

of size 0.1 against alternatives B(1.75) and C(2).

B(1.75) C(2)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.2696 0.3250 0.3514 0.2082 0.2431 0.2487

2 0.3875 0.5339 0.6872 0.1430 0.1829 0.2151

3 0.4612 0.6872 0.8495 0.0647 0.0483 0.0465

4 0.5026 0.7831 0.9155 0.0475 0.0069 0.0009

5 0.5219 0.8106 0.9287 0.0296 0.0025 0.0004

20 1 0.3815 0.4294 0.4830 0.4006 0.4483 0.5054

2 0.5372 0.6652 0.7646 0.4324 0.5364 0.6298

3 0.6054 0.7884 0.8820 0.3662 0.4892 0.5904

4 0.6687 0.8607 0.9381 0.2751 0.3866 0.4613

5 0.7018 0.8939 0.9562 0.1416 0.1989 0.2258

6 0.7351 0.9210 0.9742 0.0626 0.0548 0.0476

7 0.7600 0.9469 0.9834 0.0372 0.0062 0.0030

8 0.7684 0.9573 0.9858 0.0261 0.0014 0.0002

9 0.7842 0.9618 0.9902 0.0208 0.0007 0.0000

10 0.7890 0.9624 0.9944 0.0149 0.0004 0.0000

30 1 0.4742 0.5268 0.5600 0.5574 0.6159 0.6627

2 0.6537 0.7695 0.8597 0.6590 0.7601 0.8653

3 0.7351 0.8835 0.9443 0.6512 0.7963 0.8977

4 0.7867 0.9287 0.9725 0.6032 0.7654 0.8693

5 0.8136 0.9508 0.9873 0.5244 0.6888 0.7830

6 0.8362 0.9621 0.9897 0.4213 0.5626 0.6690

7 0.8514 0.9723 0.9906 0.2789 0.4130 0.5117

8 0.8725 0.9782 0.9950 0.1507 0.2194 0.2453

9 0.8799 0.9847 0.9962 0.0652 0.0672 0.0705

10 0.8980 0.9906 0.9967 0.0338 0.0097 0.0067

11 0.9061 0.9912 0.9990 0.0241 0.0008 0.0000

12 0.9078 0.9926 0.9993 0.0176 0.0003 0.0003

13 0.9134 0.9953 1.0000 0.0142 0.0004 0.0000

14 0.9142 0.9938 0.9993 0.0097 0.0001 0.0000

15 0.9187 0.9947 0.9997 0.0075 0.0000 0.0000
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Table 6: Power comparison for the entropy tests

of size 0.1 against alternatives C(2.5) and B(2,2).

C(2.5) B(2,2)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.3168 0.3782 0.4105 0.2630 0.3174 0.3496

2 0.2124 0.2951 0.3884 0.3767 0.5336 0.6941

3 0.0820 0.0672 0.0713 0.4382 0.6843 0.8560

4 0.0506 0.0066 0.0005 0.4821 0.7805 0.9158

5 0.0292 0.0018 0.0001 0.5064 0.8028 0.9275

20 1 0.6375 0.7308 0.8150 0.3713 0.4160 0.4682

2 0.6932 0.8286 0.9361 0.5364 0.6647 0.7724

3 0.6184 0.7948 0.9178 0.6171 0.7995 0.8843

4 0.4951 0.6870 0.8216 0.6796 0.8713 0.9420

5 0.2755 0.4264 0.5384 0.7204 0.9035 0.9600

6 0.0978 0.1192 0.1374 0.7446 0.9351 0.9784

7 0.0480 0.0071 0.0030 0.7657 0.9483 0.9860

8 0.0326 0.0010 0.0000 0.7780 0.9609 0.9876

9 0.0254 0.0004 0.0000 0.7832 0.9626 0.9915

10 0.0169 0.0001 0.0000 0.7894 0.9610 0.9928

30 1 0.8298 0.8974 0.9457 0.4624 0.5109 0.5486

2 0.9129 0.9740 0.9963 0.6508 0.7693 0.8460

3 0.9064 0.9781 0.9990 0.7440 0.8832 0.9476

4 0.8806 0.9738 0.9987 0.7974 0.9346 0.9704

5 0.8246 0.9464 0.9943 0.8294 0.9540 0.9835

6 0.7350 0.8897 0.9718 0.8545 0.9654 0.9884

7 0.5681 0.7825 0.9196 0.8679 0.9766 0.9942

8 0.3442 0.5314 0.6851 0.8834 0.9825 0.9960

9 0.1338 0.1970 0.2430 0.8920 0.9879 0.9982

10 0.0523 0.0218 0.0210 0.9056 0.9915 0.9994

11 0.0327 0.0012 0.0000 0.9142 0.9923 0.9986

12 0.0242 0.0003 0.0000 0.9165 0.9942 0.9991

13 0.0170 0.0001 0.0000 0.9178 0.9948 0.9994

14 0.0122 0.0001 0.0000 0.9160 0.9936 0.9992

15 0.0097 0.0000 0.0000 0.9181 0.9943 0.9994
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distribution. As a remedy, we may use data histogram to determine best window size

for implementing the tests. Table 7 compares the power of RSS entropy based test for

uniformity, when m is best, with that of the KS test whose results are given in italic. It is

seen that entropy test shows remarkable dominance over the KS test against alternatives

B and B(2,2), whereas the KS test is better for alternatives A and C.

Table 7: Power comparison for the entropy test and KS test of size 0.1

against several alternative distributions under RSS.

Distribution

n A(1.5) A(1.75) A(2) B(1.5) B(1.75) C(2) C(2.5) B(2,2)

10 0.381 0.577 0.765 0.603 0.811 0.243 0.378 0.803

0.629 0.875 0.971 0.176 0.290 0.583 0.798 0.235

20 0.587 0.858 0.974 0.821 0.962 0.536 0.829 0.961

0.884 0.993 1.000 0.327 0.566 0.845 0.975 0.482

30 0.751 0.965 0.999 0.922 0.995 0.796 0.978 0.994

0.970 1.000 1.000 0.463 0.768 0.950 0.997 0.691

Table 8: 0.1 critical points of the test statistics under MSRSS designs.

Stage Number

n(m∗) r = 2 r = 3 r = 4

10(3) 0.6725 0.6910 0.7048

20(3) 0.7706 0.7892 0.7956

30(4) 0.8143 0.8236 0.8281

Table 9: Power comparison for the entropy tests of size 0.1

against several alternative distributions under MSRSS designs.

Distribution

n(m∗) r A(1.5) A(1.75) A(2) B(1.5) B(1.75) C(2) C(2.5) B(2,2)

10(3) 2 0.4635 0.7142 0.8913 0.6490 0.8495 0.2487 0.4105 0.8560

3 0.5371 0.7925 0.9467 0.7459 0.9011 0.2660 0.4419 0.9078

4 0.5940 0.8593 0.9702 0.7762 0.9304 0.3171 0.5295 0.9517

20(3) 2 0.5174 0.8413 0.9830 0.6206 0.8820 0.5904 0.9178 0.8843

3 0.5866 0.8945 0.9956 0.6874 0.9268 0.6780 0.9732 0.9282

4 0.6218 0.9387 1.0000 0.7033 0.9409 0.7161 0.9846 0.9613

30(4) 2 0.6958 0.9748 0.9998 0.7812 0.9725 0.8693 0.9987 0.9704

3 0.7340 0.9896 1.0000 0.8126 0.9893 0.9221 1.0000 0.9855

4 0.7535 1.0000 1.0000 0.8290 0.9984 0.9407 1.0000 1.0000
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Tables 2 and 3–6 were formed under MSRSS with r = 3,4 to see whether further

increase in power is achieved by increasing the stage number. Tables 8 and 9 contain 0.1

critical points and power of the tests, respectively. For a given n, the results are provided

only for the optimal m, except for C family and n = 10 where m = 1 is applied. Also,

results of DRSS design were included to ease comparison. From Table 9, we can see

that as r increases, some improvement in power happens. The differences in results for

r = 2 and r = 3,4 are less pronounced in large sample size, and thus we may restrict

ourselves to DRSS in practice.

4. Conclusion

This article was directed at the problem of developing tests of uniformity under RSS and

MSRSS designs. In line with the available entropy based test of fit in SRS, our tests use

sample entropy based on the pre-mentioned designs. Simulation studies accompany the

presentation to explore power behaviour of the proposed tests in finite sample sizes. The

results disclose that RSS and its variations outperform SRS in constructing powerful

entropy based test of uniformity. The authors have developed similar tests for other

distributions (e.g. uniform, beta, exponential, gamma, log-normal, Pareto, Rayleigh,

Weibull, normal, Laplace, etc.) using improved entropy estimators (e.g., see Ebrahimi

et al. (1994) and Novi Inverardi (2003)). The results will be reported in separate works.
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1. Introduction

Arellano-Valle, Gómez and Quintana (2004) introduced the skew-generalized-normal

(SGN) distribution with density

f (z;λ,α) = 2φ(z)Φ

(

λz
√

1+αz2

)

, z ∈ R, λ ∈ R, α≥ 0, (1)

and denoted by SGN(λ,α), whereφ(·) and Φ(·) are the density function and cumulative

distribution function of the standardized normal distribution, respectively. The skewness

of the SGN distribution (1) is regulated by the parameters λ and α, so that it reduces
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Figure 1: Examples of the skew-generalized normal density.

to the skew-normal (SN) distribution when α= 0 and to the normal (N) one when λ= 0.

Note, however, that the value of α is irrelevant when λ= 0. The same occurs with λ for

the limiting case when α→ ∞. In both of these situations, the normality is attained from

the SGN model, producing there a local identifiability problem. Further special models

can also be obtained by reparametrizing α in terms of λ or viceversa. For example, by

making α = λ2 we obtain in (1) the so-called skew-curved normal (SCN) distribution

in Arellano-Valle et al. (2004). This flexibility of the SGN distribution allows to

incorporate a wide range of models in a neighbourhood of the normal distribution.

Figure 1 shows the behaviour of the SGN density for different values of the parameters

λ and α. Only positive values of λ are considered in the plots of Figure 1(a); when the

sign of λ is reversed, the density is reflected about the origin, as in Figure 1(b).

Further properties of the SGN model are investigated by Arellano-Valle et al. (2004).

In particular, they gave formulas for the moments of a SGN random variable, Z ∼

SGN(λ,α). They showed that the even moments of Z are equal to the corresponding

even moments of a standardized normal random variable. For the odd moments of Z,

they obtained expressions involving an implicit formula,

E(Z2k+1) = 2ck −2kΓ(1+ k)(2/π)1/2, k = 0,1,2, . . . ,

where ck := ck(λ,α) =
∫ ∞

0 uk
φ(

√
u)Φ

(

λ
√

u√
1+αu

)

du. The location-scale extension of

the SGN distribution (1) was also obtained by Arellano-Valle et al. (2004) by letting

X = µ+σZ, where Z ∼ SGN(λ,α), and where µ ∈ R and σ > 0 are the location

and scale parameters, respectively. In this case, the notation X ∼ SGN(µ,σ,λ,α) will

be used. Finally, for the mean and variance of X ∼ SGN(µ,σ,λ,α) we can note that

E(X) =µ+σµz and Var(X) = (1−µ2
z )σ

2, where µz = 2c0−(2/π)1/2 is the mean of Z.
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The Fisher information matrix has an important role in statistical analysis (classical

and Bayesian) as well as in information theory. In the location-scale skew-normal dis-

tribution, however, the Fisher information matrix is singular (Azzalini, 1985) when the

skewness/shape parameter is zero, i.e., under the normality hypothesis. This fact vio-

lates the standard regularity conditions leading to the asymptotic normal distribution of

the MLEs. A situation of this type falls under nonstandard asymptotic theory studied by

Rotnitzky et al. (2000), who showed that in these circumstances the rate of convergence

estimate is slower than the usual one. Motivated by this fact, we consider it important to

obtain and analyse the behaviour of the Fisher information matrix in an generalization

of the skew-normal distribution.

In this note, we determine the exact form of the Fisher information matrix for

the skew-generalized-normal (SGN) distribution. Next, we examine the existence of

singularity problems of this matrix for the skew-normal and normal special cases, giving

a special attention to the asymptotic properties of the MLEs under the skew-normality

hypothesis (λ= 0).

This paper is organized as follows. The elements of the expected information matrix

for the full location-scale SGN model are derived in Section 2. Solutions for the

singularity problems in the full information matrix for the normal particular cases are

also discussed there. The technical details are given in an Appendix.

2. Maximum likelihood estimation

This section is related to the asymptotic properties of the MLEs of the location-scale

SGN model. Specifically, the ingredients to compute the expected information matrix

for the full location-scale SGN model are given. Hence, the study is focused on the

asymptotic behaviour of the MLEs for the particular skew-normal and normal models.

2.1. Likelihood score functions

Let X1, . . . ,Xn be a random sample drawn from the SGN(µ,σ,λ,α) distribution. The

log-likelihood function for θ = (µ,σ,λ,α)⊤ is ∑
n
i=1 l(θ ,Xi), where l(θ ,X) is the log-

likelihood for θ based on a single observation X , that is,

l(θ ,X) := log f (X ;θ ) =
1

2
log

(

2

π

)

− log(σ)−
Z2

2
+ logΦ(W ), (2)

where Z = (X − µ)/σ and W = W (Z) = λZ/(1 + αZ2)1/2. The score function is

∑
n
i=1 Sθ (θ ,Xi), where Sθ (θ ,X) = ∂ l(θ ,X)/∂θ is the vector (Sµ,Sσ,Sλ,Sα)

⊤ with

elements

Sµ =
Z

σ
−

1

σ

φ(W )

Φ(W )

∂W

∂Z
, Sσ =−

1

σ
+

Z2

σ
−

1

σ

φ(W )

Φ(W )

∂W

∂Z
Z,
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Sλ =
φ(W )

Φ(W )

∂W

∂λ
and Sα =

φ(W )

Φ(W )

∂W

∂α
,

where ∂W/∂Z =λ/(1+αZ2)3/2, ∂W/∂λ= Z/(1+αZ2)1/2 and ∂W/∂α=−λZ3/2(1+

αZ2)3/2.

2.2. Fisher information matrix

By definition, the SGN-expected information matrix for θ can be computed as Iθ =

E[SθS
⊤
θ
], where Sθ is the SGN-score vector above. Thus, the elements Iθiθ j

= E[Sθi
S
⊤
θ j
]

of this matrix are shown in the Appendix to be

Iµµ =
1

σ2
+
λ

2

σ2
η03, Iµσ =

2

σ2
(c1 − c0)−

(2/π)1/2

σ2
−

2λ

σ2
ρ23 +

λ

σ2
ρ03 +

λ
2

σ2
η13,

Iµλ =
1

σ
ρ21 −

λ

σ
η12, Iµα =−

λ

2σ
ρ43 +

λ
2

2σ
η33, Iσσ =

2

σ2
+
λ

2

σ2
η23,

Iσλ =−
λ

σ
η22, Iσα =

λ
2

2σ
η43, Iλλ = η21, Iλα =−

λ

2
η42 and Iαα =

λ
2

4
η63,

where the coefficients ρnm and ηnm are defined in Proposition 1 given in the Appendix.

These coefficients must be computed numerically.

For the nonnormal cases with λ 6= 0 and 0 ≤ α< ∞, the above information matrix is

always nonsingular, so that the usual
√

n-asymptotic behaviour holds for the MLEs. In

particular, estimation of the standard errors of the parameter estimates can be taken from

the diagonal elements of the inverse Fisher information matrix. Moreover, the submatrix

of the full information matrix corresponding to the vector of parameters (µ,σ,λ)⊤

coincides with the SN-information matrix obtained by Azzalini (1985). In addition, for

the skew-normal special case with α = 0, the full associated information matrix is also

nonsingular. See Section 2.3 below.

For the normal case that follows when λ = 0, the information matrix of θ =

(µ,σ,λ,α)⊤ is













1

σ2 0
2(2/π)1/2

σ
d1(α) 0

2

σ2 0 0
2
π

d2(α) 0

0













,

where d1(α) =
∫ ∞

0
z2
φ(z)

(1+αz2)1/2 dz and d2(α) =
1
α

(

1− (2π/α)1/2e
1

2αΦ(−α−1/2)
)

(see Co-

rollary 1 in the Appendix). Although the first three columns of this matrix are linearly
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independent, it leads to a singular information matrix because of a final column (cor-

responding to the parameter α) of 0s. This fact is obvious from (1), since α is non-

identifiable when λ = 0. Properties of the MLEs when the SGN model reduces to the

normal case are considered in Section 2.4.

2.3. Properties of the MLEs in the skew-normal case

Suppose that the parameter vector is θ ∗ = (µ∗,σ∗,λ∗,0)⊤, that is, the data are drawn

from the SN(µ∗,σ∗,λ∗) distribution. At θ = θ ∗, the components of the score vector Sθ
are

S∗
µ =

1

σ∗

[

Z∗−λ∗
φ(λ∗Z∗)

Φ(λ∗Z∗)

]

, S∗
σ =

1

σ∗

[

Z∗2 −1−λ∗
φ(λ∗Z∗)

Φ(λ∗Z∗)
Z∗

]

,

S∗
λ
=
φ(λ∗Z∗)

Φ(λ∗Z∗)
Z∗ and S∗

α =−
λ
∗

2

φ(λ∗Z∗)

Φ(λ∗Z∗)
Z∗3

,

where Z∗ = (X −µ∗)/σ∗. Linear dependence does not exist between the elements of
the score function when λ∗ 6= 0. Consequently, the information matrix is not singular in

this case. In the full parameter case, the vector n1/2(µ̂−µ∗, σ̂−σ∗, λ̂−λ∗, α̂), where

(µ̂, σ̂, λ̂, α̂) is the MLE of (µ,σ,λ,α), converges in distribution to (Y1,Y2,Y3,Y4), where

(Y1,Y2,Y3,Y4)
⊤ is a multivariate normal random vector with mean vector (0,0,0,0)⊤ and

covariance matrix



















1
σ2 (1+λ

2a0)
1
σ2

(

λ(2/π)1/2(1+2λ2)
(1+λ2)3/2 +λ2a1

)

1
σ

(

(2/π)1/2

(1+λ2)3/2 −λa1

)

1
2σ

(

−
3λ(2/π)1/2

(1+λ2)5/2 +λ2a3

)

1
σ2 (2+λ

2a2) − λ
σ

a2
λ

2

2σa4

a2 −λ2 a4

λ
2

4 a6



















−1

where ak := ak(λ)=
1
π

∫ ∞
0 zk
φ(

√
1+2λ2 z)

[

(−1)k

Φ(−λz) +
1

Φ(λz)

]

dz for k= 0,1,3,4,6, which

have to be evaluated numerically (see Proposition 2 in the Appendix).

2.4. Properties of the MLEs in the normal case

Suppose now that the parameter vector is θ ∗ = (µ∗,σ∗,0,α∗)⊤, that is, the data are

obtained from a N(µ∗,σ∗2
) distribution. At θ = θ ∗, the components of Sθ are

S∗
µ
=

Z∗

σ∗
, S∗

σ
=

Z∗2 −1

σ∗
, S∗

λ
=

(2/π)1/2 Z∗

(1+α∗ Z∗2)1/2
and S∗

α
= 0,

where Z∗ = (X −µ∗)/σ∗.
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In this case, the components of (S∗
µ,S

∗
σ,S

∗
λ
) are linearly independent at least that

α
∗ = 0, and so the singularity of the information matrix of θ ∗ is due to the fact that

S∗
α
= 0. Moreover, the score component of interest S∗

λ
cannot be expressed as a linear

combination of the components of (S∗
µ,S

∗
σ,S

∗
α), that is, there is not a vector c 6= 0

of constants such that S∗
λ
= c

⊤(S∗
µ,S

∗
σ,S

∗
α)

⊤, and so the condition (28) considered by

Rotnitzky et al. (2000) is not satisfied. Consequently, the methodology proposed by

these authors cannot be applied to study the asymptotic properties of the MLEs in the

normal case (λ = 0), since there is no vector c 6= (0,0,0,0)⊤ to initialize the iterative

process in order to obtain an appropriate reparametrization for which the information

matrix is of full rank. As was mentioned above, this conclusion derives from the fact

that α is non-identifiable when λ= 0.

If, in addition, α∗ = 0, i.e., θ ∗ = (µ∗,σ∗,0,0)⊤, we then find in the above score

functions the relation S∗
λ
= (2/π)1/2

σ
∗S∗
µ. Hence, at θ ∗ the full information matrix has

rank 2, which violates the condition (27) of Rotnitzky et al. (2000).

A similar fact occurs whenα→∞, which is another form to obtain the normal model.

That is, for θ ∗ = (µ∗,σ∗,λ∗,∞)⊤, we have whatever the value of λ∗ that S∗
µ and S∗

σ are

as before, but S∗
λ
= S∗

α= 0. Therefore, again the the methodology proposed by Rotnitzky

et al. (2000) is not appropriated to study the asymptotic properties of the MLEs in the

normal case.

