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Abstract

Visual receptive fields (RFs) are small areas of the visual field where a stimulus induces a re-

sponses of a particular neuron from the visual system. RFs can be mapped using reverse cross-

correlation technique, which produces raw matrices containing both spatial and temporal informa-

tion about the RF. Though this technique is frequently used in electrophysiological experiments,

it does not allow formal comparisons between RFs obtained under different experimental condi-

tions. In this paper we propose the use of Generalised Additive Models (GAM) including com-

plex interactions, to obtain smoothed spatio-temporal versions of RFs. Moreover, the proposed

methodology also allow for the statistical comparisons of the RFs obtained across various experi-

mental conditions. Data analysed here derive from studies of neurons’ activity in the visual cortex

of behaving monkeys. Our results suggest that the GAM-based technique proposed in this paper

can be a flexible and powerful tool for assessing receptive field properties.
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1. Introduction

One of the techniques used in neurophysiology is electrophysiology, which records

the electrical activity produced by neurons. Electrophysiology allows to study the
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association between sensory stimuli and the neural response in any part of the brain, such

as in the visual cortex. Neurons produce sudden changes in their membrane potential

known as ‘spikes’, that can be recorded with microelectrodes. These spikes encode the

information produced by the neurons. The analysis of the frequency of spike discharges

gives us insights on how the neurons and the nervous system work.

Visual receptive fields (RF) are a basic feature of single cells in the visual system.

They are small areas of the visual field that a particular visual neuron ‘sees’. They have

different sizes depending on the visual area we are considering. From the cell reponses

(spikes) we can infer the spatio-temporal properties of the RFs. RFs can be mapped

using different techniques. Initially, receptive field maps were manually mapped using

simple dots, lines and edges. Despite its simplicity, this early mapping showed that

the spatial structure of visual receptive fields as divided into ‘on’ and ‘off’ subregions

(Barlow, 1953; Hartline and Ratliff, 1958; Hubel and Wiesel, 1962; Kuffler, 1953). Each

of these regions responded to the onset of a bright (‘on’) or dark (‘off’) spot respectively

and was the basis of the circular center-surround organization of visual receptive fields

of retinal cells. In the primary visual cortex, Hubel and Wiesel (1962) classified cortical

neurons into two groups, simple and complex. Simple cells had receptive fields divided

with separate ‘on’ and ‘off’ regions, whereas complex cells did not have such division.

Visual cells from area V1 – which is a primary visual cortical area – show ocular

dominance. This effect occurs because these cells receive stronger inputs from one eye

than from the other. Some cells receive inputs with equal strength from both eyes. Ocular

dominance makes that the RF of a given cell can be different depending on what eye is

stimulated.

Further quantitative techniques of receptive field mapping have contributed signifi-

cantly to refine our knowledge about receptive field properties and organization. Post-

stimulus responses to flashing or moving bars or dots were used to map receptive fields

in the visual system of both cats (Bishop et al., 1973; Henry and Bishop, 1972; Pei et

al., 1994) and monkeys (Tsao et al., 2003).

Receptive field mapping techniques that use a reverse correlation analysis have been

effective in providing detailed receptive field maps of neurons in early stages of the

visual pathway (DeAngelis et al., 1993; Jones and Palmer, 1987; Krause et al., 1987;

Reid et al., 1997). Binocular receptive fields have also been mapped using reverse

correlation techniques and with stimuli with various binocular disparities (Gonzalez et

al., 2001).

Briefly, reverse cross-correlation is a technique that can be used for studying how

visual neurons process signals from different positions in their receptive field, and can

provide both spatial and temporal information about their RF. A schematic illustration

on how the reverse cross-correlation technique was used in our experiments is shown

in Figure 1. The animal was viewing two monitors (Figure 1A) with a fixation target.

Within a square area over the cell receptive field a bright or dark spot was flashed in

different positions in a pseudorandom manner. Cell spikes were recorded while the

stimulus was delivered (Figure 1B). When a spike was produced (t0), the stimulus
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Figure 1: Reverse cross-correlation technique. The animal was viewing two monitors (A) with a fixation

target. Within a square area over the cell receptive field a bright or dark spot was flashed in different

positions in a pseudorandom manner. Cell spikes were recorded while the stimulus was delivered (B).

When a spike was produced (t0), the stimulus position at several pre-spike times (−20, −40, . . ., −320

ms) was read (C) and the corresponding position was increased by one. The result was a numerical matrix

containing the number of stimulus occurrences at each position (D).

position at several pre-spike times (−20,−40, . . . ,−320 ms) was read (Figure 1C),

and the corresponding position was increased by one. The result was a numerical

matrix containing the number of stimulus occurrences at each position (Figure 1D).

The graphical representation of this matrix is what we call receptive field map (RFmap).

Although this technique provides raw receptive field maps, it does not allow further

aspects of receptive field analysis such as formal comparisons between left and right

receptive field maps, ‘on’ and ‘off’ maps, or between monocular and binocular receptive

field maps.

The main objective of this paper is to use flexible regression models including

complex interactions for modelling the visual receptive fields over time, which in

turn may vary across various experimental conditions. Specifically, we suggest the use

of Poisson Generalised Additive Model (GAM, Hastie and Tibshirani, 1990) which

expresses the cell response (i.e., number of spikes) as a smooth function of both space

and time, including high-order interactions. Advantages of using this regression model-

based approach include the following:

• construction of smoothed versions of RF maps, by including spatial effects in the

model.;

• explanation of differences in the course of the cell activity in a unified way.
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So far, several ways to smooth cell activity have been studied in the literature. An

overview of the application of smoothing techniques in neuronal data can be found

in Kass et al. (2003). Cadarso et al. (2006) and Roca-Padiñas et al. (2006, 2011), for

example, employ a flexible modeling technique based on the logistic GAM with local

linear kernel smoothers. Faes et al. (2008) apply a flexible method based on natural cubic

splines to model synchrony in neuronal firing. Other recent techniques in this context

include the Bayesian adaptive regression splines (Behseta and Kass, 2005; Behseta et al.,

2005; DiMatteo et al., 2001). Flexible regression-based techniques come out favourably

since they enjoy the flexibility of capturing the spatio-temporal evolution without the

restriction of parametric modeling as well as the possibility to include covariate or factor

information. We revisit this aspect in Section 3 where the models discussed happen to

share similar properties.

Though GAMs were successfully applied in electrophysiological experiments, no

attempt was made so far to use spatio-temporal GAM models when modelling neural

data. To this aim, in this paper we follow the GAM approach suggested by Wood

(2006a), as a flexible way to model the temporal evolution of visual RFs, across

different conditions. The estimation algorithm used for fitting GAMs is based on

penalised regression splines (Eilers and Marx, 1996), in combination with B-splines

basis functions and the representation of the GAM as a mixed model. This representation

is very appealing, since it allows to select the amount of smoothing automatically via

restricted (or residual) maximum likelihood (REML). This statistical approach provides

a computationally efficient way of estimating the model and making inference when

dealing with neural data.

The paper is organized as follows. In Section 2, the electrophysiological experiment

is discussed. GAMs including interactions are introduced in Section 3. In Section 4, we

present the main results that were obtained for our study. Finally, we point out some

conclusions in Section 5.

2. The electrophysiological experiment

2.1. Animal preparation

The experimental setup and physiological recording were reported in detail elsewhere

(Gonzalez et al., 1993; Gonzalez and Krause, 1994; Gonzalez et al., 2001). Two mon-

keys (Macaca mulatta) were trained to perform with their head fixed a task that required

a steady visual fixation on a small target (0.3×0.2 deg). The behavourial task consisted

of a series of trials from 1 to 2 s separated by an intertrial interval of 1 s. Single-cell

activity was recorded by means of metal microelectrodes (5 Mohm, AMSystems Inc.,

Washington, USA) inserted in the brain. For this, a stainless steel cylindrical cham-

ber was attached to the skull covering area V1. To allow access to the visual cortex,

small craniotomies of 5 mm diameter were made in the exposed skull within the cham-
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ber. Microelectrode penetrations were made by using an electrohydraulic microdriver

(Narishige, Japan) mounted on the chamber. Neural voltage signals were amplified and

filtered using conventional electronic equipment. A time-amplitude window discrimi-

nator (Bak Electronics, Rockville, Maryland, USA) was used to convert the amplified,

filtered neural signal to TTL pulses, which were collected by a conventional computer.

At the end of the experiments the animal was deeply anaesthetized with nembutal, the

brain perfused with 10% formalin and the region where the penetrations were made was

blocked and sliced. Sections were stained with toluidine blue and the electrode tracks

were reconstructed. Ocular movements were monitored by means of a video camera

under infrared illumination. A frame grabber (Imagenation PXC200, Oregon, USA) at-

tached to a conventional personal computer was used to detect the corneal reflex on

the left eye and abort the trials when eye movements exceeded a fixation window of

1× 1 deg. All surgical procedures were made under general anesthesia (ketamine i.m.

10 mg/kg, followed by sodium pentobarbital i.v. 27 mg/kg). Supplementary pentobar-

bital was given whenever necessary during the surgical procedure and analgesics and

antibiotics (noramidopirine i.m. 150 mg/kg, penicillin i.m. 50000 IU/kg) were given at

the end of the surgery. Cleaning and asepsis of the implant was made periodically. All

animal procedures were performed in accordance with the guidelines of the Bioethic

Committee of our institution.

2.2. Visual stimulation

The presentation of stimuli and the collection, storage and on-line display of analysed

data were controlled by five conventional personal computers running software devel-

oped in our own laboratory (Gonzalez and Krause, 1994). The animal was placed in

front of a two-mirror system allowing simultaneous and separate viewing of two mon-

itors (Model CPD- 520GST, Sony) placed laterally 57.7 cm away from the monkey’s

eyes subtending 44.8× 28 of visual field and set for a resolution of 320× 200 pixels

(1 pixel = 0.14) and 70 frames per second. Once the assessment of the basic properties

of the RF of the cell under study was made, the stimulation procedure to obtain the RF

maps (see below) was started.

2.3. Data acquisition

To obtain data to produce the RFmaps we first used a reverse cross-correlation technique

(DeBoer and Kuyper, 1968; Jones and Palmer, 1987; Krause et al., 1987; Pérez et al.,

2005). For this, we flashed a small bright square (jumping spot), 14.0 cd/m2) on a grid

with 16×16 spatial locations (2.2×2.2 deg). The spot size was adjusted to cover 1/16th

of the grid side and flashed for a duration of 1/70s (one frame of the monitor) at different

grid locations (Pérez et al., 2005). Figure 1 schematically shows this technique. The
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background of the monitor screens had a constant luminance of 2 cd/m2. To obtain ‘on’

responses, a bright (14.0 cd/m2) jumping spot was used. To obtain ‘off’ responses, a

dark (0.28 cd/m2) jumping spot was used. For each successive presentation the location

of the spot on the grid was chosen randomly. Each time a neural spike was detected we

correlated it with the stimulus position at various prespike times and constructed series

of matrices for different pre-spike times. To produce reliable maps, each sequence of

stimulation typically required at least 20 presentations of the stimulus on each location

of the stimulus grid. For each cell, a series of matrices with 256 grid positions each,

covering a prespike time from 20 to 320 ms (at 20 ms interval), were obtained, under

different experimental conditions. A local specific coupling between the stimulus and

response at a particular prespike time and disparity will produce an emerging set of data

with high values on this particular location in the matrix.

3. Statistical methodology

Regression analysis plays a fundamental role in statistics. The objective of this statistical

methodology is to evaluate the influence of some explanatory variables (called covari-

ates), x = (x1, . . . ,xp), on the mean of a measure of interest y. This relation is given by

E[y|x1, . . . ,xp] = E[y|x] = m(x1, . . . ,xp) , (1)

where m(·) is a multivariate function, usually denoted as the mean regression function.

The most usual way to model the dependence between the response variable and the

covariates is through the multiple linear regression model. In this model, the response y

given covariates x is assumed to be normally distributed
(

y|x ∼ N
(

m(x) ,σ2
))

, and the

covariates are assumed to have a linear effect on the response. Specifically, the following

model is assumed

E[y|x] = m(x1, . . . ,xp) = β0 +β1x1 + · · ·+βpxp,

where β = (β0,β1, . . . ,βp)
T

is a vector of unknown regression coefficients.

However, in some circumstances, the assumption of linearity in the effects of the

continuous covariates is very restrictive and is not supported by the data at hand. In this

setting non-parametric regression techniques are involved in modelling the dependence

between y and x, but without specifying, in advance, the function m(·) in (1) that relates

the covariates and the response. However, if no restrictions are imposed to the funcion

m(·), some problems arise. First, fully non-parametric data analysis can be afflicted by

the so-called curse of dimensionality (Bellman, 1961): as the dimension of the number

of covariates increases, it becomes exponentially more difficult to estimate the function

m(·). Second, it is difficult to visualize a regression surface m(·) for more than two
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covariates. To overcome these difficulties, additive regression models (AMs, Hastie and

Tibshirani, 1990) are an alternative to unconstrained non-parametric regression with

several covariates. The additive regression model is defined as

E[y|x] = m(x1, . . . ,xp) = f1(x1)+ · · ·+ fp(xp), (2)

where fk (k = 1, . . . , p) are smooth and unknown functions.

In many applications, the response y can be discrete (e.g. count or binary data).

These situations require a different model for the conditional expectation of y, since a

direct connection between E[y|x] and the additive predictor f1(x1)+ · · ·+ fp(xp) in (2)

is no longer possible unless some constraints are imposed. In such cases, the generalised

additive models (GAMs) extends the AM by allowing for different distributions of the

response variable y. Specifically, GAMs assume that the distribution of the response

variable y given covariates x belongs to the exponential family (McCullagh and Nelder,

1989). In these models, the relationship between E[y|x] and the covariates is specified

through the following model

E[y|x] = g( f1(x1)+ · · ·+ fp(xp)) , (3)

where g(·) is a monotonic known function (the inverse of link function).

A weakness of the AM and GAM given in equations (2) and (3) is that these models

completely ignore the fact that the functional form of a covariate effect often varies ac-

cording to the values taken by one or more of the remaining covariates. It is not unusual

to find situations in which more complex models are needed. This is the case of our real

data example, in which we could expect that the response of interest varies smoothly

across the visual receptive field (defined in terms of x- and y- coordinates). In recent

years, a number of papers have appeared which address the problem of estimating AMs

and GAMs with interaction terms. Hastie and Tibshirani (1990) discussed various ap-

proaches using smoothing splines. Wahba (1990), among others, proposed the use of

smoothing spline ANOVA methods. Roca-Padiñas et al. (2006, 2008) also proposed al-

ternative methods based on kernel-type smoothers. In the context of penalised regression

splines, Brezger and Lang (2006), Currie et al. (2006), Eilers and Marx (2003), Lee and

Durbán (2011), Wood (2006b), among others, are several references related to multidi-

mensional smoothing. This paper is focused on penalised regression splines, and more

specifically on those approaches implemented in the mgcv package [Wood (2006a)] of

the R (R Development Core Team, 2011) statistical software. We begin this section by

presenting the idea of penalised spline smoothing in the univariate case and then we

address the multivariate and multidimensional regression problem.
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3.1. Penalised spline smoothing

For simplicity, we introduce the idea of penalised spline smoothing in the univariate

Gaussian case. Specifically, let

yi = f (xi)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (4)

where f (·) is a smooth and unknown function of covariate x that needs to be estimated

from the data points (xi,yi) , i = 1, . . . ,n.

To estimate the function f (·), it is assumed that this function can be represented as

a linear combination of d known basis functions B j, i.e.

f (x) =
d

∑
j=1

θ jB j (x) , (5)

where θ = (θ1, . . . ,θd)
T

is a vector of unknown regression coefficients. Under this

representation model (4) is purely parametric, and therefore it can be easily estimated

using ordinary least squares

θ̂ =
(

BTB
)−1

BTy,

where y = (y1, . . . ,yn)
T

and B is the design matrix

B =







B1 (x1) B2 (x1) · · · Bd (x1)
...

...
. . .

...

B1 (xn) B2 (xn) · · · Bd (xn)






.

There are several alternatives for the choice of the basis functions B j ( j = 1, . . . ,d) in (5).

The simplest basis functions are the polynomials, where B j (x) = x j−1. However, these

basis functions have the disadvantage of not being very flexible, and, tend to produce an

artificial behaviour at the boundaries. Some alternatives are the so-called spline basis, as

truncated polynomial, B-splines (de Boor, 2001), or thin plate regression splines (Wood,

2003). For the sake of illustration, this paper is focused on B-splines. In this case, the

function f (·) in (5) is specified with respect to a given set of knots

xmin = k1 < k2 < · · ·< kk = xmax

placed at equidistant or noequidistant points over the domain of x. The knots divide

the domain of x, such that each interval will be covered by p+ 1 B-splines of degree

p, and the number of B-splines in (5) is d = k+ p− 1. Figure 2(a) shows an example
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Figure 2: (a) B-splines basis functions of degree p = 3 based on k = 5 knots (black squares). The solid

triangles indicate the non-zero B-splines at x = 0.42. Shown in (b) and (c) are the “weighted” (accordingly

to the coefficient estimate θ̂ ) B-Spline basis function (solid lines), the true function f (x) = 1+sin(5(x+1))

(bold solid line), and the fitted curve (bold dotted lined) based on k = 5 and k = 20 knots respectively.

of B-spline basis functions with k = 5 knots and degree p = 3. In order to estimate

the function f (·) in (5) (or more precisely, the vector θ ) we have therefore to specify

the number and location of knots and the degree of the B-spline. As an illustration

of the impact of the number of knots, we simulated n = 100 data from the function

f (xi) = 1+sin(5(xi+1)), with xi ∼U [0,1] and independent ǫi ∼N (0,0.2). Figures 2(b)

and 2(c) show the estimated curves (via ordinary least squares) with k = 5 and k = 20

equidistant knots respectively. As can be observed, as the number of knots increases,

the estimated curve (in comparison with the true curve) becomes too wiggly, meaning

that the data are overfitted. Thus, a wrong choice in the number (and also the location)

of knots can lead to estimates, and therefore conclusions, that could be erroneous.
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Figure 3: True function f (x) = 1+ sin(5(x+1)) (bold solid line), and the fitted curve (bold dotted lined)

based on p = 3 degree, k = 40 knots; and q = 2-nd order derivative: (a) λ = 10−6; (b) λ = 7; and (c)

λ= 104.

Although several approaches have been proposed to select an optimal set of knots (see

e.g. Fried and Silverman, 1989; Lee, 2002), all of them have the disadvantage of being

computationally intensive. To overcome this problem O’Sullivan (1986), and later Eilers

and Marx (1996), introduced the idea of penalised splines, where a smoothness penalty

is added to the least squares criterion when estimating the regression coefficients θ in

(5). Although in Eilers and Marx (1996) a discrete penalty is proposed, for the sake

of presentation we considered here a penalty based on the integrated derivatives of

function f . Specifically, in the case of penalised splines a large amount of knots (e.g.

min{n/4,40}) is chosen, and instead of fitting the model by minimising the sum of

squares,

||y−Bθ ||2,
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it is fitted by minimising a penalised sum of squares

||y−Bθ ||2 +λ
∫ xmax

xmin

[ f q (x)]2 dx, (6)

where the integral of the square of the q-th order derivative, f q, penalises models that

are too wiggly. The smoothing parameter λ controls the trade-off between the bias and

the variance of the resulting estimates. The result of a using large smoothing parameter

(λ→ ∞) is an oversmoothed curve, leading in the limit to the least squares (q−1)-order

polynomial through the data. On the other hand, a small smoothing parameter (λ→ 0)

tends reproduce the data. This can be observed in Figure 3, where the data presented in

Figure 2 were re-analysed but incorporating the penalisation. Thus, the optimal amount

of smoothing λ has to be chosen by compromising goodness of fit with complexity of

the estimated function. This issue is the subject of the next subsection.

It sould be noted that since the function f (·) is linear in the coefficients θ j (see (5)),

the penalty can also be writen as (see, for instance, Marra and Radice, 2010)

∫ xmax

xmin

[ f q (x)]2 dx = θ TKθ , (7)

where K is a known d × d matrix, whose elements depend on the chosen spline basis.

Accordingly, for a given λ, the minimiser of (6) is then

θ̂ =
(

BTB+λK
)−1

BTy.

In the case of B-splines, the integrated square of the q-th order derivative of function

f (·) can be well approximated by differences of the sequence of regression coefficients

θ = (θ1, . . . ,θd). Accordingly, the smoothness penalty presented in (7) is equivalent to

impose a penalty on q-th order differences of adjacent B-Spline coefficients. For a more

detailed review of this topic, see Eilers and Marx (1996).

3.1.1. Smoothing parameter selection

As pointed out before, a crucial point in penalised spline smoothing is the choice of the

smoothing parameter λ in (6). If a large smoothing parameter is chosen, the resulting

curve estimate is very smooth, but if a small smoothing parameter is chosen the resulting

estimate becomes too wiggly. Therefore, it is important to have procedures for helping

in the selection of the optimal smoothing parameter. In this section, we review several

methods to choose the ‘optimal’value of λ.

(Generalised) Cross Validation When using cross validation (CV) to select the the

optimal smoothing parameter, the objective is to obtain the λ value which minimises the
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cross validation expression

CV (λ) =
1

n

n

∑
i=1

(

yi − f̂−i (xi)
)2
,

where f̂−i denotes the fit obtained by leaving out the ith data point.

As can be observed in the expression above, CV implies to fit n different models

(as many as the number of observations), which is computationally very intensive.

Fortunately, a more efficient equivalent expression can be obtained Hastie and Tibshirani

(1990):

CV (λ) =
1

n

n

∑
i=1

(

yi − f̂ (xi)

1−hii

)2

,

where hii are the diagonal elements of the hat matrix

H = B
(

BTB+λK
)−1

BT,

that is the matrix such that ŷ = f̂ (x) = Hy. It should be noted that the trace of the hat

matrix H define the effective degrees of freedom (edf) (i.e. the ‘effective’ number of

parameters) of a smoother (see Hastie and Tibshirani, 1990; Wood, 2006a).

However, the CV criterion suffers from several drawbacks (see Wahba, 1990; Wood,

2006a). For instance: (a) in the case of more than one smooth function, it becomes

computationally expensive; and (b) it presents a lack of invariance. A modified version

of this criterion, the generalised cross validation (GCV), was suggested by Craven and

Wahba (1979), and presents some advantages over CV (see Craven and Wahba, 1979;

Wahba, 1990). The GCV is defined as:

GCV (λ) =
1

n

n

∑
i=1

(

yi − f̂ (xi)

1−∑
n
j=1 h j j/n

)2

.

