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Letter to Editor
Quality of 2017 Population Census of Pakistan by Age and Sex

Asif Wazir1 and Anne Goujon2

This Letter to Editor is a supplement to the previously published article in the Journal of
Official Statistics (Wazir and Goujon 2021).

In 2021, a reconstruction method using demographic analysis for assessing the quality and
validity of the 2017 census data has been applied, by critically investigating the demographic
changes in the intercensal period at national and provincial levels. However, at the time when
the article was written, the age and sex structure of the population from the 2017 census had
not yet been published, making it hard to fully appreciate the reconstruction of the national
and subnational level populations.

In the meantime, detailed data have become available and offer the possibility to assess the
reconstruction’s outcome more in detail. Therefore, this letter aims two-fold: (1) to analyze
the quality of the age and sex distribution in the 2017 Population census of Pakistan, and (2) to
compare the reconstruction by age and sex to the results of the 2017 population census. Our
results reveal that the age and sex structure of the population as estimated by the 2017 census
suffer from some irregularities. Our analysis by age and sex reinforces the main conclusion of
previous article that the next census in Pakistan should increase in quality with an inbuild
post-enumeration survey along with post-census demographic analysis.

Key words: Census quality; population reconstruction; demographic analysis; Pakistan,
Pakistani provinces.

1. Quality of 2017 Population Census of Pakistan by Age and Sex

The constitution of Pakistan does not require the census to be held every ten years as, for

example, the U.S. Constitution does. The ten-year period is an international convention

under which Pakistan held the census till 1981. Thereafter Pakistan held only two censuses

in the last 40 years, that is, in 1998 and 2017. Like in many settings, the censuses in

Pakistan have been subject to various types of non-sampling errors including misreporting,

nonresponse, recall bias, etc. These quality concerns have not been properly addressed as

the Pakistan Bureau of Statistics did not implement a post-enumeration survey (PES) for

the last four censuses (though a PES was conducted for the 1981 census, however, results

were not published) which was an essential component to assess the potential coverage

and content errors in the census enumerations. The census that was held in 2017 was no

exception.
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In 2021, we applied, for the first time in the case of Pakistan, a population reconstruction

method for assessing the quality and validity of the 2017 census data, by critically

investigating the demographic changes in the intercensal period at national and provincial

levels, using a range of intercensal surveys (Wazir and Goujon 2021). We showed that on

the one hand, while the reconstructed population estimates at the national level can be seen

as broadly valid, as compared to the 2017 census figures, on the other hand, the

reconstruction does not perform so well at the sub-national level, notably because of the

uncertainty involved around internal migration between 1998 and 2017.

However, at the time when the article was written and was under consideration by the

Journal of Official Statistics, the age and sex structure of the population from the 2017

census had not yet been published, making it hard to fully appraise the reconstruction of

the national and regional populations. In the meantime, detailed data have become

available and offer the possibility to assess the reconstruction’s outcome in more detail.

The aim of this letter is two-fold: (1) to analyze the quality of the age and sex

distribution in the 2017 Population census of Pakistan, and (2) to compare the

reconstruction by age and sex to the results of the 2017 population census.

2. Evaluation of Data Quality of the 2017 Population and Housing Census of

Pakistan

As a starting point, the single-year age and sex distribution are examined visually to check

for anomalies. Figure 1 shows the single-year age distribution by sex for the 1998 and

2017 censuses.
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Fig. 1. Single-year age and sex distribution from the 1998 and 2017 censuses in Pakistan.

Source: Authors’ calculations based on single-year age-sex data (Pakistan Bureau of Statistics 2022; Minnesota

Population Center 2023).
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The combined pyramids for the 1998 and 2017 censuses indicate that irregularities in

the age distribution are significant for both men and women. The last two censuses show

extensive age heaping for males and females alike, with the usual concentration around

numbers ending in 0 and 5. Significant under-reporting of children (age , ten years) and

age misreporting among the working-age population are visible for both sexes in both

censuses. The distortions are less common among older ages. It is worth noting, that their

magnitude is less in the 2017 census compared to the 1998 census, suggesting

improvements in the accuracy of the age data. This is mainly because the 2017 census used

the national identity card (as well as the verified computerized national identity card from

the central database) for the census questionnaire enumeration. Therefore, the date of birth

was reported more precisely in the 2017 census.

3. Sex Ratio by Age

In the 2017 census, the share of men in the total population was 51.2% at the national level.

The proportion was higher in Balochistan (52.6%) and lower in Punjab (50.8%). While the

proportion of men in Sindh and KP stood at 52% and 50.6%, respectively.

Further, we also illustrate the sex ratio by single-year age group from the 1998 and 2017

censuses in Figure 2. The age heaping and misreporting in the 1998 census (shown in

Figure 1) manifested itself in the distorted pattern of the sex ratio by age, at all ages,

decreased in the 2017 census. The sex ratio at birth as well as up to the age of 15 showed a

preference for boys in both censuses in Pakistan. Advances in sex-selective abortion

technology and persistent discrimination in care practices for girls have resulted in higher

female mortality. Between ages 20 and 40, the sex ratio reversed mainly due to slightly

higher male mortality at younger ages, and potentially male international emigration for

employment, particularly in the gulf countries. Estimates from the Bureau of Emigration

and Overseas Employment (2020) show that 5.1 million people migrated overseas for
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Fig. 2. Sex ratio by single year of age from the 1998 and 2017 censuses in Pakistan.

Source: Authors’ calculations based on single-year age-sex data (Pakistan Bureau of Statistics 2022; Minnesota

Population Center 2023).
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employment through formal channels between 2010 and 2017. Finally, at older ages, the

sex ratio continuously dropped below 100 due to the female advantage in mortality.

We also performed a graphical birth cohort analysis based on the population data from

the last two censuses for men and women in Pakistan depicted in Figure 3. In ideal

circumstances, the size of each birth cohort should decline over time (1998 and 2017) due

to the mortality, with the assumption that the country did not experience significant

migration. In the case of Pakistan, three important patterns emerged from Figure 3: first,

the significant under-enumeration of boys and girls under the age of five in the censuses

are evident; second, the significant differences in the patterns between the male and female

birth cohorts at young ages reinforcing the under-enumeration for both male and female;

and third, the almost overlapping of birth cohorts between the two censuses, especially for

women. These inconsistencies by age and sex confirmed the presence of irregularities in

the enumeration process, particularly in the 2017 census.

Apart from the visual check, we have computed the Whipple’s Index (Siegel and

Swanson 2004) and the Myers Index (Myers 1954), using the Population Analysis System

(PAS) software developed by the U.S. Census Bureau (U.S. Census Bureau 2017). While

at the national level and for larger regions like Punjab and Sindh, the 2017 census indices

show fair results (in terms of age heaping and/or digit preference for both sexes), small

regions have issues of inaccuracy in age reporting, particularly Balochistan and Khyber

Pakhtunkhwa (KP).

4. Age Ratio Score

The age ratio score which measures the divergence of one age group from the neighboring

two age groups is a valid indicator of errors in age reporting. In the absence of significant

changes in fertility, mortality, and migration, the enumerated size of a particular cohort

should be approximately equal to the average size of the preceding and following cohorts.
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Fig. 3. Birth cohort age-sex distribution from the 1998 and 2017 censuses in Pakistan.

Source: Authors’ calculations based on single-year age-sex data (Pakistan Bureau of Statistics 2022; Minnesota

Population Center 2023).
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Without irregularities, the age ratio score should be approximately equal to 100. For

example, Gerland (2014) utilized the age ratio scores to assess the quality of the census

data in India. Figure 4 indicates the age-ratio scores for males (Figure 4a) and females

(Figure 4b) from the 1998 and 2017 censuses. The age-ratio scores also reinforced the

obvious irregularities in all age groups in both censuses: over-enumeration in the 5–9 age

group, and under-enumeration in the 10–14 age group for both boys and girls. For age

groups ranging from 15–19 to 45–49, the irregularities were noticeable for men and

women in the same way, with higher intensity in the 1998 census. From age 50 onwords,

substantial anomalies became evident for both sexes in both censuses, which may be

related to age misstatement/exaggeration and the mortality patterns in older persons.

Although age-reporting errors have persisted between the last two censuses, the 2017

census shows marked improvements compared with the 1998 census.

Based on the age ratio scores, we have calculated the age-sex accuracy index for five-

year age groups (Siegel and Swanson 2004), which is the sum of the age ratio score for
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Fig. 4. Age ratio score by age and sex in Pakistan, 1998 and 2017 population censuses.

Source: Authors’ calculations based on age-sex data (Pakistan Bureau of Statistics 2022: Minnesota Population

Center 2023).
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males, the age ratio score for females, and three times the sex ratio score. The accuracy

scores are divided into three ranges to assess the magnitude of the reporting problem: (1)

when the accuracy index is , 20, the census estimates are accurate; (2) between 20 and 40

the estimates are inaccurate, and (3) the estimates are highly inaccurate when the score is

. 40. To compute the age-sex accuracy index, we used the “ageSexAccuracy” function

from the R package “DemoTools” (Riffe et al. 2019) and applied it to the national level as

well as to the four provinces and Islamabad (Table 1).

The age distribution of the 2017 population census at the national level falls under the

inaccurate (.20) categories. However, there is a large variation observed at the sub-

national level. All provinces were also categorized as inaccurate, the lowest value of the

index was found in Punjab (22.2) and the highest in Balochistan (31.9). The analysis shows

that the distribution by age and sex resulting from the 2017 census was somehow distorted

at the sub-national level.

5. Comparison of the Age-Sex Distribution According to the 2017 Census and the

Reconstruction

In 2021, we used demographic analysis to estimate the population size by age and sex

based on inter-census (1998–2017) estimates of births, deaths, and internal and

international migration (Wazir and Goujon 2021). Here, we compare the reconstructed

2017 population with the official results of the 2017 census population by age and sex

using a goodness-of-fit-statistical test computed as the absolute difference (official minus

reconstructed population) and the average absolute deviation by age and sex (see Figure 5)

along with the 95% confidence interval (CI). An overcount refers to the census population

being higher than the reconstructed population, while an undercount refers to the opposite

situation.

While our analysis of the total population showed little difference at the national level,

we find that there are quite substantial differences by age and sex. We find an overcount of

children under age 15 in the census and an undercount for all other age groups (from 15-19

to 75þ ). There were ten million (95% CI from 3.0 to 15.5) more children under the age of

15 in the census compared to the reconstruction at the national level, with 5.5 million (95%

CI from 4.4 to 10.4) boys and 4.5 million (95% CI from 3.9 to 9.3) girls.

Table 1. Age-sex accuracy index, four

provinces, Islamabad, and Pakistan, 2017.

Index

Balochistan 31.9
KP 25.9
Punjab 22.2
Sindh 25.4
Islamabad 29.5

Pakistan 22.0

Source: Authors’ calculations based on 2017

population census data (Pakistan Bureau of

Statistics 2022).
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At the sub-national level, the overcount in the 0–14 age group was spread as such: 3

million in Punjab (95% CI from 20.1 to 5.1) and 2.1 million in Sindh (95% CI from 20.4

to 3.4). The overcount was substantial in KP with 3.3 million (95% CI from 1.8 to 4.7) and

in Balochistan with 1.6 million (95% CI from 0.9 to 2.2), which are relatively small

regions. It is worth noting that the difference was particularly acute for the 5-9 age group

compared to the 0–4 and 10–14 ones (see Figure 5 and Table 2).
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Fig. 5. Average absolute deviation (AAD) by age and sex at the national and provincial level.

Source: Authors’ calculations based on 2017 population census data (Pakistan Bureau of Statistics 2022; Wazir

and Goujon 2021).

Table 2. Average absolute deviation by age at the national and provincial level (in millions).

Punjab Sindh KP Balochistan Pakistan

0–4 +0.7 +0.7 +1.1 +0.6 +3.0
5–9 +1.9 +1.3 +1.5 +0.7 +5.5
10–14 +0.4 +0.1 +0.8 +0.3 +1.5
15–19 –0.3 –0.2 +0.3 +0.1 +0.0
20–24 –1.0 –0.6 +0.0 –0.1 –1.7
25–29 –1.2 –0.5 +0.0 –0.1 –1.8
30–34 –1.0 –0.3 –0.1 –0.1 –1.5
35–39 –0.8 –0.2 –0.2 +0.0 –1.3
40–44 –0.9 –0.4 –0.1 +0.1 –1.6
45–49 –0.8 –0.4 –0.1 +0.1 –1.4
50–54 –0.2 –0.4 +0.0 –0.1 –0.6
55 –0.6 –0.4 +0.0 –0.1 –1.1
60–64 –0.3 –0.2 +0.1 +0.0 –0.4
65–69 –0.3 –0.2 +0.0 +0.0 –0.6
70–74 –0.1 –0.1 +0.0 +0.0 –0.3
75+ +0.1 –0.1 +0.1 +0.0 +0.1

Source: Authors’ calculations based on 2017 population census data (Pakistan Bureau of Statistics 2022; Wazir

and Goujon 2021).
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The difference in the age structure between the census and the reconstruction can have

several causes. Besides the deficiencies of the census as noted in the previous section, it is

possible that the fertility and mortality levels used in the reconstruction and originating

from the existing demographic surveys underestimate the number of births and deaths,

especially at the sub-national level.

6. Comparison of the Sex Ratio According to the 2017 Census and the

Reconstruction

Figure 6 shows the sex ratio (number of men to 100 women) for all ages according to three

sources: the 2017 population census, model life tables, and the reconstruction. The sex

ratio computed from the model life table East Model life table (Coale et al. 1983), is based

on the life expectancies at birth for provinces and national level (as calculated by Wazir

and Goujon 2021). The model life tables show that sex ratios should be declining with age,

which was not the case in the reconstruction. Except for KP, the sex ratios for children up

to age 15 from the reconstruction were close to the value computed from model life tables,

while the ratios calculated from the 2017 census show an irregular pattern, for all ages.

The sex ratios from the reconstruction between ages 15 and 50 were smooth and matched

those from the model life tables, except for Sindh and Balochistan. In these two provinces,

females were likely to be underreported, leading to systematic excess of males in the

younger cohorts.

The sex ratios for older ages (age 50 and above) estimated from the census and the

reconstruction were contradictory to those using model life tables for all provinces and the

national level. All provinces and national levels experienced a significantly high level of

sex ratios – above 100 – for older ages and remained persistent. The plausibility of these

distortions in older ages is difficult to explain, whether they were due to higher mortality of

women, systematic under-reporting of older cohorts, or other omission issues. Those
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results tend to point in the direction of data issues in the 2017 census as well as in the

mortality and internal migration indicators estimated and used in the reconstruction.

Finally, the inconsistencies in the pattern of sex ratios in adulthood in the 2017 census

suggest that this was a real structural anomaly, potentially representing reporting

inaccuracies. Therefore, an in-depth province-specific investigation would be necessary to

disentangle these factors.

7. Conclusion

Our results reveal that the age and sex structure of the population as estimated by the 2017

census suffered from some irregularities, as is the case in many low-income countries,

both at the national and sub-national levels. These irregularities partly explained the

observed differences between the census and the reconstruction. Similarly, the validity of

the reconstruction is limited by the data estimates, in terms of fertility, mortality, and

internal migration, which become more visible when looking at the age structure. At the

sub-national level, the overall irregularities were amplified by issues related mostly to the

difficulties in estimating internal migration. This was particularly visible in the small

provinces of Balochistan and KP.

The analysis by age and sex reinforces the main conclusion of our article that the

government and the international community should ensure that the next census in

Pakistan increase in quality with an inbuild post-enumeration survey along with post-

census demographic analysis. To resolve the contention about the provincial population

size, the census should use both dejure and de facto population count within a short

enumeration period (ideally three to five days) and collect the information on the previous

place of residence and duration of stay at the current residence (status of internal

migration).
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Looking for a New Approach to Measuring the Spatial
Concentration of the Human Population

Federico Benassi1, Massimo Mucciardi2, and Giovanni Pirrotta3

In the article a new approach for measuring the spatial concentration of human population is
presented and tested. The new procedure is based on the concept of concentration introduced
by Gini and, at the same time, on its spatial extension (i.e., taking into account the concept of
spatial autocorrelation, polarization). The proposed indicator, the Spatial Gini Index, is then
computed by using two different kind of territorial partitioning methods: MaxMin (MM) and
the Constant Step (CS) distance. In this framework an ad hoc extension of the Rey and Smith
decomposition method is then introduced. We apply this new approach to the Italian and
foreign population resident in almost 7,900 statistical units (Italian municipalities) in 2002,
2010 and 2018. All elaborations are based on a new ad hoc library developed and
implemented in Python.

Key words: Spatial concentration; Gini index; constant step; maxmin distance; Italy.

1. Introduction

In population studies and, more generally, in the quantitative social sciences,

concentration, and thus space, assumes a fundamental importance (Anselin 1999; Logan

2012; Howell et al. 2016). Indeed, people and firms tend to concentrate in space almost

naturally, both to facilitate interactions, exchange ideas, goods and services, and to share

the costs associated with survival itself. It is no coincidence that Aristotle, when defining

man as a social animal (“zoon poolitkon”), refers to the concept of the arena, that is, space,

and that he places this character of the individual at the birth of the polis (i.e., the city,

concentrated in space, by definition). Population and space are therefore two closely

interconnected and mutually dependent variables. Indeed, as Livi Bacci (1999) reminds

us, not unlike other living species, humans need space to obtain the resources necessary for

their survival, to maintain population growth and to organise themselves socially. On the

other hand, space itself “depends” on human behaviour, not only in relation to its negative

externalities, but also to the capacity to absorb human activity, the so-called “carrying

capacity” (Verhulst 1838; Pearl and Reed 1920). From a more strictly statistical point of

view, concentration is something intimately connected to the concept of variability, that is,

the ability of a quantity to assume different values.

The statistical approach to measuring concentration is in fact essentially based on the

concept of variability. But, as observed by Leti (1983), in reality the original concept of
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variability is, under certain conditions, entirely analogous to that of heterogeneity and

homogeneity, as well as, to that of concentration.

In fact, for quantity distributions, any index of variability is also an index of

concentration, and indeed indices of homogeneity, applied to quantitative characters,

actually measure concentration (Novelli and Ocelli 1999). In this perspective, therefore,

concentration would be nothing more than the variability associated with a transferable

variable. On the basis of this approach to the study of concentration, which could be

considered to be statistical, and which is aspatial, a vast literature was born and has

developed. In this framework, one of the cornerstones is Gini’s G index (Gini 1912, 1914,

1921, 2005), which in turn was based on the pre-existing Lorenz concentration curve

(Lorenz 1905). This index has stimulated a growing school, especially among Italian

statisticians and demographers, who have proposed many other indices of this type, that is,

aspatial, for the study of concentration. One recalls among these, Bonferroni’s index

(Bonferroni 1938), and those of Zenga (1984, 1985) to which many others can be added as

can be seen in Frosini (1996). But also in the international sphere, the work of Gini

stimulated the definition of a number of indices, such as Wright’s index (Wright 1937) and

the well-known Hoover index (Hoover 1941).

However, the study of concentration according to an exclusively statistical approach has

attracted increasing criticism over time. In particular, the major criticism levelled at these

indices is that being aspatial indices, they deny the essentially spatial nature of the

concentration process (Arbia 2001; Dawkins 2004, 2006). In essence, they do not consider the

dimension of polarisation, that is, the geographical component of concentration that finds its

analytical formulation in Tobler (1970) and the so called first law of geography. This lack

assumes particular relevance in the measurement of all those processes, such as for instance

residential segregation, where space is a foundational component (Reardon and O’Sullivan

2004). To make up for this shortcoming, spatial extensions of the concentration indices and

the Gini index in particular have been proposed. Mention should be made here, among others,

of those by Arbia and Piras (2009), Rey and Smith (2013), Crespo and Hernandez (2020),

and Panzera and Postiglione (2020). Even more recently, Mucciardi and Benassi (2023),

developing seminal ideas of Alleva (1987), Mucciardi and Bertuccelli (2007) and Mucciardi

(2008b), have proposed an approach for measuring concentration by means of a

spatial extension of the Lorenz curve that allows the definition of a spatial version of the

Gini index.

In the present article a new approach for measuring spatial concentration of a human

population is proposed and tested. The approach is partially based on that of Mucciardi

(2008b) and Mucciardi and Bertuccelli (2007). Here, stress is placed on the effects of

different neighbourhood structures on the computation of the Spatial Gini Index (SGI). In

particular, two types of distances are proposed to determine the spatial structure of the

territory: MaxMin (MM) and Constant Step (CS). Finally, an extension of the

decomposition method of Rey and Smith (2013) is here proposed in the framework of SGI

with MM and CS. The empirical approach is referred to Italian and foreign population

resident in the Italian municipalities in 2002, 2010 and 2018. It is important to stress that

given the huge number of statistical units (about 7,900) we have developed a specific

computational procedure, writing an ad hoc library in Python.
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This article is structured as follows. In the next section the Spatial Gini Index (SGI) is

presented and discussed. Attention is paid to the way the territory can be partitioned. In

this context two distance methods are presented: MM and CS. SGI is therefore presented

as a measure to be built in this framework. Section 3 is devoted to the implementation of

the decomposition method of Rey and Smith (2013) in the general framework of SGI and

in the two decomposition methods here proposed. Section 4 presents the empirical results.

The last section presents a discussion, conclusion and future developments. In the two

appendices a description of the technical details of SGI with the two distance methods and

the ad hoc library written in Python are provided.

2. The Spatial (Intrinsic) Dimension of Concentration and the Spatial Gini Index

Common to all spatial approaches is the recognition that, in the analysis of any

phenomenon, consideration of the spatial dimension requires an adequate description of

the spatial variability of the phenomenon itself (Matthews and Parker 2013). Stating that a

phenomenon or a relation manifests spatial variability is equivalent to saying that that

phenomenon or that relation is not spatially stationary. The presence of random

fluctuations, the existence of differentiations in the perceptions and behaviour of

individuals, the incompleteness or imprecise specification of the descriptive model

assumed, are some of the possible causes of spatial non-stationarity (Fotheringham 1997).

In consideration of this aspect, this new proposal of the Spatial Gini Index (SGI) is based

on comparing how the contribution in terms of “connectivity” and “variability” varies as

the geographical distance between spatial units increases. So, if the variable observed is

not dependent on space, the variations between the connectivity and variability

components should not differ much from each other. Before showing the construction of

the SGI, in the next section we present the system of spatial weights used to determine the

contribution of connectivity in spatial terms.

We believe that there are two major motivations for the implementation (first) and (after)

the use of SGI by official statistics. The first major motivation is a general one, but, in our

view, extremely relevant. We all know that space is a fundamental dimension to better grasp

socio economic and demographic phenomena and processes. Referring only to population

issues (for sake of simplicity) we know that modern demography is essentially a spatial

social science (Voss 2007). The importance of space in the field of official statistics is also

underpinning by Eurostat (see, for example Eurostat 2015). So, from that, second major

motivation, it is quite surprisingly that, to the best of our knowledge, National Statistical

Institutes (NSIs) don’t have an “official” or at least a common measure of spatial

concentration. In the measure of the concentration of the Gross Domestic Product for

example, NSIs and other International Institutions like the United Nations or World Bank

use the G index, but this is not true in terms of measuring the spatial dimension of

concentration (that we proved in the article to be a fundamental dimension of concentration).

So, in our view, there is a double trouble: (1) space is relevant for measuring process and

phenomenon and especially concentration but (2) there aren’t any “official” or at least

commonly used measure (like in the case of G). This is why we proposed SGI. The

methodology here proposed is simple and completely transparent (we didn’t build a black

box) and can therefore easily implemented and replicated by NSIs and other Institutions.
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2.1. Partitioning the Territory: The “MaxMin” And “Constant Step” Distance Methods

According to the Lorenz curve approach (Lorenz 1905), we need a system that can

quantify the contribution of connectivity in spatial terms. Our proposal is to consider

buffer or threshold distances capable of progressively creating partitions of the territory

(or territorial subsets). These partitions identify neighbouring and non-neighbouring units

such that each partition is disjoint from the others and the sum of all the elements of all the

partitions coincides with the number of all the possible pairs between the n spatial units.

2.1.1. Partitioning With MaxMin Distance Method

As we know, the Gini index is geometrically based on the Lorenz curve (Lorenz 1905). For

a sample of n dimension, the curve takes the cumulative percentile of the n units (for

example individuals) on the x-axis and cumulative percentile of the variable (for example

income) on the y-axis. The idea of the Lorenz curve is very simple. Given a sample of n

ordered units, it’s a graph that compares the distribution of a variable with a hypothetical

uniform distribution of that variable (the original contribution can be found in Lorenz

1905). Perfecting this graph would be a diagonal line at a 458 angle from the origin

(meeting point of the x and y axis), indicating the population’s perfect variable distribution

(line of absolute equality).

To satisfy these conditions we use the MM method (Mucciardi 2008a) that we recall

below.

Suppose we have n spatial units u1 : : : : : : :un in which we observe x1 : : : : : : :xn data and let

E0 be a n £ n matrix of the Euclidean distances between these units such that d0
ij ¼

kui 2 ujk2 (with d0
ij [ E 0; i ¼ 1 : : : n j ¼ 1 : : : n Þ, where k�k2 is the Euclidean norm.

Then the MaxMin distance hMM is defined by:

hMM ¼ max d1; d2; : : : dj : : : dn

� �
; ð1Þ

where dj denotes the minimum distance of the generic spatial unit i from the other units j

(with i – j). As a consequence, the whole territory is connected and there are no isolated

spatial units.

The hMM represents the first distance; therefore, it will be called h1
MM .

More formally, h1
MM ¼ maxðd1

1; d1
2; : : : d

1
j : : : d

1
nÞ

with d1
j ¼i¼1 : : : n

min ðfd0
ijgnf0gÞwith j ¼ 1 : : : n and d0

ij [ E0.

Using h1
MM , the generic element v1

ij of the first order-spatial weight matrix V1 is

determined as follows:

v1
ij ¼ 1 if d0

ij # h1
MM and d0

ij – 0;

v1
ij ¼ 0 otherwise

d0
ij [ E0 and h1

MM ¼ maxðd1
1; d1

2; : : : d
1
i : : : d

1
nÞ,

(with v1
ij [ V1).

This first distance h1
MM is the reference for the Euclidean distance matrix E1 where the

generic element d1
ij is given by:

d1
ij ¼ d0

ij [ E0 if d0
ij . h1

MM;

d1
ij ¼ 0 otherwise.

If we consider the k-distance hk
MM ¼ maxðdk

1; dk
2; : : : d

k
j : : : d

k
nÞ
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with dk
j ¼i¼1 : : : n

min ðfdk21
ij gnf0gÞ with j ¼ 1 : : : n and dk21

ij [ Ek21,

for k ¼ 1 : : : t,

the generic element vk
ij of the k-order spatial weight matrix Vk is determined as follows:

vk
ij ¼ 1 if dk21

ij # hk
MM and dk21

ij – 0;

vk
ij ¼ 0 otherwise,

(with vk
ij [ Vk).

The k-distance hk
MM is the reference for the Euclidean distance matrix Ek where the

generic element dk
ij is given by:

dk
ij ¼ dk21

ij [ Ek21 if dk21
ij . hk

MM;

dk
ij ¼ 0 otherwise.

As a consequence: E 0 . E 1 . : : :E k21 . E k . : : :E t21 . E t.

So, by iterating this procedure it is possible to obtain the distances from h1
MM to ht

MM .

With ht
MM , all spatial units are linked with each other since the condition that ;dk21

ij #

ht
MM (k ¼ 1 : : : t) holds true and the algorithm stops. This distance coincides with the

maximum distance in the Euclidean distance matrix E0 ðht
MM ¼ max ½d0

ij�Þ. As a

consequence, since the condition dk21
ij . ht

MM (k ¼ 1 : : : t) cannot be verified, Et ¼ Y and

Vtþ1 ¼ Y .

It is important to point out that this procedure generates a “threshold” or “buffer

distance” hk
MM (with k ¼ 1 : : : t) without imposing any constraint on the number of

neighbours; thus, this is not arbitrary but based on the territorial pattern of the spatial units.

So, the k-territorial partitions are disjoint from each other, that is, Vi>Viþ1 ¼ Y
(i ¼ 1 : : : t with Vtþ1 ¼ Y).

It is important to underline that the algorithm sets the threshold to be the most distant

nearest neighbour, consequently each unit has at least one neighbour included so there are

no isolated units. For the sake of simplicity and to better illustrate the method, the “real”

empirical application refers in fact to the municipality level, we apply this territorial

partitioning to the 107 Italian provinces. The MM method applied to the territory creates

22 spatial lags (territorial partitions). The MM distances (h-distance), the relative joints

(links) and the names of the provinces that originate the MM distances (province link

name) are given in Table 1. Moreover, Figure 1 provides a graphical view of the method.

2.1.2. Partitioning with Constant Step Distance Method

The MM method creates threshold distances in relation to the natural shape of the territory.

This criterion can sometimes produce spatial lags that present large gaps in terms of

distance. For this reason, we introduce a variant of the MM method with constant

increments. We call this procedure the CS method. Suppose we have n spatial units

u1 : : : : : : :un in which we observe x1 : : : : : : :xn data and let E0 be a n £ n matrix of the

Euclidean distances between these units such that d0
ij ¼ kui 2 ujk2 (with d0

ij

[ E 0; i ¼ 1 : : : n j ¼ 1 : : : n Þ , where k�k2 is the Euclidean norm.

As in the previous procedure we determine the first distance of MM which in this

method coincides with the first distance h1
cs ; h1

MM

� �
. If we set the increment equal to the

first distance, we can write the following relation for the generic spatial lag (k):

hk
cs ¼ kh1

cs ðwith k ¼ 1 : : : tÞ: ð2Þ

Benassi et al: A New Approach to Measuring Spatial Concentration 289



The procedure stops when ht
cs $ max ½d0

ij� where d0
ij [ E0

In the ht
cs distance all the spatial units are linked with each other. For this method the

details and a graphical illustration are also provided considering its application to the 107

provinces of Italy (Table 2 and Figure 2).

2.2. From the Territorial Partitions to the Spatial Gini Index (SGI)

The properties of the territorial partitions of the two distance methods discussed above

makes the procedure compatible with the structure of the Gini index according to the

definition of the ratio of the areas (Mucciardi and Bertuccelli 2007; Mucciardi 2008b).

Indeed, the Gini index can then be thought of as the ratio of the area that lies between the

line of equality and the Lorenz curve over the total area under the line of equality.

Following the same approach, SGI can therefore be considered as the ratio between the

area of spatial autocorrelation on the total area of the square of side 1.

We define J kð Þ; the cumulated percentage of the total connectivity of the units in the

generic distance hk
MM , as

J kð Þ ¼
S

n
i S

n
j v

k
ij

A
# with k ¼ 1 : : : t ðJ 0ð Þ ¼ 0 and J tð Þ ¼ 1Þ ð3Þ

Table 1. Details of the MM method applied to the 107 Italian provinces1.

Spatial
Lag

h-distance
(Km)

Links Name of the provinces
that determine the h-distance

1 77.96 516 (‘Palermo’, ‘Trapani’)
2 116.74 554 (‘Palermo’, ‘Catania’)
3 375.75 4140 (‘Grosseto’, ‘Oristano’)
4 417.92 596 (‘Palermo’, ‘Cagliari’)
5 454.58 510 (‘Chieti’, ‘Messina’)
6 492.57 518 (‘Latina’, ‘Cremona’)
7 528.30 452 (‘Pistoia’, ‘Sud Sardegna’)
8 570.48 528 (‘Crotone’, ‘Perugia’)
9 618.61 522 (‘Salerno’, ‘La Spezia’)
10 666.72 490 (‘Forli’-Cesena’, ‘Lecce’)
11 712.72 424 (‘Grosseto’, ‘Siracusa’)
12 759.24 342 (‘Salerno’, ‘Asti’)
13 804.87 302 (‘Pisa’, ‘Siracusa’)
14 850.90 292 (‘Ravenna’, ‘Siracusa’)
15 899.84 280 (‘Modena’, ‘Siracusa’)
16 942.64 268 (‘Parma’, ‘Siracusa’)
17 985.85 238 (‘Verona’, ‘Siracusa’)
18 1036.66 222 (‘Brescia’, ‘Siracusa’)
19 1087.97 102 (‘Lecco’, ‘Siracusa’)
20 1111.11 34 (‘Bolzano’, ‘Siracusa’)
21 1153.71 10 (‘Aosta’, ‘Siracusa’)
22 1154.03 2 (‘Aosta’, ‘Ragusa’)
1 It is important to clearly explain that the MM distance method creates distances in relation to the spatial

configuration of territorial units. This criterion can sometimes produce spatial lags that present large gaps in

terms of distance. If we look, for example, to Table 1 a big jump is evident between lags 2 and lags 3 due to the

link created between the Sardinia region (that is an island) and the rest of Italy. For a more technical explanation,

please see Appendix (Section 6).
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h - distance = 77.96Km h - distance = 116.74Km h - distance = 375.75Km h - distance = 417.92Km

h - distance = 454.58Km h - distance = 492.57Km h - distance = 528.3Km h - distance = 570.48Km

h - distance = 618.61Km h - distance = 666.72Km h - distance = 712.72Km h - distance = 759.24Km

h - distance = 804.87Km h - distance = 850.9Km h - distance = 899.84Km h - distance = 942.64Km

h - distance = 985.85Km h - distance = 1036.66Km

h - distance = 1153.71Km h - distance = 1154.03Km

h - distance = 1087.97Km h - distance = 1111.11Km

Fig. 1. Graphical view of the MM method applied to the 107 Italian provinces.
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where vk
ij denote the interconnection links (that is, the contiguous spatial units), in the

generic k-territorial partition hk
MM and A ¼ S

t
i¼1V

i ¼ S
t
k¼1S

n
i¼1S

n
j¼1v

k
ij ¼ n n 2 1ð Þ is the

maximum number of links it is possible to obtain from a particular territorial configuration

Please note that in the equations the arrows symbol means that the percentage are

cumulated. Furthermore, we recall that the connections of the spatial units with themselves

are excluded from the maximum number of links.

In the same way, we define V kð Þ, the cumulated percentage of the variability of the

phenomenon X “absorbed” by the linked elements in the distance hk
MM , as

V kð Þ ¼
S

n
i S

n
j xi 2 xj

� �2
vk

ij

D
# with k ¼ 1 : : : t V 0ð Þ ¼ 0 and V tð Þ ¼ 1

� �
ð4Þ

where vk
ij are as before and

D ¼ S
t
k¼1S

n
i¼1S

n
j¼1 xi 2 xj

� �2
vk

ij:

Referring to a territorial system comprising n spatial units in which we observe x1 : : : xn

data, the Spatial Gini Index (SGI) will be defined as

SGI ¼ 1 2 0:5
Xt

k¼1

V kð Þ þ V k21ð Þ

� �
J kð Þ 2 J k21ð Þ

� �

with

V kð Þ ¼
S

n
i S

n
j xi 2 xj

� �2
vk

ij

D
# and J kð Þ ¼

S
n
i S

n
j v

k
ij

A
k ¼ 1 : : : t: ð5Þ

Its construction is based on the computation of the area of spatial autocorrelation, which

has been proposed, to the best of our knowledge, (see for more details, Alleva 1987;

Mucciardi and Bertuccelli 2007; Mucciardi 2008b).

Following the Lorenz curve, which is the basis of the Gini index, in a condition of no

spatial autocorrelation, the cumulated percentage of variability V kð Þ should not differ from

the cumulated percentage of connectivity J kð Þ. SGI can assume the minimum value of 0

Table 2. Details of the CS distance method

applied to the 107 provinces of Italy.