However, if the objective is to study the normality hypothesis only, then a natural

and convenient strategy is the following:

a) Use the SGN model to test the skew-normality hypothesis α= 0 (see Section 2.3).

b) If the skew-normal model is not rejected, then use this model to test the normality

hypothesis λ = 0. In this case, the Rotnitzky et al. (2000) methodology (see

Chiogna, 2005) as well as the centred parametrization (see Azzalini, 1985) can

be used.
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Appendix

This appendix provides preliminary calculations needed to derive the elements of the

SGN expected information matrix. To simplify the notation, let W :=W (Z) = λZ√
1+αZ2

and R = R(W ) = φ(W )
Φ(W ) , where Z ∼ SGN(λ,α).
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Proposition 1 Let ρnm = EZ

(

ZnR

(1+αZ2)m/2

)

and ηnm = EZ

(

ZnR2

(1+αZ2)m

)

, n,m = 0,1, . . .,

where Z ∼ SGN(λ,α). Then,

ρnm =

{

0, f or n = 2k+1 (odd),

EY

(

2Y 2k
φ(W (Y ))

(1+αY 2)m/2

)

, f or n = 2k (even),

and

ηnm = EY

([

(−1)n

Φ(−W (Y ))
+

1

Φ(W (Y ))

]

Y n
φ

2(W (Y ))

(1+αY 2)m

)

,

where Y ∼ 2φ(y)I(y ≥ 0).

Proof: For n = 2k+1, we have after a simple algebra that

ρnm = 2

∫ ∞

−∞

z2k+1
φ(z)

(1+αz2)m/2
φ

(

λz
√

1+αz2

)

dz = 2

∫ ∞

−∞

zh0(z)dz = 0,

since for all k,m = 0,1, . . ., the function h0(z) =
z2k
φ(z)

(1+αz2)m/2φ

(

λz√
1+αz2

)

is even. Simi-

larly, for n = 2k, we have

ρnm = 2

∫ ∞

−∞

z2k
φ(z)

(1+αz2)m/2
φ

(

λz
√

1+αz2

)

dz

= 2

∫ ∞

0

2y2k
φ(y)

(1+αy2)m/2
φ

(

λy
√

1+αy2

)

dy = 2EY

(

Y 2k
φ(W (Y ))

(1+αY 2)m/2

)

.

Finally, for ηnm we have

ηnm = 2

∫ ∞

−∞

zn
φ(z)

(1+αz2)m

φ
2

(

λz√
1+αz2

)

Φ

(

λz√
1+αz2

) dz

= 2

∫ ∞

0

(−y)n

Φ

(

−λy√
1+αy2

)h1(y)dy+2

∫ ∞

0

yn

Φ

(

λy√
1+αy2

)h1(y)dy

= 2

∫ ∞

0

[

(−1)n

Φ(−W (y))
+

1

Φ(W (y))

]

yn
φ

2(W (y))

(1+αy2)m
φ(y)dy

= EY

([

(−1)n

Φ(−W (Y ))
+

1

Φ(W (Y ))

]

Y n
φ

2(W (Y ))

(1+αY 2)m

)

,
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where it is used that the function h1(t) =
φ

2(W (t))φ(t)

(1+αt2)m is even for all m = 0,1, . . .;

concluding thus the proof.

From Proposition 1 we have, after some straightforward algebra, that the entries

Iθiθ j
= E(Sθi

Sθ j
) of the information matrix Iθ are as follows:

Iµµ = E

(

Z2

σ2
−

2λZR

σ2(1+αZ2)3/2
+

λ
2R2

σ2(1+αZ2)3

)

=
1

σ2
+
λ

2

σ2
η03,

Iµσ = E

(

−
Z

σ2
+

Z3

σ2
−

2λZ2R

σ2(1+αZ2)3/2
+

λR

σ2(1+αZ2)3/2
+

λ
2ZR2

σ2(1+αZ2)3

)

=
2

σ2
(c1 − c0)−

(2/π)1/2

σ2
−

2λ

σ2
ρ23 +

λ

σ2
ρ03 +

λ
2

σ2
η13,

Iµλ = E

(

Z2R

σ(1+αZ2)1/2
−

λZR2

σ(1+αZ2)2

)

=
1

σ
ρ21 −

λ

σ
η12,

Iµα = E

(

−
λZ4R

2σ(1+αZ2)3/2
+

λ
2Z3R2

2σ(1+αZ2)3

)

=−
λ

2σ
ρ43 +

λ
2

2σ
η33,

Iσσ = E

(

1

σ2
−

2Z2

σ2
+

2λZR

σ2(1+αZ2)3/2
+

Z4

σ2
−

2λZ3R

σ2(1+αZ2)3/2
+

λ
2Z2R2

σ2(1+αZ2)3

)

=
1

σ2
−

2

σ2
+

3

σ2
+
λ

2

σ2
η23 =

2

σ2
+
λ

2

σ2
η23,

Iσλ = E

(

−
ZR

σ(1+αZ2)1/2
+

Z3R

σ(1+αZ2)1/2
−

λZ2R2

σ(1+αZ2)2

)

=−
λ

σ
η22,

Iσα = E

(

λZ3R

2σ(1+αZ2)3/2
−

λZ5R

2σ(1+αZ2)3/2
+

λ
2Z4R2

2σ(1+αZ2)3

)

=
λ

2

2σ
η43,

Iλλ = E

(

Z2R2

(1+αZ2)

)

= η21,

Iλα = E

(

−
λZ4R2

2(1+αZ2)2

)

=−
λ

2
η42,

Iαα = E

(

λ
2Z6R2

4(1+αZ2)3

)

=
λ

2

4
η63.
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Corollary 1 If λ = 0, then the entries Iµλ and Iλλ of the information matrix Iθ reduce

to

Iµλ =
2(2/π)1/2

σ
d1(α) and Iλλ =

2

π
d2(α), (3)

where d1(α) =
∫ ∞

0
z2
φ(z)

(1+αz2)1/2 dz and d2(α) =
1
α

(

1− (2π/α)1/2e
1

2αΦ(−α−1/2)
)

.

Proof: In fact, if λ= 0, then W ≡ 0, and so R≡ (2/π)1/2. Thus, Iµλ=
1
σ

E
(

Z2

(1+αZ2)1/2 R
)

= (2/π)1/2

σ

∫ ∞
−∞

z2
φ(z)

(1+αz2)1/2 dz= 2(2/π)1/2

σ

∫ ∞
0

z2
φ(z)

(1+αz2)1/2 dz since the function
z2
φ(z)

(1+αz2)1/2 is even.

Note that this integral has be computed numerically when α > 0. For Iλλ we have

Iλλ = E
(

Z2

1+αZ2 R2
)

= 2
π

∫ ∞
−∞

z2
φ(z)

1+αz2 dz = 4
π

∫ ∞
0

z2
φ(z)

1+αz2 dz since that function
z2
φ(z)

1+αz2 is even.

Hence, the result follows by noting from Mathematica (Wolfram Research, 2008) that

d2(α) := 2

∫ ∞

0

z2
φ(z)

1+αz2
dz =

1

α
−

(π/2)1/2e
1

2α (1− erf(
√

2
2
√
α
))

α3/2
,

for α> 0, where erf
(√

2
2

t
)

= 2Φ(t)−1.

Proposition 2 Let Z ∼ SGN(λ,0). Then

ak(λ) := EZ

(

Zk

{

φ(λZ)

Φ(λZ)

}2
)

=
1

π

∫ ∞

0
zk
φ(
√

1+2λ2 z)

[

(−1)k

Φ(−λz)
+

1

Φ(λz)

]

dz.

Proof: Since φ2(λz)φ(z) = 1
2π
φ(

√
1+2λ2 z) we have after a simple algebra that

EZ

(

Zk

{

φ(λZ)

Φ(λZ)

}2
)

= 2

∫ ∞

−∞

zk
φ

2(λz)φ(z)

Φ(λz)
dz

=
1

π

∫ ∞

−∞

zk
φ(

√
1+2λ2 z)

Φ(λz)
dz

=
1

π

∫ ∞

0
zk
φ(
√

1+2λ2 z)

[

(−1)k

Φ(−λz)
+

1

Φ(λz)

]

dz.
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Abstract

Phenomena with a constrained sample space appear frequently in practice. This is the case,

for example, with strictly positive data, or with compositional data, such as percentages or

proportions. If the natural measure of difference is not the absolute one, simple algebraic

properties show that it is more convenient to work with a geometry different from the usual

Euclidean geometry in real space, and with a measure different from the usual Lebesgue

measure, leading to alternative models that better fit the phenomenon under study. The general

approach is presented and illustrated using the normal distribution, both on the positive real line

and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal

distribution in 1879, are recovered and updated.
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1. Introduction

In general, continuous multivariate observations are assumed to be real random vectors

which density functions are defined with respect to the Lebesgue measure. The Lebesgue

measure is compatible with the inner vector space structure of real space and thus natural

in R. When random vectors are defined on a constrained sample space, E ⊂RD, methods

and concepts used in real space can lead to nonsensical results. For example, for positive

random variables, the usual confidence interval x̄±kS, where S is the standard deviation,

can include negative values. In the case of random compositions, i.e., of random vectors
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defined on the simplex that represent proportions of some whole, problems appear

if correlations between components are used. This is a well-known problem stated

by Pearson (1897) and called spurious correlation. A way to avoid these problems

is to use transformations, such as the logarithm on the positive real line or logratio

transformations on the simplex (Aitchison, 1986). There is a long history behind the

logarithmic and the logratio transformations. The well-known lognormal and the logistic

normal distributions were introduced in R+ and in the simplex, respectively, through

these transformations. In this contribution, we revise those definitions and propose

a common and new theory to introduce a normal distribution in constrained sample

spaces. In particular, we focus on a general constrained sample space, E ⊂ RD, which

admits a meaningful Euclidean vector space structure, possibly different from the usual

structure of real space. The idea, previously used in Eaton (1983), is that, for any

Euclidean vector space E with a one-to-one transformation to RD, a measure λE ,

compatible with its structure, is obtained from the respective structure of RD and its

Lebesgue measure. This allows us to define density functions on E considering the

measure λE or, equivalently, the corresponding density functions of the coordinates.

Every one-to-one transformation between a set E and real space induces a real Eu-

clidean vector space structure in E, with associated measure λE . Particularly interesting

are those transformations that are meaningful and related to the measure of difference

between observations. This idea can be found in Galton (1879), as an introduction to

the logarithmic transformation as a means to acknowledge Fechner’s law, according

to which perception equals log(stimulus). The idea was then formalised by McAlister

(1879). This approach has acquired a growing importance in applications, due to the fact

that some constrained sample spaces, which are subsets of some real space — like R+
or the simplex — can be structured as Euclidean vector spaces (Pawlowsly-Glahn and

Egozcue, 2001). It is important to emphasize that this approach implies using a measure

which is different from the usual Lebesgue measure.

The advantage of this approach is that it opens the door to study statistical models

using a measure which is considered to be appropriate or natural for the studied

phenomenon, instead of the ordinary Lebesgue measure. Here we apply this idea to the

normal distribution on the two mentioned constrained sample spaces, the positive real

line, R+, and the simplex, SD. They are well known as the lognormal distribution and

the additive logistic normal distribution when expressed with respect to the Lebesgue

measure. We focus on their representation when the reference measure is the measure

associated to the Euclidean vector space structure of the sample space. While the

probability law is the same, the change of representation produces a change in some

characteristic values of the distribution. Also, some invariance properties of normal

distributions appear as natural within the structure of the sample space. These properties

usually get lost when representing these distributions with respect to the Lebesgue

measure. The idea of using not only an interpretable space structure, but also to change

the measure, is a powerful tool because it leads to results coherent with the interpretation

of the measure of difference, and because they are mathematically more straightforward.
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Section 2 describes some technical details in an abstract setting concerning Eu-

clidean vector spaces, their reference measure, and the definition of the normal prob-

ability density functions on them. Sections 3 and 4 present the application of these con-

cepts to the positive real line and the simplex, respectively, as well as some examples on

normal modelling in these constrained spaces.

2. Probability densities in Euclidean vector spaces

Let E ⊆ RD be the sample space for a random vector X, i.e. each realization of X is in

E. Assume there exists a one-to-one, differentiable, mapping h : E → Rd with d ≤ D. In

the case of the positive real line, E = R+ and d = D = 1, i.e. R and R+ have the same

dimension. This is not the case of the simplex S
D, which consists of vectors of D positive

components adding up to a fixed constant. Only d = D−1 components are required to

specify a point in it, i.e. the dimension of SD is d = D− 1 < D. The mapping h allows

to define a Euclidean vector structure on E just translating the standard properties of Rd

into E. The existence of the mapping h implies some characteristics of E. An important

one is that E must have some border set so that h transforms neighbourhoods of this

border into neighbourhoods of infinity in Rd . For instance, a sphere in R3 with a defined

pole can be transformed into R2, but, if no pole is defined, this is no longer possible.

The vector addition or internal operation ⊕ and the scalar multiplication or external

operation ⊙ in E are defined as

x⊕y = h−1(h(x)+h(y)) , α⊙x = h−1(α ·h(x)) ,

for x,y ∈ E and α ∈ R. With these definitions, E is a d-dimensional vector space. The

metric structure is induced by the inner product 〈x,y〉E = 〈h(x),h(y)〉. It implies the

norm, ‖x‖E = ‖h(x)‖, and the distance, dE(x,y) = d(h(x),h(y)), thus completing the

Euclidean vector space structure of E. This structure is derived from the inner product,

norm and distance in Rd , denoted as 〈·, ·〉, ‖ · ‖ and d(·, ·), respectively. By construction,

h(x) is the vector of coordinates of x∈E. The coordinates correspond to the orthonormal

basis in E given by the images of the canonical basis in Rd by h−1. The origin of the

space E is then h−1(~0) where~0 is the neutral element of Rd with respect to the ordinary

sum. The Lebesgue measure in Rd , λd , induces a measure in E, denoted λE , using the

fact that h is one-to-one and setting λE(h
−1(B)) = λd(B), for any Borelian B in Rd

(Eaton, 1983). This idea was used in Pawlowsky-Glahn (2003) to define the Aitchison

measure on the simplex.

In order to define probability density functions (pdf’s) in E, a reference measure

is needed. A pdf is the Radon–Nikodym derivative of a probability measure P with

respect to a measure on E. When the reference measure is λE , we denote the pdf as

f E = dP/dλE . When E is viewed as a subset of RD, the pdf with respect to the Lebesgue

measure λD could be eventually considered. However, if d < D, the random vector X
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cannot be absolutely continuous with respect to λD and the pdf does not exist. Our

approach, and a more natural way to define a pdf for X, is to start with a pdf for the

(random) coordinates Y = h(X) in Rd . Assume that fY is the pdf of Y with respect

to the Lebesgue measure, λd , in Rd , i.e. Y is absolutely continuous with respect to

λd and the pdf is the Radon–Nikodym derivative fY = dP/dλd . The random vector

X is recovered from Y as X = h−1(Y). When D > d, h−1(Y) can be expressed using

only d of its components. Let h−1
d be such a restriction and Xd = h−1

d (Y). The inverse

mapping is denoted by hd(Xd) and it holds that hd(Xd) = h(X). This means that more

than d components of X are redundant. When D = d, the restriction of h−1 reduces to

h−1
d = h−1. For instance, to recover a vector in the simplex of D components from its

representation using d = D−1 coordinates, one can recover d = D−1 components. The

remaining one is obtained from the constant sum of all components. The pdf of Xd with

respect to the Lebesgue measure in Rd is computed using the Jacobian rule

fXd
(xd) =

dP

dλd

(xd) = fY(hd(xd)) ·

∣

∣

∣

∣

∂hd(xd)

∂xd

∣

∣

∣

∣

, (1)

where the last term is the d-dimensional Jacobian of hd . The next step is to express the

pdf with respect toλE , the compatible measure in E. The chain rule for Radon–Nikodym

derivatives implies

f E
Xd
(xd) =

dP

dλE

(xd) =
dP

dλd

(xd) ·
dλd

dλE

(xd) , (2)

and, due to the inverse function theorem, the last derivative is

dλd

dλE

(xd) =

∣

∣

∣

∣

∂h−1
d (hd(xd))

∂y

∣

∣

∣

∣

=

∣

∣

∣

∣

∂hd(xd)

∂xd

∣

∣

∣

∣

−1

, (3)

Substituting (2) and (3) into (1),

f E
X (x) =

dP

dλE

(x) = fY(h(x)) , (4)

where the subscripts d have been suppressed, as they only play a role when computing

the Jacobian. Difficulties using f E
X

, arising from the fact that the integral P(A) =
∫

A f E
X
(x)dλE(x) is not an integral with respect to the Lebesgue measure in Rd but

with respect to the Lebesgue type measure in E, are solved working with coordinates.

Particularly, they are solved working with coordinates with respect to an orthonormal

basis in E. Using (4) the probability of an event A ⊆ E can be computed as P(A) =
∫

h(A) fY(h(x)) dλd(h(x)) or, in simpler notation, P(A) =
∫

h(A) fY(y) dy.
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The representation of the distribution of random variables by pdf’s defined with

respect to the measure λE requires a review of the moments and other characteristics

of the pdf’s. Following Eaton (1983), the expectation and variance of X are defined as

follows:

Definition 2.1 Let X be a random variable supported on E and h : E → Rd the

coordinate function defined on E. The expectation in E is

EE [X] = h−1

(

∫

Rd
y fh(X)(y) dy

)

(5)

= h−1 (E[h(X)]) , (6)

provided the integral in (5) exists in the Lebesgue sense.

Intuitively, the expectation (5) in E consists of representing the elements of E using

coordinates and to integrate using the pdf of the coordinates; the result is transformed

back into E. Equation (6) summarizes this result using the standard definition of

expectation of the coordinates in Rd .

The variance involves only real expectations and can be identified with the variance

of coordinates. Special attention deserves the metric or total variance (Aitchison, 1986;

Pawlowsly-Glahn and Egozcue, 2001). Assuming the existence of the integrals, the met-

ric variability of X with respect to a point z ∈ E is defined as VarE [X,z] = E[d2
E(X,z)].

The minimum metric variability is attained for z = EE [X], thus supporting the definition

in (5)–(6). The metric variance is then

VarE [X] = E[d2
E(X,EE [X])] . (7)

The mode of a pdf is normally defined as its maximum value, although local maxima

are also frequently called modes. However, the shape and, particularly, the maximum

values depend on the reference measure taken in the Radon-Nikodym derivatives of the

density. Since the Lebesgue measure in the coordinate space, Rd , corresponds to the

measure λE in E, the mode can be defined as

ModeE [X] = argmax
x∈E

{ f E
X (x)}= h−1

(

argmax
y∈Rd

{ fh(X)(y)}

)

.

3. The positive real line

The real line, with the ordinary sum and product by scalars, has a vector space structure.

The ordinary inner product and the Euclidean distance are compatible with these
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operations, i.e. they satisfy the translation invariance and the homogeneity properties.

But this geometry is not suitable for the positive real line. Confront, for example,

some meteorologists with two pairs of samples taken at two rain gauges, {5;10} and

{100;105} in mm, and ask for the difference; quite probably, in the first case they will

say there was double the total rain in the second gauge compared to the first, while

in the second case they will say it rained a lot but approximately the same. They are

assuming a relative measure of difference. Consequently, for them the natural measure

of difference is not the usual Euclidean one, and the ordinary vector space structure of

R does not behave suitably for the problem. In fact, problems might appear shifting a

positive number (vector) by a negative real number (vector); or multiplying a positive

number (vector) by an arbitrary real number (positive or negative scalar), because results

can be outside R+.

There are two operations, ⊕, ⊙, which induce a vector space structure in R+
(Pawlowsly-Glahn and Egozcue, 2001). In fact, given x,x∗ ∈ R+, the internal operation,

which plays an analogous role to addition in R, is the usual product x⊕ x∗ = x · x∗ and,

for α∈R, the external operation, which plays an analogous role to the product by scalars

in R, is α⊙ x = xα. An inner product, compatible with ⊕ and ⊙ is 〈x,x∗〉+ = lnx · lnx∗,

which induces a norm, ‖x‖+ = | lnx|, and a distance, d+(x,x
∗) = | lnx∗− lnx|, and thus

the complete Euclidean vector space structure in R+. Since R+ is a one-dimensional

vector space, there are only two orthonormal bases: the unit-vector (e) and its inverse

element with respect to the internal operation (e−1). From now on the first option is

considered and it will be denoted by e. Any x∈R+ can be expressed as x= lnx⊙e= elnx

which reveals that h(x) = lnx is the coordinate of x with respect to the basis e. The

measure λ+ in R+ can be defined so that, for λ1 the Lebesgue measure in R1, and

an interval (a,b) ⊂ R+, λ+(a,b) = λ1(lna, lnb) = | lnb − lna| and dλ+/dλ1 = 1/x

(Mateu-Figueras, 2003). Following the notation in Section 2, all these definitions can be

obtained by setting E = R+, D = d = 1 and h(x) = lnx. The generalization to E = RD
+

is straightforward: for x ∈ RD
+, the coordinate function can be defined as h(x) = ln(x),

where the logarithm applies component-wise.