An efficient implementation – in the multivariate additive case – of the GCV criterion

(Wood, 2000) was the origin of the mgcv package, and for this reason the package

deserves its name (multivariate generalised cross validation). Later, Wood (2004) pro-

posed an alternative method to the Wood (2000) which overcame some of its limitations.

Primarily the new method is particularly robust numerically, and can deal with rank defi-

ciency in the model. This is, by now, the default method (for the additive case) to choose

the smoothing parameters in the mgcv package.

Akaike Information Criterion A common approach for the λ selection is to optimise

criteria such as the Akaike’s information criterion (AIC). In this case, the optimal
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smoothing parameter λ is that which minimises

AIC (λ) = dev(y;θ ;λ)+2trace(H),

where dev denotes the deviance of the model and H is the hat matrix.

In the mgcv package, the AIC, or more specifically a rescaled AIC – the unbiased

risk estimator (UBRE) (Craven and Wahba, 1979) – is the default method when the

scale parameter of the exponential family to which the response y pertains is known (for

instance, in the binomial and Poisson cases) (see Wood, 2004, 2008).

Mixed Model Representation A different approach to choose the optimal smoothing

parameter λ comes from the fact that a P-Spline regression model can be formulated

as a linear mixed model (Brumback et al., 1999; Currie and Durbán, 2002). Although

a detailed presentation of this approach is beyond the scope of this paper, we briefly

describe here the main ideas behind it.

In this approach, the design matrix B and the vector of regression coefficients θ are

reformulated is such a way that

y = Bθ + ǫ = Uβ+Zu+ ǫ, with u ∼ N(0,G) and ǫ ∼ N(0,σ2In)

where In is the identity matrix, U and Z are the model matrices, and β and u are the

fixed and random effects coefficients of the linear mixed model respectively. The random

effects have covariance matrix G, which depends on the variance σ2
u, G = σ2

uIK. Under

this new configuration, it can be shown that λ is given by the ratio of the variance

components, i.e., λ = σ2

σ2
u
. Accordingly, the estimation of the P-Spline model can be

obtained using standard procedures for the estimation of a linear mixed model, and the

choice of the smoothing parameter becomes the estimation of the variance components

(either via maximum likelihood (ML) or restricted (or residual) maximum likelihood

(REML)).

Recently, Wood (2011) presented a computationally efficient way of estimating the

smoothing parameters of P-splines models in which a Laplace approximation is used to

obtain an approximate REML or ML. These methods are already implemented in the

gam() function of the mgcv package.

Simulation results presented in Wood (2011) and Strasak et al. (2011) suggest that

REML and ML methods offer some improvement in terms of the mean-square error

and the stability of the estimator relative to GCV or AIC in most cases. Moreover,

Reiss and Odgen (2009) also show that at finite sample sizes GCV or AIC are prone

to undersmoothing and are more likely to develop multiple minima than REML. For all

these reasons, the use of the REML method is recommended.
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3.1.2. Additive models and identifiability constraints

In some circumstances, the objective of a real data analysis could be to jointly evaluate

the effect of two (or more) covariates, x1 and x2, on the response of interest y. In this

case, an appropiate model could be the addivive model

yi = f1(xi1)+ f2(xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (8)

where f1 (·) and f2 (·) are smooth and unknown functions.

However, this model presents an identifiability problem due to the fact that it

incorporates more than one covariate. We could subtract a constant c of any smooth

function ( f1 (x1)− c), and add it to another one ( f2 (x2)+ c), and the same regression

model would be obtained. To avoid these free constants, it is necessary to impose some

restrictions (that is, among all equivalent models, we have to choose one). In this case,

the usual way to proceed to guarantee the identification of the model is to incorporate a

constant α, and to “centre” each of the smooth functions in some way, for example by

assuming:

n

∑
i=1

f1 (x1i) = 0 and
n

∑
i=1

f2 (x2i) = 0,

yieding the model

yi = α+ f1(xi1)+ f2(xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n. (9)

Once the identifiability problem has been solved, each of the smooth functions in (9)

can be represented using regression splines, and the model can be estimated using

penalised least squares (or the mixed model approach) as in the univariate case, with

the smoothing parameters of each of the smooth functions being selected via any of the

criteria previously presented.

3.1.3. Generalised additive models

The P-Spline methodology presented in the previous Sections can be easily extended to

deal with a non-gaussian response y, given that the distribution of y conditional on the

covariates (x1, . . . ,xp) belongs to the exponential family. In this case, model (3) can be

estimated on the basis of the penalised log-likelihood by means of penalised iterative

re-weighted least squares (P-IRLS) (see Eilers and Marx, 1996; Wood, 2006a) or by

its representation as a generalised linear mixed model (GLMM) (Breslow and Clayton,

1993).
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3.2. Factor-by-curve interaction

In this section we are concerned with situations where the effect of a continuous

covariate x on the response varies across groups defined by the levels of a categorical

variable z (for example, a factor with M levels {1, . . . ,M}).

To face such situations, varying coefficient terms (Hastie and Tibshirani, 1993) can

be used. Here, the effect of x is assumed to vary over the range of z, and the regression

model then becomes

yi = α+
M

∑
l=2

αl1{zi=l}+
M

∑
l=1

1{zi=l} fl (xi)+ ǫi, (10)

where 1A denotes the indicator function of event A (used to construct the dummy

variables).

As can be observed in equation (10), the model assumes a different effect of covariate

x for each of the levels of the categorical covariate z. The inclusion of the “main” effect

of z
(

∑
M
l=2αl1{zi=l}

)

is needed due to identifiability contraints (given that each of the

smooth functions fl (·) is centred). Again, each function fl (·) in (10) can be represented

using regression splines, and the model can then be fitted using penalised least squares

or the mixed model approach (or by P-IRLS and GLMM in the generalised case).

3.3. Continuous bivariate interactions

In many applications, the additive structure of the model presented in (8) is not appro-

priate for the data at hand, and more complex models are needed. In this section we are

concerned with the case where the response y is expressed on the basis of a bivariate

surface defined by covariates x1 and x2:

yi = f12 (xi1,xi2)+ ǫi, ǫi ∼ N
(

0,σ2
)

, i = 1, . . . ,n, (11)

To date, several P-spline approaches to estimate model (11) have been suggested in the

statistical literature. For instance, Wood (2003) proposed to model the surface f12 (x1,x2)

by means of two dimensional thin-plate regression splines. However, this approach

presents the drawback that only one smoothing parameter λ is incorporated into the

smoothness penalty (i.e., an isotropic penalty), meaning that the same smoothness

is assumed for both covariates x1 and x2. Whereas this isotropy could be justified

when modelling, for instance, a smooth function of latitude and longitude, this is not

always the case when the covariates x1 and x2 are measured in different units. As

an alternative, the tensor product of one-dimensional spline basis functions has been

suggested (see Eilers and Marx, 2003; Wood, 2006b). In this case, univariate functions

f1 and f2 are associated with x1 and x2 respectively, each of which is represented by



18 Analysing visual receptive fields through generalised additive models with interactions

a regression spline:

f1 (x1) =
d1

∑
j=1

θ 1
j B1

j (x1) and f2 (x2) =
d2

∑
k=1

θ 2
k B2

k (x2) .

Accordingly, the bivariate surface is then defined as:

f12 (x1,x2) =
d1

∑
j=1

d2

∑
k=1

θ jkB1
j (x1)B2

k (x2) =
d1

∑
j=1

d2

∑
k=1

θ jkB jk (x1,x2) ,

where the two-dimensional basis functions are given by the tensor product (see also

Figure 4)

B jk (x1,x2) = B1
j (x1)B2

k (x2) .

Thus, model (11) can be expressed in matrix notation as:

y = B12θ 12 + ǫ,

where θ 12 = (θ11, . . . ,θd11, . . . ,θd1d2)
T

and

B12 =







B11 (x11,x12) · · · Bd11 (x11,x12) · · · Bd1d2
(x11,x12)

...
. . .

...
. . .

...

B11 (xn1,xn2) · · · Bd11 (xn1,xn2) · · · Bd1d2
(xn1,xn2)






.

In this situation, how could be defined the penalty for the tensor product? First, it can be

useful to view the vector of regression coefficients θ 12 as a two dimensional array:

Θ12 =







θ11 · · · θd11

...
. . .

...

θ1d2
· · · θd1d2






.

Therefore, whereas the rows of Θ12 correspond to the regression coefficients in the x1

direction (see also Figure 4), the columns correspond to the x2 direction. It then seems

reasonable to consider the penalty for the bivariate surface separately for the rows and

columns of Θ12 (i.e., by considering separate penalties in the x1 and x2 directions).

This leads to the penalty term in two dimensions (see Currie et al., 2006; Wood, 2006a,

among others):

λ1θ
T
12 (Id2 ⊗K1)θ 12 +λ2θ

T
12 (K2 ⊗ Id1)θ 12,
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Figure 4: Tensor product of univariate B-Spline basis functions of degree p= 3 and k= 5 knots. The figures

show the tensor products obtained by varying the univariate B-Spline basis function along the x1 direction

(B1
j(x1), j = 2, . . . ,6) while maintaining fixed the B-Spline basis function in the x2 direction (B2

4(x2)), i.e.

B j4(x1,x2) = B1
j(x1)B

2
4(x2), j = 2, . . . ,6.
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where ⊗ denotes the kronecker product, and K1 and K2 are univariate penalty matrices

of dimension d1 ×d1 and d2 ×d2 respectively.

Parameters can now be estimated from the penalized least squares

||y−B12Θ12||
2 +λ1θ

T
12 (Id2 ⊗K1)θ 12 +λ2θ

T
12 (K2 ⊗ Id1)θ 12,

or based on the mixed model representation.

3.4. Extension to the inclusion of higher order interactions

The methodology presented in Subsections 3.2 and 3.3 can also be extended to the

inclusion of higher order interactions. For instance, in the analyses of visual receptive

fields, we are interested on incorporating the time dimension to study the behaviour of

the stimulus occurrences along pre-spike times. Thus, we are concerned on modelling a

function of the form:

f12t (x1,x2, t) .

Moreover, in order to evaluate the impact of different experimental conditions on cell

response, we might need to incorporate this information into the regression model, and

to allow for the previous three-dimensional function to vary across these experimental

conditions (l = 1, . . . ,M):

α+
M

∑
l=2

αl1{zi=l}+
M

∑
l=1

1{zi=l} f l
12t (xi1,xi2, ti) .

Based on the results presented in Subsection 3.3, f12t (x1,x2, t) (or, equivalently,

f l
12t (xi1,xi2, ti)) can be represented by the tensor product of three univariate basis func-

tions

f12t (x1,x1, t) =
d1

∑
j=1

d2

∑
k=1

dt

∑
m=1

θ jkmB j (x1)Bk (x2)Bm (t) =
d1

∑
j=1

d2

∑
k=1

dt

∑
m=1

θ jkmB jkm (x1,x2, t) ,

and the penalty term – organising the coefficients in some appropriate order – is now

defined as

λ1θ
T
12 t (Id2

⊗K1 ⊗ Idt )θ 12 t +λ2θ
T
12 t (K2 ⊗ Id1

⊗ Idt )θ 12 t +λtθ
T
12 t (Ic2

⊗ Ic1
⊗Kt)θ 12 t.
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4. Application to visual receptive fields

The dataset consists of a series of 16 matrices – with 256 grid positions each – of the

form presented in Figure 1D, containing the number of stimulus occurrences at each

position. Each matrix corresponds to the different pre-spike times considered (between

−20 to −320 ms). The aim of the study was to obtain smooth RFmaps for a given

pre-spike time, and to compare the obtained RFmaps between different experimental

conditions. For illustration purposes, in the analyses presented in this paper we have

considered the response to the onset of a bright spot (‘ON’) of two different cells

(denoted by FAP0 and FBH4) of one monkey, and compared the RFmaps for the right

and left eye.

4.1. Data analysis

We adopted a Poisson model with mean ni jkλi jkt , where i indicates the row of the matrix,

j the column (i, j = 1, . . . ,16), k the eye (either left -0- or right -1-), and t the pre-spike

time (t = −20, . . . ,−320). ni jk denotes the number of stimulus presentations on each

particular grid position. We considered different models for the intensity parameter (or

firing rate) λi jkt , from the simplest model (and additive model) to the most complex

(including the interaction between the row, column, time and eye). Specifically the

following models were considered:

Model I

log(λi jkt) = α0 +α11{k=1}+ frow (i)+ fcol ( j)+ ftime (t) ,

Model II

log(λi jkt) = α0 +α11{k=1}+ frow,col (i, j)+ ftime (t) ,

Model III

log(λi jkt) = α0 +α11{k=1}+ frow,col,time (i, j, t) ,

Model IV

log(λi jkt) = α0 +α11{k=1}+
1

∑
l=0

1{k=l} f l
row,col,time (i, j, t) ,

The models were estimated using the package mgcv, version 1.7-9, in the R environ-

ment, version 2.14.0. In all cases, B-splines were used as spline basis functions, with

degree p = 3 and penalty in the q = 2-nd order derivative, and tensor product smoothers
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were used to model the multidimensional functions. For the univariate smooth functions,

k = 8 knots placed at equidistant points were selected, whereas for the multidimensional

case, k = 3 knots were chosen for each of the marginal basis functions. Different num-

ber of knots were also informally checked, but the results showed that the previous

choices were enough. The smoothing parameters were automatically selected based on

the REML criterion, and the models were compared in terms of the (conditional) AIC

(cAIC).

4.2. Results

Tables 1 and 2 show the results for the selection of models of cells FBH4 and FAP0

respectively. As can be observed, the cAIC indicates that for cell FBH4 the best

model is that including the spatio-temporal interaction and the categorical covariate eye

(Model III). However, in the case of cell FAP0 the best model is the most complex

model, i.e., that including the spatio-temporal interaction and the interaction with eye

(Model IV). Table 3 presents a detailed description of these fitted models. In both cases,

the firing rate depends on the eye, with left eye presenting more activity (p-value <

0.001 in both cases). This indicates that these cells show dominance of the left eye.

Figure 5(a) shows the change over time of the standard deviation of the estimated

firing rates of an ON-RFmap of a cortical visual cell (FBH4). The abscissa represents

pre-spike time in ms. As it can be seen there are important changes. The RFmap begins

Table 1: Results for the selection of models of cell FBH4.

Model Formula in mgcv cAIC edf
Deviance

explained (%)

I
eye + s(row, bs = ‘ps’) + s(col, bs = ‘ps’)

31981.67 13.13 3.12
+ s(time, bs = ‘ps’)

II eye + te(row, col, bs = ‘ps’) + s(time, bs = ‘ps’) 32002.94 20.00 3.24

III eye + te(row, col, time, bs = ‘ps’) 31502.67 98.04 7.15

IV eye + te(row, col, time, by =eye, bs = ‘ps’) 31518.41 164.76 7.88

Deviance explained (%): Percentage of the null deviance (null.dev - deviance of the model with just one constant
term) explained by the fitted model, i.e. (null.dev - dev)/null.dev, where dev is the deviance of the fitted model.

Table 2: Results for the selection of models of cell FAP0.

Model Formula in mgcv cAIC edf
Deviance

explained (%)

I
eye + s(row, bs = ‘ps’) + s(col, bs = ‘ps’)

43248.77 12.04 16.1
+ s(time, bs = ‘ps’)

II eye + te(row, col, bs = ’ps’) + s(time, bs = ‘ps’) 43207.59 21.61 16.6

III eye + te(row, col, time, bs = ‘ps’) 42854.40 91.17 20.5

IV eye + te(row, col, time, by =eye, bs = ‘ps’) 42831.73 138.94 21.5

s: smooth function
te: tensor product
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Table 3: Results of the fitted Models III and IV for cells FBH4 and FAP0 respectively.

Term Coefficient edf p-value

Cell FBH4 - Model III

Intercept −3.448 — < 0.001

eyeRight −0.317 1 < 0.001

te(row, col, time) — 96.04 < 0.001

Cell FAP0 - Model IV

Intercept −0.485 — < 0.001

eyeRight −0.318 1 < 0.001

te(row, col, time)Right — 87.55 < 0.001

te(row, col, time)Left — 49.38 < 0.001
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Figure 5: Change over time of the standard deviation of the estimated firing rates of the ON-RFmap of

cells FBH4 and FAP0 for left (solid line) and right (dotted line) eye.

to be structured about 140 ms pre-spike in both eyes and peaks approximately at 60 ms

pre-spike, also in both eyes. Therefore the timing of the RFmap is similar for both eyes

but the strength is different, indicating ocular dominance is constant over time. Figures

6 and 7 show a time series of ON-RFmaps obtained from a cortical visual cell (FBH4).

As it can be seen, at about 200 ms pre-spike there is a central area with values below

mean, and about 100 ms pre-spike a clear central area of values higher than the mean

appears. This indicates that this area is the RF of the cell and that the optimal stimulus

is a dot jumping from outside of the RF into the RF area.

Figure 5(b) is similar to Figure 5(a), however in this case the two cells studied show

a different time-course of their RFmaps. The left eye stimulation produces a strong
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RFmap with an onset at about 160 ms pre-spike and peaks at about 60 ms pre-spike.

There is a clear dominance of the left eye, as it can be seen in Figures 8 and 9. Figure

8 shows the RFmaps of the non dominant eye (right eye). There is a very weak central

area with almost no visible structure. Figure 9 shows the left ON-RFmap of the same

cell shown in Figure 8. A clear central structure appears at 120 ms pre-spike and lasts

until 20 ms prespike. The dominance of left eye induces stronger cell responses wich in

turn produce stronger RFmap structures. As the cell of Figure 6, in this case there is a

central area in the RFmaps from 220 to 180 ms prespike with low values, indicating that

the cell response is better elicited when the spot jumps from outside the RF into the RF

of the cell.
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Figure 6: Level plot of the estimated firing rates of the ON-RFmap based on Model III for the right eye of

cell FBH4.
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Figure 7: Level plot of the estimated firing rates of the ON-RFmap based on Model III for the left eye of

cell FBH4.
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Figure 8: Level plot of the estimated firing rates of the ON-RFmap based on Model IV for the right eye of

cell FAP0.
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Figure 9: Level plot of the estimated firing rates of the ON-RFmap based on Model IV for the left eye of

cell FAP0.
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5. Conclusion

Receptive field mapping of cortical visual neurons is a critical procedure in neurophys-

iological studies of the visual system. In electrophysiological laboratories the reverse

cross-correlation technique is frequently used to produce raw RFmaps – in the form of

numerical matrices – which allow to give insights into the electrical activity of the visual

neurons. However, the resulting RFmaps obtained from applying such technique, cannot

be compared formally among different conditions.

In this paper, a Poisson GAM including interactions was proposed as a flexible

statistical tool for (a) smoothing raw RFmaps of a single neuron, by including spatial

effects in the model; and (b) estimating the temporal evolution of these maps, which in

turn may vary across different experimental conditions.

The estimation algorithm used for fitting GAMs was based on P-splines and tensor

product splines and the amount of smoothing was selected automatically via restricted

(or residual) maximum likelihood (REML).

The proposed methodology was applied to study the activity of visual cells from

area V1 (a primary visual cortical area). For the sake of illustration, in all the analyses

perfomed in this paper, only visual neurons with response to the onset of a bright spot

(‘ON’) were considered, and the temporal evolution of their RFmaps was compared for

the right and left eye. However, it should be noted that our GAM methodology is very

flexible and extensions to more complex interaction models are straightforward. This

is important since physiologists are also interested in examining possible variations on

RFmaps, when several levels of other covariates are considered. For example, compar-

isons between both monocular RFs and between monocular and binocular RFs are often

required to assess the question on how the visual system handles binocular informa-

tion. Therefore, GAM regression models designed to perform statistical comparisons

between RFmaps would be very useful in electrophysiological experiments conducted

in the visual system.

When calculating the time span of any RFmap, the onset and offset of the RFmap

structures must be determined. In this paper, a relatively simple approach to solve

this problem was proposed, and it consists of using the change of standard deviation

of the matrix values over time. The authors are concisious, however, that a more

refined analysis is needed, to extract accurate information from such RFmaps structures.

Although it is beyond the scope of the current paper, it is an important topic for further

research.

An R script implementing the nonparametric model estimation can be obtained by

contacting the first author at maria.jose.rodriguez.alvarez2@sergas.es.
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Roca-Pardiñas, J., Cadarso-Suárez, C., Pardo-Vazquez, J. L., Leboran, V., Molenberghs, G., Faes, C. and

Acuña, C. (2011). Assessing neural activity related to decision-making through flexible odds ratio

curves and their derivatives. Statistics in Medicine, 14, 1695–1711.

Strasak, A. M., Umlauf, M., Pfeiffer R. M. and Lang, S. (2011). Comparing penalized splines and fractional

polynomials for flexible modelling of the effects of continuous predictor variables. Computational

Statistics and Data Analysis, 55, 1540–1551.

Tsao, D. Y., Conway, B. R. and Livingstone, M. S. (2003). Receptive fields of disparity-tuned simple cells

in macaque V1. Neuron, 38, 103–114.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.

Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties.

Journal of the Royal Statistical Society, Series B, 62, 413–428.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society, Series B, 65,

95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter for generalized additive models.

Journal of the American Statistical Association, 99, 673–686.

Wood, S. N. (2006a). Generalized Additive Models. An Introduction with R. Chapman & Hall/CRC.

Wood, S. N. (2006b). Low-rank scale-invariant tensor product smooths for generalized additive mixed

models. Biometrics, 62, 1025–1036.

Wood, S. N. (2008). Fast stable direct fitting and smoothness selection for generalized additive models.

Journal of the Royal Statistical Society, Series B, 70, 495–518.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of

semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B, 73,

3–36.





Discussion of “Analysing visual

receptive fields through generalised

additive models with interactions”

by Marı́a Xosé Rodrı́guez-Álvarez,
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It is a pleasure for me to comment on the paper by Rodriguez-Alvarez, Cadarso-Suarez

and Gonzalez. I would like to thank the editors for their invitation. This paper proposes a

Poisson generalized additive model (GAM) for smoothing visual receptive fields (RFs)

over time, and uses multidimensional interactions to compare data under several exper-

imental conditions. As the authors point out, the use of high-dimensional smoothing for

the analysis of spatial and spatio-temporal data has been a subject of great interest in re-

cent years (specially in the context of P-splines). Also, the possibility of fitting a factor

by curve interaction has made these type of models even more flexible, and capable of

capturing very complex structures present in the data (Durbán et al. (2005)). The authors

go one step further and use multidimensional interactions, and use a unified approach

for: i) spatio-temporal modelling, and ii) comparison across different experimental con-

ditions. The models proposed and the results obtained in the paper unavoidably give

rise to several related and interesting issues, which may help to improve and extend the

scope of the models and their application.