Spatial
Lag

h-distance
(Km)

Links

1 77.96 516
2 155.92 1170
3 233.89 1334
4 311.85 1250
5 389.81 1142
6 467.77 1066
7 545.74 1028
8 623.70 884
9 701.66 746
10 779.62 596
11 857.58 492
12 935.55 478
13 1013.51 412
14 1091.47 184
15 1169.43 44
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h – distance = 77.96Km h – distance = 155.92Km h – distance = 233.89Km

h – distance = 311.85Km h – distance = 389.81Km h – distance = 467.77Km

h – distance = 545.74Km h – distance = 623.7Km h – distance = 701.66Km

h – distance = 779.62Km h – distance = 857.58Km h – distance = 935.55Km

h – distance = 1013.51Km h – distance = 1091.47Km h – distance = 1169.43Km

Fig. 2. Graphical illustration of the CS distance method applied to the 107 provinces of Italy.
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and the maximum value of 1, but in terms of spatial autocorrelation we distinguish three

cases:

1. Case of “negative spatial autocorrelation”: if the relative contributions in terms of

variability are larger than the contribution in terms of connectivity in the generic

distance hk
MM , we will graphically obtain a “convex curve” with respect to the

ordinate axis and 0 # SGI ,0.5,

2. Case of “no spatial autocorrelation”: if the relative contributions in terms of

variability and connectivity increase proportionally to the variation of distance hk
MM ,

we will graphically obtain a straight line at a perfect angle of 458 and SGI ¼ 0.5 (area

of the curve exactly equal to 0.5), and

3. Case of “positive spatial autocorrelation”: if the relative contributions in terms of

variability are smaller than the contribution in terms of connectivity in the generic

distance hk
MM we will graphically obtain a “concave curve” with respect to the

ordinate axis and 0.5 , SGI #1.

To better understand the relation between the concept of a Lorenz curve and that of

spatial correlation, Figure 3 shows three scenarios of spatial autocorrelation with the

related range of values for SGI.

From a geometric point of view, these three forms of spatial autocorrelation may be

assessed, as the hk
MM (h-distance) varies, by considering the tangent of the angle formed by

the straight line with the x-axis:

tank að Þ ¼
V kð Þ

J kð Þ

k ¼ 1 : : : t: ð6Þ

So, we can have:

1. tank að Þ , 1 (angle , 458Þ indicating positive spatial autocorrelation,

2. tank að Þ ¼ 1 (angle ¼ 458) indicating no spatial autocorrelation, and

3. tank að Þ . 1 (angle . 458) indicating negative spatial autocorrelation.

For the calculation of the angle, we use the arctan function. We recall that the arctan

function is the inverse of the tangent function. It returns the angle whose tangent is a given

number. Figure 4 shows the expected trend of the arctan function (degrees) as the hk
MM

vary for the three scenarios of spatial autocorrelation.

By using the CS distance method instead of MM in all these relations, we obtain the SGI

with this territory partition method. In the context of this research, we will distinguish the

calculation of the SGI using this notation:

1. SGIMM when the k-partitioning method is that of the MM distance, and

2. SGICS when the k-partitioning method is that of the CS distance

3. The Decomposition Method of Rey and Smith in the Framework of SGI

A spatial decomposition of the Gini coefficient has recently been proposed by Rey and

Smith (2013). In this work the authors suggest an alternative approach towards

considering the joint effects of inequality and spatial autocorrelation that relies on a

decomposition of the classic Gini coefficient. This decomposition involves the splitting of
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the Gini index into two mutually exclusive components: into contiguous units (wij) and the

non-contiguous units (1 2 wijÞ.

Equation 7 shows this decomposition.

G ¼
S

n
i¼1S

n
j¼1 xi 2 xj

�� ��

2n2m
¼

S
n
i¼1S

n
j¼1wij xi 2 xj

�� ��

2n2m
þ

S
n
i¼1S

n
j¼1ð1 2 wijÞ xi 2 xj

�� ��

2n2m
: ð7Þ

According to SGI we extend this decomposition applying to the two distance methods

(MM and CS) shown above. Therefore, it is possible to make this decomposition of each

“k-territorial partition” imposed by the hk-distances.

Now, if we denote by Gk
C the Gini index calculated inside the contiguous units in the hk

-distances and by Gk
NC the Gini index calculated in the non-contiguous units (or outside the

contiguous units) in the hk-distances, we can rewrite the Gini index with the Rey and

Smith decomposition (Gk
T ):

Gk
T ¼ Gk

C þ Gk
NC ðk ¼ 1 : : : tÞ: ð8Þ

As a consequence,

Gk
T ¼

S
n
i¼1S

n
j¼1jxi 2 xjj

2n2m
¼

S
n
i¼1S

n
j¼1v

k
ijjxi 2 xjj

2n2m
þ

S
n
i¼1S

n
j¼1ð1 2 vk

ijÞjxi 2 xjj

2n2m

ðk ¼ 1 : : : tÞ

ð9Þ
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with

Gk
C ¼

S
n
i¼1S

n
j¼1v

k
ij xi 2 xj

�� ��

2n2m
; Gk

NC ¼
S

n
i¼1S

n
j¼1ð1 2 vk

ijÞ xi 2 xj

�� ��

2n2m

and Gk
T ; G (;k ¼ 1 : : : t).

To distinguish the decomposition based on the partition used (MM and CS), we will

differentiate the calculation of the Gk
T index using this notation:

1. Gk
T MMð Þ ¼ Gk

C MMð Þ þ Gk
NC MMð Þ when the k-partitioning method is that of the MM

distance

2. Gk
T CSð Þ ¼ Gk

C CSð Þ þ Gk
NC CSð Þ when the k-partitioning method is that of the CS distance.

Our task here is both to propose an extension of the decomposition method of Rey and

Smith in the framework of the two distance approaches (MM and CS) here discussed and

to evaluate similarities and differences in the achieved results. Our general idea is that all

these measures can be used in a complementary way in measuring the spatial

concentration of the population. This is somewhat similar to what happens with measuring

residential segregation, where the use of different measures and approaches is highly

recommended (Brown and Chung 2006)

4. Empirical Application

In this section we show the results of the empirical application. The application regards

three points in time, 2002, 2010 and 2018, and it is realized at the municipality level, the

finest territorial scale possible, that is to say almost 7,900 spatial units. The application was

done for two groups of population selected on the basis of country of citizenship: Italians

and foreigners. As is known, these two populations typically have different geographical

patterns of spatial distribution and therefore they are particularly useful for our tasks

(Massey and Denton 1988). The data are provided by the Italian National Institute of

Statistics (Istat) and disseminated by the institutional website. In more detail, we use data

on the resident population broken down by the country of citizenship (Italian/Foreign) for

the years 2002, 2010, and 2018.

4.1. The Spatial Gini Index

4.1.1. The MM Approach

In Figure 5 we can appreciate the evolution over time of the level of the classical Gini index

and the spatial Lorenz curve of Italian and foreign population in the observed period. In the

first year, 2002, the foreign population in Italy was about 1.3 million and the level of its

spatial concentration was lower than the Italian population (SGI ¼ 0.446 versus

SGI ¼ 0.485). In the following years the Italian population remained quite stable and so

did its level of spatial concentration: SGI ¼ 0.485 in 2002 and SGI ¼ 0.483 in 2018. In

contrast, the foreign population grew significantly, reaching more than 5 million in 2018. Its

level of spatial concentration grew too: SGI ¼ 0.446 in 2002 and SGI ¼ 0.450 in 2018. The

dynamics of the arctan functions (Figure 6) inform us about the evolution of the level of

spatial autocorrelation for both populations in the selected years for each h-distance. As can
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be clearly seen, the two populations start (16 km) from a different condition of positive

spatial autocorrelation: greater positive spatial autocorrelation for the Italian population and

less positive spatial autocorrelation for the foreign population (see the angles less than 45

degrees in Figure 6). From the second h-distance (47 km) the situation changes: the positive

spatial autocorrelation effect is attenuated for the Italian population while the foreign

population shows spatial instability with negative values of arctan (see in Figure 6 the angles

greater than 45 degrees for foreign populations only). By increasing the h-distance, a

process of convergence towards a level of no spatial autocorrelation comes up. This

condition is obtained starting from an h-distance equal to 400 km and obtained when the

h-distance is equal to 1,000 km. From the point of view of the classic Gini index (G), we note

an inverse behaviour: lower values of SGI are followed by higher values of G. Therefore,

from these results it emerges that the foreign population, although concentrated at an

“aspatial level” (G), instead shows a moderate tendency to have a negative autocorrelation

with the territory. The Italian population shows a lower level of the aspatial concentration

(G). This behaviour manifests itself in the SGI with a tendency towards no spatial

autocorrelation (SGI tends to 0.5). However, we verify the spatial behaviour of these two

populations by calculating the Moran’s I index for the same h-distances (Figure 7). As we

can see at 16 km (first h-distance) the different manifestation of positive spatial

autocorrelation is confirmed, albeit in a more attenuated manner (Moran’s I indices,

although statistically significant, are very small). The spatial autocorrelation level then

converges to the expected values exactly from a distance of 400 km.

4.1.2. Constant Step Approach

From a territorial partitioning point of view, the main difference between the two methods

(MM and CS) is in the number of h-distances produced: 162 for MM and 76 for CS (see

Appendix, Subsection 6.1, for more details). However, despite this difference in the

number of h-distances, the results of the CS procedure are quite similar to the ones

obtained by MM (see Subsection 4.1.1) with slight substantial differences. Therefore, the

explanation of the spatial concentration process of the Italian and foreign populations in

the years considered (2002, 2010 and 2018) remains almost unchanged with respect to the

SGI index calculated with the MM method (see Figure 8–10).

In general, and based on some empirical evidence known in the literature (Miller 2004),

positive autocorrelations on a small spatial scale and negative autocorrelations on a larger

spatial scale are all in all expected results. The first law of geography states that

“everything is related to everything else, but near thing is more related than distant things”

(Tobler 1970, 235). As known, scale can play important effect on results, nevertheless our

results seem to be coherent with Tobler’s law. Indeed, we know that the spatial distribution

of human population, is a process particularly affected by such kind of “spatial” effects

(distance and scale). This is particularly true for the foreign population that tend to have

specific settlement models to maximize opportunity and minimize cost. As know the

scientific debate about that is wide and rich but, at least for Italy, there are clear evidence

about the attractive role played by urban areas on foreign and immigrant population

(Strozza et al. 2016) and on the spatial heterogeneity and dependence that characterized

the settlement models of foreign communities at different spatial scales (Benassi et al.

2019, 2020).
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4.2. Rey and Smith Decomposition Method With MM and CS Approaches

As mentioned above, let’s extend the Rey and Smith decomposition (Gk
T ) applying the two

distance methods: Gk
T MMð Þ with MM approach and Gk

T CSð Þ with CS approach. As can be

seen from Figures 11 and 12, considering the same h-distances with which we build SGI,

the Gk
T in the spatial version is less sensitive to the quantification of inequality in the

various spatial lags. In fact, the components of the Gini index (in the contiguous Gk
C and

non-contiguous Gk
NC units) remain almost unchanged (the lines are almost parallel). Only

considering the Gk
T MMð Þ, around 300 km, we have a peak of the Gini index in the

component calculated in the contiguous units (Gk
C). In our opinion this occurs because the

two indices measure spatial inequality differently. While SGI is a global measure of spatial

inequality, that is, it is (completely) evaluated considering all the spatial lags (k), the Gk
T

(with Gk
T ¼ Gk

C þ Gk
NC) is evaluated in each k-spatial lag. So, from this point of view, SGI

and the Gk
T can be seen as complementary measures (or even tools) to better grasp and

detect the level of (spatial) concentration and its dynamics for a given population.

5. Discussion and Conclusions

Measuring the concentration of population is an old and traditional activity of applied

statistics. Many developments have been proposed from the seminal contributions of

Lorenz and Gini. In relative recent times, also due to the GIS revolution, more attention

has been paid to the spatial aspects of concentration, especially when it refers to a human

population (Arbia 2001). The present article lies in this stream of the literature, proposing

a new approach for measuring the spatial concentration of a human population, based on a

spatial version of Gini’s G index, which we call the Spatial Gini Index (SGI). In any kind

of spatial approach, the definition of spatial neighbourhood and spatial weight matrixes are

crucial and pivotal issues. This article proposes two new approaches to partitioning the

territory, and therefore obtains two different kinds of spatial connectivity: one is based on

a MM approach and allows computing the SGIMm version of the SGI. The other is based

on a CS approach, and it is the basis for the computation of SGICS. From the results

obtained in the previous sections, SGI results are different from the ones produced by

classic (aspatial) Gini’s G index, indicating: (1) the importance of the spatial dimension in

detecting the concentration of a population in space; (2) higher values of the level of

concentration when measured using a traditional aspatial approach; (3) that this difference

(G vs SGI) is higher for the foreign population. The higher values reached by the aspatial

version of the concentration index are due to the fact that this approach is essentially based

on the statistical concept of variability separated from the influence of the territory. So, this

kind of measuring of (aspatial) concentration assumes that the space is independent of the

distribution of the variable (and vice versa). From this point of view, the SGI index can be

viewed as, at least, a complementary tool for better measuring and detecting the spatial

concentration of a population. In particular, given the peculiarity of the spatial distribution

of the foreign population in a destination country like for example Italy (Strozza et al.

2016) and the relevance of the spatial concentration for such a population (Reardon and

O’Sullivan 2004), the proposed approach seems to add new methodological perspectives

on measuring spatial concentration. In evaluating SGI, we also used well known spatial

statistical measures of global spatial autocorrelation (Moran’s I). The index has been
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computed on the resident population (Italian and foreigners) of Italian municipalities in

2002, 2010 and 2018. The results indicate that, at least using population as a variable, the

level of global spatial autocorrelation is quite low and obviously tends to decrease with

increasing h-distance. Another point faced in this article is the extension of the

decomposition method of the Gini’s G index recently proposed by Rey and Smith (2013)

in the context of the territorial partitioning. Here the main objective was to propose an

extension of this recent method in the framework of the MM and CS distances procedure

and to evaluate similarities and differences between them both. Future developments

should address the extension/optimization of the Monte Carlo test (so far only tested for

100 statistical units) and solving problems of computational requirements. There is also

the possibility of using “classical binary weight” based on portions of shared boundaries of

spatial unity (e.g., Queen and Rook method) and “non binary weights” in the spatial matrix

(e.g., a kernel matrix with a distance decay function, etc.) and do simulation experiments

in order to grasp the behaviour of SGI in terms of statistical distribution. In this direction it

will be possible to make comparisons between the different methods of partitioning of the

territory. Further developments can regard the local decomposition of the SGI and

proposing other functionalities like semivariogram and similar. From an interpretative

point of view, we have to underline that high levels of spatial concentration of foreign

population can lead to different processes and behaviours that can act as detrimental to

social cohesion. In conclusion, researching new approaches to measuring the spatial

concentration of the human population is still an open challenge and improvements are

currently in progress by the authors.

6. Appendix

6.1. Details of the SGI Procedure

6.1.1. MM Distance

Number of municipalities ¼ 7,890 – Total links ¼ 62,244,210

Spatial
Lag

h-distance
(km)

Links % Links J(k) Name of the Italian municipalities
that determine the h-distance

1 16.3 269852 0.004 0.004 (Campagnatico, Grosseto)
2 47.0 1609960 0.026 0.030 (Piraino, Malfa)
3 52.7 416318 0.007 0.037 (Follonica, Marciana)
4 57.0 337466 0.005 0.042 (Bibbona, Porto Azzurro)
5 61.7 373534 0.006 0.048 (San Severo, Vieste)
6 67.3 470188 0.008 0.056 (Campo nellElba, Monteverdi

Marittimo)
7 72.0 417136 0.007 0.063 (Statte, Nard)
8 77.0 447572 0.007 0.070 (Martina Franca, Surbo)
9 83.5 600656 0.010 0.079 (Massafra, Carmiano)
10 91.4 766296 0.012 0.092 (Alberobello, Lecce)
11 98.3 675754 0.011 0.103 (Cavallino, Massafra)
12 105.6 727020 0.012 0.114 (Alberobello, Vernole)
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Continued

Spatial
Lag

h-distance
(km)

Links % Links J(k) Name of the Italian municipalities
that determine the h-distance

13 113.9 852748 0.014 0.128 (Alberobello, Melendugno)
14 119.0 521240 0.008 0.136 (Massafra, Cannole)
15 124.5 566798 0.009 0.145 (Massafra, Otranto)
16 131.2 682664 0.011 0.156 (Ortueri, Palau)
17 312.8 15407126 0.248 0.404 ("Campo nellElba", Ghilarza)
18 394.9 5325726 0.086 0.489 (Erice, Buggerru)
19 400.9 375570 0.006 0.496 (Castellammare del Golfo, Igle-

sias)
20 405.3 278344 0.004 0.500 (Mazara del Vallo, Portoscuso)
21 407.7 152894 0.002 0.502 (Santa Ninfa, San Giovanni

Suergiu)
22 411.7 252966 0.004 0.507 (Vita, Calasetta)
23 413.8 135790 0.002 0.509 (Giungano, Portopalo di Capo

Passero)
24 416.8 195508 0.003 0.512 (Santa Ninfa, Calasetta)
25 419.5 171870 0.003 0.515 (Cagli, Vignone)
26 421.9 160844 0.003 0.517 (Partanna, Calasetta)
27 424.2 146760 0.002 0.520 (Torrita di Siena, Perito)
28 427.4 209442 0.003 0.523 (Umbertide, San Bernardino

Verbano)
29 429.8 160176 0.003 0.525 ("Campo nellElba", Masainas)
30 431.9 132634 0.002 0.528 (Camerano, Taceno)
31 434.1 146030 0.002 0.530 (Orbetello, Sala Consilina)
32 436.5 160766 0.003 0.533 (Borgo Pace, "SantAngelo a Fas-

anella")
33 438.9 155548 0.002 0.535 (Guanzate, Montecassiano)
34 440.8 129086 0.002 0.537 (Borgo Pace, Corleto Monforte)
35 443.1 154146 0.002 0.540 (Teora, Ragusa)
36 446.0 191916 0.003 0.543 (Città di Castello, Futani)
37 448.9 197168 0.003 0.546 (Castiglione del Lago, Domodos-

sola)
38 451.4 165464 0.003 0.549 (Bibbona, Castelfranci)
39 453.5 143382 0.002 0.551 (Castiglione del Lago, Bognanco)
40 455.5 136260 0.002 0.553 (Senigallia, Nemoli)
41 457.3 116818 0.002 0.555 (Varese, Viterbo)
42 459.9 183474 0.003 0.558 (Cagli, Trasquera)
43 462.1 144276 0.002 0.560 (Città di Castello, San Giovanni a

Piro)
44 464.0 136254 0.002 0.562 (Peglio, Grassano)
45 466.0 137450 0.002 0.565 (Rancio Valcuvia, Sirolo)
46 467.8 122780 0.002 0.567 (Cassano Valcuvia, Sirolo)
47 469.8 140424 0.002 0.569 (Villongo, Montefino)
48 471.5 115082 0.002 0.571 (Treviglio, Mandela)
49 473.9 167052 0.003 0.573 (Colli al Metauro, Castelsara-

ceno)
50 476.2 160610 0.003 0.576 (Pieve Santo Stefano, Irsina)
51 478.3 148072 0.002 0.578 (Tavullia, Casaletto Spartano)
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Continued

Spatial
Lag

h-distance
(km)

Links % Links J(k) Name of the Italian municipalities
that determine the h-distance

52 480.3 141082 0.002 0.581 (San Godenzo, Ricigliano)
53 482.6 164560 0.003 0.583 (Orbetello, Latronico)
54 485.1 172450 0.003 0.586 (San Giovanni Valdarno, Gen-

zano di Lucania)
55 487.8 197618 0.003 0.589 ("Colle di Val dElsa", "SantAn-

gelo Le Fratte")
56 489.7 131192 0.002 0.591 (Castiglione della Pescaia, Anzi)
57 491.6 135422 0.002 0.593 (Costa Serina, Montefino)
58 493.4 126432 0.002 0.595 (Cappelle sul Tavo, Librizzi)
59 495.3 134642 0.002 0.598 (Monterotondo Marittimo,

Brienza)
60 497.8 171850 0.003 0.600 (Cesena, Abriola)
61 499.9 148382 0.002 0.603 (Bionaz, Mondavio)
62 502.6 191420 0.003 0.606 (Etroubles, Cantiano)
63 504.7 144616 0.002 0.608 (Statte, Fano)
64 507.2 179144 0.003 0.611 (Peglio, Pisticci)
65 509.4 152160 0.002 0.613 (Cassiglio, Montefino)
66 511.4 139900 0.002 0.616 (Borgo Pace, Praia a Mare)
67 513.3 134538 0.002 0.618 (Bibbiena, Cirigliano)
68 515.8 173082 0.003 0.621 (Galeata, Marsicovetere)
69 517.7 139306 0.002 0.623 (Greve in Chianti, Castelmez-

zano)
70 520.2 173528 0.003 0.626 (Lizzano, Mondolfo)
71 522.4 149706 0.002 0.628 (Ischia di Castro, Montemesola)
72 525.0 182560 0.003 0.631 (Torricella, Mondolfo)
73 527.0 135842 0.002 0.633 (Gradara, San Paolo Albanese)
74 529.2 155050 0.002 0.636 (San Giovanni Valdarno, Miglio-

nico)
75 532.0 193266 0.003 0.639 (Cellere, Lizzano)
76 534.8 193452 0.003 0.642 (Greve in Chianti, Cirigliano)
77 537.6 189660 0.003 0.645 (Monteiasi, Tavullia)
78 539.5 133562 0.002 0.647 (Morgex, Fabriano)
79 542.4 196648 0.003 0.650 (Cellere, Maruggio)
80 544.6 156582 0.003 0.653 (Torrita di Siena, Mongrassano)
81 547.1 165624 0.003 0.655 (Colli al Metauro, Fuscaldo)
82 549.2 146582 0.002 0.658 (Poggibonsi, Aliano)
83 551.2 135322 0.002 0.660 (Colli al Metauro, San Benedetto

Ullano)
84 553.5 156334 0.003 0.662 (Piombino, Grumo Appula)
85 555.8 158972 0.003 0.665 (Sarteano, Torricella)
86 558.3 167494 0.003 0.668 (Tuoro sul Trasimeno, Zumpano)
87 560.3 132346 0.002 0.670 (Bettona, Pianopoli)
88 562.6 159984 0.003 0.672 (Cesena, Noepoli)
89 564.8 144134 0.002 0.675 (Terricciola, Corleto Perticara)
90 567.1 157634 0.003 0.677 (Forlimpopoli, Tursi)
91 569.3 144650 0.002 0.680 (Roccalbegna, Longobucco)
92 571.8 167254 0.003 0.682 (Bagno di Romagna, Statte)
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Continued

Spatial
Lag

h-distance
(km)

Links % Links J(k) Name of the Italian municipalities
that determine the h-distance

93 573.7 127608 0.002 0.684 (Siena, Amendolara)
94 576.3 168020 0.003 0.687 (Crespina Lorenzana, Corleto

Perticara)
95 578.4 137270 0.002 0.689 (Sava, Pennabilli)
96 581.3 187026 0.003 0.692 (Forlimpopoli, Nova Siri)
97 583.2 129670 0.002 0.694 (Bagno di Romagna, Taranto)
98 587.4 266656 0.004 0.699 (Nepi, Lentini)
99 591.7 282090 0.005 0.703 (Collevecchio, Lentini)
100 597.6 376858 0.006 0.709 (Ronciglione, Lentini)
101 602.3 298352 0.005 0.714 (Caprarola, Lentini)
102 607.4 320232 0.005 0.719 (Vasanello, Lentini)
103 612.7 339328 0.005 0.725 (Bassano in Teverina, Lentini)
104 618.1 337658 0.005 0.730 (Viterbo, Lentini)
105 626.8 548464 0.009 0.739 (Ladispoli, Pozzallo)
106 635.8 555474 0.009 0.748 (Scandriglia, Pachino)
107 644.8 558236 0.009 0.757 (Anguillara Sabazia, Pachino)
108 654.7 605934 0.010 0.766 (Monterosi, Pachino)
109 664.2 565212 0.009 0.776 (Civitavecchia, Pachino)
110 672.8 493060 0.008 0.783 (Villa San Giovanni in Tuscia,

Pachino)
111 682.5 532642 0.009 0.792 (Soriano nel Cimino, Pachino)
112 691.6 473420 0.008 0.800 (San Gemini, Pachino)
113 701.5 487816 0.008 0.807 ("Civitella dAgliano", Pachino)
114 712.1 495336 0.008 0.815 (Capalbio, Pachino)
115 721.5 412406 0.007 0.822 (Onano, Pachino)
116 729.5 337244 0.005 0.827 (Allerona, Pachino)
117 740.2 421080 0.007 0.834 (Scansano, Pachino)
118 749.5 347336 0.006 0.840 (Arcidosso, Pachino)
119 758.3 310714 0.005 0.845 (Castiglione del Lago, Pachino)
120 768.4 341190 0.005 0.850 (Castiglione della Pescaia,

Pachino)
121 780.0 374746 0.006 0.856 (Portoferraio, Pachino)
122 790.1 313472 0.005 0.861 (Massa Marittima, Pachino)
123 800.9 326350 0.005 0.867 (Monterotondo Marittimo,

Pachino)
124 810.8 296858 0.005 0.871 (Predoi, Lotzorai)
125 820.9 305822 0.005 0.876 (Predoi, Ortueri)
126 831.3 311214 0.005 0.881 (Cecina, Pachino)
127 842.0 318078 0.005 0.886 (Predoi, Villaurbana)
128 852.5 313336 0.005 0.891 (Predoi, Setzu)
129 863.3 329662 0.005 0.897 (Santa Maria a Monte, Pachino)
130 873.9 338908 0.005 0.902 (Predoi, Sanluri)
131 884.6 353692 0.006 0.908 (Predoi, Gonnosfanadiga)
132 894.5 340330 0.005 0.913 (San Benedetto Val di Sambro,

Pachino)
133 905.2 386932 0.006 0.919 (Fabbriche di Vergemoli,

Pachino)
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6.1.2. CS Distance

Number of municipalities ¼ 7,890 – Total links ¼ 62,244,210

Continued

Spatial
Lag

h-distance
(km)

Links % Links J(k) Name of the Italian municipalities
that determine the h-distance

134 915.5 392128 0.006 0.926 (Pieve Fosciana, Pachino)
135 926.4 425120 0.007 0.933 (Predoi, Santadi)
136 936.8 414170 0.007 0.939 (Predoi, Calasetta)
137 947.6 430800 0.007 0.946 (Pignone, Pachino)
138 957.2 376818 0.006 0.952 (Bomporto, Pachino)
139 968.1 408870 0.007 0.959 (Maissana, Pachino)
140 979.4 407604 0.007 0.965 (Leivi, Pachino)
141 990.4 370348 0.006 0.971 ("Santo Stefano dAveto",

Pachino)
142 1002.2 360116 0.006 0.977 (Pompeiana, Pachino)
143 1014.6 337812 0.005 0.983 (Bajardo, Pachino)
144 1026.2 270758 0.004 0.987 (Garessio, Pachino)
145 1037.9 225794 0.004 0.991 (Malvicino, Pachino)
146 1049.9 180950 0.003 0.993 (Niella Belbo, Pachino)
147 1061.7 133604 0.002 0.996 (Montelupo Albese, Pachino)
148 1073.6 94374 0.002 0.997 (Caraglio, Pachino)
149 1085.5 62782 0.001 0.998 (Lagnasco, Pachino)
150 1097.5 44050 0.001 0.999 (Rifreddo, Pachino)
151 1109.7 30902 0.000 0.999 (Bellino, Pachino)
152 1121.7 19482 0.000 1.000 (Frossasco, Pachino)
153 1133.3 11220 0.000 1.000 (San Francesco al Campo,

Pachino)
154 1145.0 6466 0.000 1.000 (Germagnano, Pachino)
155 1157.2 3808 0.000 1.000 (Salbertrand, Pachino)
156 1168.2 1896 0.000 1.000 (Valprato Soana, Pachino)
157 1179.4 932 0.000 1.000 (Cogne, Pachino)
158 1191.0 492 0.000 1.000 (Gressan, Pachino)
159 1201.7 196 0.000 1.000 (Gignod, Pachino)
160 1213.6 80 0.000 1.000 (Prè Saint-Didier, Pachino)
161 1219.7 12 0.000 1.000 (Courmayeur, Pachino)
162 1224.0 2 0.000 1.000 (Courmayeur, Portopalo di Capo

Passero)

Spatial
lag

h-distance
(km)

Links % Links J(k)

1 16.3 269852 0.004 0.004
2 32.6 707810 0.011 0.016
3 48.9 1037740 0.017 0.032
4 65.2 1285378 0.021 0.053
5 81.5 1456148 0.023 0.076
6 97.8 1576398 0.025 0.102
7 114.1 1645254 0.026 0.128
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Continued

Spatial
lag

h-distance
(km)

Links % Links J(k)

8 130.4 1674670 0.027 0.155
9 146.7 1670984 0.027 0.182
10 163.0 1643270 0.026 0.208
11 179.3 1585280 0.025 0.234
12 195.6 1509674 0.024 0.258
13 211.9 1439704 0.023 0.281
14 228.2 1363314 0.022 0.303
15 244.5 1298370 0.021 0.324
16 260.8 1244432 0.020 0.344
17 277.1 1200846 0.019 0.363
18 293.4 1168032 0.019 0.382
19 309.6 1144248 0.018 0.400
20 325.9 1115892 0.018 0.418
21 342.2 1089716 0.018 0.436
22 358.5 1059130 0.017 0.453
23 374.8 1029234 0.017 0.469
24 391.1 1015950 0.016 0.486
25 407.4 1026014 0.016 0.502
26 423.7 1051418 0.017 0.519
27 440.0 1071476 0.017 0.536
28 456.3 1093704 0.018 0.554
29 472.6 1123552 0.018 0.572
30 488.9 1146420 0.018 0.590
31 505.2 1147878 0.018 0.609
32 521.5 1143024 0.018 0.627
33 537.8 1126598 0.018 0.645
34 554.1 1115188 0.018 0.663
35 570.4 1097028 0.018 0.681
36 586.7 1066738 0.017 0.698
37 603.0 1043360 0.017 0.715
38 619.3 1029782 0.017 0.731
39 635.6 1017356 0.016 0.748
40 651.9 1004440 0.016 0.764
41 668.2 965410 0.016 0.779
42 684.5 900172 0.014 0.794
43 700.8 820590 0.013 0.807
44 717.1 753354 0.012 0.819
45 733.4 683142 0.011 0.830
46 749.7 620716 0.010 0.840
47 766.0 564658 0.009 0.849
48 782.3 524888 0.008 0.857
49 798.6 499496 0.008 0.865
50 814.9 491084 0.008 0.873
51 831.2 489564 0.008 0.881
52 847.5 483856 0.008 0.889
53 863.8 495646 0.008 0.897
54 880.1 526450 0.008 0.905
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6.2. SGI Python Routine

To compute the Spatial Gini Index (SGI), an ad-hoc library was developed and

implemented in Python to allow the immediate use of the new indicator. The ease of use

and operational flexibility of this language are the main features of the routine. The library

is particularly fast because it uses the well-known “NumPy” (Harris et al. 2020) and

“SciPy” (Virtanen et al. 2020) libraries which, thanks to the vectorization of the functions,

guarantee a high execution speed and represent the standard in matrix numerical

calculation. One of the most famous and high performing libraries for Exploratory Spatial

Data Analysis is certainly the PySAL library (Python Spatial Analysis Library) (Rey and

Anselin 2010). Nevertheless, for efficiency reasons required by our use case it was

necessary to create some “in-house” modules in order to better implement the SGI

algorithm. The k-partitions obtained are also used for the spatial decomposition of the Gini

index proposed by Rey and Smith (2013).

The principle of operation of the library is as follows:

The library can be downloaded as a Python package (Pirrotta 2022).

1. The SGI class accepts as input the geographic points (optionally the labels), the

target variable and the type of partitioning (MM approach is considered here) – the

geographic points are the centroids of the territorial units considered,

2. The Euclidean distance matrix is calculated,

3. The variability matrix is calculated,

Continued

Spatial
lag

h-distance
(km)

Links % Links J(k)

55 896.4 557884 0.009 0.914
56 912.6 602946 0.010 0.924
57 928.9 637266 0.010 0.934
58 945.2 649362 0.010 0.945
59 961.5 634632 0.010 0.955
60 977.8 597054 0.010 0.964
61 994.1 541932 0.009 0.973
62 1010.4 472068 0.008 0.981
63 1026.7 390872 0.006 0.987
64 1043.0 297590 0.005 0.992
65 1059.3 208124 0.003 0.995
66 1075.6 130388 0.002 0.997
67 1091.9 75550 0.001 0.998
68 1108.2 46484 0.001 0.999
69 1124.5 25958 0.000 1.000
70 1140.8 12398 0.000 1.000
71 1157.1 5718 0.000 1.000
72 1173.4 2452 0.000 1.000
73 1189.7 878 0.000 1.000
74 1206.0 264 0.000 1.000
75 1222.3 60 0.000 1.000
76 1238.6 2 0.000 1.000
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4. The algorithm finds all the n * (n-1) connections between the n territorial units. This

process takes place inside a loop,

5. According to the MM method, for each territorial unit the minimum distance with all

the other units is taken into consideration. Among these n minimum values, the

maximum is taken. This value represents the h-distance,

6. For each iteration, only connections inside the range distance between minimum

threshold (previous h-distance) and maximum threshold (current h-distance) are

selected,

7. For each iteration the variability matrix is multiplied element-wise by the spatial

weight matrix generated in point 6. By adding the values obtained, the total

variability for each spatial-lag is obtained,

8. In order to calculate the successive h-distances according to the SGI approach, at

each iteration it is necessary to filter from the Euclidian distance matrix the distances

between units less than or equal to the previous h-distance. and

9. When all the units are connected, the process ends with the calculation of the index.

The result obtained is the Spatial Gini Index (SGI).

The flow chart of the procedure is presented in the figure below.
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Load points
and target variable

Compute distance matrix

Compute variability matrix

Are all links
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MaxMin method to

distance matrix

Build contiguity and

weight matrix considering

a range distance band
between a min-threshold

(previous h-distance)

Compute total variability
multiplying the weight matrix with

Remove from distance matrix
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the links connected in the current iteration
END

YES NO

Fig. 13. Flow chart of the procedure for the computation of SGI.
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6.3. Algorithm and Pseudo Code
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6.2.1. Pseudocode Explanation

The library was developed using programming techniques and strategies to ensure speed,

robustness, scalability, high performance, and efficiency. Below the explanation of the

algorithm.

2–3: The algorithm accepts as input the geographic points (centroids of the territorial

units considered) and the target variable

15: the Euclidean distance matrix is calculated

16: the target matrix is calculated

17: the algorithm finds all the n £ n 2 1ð Þ connections between the n territorial units

19: the loop ends when all links between territorial units are connected

20: Starting from the distance matrix (dim. ntu £ ntu), for each territorial unit the

minimum distance with all the other units is taken into consideration. Among these n
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minimum values (array), the maximum (scalar) is taken. This value represents both the

max threshold and the current h distance

21: for each iteration the number of links corresponds to the number of values in the

distance matrix less or equal to the maximum threshold (current h distance);

22: In the spatial_lag_total procedure a spatial boolean weights matrix is created

(RangeDistance-Band object) selecting connections between minimum and maximum

threshold. The target matrix is so multiplied element-wise by the spatial weight matrix.