3.1. The normal distribution on R+R+R+

Using the algebraic-geometric structure in R+ and the measure λ+, the normal distribu-

tion on R+ was defined in Mateu-Figueras et al. (2002) through the density function of

orthonormal coordinates.

Definition 3.1 Let (Ω,F,P) be a probability space. A random variable X : Ω −→ R+
is said to have a normal on R+ distribution with two parameters µ and σ2, written

N+(µ,σ
2), if its density function with respect to λ+ is

f+X (x) =
dP

dλ+
(x) =

1
√

2πσ
exp

(

−
1

2

(lnx−µ)2

σ2

)

, x ∈ R+. (8)
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The density (8) is the usual normal density applied to coordinates lnx as implied by

(4) and it is a density in R+ with respect to the λ+ measure. This density function

is completely restricted to R+ and its expression corresponds to the law of frequency

introduced by McAlister (1879). The probability law corresponding to the density (8) is

that of the lognormal distribution, denoted Λ, where µ and σ2 are the logarithmic mean

and variance. The continuous line in Figure 1 represents the density function (8) for

µ= 0 and σ2 = 1. Note that the areas under the log-normal density fX are proportional

to probabilities, whereas areas under f+X , as shown in the figure, are not. In the case of

f+X a probability is proportional to the ordinate of the curve times the length of dx, i.e.

times λ+(x,x+dx) = | ln(x+dx)− ln(x)|.
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Figure 1: Density function f+X (——) and fX (- - - -) with µ= 0 and σ = 1.

According to this approach, the normal distribution in R+ exhibits properties analo-

gous to the normal distribution in R, the most relevant of which are summarized in the

following properties. The corresponding proofs are presented in the appendix.

Property 3.1 Let X ∼ N+(µ,σ
2), a ∈ R+ and b ∈ R. Then, the random variable

X∗ = a⊕ (b⊙X) = a ·Xb is distributed as N+(lna+bµ,b2
σ

2).

Property 3.2 Let X ∼ N+(µ,σ
2) and a ∈ R+. Then, f+a⊕X(a⊕ x) = f+X (x), where f+X

and f+a⊕X represent the probability density functions of the random variables X and

a⊕X = a ·X, respectively.

Property 3.3 If X ∼N+(µ,σ
2), then E+[X ] = Med+[X ] = Mode+[X ] = eµ.

Property 3.4 If X ∼N+(µ,σ
2), then Var+[X ] =σ2.

Note that property 3.1 implies that the family N+(µ,σ
2) is closed under the operations

in R+ and property 3.2 asserts the equivariance under translations in R+.

The expected value, the median and the mode are elements of the support space R+,

but the variance is only a numerical value which describes the dispersion of X . We are
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used to taking the square root of σ2 as a means to represent intervals centred at the

mean and with radius equal to some standard deviations. Such an interval, centred at

E+[X ] = eµ and with length 2kσ, is (eµ−kσ,eµ+kσ), as d+(e
µ−kσ,eµ+kσ) = 2kσ. This

kind of interval is used in practice (Ahrens, 1954); for instance, under log-normality

assumption, predictive intervals in R+ are computed on log-transformed data, and

then back-transformed using exponentiation. In figure 2(a) we represent the interval

(eµ−σ,eµ+σ) for a N+(µ,σ
2) density function with µ= 0 and σ2 = 1. It can be shown

that it is of minimum length in R+, and also an isodensity interval, as the distribution

is symmetric around eµ in R+. This symmetry might seem paradoxical, in view of the

shape of the density function. But still, it is symmetric within the Euclidean vector space

structure of R+, although certainly not within the space structure of R.
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Figure 2: Dashed line: interval (eµ−σ,eµ+σ); (a) f+X , corresponding to N+(µ= 0,σ2 = 1),

(b) fX corresponding to Λ(µ= 0,σ2 = 1).

An important aspect of this approach is that consistent estimators and exact confi-

dence intervals for the expected value are easy to obtain. It is enough to take exponen-

tials of those obtained from normal theory using log-transformed data, i.e. using the

coordinates with respect to the orthonormal basis. Thus, let x1,x2, . . . ,xn be a random

sample and yi = lnxi for i = 1,2, . . . ,n. Then, the optimal estimator for the mean of a

normal in R+ population is the geometric mean (x1x2 · · ·xn)
1/n, that equals to eȳ. An

exact (1−α)100% confidence interval for the mean is (eȳ−tα/2S/
√

n,eȳ+tα/2S/
√

n), where

S denotes the standard deviation of the log transformed sample and tα/2 the (1−α/2)

t-student (n−1 d.f.) quantile.

The normal distribution plays a relevant role in statistics mainly due to its relation-

ship with the central limit theorem. The central limit theorem for the log-normal model

is well-known (Aitchison and Brown, 1957). The sums of random variables are replaced

by multiplications of positive variables and the limiting distribution is the log-normal.

As the central limit theorem concerns the limiting probability law and the multiplication

of random variables, it can be translated into terms of the normal in R+. Let X1, X2, ...,

Xn be a sequence of random variables in R+. Define the coordinates of Xi as Yi = lnXi for
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i = 1,2, . . . , and assume they are mutually independent and identically distributed with

mean µ and variance σ2. The standardized variable (1/n)∑
n
i=1(Yi −µ)/σ converges in

law, for n → ∞, to a random variable with standard normal distribution due to the cen-

tral limit theorem. Transforming back using h−1 = exp, the central limit theorem for the

normal in R+ yields: the random standardized geometric mean

Zn =
1

nσ
⊙

n
⊕

i=1

[Xi ⊖ exp(µ)] =

[

n

∏
i=1

(

Xi

exp(µ)

)1/σ
]1/n

,

converges in law, as n → ∞, to a random variable distributed N+(1,0).

The role of the operations ⊕ and ⊙ (in R+ they are the multiplication and powering)

in the central limit theorem is remarkable. Its relevance relies on the fact that the

operations on random variables involved are interpretable and of frequent use.

3.2. Normal on R+R+R+ versus lognormal

The lognormal distribution has long been recognized as a useful model in the evalua-

tion of random phenomena whose distribution is positive and skew, and specially when

dealing with measurements in which the random errors are multiplicative rather than

additive. The history of this distribution dates back to 1879, when Galton (1879) ob-

served that the law of frequency of errors was incorrect in many groups of phenomena.

This observation was based on Fechner’s law which, in its approximate and simplest

form, is sensation=log(stimulus). According to this law, an error of the same magnitude

in excess or in deficiency (in the absolute sense) is not equally probable; therefore, he

proposed the geometric mean as a measure of the most probable value instead of the

arithmetic mean. This remark was followed by the memoir of McAlister (1879), where

a mathematical development concluding with the lognormal distribution was performed.

He proposed a practical and easy method for the treatment of a data set grouped around

its geometric mean: convert the observations into logarithms and treat the transformed

data set as a series round its arithmetic mean, and introduced a density function called

the law of frequency which is the normal density function applied to the log-transformed

variable, i.e. the density (8). In order to compute probabilities in given intervals, he in-

troduced also the law of facility, nowadays known as the lognormal density function (9).

A unified treatment of lognormal theory is presented in Aitchison and Brown (1957);

recent developments are compiled in Crow and Shimizu (1988). A great number of

authors use the lognormal model from an applied point of view. Their approach assumes

R+ to be a subset of the real line with the usual Euclidean geometry restricted to it. This

is how everybody understands the sentence an error of the same magnitude in excess or

in deficiency in the same way. One might ask oneself why there is much to say about

the lognormal distribution if the data analysis can be referred to the intensively studied

normal distribution by taking logarithms. One of the generally accepted reasons is that
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parameter estimates are biased if obtained from the inverse transformation. As noted

above, the normal on R+ distribution is well known as the lognormal distribution. But

the proposed change of representation produces differences in some properties which

are studied below.

Recall that a positive random variable X is said to be lognormally distributed with

two parameters µ and σ2 if Y = lnX is normally distributed with mean µ and variance

σ
2. We write X ∼ Λ(µ,σ2). Its probability density function is

fX(x) =







1√
2πσx

exp

(

− 1
2

(

lnx−µ
σ

)2
)

x > 0,

0 x ≤ 0.
(9)

Comparing (9) with (8), subtle differences can be observed. One is that (9) includes

a case for the zero and for the negative values of the random variable. This fact is

paradoxical, because the lognormal model is completely restricted to R+. It is forced

by the fact that R+ is considered as a subset of R with the restricted structure and,

consequently, the variable is assumed to be a real random variable, hence the name

lognormal distribution in R. Another difference lies in the coefficient 1/x, the Jacobian,

which is necessary to work with real analysis in R. In the lognormal case the Jacobian is

necessary because the density is written with respect to the Lebesgue measure, but in the

normal in R+ case the Jacobian is not necessary as the density is expressed with respect

to λ+. More obvious differences are that (9) is not equivariant under translations and is

not symmetric around the mean. Note that for the lognormal case, E[X ] = eµ+
1
2σ

2
, the

Med[X ] = eµ and Mod[X ] = eµ−σ
2
. Using our approach a different expected value and

a different mode are obtained, while the value for the median is the same. The dashed

line in Figure 1 illustrates the probability density function (9) for µ = 0 and σ2 = 1. It

clearly differs from the density function (8) plotted in continuous line.

As for the normal in R+ case, an interval centered at the mean and with radius

equal to some standard deviations can be represented for the lognormal in R. Consid-

ering R+ as a subset of R with an Euclidean structure, such an interval is: (E[X ]−

kStdev[X ],E[X ]+ kStdev[X ]). But it has no sense, because the lower bound might take

a negative value. For example, for µ = 0 and σ2 = 1, the above interval with k = 1 is

(−0.512,3.810). This is the reason why sometimes intervals (eµ−kσ,eµ+kσ) are used,

which are considered to be non-optimal, because they are neither isodensity intervals,

nor do they have minimum length. In Figure 2(b) we represent the interval (eµ−σ,eµ+σ)

for Λ(µ,σ2) with µ = 0 and σ2 = 1. It is clear that in the bounds of the interval the

density function takes different values.

Consistent estimators and exact confidence intervals for the mean and the variance

of a lognormal variable are difficult to compute. Early methods are summarised by

Aitchison and Brown (1957) and Crow and Shimizu (1988). In the literature an extensive

number of procedures and discussions can be found. It is not the objective of this paper
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to summarise them all and to provide a complete set of formulas. For the mean, the term

eȳ multiplied by a term depending on σ, expressed as an infinite series or tabulated in a

set of tables, is obtained in most cases (Aitchison and Brown, 1957; Krige, 1981; Clark

and Harper, 2000). For example, Sichel (1996) optimal estimator for the mean of a

lognormal population is used by Clark and Harper (2000). This estimator is obtained

as eȳ
γ, where γ is a bias correction factor depending on the variance and the size

of the data set. It is tabulated in a set of tables. A similar bias correction factor is

used to obtain confidence intervals on the population mean (Clark and Harper, 2000).

Nevertheless, in practical situations, sometimes the sample geometric mean, eȳ, is used

to represent the mean and in some cases also to represent the mode of a lognormally

distributed variable (Herdan, 1960). But, as adverted by Crow and Shimizu (1988), those

affirmations cannot be justified using the lognormal theory. On the contrary, using the

normal in R+ approach, those affirmations are completely justified.

3.3. Example

The differences between using a density with respect to the Lebesgue measure λ or a

density with respect to the measure λ+ can be best appreciated in practice. In order

to compare the classical lognormal estimators with those obtained by the normal in R+
approach, we have simulated 300 samples representing sizes of oil fields in thousands of

barrels, a geological variable often lognormally modelled (Davis, 1986). The objective

with this simple example is to estimate a suitable location parameter and a corresponding

confidence interval and to compare the results obtained using the lognormal approach

with the results obtained using the proposed approach. Using the classical lognormal

procedures and Table A2 provided by Aitchison and Brown (1957) we obtain 161.96

as an estimate for the mean. Afterwards, using Tables 1,2 and 3 given by Krige (1981),

we obtain 162.00 and (150.31,176.78) as an estimate and approximate 90% confidence

interval for the mean. Also, using Tables 7, 8(b) and 8(e) provided by Clark and Harper

(2000), we could apply Sichel’s bias correction to obtain 161.86 and (144.07,188.39)

as the optimal estimator and confidence interval for the mean in the context of the

lognormal approach.

Using the normal in R+ approach we obtain 145.04 as the estimate for the mean

and (138.70,151.68) as the exact 90% confidence interval for the mean. Logically,

different values are obtained, as different methodologies are used. The mean is obtained

as eȳ and it is not necessary to apply any bias correction, as unbiasedness is in this

case equivalent to unbiasedness in coordinates. The confidence interval is obtained

as (eȳ−t0.05S/
√

n,eȳ+t0.05S/
√

n) where S denotes the sample standard deviation of the log

transformed sample. Note that only exponentials of the mean and the 90% confidence

interval obtained from normal theory using log-transformed data are taken. As can be

observed, the differences to those obtained using the lognormal approach are important.

With the normal in R+ a much more conservative result is obtained, although it is

consistent with the assumed geometry of R+.
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Figure 3: Simulated sample, n = 300. (a) Histogram and fitted lognormal density; the Lebesgue-lengths of

the bins are equal. (b) Display analogous to a histogram and fitted normal in R+ density; the λ+-lengths

of the bins are equal.

In order to compare graphically the normal in R+ and the lognormal approaches

we can represent the histogram with the corresponding fitted densities. In Figures 3(a)

and 3(b) the histogram with the fitted lognormal and normal in R+ densities are shown.

Note that the intervals of the histogram are of equal length in both cases, as the absolute

Euclidean distance is used in (a) and the relative distance in R+ is used in (b) to compute

them. Thus, (b) is a display analogous to a histogram, based on the structure defined in

Section 3. Finally, in Figure 4 the histogram of the log-transformed data or, equivalently,

of the coordinates with respect to the orthonormal basis, with the fitted normal density,

is provided. This last figure is adequate using both methodologies, but in this case we

have chosen exactly the same intervals as in Figure 3(b). This is only possible using the

normal on R+ approach, as the intervals on the positive real line have corresponding

intervals in the space of coordinates.
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Figure 4: Simulated sample, n = 300. Histogram of the log-transformed sample with the fitted normal

density. The bins of the histogram are the log-images of the bins shown in Figure 3(b).
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The normal on R+ density model and its properties have been applied in a spatial

context, and the results have been compared with those obtained with the classical

lognormal kriging approach (Tolosana-Delgado and Pawlowsky-Glahn, 2007). Using

this approach, problems of non-optimality, robustness and preservation of distribution

disappear.

4. The simplex

Compositional data are parts of some whole which carry only relative information. Typi-

cal examples are parts per unit, percentages, ppm, or moles per liter. When constrained to

sum to a constant, their sample space is the D-part simplex, SD = {x = (x1,x2, . . . ,xD)
T :

x1 > 0,x2 > 0, . . . ,xD > 0; ∑
D
i=1 xi =κ}, where T stands for transpose and κ is a constant,

set to 1 for simplicity in (Aitchison, 1982).

The simplex S
D has a (D− 1)-dimensional Euclidean vector space structure (Bill-

heimer et al., 2001; Pawlowsly-Glahn and Egozcue, 2001) with the following opera-

tions. Let C(·) denote the closure operation which normalises any vector x to a constant

sum (Aitchison, 1982), x,x∗ ∈ S
D, and α ∈ R. The internal operation, called perturba-

tion, is defined as x ⊕ x
∗ = C(x1x∗1,x2x∗2, . . . ,xDx∗D)

T
, with inverse x ⊖ x

∗ =

C(x1/x∗1,x2/x∗2, . . . ,xD/x∗D)
T
. The external operation, called powering, is defined as α⊙

x = C(xα1 ,x
α

2 , . . . ,x
α

D)
T, and the inner product as

〈x,x∗〉a =
1

D
∑
i< j

ln
xi

x j

ln
x∗i
x∗j

. (10)

The associated squared distance

d2
a(x,x

∗) =
1

D
∑
i< j

(

ln
xi

x j

− ln
x∗i
x∗j

)2

,

is relative and satisfies standard properties of a distance (Martı́n-Fernández et al., 1998),

i.e. da(x,x
∗)= da(a⊕x,a⊕x

∗) and da(α⊙x,α⊙x
∗)=|α | da(x,x

∗). The corresponding

geometry is known as Aitchison geometry, and therefore the subindex a is used.

The inner product (10) and its associated norm, ‖x‖a =
√

〈x,x〉a, ensure the exis-

tence of orthonormal basis {e1,e2, . . . ,eD−1} which, for a given basis, lead to a unique

expression of a composition x as a linear combination,

x = (〈x,e1〉a ⊙ e1)⊕ (〈x,e2〉a ⊙ e2)⊕ . . .⊕ (〈x,eD−1〉a ⊙ eD−1).

In inner product spaces, an orthonormal basis is not uniquely determined. It is not

straightforward to determine which one is the most appropriate to solve a specific

problem, but a promising strategy, based on binary partitions, has been developed in
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(Egozcue and Pawlowsky-Glahn, 2005). Here, whenever a specific basis is needed, the

basis given in (Egozcue et al., 2003) is used. In this basis, the coordinates of x ∈ S
D are

yi =
1

√

i(i+1)
ln

(

x1x2 · · ·xi

xi
i+1

)

, i = 1,2, . . . ,D−1 . (11)

The coordinates in this particular basis are denoted ilr(x) to emphasise the fact that

this coordinate transformation is an isometric mapping from S
D to RD−1 and that the

coordinates are log-ratios (Egozcue et al., 2003). The important point is that, once an

orthonormal basis has been chosen, all standard statistical methods can be applied to

the coordinates and transferred to the simplex preserving their properties. This is what

we call the principle of working on coordinates (Mateu-Figueras et al., 2011). As stated

in Section 2., the Lebesgue measure in the space of coordinates induces a measure in

S
D, denoted here as λa and called Aitchison measure on S

D. This measure is absolutely

continuous with respect to the Lebesgue measure on RD−1, and the relationship between

them is |dλa/dλD−1| = (
√

D x1x2 · · ·xD)
−1 (Pawlowsky-Glahn, 2003). Following the

notation in Section 2., all these definitions can be obtained by setting E = S
D and

d = D−1.

For later use, the concept of subcomposition is required. For 1 < C < D, a C-part

subcomposition, xS, from a D-part composition, x, can be obtained as xS = C(Sx),

where S is a C×D selection matrix with C elements equal to 1 (one in each row and

at most one in each column) and the remaining elements equal to 0 (Aitchison, 1986).

A subcomposition can be regarded as a composition in a simplex with fewer parts, and

thus as an element of a space of lower dimension.

4.1. Some basic statistical concepts in the simplex

A random composition X is a random vector with S
D as sample space. In the literature

laws of probability over SD using the Lebesgue measure can be found. Consequently,

the probabilities or any moment are computed using the classical definition. But some

usual elements appear to be of little use when working with real situations. One typical

example is the expected value, in the sense that frequently it does not lie within the

bulk of the sample. As an alternative, the geometric interpretation of the expected value

has been used to define the centre, cen[X], of a random composition. It is defined

as the composition that minimises the expression E[d2
a(X,cen[X])] (Aitchison, 1997;

Pawlowsly-Glahn and Egozcue, 2001). The result is cen[X] = C(exp(E[lnX])), which

can be rewritten as (Egozcue et al., 2003) cen[X] = ilr−1(E[ilr(X)]), or, in general terms,

as

cen[X] = h−1 (E [h(X)]) .
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The centre of a random composition is equal to the expectation in S
D defined in Equation

(5) in Section 2. This is an important result because if a law of probability on S
D is

defined using the classical approach, this equality does not hold.

As already mentioned, traditionally the simplex has been considered as a subset of

real space and, consequently, the laws of probability have been defined using the stan-

dard approach. This is the case for families of distributions like the Dirichlet (Monti

et al., 2011), the additive logistic normal (Aitchison, 1982), the additive logistic skew-

normal (Mateu-Figueras et al., 2005), or those defined using the Box-Cox family of

transformations (Barceló-Vidal, 1996). Except for the Dirichlet, these laws of proba-

bility are defined using transformations from the simplex to real space. Two of these

transformations will appear later herein, the additive log-ratio (alr) and the centred log-

ratio (clr),

alr(x) =

(

ln

(

x1

xD

)

, . . . , ln

(

xD−1

xD

))T

, (12)

clr(x) =

(

ln

(

x1

g(x)

)

, . . . , ln

(

xD

g(x)

))T

, (13)

where g(x) is the geometric mean of the components of x. The relationship between the

alr and the clr transformations is provided by Aitchison (1986, p.92). The relationships

between the alr, clr and ilr transformations are provided by Egozcue et al. (2003).