One of the main problems encountered when multidimensional smoothing is used is

the computational time that the fitting of the model might need. P-splines, and in general,

low-rank smoothers, are the best approach to take. However, even in this case, great care

needs to be taken when choosing the size of the bases used in the model. The authors

have, obviously, come across this problem. I am concerned with their choice of size for

the bases. First, the fact that the size of the bases is different in the univariate case (k= 8),

and in the multivariate case (k = 3) result in models that are not nested (then, care must

be taken when comparing them). To ensure that they are, bases for multidimensional

smooth terms (models II, III and IV) should be constructed using marginal bases

identical to those used for the main effects (model I). But, sometimes, using bases of

the same size results in models that can be computationally very demanding, or even,

impossible to fit. One possible solution is to reduce the number of parameters for the

interaction term, by reducing the number of knots for the marginal bases for the tensor

product, but preserving the nested nature of the models. This idea can be explained

by analogy to classical ANOVA models, where, in general, the main effects are more

significant than interactions. Lee and Durbán (2012) propose the use of nested B-spline

bases for the interaction term: a B-spline basis such that the space spanned by the

marginal basis in the interaction, is a subset of the space spanned by the basis in the

unidimensional case and the hierarchical nature of the models is preserved. Another

point related to the bases size is the fact that, using three knots for marginal bases might
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not be enough to capture the structure of the firing rates. I agree that larger bases

are difficult to handle by the package mgcv (specially when the data have an array

structure). However, as a general rule (Ruppert, 2002), the minimum number of knots

used to construct a basis is at least four. The results for generalized linear array models

(GLAMs), in Eilers et al. (2006), can speed up the computation when the size of the

bases increases.

A major contribution of the paper is the development of a model to compare the re-

ceptive fields properties by introducing interaction between factor and multidimensional

smooth terms, and check, for example, if the firing rate depends on eye. Models III and

IV test if the spatio-temporal effects are similar in both eyes or not, but do not separate

the spatial and temporal component. It might be interesting to know if the change of

firing rates over time is the same for both eyes, or to estimate a common spatial pat-

tern in time and check if a space-time interaction is necessary. Maybe an ANOVA-type

model (Lee and Durbán (2011)) could shed light on some interesting issues. Thus, the

spatio-temporal term in model III and IV could be substituted by:

frow, col, time(i, j, t)⇒ ftime + frow, col(i, j)+ frow, col, time(i, j, t),

and appropriate penalties and identifiability constraints can be easily imposed.

Let me finish by congratulating again the authors for an interesting and relevant paper

for the statistical and medical scientific community.
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Thomas Kneib
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Thank you very much for the possibility to discuss this paper that introduces and

discusses additive model including different types of interactions along the analysis

of visual receptive. The authors do a remarkable job in reviewing the current state

of the literature and in demonstrating the applicability of the methods in a complex

setting that requires careful inclusion of interaction effects in different ways. Penalized

spline smoothing forms the basis for the models considered and mixed model based

inference for the smoothing parameters yields a data-driven amount of smoothness for

all functions. My comments mainly focus on the use of mixed model methodology (and

potential alternatives) and some specific modelling choices.

• As one advantage of the mixed model approach, the authors discuss the possibility

of a formal comparison across models of different complexity. However, infer-

ence in mixed models has proved to be notoriously difficult due to deviations from

regularity conditions underlying standard likelihood based inferential approaches.

For example, likelihood ratio tests for the inclusion / exclusion of specific effects

approached via testing smoothing variances for deviations from zero have been

shown to lead to rather complex distributions for the test statistic that deviate con-

siderably from the standard result that would be a χ2 distribution with one degree

of freedom (Crainiceanu and Ruppert 2004, Crainiceanu, Ruppert, Claeskens and

Wand 2005, Scheipl, Greven and Küchenhoff 2008). In a similar vein, Greven and

Kneib (2010) show that both marginal AIC and the conditional AIC (in their stan-

dard forms) are problematic when comparing models that differ by the inclusion

/ exclusion of specific effects obtained by setting the smoothing variance to zero.

While this is not exactly the type of model comparison considered here, I wonder

how generally applicable formal comparisons in the considered model class can

be and how the authors suggest to deal with such problems.

• A related question concerns the performance of model choice and the p-values

presented in Table 3. Given the difficulties discussed in the previous comment,

more guidelines on model choice and details on how the p-values in Table 3 have

been computed would be very helpful from the perspective of practitioners.

• When using varying coefficient terms for modelling interactions, the coding of the

(categorical) interaction variable will strongly influence the results. For example,

the model

yi =
M

∑
l=1

1zi=l fl(xi)+ ǫi
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models separate curves per each of the M levels of the categorical covariate z while

yi = f1(xi)+
M

∑
l=2

1zi=lgl(xi)+ ǫi

models the effect in category 1 as f1(x) and deviations from this effect in remaining

groups l = 2, . . . ,M as gl(x). While both models would be equivalent when

restricting fl(x) and gl(x) to be linear, this does no longer hold in the penalised

spline smoothing context due to the estimation of the smoothing parameter that is

not invariant under such transformations. In addition, when using effect coding

instead of dummy coding for the categorical covariates, another set of results

would be obtained. How would the authors deal with this difficulty and what would

be their general recommendations for choosing a specific parameterisation?

• I wonder whether (spatial) smoothing is really desired in this application. I would

presume that there may be sharp edges around the receptive fields while the given

approach assumes a smooth transition from active to inactive cells. As a conse-

quence, edge-preserving or adaptive procedures may be more appropriate at least

for the effect representing the receptive field. In a Bayesian formulation, adaptive-

ness could for example be achieved by making the smoothing variance depend-

ing on the spatial location (see Lang and Brezger (2004) for such an approach).

• For the spatial effect, radial basis functions may also be a useful alternative to the

bivariate P-splines proposed here since P-splines may induce some artificial struc-

ture in the estimates due to their inherent non-radiality. Although the amount of

non-radiality is decreasing with the spline degree and may therefore be negligi-

ble for the cubic splines considered here, it would be good to have some general

advice on the selection of either radial bases or bivariate penalized splines.
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Rejoinder

First of all, we would like to thank the invited discussants for the time spent discussing

our work and for all their valuable comments and sugggestions made on our paper.

1. Comments from Prof. Thomas Kneib

Prof. Thomas Kneib primarily centres his comments on various problems arising in

the context of the inference in Generalised Additive Models. Although Prof. Kneib

mainly focuses his comments on the mixed model methodology, similar difficulties can

be encountered as well using different approaches and smoothing parameters selectors.

We agree with the discussant that this is an area of enormous interest and active research,

not yet completely solved. We are conscious that our paper lacks an explicit discussion

of this point, and the use of the word ‘formal’ probably overstates the main objective

of the paper. We would like to thank Prof. Kneib for his valuable comments on this

issue and for giving us the opportunity of shedding more light on this challenging point.

However, we believe that this issue probably requires a new paper.

With respect to model comparisons and model choice (in the frequentist framework),

in the context of GAMs (and GLMs), two different approaches are usually applied, de-

pending on if the models are nested or not (see also the comments from Prof. Marı́a

Durbán). If the models are not nested, the comparison between models can be based

on some information criteria such as the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC). If the models are nested, the generalised likeli-

hood ratio test or the F-ratio test can be applied. However, in GAMs the distribution of

these test statistics under the null hypothesis is only approximate (due to the fact that

the smoothing parameters are treated as if they are known), and the obtained p-values

should be analised with caution (specially when they are close to the significance level)

(Wood, 2006a). As pointed out by Prof. Simon Wood (in the help file of the functions

mgcv::summary.gam and mgcv::anova.gam), various simulations studies sug-

gested that the p-values obtained under ML and REML smoothness selection, have the

best behaviour. This cautionary note can also be extended to the inference about each

smooth term in a model, and the way in how p-values are computed. In this case, two

different approaches can be used, based on the frequentist or the Bayesian covariance

matrix of the coefficient estimates (Wood, 2006a). If the objective is testing for smooth

terms in a GAM for equality to zero, the frequentist approach can be used (see Marra

and Radice, 2010; Wood, 2006a). However, even in this case the performance of the
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obtained p-values is not good, in terms of type I error. The Bayesian approach is then

recommended in this case (as for the construction of the ‘confidence’ intervals; see the

help of the mgcv package). Therefore, the p-values reported in this paper were based

on the bayesian covariance matrix. Again, the (Bayesian) p-values obtained under ML

and REML smoothness selection present the best behaviour. This is in accordance with

the results of a small simulation study performed by us, in which type I errors (using

REML) proved to be relatively close to nominal errors.

Under the representation of an additive model as a linear mixed model, some other

alternatives (and difficulties) for model choice appear. In this framework, the random

effects u parameterise the deviation of the smooth function from a given polynomial

(depending on the degree p of the spline basis). Therefore, testing for a polynomial (or

constant) function versus a smooth function is equivalent to test if the corresponding

smoothing variance is zero (σ2
u = 0). As pointed out by Prof. Kneib, this field has

received a considerably amount of research attention in the last years. For instance,

in Scheipl et al. (2008) a comparative study of different restricted likelihood ratio tests

(RLRT) and F-type tests for a zero variance (also in the context of penalised splines)

is presented. The authors conclude that the RLRT statistic proposed by Crainiceanu

and Ruppert (2004) – and extended by Greven et al. (2008) to test for more than

one variance component – presents the best behaviour in terms of the computational

time, with type I error rates and power almost equivalent to the bootstrap-based tests.

Moreover, this test is implemented in the R package RLRSim. However, for the model

comparisons performed in this paper, the use of the RLRT statistics present in this

package is not possible unless we consider nested models and isotropic interactions

(see Lee 2010), and, moreover, these tests may not be applicable to GAM. As regards

the use of the AIC for comparison purposes, under the mixed model representation,

two different alternative definitions can be used: the marginal and the conditional AIC.

The conditional AIC (in its standard form) is the AIC supplied by the mgcv package,

and its use is ‘recommended’ in the context of penalised splines. However, Greven and

Kneib (2010) showed that the standard form of the conditional AIC has an undesirable

performance, in the sense that it always chooses the inclusion of the random effect u,

unless u is predicted to be exacly zero (σ̂2
u = 0). Although the comparisons made in

Greven and Kneib (2010) – where the authors compare the presence of a linear effect

versus a smooth effect – are not the type of model comparison considered in our paper, it

would be worthwhile evaluating the performance of the conditional AIC in this setting.

Moreover, the extension of the corrected version of the conditional AIC Liang et al.

2008, Greven and Kneib 2010) to generalised linear mixed models and GAMs is is an

open area of research.

The comment from Prof. Kneib related to the use of varying cofficient terms is

connected to this previous issue. From an applied point of view, the decision about the

coding of the categorical variable that should be used depends on both the problem

at hand and the research question to be answered. On the one hand the use of the

dummy coding allows to separately evaluate the effect of the continuous covariate in
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each of the levels of the categorical covariate. However, this coding makes it difficult

to ‘visually’ judge the presence of interaction from several curves that are estimated

separately. On the other hand, when the interest is focused on finding out whether there

actually is a difference among several groups, it may be advantageous to use the effect

parameterisation (yi = f (xi)+∑
M
l=11{zi=l}gl (xi)+ǫi, given that ∑

M
l=1 gl (xi) = 0). In this

case, the deviations from the main effect, f (xi), in each of the levels of the categorical

covariate, gl (·) (l = 1, . . . ,M), exactly tells us the amount of difference. Moreover, this

approach also allows to evaluate the presence of interaction based on the inference about

gl (·), (l = 1, . . . ,M). If these functions are equal to zero, it implies that no interaction

is present. The dummy coding is the way in which the mgcv package treats, by default,

the interaction between continuous and categorical covariates, and this was the coding

used in the paper. However, the use of the effect coding can also be implemented in the

mgcv package, by first creating the effect coding variable. For illustration purposes, we

have analysed the visual receptive field data (Model IV) using this approach:

R > fbh4$eff_eye <- as.numeric((fbh4$eye == ‘Right’) - (fbh4$eye == ‘Left’))

R > fit.fbh4 <- gam(spikes ˜ eye + te(row, col, time, by = eff_eye, bs = ‘ps’)

+ + offset(log(trial)), data = fbh4, family = poisson, method = ‘REML’)

and

R > fap0$eff_eye <- as.numeric((fap0$eye == ‘Right’) - (fap0$eye == ‘Left’))

R > fit.fap0 <- gam(spikes ˜ eye + te(row, col, time, by = eff_eye, bs = ‘ps’)

+ + offset(log(trial)), data = fap0, family = poisson, method = ‘REML’)

Table 1: Results of the fitted models for cells FBH4 and FAP0.

Term Coefficient edf p-value

Cell FBH4 - Model IV

Intercept −3.466 — < 0.001

eyeRight −0.283 1 < 0.001

f(row, col, time) — 96.00 < 0.001

gRight(row, col, time) — 20.13 0.107

Cell FAP0 - Model IV

Intercept −0.480 — < 0.001

eyeRight −0.330 1 < 0.001

f(row, col, time) — 88.83 < 0.001

gRight(row, col, time) — 24.86 < 0.001

Table 1 presents a detailed description of these fitted models. It should be noted

that in this case, due to the identifiability constraints imposed on the model, gRight (·) =

−gLe f t (·). As can be observed, whereas for cell FBH4 there is no evidence to suggest

the presence of interaction with eye (p-value = 0.107), for cell FAP0 the results suggest

that the RFmap is different in the left and right eye (p-value < 0.001). This is in
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concordance with the results obtained using the dummy coding and the cAIC for

comparison purposes.

As regards the use of radial basis for the spatial effect, we agree with Prof. Kneib

that this approach could have been also used for the visual receptive field analysis in our

paper. In contrast to tensor product smoothers, where the knots are placed separately

in each direction (row and column in our example), radial bases (as thin plate splines,

for example) consider bivariate knots located in the surface. Therefore, one of the main

advantages of radial bases is that they allow to adapt the placement of knots to the data

(i.e., placing more knots in areas with dense data), and therefore to take into account the

possible correlation between the covariates (see Fahrmeir and Kneib 2011 for a detailed

comparison between tensor product and radial basis). However, in contrast to tensor

product smoothers, radial bases assume the same amount of smoothing in each direction.

As pointed out in the paper, this isotropy could be justified when the covariates are

measured in the same units (and, of course, the same amount of smoothing is expected

in each direction). This is the case, for instance, of spatial effects, but not of the spatio-

temporal interaction, due to the different scaling of time and space. For this reason, the

use of radial bases is not recomended in this context. However, the mgcv package allows

to combine in a trivariate smoother, the tensor product of a bivariate radial basis and a

one dimensional smoother. We would like to point out that the visual receptive field data

was also analised using this approach. Since the results provided by this model and the

model using the tensor product of univariate smoothers were pretty similar, we decided

to present in the paper the results of the trivariate tensor product.

Finally, as pointed out by Prof. Kneib the use of adaptive penalized splines could

be more appropiate for this application, as can be observed from the figures. So far, the

mgcv package allows the use of locally adaptive procedures but in the context of radial

bases, and cannot be applied for tensor product smoothers. Although, as pointed out

before, this R package allows to combine the tensor product of a bivariate radial basis

and a one dimensional smoother, it is not possible to use adaptive smoothers for the

bivariate radial basis. Moreover, as far as we know, no statistical software implements

the use of locally adaptive procedures for trivariate smoothers. This is an interesting

field for further research.

2. Comments from Prof. Marı́a Durbán

Prof. Marı́a Durbán comments on the importance of the selection of the basis sizes, due

to its impact on: (a) the final estimates (if the basis dimension is not large enough), (b)

the computational time; and (c) the inference procedures.

As pointed out by Marı́a Durbán, from a computational point of view, as the number

of knots increases (specially in the multidimensional case), so it does the computational

time. For instance, using an Intel(R) Core (TM) i5 CPU 2.40 GHz and 4.00 GB RAM

computer, the estimation of model IV using k = 3 or k = 4 was around 100 sec. and 403
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sec. respectively. For this reason, we chose k = 3 knots for each of the marginal basis

functions in the multidimensional case. However, in order to evaluate the adequacy of

the basis dimensions, we performed a sensitivity analysis by increasing the number of

knots, and comparing the results obtained by the different fitted models. Since in this

case the observed differences were almost negligible, we finally selected k = 3 knots.

Moreover, we also evaluated the adequacy of the basis dimensions based on an analysis

of the deviance residuals of the fitted model (see the help associated with the function

choose.k in the mgcv package). For each smooth term in our models (I- IV), we

fitted an equivalent, single, smooth to the residuals, using a larger number of knots to

see if there were still a pattern in the residuals that could potentially be explained by

increasing the basis dimension in the original models. Again, these analyses suggested

that k = 8 and k = 3 were enough for the univariate and the multidimensional cases

respectively. However, we are conscious that this could not be the always the case, and

in some circumstances, the need of larger bases could make prohibitive the fit of the

model using the package mgcv. As pointed out by Marı́a Durbán, when the data are in

an array structure, as in the case of the visual receptive field data, the use of GLAMs can

make the fit of the model feasible in a reasonable computing time. As far as we know,

neither the mgcv package nor other R packages and statistical software implement this

approach. This is, indeed, an interesting field for further work.

As Prof. Durbán indicates, the use of different sizes of the bases for the univariate

and the multivariates case, results in models that are not nested. Accordingly, it is not

possible to apply formal testing procedures, as the generalised likelihood ratio test or the

F-ratio test, to make the comparison between alternative models. Although in this paper

we have used the conditional AIC for comparison purposes, the use of formal formal

testing procedures could be also an alternative approach, ensuring that the models are

nested. Moreover, the ANOVA-type models proposed by Lee and Durbán (2011) is an

interesting approach to study in future. We completely agree with Prof. Durbán that the

use ANOVA-type models could help in a better understanding of the Visual receptive

field behaviour. It should be noted, however, that in the visual receptive field data, the

experiment design assigns each spike to the stimulus position in all pre-spike times. It

implies that each spatial matrix contains exactly the same number of spike ocurrences.

Therefore, the spatio-temporal interaction is probably needed in this context.
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Abstract

This paper considers several confidence intervals for estimating the population coefficient of

variation based on parametric, nonparametric and modified methods. A simulation study has been

conducted to compare the performance of the existing and newly proposed interval estimators.

Many intervals were modified in our study by estimating the variance with the median instead

of the mean and these modifications were also successful. Data were generated from normal,

chi-square, and gamma distributions for CV = 0.1, 0.3, and 0.5. We reported coverage probability

and interval length for each estimator. The results were applied to two public health data: child

birth weight and cigarette smoking prevalence. Overall, good intervals included an interval for

chi-square distributions by McKay (1932), an interval estimator for normal distributions by Miller

(1991), and our proposed interval.
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The population coefficient of variation (CV) is a dimensionless (unit-free) measure of

the dispersion of a probability distribution. More specifically, it is a measure of variabil-

1 Department of Biostatistics. Florida International University. Miami. FL 33199. USA. Mgulhar@gmail.com.
2 Department of Mathematics and Statistics. Florida International University. Miami. FL 33199. USA.

kibriag@fiu.edu.
3 Department of Biostatistics. Florida International University. Miami. FL 33199. USA. aalbatin@fiu.edu.
4 Department of Epidemiology. Florida International University. Miami. FL 33199. USA. ahmedn@fiu.edu.

Received: April 2011

Accepted: December 2011



46 A comparison of some confidence intervals for estimating the population coefficient...

ity relative to the mean. This measure can be used to make comparisons across several

populations that have different units of measurement. The population CV is defined as

a ratio of the population standard deviation (σ) to the population mean (µ 6= 0)

CV =
σ

µ
(1)

In real life instances the population parameters σ and µ are estimated by the sample

estimators s and x, respectively. One obvious disadvantage arises when the mean of a

variable is zero. In this case, the CV cannot be calculated. For small values of the mean,

the CV will approach infinity and hence becomes sensitive to small changes in the mean.

Even if the mean of a variable is not zero, but the variable contains both positive and

negative values and the mean is close to zero, then the CV can be misleading.

The CV is widely used in health sciences in descriptive and inferential manners

(Kelley, 2007). Some previous applications include measuring the variation in the mean

synaptic response of the central nervous system (Faber and Korn, 1991) and measuring

the variability in socioeconomic status and prevalence of smoking among tobacco

control environments (Bernatm et al., 2009). The CV has also been used to study the

impact of socioeconomic status on hospital use in New York City (Billings et al., 1993).

These studies generated the CV for ambulatory care sensitive admissions for nine age

cohorts and discussed the variance relative to the average number of admissions.

Perhaps, the most important use of the CV is in descriptive studies (Panichchkikosol-

kul, 2009). Because the CV is a unit-less measure, the variation of two or more different

measurement methods can be compared to each other. The CV is used often in public

health. For instance, when assessing the overall health of an individual, the CV may

be useful in a comparison of variability in blood pressure measurement (mmHg) and

cholesterol measurement (mg/dL). If variance were used, rather than the CV, then these

two measures would not be comparable as their units of measurement differ.

Another important application of the CV is its use in the field of quality control. The

inverse of the CV or ICV is equal to the signal to noise ratio (SNR), which measures

how much signal has been corrupted by noise (McGibney and Smith, 1993):

SNR = ICV =
µ

σ
(2)

The CV can be used as a measure of effect or as a point estimator (Kelley, 2007).

To test the significance of the CV, a hypothesis test can be conducted and a confidence

interval can be generated to reject or accept the null hypothesis. Confidence intervals

associated with point estimates provide more specific knowledge about the population

characteristics than the p-values in the test of hypothesis (Visintainer and Tejani, 1998).

A p-value only allows one to determine if results are significant or non-significant, but

a confidence interval allows for the examination of an additional factor, precision. The
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precision of a confidence interval can be seen through the width and coverage probability

of the interval. Given constant coverage, as the width of the (1−α) 100% confidence

interval decreases, the accuracy of the estimate increases (Kelley, 2007). The coverage

level is the probability that the estimated interval will capture the true CV value (Banik

and Kibria, 2010).