By adding the values obtained, the total variability for each spatial-lag is obtained;

25: for each iteration we update the distance matrix removing (reset to zero) values less

or equal to the maximum threshold;

30: for the estimation of Gini coefficients we calculate the Lorenz curve area using the

trapezium rule

31: the Spatial Gini Index is obtained subtracting area from 1

6.3. Summary of the Results

Italian population Foreign population

Years MM CS MM CS

G SGI G SGI G SGI G SGI

2002 0.712 0.485 0.712 0.485 0.802 0.446 0.802 0.444
2010 0.710 0.485 0.710 0.485 0.782 0.448 0.782 0.447
2018 0.715 0.483 0.715 0.483 0.797 0.450 0.797 0.449
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6.4. Toy Example MaxMin Distance Method Procedure (Simulated Nine Spatial Units)

7. References

Alleva, G. 1987. “Autocorrelazione spaziale nel caso di contiguità di ordine superiore al
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Predicting Days to Respondent Contact in Cross-Sectional
Surveys Using a Bayesian Approach

Stephanie Coffey1 and Michael R. Elliott2

Surveys estimate and monitor a variety of data collection parameters, including response
propensity, number of contacts, and data collection costs. These parameters can be used as
inputs to a responsive/adaptive design or to monitor the progression of a data collection period
against predefined expectations. Recently, Bayesian methods have emerged as a method for
combining historical information or external data with data from the in-progress data
collection period to improve prediction. We develop a Bayesian method for predicting a
measure of case-level progress or productivity, the estimated time lag, in days, between first
contact attempt and first respondent contact. We compare the quality of predictions from the
Bayesian method to predictions generated from more commonly-used predictive methods that
leverage data from only historical data collection periods or the in-progress round of data
collection. Using prediction error and misclassification as short- or long- day lags, we
demonstrate that the Bayesian method results in improved predictions close to the day of the
first contact attempt, when these predictions may be most informative for interventions or
interviewer feedback. This application adds to evidence that combining historical and current
information about data collection, in a Bayesian framework, can improve predictions of data
collection parameters.

Key words: Adaptive design; hurdle models; national health interview survey.

1. Introduction

Making contact with a survey respondent is an important part of the data collection

process. Without a successful contact, it is not only impossible to obtain cooperation and a

completed interview, possibly introducing nonresponse bias, but it may also be impossible

to determine the eligibility of a case, affecting response rates, nonresponse adjustments,

and ultimately, variances of estimates. Noncontact makes up a substantial portion of

nonresponse in face-to-face surveys. Durrant and Steele (2009) discuss six large,
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government-sponsored, face-to-face household surveys carried out in the UK which have

noncontact rates ranging from 8% to 40% of sample cases. Williams and Brick (2018)

report that for nine government-sponsored, primarily face-to-face household surveys in

the United States, noncontact rates as a portion of nonresponse range from four percent to

40% for the most recent year included in the article, 2014. Through a trend analysis across

national statistical institutes, Luiten et al. (2020) also found evidence that noncontact rates

are increasing in the United States, though evidence was mixed in other countries.

Groves and Couper (1998) discuss methods for reducing nonresponse due to

noncontact, including planning for numerous contact attempts in face-to-face surveys, and

requiring interviewers to make attempts early enough in the data collection period to make

contact with all sample units. Waiting too long to begin making attempts could lead to

nonresponse due to noncontact rather than post-contact reluctance or refusal. Biffignandi

and Bethlehem (2021) note that an effective call management system can mitigate this

problem, particularly in a centralized telephone environment, however, that solution may

not be applicable to decentralized interviewing environments, such as in-person

interviewer-administered surveys.

In order to improve survey outcomes, survey managers might want to monitor the

expected time lag, in days, between a first attempt and first contact with a sample member

to better understand the expected progress of data collection operations. If, for example,

these day lags are longer than expected, or are leading to nonresponse due to noncontact,

survey managers could attempt to reduce this lag by intervening with respect to individual

cases shortly after a first contact attempt is made. Those interventions could reflect

different passive or active levels of management throughout data collection. Christy

(2014) described an intervention where interviewers were provided the estimated response

propensity of cases in their workload to help interviewers more efficiently plan their

contact attempt strategies. Alternatively, an interviewer whose cases are approaching (or

exceeding) expected lag times might prompt feedback from a supervisor, and the earlier

that intervention can occur, the faster an improvement might be made (Edwards et al.

2020). Walsh and Coombs (2013) described a reassignment strategy based on a different

parameter, the scaled evenness of finding attempts (SEFA), which they find was related to

higher rates of contact and completion. To order to intervene during a data collection

period, as the examples above suggest, the indicators or parameters of interest must be

generated during the data collection period itself. However, the first step to being able to

intervene to reduce these time lags is to estimate their expected length.

Other survey data collection parameters related to data quality, survey progress, and

survey cost are commonly generated and monitored as part of data collection operations.

These parameters may be defined at various levels of the data collection process, including

the interviewer level (Mneimneh et al. 2018); the question-level (Mittereder and West

2021); the case-level (Wagner et al. 2012), and the survey level (LaFlamme and Karaganis

2010). Indicators of cost, progress, and quality have also served as inputs into responsive

and adaptive designs (Groves and Heeringa 2006; Schouten et al. 2011) that allow for the

balancing of cost and quality goals through centralized interventions including mode

changes (Chesnut 2013; Coffey et al. 2019), case prioritization (Walejko and Wagner

2018; Tolliver et al. 2019; Peytchev et al. 2020) and stopping rules (Wagner and

Ragunathan 2010; Peytchev 2014).
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Of the varied data collection parameters that can be predicted, case-level response

propensity is the most commonly estimated and used for interventions. Many

implementations of response propensity prediction during survey data collection have

used only the data available from the in-progress collection period to estimate coefficients

in a logistic regression or probit model (Groves and Heeringa 2006; West and Groves

2013; Schouten et al. 2009, 2011; Chesnut 2013; Coffey et al. 2019). The data sources

available for estimating response propensity in this setting include survey frame and

sampling data and paradata (Couper 2000, 2017) for the in-progress period of data

collection as it accumulates after each operation or contact attempt.

Other examples use only data from the past implementations of a survey to estimate

coefficients in the response propensity model, which are then applied to covariates during

the in-progress data collection period (Peytchev et al. 2010; Roberts et al. 2014; Calinescu

et al. 2013; Jackson et al. 2020). Unlike the prior examples, these applications do not

consider information learned during the in-progress data collection period.

More recent applications have incorporated both historical data and data from the in-

progress data collection period in a Bayesian framework to improve predictions of

response propensities (Schouten et al. 2018; West et al. 2021). Both studies found that

Bayesian methods offered modest improvements in predictions of daily response

propensities compared to predictions relying on either historical or current data alone,

particularly when model misspecification was small.

For this application, we propose a model to predict our parameter of interest, the time

lag between the first contact attempt and the first respondent contact in a face-to-face

interviewer-administered survey. We use three sets of data for predicting lag: historical

collection period data in a non-Bayesian prediction; current data from the in-progress data

collection period data in a non-Bayesian prediction; and combining historical data and

current data in a Bayesian prediction setting. The purpose of this research is to understand

whether the Bayesian framework that led to improvements in predictions of response

propensity can also lead to similar improvements in predictions of a time-to-event

parameter, the estimated day lag between first contact attempt and first respondent contact.

We apply our methodology to predict these contact lags in the National Health Interview

Survey (NHIS), using monthly survey data from July 2014 through June 2016. We

compare the case-level error in prediction of lags when using the Bayesian framework to

methods that leverage data from either historical or in-progress data collection periods

using maximum likelihood estimation. We also vary the strength of the priors put on the

coefficients in the Bayesian framework to better understand how the strength of the priors

affects prediction error. Additionally, we use the predictions generated from the different

methods to illustrate how the different methods would perform when trying to identify

cases with short or long lags between the first contact attempt and first respondent contact.

Our goal is to contribute to the growing literature on the use of Bayesian methods for

improving predictions of survey data collection parameters. After introducing the NHIS

survey data (Section 2) we introduce a Weibull hurdle model which is used to predict the

lag between first attempt and first contact and describe our method for prior construction

(Section 3). We then present our analytic approach and evaluation methods (Section 4).

Results are presented (Section 5) followed by a discussion (Section 6).
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2. Description of Data

2.1. The National Health Interview Survey

The National Health Interview Survey (NHIS) is a monthly cross-sectional household

interview survey that serves as the principal source of information on the health of the

civilian noninstitutionalized population of the United States and is one of the major data

collection programs of the National Center for Health Statistics (NCHS 2018).

The sample design follows a multistage area probability design that permits the

representative sampling of households and non-institutional group quarters (e.g., college

dormitories). The entire United States is divided into approximately 1,700 primary

sampling units (PSUs), which can consist of a county, a small group of adjacent counties,

or a metropolitan statistical area. PSUs are selected, some with certainty (self-representing

PSUs), and others with probability proportional to size (non-self-representing PSUs).

Within those selected PSUs, clusters of households and non-institutional group quarters

are selected. Additionally, an oversample is taken for geographies with higher expected

populations of particular age and race/ethnicity groups. Interviewing for the NHIS is

conducted continuously throughout each calendar year.

The U.S. Census Bureau is the data collection agent for the NHIS. Survey data are collected

continuously throughout the year by Census interviewers. Cases released into the field are

attempted for up to 30 days. The NHIS consists primarily of face-to-face interviews conducted

in respondents’ homes, but follow-ups to complete interviews may be conducted over the

telephone. A telephone interview may also be conducted when the respondent requests a one

or when road conditions or travel distances would make it difficult to schedule a personal visit

before the required completion date (NCHS 2018). We used two years’ worth of monthly data

collection periods, spanning the months from July 2014 to June 2016 for this work.

2.1.1. Auxiliary Data Sources

Four data sources were used for this evaluation, in addition to the NHIS sample itself. The

Census Bureau Planning Database (PDB) is a detailed dataset including sociodemographic

information at the block group level that is produced annually using data from the five-

year ACS estimates (Census 2008) and the Decennial Census. For this application, we

used the 2016 release. For a full list of items on the PDB, see Census (2016). Second, we

obtained a dataset of basic employment information about interviewers, including which

regional office an interviewer belongs to and their experience level on the NHIS.

We also utilized two sources of paradata, the Neighborhood Observation Instrument

(NOI) and the Contact History Instrument (CHI). In the NOI, interviewers are asked to

record information about the housing unit and neighborhood from their own observations.

These neighborhood observations require no contact with the respondent and should be

recorded just prior to the first contact attempt. For the CHI, on the other hand, interviewers

record the date, time and outcome of each contact attempt and information about

interactions with sample persons. Additionally, the CHI includes information about the

field management structure, including which interviewers are assigned to work each case

and whether a case was reassigned during the field period. These data sources were

selected for this application partially because of their availability, but also because they
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include the types of data identified in Groves and Couper (1998) for predicting outcomes

like household contactability, survey cooperation, and response propensity.

Table 1 lists the five data sources, whether the information contained in each source

would be available prior to the start of data collection, whether the data items from the

source are fixed or time-varying during the data collection period, and some example items

from each source. For a full list of items included in the predictive models as part of this

research, see the online supplementary materials.

Identifiers across the different data sources can be used to link the sources and generate

a file at the contact attempt level for each sample unit in each data collection month. It is

important to note that, until the interviewer makes their first contact attempt at a sample

unit, the information from the NOI and the CHI is missing. Both of those data sources are

only reported at or after the point-in-time of the first contact attempt, which restricts when

they are available for prediction of the lag between first attempt and first contact.

2.2. Parameter of Interest: Lag Between First Contact Attempt and First Respondent

Contact

For this study, we analyzed data from 24 months of the NHIS, ranging from July, 2014

through June, 2016. Our parameter of interest was the time lag, in days, between the first

Table 1. Auxiliary data sources, example data items and their availability for use in prediction of lag.

Data source Available prior to
start of the data
collection period?

Fixed or
time-
varying

Example items

NHIS
Sample
File

Yes Fixed Sample unit case ID
Census block-group-level ID
Data collection sample month
Census fieldwork regional office

Planning
Database

Yes Fixed Census block group (BG) ID
% HU in a BG that are mobile homes
% Population in a BG that is urbanized
% Pop in a BG with a college degree

Interviewer
Information

Yes Fixed Interviewer ID
New NHIS interviewer (, one year experience)

Interviewer
Observations

No Fixed Sample unit case ID
Day/time of contact attempt
Interviewer ID
Evidence of children at the housing unit (HU)
Evidence of smoking at the HU
Bars observed on windows of the HU

Contact
history
Instrument

No Time-
varying

Sample unit case ID
Interviewer ID
Day/time of contact attempt
Outcome of contact attempt
Activities completed on contact attempt
Case reassignment indicator
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contact attempt made on a sample unit, and the first respondent contact. We calculated this

parameter at the case-level from the CHI data by subtracting the data collection day of the

first attempt from the data collection day when the first contact with the respondent was

reported. If respondent contact was made on the first contact attempt, the resulting lag was

zero days. Otherwise, all lags are positive integers. Table 2 summarizes, by month, the

approximate sample size in housing units of the NHIS, the percent of cases with a lag

greater than zero, the mean and variance of the lags conditional on the lag being greater

than zero, and the annual response rate for the NHIS. While the NHIS is conducted

monthly, response rates are only reported yearly (NCHS 2018). Table 2 shows that the

percentage of cases with a positive lag, and the means and variances of non-zero lags, are

relatively consistent across the 24 months of data.

While the mean lag across months was relatively similar, the mean lag during any one

month varies by the day of the data collection month when the first attempt is made. Again,

the day of the first contact attempt was taken from the CHI data. Table 3 shows that, for

example, cases first attempted during the first week of data collection have a mean lag of

nearly nine days, while cases first attempted within the last week of the month have a mean

lag of less than four days. This suggests that the day of the first attempt may be an

Table 2. Mean and variance of lag in days between 1st attempt and 1st contact by interview month.

Interview
period

Number
of cases

% Cases
with lag . 0

Mean(lag)
if lag . 0

Var(lag)
if lag . 0

Response late
(AAPOR RR6)

July 2014 5200 0.4171 8.890 48.67
Aug 2014 5100 0.3990 8.216 41.90
Sept 2014 4900 0.4131 7.941 42.54 73.8%
Oct 2014 5300 0.4236 8.009 43.89 annualized

Nov 2014 5000 0.3895 7.837 40.78
Dec 2014 5100 0.4058 9.192 48.30

Jan-2015 5600 0.3861 8.178 39.93
Feb 2015 5400 0.4181 8.464 44.49 70.1%
Mar 2015 5400 0.3984 8.658 49.41 annualized
Apr 2015 5800 0.4165 8.396 41.84

May 2015 5400 0.4026 8.424 45.74
Jun 2015 5600 0.3842 8.072 43.88
Jul 2015 5400 0.3938 8.589 40.90

Aug 2015 5200 0.3929 8.385 46.09
Sept 2015 5100 0.4003 8.449 43.12
Oct 2015 5300 0.4015 8.847 49.48

Nov 2015 5000 0.3754 8.062 42.60
Dec 2015 4800 0.3915 9.684 59.51

Jan-2016 5200 0.3876 7.797 35.65
Feb 2016 6000 0.3952 8.657 42.47
Mar 2016 6600 0.3893 8.861 51.00 67.9%
Apr 2016 6000 0.3947 8.665 43.58 annualized

May 2016 5700 0.3951 8.448 44.40
Jun 2016 5800 0.4009 8.724 47.89
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important predictor of the lag between first attempt and first contact. Lags in Table 3 were

averaged over all 24 months of data collection used in our application.

These results make intuitive sense. As a fixed data collection period progresses, there

are fewer remaining data collection days for cases to be contacted, and so interviewers

may make contact attempts closer together, or at higher frequency to make contact with

the sample member. Additionally, interviewers may have fewer remaining cases in their

workloads, and so more attention can be paid to those remaining cases.

3. Modeling the Day Lag Between First Contact Attempt and First Respondent

Contact

In order to model the day lag between first contact attempt and the first respondent contact,

we needed to identify a model that can properly account for a lag of zero due to a contact

being made on the first attempt. Additionally, our model needed to account for covariates

that are available prior to the start of data collection as well as covariates available only

after the first contact attempt is completed. As a result, we employed a hurdle model to

combine two different processes – the likelihood of making contact on the first attempt,

and a time-to-event, or survival, model to predict the length of the lag between the first

attempt and first contact, given that contact was not made on the first attempt.

3.1. Hurdle Models

A hurdle model (Mullahy 1986) is useful when one believes there are two separate

processes at work – one that generates zeros (in our case, “zero lags”, where the

interviewer makes contact on the first attempt) and the other that generates some non-zero

value, in our case a positive lag (Ma et al. 2015). Hurdle models are similar to zero-inflated

models (Rose et al. 2006) in the fact that they are useful for handling data with excess

zeros. However, zeros are conceptualized differently between the two classes of models.

Hurdle models are a mixture model where one component predicts whether a zero or non-

zero status (the “hurdle”), and the second component estimates a positive value

conditional the non-zero status. A zero-inflated model, on the other hand, allows zeros to

appear in either component of the model. That is, even if a non-zero status is predicted,

there is the chance that the second component of the model still results in a zero. Here, the

hurdle model was conceptually intuitive. If the first contact attempt results in a noncontact,

we would expect a nonzero lag for the case to result. The negative binomial model

Table 3. Mean and variance of lag in days between 1st

attempt and 1st contact by week of 1st attempt, all months.

Week of data
collection

Mean(lag)
if lag . 0

Var(lag)
if lag . 0

1 8.891 48.81
2 7.763 33.56
3 5.770 16.94
4 3.716 9.944
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construction would suggest that when there is a noncontact on the first attempt, there could

still be a zero lag. See Feng (2021) for more discussion of zero-inflated and hurdle models.

We used a logistic regression model to predict whether a noncontact would result on the

first contact attempt, resulting in a non-zero lag. The covariates available for this portion of

the hurdle model were restricted to those known prior to the first contact attempt, which

are found in the sample file and the PDB, as shown in Table 1. For the second component

of our model, which estimates the length of the non-zero lag in cases that have a first

contact, we chose to use a survival model to allow us to retain right-censored cases in our

analytic data sets. This means that cases for which the first contact attempt resulted in a

noncontact, and for which contact with a respondent had not been made, could still be

included in the set of cases used to estimate model coefficients. While only a small portion

of the cases (less than 2% in any given month) were right-censored at the end of data

collection, the use of a survival model is particularly salient when considering prediction

methods using data from the in-progress data collection period, where many of the cases

that will ultimately be contacted after nonzero lags have not yet had attempts that result in

contact. If we chose an alternative count model, such as a negative binomial, only cases

that had both a noncontact on the first attempt and an observed first contact would be

included in the set of cases used to estimate model coefficients. For more information on

how censored cases are still included in parameter estimates of survival models, see the

online supplementary materials.

To determine which parametric survival distribution best fit our data, we compared the

empirical distribution of positive lags (without controlling for any factors) in the NHIS

data against Poisson, Weibull, Gamma, and Lognormal distributions both visually and

with goodness-of-fit statistics, using the fitdistrplus package in R. Figure 1 below

shows panels for each of the four distributions evaluated for one data collection period to

illustrate how different time-to-event distributions compare with the empirical distribution

for a given month.

The black bars and density curve display the empirical distribution of the actual lag

between first attempt and first contact, based on the NHIS data, while the red density curve
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Fig. 1. Four parametric survival distributions compared to empirical distribution of lag (in days).
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(or histogram, in the case of the Poisson distribution) represents the theoretical distribution

when parameters are estimated from the NHIS data. The Poisson distribution provided the

worst fit, followed by the lognormal distribution. The Weibull and Gamma distributions

were similar in their fits, and so to decide, we examined Chi-Square tests, AIC, and BIC. For

the month displayed in Figure 1, and across the 24 months of our data, the AIC and BIC

scores of the Weibull distribution were smaller, and the Chi-Square test was larger, more

often. As a result, we elected to use a Weibull distribution for model fitting and prediction.

3.2. The Weibull Hurdle Model

In this setting, the prediction of interest, yi, is the length of time in days (lag) that will

elapse between the first contact attempt and the first contact with a household sample

member for the i th case. For each observation, with probability pi, yi ¼ 0, and with

probability ð12piÞ, yi . 0. Thus the probability distribution function for an observation

can be written as:

f yi;b; s; g
� �

¼
0 with probabilitypi ¼ exp g 0zi

� �
=ð1þ exp g 0zi

� �

g yi;b; s
� �

with probability 1 2 pið Þ ¼ 1=
�

1þ exp g 0zi

� �� �

8
<

:

where gðyi;b; sÞ is the probability distribution function (p.d.f.) of the Weibull distribution

and zi are the covariates that govern the log-odds of the probability of a zero-lag contact.

The likelihood function for the Weibull model in the presence of right censoring is:

L ¼
Yn

i¼1

S tið Þ l tið Þð Þdi ;

where SðtiÞ ¼ 1 2 Gðti; b; sÞ ¼ exp ð2 exp ðx
0

ib=sÞt
1=s
i Þ is the survival function, lðtiÞ ¼

1
s

exp ðx
0

ib=sÞt
ðð1=sÞ21Þ
i is the hazard function, di is the censoring indicator (equal to 1 if the

failure time is observed and 0 if not), ti ¼ min ð yi; ciÞ is the observed failure or censoring

time, and xi are the covariates that govern the log of the number of days until a non-zero

lag contact. The full likelihood can then be written as follows:

L b;s; g
� �

¼
Yn

i¼1

exp ðg 0ziÞ

1þ exp ðg 0ziÞ

� �12di 1

1þ exp ðg 0ziÞ

� �
exp 2 exp

xi
0b

s

� �
t

1

s
i

0

B@

1

CA

0

B@

2

64

1

s
exp

xi
0b

s

� �
t

1=sð Þ21ð Þ
i

� �di

!di

3

5

where di is an indicator specifying there will be a lag between the first attempt and first

contact and now zi are the covariates that govern the probability of a zero lag (note that xi

and zi can be disjoint, partially overlapping, or equal to each other). The first term in the

likelihood represents the probability that there will not be a lag between the first event and

the first contact; that is, contact will be made on the first attempt. The second term

represents the probability that there will be a positive lag, and the last term in the

likelihood represents the survival portion of the model, accounting for censoring. (Note
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that there are alternative parameterizations of the Weibull distribution that, e.g, replace

xi
0b with ai ¼ exp xi

0b
� �

[scale parameter] and b ¼ 1
s

[shape parameter].)

The likelihood includes parameters for both the binary process and the time-to-event

process. Maximum likelihood estimation shows that the different contributing terms can

be maximized separately allowing the model to be estimated in parts, computationally.

Specifically, the log-likelihood can be written as:

l b;s; g
� �

¼
Xn

i¼1

ð1 2 diÞg
0zi 2 log ð1þ exp ðg 0ziÞ

� �

þ
Xn

i¼1

di 2 exp
xi
0b

s

� �
t

1=s
i

� �
þ di

xi
0b

s
þ

1

s
2 1

� �
log ti 2 logs

� �� 	

As a result of this construction, the portion of the model that predicts the binary outcome (lag/no

lag) can be estimated using logistic regression from all observations, and the portion of the

model that predicts the lag length, can be estimated using Weibull regression among only those

cases with a non-zero lag (Smithson and Merkle 2013, chap. 5). However, we refer to this as a

single model, as the goal of this prediction is to determine the expected lag between first attempt

and first contact, and both portions of this model are needed to arrive at that prediction.

3.3. Prior Derivation for Bayesian Prediction

We derive prior distributions for the coefficients in our Weibull hurdle model with the goal

of improving the accuracy of predictions of those coefficients, in order to then improve the

predictions of lag between first attempt and first contact during the data collection period.

We assume that historical data will provide informative priors for each of our model

coefficients. We accomplish this by first fitting a Weibull hurdle model using three months

of historical data to obtain parameter estimates ĝ; b̂; ŝ
� �

, and the associated estimated

variances V̂ ĝ; b̂; ŝ
� �

. These parameters capture the time-varying nature of some of the

covariates within a single data collection period in a survival model framework.

Assuming approximate normality by the properties of maximum likelihood estimates,

we form priors, p g;b;s
� �

¼ N ĝ; b̂; ŝ
� �

; cV̂ ĝ; b̂; ŝ
� �� �

, where c is a constant that controls

the degree to which the prior information is used in the daily estimation procedure. (A

normally distributed prior distribution is a logical choice given the asymptotic normality

of maximum likelihood estimates.) We assume that the estimates of the model coefficients

will have similar precision each month, due to similar sample sizes. As a result, we would

expect that the prior estimates for the coefficients, which are based on three months of data

instead of just one, would be three times as precise as the coefficient estimates generated

from just the in-progress data collection period. As part of a sensitivity analysis, we inflate

the variance of each of the priors by a factor of c. By varying the inflation factor as 1/3, 1/2,

1, 2, and 3, we varied the precision of the prior coefficients to represent 27 months, 12

months, 3 months, 3/4th of a month, and 1/3rd of a month, respectively.

3.4. Implementation

The posterior distributions for coefficients of all covariates in the Weibull-hurdle model

are estimated each day using the priors and all data through the most recent day from the

in-progress data collection period. The brms package was then used to conduct
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resampling and estimation for Bayesian inference of parameters and estimation of

posterior predictions. The code for generating predictions via all methods for a given day

and month are provided in the online supplementary materials.

4. Methods

4.1. Predicting Day Lag to First Contact: Four Methods

For this application, we used 24 months of data from the NHIS, covering the time period

from July 2014 through June 2016. For each prediction data collection period, the

prediction of interest was the length of time in days that would elapse between the first

contact attempt and the first contact with a household sample member. In addition to the

Bayesian method described in Section 3, we consider three alternative approaches for

comparison:

1. The first method uses only available data from the in-progress data collection period

to estimate coefficients for the covariates in a Weibull hurdle model, and then uses

those coefficients to predict the expected lag for each open case in the current month.

We refer to this as the current method.

2. The second method uses only historical data to estimate the mean expected lag. The

expected lag for all cases in the current month, then, is just the overall average lag of

the three prior months, ignoring any additional information. This leads to all sample

units having the same predicted lag in a given month. We refer to this as the mean

method.

3. The third method also uses historical data but estimates coefficients for the covariates

in a Weibull hurdle model, and then uses the point estimates of those coefficients to

predict the expected lag for each open case in in the current month. We refer to this as

the historical method.

For the mean, historical, and Bayesian methods, which all leverage historical data, three

consecutive months were used as the historical data, and the next month was considered

the prediction period of interest. For example, if October 2014 was the predictive period of

interest, July, August and September of 2014 would be used to generate the mean for the

mean method, coefficients and standard errors for model covariates for the historical

method, and point estimates and standard errors for use as priors in the Bayesian method.

Table 4 summarizes which months of data are used for each method for a prediction period

of interest.

We generate predictions at the case- and day- level for each of the 21 time periods of

interest (October 2014–June 2016), giving us a set of daily predictions for each case that

has not yet had a successful contact.

4.2. Evaluation Measures

The four methods will be compared primarily using measures of mean prediction bias, root

mean squared error, and percent change between any two of the four methods. Cases in the

in-progress month for which we are evaluating our predictions are included in these

calculations if no contact with a sample member has been made on the day the prediction
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has been made, and a first contact attempt was made prior to the day the prediction was

made. Mean prediction bias (MPB) is expressed as:

MPBm
dj
¼

1

n

Xn

i¼1
ŷm

idj
2 yi


 �

and root mean square prediction error (RMSE) is expressed as:

RMSEm
dj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ŷm

idj
2 yi


 �2
r

where n is the number of cases eligible for inclusion in the error estimate (this varies

throughout the prediction period of interest), ŷi is the predicted value of the lag, y, for the

ith case under the m th method on the d th day, for cases first attempted on day j, and yi is the

true value of the lag, y.

The percent change between the RMSE for the mth method and the method selected as

the baseline, b, on the d th day for cases first attempted on day j is calculated as:

PCHGm1mb

dj
¼ 100*

RMSEm
dj

2 RMSEb
dj

RMSEb
dj

 !

Table 4. Summary of prediction methods by data types used.

Prediction
method

Months used to estimate
model coefficients

Coefficient parameters Prediction
period of
interest

Current October 2014
(in-progress)

Coefficient point
estimates

October 2014

Mean July 2014
August 2014
September 2014

Mean predicted lag

Historical July 2014
August 2014
September 2014

Point estimates for
coefficients in
Weibull hurdle
model

Bayesian Priors:
July 2014
August 2014
September 2014

(priors)
Likelihood:
October 2014

(in-progress)

Point estimates, standard
errors for coefficients in
Weibull hurdle model
based on historical data;

Posterior estimates and
standard errors for
coefficients in
Weibull hurdle model
based on priors plus
October 2014
accumulated data
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Percent change in the MPB can be calculated similarly. Creating measures of MPB,

RMSE, and PCHG based on dj, the cutpoint by day the case was first attempted leads to a

different number of summary error estimates on each day. For example, on day d ¼ 4, for

each of the methods, there would be three separate estimates of MPB, one each for

j ¼ 1; 2; 3, where j denotes the day the case was first attempted. One day d ¼ 25, there

would be up to 24 separate estimates for MPB. Days where no cases were attempted for the

first time would not generate an estimate for MPB. This allows us to not only examine the

distribution of MPB and RMSE at each cut point, but also examine how the distribution of

error in predicted lag differs by how close to the day of first attempt the predictions are made.

The expectation is that the Bayesian method will produce predictions of the expected lag

closer to that of the actual lag, resulting in a smaller overall MPB and RMSE, as the modeling

procedure is effectively borrowing strength across the historical data and current data to make

a prediction. For this evaluation, we do not use design-adjusted variance estimates.

4.3. Evaluation Methods

In order to compare the four discussed methods for predicting lag (current (C), mean (M),

historical (H), and Bayesian (B)), we first compare the MPB and RMSE of the prediction of the

lag for each of the four methods using boxplots that illustrate the mean and range of the errors in

prediction of lag for eligible cases on each day. Predictions of the expected lag and the resulting

MPB and RMSE of those predictions depend not only on the prediction method used, but also on

when the prediction is made during data collection, which we refer to as the cut point. This is

because each day, new cases are attempted for the first time, and contact is being made in other

cases. Therefore, we are attempting to predict the expected lag for a pool of cases that is

changing on a daily basis. In order to evaluate the quality of predictions, we evaluate MPB and

RMSE at several cut points in data collection, after days 2, 4, 6, 8, 10, 15, 20 and 25.

Additionally, we are particularly interested in the quality of predictions of expected lag

shortly after the first contact attempt is made. If we are able to correctly predict the lag

close to the day of the first contact attempt, we maximize the window where we can

implement an intervention to inform the interviewer or even try to reduce that expected

lag. To see this, we recreate the initial plots comparing MPB and RMSE, but restrict them

to cases who have had their first contact attempt occur within two days of the cut point. In

other words, on day 6, these boxplots would only display the mean and range of errors in

prediction of lag for cases first attempted on day 4 or 5. On day 10, these plots would be

limited to cases first attempted on days 8 or 9.

Additionally, in the online supplementary materials, we include an example of how this

prediction could be used during a data collection period to identify cases that are likely to

have a long lag.

5. Results

5.1. Comparison of Four Predictive Methods (MPB and RMSE)

For each cut point during each of the 21 time periods, we used all open, uncontacted cases

to generate estimates of MPB and RMSE. The boxplots were then generated using the

MPBm
dj

and MPBm
dj

for all m time periods.
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Figure 2 displays estimates of MPB for predictions of the lag and shows that all methods

underestimate the actual lag between first attempt and first contact throughout the data

collection process. Additionally, as data collection goes on, the underestimation MPB

increases. It is also evident that, until day 15, all methods that use historical data in some

form (M, H, and B) outperform the current method with respect to prediction MPB. While

the three methods that use historical data all perform similarly late in data collection, the

historical and Bayesian methods perform better than the mean method until day 10. The

Bayesian method appears to provide small improvements over the historical method over

the 21 time periods, as evidenced by central tendencies of estimates of the MPB being

closer to zero. The use of historical data is particularly helpful in reducing bias in the very

early period, privileging the stronger priors; by day 4 however, the prior has little impact.

In addition to the overall predictive abilities of the four different methods, we are

particularly interested in the temporal effectiveness of the predictions. In other words, we

are interested in how well we can predict the expected lag near the day of the first attempt,

when we are close to the entry point of a given case into the dataset. Just after the initial

contact attempt, we have the least data and the most time to implement an intervention if

needed. In order to explore this, we generated Figure 3, which is equivalent to Figure 2 but

restricted the to include only measures of error based on cases worked within two days of

the cut point. So, when d ¼ 4, only cases that were first attempted on day 2 or 3 are

included in the estimates of MPB. On day 25, only those cases first attempted on days 23

and 24 are included.

While Figure 3 follows the same general pattern as Figure 2, there are some differences.

Most notable is that as time progresses through the data collection period, the MPB in

predicting lag for recent cases is much smaller (the bias is closer to zero) for all cases,

whereas in Figure 2, the under-estimation bias increases over time. This finding shows that

the model is relatively accurate at predicting lag length close to the day of the first attempt,

whether that lag is long or short. However, as time moves away from the initial contact

attempt, the quality of predictions of the lag decreases for the outstanding cases. This

suggests that cases where we underestimate lag, we underestimate it by a large amount.

Again, the current data method performs the worst until late in data collection, but here, it

never really outperforms the historical or Bayesian methods. Late in data collection, the

mean method begins outperforming other methods, but this is not consistent throughout

data collection. Again, we see that the central tendencies of the MPB in the Bayesian

method are closer to zero than in the historical method, demonstrating a small

improvement. Among the Bayesian methods, we again see an advantage for the strong

prior at day 2, but little difference from day 4 on.

We see the same pattern in the RMSE of the lag predictions in Figure 4. The current

method performs worse than the other methods until mid-way through the data collection

period, and the other three methods are competitive with each other. Again, the Bayesian

method appears to provide improvements over the historical method until late in the data

collection period, as the central tendencies and intraquartile ranges are smaller in the

Bayesian method than in the historical method. As with bias, there is a tendency for the

stronger prior to perform better with respect to RMSE at day 2, but then little difference

thereafter.
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Figure 5 displays the RMSE of predictions of lag for recent cases and continues to

demonstrate that the use of historical information is generally helpful for improving

predictions. Additionally, throughout data collection, the Bayesian method provides small

improvements in the central tendencies of RMSE over the historical method. Again. there

is a tendency for the stronger prior to do better with RMSE at Day 2, but then little

difference thereafter.

Figure 6 plots the percent change in RMSE and MPB of the Bayesian method where the

prior is equivalent to 1/3 of a month from the historical method. Each point on the scatter

plot represents a cut point (prediction day) by day of first attempt. Cases receiving their

first contact attempt in the prior two days and cases attempted more than two days prior to

the cut point are plotted separately. For example, one data point in the plot of recent cases

would be for the measures of MPB and RMSE on Day 4, for cases first attempted on Day 2,

in a given data collection period.

Most of the data points fall in the southwest quadrant, representing a reduction of both

RMSE and MPB in the Bayesian method when compared to the historical method. This is

true for both recent and older cases. Additionally, when there are improvements in MPB

and RMSE, those improvements have a larger range (reductions in the bias and RMSE

reaching 20% and 10% respectively) than the situations where the bias or RMSE increase

when the Bayesian method is used (increases are generally limited to 10% increases in

MPB and 5% increases in RMSE). These results suggest the Bayesian approach can

provide modest improvements to our predictions.
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6. Discussion and Future Work

This article discussed several methods for generating predictions for the estimated lag (in

days) between first attempt and first contact for a case in the NHIS. The results showed that

using model-based methods that leverage data external to the current data collection, in this

case historical survey data, can be useful for improving predictions in the current month.

Because of the time-varying nature of the “day of the first attempt covariate”, the

historical method and the Bayesian method were able to capture that variability, resulting

in better predictions, particularly near the point of first attempt. Further, the model-based

methods improved estimates with relatively few covariates, including aggregate

geographic information, basic interviewer information, and the day of first attempt.

Improvements could be more significant with more information, either for individual cases

in a longitudinal setting, or a richer auxiliary frame data in a cross-sectional setting.