4.2. The normal distribution on SDSDSD

Aitchison (1986) introduced the additive logistic normal (aln) distribution. A random

variable on the simplex is aln distributed if the alr transformed random composition (12)

has a multivariate normal distribution. The alr transformation is a representation of a

composition using coordinates with respect to an oblique basis of the simplex (Egozcue

et al., 2011). An equivalent definition can be formulated using orthonormal coordinates.

Additionally, the Aitchison measure on the simplex is used to obtain the corresponding

density function. Although the following definition is formally different from that of the

aln, it corresponds to the same probability law with a different parametrisation.

Consider an orthonormal basis on S
D and let h(·) be the corresponding orthonormal

coordinates.

Definition 4.1 Let (Ω,F, p) be a probability space. A random composition X : Ω−→ S
D

is said to have a normal on S
D distribution, with parameters µ and ΣΣΣ, if its moment

generating function is

M(t) = E[exp(tTh(X))] = exp

(

µT
t+

1

2
t
TΣΣΣ t

)

,
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where t is a D−1 real vector. The D−1 vector µ is the mean expressed in coordinates

and the (D−1)× (D−1) matrix ΣΣΣ is the covariance matrix of the coordinates.

The parameters µ and ΣΣΣ depend on the specific orthonormal basis selected. If the

covariance matrix ΣΣΣ is non singular, it can be inverted and the regular normal distribution

can be defined as follows:

Definition 4.2 Let (Ω,F, p) be a probability space. A random composition X : Ω−→ S
D

is said to have a regular normal on S
D distribution, with parameters µ and ΣΣΣ, if its

density function is

f SX (x) = (2π)−(D−1)/2|ΣΣΣ|−1/2 exp

(

−
1

2
(h(x)−µ)T

ΣΣΣ−1 (h(x)−µ)

)

. (14)

The notation X ∼ N
D
S
(µ,ΣΣΣ) is used. The subscript S indicates that it is a density on

the simplex, i.e. a Radon-Nykodym derivative with respect to the Aitchison measure on

S
D; the superscript D indicates the number of parts of the composition. Figure 5 shows

the isodensity curves of two normal densities on S
3 taking the particular basis given

by Egozcue et al. (2003) and using a ternary diagram as a convenient and simple way

for representing 3-part compositions (see Aitchison, 1986, p.6). The isodensity curves

are not equidistant, the levels are only chosen in order to clearly show the shape of the

density function. To understand Figure 5, it should be remarked that the areas on the

ternary diagram are computed according λa, which significantly differs from the usual

Lebesgue area intuitively assigned to the triangle interior. The differences of assigned

areas are specially dramatic near the edges of the triangle.

The density (14) is the usual normal density applied to coordinates h(x) as implied

by (4). It is a density in S
D with respect to the λa measure. The same strategy is used by

Mateu-Figueras and Pawlowsky-Glahn (2007) to define the skew-normal in S
D law.

The main properties of this model follow. A complete proof of each property can

be found in the appendix. The proofs are straightforward for a reader familiar with

compositional data analysis.
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Figure 5: Isodensity plots of two N
3
S
(µ,ΣΣΣ) with (a) µ= (0,0), (b) µ= (−1,1) and ΣΣΣ = Id.
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Property 4.1 Let X ∼N
D
S
(µ,ΣΣΣ), a ∈ S

D and b ∈ R. Then, the D-part random composi-

tion X
∗ = a⊕ (b⊙x) has a N

D
S
(h(a)+bµ, b2ΣΣΣ) distribution.

Property 4.2 Let X ∼ N
D
S
(µ,ΣΣΣ) and a ∈ S

D. Then f S
a⊕X

(a ⊕ x) = f S
X
(x), where f S

X

and f S
a⊕X

represent the density functions of the random compositions X and a ⊕ X,

respectively.

Property 4.3 Let X ∼ N
D
S
(µ,ΣΣΣ) and XP = P X, the random composition X with the

parts reordered by a permutation matrix P. Then XP ∼N
D
S
(µP,ΣΣΣP) with µP = U

T
PUµ,

ΣΣΣP = (UT
PU)ΣΣΣ(UT

P
T
U), where U is a D× (D− 1) matrix with the clr transformation

of an orthonormal basis of SD as columns.

Property 4.4 Let X ∼ N
D
S
(µ,ΣΣΣ) and XS = C(SX), the C-part random subcomposition

obtained from the C×D selection matrix S. Then XS ∼N
C
S
(µS,ΣΣΣS), with µS = U

∗T
SUµ,

ΣΣΣS = (U∗T
SU)ΣΣΣ(UT

S
T
U

∗), where U is a D× (D−1) matrix with the clr transformation

of an orthonormal basis of SD as columns and U
∗ is a C× (C− 1) matrix with the clr

transformation of an orthonormal basis of SC as columns.

Property 4.5 Let X ∼N
D
S
(µ,ΣΣΣ). Then, the expected value in S

D is

cen[X] = Ea[X] = h−1(µ) ,

independently of the orthonormal basis of SD for which the coordinate mapping h is

defined.

Property 4.6 Let X ∼N
D
S
(µ,ΣΣΣ). The metric variance of X is Vara[X] = trace(ΣΣΣ).

Property 4.1 states that the normal on S
D law is closed under perturbation and pow-

ering. Property 4.2 states that it is equivariant under perturbation. This is important, be-

cause when working with compositional data the centring operation (Martı́n-Fernández

et al., 1999), a perturbation using the inverse of the centre of the data set, is often ap-

plied in practice to better visualise and interpret the pattern of variability (von Eynatten

et al., 2002). Properties 4.3 and 4.4 show that the normal on S
D family is closed under

permutation and subcompositions.

Given a compositional data set the estimates of parameters µ and ΣΣΣ can be computed

applying the maximum likelihood procedure to the coordinates. The estimated values µ̂

and ̂ΣΣΣ allow to compute the estimates of the centre (expected value in S
D) and metric

variance of the random composition X, as

Êa[X] = (µ̂1 ⊙ e1)⊕·· ·⊕ (µ̂D−1 ⊙ eD−1) = h−1(µ̂) ,

̂Vara[X] = trace
(

̂ΣΣΣ

)

.
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To validate the distributional assumption of normality on S
D, some goodness-of-

fit tests of the multivariate normal distribution have to be applied to the coordinates

of the sample data set. There is a large battery of possible tests but, as suggested

by Aitchison (1986), it is reasonable to start testing the normality of each marginal

using empirical distribution function tests. Unfortunately, the univariate normality of

each component is a necessary but not sufficient condition for the normality of the

whole vector. Also, these univariate tests depend on the orthonormal basis chosen. This

difficulty does not depend on the proposed methodology, as the same problem appears

when working with laws of probability defined using transformations and the Lebesgue

measure in S
D (Aitchison et al., 2003). The multivariate normal model can also be

validated considering the Mahalanobis distance (h(X)− µ̂)T
̂ΣΣΣ
−1
(h(X)− µ̂), which is

sampled from a χ2
D−1-distribution if the fitted model is appropriate. In this case, the

dependence on the chosen orthonormal basis disappears (Stevens, 1986). The use of

empirical distribution function tests is also suggested in (Aitchison, 1986).

As mentioned at the beginning of this section, the parametrisation used depends on

the selected orthonormal basis. In fact, the vector µ and the matrix ΣΣΣ are the mean and

the covariance matrix of the coordinates random vector h(X). Nevertheless, the distri-

bution can also be defined using object parameters (Tolosana-Delgado, 2005; Eaton,

1983). The idea under the object parametrisation is to define the model independently

of the coordinates used for representation. The mean vector of the coordinates µ is the

coordinate representation of a composition in S
D, µS = h−1(µ), that does not depend

on the selected basis. The covariance matrix ΣΣΣ can be interpreted as the representation

of a symmetric positive semidefinite endomorphism ΣS on S
D. For each choice of basis

in S
D the endomorphism has a different matrix representation ΣΣΣ, but the endomorphism

itself remains the same. Then, as proposed by Tolosana-Delgado (2005), the normal on

S
D distribution can be defined as

Definition 4.3 A random composition X is said to follow a normal on S
D distribution

with a given mean vector µS and a positive semidefinite symmetric endomorphism ΣS

on S
D, if for any testing vector x, the projection 〈x, X〉a follows a univariate normal

distribution on R with expectation 〈x, µS〉a and variance 〈x, ΣSx〉a.

If ΣS is positive definite, the density with respect to λa is

f SX (x) = (2π)−(D−1)/2|ΣS|
−1/2 exp

(

−
1

2
〈x⊖µS,Σ

−1
S
(x⊖µS)〉a

)

,

where |ΣS| is the determinant of the endomorphism ΣS.

As noted by Tolosana-Delgado (2005), given a basis, object definitions may be

identified with coordinate ones, proving that the coordinate approach gives the same

results whichever basis is used.
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4.3. The central limit theorem in SDSDSD

The relevant role of the normal distribution for real vectors is due to the central limit

theorem and related properties. The normal distribution in the simplex satisfies a central

limit theorem in SD, as stated in (Aitchison, 1986) to characterize the logistic normal

distribution. In the present context, the multivariate central limit theorem (Kocherlakota

and Kocherlakota, 1982) holds for coordinates. Let X1, X2, ..., Xn be a sequence of

random compositions in S
D. Consider their coordinates with respect to an arbitrary

orthonormal basis Yi = h(Xi)∈R
D−1, i= 1,2, . . . ,n. Assume that the coordinate vectors

Yi are mutually independent and identically distributed with mean µ and covariance

matrix ΣΣΣ; then, being Yn = n−1 ∑
n
i=1 Yi, the random vector

√
n
(

Yn −µ
)

converges in

distribution to the multivariate normal N(0,ΣΣΣ) as n → ∞. These random vectors are

coordinates of the random compositions

√
n⊙
(

Xn ⊖h−1(µ)
)

, Xn =
1

n
⊙

n
⊕

i=1

Xi = C

(

exp

(

1

n

n

∑
i=1

lnXi

))

. (15)

The random compositions (15) converge in distribution to N
D
S
(0,ΣΣΣ), and the multivariate

central limit theorem holds in the simplex. The reference operation is the perturbation

and the corresponding average equals to the closed geometric mean composition, that

is, the geometric mean vector followed by the closure operation. This result justifies the

name of normal in the simplex for the studied distribution. However, the relevance of

a central limit theorem in this context relays on the interpretation of the average Xn or

just the perturbation of random variables in the simplex. Perturbation has many intuitive

interpretations depending on the applied context. The following example of concentra-

tions may be illustrative. Suppose that Z contains the concentrations of D pollutants in

a sample of water. The sample is filtered using a permeable membrane with transfer

function X, i.e. the components are multiplicative factors applied to the concentrations

in Z. The perturbation Z ⊕ X expresses the output concentrations after applying the

filter X. As the filtering membrane is replaced by another similar one after each filter-

ing process, we can assume that X is random. In order to express the random effect

of a filtering membrane we perform a sequence of filtering experiments with similar

but different transfer functions. The mean transfer function, say Xn, will be approxi-

mately distributed as a normal in the simplex as predicted by the central limit theorem.

4.4. The normal on SDSDSD vs the additive logistic normal

The normal on the simplex is well known as the logistic normal distribution. Neverthe-

less, the proposed change of representation produces differences in some properties. In

this section we study these changes.

The approach used in (Aitchison, 1982) to define the additive logistic normal law

on the simplex is standard: transform the random composition from the simplex to real
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space, define the density function of the transformed vector, return to the simplex using

the change of variable theorem. The result is a density function for the initial random

composition with respect to the Lebesgue measure. Therefore, a random composition is

said to have an additive logistic normal distribution (aln) when the additive log-ratio (alr)

transformed vector −see Eq. (12)− has a normal distribution. Note that this definition

does not explicitly state that the change of variable theorem is used. But this is the

principal difference between the approach based on working with transformations, and

the new approach, based on working with coordinates.

The aln model was initially defined using the additive log-ratio transformation.

Using the matrix relationship between log-ratio transformations (Egozcue et al., 2003)

the density function in terms of an isometric log-ratio transformation is obtained.

Consequently, we can define the logistic normal distribution with parameters µ and ΣΣΣ,

with density function:

fX(x) =
(2π)−(D−1)/2 |ΣΣΣ |−1/2

√
Dx1x2 · · ·xD

exp

(

−
1

2
(ilr(x)−µ)T

ΣΣΣ−1 (ilr(x)−µ)

)

. (16)
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Figure 6: Isodensity plots of two logistic normal densities with (a) µ= (0,0), (b) µ= (−1,1) and ΣΣΣ = Id.

To easily compare both approaches we will use the normal density on the simplex

taking the basis given by Egozcue et al. (2003) and consequently the ilr vector stated

in (11). Nevertheless, any orthonormal basis could be considered, as the vector ilr(x)

can be obtained from h(x) and the corresponding change of basis matrix. The only

difference between expressions (14) and (16) is the term (
√

Dx1x2 · · ·xD)
−1, the Jacobian

of the isometric log-ratio transformation that reflects the change of the measure on S
D.

The influence of this term can be observed in the isodensity curves in Figure 6, where

areas on the triangle are computed using the ordinary Lebesgue measure. These curves

can be compared with the curves in Figure 5, where areas where computed using λa.

The differences between Figures 5 and 6 are obvious; in particular the tri-modality in

Figure 6(a). This behaviour is not exclusive of the logistic normal density, bimodality

is also present with Beta or Dirichlet densities when their parameters are close to 0 and

the Lebesgue measure is considered. In Figure 6(b) a single mode can be observed;
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nevertheless, the position and the shape of the curves are not the same as in Figure 5(b),

the corresponding normal on S
3.

Another difference is the moments of any order. The expression of the density

function plays a fundamental role when any moment is computed. The density (16) is

a classical density, consequently moments are computed using the standard definition.

Obviously, the results are not the same as in the normal on S
D case. For example, the

expected value of an aln density, denoted as E[X], exists but numerical procedures have

to be applied (see Aitchison, 1986, p.116) to find it and the result is not the same

as in property 4.5. Using our approach, the centre of a random composition, denoted

as cen[X] (Aitchison, 1997), is obtained when the expected value Ea[X] is computed.

Consequently, it is not necessary to define new characteristic parameters. Using the

classical definition, e.g. the expected value, a representative location parameter is

obtained. Remember that the centre of a random composition was introduced by

Aitchison (1997) because he perceived that the usual expected value E[X] is not a

representative location parameter. This discrepancy appears because Aitchison (1982)

adopts perturbation and powering as operations in the sample space, but uses the density

function with respect to the Lebesgue measure, thus assuming for the density a measure

not compatible with the operations.

Some coincidences can be found as well. The closure under perturbation, powering,

permutation and subcompositions of the logistic normal density model is proven by

Aitchison (1986), and stated in Properties 4.1,4.3 and 4.4 for the normal on S
D density

model. Nevertheless, the logistic normal class is not equivariant under perturbation, i.e.

fa⊕X(a⊕x) 6= fX(x).

In summary, the essential differences between both approaches are the shape of the

probability density function, in some cases leading to multi-modality for the standard

approach; the moments which characterise the density, particularly important in practice

for the expected value and the variance; and equivariance under perturbation.

4.5. Example

To illustrate the differences between a density with respect to the Lebesgue measure λ

and a density with respect to the measure λa in S
D, a GDP data set will be used. The data

set used is taken from the National Accounts Statistics database and is available on the

United Nations Statistic Division web page http://unstats.un.org/unsd/snaama/dnllist.asp.

We use the information corresponding to the year 2009 for 208 countries. The GDP data

set is based on the international standard industrial classification (ISIC) of all economic

activities. The original data contains the percentages of each economic activity for all

countries divided in six categories.

The goal is to compare some characteristics corresponding to the logistic normal

and the normal densities on the simplex. In order to provide some useful comprehensive

figures a three-part compositional data set is preferred. For this reason the three-part

subcomposition (x1,x2,x3) is used, where
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Figure 7: GDP data with isodensity curves of the fitted (a) logistic normal and (b) normal on S
3 densities.

• x1 = agriculture, hunting, forestry, fishing (ISIC A-B),

• x2 = mining, manufacturing, utilities (ISIC C-E),

• x3 = construction (ISIC F).

Following the suggestions by Aitchison (1986), a battery of 12 tests of goodness-of-

fit are used. They are based on the Anderson-Darling, Cramér-von Mises and Watson

statistics, applied to the coordinates of the three-part sample data set. In particular, the

tests are applied to the marginal distributions, to the bivariate angle distribution and

to the radial distribution. Taking a 5% significance level, no significant departure from

normality is obtained by any of these tests.

Parameters of the two density models, the normal on S
3 and the logistic normal, are

equal. This is a direct consequence of the definition of densities and hence likelihoods.

In this case, after taking a suitable ilr transformation (eq. 11 was used), the maximum

likelihood estimates for both density models are:

µ̂= (−0.715,0.521)T, Σ̂ΣΣ =

(

1.303 0.452

0.452 0.680

)

.

Figures 7(a) and 7(b) show the sample in a ternary diagram and the isodensity curves

of the fitted logistic normal density and the normal in S
3 density. Different features

are observed. The logistic normal density shows two modes whereas the normal in

S
3 exhibits a single mode. When contours and sample are plotted in the coordinate

space (Figure 9(a)) differences disappear, as the probability density in ilr-coordinates, a

bivariate normal in R2, is equal for the two density models.

After plotting the contours of the density with respect to the Lebesgue measure

(Figure 7(a)) showing two modes, one might think about the existence of two sub-

populations that could explain the bimodality of the logistic normal density. However,

using the available information on the data set concerning geography or development of

countries, no coherent reasons were found for the observed bimodality shown in Figure
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7(a). The bimodality in this case is only due to the measure of reference chosen in the

simplex.

For illustration purposes, changes of density contours under powering are shown in

Figure 8 for both density models. Let X denote the three-part random variable of the

example with the estimated parameters µ̂ and Σ̂ΣΣ shown above, and consider Xα = α⊙X

for α = 1/2. In Figures 8(a) and 8(b) the isodensity contours with respect to the

Lebesgue measure and the Aitchison measure in the ternary diagram are represented.

As can be observed, in the logistic normal case, the bimodality disappears. In other

words, the power transformation, which should only move the centre of the density and

modify the variability, can eliminate or in other cases generate arbitrary modes if the

Lebesgue measure is considered (Mateu-Figueras and Pawlowsky-Glahn, 2008). This

undesirable behaviour of modes and isodensity contours prevents the use of the logistic

normal density on the simplex and all statistics depending on it, e.g. expectation and

covariance with respect to the Lebesgue measure on the simplex, predictive regions, etc.
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Figure 8: Power transformed GDP data with isodensity curves of the fitted (a) logistic normal and (b)

normal on S
3 densities.
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Figure 9: ilr coordinates of the (a) GDP data set and (b) the power transformed data set with the

corresponding fitted normal densities.
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5. Conclusions

A particular Euclidean vector space structure of the positive real line and of the

simplex, together with the associated measure, allow us to define parametric models

with desirable properties. Normal density models on R+ and on S
D have been defined

through their densities over the coordinates with respect to an orthonormal basis and

their main algebraic properties have been studied. From a probabilistic point of view,

those laws of probability are identical to the lognormal and to the additive logistic

normal distribution defined using the Lebesgue measure and the standard methodology

based on transformations. Nevertheless, some differences are obtained in the moments

and in the shape of the density function. In particular, the expected value with respect

to the new measure differs from what would be obtained with the Lebesgue measure

for the lognormal and additive logistic normal distributions, but leads to the parameters

that are used for these models. It thus yields directly a suitable characterization of these

models. In the normal in R+ case, a consistent estimator and confidence intervals for the

mean are easily obtained directly from the log-transformed data, while in the lognormal

case, i.e., keeping the Lebesgue measure and therefore aiming at the corresponding,

common expected value, a bias correction is necessary. In the normal in S
D case we

show important differences in the shape of the density. The normal in S
D always appears

unimodal, whereas bimodal and trimodal densities could be obtained using the standard

approach.

Acknowledgements

The authors thank two anonymous referees for their suggestions which greatly improved

the article. This work has been supported by the Spanish Ministry of Education and Sci-

ence under project MTM2009-13272 and by the Agència de Gestió d’Ajuts Universitaris
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Appendix

This appendix contains the proofs of properties contained in Section 3.1 and Section 4.2.

They use the expected value, the covariance matrix, the linear transformation property

of the multivariate normal distribution and some matrix relationships among vectors of

coordinates and among log-ratio transformations.
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Proof of property 3.1. The coordinates of the random variable X∗ are obtained from the

coordinates of the variable X as ln(X∗) = ln(a)+b ln(X). The density function of ln(X)

is the classical normal density on the real line; thus, the linear transformation property

can be used to obtain the density function of the ln(X∗) random variable. Therefore,

X∗ ∼N+(lna+bµ,b2
σ

2).