There are various methods available for estimating the confidence interval for a

population CV. For more information on the confidence interval for the CV, we refer

to Koopmans et al. (1964), Miller (1991), Sharma and Krishna (1994), McKay (1932),

Vangel (1996), Curto and Pinto (2009) and recently Banik and Kibria (2011), among

others. The necessary sample size for estimating a population parameter is important.

Therefore, determining the sample size to estimate the population CV is also important.

Tables of necessary sample sizes to have a sufficiently narrow confidence intervals under

different scenarios are provided by Kelly (2007).

Many researchers considered several confidence intervals for estimating the popu-

lation CV. Since the studies were conducted under different simulation conditions they

are not comparable as a whole. The objective of this paper is to compare several con-

fidence interval estimators based on parametric, nonparametric and modified methods,

which are developed by several researchers at several times under the same simulation

conditions. Six confidence intervals that already exist in literature are considered. Addi-

tionally, we have made median and bootstrap modifications to several existing intervals

in an attempt to improve the interval behaviour. Also, we have proposed our own con-

fidence interval estimator. A simulation study is conducted to compare the performance

of the interval estimators. Most of the previous simulations and comparisons found in

literature were conducted under the normality assumption. Since in real life the data

could be skewed we also conducted simulations under skewed distributions (chi-square

and gamma). Finally, based on the simulation results, the intervals with high coverage

probability and small width were recommended for practitioners.

The organization of this paper is as follows: In Section 2 we present the proposed

confidence intervals. In Section 3, the simulation technique and results are provided

and discussed. Two real life data are analyzed in Section 4. Finally, some concluding

remarks are presented in Section 5. Due to space limitations, only graphs representing

simulations for the normal distribution are presented but the full simulation results are

presented in the Appendix.

2. Statistical methodology

Let x1,x2,x3, . . . ,xn be an independently and identically distributed (iid) random sample

of size n from a distribution with finite mean, µ, and finite variance, σ2. Let x be the

sample mean and s be the sample standard deviation. Then ̂CV = s/x would be the

estimated value of the population CV. We want to find the (1 − α)100% confidence

intervals for the population CV. In this section we will review some existing interval
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estimators and propose some new interval estimators for CV. A total of 15 intervals will

be considered.

2.1. The existing confidence interval estimators

Six existing (parametric and nonparametric) confidence intervals for the CV are re-

viewed in this section.

2.1.1. Parametric confidence intervals

1. Miller’s (1991) confidence interval for normal distribution (referred to as Mill).

Miller showed that
s

x
approximates an asymptotic normal distribution with mean

σ
µ

and variance m−1(σ
µ
)2
(

0.5+(σ
µ
)2
)

. Then, the (1−α)100% approximate con-

fidence interval for the population CV = σ
µ

is given by

s

x
±Zα

2

√

m−1

( s

x

)2
(

0.5+
( s

x

)2
)

(3)

which can be expressed as

s

x
−Zα

2

√

m−1

( s

x

)2
(

0.5+
( s

x

)2
)

< CV <
s

x
+Zα

2

√

m−1

( s

x

)2
(

0.5+
( s

x

)2
)

(4)

where m = n − 1,x = 1
n ∑

n
i=1 xi is the sample mean, s =

√

1
n−1 ∑

n
i=1(xi − x)2 is

the sample standard deviation and Zα is the upper (1−α)100th percentile of the

standard normal distribution.

2. Sharma and Krishna’s (1994) confidence interval for inverted CV (S&K): This

confidence interval is given by

x

s
+
φ−1

(α/2)
√

n
<

1

CV
<

x

s
−
φ−1

(α/2)
√

n
(5)

where φ cumulative standard normal distribution. Therefore, the (1 − α)100%

confidence interval for the population CV is given by

(

x

s
−
φ−1

(α/2)
√

n

)−1

< CV <

(

x

s
+
φ−1

(α/2)
√

n

)−1

(6)
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3. Curto and Pinto’s (2009) iid assumption (C&P):

s

x
−Z(α/2)

√

1

n

(

( s

x

)4

+
1

2

( s

x

)2
)

< CV <
s

x
+Z(α/2)

√

1

n

(

( s

x

)4

+
1

2

( s

x

)2
)

(7)

2.1.2. Confidence intervals based on chi-square distribution

1. McKay’s (1932) confidence interval for chi-square distribution (McK):

( s

x

)

√

√

√

√

(

χ2
ν ,1−α/2

ν+1
−1

)

( s

x

)2

+
χ2
ν ,1−α/2

ν
< CV <

( s

x

)

√

√

√

√

(

χ2
ν ,α/2

ν+1
−1

)

( s

x

)2

+
χ2
ν ,α/2

ν

(8)

where ν = n−1 and χ2
ν ,α is the 100α-th percentile of a chi-square distribution with

ν degrees of freedom.

2. Modified McKay (1996) confidence interval (MMcK): Vangel (1996) modified
McKay’s original (1932) interval:

( s

x

)

√

√

√

√

(

χ2
(ν ,1−α/2)

+2

ν+1
−1

)

( s

x

)2
+
χ2
ν ,1−α/2

ν
< CV <

( s

x

)

√

√

√

√

(

χ2
(ν ,α/2)

+2

ν+1
−1

)

( s

x

)2
+
χ2
ν ,α/2

ν

(9)

3. Panichkitkosolkul’s (2009) confidence interval (Panich): Panichkitkosokul further

modified the Modified McKay interval by replacing the sample CV with the

maximum likelihood estimator for a normal distribution, k̃

k̃

√

√

√

√

(

χ2
(ν ,1−α/2)

+2

ν+1
−1

)

(

k̃
)2

+
χ2
ν ,1−α/2

ν
< CV < k̃

√

√

√

√

(

χ2
(ν ,α/2)

+2

ν+1
−1

)

(

k̃
)2

+
χ2
ν ,α/2

ν

(10)

where k̃ =

√
∑n

i=1(xi−x)2

√
nx

2.2. Median modifications of existing intervals

Kibria (2006) and Shi and Kibria (2007) claimed that for a skewed distribution, the

median describes the centre of the distribution better than the mean. Thus, for skewed

data it makes more sense to measure sample variability in terms of the median rather

than the mean. Following Shi and Kibria (2007), the (1−α)100% CI for the CV are

obtained for four of the existing estimators and provided below. These median modifi-

cations are made in attempt to improve the performance of the original intervals. The

intervals selected for modification represent parametric and non-parametric estimators.
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1. Median Modified Miller Estimator (Med Mill):

s̃

x
−Zα/2

√

√

√

√m−1

(

s̃

x

)2
(
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(
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x
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x
+Zα/2

√

√

√

√m−1

(

s̃

x

)2
(

0.5+

(

s̃

x

)2
)

(11)

where s̃ =
√

1
n−1 ∑

n
i=1(xi − x̃)2 and x̃ is the sample median.

2. Median Modification of McKay (Med McK):

(
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x
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√
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3. Median Modification of Modified McKay (Med MMcK):
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4. Median Modified Curto and Pinto(2009) iid assumption (Med C&P):

s̃

x
−Z(α/2)

√

(

s̃
x

)4
+0.5

(
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x
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n
< CV <

s̃

x
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√

(
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n
(14)

2.3. Bootstrap confidence intervals

Bootstrapping is a commonly used computer-intensive, nonparametric tool (introduced

by Efron, 1979), which is used to make inference about a population parameter when

there are no assumptions regarding the underlying population available. It will be espe-

cially useful because unlike other methods, this technique does not require any assump-

tions to be made about the underlying population of interest (Banik and Kibria, 2009).

Therefore, bootstrapping can be applied to all situations. This method is implemented

by simulating an original data set then randomly selecting variables several times with

replacement to estimate the CV. The accuracy of the bootstrap CI depends on the number

of bootstrap samples. If the number of bootstrap samples is large enough, the CI may be

very accurate. We will consider four different bootstrap methods which are summarized

in this section.
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Let X (∗) = X
(∗)
1 ,X

(∗)
2 ,X

(∗)
3 , . . . ,X

(∗)
n where the ith sample is denoted X (i) for i =

1,2, . . . ,B and B is the number of bootstrap samples. Efron (1979) suggests using a

minimum value of B = 1000. Following Banik and Kibria (2009), we will consider four

different bootstrap methods for estimating the population CV which are summarized in

this section.

2.3.1. Non-parametric bootstrap CI (NP BS)

The CV for all bootstrap samples is computed and then ordered as follows:

CV∗
(1) ≤ CV∗

(2) ≤ CV∗
(1) · · ·CV∗

(B)

The lower confidence level (LCL) and upper confidence level (UCL) for the population

CV is then

LCL = CV∗
[(α/2)B] and UCL = CV∗

[(1−α/2)B]

Therefore, in a case where B = 1000, LCL = the 25th bootstrap sample and UCL =

the 975th bootstrap sample.

2.3.2. Bootstrap t-approach (BS)

Following Banik and Kibria (2009), we will propose a version called the bootstrap-t,

defined as

LCL = ̂CV+T ∗
(n−1),α/2S

̂CV
and UCL = ̂CV+T ∗

(n−1),1−α/2S
̂CV

where ̂CV is the sample CV, T ∗
α/2

,T ∗
1−α/2

are the (α/2)th and (1 − α/2)th sample

quantiles of

T ∗
i =

CV∗
i −CV

σ̂CV

where

σ̂CV =

√

1

B

B

∑
i=1

(

CV∗
i −CV

)2

and CV =
1

B

B

∑
i=1

CV∗
i

is a bootstrap CV.
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2.3.3. Modified median Miller based on critical value from bootstrap samples (BSMill)
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(15)

2.3.4. Modified median Curto and Pinto (2009) based on BS sample (BS C&P)
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s̃

x
+T ∗

1−(α/2)

√

(

s̃
x

)4
+0.5

(

s̃
x

)2

n
(16)

where T ∗
α/2

and T ∗
1−α/2

are the (α/2)th and (1−α/2)th sample quantiles of T ∗
i =

(CV∗
i −CV)

σ̂CV

2.4. Proposed confidence interval based on estimator of σ2σ2σ2

Another parametric confidence interval that was compared in the simulation was one

based on the known formula for calculating the confidence interval for σ2. Let x1,x2,x3,

. . . ,xn be an iid random sample which is normally distributed with finite mean µ and

variance σ2. Then the (1−α)100% CI for σ2 is

(n−1)s2

χ2
ν ,1−α/2

< σ2 <
(n−1)s2

χ2
ν ,α/2

(17)

Assuming that µ 6= 0, dividing this interval by µ2 results in

(n−1)s2

(

χ2
ν ,1−α/2

)

µ2
<

(

σ

µ

)2

<
(n−1)s2

(

χ2
ν ,α/2

)

µ2
(18)

Since µ is not known, we can replace it by the unbiased estimator of µ which is x

resulting in

(n−1)s2

(

χ2
ν ,1−α/2

)

x2
< CV2 <

(n−1)s2

(

χ2
ν ,α/2

)

x2
(19)

Taking the square root results in the final proposed interval estimator given by

√
n−1̂CV

√

χ2
ν ,1−α/2

< CV <

√
n−1̂CV
√

χ2
ν ,α/2

(20)
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3. Simulation study

Many researchers have considered several confidence intervals for estimating the pop-

ulation CV. However, these studies were all conducted under different simulation con-

ditions and therefore they are not comparable as a whole. In this study we considered

15 useful confidence intervals (six existing intervals, eight modified intervals, and one

proposed interval) for estimating the population CV and compared them under the same

simulation conditions. A Monte-Carlo simulation was conducted using the R statistical

software (2010) version 2.10.1 to compare the performance of the interval estimators.

The performance of the estimators was considered for various CV values, sample sizes,

and distributions.

Table 1: The CV and skewness of data from normal,

chi-square, and gamma distributions.

Distribution CV Skewness

N(µ,σ) σ
µ 0

chi-square (ν)

√

2
ν 2

√

2
ν

gamma (α,2) 1√
α

2√
α

Table 2: Estimated lower and upper confidence limits and corresponding widths

for all proposed methods for Example 1 (n = 189).

Method Lower Confidence Limit Upper Confidence Limit Width

Mill 0.223719 0.277478 0.053759

S&K 0.223659 0.277365 0.053706

McK 0.223073 0.276620 0.053546

MMcK 0.221061 0.274088 0.053027

C&P 0.239134 0.256633 0.017499

Panich 0.230751 0.286434 0.055683

Proposed 0.224879 0.275406 0.050527

Med Mill 0.223940 0.277752 0.053812

MedMcK 0.223878 0.277643 0.053765

MedMMcK 0.221277 0.274362 0.053086

Med C&P 0.221347 0.274292 0.052945

NP BS 0.220954 0.274950 0.053996

P BS 0.219723 0.274653 0.054930

BS Mill 0.220414 0.273982 0.053568

BS C&P 0.220486 0.273912 0.053426
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3.1. Simulation technique

To study the behaviour of small and large sample sizes, we used n = 15,25,50,100. To

examine the behaviour of the intervals when the sample size is increased even further,

a second simulation was conducted using n = 500. A random sample was generated

with specific parameters from a normal distribution, chi-square distribution and gamma

distribution. The probability density functions of the distributions are given below.

• Normal distribution, with µ= 10 and σ = 1,3,5 where

f (x) =
1

√
2πσ2

e−
1
2(

x−10
σ )

2

, −∞ < x < ∞, σ > 0

• Chi-square distribution, with degrees of freedom (df) ν = 200,22,8, where

f (x) =
1

2
ν
2 Γ(ν/2)

e−
x
2 x
ν
2 −1, x ≥ 0

• Gamma distribution with α= 100,11.11,4 and β = 2, where

f (x) =
1
√
α

e−
x
2 xα−1

2α
, x > 0,α> 0

The CV was calculated for each distribution type by utilizing the equations in Table 1.

Thus, based on the CV formula presented in Table 3.1, all three distribution types

consider CV= 0.10,0.30,0.50. The number of simulation replications (M) was 2000 for

each case. For intervals that utilize the bootstrapping technique, 1000 bootstrap samples

(B) are used for each n.

Coverage probability and width of the interval were measured for each case. The

most common 95% confidence interval (α= 0.05) is used for measuring the confidence

level. The coverage probability is calculated by counting the number of times the true

CV is captured between the upper and lower limits. Generally, since the sampling

distribution of the sample CV is approximately normally distributed, see Miller (1991),

as the sample size (number of sample CV’s) increases the distribution becomes more

symmetric and it is expected for the coverage probability to approach (1−α). When

α = 0.05, an interval that has perfect performance in terms of coverage probability

will capture the true CV between the upper and lower limits 95% of the time. The

coverage probability is an excellent method for evaluating the success of a particular

interval in capturing the true parameter. An interval width is calculated by subtracting

a lower limit from an upper limit. A smaller width is better because it means that

the true CV is captured within a smaller span and the results are more precise. In

cases where the coverage probability is comparable, the interval length is especially

important because the smaller width will give a more accurate and precise result. The

simulated coverage probabilities and interval widths for the normal, chi-square and
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Table 3: Estimated lower and upper confidence limits and corresponding widths

for all proposed methods for Example 2 (n = 24).

Method Lower Confidence Limit Upper Confidence Limit Width

Mill 0.181510 0.340507 0.158997

S&K 0.181261 0.338874 0.157613

McK 0.177526 0.331398 0.153872

MMcK 0.163988 0.307669 0.143680

C&P 0.215497 0.260397 0.044900

Panich 0.186213 0.350015 0.163802

Proposed 0.165501 0.306156 0.140655

Med Mill 0.183289 0.330811 0.147522

MedMcK 0.187048 0.350897 0.163849

MedMMcK 0.186665 0.349749 0.163084

Med C&P 0.168763 0.317286 0.148523

NP BS 0.170327 0.315722 0.145396

P BS 0.188882 0.340905 0.152023

BS Mill 0.121866 0.305541 0.183675

BS C&P 0.136045 0.319795 0.183750

Figure 1: Sample size vs. coverage probability for normal distribution when CV = 0.30.

gamma distributions are presented in Tables 4, 5 and 6 of the appendix, respectively,

and for n = 500 of all distributions are presented in Table 7 of the appendix. Each table

gives results for the various sample sizes and CV values previously mentioned. Due to
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space limitation simulation results of the normal distribution are graphically displayed

in Figure 1 through Figure 4, but full simulation results are given in the Appendix.

Figure 2: Sample size vs. interval length for normal distribution when CV = 0.30.

Figure 3: Coefficient of variation vs. coverage probability for normal distribution when n = 100.

3.2. Simulation results

A main trend that was noted throughout all distributions was the net increase in coverage

probability from n = 15 to n = 100. The results will be discussed below by distribution

type. To aid in visualization of results, multiple graphs have been referred to.



Monika Gulhar, B. M. Golam Kibria, Ahmed N. Albatineh and Nasar U. Ahmed 57

Figure 4: Coefficient of variation vs. interval length for normal distribution when n = 100.

3.2.1. Normal distribution

Table 4 and Figures 1–4 present simulated results for the normal distribution. Figure 1

displays sample size vs. coverage probability for all tested intervals when CV = 0.30.

This figure clearly shows that S&K had the weakest overall performance with its

lowest coverage probability at 21% (Table 4). However, S&K’s performance improves

as sample size increases. By n = 100, almost all intervals are performing at a similar

level (Figure 1). All C&P intervals (C&P, Med C&P, and BS C&P) over exceeded the

expected coverage probability of 95% and reached 100% and are clear outliers. Figure 2

displays the sample size vs. interval length for all intervals when CV = 0.30. All C&P

intervals seem to remain stable and large throughout all sample sizes. The S&K interval

also remains stable; however, the values are, as desired, low. All other intervals follow

a similar trend: as sample size increases, interval length decreases. When n = 100, all

intervals are performing similarly, however the C&P intervals are clear outliers. Figure 3

represents the CV vs. coverage probability for normal distribution when n = 100. All

intervals seem to fall between a coverage range of .9 and 1 however, when CV = 0.10

the S&K interval performs very poorly.

The largest sample size presented in Tables 4, 5, and 6 is n = 100. For instances

where one wants to consider an even larger sample size, Table 7 presents the behaviour

of each interval for all distribution types when n = 500. Overall, all intervals seem to

perform at a similar level when n = 500. One key difference that should be noted is that

when sample size in increased to 500, there is a drastic improvement in the performance

of S&K.
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3.2.2. Skewed distributions

The simulated results for chi-square distribution are presented in Table 5 which indi-

cates that many of the same trends as seen in the normal distribution. Similar to the

normal distribution, the S&K interval had the weakest overall performance for the chi-

square distribution. Table 5 shows that as sample size increases, coverage probability

for all intervals has a general increasing trend. The S&K interval is notably lacking in

performance relatively to other intervals. Table 5 shows that as sample size increases,

the interval length decreases for most of the intervals. Similar to the results seen for the

normal distribution, all C&P intervals seem to remain stable and large throughout all

sample sizes and do not follow the decreasing trend. The S&K interval also did not fol-

low the trend as it remained low throughout all sample sizes. Table 5 indicates that with

the exception of S&K, all intervals had coverage probabilities between 0.9 and 1 for all

CV values. S&K performed much lower than the other intervals when CV = 0.10. The

same trend was seen for the normal distribution. Table 5 shows that as the CV value in-

creases, all interval lengths become increasingly wider. The widths are narrowest when

CV = 0.10 and widest when CV = 0.50. The C&P intervals have the greatest length for

all CV values. When CV = 0.50, S&K also has a notably higher interval length than

the other intervals and the narrowest width is observed in the BS and PBS intervals.

The results for gamma distribution are presented in Table 6. Although the gamma

distribution has a greater skewness than the chi-square distribution, this difference did

not have a major effect on the trends seen between the two distribution types. All trends

in the gamma distribution are comparable to results from the chi-square distribution

because the two distribution types are related. When sample size is increased to 500

for skewed distributions, all intervals perform at a similar level (Table 7). The weakest

interval when n = 500 is C&P. C&P has its lowest coverage probability of 21% when

CV = 0.10 in the gamma distribution.

4. Application

To illustrate the findings of the paper, some real life health data are analyzed in this

section.

4.1. Example 1: Birth weight data

The first data set was obtained from Hosmer and Lemeshow (2000), which was collected

from the Baystate Medical Center, in Springfield, Massachusetts (University of Mas-

sachusetts Amherst, 2000). Child birth weight data were collected from 189 women.

A baby weighing less than 2500 grams was defined as a “low birth weight” child.

Among them, 59 women had low birth weight babies and 130 women had normal birth

weight babies. The average birth weight was 2944.66 grams, with a standard deviation
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of 729.022 grams. The coefficient of variation for the low birth data is 0.248. The his-

togram of the data is presented in Figure 5, which showed a mound shaped distribution.

The Shapiro-Wilk test (W = 0.9925, p-value = 0.4383) supported that the data follow a

normal distribution.
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Figure 5: Histogram of birth weight of babies from 189 women, with modelled normal distribution.
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Figure 6: Histogram of the percent of smokers in the United States for 24 selected years,

with modelled gamma distribution.
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Using SPSS (2008), the Kolmogorov-Smirnov (ks) goodness of fit test result (ks =

0.043, p-value = 0.2001) for a hypothesized normal distribution with mean µ = 2945

and standard deviation σ = 755, indicates that the data follow a normal distribution

with mean of 2945 gm and standard deviation of 755 gm. The corresponding population

coefficient of variation, CV = 755/2945 = 0.2564. The resulting 95% confidence

intervals and corresponding widths for all proposed intervals are reported in Table 2.

Results showed that all confidence intervals covered the hypothesize population CV

0.2564. We note that the C&P interval has the shortest width followed by our proposed

interval. Panich has the largest width. Based on the overall simulation results presented

and Figure 3, we may suggest S&K or the proposed one to be the interval of choice

for this example. In fact the proposed interval performed better than the majority of the

other interval estimators.

4.2. Example 2: Cigarette smoking among men, women, and high school

students: United States, 1965-2007

The data set for this example were obtained from the Center for Disease Control and

Prevention (CDC, 2009). The CDC used the National Health Interview Survey and the

Youth Risk Behavior Survey to compile the data. Adults were classified as cigarette

smokers if they smoked 100 cigarettes in their lifetime and if now smoke daily or

occasionally.