The Bayesian method provided modest improvements over the historical method, with

the largest gains visible early in the data collection period. Additionally, the Bayesian

method provided small improvements in the identification of cases with excessive lags at a

higher sensitivity than the other methods, particularly when weak priors were used. When

sensitivity and specificity were considered equally in an application of the use of

predictions, the Bayesian method performed slightly better early in data collection, though

the historical method was competitive. In general, early in data collection the benefit of the

Bayesian framework is that external data can be incorporated into the prediction process as

priors. Those priors can help improve the stability of predictions when working with the

partially accumulated data that exist early in the data collection period. Later in data

collection, the likelihood (data from the in-progress period) takes over, reducing bias that

might have been introduced by considering historical data only, although the prior

continues to reduce the variance of the predictive coefficients, stabilizing the posterior

predictions of expected lag. The Bayesian method also offers flexibility in how much

influence the prior has on the posterior prediction, in the form of the constant, c.

There are limitations to the model-based predictions. From a data quality perspective,

the NOI and the CHI data are self-reported by interviewers, who are expected to record

outcomes of contact attempts immediately after they occur. West and Kreuter (2013),

Biemer et al. (2013), and Bates et al. (2010) have discussed potential quality issues in self-

reported interviewer paradata, due to under-reporting of undesirable behaviors, or the error

inherent in guesswork. Additionally, as shown in the comparison of Figure 2 and Figure 3,

predictions can be more inaccurate the farther in time away from the first attempt for a

case, meaning the covariates currently in the model underestimate the length of the lag for

cases with long lags. This may be for one of two reasons. First, in the hurdle portion of the

model, estimated by logistic regression, the discrimination between sample units with zero

lag and those with positive lags is not perfect. As a result, some units for which we predict

a zero lag with high confidence may, in fact, have a long lag, and the high probability of a

zero lag would cause our predictions to underestimate the expected lag. Then, in the

Weibull portion of the model, which estimates lag length for non-zero lags, the estimate of

the shape parameter may also underestimate the actual lag.

Future work could extend into several different areas. First, we used a standard

parametric Weibull model to predict time (days) to contact. Models for integer-coarsened
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data, perhaps as a special case of interval-censored data (Sun 2006), could be considered,

although we believe the impact of this level of refinement would be relatively minor. More

work could be done to append auxiliary variables onto the survey data, and potentially

include a flexible set of model covariates over time, in order to improve model fit and

subsequent predictions. Household-level data may be more predictive than aggregate

geographic information from the PDB. Additionally, this method should be replicated for

different estimators in different data collection settings. Selected data collection

parameters and associated models would likely be different across surveys with different

data collection periods, modes, or data collection features. In situations where time-to-

event modeling is useful or appropriate for estimating selected data collection parameters,

it may be useful to explore additional tools for identifying the appropriate survival model,

including non-parametric methods, such as Kaplan-Meier curves, in addition to the

goodness-of-fit tests used in Subsection 3.1.

More benefit could be extracted from the Bayesian framework, as well. Here, we leveraged

the Bayesian framework primarily to combine both historical and current accumulating data

to maximize the information used in our predictions of posterior coefficient estimates. But

after that, we only used the point estimate of the predicted lag for evaluating our predictions or

identifying short and long lags in the online supplementary application. We could also

leverage the credible interval around predictions for evaluation or application. In the

evaluation phase, we could evaluate whether the predicted credible interval for a case covers

its actual lag, as opposed to only looking at the distance between the predicted point estimate

and actual lags. Similarly, we could rank cases that have minimally overlapping credible

intervals by predicted lags and evaluate whether those rankings match the rankings in the

actual lags. This would help us understand whether our predictions of lag were biased

downward but ordered correctly. Additionally, we could evaluate the accuracy of predictions

for cases with narrow credible intervals versus wide intervals, to better understand if there are

domains or types of cases for which our predictions are more accurate than others.

In an application setting, the credible interval could be used to help identify cases for

intervention. In the case where a threshold is used (e.g., lags of at least a certain number of

days are considered long), the credible interval could be used to determine whether a case

met that threshold. For example, in the case where a point estimate met the threshold, but a

large portion of the credible interval did not meet the threshold, we may not consider that

case to have a long lag. The additional information provided by the credible interval would

help identify the cases likely to have long lags in a more complete way. One could also

consider the distribution of rank order, for example focusing on cases that we find to be

likely to have the longest times to contact for intervention if resources are limited for such

intrerventions. The strategy for assigning a value to c is also important. For this

application, we varied the value of c, allowing the priors to represent a range of 1/3 of a

month of data to three months of data for the results in order to demonstrate the effect of

prior data strength on the posterior predictions of lag. However, the Bayesian framework

could be extended by putting a prior on the value for c using power prior methodology

(Ibrahim and Chen 2000; Hobbs et al. 2011). Power priors provide a statistical framework

for weighting priors in a more sophisticated way than we did for this work.

Finally, it is important to consider how to utilize these improved predictions during data

collection. Although this article has focused on the technical issue of predicting the day lag
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between first attempt and first contact, there is a broader issue of exactly how these results

could be used to affect action in the field. There are at least two major categories of actions

that could be taken. The first is load leveling. Given the extra effort that a successful

contact will entail, one could ensure that interviewers are assigned a reasonable mix of

cases that will allow them to get through a workday without leaving a large number of

uncontacted cases because they had too many likely responders on a given day or end up

short of cases to work because they had too many unlikely responders. The second

category follows adaptive or responsive design interventions. For example, if time-to-

contact was uncorrelated with response propensity or outcomes of interest, then at some

point during data collection, cases could be dropped from operations if the estimated time-

to-contact was too long. Alternatively, if time-to-contact was negatively correlated with

response propensity, or correlated in any way with outcomes of interest, cases with longer

predicted time-to-contact could be assigned high priority early in the collection period so

that interviewers spent more time on those cases, or have alternative data collection

strategies applied, such as assigning the case to multiple interviewers, leaving materials

that might improve the chance for future contact, and so forth.
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Towards Demand-Driven On-The-Fly Statistics

Tjalling Gelsema1 and Guido van den Heuvel1

A prototype of a question answering (QA) system, called Farseer, for the real-time calculation
and dissemination of aggregate statistics is introduced. Using techniques from natural
language processing (NLP), machine learning (ML), artificial intelligence (AI) and formal
semantics, this framework is capable of correctly interpreting a written request for (aggregate)
statistics and subsequently generating appropriate results. It is shown that the framework
operates in a way that is independent of a specific statistical domain under consideration, by
capturing domain specific information in a knowledge graph that is input to the framework.
However, it is also shown that the prototype still has its limitations, lacking statistical
disclosure control. Also, searching the knowledge graph is still time-consuming.

Key words: Dissemination; artificial intelligence; question answering; text-to-SQL;
information modeling.

1. Introduction

The usual way a national statistical institute (NSI) disseminates most of its output to the

general public is through an output database, generally made available through the NSI’s

website. Within Statistics Netherlands (SN) for instance, StatLine is the output facility in

which most of the statistics compiled are published. On SN’s website, StatLine is

accompanied by searching and selection facilities in order to aid the general public in

finding statistics of interest. Other NSIs have similar facilities.

These output databases have in common that they store pre-compiled statistics: numbers

that are calculated in advance of a public’s request for information. This type of generating

output can therefore be called supply-driven: the assumption is that the vast amount of

statistical tables that are compiled and disseminated is sufficient to serve the main public’s

interest.

In contrast to the supply-driven approach to output dissemination is the demand-driven

approach. We characterize it here as the calculation of a statistic as the result of a user’s

request. Usually, output of this type is the result of customized research originating from a

request for statistics not found on the website. While the usual supply-driven type of

dissemination is fast in terms of the time it takes between a request and delivering output,

the usual demand-driven type is slow due to the customized process of producing statistics.

To our knowledge, no NSI is currently capable of combining the advantages of demand-

driven output generation with the fast access output databases offer. One notable exception

q Statistics Sweden
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is the Australian Bureau of Statistics (ABS) with their TableBuilder initiative. This on-line

tool allows users to create tables, graphs and maps of census data to a high level of detail.

However, more specifically, we think that the process of automatically interpreting a

user’s written request for statistics followed by the calculation of relevant output, for any

domain, is currently implemented nowhere. In this article we introduce a framework for

doing just that: demand-driven on-the-fly statistics.

We postulate that demand-driven on-the-fly statistics could offer a more personalized

kind of statistics than the current types of dissemination do. Questions like “How many

people live in my street?” and “How many people work in Leiden and live in The Hague?”

can be relevant from a personal perspective and may very well be the kind users want

instant response to. Currently they are not addressed by SN’s output facility, due to (1) the

level of detail requested (SN does not publish population figures at street level) and (2) the

combination of sources required (SN does not publish figures combining population

statistics with employer residence). SN however does posses the sources for calculating

these figures and, assuming proper disclosure control, there is no reason not to publish

them. Of course, with high levels of detail and with many combinations of data to account

for, disclosure control of output data is a challenge.

To emphasize the potential innovative character of the framework we are proposing (in

view of the current techniques for disseminating statistics) we list its initial goals: the

framework should

1. translate a request in layman terms to the more technical statistical vocabulary,

2. understand a request to the extent that a query for calculating a result can be

generated,

3. automatically determine which tables containing microdata should be combined to

calculate the result,

4. calculate the result using microdata, and,

5. explain the result to the user.

In our view, the combination of the requirements above is unique and could be a driver

for a more user-centered way of disseminating statistics.

In this article we describe the technicalities and the applications of a framework for the

real-time calculation of statistical figures, in response to a written request. While on-the-

fly disclosure control is a critical component for such a framework to be put into actual

use, we exclude it in this article. First, there are numerous references to research on the

topic (see, e.g., Thompson and Broadfoot et al. 2013; Marley and Leaver 2011; Fraser and

Wooton 2006; Enderle and Giessing et al. 2006) and we have little to contribute on the

matter, other than point the reader in the direction of the promising notion of differential

privacy Ji et al. (2014). Second, even without on-the-fly disclosure control, the

technicalities involved in our framework are nontrivial and, we feel, constitute a field of

research that is relevant on its own.

At this point we must mention the development of the so-called Information Dialogue

(ID) SN was pursuing: a voice assistant application for smart phone users that is capable of

answering frequently asked questions on some topics of interest. As of January 2020, these

topics included population, income and job market, the data for which is provided by SN’s

open data framework.

Journal of Official Statistics352



SN’s ID differs from our approach in some notable ways. First, the ID focusses on

sensible dialogues to direct a user to the information required, which takes a large burden

on the development of the ID. Our approach is to take a best guess from a single question

posed in natural language and subseqently generate an answer in one stroke instead of

through a dialogue. It is therefore an example of a question answering (QA) system

Indurkhya and Damerau (2010) rather than a dialogue system. Second, SN’s open data

framework provides exactly the same output tables as StatLine, so the ID can be seen as a

convenient way to navigate through some of SN’s output tables. It therefore does not

follow the demand-driven approach that we discussed earlier. Third, it turns out that each

topic requires a separate dialogue – one of the reasons dialogue design takes a large

portion of the ID’s development. Instead, our approach, we claim, is more generic: our

framework is essentially agnostic of the statistical domain of a request; its mechanisms

will thus interpret a question about the Dutch population in much the same way as a

question about income. Fourth, since our approach is based upon aggregating and

combining microdata to form an answer, we claim that the number of questions that can

potentially be answered is much higher than if we used aggregated data as a starting point.

We therefore claim that the questions our framework is capable of answering are

potentially more numerous and more diverse than those of the ID (adding to the

complexity of a potential solution for disclosure control).

To give an outline of the objectives of our framework called Farseer, consider Figure 1

below. At the lowest level of detail, it consists of four stages, two of which, that is,

Statistical disclosure control and Inform, we will only briefly discuss in this article. The

input of the first stage, that is, Interpret, is a request for statistics in written natural

language form. Its output is a formal representation of this request, in the sense that this

representation essentially contains all metadata (such as variables, selection criteria,

aggregation instructions) needed to compute a figure, or a table of figures, as well as to

explain the figure’s meaning. The steps needed to perform Interpret include several natural

language processing (NLP) tasks in part supported by machine learning (ML) routines.

The details of Interpret are described in Subsections 2.2 to 4.4. The second stage, Generate

and execute query, is a translation of the formal representation to an executable language;

as of March 2020, both MySQL and Transact-SQL are supported. The details of Generate

and execute query are explained in Subsection 2.5. The purpose of Inform is to translate

the formal representation of Interpret back to a human readable form, informing the user

of the exact meaning of the figure(s) computed. It is important to report on interpretation

Interpret Generate and

execute query

Statistical

disclosure

control

Inform
How many people

work in Leiden and

live in The Hague?

The number of

persons in the

population register

of The Hague on

January 1 2020 that

have at least one

job at a company

located in Leiden is:

9528

Out of the article’s

scopeConstruct a formula

from a formal language,

by syntactic parsing and

semantic analysis

Translate the formula to

an executable SQL

statement

Fig. 1. Overview of Farseer
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issues due, for example, to possible translation differences between casual and formal

speech (such as the translation between “live in The Hague” and “the population register

of The Hague” in Figure 1) or of assumptions made (such as “January 1 2020” in Figure 1).

At the moment, we are studying on developing algorithms for the Inform stage.

Farseer is an acronym of for Automated Replies to Statistical Estimation Enquiries and

Requests. Full code is available at. github.com/tgelsema/farseer.

Scientifically, Farseer is an example of a text-to-SQL system (also known as NL2SQL);

see Katsogiannis-Meimarakis and Koutrika (2021) for an overview of other such systems.

Farseer uses a traditional, rule based approach for the actual translation, combined with

ML for specific subtasks. In Section 4 we compare our approach with that of others.

The rest of this document is organized as follows. In Section 2 we present the technical

details of the Farseer framework. Section 3 presents the results of an experiment in which

the framework was applied to a statistical domain (viz. crime) that was new to the

framework, in the sense that it differed from the domain used during development. These

results are discussed in Section 4 and we conclude with some remarks on future research in

Section 5.

2. Interpreting a Request for Statistics and Calculating its Result

In the following subsections, we describe in detail the mechanisms of the Interpret and

Generate and execute query stages, which turn a request for statistics written in natural

language into a formula first, before translating it to an executable query.

First, we must emphasize that Farseer currently is capable of interpreting Dutch requests

only. We expect however that the mechanisms of interpreting an English request for

instance can be developed in much the same way. Nevertheless, all the example requests

presented in this section are in Dutch; we will give proper translations in English as we

proceed.

The parts of the Interpret component are roughly those commonly found in NLP

Indurkhya and Damerau (2010), though our interpretation of some of these parts is non-

standard. In order to process a request it must be tokenized first, breaking up the request

into individual words or composites of words. Consider Figure 2 where the English

translation of the example request is “How many people live in The Hague?”. The result of

tokenization is a list of tokens; note that in this case it is recognized that “Den Haag” forms

a single token instead of two.

The purpose of named entity recognition (NER) is to map certain tokens to prior

knowledge. In our case this means that some tokens are related to vertices and edges in a

knowledge graph, the details of which are described in Subsection 2.1. Note that in

Figure 2 the token “den haag” is recognized as an object (an edge in this case) named “’s-

Gravenhage”; it is the official name of the city of The Hague. Tokenization and NER are

described in some detail in Subsection 2.2. The purpose of the lookup table mentioned in

Figure 2 is to translate common language (such as “Den Haag”) to official language (“’s-

Gravenhage”).

We found a need for performing some non-standard part-of-speech tagging (POS), that

is, in order to classify requests into one of currently eleven categories. The classification

process itself uses ML: given the output of POS applied to a request, our ML routine
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estimates the category corresponding to the request. These categories in turn give direction

to the semantic analysis part of the Interpret component. The output of POS is a list of

keywords (such as ,howmany . , ,prep . for prepositions, and ,unk . for

unknowns) of the same length as the list of tokens. This list can be seen as a structural

excerpt of the request: all domain-specific information is intentionally left out. In this way

the classification process becomes domain independent. POS and our classification

routines are explained in Subsection 2.3.

In Subsection 2.4 semantic analysis is explained. Also this stage is developed in a non-

standard way, in that it introduces a formal language customized for the capturing of

statistical information. The output of semantic analysis is a formula of the language, which

represents the formal translation of a request.

We conclude in Subsection 2.5 where we describe the translation of a formula to an

executable query.

At this point we want to stress that our main contributions to the field of NLP applied to

statistics, we feel, are the semantic analysis and the query generation stages. For this

reason Subsections 2.1, 2.5 and in particular 2.4 contain more detail than others.

2.1. Knowledge Graphs

In this section we shall refer to a knowledge graph as a directed graph of which the labeled

vertices and edges contain structural knowledge about a domain of statistical interest. We

present here our own version of a knowledge graph, specifically designed for capturing

statistical information. Other versions use, for example, linked open data or other

approaches based on the Resource Description Framework (RDF) (see Hayes and

Patel-Schneider 2014; Brickley and Guha 2014; Motik et al. 2012) but we found our

Interpret
Hoeveel mensen

wonen er in Den

Haag?

[‘hoeveel’,

‘mensen’, ‘wonen’,

‘er’, ‘in’, ‘den haag’]

[None, person, lives

on, None, None, ’s-

Gravenhage]

[<howmany>, <ot>,

<otr>, <unk>,

<prep>, <const>]

α((one(person) … ) … )

Knowledge

graph and

lookup table

Machine

learning model

Knowledge

graph 

Tokenization

Named entity

recognition

(NER)

Part-of-speech

tagging (POS)

Semantic

analysis

Fig. 2. Outline of the interpret component.
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particular version more expressive in a statistical context and better suited for our Farseer

application. How our graphs should be interpreted is explained in more detail in Gelsema

(2012): there the relationship between a knowledge graph and actual data is made precise

by means of a semantic function that has as a domain (expressions over) a graph and as a

codomain a collection of sets and functions that represent data(sets). We will return to the

exact semantics of knowledge graphs in Subsection 2.4 and point out the difference with

RDF-based graphs.

An example of a knowledge graph is given in Figure 3. Essentially, this graph (as all

knowledge graphs of the kind we consider) stores five types of information; each type is

given a different color in Figure 3.

First, the red vertices of the graph are (called) object types: these are types of statistical

interest, such as person and job and they represent countable sets of objects of interest.

Relationships between object types are the edges colored green: these are called object

type relations and, for example, record the relationship between a job and the person that

occupies it, or the relationship between a person and the address he or she lives on. Note

that object type relationships have a direction: this indicates that, for example, associated

with a job is exactly one person (and not necessarily the other way around). The blue-

colored edges are variables: they go from an object type to a type which we call a

phenomenon, for lack of a better term. Thus, the variable labeled job title assigns to each

job a member of the type occupations: this is the functional perspective of a statistical

variable (and an object type relation) proposed by Gelsema (2012) that we will follow

here. Note the special variables labeled one and all; we assume we have a variable of both

kinds available for each object type (but only some of them are shown in Figure 3). The

variable one represents a function that assigns to each object of the corresponding type the

number 1; we use this for counting objects later on. The variable all represents a function

of which all objects of the corresponding type are mapped to the same object of the type 1;

the latter type can be thought of as a singleton set {*} containing one fixed but unnamed

member *. We use the all variable for grouping objects later on, see a “group by”

statement from SQL. Some might prefer more ‘formal’ labels like has adress instead of

person address street names

activities

job

municipality munic. names

house numbers

1

1

number

number

company

gender

occupations

number

1

1

1

vrouw

sex

age
income

one one

lives on

employee

employer

salary

job title

oogarts

in

located on

house number

street name Spui

munic. name ‘s-Gravenhage

main activity

industrie

turnover

1

all

all

Fig. 3. A knowledge graph.
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lives on. We stress however that the labels play no role in the NLP-part of Farseer though.

Also, this example graph does not reflect the real world in all its details. For instance, a

company might have more than one address. We stress that these details can be

incoporated in the graph though.

Note that object type relations and variables, as in fact all edges in the graph of Figure 3,

are subject to composition. By this we mean that, for example, the variable municipality

name of the place of residence of a person is a variable that is composed of the object type

relationships lives on and in and the variable “municipality name” by following the edges

in the given direction Gelsema (2012) so that the sets-and-functions interpretation of

composing edges corresponds with the usual composition of functions.

The brown edges are called constants: they originate from the special type denoted 1

and have a phenomenon type as a target. This is a convenient way to indicate that, for

example, vrouw (which translates to female) is a member of the type gender, because

functions v of the form v : {*} ! a are in one-to-one correspondence with members of the

set a. Note that we did not translate the labels of the constants in Figure 3; this is because

they are relevant in the interpretation process, which, as mentioned, has a Dutch request as

input. The label industrie translates to industry, oogarts translates to ophthalmologist (or

just eye doctor) and ’s-Gravenhage and Spui translate to themselves. Note also that the

term phenomenon might give the reader other connotations than intended: a phenomenon

must be seen as a set of constants, as explained above, nothing more and nothing less. In

the example knowledge graphs in this paper, the constants are invariably categories from a

classification, so a synonym for phenomenon might be just classification or code list. We

sometimes use type to refer to a vertex (label) and element to refer to an edge (label), see

Gelsema (2019).

The graph in Figure 3 (or more precise: its Dutch translation) was used in various

versions during the development of Farseer. We note that Figure 3 depicts a summary: the

actual graph we used has many more constants. Also, in Figure 3 for convenience the

types 1 and number have more than one occurrence; in an actual graph there is just one

occurrence of both. Routines for creating graphs of the kind of Figure 3 have been

assembled in a Python module of the Farseer framework. To create an actual graph, its

(colored) vertices and edges must be constructed by hand. Of course, the idea is that to

accommodate a new statistical domain, new vertices and edges can be added to an already

existing knowledge graph, thereby promoting reuse.

2.2. Tokenization and Named Entity Recognition

Tokenization is the process of breaking up a sentence into tokens: individual words or

composites of words. During NER certain tokens are mapped to objects of interest; in our

case these objects are vertices and edges from the knowledge graph explained in the

previous section.

The basic procedure of tokenization, at least the one outlined in this article, is

straightforward: treat individual words as tokens, ignore punctuation marks such as

commas, periods, question marks and exclamation marks and bring every word to

lowercase. This obviously goes wrong when a group of words such as “Den Haag” is

encountered in a request. Therefore such composites of words are recorded in a lookup
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table: this table maps these to objects (vertices and edges) in the knowledge graph. In fact,

since this is an instance of NER, the lookup table serves as the mapping mechanism of

single words to objects as well. Tokenization and NER are thus performed in one stroke

and the output of this combined procedure is a list of tokens and a list of objects of the

same length.

Consider Figure 4 below where the result of tokenization and NER of our example

request is given. The lookup table shows three entries: the token “mensen” (people) is

mapped to the object type person, the token “wonen” is mapped to the object type relation

lives on and the token “den haag” is mapped to the constant ’s-Gravenhage. The rest of the

tokens have no entry in the lookup table, so the result of NER in these cases is the (Python)

keyword “None”. Note that tokens can be mapped to vertices as well as edges. Also note

that the lookup table serves as a translation mechanism between casual speech (den haag)

and formal speech (’s-Gravenhage).

An actual lookup table can be large: if all vertices and edges in a knowledge graph need

to be referenced, its size equals the size of the graph roughly. The lookup table we used

during the development of Farseer was constructed by hand, aided partially by routines to

account for the many constants.

Maintaining a lookup table can be labor intensive, especially if all synonyms of a word

must be included as a key in the table as well. To keep the number of entries in the lookup

table relatively low, we first turn to look for synonyms before consulting the lookup table.

We roughly estimate that this reduces the lookup table to a third of its size. Further

reduction can be accomplished if, during tokenization, tokens are converted to their root

form – a process called stemming or lemmatization – so that there is no need to include

conjugates and plurals in the lookup table.

Word embeddings Mikolov et al. (2013) are vector representations of words in a

vocabulary that are computed from a corpus of text in such a way that words that can be

exchanged for one another within a context of other words have embeddings that are near

to each other given a certain measure of distance. Hence, words that are synonyms have

embeddings at close distance, and this also holds for plurals and singulars, and conjugates

of a verb. Unfortunately, the same is true for antonyms, so that word embeddings must be

used with care. To keep the number of entries in the lookup table as low as possible, we

used the following procedure. The word embedding is taken for each token (except for the

most commonly occurring stop words) in the list of tokens that is not mapped directly to an

Tokenization

and NER 

token list: [‘hoeveel’, ‘mensen’, ‘wonen’, ‘er’, ‘in’, ‘den haag’]

object list: [None, person, lives on, None, None, ’s-Gravenhage]

Hoeveel mensen

wonen er in Den

Haag?

lookup table:
{…

      ‘mensen’ : person,

      ‘wonen’ : lives on,

      ‘den haag’ : ’s-Gravenhage,

…}

Fig. 4. Simple tokenization and NER.
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object through the lookup table. Then the distance, that is, the cosine similarity, between

this embedding and all embeddings of entries in the lookup table is computed. If this

distance is above a certain threshold, then the corresponding entry in the lookup table is

taken as a synonym. In this way, (pseudo) synonyms like ‘onderneming’ (company) for

‘bedrijf’ (business) are detected and handled properly. The threshold we took was 0.6. By

experimenting, this was the optimum in that it detected proper synonyms as much as

possible and avoiding improper synonyms.

The word embeddings we used were taken from the full corpus of Dutch wikipedia

pages and precomputed by Bojanowski et al. (2017) using fastText. As a vocabulary, we

took the 150,000 most occurring words from the text corpus. The dimensionality of the

vectors used was 300. We omit the details of computing word embeddings and distance

measures; the reader is referred to Mikolov et al. (2013) for a broad discussion.

If a token does not match a word in the lookup table, and it does not match a word in the

full vocabulary, then it is substituted by a word in the lookup table with a minimal

(normalized) Damerau-Levenshtein distance, upto a certain threshold. This corrects for

small typographic mistakes in the request.

2.3. Part-Of-Speech Tagging and Request Classification

To aid the process of semantic analysis, we found it useful to classify a request based on

the type of query that it requires, that is, whether it is a request for a total, an average, and

so on. A template for the formula that is generated during semantic analysis can then be

derived from the type of query.

Farseer was initially developed using rule-based methods to classify a request into one

of currently eleven classes. It was found though that perfecting and maintaining these rules

was cumbersome, so new ways were explored as classification mechanisms. We found that

ML methods constitute a reasonable alternative.

The eleven classes we distinguish are exemplified in Table 1. They reflect the types of

requests expected to be most common. They are to be interpreted as follows. Class 1

requests are requests for variables defined on individuals: persons, companies, etcetera.

Class 2 requests require counting of individuals, as do class 7 requests which require

calculating maximum counts. Class 3 requests require calculating a total of some numeric

variable, as do class 8 requests, which maximize these totals. Class 4 requests require

taking the average of some numerical variable; class 9 requests requires maximizing this

average. Class 5 requests require calculating an average as a result of dividing two counts

and class 11 requests require maximizing over this average. Class 6 requests require an

interpretation of maximum (minimum); in the example request of Table 1 ‘biggest

company’ could mean largest company according to turnover or the number of employees

for instance. Class 10 requests require maximizing over a numerical variable.

Hence, classes 6 – 11 require taking a maximum (or minimum) of some value, while

classes 1 – 5 do not. Also, classes 1, 6 and 10 do not require aggregation, so in an actual

implementation they must be switched on only with very strict measures for disclosure

control, or just switched off for privacy considerations. Also, calculating maxima or

minima is generally considered to be unsafe, since these can reveal information about

individuals.
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Note that requests could yield a single piece of information (one number or otherwise)

or a table. For instance, the example request for class 3 in Table 1 should yield a single

total, while the example request for class 4 asks for an average for each municipality,

which then forms the dimension of a resulting table of averages. It should be stressed

though that each class that requires aggregation includes requests that yield a dimensional

Table 1. Request classes.

Class Example request English translation Description

1 De adressen van
bedrijven waar
griffiers werken

The addresses of
companies where
registrars work

Properties of
individuals

2 Hoeveel banen zijn er
in Rotterdam?

How many jobs are
there in Rotterdam?

Counts of individuals

3 Totale omzet in de
bouwnijverheid

Total turnover for the
construction industry

Totals for a single
variable

4 Gemiddelde leeftijd
van personen per
gemeente

Average age of persons
per municipality

Averages for a single
variable

5 Gemiddeld aantal
personen op een
adres in Den Haag

Average number of
people per address in
The Hague

Average number
of individuals

6 Wat is het grootste
bedrijf in Delft?

What is the biggest
company in Delft?

The greatest (or
smallest) individual,
according to the
maximum of a preset
variable

7 Welke gemeente heeft
in totaal de meeste
inwoners?

Which municipality has
the most inhabitants
in total?

The greatest (or
smallest) individual,
according to a
maximum count

8 In welke gemeente in
de totale omzet in de
industrie het grootst?

Which municipality has
the highest total
turnover in industry?

The greatest (or
smallest) individual,
according to a total
for a variable

9 Gemeente met het
hoogste gemiddelde
inkomen van
vrouwen

Municipality with the
highest average
income earned by
females

The greatest (or
smallest) individual,
according to a
maximum average
for a variable

10 Gemeente met de
oudste inwoner

Municipality with the
oldest inhabitant

The greatest (or
smallest) individual,
according to the
maximum of a
variable

11 Gemeente met
gemiddeld het
grootste aantal banen
per bedrijf

Municipality with, on
average, the highest
number of jobs per
company

The greatest (or
smallest)individual,
according to a
maximum average
number of other
individuals
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table as well as a single total or average. Also note that some requests require selections,

such as the example request for class 3, while others do not, such as the example request

for class 4. All classes though include requests with one or more selection conditions.

Here, companies are selected that have construction as their main activity.

The kind of POS tagging we propose in this article is non-standard and more

straightforward than standard approaches Indurkhya and Damerau (2010), but

nevertheless effective for our purpose of classifying a request into one of the eleven

classes. Input to our POS tagging routine are the lists of tokens and objects mentioned in

Subsection 2.2; the output is a list of keywords of the same length. The keywords we

consider here are listed in Table 2. A keyword at some position in the list of keywords is

derived from a token in the same position in the list of tokens, or from an object (vertex or

edge) in the same position in the list of objects.

Thus, for the example request “Hoeveel mensen wonen in Den Haag” which is

associated through tokenization with the list of tokens [‘hoeveel’, ‘mensen’, ‘wonen’, ‘in’

‘den haag’] and through NER with the list of objects [None, person, lives on, None,

’s-Gravenhage], the list of keywords [,howmany . , ,ot . , ,otr . , ,prep . ,

,const . ] is derived. Note that the (single) token wonen is associated with the (single)

object type relation lives on of which the name consists of two words. Note also that for

each object (other than ‘None’) the corresponding keyword refers to its ‘color’ (,ot . ,

,otr . or ,const . ); the rest of the keywords is derived from their corresponding

tokens.

A list of keywords associated with a request forms the input to our classification

mechanism; its output is the estimated class for the request, according to Table 1. We

Table 2. Keywords in POS tagging.

Keyword Token or object English translation

, with . met with
, prep . bij, op, in, van, uit other prepositions
, num . aantal, aantallen number, numbers
, howmany . hoeveel, vaak how many, often
, tot . totale, totaal total
, avg . gemiddelde, gemiddeld average
, all . ieder, iedere, elk, elke, al, alle every, all
, whowhat . welk, welke, wat, wie, waar which, what, who, where
, per . per, naar, voor, over per
, greatest . grootst, grootste, hoogst, hoogste,

maximum, maximaal, maximale
greatest, highest, maximum,

maximal
, smallest . kleinst, kleinste, laagst, laagste,

minimum, minimaal, minimale
smallest, lowest, minimum,

minmal
, most . meest, meeste most
, least . minst, minste least
, ot . object type
, otr . object type relation
, const . constant
, numvar . numerical variable
, catvar . non-numerical variable
, unk . all other tokens
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briefly discuss the application of a ML algorithm for our classification step. We refer to

Chollet (2018) for the technicalities involved.

Our ML application has a sequential model of four layers, of which a one dimensional

convolution (Conv1D) layer is the most important: such a layer is suitable for interpreting

one dimensional sequential data, as are our keyword lists. As parameters for the Conv1D

layer we took a window size of seven (data is read seven sequential keywords at a time)

and we gave the layer 32 output units. Inputs are represented as a 20-dimensional vector of

numerical labels corresponding to the keywords of Table 2, so requests are cut off at the

twentieth keyword. As input layer an embedding is chosen with 32 dimensions. The output

of the model is a number for the class that is estimated, along the lines of Table 1. The

layers after the Conv1D are a max pooling layer followed by a fully connected layer with a

softmax activation. See Géron (2017) for such an architecture.

This model was trained in supervised mode on some 2,155 handwritten and hand-

labeled requests (which were subsequently transformed into keyword lists), of which 20%

was used for validation. After 80 epochs of training with batch size 20, the accuracy of the

model turned out to be about 96%. This number is unusually high and should deserve an

explanation.

First, the requests we took as input came from a single source. This means that the

model is biased towards his or her personal style of formulating a request. We expect that a

mix of sources will decrease the accuracy of the model, but we expect it to perform better

in environments other than our experimental. On the other hand, the 2,155 requests were

intentionally subdivided into so-called chapters; each chapter consisted of 10–15 requests

that were mere reformulations of one another, and each request in a chapter should

therefore have identical semantics. In other words, care was taken to obtain a mix of

alternatively formulated requests. Second, the classification of requests depends heavily

on occurrences of words like ‘average’, ‘total’, or ‘greatest’, so that the model effectively

learns to classify along these occurrences. In other words, the classification problem might

not be that involved after all.

2.4. Semantic Analysis

The goal of semantic analysis is to assign meaning to a sentence through a formula or a

term from some formal language. Usually, a first-order language Andrews (2002) is taken;

other approaches use lambda calculus Barendregt (1984) as a formalism.

The language we used for semantic analysis was specifically designed to capture the

meaning of statistical requests and is based on neither; at most it resembles relational

algebra Codd (1970). It originated in Gelsema (2008) and took its algebraic form in

Gelsema (2012) where the properties of an aggregation operator were investigated. In

Gelsema (2019) the language was augmented with a selection operator and the semantics

of the language was formally captured. The sequel of this section relies on these

references, but an in-depth knowledge is not required.

We first note that the vertices of the knowledge graph of Subsection 2.1 should be

interpreted as sets: the object type person for instance formally corresponds to the set of all

persons under consideration, and the type number reflects the set of all numbers. Further,

edges should be interpreted as functions: the object type relation lives on for instance
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should be interpreted as the function that assigns to every person the address he or she lives

on. Functions therefore have a domain and a codomain: these are the sets associated with

the head and the tail vertex of an edge, respectively.

Functions can be combined in several ways to form other useful functions. In Figure 5

we list these combinations; these form the constructs of our language. It should be noted

that they form a typed language. By the type of a function we mean the combination of its

domain and codomain. Thus, if we write v : p ! x then p is the domain of v; x is its

codomain and p ! x is its type. Thus, in its basic form, the type of a function corresponds

with an edge in the knowledge graph. By a typed language we mean that the application of

an operator to its arguments is restricted by conditions that are put on these arguments, or

on the types of the arguments. This explains the notation of Figure 5: above the horizontal

lines these conditions are written; below the horizontal lines the application of the operator

to its arguments is written, as well as the resulting type. Thus, for example, composition is

defined solely for two functions, of which the domain of the first equals the codomain of

the second, and product is defined for at least two functions that have a common domain.

The semantics of the operators in Figure 5 is as follows, but see Gelsema (2012, 2019)

for a thorough exposition. Note that we do not consider coproducts Gelsema (2012) here.