Proof of property 3.2. From property 3.1 we know that a⊕X = a ·X ∼N+(lna+µ,σ2).

From (8) we get

f+a⊕X(a⊕ x) =
1

√
2πσ

exp

(

−
1

2

(ln(ax)− (lna+µ))2

σ2

)

= f+X (x).

Proof of property 3.3. From (6) we know that EE [X ] = exp(E[lnX ]) because the or-

thonormal coordinates on the positive real line are obtained with the logarithmic trans-

formation. Given some coordinate, the exponential function provides the element on R+.

The density function of lnX is the normal distribution, as stated in Definition 3.1. Thus,

the expected value is the µ parameter and, consequently, EE [X ] = exp(µ). The same

result is obtained for the median and the mode, as the normal distribution is symmetric

around its expected value µ.

Proof of property 3.4. From (7) we know that the variance can be understood as the

expected value of the squared distance around its expected value, i.e. Var+[X ] =

E[d2
+(X ,E+[X ])]. Working on coordinates and using the density function of lnX we

obtain Var+[X ] = E[d2(lnX ,E[lnX ])] = Var[lnX ] =σ2.

Proof of property 4.1. The orthonormal coordinates of the random composition X
∗

are obtained from the orthonormal coordinates of the composition X via h(X∗) =

h(a)+bh(X). The density function of h(X) is the classical normal density in real space;

thus, the linear transformation property can be used to obtain the density function of

h(X∗). Therefore, X
∗ ∼N

D
S
(h(a)+bµ,b2ΣΣΣ).

Proof of property 4.2. Using property 4.1, a ⊕ X ∼ N
D
S
(h(a) + µ,ΣΣΣ). We know that

h(a⊕x) = h(a)+h(x), therefore,

fa⊕X(a⊕x) = (2π)−(D−1)/2 |ΣΣΣ |−1/2

× exp

[

−
1

2
(h(a⊕x)− (h(a)+µ))T

ΣΣΣ−1 (h(a⊕x)− (h(a)+µ))

]

= (2π)−(D−1)/2 |ΣΣΣ |−1/2 exp

[

−
1

2
(h(x)−µ)T

ΣΣΣ−1 (h(x)−µ)

]

= fX(x).
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Proof of property 4.3. For a centered log-ratio transformed vector it is straightforward

to see that clr(XP) = Pclr(X) (Aitchison, 1986, p. 94). Using the matrix relationship

between the centered and the isometric log-ratio vectors (Egozcue et al., 2003) we

conclude that h(XP) = (UT
PU)h(X). Given the density of h(X), and applying the

linear transformation property of the normal distribution in real space, a N
D
S
(µP,ΣΣΣP)

distribution is obtained for the random composition XP.

Proof of property 4.4. (Aitchison, 1986, p. 119) gives the matrix relationship between

alr(XS) and alr(X). Using the matrix relationships between the additive, centered and

isometric log-ratio vectors (Egozcue et al., 2003), we conclude that h(XS)= (U∗′
SU)h(X).

Given the density of h(X), and applying the linear transformation property of the nor-

mal distribution in real space, the density of h(XS) is obtained as that of the N
C
S
(µS,ΣΣΣS)

distribution.

Proof of property 4.5. From (6) we know that Ea[X] = h−1(E[h(X)]), and from (14)

we know that the density function of h(X) is the multivariate normal distribution; thus

E[h(X)] = µ. Finally, the composition Ea[X] is obtained applying h−1.

Proof of property 4.6. From (7) we know that the variance can be understood as

the expected value of the squared distance around its expected value, i.e. Vara[X] =

E[d2
a(X,Ea[X])]. Working on coordinates and using the density function of h(X) we

obtain Vara[X] = trace(ΣΣΣ).
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Catalunya.

Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2007). The skew-normal distribution on the simplex. Com-

munications in Statistics-Theory and Methods, Special Issue Skew-elliptical Distributions and their

Application, 36(9), 1787–1802.

Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2008). A critical approach to probability laws in geochem-

istry. Mathematical Geosciences, 40(5), 489–502.

Mateu-Figueras, G., Pawlowsky-Glahn, V. and Barceló-Vidal, C. (2005). The additive logistic skew-normal

distribution on the simplex.Stochastic Environmental Research and Risk Assessment, 19, 205-214.

Mateu-Figueras, G., Pawlowsky-Glahn, V. and Egozcue, J. J. (2011). The principle of working on coordi-

nates. Compositional Data Analysis: Theory and Applications, V. Pawlowsky-Glahn & A. Buccianti

eds., John Wiley & Sons, Chichester, 31–42.

Mateu-Figueras, G., Pawlowsky-Glahn, V. and Martı́n-Fernández, J. A. (2002). Normal in R+ vs lognormal

in R. Terra Nostra, 3, 305–310.

McAlister, D. (1879). The law of geometric mean. Proceedings of the Royal Society of London, 29, 367–

376.

Monti, G. S., Mateu-Figueras, G. and Pawlowsky-Glahn, V. (2011). Notes on the Scaled Dirichlet Distribu-

tion. Compositional Data Analysis: Theory and Applications, V. Pawlowsky-Glahn & A. Buccianti

eds., John Wiley & Sons, Chichester, 128–138.



56 The normal distribution in some constrained sample spaces

Pawlowsky-Glahn, V. (2003). Statistical modelling on coordinates. Compositional Data Analysis Work-
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Abstract

This paper analyzes the performance of linear regression models taking into account usual criteria

such as the number of principal components or latent factors, the goodness of fit or the predictive

capability. Other comparison criteria, more common in an economic context, are also considered:

the degree of multicollinearity and a decomposition of the mean squared error of the prediction

which determines the nature, systematic or random, of the prediction errors. The applications use

real data of extra-virgin oil obtained by near-infrared spectroscopy. The high dimensionality of

the data is reduced by applying principal component analysis and partial least squares analysis.

A possible improvement of these methods by using cluster analysis or the information of the

relative maxima of the spectrum is investigated. Finally, obtained results are generalized via cross-

validation and bootstrapping.
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1. Introduction

Principal component analysis (PCA) and partial least squares (PLS) are widely used in

linear modelling when the number of explanatory variables greatly exceeds the number

of observations. PCA and PLS calculate, from the explanatory variables, a reduced
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number of components or latent factors orthogonal among themselves. These compo-

nents or factors are obtained as linear combinations of the explanatory variables, for

PCA explaining the variability among these variables and, for PLS maximizing the co-

variance between each explanatory variable and the response one. Both methodologies

reduce the dimensionality of the space of explanatory variables as the information pro-

vided by these variables is summarized in only a few ones.

PCA and PLS have been used in the last decades in some chemometric areas

such as, for example, in pattern recognition (in this context, PCA or PLS linear

discriminant analyses establish classification models based on experimental data in

order to assign unknown samples to a sample class) and in multivariate calibration,

in which PCA or PLS regression models predict a numeric variable as a function

of several explanatory ones. Although papers comparing the goodness between PCA

and PLS are well-known, most of them even considering PLS preferable to PCA for

both regression and discrimination (see, for example, Frank and Friedman (1993) or

Barker and Rayens (2003)), the fact is that PCA (besides PLS) is still widely used

nowadays in chemometrics. Papers such as Gurdeniz and Ozen (2009), López-Negrete

de la Fuente, Garcı́a-Muñoz and Blegler (2010), Mevik and Cederkvist (2004), Nelson,

MacGregor and Taylor (2006) and Yamamoto et al. (2009) can be cited as examples

of using PCA in discrimination and calibration. For this reason, this paper revisits

the comparison between PCA and PLS regressions in new terms. Firstly, the possible

improvement of the regression models incorporating causal additional information of

data is analyzed. Secondly, a proposed decomposition of the prediction errors makes it

possible to determine the nature of these errors and evaluate their predictive capacity.

In this paper, the described methodology is applied to data obtained by near-

infrared (NIR) spectroscopy. The NIR methods are used in food chemistry providing

fast, reliable and cost-effective analytical procedures which, contrary to some others

– such as gas chromatography – require no or little sample manipulation. Even though

the data acquisition process is relatively easy for all spectral techniques, interpretation

of spectra can be difficult. Separation techniques, such as gas chromatography, lead

to discrete information including several usually well-defined, separated peaks from

which, on proper integration, the content of various chemical components in the sample

can be determined. On the contrary, spectroscopy generates continuous information,

rich in both isolated and overlapping bands attributed to vibration of chemical bonds in

molecules, which leads to the availability of multivariate data matrices. In this context,

the use of mathematical and statistical procedures allows us to extract the maximum

useful information from data (Berrueta, Alonso-Salces and Héberger, 2007).

There are many chemometric papers establishing comparison criteria of models.

Thus, for example, Gowen et al. (2010) or Li, Morris and Martin (2002) propose some

measures to determine the optimal number of latent factors in PLS regression mod-

els; Anderson (2009) compares diverse models of PLS regression as a function of their

stability; Andersen and Bro (2010) or Reinaldo, Martins and Ferreira (2008) propose

several selection criteria for variables in multiple calibration models; and Mevik and
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Cerderkvist (2004) provide estimators of the mean squared error of prediction (MSEP)

in PCA and PLS regression models. The aim of this paper is to compare PCA and PLS

regression models on the basis of some criteria such as the number of latent factors or

components, the goodness of fit and the predictive capability. However, this study goes

a step further, incorporating an approach usually associated with an economic context.

The degree of multicollinearity (absent when the regressors of the model are uncorre-

lated among themselves) is considered. Moreover, a decomposition of MSEP is pro-

posed in order to point out the nature, systematic or random, of the prediction errors. As

a final conclusion, the development of the study highlights the potential of the PLS re-

gression.

There are several examples in the literature on the application of PCA and PLS re-

gression models to near-infrared spectral data from oils and fats. For instance, Dupuy et

al. (1996), Gurdeniz and Ozen (2009), Kasemsumran et al. (2005) and Öztürk, Yalçin

and Özdemir (2010) use these multivariate calibration models to predict the content of

some olive oil compounds in order to detect possible adulteration with some other veg-

etable oil. In the present study, the application is carried out by using NIR spectral data

of extra-virgin olive oil and estimates the capability of the models to predict the oleic

acid content. However, our approach could be used to estimate some other chemicals or

features of importance in food chemistry from spectral data (see Mevik and Cederkvist

(2004)). Firstly, the regression models are fitted by applying PCA and PLS from all the

variables associated to different wavelengths of the spectrum (considering the matrix

of data as a black box). Later on, models incorporating information provided by the

relative maxima of the curve are estimated, because the principal components and the

factors are obtained, in an independent manner, in each spectral peak. Then, PCA and

PLS regressions are applied in combination with cluster analysis, a multivariate statisti-

cal technique that uses a measure of distance or similarity to classify a set of variables

or cases in clusters of variables or cases, respectively, similar among themselves; in

this case, components and factors are obtained independently in each cluster of wave-

lengths. The above-mentioned criteria are calculated for each model in order to evaluate

their performance. For models in which PCA or PLS are carried out in an independent

manner in different parts of the spectrum and so the resulting components or factors

are not orthogonal among themselves, the degree of multicollinearity is also considered.

Finally, techniques of cross-validation and bootstrapping are incorporated to extend the

previous results to more general applications.

2. Review of selection criteria in regression models

2.1. Common comparison criteria

a) Goodness of fit. Let s2
Y and s2

̂Y
be the respective variances of the observations,

y1,y2, . . . ,yn, of the dependent variable Y , and the corresponding predictions,
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ŷ1, ŷ2, . . . , ŷn, in a regression model. The coefficient of determination, R2 = s2
̂Y
/s2

Y ,

ranges in the interval [0,1] by definition and, expressed as a %, indicates the

percentage of variability of the dependent variable explained by the regression

model. Obviously, a model is better as the coefficient of determination approaches

1. The adjusted coefficient of determination, R
2
, is calculated from R2, taking

into account the number of observations and the number of the regressors in the

regression, in such a way that the goodness of fit is not overestimated.

The mean squared error of calibration, MSEC = ∑
n
i=1 (yi − ŷi)

2 /n, takes values

nearer to 0 for a good fit, but it is non-dimensionless, that is, it depends on the

units of measure of the variable.

There are other measures of the goodness of fit, that are not contemplated in this

study, based on the likelihood criterion (see Burnham and Anderson (2004)).

b) Predictive capability. Given the predictions for the future t observations, ŷn+1,

ŷn+2, . . . , ŷn+t , of a certain regression model, the mean squared error of the pre-

diction, MSEP=∑
t
j=1 (yn+ j − ŷn+ j)

2 /t, evaluates the predictive capability of a re-

gression model. The predictive capability of a model is obviously better as MSEP

approaches 0, taking into account that it also depends on the measurement units.

As is indicated by Berrueta et al. (2007), the ideal situation is when there are

enough data available to create separate test set completely independent from the

model building process (this validation procedure is known as external validation).

When an independent test set is not available (e.g., because cost or time constraints

make it difficult to increase the sample size), MSEP has to be estimated from

the learning data, that is, the data used to train the regression. In this context,

Mevik and Cederkvist (2004) present several estimators for MSEP, based on cross-

validation or bootstrapping: Let X=[X1|X2|...|Xp] be the matrix containing the

explanatory variables in a regression model and let Y be the dependent variable.

For a set of n observations, it is assumed that L = {(xi,yi) : i = 1, . . . ,nL} is a

learning data set (of nL observations) and T = {(xnL+i,ynL+i) : i = 1, . . . ,nT} is a

test data set (of size nT ). Besides, fL is a predictor trained on L. When L is divided

randomly into K segments, L1,L2, . . . ,LK , of roughly equal size (n1,n2, . . . ,nK),

fk is a predictor trained on L\Lk. Finally, R bootstrap samples are drawn in L,

L∗
1,L

∗
2, . . . ,L

∗
R, and f ∗r is a predictor trained on L∗

r . In the described context, Mevik

and Cederkvist (2004) present the MSEP estimators shown in Table 1.

c) Number of regressors. Attending to the parsimony principle, if some regression

models present similar characteristics in terms of goodness of fit, predictive

capacity and multicollinearity, the simplest among them, i.e. the one with the

smallest number of regressors, is considered the best.
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Table 1: MSEP estimators adopted from Mevik and Cederkvist (2004).

MSEP Estimator Definition

Test set estimate MSEPtest =
1

nT

nT

∑
i=1

( fL (xnL+i)− ynL+i)
2(= MSEP)

Apparent MSEP MSEPapp =
1

nL

nL

∑
i=1

( fL (xi)− yi)
2(= MSEC)

Cross-validation MSEPcv.K =
1

nL

K

∑
k=1

∑
i∈Lk

( fk (xi)− yi)
2

Adjusted

cross-validation

MSEPadj.cv.K = MSEPcv.K +MSEPadj, where

MSEPadj = MSEPapp −
1

nL

K

∑
k=1

nk

nL
∑

i 6∈Lk

( fk (xi)− yi)
2

Naive bootstrap

estimate

MSEPnaive =
1

R

R

∑
r=1

1

nL

nL

∑
i=1

( f ∗r (xi)− yi)
2

Ordinary bootstrap

estimate

MSEPboot = MSEPapp +Biasapp, where

Biasapp =
1

R

R

∑
r=1

(

1

nL

nL

∑
i=1

( f ∗r (xi)− yi)
2 −

1

nL

nL

∑
i=1

( f ∗r (xr
i )− yr

i )
2

)

,

where
(

xr
i ,y

r
i

)

is the ith observation of the rth bootstrap sample

Bootstrap smoothed

cross-validation

MSEPBCV =
1

nL

nL

∑
i=1

1

R−i
∑

r:i 6∈L∗
r

( f ∗r (xi)− yi)
2
,

where R−i is the number of bootstrap samples excluding observation i

The 0.632 estimate MSEP0.632 = 0.632 ·MSEPBCV +(1−0.632) ·MSEPapp,

where 0.632 ≈ 1− e−1 is approximately the average fraction

of distinct observations in each bootstrap data set

In PCA, the Kaiser criterion is the default in SPSS and most statistical software

(but many authors do not recommend to use it as the only cut-off criterion as it

tends to extract too many factors): Let X∗
1 ,X

∗
2 , . . . ,X

∗
p be the standardized variables

of the explanatory variables, X1,X2, . . . ,Xp. When a random sample of dimension n

is considered, X
∗ = [X∗

1 |X
∗
2 | · · · |X

∗
p ] is a matrix of dimension n× p. Then, X

∗T
X

∗ is

a square p× p matrix and has p eigenvalues, λ1,λ2, . . . ,λp. The eigenvalueλk rep-

resents the variance of the k-th principal component (or factor), k = 1, . . . , p. The

Kaiser criterion suggests that those factors with eigenvalues equal or higher than 1
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should be retained (taking into account that the variables are standardized and so

the average of the eigenvalues is precisely 1).

In PLS analysis, the criterion of the first increase of the mean squared error

of prediction is considered: the number of latent factors taken into account is

h∗ = min{h > 1 : MSEP(h+1)−MSEP(h)> 0}, where MSEP(h) the mean squared

error of prediction of the regression model with h factors.

Gowen et al. (2010) show that the over-fitting in a regression model entails

some additional problems, such as the introduction of noise in the regression

coefficients. More specifically, their paper presents some measures for preventing

the over-fitting in PLS calibration models of NIR spectroscopy data, investigating

the use of both model bias and variance simultaneously in selecting the number

of latent factors to include in the model. Initially, the authors consider the Durbin-

Watson statistic:

DW =
∑

p
i=1 (bi −bi−1)

2

∑
p
i=0 b2

i

,

being p the number of the regressors and b0,b1, . . . ,bp the coefficients of the mul-

tiple regression model. The named regression vector measure, RVM, is calculated

by rescaling DW from 0 to 1. Then, a bias measure, BM, is obtained once the root

of the mean squared error of calibration, RMSEC, is rescaled from 0 to 1. Gowen

et al. (2010) propose to obtain the measures RVM j and BM j for models with j latent

factors or components, varying j. Finally, the optimal number of latent factor to

consider in a PLS regression model is j∗ if the minimum of the sum RVM j + BM j

is obtained for j = j∗.

2.2. Other comparison criteria

In this section, other comparison criteria, more frequent in economics research, are pro-

posed. Thus, for example, the decomposition of MSEP provided in d) below is devel-

oped in EViews, a program of econometric analysis. Similarly, Essi, Chukuigwe and

Ojekudo (2011), Greenberg and Parks (1997), Mynbaev (2011), Spanos and McGuirk

(2002) and Yamagata (2006) deal with the multicollinearity under different hypotheses

in an economic context. These new criteria establish additional arguments to the ones

proposed in a)-c) and can assist in selecting the most adequate model.

d) Decomposition of MSEP. In Section 2.1.b, MSEP has been established as a

criterion for evaluating the predictive capability of a model which, in general

terms, is better as MSEP approaches 0. But this issue can be dealt more in depth,

trying to determine the causes of the prediction errors.
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Around 1920, Fisher introduced analysis of variance (ANOVA), a collection of

statistical procedures in which the observed variance in a particular variable is

partitioned into components attributable to different sources of variation. Diverse

authors, e.g. Climaco-Pinto et al. (2009), Mark (1986), Mark and Workman

(1986), Zwanenburg et al. (2011) have used the ANOVA in a chemometric context.

We use this technique to decompose MSEP into three components, with the aim

of investigating if there is any systematic cause that produces the prediction errors

or if they are randomly distributed.

Given the predictions for the future t observations, ŷn+1, ŷn+2, . . . , ŷn+t , of a certain

regression model, y and ŷ are the means of the observations and the predictions,

respectively, sY and s
̂Y

are the corresponding standard deviations and s
ŶY

is the

covariance. Then, the MSEP,

MSEP =
1

t

t

∑
j=1

(yn+ j − ŷn+ j)
2 =

1

t

t

∑
j=1

y2
n+ j +

1

t

t

∑
j=1

ŷ2
n+ j −

2

t

t

∑
j=1

yn+ jŷn+ j,

can be decomposed, once the terms
(

y− ŷ
)2

and 2s
ŶY

are added and subtracted,

in the following way

MSEP =
(

y− ŷ
)2

+
(

sY − s
̂Y

)2
+2
(

sY s
̂Y
− s

ŶY

)

= EB +EV +ER,

or, equivalently, by the identity

1 =
EB

MSEP
+

EV

MSEP
+

ER

MSEP
=UB +UV +UR,

where UB is the part of MSEP corresponding to the bias, representing systematic

errors in the prediction; UV indicates the difference between the variability of the

real values and the variability of the observed ones; finally, UR shows the random

variability in the prediction errors.