A high school student was categorized as a smoker if he or she had even one cigarette

in the past month. The data is a compilation of cigarette smoking among adult and

high school population for selected years between 1965 and 2007. The total sample

size for the data is n = 24 selected years between 1965 and 2007. The mean percent

of smokers is 28.9%, with a standard deviation of 6.8%. The coefficient of variation

for the data is 0.236. The histogram of the data is presented in Figure 6, which shows

a right skewed distribution. Using SAS (2008), the Kolmogorov-Smirnov (ks) good-

ness of fit test result (ks = 0.188, p-value > 0.25) for a hypothesized gamma distri-

bution with shape parameter, α = 17.6 and scale parameter β = 1.6, indicates that

the data follow a gamma distribution with α = 17.6 and β = 1.6. For more infor-

mation on goodness of fit for the gamma distribution, see D’Agostino and Stephens

(1986). For this example, the corresponding population coefficient of variation, CV =
1√
17.6

= 0.238. The resulting 95% confidence intervals and corresponding widths for

all proposed intervals are reported in Table 3. Results showed that all confidence in-

tervals covered the hypothesize population CV of 0.238. Based on the simulation re-

sults presented, we would have expected the S&K interval to have the narrowest width,

1. Lillifors significance correction is applied. This is a lower bound of the true significance.
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however, in this example the narrowest width was observed in the original C&P interval.

S&K’s interval had results that were very comparable to all other intervals, but it was

not the best. This example indicates that the C&P bootstrap interval is the narrowest, a

finding that is confirmed by our simulation results.

5. Concluding remarks

We have considered several confidence intervals for estimating the population CV. A

simulation study has been conducted to compare the performance of the estimators.

For simulation purposes, we have generated data from both symmetric (normal) and

skewed distributions (chi-square and gamma) to see the performance of the interval

estimators. After thorough examination of all individual intervals, and each overall

simulation condition, it can be concluded that the intervals that performed well are: Mill,

McK, MMcK, Panich, MedMill, MedMcK, MedMMcK, and our proposed interval. The

S&K interval was not a good estimator for small sample sizes and had the weakest

performance in terms of coverage probability. However, its performance is comparable

to other intervals when the sample size is large. All C&P intervals did not perform

well for large sample sizes as the interval length for these estimators was too high

relative to other estimators. This wide interval length is not desired as it indicates

that the results are imprecise. It is known that for symmetric distributions the mean

equals the median, but as pointed out by a reviewer, the median modified intervals of

the CV for skewed distributions works well for moderate sample sizes, but for a very

large sample size, the point estimate of the CV using the median will be very close

but doesn’t converge to the true population CV. To see the large sample behaviour,

we have generated data from normal, chi-square and gamma distribution for n = 500

and presented the coverage probability and average widths in Table 7. Clearly, Table 7

shows that the coverage probabilities for all estimators are close to the nominal size of

0.95. For large sample size any of the intervals except S&K could be used. We do not

encourage the researchers to use bootstrap confidence intervals as their performances are

not significantly better than others and they are very time consuming. However, if some

researchers are very conservative about the assumptions of the distributions and willing

to accept the extensive computation they might consider the bootstrap methods. Most

importantly, in many instances, our newly proposed interval produced the best interval

length, especially as CV increased from 0.1 to 0.5. Higher values of CV indicate more

variability in the data, a characteristic that is often seen in health sciences where sample

sizes are frequently small. Because our proposed interval performed well for the higher

values of CV, it will be a good interval to use for many health science data. We also

recommend using this interval over other intervals because it is a very user-friendly

interval in calculation.
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A different and easy method was proposed and analysed in De la Horra (2008). This

method was based on the well-known property that, under the true model, the cumulative

distribution function is distributed as a uniform distribution over the interval (0, 1). A

suitable discrepancy measure between the sample and the Bayesian model is needed. In

De la Horra (2008), the chi-square (χ2) discrepancy was used but, of course, this is not

the only discrepancy measure we may consider. The main aims in this article are:

1. To carry out a comparison between the performance of the χ2 discrepancy and the

performance of other possible discrepancy measures.

2. To calibrate the discrepancy we find between the set of data and the selected model.

The article is organized as follows:

In Section 2, the method introduced in De la Horra (2008) is briefly explained (for

any discrepancy measure). In Section 3, several discrepancy measures are proposed. In

Section 4, these discrepancy measures are compared by simulation, and it is found that

the χ2 discrepancy is reasonable to use.

Once we have decided to use a discrepancy measure and we have chosen a model,

we have to remember that this model is not to be understood as the true model (because

nobody knows the true model) but as the best model among several possible models. The

discrepancy between the data and the model is just a number, and it is very important to

decide if this number indicates either a small discrepancy or a large discrepancy:

• If the discrepancy is small, the model we have chosen is a good model for our data.

• If the discrepancy is large, the model we have chosen is not a good model for our

data.

This problem of calibrating discrepancy measures has been previously studied, for

instance, by McCulloch (1989), Soofi et al. (1995), and Carota et al. (1996). In Section 5,

an easy procedure for calibrating the discrepancy between the set of data and the selected

model is considered. Some examples (control cases) are analysed for illustrating and

evaluating this method.

Finally, a set of real data is analysed in Section 6.

2. A method for model selection

An easy method for Bayesian model selection was proposed and developed in De la

Horra (2008). This method was based on the use of a discrepancy measure and it is

briefly explained here for the continuous case (although a modification was also given

for its application to the discrete case).

Let X = (X1, . . . ,Xn) be a random sample of a continuous random variable X . We

have to choose among m different Bayesian models, Mi, i = 1, . . . ,m. Each
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Bayesian model consists of two components: a sampling density, fi(x|θ ) (where θ ∈

Θ), and a prior density, πi(θ ). For the sake of simplicity, we are assuming that the

parameter space, Θ, is the same for all the models, but this is not necessary. The

cumulative distribution function corresponding to fi(x|θ ) will be denoted by Fi(x|θ );

this cumulative distribution function will have a relevant role in the method. In short,

we can write:

Mi = { fi(x|θ ),πi(θ )}, i = 1, . . . ,m.

The method is based on the following idea:

Let us assume that X = (X1, . . . ,Xn) is a random sample from a continuous random

variable X with density function fi(x|θ ) and cumulative distribution function Fi(x|θ )

(for θ fixed). It is well known that (Fi(X1|θ ), . . . ,Fi(Xn|θ )) can be considered as a

random sample from a U(0,1) (uniform distribution over the interval (0, 1)), because

Fi(X |θ ) follows a U(0,1) distribution and, as a consequence, we hope that (Fi(X1|θ ), . . . ,

Fi(Xn|θ )) will be well fitted by the U(0,1) distribution.

We next describe the method in three steps:

(1) First of all, we measure the discrepancy between the sample we have obtained,

x = (x1, . . . ,xn), and the distribution function Fi(x|θ ) (for a fixed θ ), by using a suitable

discrepancy measure between (Fi(x1|θ ), . . . ,Fi(xn|θ )) and the U(0,1) distribution. This

discrepancy will be denoted by Di(x,θ ).

The idea behind this discrepancy is simple: if Fi(x|θ ) (for a fixed θ ) is a good model,

Di(x,θ ) will be close to zero; if Fi(x|θ ) (for a fixed θ ) is not a good model, Di(x,θ )

will be far from zero.

(2) Of course, we are interested in evaluating the discrepancy between the sample

we have obtained, x = (x1, . . . ,xn), and the whole Bayesian model, Mi. The Bayesian

solution is easy; first of all, we compute the posterior density of the parameter,

πi(θ |x) = πi(θ |x1, . . . ,xn) =
fi(x1, . . . ,xn|θ )πi(θ )

∫

Θ fi(x1, . . . ,xn|θ )πi(θ )dθ

=
fi(x1|θ ) · · · fi(xn|θ )πi(θ )

∫

Θ fi(x1|θ ) · · · fi(xn|θ )πi(θ )dθ
,

and then we evaluate the posterior expected discrepancy between the sample x and the

model Mi:

Di(x) =

∫

Θ

Di(x,θ )πi(θ |x)dθ .
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(3) Finally, we only have to compare D1(x), . . . , Dm(x), and choose the Bayesian model

having the smallest posterior expected discrepancy.

3. Some discrepancy measures

The χ2 discrepancy was used and studied in De la Horra (2008). This discrepancy

measure may be reasonable but, of course, it is not the only one we may consider.

In this section, several reasonable discrepancy measures are proposed. Remember

that, in all the cases, we want to measure the discrepancy between (Fi(x1|θ ), . . . ,Fi(xn|θ ))

and the U(0,1) distribution.

(1) χ2χ2χ2 discrepancy

The discrepancy between (Fi(x1|θ ), . . . ,Fi(xn|θ )) and the U(0,1) distribution may

be measured by the χ2 discrepancy. For doing that, we partition the interval (0, 1) in k

subintervals, (0,1/k),(1/k,2/k), . . . ,((k−1)/k,1) and the χ2 discrepancy is defined as

usual:

D1
i (x,θ ) =

k

∑
j=1

[Oi j(θ )−n(1/k)]2

n(1/k)
=

k

∑
j=1

[Oi j(θ )− (n/k)]2

n/k
,

where Oi j(θ ) is the number of elements of (Fi(x1|θ ), . . . ,Fi(xn|θ )) we have obtained in

each subinterval.

(2) Kolmogorov-Smirnov discrepancy

Let G0(y) denote the cumulative distribution function of the U(0,1), and let Gi(y|θ )

denote the empirical cumulative distribution function corresponding to the sample

(Fi(x1|θ ), . . . ,Fi(xn|θ )). The Kolmogorov-Smirnov discrepancy is defined as usual:

D2
i (x,θ ) = sup

y∈(0,1)

|Gi(y|θ )−G0(y)|.

(3) L1L1L1 discrepancy

Let g0(y) denote the density function of the U(0,1), and let gi(y|θ ) denote some

reasonable density estimator obtained from (Fi(x1|θ ), . . . ,Fi(xn|θ )). The L1 discrepancy

is defined as usual:

D3
i (x,θ ) =

∫ 1

0
|gi(y|θ )−g0(y)|dy.
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In the next section, a density estimator with an Epanechnikov kernel will be used for

gi(y|θ ) (see, for instance, Silverman (1986)). Of course, other density estimators may

be used.

(4) Intrinsic discrepancy

Let us consider again g0(y) (defined over X0 = (0,1)) and gi(y|θ ) (defined over

Xi ⊂ (0,1)). Bernardo and Rueda (2002) defined the intrinsic discrepancy as follows

(see also Bernardo (2005), Berger et al. (2009)):

D4
i (x,θ ) = min

{

∫

Xi

gi(y|θ ) log
gi(y|θ )

g0(y)
dy ,

∫

X0

g0(y) log
g0(y)

gi(y|θ )
dy

}

=
∫

Xi

gi(y|θ ) log
gi(y|θ )

g0(y)
dy ,

where the last equality follows because Xi ⊂ X0 and the second integral in the first line

is not finite (for general properties of the intrinsic discrepancy, see Bernardo (2005)). In

the next section, a density estimator with an Epanechnikov kernel will be again used for

gi(y|θ ).

4. Comparing discrepancy measures

First of all, we will compare the performance of the four discrepancy measures proposed

in Section 3. For doing that, we will proceed by simulation as follows:

(1) Fix m Bayesian models, Mi = { fi(x|θ ),πi(θ )}, i = 1, . . . ,m.

(2) Simulate a very large number of random samples from the Bayesian model Mi.

Apply the method described in Section 2 to these samples, for the four discrepancy

measures proposed in Section 3, and record the percentage of correct classification with

each discrepancy.

(3) Repeat Step (2) for each model Mi, i = 1, . . . ,m. Construct a double entry table with

the percentages of correct classification with each discrepancy measure and each model.

(4) Finally, look for the discrepancy measure having the best performance.

This algorithm is next applied to two examples. These examples are simple to

describe but quite interesting, as explained below.
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Example 1. We consider the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 2);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 3);π3(θ ) ∝ 1}

In the three models, the sampling model is the normal distribution (with different

standard deviations) and the prior density is the reference prior. We are considering

three similar Bayesian models because, if the method has a good performance when

similar models are compared, the performance of the method will be still better when

the models are quite different.

We now apply the algorithm described at the beginning of this section. For doing

that, we generate, for instance, 1000 random samples with 50 elements each from one

of the sampling densities in Model 1 (for instance, from the N(0,σ = 1) distribution).

The improper prior in Model 1 is used for obtaining the posterior density:

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 1/
√

50 ) (model M1).

The same procedure is then carried out for Model 2 and Model 3. For these models,

posterior densities are:

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 2/
√

50 ) (model M2)

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 3/
√

50 ) (model M3)

The percentages of correct classification for each discrepancy measure and each

model are shown in Table 1.

In these examples, χ2 discrepancies are computed by partitioning the interval (0, 1)

into k = 4 subintervals (the number of subintervals must not be too small, but each

subinterval must contain a reasonable number of observations). �

Table 1: Percentages of correct classification in Example 1.

χ2 K −S L1 Intrinsic

M1 100% 100% 100% 100%

M2 99% 96% 77% 76%

M3 92% 89% 43% 45%
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Example 2. We consider the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 5);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 10);π3(θ ) ∝ 1}

In the three models, the sampling model is again the normal distribution (with

different standard deviations) and the prior density is again the reference prior, but now

the models are more different than in Example 1, because the standard deviations are

more different. So, it is expected that the percentages of correct classification will be

better than in Example 1 for all the discrepancy measures.

We now apply the algorithm described at the beginning of this section, in a similar

way to Example 1. The percentages of correct classification with each discrepancy

measure and each model are shown in Table 2. �

Table 2: Percentages of correct classification in Example 2.

χ2 K −S L1 Intrinsic

M1 100% 100% 100% 100%

M2 99% 100% 100% 100%

M3 98% 98% 79% 66%

Main conclusions

• The global performance of the χ2 discrepancy is the best one in these examples.

• Of course, another discrepancy measure may have a better performance in other

cases, but the point here is that the χ2 discrepancy is reasonable to use. As a

consequence, the χ2 discrepancy will be used in the following sections.

5. Calibrating the discrepancy

Now, we have to choose among m different Bayesian models, Mi, i = 1, . . . ,m, trying to

find the best model for our data. It is important to remark that the model we choose is

not to be understood as the true model (nobody knows the true model), but as the best

model for our data we can find among several possible models.

Therefore, we have to answer the following question: is the model we have finally

chosen good enough for our data? A reasonable procedure for answering this question

is given next.
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Once we have chosen Mi as the best model among M1, . . . ,Mm, Di(x) is just a number

giving the posterior expected discrepancy between our data, x, and the model, Mi. Now,

it is important to calibrate this number:

• If the discrepancy is small, the model we have chosen is a good model for our data.

• If the discrepancy is large, the model we have chosen is not a good model for our

data.

For deciding if the discrepancy, Di(x), between our data, x, and the model, Mi, is

either large or small, we may proceed as follows:

(1) Simulate a very large number of random samples from the Bayesian model, Mi, and

compute the posterior expected discrepancies between each of these samples and Mi.

(2) Compare Di(x) to the posterior expected discrepancies we have computed in Step

(1), for obtaining in what percentile Di(x) is placed.

This procedure is applied next to some examples with simulated data. The aim of

these examples is to evaluate the behaviour of the procedure in these control cases.

Example 3. A random sample is simulated from a N(0,σ = 2) distribution.

Consider, as possible models, the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 2);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 3);π3(θ ) ∝ 1}

We apply the algorithm described in Section 2. The model M2 is chosen, because the

smallest posterior expected discrepancy, D2(x) = 8.05, is obtained from M2. Now, we

have to calibrate this value, so we simulate 1000 random samples from model M2. It is

found that the discrepancy D2(x) = 8.05 is between percentiles 12 and 13. Therefore, in

this case, model M2 is a very good model for our data. This is a very reasonable result

because all the data did come from M2. �

Example 4. A random sample is simulated in which 5% of the elements come from

a N(0,σ = 1) distribution, 90% from a N(0,σ = 2) distribution, and 5% from a

N(0,σ = 3) distribution.

Consider again, as possible models, the three Bayesian models given in Example 3,

and apply the algorithm described in Section 2. The model M2 is again chosen, because
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the smallest posterior expected discrepancy, D2(x) = 12.16, is obtained from M2. To

calibrate this value we simulate 1000 random samples from model M2, and it is found

that the discrepancy D2(x) = 12.16 is between percentiles 56 and 57. Therefore, in this

case, model M2 is still a good model for our data, although the discrepancy is larger than

in Example 3. This is again a very reasonable result because, in this case, almost all the

data came from M2. �

Example 5. Finally, we simulate a random sample in which 33% of the elements come

from a N(0,σ = 1) distribution, 34% from a N(0,σ = 2) distribution, and 33% from a

N(0,σ = 3) distribution.

Again the three Bayesian models given in Example 3 are considered and the algo-

rithm described in Section 2 is applied. The model M2 is chosen again, because the

smallest posterior expected discrepancy, D2(x) = 17.58, is obtained from M2.

Calibrating as before, we simulate 1000 random samples from model M2, and it is

found that the discrepancy D2(x) = 17.58 is between percentiles 92 and 93. Therefore,

in this case, model M2 is not a good model for our data and, once more, this is a very

reasonable result. �

Main conclusions

• This method for calibrating the discrepancy shows a good behaviour in these

controlled situations.

• As a consequence, the method can be applied to a set of real data with reasonable

confidence. This is carried out in the next section.

6. Application to real data

A set of 30 failure times for air conditioners on an airplane was introduced by Proschan

(1963). This set of real data was analysed first by Berger and Pericchi (1996) and then by

Gutiérrez-Peña and Walker (2001). They consider three Bayesian models for explaining

this set of real data, with exponential, lognormal and Weibull densities as sampling

densities:

M1 =

{

f1(x|θ ) =
1

θ
exp
{

−
x

θ

}

;π1(θ ) ∝
1

θ

}

M2 =

{

f2(x|µ,σ
2) =

exp{−(logx−µ)2/(2σ2)}
√

2πxσ
;π2(µ,σ

2) ∝
1

σ2

}

M3 =

{

f3(x|α,β) = βx(β−1)α−β exp
{

−(x/α)β
}

;π3(α,β) ∝
1

αβ

}
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The corresponding posterior distributions are:

π1(θ |x)∼ (2nx̄)χ−2
2n

π2(µ,σ
2|x) ∝

(

1

σ2

) n
2+1

exp

{

−
1

2σ2

(

n

∑
i=1

log2 xi −n(logx)2

)}

exp
{

−
n

2σ2
(µ− logx)2

}

∼ NIG

(

n−1,
1

n−1

(

n

∑
i=1

log2 xi −n(logx)2

)

,n, logx

)

π3(α,β |x) ∝ βn−1

[

n

∏
i=1

xi

]β−1

α−nβ−1 exp

{

−
1

αβ

n

∑
i=1

x
β
i

}

,

where χ−2
2n denotes the “inverse chi-square distribution”, logx = 1

n

n

∑
i=1

logxi and NIG

denotes the normal inverse gamma distribution.

Next, we show and comment the results, when different methods are applied:

(1) Method by Berger and Pericchi. They obtained that the model M1 is preferred to

M2, and the model M2 is preferred to M3.

(2) Method by Gutiérrez-Peña and Walker. They obtained that the models M1 and M3

are preferred to M2.

First of all, we remark that the results are different for the two methods shown above.

(3) Method in this article. We apply our method to these data (notice that the third

posterior distribution is not in closed form, and so, a Markov chain Monte Carlo

(MCMC) method is needed for simulations). The following discrepancies are obtained:

D1(x) = 6.5

D2(x) = 2.8

D3(x) = 11.8

Therefore, with this method, the model M2 is preferred to M1 and M3. This result is

also different from the results obtained with the other two methods. The calibration of

the discrepancies, by using the algorithm proposed in Section 5, throws light upon these

results:

• It is obtained (by simulation) that the discrepancy between the real data and the

model M1, D1(x) = 6.5, is between percentiles 94 and 95. Therefore M1 is a bad

(although not very bad) model for these real data.
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• It is obtained (by simulation) that the discrepancy between the real data and the

model M2, D2(x) = 2.8, is between percentiles 74 and 75. Therefore M2 is a

reasonable (although not especially good) model for these real data.

• It is obtained (by simulation) that the discrepancy between the real data and the

model M3, D3(x) = 11.8, is between percentiles 90 and 91. Therefore M3 is a bad

(although not very bad) model for these real data.

Main conclusions

• The best model according to our method is M2 (the lognormal model) and is

a reasonable model for these real data, because the calibration shows that this

discrepancy is between percentiles 74 and 75.

• The discrepancies for the models M1 and M3 are larger than the discrepancy for

the model M2. It is important to notice that their calibrations are bad, but not very

bad. Possibly, this is the reason why they were chosen when other methods are

used.

Acknowledgements

This research has been partially supported by grant MTM2010-17366 (the first author)

and under grant MTM2008-03282 (the second author) from the Spanish ministry of

Science and Innovation. We thank the referees for useful suggestions that improved the

article.

References

Aitkin, M. (1991). Posterior Bayes factors (with discussion). Journal of the Royal Statistical Society B, 53,

11–142.

Berger, J. O., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference priors. Annals of

Statistics, 37, 905–938.

Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factors for model selection and prediction.

Journal of the American Statistical Association, 91, 109–122.

Bernardo, J. M. (2005). Intrinsic credible regions: an objective Bayesian approach to interval estimation

(with discussion). Test, 14, 317–384.

Bernardo, J. M. and Rueda, R. (2002). Bayesian hypothesis testing: a reference approach. International

Statistical Review, 70, 351–372.

Carota, C. Parmigiani, G. and Polson, N. G. (1996). Diagnostic measures of model criticism. Journal of the

American Statistical Association, 91, 753–762.

De la Horra, J. (2008). Bayesian model selection: Measuring the χ2 discrepancy with the uniform distribu-

tion. Communications in Statistics-Theory and Methods, 37, 1412–1424.

De la Horra, J. and Rodrı́guez-Bernal, M. T. (2005). Bayesian model selection: a predictive approach with

losses based on distances L1 and L2. Statistics & Probability Letters, 71, 257–265.



80 Comparing and calibrating discrepancy measures for Bayesian model selection

De la Horra, J. and Rodrı́guez-Bernal, M. T. (2006). Prior density selection as a particular case of Bayesian

model selection: a predictive approach. Communications in Statistics-Theory and Methods, 35,

1387–1396.

Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American

Statistical Association, 74, 153–160.

Gelfand, A. E. (1995). Model determination using sampling-based methods. In: Gilks, W., Richardson, S.,

Spiegelhalter, D. (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall, London, 145–

161.

Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with

implementation via sampling-based methods. In: Bernardo, J. M., Berger, J. O., Dawid, A. P., Smith,

A. F. M. (Eds.), Bayesian Statistics 4. Oxford University Press, Oxford, 147–167.

Gelfand, A. E. and Ghosh, S. (1998). Model choice: a minimum posterior predictive loss approach. Biome-

trika, 85, 1–11.

Gutiérrez-Peña, E. and Walker, S. G. (2001). A Bayesian predictive approach to model selection. Journal

of Statistical Planning and Inference, 93, 259–276.

Laud, P. W. and Ibrahim, J. G. (1995). Predictive model selection. Journal of the Royal Statistical Society

B, 57, 247–262.

McCulloch, R. E. (1989). Local model influence. Journal of the American Statistical Association, 84, 473–

478.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of the Royal

Statistical Society B, 57, 99–138.

Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 5, 375–

383.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.

San Martini, A. and Spezzaferri, F. (1984). A predictive model selection criterion. Journal of the Royal

Statistical Society B, 46, 296–303.

Soofi, E. S., Ebrahimi, N. and Habibullah, M. (1995). Information distinguishability with application to the

analysis of failure data. Journal of the American Statistical Association, 90, 657–668.

Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague

prior information. Journal of the Royal Statistical Society B, 44, 377–387.

Trottini, M. and Spezzaferri, F. (2002). A generalized predictive criterion for model selection. Canadian

Journal of Statistics, 30, 79–96.



Statistics & Operations Research Transactions

SORT 36 (1) January-June 2012, 81-102

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Decision-making techniques with similarity

measures and OWA operators
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We analyse the use of the ordered weighted average (OWA) in decision-making giving special

attention to business and economic decision-making problems. We present several aggregation

techniques that are very useful for decision-making such as the Hamming distance, the adequacy

coefficient and the index of maximum and minimum level. We suggest a new approach by using

immediate weights, that is, by using the weighted average and the OWA operator in the same

formulation. We further generalize them by using generalized and quasi-arithmetic means. We
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can use it instead of the weighted average. We end the paper with an application in a business
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1. Introduction

Decision-making problems are very common in the literature (Canós and Liern 2008;

Figueira et al 2005; A.M. Gil-Lafuente and Merigó 2010; Torra and Narukawa 2007;

Wei 2009; Wei et al 2010; 2011). They are very useful in a lot of situations because

people are almost all the time taking decisions. Sometimes, they take unconscious

decisions or sometimes they simply take the usual decisions of their lives such as what to

eat, what to see on TV and so on. In business and economics, people and organizations

also take decisions almost all the time. Sometimes, they take decisions on how to do or
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improve their work or sometimes the decisions are more global and affect a lot of

decision-makers. Obviously, in these situations we also find a lot of unconscious

decisions.

For the development of the decision-making process we can use a lot of tools

for taking decisions such as individual decision-making, group decision-making, multi

person decision-making, sequential decision-making and different statistical techniques.

Among the different statistical techniques that we can use in decision-making, a very

useful one is the aggregation operator because it permits to aggregate the information

and obtain a single result that permits to continue with the decision process and make

the decision. It is worth noting the ordered weighted averaging (OWA) operator (Yager

1988). It is a tool that provides a parameterized family of aggregation operators between

the maximum and the minimum. Since its appearance, the OWA operator has been used

in a wide range of studies and applications (Merigó et al 2010; Xu 2005; Xu and Da

2003; Yager 1993; 2004a; Yager and Kacprzyk 1997; Yager, Kacprzyk and Beliakov

2011; Zhao et al 2010; Zhou and Chen 2010).

In business and economics, it is very useful to use different similarity measures

that also use aggregation operators such as the Hamming distance (Hamming, 1950).

The Hamming distance is a very useful tool in decision-making because it permits to

compare the available results with some ideal ones that are supposed to be the best ones.

This is especially useful because, depending on the particular problem we are looking

at, the best results are not always the best for the decision-maker because he may have

different interests. An extreme example of this would be the concept of dumping, which

means that the seller is selling the product with a price that is lower than its production

cost. Thus, in the decision process of fixing this price, the seller obviously is looking for

an ideal that it is not the best one. In the literature, we find a lot of studies that analyse

the concept of the Hamming distance (Karayiannis 2000; Kaufmann 1975; Kaufmann

and Gil-Aluja 1986; 1987; Xu 2010a; 2010b).

Recently, several authors (Karayiannis 2000; Merigó 2008; Merigó and Casanovas

2010a; 2011a; Merigó and A.M. Gil-Lafuente 2007; 2010; Xu and Chen 2008) have

analysed the use of the OWA operator in the Hamming distance. We can refer to this

new aggregation operator as the ordered weighted averaging distance (OWAD) operator.

Its main advantage is that it provides a parameterized family of distance aggregation

operators between the maximum and the minimum distance. The OWAD operator can

be further extended by using other types of distances such as the Euclidean distance, the

Minkowski distance and the quasi-arithmetic distance (Karayiannis 2000; Merigó 2008;

Merigó and Casanovas 2011b; 2011c; Merigó and A.M. Gil-Lafuente 2011).

Other similarity measures that are very useful in business and economics are the

adequacy coefficient (Kaufmann and Gil-Aluja 1986; 1987) and the index of maximum

and minimum level (J. Gil-Lafuente 2001; 2002). The adequacy coefficient is an

extension of the Hamming distance that analyses the results that are higher than the

ideal by using a t-norm. This approach can also be extended by using the OWA operator,

obtaining the ordered weighted averaging adequacy coefficient (OWAAC) operator
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(Merigó and A.M. Gil-Lafuente 2010). Further developments on the OWAAC can be

found in Merigó (2008) and Merigó et al. (2011a). The index of maximum and minimum

level is a model that uses the Hamming distance and the adequacy coefficient in the same

formulation using the one that is more appropriate for each variable considered. This

tool can also be extended by using the OWA operator, forming the ordered weighted

averaging index of maximum and minimum level (OWAIMAM) operator.

The aim of this paper is to introduce new decision-making techniques based on the

use of the OWA operator and the weighted average in order to obtain a formulation that

it is able to deal with the subjective beliefs of the decision-maker and with his attitudinal

character. For doing so, we use the concept of immediate probabilities (Engemann et al

1996; Yager et al 1995) applied in situations where we use weighted averages instead of

probabilities. Thus, we obtain the concept of immediate weights. We suggest the use of

immediate weights with the OWAD operator, the OWAAC operator and the OWAIMAM

operator. Therefore, we get the immediate weighted OWAD (IWOWAD), the im-

mediate weighted OWAAC (IWOWAAC) and the immediate weighted OWAIMAM

(IWOWAIMAM) operator. The main advantage of these similarity measures is that they

are able to deal with the weighted Hamming distance and with the OWAD operator in

the same formulation. Thus, we are able to represent the information in a more complete

way because we can consider the degree of importance of the characteristics and the

degree of “orness”, that is, the tendency of the aggregation to the minimum or to the

maximum. Thus, we can under or over estimate the results according to the interests we

have in the aggregation.

We also extend this analysis by using generalized and quasi-arithmetic means,

obtaining the generalized IWOWAD (GIWOWAD), the generalized IWOWAAC

(GIWOWAAC) and the generalized IWOWAIMAM (GIWOWAIMAM) operator. The

main advantage of these new generalizations is that they include a wide range of partic-

ular cases, including the usual arithmetic, geometric and quadratic aggregations. Thus,

we obtain a more general formulation that permits to analyse the aggregation problem

from different contexts.

We also analyse a wide range of applications that can be developed. Specially, we

focus on a wide range of decision-making problems that can be implemented in business

and economic scenarios. We study a business decision-making problem in production

management by using different multi-person decision-making techniques based on

the OWA operator such as the IWOWAD operator, the IWOWAAC operator and the

IWOWAIMAM operator. Thus, we are able to construct new aggregation operators

including the multi-person IWOWAD (MP-IWOWAD), the multi-person IWOWAAC

(MP-IWOWAAC) and the multi-person IWOWAIMAM (MP-IWOWAIMAM). The

main advantage of these aggregation methods is that they are able to deal with the

opinion of several persons in the analysis providing results that represents the aggregated

information of the group. We see that each method provides different results depending

on the interests of the decision-maker. Therefore, we see that the results may lead to

different decisions depending on the particular type of aggregation operator used. Thus,
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we get a general overview of the different scenarios that may occur and select the one

that is in more accordance with our interests.

The paper is organized as follows. In Section 2, we briefly review some basic

decision-making techniques such as the Hamming distance, the adequacy coefficient,

the index of maximum and minimum level and the OWA operator. Section 3 presents

new decision-making techniques based on the use of immediate weights. Section 4

summarizes different applications that can be developed with the OWA operator in

business and economics. In Section 5, we present a particular problem in a decision-

making problem about the selection of production strategies in a company. In Section 6

we present a numerical example and in Section 7 we summarize the main conclusions

of the paper.

2. Preliminaries

In this section, we briefly review some basic concepts to be used throughout the paper

such as the Hamming distance, the adequacy coefficient, the index of maximum and

minimum level and their extensions with the OWA operator.

2.1. The Hamming distance

The Hamming distance (Hamming 1950) is a useful technique for calculating the

differences between two elements, two sets, etc. In fuzzy set theory, it can be useful,

for example, for the calculation of distances between fuzzy sets, interval-valued fuzzy

sets, intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. For two sets A

and B, the weighted Hamming distance can be defined as follows.

Definition 1 A weighted Hamming distance of dimension n is a mapping dWH: Rn ×

Rn → R that has an associated weighting vector W of dimension n with the sum of the

weights being 1 and w j ∈ [0,1] such that:

dWH(〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
i=1

wi|xi − yi|, (1)

where xi and yi are the ith arguments of the sets X and Y .

Note that the formulations shown above are the general expressions. For the for-

mulation used in fuzzy set theory, see for example (Kaufmann 1975). Note also that

if wi = 1/n, for all i, then, the weighted Hamming distance becomes the normalized

Hamming distance.
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2.2. The adequacy coefficient

The adequacy coefficient (Kaufmann and Gil-Aluja 1986; 1987) is an index used for

calculating the differences between two elements, two sets, etc. It is very similar to the

Hamming distance with the difference that it neutralizes the result when the comparison

shows that the real element is higher than the ideal one. For two sets A and B, the

weighted adequacy coefficient can be defined as follows.

Definition 2 A weighted adequacy coefficient of dimension n is a mapping K : [0,1]n ×

[0,1]n → [0,1] that has an associated weighting vector W of dimension n with the sum

of the weights 1 and w j ∈ [0,1] such that:

K(〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
i=1

wi[1∧ (1− xi + yi)], (2)

where xi and yi are the ith arguments of the sets X and Y .

Note that if wi = 1/n, for all i, then, the weighted adequacy coefficient becomes the

normalized adequacy coefficient.

2.3. The index of maximum and minimum level

The index of maximum and minimum level is an index that unifies the Hamming

distance and the adequacy coefficient in the same formulation (J. Gil-Lafuente 2001;

2002). For two sets A and B, the weighted index of maximum and minimum level can

be defined as follows.

Definition 3 A WIMAM of dimension n is a mapping K : [0,1]n × [0,1]n → [0,1] that

has an associated weighting vector W of dimension n with the sum of the weights 1 and

w j ∈ [0,1] such that:

η(〈x1,y1〉, . . . ,〈xn,yn〉) = ∑
u

Zi(u)×|xi(u)− yi(u)|+∑
v

Zi(v)× [0∨ (xi(v)− yi(v))],

(3)

where xi and yi are the ith arguments of the sets X and Y .

Note that if wi = 1/n, for all i, then, the weighted index of maximum and minimum

level becomes the normalized index of maximum and minimum level.

2.4. The OWA operator

The OWA operator (Yager 1988) provides a parameterized family of aggregation opera-

tors which have been used in many applications (Beliakov et al 2007; Merigó 2008; Xu

2005; Yager 1993; Yager and Kacprzyk 1997). It can be defined as follows.
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Definition 4 An OWA operator of dimension n is a mapping OWA: Rn → R that has an

associated weighting vector W of dimension n with w j ∈ [0,1] and ∑
n
j=1 w j = 1, such

that:

OWA(a1,a2, . . . ,an) =
n

∑
j=1

w jb j, (4)

where b jis the jth largest of the ai.

The OWAD operator (Merigó 2008; Merigó and A.M. Gil-Lafuente 2007; 2010)

is an aggregation operator that uses OWA operators and distance measures in the same

formulation. In this subsection, we focus on the Hamming distance. However, it is worth

noting that it is also possible to use other types of distance measures with the OWA

operator such as the Euclidean or the Minkowski distance (Merigó 2008). It can be

defined as follows for two sets X and Y .

Definition 5 An OWAD operator of dimension n is a mapping OWAD: Rn×Rn → R that

has an associated weighting vector W, with ∑
n
j=1 w j = 1 and w j ∈ [0,1] such that:

OWAD(〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
j=1

w jD j, (5)

where D j represents the jth largest of the |xi − yi|.

The OWAAC operator (Merigó and A.M. Gil-Lafuente 2010) is an aggregation op-

erator that uses the adequacy coefficient and the OWA operator in the same formulation.

It can be defined as follows for two sets X and Y .

Definition 6 An OWAAC operator of dimension n is a mapping OWAAC: [0,1]n× [0,1]n

→ [0,1] that has an associated weighting vector W, with w j ∈ [0,1] and ∑
n
j=1 w j = 1,

such that:

OWAAC(〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
j=1

w jK j, (6)

where K j represents the jth largest of [1∧ (1− xi + yi)],xi,yi ∈ [0,1].

The OWAIMAM operator (Merigó 2008; Merigó et al. 2011b) is an aggregation

operator that uses the Hamming distance, the adequacy coefficient and the OWA

operator in the same formulation. It can be defined as follows.

Definition 7 An OWAIMAM operator of dimension n, is a mapping OWAIMAM: [0,1]n×

[0,1]n → [0,1] that has an associated weighting vector W, with w j ∈ [0,1] and the sum

of the weights is equal to 1, such that:

OWAIMAM (〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
j=1

w jK j, (7)

where K j represents the jth largest of all the |xi − yi| and the [0∨ (xi − yi)].
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3. Distance measures with immediate weights

In this section, we introduce a new approach for dealing with distance measures where

we use the weighted average and the OWA operator in the same formulation. For doing

so, we extend the concept of immediate probabilities (Engemann et al 1996; Merigó

2008; 2010; Yager et al 1995) for situations where we use the weighted average. Thus,

instead of using immediate probabilities, we will use immediate weights in the analysis.

Extending this to the use of distance measures implies the introduction of new distance

and similarity measures such as the immediate weighted OWA distance (IWOWAD), the

immediate weighted OWAAC (IWOWAAC) and the immediate weighted OWAIMAM

(IWOWAIMAM) operator. The main advantage of these new models is that they can

consider the information used in the weighted average (degree of importance) and in the

OWA operator (degree of orness or optimism) in the same formulation. Thus, we get a

more general formulation that is able to represent the information in a more complete

way because in real world problems, it is very common that we have to combine in

the same problem situations with weighted averages and with OWA operators. Before

defining these three new distance aggregation operators let us recall the concept of

immediate probabilities applied to the weighted average, that is, the immediate weights

(IW). It can be defined as follows.

Definition 8 An IW operator of dimension n is a mapping IW: Rn → R that has an

associated weighting vector W of dimension n with w j ∈ [0,1] and ∑
n
j=1 w j = 1, such

that:

IW (a1,a2, . . . ,an) =
n

∑
j=1

v̂ jb j, (8)

where b j is the jth largest of the ai, each ai has associated a WA vi, v j is the associated

WA of b j, and v̂ j = (w jv j/∑
n
j=1 w jv j).

As we can see, if w j = 1/n for all j, we get the weighted average and if v j = 1/n for

all j, the OWA operator. Now, we extend the measures commented in Section 2.4., by

using immediate weights. Thus, for the OWAD operator, we get the IWOWAD operator

and it is defined as follows.

Definition 9 An IWOWAD operator of dimension n is a mapping IWOWAD: Rn ×Rn →

R that has an associated weighting vector W of dimension n with w j ∈ [0,1] and

∑
n
j=1 w j = 1, such that:

IWOWAD(〈x1,y1〉, . . . ,〈xn,yn〉) =
n

∑
j=1

v̂ jb j, (9)

where b j is the jth largest of the |xi − yi|, each |xi − yi| has associated a WA vi, v j is the

associated WA of b j, and v̂ j = (w jv j/∑
n
j=1 w jv j).
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In this case, if w j = 1/n for all j, we get the weighted Hamming distance and if

v j = 1/n for all j, the OWAD operator. Note that the IWOWAD operator accomplishes

similar properties that the OWAD operator with the exception of commutativity because

the use of the weighted average does not allow the commutativity property. Note that

if the weighting vector is not normalized, i.e., V̂ = ∑
n
j=1 v̂ j 6= 1, then, the IWOWAD

operator can be expressed as: IWOWAD/V̂ .

If we use immediate weights in the OWAAC operator, we get the IWOWAAC

operator. In this case, we have the same expression than in Eq. (9) with the difference

that now b j is the jth largest of the [1∧ (1− xi + yi)], xi, yi ∈ [0,1] and each [1∧ (1−

xi + yi)] has associated a WA vi.

As we can see, if w j = 1/n for all j, we get the weighted adequacy coefficient and if

v j = 1/n for all j, the OWAAC operator. Moreover, if xi ≥ yi, for all i, then, the OWAAC

operator becomes the OWAD operator.

Finally, if we use the OWAIMAM operator with immediate weights, we get the

IWOWAIMAM operator. Note that we get the same formulation than Eq. (9) with the

difference that now b j is the jth largest of all the |xi − yi| and the [0∨ (xi − yi)]; xi,

yi ∈ [0,1], and each |xi − yi| and [0∨ (xi − yi)] has associated a WA vi.

Furthermore, we can a present a further generalization of the previous measures by

using generalized and quasi-arithmetic means (Merigó and Casanovas 2010b; 2010c;

2011d; Merigó and Gil-Lafuente 2009). Note that in this paper we will use generalized

means although it is straightforward to extend it by replacing the parameter λ of the

generalized mean by the strictly continuous monotonic function g of the quasi-arithmetic

mean (Merigó and Gil-Lafuente 2009). By generalizing the IWOWAD operator, we get

the generalized IWOWAD (GIWOWAD) operator. It can be defined as follows.

Definition 10 An GIWOWAD operator of dimension n is a mapping GIWOWAD: Rn ×

Rn → R that has an associated weighting vector W of dimension n with w j ∈ [0,1] and

∑
n
j=1 w j = 1, such that:

GIWOWAD(〈|x1,y1〉, . . . ,〈xn,yn〉) =

(

n

∑
j=1

v̂ jb
λ
j

)1/λ

, (10)

where b j is the jth largest of the |xi − yi|, each |xi − yi| has associated a WA vi, v j

is the associated WA of b j, v̂ j = (w jv j/∑
n
j=1 w jv j), and λ is a parameter such that

λ ∈ (−∞,∞)−{0}.

Note that if we extend the IWOWAD operator with quasi-arithmetic means we get

the quasi-arithmetic IWOWAD (Quasi-IWOWAD) operator as follows:

Quasi-IWOWAD (〈x1,y1〉, . . . ,〈xn,yn〉) = g−1

(

n

∑
j=1

v̂ jg(b j)

)

, (11)
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where g(b) is a strictly continuous monotonic function. Further generalizations in

this direction can be developed by using norm aggregations following Yager (2010).

If we generalize the IWOWAAC operator, we obtain the generalized IWOWAAC

(GIWOWAAC) operator. It can be defined as follows.

Definition 11 A GIWOWAAC operator of dimension n is a mapping GIWOWAAC:

[0,1]n × [0,1]n → [0,1] that has an associated weighting vector W of dimension n with

w j ∈ [0,1] and ∑
n
j=1 w j = 1, such that:

GIWOWAAC (〈x1,y1〉, . . . ,〈xn,yn〉) =

(

n

∑
j=1

v̂ jb
λ
j

)1/λ

, (12)

where b j is the jth largest of the [1∧ (1− xi + yi)], xi, yi ∈ [0,1], each [1∧ (1− xi + yi)]

has associated a WA vi, v j is the associated WA of b j, v̂ j = (w jv j/∑
n
j=1 w jv j), and λ is

a parameter such that λ ∈ (−∞,∞)−{0}.

And if we extend the IWOWAIMAM operator by using generalized means, we get

the generalized IWOWAIMAM (GIWOWAIMAM) operator. It is defined as follows.

Definition 12 A GIWOWAIMAM operator of dimension n is a mapping GIWOWAIMAM:

[0,1]n × [0,1]n → [0,1] that has an associated weighting vector W of dimension n with

w j ∈ [0,1] and ∑
n
j=1 w j = 1, such that:

GIWOWAIMAM (〈x1,y11〉, . . . ,〈xn,yn〉) =

(

n

∑
j=1

v̂ jb
λ
j

)1/λ

, (13)

where b j is the jth largest of all the |xi − yi| and the [0 ∨ (xi − yi)]; xi, yi ∈ [0,1],

each |xi − yi| and [0 ∨ (xi − yi)] has associated a WA vi, v j is the associated WA of

b j, v̂ j = (w jv j/∑
n
j=1 w jv j), and λ is a parameter such that λ ∈ (−∞,∞)−{0}.

Note that in these two cases we can also consider the dual. Additionally, if we use

quasi-arithmetic means we get the quasi-arithmetic IWOWAAC (Quasi-IWOWAC) and

the quasi-arithmetic IWOWAIMAM (Quasi-IWOWAIMAM) operator.

These generalizations include a wide range of particular cases by using different

types of weighting vectors and values in the parameter λ. In Table 1, we present some

of the main particular cases.

Note that a lot of other families could be studied following the OWA literature for

obtaining OWA weights. The main advantage of using these generalizations is that they

provide a more robust formulation that includes a wide range of particular cases. Thus,

we get a deeper picture of the different results that may occur in the specific problem

considered.
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Table 1: Families of GIWOWAD, GIWOWAAC and GIWOWAIMAM operators.