Composition is functional composition defined by (v W wÞðeÞ ¼ v ðwðeÞÞ for e [ q. The

product function kv1; : : :;vkl maps a d [ p to the tuple kv1ðdÞ; : : :;vkðdÞl: The projection

function pjðx1; : : :; xkÞ maps a tuple ka1; : : :; akl with ai [ xi to aj. Suppose that þ is

defined on x. Then aðv;wÞ maps an e [ q to the sum
P

d[w 21ðeÞvðdÞ, wher it is understood

that this sum equals 0 if w�1ðeÞ is the empty set. Let sðv1 , w1; : : :;vk , wkÞ be the set

{d [ pjv1ðdÞ ¼ w1ðdÞ; : : :;vkðdÞ ¼ wkðdÞ}: Then iðv1 , w1; : : :;vk , wkÞ is the injection

of this set into p. Let rðvÞ be the set {e [ qjvðdÞ ¼ e for some d [ p: Then kðvÞ is the

injection of this set into q.

The intuitive meaning of the constructs of Figure 5 is as follows, where we try to

translate them into database terms as much as possible. Roughly, composition corresponds

to a JOIN clause of a SQL statement. Product is the construct that allows the formation of

a database table from its columns. Projection corresponds to a SELECT clause.

Aggregation can be seen as the combination of a SUM with a GROUP BY clause in SQL.

composition

product

projection

aggregation

selection

range

Fig. 5. A typed formal language for interpreting requests for statistics.
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The selection operator mimics a WHERE clause. Finally, the range operator more or less

acts as a DISTINCT clause.

Now we stress that the operators listed in Figure 7 are an integral part of the knowledge

graph, in the sense that they form a derivation mechanism for completing the graph with,

for example, arrows that reflect aggregated data. It is in this sense that our approach differs

from RDF-like approaches. For instance, it may be obvious to describe a variable like

income as a triple with subject person (or household ) and with object number, as one

would perhaps do when constructing an ontology for a statistical domain of interest. It is

less obvious however to do the same for the variable average income: what is the subject

here? In Gelsema (2012) we chose the subject class of persons for the latter, which we

gave the semantics of a powerset. Also in Gelsema (2012), we proved that this is the right

interpretation, in the sense that a homomorphism exists between the knowledge graph and

the (aggregate) data it describes. It is exactly this kind of formality we feel RDF-like

approaches lack, but it is invaluable when the goal is to use the graph to calculate statistics,

like we do in our approach.

All constructs of Figure 5 are described in Gelsema (2019), except for the range

operator. During the development of Farseer we discovered its usefulness and its

independence from the other operators. We believe that the types and elements approach

of Gelsema (2019) can be used to capture the semantics of the range operator as well.

We present some examples of the application of the operators of Figure 5 to the

knowledge graph of Subsection 2.1. First, the reader can verify that the set of people that

live in The Hague is formalized by the expression

sðmunic: name W in W liveson , ’s-Gravenhage W allðpersonÞÞ;

where all( person) is the unique function (called all in the knowledge graph of Figure 3) with

domain person and with codomain 1, and where we use that W is associative. Note that the

composition of all( person) with the constant ’s-Gravenhage ‘factors through’ the type 1.

In much the same way, jobs with job title oogarts are selected from the full set of jobs by

the selection

iðjob title , oogarts W allðjobÞÞ:

Note that the types of job title and oogarts W all( job) coincide, as required by selection.

Also note that the type of the inclusion function is

sðjob title , oogarts W allðjobÞÞ! job:

Now suppose that we are interested in persons that have at least one job as an

ophthalmologist. This is taken care of by the range operator:

kðemployee W iðjob title , oogarts W allðjobÞÞÞ;

which yields a function that maps these ophthalmologists to the full set of persons.

Next, our example query ‘Hoeveel mensen wonen er in Den Haag’ is expressed by the

formula

aðoneðpersonÞ W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞ;

allðpersonÞ W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞÞ:
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It can be seen that this expression yields a function of type 1 ! number and thus denotes a

numerical constant, as required.

Dimensional figures come into play when, for example, we require ‘Hoeveel mensen

wonen in Den Haag naar geslacht?’ (‘How many people live in The Hague, by sex?’). This

is a request for two numbers: the number of males in The Hague and the number of

females. It is expressed formally by

aðoneðpersonÞ W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞ;

sex W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞÞ;

and yields a function of type gender ! number.

Finally, aggregating over a numerical variable is easy; the request ‘Wat is het totale

inkomen van Den Haag?’ (‘What is the total income of The Hague’) is expressed by

aðincome W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞ;

allðpersonÞ W iðmunic: name W in W lives on , ’s-Gravenhage W allðpersonÞÞÞ:

and this expression can easily be rewritten in some dimensional form.

Having read the example expressions above, the reader might get a feeling for the way

formulas are automatically generated given a request, the lists of tokens, objects and

keywords associated with the request, and the class that is estimated for the request. We

give an overview of the algorithm that computes such formulas without giving all the

details.

During semantic analysis, the first object that is derived from the three lists is the so-

called pivot: it is the object type in the knowledge graph from which all other objects in the

object list can be reached through paths originating from it. Thus, a request such as

‘Hoeveel mensen zijn er?’ (‘How many people are there?’) has person as a pivot, but a

request such as ‘Hoeveel oogartsen zijn er?’ (‘How many ophthalmologists are there?’)

has job as a pivot.

Note therefore that the pivot might not be the object type that is central in the

aggregation process; by this we mean the object type of the variable that is the subject of

counting (either one or some other numerical variable). The object type that is central in

aggregation we call the target. To derive the target from the lists of tokens, objects and

keywords, we use a ML algorithm similar to the one explained in Subsection 2.3, trained

on the same set of handwritten requests translated to lists of keywords. Again, a Conv1D

layer is used as main layer; the output of the model however is now an index into the lists

of tokens, objects and keywords that points to the estimated target. We omit further details.

Thus, both requests ‘Hoeveel mensen zijn er?’ and ‘Hoeveel oogartsen zijn er?’ have

person as a target.

If pivot and target do not coincide, we look for a path in the knowledge graph

originating from the pivot that connects them, and we prefer the shortest if there are more

than one. In the case of ‘Hoeveel oogartsen zijn er?’, this path is simply the object type

relation employee. This gives an indication for the application of the range operator since,

for example, the (inclusion associated with the) set of ophthalmologists is given by

kðemployee W iðjob title , oogarts W allðjobÞÞÞ

and thus the total number of ophthalmologists is given by the expression
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aðoneðpersonÞ Wkðemployee W iðjob title , oogarts W allðjobÞÞÞ;

allðpersonÞ Wkðemployee W iðjob title , oogarts W allðjobÞÞÞÞ:

Next, we note that a selection condition, that is, a pair of arguments to the selection

operator, is given by a combination of a variable ( job title in the expression above) and a

constant (oogarts) having the same codomain. This means that each constant in the list of

objects is an indication of a selection condition; identifying in advance that, for example,

job title is the preferred variable for the constant oogarts, variables are easily found

matching constants. Using the knowledge graph, a path from the pivot to the domain of the

variable is then sought. If multiple paths exist, then objects in the object list are used as a

heuristic, much like pebbles, to find the best matching path. A path is then converted into a

sequence of compositions and, together with the corresponding constant variable pair, is

given to the selection operator as an argument.

Potential dimensions are extracted from the list of keywords, using certain

combinations of keywords as a match, such as ,per . , ,prep . ,all . and

,prep . ,ot . (see Table 2). We skip the details, but the result of this procedure is a

list of indices pointing to objects in the object list that are treated as a dimension. For

instance, the result of applying this procedure to the request ‘Aantal inwoners per geslacht

en gemeente’ (‘Number of inhabitants per sex and municipality’) is a list of indices

pointing to the objects ‘geslacht’ (sex) and ‘gemeente’ (municipality). Then, in the usual

case, appropriate paths are sought from the target to these objects, which are then turned

into sequences of compositions, in much the same way as described in the previous

paragraph. If there are multiple dimensions, then these compositions are put together

inside a product construction, as in

aðoneðpersonÞ; kmunic: name W in W lives on; sexlÞ;

which is the formal representation of ‘Aantal inwoners per geslacht en gemeente’. It yields

a function of type munic: names £ gender ! number; as required. There are exceptions,

but we will leave them out here.

Finally, the class associated with a request, as outlined in Subsection 2.3, gives an

indication for the outer operators in its formal representation. For example, a request of

class 3 yields a formula that is of the simple form

aðv;wÞ;

where v and w have a common domain, as required. A request of class 4 has as a general

formula

ð=Þ W kaðv;wÞ;aðoneðpÞ;wÞl;

where we assume a division function (/) of type number £ number ! number; and where

the domains of v and w equal p. Finally, requests for class 5 are treated with the general

formula

ð=Þ W kaðoneðpÞ;wÞ;aðoneðqÞ; zÞl;

where w and z are required to have a common codomain. We skip the details for the rest of

the classes, but mention only that our formal language has no constructs for ordering. This
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means that formulas for class 6; : : :; 11 requests must be accompanied with a proper

ordering condition.

On the technical side, the semantic analysis part of Farseer was developed with the aid

of two Python modules. The first is used for defining object types, variables, constants

etcetera, in short: all the colored vertices and edges a knowledge graph is constructed of.

Per January 2022, is is now possible to store such a knowledge graph in a graph database,

to take advantage of advanced graph searching algorithms. The second Python module is

used to store expressions of the kind encountered in this section. An expression is thus a

Python object, that can be inspected to retrieve its outer operator, see Figure 5 and its

subexpressions. At the lowest level, subexpressions are objects from the first Python

module, that is, the primitives of an expression are the vertices and edges of a knowledge

graph. The combination of these modules can be seen as a way to infer statistical

knowledge from a graph, where the second Python module provides the inference

mechanism.

2.5. Query Generation

Essentially, the task at hand in the query generation stage is what is usually done by a

compiler Aho et al. (1986): the translation of a program written in a source language to a

program written in a target language. Here, the source language is the formal language

explained in Subsection 2.4 and the target language is one of two common variants of the

Structured Query Language (SQL), that is, MySQL Axmark and Widenius (2021) and

Transact-SQL Ben-Gan and Moreau (2000). Hence, we assume that the target system on

which results for a given request are to be computed is a database management system

(DBMS) and it is therefore also assumed that all relevant microdata are stored there. Since

our inputs to the compilation procedure consist of formulas that are derived using the type

system of Figure 5 and therefore assumed to be syntactically correct, there is no need for

lexical analysis or parsing, which are some stages commonly found in compilation routines.

The inductive nature of the formal language depicted in Figure 5 calls for an obvious

strategy for compiling a formula of the language, that is, by recursion. Note that each of

the constructs of Figure 5 consists of an operator that is applied to a subformula – or a

series of subformulas – already assumed part of the language. This means that they can be

viewed, roughly but sufficiently, as an algebraic structure in the sense of universal algebra

Meinke and Tucker (1992), that is, as a set of operators that can be applied to a number of

arguments of some sort.

By inspecting the outer operator of a given formula, its compilation is diverted to a

procedure that handles the specifics of the operator. Thus, for each operator a separate

procedure is considered and the first step of each is to recursively compile the arguments to

the operator (which is sometimes called head recursion).

Key to the functioning of the compilation procedures are the data structures upon which

they operate. More specifically but roughly still, the goal of each procedure applied to a

given formula is to compute a tuple t ¼ ðsd; sc; f ; j;w; g; dÞ; where

. sd and sc are lists of database table column names corresponding to the domain and

codomain of the formula, respectively. These column names are meant to fill in the

‘SELECT : : :’ part of the resulting SQL query;
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. f is a database table name meant to supplement the ‘FROM : : :’ part of the resulting

query;

. j is a list of pairs of database table names and join conditions meant to appear in the

‘JOIN : : : ON : : :’ parts of the resulting query;

. w is a list of clauses of the form ‘lhs ¼ rhs’ meant to fill in the ‘WHERE : : :’ part of

the resulting query (and each clause is intended to be separated by the ‘AND’ SQL

keyword);

. g is a list of database table column names meant to fill in the ‘GROUP BY : : :’ part of

the resulting query, and

. d is a Boolean value indicating whether or not the ‘SELECT : : :’ part should be

accompanied with the ‘DISTINCT’ keyword.

Thus, for example, to compile a formula whose outer operator is the composition operator,

the objective of the corresponding procedure is to construct a tuple t of the form above,

given two other tuples tl and tr obtained by recursion, that is, one for the left hand side

argument of the composition and one for its right hand side argument. We leave out the

specifics of this procedure, as well as the rest of the compilation procedures. We stress that

tuples of the given form constitute a wide range of queries, but a subset still of all queries

that can be formulated using MySQL or Transact-SQL. They are however all we need for

the moment.

Using the approach outlined above, some general technical details need to be considered

though. First, table names and table column names should be aliased properly, since there

can be several JOIN clauses a table name can appear in (there can be an unbounded

number of JOINs in principle). Proper aliases can be derived through concatenation,

essentially following consecutive directed edges in corresponding paths in the knowledge

graph. Second, we hypothesized in advance that nested queries should be avoided

completely, as they may lead to unacceptable execution times. Instead, a potentially nested

query (or rather, a proto-query in the form of a tuple t) qualifies to be broken up into

several queries to be executed iteratively, and this means that their intermediate results

need to be stored in temporary tables. Various approaches can be chosen to decide when to

introduce an intermediate query (or to ‘freeze’ a query, as it turned out to be called). At the

moment, a reasonable and satisfying approach seems to be to ‘freeze’ a query, once d

becomes true or once g becomes nonempty.

3. Results

Of the 2,155 sample requests used for training the classification procedure, only six were

misclassified (0.28%) leading to an incorrect semantics. The target index was estimated

incorrectly for eleven requests (0.51%) which in all but three cases led to an incorrect

formula, or no computed formula at all. In a total of 42 cases (1.95%), the output of the

semantic analysis procedure resulted in no formula being computed. In 18 of these cases,

this was actually the correct response because answering those requests proved to be

beyond the capabilities of the information model. Whenever a formula was produced, the

SQL query corresponding to the formula executed with no errors and had the correct

semantics relative to the formula. A total of 62 requests (2.88%) produced a formula

different from other requests in the same chapter and therefore received ambiguous or
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incorrect intended semantics. All SQL queries were executed on a small database with

fictitious data and those corresponding to the intended semantics of a request produced the

correct answer.

One of the main virtues of the Farseer framework, we claim, is its ability to operate

across various statistical domains. One constructs a knowledge graph of a particular

domain, updating the lookup table from Figure 4 as one goes along, and the framework

will adapt to the concepts and vocabulary of that domain, without the need for retraining

the framework for request classification or rewriting the routines for interpreting a request.

Knowledge graphs and lookup tables need to be built from scratch though, and it takes

some experimenting before the lookup table is aligned with the preferred vocabulary of a

user. One other desired virtue is its performance: the quick response to a request

irrespective of the size of the data on which it operates.

In order to test these hypotheses (i.e., Farseer is domain independent and fast), a data set

containing microdata of police-registered crime was selected for experimentation. This

dataset contained information of over 900,000 criminal offenses committed in 2016 in the

Netherlands, with details about the type of the offense, its location (up to postal code level of

detail), the date committed (both start and end dates), the number of suspects involved, as

well as other details of the crime, such as the nature of its location (e.g., business premises,

terrain, park). From these, the following variables were selected: municipality of the location

of the crime, crime type according to criminal law, start date, and the number of suspects.

This information was subsequently captured in the knowledge graph of Figure 6 below.

As with the knowledge graph of Figure 3 the knowledge graph of Figure 6 is an English

translation of the actual graph used, except for the brown vertices representing constants:

of these, vermogensmisdrijf translates to property crime and diefstal van fiets to bicycle

theft. There are actually four variables associated with crime type, from crime type level 0

to crime type level 3. This is due to the fact that crime type is measured as a hierarchy

consisting of four levels, and we have, for example, that bicycle theft is a particular form of

criminal
offence municipality

months

level 0 types 

date

munic. names

1

number

days

1

...

1

vermogensmisdrijf

no. of suspects committed in

committed on

20

munic. name

‘s-Gravenhage

crime type level 0 

december

day of month month

crime type level 3 

level 3 types 

1

diefstal van fiets

1

Fig. 6. Knowledge graph of criminal offenses.
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property crime. Note that many of the details of Figure 6 are left out: in reality there are

almost 400 municipalities (in 2016 in The Netherlands) and almost 100 types of crime at

the finest level of detail.

For types of crime in particular, the lookup table explained in Subsection 2.2 was

updated. Special attention was given to objects that are characterized by two or more

tokens, such as diefstal van fiets: in this case, if the combination of the terms diefstal (theft)

and fiets (bicycle) – or synonyms of them – occurs in a request, then the token that

corresponds to the first occurrence of the two is mapped to the constant diefstal van fiets.

The word embeddings mechanism to detect synonyms was left untouched.

In advance, a collection of 44 requests (see Appendix Section 6) pertaining to criminal

offenses and covering all classes but class 6 was assembled. We note that, in particular, the

ML method for classifying requests explained in Subsection 2.3 was not updated, so it was

hypothesized that the classification mechanism that was learned during development

would be sufficient for classifying requests from a new domain of interest. Class 6 requests

do not apply here, since there is no obvious concept of ‘greatest’ criminal offense.

Finally, the microdata containing the criminal offenses was stored in a SQL database,

covering three tables: one for offenses, one for days of the year and one for municipalities.

The database was not fully normalized. For instance, a table containing the months of the

year was lacking; a choice that had unfortunate consequences, since requests that rely on

counting months could not be answered. In other words: normalization is preferred, when

the counting of some concept is required.

All 44 requests were run on the framework and all were interpreted correctly. Also, the

execution of the query that was produced gave the correct result in all cases; this was

checked by a visual inspection of the query.

In Figure 7 the outputs of several stages of the Farseer framework are shown, together

with their processing times. For example, it is shown that the request is a class 5 request,

Fig. 7. Example of the console output of the Farseer framework.
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that it took nearly five seconds to generate a formula for it, that the time to translate the

formula into a query took less than 0.005 seconds, and that the execution time of the query

was about 0.1 seconds. The top two time indications reflect the time it took to perform

tokenization and NER, and to perform request classification, respectively. The final output

of the execution of the generated query is given at the bottom: apparently there were about

1,336 cases of theft in 2016 in The Netherlands on an average day. The request translates

to the average number of cases of theft per day.

In Table 3, the average processing times in seconds as well as the maximum processing

times for each of the stages is shown: these were collected from the runs of the 44 requests.

As can be seen, request classification and the generation of a formula take average

execution times of nearly two seconds and over four seconds, respectively, and these

stages take up most of the overall processing time by far.

4. Discussion

The authors are well aware that the way the experiment of Section 3 was designed and

conducted can be criticized for many reasons. Ideally, the 44 requests (or preferably more)

should have been written by a body with no prior knowledge of the capabilities of the

framework and with no expert knowledge of the domain of crime. In this way the casual

language and vocabulary of a typical end-user can be simulated without biases towards the

use of expert language, or towards the formulation of requests known in advance to be

interpreted correctly with a high probability. Then, an independent second body (a crime

domain expert preferably) should have been given the task of manually interpreting these

requests prior to the experiment and calculating their results wherever possible,

independent of the framework. Thus, a list of interpretations and results that serve the

validation of the framework should have been available prior to conducting the

experiment. Only then the requests should have been run by the framework, and the results

compared with this independent list.

As a measure of performance of Farseer in such an experiment in terms of information

quality, we consider the use of the InfoQ Kennet and Shmueli (2016) frameworks’

dimensions, of operationalization and communication in particular.

The 100 percent score for the correct interpretation of the 44 requests indicates that

there is such a bias. This means that at this stage we do not know how well the framework

performs in the translation of casual language to expert language. Indeed, the framework

breaks down when confronted with more exotically formulated requests such as Hoe vaak

is er iets in de fik gestoken? (which translates roughly to: How many times was something

torched?). In this example, the framework is not able to make a connection between the

Table 3. Average and maximum processing times for various stages.

Stage Average Maximum

Tokenization and NER 0.014 0.055
Request classification 1.896 10.780
Interpretation 4.337 13.515
Query generation 0.006 0.110
Query execution 0.130 0.538
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word fik (torched ) and the concept of brandstichting (arson), although fik is included in

the vocabulary of 150,000 words taken from Wikipedia. It seems that this is due to the

somewhat limited capabilities of the word embeddings technique to discover synonyms: as

mentioned, word embeddings record similarities of words (in some context) and they

include, for example, antonyms as well. As a possible improvement of the framework, we

consider the use of thesauri. Also, experiments would benefit from the use of several

language models, including casual and expert. We note that the word fik has also another

meaning in Dutch, that is, finger.

From Table 3 it can be concluded that query generation appears to be fast and that query

execution has a reasonable processing time on average. Also, tokenization and NER do not

take much time to complete, as can be expected, although tokenization still is implemented

in an ad hoc fashion. However, the time (both average and maximum) it takes to perform

interpretation we think is inadmissible for a framework that advocates an on-the-fly

response. One probable reason for this poor performance is that interpretation depends

heavily on finding (optimal) paths between two given vertices in the knowledge graph. As

of this moment however, the knowledge graph is implemented as a set of Python objects

stored in memory and, more importantly, the searching algorithms that operate on it are

implemented naively. We expect a much better performance when the knowledge graph is

stored using a graph database of some sort, taking advantage of optimized graph searching

engines. As of January 2022, a graph database was implemented and achieved a tenfold

decrease in the time needed to do semantic analysis.

We also believe that the time it takes to classify requests is still too high. Possibly in this

stage also, using a graph database will reduce computation time. Moreover, by the Keras,

Chollet (2018) (and TensorFlow, Géron 2017) deep learning package that we employ, it is

recommended using GPUs instead of CPUs to speed up computation, both for training and

inference; we have been employing CPUs exclusively so far. Therefore we believe that

also the performance of the classification stage can be improved considerably.

The reader may have noticed from the formulation of the requests in Appendix that the

word ‘total’ is used more often than seemingly necessary. For instance, one could argue

that the use of ‘total’ is superfluous in the correct interpretation of requests nos. 15 up to

and including 18. However, at the moment the framework will, rather autistically, treat

those as requests for microdata if ‘total’ is left out. For instance, in the case of number 15,

the framework will return all cases of arson (i.e., identifiers for these cases) together with

the number of suspects for each individual case. An obvious remedy for the overuse of the

word ‘total’ is to exclude requests for microdata altogether, that is, divert requests for the

classes handling microdata (classes 1 and 6 in particular) to their aggregate counterparts,

wherever possible. Of course, in order for the framework to be employed in handling

requests from outside the office, such should be the case to begin with.

The reader may also wonder if the use of an intermediate formal language is strictly

necessary: why not immediately output a SQL query as the result of the interpretation

stage? While we believe that this is possible in principle, allowing an intermediate formal

language is preferable for several reasons. First, the formal language explained in

Subsection 2.4 is a language that has the vertices and edges of a knowledge graph as

primitives: it is therefore a language built “on top of” the graph constructs. In this way the

language stays close to the concepts under consideration (object types, variables, etc.)
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which is preferable for the task of semantic analysis. Second, it is a language designed to

express meaningful requests (for aggregates or for microdata) only, excluding requests

that make no sense: this is the sole purpose of the type system of the language. In contrast,

it is not so hard to come up with SQL queries that are nonsensical (given the information

captured in the knowledge graph); see, for example, the Discussion in Gelsema (2012). For

these reasons, we believe that the intermediate formal language is better suited for

interpretation than a SQL-like language. Finally, considering two steps (interpretation and

query generation) instead of just one allows us to separate the task of pure interpretation

from the task of constructing an efficient query. We believe that the resulting code is

therefore easier to understand, maintain and expand.

4.1. Notes on Other Methods

Within the scientific domain of text-to-SQL systems (see Katsogiannis-Meimarakis and

Koutrika (2021) for an overview), Farseer adopts mostly traditional rule-based techniques

to translate a request to SQL. The combined use of an intermediate language, a graph for

describing the domain, and some sort of lookup table to map tokens to elements of the

graph is also seen in ATHENA, Saha et al. (2016). In both approaches, once a formula or

expression in the intermediate language is produced, a syntactically valid SQL query can

be derived from it. However, we feel that since our language is more strongly typed, it also

aids in the generation of queries that are semantically valid. Notably, ATHENA does not

use ML techniques.

Neural network approaches to the text-to-SQL problem, according to Katsogiannis-

Meimarakis and Koutrika (2021), fall into three different categories. First sequence-to-

sequence approaches produce sequences of SQL tokens together with database schema

elements, of which Seq2SQL, Zhong et al. (2017) is an example. Sequence-to-sequence

approaches however are prone to syntactic errors, which we avoid by employing our

intermediate formal language. Second, grammar-based approaches generate grammar

rules, which, when applied, produce a SQL query. This dramatically reduces the amount of

ill-formed SQL queries. RAT-SQL, Wang et al. (2020) is a notable grammar-based text-

to-SQL system, as is IRNet, Guo et al. (2019)). Interestingly, the latter also uses an

intermediate language from which to generate SQL. Third, sketch-based slot-filling

approaches aim at predicting certain parts of a SQL statement, turning the SQL generation

problem into a classification problem, as we do. An example is SQLNet, Xu et al. (2017).

As a downside, this type of text-to-SQL systems is unsuited for generating complex

queries.

Of course, one of the main issues in ML approaches to text-to-SQL problems is the need

for large amounts of training data, which typically consist of requestquery pairs and which

must be curated manually. Our approach partly avoids this problem: only manually

categorized requests need to be used for training purposes. On the other hand, DBPal, Weir

et al. (2020) is capable of automatically creating synthetic training data in order to improve

existing text-to-SQL systems based purely on ML.

Finally, we feel that our approach best adopts to some practices commonly found in

official statistics, such as the use of classification schemes and code lists that separate

codes found in data from their meaning addressed in their associated labels. By
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incorporating these elements from classification schemes in our knowledge graph, we can

exploit them in the translation of requests. Also, we feel that the classes of requests we

examined, and many more need to be examined, are typical for the kinds of requests users

of official statistics need answered.

5. Conclusion

We have presented Farseer: a framework for calculating on-the-fly statistics in response to

a user request. We demonstrated that the framework is domain independent: all domain

specific information is captured in a knowledge graph that is treated as an input to the

framework. We also showed that the framework allows for reasonable query generation

and execution times. The time to formally interpret a request still needs to be improved.

However, we are currently experimenting with graph databases to exploit their searching

capabilities. The first results indicate that we can speed up the interpretation phase of

Farseer by a factor of ten.

Further research is needed to give some reliable data on the performance of the

framework with respect to the translation of common language to expert language. We

plan to do further (this time carefully designed) experiments on a new statistical domain

for this purpose in the short term.

The framework still has some other shortcomings; one is its lack of reporting, providing

for human readable explanations on how a request was interpreted. We feel that here also

ML might prove useful, as reporting can be seen as an instance of a translation problem.

After all, all the information necessary to produce a report is captured by the formula that

is the result of the interpretation stage. Thus, generating a report requires translating a

formula to a human readable form. How to apply ML in this case, especially given the fact

that no data is available for training in a supervised learning mode at the moment, still

requires some research though.

During the development of Farseer much attention was given to the semantic analysis and

query generation stages, as we feel that these constitute our main contributions to the field of

NLP applied to statistics. Consequently (and intentionally) less time was spent on, for example,

tokenization and NER, for which we knew in advance that much more sophisticated algorithms

exist than the ones we implemented. Currently we are exploring the use of spaCy, Vasiliev

(2020): a Python package that implements advanced techniques for many NLP tasks. We

believe that this gives ample room for improving theNLP tasks at the beginning of ourpipeline.

One major obstacle for implementing the framework for the purpose of responding to

end-user requests (i.e., requests from outside the office) is disclosure control, or rather the

lack of it for real time, on-the-fly applications such as ours. We hope that this article is an

incentive to researchers in the field for developing efficient methods for reliable statistical

disclosure control routines that can be put into practice, in order to provide for a fast,

reliable and safe response to an arbitrary request for a statistic. We also hope for a

discussion about a sensible risk-utility trade-off for applications such as ours.

6. Appendix: Overview of Requests on Criminal Offences

This section lists the 44 requests concerning the domain of criminal offenses considered in

Section 3.
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Table 4. Requests on the subject of crime.

No. Request English translation Class

1 Totaal aantal verdachten
van geweldpleging

Total number of suspects
of violence

3

2 Aantal verdachten
van geweldpleging

Number of suspects of
violence

1

3 Dagen waarop brandstichting
is gepleegd

Days in which there were
cases of arson

1

4 Maanden waarin
brandstichting is gepleegd

Months in which there were
cases of arson

1

5 Gemeenten met vernielingen
aan auto’s

Municipalities with
destruction of cars

1

6 Gemeenten met vernielingen
aan auto’s in december

Municipalities with
destruction of cars in
December

1

7 Welke dagen zijn er? What days are there? 1
8 Gevallen van

dierenmishandeling met
datums

Cases of animal abuse with
dates

1

9 Aantal delicten Number of criminal offenses 2
10 Aantal delicten in Aalsmeer Number of criminal offenses

in Aalsmeer
2

11 Aantal delicten per gemeente Number of criminal offenses
by municipality

2

12 Aantal delicten per dag Number of criminal offenses
by day

2

13 Aantal brandstichtingen
per dag en gemeente

Number of cases of arson
by day and municipality

2

14 Aantal gevallen van stalking
in Amsterdam

Number of cases of stalking
in Amsterdam

2

15 Totaal aantal verdachten van
brand-stichting

Total number of suspects of
arson

3

16 Totaal aantal verdachten van
geweld in Leiden

Total number of suspects of
violencein Leiden

3

17 Wat is het aantal verdachten
in mei in totaal?

What is the number of
suspects in May in total?

3

18 Het totaal aantal verdachten
in Amsterdam in mei van
verkrachting

Total number of suspects in
Amsterdam in May of rape

3

19 Het gemiddeld aantal
verdachten van geweld

The average number of
suspects of violence

4

20 Wat is gemiddeld het aantal
verdachten van
mishandeling?

What is, on average, the
number of suspects of
mistreatment?

4

21 Het gemiddelde aantal
verdachten van vernieling
per gemeente

The average number of
suspects of destruction by
municipality

4

22 Wat is gemiddeld het
aantal verdachten
van cybercrime
per maand?

What is, on average,
the number of suspects
of cybercrime by
month?*

4
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Table 4. Continued

No. Request English translation Class

23 Het gemiddeld aantal
verdachten in Delft van
inbraak per maand

The average number of
suspects in Delft of
burglary by month

4

24 Wat is het gemiddeld
aantal delicten per
dag?

What is the average
number of offenses
per day?

5

25 Het gemiddeld aantal
diefstallen per dag?

The average number of cases
of theft per day?

5

26 Wat is het gemiddeld aantal
vernieling [sic.] per dag in
Delft?

What is the average number
of cases of destruction per
day in Delft?

5

27 Wat is het gemiddeld aantal
brand-stichtingen per
gemeente?

What is the average number
of cases of arson per
municipality?

5

28 Het gemiddeld aantal
gevallen van geweld per
gemeente in mei

The average number of
violence per municipality
in May

5

29 Op welke dag zijn er de
meeste delicten gepleegd?

On what day were the highest
number of offenses
committed?

7

30 In welke gemeente zijn er de
meeste overvallen
gepleegd?

In which municipality were
the highest number of
robberies?

7

31 Wat is de gemeente
met de meeste
brandstichtingen?

Which municipality
has the most cases
of arson?

7

32 Op welke dag zijn er de
meeste gevallen van
inbraak in Delft gepleegd?

What day has the highest
number of cases of
burglary in Delft?

7

33 In welke gemeente zijn er de
meeste verdachten in
totaal?

Which municipality has the
highest number of suspects
in total?

8

34 Op welke dag waren er het
[sic.] meeste verdachten in
totaal?

Which day had the highest
number ofsuspects in total?

8

35 In welke gemeente zijn er in
mei demeeste verdachten
in totaal?

Which municipality has in
May the highest number of
suspects in total?

8

36 Op welke dag in Leiden
waren er de meeste
verdachten van
brandstichting in totaal?

On which day in Leiden
were there the highest
number of suspects
of arson in total?

8

37 In welke gemeente zijn er
gemiddeld het meeste
aantal verdachten?

Which municipality has, on
average, the highest
number of suspects?

9

38 Op welke dag in mei zijn er
gemiddeld het grootste
aantal verdachten?

Which day in May has, on
average, the highest
number of suspects?

9
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Database Reconstruction Is Not So Easy and Is Different
from Reidentification

Krishnamurty Muralidhar1 and Josep Domingo-Ferrer2

In recent years, it has been claimed that releasing accurate statistical information on a
database is likely to allow its complete reconstruction. Differential privacy has been suggested
as the appropriate methodology to prevent these attacks. These claims have recently been
taken very seriously by the U.S. Census Bureau and led them to adopt differential privacy for
releasing U.S. Census data. This in turn has caused consternation among users of the Census
data due to the lack of accuracy of the protected outputs. It has also brought legal action
against the U.S. Department of Commerce. In this article, we trace the origins of the claim that
releasing information on a database automatically makes it vulnerable to being exposed by
reconstruction attacks and we show that this claim is, in fact, incorrect. We also show that
reconstruction can be averted by properly using traditional statistical disclosure control (SDC)
techniques. We further show that the geographic level at which exact counts are released is
even more relevant to protection than the actual SDC method employed. Finally, we caution
against confusing reconstruction and reidentification: using the quality of reconstruction as a
metric of reidentification results in exaggerated reidentification risk figures.

Key words: Database privacy; database reconstruction; statistical disclosure control;
differential privacy.

1. Introduction

Database reconstruction seems to be the nemesis of official statistics and statistical data

release as they have been known so far. According to the U.S. Census Bureau’s Chief

Scientist:

This (Dinur and Nissim’s database reconstruction) theorem is the death knell for public-

use detailed tabulations and microdata sets as they have been traditionally prepared.

(Abowd 2017; Abowd et al. 2019)

Whenever a database contains personal information on a set of respondents, data protection

legislation may require the organization in charge of a database, called “controller” in the

European legal parlance (GDPR 2016), to take steps to protect respondent privacy. SDC,

Statistical disclosure control (Dalenius 1977; Hundepool et al. 2012) is a discipline that

provides methods to this end. SDC methods operate by masking, that is, altering, the data to be
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protected; masking can be based on data perturbation, on reduction of detail or even on

generating synthetic data that preserve some of the statistics of the original data. Depending on

when masking is applied, the SDC literature distinguishes among “local” protection (where

data are masked by respondents themselves before being collected), “input” protection (data

are masked by the controller after collecting them and all subsequent queries are answered

based on the masked data) and “output” protection (queries are computed on the true original

respondent data and the query outputs are masked before being released).

The process of forming a database can take place at a certain point in time or be

continuous during all the lifetime of the database. In the former case, the database is said to

be static, whereas in the latter case it is said to be dynamic. In static databases, the data are

first collected and then they are structured to form the database. This yields a “frozen”

database which is subsequently used to answer any queries. In contrast, dynamic databases

contain data that are periodically changing, with new records or even attributes being

added and removed over time. Organizational and corporate databases (e.g., containing

data on customers, orders, and so on.) are usually dynamic. Static databases are typical in

data collected for research and certain data gathered by government agencies. Obviously,

not all government data are static, but in many situations they are.

Output protection is the most convenient option for dynamic databases, as it avoids

having to create masked versions of the underlying changing data. Whatever the type of

protection, the level of protection achieved depends on the extent to which the data have

been modified (Dwork et al. 2006). In general, the greater the modification, the greater the

protection but the lesser the accuracy and hence the utility of the protected data. In

particular, if the original data contain outliers or unique records, greater modification may

be necessary. For further discussions on SDC and the privacy-utility trade-off, (see Traub

et al. 1984; Adam and Worthmann 1989; Duncan et al. 2001; Hundepool et al. 2012).