The decomposition of MSEP evidences that the predictions are affected by sys-

tematic and random errors. Random errors are, in general, low in absolute value,

resulting from the additive effect of many insignificant events (detected with dif-

ficulty) and so inherent to a process. This kind of error can only be reduced with

the increasing of the sample size, and fluctuate around a constant value, being dis-

tributed as a white noise. However, systematic errors are usually associated with

an identifiable cause, such as an interference in the observation process or a defect

of calibration in the instrument of measurement. They usually originate in a great

fluctuation in the evolution of a process and must be detected and eliminated (for
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example, this is the objective of statistical quality control or the aim of papers such

as Guldberg et al. (2005) or Vasquez and Whiting (2006)).

A model is obviously better as MSEP approaches 0 (taking into account that

MSEP is not upperly bounded and depends on the unit of measurement). But,

using the proposed decomposition, if MSEP shows a great percentage attributable

to systematic errors, this aspect indicates that there is some detectable cause

originating these deviations in the predictions. This cause must be detected in order

to eliminate systematic errors. Thus, a great percentage of MSEP attributable to

systematic prediction errors indicates that the fit model can be improved in some

sense. Nevertheless, this improvement is difficult if the predictions generated by a

model have a random nature.

However, the study of the statistical general linear model (in particular, the mul-

tivariate linear regression model) assumes the random nature of its perturbations

(which must be, by hypotheses, centered, homoscedastic, uncorrelated and nor-

mally distributed random variables). And so the presence of systematic errors in

the predictions (represented by a high UB ratio) or the discrepancy between the

variability of the real and the observed values (represented by a high UV ratio)

prevent the validation of the fitted model, since these facts point out the absence

of the hypotheses of randomness and homoscedasticity.

Definitively, the ideal situation for evaluating the predictive capability of a model

is presented when MSEP has a value nearer to 0 and besides UB = 0, that is,

systematic errors do not exist in the prediction; UV = 0, which indicates that the

variability of the real values is the same as that of the predictions; and UR = 1,

which corresponds to random prediction errors.

e) Possible existence of multicollinearity1. In the fit of a regression model, it is

frequent the appearance of a certain linear relationship among the regressors,

which can be even exact (for example, when the number of cases is lower than

the number of explanatory variables). The presence of multicollinearity in the

regression makes that the least squares estimators obtained are not, in general, very

precise. Although these estimators are still linear, unbiased and efficient (Gauss-

Markov theorem), the multicollinearity complicates the precise quantification of

the effect of each regressor on the dependent variable, because the variances of the

estimators are high.

1. In PCA and PLS regressions, the orthogonal character of the components or factors guarantees the absence of
multicollinearity in the model. In this paper, multicollinearity is evaluated in models whose components or factors are
obtained applying PCA or PLS to different parts of the spectrum, in an independent manner. Thus, these components or
factors are uncorrelated only in the corresponding spectral part.
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In a multiple linear regression model, the estimator of the variance of a certain

coefficient, ̂β j, is given by the expression

̂
Var

(

̂β j

)

=
̂σ

2

p
(

1−R2
j

)

s2
j

, j = 1, . . . , p,

where ̂σ2 is the estimation of the disturbance variance, assumed to be constant by

the hypothesis of homoscedasticity; p is the number of explanatory variables in

the model; R2
j is the coefficient of determination of the regression of the variable

X j on the rest of the explanatory variables; and s2
j is the observed variance of X j.

The variance inflation factor, VIF, is defined as the ratio between the observed

variance and the variance existing when X j is uncorrelated to the rest of the

regressors of the model (and, then, R2
j = 0). Some authors consider that there is

a grave multicollinearity when VIF

(

̂β j

)

> 10 for any j = 1, . . . , p, that is, when

R2
j > 0.90. Some computational programs (SPSS, for example) define the term

“tolerance” as Tj = 1−R2
j ; in this case, a serious multicollinearity is identified

when Tj < 0.10 for any j = 1, . . . , p.

Then, let X
∗T

X
∗ be the matrix defined in Section 2.1.c (X∗ contains the standard-

ized observations). As indicated in that section, it is a square matrix of dimension

p and, therefore, has p eigenvalues. In this case, its condition number, κ, is de-

fined as the root of the ratio between the highest eigenvalue (λmax) and the lowest

one (λmin). The condition number measures the sensitivity of the least-squares es-

timates to small changes in the data. The multicollinearity can be considered as

serious if κ (which is not affected by the measurement units because it is calcu-

lated, as stated above, from standardized variables) ranges between 20 and 30; if

κ is greater than 30, the multicollinearity is very serious.

3. Materials and methods

3.1. Acquisition of spectral data

This work is based on data obtained from olive oil from different olive varieties (mainly

‘Zaity’, ‘Arbequina’, ‘Frantoio’, ‘Picual’ and ‘Hojiblanca’) harvested in the 2005/06,

2006/07, 2007/08 and 2008/09 seasons. Samples correspond to Andalusian olive oils

principally, though some others from Tarragona and Edleb (Syria) have also been

included. There are 302 cases in total. Olive oil was either extracted by the producers

through a two-phase centrifugation system or by the staff of the Agronomy Department

of University of Córdoba via the Abencor System. This system reproduces the industrial
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process on the laboratory scale and follows the same stages of grinding, beating,

centrifugation and decantation.
1H-NMR analyses were carried out at the NMR Service of the University of Sevilla

on a Bruker Avance spectrometer (Kahlsruhe, Germany), by using a resonance fre-

quency of 500.2MHz and a direct-detection 5mm QNP 1H/15N/13C/31P probe. De-

termination of oleic acid content was carried out following the method suggested by

Guillén and Ruiz (2003). NIR spectra were obtained by the staff of the Organic Chem-

istry Department of the University of Córdoba within 15 days after reception of the

samples, which where kept in the fridge so that properties were not modified (Baeten

et al., 2003). The instrument employed for spectra collection was available at the Cen-

tral Service of Analyses (SCAI) at the University of Córdoba. It consisted of a Spectrum

One NTS FT-NIR spectrophotometer (Perkin Elmer LLC, Shelton, USA) equipped with

an integrating sphere module. Samples were analyzed by transflectance by using a glass

petri dish and a hexagonal reflector with a total transflectance pathlength of approxi-

mately 0.5 mm. A diffuse reflecting stainless steel surface placed at the bottom of the

cup reflected the radiation back through the sample to the reflectance detector. The spec-

tra were collected by using Spectrum Software 5.0.1 (Perkin Elmer LLC, Shelton, USA).

The reflectance (log 1/R) spectra were collected with two different reflectors. Data corre-

spond to the average of results with both reflectors, thus ruling out the influence of them

on variability of the obtained results. Moreover, spectra were subsequently smoothed us-

ing the Savitzky-Golay technique (that performs a local polynomial least squares regres-

sion in order to reduce the random noise of the instrumental signal). Once pre-treated,

NIR data of 1237 measurements for each case (representing energy absorbed by olive

oil sample at 1237 different wavelengths, from 800.62 to 2499.64 nm) were supplied to

the Department of Statistics (University of Córdoba) in order to be analyzed.

3.2. Calibration models

As stated above, the aim of this study is to compare PCA and PLS regression models

following the criteria described in Section 2. In this application, the regression models

predict the content in monounsaturated acids (fundamentally, oleic acid, fatty acid of

the omega 9 series with beneficiary cardiovascular and hepatic effects) of extra-virgin

olive oil by using NIR spectral data. For each statistical case, that is, for each oil

sample – n = 302, in total – the observations corresponding to p = 1237 wavelengths

of the spectrum – varying from 800.62 to 2499.64 nm – are available. Therefore, a

statistical approach considers a matrix of data, X, of dimensions n = 302× p = 1237,

whose rows are referred to the cases studied and the columns are associated to the

different explanatory variables in the regression. The dependent variable, Y , is given

by the content in oleic acid of olive oil, in percentage, observed by using proton nuclear

magnetic resonance (1H-NMR). The information provided by the potential explanatory

variables (1237 in total, corresponding to the different wavelengths), will be summarized
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in a reduced number of uncorrelated factors in order to avoid multicollinearity, due to the

high dimensionality of the space of the explanatory variables. The factors are obtained

by using the procedures described as follows:

Method 1. Extraction of latent factors from the whole space of explanatory variables

Firstly, a small number of latent factors or components are determined from the whole

space of 1237 explanatory variables. The factors are obtained as linear combinations of

the explanatory variables and summarize the information provided by these variables.

The components are extracted by PCA and, later on, by using PLS. In PCA, the

factors initially considered are associated to the eigenvalues of the correlation matrix

of the explanatory variables greater than 1 (Kaiser criterion), resulting 6 components

(as λ6=1.706 and λ7=0.941). In PLS analysis, the criterion of the first increase of

MSEP (see Section 2.1.c) is considered; as shown in Table 2, h∗ = 9 in this case. Then,

the number of factors is increased to 15, number of components closer to the ones

considered by next Methods 2 and 3. For subsequent comparisons, the results for 6, 9

and 15 latent factors in PCA and PLS are considered. The percentage of the explanatory

variables explained, in each case, by the extracted factors is greater than 99%.

Table 2: Optimal number of factors in PLS analysis.

Nr. components 1 2 3 4 5 6 7 8 9 10

MSEP(h) 20.68 20.14 13.87 9.22 8.41 6.49 2.07 1.42 0.79 0.89

MSEP(h+1)−MSEP(h)−0.54 −6.27 −4.65 −0.81 −1.92 −4.42 −0.65 −0.63 0.10

Table 3: Optimal number of factors (according to criterion by Gowen et al. (2010)).

Model No. factors (j) DW j RVM j RMSEC j BM j RVM j +BM j

1.1.1 (6 PCA) 6 1.004 0.326 3.673 1 1.326

1.1.2 (9 PCA) 9 1.001 0 3.323 0.806 0.806

1.1.3 (15 PCA) 15 1.010 1 1.868 0 1

2.1.1 (6 PLS) 6 1 1 2.363 1 2

2.1.2 (9 PLS) 9 0.999 0.568 1.252 0.329 0.897

2.1.3 (15 PLS) 15 0.998 0 0.707 0 0

Once the components summarizing the sample information have been obtained, PCA

regression models (Models 1.1.1, 1.1.2 and 1.1.3 with 6, 9 and 15 factors, respectively)

and PLS regression models (Models 2.1.1, 2.1.2 and 2.1.3 with 6, 9 and 15 factors,

respectively) are proposed. These models consider the content in oleic acid by 1H-NMR

spectroscopy as explained variable (Y ) and the previously obtained factors as regressors.

The last column of Table 3 shows that, based on the criterion presented in Gowen et al.
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(2010) (see the measures defined in Section 2.1.c), the optima models among PCA and

PLS regression ones are those with 9 and 15 components, respectively.

Method 2. Extraction of latent factors from the different spectral peaks

NIR spectroscopy yields spectra presenting both isolated and overlapping bands as-

signed to vibrations of one or more chemical bonds in molecules. For this reason, the

explanatory variables associated to wavelengths corresponding to NIR spectral peaks

could contain valuable information to predict the content in oleic acid of olive oil. Thus,

wavelength intervals associated to spectral peaks are determined (Figure 1 shows six re-

gions corresponding to wavelengths 800.62-936.74 nm, 1142.99-1280.49 nm, 1349.24-

1486.74 nm, 1658.62-1899.24 nm, 2105.49-2208.62 nm, 2242.99-2499.64 nm, approx-

imately). Therefore, if X is the matrix containing the 1237 explanatory variables, X can

be divided into six boxes, X
p

(1),X
p

(2), . . . ,X
p

(6), each one containing the explanatory vari-

ables associated to the corresponding region and a seventh box, with residual character,

X
p

(r), containing the remaining explanatory variables: X =
[

X
p

(1)|X
p

(2)| · · · |X
p

(6)|X
p

(r)

]

.

Then, PC and PLS analyses are applied to each of the seven boxes previously

considered, in an independent manner, with the aim of determining factors summarizing

the information associated to each region of the spectrum (Table 4). Afterwards, a PCA

regression model (Model 1.2, Peaks PCA) and a PLS regression model (Model 2.2,

Peaks PLS) are proposed to predict the content in oleic acid of olive oil, Y , considering

the above-mentioned factors as regressors. The regressors (principal components or

factors) in these last models are not uncorrelated among themselves; they are only

orthogonal for each of the defined boxes: X
p

(1),X
p

(2), . . . ,X
p

(6),X
p

(r). This fact introduces

any degree of multicollinearity in the models.

Method 3. Extraction of latent factors from the different clusters of spectral wavelengths

Cluster analysis is applied to determine ten groups of similar explanatory variables, in

terms of the squared Euclidean distance, in order to predict the composition in oleic

acid of the olive oil. Therefore, the matrix of the explanatory variables, X, is expressed

as X =
[

X
c
(1)|X

c
(2)| · · · |X

c
(10)

]

, where X
c
(i) contains the explanatory variables classified

in the i-th cluster, i = 1, . . . ,n, after the application of the procedure. The graphical and

analytical results obtained, in this case, are shown in Figure 2 and Table 5, respectively.

As in Method 2, PCA and PLS are applied to summarize in a reduced number

of components or factors the information of the explanatory variables associated to

each cluster, in an independent manner (which also introduces a certain degree of

multicollinearity among components or factors). Subsequently, a PCA regression model

(Model 1.3, Clusters PCA) and a PLS regression model (Model 2.3, Clusters PLS) are

proposed considering the estimated factors as explanatory variables and the content in

oleic acid, as determined by 1H-NMR, as dependent variable.
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Figure 1: Wavelength intervals associated

to spectral peaks.

Figure 2: Clusters of wavelength.

Table 4: Factors in wavelength intervals associated to spectral peaks.

Wavelength

interval
Nr. int. var. X Box % Y var.

(a)
Nr. fac.

(b) % int. var.
(c)

(PCA)

% int. var.
(c)

(PLS)

800.62-936.74 100 X
p

(1)
50.8 2 98.49 98.2

1142.99-1280.49 101 X
p

(2)
52.1 1 99.30 99.2

1349.24-1486.74 101 X
p

(3)
35.0 1 99.03 98.8

1658.62-1899.24 176 X
p

(4)
91.4 3 99.61 99.4

2105.49-2208.62 76 X
p

(5)
81.7 1 99.32 99.4

2242.99-2499.64 188 X
p

(6)
95.3 2 99.32 97.9

Rest of wavelenghts 495 X
p

(e)
82.2 3 99.49 99.4

(a) Percentage of Y variance explained by X
p

(i)

(b) Number of factors according to Kaiser criterion in PCA

(c) Percentage of X
p

(i) variance explained by interval factors

4. Results and discussions2

Taking into account the results shown in Table 6 and Table 7, the comparison among

the values R
2
, MSEP and κ allows us to conclude that all the PLS regression models

clearly provide better results in terms of goodness of fit, predictive capability and

multicollinearity than the corresponding to PCA regressions with the same number of

latent factors.

2. The chemometric applications can be developed using different software. Some packages of statistical or mathe-
matical analysis have implemented the principal techniques usual in chemometrics, such as PASW Statistics – formerly
SPSS, currently belonging to IBM, UNSCRAMBLER from CAMO, the PLS Toolbox of MatLab from MathWorks, or
the free package “pls” in R.
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Table 5: Factors in clusters of NIR spectrum.

Cluster Nr. clus. var. X Box % Y var.
(a)

Nr. fac.
(b) % clus. var.

(c)

(PCA)

% clus. var.
(c)

(PLS)

1 119 X
c
(1) 93.4 4 99.02 98.2

2 191 X
c
(2) 95.2 4 99.65 99.5

3 12 X
c
(3) 86.0 1 98.33 98.0

4 13 X
c
(4) 44.4 1 98.92 98.5

5 41 X
c
(5) 88.3 1 99.42 99.3

6 35 X
c
(6) 80.3 1 99.50 98.7

7 50 X
c
(7) 85.4 1 99.81 99.8

8 10 X
c
(8) 72.2 1 99.60 99.6

9 13 X
c
(9) 49.4 1 99.59 99.6

10 5 X
c
(10) 5.0 1 99.84 99.8

(a) Percentage of Y variance explained by X
c
(i)

(b) Number of factors according to Kaiser criterion in PCA

(c) Percentage of X
c
(i) variance explained by cluster factors

Table 6: Comparison of models.

Model Nr. fac. R2 R
2

MSEP κ

1.1.1 (6 PCA) 6(a) 0.023 -0.004 19.094 −(c)

1.1.2 (9 PCA) 9(b) 0.200 0.166 13.770 −(c)

1.1.3 (15 PCA) 15 0.748 0.729 1.839 −(c)

1.2 (Peaks PCA) 13 0.349 0.308 7.662 195.698

1.3 (Clusters PCA) 16 0.619 0.591 4.156 301.477

2.1.1 (6 PLS) 6(a) 0.596 0.584 6.490 −(c)

2.1.2 (9 PLS) 9(b) 0.887 0.882 0.792 −(c)

2.1.3 (15 PLS) 15 0.964 0.961 0.307 −(c)

2.2 (Peaks PLS) 13 0.692 0.672 2.557 183.837

2.3 (Clusters PLS) 16 0.859 0.847 0.382 370.059

(a) Number of factors according to Kaiser criterion in PCA

(b) Number of factors according to the first increase of the MSEP in PLS regression

(c) Orthogonal factors

Focusing on PCA regression, the model with 15 latent factors calculated from the

explanatory variables directly, neither extracting the components in each interval of

wavelengths associated to spectral peaks nor applying cluster analysis, is the one that

provides the best results in fit and prediction. This model is named Model 1.1.3 (15

PCA) and has associated values R
2

113=0.729 and MSEP113=1.840. Besides, the orthogonal
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Table 7: Decomposition of MSEP.

Model ŷ s
̂Y

s
ŶY

MSEP EB EV ER UB UV UR

1.1.1 (6 PCA) 80.902 0.493 0.557 19.094 0.834 15.061 3.200 0.044 0.789 0.168

1.1.2 (9 PCA) 81.189 1.811 4.516 13.770 0.392 6.570 6.808 0.028 0.477 0.494

1.1.3 (15 PCA) 81.268 3.569 15.164 1.840 0.299 0.648 0.892 0.163 0.352 0.485

1.2 (Peaks PCA) 81.115 2.387 8.830 7.662 0.490 3.946 3.227 0.064 0.515 0.421

1.3 (Clusters PCA) 80.860 3.251 13.229 4.156 0.912 1.261 1.983 0.220 0.303 0.477

2.1.1 (6 PLS) 80.775 3.015 11.406 6.490 1.083 1.848 3.560 0.167 0.285 0.549

2.1.2 (9 PLS) 81.228 3.996 17.328 0.792 0.346 0.143 0.303 0.436 0.180 0.383

2.1.3 (15 PLS) 81.625 4.397 19.098 0.307 0.036 0.001 0.270 0.118 0.002 0.881

2.2 (Peaks PLS) 81.407 3.537 14.627 2.556 0.167 0.700 1.689 0.065 0.274 0.661

2.3 (Clusters PLS) 81.746 4.039 17.533 0.382 0.005 0.112 0.265 0.013 0.295 0.693

Note: y = 81.8153, sY = 4.3740

character of the components guarantees the absence of multicollinearity in the model.

Finally, the decomposition of MSEP according to expression given in Section 2.2.d (see

Table 7) points out that the last term, UR,113=0.485, is the highest one, thus indicating

that the prediction errors are random, ideal situation for the predictions of a model.

As regards PLS regression, the model in which the sample information is summa-

rized directly from the explanatory variables in 15 PLS components (Model 2.1.3, 15

PLS) shows the best results: R
2

213=0.961, MSEP213 = 0.307 and absence of multicollinear-

ity because of the uncorrelated character of the latent factors. Likewise, this model has

the highest value for the term UR in the decomposition of MSEP (UR,213=0.881 in Table

7); which again confirms the random nature of the prediction errors.

Taking into account the two previous conclusions, neither the distinction of the infor-

mation associated to the spectral peaks nor the previous application of cluster analysis

improve the results of the regression on the PC or PLS latent factors obtained directly

(Method 1). In fact, the results are worse because of the appearance of multicollinearity,

as the values of κ contained in Table 6 evidence.

Finally, in view of the above-mentioned considerations, Model 2.1.3 (15 PLS) is the

best among all the fit models, presenting optimal characteristics regarding number of

latent factors (Table 6 and Table 7), goodness of fit, predictive capability (and causes of

prediction errors) and obviously absence of multicollinearity.

4.1. Cross-validation and bootstrapping

In this section, the attention is focused on the PLS regression model with 15 latent factor

(Model 2.1.3, 15 PLS) as it has been considered the best among all the models studied

above. This model will be compared to the PCA regression model with 15 components

(Model 1.1.3, 15 PCA) in terms of cross-validation and bootstrapping with the aim of

generalizing the previously obtained results.
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Table 8: MSEP estimations.

MSEP Estimation PCA regression (Model 1.1.3) PLS regression (Model 2.1.3)

MSEPtest 1.838 0.308

MSEPapp 3.486 0.500

MSEPcv.K 20.119 2.360

MSEPadj.cv.K 22.539 5.609

MSEPnaive 3.672 0.492

MSEPboot 4.224 0.569

MSEPBCV 3.273 0.480

MSEP0.632 3.352 0.487

Figure 3: MSECi and MSEPi for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS) –i = 1,2, . . . ,50–.