Particular type GIWOWAD GIWOWAAC GIWOWAIMAM

wi = 1/n, ∀ i OWAD OWAAC OWAIMAM

vi = 1/n, ∀ i WHD WAC WIMAM

g(a) = aλ Quasi-IWOWAD Quasi-IWOWAAC Quasi-IWOWAIMAM

λ= 1 IWOWAD IWOWAAC IWOWAIMAM

λ= 2 Quadratic IWOWAD Quadratic IWOWAAC Quadratic IWOWAIMAM

λ→ 0 Geometric IWOWAD Geometric IWOWAAC Geometric IWOWAIMAM

λ=−1 Harmonic IWOWAD Harmonic IWOWAAC Harmonic IWOWAIMAM

λ= 3 Cubic IWOWAD Cubic IWOWAAC Cubic IWOWAIMAM

λ→ ∞ Maximum distance Maximum adequacy coefficient Maximum IMAM

λ→−∞ Minimum distance Minimum adequacy coefficient Minimum IMAM

Etc.

4. Applicability of the OWA operator in business and economics

The OWA operator is a very useful tool for business and economics because it permits to

reflect the attitudinal character (the degree of orness or optimism) of the decision-maker

in the aggregation of the information.

First of all, it is clear that the OWA operator plays a key role in decision-making

problems by unifying the classical decision criteria under uncertainty, that is, the opti-

mistic criteria, the pessimistic criteria, the Laplace and the Hurwicz criteria. Thus, we

can use them in a lot of situations such as individual decision-making, group decision-

making, multi-attribute decision-making, multi-criteria decision-making, multi-person

decision-making, sequential decision-making and dynamic decision-making.

Moreover, we can apply it in a lot of other decision-making contexts such as

probabilistic decision-making (Engemann et al 1996; Yager et al 1995), minimization

of regret (Yager 2004b), Dempster-Shafer theory of evidence (Yager 1992; Merigó and

Casanovas 2009), analytic hierarchy process (Yager and Kelman 1999), neural networks

(Yager 1994) and game theory (Yager 1999).

Focussing on business and economic decision-making, we see that the OWA oper-

ators, combined with one or more of the previous methods can be applied in a lot of

situations. For example, we could use the OWA operator in business decision-making

problems such as financial management, strategic management, human resource man-

agement and product management. Inside these business areas, we could use the OWA

operator in different ways depending on the particular problem we are analyzing as

mentioned in the previous paragraph. For example, in human resource management, we

could be looking for a selection process between directors, mid-range jobs, low-range

jobs, in public administration, in sports and so on.

When using the OWA operator in economics, we could relate it with political

decision-making because they are very much connected. For example, when looking

for general economic decisions, these ones have a strong impact in political decision-



José M. Merigó and Anna M. Gil-Lafuente 91

making. For example, the economic decisions about the selection of monetary policies,

fiscal policies and commercial policies involve both the economic and the political

sector. Other economic decisions that could be considered are those that affect the public

sector such as decisions from the ministries, decisions from the autonomic authorities

and decisions from the local authorities.

Obviously, both business and economic decision-making are very much related and

the situations mentioned above could be seen as general framework inside business and

economics.

The OWA operator is also useful in a lot of other situations that are not directly

related with decision-making. Basically, the OWA operator is very useful in those

situations where it can be seen as a statistical technique representing a new type of

weighted average. Thus, a lot of business and decisions problems that use some kind of

weighted average can be reformulated using the OWA operator. For example, the OWA

operator is very useful in statistics and econometrics. Thus, a lot of problems that use

the weighted average could be revised including linear regression, multiple regressions

and a lot of its extensions and applications. Thus, we see that the OWA operator can

be used in a lot of business and economic environments that uses statistical techniques

such as business economics, marketing, finance, management science, actuarial science,

insurance, behavioural economics, macroeconomics, microeconomics, economic policy,

applied economics, accounting, public economics, entrepreneurship, social choice and

welfare, economic development, industrial organization, tourism management and sport

management.

5. Multi-person decision-making in production management

In the following, we are going to consider a business multi-person decision-making

problem in production management. The motivation for using the OWA operator in

the selection of production strategies in all different kinds of areas, appears because

the decision-maker wants to take the decision with a certain degree of optimism or

pessimism rather than with a neutral position. Due to the fact that the traditional methods

are neutral against the attitude of the decision-maker, the introduction of the OWA

operator in these models can change the neutrality and reflect decisions with different

degrees of optimism and pessimism. These techniques can be used in a lot of situations

but the general ideas about it is the possibility of under estimate or over estimate the

problems in order to get results that reflects this change in the evaluation phase.

The process to follow in the selection of production strategies with the OWA

operator, is similar to the process developed in Gil-Aluja (1998) and Kaufmann and

Gil-Aluja (1986; 1987) for the selection of human resources with the difference that

the instruments used will include the OWA operator in the selection process. Note

that similar models that use the OWA operator have been developed for other selection

processes (Merigó and A.M. Gil-Lafuente 2010). The five steps to follow are:
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Step 1: Analysis and determination of the significant characteristics of the available

production strategies. Let A = {A1,A2, . . . ,Am} be a set of finite alternatives, and C =

{C1,C2, . . . ,Cn}, a set of finite characteristics (or attributes), forming the matrix (xhi)m×n.

Let E = {E1,E2, . . . ,Ep} be a finite set of decision-makers. Let V = (v1,v2, . . . ,vp) be

the weighting vector of the weighted average such that ∑
p

k=1 vk = 1 and vk ∈ [0,1] and

U = (u1,u2, . . . ,up) be the weighting vector of the decision-makers that ∑
p

k=1 uk = 1 and

uk ∈ [0,1]. Each decision-maker provides their own payoff matrix (x
(k)
hi )m×n.

Step 2: Fixation of the ideal levels of each significant characteristic in order to form

the ideal production strategy. That is:

Table 2: Ideal production strategy.

C1 C2 · · · Ci · Cn

P = x1 x2 · · · xi · · · xn

where P is the ideal production strategy represented by a fuzzy subset, Ci is the ith

characteristic to consider and xi ∈ [0,1]; i = 1,2, . . . ,n, is the valuation between 0 and

1 for the ith characteristic. Note that we assume that the ideal investment is given as a

consensus between the opinions of the experts.

Step 3: Use the weighted average (WA) to aggregate the information of the decision-

makers E by using the weighting vector U . The result is the collective payoff matrix

(xhi)m×n. Thus, xhi = ∑
p

k=1 uk

(

x
(k)
hi

)

.

Step 4: Comparison between the ideal production strategy and the different produc-

tion strategies considered, and determination of the level of removal using the OWA

operator. That is, changing the neutrality of the results to over estimate or under esti-

mate them. In this step, the objective is to express numerically the removal between the

ideal production strategy and the different production strategies considered. For this, it

can be used the different available selection indexes such as those explained in the pre-

vious sections including the Hamming distance, the adequacy coefficient and the index

of maximum and minimum level.

Step 5: Adoption of decisions according to the results found in the previous steps.

Finally, we should take the decision about which production strategy select. Obviously,

our decision will consist in choosing the production strategy with the best results

according to the index used.

Note that when developing this decision process, we can summarize all the calcula-

tions in an aggregation process. We can do this with the IWOWAD obtaining the multi-

person IWOWAD (MP-IWOWAD), with the IWOWAAC forming the multi-person
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IWOWAAC (MP-IWOWAAC) and with the IWOWAIMAM obtaining the multi-person

IWOWAIMAM (MP-IWOWAIMAM). They can be defined as follows.

Definition 13 A MP-IWOWAD operator is an aggregation operator that has a weight-

ing vector U of dimension p with ∑
p

k=1 uk = 1 and uk ∈ [0,1], and a weighting vector W

of dimension n with ∑
n
j=1 w j = 1 and w j ∈ [0,1], such that:

MP-IWOWAD(〈x1
1, . . . ,x

p
1),y1〉, . . . ,〈(x

1
n, . . . ,x

p
n),yn〉) =

n

∑
j=1

v̂ jb j, (14)

where b j is the |xi − yi| largest individual distance, each |xi − yi| has associated a

weight vi, v j is the associated weighted average (WA) of b j, v̂ j = (w jv j/∑
n
j=1 w jv j),

xi = ∑
p

k=1 ukxk
i and xk

i is the argument variable provided by each person.

Definition 14 A MP-IWOWAAC operator is an aggregation operator that has a weight-

ing vector U of dimension p with ∑
p

k=1 uk = 1 and uk ∈ [0,1], and a weighting vector W

of dimension n with ∑
n
j=1 w j = 1 and w j ∈ [0,1], such that:

MP-IWOWAAC(〈x1
1, . . . ,x

p
1),y1〉, . . . ,〈(x

1
n, . . . ,x

p
n),yn〉) =

n

∑
j=1

v̂ jb j, (15)

where b jis the jth largest of the [1∧ (1− xi + yi)], xi, yi ∈ [0,1], each [1∧ (1− xi + yi)]

has associated a weight vi, v j is the associated weighted average (WA) of b j, v̂ j =

(w jv j/∑
n
j=1 w jv j), xi = ∑

p

k=1 ukxk
i and xk

i is the argument variable provided by each

person.

Definition 15 A MP-IWOWAIMAM operator is an aggregation operator that has a

weighting vector U of dimension p with ∑
p

k=1 uk = 1 and uk ∈ [0,1], and a weighting

vector W of dimension n with ∑
n
j=1 w j = 1 and w j ∈ [0,1], such that:

MP-IWOWAIMAM(〈(x1
1, . . . ,x

p
1),y1〉, . . . ,〈(x

1
n, . . . ,x

p
n),yn〉) =

n

∑
j=1

v̂ jb j, (16)

where b j is the jth largest of all the |xi − yi| and the [0∨ (xi − yi)]; xi, yi ∈ [0,1], each

|xi − yi| and [0 ∨ (xi − yi)] has associated a weight vi, v j is the associated weighted

average (WA) of b j, v̂ j = (w jv j/∑
n
j=1 w jv j), xi = ∑

p

k=1 ukxk
i and xk

i is the argument

variable provided by each person.

The MP-IWOWAD, MP-IWOWAAC and MP-IWOWAIMAM have similar proper-

ties than those commented in Section 3. Thus, we can consider a wide range of ex-

tensions such as those that use generalized and quasi-arithmetic means obtaining the

MP-GIWOWAD, the MP-GIWOWAAC and the MP-GIWOWAIMAM operators.
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Furthermore, it is possible to consider a wide range of particular cases. For example,

with the MP-IWOWAD we can consider the multi-person OWAD (MP-OWAD), the

multi-person weighted Hamming distance (MP-WHD), the multi-person normalized

Hamming distance (MP-NHD) and so on.

6. Illustrative example

In this Section, we present a simple numerical example where it is possible to see

the applicability of the OWA operator in a business decision-making problem about

selection of production strategies. Note that this example can be seen as a real world

example although in this paper we do not use information from the real world.

Step 1: Assume an enterprise that produces cars is looking for its general strategy

the next year and they consider that it should be useful for them to create a new

production plant in order to be bigger and more competitive in the market. After careful

evaluation of the information, the group of experts of the company constituted by three

persons considers the following countries where it could be interesting to create a new

production plant.

• A1 = Produce in Russia.

• A2 = Produce in China.

• A3 = Produce in India.

• A4 = Produce in Brazil.

• A5 = Produce in Nigeria.

The economic evaluation of producing in these countries can be described consider-

ing the following characteristics C = (C1 = Benefits in the short term, C2 = Benefits in

the mid term, C3 = Benefits in the long term, C4 = Risk of the strategy, C5 = Subjective

opinion of the group of experts, C6 = Other variables).

Step 2: With this information, the group of experts of the company establishes the

ideal results that the ideal production strategy should have. These results are represented

in Table 3.

Table 3: Ideal production strategy.

C1 C2 C3 C4 C5 C6

P = 0.8 0.9 1 0.9 0.9 0.8

Step 3: Fixation of the real level of each characteristic for all the different production

strategies considered. For each of these characteristics, the following information is
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given by each expert shown in Tables 4, 5 and 6. Note that we assume that each expert

has the same degree of importance. That is: U = (1/3,1/3,1/3).

Table 4: Available production strategies-Expert 1.

C1 C2 C3 C4 C5 C6

A1 0.5 0.4 0.5 0.3 0.7 0.4

A2 0.1 0.7 0.7 0.3 0.7 0.9

A3 0.6 0.8 0.5 0.1 0.6 0.3

A4 0.5 0.4 0.6 0.6 0.7 0.6

A5 0.2 0.1 0.4 0.8 0.7 0.1

Table 5: Available production strategies-Expert 2.

C1 C2 C3 C4 C5 C6

A1 0.6 0.8 0.7 0.4 0.8 0.7

A2 0.1 0.9 0.9 0.5 0.7 0.7

A3 0.8 1 0.7 0.3 0.8 0.6

A4 0.4 0.4 0.6 0.9 0.5 0.9

A5 0.6 0.2 0.8 0.9 0.7 0.1

Table 6: Available production strategies-Expert 3.

C1 C2 C3 C4 C5 C6

A1 0.7 0.9 0.6 0.5 0.9 0.7

A2 0.4 0.8 0.8 0.1 0.7 0.8

A3 0.7 0.9 0.6 0.2 0.7 0.6

A4 0.3 0.4 0.6 0.9 0.6 0.6

A5 0.7 0 0.6 0.7 0.7 0.1

With this information, we can aggregate the information of the three experts in

order to obtain a collective result of the available production strategies. The results are

presented in Table 7.

Table 7: Available production strategies-Collective results.

C1 C2 C3 C4 C5 C6

A1 0.6 0.7 0.6 0.4 0.8 0.6

A2 0.2 0.8 0.8 0.3 0.7 0.8

A3 0.7 0.9 0.6 0.2 0.7 0.5

A4 0.4 0.4 0.6 0.8 0.6 0.7

A5 0.5 0.1 0.6 0.8 0.7 0.1

Step 4: Comparison between the ideal production strategy and the different produc-

tion strategies considered, and determination of the level of removal using the OWA

operator. By using the Hamming distance, we will consider the normalized Hamming

distance, the weighted Hamming distance, the OWAD, the AOWAD the median-OWAD
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and the IWOWAD operator. In this example, we assume that the company decides to use

the following weighting vectors: W = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3) and V = (0.3, 0.2, 0.2,

0.1, 0.1, 0.1). Note that in the literature we have a wide range of methods for determining

the weights (Merigó, 2010; Merigó and Gil-Lafuente, 2009; 2010; Yager, 1993). Thus,

when using immediate weights for the IWOWAD, IWOWAAC and IWOWAIMAM, we

use the following weights obtained by using Eq. (9), (10) and (11), shown in Table 8.

Table 8: Immediate weights.

A1 0.066 0.133 0.2 0.266 0.133 0.2

A2 0.1875 0.0625 0.0625 0.25 0.25 0.1875

A3 0.055 0.111 0.055 0.111 0.333 0.333

A4 0.1428 0.2142 0.1428 0.1428 0.1428 0.2142

A5 0.125 0.0625 0.125 0.375 0.125 0.1875

Note that we have to calculate the individual distances of each characteristic to the

ideal value of the corresponding characteristic forming the fuzzy subset of individual

distances for each strategy. Once, we have the individual distances, we aggregate them

with the appropriate aggregation operator. The results are shown in Table 9.

Table 9: Aggregated results with the OWAD operator.

NHD WHD OWAD AOWAD Median IWOWAD

A1 0.266 0.26 0.22 0.32 0.2 0.2266

A2 0.283 0.32 0.2 0.37 0.2 0.2375

A3 0.283 0.23 0.2 0.38 0.25 0.1555

A4 0.3 0.35 0.24 0.36 0.35 0.2927

A5 0.316 0.43 0.24 0.42 0.25 0.35

If we develop the selection process with the adequacy coefficient, we will get the

following. First, we have to calculate how close the characteristics are to the ideal

production strategy. Once we have calculated all the different individual values, we will

construct the aggregation. In this case, the arguments will be ordered using Eq. (6) and

Eq. (12). The results are shown in Table 10.

Table 10: Aggregated results with the OWAAC operator.

NAC WAC OWAAC AOWAAC Median IWOWAAC

A1 0.733 0.74 0.68 0.78 0.8 0.7734

A2 0.716 0.68 0.63 0.8 0.6 0.7625

A3 0.716 0.77 0.62 0.8 0.75 0.8445

A4 0.7 0.65 0.64 0.76 0.65 0.7072

A5 0.683 0.57 0.58 0.76 0.75 0.65

Finally, if we use the index of maximum and minimum level in the selection process

as a combination of the normalized Hamming distance and the normalized adequacy
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coefficient, we get the following. In this example, we assume that the characteristics C1

and C2 have to be treated with the adequacy coefficient and the other four characteristics

have to be treated with the Hamming distance. Its resolution consists in the following.

First, we calculate the individual removal of each characteristic to the ideal, indepen-

dently that the instrument used is the Hamming distance or the adequacy index. Once

calculated all the values for the individual removal, we construct the aggregation using

Eq. (7) and Eq. (13). Here, we note that in the reordering step, it will be only considered

the individual value obtained for each characteristic, independently that the value has

been obtained with the adequacy coefficient or with the Hamming distance. The results

are shown in Table 11.

Table 11: Aggregated results with the OWAIMAM operator.

NIMAM WIMAM OWAIMAM AOWAIMAM Median IWOWAIMAM

A1 0.266 0.26 0.22 0.42 0.2 0.2266

A2 0.283 0.32 0.2 0.37 0.2 0.2375

A3 0.283 0.23 0.2 0.38 0.25 0.1555

A4 0.3 0.35 0.24 0.36 0.35 0.2927

A5 0.316 0.43 0.24 0.42 0.25 0.35

In order to see the optimal production strategies depending on the particular types

of OWA aggregations used, we establish the following table with the ordering of the

production strategies. Note that this is very useful when the decision-maker wants to

consider more than one alternative. The results are shown in Table 12.

Table 12: Ordering of the production strategies.

Ordering Ordering

NHD A1}A2 =A3}A4}A5 AOWAAC A2 =A3}A1}A4 =A5

WHD A3}A1}A2}A4}A5 Median A1}A3 =A5}A4}A2

OWAD A2 =A3}A1}A4 =A5 IWOWAAC A3}A1}A2}A4}A5

AOWAD A1}A4}A2}A3}A5 NIMAM A1}A2 =A3}A4}A5

Median A1 =A2}A3 =A5}A4 WIMAM A3}A1}A2}A4}A5

IWOWAD A3}A1}A2}A4}A5 OWAIMAM A2 =A3}A1}A4 =A5

NAC A1}A2 =A3}A4}A5 AOWAIMAM A1}A4}A2}A3}A5

WAC A3}A1}A2}A4}A5 Median A1 =A2}A3 =A5}A4

OWAAC A1}A4}A2}A3}A5 IWOWAIMAM A3}A1}A2}A4}A5

As we can see, we get different orderings depending on the aggregation operator

used. The main advantage of this analysis is that the company gets a more complete view

of the different scenarios that could happen in the future depending on the method used.

Although it will select the alternative that it is in accordance with its interests, it will

be concerned on other potential results that could happen in the uncertain environment.

Note that in this specific problem, we see that A1 or A3 seems to be the optimal choices.
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7. Conclusions

We have studied the usefulness of the OWA operator in business and economics. For

doing so, we have given special attention to business and economic decision-making

problems. We have used some practical decision-making techniques that use similarity

measures in the decision-making process such as the Hamming distance, the adequacy

coefficient and the index of maximum and minimum level. We have reviewed the use

of the OWA operator in these techniques, obtaining the OWAD operator, the OWAAC

operator and the OWAIMAM operator. We have seen that these aggregation operators

are very useful for decision-making because they permit to under or over estimate the

results according to the attitudinal character of the decision-maker in the particular

problem considered.

We have suggested new techniques by using immediate weights. That is, by us-

ing a framework that is able to deal with the weighted average and the OWA opera-

tor in the same formulation. We have presented the IWOWAD, the IWOWAAC and

the IWOWAIMAM operator. Furthermore, we have generalized them by using gener-

alized aggregation operators obtaining the GIWOWAD, the GIWOWAAC and the GI-

WOWAIMAM operator. The main advantage of these measures is that they include a

wide range of particular cases that can be used in the aggregation process depending on

the particular interests in analysis.

We have also seen that the OWA operator can be also used in a lot of other problems

in business and economics, especially when we see it as a statistical (or aggregation)

technique similar to the weighted average. We have mentioned different potential areas

where we could use it and we have seen that the applicability is very broad because we

can implement it in a lot of business problems such as in finance, marketing, production

and tourism. We have also presented different applications in economics and we have

seen that it has a strong connection with politics because national economic decisions

are usually related with political ones.

In this paper, we have focussed on a business multi-person decision-making ap-

plication concerning production management by using the IWOWAD, the IWOWAAC

and the IWOWAIMAM operator. Thus, we have obtained the MP-IWOWAD, the MP-

IWOWAAC and the MP-IWOWAIMAM operators. We have seen that they are very

practical because we can assess the information of several persons (experts) in an effi-

cient way. We have analysed a company that it is planning its production strategy for the

next year. We have seen that depending on the particular type of aggregation operator

used, the results may lead to different decisions.
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para el Desarrollo” (AECID) (project A/016239/08) and the Spanish Ministry of

Education (Project JC2009-00189).

References

Beliakov, G., Calvo, T. and Pradera, A. (2007). Aggregation Functions: A Guide for Practitioners. Springer,

Berlin.

Canós, L. and Liern, V. (2008). Soft computing-based aggregation methods for human resource manage-

ment. European Journal of Operational Research, 189: 669–681.

Engemann, K. J., Filev, D. P. and Yager, R. R. (1996). Modeling decision-making using immediate proba-

bilities. International Journal of General Systems, 24: 281–294.

Figueira, J., Greco, S. and Ehrgott, M. (2005). Multiple Criteria Decision Analysis: State of the Art Surveys.

Springer, Boston.

Gil-Aluja, J. (1998). The Interactive Management of Human Resources in Uncertainty. Kluwer Academic

Publishers, Dordrecht.