The possibility of mounting reconstruction attacks has been known for decades, and a

formal theory of reconstruction attacks was developed by Dinur and Nissim twenty years

ago (Dinur and Nissim 2003). U.S. Census Bureau methodologists recently stated that

such attacks are no longer just a theoretical possibility, but a practical danger. Hence, they

advocate using differential privacy (Dwork et al. 2006; Dwork and Roth 2014) – DP in

what follows–to protect the statistical outputs of the U.S. 2020 Decennial Census as a way

to thwart reconstruction of the underlying microdata. The decision to use DP motivated a

lawsuit from the State of Alabama against the U.S. Department of Commerce, basically

arguing utility loss (and a delay in the data release) (Alabama 2021). This lawsuit was

backed by 16 other states (Associated Press 2021), but it was recently rejected by the

judges (Percival 2021), on the grounds that no damage to Alabama will be provable until

the DP Census data are made available.

In April 2021, the U.S. Census Bureau published a version of the 2010 Decennial

Census using their new DP-based methodology, called DAS. After studying that version,

several users have expressed their concerns about the utility loss caused by DAS (Kenny

et al. 2021; Ruggles and Van Riper 2022; Hotz et al. 2022; Dove 2021; Schneider 2022).

Since using a DP-based methodology to prevent reconstruction is controversial in terms

of utility, it remains extremely relevant to examine the real danger of reconstruction

attacks and the extent to which such attacks can be warded off by DP or other methods at a

reasonable utility cost.
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1.2. Contribution and Plan of this Article

In this article, we reassess the risk of the original data being reconstructed by an attacker

based on the protected query outputs. We first give background on reconstruction attacks

(Section 2). We then examine the protection that DP can offer against reconstruction

(Section 3). After that (Section 4), we discuss the critical relevance for reconstruction of

the geographic level at which exact counts are reported. In Section 5 we highlight the

differences between reconstruction and reidentification: using the quality of reconstruction

as a measure of reidentification risk results in exaggerated reidentification risk.

Conclusions and future research lines are summarized in Section 6.

2. Reconstruction Attacks

Reconstruction attacks have been known for a long time in the literature. In their

pioneering work, Denning and Schlorer (1980) showed that a poorly designed database

query answering system based on output perturbation can easily lead to disclosure of some

or even all of the database records. The tool they used was the tracker attack, a carefully

crafted sequence of queries aimed at isolating and disclosing specific records.

A more formal analysis of the ability to reconstruct the contents of a database using only the

outputs of queries was formulated by Dinur and Nissim (2003), hereafter DN. The main step

forward is their discovery that the attacker does not even need to be careful when constructing

her sequence of queries. The authors assume the database is an n-bit string, that is, it contains

records each of which takes value 0 or 1. They further assume all queries to be of the form

“How many records in this subset are 0’s?” or “How many records in this subset are 1’s?”. In

their setting, the response to every query is computed as the true query answer plus an error E

bounded in an interval (-B, B) for some B . 0. Thus, it is clear that DN assume that protection

of query outputs is performed via output perturbation and that the error is strictly bounded.

A database reconstruction, according to DN, is a record-by-record reconstruction of the

original values such that the distance between the reconstructed values and the original

values is within specific accuracy bounds. Thus, DN’s attacks are aimed at inferring the

value of each record in the original database with a high level of accuracy. They consider

two different attackers depending on their computational power:

1. Exponential attacker. This attacker is able to issue all possible queries. In practice,

such an adversary is only realistic for small databases, because, say for n $ 100; it

would take years or decades to issue all possible queries, even with the fastest

computers available. To protect against such an attacker, the output of any query is

modified by adding random noise in ½–B;B�: If the differences between the query

responses obtained on the target original database and the corresponding query

responses obtained on a specific candidate database are within B, then the candidate

database represents a reconstruction of the original database. DN show that, in this

case, the candidate database is within distance 4B of the target original database,

where both databases are taken as binary n-vectors. Thus, unless the value B is

relatively large, the candidate database is a good reconstruction of the original

database. DN proved that, in order to prevent such a good reconstruction, B must be

non-negligible compared to n, that is, B must be O(n).
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2. Polynomial attacker. This attacker issues a number of queries that is polynomial in

n, which is feasible for large databases. The database protects the query outputs by

adding random noise in ½–B;B�: Using these protected query outputs, the attacker

solves a linear programming problem to reconstruct the database. DN show that, with

high probability, the reconstructed database is close to the original database as long

as B is within o(
ffiffiffi

n
p

) where the “little o” notation means much smaller than
ffiffiffi

n
p

as n

grows. Hence, to achieve protection, B must be O(
ffiffiffi

n
p

) (with “big O”) for a non-

negligible proportion of queries.

Thus, DN conclude that, unless the noise added to query outputs is commensurate to the

size of the database (O(n) for an exponential adversary and O(
ffiffiffi

n
p

) for a polynomial

adversary), the attacker is able to recreate the database. Is a noise level at least O(
ffiffiffi

n
p

)

realistic? Consider a database of size n ¼ 1,000,000. What is being required is that the

answers to a non-negligible proportion of queries differ from the corresponding true

answers by about 1,000. Note that this noise does not have to be applied to all queries.

Furthermore, a perturbation of about 1,000 is relatively small compared to the size of the

database and to queries that may involve several hundred thousand records. Thus, the

noise level required to protect against a polynomial adversary seems affordable in many

situations.

Without question, DN give very relevant insights into database reconstruction using

only responses to queries. The authors give a theoretical framework that explains the

reconstruction risk as a function of the adversary’s computational power and the noise

applied to query outputs. Yet, providing a theoretical framework for database

reconstruction does not mean that every database can be reconstructed.

For one thing, the results by DN apply only to output perturbation, but not to local or

input protection. This is explicitly acknowledged by DN when they mention the “CD

Model”:

The CD Model. The database algorithm above essentially creates a “private” version of

the database d’, and then answers queries using d’. Note that a user may retrieve the entire

content of d’ by querying qi ¼ fig for 1 # i # n; after which she may answer all her other

queries by herself. This result indicates that it is in some cases possible to achieve privacy

in a “CD model”, where users get a “private” version of the database (written on a CD),

which they may manipulate (say, without being restricted to statistical queries).

Specifically, if local or input masking are implemented, the responses to all queries are

based on the masked database. Hence, for local or input perturbation, the DN framework

can only reconstruct the masked database. Now, if the local or input masking are

configured to adequately protect the original database (e.g., using RR at the respondent’s

or microdata SDC methods described in Hundepool et al. 2012), reconstructing the

masked database should not entail disclosure of sensitive information.

3. The Performance of Differential Privacy Against Reconstruction

In Dwork (2011) and Garfinkel et al. (2019), the purported solution to the reconstruction

vulnerability of output-protected data is differential privacy (DP). DP was introduced by

Dwork et al. (2006) as a framework for quantifying the disclosure risk associated with
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answering queries based on a confidential database. Assume an adversary submits a query

to the database and obtains a query response R. e-DP requires that, given two databases D

and D0 that differ in one record, and for all subsets S of the space of query responses

PrðR [ SjD is usedÞ # e e £ PrðR [ SjD 0 is usedÞ: ð1Þ

Essentially, DP requires that, by observing R, it must be indistinguishable within a

factor e e whether the database D or the database D 0 are being used. When e ¼ 0; this

requirement implies that the database in use must be completely indistinguishable when

observing R. In this case, the value of the record differing between D and D 0 stays

completely confidential in spite of R being returned to the adversary. The value e is usually

called “privacy budget” and it should be small for the privacy condition of Expression (1)

to be meaningful: Dwork (2011) recommended e to be “say, 0.01, 0.1, or in some cases, ln

2 or ln 3.”

A well-known property of DP is sequential composition: if k queries are individually

answered with privacy levels e1; e2; : : : ; ek; respectively, the extant privacy level after

answering all k queries is e1 þ e2 þ : : :þ ek:

A relaxation of DP called ðe ; dÞ-DP has also been proposed and is defined as

PrðR [ SjD is usedÞ # e e £ PrðR [ SjD 0 is usedÞ þ d; ð2Þ

where d is the relaxation parameter. The value of d is often interpreted to imply that e-DP

is satisfied with probability 1–d: But a closer comparison between Expressions (1)

and (2) suffices to realize that ðe ; dÞ-DP can hold without e-DP being satisfied for any

query.

The usual procedure to achieve differential privacy is to return a query answer R that

consists in the query result computed on the original data plus Laplace-distributed noise.

The smaller the value of e and the more sensitive the query (i.e. the larger the potential

change of the query result due to the change of a single record), the greater the amount of

noise required.

Dwork (2011) seems to suggest that the O(
ffiffiffi

n
p

) accuracy provided by randomized

response (Warner 1965) can be outperformed by a differentially private procedure, when

she writes:

Suppose n respondents each employ randomized response independently, but using

coins of known, fixed, bias. Then, given the randomized data, by the properties of the

binomial distribution the analyst can approximate the true answer to the question “How

many respondents have value b?” to within an expected error on the order of O(
ffiffiffi

n
p

). As

we will see, it is possible to do much better–obtaining constant expected error,

independent of n.

Yet, achieving constant error independent of n clashes with the requirement of Dinur and

Nissim (2003) according to which, to prevent a (polynomial) adversary from being able to

reconstruct a database based on query outputs, noise at least O(
ffiffiffi

n
p

) is needed for a non-

negligible proportion of queries. As Dwork acknowledges above, achieving O(
ffiffiffi

n
p

) noise is

precisely what randomized response does.

Hence, if a differentially private procedure offers constant error independent of n, it

cannot protect against reconstruction according to DN. In fact, if a DN-adversary is
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allowed to submit a polynomial number of queries, say m ¼ OðnÞ; sequential composition

applies, because in general queries may be on overlapping sets of individuals. Thus, the

total privacy budget e must be split into chunks of e/m per query. Hence, since the noise

applied to each query answer is inversely proportional to its privacy budget, for the

Laplace mechanism the standard deviation of the noise is directly proportional to m/e and

therefore O(n). To summarize, if e-DP is correctly applied, it protects against

reconstruction because it uses O(n) noise, considerably more noise than randomized

response. Therefore, e-DP mechanisms are likely to over-protect outputs of increasing

complexity, as noted in Bach (2022).

Furthermore, when comparing RR and DP it must be noted that, even though RR can

satisfy the DP requirements (Dwork 2011), RR was proposed in 1965, more than a decade

before the birth of the SDC discipline and four decades before DP. In fact, RR has other

properties beyond DP, such as allowing an estimation of the original distribution based on

the randomized distribution.

4. The Relevace of Geography and Policy Decisions for Reconstruction

U.S. law requires that the U.S. Census Bureau not “make any publication whereby the data

furnished by any particular establishment or individual ... can be identified.” (U.S. Census

Bureau 2021a). Any individual with unique characteristics at the lowest geographic level

at which the tables are released is at risk of reidentification; that is, any cell count of 1 is

exposed to reidentification.

One of the key reasons for implementing DP in the Census context is the claim that the

swapping approach used to protect previous decennial censuses was ineffective against

reconstruction and reidentification. Garfinkel et al. (2019) provide a simple hypothetical

example using primary and secondary suppression to highlight the danger of

reconstruction. It has been shown (Muralidhar and Domingo-Ferrer 2021, 2022) that

even this reconstruction would have been infeasible if primary and secondary suppression

had been applied in the correct way (e.g., as described in Census methodology

documentation (Dupre 2020) and related SDC literature (Antal et al. 2017; UNECE

2015)). It remains however true that publishing statistics at a detailed geographic level

may facilitate reconstruction. We examine this issue in what follows.

4.1. The Impact of Geography

If statistics are released in small geographies, reconstruction can be performed using

simple arithmetic. In fact, no matter whether swapping or DP is used as an SDC approach

to protect tables, if total counts are exactly preserved at a small geographic level, then

reconstruction is feasible (see Abowd and Hawes 2022, 8). The ease of reconstruction

greatly depends on how small are the geographic areas for which exact counts are reported.

More precisely, in the comparison between swapping and DP on the Census 2010 data

conducted by the U.S. Census Bureau:

. When implementing swapping on the 2010 Census, total population and voting age

counts were held invariant (exactly reported) at the block level (Abowd 2021a, 12).
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. In contrast, when implementing differential privacy on the 2010 Census, only the

state-level population was held invariant. Note that in 2017, block-level exact counts

had been promised: “By agreement with the Department of Justice, the

Census Bureau will provide exact counts at the Census block level...” (Dajani et al.

2017).

Now, there are over six million blocks versus only 50 states plus the District of

Columbia. Thus, swapping was far more constrained than DP and, as a result, more

disclosive. Eliminating block-level constraints (preserving total population and voting-age

population counts) for swapping might put the privacy protection afforded by swapping on

the same footing as DP). A fair comparison between swapping and DP would require the

U.S. Census Bureau to report the results of their reconstruction attacks applied to both

swapped data and DP-protected data from the 2010 Decennial Census when exact counts

are preserved at the same geographic level. This would allow comparing the protection

and the utility provided by both approaches; in particular, it would be interesting to see the

extent to which reconstruction on DP-protected data can be performed in the same way

described for swapping (Garfinkel et al. 2019, 34).

Although the U.S. Census Bureau claims to have performed a comparative analysis of

DP against swapping and suppression, no specific comparative results are available. Only

the following statement is provided: “to achieve the necessary level of privacy protection,

both enhanced data swapping and suppression had severely deleterious effects on data

quality and availability” (Abowd 2021a, 25).

Another concern is that even relaxing from exact count preservation to consistent count

preservation at several geographic levels is problematic under DP. According to Garfinkel

(2019, 59), noise can be added in all geographic levels of the Census 2020 as long as

consistency is maintained. To ensure this consistency, the DAS methodology developed

by the Census based on DP involves several postprocessing steps (Kenny et al. 2021).

4.2. The Impact of the Privacy Budget on DP

If DP is advocated as a replacement of traditional SDC methods, the privacy budget e should

be specified, as enjoined in Dwork et al. (2019). Taking a very small e entails unaffordable

utility loss, but taking e very large entails very little noise addition and offers little to no

protection against reconstruction, let alone reidentification (Domingo-Ferrer et al. 2021).

In fact, recent U.S. Census documents mention e values as high as 19.61 in 2021 (U.S.

Census 2021b) and 39.907 in 2022 (U.S. Census 2022). Let us take the 2021 e value to

illustrate how little privacy it achieves (the 2022 value still achieves less). We offer two

different views that lead to similar conclusions:

1. First, we use the connection between DP and randomized response (Wang et al.

2016). Consider RR for a binary attribute, so that the reported randomized answer is

equivalent to the true answer with probability p $ 0:5 and different with probability

1–p: Then, for any e , the disclosure risk incurred by e-DP is the same incurred by

RR when p ¼ expðeÞ=ð1þ expðeÞÞ: Specifically, e ¼ 19:61 translates to binary RR

with p ¼ 0:99999999696; that is, to RR reporting the original value with probability

practically 1, which basically amounts to no disclosure protection being offered.
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2. Alternatively, we take the Dinur and Nissim perspective. For illustrative purposes,

assume that the noise added is sampled from a Laplace distribution. For e ¼ 19:61;

the noise is bounded in the range ½–1; 1� with probability higher than 0.999999997,

and it is bounded in the range ½–0:5; 0:5� with probability higher than 0.999944825.

Adding this level of noise would violate the DN requirement that the noise should be

O(
ffiffiffi

n
p

) and would allow accurate reconstruction of the data.

Worse yet, even with high values of e, the utility of the released DP data can be very low in

some cases, as noted in Van Riper et al. (2020), Ruggles and Van Riper (2022) and Kenny

et al. (2021). This is due to: (A) sequential composition, which requires splitting the

privacy budget among all released outputs that are not independent of each other (for

instance, among all the cells of a table, among different geographic levels, among queries

related to each other, etc.); and (B) post-processing with the Census’s TopDown

Algorithm (TDA), which is required in order to publish data that are consistent, integral

and non-negative.

The real protection and the utility loss of the high values of e being proposed should be

compared to those achievable using traditional SDC methods (e.g., those employed in the

2010 Decennial Census) under the same invariance constraints.

4.3. Transparency

One of the key claims when using differential privacy is that “In turn, this allows an

agency like the Census Bureau to quantify the precise amount of statistical noise required

to protect privacy. This precision allows the Census to calibrate and allocate precise

amounts of statistical noise in a way that protects privacy while maintaining the overall

statistical validity of the data” (Abowd 2021a, 22).

In fact, this is true of any methodology, including swapping. It is possible to select the

swapping parameters to: (1) include (more or less) records to be swapped, (2) the attributes

to be swapped, and (3) whether the swapping is performed independently for each attribute.

Releasing the e parameter used in DP, as the U.S. Census Bureau does, is certainly a

step in the good direction. However, this alone does not make the protection methodology

transparent. The postprocessing employed remains opaque to the users. One of the key

criticisms against the swapping methodology employed until the Census 2010 was that the

swapping parameter (the proportion of swapped records) was not released to the public.

But the U.S. Census Bureau did release an upper bound for the proportion of swapped

records. Given the simplicity of swapping, this made the procedure pretty transparent. In

addition, swapping also assured that certain counts were preserved even at the block level,

which afforded still greater transparency.

In our opinion, transparency is not just a matter of parameter release; it also has to do

with the complexity of the approach. The more complex it is, the less transparent it is to the

users. In this light, the current DP-based approach can be construed as being less

transparent than simple swapping.

5. Reconstruction and Reidentification are Different

Reconstruction and reidentification are two different notions:
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1. Reconstruction is only the first step in the disclosure process. Note that

reconstructing from the outputs of statistical queries or from released tabulations

yields reconstructed data that include no identifiers.

2. Reidentification is a second and necessary step to complete a disclosure attack. In

this step, the reconstructed data are linked to a particular individual. To this end, the

attacker needs an external data source that contains identifiers plus some attributes

that can be used to link with the reconstructed data. In the worst-case scenario (most

favorable to the attacker), the external data source may contain the entire original

data with identification information. For example, this worst-case scenario makes

sense if the attack is conducted by the same organization that protects the data (in

order to test the quality of reconstruction).

Abowd (2021a, app. B) and Garfinkel (2019) describe the reconstruction and

reidentification as follows:

. The microdata records of 308,745,538 people were “reconstructed”.

. Four external commercial databases of the 2010 US population were used, which

reported “Name”, “Address”, “Age”, and “Gender” of people.

. The reconstructed records were linked to the commercial databases to obtain a linked

database with “Name”, “Address”, “Age”, “Gender”, “Ethnicity”, and “Race”. 45%

of records could be linked.

. The linked database was compared to the U.S. Census Bureau confidential data. It is

claimed that the attack got all attributes in 38% of the linked records, or equivalently

for 17% of the U.S. population.

. Hence, the authors claim reidentification of 17% of the U.S. population, although

Garfinkel (2019) concedes that an outside attacker would not know which

reidentifications were correct.

After that, the authors go on to criticize as flawed the protection system used in the 2000

and 2010 Censuses, which relied on traditional SDC techniques. This is used as a

justification to move to formal privacy, which amounts to DP. In Garfinkel (2019) it is

explained that choosing the privacy budget e is a public policy choice.

5.1. Issues with Reidentification Claims

There are several issues with the claims in Abowd (2021a, app. B):

1. It is unclear what “reconstructing” the microdata of 308,745,538 people signifies.

According to Van Riper et al. (2020), it amounted to re-generating microdata records

from published census block and tract tabulations, that is, from frequency tables with

attributes “Census block”, “Age”, and “Gender”). This is not true reconstruction as DN

describe. Note that, in general, the re-generation of microdata from a frequency table is

not unique, because a frequency table contains less information than the microdata it was

computed from. Hence, just re-generating one of the microdata sets that are compatible

with a certain frequency table does not qualify as reconstruction of the original data: in

DN’s notion of reconstruction, the accuracy bounds are essential, and no such bounds

are given for the Census so called reconstruction (Muralidhar 2022).
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2. Reidentification means being able to link the records in anonymized microdata with

the corresponding records in an external data set containing identifiers and covering a

similar population. This is not reconstruction. Since the attack was based on

microdata re-generated from frequency tabulations, proper reidentification could

only be conducted from those cells with count 1. In all other cases, unequivocal

reidentification is impossible.

3. It has been known at least since Sweeney (2000) that matching a database containing

demographic attributes such as “Municipality of residence”, “Birthdate”, and

“Gender” against an external database containing those same attributes plus

identifiers for the same population is likely to yield a high proportion of

reidentifications. In fact, Ruggles and Van Riper (2022) show using a simulation that

most matches reported by the U.S. Census Bureau experiment at a block level would

be expected randomly and thus fail to demonstrate a credible threat to

confidentiality. Hence, the use of DP may not be necessary. Even if the threat to

confidentiality was credible, it is unclear that the Census’s new DP-based TDA

algorithm offers the best protection. In Francis (2022) it is shown that race and

ethnicity can be inferred with more precision and less prior knowledge from TDA

outputs than from the outputs of the Census previous protection algorithm.

An alternative has also been proposed by Ruggles (2021) to investigate the impact of

reconstruction on reidentification. The idea is to first match the external database to

the reconstructed census data. That yields a certain matching rate r. Then take those

unmatched records from the external database and compare them by block ID and

PIK (the Protected Identification Key created by the Census Bureau for each original

record) to the Census Edited File (the original confidential data). Let r0 be the

reidentification rate resulting from this comparison. If r < r 0; then database

reconstruction has little or no impact on reidentification; to demonstrate that

reconstruction increases the reidentification risk, r should be substantially greater

than r0. The U.S. Census Bureau is yet to make this comparison.

The above issues clearly show that, rather than focusing on reidentification, the Census

experiment focuses on finding (non-unique) candidate reconstructions. We show next that

(mis)interpreting reconstruction as reidentification may in some situations overstate and in

other situations understate the real risk of reidentification.

5.2. Misinterpreting Reconstruction as Reidentification May Overstate or Understate

the Reidentification Risk

Recall that in the U.S. Census Bureau’s “reidentification” procedure described in Abowd

(2021a) and Garfinkel (2019), and summarized at the beginning of Section 5,

reconstructed microdata reporting,“Gender”, “Age”, “Race”, and “Ethnicity” are linked

to an external commercial database reporting “Name”, “Address”, “Age”, and “Gener”.

Thus, linkage is performed using the “Age” and “Gender” attributes. As a result of linkage,

a linked database is obtained that reports “Name”, “Address”, “Age”,“Gender”, “Race”,

and “Ethnicity”.

Consider three scenarios at the block level:
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. Scenario 1. Block whose reconstructed data consist of ten individuals with

“Age” ¼ 44, “Gender” ¼ Male, “Race” ¼White and “Ethniciy” ¼ Not_Hispanic.

The commercial database contains “Name”, “Address”, “Age” ¼ 44 and

“Gender” ¼ Male for all individuals in this block.

. Scenario 2. Same data as in Scenario 1, but with an additional attibute Relationship,

which according to Garfinkel (2019) is also collected for each person in a block and

can take 17 different values. Assume that in, this scenario, each of the ten persons in

the block has a different “Relationship” value. Like in Scenario 1, the commercial

database contains “Name”, “Address”, “Age” ¼ 44 and “Gender” ¼ Male for all

individuals in this block.

. Scenario 3. Block whose reconstructed data consist of ten individuals with

“Age” ¼ 44, “Gender” ¼ “Male”, such that such that all ten of these individuals

belong to different (“Race”, “Ethnicity”) combinations. The commercial database

contains “Name”, “Address”, “Race” and “Ethnicity” for all individuals in this block,

but no “Age” or “Gender”.

In Scenario 1, the U.S. Census Bureau’s procedure would yield a 100% reconstruction,

because the attacker would always be able to associate the correct “Race” and “Ethnicity”

to the ten names and addresses in the block. Yet, claiming that this 100% reconstruction

amounts to 100% reidentification is patently incorrect, because the attacker has no way to

confirm the identification of (“Name”, “Address”) for the ten individuals who are

indistinguishable from one another – “reidentification” in this case can be attributed to the

homogeneity of a block and is not a true reidentification. The U.S. Census Bureau

document McKenna and Haubach (2019) states that “it is necessary to verify the proposed

matches by comparing the suppressed identities in the microdata with the identities in the

external data set to see if the matches are true matches or false matches.”

The above point that correctly reconstructing “Ethnicity” and “Race” does not amount

to reidentification becomes apparent in Scenario 2. When the attribute “Relationship” is

added with different values for all ten individuals, it becomes clear that the reidentification

probability for any specific individual is in fact 1/10.

In Scenario 3, both the probability of correct reconstruction and the probability of

correct reidentification are 1, but for different reasons:

. Since all individuals have the same combination of (“Age”, “Gender”),

reconstructing the values of these attributes for the ten individuals is trivial, which

yields 100% reconstruction. Note that if not all individuals had the same

combination, then the probability of correct reconstruction would be less than 1.

. Since all individuals have different combinations of (“Race”, “Ethnicity”),

unequivocally linking each of the ten records in the reconstructed data to its

corresponding record in the commercial database is straightforward, which yields

100% reidentification.

The above shows that reconstruction and reidentification are different notions. The

bottom line is as follows: whereas reconstruction is helped by homogeneity of the missing

confidential attributes, reidentification is helped by heterogeneity of the quasi-identifiers

through which linkage is performed.
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Hence, the reconstruction procedure described in Abowd (2021a) and Garfinkel (2019)

does not yield an appropriate measure of reidentification risk. In fact, it is likely to

overstate the reidentification risk (as in Scenario 1), since at the block level (“Race”,

“Ethnicity”) can be expected to be fairly homogeneous, which makes Scenario 1 more

likely than Scenario 3 (Ruggles and Van Riper 2022).

Interestingly, researchers at the U.S. Census Bureau have performed in the past

extensive research in reidentification risk (e.g., Winkler 1999). To assess the true risk of

reidentification, it is necessary to assume the following. At the block level, the

reconstructed data consist of (“Block ID”, “Gender”, “Age”, “Race”, “Ethnicity”, and

“Relationship”.) and the attacker has the attributes (“Name”, “Address”, “Block ID”,

“Gender”, “Age”, “Race”, “Ethnicity”, and “Relationship”). The objective of

reidentification is to uniquely link a record from the (unidentified) reconstructed data to

a record in the (identified) attacker’s data thereby attaching (“Name”, “Address”) to the

reconstructed data. Such a procedure will correctly assess the reidentification risk in the

scenarios described above; as mentioned above and in McKenna and Haubach (2019),

once the linkage is established, reidentification needs to be validated by checking that the

linkage is unique and that identities (name and address in this case) match between the

attacker’s record and the original record to which the unidentified reconstructed record

corresponds. Reconstructing unidentified records, in itself, does not pose a real disclosure

threat. Reconstruction in the DN sense also requires to be supplemented by correct re-

identification (Bach 2022). Only then does it constitute real disclosure.

6. Conclusions and Future Work

In this article, we have reassessed the feasibility of reconstructing a data set based on the

outputs of statistical queries computed on it. The danger of reconstruction has been cited as

an argument to justify the use of differential privacy in official statistics, most notably in

the case of the 2020 Census of the U.S.A. Using DP, however, will most likely result in a

decrease of the utility of the statistical outputs of that Census. This article has investigated

to what extent reconstruction is a real danger.

We first examined the state of the art in reconstruction theory – Dinur and Nissim’s

framework – and we concluded that local or input protection appear as good ways to resist

reconstruction. If the U.S. Census Bureau were to stick to the so-called CD-model and

produced locally protected or input-protected data (e.g., using RR or microdata masking

discussed in Hundepool et al. (2012), or the methods used in the 2010 Census), then

reconstruction would not be a real danger: at most the attacker would be able to reconstruct

the locally protected or the input-protected data, rather than the original data. Differential

privacy is also an option, but it may add more noise than strictly required to

counter reconstruction, thereby leading to unnecessary utility loss (Dove 2021; Hotz

et al. 2022; Bach 2022), or it may offer less protection than previous approaches (Francis

2022).

We then highlighted the relevance for protection of the geographic levels at which exact

population counts are preserved. No matter the SDC methods used, preserving counts in

small geographies facilitates reconstruction, while not preserving counts in small

geographies goes a long way towards avoiding reconstruction, but also reducing utility.
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Finally, we have warned against using the amount of reconstruction as a measure of

reidentification risk, which results in exaggerated reidentification risk. Whereas

reconstruction requires only query outputs or tabular unidentified outputs and is favored

by the homogeneity of the missing attribute values, reidentification also needs external

identified sources and is favored by the heterogeneity of the values of the attributes used

for linking with those sources.

An additional concern are the successive increases of the value of e during the process.

Increasing e implies a loss of privacy. The U.S. Census Bureau started with Laplace noise

addition with e ¼ 4:5 and subsequently increased to e ¼ 10:2: To further improve the

utility of the released data, the Bureau adopted zero-concentrated DP (with noise from a

discrete Gaussian distribution, (Bun and Steinke 2016)) in place of Laplace noise. The

parameter r of zero-concentrated DP can be used to compute equivalent values e and d for

ðe ; dÞ-DP. For a given r there are many equivalent combinations ðe ; dÞ: However, for fixed

d (in the case of the Census it is d ¼ 10210Þ; then each r has a single equivalent e. In 2021,

this equivalent global e was 19.61 (U.S. Census 2021). This value was further revised to a

global e ¼ 39:907 in year 2022 (U.S. Census 2022). This has a great impact on privacy.

The privacy level associated with e ¼ 39:907 is worse than the privacy level given by

e ¼ 4:5 by a factor e39:907=e4:5 ¼ 2:382 £ 1015: Referring to Apple’s use of e ¼ 14; Frank

McSherry, one of the inventors of DP, commented that it was “pointless” in terms of

privacy (Greenberg 2017).

Actually, e ¼ 39:907 is over 1:78 £ 1011 times worse than e ¼ 14: In Abowd (2021b),

the then Census’s Chief Scientist said about e that “specifically it limits the statistical

power of all possible tests for whether a particular individual’s data record (or portions

thereof) was used to produce a collection of statistics versus the record of another,

arbitrary individual.” With e ¼ 39:907 used in 2022, this implies that the probability that a

particular individual’s data record was used can be over 2:14 £ 1017 times higher versus

the record of another, arbitrary individual. Since the current U.S. population is only

3:31 £ 108; with an e ¼ 39:907 any target U.S. inhabitant might be reidentifiable. In fact,

this also held for the e ¼ 19:61 used in 2021.

Even with this relaxation of the value of e, there are still very serious utility concerns.

Consider the following report in the New York Times (Wines 2022): “According to the

2020 census, 14 people live there (in Census Block 1002 in downtown Chicago) –13

adults and one child. Also according to the 2020 census, they live underwater. Because the

block consists entirely of a 700-foot bend in the Chicago River.” Or this analysis from

Cornell University (Cornell 2021) of the 2021 Census DAS release for New York state

which shows that in 6.1% of the blocks, the household population is greater than 0, but the

number of occupied houses is 0; in 2.5% of the blocks, the household population is less

than the number of occupied houses (which means there is less than 1 person per

household); and in 0.8% of the blocks, the household population is 0, but the number of

occupied houses is greater than 0. These results are impossible and would not have

occurred in the 2010 Census. Thus, even with large e, the differentially private noise

addition procedure is not capable of providing accurate and consistent results. In fact, the

U.S. Census Bureau recently announced that “for the time being, the ACS PUMS

(American Community Survey Public Use Microdata Sample) data product will still be
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protected using traditional disclosure avoidance methods”, since it is “not clear that

differential privacy would ultimately be the best option.” (Daily 2022)

In this study, we conclude that the concern of database reconstruction resulting in mass

disclosure is unwarranted. We believe that these claims are based on a comparison that is

incomplete and opaque – only the Census Bureau can assess or verify the true

reidentification results. Other researchers, some of them mentioned above, have raised

serious concerns regarding the accuracy and consistency of the output. Hence, it is not

clear that differential privacy is the best option for the 2020 decennial census data. We

suggest a comprehensive, independent, fully documented, peer-reviewed assessment of

the efficacy of alternative methods.
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Comment to Mulalidhar and Domingo-Ferrer (2023) –
Legacy Statistical Disclosure Limitation Techniques Were
Not An Option for the 2020 US Census of Population And

Housing

Simson Garfinkel1

The Article Database Reconstruction is Not So Easy and Is Different from Reidentification, by
Krish Muralidhar and Josep Domingo-Ferrer, is an extended attack on the decision of the U.S.
Census Bureau to turn its back on legacy statistical disclosure limitation techniques and
instead use a bespoke algorithm based on differential privacy to protect the published data
products of the Census Bureau’s 2020 Census of Population and Housing (henceforth referred
to as the 2020 Census). This response explains why differential privacy was the only realistic
choice for protecting sensitive data collected for the 2020 Census. However, differential
privacy has a social cost: it requires that practitioners admit that there is inherently a trade-off
between the utility of published official statistics and the privacy loss of those whose data are
collected under a pledge of confidentiality.

Key words: Differential privacy; 2020 U.S. Census; Statistical disclosure limitation;
Statistical disclosure avoidance; topdown algorithm.

Reconstructing microdata for the US 2010 Census of Population and Housing that is

consistent with the published statistical tables is not easy, but it is straightforward and

within the capabilities of a welltrained and resourced data scientist. I know this; I did it

multiple times when I was part of the team that performed the reconstruction of the 2010

Census data at the U.S. Census Bureau. Tamara Adams performed the original

reconstruction, developing software that analyzed the published statistics and created a

series of mixed-integer linear programs that a commercial optimizer then solved to create

microdata consistent with the published constraints (Leclerc 2019). My primary

contribution was to improve the system’s efficiency and scalability. When we were done,

it was possible to reconstruct all 308,745,538 person-level records in a few hours by typing

a single command.

Others have followed our lead. “Following the details available in public presentations

from Mr. Abowd and his colleagues, we were able to perform our own reconstruction

experiment on Manhattan,” Hansen wrote in The New York Times. “We used simple tools

like R and the Gurobi Optimizer; and within a week we had our first results.” (Hansen

2018) Another reconstruction can be found in Dick et al. (2023).

Keyes and Flaxman (2022) also reconstructed the 2010 data for each census block of

Texas, but with a twist: they also reconstructed two sets of 2020 data for each block, and

then looked for families in the 2010 data with pre-teens that had teenagers in the 2020 data

of a different sex. “Census Data Put Trans Children at Risk,” was their conclusion. Using

q Statistics Sweden
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synthetic 2020 data based on the 2010 Census swapping mechanism, 605 trans kids

appeared in the synthetic data; had these data been real, hundreds of families would have

be at risk, since the Texas Department of Family and Protective Services has been ordered

by Texas Governor Greg Abbot to investigate families that provide gender-afirming care

for trans youth (Chappell 2020). The threat decreased significantly using a reconstruction

based on the actual 2020 data that the Census Bureau published.

Database reconstruct is different from reidentification, as Mulalidhar and Domingo-

Ferrer (2023) makes abundantly clear. However, as exemplified by Texas, there are many

ways that even unidentified census microdata with block-level geography can cause harm.

This is why such data are protected by US law (Abowd et al. 2020). When the 2010 data

tables were published, Census Bureau leadership did not think reconstruction possible.

When faster computers and improved algorithms proved otherwise, it had to radically

improve the statistical disclosure limitation (SDL) approaches used for the decennial

census.

Reidentified microdata can be even more harmful. The Census Bureau’s reidentification

experiment showed that it is relatively straightforward to take the 2010 reconstructed data

and match it up with commercial data that was purchased in 2010 (Hawes 2021a). The

commercial data includes name, address, age and sex. The reconstructed data includes

block, age, sex and race. These records can be linked, making it possible to annotate the

commercial names and street addresses with race. In the US there is a long history of

mixed-race families being targeted for violence. Even if “more than half of the matches are

incorrect, and an external attacker has no means of confirming them” (Jarmin 2019), a

group of hoodlums out to terrorize mixed race families can easily confirm the putative

matches by visiting the addresses with the intent to commit acts of violence.

Mulalidhar and Domingo-Ferrer argue that the Census Bureau should have used legacy

SDL techniques instead of a bespoke algorithm based on difierential privacy (DP) (Dwork

et al. 2006) to protect the published data products of the 2020 Census of Population

and Housing. This response provides additional context that calls into question Mulalidhar

and Domingo-Ferrer’s argument, and suggests a way forward for those of us who seek to

improve the science of privacy protection in the production of official statistics.