Firstly, Table 8 shows the estimations of MSEP obtained, in this case, from the

different estimators considered in Mevik and Cederkvist (2004) and presented in Table

1 (see Section 2.1.b). The corresponding algorithms divide the learning data set, L,

into K = 6 segments, L1,L2, . . . ,L6, of equal size (nk = 39) for cross-validation; so, 6

regression models, f1, f2, . . . , f6, are fit (where each model fk uses the observations not

contained in Lk). Regarding the bootstrapping, R = 50 bootstrap samples (of size 25),

L∗
1,L

∗
2, . . . ,L

∗
50, are drawn from the learning data set, L. For r = 1,2, . . . ,50, f ∗r is the

regression model trained on L∗
r . Table 8 shows that all the estimations of MSEP obtained

by using the different algorithms described are greater for Model 1.1.3 (15 PCA) than

for Model 2.1.3 (15 PLS). Again, this fact points out that the predictive capability is

higher for the PLS model than for the PCA one.

Afterwards, also in the context of bootstrapping, another algorithm is programmed

to compare MSEP in both models. Now, the objective is to change, in each iteration

i of the algorithm (i = 1,2, . . . ,50), the learning data set, Li, and the test data set, Ti.
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Then, MSECi(= MSEPapp,i) and MSEPi(= MSEPtest,i) are calculated and compared for each

iteration i. Besides, MSEPi is decomposed (Section 2.2.d) in the components UB,i, UV,i and

UR,i, in order to determine the nature of the prediction errors, investigating if they are

randomly distributed or they respond to a systematical cause. In this context, Figure 3

shows that MSECi and MSEPi – calculated for Model 1.1.3 (15 PCA) and Model 2.1.3 (15

PLS) – are clearly higher in PCA regression than in PLS regression, for each iteration

i = 1,2, . . . ,50. Furthermore, the variability of both goodness of fit and predictive

capability is higher in PCA regression, appearing for PLS regression as a white noise.

Regarding the decomposition of MSEP, Figures 4 and 5 depict that, although the

component UR,i is the highest in both PCA and PLS models for i = 1,2, . . . ,50, in PLS

one UR,i represents a percentage of the variability of the prediction errors higher than in

PCA one.

Figure 4: Component UR,i of MSEPi, –i = 1,2, . . . ,50–, for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS).

Figure 5: Decomposition of MSEPi –i = 1,2, . . . ,50–, for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS).
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Figure 6: MSEC and MSEP for PCA and PLS regression as a function of the number of latent factors.

Figure 7: Component UR of MSEP in PCA and PLS regression as a function of the number of latent factors.

Figure 8: Decomposition of MSEP in PCA and PLS regression as a function of the number of latent factors.
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Finally, the evolution of MSEC and MSEP (and their components UB, UV , UR) is

studied as a function of the number of latent factors or components (from 1 to 15) in

PCA and PLS regression models, the learning and the test data set being changed for

each number of latent factors. Figure 6 shows that obviously MSEC and MSEP tend

to decrease with the inclusion of latent factors in the model. However, the decrease

is more pronounced for PLS regression. Figure 7 illustrates that the component UR,

which is associated to the random variability in the prediction errors, increases with the

number of latent factors. Nevertheless, UR represents a percentage or MSEP higher in

PLS regression than in PCA regression. Figure 8 shows that, on average, the component

UB of MSEP – which represents the systematic prediction errors – stay invariant with the

inclusion of new latent factors in the regression models; UV is higher when there are few

components in the model and the random component UR increases with the inclusion of

latent factors in the model. The improvement is clearly higher for PLS regression than

for PCA regression as evidenced by these figures.

5. Conclusions

This paper presents linear regression models explaining the oleic acid chemical com-

position of olive oil through factors extracted by principal components and partial least

squares regression analyses from NIR spectral data. Relative maxima of the spectrum

and cluster analysis are used to previously classify the explanatory variables. The dif-

ferent proposed models are compared on the basis of several criteria such as the number

of latent factors or components, the goodness of fit and the mean squared error of pre-

diction. The comparison among the models is improved by the consideration of some

issues more commonly used in an economic context. More specifically, an exhaustive

study about the multicollinearity is developed and a decomposition of MSEP is set up

in order to analyze the nature of the prediction errors. In conclusion, the PLS regression

model (of 15 latent factors) directly obtained from the data matrix (considered as a black

box), applying neither additional information about the spectral peaks nor cluster anal-

ysis, is the best among all the considered models and exhibits optimal features on the

basis of the diverse comparison criteria previously established. Besides, the decomposi-

tion of MSEP of this model points out the absence of systematic causes in the predictive

errors, that are randomly distributed. Finally, cross-validation and bootstrapping allow

us to confirm and generalize the previously obtained results, highlighting the potential

of the PLS regression.
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Abstract

In many applications, it is often of interest to assess the possible relationships between covariates

and quantiles of a response variable through a regression model. In some instances, the effects of

continuous covariates on the outcome are highly nonlinear. Consequently, appropriate modelling

has to take such flexible smooth effects into account. In this work, various flexible quantile

regression techniques were reviewed and compared by simulation. Finally, all the techniques

were used to construct the overall zone specific reference curves of morphologic measures of

sea urchin Paracentrotus lividus (Lamarck, 1816) located in NW Spain.
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1. Introduction

Quantile regression is a statistical technique which allows, among other applications, to

calculate growth curves and reference values, and is extremely useful in various fields of

application, such as Ecology, Economy and Medicine, examples of which can be seen

in Brian (2003), Koenker (2001), González-Barcala (2008), respectively. In the applied

field, the need arises to extend the classic parametric approach by using smoothing

techniques in regression to capture all the variations that occur in population quantile

curves in response to a set of covariates.
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Figure 1: Shown at left is a colony of P. lividus sea urchins from the intertidal site.

Shown at right in orange are the gonads (the part that is marketed).

Quantile regression is used in cases where a study seeks to estimate the different

percentiles (e.g., the median) of a population of interest. One advantage of using quantile

regression to estimate the median rather than using ordinary least squares regression (to

estimate the mean), is that the former is less sensitive to the presence of atypical values.

When it comes to using different measures of central trend and dispersion, quantile

regression can be regarded as a natural analogue in regression analysis for ensuring a

more complete and robust data analysis. A further advantage of this type of regression

lies in the possibility of estimating any quantile and thus being able to ascertain what

occurs in the case of extreme population values.

In practice there are different methodologies – with freeware implementations devel-

oped by the R Development Core Team (2011) – which address quantile regression. To

our knowledge, while no general comparative analysis has targeted all of these method-

ologies, one such analysis has reportedly been conducted by Fenske (2011) on two of

them.

Our principal aim was to conduct a comparative study, using simulation and ap-

plication to real data, to carry out a brief review of a number of currently used flexi-

ble quantile regression techniques implemented in R software. Specifically, the follow-

ing were reviewed: i) Koenker and Basset’s methodology in Koenker (1978), using the

quantreg package; ii) Cole (1988)’s least means squares (LMS) method, represented

here in the form of a vector generalised additive model as proposed by (Yee (1996)), us-

ing the VGAM package; iii) the method based on generalised additive models for location,

scale and shape proposed by Rigby (2001) and implemented in the gamlss package;

and, iv) a new approach to quantile regression using the boosting process described by

Buehlmann (2007), with the mboost package.

This study is structured as follows: Section 2.1 takes classic quantile regression

and extends it to the non-parametric case; Section 2.2 outlines four current methods

of non-parametric quantile regression; and Section 3 then makes a comparative study

of the different techniques reviewed. The simulation study envisages a non-parametric
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scenario that allows for the respective results yielded by the above-mentioned quantile

regression techniques to be compared. Lastly, section 4 takes two of the four.

2. Quantile regression

2.1. Overview

Let (x1,y1), . . . ,(xn,yn) be a random sample with variable response y and covariate x.

The problem of parametric quantile regression is thus defined as

yi = β0τ+β1τ xi +ǫi,τ ∀i ∈ {1, . . . ,n} (1)

with β0τ,β1τ ∈ R and ǫi,τ ∼ Hτ verifying Hτ(0) = τ. The estimated ̂β0τ and ̂β1τ are

obtained by solving

(̂β0τ, ̂β1τ)= arg min
(β0τ,β1τ)∈R2

{

∑
yi≥A

τ |yi −β0τ−β1τ xi|+ ∑
yi<A

(1−τ) |yi −β0τ−β1τ xi|

}

(2)

Due to the assumption of linearity in the covariate, the above model can be very

restrictive in some instances. This constraint can be avoided by replacing the linear

index β0τ+β1τ · xi with a non-parametric structure. Accordingly, a generalisation of

the model in (1) is given by

yi = fτ(xi)+ǫi,τ ∀i ∈ {1, . . . ,n} (3)

with fτ being an unknown smooth function and τ ∈ (0,1). Moreover, the τ-th quantile

of the error ǫ conditional on the covariate x is assumed to be zero, namely, Qτ(ǫi,τ|x) =

0. Given the sample (x1,y1), . . . ,(xn,yn) the estimation of fτ is obtained by using some

smoother of the form

̂fτ(x) =
n

∑
i=1

ωλ,τ(xi)yi (4)

where λ is the smoothing parameter and ωλ,τ is the function of weights (kernel type,

splines, etc.). Some of these methods are now reviewed below.
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2.2. Methods reviewed

A number of techniques for calculating population growth curves are described in the

current literature. Four techniques displaying different approaches and implemented in

R software developed by the R Development Core Team (2011), are further discussed

below.

2.2.1. Linear-programming-based technique

As its starting point, the linear-programming-based (LP-based) approach to the calcula-

tion of the quantile reference curve τ deems estimations of penalised quantile regression

splines to be solutions to the minimisation of:

n

∑
i=1

ρτ{yi −g(xi)}+λ
∫

{g′′(x)}2dx (5)

where ρτ(u) = u{τ− I(u < 0)} is the function check proposed by Koenker (1978)

and λ is the smoothing parameter of the resulting cubic spline, which generalises the

classic approach of least squares smoothing splines pioneered by Wahba (1990). Since

the minimisation problem posed entails a high computational cost, in expression (5)

{g′′(x)}2 is usually replaced by |g′′(x)| (Koenker, 1994). Indeed, this is the approach

used in the quantreg package. In our study, the rqss function was used to estimate

the quantile curves, with smoothing being added in the non-parametric case via the qss

function. No specifications were laid down as to the monotonicity of the data. This

was due to the fact that, since the work scenarios encountered by us are not always

monotonic, we felt this was something that should be borne in mind when it came to

fitting the model.

2.2.2. Cole’s least means squares method

In this case, the percentile reference curves are calculated on the basis of the distribution

of the data. Hence, based on the LMS technique described in Cole (1988), the calculation

of the τ-th percentile uses Box-Cox family power transformations λ to obtain the

pertinent estimates for the mean and standard deviation. In this procedure, one obtains

the τ-th percentile curve given by the equation

Qyi
(τ|xi) = M(xi)[1+L(xi)S(xi)zτ]

1/L(xi) (6)

with zτ being the normal equivalent deviate for tail area τ and L(x),M(x) and S(x)

being functions that, as shown in (Cole, 1988), relate to the parameters λ,µ and σ of

the distribution of the original simple data. These functions are estimated using vector

generalised additive models (VGAM) proposed by Yee (1996) and based on smoothing
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splines (Hastie, 1990). To implement this method, we used the VGAM-library vgam

function.

2.2.3. Methodology of generalised linear models for location, scale and shape

The generalised linear models for location, scale and shape (GAMLSS) methodology

proposed by Rigby (2005) assumes the structure

Qyi
(τ|xi) = fτ(xi)+ exp(gτ(xi))zτ = µ(xi)+σ(xi)zτ (7)

with zτ as being defined previously and where smoothing is introduced into the esti-

mation of the data-distribution parameters, µ(x) and σ(x), via the functions fτ j and

gτ j using regression B-splines described in Boor (1978). Computational implementa-

tion was performed using gamlss belonging to the package of the same name. The

resulting estimations, µ̂ and σ̂, are based on B-Spline regression.

2.2.4. Boosting algorithms for quantile regression

Calculation of percentile curves based on boosting algorithms (BOOSTING) for quan-

tile regression evolved from boosting algorithms for classification, the best known of

which is the AdaBoost described in Freund (1997). Over the following two years, this

algorithm was propounded by Breiman (1998, 1999), as a backward stepwise algorithm,

known as the functional gradient descent FGD algorithm. Friedman, Hastie and Tibshi-

rani (2000) and Friedman (2001) then carried out statistical developments which en-

abled the FGD algorithm to be applied to estimating functions, including regression.

Subsequently Buehlmann (2007) developed boosting methods for estimation in quantile

regression, and more recently, Fenske (2009) propounded the functional gradient boost-

ing algorithm for additive quantile regression. In this approach, the τ-th percentile is

given by

Qyi
(τ|xi) = fτ(xi) (8)

where the non-linear term of equation (8) introduces smoothing function, fτ, for

continuous non-linear covariate x. In this paper, we fitted this model by means of

smoothing P-splines with B-spline bases, using the mboost package gamboost

function for the purpose.

3. Simulations

A simulation study was conducted to compare the behaviour of the different quantile

regression techniques reviewed. To this end, samples were generated in accordance with

the model
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y = 2+1.5log(x)+0.5xε (9)

with errors εi independently and identically distributed, and the covariate x was gen-

erated following a uniform distribution U(0,3). One hundred (m = 100) independent

samples {(xi,yi)}
n
i=1 of size n = 400 were generated from the model (9) with indepen-

dent random variables distributed following these different scenarios: Scenario A Nor-

mal standard distribution; Scenario B Student t distribution; and Scenario C Gamma

distribution.

The mean squared error (MSE) and the mean absolute deviation error (MADE) were

calculated for the quantile curves corresponding to τ ∼ 0.3,0.5,0.7. These errors are

given by the equations (10) and (11) respectively,

MSE =
1

100

100

∑
j=1

( ̂Q
( j)
τ (x)−Q

( j)
τ (x))2 (10)

MADE =
1

100

100

∑
j=1

| ̂Q
( j)
τ (x)−Q

( j)
τ (x)| (11)

where ̂Q
( j)
τ (x) is the estimation of the τ−th percentile for xi, Q

( j)
τ (x) is the real value of

the τ−th percentile for x.

Table 1: This table shows the mean (standard deviation) of the MSE and the MADE

for the different methodologies and scenarios in the simulation sample.

Scenario τ LP-based LMS GAMLSS BOOSTING

A
0.3

MSE 0.115(0.133) 0.146(0.028) 0.143(0.017) 0.126(0.041)

MADE 0.254(0.172) 0.204(0.067) 0.201(0.060) 0.241(0.068)

0.5
MSE 0.110(0.092) 0.151(0.027) 0.171(0.028) 0.119(0.030)

MADE 0.259(0.165) 0.184(0.061) 0.192(0.055) 0.224(0.056)

0.7
MSE 0.134(0.115) 0.174(0.028) 0.171(0.031) 0.137(0.048)

MADE 0.284(0.182) 0.188(0.060) 0.182(0.064) 0.240(0.062)

B
0.3

MSE 0.230(0.064) 0.359(0.043) 0.264(0.049) 0.188(0.069)

MADE 0.296(0.078) 0.267(0.055) 0.276(0.065) 0.298(0.066)

0.5
MSE 0.295(0.052) 0.169(0.038) 0.202(0.040) 0.144(0.057)

MADE 0.256(0.064) 0.219(0.057) 0.235(0.050) 0.248(0.057)

0.7
MSE 0.376(0.086) 0.227((0.050) 0.226(0.057) 0.193(0.078)

MADE 0.288(0.077) 0.251(0.050) 0.239(0.064) 0.293(0.064)

C
0.3

MSE 0.191(0.036) 0.515(0.077) 0.771(0.069) 0.120(0.044)

MADE 0.195(0.045) 0.581(0.080) 0.624(0.076) 0.222(0.060)

0.5
MSE 0.390(0.086) 0.645(0.071) 0.458(0.084) 0.171(0.067)

MADE 0.309(0.077) 0.588(0.088) 0.540(0.090) 0.285(0.066)

0.7
MSE 0.524(0.120) 0.611(0.169) 0.690(0.157) 0.231(0.089)

MADE 0.404(0.094) 0.981(0.139) 0.942(0.085) 0.340(0.081)
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Figure 2: The solid line shows the theoretical median curve and the dashed line shows

the 95% simulation bands for the different techniques in the Scenario A.
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Figure 3: The solid line shows the theoretical curve and the dashed line shows

the fit for the quantiles τ∼ 0.3,0.5,0.7 using the respective techniques in the Scenario A.

Results are shown for the 100th simulation.
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The results of this study are shown in Table 1 and similar results can be appreciated

for all techniques. As can be seen with the MSE criterion: under Scenario A, the LP-

based technique presents the lowest mean values and the BOOSTING technique shows

the second lowest; for the Scenarios B and C, the BOOSTING technique presents

the lowest mean values and the LP-based technique shows the highest mean values

in Scenario B. Following the MADE criterion: in Scenarios A and B, the LP-based

and BOOSTING techniques present the highest mean values; although under Scenario

C the BOOSTING technique shows the lowest mean values in 5th and 7th percentile

and the LP-based technique presents the second lowest, being the opposite in the 3rd

percentile. When comparing standard deviation for the MSE and the MADE values,

can be appreciated that the LMS and GAMLSS technique shows the lowest values

in Scenarios A and B although the LP-based and BOOSTING techniques present the

lowest values in Scenario C.

As mentioned above, we have not seen a clear winner in Table 1. But when graphing

this, a clear change has been noticed and we can see the improvement of working with

the boosting methodology. In the graphical presentations, the 95% simulation bands for

the median and the quantile curves corresponding to different values of τ are shown in

Figures 2 and 3.

As can be seen from Figure 2, the inability of the LP-based, LMS and GAMLSS

techniques to capture the variability of the data completely gave rise to problems in the

simulation bands, and in the initial values of the covariate in particular.

When boosting algorithms were used, however, an improvement in the fit was

observed across the entire scenario, with this being especially evident in the initial values

referred to above. These characteristics can likewise be discerned in the calculation of

the percentiles corresponding to τ∼ 0.3,0.5,0.7 shown in Figure 3.

4. Application to the exploitation of marine resources

The study was undertaken at the following two sites along Galicia’s Atlantic seaboard

(NW Spain): Punta Area das Vacas (42◦06′54′′ N; 008◦54′30′′ W) (intertidal 1) situated

on the Vigo estuary (Rı́a de Vigo); and Lago (42◦19′25′′ N; 008◦49′37′′ W) (intertidal

2) located on Aldán Bay (Ensenada de Aldán), at the southern edge of the Pontevedra

estuary (Rı́a de Pontevedra). Both sites are representative of populations with a great

abundance of P. lividus on the Galician coast.

Samples were collected from January 2002 to February 2003 along the lower

intertidal zone of both sites (intertidal 1 and intertidal 2), and in the sublittoral area of

Lago (site 2−sublittoral). The samples were randomly collected, with each comprising

a total of 25 specimens of P. lividus. A total of 725 specimens were finally studied.The

specimens were weighed and measured while fresh. The parameters considered for

study purposes were the following two continuous variables: fresh weight, which is a

good indicator of the commercial potential of sea urchins and was taken into account by
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Figure 4: Global population: depiction of the fits for the τth percentiles

(τ ∈ {30,50,70}) with the GAMLSS and BOOSTING techniques.

Table 2: This table shows the values of the estimates obtained at the global sample and at the various sites

for different diameter (Diam.) values for the median (τ= 0.5). These estimates were computed using the

GAMLSS(G-T) and BOOSTING(B-T) techniques.

Global intertidal 2 intertidal 2 sublittoral

Diam. G-T B-T G-T B-T G-T B-T G-T B-T

2.0 3.42 3.46 3.49 3.40 2.90 2.66 3.83 3.68

2.5 7.48 7.05 7.24 7.03 7.03 6.14 7.60 6.74

4.0 26.55 26.75 27.17 27.00 27.38 26.32 32.94 28.10

5.5 67.10 66.47 65.93 66.84 66.74 66.04 71.76 69.11

6.0 86.13 87.75 81.52 85.79 83.22 83.94 91.36 87.55

8.0 191.96 189.43 — — — — 182.15 192.37

being treated as a variable of interest; and diameter which, according to (Lustres-Pérez

(2006)), is an indicator of size and strongly correlated with age, and was deemed to be

a covariate in the model fitted.
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Figure 5: Suitable zone by reference to resource exploitation: depiction of the fits for the τth percentiles

(τ ∈ {30,50,70}) with the BOOSTING technique.

In order to show the growth of the urchin population at different percentiles, two of

the techniques applied to the global population studied are considered. Figure 4 shows
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the weight change versus diameter for the τth percentile, (τ∼ 0.3,0.5,0.7), to GAMLSS

and BOOSTING techniques. The results are similar in both cases but present slight

differences as can be seen in Table 2.