Gil-Lafuente, A. M. (2005). Fuzzy Logic in Financial Analysis. Springer, Berlin.
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Merigó, J. M. and Casanovas, M. (2010a). Decision-making with distance measures and linguistic aggre-

gation operators. International Journal of Fuzzy Systems, 12: 190–198.
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Abstract

The purpose of life tables is to describe the mortality behaviour of particular groups. The

construction of general life tables is based on death statistics and census figures of resident

populations under the hypothesis of closed demographic system. Among other assumptions, this

hypothesis implicitly assumes that entries (immigrants) and exits (emigrants) of the population

are usually not significant (being almost of the same magnitude for each age compensating each

other). This paper theoretically extends the classical solution to open demographic systems and

studies the impact of this hypothesis in constructing a life table. In particular, using the data of

residential variations made available to the public by the Spanish National Statistical Office (INE,

Instituto Nacional de Estadı́stica) to approximate migratory flows, we introduce in the process of

constructing a life table these flows and compare, before and after graduation, the crude mortality

rates and the adjusted death probabilities obtained when migratory flows are, and are not, taken

into account.
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In the demographic and actuarial fields, the analysis of mortality in a population has

particular relevance for their applications. Life tables, or mortality tables, are used to

recreate an observed mortality situation or to present future values of the evolution of
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mortality in certain groups, making it possible to generate demographic forecasts or to

calculate premiums and/or income for life insurance and pension benefits. Medicine is

another area where mortality analysis is also frequently used.

Life tables are usually drawn from the study and analysis of the intensity and rate

at which mortality affects each age group in question. In general populations it is

generated using information mainly from population censuses and lists of deceased,

where individual records from insurance policies are the prime source of information in

insured populations. To be specific, and once the sample period has been decided, the

comparison between the numbers at risk and the number of deaths allows the actuary

(demographer) to obtain initial (crude) estimates for the probability of death in each

age group qx. These probabilities are subjected to the corresponding graduation or

adjustment processes (see, for example, Copers-Haberman, 1983; Forfar et al. 1988:

or Ayuso et al., 2007) with a view to smoothing the profile of the associated stochastic

process and to ultimately develop appropriate tables from a fictitious starting population

of size ℓ0.

In the construction of mortality tables for general populations (which is the subject of

this paper) it is not usual to specifically consider migratory flows, making the hypothesis

of closed demographic system (HCDS), which implicitly entails the assumption of

certain limitations, the main ones being: (i) that migration flows (inputs and outputs)

of the population by age and sex are considered not to be significant; (ii) that for each

age group migration flows are random and show similar entry and exit figures; and, (iii)

that immigrants acquire the same risk of death as the resident population.

These limitations, which are not always reasonable, should be checked because of

their potential impact on, for example, the calculation of life expectancy, of premiums

for life insurance or of estimates for the calculation of pensions. The aim of this paper

is twofold, firstly, to introduce an estimator for an open demographic system and,

secondly, to show the incidence of HCDS through a real case. More specifically, given

the immense pressure of migration endured by Europe, and in particular Spain, in recent

years, the analysis will be based on the comparison of mortality tables (by gender)

obtained for Spain under HCDS and under the hypothesis of open demographic system

(HODS), in which migratory flows are explicitly considered. The comparison is carried

out in two ways. Firstly, the differences between the estimated crude probabilities

obtained under each hypothesis are compared and, secondly, the comparison is again

carried out after having graduated the crude data.

The rest of the paper is structured as follows. Section 2 explains the methodology

used to obtain the mortality tables, both for the closed demographic system and the

open demographic system. In Section 3, different comparisons are carried out between

the HCDS and HODS tables. The last section presents the conclusions reached and

indicates several issues for future research.
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2. Methodology

The techniques and formulae used to estimate life tables are heavily influenced by the

type of information available. When working with official statistics, the relevant data are

usually offered, by and large, in aggregate form. Hence, in this research we have opted to

work with aggregated figures – which come from information that the Spanish National

Statistical Office (INE) has made available on its website (http://www.ine.es) – despite

it being possible in the Spanish case to use some detailed (anonymized) microdata1. In

particular, we will consider that, for each gender, aggregated figures of migrants, deaths

and population are available by age and calendar year. Under these circumstances, the

representation and analysis of the information in a Lexis diagram (named after the

German statistician, economist and social scientist Wihelm Lexis, who adopted it in

the nineteenth century to illustrate the procedures for calculating a mortality table) often

greatly facilitates the reasoning and makes more manageable, after the application of a

number of reasonable hypotheses, handling the flaws of detailed information which are

present in aggregate data.2

The Lexis diagram is a two-dimensional diagram of lifelines with two-temporal

dimension: calendar time and age. Calendar time is represented on the horizontal axis,

while age is represented on the vertical axis. This diagram permits representation of

the life events of a population from the personal history of the individuals within it.

Each personal story is represented by a line segment forming an angle of 45 degrees to

the horizontal axis. The classical approach (of closed demographic system) states that

each personal story begins at birth, which is represented on the baseline, and ends at

some point on the graph with the individual’s death (Livi Bacci, 2000). In this paper,

however, personal history is not determined solely by the events of birth and death. The

introduction of migratory flows makes it necessary to modify the classical interpretation

of the Lexis diagram since, in this case, the history of an individual could start from

birth or from immigration and, likewise, it could end by death or by emigration.

Figure 1 shows a small section of a Lexis diagram which, as usual, comes divided

into cells of dimensions of 1×1 so that between each pair of oblique lines are the life-

lines that make up a generation of individuals and where each cell represents an observa-

tion period of one year (in which the age of the individuals also has a variation of a year).

For example, in Figure 1 (left) various individual life lines (thin lines) have been

represented. Lifelines of individuals entering in the system due to immigration can

originate anywhere in the diagram and are differentiated from the rest by having a at

its origin. When an individual leaves the system, the cause of departure is differentiated

graphically: if the reason is death, the tail end of the lifeline is marked with an ; if the

reason is emigration the end-lifeline is marked with a .

1. Such is the case of death statistics and of residential variation figures (directly available on the INE website). In-
deed, the INE, unlike many other national and international statistical agencies, is characterized by its willingness
to make available, in anomymized form, the detailed data generating the vast majority of its statistical operations.

2. Obviously, some of the hypotheses to be considered could be relaxed using more detailed data (see, for
example, INE, 2009).
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Figure 1: Detail (2×2) of Lexis diagram with lifelines (left) and schematic (right).

The aggregate information, however, does not allow for an accurate location of

the lifelines of the individuals who comprise the study population. To make use of

this geometric representation, therefore, the usual convention of the Lexis scheme of

assigning values to segments and surfaces must be adopted. In this paper, the value of a

segment is always identified by the number of lifelines that cross it, while the value(s)

to be associated with each area will depend on the hypothesis under consideration.

2.1. Closed demographic system

Under HSDC, each surface is identified with a single value: the number of lifelines that

end in it due to death. So, assuming for simplicity that (as in our case) for any given

age x there are available the number of residents counted in January 1 of year t, Ct
x,

and the number of residents who died in each age x for years t and t + 1 (Dt
x and Dt+1

x

respectively), we have that, as shown in Figure 1 (right), it is straightforward to draw

the information. To be specific, on the one hand, the quadrilaterals ABCD, BCEF and

CFGH will be identifiable respectively with Dt
x−1, Dt

x and Dt+1
x , and, on the other hand,

the segment AB will be equal to Ct
x−1.

At this point, it is now easy to obtain an initial estimate of qx exploiting the geometric

properties of the representation and assuming uniform distribution of birth dates and

deaths within each age group and year. In particular, noting that the segment BC

represents the number of people reaching age x in year t, it follows that under HSDC

the number of them who die before reaching age x+ 1 will come represented by the

quadrilateral BCFG and that therefore an estimate for qx is obtained from:3

3. Given that qx =
dx
ℓx

is defined as the quotient of the number of deaths between ages x and x+1, dx, and the

number of survivors at age x, ℓx.
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q̂x =
BCFG

BC
(1)

And from this, using the geometry of the scheme, one arrives at BCFG = BCF +

CFG and BC = AB−ABC; from which, using the hypothesis of uniform distribution,

one deduces BCFG = BCEF
2

+ CFGH
2

and hence:4,5,6

q̂x =
1
2

(

Dt
x +Dt+1

x

)

Ct
x−1 −

1
2
Dt

x−1

(2)

2.2. Introducing migratory flows

Assuming HODS, the expression (2) becomes invalid and another approach is required

to take into account the entries and exits that happen in the study group during the

analysis period. At this point, it will be useful to refer to the type of reasoning usually

employed for insured groups (see, for example, Benjamin and Pollard, 1992), where the

number of deaths observed is separated depending on the risks of death and the time

exposed to risk. That is, under HODS, the number of deaths observed, BCFG, will be

approximately equal to the number of people that reach age x, BC, by the probability

of any of them dying before reaching the age x+ 1, qx, plus the number of people that

immigrate with age x + k (where 0 < k < 1), whose lifeline starting point would be

located in the surface BCFG, by the probability that a person of age x+ k dies before

reaching age x+ 1, 1−kqx,7 minus the number of people that emigrate with age x+ k

(where 0 < k < 1), whose lifeline end point would be located in surface BCFG, by the

probability that a person of age x+ k dies before reaching the age x+1, 1−kqx.

4. This general expression, nevertheless, would not be appropriate for ages zero and one, since as it is well-
known the deaths of children under one year old are concentrated in their first weeks of life. The assumption of
uniform distribution cannot therefore be maintained for deaths counted with zero years: the greater part of these
deaths will be located in the corresponding lower triangle. Thus, the formulae used for ages zero and one have

been, respectively, q̂0 =
0.7Dt

0+0.3Dt+1
0

Bt (where Bt denotes the births in year t) and q̂1 =
1
2 (D

t
1+Dt+1

1 )

Ct
0−0.3Dt

0
; which can be

obtained assuming that the number of deaths occurring during the first half of age zero is approximately four times
the number of deaths registered during the second half. Obviously, if the deaths by generation (also available on
the INE website; INE, 2010a) were used, no hypothesis about how to distribute the deaths between the triangles
would be necessary because of the values of these would be known exactly.

5. Unlike the expression used to estimate qx in this paper, until recently the INE started with BC =CF +BCF

and arrived at a different equation, q̂x =
1
2 (Dt

x+Dt+1
x )

Ct+1
x + 1

2 Dt
x

, although equivalent under HCDS (INE, 2007). Since 2009,

the INE estimates central age-specific death rates, mx, using the detailed information available on death microdata
to obtain in each age the exact time spent by those who die during the year of study (see, INE, 2009). The use of
those detailed data makes it unnecessary to assume any hypotheses about the distribution of deaths within each
age and calendar year.

6. A general formula to estimate qx when the census of the population is located at any instant of the year and
not necessarily at the start can be found in, for example, Pavı́a (2011, Ex. 91).

7. Note that using this expression entails the implicit assumption that immigrants acquire the same risk of death
as the population in which they integrate.
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The problem is that, unlike what happens in insured populations, the dates and

specific ages at which a person immigrates or emigrates are not usually known, so to

obtain a useful expression of the decomposition of BCFG it is essential to extend the

classic convention and assign additional variables to each surface of the Lexis diagram.

To be specific, we propose to link to each area two new variables: the number of lifelines

that start in the surface (immigrants) and the number of lifelines that finish in the surface

for reasons other than death (emigrants). With this extension it will then be possible to

obtain an operative expression for BCFG from which an estimator for qx can be derived

by simply adding hypotheses (i) on the distribution of entries and exits in each surface

(which, in the same way as death distribution, are assumed to be uniform, since it is

reasonable for the level of information available) and (ii) on the risk of death throughout

each age x (which as a rule is assumed proportional to the period of exposure to risk,

that is, 1−kqx = (1− k)qx).

As usual when handling official statistics, it is assumed that the total number of

people that immigrate and emigrate in any year t and with age x is only known in

aggregate terms, It
x and Et

x, respectively. Obviously, other more informative situations

in which more precise data about the age distribution of migrants in each year were

available, for example from microdata of residential variations, would also be perfectly

treated with this strategy.

CC BB

GG FF

R

P

Q

S

U

T

•

•

Figure 2: Barycentres of surfaces of migratory movements.

Under the conditions above, denoting by Nt
x = It

x −Et
x the net migration recorded in

year t at age x, it follows that the number of people who reach age x during year t, BC,

would be equal to BC =Ct
x−1 −

1
2
Dt

x−1 +
1
2
Nt

x−1, and that the number of entries and exits

that would be registered in each of the triangles BCF and CFG would be, respectively,
It
x

2
,

Et
x

2
, and

It+1
x

2
,

Et+1
x

2
, and likewise, under the same hypotheses, each exit/entry produced

in each triangle would be located, in average terms, in the centroid (barycentre) of the

corresponding triangle (see Figure 2).8

8. Alternatively, it can be demonstrated that the average of the distances (across the lifelines) of each point
of the corresponding triangle to segment FG is equal to the distance of the corresponding barycentre to segment
FG. For example, considering the triangle BCF and, inside it, an arbitrary point K with coordinates (x,y), it is not

difficult to prove that the lifeline of K intersects FG in a point, K′, with coordinates (1+ x− y,1) —where B has
been taken as the origin of the corresponding Cartesian coordinate system. Hence, the Euclidean distance from

K to K′ would be (1− y)
√

2, from which it follows that the sum of all the distances is
∫ 1

0

∫ x
0

√
2(1− y)dydx =
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As can be seen in the representation on the left of Figure 2, the point R is in the

barycentre or centroid of the triangle BCF , which is easy to prove to be at a distance of
2
√

2
3

from point Q, in the same way that point S (which can be taken as representative

of all points in which an entry/exit occurs in triangle CFG) is at a distance
√

2
3

from

T .9 From here, taking into account that the distances of P to Q and of U to T are

equal to
√

2, equivalent to a year, it follows that on average the exposure to risk of

each immigrant/emigrant would be, respectively, 2
3

and 1
3
. Hence bearing in mind the

previous arguments, we have that the number of deaths observed in the parallelogram

BCFG, 1
2

(

Dt
x +Dt+1

x

)

, could be broken down in the following way:

1

2

(

Dt
x +Dt+1

x

)

≈

(

Ct
x−1 −

1

2
Dt

x−1 +
1

2
Nt

x−1

)

qx +
1

2
Nt

x

2

3
qx +

1

2
Nt+1

x

1

3
qx

And consequently, an estimator for qx, under HODS, would be obtained by way of

the following expression:10

q̃x =
1
2

(

Dt
x +Dt+1

x

)

Ct
x−1 −

1
2
Dt

x−1 +
1
2
Nt

x−1 +
1
3
Nt

x +
1
6
Nt+1

x

(3)

3. Comparative analysis

In order to analyse the impact of considering, or not, migration on the estimates of the

probability of survival or death at each age x, we have constructed, using the deaths

of two adjacent years, the life tables of the years 2006, 2007 and 2008 (for ages 0 to

99 years). The information handled comes from the data that INE offers directly to the

public on its website. sex and age (January, 1) Population Now Cast (ePOBa) estimates

(for years 2006, 2007 and 2008) have been used as population data (INE, 2012). Death

√
2
∫ 1

0

(

x− x2

2

)

dx =
√

2
(

1
2
− 1

6

)

=
√

2
3

, which coincides with the product of the area of the triangle BCF (the

number of points in BCF), 1
2

, and the length of RQ, the segment of lifeline that goes from the barycentre of BCF

to FG, 2
√

2
3

(see next footnote).

9. Indeed, taking B as the origin of a Cartesian coordinate system and using that the Lexis squares have unit
sides, we have that the coordinates of the points C, F and G are, respectively, (1,0), (1,1) and (2,1) and that,

as a consequence, the coordinates of the barycentres R and S are ( 2
3
, 1

3
) and ( 5

3
, 2

3
), respectively. Hence, it is not

difficult to see that the distance from R to Q is equal to the length of the hypotenuse of a right-angled triangle with

right sides both of length 2
3

and that the segment ST is the hypotenuse of a right-angled triangle of right sides 1
3

.

10. In this case, the formulae used for ages zero and one have been, respectively, q̃0 =
0.7Dt

0+0.3Dt+1
0

Bt+ 4
10 Nt

0+
1
10 Nt+1

0

and

q̃1 =
1
2 (D

t
1+Dt+1

1 )

Ct
0−0.3Dt

0+
1
2 Nt

0+
1
3 Nt

1+
1
6 Nt+1

1

; where for the estimation of q̃0 it has been assumed that on average the probability

of death of a migrant of age zero located in the lower triangle of the period t is four times the probability of death
of a migrant of the same age located in the upper triangle of the period t +1.
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statistics come from sex and age vital statistics (INE, 2010a). And, approximations to

sex and age annual immigrant and emigrant figures (for years 2006 to 2009) have been

obtained from the data of residential variations (INE, 2010b)11. This section shows the

differences obtained for the 2007 tables, before and after adjusting estimated crude prob-

abilities. The adjustment has been carried out using nonparametric estimation; in par-

ticular, through a Gaussian kernel graduation (see, e.g., Ayuso et al., 2007, pp. 217-22).

Comparisons between values obtained for each age x with HCDS and HODS were

carried out by use of two indicators of dissimilarity widely employed in the literature:

• Absolute relative error (ARE)

|q̂x − q̃x|

q̂x

, x = 0,1,. . . ,99.

• Square relative error (SRE)

(q̂x − q̃x)
2

q̂x

, x = 0,1,. . . ,99.

Figure 3: Differences in crude probabilities with and without migration flows:

men (left) and women (right).

Figure 3 shows, in graphic form, ARE values obtained by comparing the estimates of

crude probabilities achieved for men (left) and women (right), after applying equations

(2) and (3), with and without migratory flows. As can be seen, the differences of

considering HCDS or HODS are significant, reaching the greatest dissimilarities in the

range of 14 to 36 years, with the maximum in both cases being reached at age 22, where

the difference is close to 4.5%. Similar results are reached when SRE is used as measure

of dissimilarity: the age range with greater differences remains the same.

11. It should be noted that the statistic of residential variations cannot be observed as a completely true source
for migration flows given that this is just an account of the entrants and exits registered on the lists of the
municipalities. This has been used, nevertheless, because it represents the only public source that can be used
as a proxy of the migration flows occurring in Spain during the period analysed.
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Figure 4: Differences in graduated probabilities with and without migratory flows:

(left) men and (right) women.

The discrepancies observed reveal, at least in this case, the usual assumption of

HCDS being inadequate. This provokes a systematic, not uniform overestimation in the

probabilities of death for all ages; which, as can be seen below (Table 1 and Figure 5),

has asymmetrical effects on the results of different actuarial calculations.

In actuarial calculations, however, the crude death estimates obtained directly from

observed data, q̂x or q̃x, are not usually used without being graduated first. The objective

of graduation is to soften the crude estimates in a way that eliminates (or mitigates)

the random fluctuations present in empirical data. In this study, graduation has been

carried out using a kernel graduation (see, for example, Ayuso et al., 2007). In particular,

the kernel estimation carried out uses a Gaussian function as a kernel with a window

parameter, or bandwidth, equal to 1.12

Once the initial values q̂x and q̃x, were graduated, the indicators of dissimilarity ARE

and SRE introduced previously were again calculated. The results obtained for men and

women with the ARE measurement are shown in Figure 4. The comparison with the

graduated probabilities does not change in any way the conclusions reached previously;

in fact they serve to reinforce the results already obtained.

Finally, in line with Pavı́a and Escuder (2003), some specific probabilities have been

obtained with the aim of illustrating the differences that could be derived by using

one or other hypothesis on the demographic system: Table 1 shows the results. As

was expected of a demographic situation such as that lived in Spain, where in recent

years entries have been significantly greater than exits, the non-inclusion of migratory

flows underestimates the survival probabilities and overestimates the death probabilities.

Differences in every case are evident to the third significant digit in men and (at most)

the fourth digit in women. The impact, therefore, is different depending on the gender.

In spite of the repercussions on the individual probabilities being similar for both sexes

(see Figures 3 and 4), the inclusion of migratory flows has a significantly greater impact

on men than on women, at least for the range of ages and periods considered.

12. Similar results were obtained with alternative bandwidth parameters.
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Table 1: Examples of probabilities.

Men Women

HCDS HODS HCDS HODS

25q40 .1380204 .1371103 .0584317 .0580243

15|10q50 .2345362 .2338640 .1112529 .1109601

85 p0 .3442274 .3452564 .5672970 .5679357

20 p15 .9872419 .9876434 .9951881 .9953219

This asymmetric impact is also clearly visible in Figure 5, where the differences

in life expectancy when either migration flows have been or have not been taken into

account are shown. As can be observed, the underestimation in life expectancy that

entails the non-inclusion of migratory flows is, almost for all ages, double in men than

in women.

Figure 5: Differences in life expectancy (in years) with and without migration flows:

(left) men and (right) women.

4. Conclusions

When working with general populations, the usual practice in the construction of life

tables consists in ignoring the entry and exit flows that occur in the study group during

the analysis period, under the assumption that these usually have little value compared

to the size of the population. The use of a closed demographic system hypothesis has

been consequently the norm among analysts.

In this paper, (i) the techniques used for estimating death probabilities have been

extended to open demographic systems with aggregate data; and, (ii) the resulting

estimator has been used, along with the classic HCDS estimator, to obtain (from 0 to

99 years) life tables of the resident population in Spain from 2006 to 2008.

Comparison of crude and graduated probabilities obtained with and without the

inclusion of migratory flows shows the impact that entry and exit movements can have

on actuarial and demographic calculations. In the examples considered the repercussion

has been asymmetric by age and sex. On one hand, the greatest discrepancies, in relative
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terms, are concentrated in the range of ages from 14 to 36 years, where the intensity of

flows has been stronger in Spain in the recent years. On the other hand, by gender, it is

clear that the impact on women is less, in contrast to that in men. The well-known lower

probabilities of death that women suffer in the range of ages where greater probabilities

of migration occur may be behind this result.

The results obtained in this paper point to the need to explicitly consider migratory

flows in the estimation of life tables for general populations. The cost to introduce

this information is minimal but the potential danger could be significant, especially

in situations where entry movements are well above exit movements. In this type of

situation, to omit migration flows would lead to an overestimation of probabilities of

death and hence to an underestimation of life expectancy, with the danger that this could

entail for a correct inter-generational planning that would ensure an adequate stability of

the social security pension programmes characteristic of the Western welfare systems.

Certainly, beyond the possible influence that migratory flows and other relevant in-

formation might have on results, the great quantity of data provided by modern statistical

systems offers an opportunity to seek new ways to exploit the available data in more effi-

cient fashions. So, developing new methodological approaches or implementing proper

analyses that help to assess the soundness of broadly used hypotheses should be in-

cluded early on the statistical demographic research agenda. Along this line, in order to

assess the cumulative impact of migration in mortality in Spain, it would be interesting

to compare the probabilities of death and life expectancies of born-in-Spain and total

(Spaniards and foreigners) populations. Likewise, death and migrant microdata should

be analysed in order to ascertain the suitability of the uniform distribution hypotheses

required when handling aggregate data.
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