NOTE: The views expressed in this article are those of the author, and do not represent

the policy of the Census Bureau, the Department of Commerce, or the US Government.

Also, as the author is no longer employed by the Census Bureau, this response does not

present information about the Census Bureau’s decision making process that has not

already been placed into the public domain.

1. A Brief Introduction to Differential Privacy

Dwork et al. (2006) introduced DP to formally recognize the amount of privacy loss that

invariably results when a statistics agency makes public statistics based on confidential

data. DP also provides an accounting system for tracking cumulative and per-statistic

privacy loss. DP is not a specific method for privacy protection. Instead, it is a

mathematical definition that privacy protection mechanisms can satisfy. The following

definition of what is now called pure ðeÞ and approximate ðe ; dÞ DP appears in Dwork and

Roth (2014):
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1.1. Definition 2.4 (Differential Privacy)

A randomized algorithmM with domain Njxj is ðe ; dÞ-difierentially private [approximate

DP] if for all S # RangeðMÞ and for all x; y [ Njxj such that jjx 2 yjj1 # 1:

Pr½MðxÞ [ S� # expðeÞPr½Mð yÞ [ S� þ d ð1Þ

where the probability space is over the coin flips of the mechanismM. If d ¼ 0; we say

thatM is e-differentially private [pure DP].

The definition considers how the output of a mechanism M is different for any two

datasets, x and y, that differ in the value of a single element. This is the fundamental

intuition on which DP is based: publishing an analysis of a dataset containing confidential

data cannot impact a person’s privacy if their data are not in the dataset. This is the source

of the word “differential.”

Observe that e ¼ 0) expðeÞ ¼ 1; which means that when e ¼ 0; mechanism M
produces the same output for datasets x and y, implying thatM ignores each person’s data

in the dataset. Thus, data subjects in x have no privacy loss when e ¼ 0: Likewise, when

e ¼ 1; the probability distribution ofM(x) andM( y) may be arbitrarily different, which

means that any person’s data might be revealed. Thus, as e ! 1; there is a higher chance

that an attacker will learn more aspects of any individual’s data.

It turns out that randomized response (RR), which was known for decades before the

introduction of DP, satises the DP definition. This allows us to use the tools of DP to easily

analyze arbitrarily complex applications of RR and gain new insights into RR’s potential

for privacy protection.

Two specific mechanisms that implement DP are widely discussed in the literature:

the “Laplace mechanism” (which uses noise from the double exponential distribution)

implements e-DP; and the “Gaussian mechanism” (which uses Gaussian noise)

implements ðe ; dÞ-DP. Both add statistically calibrated noise to the output of an

arbitrary query function f to make that function differentially private. The noise is

calibrated using e and a second parameter known as the “sensitivity”, typically denoted

as D f : The sensitivity is the range of any individual’s data on function f. For a

counting query (e.g. “How many people live on this block?”), D f ¼ 1: Computing the

sensitivity for other kinds of queries can be substantially more complex (Dwork and

Roth 2014).

As Mulalidhar and Domingo-Ferrer make clear, the problem area addressed by DP is the

same problem area addressed by traditional SDL techniques. But traditional SDL lacks

formal definition and hence only provides heuristic guarantees which are not ground in

theory, while DP’s definition provides rigorous semantic guarantees regarding the

protection of individual-specific information (Shlomo 2018).

2. The Advantages of Differential Privacy

DP addresses two limitations of traditional SDL: the lack of composability and the

inability to make finegrained decisions regarding the social benefit of a specific statistical

release and cost to individuals whose data were used.
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2.1. Composability

Traditional SDL techniques such as suppression don’t measure privacy loss. Instead, they

have an objective: that confidential data cannot be retrieved using the published data in the

current or any future data release.

With traditional SDL, each release made from an underlying confidential dataset must

be coordinated; without coordination, a future release might inadvertently undo the

protections of a data set already in the public domain.

Denning and Schlörer (1980) coined the term “tracker” for a data intruder that monitors

the output of a statistical database to violate the stated privacy goals. The only way to

protect a statistical database against a tracker is through “query auditing”. Kleinberg et al.

(2000) proved that query auditing is NP-hard, meaning the work effort required to properly

audit appears to increase exponentially with each additional query that must be

considered. Even worse, auditing itself can be a major source of privacy leakage, since the

refusal to answer a query inherently releases information (Kenthapadi et al. 2013).

Official statistics agencies have recognized that the lack of composability causes a

significant problem when attempting to extend traditional cell suppression techniques to

large scale efforts.

There are three problems with suppression that precluded its use for the 2020 Census.

First, the program that solves for the suppression pattern is not guaranteed to terminate.

Second, rigorously applied primary and secondary suppression does not guarantee privacy

indefinitely, as the suppressed values can be learned by other means at some point in the

future. And if a future data release leaks a suppressed value, it potentially reveals many other

values as well, especially if efforts were made to find and implement optimal suppression

patterns. (Proof: A suppression pattern is optimal if it suppresses the minimum number of

cells to achieve a specific privacy goal. If a suppressed value is later revealed, it is as if that

value was not suppressed. As such, the once-optimal pattern is now suppressing one less

than the minimum number of cells required to achieve the privacy goal. The goal is thus not

achieved, and information that was supposed to be kept confidential is now revealed.)

The third problem with suppression is that data users had voiced strong preference for a

confidentiality protection system that permitted publication of all cells, particularly in the data

used for redistricting (McKenna 2018). The inability to query audit the 2010 Census tables

before publication was precisely the problem demonstrated by the reconstruction: by combining

data from multiple tables in a reconstruction attack, we–and others–learned information that

the Census Bureau had previously pledged to keep confidential (Hawes 2021b).

2.2. Tunability

The second advantage is that DP is tunable: the amount of privacy protection for any given

release can be tuned from no privacy protection (when e ¼ 1) to absolute privacy

protection (when e ¼ 0). DP even allows for different queries in a particular release to

receive different amounts of protection. The 2020 Census used this to provide more

accuracy for the count of people by race at the geographic level of the United States than at

the block level (U.S. Census Bureau 2021)

To get a visceral understanding of tunability’s impact on accuracy and privacy loss,

recall the example of mixed race households in the introduction. More accuracy means
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that demographers will likely publish better papers with improved p-values using the

published data. It also means that the hoodlums’ will be more likely to find mixed race

households when they pound on the door.

3. The Costs of Differential Privacy

Just because DP can work with any value of 0 # e # 1 does not mean that all of these

values provide adequate privacy protection. This is why the claim that a data release is

performed using DP, without discussing the specific value for e (and ideally the entire DP

mechanism), says absolutely nothing about the privacy protection or the accuracy of the

resulting data. Organizations using DP need to make hard decisions about the trade-off

between the benefit of a specific data release and the privacy loss that the data subjects

might experience as a result. Few organizations have the systems or the technical skills to

make these decisions, resulting in programming, training and hiring costs.

A second cost comes from the framework’s underlying definition of privacy loss as the

increase in accuracy of an arbitrary query based on the released data. A data intruder with

significant background data will be able to make better use of that data release than a data

intruder with no background data. DP thus offers “relative”, not absolute, privacy

protection. The cost here is social: DP does not allow its practitioners to make statements

that they have protected specific confidential data against all possible attackers. This is a

cost to the credibility of statistical practitioners who must now modify their previous

promise they could broadly protect privacy while publishing highly accurate data;

technological progress has broken that promise.

There is a third cost: an organization has made a commitment to using differential

privacy may discover that it is unable to do so because the science of differential privacy is

not yet sufficiently advanced (Daily 2022).

4. Correcting the Record

Mulalidhar and Domingo-Ferrer’s assertion that the 2020 Census used a privacy budget of

value of e ¼ 19:61 is correct, but misleading, as Mulalidhar and Domingo-Ferrer fail to

note that there is no single query over the 2020 Census confidential data for which this

privacy loss value is used. Instead, the privacy loss is spread over tens of millions of

individual queries to produce the so-called “noisy measurements”. So while it is true that

“e ¼ 19:61 translates to binary RR with p ¼ 0:99999999696;” this statement is not

relevant to the use of differential privacy in the 2020 Census.

There has also been some confusion regarding the source of apparent errors in the

redistricting dataset. An article in The New York Times stated that DP was responsible for

allocating 13 adults and one child to Census Block 1002 in downtown Chicago, a block

that “consists entirely of a 700-foot bend in the Chicago River” (Wines 2022). In fact, the

TopDown algorithm implements a constraint such that “the number of householders

(person one on the questionnaire) cannot be greater than the number of housing units”

(Abowd et al. 2022). Hence, the Maser Address File must have had at least one housing

unit on that block, as no noise was ever added to the housing unit counts at any level of

geography. And as the Census Bureau’s Master Address File (MAF) does not allow

housing units to be placed underwater, the curiosity of block 1002 was not a result of DP. It
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was likely either the assignment to that block of floating living quarters by the address

canvasser, or an error in the MAF.

Other apparent block-level inconsistencies in the redistricting dataset may have been

the result of the TopDown algorithm (Abowd et al. 2022) producing unlinked outputs for

the demographic and housing files. For example, there may be a block with a single

housing unit and an unrealistically high number of occupants. The purpose of the

algorithm was not to produce accurate data for single blocks: it was to produce data for

blocks that, when added together, would produce accurate data for larger geographic areas.

In this, the Census Bureau was largely successful, as evidenced by numerous data analyses

published since that make use of the data.

While it is correct in asserting that reconstruction and reidentification are different,

Mulalidhar and Domingo-Ferrer’s thought experiment presented in Subsection 5.2,

“Misinterpreting reconstruction as reidentification may overstate or understate the

reidentification risk,” does not accurately present one of the primary risks that DP was

designed to protect: the release of confidential information about race.

The commercial data purchased in 2010 did not include self-reported race; in general,

such data are not for sale. It is also very difficult to purchase detailed information about

children.

Mulalidhar and Domingo-Ferrer seem to argue that the Census Bureau was wrong to

adopt differential privacy because of the impact on statistical accuracy, and that it should

have used a combination of data suppression and swapping. Mulalidhar and Domingo-

Ferrer fail to address a very real harm to the statistics of vulnerable populations done by

suppression and swapping. That harm is “erasure”. By design, these techniques hide the

statistical contribution of minorities. Another problem with swapping is that data users

cannot evaluate the impact that swapping has on their statistics in any straightforward way.

Both are unacceptable in a representative democracy.

The Census Bureau has started to document the range of reasons why it moved to

differential privacy for the 2020 Census. McKenna (2018, 2019) detail how the Census

Bureau struggled to protect both the tables and microdata for decennial censuses between

1970 and 2010, periodically making the data releases less accurate in the interest of

protecting privacy. This struggle comes from the diversity within the US population:

“About 57 percent of the 2010 Census population were ‘unique’ at the smallest census

geography, block level, meaning they were the only people in their block with a specific

combination of sex, age (in years), race (any of the 63 possible Office of Management and

Budget race combinations), and Hispanic/Latino ethnicity” (McKenna 2018).

On May 25, 2021, the Census Bureau released to the Census Scientific Advisory

Committee the results of an experiment of applying the suppression rules from the 1980

Census to two of the proposed data releases for the 2020 Census (using the data from the

2010 Census). Using only primary suppression, it found that 83.8% of the block-level cells

in the P3 table (Race for the population 18 years and over), 95.7% of the blockgroup level

cells, 84.3% of the tract-level cells, and 51.2% of the county-level cells would have needed

to be suppressed. For the P4 table (Hispanic or Latino, and Not Hispanic or Latino by Race

for the Population 18 Years and Over), the suppression numbers are 87.7%, 100.0%,

99.7%, and 84.2% (Hawes 2021a). And primary suppression alone would not have offered

sufficient protection: the suppression advocated by Mulalidhar and Domingo-Ferrer would
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have also required secondary suppression, leading to further erasure, and making the data

even more unsuitable for redistricting.

Suppression was not an option for the 2020 Census. What about swapping?

Although the Census Bureau has not released details of the swapping algorithm used for

previous decennial censuses in sufficient detail to replicate the algorithm, a review of the

scientific literature finds that swapping has unpredictable and uncontrollable impacts on

the accuracy of the statistics not explicitly held constant by the swapping algorithm.

Swapping creates significant and measurable bias that cannot be controlled.

Fienberg and McIntyre (2005) write: “Work by Aoki and Takemura (2003) and

unpublished results of de Loera and Ohn effectively demonstrate the possibility that the

existence of nonsimple basis elements can yield multimodal exact distributions or bounds

for cells where there are gaps in realizable values.” And: “These results suggest that data

swapping as originally proposed by Dalenius and Reiss does not generalize in ways that

they thought.”

Kim (2015) writes: “Data swapping in its simplest form, wherein a fraction of

households is swapped at random, will ‘normalize’ the strengths of the joint distributions

of categorical variables, instead of lowering them.” And: “This effect is still observed even

when a primitive matching stage is included, so that two households may only be swapped

if they match on some predefined set of key variables. The further addition of a minimal

targeting stage in the data swapping procedure is shown to impact the statistical quality of

the data in an inconsistent way: by deciding to implement a generic selection criterion for

at-risk households, even the expected direction of swapping’s effect on the joint

distributions can no longer be predicted.”

Contrary to Mulalidhar and Domingo-Ferrer, the Census Bureau has published specific

results comparing DP and swapping. In its efforts to analyze the amount of swapping that

would have been needed for the 2020 Census in light of the database reconstruction

experiment, the Census Bureau performed two experiments: a swap of the 2010

unswapped data at 5% and at 50%. The 50% swap resulted in 70% of the census tracts

being perturbed, but only dropped the confirmed reidentification rate from 16.85% to

12.96%. Additional results can be found in Hawes (2021).

5. How Much Noise is Needed?

A recurring idea in Mulalidhar and Domingo-Ferrer is that there is an objectively correct

amount of noise required to provide an absolute level of privacy protection. For example,

the article states that the principle finding of Dinur and Nissim (2003), that the amount of

noise needed to protect a database of size O(n) from a polynomial adversary is O(
ffiffiffi

n
p

),

means that roughly 1,000 bits in a 1,000,000 bit database need to differ from their true

query to protect privacy. The idea continues when Mulalidhar and Domingo-Ferrer relate

the finding of Bach (2021) regarding e-DP.

However, Dinur and Nissim (2003) makes a variety of arguments using not just big-O

notation (e.g. O(
ffiffiffi

n
p

) but also little-o notation (o(
ffiffiffi

n
p

)) and omega notation ðVðnÞÞ; all in an

effort to establish various bounds on the privacy that is achieved by output perturbation.

Section 3, “Impossibility Results,” states “any database algorithm that is within o(
ffiffiffi

n
p

)

perturbation, is non private with respect to polynomial time adversaries. More accurately,
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we show that whenever the perturbation is smaller than
ffiffiffi

n
p

, a polynomial number of

queries can be used to efficiently reconstruct a ‘good’ approximation of the entire

database.” This does not mean that
ffiffiffi

n
p

perturbations are sufficient for dataset privacy: it

means that fewer than
ffiffiffi

n
p

perturbations are not sufficient––and then, only for the kind of

database and queries considered in the article. The weakness of this result is one of the

factors that led to the invention of differential privacy.

Meanwhile, Bach’s statement is not a comment about whether or not DP overprotects: it

is a comment that significant error can be introduced into query results that are protected

with the Laplace distribution because of its long tails. This has been known since the

invention of DP, and it is one of the reasons that mechanisms implementing formal

relaxations of DP. Mechanisms implementing ðe ; dÞ-DP use Gaussian noise and those

implementing zero-concentrated DP (z-CDP) use discrete Gaussian noise. The

disadvantage is that such mechanisms may occasionally fail to provide the full protective

power of e-DP, but they have the advantage of producing more accurate results for any

given value of privacy loss (e or r) and of allowing characterization of the effects of the

entire distribution of the associated noise, not just extrema (Kifer et al. 2022).

Bach’s comments about what is and is not adequate to protect confidential data under

the law do not refer to the law of the United States, evidenced by its footnote 20: “In fact,

the related discussion in the U.S. on 2020 census protection has a legal dimension

addressing what exactly is protected by U.S. privacy law (Ruggles et al. 2019; Mervis

2019), which may have been fueled also by a political controversy on the questions to be

included in the 2020 U.S. census (Mervis 2018). In any case, all statements here on EU

privacy law purely reflect the authors’ personal perceptions.”

5.1. What Does it Really Mean to “over-protect” or “over-state risk?”

One of the consistent critiques of DP is that it over-protects data and that those who are

using it over-state the risks that DP protects against. These complaints ignore the fact that

DP is a tunable protection mechanism. DP doesn’t dictate how much noise to add: that is a

policy question for those who use it.

Likewise, Mulalidhar and Domingo-Ferrer fail to discuss the efficiency of the noise that

is added. Like other SDL methods, DP broadly has two modes of operation: the local

model and the trusted curator model. In the local model, noise is added to the individual

microdata. In the trusted curator model, noise is added to the query results that are output.

RR is an example of DP run in local model.

It is less efficient to add noise to input microdata (local model) than to add noise to

query results (trusted curator model). With counting queries, the amount of noise added to

each record in local model is the same as the total amount of noise added to the final result

in the trusted curator model. A query that asks “how many children are on this block” for a

block with 1,000 people will require a single draw of noise when run in trusted curator

model, but 1,000 draws of noise (with the same parameters) that are then added together

when the query is run in local model. The result is more noise, less signal. It is for this

reason that Google decided to stop using RR to protect privacy-sensitive statistics reported

by the Chrome web browser several years after it developed and deployed the technology

(Erlingsson et al. 2014).
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While Dwork did recommend in 2011 (Dwork 2011) that appropriate values for e might be

0.01, 0.1, ln(2) or ln(3), today we know a lot more about differential privacy and how to set e

than Dwork did in 2011. For example, now we know that RR is mathematically equivalent to

differential privacy’s local model, and we understand why the trusted curator model is

inherently more efficient, although it does require that respondents trust the curator with their

confidential data.

Mulalidhar and Domingo-Ferrer state “Taking a very small e entails unaffordable utility

loss, but taking e very large entails very little noise addition and offers little to no

protection against reconstruction, let alone reidentification.” This wrongly implies that

there are objectively correct values for data utility and privacy loss.

In fact, choosing a small e means that the data owner has chosen to highly value privacy

at a cost of data utility, while large e values means the data owner has chosen to highly

value data utility at the cost of privacy.

6. Finding a Constructive Way Forward

It’s true that DP is more complex to understand than traditional SDL techniques; the same

was true when Diffie and Hellman (1976) first published their discovery of public key

cryptography. Today we are 17 years since the invention of DP. But back in 1994, 18 years

after the invention of public key cryptography, there was still no widespread consensus

that the internet required such a complex and difficult-to-understand privacy protecting

technology. That December saw the introduction of Netscape Navigator with its new and

incompatible “https:” protocol that made it possible to send credit card numbers over the

web securely. Netscape Navigator required upgrading every web server on the planet, but

it led to the Internet’s commercialization. Even after Navigator was released, it was not

until 2015 that Tim Bernes-Lee, the inventor of the World Wide Web, called on us to

encrypt every web page (Berners-Lee 2015).

We are likewise in the early days of DP. With DP, we finally have a mathematical

approach for modeling the privacy loss that individuals experience with incremental data

releases: we can now mathematically model the mosaic effect! The findings of DP have

resulted in considerable push-back from some statisticians and data users, but a new

generation of scientists are learning to work with them, in line with Kuhn’s theory of

scientific progress (Kuhn 1962).

SDL experts can help by formalizing their protection goals and assumptions. It would

also be useful for the SDL community to release open source software that implements

their mechanisms and publish experiments that systematically test protection methods in

use today on realistic data.

Our understanding of DP has expanded since 2011. This is the hallmark of scientific

progress. What’s needed now is to find other opportunities for improving the mathematical

rigor of privacy protection throughout our profession.
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A Rejoinder to Garfinkel (2023) – Legacy Statistical
Disclosure Limitation Techniques for Protecting 2020

Decennial US Census: Still a Viable Option

Krishnamurty Muralidhar1 and Josep Domingo-Ferrer2

In our article “Database Reconstruction Is Not So Easy and Is Different from
Reidentification”, we show that reconstruction can be averted by properly using traditional
statistical disclosure control (SDC) techniques, also sometimes called legacy statistical
disclosure limitation (SDL) techniques. Furthermore, we also point out that, even if
reconstruction can be performed, it does not imply reidentification. Hence, the risk of
reconstruction does not seem to warrant replacing traditional SDC techniques with differential
privacy (DP) based protection. In “Legacy Statistical Disclosure Limitation Techniques Were
Not an Option for the 2020 US Census of Population and Housing”, by Simson Garfinkel, the
author insists that the 2020 Census move to DP was justified. In our view, this latter article
contains some misconceptions that we identify and discuss in some detail below.
Consequently, we stand by the arguments given in “Database Reconstruction Is Not So
Easy: : :”.

1. Introduction

In this article, we address some of the issues that Garfinkel (2023) raises regarding our

earlier article Muralidhar and Domingo-Ferrer (2023). Before we do however, we feel

compelled to make the following preliminary remarks:

(1) Garfinkel makes the following statements:

“Even if more than half of the matches are incorrect, and an external attacker has

no means of confirming them” (Jarmin 2019), a group of hoodlums out to

terrorize mixed race families can easily confirm the putative matches by visiting

the addresses with the intent to commit acts of violence.

More accuracy means that demographers will likely publish better papers with

improved p values using the published data. It also means that the hoodlums will

be more likely to find mixed race households when they pound on the door.

There is no evidence to support the above claims. Using real data from the 2010 Census,

Muralidhar (2022, Table 11, 321) has shown that the reconstruction procedure assigns race

and ethnicity randomly. Specifically, due to the uncertainty in the reconstruction of age, he

showed that, for a given (sex, age-group) every individual in the block could potentially be

assigned every (race, ethnicity) combination present for that (sex, age-group). Hence, the

putative identification is essentially random and is useless in assigning the correct (race,
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ethnicity) to a particular individual. The adversary will have to visit every household.

Hence, this claim is baseless fearmongering intended to inflame rather than inform.

(2) The author makes another similar statement relating to trans children in Texas, extracted

from a non-refereed Opinion in the Scientific American (Keyes and Flaxman 2022), where

the authors claim that they can identify children who changed gender between 2010 and

2020. It is important to note that the results are based on simulated data and not on real data.

Perhaps more importantly, this claim of reidentification is not based on identifying

individuals; it is based exclusively on comparing unique records within a given geography

whose attributes matched on (age-adjusted-by-ten-years, race, ethnicity), but differed on

gender (Flaxman and Keyes 2022). But there are many reasons that may explain such a

difference, the most common being that households had moved between the two censuses.

In fact, even for their own simulated data, the authors find that, of the 70,184 individuals

identified, only 657 (0.94%) were trans children, while the remaining 69,527 (99.06%)

individuals were incorrectly identified as trans children (Flaxman and Keyes 2022, 11).

Note that this verification was only possible only because the data were simulated, and the

authors knew the correct identity of the trans children. Without this information, there is no

way to establish the identity of the trans children. Hence, there is no basis to the claim that

trans children can be identified. Again, baseless fearmongering intended to inflame rather

than inform.

We now proceed to address the main content of Garfinkel, much of which is only

tangentially relevant to Muralidhar and Domingo-Ferrer. Sections 1, 2, and 3 in Garfinkel

are a primer on differential privacy; Section 6 offers a defense of differential privacy.

Garfinkel engages in an extensive discussion of suppression which we never addressed in

our article. We ignore this discussion as well. We focus our attention primarily on Sections 4

and 5 in Garfinkel and, where appropriate, on specific comments in the other sections.

To facilitate the readability of this article, we first summarize the specific issues raised

by Muralidhar and Domingo-Ferrer:

(1) The relevance of Dinur and Nissim (2003) in Census database reconstruction.

(2) The Census reconstruction procedure.

(3) The Census reidentification procedure.

(4) The impact of geography and policy choices on the performance of swapping and

the DP-based method.

(5) A discussion of the privacy offered by the DP-based method; and

(6) A discussion of the accuracy of the data generated using the DP-based method.

In the following sections, we address each issue above in greater detail in view of Garfinkel.

2. The Dinur-Nissim Reconstruction

One of the primary motivations of our study was to highlight the fact that, while the Dinur

and Nissim (2003) study is an important contribution, it has limited relevance in the

context of the Census. Specifically, we wanted to bring attention to the “CD Model”

described in Dinur and Nissim (2003), which states that a data curator may be able to

modify the original data set to produce a “modified” data set that could possibly be
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securely shared. It is easy to see that this is exactly the procedure that the U.S. Census

Bureau (Census Bureau ) employs. Statistical disclosure limitation is applied to the Census

Edited File to create the Hundred-percent Detail File. All tabular data are then generated

from the Hundred-percent Detail File (and no access is provided to the Census Edited File)

(Zayatz et al. 2009). Furthermore, unlike the Dinur and Nissim (2003) reconstruction

procedure where the adversary can issue any query, in the Census context only the results

of a pre-determined set of queries (the tabular data results) are allowed. The result of this is

that the adversary can only reconstruct the Hundred-percent Detail File and never the

Census Edited File. Another possible way to state this is as follows: you can only

reconstruct what the Census allows you to reconstruct and nothing else.

Garfinkel contends that there are two types of protection models, local and trusted curator.

According to him, the local model involves adding noise to microdata while the trusted curator

model involves adding noise to the output. But this is a misunderstanding of the methods.

Indeed, the local and trusted curator models represent where the protection is applied, not what

protection is applied. In a local model, the respondent modifies the response value prior to

sharing with the curator. In a trusted curator model, the respondent shares the true value with

the curator. In fact, it is possible to implement noise addition to microdata in the trusted curator

model (which is the case with the American Community Survey (McKenna 2019). Note that,

by definition, a local model precludes adding noise to the output.

Garfinkel also questions our statements regarding the level of noise required to prevent

reconstruction. Our statements are based directly on the Dinur and Nissim (2003)

conclusions (our emphasis): “a database algorithm that is within O(
ffiffiffi

n
p

) perturbation and is

private against polynomial adversaries in the strongest possible sense.” Thus, our original

statement is accurate. That there are other bounds is irrelevant.

Garfinkel also makes another dubious comment that adding noise at the microdata level

is less efficient than adding noise at the query level: “With counting queries, the amount

of noise added to each record in local model is the same as the total amount of noise added

to the final result in the trusted curator model.” This claim is made without any

substantiation or support. We already addressed this exact question in our article

(Muralidhar and Domingo-Ferrer 2023, subsec. 3.5) and showed that when many queries

are issued, the noise added by a DP-based method will be higher than with an alternate

procedure such as randomized response. The statement of Bach (2022) is consistent with

our analysis.

Finally, the 2010 Decennial Census tabular data release did not involve any noise addition.

Instead, data swapping was used as the disclosure limitation tool (Zayatz et al. 2009). One of

the biggest benefits of data swapping is that it does not modify the original values of each

attribute. In addition, data swapping was implemented with the explicit requirement that

voting age population must be preserved exactly at the block level. As a result, the question

how many children are in this block will be answered exactly, without any error.

3. The Census Reconstruction Procedure

The entire justification for adopting differential privacy for the 2020 Census was based on

the results of the reconstruction and reidentification experiments of the 2010 tabular data

release. The Census Bureau has also made the argument explicit in Abowd (2021):
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“... only over the last few years have computing power and the sophisticated numerical

optimization software necessary to perform these types of reconstructions advanced

enough to permit reconstruction attacks at any significant scale.”

Ruggles (2018) has argued from the very beginning that the Census Bureau reconstruction

amounts to little more than creating a list of individuals from the tabular data: “any tabular data

can be expressed as microdata.” This was proved by Muralidhar (2022), who was able to

perform the reconstruction using only the data released to the public and an Excel spreadsheet

on a laptop, without any numerical optimization software. He observed that, at the tract level,

the Census Bureau provides the count of (Sex £ Age £ Race £ Ethnicity). Similar data are

provided at the block level, but with predefined Age Bins in place of individual year of age.

Muralidhar (2022) showed that the data at the block level can be reconstructed by randomly

assigning the counts of the individual year of age at the tract level to the corresponding Age

Bins at the block level. This essentially proves the claim by Ruggles (2018) that the Census

tabular data can be expressed as microdata, albeit with a little arithmetic. More importantly, it

disproves the claim by Abowd (2021) that extensive computing power and numerical

optimization is necessary to perform the reconstruction.

In 2022, the Census Bureau even stopped reconstructing individual years of age.

Instead, reconstruction was performed using only Age Bins. With this change,

reconstruction is little more than creating a list based on the cell counts from the tabular

data, which goes to further support Ruggles (2018) and contradict Abowd (2021).

Note that Garfinkel does not acknowledge Muralidhar (2022) and the detailed

explanation the latter provides as to how the reconstruction is simple and straightforward

and that the technology needed to perform reconstruction has been available for 50þ years.

An even more important contribution of Muralidhar (2022) is that he showed that, even

for small geography (at the Census tract level), there are billions of feasible

reconstructions that are equally likely. This has significant implications for the claims

of reidentification as we now discuss.

4. The Impact of Policy and Geography Choices

Of all the claims made by the Census Bureau, the most dramatic is the following (Abowd

2021, app B):

“If the external data on name, address, sex, and age are comparable to the 2010 Census,

then the attacker will putatively re-identify 238 million persons (77% of the 2010

Census resident U.S. population). Confirmed re-identifications will be 179 million (58%

of the same population). This means that with the best quality external data, relative to

the 2010 Census, as many as 179 million persons could be correctly re-identified using

the attack strategy outlined here.”

Abowd (2021) leaves no doubt as to what he means by reidentification:

“: : : link the reconstructed microdata to a real name and address associated with the

block, sex, age, race, and ethnicity on the reconstructed microdata.”

These are dramatic statements because they directly contradict the legal requirements in

Title 13 of the United States Code, described in Abowd et al. (2020) as follows:
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“Additionally, the Department of Commerce (2017), in which the Census Bureau is

housed, has issued directives regarding the protection of personally identifiable

information (PII) and business identifiable information (BII). These directives largely

mirror those issued by other government agencies and prohibit release of information

that can be used “to distinguish or trace an individual’s identity, such as their name,

social security number, biometric records, etc., alone or when combined with other

personal or identifying information which is linked or linkable to a specific individual,

such as date and place of birth, mother’s maiden name, etc.”

Abowd (2021) states explicitly that the primary reason for adopting differential privacy

for the 2020 Decennial Census was that the tabular data release from the 2010 Decennial

Census violated Title 13 requirements:

“To defend against this known vulnerability, the Census Bureau explored different

confidentiality methods that explicitly defend against database reconstruction attacks

and concluded that the best tool to protect against this modern attack while also

preserving the accuracy and usability of data products comes from the body of scientific

work called “differential privacy”.”

Muralidhar and Domingo-Ferrer pointed out that the claims of reidentification were

vastly overstated. These results are supported by the empirical analysis of 2010 Census

tabular data by Muralidhar (2022). The reconstruction procedure in Abowd (2021) was

shown to directly contradict the reidentification procedure suggested by the Census

Bureau’s own Research and Methodology Directorate (McKenna 2019). The claims of

reidentification also contradict Dr. Ron Jarmin, Acting Director of the Census Bureau,

who said: “more than half the matches are incorrect.” (Jarmin 2019) Based on all this

information, we were pointing out the fact that what Abowd (2021) claims as

reidentification was actually the accuracy of reconstruction, as illustrated in Subsection

5.2. of Muralidhar and Domingo-Ferrer. What is lacking is the ability to uniquely link the

respondents in the reconstructed data to their identity (see Subsection 5.2 in Muralidhar

and Domingo-Ferrer for more details).

Garfinkel claims that “there are many ways that even unidentified census microdata

with block-level geography can cause harm.” This may be true, but it is a far cry from

claiming that the reconstructed data can be linked to individual names and addresses.

Garfinkel now claims that even if the reidentification was incorrect, it can be verified by

the adversary by visiting the address. If we take this to its logical conclusion, for the

adversary to make the same claim as Abowd (2021) regarding reidentification, the

adversary will have to conduct a new Census.

In summary, Garfinkel offers nothing to contradict our conclusion that the

reidentification claims regarding the 2010 Census tabular data release have been vastly

overstated by the Census Bureau reconstruction attacks.

5. The Impact of Policy and Geography Choices

Muralidhar and Domingo-Ferrer pointed out that the performance of data swapping and

the DP-based method were evaluated using different benchmarks. Perhaps the most

important of this is reflected in the invariants, that is, counts that are preserved and the
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geographic level at which these counts are preserved. The 2010 Decennial Census tabular

data release preserved exact counts at the block level for the total population, population

aged 18 and above, and population below age 18. Regarding the 2020 Decennial Census, a

2017 Census publication (Dajani et al. 2017) states that:

By agreement with the Department of Justice (2000), the Census Bureau will provide

exact counts at the Census block level for the following variables:

† Number of people: total, age 18þ (voting age), and less than age 18,

The updated version of the same document in 2020 (Abowd et al. 2020) states:

The Census Bureau currently plans the following invariants for the 2020 Census data

publications:

† Total number of people by state;

This is a remarkable change in policy (and one that has had a significant detrimental

impact on data accuracy as we will discuss later). While the 2017 invariants would have

been consistent with the 2010 invariants, the 2020 invariants have remarkably relaxed the

requirement, from the block level to the state level. From the Census demonstration data

products released to the public, we know that the DP-based method for the demonstration

products only preserved totals at the state level, while the original 2010 tabular data

release using swapping preserved totals at the block level. Considering that the number of

blocks varies from 6,012 (Washington D.C.) to 668,757 (Texas), this represents a massive

change in policy. Muralidhar and Domingo-Ferrer point out that such changes in policy

have a direct impact on the protection afforded by the statistical disclosure limitation

procedure.

It is true that the Census Bureau has recently released comparisons of applying data

swapping with different parameters (the proportion of swapped records) (Hawes 2022).

However, it is still not clear whether these new parameters were applied with the old

policy (invariants at the block level) or the new policy (invariants at the state level). Just

changing the proportion of records swapped without changing the invariant requirement is

unlikely to change the performance of the swapping algorithm. It would have been

relatively easy for the Census Bureau to release data where both data swapping and the

DP-based method were held to the same standard. By not doing so, the Census Bureau has

made any meaningful comparison impossible. Unfortunately, Garfinkel does not address

this issue at all.

Instead, Garfinkel chooses to make new policy by stating “the primary risks that DP was

designed to protect: the release of confidential information about race.” This is quite a

remarkable statement and, in some ways, a curious one. Garfinkel claims that information

regarding race and ethnicity data are “in general, not for sale.” While this claim is

arguable, let us assume it is true. If this is the case, then race and ethnicity are the

confidential variables that the adversary does not know. Remember that reconstruction

was performed by matching age and sex from the reconstructed data to the externally

obtained data. This is a common phenomenon encountered in statistical disclosure

limitation where the attributes used to perform the matching are referred to as quasi-

identifiers. To prevent the adversary from using the quasi-identifiers (age and sex) to learn

the confidential attributes (race and ethnicity), privacy models such as k-anonymity
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(Samarati 2001) would modify the quasi-identifiers and not the confidential attributes.

Thus, if the objective is to prevent reconstruction, it would make more sense to protect the

age and sex attributes rather than the race and ethnicity attributes. The rationale is simple

– if you cannot reconstruct the data accurately, you cannot infer the confidential attributes.

6. The Privacy Provided by DP

We must admit that we were astounded by the statement in Garfinkel that the privacy loss

parameter e and the corresponding randomized response probability is “not relevant to the

use of differential privacy for the Census.” Garfinkel contends that “there is no single

query over the 2020 Census confidential data for which this privacy loss value is used.

Instead, the privacy loss is spread over tens of millions of individual queries to produce the

so-called noisy measurements.”