Since the sample was collected in three separate locations, the behaviour of previous

percentiles in each of the zones has also been studied. In this case only one of the

techniques studied, the boosting technique, has been used.

As can be seen in Figure 5 and in Table 3, our results showed that specimens of the

sublittoral population displayed important differences with respect to those collected

from the two intertidal populations. For any given size, sublittoral sea urchins were thus

observed to register higher weights than those that inhabited the intertidal strip, across

all the population quantile curves. These divergences increased from the point at which

P. lividus attained the stipulated commercial size (diameter 5.5 cm). Furthermore the

existence of a greater number of larger-sized specimens in the sublittoral population

was also in evidence.

Table 3: This table shows the values of the estimates obtained at the various sites for different diameter

(Diam.) values and for three different percentiles (τ). These estimates were computed using the BOOSTING

technique.

intertidal 1 intertidal 2 sublittoral

Diam.τ=0.3 τ=0.5 τ=0.7 τ=0.3 τ=0.5 τ=0.7 τ=0.3 τ=0.5 τ=0.7

2.0 3.15 3.40 3.67 2.67 2.66 2.68 3.30 3.68 3.80

2.5 6.68 7.03 7.43 6.09 6.14 6.08 6.48 6.74 8.15

4.0 26.37 27.00 27.80 25.18 26.32 27.61 26.16 28.10 29.45

5.5 64.45 66.84 68.88 64.08 66.04 68.28 67.48 69.11 73.01

6.0 82.12 85.79 87.06 81.46 83.94 86.60 84.79 87.55 90.86

8.0 – – – – – – 186.64 192.37 196.73

5. Discussion

The results yielded by the simulation process suggest that the methods are competitive

for fitting quantile regression models. Estimation of parameters and selection of vari-

ables cannot be made at a single stage of the estimation, nor can the degree of smoothing

be selected automatically with the LP-based technique. The LMS method is likewise un-

able to select the smoothing parameter automatically, is very sensitive to data-dispersion

and displays problems when it comes to working with negative-value responses. This

last-mentioned aspect makes it necessary for translations to be made before and after

fitting the model, to ensure that the results obtained can be properly assessed. As with

the two previously described techniques, the GAMLSS methodology requires selection

of the degree of smoothing. The boosting-based method is the one which (1) estimates

the parameters, (2) selects the variables at a single stage of the estimation, and (3) im-

plements automatic selection of the degree of smoothing. Furthermore, in the light of
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the results shown in Figures 2 and 3, among the four methods discussed, the boosting-

based method is the one for which the data best fits both small and large values of the

covariate. The drawback of this last-mentioned methodology arises due to the fact that

the percentile curves are calculated separately, and this leads to problems with the cross-

tabulation of quantiles. With respect to application to real data, as Figure 5 and Table 3

show, there is a clear difference between the populations considered. The study confirms

that sublittoral populations display conditions better suited to exploitation of P. lividus,

due to:

• the existence of a greater number of commercial specimens; data corroborated

in earlier studies undertaken on the Galician coast, such as those by Fernández-

Pulpeiro (1999) and Lustres-Pérez (2006). In the latter case, a study of 206

intertidal and 63 sublittoral sites showed that the percentage of commercial sea

urchins was 7% at the intertidal site and exceeded 50% at the sublittoral site; and,

• the greater development of sublittoral versus intertidal sea urchins, i.e., higher

weights for any given diameter. This in turn means that during the harvesting

periods on the Galician coast (from October to April), the quantity of gonads

extracted from each sea urchin (the substance that is marketed) is appreciably

higher.

Accordingly, we feel that it would be advisable for exploitation of P. lividus to be

basically undertaken in the sublittoral area and always in a controlled manner. This

would prevent the harvesting of a sizeable quantity of specimens with low commercial

yields. Inappropriate extraction leads to a greater depletion of specimens, which limits

the regeneration of populations of this echinoderm and, in turn, brings about a greater

alteration in coastal ecosystems, bearing in mind the fundamental role that this species

plays in the equilibrium of the habitats in which it lives (e.g. Benedetti-Cecchi, 1995;

Kitching, 1961 and Ruitton, 2000).
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Abstract

“Calçots” are the second-year resprouts of the “Ceba Blanca Tardana de Lleida” landrace of

onions. The evolution of three “calçots” populations has been modeled to help farmers to plan the

optimal time to harvest. Four different models that essentially differ in the type of distribution of the

fitting Gompertz function parameters (lag time, maximum growth rate and the maximum attainable

number of commercial size “calçots”) have been tested. The model that considers a multinomial

distribution of the fitting parameters showed the best agreement with the experimental data.
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1. Introduction

“Calçots” are the second-year resprouts of the “Ceba Blanca Tardana de Lleida” lan-

drace of onions. In the production of “calçots”, all the resprouts from an onion are

harvested at the same time, when ≥ 50 % reach commercial size (1.7 cm–2.5 cm in

diameter and 20 cm in length, as specified in the regulations for the “Calçot de Valls”

(Protected Geographical Indication). Each onion yields between 1 and 20 “calçots”, but

their thickness is negatively correlated with the number of “calçots” per onion, so in

the most productive onions many “calçots” never fulfill the commercial requirements

for size. Production lasts from mid-November to the end of April, and a more or less

constant release of marketable product is needed during this period. Farmers exploit ge-

netic variability in earliness, using combinations of genotypes and/or sowing dates to

adjust the production to consumer demand, but these combinations are haphazard and
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inefficient. Thus, it would be interesting to develop a methodology that would enable

farmers to predict crop evolution and help them plan the optimal time to harvest.

The data recorded in our experimental crops suggest that the evolution of the number

of commercial “calçots” through the growing season can be described by a sigmoidal

pattern: an initial period where no commercial “calçots” are observed is followed by

a second stage of rapid expansion and a final phase where the number of “calçots”

asymptotically tends to a maximum value. Sigmoidal curves have been widely reported

in biology, particularly in the growth of microorganisms under specific physical and

chemical conditions (Rodriguez-Gonzalez et al., 2011; Zwietering et al., 1990), in the

microorganisms inactivation (Gil et al., 2011), in the seasonal growth of fish (Singhi,

2011), and in the growth and development of field crops (Barker et al., 2010; Tei,

Aikman and Scaife, 1996).

One of the most popular models to explain sigmoidal curves is based on the

Gompertz function, which can be expressed in several forms, such as the following

one, which involves three biologically meaningful parameters.

N = Nme−e

µme

Nm ((λ−t)+1), (1)

where N and t are the measured number of individuals and time, respectively. Nm is the

maximum N that can be reached at infinite time, µm is the maximum growth rate, and λ

is the lag time.

The Gompertz model for microorganisms’ growth has been used to predict the safety

and shelf life of foods (Gil et al., 2011; Rodriguez-Gonzalez et al., 2011; Zwietering et

al., 1990). The Gompertz function has been fitted to lettuce growth, although onions

and red beets have expolinear growth (Tei et al., 1996). The Gompertz model has also

been fitted to herbage mass and herbage accumulation (Barker et al., 2010); growth of

tobacco leaves, stems, and roots (Ismail, Khamis and Jaafar, 2003); total biomass, leaf

area index, number of plants per meter, and productivity of sugarcane (Simoes, Rocha

and Lamparelli, 2005); and dry matter production and cob weight in maize cultivars

(Ramachandra Prasad, Krishnamurthy and Kailasam, 1992).

We aim to i) use parameters based on the Gompertz function to discriminate among

different populations and ii) use the same parameters to model the growth of “calçots”

to enable the evolution of the crop to be predicted and the optimal harvest time to be

planned.

2. Materials and methods

In a single location, we cultivated 100 onions from three populations (P1, P2, and

P3) corresponding to three different genotypes. We scored the number of commercial

“calçots” (N) in each viable plant every two weeks over a seven-month period.

First, the three Gompertz function parameters (λi, j, µi, j and Nm,i, j) were estimated

for any plant i of the population j, by nonlinear least squares using the Gauss-Newton
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algorithm. The goodness of fit was tested for each plant through the R2, the root mean

square error (RMSE) and the residuals distribution. All these data were used to compare

the behaviour of the three populations and to develop a simulation process aimed at

predicting the evolution of the three crops.

2.1. Comparison of the three populations

Multivariate ANOVA of the Gompertz parameters was performed following Y=XB+E

where Y is the parameters matrix distributed as a Np ∼ (µ,ΣΣΣ), X is the design matrix, B

is the unknown parameters matrix (µip, αip), and E is the error matrix. The distribution

of error matrix was supposed Np ∼ (0,ΣΣΣǫ), Wilks’ statistic was used to test the

significance of MANOVA. Comparisons of several multivariate means were analyzed

using simultaneous confidence intervals (CI) with Bonferroni correction (Johnson and

Witchern, 2007; Chung et al., 2009).

2.2. Simulations

Simulations were performed independently for each genotype. Viable plants of each

genotype (n j) were randomly split in 2 groups: the “calibration” and the “validation”

groups, composed of nc, j and nv, j plants respectively, being nc, j ≈ 2nv, j and n j =

nc, j +nv, j. Gompertz parameters achieved from the calibration set were used to generate

a simulated set of nv, j plants.

The simulated set was generated according to four different models that essentially

differ in the type of distribution of the fitting parameters of the Gompertz function.

Model 1 only considers the average value of λ, µm and Nm. Then all the simulated

plants evolved with the same rate for this model. Model 2 takes the average value of

λ, µm and Nm and their variance-covariance matrix into account considering a normal

multivariate distribution (Ripley, 1987) following the Equation (2):

fx(x1, . . . ,xk) =
1

(2π)
k
2 |ΣΣΣ|

1
2

(

−
1

2
(x−µ)TΣΣΣ−1(x−µ)

)

, (2)

where k is the numbers of random variables, ΣΣΣ is the Variance-Covariance matrix

between variables and µ is the mean vector of these variables. Model 3 is similar to

Model 2 but uses the transformed parameters obtained from the Box-Cox method (Box

and Cox, 1964; Ripley, 1987). Model 4 considers a univariate Weibull distribution of

λ, µm and Nm independently (Johnson et al., 1994). The probability density function of

a random variable x is described by Equation (3):

f (x;k,λ) =







k

λ

(

x

λ

)k−1

e
−(

x

λ
)k

if x ≥ 0,

0 if x > 0,

(3)



98 Modelling “calçots” (Allium cepa L.) growth by the Gompertz function

where k is the shape parameter and λ is the scale parameter. Then, the shape and scale

parameters were obtained by maximum likelihood estimation and were subsequently

used to generate the simulated set (Johnson et al., 1994).

For each model and each genotype, the simulation was repeated 100 times from the

first step (i.e., from the random selection of the calibration and validation sets). The

suitability of the simulations for predicting the evolution of the crop was evaluated by

comparing each simulated set with its corresponding validation set. Comparisons were

carried out in three ways: first, by applying the chi-square test on the total number of

commercial “calçots” of any population, Nt along the 14 scoring dates, second with a

parametric model survival analysis in which the target success was the time (tX ) when a

plant produces a given fraction (X) of “calçots” meeting the commercial specifications,

and third using a one-way ANOVA performed on the maximum number of commercial

“calçots”, Nm in which scores at the latest time (count 14) were taken for the Nm of

validation plants.

All calculations were done with the R-program (www.R-project.org), using

packages agricolae (Mendiburu, 2010), doBy (Højsgaard and Halekoh, 2011),

fitdistrplus (Delignette-Muller et al., 2010), CAR (Fox and Weisberg, 2011),

MASS (Venables and Ripley, 2002) and survival (Therneau and Lumley, 2011).

3. Results

The evolution of commercial “calçots” number for a typical plant of any population is

shown in Figure 1. The experimental vs. fitted values of Ni, j for each plant with the

modified Gompertz equation yielded average R2 values of 0.901, 0.915, and 0.906, with

their corresponding standard deviations of 0.078, 0.051, and 0.066 for the populations

P1, P2 and P3, respectively. The average values of RMSE were 0.41, 0.39 and 0.22,

which can be considered low compared with the number of “calçots” expected to

Figure 1: Evolution of commercial “calçots” number for some typical plants: ⋄ P1, △ P2 and ◦ P3.
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Figure 2: Residuals vs experimental number of commercial “calçots”. a) ⋄ P1, b) △ P2 and c) ◦ P3.

harvest, 6 to 9. The residuals for of all the plants of any population, plotted in Figure 2,

are nearly symmetrically distributed around the X axis for all the values of N. The only

exception to this trend is observed for N = 0, as the predicted value of N should always
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be positive according to Equation (1). All these data together support the suitability of

the fitting.

3.1. Comparison of the three populations

First of all, the Shapiro-Wilks test shows that the set of estimates values of λ, µm

and Nm of the individual plants for each population do not mainly follow a normal

distribution, so they were transformed using the Box-Cox method and checked again

(Box and Cox, 1964; Royston, 1982). Although conversion by the Box-Cox method

resulted in transformed λ and µm values with a normal distribution, the transformed Nm

(P = 0.033) still does not pass the test (Table 1). The Box-Cox parameter values for

λ, µm and Nm were 0.7, −0.2, and −0.4, respectively. The p-values using Wilks tests

were < 0.001 for both raw and transformed parameters. MANOVA with Bonferroni

simultaneous CI test for multiple means comparisons (Table 2) indicates that the λ2

mean value is smaller than λ1 and λ3 and µm3 is smaller than µm1 and µm2 for both raw

and transformed data. When the raw parameters are compared, the Nm2 mean value is

larger than Nm1 and Nm3; however, when the transformed parameters are compared the

Nm mean values of the three populations show significant differences.

3.2. Simulations

Mean parameters values and their coefficients of variation for simulation and variation

sets can be seen in Table 3. Although a rigorous comparison was not performed, it can

be seen that, generally, mean parameter values for the simulation sets are close to those

corresponding to the validation sets. Further, the coefficients of variation indicate that

fitting parameters are more scattered for simulation sets than for validation samples.

Table 1: P-values for Shapiro-Wilks test of normality.

Raw parameters Transformed parameters

λ 6.4×10−3 0.215

µm 6.89×10−16 0.146

Nm 2.75×10−13 0.033

Table 2: Comparison of parameters mean values with simultaneous CI for

treatments’ difference using Bonferroni correction in multiple comparison.

λ µm Nm

Raw Transformed Raw Transformed Raw Transformed

P1 6.25 a 6.09 a 2.78 a 2.07 a 7.89 b 7.19 b

P2 4.84 b 4.66 b 2.51 a 1.93 a 9.40 a 8.25 a

P3 5.99 a 5.75 a 2.21 b 1.74 b 6.91 b 6.40 c
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Table 3: Mean values and coefficients of variation (CV) for simulation and validation sets.

Set Factor Population Model 1 Model 2 Model 3 Model 4

Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)

Simulation

λ

P1 6.51 9.37 6.48 8.90 6.43 8.58 6.42 9.92

P2 5.13 9.17 5.17 8.71 4.69 10.56 4.78 10.17

P3 6.21 7.22 6.28 8.48 5.90 10.87 5.91 11.37

µm

P1 3.20 14.75 3.16 13.99 2.89 20.56 2.90 14.06

P2 2.69 10.56 2.69 10.17 2.89 19.27 2.60 13.18

P3 2.37 12.53 2.46 12.93 2.25 16.54 2.24 14.19

Nm

P1 8.48 7.92 8.44 6.93 6.94 5.57 8.42 7.77

P2 10.19 7.14 9.99 7.76 7.35 5.68 10.32 8.00

P3 7.47 6.25 7.52 6.27 6.53 5.83 7.53 7.04

Validation

λ

P1 6.25 7.28 6.21 8.23 6.18 6.14 6.18 7.06

P2 4.83 6.40 4.80 6.88 4.88 7.38 4.80 7.51

P3 5.96 8.33 5.98 6.94 6.05 7.20 5.95 7.75

µm

P1 2.80 13.76 2.76 13.33 2.79 13.97 2.72 13.76

P2 2.55 10.97 2.49 10.66 2.55 11.12 2.48 11.48

P3 2.24 11.79 2.21 11.64 2.20 12.82 2.21 10.68

Nm

P1 7.87 6.79 7.89 5.69 7.97 6.73 7.95 5.89

P2 9.38 6.55 9.52 6.60 9.37 6.75 9.39 7.68

P3 6.94 6.34 6.84 5.39 6.86 6.01 6.90 6.15

That can be understood because fitting parameters of validation set are estimated in

one step. Nevertheless, the fitting parameters of simulations sets are estimated after two

previous processes, the parameters estimation of calibration samples and the generation

of a validation set with a limited number of samples. Additionally, for simulation sets,

the parameters of Model 3 tend to be slightly lower than those of other models. Although

the mean parameter values of the validation sets will not be used in future computations,

comparing them to the corresponding simulation sets gives a first rough view of the

goodness of the simulation.

Table 4: Percentage of simulations that pass the chi-square test without reaching significance.

Model 1 Model 2 Model 3 Model 4

P1 0 28 32 22

P2 0 29 23 16

P3 0 27 27 18

All 0 5 10 10

First, the chi-square test was performed on the total number of commercial “calçots”

in a given population. The percentage of simulations that accomplish the chi-square

without significance (p ≤ 0.01) is very low: about 20% for Model 4 and about 30% for

Models 2 and 3 (Table 4). No simulations of Model 1 pass the test, which indicates that a
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given distribution of λ, µm and Nm, and not only their mean values, has to be considered

in order to make reasonable predictions of the evolution of the crop.

To analyze the reason for the failures of the chi-square test, the residuals between the

predicted and experimental values of N vs. time were plotted (Figure 3). As expected,

Model 1 gave the highest residual values throughout the growing season. Models 2 and 3

show a similar tendency for any population and two smaller peaks are observed at counts

4 and 9. Model 4 follows a particular trend for any population, peaks are observed at

count 4 for population 1 but peaks at counts 4 and 8 appear for population 3.

Figure 3: Chi-square test mean residuals of Nt between validation and simulation sets for 100 simulations.

As a second method to check the suitability of the simulations, a survival analysis

was performed at the four times when 25%, 50%, 75%, and 90% of the “calçots” of one

plant achieved the commercial size. In agreement with the results of the chi-square test,

Model 1 fails for the three populations at all times. The other models behave differently

depending on the percentage considered. When 25% of the “calçots” of a plant attained

the commercial size (t25), the number of successful simulations was visibly lower than
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those corresponding to t50, t75, and t90, for which more than 90% of the simulations were

successful (Table 5).

Table 5: Percentage of simulations that fulfill the survival analysis

without reaching significance (p ≤ 0.01).

t25 t50 t75 t90

P1 P2 P3 ALL P1 P2 P3 ALL P1 P2 P3 ALL P1 P2 P3 ALL

Model 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model 2 54 86 69 92 90 94 96 98 100 95 98 100 83 97 94 98

Model 3 73 86 87 95 99 94 97 100 99 97 97 99 99 98 100 100

Model 4 70 84 74 96 94 93 97 98 96 98 98 100 76 93 93 99

The third way to evaluate the simulation was a one-way ANOVA performed on the

maximum number of commercial “calçots”, Nm. Again, the results showed that model

1 did not work (Table 6). Models 2 and 4 lead to more than 90% of simulations with

the ANOVA test non-significant, whereas the suitability of Model 3 is clearly lower and

varies greatly depending on the population.

Table 6: Percentage of simulations that fulfill the ANOVA for Nm.

Model 1 Model 2 Model 3 Model 4

P1 4 99 32 100

P2 55 100 86 98

P3 17 94 65 99

All 55 100 93 97

A global comparison of the different models can be seen in Figure 4, where the total

number of commercial “calçots” of any population, N, is represented. Points for the

hundred simulations of any count are included. As stated above, the points of Model 1

are farthest from the target line, where experimental and calculated values of N would

match. Models 2 and 4 tend to overestimate the production of “calçots”. For the last

stages of the culture, when Nt approaches its maximum value, the points of Model 3

move away from the bisector, in agreement with the ANOVA test for Nm. Globally, the

best predictions were achieved by Model 2.

4. Conclusions

The modified Gompertz function allowed us to compare several populations with

different genotypes throughout the growing season instead of making the comparison

at peak times when scoring is carried out.

The multinomial distribution of fitting parameters of the Gompertz function used in

Model 2 was the best distribution to model the growth of “calçots”, predict the evolution

of the crop, and decide the optimal harvest time.
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Figure 4: Simulation vs. validation of total number of commercial “calçots”. Symbols: ⋄ P1, △ P2 and ◦ P3.

Model 1 yielded the worst results for all the tests used. Thus, models that consider

a given distribution of the Gompertz fitting parameters (λ, µm and Nm) are much more

suitable to explain the growth of “calçots” than those that consider only mean values.

Studies of the effects of the environment and genotypes on crop growth are needed

to understand the different behaviour of each population so that better models can be

constructed for the entire growing season.
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