According to Dwork et al. (2019) Differential privacy allows us to quantify cumulative

privacy loss as data are analyzed and re-analyzed, shared, and linked. These differentially

private systems will, for the first time, allow us to measure and compare the total privacy

loss due to these personal data-intensive activities.

The privacy parameter e represents this total (cumulative) privacy loss. It would be a

profound misinterpretation to claim that, since the privacy loss is distributed over tens of

millions of individual queries, the cumulative privacy loss does not matter.

Muralidhar and Domingo-Ferrer does not say that “there are objectively correct values

for data utility and privacy loss,” as Garfinkel asserts. In our opinion, the statements

“Taking a very small e entails unaffordable utility loss, but taking very large e entails very

little noise addition and offers little to no protection against reconstruction” (Muralidhar

and Domingo-Ferrer 2023) and “choosing a small e means that the data owner has chosen

to highly value privacy at a cost of data utility, while large e values mean the data owner

has chosen to highly value data utility at the cost of privacy” (Garfinkel 2023), say the

same thing albeit in different words.

7. Data Accuracy of the DP-based Method

The lack of accuracy of the DP-based method is well documented, as shown in Muralidhar

and Domingo-Ferrer. Unfortunately, Garfinkel does not address any of the multiple

research studies cited in Muralidhar and Domingo-Ferrer. He only affirms that “the Census

Bureau was largely successful, as evidenced by numerous data analyses published since

that make use of the data.” According to Menger (2021), as many as 11% of the blocks

have “impossibilities” (more households than people, zero housing units with non-zero

population, zero population but non-zero occupied housing units, children but no adults,

and very large households). Whether this constitutes a large successful implementation is

up to question. As in many other instances, Garfinkel makes the statement of numerous

data analyses, but provides no citation.

Garfinkel has chosen to address one humorous example highlighted in the NY Times of

people living under water. He categorically states that this error was not due to DP. But if

this were the case, one would have expected the Census Bureau to issue some type of

formal explanation for this. Garfinkel further contends that this error could not have

happened since, according to Abowd et al. (2022), there is a constraint that “the number of
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householders (person one on the questionnaire) cannot be greater than the number of

housing units. But there have been documented instances where 4.83% [of blocks] have

zero occupied housing units which have people living in them (that is, there are no

occupied dwellings, but there are people living there)” (Menger 2021). Clearly, the

constraint described by Abowd et al. (2022) is being violated.

Finally, we address the rather serious claim by Garfinkel: “MDF fails to address a very

real harm to the statistics of vulnerable populations done by suppression and swapping. That

harm is erasure. By design, these techniques hide the statistical contribution of minorities.”

As we have emphasized before, we absolutely deny that we recommend suppression.

Removing suppression from the discussion and focusing only on swapping, we can

categorically state that data swapping does not result in erasure. Data swapping simply

exchanges the attribute values between records. As such, there is no addition or subtraction

to the counts. Hence, we reiterate that data swapping does not result in erasure.

The real irony is that the DP-based method does result in erasure. With the DP-based

method, the frequency counts are modified by adding or subtracting a random noise term.

As a result, every time negative noise is applied to a count of minorities, there is erasure.

And there is no way to prevent this from happening. Thus, contrary to the claim made by

Garfinkel, it is the DP-based method that is likely to erase the contribution of the

minorities, not data swapping.

8. Conclusions

We have carefully gone through the article of Garfinkel. The article offers no direct

substantive, justifiable criticism of Muralidhar and Domingo-Ferrer. We have gone to

great lengths to address every issue that we found relevant.

Garfinkel calls for finding a constructive way forward. The first step in moving forward

is to perform a comprehensive comparison of data swapping and the DP-based method

using the same criteria as in the 2010 tabular data release. The second step is to re-evaluate

the reidentification claims. Moving forward also requires acknowledging the work of

researchers on the other side and not ignoring all their arguments.
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A Note on the Optimum Allocation of Resources to Follow up
Unit Nonrespondents in Probability Surveys

Siu-Ming Tam1, Anders Holmberg1, and Summer Wang1

Common practice to address nonresponse in probability surveys in National Statistical Offices
is to follow up every non respondent with a view to lifting response rates. As response rate is
an insufficient indicator of data quality, it is argued that one should follow up non respondents
with a view to reducing the mean squared error (MSE) of the estimator of the variable of
interest. In this article, we propose a method to allocate the nonresponse follow-up resources
in such a way as to minimise the MSE under a quasi-randomisation framework. An example to
illustrate the method using the 2018/19 Rural Environment and Agricultural Commodities
Survey from the Australian Bureau of Statistics is provided.

Key words: Data quality; nonresponse follow-up; propensity score; weighting adjustment.

1. Introduction

Nonresponse is unavoidable and has become an increasingly challenging issue worldwide

for survey practitioners. Item or unit nonresponse, unless properly adjusted for in

estimation, will usually have a negative impact on survey data quality (Groves 2006). An

extensive literature on nonresponse adjustment exists in journals and books and will not be

repeated here (see, for example, Bethlehem 1998; Groves and Couper 1998; Hedlin 2020;

Kim and Kim 2014; Kim and Shao 2014; Little 1986; Little and Rubin 2019; Oh and

Scheuren 1983; Särndal et al. 1992; Särndal and Lundström 2005; Schouten et al. 2011;

Sikov 2018, to name just a few.)

Recent literature on survey design addresses the nonresponse focusses on adaptive

designs (see, for example, Groves and Heeringa 2006). Adaptive designs use survey para

data and auxiliary data to guide changes to the procedures during data collection to

minimise the unit cost of collection whilst addressing nonresponse. Quoting Beaumont

et al. (2014), Neusy et al. (2022) argued that adaptive collection procedures, such as call

prioritization, cannot reduce the nonresponse bias to a greater extent than a proper

nonresponse weight adjustment. We agree with this view. Accordingly, we will not

consider adaptive designs further in this article.

In this article, we examine a particular aspect of mitigating the effects of unit nonresponse.

We address a classic trade-off for official statistics between cost and quality when collecting

data, namely, the optimal deployment of resources earmarked by the survey statistician for

nonresponse follow-up (NFU), to meet the NFU budget and maximise data quality. As far as

we are aware, this topic has not been addressed in the literature. For example, whilst Neusy et
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al. (2022) provided a method to determine the NFU sample size, its main aim is to ensure that

the NFU budget is not exceeded, and did not, as a twin objective, seek out to maximise the

quality of the statistics as a result of the NFU resources deployment.

Currently, a common NFU practice in probability surveys, including those carried out in

national statistical offices, is to follow up every nonrespondent with the ultimate aim of

maximising the response rate. It is well known that response rates are not necessarily good

indicators of survey quality (Curtin et al. 2000; Groves et al. 2004; Groves 2006; Groves

and Peytcheva 2006). Indeed, Schouten et al. (2009) gave an example of a Dutch survey in

which an increase the response rate of 12.5% points led to an increase of bias of between

0.1 to 0.5% points.

It is therefore clear that increasing response rate in NFU is not the main game. The main

game should be to reduce the mean squared error of the estimator of the finite population

parameter of interest, subject to the constraint of the NFU budget. This is the main purpose

of this article.

The approach we advocate for the allocation of NFU resources to maximise data quality

is not the same as taking a random sample of the non-respondents for follow up (see, for

example, Elliott et al. 2000; Hansen and Hurwitz 1946; Särndal et al. 1992, 566; Neusy

et al. 2022). Our approach allows all nonrespondents to be followed up, but the number of

visits to a nonrespondent is determined by where it is located in the RHG, Response

Homogeneity Group (Särndal et al. 1992, 578) and the unit cost for NFU in that Group. A

challenge with subsampling of the nonrespondents approach is that it requires the

assumption of full response in the follow- up phase which is not easy to achieve. On the

other hand, the quasi-randomisation framework used in the estimation (Oh and Scheuren

1983) accepts nonresponse as an outcome in the follow-up phase and accounted for it by

using weights computed by the inverse of the estimated propensity scores. We use this

framework in the article for nonresponse mitigation.

This weighting approach, on the other hand, requires the assumption that (1) every

nonrespondent has a non-zero probability to respond and (2) the response mechanism is

missing at random. If there is “power of compulsion” enshrined in the statistics legislation,

and if the national statistical office uses this power to conduct the survey, there is a good

chance that the first assumption is fulfilled. Where the model for the missing-not-at-random

(MNAR) nonresponse mechanism is correctly specified, Kim and Morikawa (2022), using

an empirical likelihood method and a result from Pfeffermann and Sverchkov (1999)-refer

to Note 4 below–showed that the inverse propensity weights (IPWs) can be calibrated to

adjust for nonresponse bias and benchmark constraints. In a lecture presented to the 2022

Summer School in Ottawa, Canada, on Modern Methods in Survey Sampling, Professor Jae

Kim extended the idea of Kim and Morikawa (2022) to multiple MNAR nonresponse

mechanisms, thus reducing the reliance of a particular nonresponse model for the Kim and

Morikawa (2022) approach to work. He showed that as long as one of the multiple NMAR

models is correctly specified, the estimator is consistent.

In this article, we assume that the nonresponse mechanism is missing at random within

the RHGs, Response Homogenous Groups (Särndal et al. 1992, 578). Using this

assumption, we propose a method, similar to the approach used for Neyman allocation, to

allocate the nonresponse follow-up resources with a view to minimising the mean squared

error of the estimator of the population total.
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2. Notation and some Well-Known Results

We assume we have a probability sample, s, drawn from a population U of size N with

known first order, pi, and second order, pij, inclusion probabilities for i; j [ s;with pii¼pi:

We define the sample weights, di, by di ¼
1
pi

. Associated with each unit in U is a target

variable of interest, yi, and a vector of auxiliary variables, xi: We are interested in

estimating the population total T ¼
i[U

P
yi. Due to unit nonresponse, we only have a

responding sample, sr; sr , s: Following Oh and Scheuren (1983), we model the

nonresponse process using a quasi- randomisation (QR) model, where the responding units

are considered to be selected in two stages with the first stage selected from U by

probability sampling characterised by known pi
0s and pij

0s; and the second stage selected

from s by a missing-at-random nonresponse process with the probability of responding, also

referred to as an (unobserved) propensity score, ri; i [ s; defined by ri ¼ Prðdi ¼ 1jxi;

i [ s : aÞ; where di is the response indicator and a is vector of unknown parameters. In

practice, ri is estimated by r̂i ¼ Pr(di ¼ 1j xi, i [ s: â) where â is a consistent estimator

of a by assuming a functional form of the probability distribution of r, for example, r
12r

is

modelled by logistic regression; or by using non-parametric methods, such as random

forest (Breiman 2001).

When using weights to mitigate the effects of nonresponse during estimation, it is

customary in national statistical offices to use RHGs for nonresponse adjustment. A RHG

is one where the estimated ri
0s of its group members are the same, that is, missing at

random within the RHGs. In reality, they are not the same but similar estimated ri
0s can be

grouped together to form nonresponse adjustment “cells”. Little (1986) described this

approach as response propensity stratification.

Suppose we partition the sample units by their estimated propensity scores into H

RHGs, with the hth group denoted by sh: Then s ¼ s1 < :: < sh::< sH . Let nh and mh

denote the size of the sample and the responding units in sh respectively. Let rhi denote the

response propensity for the ith unit in the hth RHG. Under the assumption that rhi ¼ rh;

where rh is a constant for every i [ sh; we note that n 0h ¼ E
�

i[sh

P
dhi

rhi
js
�
. Using the actual

sample size, n, as a plug-in estimate of n 0h;we have nh .
i[sh

P
dhi

rhi
¼ mh

rh
thus giving an estimate

of rh; r̂h ¼
mh

nh
, which is just the response rate for the hth RHG. Likewise, let rij ¼ Prðdi ¼

dj ¼ 1sÞ: Assuming that Covðdhi; dhjÞ is a constant and Covðdhi; dh0jÞ ¼ 0 for i [ h; j [ h 0

and h – h0; we can likewise show that r̂ij ¼
mhðmh21Þ
nhðnh21Þ

for i; j [ h; i – j and r̂ij ¼
mh

nh

mh 0

nh 0
for

i [ h; j [ h 0 and h – h 0: In the sequel, we let phi;phij; dhi and xhi denote the corresponding

first order, second order inclusion probabilities, the weight and the vector of auxiliary

variables for unit i in the hth RHG.

Assuming Prðmh # 1Þ is negligible for h ¼ 1; : : :;H; we have the following well

known results for nonresponse adjustment using RHGs. In the sequel, “unbiased” is

defined in the QR sense, that is, the QR expectation of the estimator equals to the quantity

being estimated.

2.1. Known Result 1 (Särndal et al. 1992, 581)

The QR IPW estimator of T defined by T̂1 ¼
PH

h¼1 i[sh

P dhidhiyhi

r̂h
is asymptotically unbiased for

T. In addition:
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V T̂1

� �
¼

i[U

X

j[U

X
Dijy

^
iy
^

j þ EpEm

XH

h¼1

n2
h

1 2 rh

mh

S2
1hjs

 !

W V1 T̂1

� �
þ V2 T̂1

� �

where Dij ¼pij –pipj; y^i ¼
yi

pi
, Emð:jsÞ is the expectation with respect to the sampling

distribution of m ¼ ðm1; ::;mh; : : :;mHÞ
T given s, S2

1h is the variance of y^hi in sh and

y^hi ¼
yhi

phi
.

Finally, an approximately unbiased estimator of the variance, VðT̂1Þ, is given by:

V̂ðT̂1Þ ¼
i[U

X

j[U

XDij

r̂ij

diy
^

idjy
^

j þ
XH

h¼1

n2
h

1 2 r̂h

mh

S2
1hr

where S2
1hr is the variance of y^hi in Shr, that is, the responding sample in sh. In addition, p̂ij is

defined below.

ðaÞ p̂ii ¼ p̂h ¼
mh

nh

for i [ sh;

ðbÞ p̂ij ¼
mh

nh

mh 2 1

nh 2 1
for i; j [ sh and i – j;

ðcÞ p̂ij ¼
mh

nh

mh 0

nh
0

for i [ sh and j [ sh 0 :

If the generalised regression estimator (GREG) is used instead of Horvitz-Thompson

estimator in the QR IPW estimator of Result 1, we have the following result.

2.2. Known Result 2 (Kim and Kim 2014; Särndal and Lundström 2005, 52; Särndal

et al. 1992, 584)

The QR IPW estimator of T defined by

T̂2 ¼
PH

h¼1i[sh

P dhidhighiyhi

r̂h
, is asymptotically unbiased for T, where

ghi ¼ 1þ
�

i[U

X
xi 2

XH

h¼1 i[sh

X dhidhi

r̂h

xhi

�T�X
H

h¼1 i[sh

X dhidhi

r̂h

chixhix
T
hi

�21
chixhið Þ and chi

0s

are specified constants (often set as 1, see Särndal and Lundström 2005, 48) related to error

structure of the estimation model underpinning GREG. Furthermore, analogous to

Result 1, we have the following approximate variance:

V T̂2

� �
¼

i[U

X

i[U

X
Dije

^
ie
^

j þ EpEm

�XH

h¼1

n2
h

1 2 rh

mh

S2
2hjs
�
W V1 T̂2

� �
þ V2 T̂2

� �

where e^i ¼
êi

pi
, êi ¼ yi 2 xT

i ð
PH

h¼1i[sh

P
dhidhi

rhi
chixhix

T
hiÞ

21ð
PH

h¼1i[sh

P
dhidhi

rhi
chixhiyhiÞ, S2

2h is the variance

of e^hi in sh, e^hi ¼
êhi

phi
, êhi ¼ yhi 2 xT

hið
PH

h¼1i[sh

P
dhidhi

rhi
chixhix

T
hiÞ

21ð
PH

h¼1i[sh

P
dhidhi

rhi
chixhiyhiÞ Finally an

approximately unbiased estimator of the variance, V T̂2

� �
, is given by:

V̂ T̂2

� �
¼

i[U

X

j[U

XDij

r̂ij

die
^

idje
^

j þ
XH

h¼1

n2
h

1 2 r̂h

mh

S2
2hr

where r̂ij is given in Result 1 and S2
2hr is the variance of e^hi in shr and
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e^̂hi ¼
yhi

phi

2
xT

hi

phi

�XH

h¼1 i[sh

X dhidhi

r̂h

chixhix
T
hi

�21�X
H

h¼1 i[sh

X dhidhi

r̂h

chixhiyhi

�

If instead of weighting, imputation is used to mitigate the effect of nonresponse, we have the

following result.

2.3. Known Result 3 (Beaumont 2005)

The QR Calibrated Imputation Estimator defined by T̂3 ¼
i[s

P
digi yi þ ð1 2 diÞy *f g is

asymptotically unbiased, where

y*
i ¼ m̂i þ

digi

ui i[s

X 1 2 dið Þ digi

� �2

ui

8
<

:

9
=

;

21

XH

h¼1 i[sh

X 1 2 r̂hi

r̂hi

dhidhighi yhi 2 m̂hi

� �
8
<

:

9
=

;
;

m̂i ¼ xT
i

�XH

h¼1 i[s

X dhichidhixhix
T
hi

r̂hi

�21�X
H

h¼1 i[s

X dhichidhixhiyhi

r̂hi

�
;

m̂hi ¼ xT
hi

�XH

h¼1 i[s

X dhichidhixhix
T
hi

r̂hi

�21�X
H

h¼1 i[s

X dhichidhixhiyhi

r̂hi

�
and ui ¼

1

ŝ2
1

or
digi

ŝ2
1

ŝ2
1

denotes the estimated variance of the linear model of y on x. Furthermore, the variance of

T̂3 is given by:

V T̂3

� �
¼

i[U

X

j[U

X
Dije

^
ie
^

j þ EpEm

�XH

h¼1

n2
h

1 2 rh

mh

S2
3hjs
�
W V1 T̂3

� �
þ V2 T̂3

� �

where e^i ¼
yi2m̂i

pi
, S2

3h is the variance of e^hi in sh and e^hi ¼
yhi2m̂hi

phi
Finally, an asymptotically

unbiased estimator of the variance, V T̂3

� �
, is given by:

V̂ T̂3

� �
¼

i[U

X

j[U

XDij

r̂ij

die
^

idie
^

j þ
XH

h¼1

n2
h

1 2 r̂h

mh

S2
3hr

where r̂ij is given in Result 1 and S2
3hr is the variance of e^hi in shr.

Note 1. The approach in Result 3 is described by Beaumont (2005) as calibrated

imputation because T̂3 is calibrated to an asymptotically QR unbiased estimator of the

population total based on m̂ 0is (refer Equation 3.1 of Beaumont 2005). Also, some authors

for example, Beaumont (2005) use the more theoretically correct expression, e^i
*
¼ gie

^
i, in

lieu of e^i in Results 2 and 3. However, Särndal and Lundström (2005, 37) pointed out in

practice, e^i
* . e^i, so numerically there is little difference in using e^i instead.

Note 2. Oh and Scheuren (1983) proposed the variance in Result 1 be conditional on m.

We shall follow this approach in the sequel. As a result, we can drop the Em operator in

V2 T̂j

� �
; j ¼ 1; 2; 3 in Results 1 to 3 above and replace it by V2 T̂jjm

� �
.

Note 3. From the similarity in the formulas for the variance of the three estimators in Results

1 to 3, we can develop a generic approach for the optimal allocation of follow-up resources in

the next Section. The approach outlined in this article can be considered as the NFU resources

allocation counterpart of Neyman allocation (Särndal et al. 1992, 106) for sampling resources.
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Note 4. As mentioned earlier, if the propensity score model is missing not at random,

that is, ri (xi, yi;a) ¼ Pr(di ¼ 1j xi, yi, i [ s:a), one can use 1
~riðxijaÞ

as the weight instead,

where ~riðxijaÞ ¼
Ð
ri (xi, yi j a) f ( yi j xi)dyi and Pfeffermann and Sverchkov (1999)

showed that 1
~riðxijaÞ

¼ E 1
riðxi;yi;aÞ

jxi; di ¼ 1
� �

. By assuming the function form of

f yijxi; di ¼ 1;b
� �

one can use the respondent data to obtain a consistent estimate of b

to compute E 1
riðxi;yi;aÞ

jxi; di ¼ 1
� �

.

3. Optimum Allocation of Nonresponse Follow-Up Resources

Current practice of NFU in probability surveys is often based on an approach trying to

convert as many nonrespondents as possible with a view to increasing the response rate.

As argued in Curtin et al. (2000), Groves et al. (2004); Groves (2006); Groves and

Peytcheva (2006), response rate is an insufficient indicator of survey data quality and an

increase in response rate does not necessarily lead to a reduction in nonresponse bias. In

this article, a strategic approach to NFU is proposed. Under this approach, the objective for

NFU, under a fixed follow-up budget, is to minimise the mean squared error of the

corresponding estimates. Given Results 1 to 3 above and note 2, this is equivalent to

minimising V2 T̂jjm
� �

; j ¼ 1; 2; 3; that is, the nonresponse variance, as the sampling

variance, V1 T̂j

� �
, is not numerically affected in a NFU setting.

We now model the kth
h conversion event for the i th nonrespondent in the h th RHG as a

random (Bernoulli) variable, lkhi; with Prðlkhi ¼ 1Þ ¼ rh and Prðlkhi ¼ 0Þ ¼ 1 � rh;

where lkhi ¼ 1 if the conversion is successful. Note that, by the definition of RHGs, every

nonrespondent in the same RHG has the same probability of a successful conversion.

Moreover, we assume that the events lkhi and llhj are independent, that is, lkhi ’ llhj

where k – l and i – j and h ¼ 1; : : :;H; i; j [ U: Whilst the assumptions lkhi ’ llhj;

i – j seem reasonable, particularly when the data collector for the ith nonrespondent is

different to that of the jth nonrespondent, the assumptions lkhi ’ llhi; k – l would hold

only if the NFU visits are “passive” that is, inability to establish contacts in all previous

visit until the visit resulting in a successful conversion. On the other hand, if the visits are

non-passive, it is likely that these visits will impact the nonrespondent’s decision to

participate in the survey during the current visit, for example, persuasion effect as k grows,

or alternatively, a “no” in the previous visit is the ultimate position of the nonrespondent.

In this case, the assumption lkhi ’ llhi; k – l is violated. Nevertheless, the Bernoulli

assumption, as a working assumption, is helpful to guide the allocation of NFU resources

and benign to the estimation process which uses, amongst other things, the actual number

of nonrespondents converted in the estimation process, including the calculation of the

estimated variance.

Under the Bernoulli model, the probability of conversion, after kh visits for a

nonrespondent in the hth RHG, is khrh: Here, we restrict kh # 1
rh

, as a nonrespondent

cannot be converted more than once, that is, khrh . 1 does not make sense. With nh –mh

nonrespondents in the hth stratum, the expected number of additional respondents

converted, after kh attempts, is khrhðnh –mhÞ: With respondents increased from mh to

mh þ khrhðnh –mhÞ; whilst the sampling variance term, that is, V1 T̂j

� �
, of V T̂j

� �
; j ¼ 1; 2; 3

remains the same, we have:
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V2 T̂jjm
� �

¼
XH

h¼1

n2
h

1 2 rh

mh þ khrhðnh 2 mhÞ
S2

jh

V̂2 T̂jjm
� �

¼
XH

h¼1

n2
h

1 2 r̂h

mh þ khr̂hðnh 2 mhÞ
S2

jhr ð1Þ

where S2
jh and S2

jhr are defined in Results 1 to 3 respectively, depending on the type of

weighting adjustment for nonresponse used.

On the other hand, the cost ch of following up nh –mh nonrespondents in the hth RHG

will be uhkhðnh –mhÞ;where uh is the unit cost per visit to convert, and the cost of following

up all nonrespondents across all RHGs is

C ¼
XH

h¼1

uhkhðnh 2 mhÞ: ð2Þ

Thus, the strategic approach to NFU becomes finding kh
0s such that Equation (1) is

minimised subject to: (a) C # C0 for a pre-determined C0; where C is defined (2); (b)

kh # 1
r̂h

; (c) kh is an integer; and (d) kh # k0; where k0 is another pre-determined constant

to ensure reasonable respondent load. As there is no closed form for the solution, we have

to find it using a solver. We used Excel Solver as illustrated in the next Section. It is good

at finding solutions for problems with multiple inputs subject to multiple constraints. Note

that the solutions are intuitively similar to the Neyman allocation for strata sample

sizes–RHGs with high nonresponse variance is allocated with large follow-up resources,

but tempered (in a non-linear way) by the unit cost of NFU effort.This is to boost

the responding sample size needed to reduce the nonresponse variance for the relevant

RHGs.

4. A Numerical Example

We tested the methods outlined in the previous Section through an empirical study, using data

from the 2018/19 Rural Environment and Agricultural Commodities Survey (REACS) of the

ABS (Australian Bureau of Statistics 2000). Conducted annually, the REACS releases

statistics on the production of agricultural commodities including cereal and broadacre crops,

fruit and vegetables and livestock on Australian farms. The REACS sample comprised a

stratified simple random sample of Australian farms. Like many ABS probability surveys,

REACS was confronted with the challenge of declining response rates. For this empirical

study, the variable of interest, that is, the production of sheep, is illustrated. The sample for this

variable of interest has 4,696 units (i.e., farms) in total, of which, 3,525 units were continuing

units and 1,171 were new units, that is, units first rotated into the 2018/19 survey.

To predict the response propensity scores for continuing units, the Random Forest (RF)

with regression trees algorithm (Breiman 2001) was used. The RF algorithm is used in this

article instead of logistic regression models for predicting propensity scores for a number

of reasons. For example, unlike logistic regression models, RF does not require the

assumption of linearity or additivity in the modelling (Lee et al. 2010). Equally important,

the automatic interaction detection inherent in RF algorithms provides a straightforward
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way to account for and allow easy interpretations of interactions between auxiliary data

and the propensity to respond (Phipps and Toth 2014; Buskirk and Kolenikov 2015). For

the RF algorithm used in this example, variables such as state, industry, size, statistical

significance of the unit and such paradata as number of calls on the unit in previous survey

cycles, number of reminder letters previously sent etc. were included in the model as

predictors. Finally, the RF algorithm used in this example to predict propensity scores was

chosen based on ten-fold cross validation (Hastie et al. 2009, 181), and has the smallest

“out of sample” mis-classification rate in survey participation amongst the candidate RFs

with different number of variable splits or trees.

For new units rotated into the 2018/19 REACS, the RF algorithm cannot be used to

predict the propensity scores because para data from previous survey cycles for these units

do not exist. Instead, their propensity scores were imputed by the average of the propensity

scores of the continuing units considered to be their k Nearest Neighbours (kNN) (Hastie

et al. 2009, 463). To run the kNN algorithm, four variables from the 2018/19 REACS

including state, natural resources management region, industry and size were used to

calculate the “distance” metric. Because they are categorical variables, the Gower’s

Distance (Gower 1971) was used as the distance metric to find the nearest neighbours.

What value of k should be used? The optimal k should be one that gives the most

accurate out-of-sample predictions. To find the optimal k, ten-fold cross validation was

again applied to the (training) dataset comprising the estimated propensity scores of the

continuing units. The root mean squared error of the predicted propensity scores was used

to measure and compare the accuracy of twelve kNN models for k ¼ 1,2, : : : ,12. As can

be seen from Figure 1, whilst the 12NN model appears to be the most accurate, its RMSE

is, however, not significantly different from that of the 5NN model. As the training dataset

itself is skewed towards RHGs with high propensity scores, a small k is preferred, lest the

KNN induced propensity scores of the new units are skewed by high propensity scores

donors. Based on these considerations, the optimal k is taken to be five and the 5NN model

was chosen to impute the propensity scores for the new units.

Finally, in REACS 2018/19, as the sample was stratified, and the stratified estimator was

recast as a GREG estimator (Särndal and Lundström 2005, 37), so that the QR IPW

estimator of Result 2, T̂2, is used in the numerical example.
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Fig. 1. Estimated out-of-sample error rate by different value of k in kNN models.
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Table 1 gives the relevant information with respect to the estimator of Result 2. In this

example, we set C0 ¼ USD 30; 000 and k0 ¼ 6: We used the complimentary Excel Solver

to solve the problem by creating an objective “cell” in Excel (i.e., Equation (1)), a 10x1

vector of kh input ”cells”, three 10x1 vector of constraint “cells” (i.e., constraints (b) to (d)

in Section 3 above), and a total cost constraint “cell” (i.e., constraint (a)). When running

the Solver, Excel allows the 10x1 vector of kh input ”cells” to vary, subject to meeting the

requirements of the constraint cells, in order to find the solutions to minimise the objective

cell. Table 1 gives the relevant data to compute the optimal solutions, and V̂2 T̂2jm
� �

. The

optimum solutions are given in Table 2.

In this example, the investment of about USD 19.6k (see Table 2) for NFU is cost effective,

as it reduces the nonresponse variance, V̂2 T̂2jm
� �

, from 57.77 billion units (Table 1) where

there is no NFU to about 38.21 billion units (Table 2) by restricting the number of follow-up

Table 1. REACS 2018/19 information on T̂2 for sheep and V̂2 T̂2jm
� �

with no NFU.

RHG Propensity nh r̂h S2
jhr mh uh V̂2ðT̂2jmÞ

score (107) (USD) (109)
range

1 (0,0.1] 23 0.09 2.30 2 20 5.55
2 (0.1,0.2] 23 0.17 3.32 4 20 3.64
3 (0.2,0.3] 37 0.27 1.58 10 20 1.58
4 (0.3,0.4] 79 0.35 2.50 28 20 3.60
5 (0.4,0.5] 117 0.45 2.72 53 20 3.84
6 (0.5,0.6] 178 0.55 4.36 98 20 6.33
7 (0.6,0.7] 285 0.65 8.49 186 20 12.87
8 (0.7,0.8] 257 0.75 6.51 193 20 5.55
9 (0.8,0.9] 504 0.85 7.90 429 20 6.96
10 (0.9,1) 3193 0.95 4.69 3034 20 7.85

Total 4696 4037 57.77

Table 2. Optimal kh and V̂2 T̂2jm
� �

for C0 – USD 30k and k0 ¼ 6

RHG RP
score
range

kh Additional
respondents* –

khr̂hðnh –mhÞ

RHG follow
up cost (USD)
uhkhðnh –mhÞ

V̂2ðT̂2jmÞ
(109)

1 (0,0.1] 6 11 2,520 0.86
2 (0.1,0.2] 5 17 1,900 0.93
3 (0.2,0.3] 2 15 1,080 0.70
4 (0.3,0.4] 2 36 2,040 1.75
5 (0.4,0.5] 2 58 2,560 2.08
6 (0.5,0.6] 1 44 1,600 4.37
7 (0.6,0.7] 1 64 1,980 9.56
8 (0.7,0.8] 1 48 1,280 4.44
9 (0.8,0.9] 1 64 1,500 6.06
10 (0.9,1) 1 151 3,180 7.45

Total - - 508 19,640 38.21

*Rounded to the nearest integer

Tam et al: Optimal Allocation of Follow-Up Resources 429



visits to the values of kh as shown in Table 2. We can also see from Table 2 that there is an

increase of 508 respondents with the optimal allocation of NFU resources, lifting the pre-

follow up response rate of 86.0% to a post- follow up response rate of 97%. On the other hand,

using the same Excel Solver, we can show that if only, say, USD 10k is available for follow-

up, the optimal kh
0s are k1 ¼ 2; k2 ¼ 3; k9 ¼ k10 ¼ 0; and ki ¼ 1; for i ¼ 3; 4; 5; 6; 7; 8: This

would incur a total investment of USD 9.6k; gives a nonresponse variance of 41.9 billion units,

and an increase of 225 respondents with a post-follow up response rate of only 91%.

With a sampling variance of 41:3x109 units for sheep production, the use of optimal

NFU allocation reduces the mean squared error from 99:11x109 (with no NFU follow-up)

to 79:55x109 units, or a reduction by 19.7% and 10.4% in the mean squared error and root

mean squared error respectively.

It is also instructive to compare the optimal allocation strategy with the common

practice, where there is no differentiation in the number of visits across the RHGs, that is,

kh ¼ k0; h ¼ 1; : : :; 10: From (2), k0 ¼ Co=
PH

h¼1

uhðnh 2 mhÞ ¼ USD 30; 000={USD 20*

ð4; 696–4; 037Þ} . 2: As compared with the optimal allocation, we see that the common

practice in this example does not put enough resources for the first two RHGs, and too much

for the last five RHGs. The result is that the nonresponse variance of 39.84 billion units

under the constant k0 approach is higher than the optimum nonresponse variance of 38.21

billion units. Even though the reduction in mean squared error is 3.9%, the common practice

approach costs USD 10.4k more than the optimal NFU allocation approach of USD 19.6k.

However, with the number of additional respondents at 596 under the common approach, it

gives a response rate of 99%. This is an example showing the response rate of 99% can give a

misleading impression of providing a higher quality estimate of the number of sheep

produced than the one with a response rate 97% with optimal NFU allocation.

If one is interested in looking at the return on the investment of NFU resources, as measured

by the reduction of V̂2 T̂2jm
� �

per unit NFU cost, one can use different values of C0 to provide

the requisite information as shown in Table 3. We observe that the highest return on the NFU

investment is to spend about USD 10k for NFU, where 1; 091x103 units of variance is reduced

per unit cost. However, the strategy to choose the highest return on NFU resources for NFU is

only sensible if the nonresponse variance of 41.91 billion units is acceptable.

Table 3. Optimal V̂2ðT̂2jmÞ and Response Rate for k0 ¼ 6 and different values of C0

Cost (USD) V̂2ðT̂2jmÞ Response Actual Reduction in

(not greater
than)

(109) rate (%) cost
(USD)

variance
(103) per
additional
unit cost

5,000 47.26 88 4,600 -
7,500 44.42 89 7,380 1,022
10,000 41.91 91 9,680 1,091
12,500 40.56 92 12,200 536
15,000 39.24 93 14,900 489
17,500 39.02 96 17,500 85
20,000 38.21 97 19,640 379
20,250 38.21 97 19,640 -
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5. Conclusion

In this article, we provide a method to allocate NFU resources in such a way as to minimise

the nonresponse variance (and thus the MSE) of the estimator of a variable of interest in

probability surveys. This method requires the use of a quasi-randomisation framework and

an inverse propensity weight to adjust for nonresponse.

In the numerical example, we used Random Forest to estimate the response propensity

scores for the continuing units and applied the kNN algorithm to impute the propensity

scores for the new units first rotated into the 2018/19 REACS. In both cases, selection of

the RF algorithm, or the value of k in the kNN algorithm, was based on 10 fold cross

validation, and the RF algorithm/k in the kNN algorithm with the least out-of-sample

classification/prediction error was chosen. When compared with the common practice, the

numerical example shows that there is a further reduction (about 4%) in the nonresponse

variance V̂2 T̂2jm
� �

by adopting the optimum allocation of NFU resources with only two

third of the cost. The numerical example also shows that response rate is an inadequate

indicator of data quality and the common NFU practice is not the most cost effective.

We note that official surveys are multi-purpose and optimising the allocation of NFU

resources with respect to one target variable may not result in the optimal allocation of this

resources to the other variables. This issue is also faced by survey statisticians in using

Neyman allocation. An approach commonly used in official surveys to address this issue is

to allocate the sample sizes with reference to the highest priority variable. Another way is

to define objective functions for optimisation which address the multivariate situation.

This is discussed in Holmberg (2002, 2003) and Holmberg et al. (2003). The same

approaches can be used to allocate NFU resources in multiple purpose surveys.

The important messages of this article are (1) reinforcing the well-known fact that

allocating significant resources to boost response rates will not necessarily lead to better

quality statistics; (2) in order to achieve better statistical outcomes, the NFU resource

allocation should instead aim at minimising the variance from nonresponse; and (3)

optimal allocation of NFU resources will result in the most cost effective NFU practice.
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